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Abstract. The correlator of vector and tensor fermionic currents is considered as the concrete
example of the two-point one-loop amplitudes modified by a constant homogeneous magnetic
field. The crossed-field limit of this correlator is found. The tensor current is a fermionic part
of the Pauli Lagrangian relevant for the electromagnetic interaction of fermions through the
anomalous magnetic moment. Under assumption that this interaction enters the effective QED
Lagrangian, the contribution to the photon polarization operator linear in AMM is calculated.

1. Introduction
Electromagnetic fields are everywhere around us and they are of importance in many cases and
circumstances In the Universe, at mega scales, the strength of the magnetic field is varying
in the range from 10−16 Gauss in the intergalactic medium [1] up to 1015 Gauss in strongly
magnetized neutron stars called magnetars [2]. In terrestrial conditions, it is also possible to
produce strong fields at present, even with a larger strength then in magnetars. According to
theoretical estimates, extremely strong electromagnetic fields [3] can exist in the quark-gluon
plasma produced in the heavy-ion collisions [4] which are studying at the Relativistic Heavy-Ion
Collider (RHIC) and Large Hadron Collider (LHC). Both in magnetars and heavy-ion collisions,
an existence of background electromagnetic field can influence substantially quantum processes
governing underlying physics in these systems and properties of interacting quantum fields.
The later ones can be changed as the result of an interaction with a non-trivial vacuum, in
particular, filled by the magnetic field. These effects can be account perturbatively in the form
of radiative corrections, after relevant loop contributions are calculated [5–9]. The simplest
and very intensively studied diagrams are the two-point one-loop Feynman graphs of which the
photon polarization operator and electron self-energy are well-known examples.

The general case of the two-point one-loop fermionic amplitudes modified by a constant
homogeneous magnetic field was studied in [10]. The Lagrangian density of the local fermion
interaction can be presented in the form [9, 10]:

Lint(x) =
[
f̄(x)ΓAf(x)

]
JA(x) ≡ jA(x) JA(x), (1)

where f(x) is the quantum field of a charged fermion, ΓA is any of the γ-matrices from the
standard set {1, γ5, γµ, γµγ5, σµν} [11], and JA(x) is a generalized electrically neutral current
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Figure 1. Feynman diagram describing
the two-point one-loop fermionic amplitude.
Double lines indicate that effects of an external
electromagnetic field are taken into account
exactly in the fermion propagators.

which can be the photon field, neutrino current, axion field or its derivative, etc. [in these
notations, the corresponding coupling constant is included into JA(x)]. After the generalized
currents JA and JB are cut, the two-point one-loop amplitude presented in figure 1 is reduced to
the correlator of two fermionic currents jA(x) and jB(y) which can be written as follows [9, 10]:

ΠAB =

∫
d4X e−i(qX) Sp {SF(−X) ΓA SF(X) ΓB} , (2)

where qµ is the four-momentum carried by the generalized current and SF(X) is the Lorentz-
invariant part of an exact fermion propagator calculated in an external field background [12]. We
assume the constant homogeneous magnetic field configuration for the external field. Among the
existing representations of SF(X) in this field, we accept the so-called Fock-Schwinger one [12, 13]
in which the fermion propagator has an explicitly Lorentz-covariant form. Effects of the constant
homogeneous magnetic field on correlations among the scalar, pseudoscalar, vector and axial-
vector currents in the Fock-Schwinger formalism were already studied [9, 10] but correlators of
the tensor current jµν(x) ≡

[
f̄(x)σµνf(x)

]
with all the other currents jB(y) (see figure 1) were

not considered in this approach, except the pseudoscalar-tensor correlator [14].
In this paper, we present the propagator of a charged fermion in the constant homogeneous

magnetic field in the Fock-Schwinger representation, show the results for the two-point
correlation function with the vector and tensor vertices, find its crossed-field limit, calculate the
contribution of the electron anomalous magnetic moment into the photon polarization operator,
and finalize with conclusions.

