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Abstract 
 

The world’s largest research center in the domain of High Energy Physics (HEP) is the 

European Organization for Nuclear Research (CERN) whose main goal is to accelerate 

particles through a sequence of accelerators – accelerator complex – and bring them into 

collision in order to study the fundamental elements of matter and the forces acting between 

them. For controlling the accelerator complex, CERN needs several diagnostic tools to 

provide information about the beam’s attributes and one such system is the Fast Beam 

Current Transformer (FBCT) measuring system that provides bunch-by-bunch and total beam 

intensity information. 

The current hardware and firmware of the FBCT system has certain issues and lacks 

diagnostics as a lot of the calculations are done in an FPGA. In order to improve on this, the 

firmware was redesigned and simplified in order to increase its capabilities and provide the 

base of a unified FBCT measuring system that could be installed in several of CERN’s 

accelerator complex’s parts. Following the above changes, this Thesis proposes the 

implementation of an operational client-server software solution to control the FBCT 

installation in the Super Proton Synchrotron (SPS) accelerator, as well as studying the design 

and implementation of a unified client-server software scheme that can replace the 

operational ones in the Large Hadron Collider (LHC) and can eventually allow further 

installations of the FBCT measuring system, elsewhere in the CERN accelerator complex. 
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1 Introduction 
 

The European Organization for Nuclear Research or CERN Laboratory is the largest 

research center in the domain of particle physics [1]. Its main activity is to accelerate ion or 

proton particles through its accelerator complex to their nominal energies and make them 

collide at one of the four collision points [2] in order to study the fundamental constituents of 

matter as well the forces acting between them. 

The acceleration of the particles can only be achieved if the Radio Frequency (RF) field 

is correctly oriented with the accelerating cavity as they pass through it. Since this happens at 

specific moments of the RF cycle (sine-wave), particles travel around the accelerator 

complex in well-defined bunches [2]. 

For an accelerator’s control to be effective, numerous diagnostic tools are needed to 

provide information about the beam’s attributes [3]. Several measurement techniques exist 

providing such information and thus making the control of the CERN accelerator complex 

effectively feasible. One such technique uses AC-coupled Fast Beam Current Transformers 

(FBCTs) at first stage to integrate the current of each individual bunch inside a bunch-

synchronized integration window and provide continuously 40MHz ADC values (in bits) [4], 

whereas, at second stage it implements data treatment in a Field-Programmable Gate Array 

(FPGA).  

The FPGA firmware is used to store and/or reload at any time the device configuration 

in order to implement four acquisition modes, single capture – which measures the intensity 

for the specified bunch slots over a specified number of turns, turn sum – which measures the 

total intensity of all bunch slots available (depending on the accelerator) over one turn, slot 

sum – which measures the total intensity for a given bunch slot over a specified number of 

turns – and finally sum of sums – which measures a turn sum and then sums up these values 

using the slot sum measurement mode in order to produce one total intensity value [5]. 

In addition to the hardware part, there is also the software layer, responsible for 

controlling the device and to implement any data processing required that cannot be done by 

the firmware (floating-point calculations). Such data processing may be, averaging, data 

calibration – the transformation of the data from the measured values in number of bins to 

number of charges – and data publishing. 

There is one FBCT system installed in the Super Proton Synchrotron (SPS) accelerator 

and two per beam in the Large Hadron Collider (LHC) that provide both bunch-by-bunch and 

total (per turn) beam intensity information. The FBCTs in the SPS ring are widely used at 

beam injection time to observe the beam losses at that critical part of its journey as well at 

specific times during the beam cycle to analyse the bunch-by-bunch losses. As for the LHC 

ring, only one – system A – out of the three FBCT installations is currently operational and is 

used by a large number of clients interested in bunch-by-bunch and turn-by-turn intensity 

information. 

The original FBCT firmware was designed and developed by several people using 

different technologies. As a result, several design errors worsens the mean time between 

failures – MTBF – of the entire measurement system, complicating its maintenance. In order 

to properly develop the new FBCT system C, it was decided that a clean-up was necessary, 
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moving a large part of the data treatment from the hardware to the software side. Therefore a 

new version of the firmware was designed and developed implementing only the capture 

acquisition mode leaving the software controlling the FBCT installations, responsible for all 

the data processing. 

The whole idea behind this migration is to implement one data acquisition system – 

both hardware and software – that can be installed in the CERN accelerator complex and will 

be independent of the ring installed, which is not the current case, in order to make it generic 

and more easily maintainable. 

As the new version of the firmware is already implemented, this Thesis describes the 

software solutions that need to accompany the hardware changes as well to propose new 

ideas as far as the data treatment is concerned. This document is divided in two large blocks: 

the first one introduces the theoretical and technical background whereas the second 

describes the proposed software implementation and outlines its performance evaluation. 

In the first part, a brief introduction to the Organization and some fundamental 

knowledge concerning the FBCTs is given in chapter 2.1. In addition, in chapter 2.2 we 

describe the hardware architecture and in chapters 2.3 and 2.4, the existing software 

implementations for the FBCTs in the SPS and LHC accordingly. 

In the second part, we provide our software design in chapter 3.1 and its technical 

implementation in chapter 3.2, along with the results of our proposals in chapter 4. 

Finally, chapter 5 presents the conclusions of this work and directions for future work. 
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2 Background 
 

In the previous section the need for the software design and implementation that 

controls the FBCT systems for SPS and LHC accelerators at CERN was discussed. In order 

to develop our suggestions, the analysis of some basic ideas related to the FBCTs, is needed. 

Hence, we begin with the general information about CERN and other key aspects 

needed for the rest of this document and we continue with the hardware architecture where all 

the details relative to the hardware are given and finish this section with the description of the 

software implementations for the SPS and LHC rings that used to be or are operational. 

 

2.1 General Background 
In this section we analyse from scratch the basic information about CERN, its structure 

and accelerator complex because we are going to use this information for the deployment of 

our solution. Furthermore, we briefly describe the CERN Control Center and how the 

particles travel through the rings. Subsequently, we analyse the need of measuring the beam’s 

attributes as well the different ways to do it. Lastly, we introduce the design framework that 

was used for the existing and the previous software implementations as well as ours. 

 

2.1.1 CERN 

The “Conseil Européen pour la Recherche Nucléaire” or “European Organization for 

Nuclear Research”, well known as the “CERN Laboratory” is the largest scientific research 

center whose main area of research is high energy particle physics - the study of the 

fundamental constituents of matter and the forces acting between them. 

It was founded in 1954 as one of Europe’s first joint ventures and now it counts 20 

member states. It is placed on the Franco-Swiss border near Geneva and it uses the world’s 

largest and most complex scientific instruments in order to accelerate the particles, almost to 

the speed of light, before cause them to collide and study the fundamental laws of Nature [1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2-1: CERN's Logo [6] 



12 
 

2.1.2 CERN’s structure 

The highest authority in the Organization is the CERN Council. It is formed by two 

representatives of each member state, one as the government’s administration representative 

and one to represent the national scientific interests. Each member state has one single vote 

and in most of the cases a simple majority is needed for a decision to be taken. 

The Council is responsible for all the important decisions that have to do with 

scientific, administrative and technical matters. It appoints the Director General who manages 

the CERN Laboratory through a structure of Departments which can be seen at fig.2-2. [7] 

 

Figure 2-2: CERN's structure (source: Laura Saulnier, TECH induction 2012) 

The author works in the Beams Department (BE) [8] and hence a little more emphasis 

will be given to it and its structure. The BE is responsible for everything that has to do with 

the production and acceleration of particle beams and their control while circulating through 

the CERN accelerator complex (see chapter: 2.1.3). The department is divided into six groups 

as can be seen in fig. 2-3. 

 

Figure 2-3: Beams Department's Structure 

Each group is subdivided into sections. The focus of this Thesis is related to the Beam 

Instrumentation (BI) group which is responsible for studying, designing, building and 

maintaining all the instruments that allow the observation of the particle beams and its 

parameters which are important for its normal behaviour in the CERN accelerator complex. 
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[9] Its structure can be seen in fig. 2-4.The author works in the Software section (SW), 

responsible for providing the software needed for developing, testing, diagnosing, 

maintaining and controlling all the instruments provided by the group. [10] 

 

Figure 2-4: Beam Instrumentation’s structure 

 

2.1.3 The CERN accelerator complex 

The accelerator complex at CERN is a succession of linear and circular accelerators 

through which the particles reach increasingly higher energies. Each accelerator receives the 

beam of particles from the previous part of the complex chain, boost its speed and energy and 

finally inject it to the next one in the sequence. 
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Figure 2-5: CERN Accelerator Complex [11] 

There are two main types of particles that travel through the CERN accelerator 

complex: protons and ions. 

The protons are obtained by stripping orbiting electrons from hydrogen atoms. They are 

accelerated in the linear accelerator (LINAC2) before they are injected into the PS Booster. 

They are then transferred to the Proton Synchrotron (PS) which is before Super Proton 

Synchrotron (SPS) in the complex sequence. Finally they are injected into the Large Hadron 

Collider (LHC) both in a clockwise and anticlockwise direction where they are accelerated to 

their top energy of 4TeV (nominally 7 TeV) before they start colliding with counter-rotating 

particles at one of the four collision points. [2] 

The ions on the other hand, start from a source of vaporized lead and enter their own 

linear accelerator (LINAC3) before they are injected into the Low Energy Ion Ring (LEIR) 

from which they follow the same route as the protons to reach their maximum acceleration. 

The complex also includes the Antiproton Decelerator (AD) which separates the 

antimatter particles while they are still in low energies, and the On-Line Isotope Mass 

Separator (ISOLDE) facility which is used as a unique source of low-energy beams of 

radioactive isotopes. The complex also feeds the CERN neutrinos to Grand Sasso (CNGS) 

project which creates and sends neutrino beams to Grand Sasso National Laboratory (LNGS) 

in Italy in order to detect the so called neutrino “oscillation”, the transformation from one 

type of neutrino to another. Last but not least is the Compact LInear Collider (CTF/CLIC) 

study, an international project working on a machine to collide electrons and positrons (anti-

electrons). [11] 
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2.1.4 Control Center 

The CERN Control Center (CCC) combines all the control rooms for the accelerator 

complex as well as the technical infrastructure under one roof. It consists of 39 operation 

stations organized in four different areas, the Large Hadron Collider, the Super Proton 

Synchrotron, the Proton Synchrotron complex and the technical infrastructure. [11] 

 

 

2.1.5 Bunches 

The particles travel around the CERN accelerator complex in well-defined bunches. 

