
C
ER

N
-T

H
ES

IS
-2

01
2-

36
4

11
/1

0/
20

12

1

UNIVERSITY OF THESSALY
DEPARTMENT OF COMPUTER & COMMUNICATION ENGINEERING

Design and implementation of a client-
server system for acquiring beam
intensity data from high energy

accelerators at CERN

 Thesis Advisor:

assistant professor

Author: Christos D. ANTONOPOULOS

 Athanasios TOPALOUDIS

 Thesis Co-Advisor:

associate professor

Nikolaos BELLAS

CERN Supervisor:

Lars JENSEN

5th October 2012

2

Acknowledgements

I would like to thank my CERN supervisor Lars Jensen for the professional guidance and

confidence he showcased in my skillset during my studentship at CERN.

I would also like to thank the project leader of the fast beam intensity measurements (FBCT)

for the LHC, Dr. David Belohrad for his guidance and excellent cooperation on the FBCT

project for the LHC.

Furthermore, I would like to thank Michael Ludwig for the time he spent talking with me

about the existing implementation of the FBCT servers in the LHC – system A and B – along

with other general matters that helped me evolve personally.

In addition, I would like to thank my supervisors of this Thesis Christos D. Antonopoulos and

Nikolaos Bellas for taking over the difficult part of the remote supervision of this Thesis, their

excellent cooperation and their suggestions and corrections on this work.

Last but not least, I would like to thank my family, Theodoros, Chrysi, Christos and

Alexandros who helped me form a solid ground to evolve my personality and Eirini who

showed me how to do it.

3

Table of Contents

Acknowledgements .. 2

Table of Figures ... 5

Table of Tables .. 7

Abstract .. 8

1 Introduction .. 9

2 Background ... 11

2.1 General Background .. 11

2.1.1 CERN ... 11

2.1.2 CERN’s structure ... 12

2.1.3 The CERN accelerator complex .. 13

2.1.4 Control Center .. 15

2.1.5 Bunches .. 15

2.1.6 Beam Charge Measurements [3] .. 15

2.1.7 FESA Framework .. 16

2.2 Hardware Architecture .. 17

2.2.1 Fast Beam Current Transformer (FBCT) measurement system 18

2.2.2 Firmware .. 19

2.2.3 Driver Background... 24

2.3 The FBCTs in the SPS .. 24

2.3.1 Software Architecture .. 24

2.3.2 Previous Implementation ... 25

2.4 The FBCTs in the LHC ... 27

2.4.1 Software Architecture .. 27

2.4.2 Existing Implementation .. 27

3 New Implementation .. 29

3.1 High level diagnostics ... 29

3.1.1 Wrapper - Design ... 29

3.1.2 Tester - Design ... 29

3.1.3 DabInfo - Design.. 30

3.1.4 SPS ... 30

3.1.5 LHC.. 35

4

3.2 Technical Implementation ... 43

3.2.1 Wrapper – Common Implementation .. 43

3.2.2 Tester – Common Implementation .. 44

3.2.3 DabInfo – Implementation ... 45

3.2.4 SPS ... 47

3.2.5 LHC.. 51

4 Results .. 63

4.1 SPS .. 63

4.2 LHC ... 64

5 Conclusions and Future Work .. 66

5.1 Conclusions ... 66

5.1.1 SPS ... 66

5.1.2 LHC.. 66

5.2 Future Work .. 67

Bibliography .. 68

5

Table of Figures

2-1: CERN's Logo [6] .. 11

2-2: CERN's structure (source: Laura Saulnier, TECH induction 2012) 12

2-3: Beams Department's Structure ... 12

2-4: Beam Instrumentation’s structure... 13

2-5: CERN Accelerator Complex [11] .. 14

2-6: FESA's service supplies [13] .. 16

2-7: Block schematic of the FBCT measurement system [14] .. 18

2-8: SPS FBCT's VME64x crate – on the left with green lights is the FEC, on the right of the

FEC the DAB is installed and in the middle of the crate the BOBR is visible 19

2-9: table's 2-3 Legend ... 20

2-10: FESA Framework Interface .. 25

2-11: Total Intensity History from beam1 of the LHC, System B... 28

3-1: Bunch-by-bunch intensity measurement plot with error in BLR from SPS FBCT 31

3-2: Bunch-by-bunch intensity measurement plot with correct BLR from SPS FBCT 31

3-3: Data flow between front-end server and GUI client .. 33

3-4: BFCTSR_ExpertGUI UML Class Diagram ... 34

3-5: Acquisition schedule in respect with number of turn and turn interval 35

3-6: Data Process Sequence ... 35

3-7: An example of the BLR algorithm with VS=3. Only the yellow region is considered as

noise [21] ... 37

3-8: phase scan ... 38

3-9: BCTFRLHC_v6 expert GUI UML class diagram (without comparison window) 40

3-10: Comparison Window UML class diagram (part of the BCTFRLHC_v6 expert GUI) .. 42

3-11: Bunch Selection Transformation from string to a set of hexadecimal 44

3-12: Sign correction of the data in the code ... 45

3-13: example code for ASCII parsing .. 46

3-14: example run of the dabInfo in the lab ... 47

3-15: Upper part of the BFCTSR_EpertGUI ... 49

3-16: BFCTSR Expert GUI – Acquisition Tab.. 49

3-17: BFCTSR Expert GUI – UserData Tab ... 50

3-18: BFCTSR Expert GUI – BunchAcquisition Tab ... 51

3-19: Comparison Window - total intensity history for beam 1 .. 55

3-20: Comparison Window - total intensity history - absolute difference - for beam 1 56

3-21: Comparison Window - total intensity history - relative difference for beam 1.............. 57

3-22: Comparison Window - average bunch intensity for beam 1 .. 57

3-23: Comparison Window - average bunch intensity - absolute difference for beam 1 58

3-24: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Bunch Intensity - Expert

Settings Panel ... 58

3-25: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Turn Intensity History -

Settings Panel ... 59

file://cern.ch/dfs/Users/a/atopalou/Desktop/thesis/thesis.docx%23_Toc375152684

6

3-26: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - cleared

LUT for top mezzanine .. 60

3-27: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - updated

LUT for top mezzanine .. 60

3-28: BCTFRLHC_v6_Epxert Acquisition / Average Bunch Intensities in ADC bins - Expert

Settings ... 61

3-29: BCTFRLHC_v6_EpxertGUI - Zoom at the Expert Acquisition panel / Average Bunch

Intensity in ADC bins tab .. 61

3-30: BCTFRLHC_v6_ExpertGUI - Phase Scan .. 62

4-1: Total Intensity Measurement with FBCT for the SPS, CNGS1 cycle and REPETETIVE

mode with the previous version of the server .. 63

4-2: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle,

TURN_BY_TURN mode .. 64

4-3: Beam's 2 low gain total intensity comparison among system A, B and C in the LHC 65

4-4: Beam's 2 high gain total intensity comparison among system A, B and C in the LHC ... 65

7

Table of Tables

Table 2-1: FESA's data types [13] ... 16

Table 2-2: FESA's data attributes [13] ... 17

8

Abstract

The world’s largest research center in the domain of High Energy Physics (HEP) is the

European Organization for Nuclear Research (CERN) whose main goal is to accelerate

particles through a sequence of accelerators – accelerator complex – and bring them into

collision in order to study the fundamental elements of matter and the forces acting between

them. For controlling the accelerator complex, CERN needs several diagnostic tools to

provide information about the beam’s attributes and one such system is the Fast Beam

Current Transformer (FBCT) measuring system that provides bunch-by-bunch and total beam

intensity information.

The current hardware and firmware of the FBCT system has certain issues and lacks

diagnostics as a lot of the calculations are done in an FPGA. In order to improve on this, the

firmware was redesigned and simplified in order to increase its capabilities and provide the

base of a unified FBCT measuring system that could be installed in several of CERN’s

accelerator complex’s parts. Following the above changes, this Thesis proposes the

implementation of an operational client-server software solution to control the FBCT

installation in the Super Proton Synchrotron (SPS) accelerator, as well as studying the design

and implementation of a unified client-server software scheme that can replace the

operational ones in the Large Hadron Collider (LHC) and can eventually allow further

installations of the FBCT measuring system, elsewhere in the CERN accelerator complex.

9

1 Introduction

The European Organization for Nuclear Research or CERN Laboratory is the largest

research center in the domain of particle physics [1]. Its main activity is to accelerate ion or

proton particles through its accelerator complex to their nominal energies and make them

collide at one of the four collision points [2] in order to study the fundamental constituents of

matter as well the forces acting between them.

The acceleration of the particles can only be achieved if the Radio Frequency (RF) field

is correctly oriented with the accelerating cavity as they pass through it. Since this happens at

specific moments of the RF cycle (sine-wave), particles travel around the accelerator

complex in well-defined bunches [2].

For an accelerator’s control to be effective, numerous diagnostic tools are needed to

provide information about the beam’s attributes [3]. Several measurement techniques exist

providing such information and thus making the control of the CERN accelerator complex

effectively feasible. One such technique uses AC-coupled Fast Beam Current Transformers

(FBCTs) at first stage to integrate the current of each individual bunch inside a bunch-

synchronized integration window and provide continuously 40MHz ADC values (in bits) [4],

whereas, at second stage it implements data treatment in a Field-Programmable Gate Array

(FPGA).

The FPGA firmware is used to store and/or reload at any time the device configuration

in order to implement four acquisition modes, single capture – which measures the intensity

for the specified bunch slots over a specified number of turns, turn sum – which measures the

total intensity of all bunch slots available (depending on the accelerator) over one turn, slot

sum – which measures the total intensity for a given bunch slot over a specified number of

turns – and finally sum of sums – which measures a turn sum and then sums up these values

using the slot sum measurement mode in order to produce one total intensity value [5].

In addition to the hardware part, there is also the software layer, responsible for

controlling the device and to implement any data processing required that cannot be done by

the firmware (floating-point calculations). Such data processing may be, averaging, data

calibration – the transformation of the data from the measured values in number of bins to

number of charges – and data publishing.

There is one FBCT system installed in the Super Proton Synchrotron (SPS) accelerator

and two per beam in the Large Hadron Collider (LHC) that provide both bunch-by-bunch and

total (per turn) beam intensity information. The FBCTs in the SPS ring are widely used at

beam injection time to observe the beam losses at that critical part of its journey as well at

specific times during the beam cycle to analyse the bunch-by-bunch losses. As for the LHC

ring, only one – system A – out of the three FBCT installations is currently operational and is

used by a large number of clients interested in bunch-by-bunch and turn-by-turn intensity

information.

The original FBCT firmware was designed and developed by several people using

different technologies. As a result, several design errors worsens the mean time between

failures – MTBF – of the entire measurement system, complicating its maintenance. In order

to properly develop the new FBCT system C, it was decided that a clean-up was necessary,

10

moving a large part of the data treatment from the hardware to the software side. Therefore a

new version of the firmware was designed and developed implementing only the capture

acquisition mode leaving the software controlling the FBCT installations, responsible for all

the data processing.

The whole idea behind this migration is to implement one data acquisition system –

both hardware and software – that can be installed in the CERN accelerator complex and will

be independent of the ring installed, which is not the current case, in order to make it generic

and more easily maintainable.

As the new version of the firmware is already implemented, this Thesis describes the

software solutions that need to accompany the hardware changes as well to propose new

ideas as far as the data treatment is concerned. This document is divided in two large blocks:

the first one introduces the theoretical and technical background whereas the second

describes the proposed software implementation and outlines its performance evaluation.

