www.nature.com/scientificreports

scientific reports

W) Check for updates

OPEN Scalable parameterized quantum

circuits classifier

Xiaodong Ding'2, Zhihui Song?, Jinchen Xu?, Yifan Hou?, Tian Yang®! & Zheng Shan®**

As a generalized quantum machine learning model, parameterized quantum circuits (PQC) have been
found to perform poorly in terms of classification accuracy and model scalability for multi-category
classification tasks. To address this issue, we propose a scalable parameterized quantum circuits
classifier (SPQCC), which performs per-channel PQC and combines the measurements as the output
of the trainable parameters of the classifier. By minimizing the cross-entropy loss through optimizing
the trainable parameters of PQC, SPQCC leads to a fast convergence of the classifier. The parallel
execution of identical PQCs on different quantum machines with the same structure and scale reduces
the complexity of classifier design. Classification simulations performed on the MNIST Dataset

show that the accuracy of our proposed classifier far exceeds that of other quantum classification
algorithms, achieving the state-of-the-art simulation result and surpassing/reaching classical
classifiers with a considerable number of trainable parameters. Our classifier demonstrates excellent
scalability and classification performance.

With the development of quantum computing technology!, quantum machine learning?~'* has become a hot
research field, and multi-category classification is one of the important tasks. Conventional multi-category classi-
fication algorithms are typically based on deep learning frameworks'®'8, but these methods require large amounts
of data and computational resource, and suffer from issues such as overfitting. Quantum machine learning,
which combines quantum computing and machine learning, has the advantages of accelerating computation and
reducing overfitting, making it widely applicable to various problems. However, for classification problems, most
existing quantum machine learnings focus on binary classification tasks, and for multi-category classification
problems, the research mainly focuses on deploying classical neural networks at the end of quantum algorithms*®.
Quantum machine learnings based on measurement of projection®, QF-hNet? and other methods**->? have also
been proposed for solving the multi-category classification problem, but the classification effect and scalability
are poor. It is worth looking forward to providing quantum multi-category classifiers with good scalability and
excellent classification results. Therefore, in this paper, we propose SPQCC with PQC?** as the core. This choice
is made because PQGC, as a generalized quantum machine learning model for quantum machine learning, has the
properties of certain resilience to certain types of errors, coherence time, and more flexible operation attributed
to the properties of quantum parallelism, superposition and entanglement, which has shown strong learning
capability and is now used as a core module for algorithms such as QNN?*-?, QCNN?%, QLSTM?***!, and
QGAN?****, The number of parallel PQCs of this classifier is the same as the number of classes of samples, which
has good scalability. Secondly, the multiple PQCs have the same structure and scale, and only needs to design
one channel of PQC to complete the design of parallel multiple PQCs of the classifier, which makes the design
of the classifier more convenient. Meanwhile, these PQCs are allowed to be executed in parallel, so the execution
efficiency of the classifier is higher. Finally, the measurements of the parallel multiple PQCs are combined as
the output of the final classifier, and the trainable parameters of all the PQCs are optimized by minimizing the
cross-entropy loss function, which leads to fast convergence of the classifier. Additionally, in this paper we also
emphasize on the design of PQC, the circuit measurement methods and parameters optimization.