That is because they can only be accelerated if the Radio Frequency (RF) field has a correct 

orientation when they pass through an accelerating cavity and that happens at well specified 

moments during the RF cycle. [2] 

Under nominal operation, each LHC’s proton beam can store up to almost 2800 

bunches and SPS’s 288, with each bunch containing about 10
11

 protons. 

 

2.1.6 Beam Charge Measurements [3] 

An effective accelerator control requires numerous types of diagnostic tools which 

provide information about the beam’s attributes and they are commonly known as beam 

diagnostics. There are several measurement techniques which can be divided in two large 

categories, the intercepting and the non-intercepting measurements. 

The first category, as it is revealed by its name, interacts with the beam in order to 

achieve the measurements and thus cause the destruction or deterioration of the beam, 

whereas the second group bases its measurements in the electric or magnetic field coupling of 

the beam to the measuring instrument. 

The charge measurement, often called beam intensity measurement, is a process which 

integrates the actual measured quantity, the beam current, over a specific Region Of Interest 

(ROI) and divides that integral, the beam charge as it is called, by the elementary charge to 

result in the number of particle beam’s charges. 

The beam intensity measurement is vital for determining the intensity loss at injection, 

acceleration and extraction time or even the beam’s lifetime while it is circulating in the 

accelerator. Furthermore, it enters the luminosity equation. [12] 

What is important in this kind of measurements is the device that couples to the beam 

and provides the approximation of the beam’s current. There are several different types of 

such devices. The most used of the intercepting DC devices are the Faraday cups. The non-

intercepting AC devices are the electrostatic pickups, the Wall Current Monitors (WCMs) 

and the Fast Beam Current Transformers (FBCTs). The non-intercepting DC devices are the 

DC Current Transformers (DCCTs), the Superconducting QUantum Interference Devices 

(SQUIDs) and the Cryogenic Current Comparators (CCCs). 

In this document we will focus only on the FBCTs, the devices that function in a 

bandwidth of few Hz up to GHz and on the contrary with all the other similar devices, can be 

absolutely calibrated. For more information see chapter 2.2 where the hardware is analysed in 

more detail. 
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2.1.7 FESA Framework 

“The Front-End Software Architecture (FESA) is a comprehensive framework for 

designing, coding and maintaining LynxOS/Linux equipment-software that provides a stable 

functional abstraction of accelerator device.” [13] 

The Model of a FESA class is encoded as an XML Schema which enforces a specific 

grammar for the design of the class providing a partial yet generic solution for the equipment 

specialist. In this way and after the design of the class is well defined, the FESA user can 

generate a large part of the C++ code for his equipment saving a lot of time and effort. The 

FESA classes are identified by the combination of their name and version. 

 

Figure 2-6: FESA's service supplies [13] 

The Interface is a list of so-called Properties that defines the services that are available 

to the outside world and are remotely accessible by the clients of the FESA class, for example 

clients from the control room as well as middle-tier software layer. The Properties are 

attached to a server action (request) which can be of type GET or SET and either default, 

meaning that the code for that actions is auto generated, or complex for which the equipment 

specialist must provide the code himself. 

The Data, the Device-Data and Global-Data, are defined in such a way to provide at 

any given time, a concrete snapshot of the device state. The data can be of any standard type 

that can be supported from both C++ and Java, scalars or arrays of up to two dimensions. 

There is also the possibility for the equipment specialist to define his own types, the 

persistency of the data or any multiplexing criterion for them. 

 

C++ Scalar type   Array type 

bool  bool 

signed char (byte)  signed char 

short  char 

long  short 

longlong  long 

float  long long 

double  float 

  double 
Table 2-1: FESA's data types [13] 
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Persistency  Purpose Multiplexing  Purpose 

FINAL  database constant NONE  not multiplexed 

PERSISTENT  periodic backup into 

persistent storage 
USER  cycle user 

VOLATILE  RAM data PARTICLE  particle-type 

   DESTINATION  beam-target 
Table 2-2: FESA's data attributes [13] 

The basic work-units of a FESA class are called actions and can be either of real-time 

or server type. The real-time actions are triggered by events which are synchronized with the 

CERN’s central timing system or by hardware interrupts and they implement most of the 

equipment’s functionality. They can also be attached to properties so that the latter can be 

notified at any update of the device’s state. On the other hand, the server actions implement 

the client’s request-handling and they are mostly responsible for the communication between 

the outside world and the device and that is exactly why they are attached most of the times 

with a property. For both real-time and server actions the equipment specialist must provide 

the C++ code himself, except for the default GET/SET server actions. 

Once finished with the FESA design, one needs to declare all the instances his class 

would have. This is a very important part of the design procedure since a lot of work and 

duplicated code can be avoided. One instance means one module with its own initial values. 

All the instances (the modules the device can handle) are accessible inside the FESA class by 

iterating the deviceCollection, an array accessible everywhere in the class. 

A FESA class, to which we will refer as ‘server’ from now on, is organized after its 

generation, in a directory structure containing: COMMON, GENERATED CODE, 

REALTIME, SERVER and TEST. 

The REALTIME and the SERVER directory files are used to store and distinguish the 

actions based on their type as described above. 

The GENERATED CODE directory files hold all the declaration of the fields that 

describe the device. Furthermore, all the generated code for the simple GET/SET actions is 

stored here. 

The COMMON directory is used to store any custom made class that could be used by 

both real-time and server actions. 

Last but not least is the TEST directory. In there, some diagnostic tests are stored as 

well as the executable files that allow testing the executable while developing.  

 

2.2 Hardware Architecture 
After giving the general information that is going to be needed in next sections, we are 

describing the hardware installation for the FBCTs. The latter consists of a detailed 

description of the ring installation as well as the one on the surface. Furthermore, we analyse 

the firmware – original and newer version – along with the driver needed to access it since 

they are widely used by the software and lots of the changes imposed to it derives from the 

changes of the firmware. 
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2.2.1 Fast Beam Current Transformer (FBCT) measurement system 

Figure 2-7 depicts a simplified block schematic of the FBCT measurement system 

which consists of a Bergoz type transformer with a bandwidth from 400Hz to 1.2GHz (on the 

left). This transformer is followed by an RF front-end which consists of an analogue 

integrator, a Beam Circulating Flag (BCF) detector which detects the presence of the beam in 

the ring and an RF distributor which is responsible to split the analogue signal into two 

dynamic ranges, high and low gain and each dynamic range into two bandwidths, High 

(HBW) and Low (LBW). Finally a 14bit ADC digitizes and processes the signal. [14] 

 

Figure 2-7: Block schematic of the FBCT measurement system [14] 

The ADC module along with its analogue integration part is situated on a carrier called 

the Digital Acquisition Boards (DABs), a VME64x standard board developed by TRIUMF 

(Canada) for the LHC orbit and trajectory acquisition system [15]. It is equipped with two 

Individual Bunch Measurement System (IBMS) mezzanine cards [16]. Each mezzanine card 

uses a 40MHz integrator ASIC developed for the LHC-b preshower detector by the 

“Laboratoire de Physique Corpusculaire”, UniversitéBlaise Pascal, Clermont-Ferrand [17], in 

order to integrate and sample the incoming signal before passing it to the DAB that processes 

it to provide bunch-by-bunch intensity values. All the logic of the DAB control is 

implemented in a large FPGA that can be reprogrammed at any time and its firmware is being 

discussed at chapter 2.2.2. 

These DAB cards are installed on a VME64x crate along with the Beam Synchronous 

Timing Receiver Interface for the Beam Observation System (BOBR) – another VME format 

card that provides all the timing signals required to synchronize the different beam 

instrumentation systems [18]. What is more, all the cards installed in the VME64x crate are 

controlled by the Crate Central Processing Unit (CPU) – Front-End Computer (FEC) – an 

Intel® Core™ 2 Duo CPU board with 1.5GHz clock frequency, 4MB cache and no hard disc 

[19] that runs Scientific Linux CERN SLC release 5.7 (Boron) [20] and boots via network. 

The following figure 2-8 depicts the VME64x crate installation for the SPS FBCT. The 

FEC is visible on the left of the crate with the green lights, whereas the DAB is just on the 

right of it and lastly, the BOBR in the middle of the crate. 
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Figure 2-8: SPS FBCT's VME64x crate – on the left with green lights is the FEC, on the right of the FEC the DAB is installed 
and in the middle of the crate the BOBR is visible 

As far as the SPS is concerned there is only a single DAB connected to the SPS type 

front-end amplifier. The former uses an external signal to switch between high and low gain 

measurements which is provided by the sensitivity output of each IBMS mezzanine. 

In the LHC, things are different. There are two DABs per a measurement system, one 

for HBW and one for LBW measurements. Each DAB provides two dynamic range 

measurements using its different IBMS mezzanine and more specifically high gain (top 

mezzanine) and low gain (bottom mezzanine) measurements. 

There are three such systems in the LHC, system A, B and C of which only A and B are 

operational while system C is now being developed with different technologies and with a 

different approach in the process of the data. Further discussion about this system will follow 

in chapter 3. 

The FBCT measurement system is calibrated by a pulse of 25μs. The amplitude of this 

pulse differs from SPS – 128mA – and LHC which can be programmed. For the latter case 

though, the currently used system doesn’t use direct calibration due to the fact that the LHC 

toroid exhibit beam position dependency and this can affect the transfer ratio between beam – 

measurement turn and calibration turn – measurement turn. Instead an indirect calibration is 

achieved by using DC current transformers (DCCTs) installed in the LHC [21]. 

2.2.2 Firmware 

The Stratix-type FPGA stores the device configuration during operation at volatile 

SRAM cells, which must be reconfigured each time the device powers up. This is 

accomplished by its firmware (FIMDAB), which can be loaded over the VME bus as a Raw 

Binary Bile (RBF) via the EPM 3256 Complex Programmable Logic Device (CPLD). 

Software start-up scripts handle the FPGA start-up process and hence the FPGA is left un-
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programmed after power up until the software layer is loaded. After the initial power-up 

process is complete, new configuration data can also be loaded at any time. [22] 

As mentioned earlier for the new FBCTR system C, it was decided that a clean-up was 

necessary. The new firmware was also to be used for the FBCTR in SPS. The firmware 

registers migration is summarized in table 2-3, which uses the following colours to describe 

the state of the registers after the completion of the migration [23]. 