In the first part, a brief introduction to the Organization and some fundamental

knowledge concerning the FBCTs is given in chapter 2.1. In addition, in chapter 2.2 we

describe the hardware architecture and in chapters 2.3 and 2.4, the existing software

implementations for the FBCTs in the SPS and LHC accordingly.

In the second part, we provide our software design in chapter 3.1 and its technical

implementation in chapter 3.2, along with the results of our proposals in chapter 4.

Finally, chapter 5 presents the conclusions of this work and directions for future work.

11

2 Background

In the previous section the need for the software design and implementation that

controls the FBCT systems for SPS and LHC accelerators at CERN was discussed. In order

to develop our suggestions, the analysis of some basic ideas related to the FBCTs, is needed.

Hence, we begin with the general information about CERN and other key aspects

needed for the rest of this document and we continue with the hardware architecture where all

the details relative to the hardware are given and finish this section with the description of the

software implementations for the SPS and LHC rings that used to be or are operational.

2.1 General Background
In this section we analyse from scratch the basic information about CERN, its structure

and accelerator complex because we are going to use this information for the deployment of

our solution. Furthermore, we briefly describe the CERN Control Center and how the

particles travel through the rings. Subsequently, we analyse the need of measuring the beam’s

attributes as well the different ways to do it. Lastly, we introduce the design framework that

was used for the existing and the previous software implementations as well as ours.

2.1.1 CERN

The “Conseil Européen pour la Recherche Nucléaire” or “European Organization for

Nuclear Research”, well known as the “CERN Laboratory” is the largest scientific research

center whose main area of research is high energy particle physics - the study of the

fundamental constituents of matter and the forces acting between them.

It was founded in 1954 as one of Europe’s first joint ventures and now it counts 20

member states. It is placed on the Franco-Swiss border near Geneva and it uses the world’s

largest and most complex scientific instruments in order to accelerate the particles, almost to

the speed of light, before cause them to collide and study the fundamental laws of Nature [1].

 Figure 2-1: CERN's Logo [6]

12

2.1.2 CERN’s structure

The highest authority in the Organization is the CERN Council. It is formed by two

representatives of each member state, one as the government’s administration representative

and one to represent the national scientific interests. Each member state has one single vote

and in most of the cases a simple majority is needed for a decision to be taken.

The Council is responsible for all the important decisions that have to do with

scientific, administrative and technical matters. It appoints the Director General who manages

the CERN Laboratory through a structure of Departments which can be seen at fig.2-2. [7]

Figure 2-2: CERN's structure (source: Laura Saulnier, TECH induction 2012)

The author works in the Beams Department (BE) [8] and hence a little more emphasis

will be given to it and its structure. The BE is responsible for everything that has to do with

the production and acceleration of particle beams and their control while circulating through

the CERN accelerator complex (see chapter: 2.1.3). The department is divided into six groups

as can be seen in fig. 2-3.

Figure 2-3: Beams Department's Structure

Each group is subdivided into sections. The focus of this Thesis is related to the Beam

Instrumentation (BI) group which is responsible for studying, designing, building and

maintaining all the instruments that allow the observation of the particle beams and its

parameters which are important for its normal behaviour in the CERN accelerator complex.

13

[9] Its structure can be seen in fig. 2-4.The author works in the Software section (SW),

responsible for providing the software needed for developing, testing, diagnosing,

maintaining and controlling all the instruments provided by the group. [10]

Figure 2-4: Beam Instrumentation’s structure

2.1.3 The CERN accelerator complex

The accelerator complex at CERN is a succession of linear and circular accelerators

through which the particles reach increasingly higher energies. Each accelerator receives the

beam of particles from the previous part of the complex chain, boost its speed and energy and

finally inject it to the next one in the sequence.

14

Figure 2-5: CERN Accelerator Complex [11]

There are two main types of particles that travel through the CERN accelerator

complex: protons and ions.

The protons are obtained by stripping orbiting electrons from hydrogen atoms. They are

accelerated in the linear accelerator (LINAC2) before they are injected into the PS Booster.

They are then transferred to the Proton Synchrotron (PS) which is before Super Proton

Synchrotron (SPS) in the complex sequence. Finally they are injected into the Large Hadron

Collider (LHC) both in a clockwise and anticlockwise direction where they are accelerated to

their top energy of 4TeV (nominally 7 TeV) before they start colliding with counter-rotating

particles at one of the four collision points. [2]

The ions on the other hand, start from a source of vaporized lead and enter their own

linear accelerator (LINAC3) before they are injected into the Low Energy Ion Ring (LEIR)

from which they follow the same route as the protons to reach their maximum acceleration.

The complex also includes the Antiproton Decelerator (AD) which separates the

antimatter particles while they are still in low energies, and the On-Line Isotope Mass

Separator (ISOLDE) facility which is used as a unique source of low-energy beams of

radioactive isotopes. The complex also feeds the CERN neutrinos to Grand Sasso (CNGS)

project which creates and sends neutrino beams to Grand Sasso National Laboratory (LNGS)

in Italy in order to detect the so called neutrino “oscillation”, the transformation from one

type of neutrino to another. Last but not least is the Compact LInear Collider (CTF/CLIC)

study, an international project working on a machine to collide electrons and positrons (anti-

electrons). [11]

15

2.1.4 Control Center

The CERN Control Center (CCC) combines all the control rooms for the accelerator

complex as well as the technical infrastructure under one roof. It consists of 39 operation

stations organized in four different areas, the Large Hadron Collider, the Super Proton

Synchrotron, the Proton Synchrotron complex and the technical infrastructure. [11]

2.1.5 Bunches

The particles travel around the CERN accelerator complex in well-defined bunches.

That is because they can only be accelerated if the Radio Frequency (RF) field has a correct

orientation when they pass through an accelerating cavity and that happens at well specified

moments during the RF cycle. [2]

Under nominal operation, each LHC’s proton beam can store up to almost 2800

bunches and SPS’s 288, with each bunch containing about 10
11

 protons.

2.1.6 Beam Charge Measurements [3]

An effective accelerator control requires numerous types of diagnostic tools which

provide information about the beam’s attributes and they are commonly known as beam

diagnostics. There are several measurement techniques which can be divided in two large

categories, the intercepting and the non-intercepting measurements.

The first category, as it is revealed by its name, interacts with the beam in order to

achieve the measurements and thus cause the destruction or deterioration of the beam,

whereas the second group bases its measurements in the electric or magnetic field coupling of

the beam to the measuring instrument.

The charge measurement, often called beam intensity measurement, is a process which

integrates the actual measured quantity, the beam current, over a specific Region Of Interest

(ROI) and divides that integral, the beam charge as it is called, by the elementary charge to

result in the number of particle beam’s charges.

The beam intensity measurement is vital for determining the intensity loss at injection,

acceleration and extraction time or even the beam’s lifetime while it is circulating in the

accelerator. Furthermore, it enters the luminosity equation. [12]

What is important in this kind of measurements is the device that couples to the beam

and provides the approximation of the beam’s current. There are several different types of

such devices. The most used of the intercepting DC devices are the Faraday cups. The non-

intercepting AC devices are the electrostatic pickups, the Wall Current Monitors (WCMs)

and the Fast Beam Current Transformers (FBCTs). The non-intercepting DC devices are the

DC Current Transformers (DCCTs), the Superconducting QUantum Interference Devices

(SQUIDs) and the Cryogenic Current Comparators (CCCs).

In this document we will focus only on the FBCTs, the devices that function in a

bandwidth of few Hz up to GHz and on the contrary with all the other similar devices, can be

absolutely calibrated. For more information see chapter 2.2 where the hardware is analysed in

more detail.

16

2.1.7 FESA Framework

“The Front-End Software Architecture (FESA) is a comprehensive framework for

designing, coding and maintaining LynxOS/Linux equipment-software that provides a stable

functional abstraction of accelerator device.” [13]

The Model of a FESA class is encoded as an XML Schema which enforces a specific

grammar for the design of the class providing a partial yet generic solution for the equipment

specialist. In this way and after the design of the class is well defined, the FESA user can

generate a large part of the C++ code for his equipment saving a lot of time and effort. The

FESA classes are identified by the combination of their name and version.

Figure 2-6: FESA's service supplies [13]

The Interface is a list of so-called Properties that defines the services that are available

to the outside world and are remotely accessible by the clients of the FESA class, for example

clients from the control room as well as middle-tier software layer. The Properties are

attached to a server action (request) which can be of type GET or SET and either default,

meaning that the code for that actions is auto generated, or complex for which the equipment

specialist must provide the code himself.

The Data, the Device-Data and Global-Data, are defined in such a way to provide at

any given time, a concrete snapshot of the device state. The data can be of any standard type

that can be supported from both C++ and Java, scalars or arrays of up to two dimensions.

There is also the possibility for the equipment specialist to define his own types, the

persistency of the data or any multiplexing criterion for them.

C++ Scalar type Array type

bool bool

signed char (byte) signed char

short char

long short

longlong long

float long long

double float

 double
Table 2-1: FESA's data types [13]

17

Persistency Purpose Multiplexing Purpose

FINAL database constant NONE not multiplexed

PERSISTENT periodic backup into

persistent storage
USER cycle user

VOLATILE RAM data PARTICLE particle-type

 DESTINATION beam-target
Table 2-2: FESA's data attributes [13]

The basic work-units of a FESA class are called actions and can be either of real-time

or server type. The real-time actions are triggered by events which are synchronized with the

CERN’s central timing system or by hardware interrupts and they implement most of the

equipment’s functionality. They can also be attached to properties so that the latter can be

notified at any update of the device’s state. On the other hand, the server actions implement

the client’s request-handling and they are mostly responsible for the communication between

the outside world and the device and that is exactly why they are attached most of the times

with a property. For both real-time and server actions the equipment specialist must provide

the C++ code himself, except for the default GET/SET server actions.

Once finished with the FESA design, one needs to declare all the instances his class

would have. This is a very important part of the design procedure since a lot of work and

duplicated code can be avoided. One instance means one module with its own initial values.

All the instances (the modules the device can handle) are accessible inside the FESA class by

iterating the deviceCollection, an array accessible everywhere in the class.

A FESA class, to which we will refer as ‘server’ from now on, is organized after its

generation, in a directory structure containing: COMMON, GENERATED CODE,

REALTIME, SERVER and TEST.

The REALTIME and the SERVER directory files are used to store and distinguish the

actions based on their type as described above.

The GENERATED CODE directory files hold all the declaration of the fields that

describe the device. Furthermore, all the generated code for the simple GET/SET actions is

stored here.

The COMMON directory is used to store any custom made class that could be used by

both real-time and server actions.

Last but not least is the TEST directory. In there, some diagnostic tests are stored as

well as the executable files that allow testing the executable while developing.

2.2 Hardware Architecture
After giving the general information that is going to be needed in next sections, we are

describing the hardware installation for the FBCTs. The latter consists of a detailed

description of the ring installation as well as the one on the surface. Furthermore, we analyse

the firmware – original and newer version – along with the driver needed to access it since

they are widely used by the software and lots of the changes imposed to it derives from the

changes of the firmware.