Results

The scalability and classification effectiveness of our proposed classifier are verified. The scalability of the model
is primarily demonstrated in two aspects: the ability to handle datasets with varying numbers of categories and
the ability to adjust the model’s size. Scalability when dealing with datasets with different numbers of categories:
When faced with datasets containing varying numbers of categories, the model must be capable of adapting flex-
ibly while maintaining good performance. Specifically, the model can be scaled by simply adjusting the number of
PQCs in the model based on the number of categories in the dataset. This approach ensures that the model is both
robust and flexible when dealing with datasets containing varying numbers of categories. Scalability regarding
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the size of the model: This involves not only an expansion in the number of PQCs, but also the adjustment of the
number of layers in the quantum circuits. We chose the MNIST dataset for separate classification simulations
on the quantum simulator TensorCircuit. This dataset was chosen because for more than a decade, researchers
from the fields of Machine Learning, Machine Vision, Artificial Intelligence, and Deep Learning have used this
dataset as one of the benchmarks for measuring classification algorithms**~*. We compare the classification
accurate of our classifier with the classification accurate of other classifiers”* on the MNIST dataset. To carry
out the experimental validation, we have equipped the following hardware facilities: Processor: We used an Intel
Core i7-8700K, a powerful processor with strong computing power and multi-threaded processing ability, to
meet the experimental needs. Memory: The computer is equipped with 64GB of DDR4 RAM, ensuring sufficient
memory resources to keep the experiment running efficiently when processing large amounts of data.In this
experiment, we used the following hyperparameter configurations: Learning Rate: We chose 0.01 or the default
0.001 as the learning rate, depending on the specific dataset.Batch Size (Batch Size): We used 64 as the batch
size. Iteration Count (Epochs): We set the iteration count to 50.Optimizer: We chose the Adam optimizer. Loss
Function: We chose the CategoricalCrossentropy function. We perform data preprocessing by resize the input
images from 28 x 281032 x 32, equivalent to the usage of 10-qubits system on the quantum hardware. In order
to better demonstrate the advantages of our classifier. This experiment was used to validate the model’s ability
to handle datasets with varying numbers of categories. We perform 2,3,4,5 classification on the sub-datasets
{1,5},{3,6},{3,8},{3,9},{0,3,6},{1,3,6},{0,3,6,9},{0, 1,3,6,9},{0, 1,2, 3,4} to compare the performance of
our method on the training and testing datasets. Total Sample Count, Total Sample Count, and Total Sample
Count vary depending on the classification problem of the dataset. Each dataset contains a specific classification
problem and is trained and tested using the corresponding samples. These details are crucial for understanding
the structure of the dataset, evaluating model performance, and comparing different approaches. We perform
model evaluation on different classes of classification problems, and the details of the evaluation dataset are
provided in Table 1. Set relative to BinMLP(C) w/o BN, BinMLP(C) w/BN, FFNN(Q) w/o BN, FENN(Q) w/
BN, MLP(C) w/o BN, MLP(C) w/ BN, QF-pNet w/o BN, QF-pNet w/ BN, QF-hNet w/o BN, QF-pNet w/ BN
and other algorithms for classification accuracy. For MNIST actual data features, we design PQC as shown in
Fig. 1. For multi-category classification, our classifier only needs to replicate the circuit in Fig. 1 by configur-
ing different trainable parameters for the corresponding number of times, without any additional procedures
required. This approach can be extended to support N classes, indicating good scalability of our classifier. For
the MNIST sub-datasets {1, 5}, {3, 6}, {3, 8}, {3, 9}, {0, 3, 6}, {1, 3, 6}, {0, 3, 6,9}, {0, 1, 3, 6,9}, {0, 1, 2, 3, 4} the clas-
sification accurate on the different algorithms are shown in Fig. 2. The validation results in Fig. 2 clearly indicate
that the classification accuracy of our proposed classifier on various subsets of the MNIST dataset, both for
training and testing, is noticeably better than that of other quantum classification approaches, establishing it as
the current state-of-the-art simulation result and surpassing (or matching) classical classifiers (e.g., MLPs) with
a significant number of trainable parameters.

To further validate the scalability and classification accuracy of our classifier, we extend the sub-dataset to
the entire MNIST dataset. For our proposed classifier, it only requires parallelizing ten channels to complete the
ten-category classification of the entire dataset. At the same time, we adjust the number of layers of the param-
eterized quantum circuit from three to four, thereby completing the experimental verification. This experiment
is used to verify the ability of the model to adjust the size of the scale. After 50 epochs of training and testing,
the classification accuracy and loss function evolution of the classifier are plotted in Fig. 3.

On the MNIST dataset, our classifier achieved a ten-category classification accuracy, where 50 epochs of
iterative training were performed. For each epoch, the model was tested on the testing dataset, and the rate of
change of classification accuracy and loss value on both the training and testing datasets throughout the iterations
is plotted in Fig. 3. Our proposed classifier achieved a classification accuracy of 90% on both the training and
testing datasets, and the classification accuracy of projection valued measure-based quantum machine learning
for multi-category classification® was less than 80%. Our classifier was 10% higher in classification accuracy and
showed good convergence by fast converging to the optimal model after 20 epochs. We have made the source
code of all our experiments publicly available through the GitHub platform (https://github.com/zhaoding3/
xiaodong/), aiming to enable the general public to directly access, review, and validate the core aspects of our