2. Propagator in Constant Homogeneous Magnetic Field
The general form of the charged fermion propagator in the Fock-Schwinger representation is well
known [12, 13]:

GF(x, y) = eiΩ(x,y) SF(x− y), (3)

where Ω(x, y) is the Lorentz non-invariant phase. In the two-point one-loop amplitude shown
in figure 1, the phase factors of the two propagators cancel each other: Ω(x, y) + Ω(y, x) = 0,
and the Lorentz-invariant parts SF(x−y) and SF(y−x) of the fermion propagators are required
only [see equation (2)].

Let us choose the frame in which the constant homogeneous magnetic field is directed along
the third axis, B = (0, 0, B). For the constant homogeneous magnetic field, the four-potential
can be taken in the exactly Lorentz-covariant form, Aµ(x) = −Fµνxν/2. Minkowski space filled
with this field can be divided into two subspaces: the Euclidean one with the metric tensor
Λµν = ϕµρϕ

ρ
ν ≡ (ϕϕ)µν , which is nothing else but the two-dimensional plane orthogonal to the

field direction, and pseudo-Euclidean two-dimensional one with the metric tensor Λ̃µν = (ϕ̃ϕ̃)µν .

The metric tensor of the Minkowski space is their difference, gµν = Λ̃µν−Λµν . Introduced above
antisymmetric tensors ϕµν = Fµν/B and ϕ̃µν = εµνρσϕ

ρσ/2 are the dimensionless tensor of the
external magnetic field and its dual, respectively, and εµνρσ is the antisymmetric Levi-Civita
symbol of the Minkowski space with the definition ε0123 = 1 [11]. These tensors are the Levi-
Civita symbols in the Euclidean and pseudo-Euclidean subspaces.
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After these notations are introduced, the Lorentz-invariant part of the fermion propagator (3)
is as follows [9]:

SF(X) = − iβ

2(4π)2

∞∫
0

ds

s2
exp

(
−i
[
m2
fs+

1

4s
(XΛ̃X)− β cot(βs)

4
(XΛX)

])

×
{

(XΛ̃γ) cot(βs)− i(Xϕ̃γ)γ5 −
βs

sin2(βs)
(XΛγ) +mfs [2 cot(βs) + (γϕγ)]

}
, (4)

where β = eB|Qf |, e > 0 is the elementary charge, and mf and Qf are the mass and relative
charge of the fermion, respectively.

3. Orthogonal Basis in Magnetic Field Background
Correlators with a non-zero rank can be decomposed in some set of four independent vectors.
In the magnetic field background one can determine the following orthogonal basis [9]:

b(1)
µ = (qϕ)µ, b(2)

µ = (qϕ̃)µ b(3)
µ = q2 (Λq)µ − (qΛq) qµ, b(4)

µ = qµ. (5)

As we study the correlator of the vector and tensor currents, it is the Lorentz third-rank
tensor Tµνρ satisfying the decomposition:

Tµνρ =
4∑

i,j,k=1

Tijk
b
(i)
µ b

(j)
ν b

(k)
ρ

(b(i)b(i)) (b(j)b(j)) (b(k)b(k))
, Tijk = Tµνρb(i)µ b

(j)
ν b(k)

ρ . (6)

Similar expressions for the vector and second-rank tensor are presented in [14] and an extension
to the higher rank tensors is obvious.

4. Correlator of Vector and Tensor Currents in Magnetic Field
The correlators constructed from the fermionic tensor current and a current of other Lorentz
structure are the second-, third- and fourth-rank tensors. If we restrict ourselves by the vector-
tensor correlator, the decomposition (6) for the third-rank tensor should be used. There are 64
matrix elements in general, but the antisymmetry in a pair of indices results in 24 independent
matrix elements. One should also take into account the orthogonality of the vector current
to its four-momentum which further reduces the number of independent matrix elements to
18. Their explicit values are a matter of calculations. From the 18 coefficients in the basis
decomposition (6) corresponding to the 18 independent matrix elements, only 4 are non-trivial.
It is convenient to use the following double-integral representation for these coefficients:

Πijk(q
2, q2
⊥, β) =

1

4π2

∞∫
0

dt

t

1∫
0

duYijk(q
2, q2
⊥, β; t, u)× (7)

× exp

{
−i
[
m2
f t−

q2
‖
4
t (1− u2) + q2

⊥
cos(βtu)− cos(βt)

