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Scalable parameterized quantum 
circuits classifier
Xiaodong Ding 1,2, Zhihui Song 1,2, Jinchen Xu 1, Yifan Hou 1, Tian Yang 1 & Zheng Shan 1*

As a generalized quantum machine learning model, parameterized quantum circuits (PQC) have been 
found to perform poorly in terms of classification accuracy and model scalability for multi-category 
classification tasks. To address this issue, we propose a scalable parameterized quantum circuits 
classifier (SPQCC), which performs per-channel PQC and combines the measurements as the output 
of the trainable parameters of the classifier. By minimizing the cross-entropy loss through optimizing 
the trainable parameters of PQC, SPQCC leads to a fast convergence of the classifier. The parallel 
execution of identical PQCs on different quantum machines with the same structure and scale reduces 
the complexity of classifier design. Classification simulations performed on the MNIST Dataset 
show that the accuracy of our proposed classifier far exceeds that of other quantum classification 
algorithms, achieving the state-of-the-art simulation result and surpassing/reaching classical 
classifiers with a considerable number of trainable parameters. Our classifier demonstrates excellent 
scalability and classification performance.

With the development of quantum computing technology1, quantum machine learning2–15 has become a hot 
research field, and multi-category classification is one of the important tasks. Conventional multi-category classi-
fication algorithms are typically based on deep learning frameworks16–18, but these methods require large amounts 
of data and computational resource, and suffer from issues such as overfitting. Quantum machine learning, 
which combines quantum computing and machine learning, has the advantages of accelerating computation and 
reducing overfitting, making it widely applicable to various problems. However, for classification problems, most 
existing quantum machine learnings focus on binary classification tasks, and for multi-category classification 
problems, the research mainly focuses on deploying classical neural networks at the end of quantum algorithms19. 
Quantum machine learnings based on measurement of projection9, QF-hNet2 and other methods20–22 have also 
been proposed for solving the multi-category classification problem, but the classification effect and scalability 
are poor. It is worth looking forward to providing quantum multi-category classifiers with good scalability and 
excellent classification results. Therefore, in this paper, we propose SPQCC with PQC23,24 as the core. This choice 
is made because PQC, as a generalized quantum machine learning model for quantum machine learning, has the 
properties of certain resilience to certain types of errors, coherence time, and more flexible operation attributed 
to the properties of quantum parallelism, superposition and entanglement, which has shown strong learning 
capability and is now used as a core module for algorithms such as QNN25–27, QCNN28,29, QLSTM30,31, and 
QGAN32,33. The number of parallel PQCs of this classifier is the same as the number of classes of samples, which 
has good scalability. Secondly, the multiple PQCs have the same structure and scale, and only needs to design 
one channel of PQC to complete the design of parallel multiple PQCs of the classifier, which makes the design 
of the classifier more convenient. Meanwhile, these PQCs are allowed to be executed in parallel, so the execution 
efficiency of the classifier is higher. Finally, the measurements of the parallel multiple PQCs are combined as 
the output of the final classifier, and the trainable parameters of all the PQCs are optimized by minimizing the 
cross-entropy loss function, which leads to fast convergence of the classifier. Additionally, in this paper we also 
emphasize on the design of PQC, the circuit measurement methods and parameters optimization.