 

Figure 2-9: table's 2-3 Legend 
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Table 2-3: Original firmware register map [23] 
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Table 2-3: Continue from previous page 

Following the table 2-3, table 2-4 summarize the minimum set of registers for the new 

proposed memory map. The table is organized in three categories. First group consists of the 

registers read directly from the DAB external static memories. Second group contains all the 

registers that are not specific to capture mode and third group contains registers only specific 

to capture mode. The latter two are separated by an unused address space, which makes a 

potential insertion of new registers simpler. All registers are 4-byte aligned and accessed by 

A32D32 transfer. Lastly, for non-single transfer registers, block transfer can be used 

improving the latency added when transferring huge amount of data. [23]  

 

 

Table 2-4: New firmware register map [23] 
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Table 2-4: Continue from previous page 

From the latter table, 6 major changes at the registers can be pointed out. 

Firstly is the capture data organization. Using 32-bit storage, two 14-bit ADC samples 

can be stored per entry. Unfortunately this is not enough since additional information is 

needed to be stored with the stream, information about what integrator was used for acquiring 

the sample – the most significant bit of the sample (31 and 15) reveals the appropriate 

integrator (0 or 1) –, about whether the sample was saturated – bits 30 and 14 – and finally, 

about where the turn clock starts. Since there is no space left to store the latter information 

with the stream, a convention had to be declared: the turn always starts at the memory start 

address – 0x000000 for top mezzanine and 0x200000 for bottom. Hence, next turn can be 

easily calculated as following: <start_address> + (<number_of_bunches> / 2). 

Such memory organization decreases the amount of external memories read from three 

to two, since the information stored in mezzanine three are now coded with the samples. It 

also increases the number of samples per mezzanine by factor of two, enabling at the same 

time the use of fast block transfer of the data, from the external memories to the CPU. 

Furthermore, changes in register bit positions should also borne in mind. The original 

information of the Turn Clock Delay register is migrated from address 0x600022 to 

0x600040, bits 12…0, whereas the information of the Phase Delay register from address 

0x600021 to 0x610000, bits 7…0. As for the Front Panel Selection register, information 

about MUXA originally located at bits 7…4 is extended into bits 31…16, whereas 

information about MUXB, originally at bits location 3…0 is extended into bits 15…0. As far 

as the IRQ register is concerned, it behaves as Interrupt Enable register when written and 

returns the Interrupt Status register when read. 

Last but not least is the Command register which combines the original locations at 

0x600005, 0x600006 and 0x68000c and acts as Command register when written, keeping all 

the original properties and as Status register when read. The meaning of all bits read is 

changed though, due to the differences between the two versions of the firmware and for a 

full description of this meaning refer to full technical documentation. [22] 
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2.2.3 Driver Background  

There are more than one ways to access the device’s register and hence, we had to find 

which one is more suitable for us. The most common way is to use the ioctl module-specific 

library that comes with the driver and is automatically generated from the description of the 

module in the CO Data Base. This is a simple library that uses only one method to access the 

hardware, IOCTL. This library is good for individual values or short amount of data, since it 

is already high level and fast enough for single accesses. 

If the performance is one of the main characteristics of the project, one should consider 

another library that comes with the same auto generated driver and that is dal (Driver Access 

Library). The dal library has three ways of accessing the hardware and these are IOCTL, 

same as before, IOMMAP and IODMA. Now as for the last two, the IOMMAP method uses 

the CPU to access the hardware while the IODMA does this directly. 

We have been experimenting with these three ways, only to find out that there is a 

significant difference between IODMA and the other two. Generally we could summarize our 

conclusions as this: faster: IODMA < IOMMAP < IOCTL. As we saw in chapter 2.2.2, only 

three of our registers contain a considerable amount of data (512.00 KiB) and from those, 

only two are being currently used. All the others are either single valued or short amount of 

arrays. Thus we’ve decided to use the ioctl library for all the registers except the two capture 

memories for which we’ve used the dal library with the IODMA method. 

 

2.3 The FBCTs in the SPS 
As described in the previous sections there is only one FBCT system installed in the 

SPS and this consists of only one DAB card on the VME crate, which is used to operate with 

the original version of the device’s firmware (FIMDAB). 

In the following sections, we will describe how the server used to be organized and 

which were its basic functionalities that made it operational. 

2.3.1 Software Architecture 

The server was designed
1
 to operate a full acquisition (1-924 bunches) for every 

different active cycle (a typical cycle’s length is 20sec). A sequence of real-time actions were 

used to accomplish that by preparing the device, starting the acquisition, reading back the 

acquired data, processing them, storing them temporarily, starting the acquisition again and 

repeating this sequence until the cycle was over. 

All these functionalities were implemented in different real-time actions, rtPrepare, 

rtStart, endCapture and rtStop whose technical specifications will be discussed in the 

following chapter 2.3.2. The scheduling of these actions was the key for the proper operation 

of the server. 

A warning of the beam’s injection was used as an event that comes 20 msec before 

every different cycle’s injection. This event was being used by the rtPrepare to set the 

appropriate settings to the device as well as calibrate it, before the acquisition could start. 

Another event, specifying the beam’s injection – cycle’s beginning, was being used by 

the rtStart to initially start the acquisition. After that, an event coming every 40msec, was 

                                                           
1
 The server was first created by Lars Jensen 
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being used by the endCapture to read back the acquired data, process and store them in 

temporary buffers and finally start the acquisition again. This procedure was being repeated 

as many times as it could fit in every cycle’s lifetime. 

Lastly, an event specifying the cycle’s end was being used by the rtStop to gather all 

data from the temporary buffers and store them in the shared memory of the server so that it 

could be fetched to the users. 

The FESA properties that are used to interface the server were Setting – where the user 

could enter the settings relative to the acquisition, Expert Setting – where the user could 

specify the settings relative to the calibration of the device, Acquisition – where the user 

could see the desired data after all steps of their process, User Data – where the user could 

see the intermediate steps of the processed data and Calib Data – where the user could see 

and set the calibration factors of the data, either on his own or with respect to the calculated 

ones by rtPrepare. The generic FESA Navigator GUI was used for controlling and visualizing 

the above properties and an example showing acquisition data can be seen in figure 2-10. 

 

 

Figure 2-10: FESA Framework Interface 

2.3.2 Previous Implementation 

The previous implementation of the server used to access the device directly from its 

classes using the IOCTL library. 

More specifically the rtPrepare action used to set the full bunch range (bunches 1-924) 

to the device as well as the number of turns for the acquisition which was always 1. After 

that, it would start an acquisition along with a calibration pulse in order to calibrate the 

device. This is achievable due to the fact that the rtPrepare operates when there is no beam. In 

this way and by firing a calibration pulse, whose current is known in advance, the appropriate 

calibration factors could be specified to take away all the additional noise that is being added 

to the data by the electronic equipment. Following the calibration, the rtPrepare would reset 

all the intermediate temporary buffers that were going to be used by the endCapture. 

For the rtStart action, things used to be much simpler, since its only responsibility was 

to start a normal acquisition which means without the calibration pulse. 
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Furthermore, the endCapture action was the most critical one as far as the time 

constrains is concerned. In this action, the data would be fetched from the device and be 

processed before been stored to the temporary buffers. By processing the data, we mean to 

restore their base line as well as apply the calibration factors that were calculated before by 

the rtPrepare. The base line restoration is by far the most difficult stage of their process since 

its main goal is to take away the beam’s AC dependency with the measuring device, restoring 

the level of the acquired noise to 0 in the y (intensity) axis, and this procedure is non-trivial at 

all when taking into account all beam types. 

The existing implementation was using the Magic Imperial algorithm to restore the 

data’s base line. This algorithm was based on the statistics from previous operational 

experience and its basic idea was the following: 

 Iterate the acquired data and find minimum and maximum value. 

 Using this information, determine the noise region as the (minimum value + 

(0.05 * maximum value)). 

 Iterate again the acquired data and find a mean value for any sample that is 

below the just specified threshold. 

 Finally iterate all the acquired data and take away this just calculated mean 

value. 

In this way, all the noise samples would reach the 0 area in the y axis, while the original 

shape of the data would stay unchanged. 

Last but not least, the rtStop action stored the intermediate buffers to the shared 

memory (device fields). This was accomplished by declaring the above buffers with the C++ 

key word extern and hence they were visible by more than one C++ class in the server. 

The server actions that served the Setting and Expert Setting interfaces were 

implemented as simple actions. What is more and only for the Setting property, partial setting 

was allowed. As for the Calib Data property complex GET/SET actions were implemented 

with the partial setting enabled. Lastly, for the Acquisition and User Data, complex GET 

actions copied the contexts of the shared memory (fields) to the interface memory in order to 

be properly presented. 

At this point, it’s worth mentioning few words about the buffers holding the data, 

intermediate and final. The acquisition data were stored in two dimensional arrays; first 

dimension for the different measurements made by the endCapture and second dimension for 

the acquisition itself –intensity values for bunch slots 1-924. Unfortunately, there was no 

useful way to present these values with FESA interface and thus filters were being used. 

Hence, under User Data property, the user had to specify in the filter which measurement 

desired to observe. Using this filter in the server action, only one row of the 2D arrays was 

returned (924 values in total). In this way, data were quite uncomfortable to be studied, since 

the filters apply in the acquired data only once and thus one should wait for the next 

acquisition to see another measurement. One such example can be seen at Figure 2-10. 
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2.4 The FBCTs in the LHC 
In the LHC ring there are three FBCT systems, each consisting of 4 DABs as described 

in chapter 2.2.1. System A and B use the original version of the FBCT’s firmware which used 

to have 4 measurement modes [5]: 

 Capture – the intensity measurement in each bunch slot for a specified number 

of turns 

 Turn Sum – a total intensity measured from a full bunch acquisition (3564 

bunches) over a single turn 

 Slot Sum – a total intensity measured for a specified bunch slot over specified 

number of turns 

 Sum Sum – the combination of Turn Sum and Slot Sum. By this we mean to 

make a Turn Sum for each acquired turn and then, sum all these sums as they 

were a single bunch slot measurement 

 

2.4.1 Software Architecture 

The FESA class that serves LHC’s A and B FBCT measurement systems is 

BCTFRLHC v31
2
. The server of both systems is identical and has two instances, serving the 

FBCT installation for each circulating beam. 

The version 31 of the BCTFRLHC FESA class is designed to provide LBW total 

intensities averaged over 225 consecutive turns at 1Hz. In addition, it provides HBW total 

intensities per turn with time resolution up to one turn (89μs) as well as HBW individual 

bunch intensities averaged over 900 turns as input for the post-mortem system for analysing 

the causes of machine protection beam dumps. [4]  

 

2.4.2 Existing Implementation 

The server uses the LBW channel to make full bunch acquisitions over 225 consecutive 

turns – to suppress the noise at 50 Hz – using  firmware’s Sum Sum measurement method and 

it continuously updates them every second for operational displays. Additionally, it keeps the 

values from the last 30 seconds in a rolling data buffer, which also updates every second. 