18

2.2.1 Fast Beam Current Transformer (FBCT) measurement system

Figure 2-7 depicts a simplified block schematic of the FBCT measurement system

which consists of a Bergoz type transformer with a bandwidth from 400Hz to 1.2GHz (on the

left). This transformer is followed by an RF front-end which consists of an analogue

integrator, a Beam Circulating Flag (BCF) detector which detects the presence of the beam in

the ring and an RF distributor which is responsible to split the analogue signal into two

dynamic ranges, high and low gain and each dynamic range into two bandwidths, High

(HBW) and Low (LBW). Finally a 14bit ADC digitizes and processes the signal. [14]

Figure 2-7: Block schematic of the FBCT measurement system [14]

The ADC module along with its analogue integration part is situated on a carrier called

the Digital Acquisition Boards (DABs), a VME64x standard board developed by TRIUMF

(Canada) for the LHC orbit and trajectory acquisition system [15]. It is equipped with two

Individual Bunch Measurement System (IBMS) mezzanine cards [16]. Each mezzanine card

uses a 40MHz integrator ASIC developed for the LHC-b preshower detector by the

“Laboratoire de Physique Corpusculaire”, UniversitéBlaise Pascal, Clermont-Ferrand [17], in

order to integrate and sample the incoming signal before passing it to the DAB that processes

it to provide bunch-by-bunch intensity values. All the logic of the DAB control is

implemented in a large FPGA that can be reprogrammed at any time and its firmware is being

discussed at chapter 2.2.2.

These DAB cards are installed on a VME64x crate along with the Beam Synchronous

Timing Receiver Interface for the Beam Observation System (BOBR) – another VME format

card that provides all the timing signals required to synchronize the different beam

instrumentation systems [18]. What is more, all the cards installed in the VME64x crate are

controlled by the Crate Central Processing Unit (CPU) – Front-End Computer (FEC) – an

Intel® Core™ 2 Duo CPU board with 1.5GHz clock frequency, 4MB cache and no hard disc

[19] that runs Scientific Linux CERN SLC release 5.7 (Boron) [20] and boots via network.

The following figure 2-8 depicts the VME64x crate installation for the SPS FBCT. The

FEC is visible on the left of the crate with the green lights, whereas the DAB is just on the

right of it and lastly, the BOBR in the middle of the crate.

19

Figure 2-8: SPS FBCT's VME64x crate – on the left with green lights is the FEC, on the right of the FEC the DAB is installed
and in the middle of the crate the BOBR is visible

As far as the SPS is concerned there is only a single DAB connected to the SPS type

front-end amplifier. The former uses an external signal to switch between high and low gain

measurements which is provided by the sensitivity output of each IBMS mezzanine.

In the LHC, things are different. There are two DABs per a measurement system, one

for HBW and one for LBW measurements. Each DAB provides two dynamic range

measurements using its different IBMS mezzanine and more specifically high gain (top

mezzanine) and low gain (bottom mezzanine) measurements.

There are three such systems in the LHC, system A, B and C of which only A and B are

operational while system C is now being developed with different technologies and with a

different approach in the process of the data. Further discussion about this system will follow

in chapter 3.

The FBCT measurement system is calibrated by a pulse of 25μs. The amplitude of this

pulse differs from SPS – 128mA – and LHC which can be programmed. For the latter case

though, the currently used system doesn’t use direct calibration due to the fact that the LHC

toroid exhibit beam position dependency and this can affect the transfer ratio between beam –

measurement turn and calibration turn – measurement turn. Instead an indirect calibration is

achieved by using DC current transformers (DCCTs) installed in the LHC [21].

2.2.2 Firmware

The Stratix-type FPGA stores the device configuration during operation at volatile

SRAM cells, which must be reconfigured each time the device powers up. This is

accomplished by its firmware (FIMDAB), which can be loaded over the VME bus as a Raw

Binary Bile (RBF) via the EPM 3256 Complex Programmable Logic Device (CPLD).

Software start-up scripts handle the FPGA start-up process and hence the FPGA is left un-

20

programmed after power up until the software layer is loaded. After the initial power-up

process is complete, new configuration data can also be loaded at any time. [22]

As mentioned earlier for the new FBCTR system C, it was decided that a clean-up was

necessary. The new firmware was also to be used for the FBCTR in SPS. The firmware

registers migration is summarized in table 2-3, which uses the following colours to describe

the state of the registers after the completion of the migration [23].

Figure 2-9: table's 2-3 Legend

21

Table 2-3: Original firmware register map [23]

22

Table 2-3: Continue from previous page

Following the table 2-3, table 2-4 summarize the minimum set of registers for the new

proposed memory map. The table is organized in three categories. First group consists of the

registers read directly from the DAB external static memories. Second group contains all the

registers that are not specific to capture mode and third group contains registers only specific

to capture mode. The latter two are separated by an unused address space, which makes a

potential insertion of new registers simpler. All registers are 4-byte aligned and accessed by

A32D32 transfer. Lastly, for non-single transfer registers, block transfer can be used

improving the latency added when transferring huge amount of data. [23]

Table 2-4: New firmware register map [23]

23

Table 2-4: Continue from previous page

From the latter table, 6 major changes at the registers can be pointed out.

Firstly is the capture data organization. Using 32-bit storage, two 14-bit ADC samples

can be stored per entry. Unfortunately this is not enough since additional information is

needed to be stored with the stream, information about what integrator was used for acquiring

the sample – the most significant bit of the sample (31 and 15) reveals the appropriate

integrator (0 or 1) –, about whether the sample was saturated – bits 30 and 14 – and finally,

about where the turn clock starts. Since there is no space left to store the latter information

with the stream, a convention had to be declared: the turn always starts at the memory start

address – 0x000000 for top mezzanine and 0x200000 for bottom. Hence, next turn can be

easily calculated as following: <start_address> + (<number_of_bunches> / 2).

Such memory organization decreases the amount of external memories read from three

to two, since the information stored in mezzanine three are now coded with the samples. It

also increases the number of samples per mezzanine by factor of two, enabling at the same

time the use of fast block transfer of the data, from the external memories to the CPU.

Furthermore, changes in register bit positions should also borne in mind. The original

information of the Turn Clock Delay register is migrated from address 0x600022 to

0x600040, bits 12…0, whereas the information of the Phase Delay register from address

0x600021 to 0x610000, bits 7…0. As for the Front Panel Selection register, information

about MUXA originally located at bits 7…4 is extended into bits 31…16, whereas

information about MUXB, originally at bits location 3…0 is extended into bits 15…0. As far

as the IRQ register is concerned, it behaves as Interrupt Enable register when written and

returns the Interrupt Status register when read.

Last but not least is the Command register which combines the original locations at

0x600005, 0x600006 and 0x68000c and acts as Command register when written, keeping all

the original properties and as Status register when read. The meaning of all bits read is

changed though, due to the differences between the two versions of the firmware and for a

full description of this meaning refer to full technical documentation. [22]

24

2.2.3 Driver Background

There are more than one ways to access the device’s register and hence, we had to find

which one is more suitable for us. The most common way is to use the ioctl module-specific

library that comes with the driver and is automatically generated from the description of the

module in the CO Data Base. This is a simple library that uses only one method to access the

hardware, IOCTL. This library is good for individual values or short amount of data, since it

is already high level and fast enough for single accesses.

If the performance is one of the main characteristics of the project, one should consider

another library that comes with the same auto generated driver and that is dal (Driver Access

Library). The dal library has three ways of accessing the hardware and these are IOCTL,

same as before, IOMMAP and IODMA. Now as for the last two, the IOMMAP method uses

the CPU to access the hardware while the IODMA does this directly.

We have been experimenting with these three ways, only to find out that there is a

significant difference between IODMA and the other two. Generally we could summarize our

conclusions as this: faster: IODMA < IOMMAP < IOCTL. As we saw in chapter 2.2.2, only

three of our registers contain a considerable amount of data (512.00 KiB) and from those,

only two are being currently used. All the others are either single valued or short amount of

arrays. Thus we’ve decided to use the ioctl library for all the registers except the two capture

memories for which we’ve used the dal library with the IODMA method.

2.3 The FBCTs in the SPS
As described in the previous sections there is only one FBCT system installed in the

SPS and this consists of only one DAB card on the VME crate, which is used to operate with

the original version of the device’s firmware (FIMDAB).

In the following sections, we will describe how the server used to be organized and

which were its basic functionalities that made it operational.

2.3.1 Software Architecture

The server was designed
1
 to operate a full acquisition (1-924 bunches) for every

different active cycle (a typical cycle’s length is 20sec). A sequence of real-time actions were

used to accomplish that by preparing the device, starting the acquisition, reading back the

acquired data, processing them, storing them temporarily, starting the acquisition again and

repeating this sequence until the cycle was over.

All these functionalities were implemented in different real-time actions, rtPrepare,

rtStart, endCapture and rtStop whose technical specifications will be discussed in the

following chapter 2.3.2. The scheduling of these actions was the key for the proper operation

of the server.

A warning of the beam’s injection was used as an event that comes 20 msec before

every different cycle’s injection. This event was being used by the rtPrepare to set the

appropriate settings to the device as well as calibrate it, before the acquisition could start.

Another event, specifying the beam’s injection – cycle’s beginning, was being used by

the rtStart to initially start the acquisition. After that, an event coming every 40msec, was

1
 The server was first created by Lars Jensen

25

being used by the endCapture to read back the acquired data, process and store them in

temporary buffers and finally start the acquisition again. This procedure was being repeated

as many times as it could fit in every cycle’s lifetime.

Lastly, an event specifying the cycle’s end was being used by the rtStop to gather all

data from the temporary buffers and store them in the shared memory of the server so that it

could be fetched to the users.

The FESA properties that are used to interface the server were Setting – where the user

could enter the settings relative to the acquisition, Expert Setting – where the user could

specify the settings relative to the calibration of the device, Acquisition – where the user

could see the desired data after all steps of their process, User Data – where the user could

see the intermediate steps of the processed data and Calib Data – where the user could see

and set the calibration factors of the data, either on his own or with respect to the calculated

ones by rtPrepare. The generic FESA Navigator GUI was used for controlling and visualizing

the above properties and an example showing acquisition data can be seen in figure 2-10.

Figure 2-10: FESA Framework Interface

2.3.2 Previous Implementation

The previous implementation of the server used to access the device directly from its

classes using the IOCTL library.

More specifically the rtPrepare action used to set the full bunch range (bunches 1-924)

to the device as well as the number of turns for the acquisition which was always 1. After

that, it would start an acquisition along with a calibration pulse in order to calibrate the

device. This is achievable due to the fact that the rtPrepare operates when there is no beam. In

this way and by firing a calibration pulse, whose current is known in advance, the appropriate

calibration factors could be specified to take away all the additional noise that is being added

to the data by the electronic equipment. Following the calibration, the rtPrepare would reset

all the intermediate temporary buffers that were going to be used by the endCapture.

For the rtStart action, things used to be much simpler, since its only responsibility was

to start a normal acquisition which means without the calibration pulse.

26

Furthermore, the endCapture action was the most critical one as far as the time

constrains is concerned. In this action, the data would be fetched from the device and be

processed before been stored to the temporary buffers. By processing the data, we mean to

restore their base line as well as apply the calibration factors that were calculated before by

the rtPrepare. The base line restoration is by far the most difficult stage of their process since

its main goal is to take away the beam’s AC dependency with the measuring device, restoring

the level of the acquired noise to 0 in the y (intensity) axis, and this procedure is non-trivial at

all when taking into account all beam types.

The existing implementation was using the Magic Imperial algorithm to restore the

data’s base line. This algorithm was based on the statistics from previous operational

experience and its basic idea was the following:

 Iterate the acquired data and find minimum and maximum value.

 Using this information, determine the noise region as the (minimum value +

(0.05 * maximum value)).

 Iterate again the acquired data and find a mean value for any sample that is

below the just specified threshold.

 Finally iterate all the acquired data and take away this just calculated mean

value.

In this way, all the noise samples would reach the 0 area in the y axis, while the original

shape of the data would stay unchanged.

Last but not least, the rtStop action stored the intermediate buffers to the shared

memory (device fields). This was accomplished by declaring the above buffers with the C++

key word extern and hence they were visible by more than one C++ class in the server.