Problem Total sample count | Training sample count | Test sample count
2-class 1,5 13298 12163 2027
2-class 3,6 14017 12049 1968
2-class 3,8 13966 11982 1984
2-class 3,9 14099 12080 2019
3-class 0,3,6 20920 17972 2948
3-class 1,3,6 21894 18791 3103
4-class 0,3,6,9 27878 23921 3957
5-class 0,1,3,6,9 35755 30663 5092
5-class 0,1,2,3,4 35735 30596 5139
10-class 0,1,2,3,4,5,6,7,8,9 70000 60000 10000

Table 1. As far as the classification problem of the dataset is concerned, Total sample count, Training sample
count and Test sample count vary and the table shows the detailed information for different datasets.
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Figure 1. One channel PQC Design for Classifier over MNIST dataset, where 6'in the PQC could denote the
weight matrix W in the traditional neural networks, PQC in the figure could be expressed by the following
equation:W (6") = Uper Ui(85) Unet Ui(65) Upet Ui (0], Uper =TI CZ(i,), Ui(8)) = ®FL1Ry (6] )R, (6 1),

(i)eE
®i&21 denote k from 1 to 20, increasing by 2 each time.
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Figure 2. TBinMLP(C) w/o BN, BinMLP(C) w/ BN, FENN(Q) w/o BN, FENN(Q) w/ BN,, MLP(C) w/o BN,
MLP(C) w/ BN, QF-pNet w/o BN, QF-pNet w/ BN, QF-hNet w/o BN, QF-pNet w/ BN, Our classifier(train), Our
classifier(test) Different algorithms on MNIST sub-datasets {1, 5}, {3, 6}, {3, 8}, {3, 9}, {0, 3,6}, {1, 3, 6}, {0, 3, 6,9},
{0,1,3,6,9},{0, 1,2, 3,4} Classification Accuracy Display Graph.
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Figure 3. Through 50 epochs of training and testing, the classification accuracy and loss function variation of
classifier. Classifier achieves 90% classification accuracy on both the training and testing Datasets. Classifier has
good convergence by converging to the optimal model quickly after 20 epochs.

experimental environment configurations, data processing flow, and model training, thus ensuring the transpar-
ency of our research work and the reproducibility.

Discussion

Multi-category classification is a crucial task in the field of machine learning. Conventional multi-category
classification methods require significant amounts of data and computational resources, and suffer from issues
such as overfitting. Existing quantum machine learnings mostly focus on binary classification problems, and the
research on multi-category classification problems has poor classification accuracy and scalability. Therefore,
SPQCC has better scalability while ensuring classifier performance. Our classifier requires PQCs to have the same
structure and scale, making it possible for the algorithm designer to design only one channel of PQC to complete
the design of the whole classifier, greatly reducing the complexity of the design. Moreover, after designing a one-
channel PQC, only the number of parallel PQCs equals to the classification class can be naturally extended to
multi-category classifications, from which we could see that our proposed classifiers are more scalable. Addition-
ally, our classifier realizes parallel execution of PQCs regardless of the number of classification classes, and the
training time used is only related to the sample scale and the result and scale of one channel of PQC, but not the
number of channels of PQCs executed, which has the same efficiency as that of the same scale of parameterized
quantum circuit-based quantum machine learning algorithms. Our model employs the method of multiple PQCs.
With each additional parameterized quantum circuit or increase in the number of layers of PQCs, the number
of parameters in the whole model increases significantly, although the increase in the depth of the quantum
circuit is not significant. Deeper circuits need to be designed to account for this additional parameter compared
to the traditional single circuit model. However, designing deeper circuits poses a number of challenges. For
instance, the coherence time of quantum bits, deeper circuit design may also introduce more errors and noise.
This extended approach ensures the performance and stability of the model when dealing with more complex
and larger datasets. Finally, our classifier is compared with existing classifiers in terms of classification effective-
ness, and the experimental results illustrate that our proposed classifier exhibits excellent classification accuracy.

Methods

Classifier framework

Our proposed SPQCC belongs to a variant of quantum neural networks, which has four main components:
quantum encoding, parallel multi-channel PQCs, quantum circuits measurement, and loss function minimiza-
tion for parameters optimization. Its model is shown in Fig. 4.