As for the HBW channel, the server uses the firmware’s Turn Sum measurement mode 

to produce and publish the turn intensities – the total intensities per turn – and the Slot Sum 

measurement for the average individual bunch intensities. Both measurements are updated 

every second. 

In order to suppress errors in the calculation of the noise mean value at the baseline 

restoration (BLR) procedure, the summing of empty buckets must be avoided. This is 

achieved by applying a minimum beam threshold set by the user. The BLR is based on the 

presence of empty buckets in each turn at least at the 3μs abort gap and hence, the calculation 

of the minimum integrated value of one turn can be used as offset correction for the next one. 

Subsequently, the lowest measurable turn-sum and bunch-average intensity is given by the 

                                                           
2
 Created by Michael Ludwig 
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noise suppression peak threshold – 10
8
 number of charges for high gain and 5*10

8
 number of 

charges for low gain for both bandwidths. [4] 

 

Figure 2-11: Total Intensity History from beam1 of the LHC, System B 

The above figure 2-11 depicts the rolling data buffer of the total intensity of beam 1 as 

it was measured by the FBCT in the system B. This buffer holds the calculated total 

intensities of the last 30 seconds – 1 acquisition over 225 turns takes 20ms hence 50 values 

per second and 1500 per 30 seconds. Up until recently no expert GUI was developed, so the 

client application that was being used to control the servers was the FESA Navigator 

interface. 
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3 New Implementation 
 

In the previous section we described all the theoretical and technical background 

needed to better understand the previous software implementation for the FBCTs in the SPS 

and the existing one for the LHC. In this section we analyse our proposal for both systems 

separating the design from the technical part. 

 

3.1 High level diagnostics 
As the development of the two systems was ongoing, several decisions had to be made 

in order to proceed. This chapter is dedicated to such decisions that helped structuring the 

work and providing useful tools for our implementations. 

 

3.1.1 Wrapper - Design 

Since the firmware changed, a new way of accessing the device was needed. As the 

new firmware was to be deployed in both SPS and LHC FBCTs, we decided to create a 

common wrapper class, DABBFCTSRWrapper, which abstracts the device communication 

with the server. Additionally, such class is ideal for implementing functionalities irrelevant to 

the accelerator that hosts the FBCTs. 

The DABBFCTSRWrapper is designed to have public methods for accessing all the 

device’s registers using the IOCTL library, as well as processing some of the data that need 

to be read from or written to it, while there are also some other private methods for that scope 

as well. 

Finally the header file of the wrapper seemed the perfect place for implementing the 

hash table with the different commands that the device can handle since it is imported every 

time we want to use it in the project for accessing the hardware and hence to instruct it to do 

something. In this way we’ve implemented it once being sure that is always visible in our 

general implementation. 

 

3.1.2 Tester - Design 

Another decision that was taken in the early days of our implementation was to create 

an additional tester class for testing the proper communication with the device. This class 

tries to write all the writable registers of the device and then read them back. In this way, 

several errors in the firmware were revealed early on and fixed. 

While progressing with the implementation, the tester was changed to fit our testing 

needs. Hence, the tester ended up asking the user to select the bunches and the number of 

turns for acquisition, then firing the acquisition, reading back the data and printing them in 

the console as raw ADC values, just as they were read from the device. This procedure was 

found incredibly useful for studying, testing and assuring the decoding process of the data 

(look at chapter 2.2.2 – last paragraph / change of the data capture organization). 

Furthermore, additional timing routines were added in order to study the different 

driver solutions for fetching the data from the device to the CPU, as well as some 
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performance issues, especially as the server in LHC is concerned. These issues are being 

discussed in greater detail in chapter 3.2.5. 

 

3.1.3 DabInfo - Design 

As described in chapter 2.2.2 and table 2-4, there are some registers in firmware related 

to the DAB’s information such as serial numbers and so on. Hence, it was found useful to 

have a console application that would retrieve and present this information. In this way, we 

were able to check the identification of the firmware, the mezzanines as well as the DABs 

themselves installed in the SPS, the LHC or the lab. 

 

3.1.4 SPS 

Our implementation is based on the existing one. We used this version and updated it 

so that it can access the new hardware and have one different acquisition mode the 

TURN_BY_TURN as we called it, as well as improving some troublesome behaviour 

relative to base line restoration. Our main goal, beside the proper functionality of the server 

of course, was to keep as much backwards compatibility as we could by changing the design 

as less as possible. 

Hence, a new real time action was introduced; the rtTurnAcq which implements the 

new acquisition mode, while the rtPrepare remained the same, at least as far as the design is 

concerned.  

The main difference to the existing classes was at the rtStart and endCapture class 

which were not needed if the acquisition mode was TURN_BY_TURN, and thus should exit 

immediately. The same idea was introduced to the new rtTurnAcq class but the other way 

round, it would return if the acquisition mode was REPETITVE. The event that wakes the 

rtTurnAcq is a warning of the beam’s injection which come 20msec in advance. The new 

class is responsible to start the acquisition with 18msec delay, read the data, process them and 

transform them from ADC bins to number of charges, restore the DC baseline and finally 

store them in the appropriate buffers. 

We kept the rtStop class the same which only copies the data from the buffers to the 

shared memory when the cycle is over. This is common for both acquisition modes and so, it 

made sense to try and keep it the same. In order to do that though, we had to change the 

buffers visibility through the server classes. In that sense, the variables that should be 

common to both acquisition modes and thus the appropriate classes, are now being created 

and initialized in the rtPrepare class and are visible by the endCapture, rtTurnAcq and rtStop 

by using again the keyword extern. 

3.1.4.1 Baseline Restoration 

The existing algorithm that used to correct the baseline was working quite well but 

unfortunately not always. It was observed that whenever there was a negative spike in the 

integrated signal, the algorithm didn’t work. Since the algorithm was taking into account the 

ratio between the minimum and maximum value within an acquisition to determine the noise 

region, in case of this so called “undershoot” this region would typically contain a single 

measurement point, the minimum. As a result the minimum would be considered as noise and 
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thus, after the BLR it would end up to be 0 and everything, including the actual noise, to be in 

the positive side of the graph. This can be easily seen at the following graphs: 

 

Figure 3-1: Bunch-by-bunch intensity measurement plot with error in BLR from SPS FBCT 

 

Figure 3-2: Bunch-by-bunch intensity measurement plot with correct BLR from SPS FBCT 

These “undershoots” arrive infrequently, but when they come the BLR doesn’t work as 

it should be. We therefore considered changing the existing algorithm for restoring the BLR 

to another one much simpler and more stable.  

We’ve decided not to take into account the min – max difference to specify the noise 

region, since this can change from cycle to cycle and from time to time. The hard coding 

percentage of that difference wasn’t flexible enough when those differences appeared. Hence, 

we search only for the minimum value of an acquisition and noise area is determined by a 

user setting. In this way, the BLR is much more flexible and dynamic. 
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Of course this does not erase the “undershoot” problem, since they don’t come in a 

deterministic way and thus one cannot specify a well-defined noise area and trust that would 

work for a longer period of time. In addition, an “undershoot” identifier had to be designed in 

order to help us ignore this kind of extreme values. To do that though, the user should 

provide another setting specifying the distance between two consecutive points that would 

identify the most negative as an “undershoot”. 

 

3.1.4.2 TURN_BY_TURN acquisition mode 

The most important change to the server was to add the new acquisition mode. As it 

was mentioned before, a full bunch acquisition (bunches: 1-924) over one turn, is repeated 

every 40msec until the end of every cycle. This mode of acquisition, REPETITIVE, covers 

the whole cycle and it was being used until now. 

The new acquisition mode, TURN_BY_TURN, is again a full bunch acquisition but for 

as many consecutive turns as the data storage permits. This limitation comes from our effort 

to keep the backwards compatibility and hence by the fact that we use the same intermediate 

buffers in software as the REPETITIVE mode. For more details about the implementation of 

these buffers and their limitations please refer to chapter 3.2.4. 

 

3.1.4.3 Client – Interface 

The BFCTSR_ExpertGUI was developed in Java, organized in 5 packets for clearer 

separation of its classes. The Constants packet hosts all the classes that consist of constant 

data such as enumerations, names and converters. In the expertGUI packet, all the classes that 

implement the application interface are stored. Furthermore, there are the factories and 

listeners packets which host the homonyms classes. Last but not least is the Data packet 

where all the classes that are data specific are stored. 

For the communication with the server, we used the communication library that was 

developed by BI/SW section and establishes a communication flow per device. We kept the 

communication and subscription mechanism over the network separated to one class called 

DataProvider and the data storage per FESA property to another called Property. Both 

classes are abstract since only few methods are domain specific and had to be separated. 

The general idea of the design is the following: the DataProvider communicates via 

subscription to the server that runs on the front-end. Each time new data are produced, the 

DataProvider informs the Properties which process them if needed and store them to buffers. 

Then, they inform their interfaces to update their view with the new data. This data flow is 

depicted in the following figure: 
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Figure 3-3: Data flow between front-end server and GUI client 

 We decided to split the frame into three areas. The top one hosts the TimingPanel 

component which shows which cycle is active per accelerator so that the users can choose an 

appropriate one. The left one hosts the setting and expert setting panels as tabs while the right 

one hosts the acquisition, UserData and BunchAcquisition panels as tabs. The representation 

of the data is on the right area of the frame and more specifically the acquisition tab is a 

graph of the total intensities as acquired and calculated from BFCTSR as well as two more 

devices for cross-checking, BCTDC3 and BCTDC4. The UserData tab hosts a graph of the 

individual bunch intensity measurements – one measurement at a time, while the 

BunchAcquisition tab hosts a 3D graph of the individual bunch intensity measurements – all 

together. 

In figure 3-4 the Unified Modeling Language (UML) class diagram of our expert GUI 

is depicted according to entity separation of figure 3-3. The communication between two 

classes from a different group (Communication Manager, Intermediate Data Storage and 

GUI) is achieved with separated interfaces. 
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Figure 3-4: BFCTSR_ExpertGUI UML Class Diagram 
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3.1.5 LHC 

In order to improve the performance of the FBCT measurements in the LHC while 

keeping the same update frequency of 1Hz (new values every second), it was decided to 

implement another approach as for the acquisition and calibration of the data using system C 

FBCT’s new firmware. In this way, the acquisition is a simple Capture of the requested data 

(number of bunches for a specified number of turns) and all the computations for their 

process is done in the software. This approach allows us a degree of freedom in choosing 

which algorithms we use for the BLR, trying to achieve better accuracy when comparing this 

system with the other two. 