The server actions that served the Setting and Expert Setting interfaces were

implemented as simple actions. What is more and only for the Setting property, partial setting

was allowed. As for the Calib Data property complex GET/SET actions were implemented

with the partial setting enabled. Lastly, for the Acquisition and User Data, complex GET

actions copied the contexts of the shared memory (fields) to the interface memory in order to

be properly presented.

At this point, it’s worth mentioning few words about the buffers holding the data,

intermediate and final. The acquisition data were stored in two dimensional arrays; first

dimension for the different measurements made by the endCapture and second dimension for

the acquisition itself –intensity values for bunch slots 1-924. Unfortunately, there was no

useful way to present these values with FESA interface and thus filters were being used.

Hence, under User Data property, the user had to specify in the filter which measurement

desired to observe. Using this filter in the server action, only one row of the 2D arrays was

returned (924 values in total). In this way, data were quite uncomfortable to be studied, since

the filters apply in the acquired data only once and thus one should wait for the next

acquisition to see another measurement. One such example can be seen at Figure 2-10.

27

2.4 The FBCTs in the LHC
In the LHC ring there are three FBCT systems, each consisting of 4 DABs as described

in chapter 2.2.1. System A and B use the original version of the FBCT’s firmware which used

to have 4 measurement modes [5]:

 Capture – the intensity measurement in each bunch slot for a specified number

of turns

 Turn Sum – a total intensity measured from a full bunch acquisition (3564

bunches) over a single turn

 Slot Sum – a total intensity measured for a specified bunch slot over specified

number of turns

 Sum Sum – the combination of Turn Sum and Slot Sum. By this we mean to

make a Turn Sum for each acquired turn and then, sum all these sums as they

were a single bunch slot measurement

2.4.1 Software Architecture

The FESA class that serves LHC’s A and B FBCT measurement systems is

BCTFRLHC v31
2
. The server of both systems is identical and has two instances, serving the

FBCT installation for each circulating beam.

The version 31 of the BCTFRLHC FESA class is designed to provide LBW total

intensities averaged over 225 consecutive turns at 1Hz. In addition, it provides HBW total

intensities per turn with time resolution up to one turn (89μs) as well as HBW individual

bunch intensities averaged over 900 turns as input for the post-mortem system for analysing

the causes of machine protection beam dumps. [4]

2.4.2 Existing Implementation

The server uses the LBW channel to make full bunch acquisitions over 225 consecutive

turns – to suppress the noise at 50 Hz – using firmware’s Sum Sum measurement method and

it continuously updates them every second for operational displays. Additionally, it keeps the

values from the last 30 seconds in a rolling data buffer, which also updates every second.

As for the HBW channel, the server uses the firmware’s Turn Sum measurement mode

to produce and publish the turn intensities – the total intensities per turn – and the Slot Sum

measurement for the average individual bunch intensities. Both measurements are updated

every second.

In order to suppress errors in the calculation of the noise mean value at the baseline

restoration (BLR) procedure, the summing of empty buckets must be avoided. This is

achieved by applying a minimum beam threshold set by the user. The BLR is based on the

presence of empty buckets in each turn at least at the 3μs abort gap and hence, the calculation

of the minimum integrated value of one turn can be used as offset correction for the next one.

Subsequently, the lowest measurable turn-sum and bunch-average intensity is given by the

2
 Created by Michael Ludwig

28

noise suppression peak threshold – 10
8
 number of charges for high gain and 5*10

8
 number of

charges for low gain for both bandwidths. [4]

Figure 2-11: Total Intensity History from beam1 of the LHC, System B

The above figure 2-11 depicts the rolling data buffer of the total intensity of beam 1 as

it was measured by the FBCT in the system B. This buffer holds the calculated total

intensities of the last 30 seconds – 1 acquisition over 225 turns takes 20ms hence 50 values

per second and 1500 per 30 seconds. Up until recently no expert GUI was developed, so the

client application that was being used to control the servers was the FESA Navigator

interface.

29

3 New Implementation

In the previous section we described all the theoretical and technical background

needed to better understand the previous software implementation for the FBCTs in the SPS

and the existing one for the LHC. In this section we analyse our proposal for both systems

separating the design from the technical part.

3.1 High level diagnostics
As the development of the two systems was ongoing, several decisions had to be made

in order to proceed. This chapter is dedicated to such decisions that helped structuring the

work and providing useful tools for our implementations.

3.1.1 Wrapper - Design

Since the firmware changed, a new way of accessing the device was needed. As the

new firmware was to be deployed in both SPS and LHC FBCTs, we decided to create a

common wrapper class, DABBFCTSRWrapper, which abstracts the device communication

with the server. Additionally, such class is ideal for implementing functionalities irrelevant to

the accelerator that hosts the FBCTs.

The DABBFCTSRWrapper is designed to have public methods for accessing all the

device’s registers using the IOCTL library, as well as processing some of the data that need

to be read from or written to it, while there are also some other private methods for that scope

as well.

Finally the header file of the wrapper seemed the perfect place for implementing the

hash table with the different commands that the device can handle since it is imported every

time we want to use it in the project for accessing the hardware and hence to instruct it to do

something. In this way we’ve implemented it once being sure that is always visible in our

general implementation.

3.1.2 Tester - Design

Another decision that was taken in the early days of our implementation was to create

an additional tester class for testing the proper communication with the device. This class

tries to write all the writable registers of the device and then read them back. In this way,

several errors in the firmware were revealed early on and fixed.

While progressing with the implementation, the tester was changed to fit our testing

needs. Hence, the tester ended up asking the user to select the bunches and the number of

turns for acquisition, then firing the acquisition, reading back the data and printing them in

the console as raw ADC values, just as they were read from the device. This procedure was

found incredibly useful for studying, testing and assuring the decoding process of the data

(look at chapter 2.2.2 – last paragraph / change of the data capture organization).

Furthermore, additional timing routines were added in order to study the different

driver solutions for fetching the data from the device to the CPU, as well as some

30

performance issues, especially as the server in LHC is concerned. These issues are being

discussed in greater detail in chapter 3.2.5.

3.1.3 DabInfo - Design

As described in chapter 2.2.2 and table 2-4, there are some registers in firmware related

to the DAB’s information such as serial numbers and so on. Hence, it was found useful to

have a console application that would retrieve and present this information. In this way, we

were able to check the identification of the firmware, the mezzanines as well as the DABs

themselves installed in the SPS, the LHC or the lab.

3.1.4 SPS

Our implementation is based on the existing one. We used this version and updated it

so that it can access the new hardware and have one different acquisition mode the

TURN_BY_TURN as we called it, as well as improving some troublesome behaviour

relative to base line restoration. Our main goal, beside the proper functionality of the server

of course, was to keep as much backwards compatibility as we could by changing the design

as less as possible.

Hence, a new real time action was introduced; the rtTurnAcq which implements the

new acquisition mode, while the rtPrepare remained the same, at least as far as the design is

concerned.

The main difference to the existing classes was at the rtStart and endCapture class

which were not needed if the acquisition mode was TURN_BY_TURN, and thus should exit

immediately. The same idea was introduced to the new rtTurnAcq class but the other way

round, it would return if the acquisition mode was REPETITVE. The event that wakes the

rtTurnAcq is a warning of the beam’s injection which come 20msec in advance. The new

class is responsible to start the acquisition with 18msec delay, read the data, process them and

transform them from ADC bins to number of charges, restore the DC baseline and finally

store them in the appropriate buffers.

We kept the rtStop class the same which only copies the data from the buffers to the

shared memory when the cycle is over. This is common for both acquisition modes and so, it

made sense to try and keep it the same. In order to do that though, we had to change the

buffers visibility through the server classes. In that sense, the variables that should be

common to both acquisition modes and thus the appropriate classes, are now being created

and initialized in the rtPrepare class and are visible by the endCapture, rtTurnAcq and rtStop

by using again the keyword extern.

3.1.4.1 Baseline Restoration

The existing algorithm that used to correct the baseline was working quite well but

unfortunately not always. It was observed that whenever there was a negative spike in the

integrated signal, the algorithm didn’t work. Since the algorithm was taking into account the

ratio between the minimum and maximum value within an acquisition to determine the noise

region, in case of this so called “undershoot” this region would typically contain a single

measurement point, the minimum. As a result the minimum would be considered as noise and

31

thus, after the BLR it would end up to be 0 and everything, including the actual noise, to be in

the positive side of the graph. This can be easily seen at the following graphs:

Figure 3-1: Bunch-by-bunch intensity measurement plot with error in BLR from SPS FBCT

Figure 3-2: Bunch-by-bunch intensity measurement plot with correct BLR from SPS FBCT

These “undershoots” arrive infrequently, but when they come the BLR doesn’t work as

it should be. We therefore considered changing the existing algorithm for restoring the BLR

to another one much simpler and more stable.

We’ve decided not to take into account the min – max difference to specify the noise

region, since this can change from cycle to cycle and from time to time. The hard coding

percentage of that difference wasn’t flexible enough when those differences appeared. Hence,

we search only for the minimum value of an acquisition and noise area is determined by a

user setting. In this way, the BLR is much more flexible and dynamic.

32

Of course this does not erase the “undershoot” problem, since they don’t come in a

deterministic way and thus one cannot specify a well-defined noise area and trust that would

work for a longer period of time. In addition, an “undershoot” identifier had to be designed in

order to help us ignore this kind of extreme values. To do that though, the user should

provide another setting specifying the distance between two consecutive points that would

identify the most negative as an “undershoot”.

3.1.4.2 TURN_BY_TURN acquisition mode

The most important change to the server was to add the new acquisition mode. As it

was mentioned before, a full bunch acquisition (bunches: 1-924) over one turn, is repeated

every 40msec until the end of every cycle. This mode of acquisition, REPETITIVE, covers

the whole cycle and it was being used until now.

The new acquisition mode, TURN_BY_TURN, is again a full bunch acquisition but for

as many consecutive turns as the data storage permits. This limitation comes from our effort

to keep the backwards compatibility and hence by the fact that we use the same intermediate

buffers in software as the REPETITIVE mode. For more details about the implementation of

these buffers and their limitations please refer to chapter 3.2.4.

3.1.4.3 Client – Interface

The BFCTSR_ExpertGUI was developed in Java, organized in 5 packets for clearer

separation of its classes. The Constants packet hosts all the classes that consist of constant

data such as enumerations, names and converters. In the expertGUI packet, all the classes that

implement the application interface are stored. Furthermore, there are the factories and

listeners packets which host the homonyms classes. Last but not least is the Data packet

where all the classes that are data specific are stored.

For the communication with the server, we used the communication library that was

developed by BI/SW section and establishes a communication flow per device. We kept the

communication and subscription mechanism over the network separated to one class called

DataProvider and the data storage per FESA property to another called Property. Both

classes are abstract since only few methods are domain specific and had to be separated.

The general idea of the design is the following: the DataProvider communicates via

subscription to the server that runs on the front-end. Each time new data are produced, the

DataProvider informs the Properties which process them if needed and store them to buffers.

Then, they inform their interfaces to update their view with the new data. This data flow is

depicted in the following figure:

33

Figure 3-3: Data flow between front-end server and GUI client

 We decided to split the frame into three areas. The top one hosts the TimingPanel

component which shows which cycle is active per accelerator so that the users can choose an

appropriate one. The left one hosts the setting and expert setting panels as tabs while the right

one hosts the acquisition, UserData and BunchAcquisition panels as tabs. The representation

of the data is on the right area of the frame and more specifically the acquisition tab is a

graph of the total intensities as acquired and calculated from BFCTSR as well as two more

devices for cross-checking, BCTDC3 and BCTDC4. The UserData tab hosts a graph of the

individual bunch intensity measurements – one measurement at a time, while the

BunchAcquisition tab hosts a 3D graph of the individual bunch intensity measurements – all

together.