Results
The scalability and classification effectiveness of our proposed classifier are verified. The scalability of the model 
is primarily demonstrated in two aspects: the ability to handle datasets with varying numbers of categories and 
the ability to adjust the model’s size. Scalability when dealing with datasets with different numbers of categories: 
When faced with datasets containing varying numbers of categories, the model must be capable of adapting flex-
ibly while maintaining good performance. Specifically, the model can be scaled by simply adjusting the number of 
PQCs in the model based on the number of categories in the dataset. This approach ensures that the model is both 
robust and flexible when dealing with datasets containing varying numbers of categories. Scalability regarding 
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the size of the model: This involves not only an expansion in the number of PQCs, but also the adjustment of the 
number of layers in the quantum circuits. We chose the MNIST dataset for separate classification simulations 
on the quantum simulator TensorCircuit. This dataset was chosen because for more than a decade, researchers 
from the fields of Machine Learning, Machine Vision, Artificial Intelligence, and Deep Learning have used this 
dataset as one of the benchmarks for measuring classification algorithms34–38. We compare the classification 
accurate of our classifier with the classification accurate of other classifiers9,39 on the MNIST dataset. To carry 
out the experimental validation, we have equipped the following hardware facilities: Processor: We used an Intel 
Core i7-8700K, a powerful processor with strong computing power and multi-threaded processing ability, to 
meet the experimental needs. Memory: The computer is equipped with 64GB of DDR4 RAM, ensuring sufficient 
memory resources to keep the experiment running efficiently when processing large amounts of data.In this 
experiment, we used the following hyperparameter configurations: Learning Rate: We chose 0.01 or the default 
0.001 as the learning rate, depending on the specific dataset.Batch Size (Batch Size): We used 64 as the batch 
size. Iteration Count (Epochs): We set the iteration count to 50.Optimizer: We chose the Adam optimizer. Loss 
Function: We chose the CategoricalCrossentropy function. We perform data preprocessing by resize the input 
images from 28× 28 to 32× 32 , equivalent to the usage of 10-qubits system on the quantum hardware. In order 
to better demonstrate the advantages of our classifier. This experiment was used to validate the model’s ability 
to handle datasets with varying numbers of categories. We perform 2,3,4,5 classification on the sub-datasets 
{1, 5}, {3, 6}, {3, 8}, {3, 9}, {0, 3, 6}, {1, 3, 6}, {0, 3, 6, 9}, {0, 1, 3, 6, 9}, {0, 1, 2, 3, 4} to compare the performance of 
our method on the training and testing datasets. Total Sample Count, Total Sample Count, and Total Sample 
Count vary depending on the classification problem of the dataset. Each dataset contains a specific classification 
problem and is trained and tested using the corresponding samples. These details are crucial for understanding 
the structure of the dataset, evaluating model performance, and comparing different approaches. We perform 
model evaluation on different classes of classification problems, and the details of the evaluation dataset are 
provided in Table 1. Set relative to BinMLP(C) w/o BN, BinMLP(C) w/BN, FFNN(Q) w/o BN, FFNN(Q) w/ 
BN, MLP(C) w/o BN, MLP(C) w/ BN, QF-pNet w/o BN, QF-pNet w/ BN, QF-hNet w/o BN, QF-pNet w/ BN 
and other algorithms for classification accuracy. For MNIST actual data features, we design PQC as shown in 
Fig. 1. For multi-category classification, our classifier only needs to replicate the circuit in Fig. 1 by configur-
ing different trainable parameters for the corresponding number of times, without any additional procedures 
required. This approach can be extended to support N classes, indicating good scalability of our classifier. For 
the MNIST sub-datasets {1, 5}, {3, 6}, {3, 8}, {3, 9}, {0, 3, 6}, {1, 3, 6}, {0, 3, 6, 9}, {0, 1, 3, 6, 9}, {0, 1, 2, 3, 4} the clas-
sification accurate on the different algorithms are shown in Fig. 2. The validation results in Fig. 2 clearly indicate 
that the classification accuracy of our proposed classifier on various subsets of the MNIST dataset, both for 
training and testing, is noticeably better than that of other quantum classification approaches, establishing it as 
the current state-of-the-art simulation result and surpassing (or matching) classical classifiers (e.g., MLPs) with 
a significant number of trainable parameters. 

To further validate the scalability and classification accuracy of our classifier, we extend the sub-dataset to 
the entire MNIST dataset. For our proposed classifier, it only requires parallelizing ten channels to complete the 
ten-category classification of the entire dataset. At the same time, we adjust the number of layers of the param-
eterized quantum circuit from three to four, thereby completing the experimental verification. This experiment 
is used to verify the ability of the model to adjust the size of the scale. After 50 epochs of training and testing, 
the classification accuracy and loss function evolution of the classifier are plotted in Fig. 3.