The main idea of this approach is to make a full bunch acquisition for 25 turns with 224 

turn interval. This means acquire 3564 bunch slots every 224 turns for 25 times as it can be 

seen in figure 3-5 and leads to a 25mA sampling over half a second. [21] 

 

Figure 3-5: Acquisition schedule in respect with number of turn and turn interval 

Since we have 4 cards and each one measures data for half a second, it would be 

impossible to implement a sequential scheduling and keep the 1 Hz publishing frequency. On 

the other hand, having one VME bus for communicating with all four cards makes it 

impossible to parallelize the parts of the process that consists of any kind of communication 

with the cards. 

Hence, we decided to start the acquisition to all four cards almost at the same time and 

benefit of the acquisition’s parallel nature. In this way, we spend half of a second for 

acquiring the data to all cards and keep the other half for processing them before publishing 

the total intensities. The process sequence of the data depicts in figure 3-6. 

 

Figure 3-6: Data Process Sequence 

 

3.1.5.1 Look Up Tables (LUT) 

The integrator itself as well as the difference between the two integrators in the system 

is the main source of the overall non-optimal performance. In order to comprehend with this 
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and treat both integrators as a black box, we performed a set of measurements in the 

laboratory analysing the linearity of the data. The results of this analysis can be summed as 

follows [21]: 

 All measured integrators exhibit non-linear behaviour, which is not the same for 

each one and thus if corrected, it should be corrected per integrator 

 An additional non-linear behaviour is exhibited in between each two integrators, 

due to the difference of their individual non-linear behaviour 

 A linear approximation of the integrators’ output is not enough to erase these 

non-linear components and thus higher order polynomial must be used instead  

We decided that a reasonable approximation that would correct the non-linear 

behaviour quite decently – relative to the other two systems – is a polynomial of 5
th

 order. Of 

course this would lead to long delays in the process of the data and hence we decided to 

measure each ADC approximation for each integrator and store these values to a unique 

comma-separated values (CSV) text file. Each file is unique per mezzanine and is named out 

of its serial number. It consists of 16384 text lines – the possible ADC values since they are 

14 bits long – and each line consists of one integer – raw ADC value – and two floating 

values –corrected value for integrator 0 and 1 accordingly. Lastly, all LUTs are stored in our 

NFS section’s directory so that they can be accessible from any FEC. 

3.1.5.2 Averaging and Base Line Restoration (BLR) 

Averaging the samples per bunch slot, as they come out of the LUTs, reduces the 

fluctuation of the signal caused by noise dramatically; this is due to the fact that the useful 

signal – beam – always comes at well specified moments during the RF cycle [2]. Hence, the 

more data we have to average, the clearer the result is. 

Furthermore and for restoring the data’s base line, we introduce a new algorithm based 

on the measurement of pure noise in the 3μs abort gap
3
 as well of the noise at each empty 

bunch slot. Hence, we can summarize the algorithm for the BLR as follows: 

 Find minimum after the LUT correction and averaging 

 Specify the noise samples out of the 3564 which satisfy the following criteria: 

o The measured value falls in the interval of <min; min + TH>, where TH 

is a threshold value specified by the user 

o The position – bunch slot – of the measured sample is at least VS 

samples away from a non-noise sample, where the VS value is set by the 

user including 0 

 Calculate the mean value of the selected noise samples 

 Take away the calculated mean value from all the 3564 samples 

An example of the above algorithm is depicted in figure 3-7. For this example the VS is 

3, while the TH is of no significance. The samples that are considered as noise and thus are 

used for the calculation of their mean value are specified by the yellow regions. 

                                                           
3
 This is not actually true, since a limited amount of particles is always present and this can disturb the 

measurement [21] 
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Figure 3-7: An example of the BLR algorithm with VS=3. Only the yellow region is considered as noise [21] 

 

3.1.5.3 Calibration of the data 

Calibration of the data is called the transformation of the ADC corrected values to the 

number of charges. This is done by applying a simple linear equation to the measured data: 

  

                    
 

(3.1)  

Where k is the calibration coefficient and q is the calibration offset, which both are normally 

found by calibration [2.2.1]. 

 

3.1.5.4 Gain Switching 

As explained in chapter 2.2.1 both bandwidth channels provide two dynamic range 

measurements. Our software is responsible for the proper and automatic setting of the correct 

dynamic range, which depends on whether a bunch slot measurement exceeded a defined 

threshold. In order to avoid switching between gains when a measurement approaches the 

threshold we implemented a hysteresis in the switching thresholds. Hence, instead of one, we 

introduce two switching thresholds, settable by the user in ADC bins: 

 CHTH(high) – this threshold is applied when the current measurement was 

performed by high gain measurement channel to switch to the low one, if at 

least one of the measured data exceeded it 

 CHTH(low) – this threshold is applied when the current measurement was 

performed by low gain measurement channel to switch to the high one, if none 

of the measurement data exceeded it 

 

3.1.5.5 Phase Scan 

Phase scan is the observation of one bunch intensity – the maximum one – with its four 

neighbours (two from each side) when applying by brute force all 16 possible values for the 

phase delay expert setting. By changing the phase delay, the user can change the signal’s 
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amplitude and that is why this procedure is very important. The graph that comes out of this 

procedure can help the user to determine the appropriate phase delay setting in order to 

maximize the signal’s amplitude. The following figure depicts one example of such a 

procedure that was performed
4
 at system C, using a python script. 

 

Figure 3-8: phase scan 

 

3.1.5.6 Server Architecture 

Four DAB cards are installed in LHC system C that measure the intensity of the beams 

using the FBCTs, one for the High and one for the Low Bandwidth measurements for each 

beam. Hence, we created a FESA class, BCTFRLHC v6, with four instances – one per card. 

This server has two real-time actions: 

 Acquire – where all the functionality of the server is implemented, such as data 

acquisition, process, BLR and storage. It operates every second. 

 XpocAction – which is responsible to copy the history of the last 1000 total 

intensities as calculated by Acquire, as well as their time stamps to a different 

server at any beam dump event for diagnosing a possible reason for it 

The properties that interface the server are:  

 Setting – where the user can specify/observe the settings relative to the 

acquisition 

 CalibrationSetting – where the user can specify/observe all the settings which 

are not relative to the acquisition 

 LoadLUT – where the user can upload and clear the LUT for each mezzanine 

 Acquisition – where the user can observe the total, bunch and history intensities 

for both mezzanines as well as the selected ones 

                                                           
4
 Performed by D. Belohrad 
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 ExpertAcquisition – where the user can observe the intermediate values before 

reaching the desired total intensities, such as the data after the LUT and BLR 

 XpocData – where the user can observe the data copied from the XpocAction 

before being transferred to the server 

 

3.1.5.7 Client – Interface 

We developed the BCTFRLHC_v6 expert GUI in Java and organized it in five 

packages just as the BFCTSR_ExpertGUI [3.1.4.3], figure 3-3. The class diagram of the main 

part of the expert GUI is depicted in figure 3-9. This is the part that interfaces the server’s 

properties Setting, CalibrationSetting, LoadLUT, Acquisition and ExpertAcquisition as well 

the graph from Phase Scan. These properties are organized in two areas – left and right. All 

the setting related panels – Setting, CalibrationSetting and LoadLUT – are placed at the left 

area as tabs whereas all the graph related panels – Acquisition, ExpertAcquisition and Phase 

Scan – are placed at the right side again as tabs. 
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Figure 3-9: BCTFRLHC_v6 expert GUI UML class diagram (without comparison window) 
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In addition, we implemented a comparison window among the three systems – A, B 

and C – comparing the bunch intensities among the FBCTs of these systems and the total 

intensities among the FBCTs of these systems as well as the DCCTs of system A and B. Due 

to the lack of the calibration mechanism, we decided to implement this comparison window 

as part of the expert GUI for the FBCTs in system C, in order to ease the setting of the 

calibration coefficients and their monitoring. This comparison window’s main purpose is to 

calibrate our FBCT’s implementation of system C, relative to the existing implementations in 

system A and B, as well to cross check the accuracy of the data that our implementation 

provides. The class diagram of this comparison window is depicted in figure 3-10. 
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Figure 3-10: Comparison Window UML class diagram (part of the BCTFRLHC_v6 expert GUI) 
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3.2 Technical Implementation 
After analysing the high level of our implementation for both systems – FBCTs in the 

SPS and LHC – we will try and give all the technical details that concern the implementation 

of the common tools – such as the rapper, tester and dabInfo – used by both systems 

independently as well the specific details by both systems individually. 

 

3.2.1 Wrapper – Common Implementation 

3.2.1.1 Constructor 

Since we are using two libraries to access our hardware, they should be initialized 

somehow and this is done in the constructor of the wrapper class of our implementation. 

There, the ioctl‘s function to open the device driver node is being called with two arguments, 

the Logical Unit Number (lun -- Logical Unit Number assigned to the module) and the Minor 

Device Number (chanN -- Minor Device Number. There can be several entry points for 

current Logical Unit Number (ChannelNumber)). It returns the file descriptor with which all 

the library’s functions are called. 

The dal’s function to enable the access to the device is being called with four 

arguments, the name of the device (as specified in the Data Base), and the method that will be 

used for the access (IOCTL, IOMMAP and IODMA), the LUN and chanN. It returns as well 

a file descriptor which is used when any of the library’s methods are called. 

3.2.1.2 Single-value Registers 

For reading the single-value registers one can call the appropriate wrapper’s method 

and pass a pointer to an integer as argument. The method is calling the ioctl’s function to get 

the register’s value which returns a result of that action, if succeeded or failed. This result is 

stored in the address that was passed as argument to the wrapper’s method, while the value of 

the register is being returned as unsigned long at the end of the method. 

For writing a value to the single-value registers, the mechanism is quite similar with the 

above, with the difference that the value to be set is passed as an unsigned long argument 

along with a pointer to an integer. The method is using the ioctl’s function to write the value 

to the register and stores the result of that action (succeeded or failed) in the address passed 

as argument. The method doesn’t return anything. 

 

3.2.1.3 Multiple-value Registers 

As for the multiple-value registers, we’ve implemented two ways of reading them. First 

is the type of methods that expect two arguments, one pointer to unsigned long and second to 

integer. This type of methods read the whole register and store it to the memory where the 

first pointer points and the result of that action to the second one. 