In figure 3-4 the Unified Modeling Language (UML) class diagram of our expert GUI

is depicted according to entity separation of figure 3-3. The communication between two

classes from a different group (Communication Manager, Intermediate Data Storage and

GUI) is achieved with separated interfaces.

34

Figure 3-4: BFCTSR_ExpertGUI UML Class Diagram

35

3.1.5 LHC

In order to improve the performance of the FBCT measurements in the LHC while

keeping the same update frequency of 1Hz (new values every second), it was decided to

implement another approach as for the acquisition and calibration of the data using system C

FBCT’s new firmware. In this way, the acquisition is a simple Capture of the requested data

(number of bunches for a specified number of turns) and all the computations for their

process is done in the software. This approach allows us a degree of freedom in choosing

which algorithms we use for the BLR, trying to achieve better accuracy when comparing this

system with the other two.

The main idea of this approach is to make a full bunch acquisition for 25 turns with 224

turn interval. This means acquire 3564 bunch slots every 224 turns for 25 times as it can be

seen in figure 3-5 and leads to a 25mA sampling over half a second. [21]

Figure 3-5: Acquisition schedule in respect with number of turn and turn interval

Since we have 4 cards and each one measures data for half a second, it would be

impossible to implement a sequential scheduling and keep the 1 Hz publishing frequency. On

the other hand, having one VME bus for communicating with all four cards makes it

impossible to parallelize the parts of the process that consists of any kind of communication

with the cards.

Hence, we decided to start the acquisition to all four cards almost at the same time and

benefit of the acquisition’s parallel nature. In this way, we spend half of a second for

acquiring the data to all cards and keep the other half for processing them before publishing

the total intensities. The process sequence of the data depicts in figure 3-6.

Figure 3-6: Data Process Sequence

3.1.5.1 Look Up Tables (LUT)

The integrator itself as well as the difference between the two integrators in the system

is the main source of the overall non-optimal performance. In order to comprehend with this

36

and treat both integrators as a black box, we performed a set of measurements in the

laboratory analysing the linearity of the data. The results of this analysis can be summed as

follows [21]:

 All measured integrators exhibit non-linear behaviour, which is not the same for

each one and thus if corrected, it should be corrected per integrator

 An additional non-linear behaviour is exhibited in between each two integrators,

due to the difference of their individual non-linear behaviour

 A linear approximation of the integrators’ output is not enough to erase these

non-linear components and thus higher order polynomial must be used instead

We decided that a reasonable approximation that would correct the non-linear

behaviour quite decently – relative to the other two systems – is a polynomial of 5
th

 order. Of

course this would lead to long delays in the process of the data and hence we decided to

measure each ADC approximation for each integrator and store these values to a unique

comma-separated values (CSV) text file. Each file is unique per mezzanine and is named out

of its serial number. It consists of 16384 text lines – the possible ADC values since they are

14 bits long – and each line consists of one integer – raw ADC value – and two floating

values –corrected value for integrator 0 and 1 accordingly. Lastly, all LUTs are stored in our

NFS section’s directory so that they can be accessible from any FEC.

3.1.5.2 Averaging and Base Line Restoration (BLR)

Averaging the samples per bunch slot, as they come out of the LUTs, reduces the

fluctuation of the signal caused by noise dramatically; this is due to the fact that the useful

signal – beam – always comes at well specified moments during the RF cycle [2]. Hence, the

more data we have to average, the clearer the result is.

Furthermore and for restoring the data’s base line, we introduce a new algorithm based

on the measurement of pure noise in the 3μs abort gap
3
 as well of the noise at each empty

bunch slot. Hence, we can summarize the algorithm for the BLR as follows:

 Find minimum after the LUT correction and averaging

 Specify the noise samples out of the 3564 which satisfy the following criteria:

o The measured value falls in the interval of <min; min + TH>, where TH

is a threshold value specified by the user

o The position – bunch slot – of the measured sample is at least VS

samples away from a non-noise sample, where the VS value is set by the

user including 0

 Calculate the mean value of the selected noise samples

 Take away the calculated mean value from all the 3564 samples

An example of the above algorithm is depicted in figure 3-7. For this example the VS is

3, while the TH is of no significance. The samples that are considered as noise and thus are

used for the calculation of their mean value are specified by the yellow regions.

3
 This is not actually true, since a limited amount of particles is always present and this can disturb the

measurement [21]

37

Figure 3-7: An example of the BLR algorithm with VS=3. Only the yellow region is considered as noise [21]

3.1.5.3 Calibration of the data

Calibration of the data is called the transformation of the ADC corrected values to the

number of charges. This is done by applying a simple linear equation to the measured data:

(3.1)

Where k is the calibration coefficient and q is the calibration offset, which both are normally

found by calibration [2.2.1].

3.1.5.4 Gain Switching

As explained in chapter 2.2.1 both bandwidth channels provide two dynamic range

measurements. Our software is responsible for the proper and automatic setting of the correct

dynamic range, which depends on whether a bunch slot measurement exceeded a defined

threshold. In order to avoid switching between gains when a measurement approaches the

threshold we implemented a hysteresis in the switching thresholds. Hence, instead of one, we

introduce two switching thresholds, settable by the user in ADC bins:

 CHTH(high) – this threshold is applied when the current measurement was

performed by high gain measurement channel to switch to the low one, if at

least one of the measured data exceeded it

 CHTH(low) – this threshold is applied when the current measurement was

performed by low gain measurement channel to switch to the high one, if none

of the measurement data exceeded it

3.1.5.5 Phase Scan

Phase scan is the observation of one bunch intensity – the maximum one – with its four

neighbours (two from each side) when applying by brute force all 16 possible values for the

phase delay expert setting. By changing the phase delay, the user can change the signal’s

38

amplitude and that is why this procedure is very important. The graph that comes out of this

procedure can help the user to determine the appropriate phase delay setting in order to

maximize the signal’s amplitude. The following figure depicts one example of such a

procedure that was performed
4
 at system C, using a python script.

Figure 3-8: phase scan

3.1.5.6 Server Architecture

Four DAB cards are installed in LHC system C that measure the intensity of the beams

using the FBCTs, one for the High and one for the Low Bandwidth measurements for each

beam. Hence, we created a FESA class, BCTFRLHC v6, with four instances – one per card.

This server has two real-time actions:

 Acquire – where all the functionality of the server is implemented, such as data

acquisition, process, BLR and storage. It operates every second.

 XpocAction – which is responsible to copy the history of the last 1000 total

intensities as calculated by Acquire, as well as their time stamps to a different

server at any beam dump event for diagnosing a possible reason for it

The properties that interface the server are:

 Setting – where the user can specify/observe the settings relative to the

acquisition

 CalibrationSetting – where the user can specify/observe all the settings which

are not relative to the acquisition

 LoadLUT – where the user can upload and clear the LUT for each mezzanine

 Acquisition – where the user can observe the total, bunch and history intensities

for both mezzanines as well as the selected ones

4
 Performed by D. Belohrad

39

 ExpertAcquisition – where the user can observe the intermediate values before

reaching the desired total intensities, such as the data after the LUT and BLR

 XpocData – where the user can observe the data copied from the XpocAction

before being transferred to the server

3.1.5.7 Client – Interface

We developed the BCTFRLHC_v6 expert GUI in Java and organized it in five

packages just as the BFCTSR_ExpertGUI [3.1.4.3], figure 3-3. The class diagram of the main

part of the expert GUI is depicted in figure 3-9. This is the part that interfaces the server’s

properties Setting, CalibrationSetting, LoadLUT, Acquisition and ExpertAcquisition as well

the graph from Phase Scan. These properties are organized in two areas – left and right. All

the setting related panels – Setting, CalibrationSetting and LoadLUT – are placed at the left

area as tabs whereas all the graph related panels – Acquisition, ExpertAcquisition and Phase

Scan – are placed at the right side again as tabs.

40

Figure 3-9: BCTFRLHC_v6 expert GUI UML class diagram (without comparison window)

41

In addition, we implemented a comparison window among the three systems – A, B

and C – comparing the bunch intensities among the FBCTs of these systems and the total

intensities among the FBCTs of these systems as well as the DCCTs of system A and B. Due

to the lack of the calibration mechanism, we decided to implement this comparison window

as part of the expert GUI for the FBCTs in system C, in order to ease the setting of the

calibration coefficients and their monitoring. This comparison window’s main purpose is to

calibrate our FBCT’s implementation of system C, relative to the existing implementations in

system A and B, as well to cross check the accuracy of the data that our implementation

provides. The class diagram of this comparison window is depicted in figure 3-10.

42

Figure 3-10: Comparison Window UML class diagram (part of the BCTFRLHC_v6 expert GUI)

43

3.2 Technical Implementation
After analysing the high level of our implementation for both systems – FBCTs in the

SPS and LHC – we will try and give all the technical details that concern the implementation

of the common tools – such as the rapper, tester and dabInfo – used by both systems

independently as well the specific details by both systems individually.

3.2.1 Wrapper – Common Implementation

3.2.1.1 Constructor

Since we are using two libraries to access our hardware, they should be initialized

somehow and this is done in the constructor of the wrapper class of our implementation.

There, the ioctl‘s function to open the device driver node is being called with two arguments,

the Logical Unit Number (lun -- Logical Unit Number assigned to the module) and the Minor

Device Number (chanN -- Minor Device Number. There can be several entry points for

current Logical Unit Number (ChannelNumber)). It returns the file descriptor with which all

the library’s functions are called.

The dal’s function to enable the access to the device is being called with four

arguments, the name of the device (as specified in the Data Base), and the method that will be

used for the access (IOCTL, IOMMAP and IODMA), the LUN and chanN. It returns as well

a file descriptor which is used when any of the library’s methods are called.

3.2.1.2 Single-value Registers

For reading the single-value registers one can call the appropriate wrapper’s method

and pass a pointer to an integer as argument. The method is calling the ioctl’s function to get

the register’s value which returns a result of that action, if succeeded or failed. This result is

stored in the address that was passed as argument to the wrapper’s method, while the value of

the register is being returned as unsigned long at the end of the method.

For writing a value to the single-value registers, the mechanism is quite similar with the

above, with the difference that the value to be set is passed as an unsigned long argument

along with a pointer to an integer. The method is using the ioctl’s function to write the value

to the register and stores the result of that action (succeeded or failed) in the address passed

as argument. The method doesn’t return anything.

3.2.1.3 Multiple-value Registers

As for the multiple-value registers, we’ve implemented two ways of reading them. First

is the type of methods that expect two arguments, one pointer to unsigned long and second to

integer. This type of methods read the whole register and store it to the memory where the

first pointer points and the result of that action to the second one.

The other type of methods that reads multiple values, take three arguments. One pointer

to unsigned long for the result, one to an integer for the action’s result as before and one

additional integer to specify how many values to be read.

44

For writing this kind of registers, we’ve used the exact same implementation as above,

with the only difference that we’ve used the appropriate libraries’ functions for writing

instead. Of course now, the first pointer points to the address where the values would be read

and not written, meaning that became the source from destination.

3.2.1.4 Setting processing

There are also some methods to process the data that need to be set to the device before

any action. These are the bunch selection which comes as a string from user’s input. A parser

was needed to be implemented in order to transform the user-friendly string to the array of

hexadecimals that the device can take as setting through the CBunchSelector register.

