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Two-dimensional hard-core Bose–Hubbard model with
superconducting qubits
Yariv Yanay 1✉, Jochen Braumüller2, Simon Gustavsson2, William D. Oliver 2,3,4,5 and Charles Tahan1

The pursuit of superconducting-based quantum computers has advanced the fabrication of and experimentation with custom
lattices of qubits and resonators. Here, we describe a roadmap to use present experimental capabilities to simulate an interacting
many-body system of bosons and measure quantities that are exponentially difficult to calculate numerically. We focus on the two-
dimensional hard-core Bose–Hubbard model implemented as an array of floating transmon qubits. We describe a control scheme
for such a lattice that can perform individual qubit readout and show how the scheme enables the preparation of a highly excited
many-body state, in contrast with atomic implementations restricted to the ground state or thermal equilibrium. We discuss what
observables could be accessed and how they could be used to better understand the properties of many-body systems, including
the observation of the transition of eigenstate entanglement entropy scaling from area-law behavior to volume-law behavior.
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INTRODUCTION
Analog quantum simulators have evolved in the last two decades
from a theoretical concept to an experimental reality (see e.g.,
refs 1–3). Initial experimental success was predominantly achieved
with atomic systems, including neutral gases and trapped ions4–8.
More recently, superconducting circuits have emerged as a viable
quantum simulation platform9–13. This modality—based on
“artificial atoms”—features a high degree of experimental
controllability and stability14. The flexibility of the superconduct-
ing platform has enabled several successful quantum simulation
experiments15–20.
Here, we show how to realize the two-dimensional (2D) hard-

core Bose–Hubbard model (HCB) illustrated in Fig. 1 using an array
of transmon qubits21, the current workhorse qubit design in
superconducting circuits. The HCB is a strongly interacting system
that displays some of the critical properties of interacting
quantum systems, including the area-law to volume-law transition
of the entanglement spectrum that has been extensively studied
in many-body systems22. Outside of one dimension (1D), this
system has no known analytical solution, and its study has been
conducted mostly through numerical methods limited in their
scope. The most successful approach has been the use of tensor-
network methods, which focus on finding the ground state
energy23,24. An experimental realization of a 2D HCB could offer
new and complementary insights about the eigenstates and
dynamics of many-body systems. It could also be used to validate
the results of tensor-network methods in large systems, and test
their underlying assumptions on the nature of many-body
wavefunctions. An experimental realization also offers access to
the system’s entire spectrum, allowing one to measure the many-
body properties of its excited states.
Previous experiments have realized the HCB in 1D15,25, where

the model can be solved by analytical methods26,27 and has the
dynamics of a free fermion gas. Recent realizations have also
explored entanglement propagation in ladders and a 3 × 7 array20.
Here, we propose the implementation of the 2D HCB with state-of-

the-art transmon qubits. We calculate the requirements on qubit
uniformity and lifetime, and describe the control systems required
to measure the array’s many-body properties. Finally, we propose
a technique to generate highly excited states that enable one to
more completely explore the system’s spectrum and observe its
many-body properties.

Superconducting quantum many-body physics simulator
We consider the implementation of a quantum many-body
physics simulator (QMBS) with a superconducting quantum circuit
made up of multiple repetitions of small basic circuits implement-
ing qubit and coupling elements. Note that while here and
throughout the paper we take each site to be a qubit, i.e., a two-
level system, the discussion here applies equally to systems of
spins or particles on a lattice. We describe the system with the
Hamiltonian

Ĥ ¼
X
i

Ĥ
Q
i þ

X
hi;ji

Ĥ
J
i;j ; (1)

where summation is over all qubits i and over all coupled pairs

〈i, j〉. The terms Ĥ
Q
i and Ĥ

J
i;j describe the basic qubit and coupling

circuits, respectively. The system in Fig. 1 is one example of the

Hamiltonian of Eq. (1), with circles (qubits) representing Ĥ
Q
i and

diamonds (coupling elements) representing Ĥ
J
i .