On the MNIST dataset, our classifier achieved a ten-category classification accuracy, where 50 epochs of 
iterative training were performed. For each epoch, the model was tested on the testing dataset, and the rate of 
change of classification accuracy and loss value on both the training and testing datasets throughout the iterations 
is plotted in Fig. 3. Our proposed classifier achieved a classification accuracy of 90% on both the training and 
testing datasets, and the classification accuracy of projection valued measure-based quantum machine learning 
for multi-category classification9 was less than 80%. Our classifier was 10% higher in classification accuracy and 
showed good convergence by fast converging to the optimal model after 20 epochs. We have made the source 
code of all our experiments publicly available through the GitHub platform (https://​github.​com/​zhaod​ing3/​
xiaod​ong/), aiming to enable the general public to directly access, review, and validate the core aspects of our 

Table 1.   As far as the classification problem of the dataset is concerned, Total sample count, Training sample 
count and Test sample count vary and the table shows the detailed information for different datasets.

Problem Total sample count Training sample count Test sample count

2-class 1,5 13298 12163 2027

2-class 3,6 14017 12049 1968

2-class 3,8 13966 11982 1984

2-class 3,9 14099 12080 2019

3-class 0,3,6 20920 17972 2948

3-class 1,3,6 21894 18791 3103

4-class 0,3,6,9 27878 23921 3957

5-class 0,1,3,6,9 35755 30663 5092

5-class 0,1,2,3,4 35735 30596 5139

10-class 0,1,2,3,4,5,6,7,8,9 70000 60000 10000

https://github.com/zhaoding3/xiaodong/
https://github.com/zhaoding3/xiaodong/
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Figure 1.   One channel PQC Design for Classifier over MNIST dataset, where �θ i in the PQC could denote the 
weight matrix W in the traditional neural networks, PQC in the figure could be expressed by the following 
equation:W(�θ i) = UnetUl(�θ
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Figure 2.   TBinMLP(C) w/o BN, BinMLP(C) w/ BN, FFNN(Q) w/o BN, FFNN(Q) w/ BN,, MLP(C) w/o BN, 
MLP(C) w/ BN, QF-pNet w/o BN, QF-pNet w/ BN, QF-hNet w/o BN, QF-pNet w/ BN, Our classifier(train), Our 
classifier(test) Different algorithms on MNIST sub-datasets {1, 5}, {3, 6}, {3, 8}, {3, 9}, {0, 3, 6}, {1, 3, 6}, {0, 3, 6, 9},
{0, 1, 3, 6, 9}, {0, 1, 2, 3, 4} Classification Accuracy Display Graph.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15886  | https://doi.org/10.1038/s41598-024-66394-2

www.nature.com/scientificreports/

experimental environment configurations, data processing flow, and model training, thus ensuring the transpar-
ency of our research work and the reproducibility.