Quantum encoding: Similar to other quantum machine learning algorithms, the implementation of SPQCC
first requires mapping vectors to quantum states in the Hilbert space using features, which is generally achieved
by quantum encoding for this process. The main encoding methods* at this stage are base encoding, amplitude
encoding, repetitive amplitude encoding, rotational encoding, coherent state encoding, and so on. Amplitude
encoding, approximate amplitude encoding, and rotational encoding are commonly used to map features from
classical data to quantum states. Quantum amplitude coding is effective for certain problems, but implement-
ing it can require a large number of quantum gate operations, posing computational complexity and scalability
challenges. Approximate amplitude encoding*"*, as an important encoding method, is implemented by training
shallow PQC:s to encode given classical data into quantum circuits. Compared with quantum amplitude encoding,
it uses fewer gates and shallower circuit depths. However, this encoding approach requires multiple training ses-
sions to encode classical data, and thus also suffers from certain encoding efficiency issues. Rotational encoding is
usually easier to understand and implement than other quantum encoding methods, and they are better resistant
to noise and interference, making them more advantageous in quantum communication and quantum comput-
ing. But rotational encoding requires more quantum resources to accomplish computational tasks, potentially
making them less practical in resource-limited systems. The choice of encoding method to implement feature
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Figure 4. The SPQCC framework consists of four main components: quantum encoding, parallel multi-
channel PQCs, quantum circuits measurement, and loss function minimization for parameter optimization.

parameter optimization

mapping usually depends on factors such as the model designer’s experience, the characteristics of the original
data, the number of bits in the quantum computer, and the decoherence time of the quantum system®. In order to
meet the requirements of the validation experiment, we chose amplitude coding to realize feature mapping based
on the characteristics of the experimental dataset and hardware conditions. In this paper, we focus on feature
mapping using amplitude encoding, the core idea of which is to utilize the properties of quantum interference
and quantum entanglement to encode vectors into the amplitude of a quantum state, which is processed in the
form of a qubit, which has an exponential advantage in terms of memory. Amplitude encoding requires that the
vectors are first normalized before encoding: x;; = x;j/|%;|, which has a general form: f(X;) = 27:1 Xij | j>. The

main way to implement amplitude encoding is the iterative approach, where the basic process is that the encoding
of new quantum states is accomplished by multiple control operations of the already encoded generated quantum
states on those that need to be encoded until all the features of the vector are encoded.

Parallel Multi-channel PQCs: Parallel multi-channel PQCs serve as the core component of the classifier, each
of which features the same structure and scale. The heart of PQC is built from trainable quantum gates containing
parameters, which in turn constitutes modules of the unit layer through these parameter-bearing quantum gates.
Based on actual needs, the modules of the unit layer are stacked to create PQC. For different application scenarios
and problems, PQC of different structures and scales need to be designed according to the specific circumstances.

Quantum Circuit Measurement: Measurement is performed on each qubit in a quantum circuit***. In real
quantum computers, the measurement is usually done through multiple iterations and the final results are tal-
lied, which are presented in the form of vectors composed of quantum states and corresponding probabilities.
Generally, to verify the correctness of the results of the method, quantum simulators could be leveraged, such
as PennyLane*®, Qiskit*’, and TensorCircuit*.

Parameters Optimization: Similarly to quantum neural networks, SPQCC requires the definition of a loss
function® to quantify the difference between the predicted and true values. Here, we choose the cross-entropy*’
loss function, and during training, the parameters in the classifier are iteratively updated by a gradient descent
algorithm. In PQC models, the gradients of the computed parameters are typically estimated using traditional
automatic differentiation methods, although they could also be calculated using the parameter-shift rule and
gate decomposition® of quantum circuits.

In what follows, we will focus on the design of PQC, the quantum circuit measurement, loss function selec-
tion, and parameters optimization.

Parallel multi-channel PQCs
The PQCs in our proposed classifier all have the same structure and scale, making it possible to design only one
channel PQC to meet the requirements of the classifier. This concept greatly simplifies and accelerates the design
process of the classifier. The core of PQC is the trainable parameters contained in the Ansatz quantum gates, and
the quantum gates containing trainable parameters in this paper are mainly composed of basic quantum gates
of the form e~*%/2(G = {X, Y}) and two-qubit gates U = eY®Y) 1] = (0(Z®Z) \where

cos % —isin % }

cain O [
—lSlni COSE

i 0 0
Ry (0) =e0%X/2 = cos EI —isin EX = { (1)

)

sin? cos?