We note that the QMBS can be characterized by four energy
scales derived from these Hamiltonians, outlined in Table 1. The
qubit frequency ωq and hopping strength J are the typical energy
scales of the qubit and coupling, respectively, and the anharmo-
nicity A describes the deviation of the qubits from harmonic level
spacing. The frequency mismatch Δω is the scale of non-
uniformity across the system, including, e.g., variation introduced
during fabrication. We neglect deviations in the coupling strength,
and assume that the deviations in the first level spacing are typical
of the rest of the spectrum.
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The behavior of the QMBS depends on the ratio of J to the other
three scales. At J ≪ Δω, exchange of energy between different
qubits is suppressed, and the system will behave as a collection of
uncoupled circuits. In this case, there is no many-body physics to
speak of, and the system decomposes into multiple systems with a
single degree of freedom each. Thus J ≳ Δω is required for many-
body dynamics to appear in the lattice. The ratios J= Aj j and J/ωq

then determine which states are effectively coupled and thereby
which theoretical models are accessible28. These features are
collected in the form of a phase diagram in Fig. 2 and discussed in
further detail below.

● Hopping dominant: In the regime at the top right corner of
Fig. 2, the dominant energy scale is J, the coupling energy.
This describes systems such as quantum rotor models in the
paramagnetic phase. We note that generally, for a large
number of sites, these have a large density of states, and it
may be difficult to prepare the system in a low-temperature
quantum state. In that case, the system can be understood by
a semiclassical description, and it is hard to observe uniquely
quantum dynamics. Such experiments have been performed
for large numbers of Josephson junctions29,30.
We note that this regime can be avoided by choosing a

different basis of states to describe the Hamiltonian, i.e., by
switching the choice of which circuits describe the qubits Ĥ

Q
i

and the coupling elements Ĥ
J
i;j .

● Particle-like models: In the central portion of the phase
diagram, the hierarchy of scales is

Δω t J � ωq: (2)

Here, the rotating wave approximation is valid, and the
coupling elements can move an excitation between sites but
will not change the total number of excitations. This regime is
equivalent to models of bosonic particles, and we may
describe the system with the Bose–Hubbard Hamiltonian,

Ĥ
Q
i ¼ ωqn̂i þ

1
2
An̂i n̂i � 1ð Þ; (3)

Ĥ
J
i;j ¼ �Jxx âyi âj þ âyj âi

� �
þ Jzzn̂i n̂j ;

where âyi is the creation operator for site i and n̂i ¼ âyi âi is its
energy level. Here, the anharmonicity plays the role of the on-
site interaction strength, while inter-qubit coupling generates
transverse hopping terms (Jxx) and longitudinal interaction
terms (Jzz).
The sub-regime where J < Aj j � ωq—the working point of

the transmon qubit21—is the most experimentally accessible
parameter regime and is widely adopted by the super-
conducting circuit community in a multitude of experiments
(see e.g., ref. 17), including recent implementations of 1D
Bose–Hubbard lattices25,31. In this manuscript, we focus on
this regime.
We note that a subset of the particle-like regime, where Δω

~ J, can be used to simulate disordered systems. This can be
achieved either by intentionally varying the qubit frequency
across the lattice, or by decreasing the hopping energy at a
constant residual disorder.

● Spin-like models: At the bottom right corner of Fig. 2, the
energy scales are given by

Δω � ωqtJ � Aj j: (4)

Fig. 1 The two-dimensional hard-core Bose–Hubbard model
(HCB). a Sktech of a sample 4 × 4 HCB lattice. Each circle represents
a qubit, constrained to two energy levels with energy difference ωq.
The diamonds represent coupling between each pair of nearest
neighbors at strength J. One magnified version of each element
shows these energies. b The spectrum of the same system, here with
J = ωq/10. On the left we show the entire spectrum; for a system
with N qubits, it is composed of N + 1 sectors defined by the total
excitation number n. On the right, we show a close up of a particular
sector, with an energy bandwidth ΔE / 8n 1� n=Nð ÞJ.

Table 1. Energy scales of the QMBS.

Energy scale Description

ωq ¼ i eh jĤ ej ii Qubit frequency

A ¼ i fh jĤ fj ii � 2ωq Anharmonicity

J ¼ ji ejĤje
� �

j j Hopping energy

Δω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i ejĤje
� �

i � ωq
� �2q

Frequency variance

Here, ej ii ( fj ii) is the state with qubit i in its first (second) excited state and
all others in the ground state. Xi (Xi;j ) denote the average of Xi (Xi,j) over all
qubits (all coupled pairs). We take ħ = 1 and the ground state energy to
be zero.