Discussion
Multi-category classification is a crucial task in the field of machine learning. Conventional multi-category 
classification methods require significant amounts of data and computational resources, and suffer from issues 
such as overfitting. Existing quantum machine learnings mostly focus on binary classification problems, and the 
research on multi-category classification problems has poor classification accuracy and scalability. Therefore, 
SPQCC has better scalability while ensuring classifier performance. Our classifier requires PQCs to have the same 
structure and scale, making it possible for the algorithm designer to design only one channel of PQC to complete 
the design of the whole classifier, greatly reducing the complexity of the design. Moreover, after designing a one-
channel PQC, only the number of parallel PQCs equals to the classification class can be naturally extended to 
multi-category classifications, from which we could see that our proposed classifiers are more scalable. Addition-
ally, our classifier realizes parallel execution of PQCs regardless of the number of classification classes, and the 
training time used is only related to the sample scale and the result and scale of one channel of PQC, but not the 
number of channels of PQCs executed, which has the same efficiency as that of the same scale of parameterized 
quantum circuit-based quantum machine learning algorithms. Our model employs the method of multiple PQCs. 
With each additional parameterized quantum circuit or increase in the number of layers of PQCs, the number 
of parameters in the whole model increases significantly, although the increase in the depth of the quantum 
circuit is not significant. Deeper circuits need to be designed to account for this additional parameter compared 
to the traditional single circuit model. However, designing deeper circuits poses a number of challenges. For 
instance, the coherence time of quantum bits, deeper circuit design may also introduce more errors and noise. 
This extended approach ensures the performance and stability of the model when dealing with more complex 
and larger datasets. Finally, our classifier is compared with existing classifiers in terms of classification effective-
ness, and the experimental results illustrate that our proposed classifier exhibits excellent classification accuracy.

Methods
Classifier framework
Our proposed SPQCC belongs to a variant of quantum neural networks, which has four main components: 
quantum encoding, parallel multi-channel PQCs, quantum circuits measurement, and loss function minimiza-
tion for parameters optimization. Its model is shown in Fig. 4.

Quantum encoding: Similar to other quantum machine learning algorithms, the implementation of SPQCC 
first requires mapping vectors to quantum states in the Hilbert space using features, which is generally achieved 
by quantum encoding for this process. The main encoding methods40 at this stage are base encoding, amplitude 
encoding, repetitive amplitude encoding, rotational encoding, coherent state encoding, and so on. Amplitude 
encoding, approximate amplitude encoding, and rotational encoding are commonly used to map features from 
classical data to quantum states. Quantum amplitude coding is effective for certain problems, but implement-
ing it can require a large number of quantum gate operations, posing computational complexity and scalability 
challenges. Approximate amplitude encoding41,42, as an important encoding method, is implemented by training 
shallow PQCs to encode given classical data into quantum circuits. Compared with quantum amplitude encoding, 
it uses fewer gates and shallower circuit depths. However, this encoding approach requires multiple training ses-
sions to encode classical data, and thus also suffers from certain encoding efficiency issues. Rotational encoding is 
usually easier to understand and implement than other quantum encoding methods, and they are better resistant 
to noise and interference, making them more advantageous in quantum communication and quantum comput-
ing. But rotational encoding requires more quantum resources to accomplish computational tasks, potentially 
making them less practical in resource-limited systems. The choice of encoding method to implement feature 

Classifier performance on the MNIST dataset

Figure 3.   Through 50 epochs of training and testing, the classification accuracy and loss function variation of 
classifier. Classifier achieves 90% classification accuracy on both the training and testing Datasets. Classifier has 
good convergence by converging to the optimal model quickly after 20 epochs.
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mapping usually depends on factors such as the model designer’s experience, the characteristics of the original 
data, the number of bits in the quantum computer, and the decoherence time of the quantum system43. In order to 
meet the requirements of the validation experiment, we chose amplitude coding to realize feature mapping based 
on the characteristics of the experimental dataset and hardware conditions. In this paper, we focus on feature 
mapping using amplitude encoding, the core idea of which is to utilize the properties of quantum interference 
and quantum entanglement to encode vectors into the amplitude of a quantum state, which is processed in the 
form of a qubit, which has an exponential advantage in terms of memory. Amplitude encoding requires that the 
vectors are first normalized before encoding: xij = xij/��xi� , which has a general form: f (�xi) =

∑n
j=1 xij

∣
∣j
〉
 . The 

main way to implement amplitude encoding is the iterative approach, where the basic process is that the encoding 
of new quantum states is accomplished by multiple control operations of the already encoded generated quantum 
states on those that need to be encoded until all the features of the vector are encoded.