) 0 0 0 _sin?
Ry (6) —e70Y/2 — o5 ] —isin—Y = | °° s
2 2 ¢

2

The matrices X,Y,Y ® Y,Z ® Z are obviously unitary matrices, which meet the requirement that the opera-
tions of a quantum system must be unitary matrices. PQC contains only R, (6) and R, (6). The first step to do is
to apply a CNOT gate between each pair of qubits to ensure that it generates quantum entanglement between
qubits in Hilbert space, and the basic structure of the qubits in terms of six for example is shown in the Fig. 5. By
including U(6) and U; (9) in the basic layer, topological PQCs can realize quantum state entanglement without
the need to apply CNOT gates between each pair of qubits. Illustrated here as an example using six qubits, two
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different topological basic structures are shown: the block structure in Fig. 6 and the ladder structure in Fig. 7.
The trainable parameters 6 in PQC are analogous to the adjustable weights W in conventional neural networks®,
and the loss functions are constructed by measuring the expectation values of various observations on the PQCs.
In PQCs, we initialize the parameters 6= (5 1 52, i 5”), where n denotes the number of categories and Gi rep-

resents the parameters of the jth channel of the PQC. In SPQCC él, 52, v G are treated as a whole, and in the
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equation:W (9') = 1UI(G ) (L is the number of layers), U; (9 )= ®k 1Ry(9 YUy (9 k1) ®Zil denote k
from 1 to n, 1ncreas1ng by 2 each time, and # is the number of parameters in eacll layer.
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process of parameters optimization, 6 = (6,62, ...,6") need to be updated for each channel for each optimiza-
tion step. In summary, the design of PQC for a classifier allows us to determine the structure and scale of PQC
according to the needs of different application scenarios, and then select appropriate quantum gates from the
parameter-containing quantum gates to complete the design. This process is full of possibilities, and the diversity
of PQC:s designed are also an attraction of our classifier. Finally, assuming that the number of categories is m,
the design of the classifier can be completed by parallelizing the m designed PQC.

Quantum circuit measurement

Our measurement is performed on PQC where the qubit state is measured in a standard basis (Z-basis)****. The
Z-basis is the basis used to measure whether a qubit is in the |0) state or the|1) state, which is determined by the
state of the wavefunction of the qubit prior to the measurement. The process of performing a measurement is
to project a qubit from the superposition state onto the standard basis states |0) and |1), and the measurement
causes the state of the qubit to undergo a collapse to a fixed standard basis state |0) or |1), we record the prob-
ability of the state collapsing to |0), and then sum the probabilities of all the qubits collapsing to |0) of each qubit
of PQC as output, corresponding to the n-category classification, and the whole outputs of the classifier results
in Ml,Mz, ey Mn.

The specific measurement is, for the measurement under the Z-basis, the two corresponding measurement
operators are Zy = |0)(0],Z; = [1)(1], which would be seen to be self-adjoint, i.e., Zot =20,z =27, and
satisfy Zo* = Zy, Z1%> = Z). Let the state of a qubit when it is measured be |¢) = «|0) + B]1), and the state in
which the measurement result is 0 be p(0) = (¢|Zo" Zolp) = (¢|Zol@) = |a|?. Let one-channel PQC contain m
qubits, then according to our quantum circuit measurement method, the output result of each quantum circuit

is: M; = Z]m:() p](O)

Loss function design and parameters optimization

SPQCC, like quantum neural networks, requires the definition of loss function to measure the difference between
the predicted value and the true value. As mentioned in parallel PQCs, the qubits of each PQC are measured at
each qubit on Z. That is, each qubit is projected onto the ground state separately, and the probability of collapsing
to|0) is calculated as P;. After adding all the P;s of the PQC together and the sum M; as the output, the outputs
of the whole classifier are M, M3, ..., M,. After combining the results and passing them through the SoftMax*>>¢
as the final outputs.SoftMax mainly transforms the output value of the multi-category classification into a prob-
ability distribution in the range of [0,1] with sum 1. At the same time we use one-hot™”*® to encode the sample
labels, which provides the basis for generating the loss function for parameters optimization.