Fig. 2 Accessible models with a QMBS based on a superconduct-
ing circuit. Which models can be realized depending on the ratio of
the coupling strength J to the qubit frequency ωq and anharmo-
nicity A. The diagonal cyan shading highlights the area accessible
with transmon qubits, which are our focus here. The coupling must
be greater than the frequency spread, J ≳ Δω, for any kind of many-
body physics to appear. Where Δω ≲ J≪ ωq, the behavior is particle-
like and we expect to see a version of the Bose–Hubbard model with
A playing the role of on-site interaction. Where ωqtJ � Aj j we have
a spin-like model, where each unit acts as a two-level qubit while the
coupling does not conserve excitation number. When J dominates
all other scales, we expect semiclassical behavior.
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Here, the anharmonicity dominates the coupling term,
ensuring that each unit cell remains within the qubit manifold.
However, the coupling elements are strong enough to change
the qubit state in a non-excitation-conserving way. The
rotating wave approximation then breaks down, and the
system is best understood by a spin-like model,

Ĥ
Q
i ¼ ωq

2
σ̂z
i ; Ĥ

J
i;j ¼

X
μ;ν

Jμ;ν σ̂
μ
i σ̂

ν
j (5)

where σ̂μi are the Pauli operators on site i.
This regime, where the coupling strength becomes similar

to the transition frequencies of the coupled systems, is known
as the ultra-strong or deep-strong coupling regime32,33 and it
is more challenging to realize experimentally. However,
superconducting artificial atoms are more suitable for its
realization than natural atoms coupled to an electromagnetic
cavity, as their coupling strength to a harmonic oscillator
mode is not necessarily limited by the fine structure
constant34,35. In general, physical couplings in the deep-
strong coupling regime can be achieved with strongly non-
linear qubits and high-impedance circuits35. A promising qubit
modality to reach such high couplings is the flux qubit, where
ωq � Aj j, as demonstrated experimentally36,37. The fluxonium
qubit38, an extension of the flux qubit, has recently been
demonstrated to preserve long coherence times while in the
high anharmonicity regime39.

RESULTS
For the remainder of this article, we focus our attention on the
regime

Δω t J � ωq; Aj j: (6)

This combines the two constraints mentioned in our analysis of
the possible working regimes: the system operated with these
parameters both conserves the number of excitations and remains
within the qubit manifold. This is a bosonic model, where each site
can be either empty or occupied by a single particle. The system is
then described by the effective Hamiltonian

ĤHCB ¼
X
i

1
2

ωq þ ΔEi
� �

σ̂z
i � J

X
hi;ji

σ̂þi σ̂
�
j þ σ̂þj σ̂

�
i

� �
(7)

where σ̂z
i ; σ̂

±
i ¼ σ̂x

i ± iσ̂y
i are the Pauli z, raising and lowering

operators on site i.
As the Hamiltonian is number preserving, its spectrum

decomposes into N + 1 distinct sectors defined by the total

excitation number n. Each sector is composed of
N
n

	 

levels,

defined by their rotating-frame energy ϵ, with bandwidth
proportional to J. The eigenstates of Eq. (7) are then given by
n; ϵj i where
X
i

1
2

σ̂z
i þ 1

� �
n; ϵj i ¼ n n; ϵj i; (8)

ĤHCB � EG
� �

n; ϵj i ¼ ωqnþ ϵ
� �

n; ϵj i; (9)

where EG is the ground state energy. This spectrum is sketched
out in Fig. 3.
The HCB is difficult to solve except in some specific cases. The

1D chain can be solved through fermionization26,27, and the case
of n/N ≪ 1 (n/N ≈ 1) can be understood analytically by
perturbative corrections to the free particle (free hole) problem40;
both regimes exhibit noninteracting behavior that is much simpler
than what we describe below. In addition, small systems can be
exactly diagonalized, as we do here for a 4 × 4 lattice. Beyond
these limits, research into the model has generally used tensor-

network methods and focused on the ground state energy23,24. An
experimental realization of a 2D version of Eq. (7) can therefore
contribute significantly to our understanding of the eigenstates
and dynamics of many-body systems, and also the validity and
limits of tensor-network methods in large systems. Beyond this, as
we discuss below, an experimental realization can access the
system’s entire spectrum.