Parallel Multi-channel PQCs: Parallel multi-channel PQCs serve as the core component of the classifier, each 
of which features the same structure and scale. The heart of PQC is built from trainable quantum gates containing 
parameters, which in turn constitutes modules of the unit layer through these parameter-bearing quantum gates. 
Based on actual needs, the modules of the unit layer are stacked to create PQC. For different application scenarios 
and problems, PQC of different structures and scales need to be designed according to the specific circumstances.

Quantum Circuit Measurement: Measurement is performed on each qubit in a quantum circuit44,45. In real 
quantum computers, the measurement is usually done through multiple iterations and the final results are tal-
lied, which are presented in the form of vectors composed of quantum states and corresponding probabilities. 
Generally, to verify the correctness of the results of the method, quantum simulators could be leveraged, such 
as PennyLane46, Qiskit47, and TensorCircuit48.

Parameters Optimization: Similarly to quantum neural networks, SPQCC requires the definition of a loss 
function49 to quantify the difference between the predicted and true values. Here, we choose the cross-entropy50 
loss function, and during training, the parameters in the classifier are iteratively updated by a gradient descent 
algorithm. In PQC models, the gradients of the computed parameters are typically estimated using traditional 
automatic differentiation methods, although they could also be calculated using the parameter-shift rule and 
gate decomposition51 of quantum circuits.

In what follows, we will focus on the design of PQC, the quantum circuit measurement, loss function selec-
tion, and parameters optimization.

Parallel multi‑channel PQCs
The PQCs in our proposed classifier all have the same structure and scale, making it possible to design only one 
channel PQC to meet the requirements of the classifier. This concept greatly simplifies and accelerates the design 
process of the classifier. The core of PQC is the trainable parameters contained in the Ansatz quantum gates, and 
the quantum gates containing trainable parameters in this paper are mainly composed of basic quantum gates 
of the form e−iθG/2(G = {X,Y}) and two-qubit gates U = eiθ(Y⊗Y),U1 = eiθ(Z⊗Z) , where

The matrices X,Y ,Y ⊗ Y ,Z ⊗ Z are obviously unitary matrices, which meet the requirement that the opera-
tions of a quantum system must be unitary matrices. PQC contains only Rx(θ) and Ry(θ) . The first step to do is 
to apply a CNOT gate between each pair of qubits to ensure that it generates quantum entanglement between 
qubits in Hilbert space, and the basic structure of the qubits in terms of six for example is shown in the Fig. 5. By 
including U(θ) and U1(θ) in the basic layer, topological PQCs can realize quantum state entanglement without 
the need to apply CNOT gates between each pair of qubits. Illustrated here as an example using six qubits, two 
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Figure 4.   The SPQCC framework consists of four main components: quantum encoding, parallel multi-
channel PQCs, quantum circuits measurement, and loss function minimization for parameter optimization.
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different topological basic structures are shown: the block structure in Fig. 6 and the ladder structure in Fig. 7. 
The trainable parameters �θ  in PQC are analogous to the adjustable weights W in conventional neural networks52, 
and the loss functions are constructed by measuring the expectation values of various observations on the PQCs. 
In PQCs, we initialize the parameters �θ = (�θ1, �θ2, ...., �θn) , where n denotes the number of categories and �θ j rep-
resents the parameters of the jth channel of the PQC. In SPQCC �θ1, �θ2, ...., �θn are treated as a whole, and in the 

Figure 5.   The diagram of the first PQC, where �θ1 in the PQC could denote the weight matrix W in the 
traditional neural networks, PQC in the figure could be expressed by the following 
equation:W(�θ1) = UnetUl(�θ

1
L )UnetUl(�θ
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L−1)...UnetUl(�θ

1
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 denote k from 1 to n, increasing by 2 each time, 

and n is the number of parameters in each layer.