2β sin(βt)

]}
,

where the integration variables t = s1 + s2 and u = (s1 − s2)/(s1 + s2) are the combinations
of two proper-time variables s1 and s2 entering the Lorentz-invariant parts (4) of the fermionic
propagators. Note also the relation between the momenta squared: q2

‖ = q2 + q2
⊥.
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Calculations result the following integrands in the vector-tensor correlator:

Y
(VT)

114 (q2, q2
⊥, β; t, u) = −mf q

2
⊥ q

2 βt cos(βtu)

sin(βt)
, (8)

Y
(VT)

223 (q2, q2
⊥, β; t, u) = mf q

2
⊥ (q2

‖)
2 βt

sin(βt)
[cos(βt)− cos(βtu)] , (9)

Y
(VT)

224 (q2, q2
⊥, β; t, u) = mf q

2
‖

βt

sin(βt)

[
q2
⊥ cos(βt)− q2

‖ cos(βtu)
]
, (10)

Y
(VT)

334 (q2, q2
⊥, β; t, u) = −mf q

2
⊥ q

2
‖ (q2)2 βt cos(βtu)

sin(βt)
. (11)

In the basis (5), vanishing of Y
(VT)

4jk explicitly demonstrates the vector current conservation.

5. Vector-Tensor Correlator in the Crossed-Field Limit
Correlators in electromagnetic crossed fields can be obtained from the ones calculated in the
magnetic field after the pure field parameter β2

F = e2Q2
fFµν F

µν/4 is neglected. Quantities
obtained in the crossed fields are dependent on the field strength through the dynamical
parameter χ2

f = e2Q2
f (qFFq) = β2 q2

⊥. The crossed-field limit is valid for an ultrarelativistic
particle moving in the direction transverse to the field strength in a relatively weak magnetic
field. As basic vectors, it is convenient to use the following normalized orthogonal set:

b(1)
µ =

eQf
χf

(qF )µ, b(2)
µ =

eQf
χf

(qF̃ )µ, b(3)
µ =

e2Q2
f

χ2
f

√
q2

[
q2 (FFq)µ − (qFFq) qµ

]
, b(4)

µ =
qµ√
q2
.

(12)
As above, the coefficients in the tensor decomposition can be presented as double integrals:

Πijk(q
2, χf ) =

1

4π2

∞∫
0

dt

t

1∫
0

duYijk(q
2, χf ; t, u) exp

{
−i
[(
m2
f −

q2

4
(1− u2)

)
t+

1

48
χ2
f (1− u2)2 t3

]}
.

(13)
The integrands in the vector-tensor correlation function in the crossed-field Limit are as follows:

Y
(VT)

114 = −mf

√
q2, Y

(VT)
223 =

mfχ
2
f t

2

2
√
q2

(
1− u2

)
, (14)

Y
(VT)

224 = −mf

√
q2

[
1 +

χ2
f t

2

2q2

(
1− u2

)]
, Y

(VT)
334 = −mf

√
q2.

6. Electron AMM Contribution to Polarization Operator of Photon
Searches for physics beyond the Standard Model is the main stream of modern theoretical
and experimental physics [15]. In particular, the existing discrepancy between the theoretical
prediction for the muon anomalous magnetic moment (AMM) within the Standard Model
and its precision measurements at Brookhaven National Laboratory [16] can be explained by
contributions of “New Physics”. Models beyond the Standard Model can effectively modify the
QED Lagrangian

Lint(x) = −eQf
[
f̄(x)γµf(x)

]
Aµ(x), (15)

where Qf is the electric charge of the fermion in units of the elementary charge e, with an extra
term called the Pauli Lagrangian density [17–19]:

LAMM(x) =
eQf
4mf

af
[
f̄(x)σµνf(x)

]
Fµν(x), (16)
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where af is the anomalous magnetic moment (AMM) of the fermion. The existence of (16) in
the effective QED Lagrangian modifies the photon polarization operator which is nothing else
but the correlator of two vector currents in the conventional QED. From the definition of the
photon polarization operator in terms of the γ → γ transition amplitude:

M(V V ) = −iε′µ(q)Pµν(q) εν(q), (17)

it is obvious that the photon polarization tensor Pµν(q) in vacuum is transverse to the four-
momentum q only. Accounting the background magnetic field results in some complications and
in the basis (5) tensor Pµν(q) can be presented in the form:

Pµν(q) =
3∑

λ=1

b
(λ)
µ b

(λ)
ν

(b(λ))2
Π(λ)(q), (18)

where Π(λ)(q) are its eigenvalues. From three possible polarizations, two eigenstates only are
physical:

ε(1)
µ = b(1)

µ /
√
q2
⊥, ε(2)

µ = b(2)
µ /

√
q2
‖. (19)

Corresponding photon dispersion relations are solutions of the dispersion equations:

q2 −Π(λ)(q) = 0. (20)

In an external magnetic field, the field-induced part of the γ → γ transition amplitude is well
known (see, for example, [8, 9] and references therein):

∆M(V V ) =
e2

4π2

[
(fϕ) (f ′ϕ)

4q2
⊥

Y
(1)
V V +

(fϕ̃) (f ′ϕ̃)

4q2
‖

Y
(2)
V V +

(qϕϕfq) (qϕϕf ′q)

q2q2
⊥q

2
‖

Y
(3)
V V

]
, (21)

where f
(′)
µν = qµε

(′)
ν (q)− qνε(′)

µ (q). It should be noted that the loop amplitude above is originated
by the electron only. The field-induced contribution (21) modifies the eigenvalues of the
polarization operator as follows [8, 9]:

Π(λ)(q) = −iP(q2)− α

π
Y

(λ)
V V , (22)

where P(q2) is the standard vacuum part [11, 12] and α = e2/(4π) is the fine structure constant.
The last term can be presented in the form of the double integral [8]:

Y
(λ)
V V =

∫ ∞
0

dt

t

∫ 1

0
du

{
βt

sin(βt)
y

(λ)
V V e

−iΩ − 1

2
q2
(
1− u2

)
e−iΩ0

}
. (23)

The integrands y
(λ)
V V are presented by the expressions [8]:

y
(1)
V V =

1

2
q2
‖ [cos(βtu)− u cot(βt) sin(βtu)]− q2

⊥
cos(βtu)− cos(βt)

sin2(βt)
, (24)

y
(2)
V V =

1

2
q2
‖

(
1− u2

)
cos(βt)− 1

2
q2
⊥ [cos(βtu)− u cot(βt) sin(βtu)] , (25)

y
(3)
V V =

1

2
q2 [cos(βtu)− u cot(βt) sin(βtu)] . (26)

As mentioned earlier, the Pauli term (16) in the Lagrangian produces an additional
contribution into the photon polarization operator. If we restrict ourselves with a contribution
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linear in the electron AMM, the correlator of the vector and tensor fermionic currents, Π
(V T )
µνρ (q),

gives the required contribution. The photon polarization operator is diagonal in the same
basis (5) and the eigenvalues Π(λ)(q) are modified as follows:

Π(λ)(q) = −iP(q2)− α

π
Y

(λ)
V V +

α

π
ae Y

(λ)
V T . (27)

The double-integral representation (23) can be accepted for Y
(λ)
V T with the integrands:

y
(1)
V T = y

(3)
V T = q2 cos(βtu), y

(2)
V T = q2

‖ cos(βtu)− q2
⊥ cos(βt). (28)

Note that y
(3)
V T ∼ q2, the same as y

(3)
V V (26), and this leaves the third mode ε

(3)
µ ∼ b(3)

µ unphysical.
In QED, the electron AMM ae = α/(2π) [11, 12] to leading order and the AMM correction

in Π(λ)(q) has a small impact. One should not expect substantial contribution to ae from “New
Physics” as supported by experimental data [15] but this is not true for neutrino.

7. Conclusions
The two-point one-loop fermionic amplitude with the vector and tensor vertices is considered.
The influence of a constant homogeneous external magnetic field is taken into account exactly by
using the exact propagators of a charged fermion in the Fock-Schwinger representation. The limit
of the external electromagnetic crossed fields is obtained. The contribution of this amplitude to
the photon polarization operator is presented and its impact is discussed.
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