Many-body physics in the hard-core Bose–Hubbard model
We consider two particular measures of the system’s many-body
spectrum: the correlation length and the behavior of entangle-
ment entropy for each eigenstate. In Fig. 4, we show these
quantities exhibit transitions along the spectra within each sector:
as we go from the edges of the band to the center, the correlation
length grows from finite to infinite, and the entanglement entropy
of subsystems evolves from obeying an area-law dependence on
the subsystem’s size to a volume-law dependence.

● Correlation length: The typical scale beyond which different
sites are no longer correlated serves as an order parameter for
phases with long-range order41. The correlation length is a
limiting factor for the applicability of tensor-network methods,
which can be used only when correlations are finite42. Having
experimental access to the correlation length therefore
provides significant insight into the many-body properties of
the system.
For our purpose, we define the correlation length in terms

of the correlation function

Cx
i;j ψj ið Þ � ψh jσ̂x

i σ̂
x
j ψj i � ψh jσ̂x

i ψj i ψh jσ̂x
j ψj i: (10)

We then extract the correlation length of a state n; ϵj i by
fitting Cx

i;j ψj ið Þ to the form

jCx
i;jðjn; ϵiÞj

2 ’ Aðn; ϵÞ exp½�j ri!� r!jj=ξðn; ϵÞ�; (11)

over all pairs i, j of nearest neighbors and next-nearest
neighbors. Here j ri!� r!jj ¼ jxi � xjj þ jyi � yjj is the Man-
hattan distance between the sites i, j.
We plot the correlation length ξ as a function of

eigenstate energy in Fig. 4a for a 4 × 4 lattice near half-
filling, where we expect many-body effects to dominate. As
discussed above, we observe it goes from finite and short
for states at the edge of the band to effectively infinite for
states at its center.

Fig. 3 The spectrum of the hard-core Bose–Hubbard model in the
rotating frame. Here, calculated for a single realization of a 4 ×
4 square lattice with nearest-neighbor hopping (Fig. 1) at Δω = 0.2J.
The full spectrum comprises 17 distinct sectors with fixed n,
separated by ωq with width proportional to J. ϵ is the rotating-frame
energy, as defined in Eq. (9).
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● Entanglement entropy: For a state with density matrix ρ̂, the
entanglement entropy of some subset X of the lattice is the
entropy generated when it is severed from the rest of the system,

SX ρ̂ð Þ ¼ S ρ̂X � ρ̂X
� �

� S ρ̂ð Þ; (12)

where S σ̂ð Þ is the entropy of σ̂, and ρ̂X ¼ Tr 8i=2X ρ̂, ρ̂X ¼ Tr 8i2X ρ̂
are the reduced density matrices of the subsystem X and the
remainder of the lattice, respectively. Note that if the initial
density matrix ρ̂ ¼ ψj i ψh j is a pure state, S ρ̂ð Þ vanishes while the
entropy of both subsystems must be identical, so that

SX ρ̂ð Þ ¼ 2S ρ̂Xð Þ: (13)

Throughout this paper, for the purpose of numerical calculations,
we use the second Rényi entropy,

S ρ̂ð Þ ¼ �log Tr ρ̂2: (14)

The entanglement entropy is a measure of entanglement
between different parts of the lattice, and has been an important
tool in the study of many-body systems. In particular, there has
been significant study of the difference between states where it is
proportional to the size of the subsystem X (“volume-law”) and
where it is proportional to the size of its boundary (“area-law”)22.
Volume-law states are also harder to approximate using tensor-
network methods.
To describe the growth law for an eigenstate n; ϵj i, we extract

the parameters sV and sA by fitting the entanglement entropy to
the form

SX n; ϵj i n; ϵh jð Þ ’ sV n; ϵð ÞVX þ sA n; ϵð ÞAX ; (15)

over different lattice subsets X. Here VX is the number of sites in X
(its “volume”) and AX is the number of coupling terms between
sites in X and the rest of the lattice (its “area”). The fit parameters
can then be understood as

sV Bulk entanglement entropy per site;

sA Boundary entanglement entropy per bond:

Thus, the ratio sV/sA determines whether the entanglement
entropy obeys an area-law-like or volume-law-like behavior.
We plot this quantity for a 4 × 4 lattice in Fig. 4b. We see the

transition from area-law behavior for states at the edges of the
band to volume-law behavior at its center. We also see little
variation in this behavior between different sectors with similar n/
N. This allows us to explore the behavior of the entanglement
entropy by preparing coherent-like superposition states across
multiple sectors, as described below.

Global measures such as the entanglement entropy are key to
understanding many-body properties, but observing them in the
lab poses experimental challenges. Naively, the entropy of a state
is derived from the density matrix ρ̂ and extracting it requires full
state tomography. The challenge here is two-fold: first, the
number of measurements scales exponentially as 22N 43; and
second, one must have sufficient control to apply any combina-
tion of rotations σ̂ ±

i to all sites concurrently.
The situation, however, is not quite so dire. Multiple recent

proposals have suggested alternative approaches for measuring
non-local observables such as n-time correlation functions44 and
the second Rényi entropy45–48. These proposals substitute random
unitaries for the full set of rotations mentioned above, easing the
control requirements. They also require fewer unitaries than does
full state tomography, though the number of measurements
needed still scales exponentially with system size. We note,
though, that even as the total size of the system increases, the
scaling coefficients sV, sA can be determined from the entangle-
ment entropy of fixed-size subsystems (e.g., a block of sites of size
3 × 3 and all its subsystems), leaving the required number of
measurements constant even if we increase N.
As noted above, the emergence of many-body behavior requires

relatively uniform qubit frequency, Δω ≲ J. In Fig. 4c, we quantify the
tolerable amount of variation for the metrics discussed here. We do
so by calculating the behavior of the entanglement entropy at the
center of the band and at its edge at varying disorder strength,
averaged over multiple realizations of the lattice. We find that up to
Δω ≈ 0.5J, one can observe distinctly different physics in different
parts of the spectrum. At larger frequency disorder, the variation
between lattice realizations dominates this effect.

Prospects for transmon implementation
The transmon qubit21 is a natural building block for the
implementation of the HCB with a superconducting circuit. It

Fig. 4 Numerical evidence for many-body behavior in the HCB. a, b Calculated for a single realization of a 4 × 4 square lattice with nearest-
neighbor hopping and Δω = 0.2J. We expect the physics of the sectors n = 6, 7, 8, near n ≈ N/2, to be dominated by many-body effects. For
each eigenstate in these sectors, we calculate and plot a the Cx correlation length [Eq. (11)] and b the ratio sV/sA between the volume
coefficient and area coefficient of the entanglement entropy [Eq. (15)]. We observe a clear variation in physics along the spectrum, going from
a finite correlation length and area-law behavior of the entanglement entropy at the edges of the band to diverging correlation length and
volume-law behavior at the center of the band (Note that in a 4 × 4 system the largest separation between qubits is L = 6, and so ξ ≳ 6 hints at
long-distance order). We also observe that the behavior is similar for the three sectors with similar n/N. The robustness of this signature across
filling number enables us to probe entanglement entropy using coherent-like states. c For the sector n = 8, we examine the effects of
increased frequency variation, Δω. We plot the ratio between sV/sA at the center of the band (ϵ = 0) and its edge (ϵ = 10J), averaged over 10
realization of the disorder. The shaded area gives the range of results over one standard deviation. For Δω ≤ 0.5J, we can clearly observe the
change in physics over the spectrum; for Δω > 0.5J, the variance due to different realizations dominates.
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behaves as a weakly non-linear oscillator with a fundamental
transition frequency in the range of ωq/2π ~ 5 GHz. Each lattice
site is represented by a single transmon qubit, with the local site
energy corresponding to the qubit transition frequency ωq.
The anharmonicity of the transmon qubit is negative, typically