The other type of methods that reads multiple values, take three arguments. One pointer 

to unsigned long for the result, one to an integer for the action’s result as before and one 

additional integer to specify how many values to be read. 
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For writing this kind of registers, we’ve used the exact same implementation as above, 

with the only difference that we’ve used the appropriate libraries’ functions for writing 

instead. Of course now, the first pointer points to the address where the values would be read 

and not written, meaning that became the source from destination. 

 

3.2.1.4 Setting processing 

There are also some methods to process the data that need to be set to the device before 

any action. These are the bunch selection which comes as a string from user’s input. A parser 

was needed to be implemented in order to transform the user-friendly string to the array of 

hexadecimals that the device can take as setting through the CBunchSelector register. 

The parser takes the string as argument and splits it to ‘ ’ and ‘,’ to find different 

selections. Then, it calls a private method to define if there is a region requested or a single 

bunch by searching the ‘-’ character. And finally another private method is called to do the 

appropriate calculation and set the corresponding hexadecimals to the CBunchSelector 

register. The procedure is repeating itself until it reaches the end of the string. 

 

Figure 3-11: Bunch Selection Transformation from string to a set of hexadecimal 

 

3.2.2 Tester – Common Implementation 

The tester class was created at first to test the communication with the device. At those 

days, it did nothing more but to read and write the registers in order to make sure that every 

one of them behaves the way it should. 

In the meanwhile, and as the project evolved, we found the need to develop new tests 

more relative to the acquisition behaviour of the device. Hence we implemented a loop that 

asks the user to enter the number of bunches and turns for acquisition while checking if this 

input is reasonable – no zero bunch selection for example. As it was described in the previous 
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chapter, setting the bunch selector register is something that has to be done with great care, 

since errors in that procedure can mess the data and are extremely difficult to be spotted. That 

is why we implemented a CBunchSelector “parser” in the tester (which was moved later on 

to the wrapper). This parser is iterating the CBunchSelector memory (128 of doubles) and 

prints them as hex, so that we can debug its setting procedure. 

Furthermore, the acquisition starts in a loop so that we can simulate real time conditions 

and the data are fetched from the device before passed to a method that decodes and prints 

them. The selection of the data is usually big enough and thus very uncomfortable to be 

printed in the console, hence the routine that does this job can take two arguments that 

specify two limits in order to print only the specified first and last samples. 

The decoding of the data, which was moved to the wrapper later on, has to split the data 

as it was read from the device in the middle. Take the left part first (16 MSB) and apply a 

sign correction after striping the 14 less significant bits as follows: 

 

Figure 3-12: Sign correction of the data in the code 

The same procedure must be followed to the right sample as well (16 LSB) before 

moving to the next element in the CBunchSelector memory. Special care should be taken 

when the number of samples – number of bunches * number of turns – is odd, in the sense 

that we keep only the desired and correct data. We achieved that by repeating the above 

procedure of splitting, striping and correcting the sign of the data one time less than is needed 

and taking modulo of the number of samples with 2 into account. In this way, we repeat the 

procedure for the left sample (16 MSB) and the right one (16 LSB) only if the modulo is 0. 

 

3.2.3 DabInfo – Implementation 

For the implementation of the dabInfo utility, we need the user to specify the LUN 

number of the DAB that he wishes to retrieve the information. After taking our Hardware 

expert’s request under consideration, we agreed on having two ways to do that. If no 

argument was passed while running the application, a loop would ask the user to provide an 

appropriate LUN number. On the other hand, the user can directly pass this information with 

the running command. 

DabInfo does nothing more than reading directly (without using the wrapper class) 9 

registers relative to the firmware, serial numbers and the status of the device – FWCodename, 

FWRevision, FWDate, SNDAB, SNTop, SNBottom, SNPIM, Command and Debug – and 

present their contexts in a meaningful way after processing them if needed. 
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For example, for printing in ASCII format the firmware codename, we split every 

element of the register at 4 pieces of 8 bits each and print each one of them as character. A 

code example is the following: 

 

 

Figure 3-13: example code for ASCII parsing 

In a similar way, the FWDate has to be processed in order to extract the information 

about the day, month, year and time of the firmware compilation. Furthermore, and for the 

status (Command) and debug register we had to implement two hash tables, one for each 

register, with the possible status and debug states and print the corresponding message 

depending on the contexts of the appropriate register. An example of the output information 

when running dabInfo at the lab is the following: 
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Figure 3-14: example run of the dabInfo in the lab 

 

3.2.4 SPS 

In this section we are focusing on the technical implementation details of the FBCTs in 

the SPS ring. We describe what changed in the software and in what way. Finally we describe 

the expert GUI that did not exist before. 

 

3.2.4.1 Baseline Restoration (BLR) 

The implementation of the new algorithm for the baseline restoration searches the 

acquired data for the minimum value. In order to detect and ignore extreme values, this is not 

enough. Hence, in the same loop, the minimum neighbour is determined so that its distance 

with the currently examined value can be tested and then decided if it will be considered as 

valid value or an extreme one. 

In this way and within a single loop the minimum value of an acquisition, ignoring any 

“undershoots” is determined. Then the user setting that specifies the noise area is added to it 

in order to create a threshold that determines the samples below it to be considered as noise. 

Continuing in the second loop the average value of these noise samples is calculated, which is 



48 
 

then removed from any sample in the acquisition. In this way, what is considered as noise 

moves to the zero area of the y axis. Figure 3-2 above shows such case. 

 

3.2.4.2 TURN_BY_TURN acquisition 

For the implementation of the new real time action rtTurnAcq, we basically combined 

the rtStart and endCapture into one new real time action with different settings. The main 

idea is the same; the rtTurnAcq starts the acquisition with the settings that are already in the 

device, reads the data back, decodes and calibrates them before exiting. 

This acquisition mode acquires a full bunch selection for 500 consecutive turns (instead 

of 1 for the REPETIVE mode). This number is the limit of the first dimension of the 

intermediate and final buffers (number of measurements for the REPETIVE mode) which we 

also use in rtTurnAcq but storing the turn instead of the measurement in their first dimension. 

For the REPETIVE mode, 500 measurements every 40msec is more than enough and is never 

actually reached. As for the TURN_BY_TURN mode though, this number is really limiting 

the amount of data acquired, hence the precision of the measurement, when the capacity of 

the device storage exceeds this limitation by a factor of 2. 

The main compatibility problem about this issue comes from our clients, people in the 

CCC who develop their own GUI applications to interface our servers. Their main request is 

to change their applications as less as possible to preserve stable releases of their software 

solutions. That is why we decided not to increase the maximum number of 

measurements/turns at developing time, but later on in the future and after we assure that the 

new version of the server works fine and stably. 

Another implementation issue that appeared was the synchronization of the starting 

point of the real time action. The warning that starts the rtTurnAcq is 20msec earlier than the 

beam’s injection. If we started the acquisition at this moment, we would acquire mostly noise 

and only a small fracture of the actual beam’s intensity. Taking the limitation in our 

acquisition data that was introduced before under consideration, this would turn our new 

acquisition mode useless. To make things worse, this is the same event that wakes rtPrepare 

and serious problems would appear if both real time actions tried to communicate with the 

device since there is only one bus for this communication. 

To avoid these problems, we had to wait some time – 18msec – just to assure the non-

simultaneous device access as well as the acquisition of meaningful data. We implemented 

this delay using another FESA class that was created by our group for abstracting the global 

timing events, named LTIM, which gives us the opportunity to specify such settings as delay. 

We choose to implement this mechanism rather than using simple sleep commands, in order 

to reduce the useless CPU usage as well as preserving the wright synchronization among the 

real time actions. 

 

3.2.4.3 Client – Interface 

For the implementation of the expert GUI, we used the BasicFrameBuilder which was 

created from our section for abstracting the creation of certain useful toolkits such as the 

RBA toolbar as well as the device iterator. The latter – visible on the left side of figure 3-15 – 

creates a thread of the application for each device (instance of a FESA class) whiles the 
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former – visible on the right side of the same figure – takes care of the privileges each user 

has for accessing each server. 

 

 

Figure 3-15: Upper part of the BFCTSR_EpertGUI 

The TimingPanel is implemented by our section and its main purpose is to abstract the 

cycle multiplex for each accelerator. In this panel and at the right side, the user can see which 

cycle is active at any moment as well as the sequence of all active cycles for a given 

accelerator. At the left side of this panel, the user can choose by a simple click, which cycle’s 

intensities he wants to observe. This information, as well as the type of the action the user 

requested (GET, SET, SUBSCRIBE and UNSUBSCRIBE), is visible in every panel of our 

application since things can complicate quite fast, if more than one cycle are observed at the 

same time. 

In the figure 3-16 the cycle selection is visible inside the green box, where the green 

arrow points, while the sequence of the active cycles are inside the light blue box, pointed by 

the light blue arrow. Inside that box and with a green colour is the active cycle for that 

specific moment while the red numbers on the right side of each active cycle is its duration in 

seconds. Lastly and inside the purple boxes is the last action as well as the cycle for which it 

was operated. In the same figure the Setting as well as the Acquisition panel is visible. 

 

Figure 3-16: BFCTSR Expert GUI – Acquisition Tab 

The UserData panel hosts a plot with the individual bunch intensities per measurement. 

There is also a scroll bar to iterate the different measurements as well as a text-field where 

the measurement offset in milliseconds is indicated. For example in figure 3-17 we can see 

the second measurement for the SFTLONG2 cycle with 41msec offset. 



50 
 

 

Figure 3-17: BFCTSR Expert GUI – UserData Tab 

Lastly, the BunchAcquisition panel hosts two 3-Dimensional plots, one for each 

mezzanine. These 3D graph components were experimentally created by our group and found 

to be quite useful in our case, since we can have a global idea of the individual bunch 

intensity measurements in time at once. The data that are being presented by both 

BunchAcquisition and UserData panels are the same – the two dimensional arrays from the 

server – only with a different representation. The UserData panel is very useful for the 

individual study of the measurements whereas the BunchAcquisition is ideal for the whole 

picture of the measurement. An example of the latter panel can be seen in figure 3-18 along 

with the 3D pop-up graph. 
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Figure 3-18: BFCTSR Expert GUI – BunchAcquisition Tab 

 

3.2.5 LHC 

For the server implementation in the LHC ring, we decided to keep the four pointers to 

the wrapper class – one per DAB card – apart from the shared memory. The design is such, 

that either way, we iterate through the device collection – four DABs – in order to start the 

acquisition, read back the data, set the settings and so on. This iteration is done always in the 

same order and it starts from the device in lun 0 – HBW for beam1 – and it goes up to the 

device in lun 3 – LBW for beam2. Hence, we create and initialize these four pointers to the 

wrapper class in the constructor of the real time classes, BCTFRLHCRealtime and after 

storing them to an array in the same order of the devices, we access them through our server 

classes using the keyword extern. 