Soft max(M;) = L , Mj is the output of the i-th PQC, and C is the number of parallel PQCs (the number

of classes to be cla551ﬁed). For the loss function we choose the cross-entropy, and the SoftMax maps the output
of the classifier My, M3, ..., M, to a vector ¥, y = Soft max(M;, M2, ..., M), which we could consider as the esti-
mated conditional probability of each class for an arbitrary sample x.

Let assume that the dataset {X, Y} has n samples, where the samples indexed as i are composed of a feature
vector x; and a corresponding vector y; of one-hot label. Then for any x corresponding to the true label y and the
result j predicted by the classifier, we define the cross-entropy loss function as I(y, ) = — Y"1, y; log ;. We use
the one-hot labels for encoding, so in the vector y, only one component is 1 and the rest are 0. We could then
write the loss function as: I(y, ) = — Y yi log yi. According to the definition of SoftMax, the loss function
I(y,y) = — > i yilog yi could be expanded as:

n n
10.9) = Z%log ZlogZe°“ Z%OI log e = yioi 3)
c=1 i=1

The loss function is derived for any prediction o;:

al(y,y) e’
B0, =S o — yi = Soft max (0); — yi (4)

c=1

From the above equation, the derivative is the difference between the output obtained by the multi-category
classifier and the true value.

The parameters in the classifier are updated iteratively during training through a gradient descent algorithm.
The gradient of the computed parameters for PQC is typically estimated using the traditional automatic differen-
tiation method, or the parameter-shift rule of the quantum circuit can be applied. The PQC, with the phase in the
quantum gate serving as the primary training parameters, causes the initial quantum state |¢;,) to evolve into the

desired quantum final state |, ) through iterative training, i.e., |@ou) = W(é )@in) , where W(é ) represents the
corresponding quantum state of the PQC. The optimization of the parameters focuses on reducing the deviation
between the predicted and true values, quantified by the loss function I(y, ) = — > "I, yilog i, where y;and y;
represent the predicted and true values corresponding to x;, respectively. Through continuous training, the loss
function is minimized, or the error of its loss function is brought within an acceptable range. For the simula-
tions in this paper, we utilize the traditional automatic differentiation method to compute the gradient solutions.

Frontier research-%! has made it clear that quantum neural networks, through the superposition and entan-
glement properties of qubits, have demonstrated significant advantages compared to classical neural networks
exhibit significant advantages, including fewer parameters, lower resource requirements, faster training, and
lower risk of overfitting, which enable efficient representation of complex functional relationships. Our model
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incorporates the core advantages of quantum neural networks. In addition, our model adopts a multiplexed
PQC architecture, assuming that each channel contains m parameters and consists of ¢ channels, resulting in
a total number of m * ¢ parameters. In terms of the use of qubits, the number of qubits required for amplitude
encoding is ¢ * [log n|if a parallel structure is used, and only[log 1| qubits are required if a no-parallel structure
is used, where # is the data dimension. In this case, the required resources are exponentially reduced compared
to classical neural networks.

Conclusion

PQC is one of the mainstream models of quantum machine learning, which mainly stacks a set of quantum
gates containing parameters together to form a model. Optimization of these parameters through training is
necessary to achieve the desired output. Multi-category classification has numerous applications and is a worth-
while research problem. SPQCC, which we propose, takes advantage of the parallelism of PQCs, merges the
measurements of the model as the final output of the classifier, and minimizes the cross-entropy loss function
for optimizing the classifier’s parameters. This method allows for establishing the same number of PQCs cor-
responding to the number of classes according to the number of classes, using the same measurement method.
The PQCs need only be designed once in the design process of the classifier, with the same design complexity as
designing a single PQC. Additionally, the time complexity is equivalent to that of a single PQC classifier using
parallel processing and multiple simulators. However, our designed classifier fully utilizes the advantages of
quantum computing and has better scalability. We tested it on MNIST, and the classification accuracy is similar
to that of traditional methods. Our findings provide new ideas and methods for solving multi-category classifica-
tion problems using PQC, and contribute to the performance and efficiency of quantum algorithms for solving
multi-category classification problems. In future work, we will build on this foundation to achieve multi-category
classification using quantum perceptron machines.
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