in the range of A/2π ~ −250 MHz or ~5% of its frequency21. The
self-Kerr non-linearity of the transmon Hamiltonian maps directly
onto the on-site interaction term in the Bose–Hubbard model25.
As the hard-core Bose–Hubbard model operates in a regime,
where J= Aj j � 1 (Mott insulator phase), the population of the
same lattice site with two or more particles is strongly suppressed
due to the presence of the self-Kerr term, irrespective of its sign.
One may note that for large enough lattices, the kinetic energy
may reach the scale of the anharmonicity ϵ / NJ � Aj j. Generally,
this effect can be treated as a perturbative correction to the hard-
core approximation, as we expect to see only a small number of
sites out of a large occupation ∝ N in the forbidden state.
It is straightforward to connect transmon qubits via capacitive

coupling25, leading to the hopping term in the Bose–Hubbard
model with nearest-neighbor coupling energy J. Typical achiev-
able coupling strengths are tens of megahertz, rendering the
qubit–qubit interaction well within the strong coupling regime J >
Γ, where Γ denotes the qubit decoherence rate. Contemporary
transmon qubits feature reproducible coherence times in the
range of 20 to 100 μs17, corresponding to Γ/2π ≲ 10 kHz.
As discussed above, an experimental implementation operating

in the regime J= Aj j � 1 suppresses transitions to the second and
higher levels, and implements the HCB. In order to observe many-
body physics, we generally require the qubit lifetime to be much
longer than the characteristic time scale for information to
traverse the system, 1/Γ ≫ L/J, where L is the number of hops
to go across the system (its length). With five orders-of-magnitude
in separation, Aj j \ 105Γ, this is easily achievable with transmon
lattices of 100 qubits or more. Generally the sweet spot in this case
is J �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aj j ´ ΓL

p� �
=2π � 1 MHz.

Qubit coherence in the proposed transmon HCB lattice is
expected to be at the level of individual state-of-the-art transmon
qubits17, limited by a combination of material defects49 and
parasitic coupling to stray modes in the sample package50. Scaling
to a larger number of qubits typically requires a chip and sample
package of larger dimensions, with the risk of introducing
additional parasitic modes at frequencies at or close to the qubit
frequencies and therefore impairing qubit performance. In
previous implementations of arrays with 24 and 53 qubits, energy
relaxation times averaged at around 10 μs18 and 15 μs19.
Fabrication variations translate to variations in transmon

transitions which may exceed 200 MHz51, yielding disorder in
the emulated model on the order of Δω � Aj j. To compensate for
such variation, we consider a lattice of frequency-tunable
transmon qubits. This is achieved by replacing the single
Josephson junction of the qubit with a dc-SQUID, facilitating a
frequency tunability of several GHz. In an experiment, this enables
one to tune the individual qubit frequencies mutually on
resonance (to within their spectral linewidth25).
Individual frequency control requires N slow (dc) control lines

for flux biasing each of N qubits. Such low-frequency wiring can be
straightforwardly routed in dilution refrigerators and connected to
the sample package in large numbers, as the necessary
connectors are compact and bulky attenuation at multiple
temperature stages is not required.
Frequency variation in the lattice is mitigated experimentally by

calibrating the (dc) flux crosstalk matrix, containing information
about the frequency shift of qubit i responding to a flux bias
applied to bias line j (1 ≤ i, j ≤ N). In large lattice implementations,
qubits are physically located far away from flux bias lines of other
qubits. By taking into account only nearest-neighbor and next-
nearest neighbor parasitic flux coupling, the resulting flux

crosstalk matrix is sparse, reducing the number of matrix elements
from O N2

� �
to O Nð Þ.

In general, flux crosstalk calibration requires the measurement
of sections of all N qubit spectra while consecutively biasing each
of the N flux control lines. As the spectra can be measured
simultaneously with multiplexed readout, this requires O Nð Þ
individual measurement scans and therefore scales linearly with
lattice size.
In addition, dynamic (ac) flux control allows for rapid frequency

tuning of the qubits. By detuning a qubit away from its neighbors,
we can effectively decouple it from the lattice. For example, in a
square lattice, system dynamics can be entirely frozen out,
enabling state preparation and readout, by detuning every other
qubit in a checkerboard pattern, where all “white” qubits remain
at the original frequency and all “black” qubits are shifted.
This scenario requires N/2 qubits to be equipped with fast flux

lines, such that even a large lattice of size 10 × 10 requires only 50
flux control lines. Assuming individual bias lines used, enabling full
control on each qubit, the number of required coaxial lines is still
moderate compared with recent implementations using 50 and
200 coaxial control lines for a 24-qubit and 50-qubit chip,
respectively18,19.