3.2.5.1 Look Up Tables 

As described in chapter 3.1.5.1, there are two LUTs per DAB card – one for each 

mezzanine. The LUTs contain the signed corrected ADC values (-8192 – 8191) and the two 

corrected values – one for each integrator. We implemented the LUTs in software in two 

arrays of floats per LUT – one for integrator 0 and one for 1. We used the ADC values as 

indexes to each corrected floating value for each integrator’s array, after eliminating the sign 

correction by subtracting the constant value 8192, in order to have proper positive array 

indexes. These arrays are stored in the device shared memory, so that they can be accessed by 

any server class at any time. 

The implementation of the software LUTs is done in a custom class that is accessible 

by any class of our server. This class has hardcoded the path where the LUTs are placed and 

takes a pointer to a BCTFRLHC device as a constructor’s argument. The array of the wrapper 

pointers is also visible in that class using the key word extern. 

Furthermore, this class has to methods: 
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 clearLUT(int) – which clears the software LUTs for the specified mezzanine (0 

for both, 1 for the top and 2 for the bottom) 

 updateLUT() – which loads or reloads the LUTs according to the settings the 

user has provided in loadLUT property 

By clearing the LUTs, we mean to make them (1:1) transparent in order to avoid our 

server from crashing. In other words, the LUTs return the same value that was used for 

indexing, without any non-linear correction. This is also very important to check the raw 

ADC values as they are read from the DABs, since they are not published at all to avoid 

making our properties “heavy”. 

Updating the LUTs at runtime, is a feature much appreciated by the users, since they 

can change them (clearing/updating) in order to observe, as said, the raw values if needed. In 

addition and if it is found that they need to be changed in the future, this can be done on the 

fly without spending too much time rebooting the server. 

The LUTs are loaded for the first time to the shared memory at BCTFRLHCRealtime 

class which is responsible for any kind of initialization of the real-time classes when the 

server starts. If by any reason this operation fails, the ones that failed are being cleared. 

 

3.2.5.2 Averaging, Base Line Restoration (BLR) and Calibration of the Data 

Since there is the 1 second time restriction, we tried to condense as many of the data 

process steps as possible. Hence, when we iterate the acquired values <number_of_turns * 

number_of_bunches> and parse them through the appropriate LUTs, we also sum the 

corrected values per bunch slot. Furthermore, in a second iteration <number_of_bunches> we 

divide every sum with the <number_of_turns> to get the average bunch intensities after LUT 

correction. In this iteration, we also specify the minimum average bunch values to be used 

from the next steps of the data process. 

For implementing the BLR as described in chapter 3.1.5.2, we decided to use two 

arrays of shorts – one per mezzanine – that we called bitmaps and specify if a bunch slot 

contains noise or beam signal – 1 or 0 accordingly. Obviously, these arrays’ length is the 

maximum number of the bunch slots that can be acquired – 3564. In addition, these bitmaps 

are initialized with 1, assuming that every single bunch slot contains noise measurement 

which is the case when the beam is not present. 

Subsequently, we iterate the averaged LUT corrected values from <VS> (see chapter 

3.1.5.2) to <number_of_bunches – VS> checking if the value is above <min + TH>. If it is, 

then it means that this bunch slot measurement should be considered as beam signal and 

hence the corresponding entry of the bitmap is changed to 0. Then, we check the measured 

values just before and after the current one, to specify if this bunch slot is at the beginning –

the previous value should be below <min + TH>, end – the next value should be below <min 

+ TH> – or in the middle of the beam. If any of the two former cases appear, we also change 

the bitmap for the according bunch slots – previous or next – to 0. This is done for both top 

and bottom mezzanines. 

Furthermore, we iterate the first VS values as well as the last ones in case there is beam 

signal at these bunch slots, in which case we change the bitmap for these bunch slots to 0. By 



53 
 

the end of these iterations, we have all the information needed to calculate the mean value of 

the noise in the bitmaps. 

Thus, we iterate once more the averaged LUT corrected values <number_of_bunches> 

and we sum the values that have 1 at the corresponding index of the bitmaps, increasing also 

a counter for every noise sample. In this way we specify the mean value per mezzanine by 

dividing the sum with the counter. 

Lastly, we take away the just calculated noise mean value from every sample at the 

same time we transform them to number of charges by applying the calibration components. 

Hence, the equation 3.1 is transformed to the following: 

  

                                     
 

(3.2)  

In addition, this is the iteration where we sum the calibrated values – number of charges – 

and calculate the average total intensity for both mezzanines, that one of which will be 

published. We also find the maximum value as well its bunch slot that will potentially be 

used by the phase scan actions. 

 

3.2.5.3 Gain Switching 

In order to implement the gain switching in software, the user provides two switching 

thresholds in ADC bins. But these thresholds are applied to the data after their calibration – in 

number of charges – and thus, the same transformation (equation 3.2) must be applied to 

them. 

After transforming the thresholds, we read back from the shared memory which was the 

previous selected gain, and apply the thresholds accordingly. If it was the top mezzanine, 

then we iterate the averaged calibrated values and if we find at least one value that exceeds 

the threshold, we break and we switch the gain to the bottom mezzanine. On the other hand, 

if the previous gain selection was the bottom mezzanine, we simply check if the maximum 

value that was already found from the calibration-BLR iteration exceeds the according 

threshold and if it does not, we switch to the top one. 

 

3.2.5.4 Phase Scan 

For the implementation of the phase scan, we use the settings that the user has provided 

at CalibrationSetting property and more specifically the phase scan action selection and the 

bunch slot. We support two actions and thus the phaseScanAction field has three possible 

states: 

 DO_NOTHING – is the default state of that field and as its name reveals, is 

used for doing nothing as far as the phase scan procedure is concearned 

 FIND_MAX_BUNCH_SLOT – is the state of that field that instructs the real-

time action to store at bunchSlot field the bunch slot with the maximum value of 

the selected gain, as found from the calibration-BLR iteration, from the current 

measurement 
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 DO_PHASE_SCAN – is the state of that field that instructs the real-time action 

to apply the phase scan at the specified bunch slot, given by the bunchSlot field 

The latter, needs 16 acquisitions – 16 seconds – to be completed. We keep the phase 

delay that was last used for the phase scan, in a private field so that it doesn’t mess up with 

the phase delay the user provided in the CalibrationSetting property. The values of the 5 

bunch slot measurements are stored in different 2D buffers whose first dimension is the 5 

different bunch slots whereas the second one is the 16 values according to the 16 possible 

values of the phase delay. Each second, we increase the private phase delay by one and check 

if we reached the end, where we set it to its initial value (0) and the phaseScanAction field to 

its default value (DO_NOTHING). 

 

3.2.5.5 Client – Interface 

 We implemented the BCTFRLHC_v6_ExpertGUI, using the basic frame builder just 

as for the BFCTSR_ExpertGUI (see chapter 3.2.4.3) in order to take advantage of the 

automatic implementation of the device list as well as the RBAC toolbar. 

The expert GUI consists of two main tabs: 

 Comparison Window – which interfaces the comparison application described in 

chapter 3.1.5.7 – figure 3-10 

 Device Window – which interfaces our expert GUI per device instance as it was 

described in chapter 3.1.5.7 – figure 3-9 

The Comparison Window consists of a row of buttons on top – Start / Stop, and two 

tabs – one per beam. Each beam tab consists of two tabs as well – one for the history of the 

total intensities and one for the average bunch intensities. The latter two tabs consist of a 

toolbar on top and a graph at the remaining area. The toolbar is different per tab and that is 

because there are different settings depending on the type of the graph. 
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Figure 3-19: Comparison Window - total intensity history for beam 1 

Hence, the toolbar for the total intensities tab consists of a group of checkboxes where 

the user can specify the visibility of the available plots – these are the history of the total 

intensity as calculated from DCCTA and DCCTB as well from FBCTs in all three systems. 

Next to these checkboxes, lie a text-field and a button that allows the user to specify the depth 

of the history he desires. This is achieved by changing accordingly the length of the First-In-

First-Out (FIFO) queues we use to create the history plots from all devices. In addition, a 

reset button clears these queues, in case the user wants to restart the history monitoring. 

Furthermore, we state which mezzanine was used to provide the total intensity as far as our 

server is concerned in the next component which consists of a label and a combo box. 

Subsequently, three sets of radio buttons lie next to the selected mezzanine that group the 

settings related to the graph. The first of these sets specifies which bandwidth to plot from 

each device – High or Low. The second set specifies the graph format – absolute, absolute 

difference and relative difference – and the third one the references – DCCTA, DCCTB and 

FBCTC.  
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Figure 3-20: Comparison Window - total intensity history - absolute difference - for beam 1 

By absolute, we mean that we plot the total intensity histories as we get them from the 

devices. For the other two formats – absolute and relative difference – we use the values from 

one device as reference – the user specifies which one he wants from the third set of radio 

buttons – and we calculate the difference of the visible plots relative to the reference ones. In 

the absolute difference format, we just subtract the reference values from the visible ones. On 

the other hand and for the relative difference format, we use the following equation to 

calculate the percentage difference between two systems: 

  

           (
                               

                
)      

 

(3.3)  

 

The result of the absolute difference format is a graph of the difference between the 

visible systems relative to the specified one in number of charges, whereas in the case of 

relative difference is the percentage of this difference. In addition and only for the relative 

difference format, if there is only one visible plot and at least one of the two settings – visible 

and relative – is system C but without being the same to both settings, we make visible 

another component which consists of a text-field and two buttons. This component is used to 

calculate and apply the corresponding calibrating coefficient for system C in a way to 

eliminate the difference as much as possible. This is achieved by calculating the next 

equation using the values retrieved by equation 3.3 and the most recently used calibration 

coefficient: 

  

                (  
          

   
)                  

 

(3.4)  
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Figure 3-21: Comparison Window - total intensity history - relative difference for beam 1 

As for the toolbar of the average bunch intensities tab, things are simpler since it 

consists only by a smaller group of checkboxes and two sets of radio buttons. The 

checkboxes are again to allow the user to specify which available plots he wishes to make 

visible – these are the average bunch intensities as calculated from the three FBCT systems. 