The parser takes the string as argument and splits it to ‘ ’ and ‘,’ to find different

selections. Then, it calls a private method to define if there is a region requested or a single

bunch by searching the ‘-’ character. And finally another private method is called to do the

appropriate calculation and set the corresponding hexadecimals to the CBunchSelector

register. The procedure is repeating itself until it reaches the end of the string.

Figure 3-11: Bunch Selection Transformation from string to a set of hexadecimal

3.2.2 Tester – Common Implementation

The tester class was created at first to test the communication with the device. At those

days, it did nothing more but to read and write the registers in order to make sure that every

one of them behaves the way it should.

In the meanwhile, and as the project evolved, we found the need to develop new tests

more relative to the acquisition behaviour of the device. Hence we implemented a loop that

asks the user to enter the number of bunches and turns for acquisition while checking if this

input is reasonable – no zero bunch selection for example. As it was described in the previous

45

chapter, setting the bunch selector register is something that has to be done with great care,

since errors in that procedure can mess the data and are extremely difficult to be spotted. That

is why we implemented a CBunchSelector “parser” in the tester (which was moved later on

to the wrapper). This parser is iterating the CBunchSelector memory (128 of doubles) and

prints them as hex, so that we can debug its setting procedure.

Furthermore, the acquisition starts in a loop so that we can simulate real time conditions

and the data are fetched from the device before passed to a method that decodes and prints

them. The selection of the data is usually big enough and thus very uncomfortable to be

printed in the console, hence the routine that does this job can take two arguments that

specify two limits in order to print only the specified first and last samples.

The decoding of the data, which was moved to the wrapper later on, has to split the data

as it was read from the device in the middle. Take the left part first (16 MSB) and apply a

sign correction after striping the 14 less significant bits as follows:

Figure 3-12: Sign correction of the data in the code

The same procedure must be followed to the right sample as well (16 LSB) before

moving to the next element in the CBunchSelector memory. Special care should be taken

when the number of samples – number of bunches * number of turns – is odd, in the sense

that we keep only the desired and correct data. We achieved that by repeating the above

procedure of splitting, striping and correcting the sign of the data one time less than is needed

and taking modulo of the number of samples with 2 into account. In this way, we repeat the

procedure for the left sample (16 MSB) and the right one (16 LSB) only if the modulo is 0.

3.2.3 DabInfo – Implementation

For the implementation of the dabInfo utility, we need the user to specify the LUN

number of the DAB that he wishes to retrieve the information. After taking our Hardware

expert’s request under consideration, we agreed on having two ways to do that. If no

argument was passed while running the application, a loop would ask the user to provide an

appropriate LUN number. On the other hand, the user can directly pass this information with

the running command.

DabInfo does nothing more than reading directly (without using the wrapper class) 9

registers relative to the firmware, serial numbers and the status of the device – FWCodename,

FWRevision, FWDate, SNDAB, SNTop, SNBottom, SNPIM, Command and Debug – and

present their contexts in a meaningful way after processing them if needed.

46

For example, for printing in ASCII format the firmware codename, we split every

element of the register at 4 pieces of 8 bits each and print each one of them as character. A

code example is the following:

Figure 3-13: example code for ASCII parsing

In a similar way, the FWDate has to be processed in order to extract the information

about the day, month, year and time of the firmware compilation. Furthermore, and for the

status (Command) and debug register we had to implement two hash tables, one for each

register, with the possible status and debug states and print the corresponding message

depending on the contexts of the appropriate register. An example of the output information

when running dabInfo at the lab is the following:

47

Figure 3-14: example run of the dabInfo in the lab

3.2.4 SPS

In this section we are focusing on the technical implementation details of the FBCTs in

the SPS ring. We describe what changed in the software and in what way. Finally we describe

the expert GUI that did not exist before.

3.2.4.1 Baseline Restoration (BLR)

The implementation of the new algorithm for the baseline restoration searches the

acquired data for the minimum value. In order to detect and ignore extreme values, this is not

enough. Hence, in the same loop, the minimum neighbour is determined so that its distance

with the currently examined value can be tested and then decided if it will be considered as

valid value or an extreme one.

In this way and within a single loop the minimum value of an acquisition, ignoring any

“undershoots” is determined. Then the user setting that specifies the noise area is added to it

in order to create a threshold that determines the samples below it to be considered as noise.

Continuing in the second loop the average value of these noise samples is calculated, which is

48

then removed from any sample in the acquisition. In this way, what is considered as noise

moves to the zero area of the y axis. Figure 3-2 above shows such case.

3.2.4.2 TURN_BY_TURN acquisition

For the implementation of the new real time action rtTurnAcq, we basically combined

the rtStart and endCapture into one new real time action with different settings. The main

idea is the same; the rtTurnAcq starts the acquisition with the settings that are already in the

device, reads the data back, decodes and calibrates them before exiting.

This acquisition mode acquires a full bunch selection for 500 consecutive turns (instead

of 1 for the REPETIVE mode). This number is the limit of the first dimension of the

intermediate and final buffers (number of measurements for the REPETIVE mode) which we

also use in rtTurnAcq but storing the turn instead of the measurement in their first dimension.

For the REPETIVE mode, 500 measurements every 40msec is more than enough and is never

actually reached. As for the TURN_BY_TURN mode though, this number is really limiting

the amount of data acquired, hence the precision of the measurement, when the capacity of

the device storage exceeds this limitation by a factor of 2.

The main compatibility problem about this issue comes from our clients, people in the

CCC who develop their own GUI applications to interface our servers. Their main request is

to change their applications as less as possible to preserve stable releases of their software

solutions. That is why we decided not to increase the maximum number of

measurements/turns at developing time, but later on in the future and after we assure that the

new version of the server works fine and stably.

Another implementation issue that appeared was the synchronization of the starting

point of the real time action. The warning that starts the rtTurnAcq is 20msec earlier than the

beam’s injection. If we started the acquisition at this moment, we would acquire mostly noise

and only a small fracture of the actual beam’s intensity. Taking the limitation in our

acquisition data that was introduced before under consideration, this would turn our new

acquisition mode useless. To make things worse, this is the same event that wakes rtPrepare

and serious problems would appear if both real time actions tried to communicate with the

device since there is only one bus for this communication.

To avoid these problems, we had to wait some time – 18msec – just to assure the non-

simultaneous device access as well as the acquisition of meaningful data. We implemented

this delay using another FESA class that was created by our group for abstracting the global

timing events, named LTIM, which gives us the opportunity to specify such settings as delay.

We choose to implement this mechanism rather than using simple sleep commands, in order

to reduce the useless CPU usage as well as preserving the wright synchronization among the

real time actions.

3.2.4.3 Client – Interface

For the implementation of the expert GUI, we used the BasicFrameBuilder which was

created from our section for abstracting the creation of certain useful toolkits such as the

RBA toolbar as well as the device iterator. The latter – visible on the left side of figure 3-15 –

creates a thread of the application for each device (instance of a FESA class) whiles the

49

former – visible on the right side of the same figure – takes care of the privileges each user

has for accessing each server.

Figure 3-15: Upper part of the BFCTSR_EpertGUI

The TimingPanel is implemented by our section and its main purpose is to abstract the

cycle multiplex for each accelerator. In this panel and at the right side, the user can see which

cycle is active at any moment as well as the sequence of all active cycles for a given

accelerator. At the left side of this panel, the user can choose by a simple click, which cycle’s

intensities he wants to observe. This information, as well as the type of the action the user

requested (GET, SET, SUBSCRIBE and UNSUBSCRIBE), is visible in every panel of our

application since things can complicate quite fast, if more than one cycle are observed at the

same time.

In the figure 3-16 the cycle selection is visible inside the green box, where the green

arrow points, while the sequence of the active cycles are inside the light blue box, pointed by

the light blue arrow. Inside that box and with a green colour is the active cycle for that

specific moment while the red numbers on the right side of each active cycle is its duration in

seconds. Lastly and inside the purple boxes is the last action as well as the cycle for which it

was operated. In the same figure the Setting as well as the Acquisition panel is visible.

Figure 3-16: BFCTSR Expert GUI – Acquisition Tab

The UserData panel hosts a plot with the individual bunch intensities per measurement.

There is also a scroll bar to iterate the different measurements as well as a text-field where

the measurement offset in milliseconds is indicated. For example in figure 3-17 we can see

the second measurement for the SFTLONG2 cycle with 41msec offset.

50

Figure 3-17: BFCTSR Expert GUI – UserData Tab

Lastly, the BunchAcquisition panel hosts two 3-Dimensional plots, one for each

mezzanine. These 3D graph components were experimentally created by our group and found

to be quite useful in our case, since we can have a global idea of the individual bunch

intensity measurements in time at once. The data that are being presented by both

BunchAcquisition and UserData panels are the same – the two dimensional arrays from the

server – only with a different representation. The UserData panel is very useful for the

individual study of the measurements whereas the BunchAcquisition is ideal for the whole

picture of the measurement. An example of the latter panel can be seen in figure 3-18 along

with the 3D pop-up graph.

51

Figure 3-18: BFCTSR Expert GUI – BunchAcquisition Tab

3.2.5 LHC

For the server implementation in the LHC ring, we decided to keep the four pointers to

the wrapper class – one per DAB card – apart from the shared memory. The design is such,

that either way, we iterate through the device collection – four DABs – in order to start the

acquisition, read back the data, set the settings and so on. This iteration is done always in the

same order and it starts from the device in lun 0 – HBW for beam1 – and it goes up to the

device in lun 3 – LBW for beam2. Hence, we create and initialize these four pointers to the

wrapper class in the constructor of the real time classes, BCTFRLHCRealtime and after

storing them to an array in the same order of the devices, we access them through our server

classes using the keyword extern.

3.2.5.1 Look Up Tables

As described in chapter 3.1.5.1, there are two LUTs per DAB card – one for each

mezzanine. The LUTs contain the signed corrected ADC values (-8192 – 8191) and the two

corrected values – one for each integrator. We implemented the LUTs in software in two

arrays of floats per LUT – one for integrator 0 and one for 1. We used the ADC values as

indexes to each corrected floating value for each integrator’s array, after eliminating the sign

correction by subtracting the constant value 8192, in order to have proper positive array

indexes. These arrays are stored in the device shared memory, so that they can be accessed by

any server class at any time.

The implementation of the software LUTs is done in a custom class that is accessible

by any class of our server. This class has hardcoded the path where the LUTs are placed and

takes a pointer to a BCTFRLHC device as a constructor’s argument. The array of the wrapper

pointers is also visible in that class using the key word extern.

Furthermore, this class has to methods:

52

 clearLUT(int) – which clears the software LUTs for the specified mezzanine (0

for both, 1 for the top and 2 for the bottom)

 updateLUT() – which loads or reloads the LUTs according to the settings the

user has provided in loadLUT property

By clearing the LUTs, we mean to make them (1:1) transparent in order to avoid our

server from crashing. In other words, the LUTs return the same value that was used for

indexing, without any non-linear correction. This is also very important to check the raw

ADC values as they are read from the DABs, since they are not published at all to avoid

making our properties “heavy”.

Updating the LUTs at runtime, is a feature much appreciated by the users, since they

can change them (clearing/updating) in order to observe, as said, the raw values if needed. In

addition and if it is found that they need to be changed in the future, this can be done on the

fly without spending too much time rebooting the server.

The LUTs are loaded for the first time to the shared memory at BCTFRLHCRealtime

class which is responsible for any kind of initialization of the real-time classes when the

server starts. If by any reason this operation fails, the ones that failed are being cleared.