Implementation with floating transmon qubits
Figure 5a shows a possible circuit implementation of the 2D HCB
based on a grid of transmon qubits each consisting of two floating
electrodes52–55, in contrast to recent realizations where one of the
electrodes is grounded (e.g., Xmon qubits56). In circuit designs
with an increasing number of qubits, circuit elements can be
proximal or even overlap when using crossover fabrication
techniques57. This may result in unwanted spurious coupling,
referred to as crosstalk. Such spurious couplings can exist between
signal lines, readout resonators, and qubits. In order to minimize
this effect, it is advantageous to confine electric fields by
decreasing the mode volume; this however comes at the expense
of an increased electric field strength, leading to enhanced surface
defect loss49,58. The floating layout is advantageous since it
suppresses parasitic couplings in the circuit.
To see this, we compare the parasitic coupling of a resonator

mode to a floating and a grounded transmon. We assume a
(parasitic) capacitive coupling CP; C0

P between the resonator and
the electrodes of the floating transmon (circuit diagram in Fig. 5b),
or CP to the electrode of the grounded transmon (Fig. 5c). While
the coupling capacitance for the grounded transmon is simply

CðgÞ
eff ¼ CP; (16)

the effective coupling capacitance between resonator and the
floating transmon depends on the parasitic capacitances CP; C0

P as
well as the capacitance to the ground CG. Assuming without loss
of generality C0

P � CP, circuit analysis (see the Methods section)
yields an effective coupling capacitance

CðfÞ
eff ¼

CGðCP � C0
PÞ

2CG þ CP þ C0
P
� CP

2
¼ CðgÞ

eff

2
(17)

We note CðfÞ
eff � 1

2C
ðgÞ
eff generically and CðfÞ

eff � CðgÞ
eff if C0

P 	 CP. This
corresponds to an effective confinement of electric fields, which is
advantageous in larger and more complex circuits. The relation of

the effective coupling capacitances CðfÞ
eff=C

ðgÞ
eff is plotted in Fig. 5d

for typical parameters CP; C0
P; CG. The argument remains valid if

the capacitances of the two transmon electrodes to ground are
not identical.
Another potential benefit of the floating transmon design is

that it provides a tuning knob for the strength of long-range
interactions within the lattice. In particular, the coupling range
between non-adjacent qubits can be adjusted by controlling CG/
Csh (Braumüller et al., unpublished), the ratio of the qubit shunt
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capacitance to the capacitance of the two pads to the ground. For
the implementation of the HCB Hamiltonian, Eq. (7), next-nearest
neighbor couplings must be suppressed, which can be achieved in
the limit where CG≫ Csh, but the use of floating transmons opens
the possibility of exploring models with non-local interactions in
the future.
Another strategy to mitigate unwanted crosstalk is to physically

separate circuit elements by introducing a multi-layer chip layout
(3D integration)57. This approach is particularly beneficial in the
implementation of a 2D grid of qubits, as the circuit topology
prevents in-plane access to interior qubits. In a planar layout, this
can be resolved by using airbridges to crossover signal lines59, but
these are naturally prone to unwanted crosstalk. The 3D
integration approach allows for a separation of coherent elements
(qubits) on one layer and signal lines on another layer, with their
respective electric fields well separated. Couplings between qubit
and control or readout lines are achieved via a flip-chip approach
and connectivity to the other substrate surface is facilitated by
through-silicon vias (TSV), which are low-loss superconducting
trenches etched inside the silicon substrate57,60.