Figure 6.   The diagram of the first PQC, where �θ1 in the PQC could denote the weight matrix 
W in the traditional neural networks, PQC in the figure could be expressed by the following 
equation:W(�θ1) = ⊗L
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Figure 7.   The diagram of the first PQC, where �θ1 in the PQC could denote the weight matrix 
W in the traditional neural networks, PQC in the figure could be expressed by the following 
equation:W(�θ1) = ⊗L
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from 1 to n, increasing by 2 each time, and n is the number of parameters in each layer.
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process of parameters optimization, �θ = (�θ1, �θ2, ...., �θn) need to be updated for each channel for each optimiza-
tion step. In summary, the design of PQC for a classifier allows us to determine the structure and scale of PQC 
according to the needs of different application scenarios, and then select appropriate quantum gates from the 
parameter-containing quantum gates to complete the design. This process is full of possibilities, and the diversity 
of PQCs designed are also an attraction of our classifier. Finally, assuming that the number of categories is m, 
the design of the classifier can be completed by parallelizing the m designed PQC.  

Quantum circuit measurement
Our measurement is performed on PQC where the qubit state is measured in a standard basis (Z-basis)53,54. The 
Z-basis is the basis used to measure whether a qubit is in the |0� state or the |1� state, which is determined by the 
state of the wavefunction of the qubit prior to the measurement. The process of performing a measurement is 
to project a qubit from the superposition state onto the standard basis states |0� and |1� , and the measurement 
causes the state of the qubit to undergo a collapse to a fixed standard basis state |0� or |1� , we record the prob-
ability of the state collapsing to |0� , and then sum the probabilities of all the qubits collapsing to |0� of each qubit 
of PQC as output, corresponding to the n-category classification, and the whole outputs of the classifier results 
in M1,M2, ...,Mn.

The specific measurement is, for the measurement under the Z-basis, the two corresponding measurement 
operators are Z0 = |0��0|,Z1 = |1��1| , which would be seen to be self-adjoint, i.e., Z0† = Z0,Z1

† = Z1 , and 
satisfy Z02 = Z0,Z1

2 = Z1 . Let the state of a qubit when it is measured be |ϕ� = α|0� + β|1� , and the state in 
which the measurement result is 0 be p(0) = �ϕ|Z0

†Z0|ϕ� = �ϕ|Z0|ϕ� = |α|2 . Let one-channel PQC contain m 
qubits, then according to our quantum circuit measurement method, the output result of each quantum circuit 
is: Mi =

∑m
j=0 pj(0).

Loss function design and parameters optimization
SPQCC, like quantum neural networks, requires the definition of loss function to measure the difference between 
the predicted value and the true value. As mentioned in parallel PQCs, the qubits of each PQC are measured at 
each qubit on Z. That is, each qubit is projected onto the ground state separately, and the probability of collapsing 
to |0� is calculated as Pi. After adding all the Pis of the PQC together and the sum Mi as the output, the outputs 
of the whole classifier are M1,M2, ...,Mn . After combining the results and passing them through the SoftMax55,56 
as the final outputs.SoftMax mainly transforms the output value of the multi-category classification into a prob-
ability distribution in the range of [0,1] with sum 1. At the same time we use one-hot57,58 to encode the sample 
labels, which provides the basis for generating the loss function for parameters optimization. 
Softmax(Mi) =

eMi
∑C

c=1 e
Mc

 , Mi is the output of the i-th PQC, and C is the number of parallel PQCs (the number 
of classes to be classified). For the loss function we choose the cross-entropy, and the SoftMax maps the output 
of the classifier M1,M2, ...,Mn to a vector ŷ , ŷ = Softmax(M1,M2, ...,Mn) , which we could consider as the esti-
mated conditional probability of each class for an arbitrary sample x.

Let assume that the dataset {X,Y} has n samples, where the samples indexed as i are composed of a feature 
vector xi and a corresponding vector yi of one-hot label. Then for any x corresponding to the true label y and the 
result ŷ predicted by the classifier, we define the cross-entropy loss function as l(y, ŷ) = −

∑n
i=1 yi log ŷi . We use 

the one-hot labels for encoding, so in the vector y, only one component is 1 and the rest are 0. We could then 
write the loss function as: l(y, ŷ) = −

∑n
i=1 yi log ŷi . According to the definition of SoftMax , the loss function 

l(y, ŷ) = −
∑n

i=1 yi log ŷi could be expanded as:

The loss function is derived for any prediction oi:

From the above equation, the derivative is the difference between the output obtained by the multi-category 
classifier and the true value.