3.2.5.2 Averaging, Base Line Restoration (BLR) and Calibration of the Data

Since there is the 1 second time restriction, we tried to condense as many of the data

process steps as possible. Hence, when we iterate the acquired values <number_of_turns *

number_of_bunches> and parse them through the appropriate LUTs, we also sum the

corrected values per bunch slot. Furthermore, in a second iteration <number_of_bunches> we

divide every sum with the <number_of_turns> to get the average bunch intensities after LUT

correction. In this iteration, we also specify the minimum average bunch values to be used

from the next steps of the data process.

For implementing the BLR as described in chapter 3.1.5.2, we decided to use two

arrays of shorts – one per mezzanine – that we called bitmaps and specify if a bunch slot

contains noise or beam signal – 1 or 0 accordingly. Obviously, these arrays’ length is the

maximum number of the bunch slots that can be acquired – 3564. In addition, these bitmaps

are initialized with 1, assuming that every single bunch slot contains noise measurement

which is the case when the beam is not present.

Subsequently, we iterate the averaged LUT corrected values from <VS> (see chapter

3.1.5.2) to <number_of_bunches – VS> checking if the value is above <min + TH>. If it is,

then it means that this bunch slot measurement should be considered as beam signal and

hence the corresponding entry of the bitmap is changed to 0. Then, we check the measured

values just before and after the current one, to specify if this bunch slot is at the beginning –

the previous value should be below <min + TH>, end – the next value should be below <min

+ TH> – or in the middle of the beam. If any of the two former cases appear, we also change

the bitmap for the according bunch slots – previous or next – to 0. This is done for both top

and bottom mezzanines.

Furthermore, we iterate the first VS values as well as the last ones in case there is beam

signal at these bunch slots, in which case we change the bitmap for these bunch slots to 0. By

53

the end of these iterations, we have all the information needed to calculate the mean value of

the noise in the bitmaps.

Thus, we iterate once more the averaged LUT corrected values <number_of_bunches>

and we sum the values that have 1 at the corresponding index of the bitmaps, increasing also

a counter for every noise sample. In this way we specify the mean value per mezzanine by

dividing the sum with the counter.

Lastly, we take away the just calculated noise mean value from every sample at the

same time we transform them to number of charges by applying the calibration components.

Hence, the equation 3.1 is transformed to the following:

(3.2)

In addition, this is the iteration where we sum the calibrated values – number of charges –

and calculate the average total intensity for both mezzanines, that one of which will be

published. We also find the maximum value as well its bunch slot that will potentially be

used by the phase scan actions.

3.2.5.3 Gain Switching

In order to implement the gain switching in software, the user provides two switching

thresholds in ADC bins. But these thresholds are applied to the data after their calibration – in

number of charges – and thus, the same transformation (equation 3.2) must be applied to

them.

After transforming the thresholds, we read back from the shared memory which was the

previous selected gain, and apply the thresholds accordingly. If it was the top mezzanine,

then we iterate the averaged calibrated values and if we find at least one value that exceeds

the threshold, we break and we switch the gain to the bottom mezzanine. On the other hand,

if the previous gain selection was the bottom mezzanine, we simply check if the maximum

value that was already found from the calibration-BLR iteration exceeds the according

threshold and if it does not, we switch to the top one.

3.2.5.4 Phase Scan

For the implementation of the phase scan, we use the settings that the user has provided

at CalibrationSetting property and more specifically the phase scan action selection and the

bunch slot. We support two actions and thus the phaseScanAction field has three possible

states:

 DO_NOTHING – is the default state of that field and as its name reveals, is

used for doing nothing as far as the phase scan procedure is concearned

 FIND_MAX_BUNCH_SLOT – is the state of that field that instructs the real-

time action to store at bunchSlot field the bunch slot with the maximum value of

the selected gain, as found from the calibration-BLR iteration, from the current

measurement

54

 DO_PHASE_SCAN – is the state of that field that instructs the real-time action

to apply the phase scan at the specified bunch slot, given by the bunchSlot field

The latter, needs 16 acquisitions – 16 seconds – to be completed. We keep the phase

delay that was last used for the phase scan, in a private field so that it doesn’t mess up with

the phase delay the user provided in the CalibrationSetting property. The values of the 5

bunch slot measurements are stored in different 2D buffers whose first dimension is the 5

different bunch slots whereas the second one is the 16 values according to the 16 possible

values of the phase delay. Each second, we increase the private phase delay by one and check

if we reached the end, where we set it to its initial value (0) and the phaseScanAction field to

its default value (DO_NOTHING).

3.2.5.5 Client – Interface

 We implemented the BCTFRLHC_v6_ExpertGUI, using the basic frame builder just

as for the BFCTSR_ExpertGUI (see chapter 3.2.4.3) in order to take advantage of the

automatic implementation of the device list as well as the RBAC toolbar.

The expert GUI consists of two main tabs:

 Comparison Window – which interfaces the comparison application described in

chapter 3.1.5.7 – figure 3-10

 Device Window – which interfaces our expert GUI per device instance as it was

described in chapter 3.1.5.7 – figure 3-9

The Comparison Window consists of a row of buttons on top – Start / Stop, and two

tabs – one per beam. Each beam tab consists of two tabs as well – one for the history of the

total intensities and one for the average bunch intensities. The latter two tabs consist of a

toolbar on top and a graph at the remaining area. The toolbar is different per tab and that is

because there are different settings depending on the type of the graph.

55

Figure 3-19: Comparison Window - total intensity history for beam 1

Hence, the toolbar for the total intensities tab consists of a group of checkboxes where

the user can specify the visibility of the available plots – these are the history of the total

intensity as calculated from DCCTA and DCCTB as well from FBCTs in all three systems.

Next to these checkboxes, lie a text-field and a button that allows the user to specify the depth

of the history he desires. This is achieved by changing accordingly the length of the First-In-

First-Out (FIFO) queues we use to create the history plots from all devices. In addition, a

reset button clears these queues, in case the user wants to restart the history monitoring.

Furthermore, we state which mezzanine was used to provide the total intensity as far as our

server is concerned in the next component which consists of a label and a combo box.

Subsequently, three sets of radio buttons lie next to the selected mezzanine that group the

settings related to the graph. The first of these sets specifies which bandwidth to plot from

each device – High or Low. The second set specifies the graph format – absolute, absolute

difference and relative difference – and the third one the references – DCCTA, DCCTB and

FBCTC.

56

Figure 3-20: Comparison Window - total intensity history - absolute difference - for beam 1

By absolute, we mean that we plot the total intensity histories as we get them from the

devices. For the other two formats – absolute and relative difference – we use the values from

one device as reference – the user specifies which one he wants from the third set of radio

buttons – and we calculate the difference of the visible plots relative to the reference ones. In

the absolute difference format, we just subtract the reference values from the visible ones. On

the other hand and for the relative difference format, we use the following equation to

calculate the percentage difference between two systems:

 (

)

(3.3)

The result of the absolute difference format is a graph of the difference between the

visible systems relative to the specified one in number of charges, whereas in the case of

relative difference is the percentage of this difference. In addition and only for the relative

difference format, if there is only one visible plot and at least one of the two settings – visible

and relative – is system C but without being the same to both settings, we make visible

another component which consists of a text-field and two buttons. This component is used to

calculate and apply the corresponding calibrating coefficient for system C in a way to

eliminate the difference as much as possible. This is achieved by calculating the next

equation using the values retrieved by equation 3.3 and the most recently used calibration

coefficient:

 (

)

(3.4)

57

Figure 3-21: Comparison Window - total intensity history - relative difference for beam 1

As for the toolbar of the average bunch intensities tab, things are simpler since it

consists only by a smaller group of checkboxes and two sets of radio buttons. The

checkboxes are again to allow the user to specify which available plots he wishes to make

visible – these are the average bunch intensities as calculated from the three FBCT systems.

This is because the DCCTs do not provide bunch-to-bunch measurements. The radio buttons

are again to specify the graph settings as in the total intensity history tab’s toolbar but this

time without the bandwidth chooser nor the additional coefficient calculator component. The

lack of the former is due to the fact that system A and B do not provide bunch-to-bunch

measurements for the LBW whereas the coefficient calculator is focused on the published

values which are the total intensities.

Figure 3-22: Comparison Window - average bunch intensity for beam 1

58

Figure 3-23: Comparison Window - average bunch intensity - absolute difference for beam 1

The Device Window consists of an area of setting – Setting, ExpertSetting and

LoadLUT – panels on the left of the GUI, that interface the corresponding FESA properties

and the graphics area on the right with acquisition panels – Acquisition, ExpertAcquisition

and PhaseScan. In this way, the user is able to spot immediately the reaction of his settings to

the data acquired.

Figure 3-24: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Bunch Intensity - Expert Settings Panel

59

Figure 3-25: BCTFRLHC_v6_ExpertGUI - Acquisition Panel / Average Turn Intensity History - Settings Panel

The history tab of the average turn intensities under the Acquisition panel is exactly the

same graph with the total intensity history tab in the Comparison Window if the user selects

the appropriate settings from its toolbar. In the example shown in figure 3-25, one should

choose to plot the BCTFRC values at the beam 2 tab with HBW and absolute graph format as

graph settings. And this is true, only if the currently selected mezzanine (GAIN) from FBCT

in system C is bottom (Low).

The next two figures (3-26 and 3-27) depicts the impact of the LUTs at the data. For

this reason we plot the data as soon as they are parsed from the LUTs in the Expert

Acquisition panel, Data After LUT tab. In the first figure we cleared (1:1) the LUT for the top

mezzanine only so that the difference between the actual and the cleared LUTs can be spotted

easily. The second figure depicts the data after updating “on the fly” the top mezzanine’s

LUT.

60

Figure 3-26: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - cleared LUT for top mezzanine

Figure 3-27: BCTFRLHC_v6_ExpertGUI - Expert Acquisition Panel / Data after LUT - updated LUT for top mezzanine

In the average bunch intensity graphs in the Expert Acquisition panel, we plot the data

after averaging them and before restoring their baseline or calibrate them. In addition we also

plot the BLR components as they are calculated from the real-time action, in order to follow

the BLR procedure and have a visual and immediate clue of the impact of our Expert Settings

(figure 3-28). This is true only if the user chooses to plot one of the two plots (top/bottom

mezzanine) since these components are specified per mezzanine.

61

Figure 3-28: BCTFRLHC_v6_Epxert Acquisition / Average Bunch Intensities in ADC bins - Expert Settings

In figure 3-29 a zoom of the same graph depicts the details of the BLR components for

better understanding. In this figure the minimum value as it was calculated by Acquire real

time action is visible with the yellow line as well the user setting TH with red. In addition the

area that is considered to have useful signal is painted blue for better visualization.

Figure 3-29: BCTFRLHC_v6_EpxertGUI - Zoom at the Expert Acquisition panel / Average Bunch Intensity in ADC bins tab

Lastly, in figure 3-30 the phase scan procedure is depicted for the bunch slot that was

found to have the maximum value.

62

Figure 3-30: BCTFRLHC_v6_ExpertGUI - Phase Scan

63

4 Results

Having deployed our suggestions of the FBCT servers for both SPS and LHC rings is

time to present and analyse the results of our implementations. This section is dedicated to

that and is divided in two subsections, one per server. This is important since, the requirement

for an operational FBCT system in the SPS ring was critical and hence, we couldn’t wait in

order to develop a unified system as it was first foreseen. Therefore, we developed this server

first and in parallel we studied the ways – as it was described in the previous sections – in

order to achieve the implementation of a unique FBCT measuring system.

4.1 SPS
The FESA class BFCTSR v210, our implementation of the server for the FBCT in SPS

ring, was deployed and is operational since 22/05/2012. Until now no problems had occurred.