This is because the DCCTs do not provide bunch-to-bunch measurements. The radio buttons 

are again to specify the graph settings as in the total intensity history tab’s toolbar but this 

time without the bandwidth chooser nor the additional coefficient calculator component. The 

lack of the former is due to the fact that system A and B do not provide bunch-to-bunch 

measurements for the LBW whereas the coefficient calculator is focused on the published 

values which are the total intensities. 

 

Figure 3-22: Comparison Window - average bunch intensity for beam 1 
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Figure 3-23: Comparison Window - average bunch intensity - absolute difference for beam 1 

The Device Window consists of an area of setting – Setting, ExpertSetting and 

LoadLUT – panels on the left of the GUI, that interface the corresponding FESA properties 

and the graphics area on the right with acquisition panels – Acquisition, ExpertAcquisition 

and PhaseScan. In this way, the user is able to spot immediately the reaction of his settings to 

the data acquired. 

 

 

Figure 3-24: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Bunch Intensity - Expert Settings Panel 
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Figure 3-25: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Turn Intensity History - Settings Panel 

The history tab of the average turn intensities under the Acquisition panel is exactly the 

same graph with the total intensity history tab in the Comparison Window if the user selects 

the appropriate settings from its toolbar. In the example shown in figure 3-25, one should 

choose to plot the BCTFRC values at the beam 2 tab with HBW and absolute graph format as 

graph settings. And this is true, only if the currently selected mezzanine (GAIN) from FBCT 

in system C is bottom (Low). 

The next two figures (3-26 and 3-27) depicts the impact of the LUTs at the data. For 

this reason we plot the data as soon as they are parsed from the LUTs in the Expert 

Acquisition panel, Data After LUT tab. In the first figure we cleared (1:1) the LUT for the top 

mezzanine only so that the difference between the actual and the cleared LUTs can be spotted 

easily. The second figure depicts the data after updating “on the fly” the top mezzanine’s 

LUT. 
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Figure 3-26: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - cleared LUT for top mezzanine 

 

Figure 3-27: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - updated LUT for top mezzanine 

In the average bunch intensity graphs in the Expert Acquisition panel, we plot the data 

after averaging them and before restoring their baseline or calibrate them. In addition we also 

plot the BLR components as they are calculated from the real-time action, in order to follow 

the BLR procedure and have a visual and immediate clue of the impact of our Expert Settings 

(figure 3-28). This is true only if the user chooses to plot one of the two plots (top/bottom 

mezzanine) since these components are specified per mezzanine. 
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Figure 3-28: BCTFRLHC_v6_Epxert Acquisition / Average Bunch Intensities in ADC bins - Expert Settings 

In figure 3-29 a zoom of the same graph depicts the details of the BLR components for 

better understanding. In this figure the minimum value as it was calculated by Acquire real 

time action is visible with the yellow line as well the user setting TH with red. In addition the 

area that is considered to have useful signal is painted blue for better visualization. 

 

 

Figure 3-29: BCTFRLHC_v6_EpxertGUI - Zoom at the Expert Acquisition panel / Average Bunch Intensity in ADC bins tab 

Lastly, in figure 3-30 the phase scan procedure is depicted for the bunch slot that was 

found to have the maximum value. 



62 
 

 

Figure 3-30: BCTFRLHC_v6_ExpertGUI - Phase Scan 
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4 Results 
 

Having deployed our suggestions of the FBCT servers for both SPS and LHC rings is 

time to present and analyse the results of our implementations. This section is dedicated to 

that and is divided in two subsections, one per server. This is important since, the requirement 

for an operational FBCT system in the SPS ring was critical and hence, we couldn’t wait in 

order to develop a unified system as it was first foreseen. Therefore, we developed this server 

first and in parallel we studied the ways – as it was described in the previous sections – in 

order to achieve the implementation of a unique FBCT measuring system. 

 

4.1 SPS 
The FESA class BFCTSR v210, our implementation of the server for the FBCT in SPS 

ring, was deployed and is operational since 22/05/2012. Until now no problems had occurred. 

On the contrary the CCC operators were happy to finally see this TURN_BY_TURN 

acquisition mode as well that the new implementation of the baseline restoration is working 

properly. 

 

Figure 4-1: Total Intensity Measurement with FBCT for the SPS, CNGS1 cycle and REPETETIVE mode with the previous 
version of the server 

Until now, the operators were only able to see the whole history of the beam’s intensity 

during a cycle apart from the first injection, since the acquisition started the moment the 

beam was already present (see Figure 4-1). Having this history is useful but not if anyone 

wants to observe the behaviour of the beam’s intensity at the injection time. 

And that is what is renovating with our implementation, for the first time, the operators 

can see the intensity of the beam on the injection moment in great detail and thus they can 

easily calculate the additional intensity that actually took place during the injection. This is 

very important for the smooth operation of the SPS ring since several unpredicted behaviours 

of the beam can be detected early in the cycle allowing corrections to be made. What is more, 

and by specifying the delay of the execution of the acquisition in milliseconds, the operators 
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(users) can actually choose how far they want to look in the cycle. In this way they can see a 

potential second, third, nth injection during a cycle in great detail. 

 

Figure 4-2: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle, TURN_BY_TURN mode 

Last but not least, the baseline restoration is now dynamically adjusted and thus is more 

precise and correct. This fact satisfied the users a lot, since they had many problems in the 

past with the reliability of the server and as a result they had to contact experts several times. 

4.2 LHC 
The large number of the client programs (Expert GUIs and logging) requesting data 

from the FBCT system C, requires an intermediate proxy software layer controlling the data 

flow between the server and the clients. In this way, low-level system load was minimized 

while the system’s stability was gained. 

In the following figures 4-3 and 4-4 a comparison of the beam’s 2 total intensity as it 

was measured from system A and C is depicted. The first figure shows a low gain 

measurement and although the curves seem to follow each other quite nicely, the yellow one 

– system C – exhibits higher noise in terms of sigma than the other system. 
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Figure 4-3: Beam's 2 low gain total intensity comparison among system A, B and C in the LHC 

The next figure 4-4 is an enlargement of a small part of the previous measurement 

visible in figure 4-3 as a brown box. 

 

Figure 4-4: Beam's 2 high gain total intensity comparison among system A, B and C in the LHC 

Already by the above figure, we observe that while the new system’s measurement 

follows very nicely the already operational one, it is still noisier. This is mainly due to the 

number of turns both systems are acquiring data for and hence averaging over. It appears that 

having a 224 turn interval in order to suppress the white noise at system C, doesn’t improve 

the resolution by much. The main difference as for the noise suppression comes from the 

number of averaging samples and therefore, system A provides smoother measurements than 

system C since the former acquires and averages over 900 turns whereas the latter over 25. 
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5 Conclusions and Future Work 
 

After the presentation of our implementation of the two servers controlling the FBCTs 

in the SPS and LHC ring and analysing the results of these implementations, in this final 

section, we restate our observations, we propose future work and we conclude. 

 

5.1 Conclusions 
As we mentioned in chapter 2.1.6, out of the several technics that measure the beam’s 

attributes, the FBCT measuring system is a very important one since it provides with great 

precision both bunch-by-bunch and total turn-by-turn intensity measurements. Additionally, 

it is the only system that can be absolutely calibrated although this is not the current state. In 

order to benefit the most out of this system though, several significant changes should be 

made and hence, new implementation solutions for the controlling software should be given. 

 

5.1.1 SPS 

In this direction the first contribution of this Thesis is the delivery of a complete 

software client-server scheme for the FBCT in the SPS ring. The server side of that scheme 

follows its predecessor’s outline while benefiting from the new firmware’s design and adding 

a complete new and renovating functionality – TURN_BY_TURN acquisition mode – that is 

proven very useful. In addition, it corrects former malfunctions as for the data treatment, 

making the server more dynamically adjustable to different use cases. 

Furthermore, the client side of that scheme provides a different and more user-friendly 

interface for the server introducing new ways of presenting the data, such as 3D-graphs and 

2D-graphs that can be easily scrolled at the same measurement, on the contrary of the 

graphical solutions that the previously used FESA interface provided. 

 

5.1.2 LHC 

An additional contribution of this Thesis is the study of another complete software 

client-server scheme for the FBCTs in the LHC ring that will be able to be used in any 

circulating beam installation in the future, including the already existing one of the SPS 

accelerator. The results of this study as they were presented in the previous section reveal that 

although this approach seems very promising, further work should be done in order to 

implement a unified FBCT measuring system. This matter will be explained in more details 

in chapter 5.2 but we can summarize here that only the averaging part of the data treatment 

was found insufficient and hence needs improving, whereas the LUTs, BLR and Gain 

Switching worked perfectly. 

What is more, the client side of that scheme was found very helpful for the fast 

development of this system since it provided the direct comparison among the other systems 

of the same kind, in different ways. In addition and due to the lack of the calibration 

procedure of the system, the ability of setting directly the calibrating coefficients such that 

the measurements match the ones from the operational systems, improved the development 

speed as well. 
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5.2 Future Work 
As an enhancement of this work we need to improve the averaging procedure of the 

data process in software. In order to do that, we will have to reduce dramatically the turn 

interval – even to 0 – since it doesn’t contribute as much as expected to the noise suppression 

but impose a great delay in the acquisition time – a 224 turn interval impose approximately 

20msec delay at every acquired turn. And this is actually the limiting factor to the number of 

turns acquired at our implementation since we agreed to perform a half second acquisition in 

order to have enough time to process the data, hence 25 acquired turns with a 224 turn 

interval. 

On the other hand, performing a full bunch acquisition that would fill the memory – 

294 consecutive turns lead to 1047816 acquired samples at almost 25msec – hits again the 

1Hz restriction as it may take 25msec to make the acquisition but it takes almost 400msec to 

read the data from the DAB since there is only one VME bus. 

As a result, we intend to move the averaging part of the data process to the hardware 

(FPGA) by changing the firmware again and adding a summing mode allowing us to perform 

full bunch acquisitions for a large number of consecutive turns removing the huge transfer 

delay in a sense that we will always be fetching 3564 values from memory. All the 

functionalities of the recently changed firmware – as they were analysed in chapter 2.2.2 – 

should remain unchanged if it is going to be used in other parts of the CERN’s infrastructure 

such as linear accelerators and/or dump and transfer lines. 

In addition, since we will be fetching averaged data from the DAB and not the integer 

acquired values, the parsing through the LUTs should be transformed to a linear 

approximation of LUT as it is described in chapter 3.1.2 of [21]. 

Last but not least, the proper calibration technique should be implemented in order to 

achieve the maximum of the FBCT measuring system performance. 
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