The parameters in the classifier are updated iteratively during training through a gradient descent algorithm. 
The gradient of the computed parameters for PQC is typically estimated using the traditional automatic differen-
tiation method, or the parameter-shift rule of the quantum circuit can be applied. The PQC, with the phase in the 
quantum gate serving as the primary training parameters, causes the initial quantum state |ϕin� to evolve into the 
desired quantum final state |ϕout� through iterative training, i.e., |ϕout� = W(�θ)|ϕin� , where W(�θ) represents the 
corresponding quantum state of the PQC. The optimization of the parameters focuses on reducing the deviation 
between the predicted and true values, quantified by the loss function l(y, ŷ) = −

∑n
i=1 yi log ŷi , where ŷi and yi 

represent the predicted and true values corresponding to xi , respectively. Through continuous training, the loss 
function is minimized, or the error of its loss function is brought within an acceptable range. For the simula-
tions in this paper, we utilize the traditional automatic differentiation method to compute the gradient solutions.

Frontier research1,59–61 has made it clear that quantum neural networks, through the superposition and entan-
glement properties of qubits, have demonstrated significant advantages compared to classical neural networks 
exhibit significant advantages, including fewer parameters, lower resource requirements, faster training, and 
lower risk of overfitting, which enable efficient representation of complex functional relationships. Our model 

(3)l(y, ŷ) = −

n∑

i=1

yi log
eoi

∑n
c=1 e

oc
=

n∑

i=1

log

n∑

c=1

eoc −

n∑

i=1

yioi = log

n∑

c=1

eoc −

n∑

i=1

yioi

(4)
∂ l(y, ŷ)

∂oi
=

eoi
∑n

c=1 e
oc

− yi = Softmax (o)i − yi
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incorporates the core advantages of quantum neural networks. In addition, our model adopts a multiplexed 
PQC architecture, assuming that each channel contains m parameters and consists of c channels, resulting in 
a total number of m ∗ c parameters. In terms of the use of qubits, the number of qubits required for amplitude 
encoding is c ∗

⌈
log n

⌉
 if a parallel structure is used, and only 

⌈
log n

⌉
 qubits are required if a no-parallel structure 

is used, where n is the data dimension. In this case, the required resources are exponentially reduced compared 
to classical neural networks.

Conclusion
PQC is one of the mainstream models of quantum machine learning, which mainly stacks a set of quantum 
gates containing parameters together to form a model. Optimization of these parameters through training is 
necessary to achieve the desired output. Multi-category classification has numerous applications and is a worth-
while research problem. SPQCC, which we propose, takes advantage of the parallelism of PQCs, merges the 
measurements of the model as the final output of the classifier, and minimizes the cross-entropy loss function 
for optimizing the classifier’s parameters. This method allows for establishing the same number of PQCs cor-
responding to the number of classes according to the number of classes, using the same measurement method. 
The PQCs need only be designed once in the design process of the classifier, with the same design complexity as 
designing a single PQC. Additionally, the time complexity is equivalent to that of a single PQC classifier using 
parallel processing and multiple simulators. However, our designed classifier fully utilizes the advantages of 
quantum computing and has better scalability. We tested it on MNIST, and the classification accuracy is similar 
to that of traditional methods. Our findings provide new ideas and methods for solving multi-category classifica-
tion problems using PQC, and contribute to the performance and efficiency of quantum algorithms for solving 
multi-category classification problems. In future work, we will build on this foundation to achieve multi-category 
classification using quantum perceptron machines.

Data availability
All data generated or analysed during this study are included in this published article.
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