On the contrary the CCC operators were happy to finally see this TURN_BY_TURN

acquisition mode as well that the new implementation of the baseline restoration is working

properly.

Figure 4-1: Total Intensity Measurement with FBCT for the SPS, CNGS1 cycle and REPETETIVE mode with the previous
version of the server

Until now, the operators were only able to see the whole history of the beam’s intensity

during a cycle apart from the first injection, since the acquisition started the moment the

beam was already present (see Figure 4-1). Having this history is useful but not if anyone

wants to observe the behaviour of the beam’s intensity at the injection time.

And that is what is renovating with our implementation, for the first time, the operators

can see the intensity of the beam on the injection moment in great detail and thus they can

easily calculate the additional intensity that actually took place during the injection. This is

very important for the smooth operation of the SPS ring since several unpredicted behaviours

of the beam can be detected early in the cycle allowing corrections to be made. What is more,

and by specifying the delay of the execution of the acquisition in milliseconds, the operators

64

(users) can actually choose how far they want to look in the cycle. In this way they can see a

potential second, third, nth injection during a cycle in great detail.

Figure 4-2: Total Intensity Measurement with the FBCT in the SPS, CNGS1 cycle, TURN_BY_TURN mode

Last but not least, the baseline restoration is now dynamically adjusted and thus is more

precise and correct. This fact satisfied the users a lot, since they had many problems in the

past with the reliability of the server and as a result they had to contact experts several times.

4.2 LHC
The large number of the client programs (Expert GUIs and logging) requesting data

from the FBCT system C, requires an intermediate proxy software layer controlling the data

flow between the server and the clients. In this way, low-level system load was minimized

while the system’s stability was gained.

In the following figures 4-3 and 4-4 a comparison of the beam’s 2 total intensity as it

was measured from system A and C is depicted. The first figure shows a low gain

measurement and although the curves seem to follow each other quite nicely, the yellow one

– system C – exhibits higher noise in terms of sigma than the other system.

65

Figure 4-3: Beam's 2 low gain total intensity comparison among system A, B and C in the LHC

The next figure 4-4 is an enlargement of a small part of the previous measurement

visible in figure 4-3 as a brown box.

Figure 4-4: Beam's 2 high gain total intensity comparison among system A, B and C in the LHC

Already by the above figure, we observe that while the new system’s measurement

follows very nicely the already operational one, it is still noisier. This is mainly due to the

number of turns both systems are acquiring data for and hence averaging over. It appears that

having a 224 turn interval in order to suppress the white noise at system C, doesn’t improve

the resolution by much. The main difference as for the noise suppression comes from the

number of averaging samples and therefore, system A provides smoother measurements than

system C since the former acquires and averages over 900 turns whereas the latter over 25.

66

5 Conclusions and Future Work

After the presentation of our implementation of the two servers controlling the FBCTs

in the SPS and LHC ring and analysing the results of these implementations, in this final

section, we restate our observations, we propose future work and we conclude.

5.1 Conclusions
As we mentioned in chapter 2.1.6, out of the several technics that measure the beam’s

attributes, the FBCT measuring system is a very important one since it provides with great

precision both bunch-by-bunch and total turn-by-turn intensity measurements. Additionally,

it is the only system that can be absolutely calibrated although this is not the current state. In

order to benefit the most out of this system though, several significant changes should be

made and hence, new implementation solutions for the controlling software should be given.

5.1.1 SPS

In this direction the first contribution of this Thesis is the delivery of a complete

software client-server scheme for the FBCT in the SPS ring. The server side of that scheme

follows its predecessor’s outline while benefiting from the new firmware’s design and adding

a complete new and renovating functionality – TURN_BY_TURN acquisition mode – that is

proven very useful. In addition, it corrects former malfunctions as for the data treatment,

making the server more dynamically adjustable to different use cases.

Furthermore, the client side of that scheme provides a different and more user-friendly

interface for the server introducing new ways of presenting the data, such as 3D-graphs and

2D-graphs that can be easily scrolled at the same measurement, on the contrary of the

graphical solutions that the previously used FESA interface provided.

5.1.2 LHC

An additional contribution of this Thesis is the study of another complete software

client-server scheme for the FBCTs in the LHC ring that will be able to be used in any

circulating beam installation in the future, including the already existing one of the SPS

accelerator. The results of this study as they were presented in the previous section reveal that

although this approach seems very promising, further work should be done in order to

implement a unified FBCT measuring system. This matter will be explained in more details

in chapter 5.2 but we can summarize here that only the averaging part of the data treatment

was found insufficient and hence needs improving, whereas the LUTs, BLR and Gain

Switching worked perfectly.

What is more, the client side of that scheme was found very helpful for the fast

development of this system since it provided the direct comparison among the other systems

of the same kind, in different ways. In addition and due to the lack of the calibration

procedure of the system, the ability of setting directly the calibrating coefficients such that

the measurements match the ones from the operational systems, improved the development

speed as well.

67

5.2 Future Work
As an enhancement of this work we need to improve the averaging procedure of the

data process in software. In order to do that, we will have to reduce dramatically the turn

interval – even to 0 – since it doesn’t contribute as much as expected to the noise suppression

but impose a great delay in the acquisition time – a 224 turn interval impose approximately

20msec delay at every acquired turn. And this is actually the limiting factor to the number of

turns acquired at our implementation since we agreed to perform a half second acquisition in

order to have enough time to process the data, hence 25 acquired turns with a 224 turn

interval.

On the other hand, performing a full bunch acquisition that would fill the memory –

294 consecutive turns lead to 1047816 acquired samples at almost 25msec – hits again the

1Hz restriction as it may take 25msec to make the acquisition but it takes almost 400msec to

read the data from the DAB since there is only one VME bus.

As a result, we intend to move the averaging part of the data process to the hardware

(FPGA) by changing the firmware again and adding a summing mode allowing us to perform

full bunch acquisitions for a large number of consecutive turns removing the huge transfer

delay in a sense that we will always be fetching 3564 values from memory. All the

functionalities of the recently changed firmware – as they were analysed in chapter 2.2.2 –

should remain unchanged if it is going to be used in other parts of the CERN’s infrastructure

such as linear accelerators and/or dump and transfer lines.

In addition, since we will be fetching averaged data from the DAB and not the integer

acquired values, the parsing through the LUTs should be transformed to a linear

approximation of LUT as it is described in chapter 3.1.2 of [21].

Last but not least, the proper calibration technique should be implemented in order to

achieve the maximum of the FBCT measuring system performance.

68

Bibliography

[1] CERN, CERN in a Nutshell, http://public.web.cern.ch/public/en/About/About-

en.html

[2] CERN, “CERN LHC: the guide”, Geneva : CERN, 2006

[3] Belohrad, D, “Beam Charge Measurements”, Geneva : CERN, 2011

[4] D. Belohrad, J. Gras, L. Jensen, R. Jones, M. Ludwig, P. Odier, J. Savioz, S.

Thoulet, “Commissioning and First Performance of the LHC Beam Current

Measurement Systems”, IPAC’10, Kyoto, Japan, 2010

[5] D. Belohrad, L. Jensen, R. Jones, M. Ludwig, J. Savioz, “The LHC Fast BCT

system: A comparison of Design Parameters with Initial Performance”,

BIW’10, Santa Fe, New Mexico, United States of America, 2010

[6] CERN, Design-Guidelines, logo-badge, http://design-

guidelines.web.cern.ch/fr/logo-badge

[7] CERN, CERN Structure, http://www-dev.web.cern.ch/about/structure-cern

[8] CERN, Beams Department (BE), https://espace.cern.ch/be-dep/default.aspx

[9] CERN, Beams Department – Beam Instrumentation (BE-BI),

https://espace.cern.ch/be-dep/BI/default.aspx

[10] CERN, Beams Department – Beam Instrumentation – Software Section (BE-

BI-SW), http://project-beam-instr-sw.web.cern.ch/project-beam-instr-

sw/Welcome.php

[11] CERN, The Accelerator Complex,

http://public.web.cern.ch/public/en/Research/AccelComplex-en.html

[12] Ventura L, Gilardoni S, Migliorati M, Palumbo L, “Study of longitudinal

multibunch instabilities for LHC-type beams at CERN Proton Synchrotron”,

Geneva : CERN, 2013

[13] the FESA team, “FESA Essentials”, Geneva : CERN, 2004 (http://project-

fesa.web.cern.ch/project-fesa/binaries/documents/FesaEssentialsBundle.pdf)

[14] D. Belohrad, R. Jones, M. Ludwig, J. Savioz, S. Thoulet, “Implementation of

the Electronics Chain for the Bunch by Bunch Intensity Measurement Devices

for the LHC”, DIPAC’09, Basel, Switzerland, 2009

[15] D. Bishop, C. Boccard, E. Calvo-Giraldo, D. Cocq, L. Jensen, R. Jones, J.

Savioz, G. Waters, “The LHC Orbit and Trajectory System”, DIPAC’03,

Mainz, Germany, 2003

[16] H. Jakob, L. Jensen, R. Jones, J. Savioz, “A 40MHz Bunch by Bunch Intensity

Measurement for CERN SPS and LHC”, DIPAC’03, Mainz, Germany, 2003

[17] G. Bohner, A. Falvard, J. Lecoq, P. Perret, C. Trouilleau, “Very front-end

electronics for the LHCbpreshower”, LHCb-2000-047, CERN, 2000

[18] Jean-Jacques Savioz “Engineering Specifications BOBR The Beam

Synchronous Timing Receiver Interface For The Beam Observations”,

http://www.cern.ch/TTC/BOBRspec.pdf

[19] MEN Mikro Electronic GmbH A19/A20,

http://www.men.de/products/01A020-.html#t=overview

http://public.web.cern.ch/public/en/About/About-en.html
http://public.web.cern.ch/public/en/About/About-en.html
http://design-guidelines.web.cern.ch/fr/logo-badge
http://design-guidelines.web.cern.ch/fr/logo-badge
http://www-dev.web.cern.ch/about/structure-cern
https://espace.cern.ch/be-dep/default.aspx
https://espace.cern.ch/be-dep/BI/default.aspx
http://project-beam-instr-sw.web.cern.ch/project-beam-instr-sw/Welcome.php
http://project-beam-instr-sw.web.cern.ch/project-beam-instr-sw/Welcome.php
http://public.web.cern.ch/public/en/Research/AccelComplex-en.html
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/FesaEssentialsBundle.pdf
http://project-fesa.web.cern.ch/project-fesa/binaries/documents/FesaEssentialsBundle.pdf
http://www.cern.ch/TTC/BOBRspec.pdf
http://www.men.de/products/01A020-.html#t=overview

69

[20] CERN, Scientific Linux CERN 5 (SLC5),

http://linux.web.cern.ch/linux/scientific5/

[21] D. Belohrad, Technical Documentation “On the Fast Beam Intensity

Measurements Algorithms and Correction Methods”,

http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/on_the_beam_intensity_me

asurement_algorithms.pdf

[22] D. Belohrad, Technical Documentation “Digital Acquisition Firmware For

The LHC Fast Beam Current Monitors,

http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/fimdab_technical_specifica

tion.pdf

[23] D. Belohrad, Development Documentation “Migration Guide”,

http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/migration_guide.pdf

http://linux.web.cern.ch/linux/scientific5/
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/on_the_beam_intensity_measurement_algorithms.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/on_the_beam_intensity_measurement_algorithms.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/fimdab_technical_specification.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/fimdab_technical_specification.pdf
http://svnweb.cern.ch/world/wsvn/fimdab/trunk/doc/migration_guide.pdf