Qubit readout and control
Individual qubit readout and control in devices with only few
qubits can be achieved by connecting a separate signal line to
each qubit. For a QMBS-style device with a large number of qubits,
this approach is limited by the available number of signal lines as
well as by geometric constraints. Instead, efficient multiplexed
readout can be performed by coupling multiple qubits to a single
signal line through individual dispersive readout resonators with
frequencies spaced at intervals large compared to their line-
widths61,62. We sketch out an example of this setup in Fig. 5a.
As implied by the color coding in Fig. 5a, signal lines must cross

qubit pads or qubit coupling elements in a planar circuit
implementation in order to reach qubits inside the lattice, leading

to experimental challenges. A possible strategy to address this
issue is the use of 3D integration techniques57.
The particulars of dispersive readout for individual qubits are

well established. The challenge in reading out a large, degenerate
array of qubits is the interplay between measurement and the
ongoing dynamics. To get a snapshot of the system at a particular
time, we must generally measure the qubits on a time scale
Tmeas≪ 1/J, or else freeze the dynamics.
For a homodyne measurement, typical measurement time

scales as63

Tmeas\
1
κ
þ κ2 þ χ=2ð Þ2

κnχ2
; (18)

where κ is the resonator linewidth, χ its dispersive shift between
qubit states g, e; and n is the mean number of photons in the
cavity during readout. There are two limiting factors for this
readout speed: cavity occupation must remain below the critical
photon number in order to ensure to operate in the linear
dispersive regime, and the induced Purcell decay of the qubit, γP,
must remain small64,65,

n � ncrit ¼
A
4χ

; γP ¼ ηPF
κχ

A
� J=L: (19)

Here ηPF accounts for protection resulting from a Purcell filter65,
and L is the maximum distance between any two qubits. We have
taken the anharmonicity Aj j to be much smaller than the qubit-
resonator detuning. If we keep fixed

n=ncrit ¼ ε1; LγP=J ¼ ε2; (20)

then the measurement time is

JTmeas\
J
κ
þ 4ηPFL

ε1ε2

κ2

JA2 : (21)

We find that the operating regime for measurement depends
on the ratio J= Aj j, favoring a smaller J. The design is limited,

Fig. 5 Implementation of the 2D HCB based on floating transmon qubits. a Schematic circuit implementation of the 2D Bose–Hubbard grid
using transmon qubits with floating electrodes. The relevant capacitances are the direct shunting capacitance Csh between the qubit
electrode pads, the capacitance CG of each pad to the ground, and the coupling capacitance CJ between electrodes of adjacent qubits. By
maintaining this coupling between left electrodes (blue) and right electrodes (green), the phase of the mutual couplings around a four-qubit
plaquette sums to zero. A different choice could be made to create an effective gauge field with flux π. The two Josephson junctions form a
dc-SQUID with total effective critical current Ic, which allows the qubit frequency to be tuned. We also show the dispersive readout and control
scheme. Here, three control lines (ℓ = 1, 2, 3) are coupled to groups of qubits (marked S1;S2;S3) via detuned resonators. The different
resonators on each line have different frequencies, and thus detunings from the uniform qubit frequency. Each resonator is characterized by
its frequency ωq + Δi, position along the input line τi × speed of light, linewidth κi, and qubit coupling strength gi. b, c Schematic circuit
representation for a resonator (shaded red) parasitically coupled to a transmon qubit (shaded blue) with b floating electrodes and c one
grounded electrode. d The effective coupling capacitance CðfÞ

eff for floating transmon qubits with various combinations of parasitic couplings

CP and C0
P (colors). CðfÞ

eff is suppressed compared with a grounded transmon with the same parasitic capacitance.
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however by the factors we have previously discussed. The
hopping energy must exceed the frequency disorder across
different qubits, J ≳ Δω; with individual (dc) flux bias lines, one can
reasonably expect to achieve Δω/2π ≈ 100 kHz, independent of
lattice size. The rate must also be fast enough to allow information
to travel across the entire system before decoherence kicks in; at a
conservative qubit lifetime of T1 ≈ 10 μs, this translates into the
requirement J/2π ≫ L × 15 kHz. Thus, a larger 10 × 10 lattice, with
L = 20, requires J/2π ≳ 3 MHz, J= Aj j \ 0:01.
We find that one of several experimental approaches can be

taken:

● If J t 0:03
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1ε2=ηPFL

p
Aj j, we can choose system parameters,

and in particular κ > J, such that JTmeas ≲ π/10. In this case, we
can easily readout the state of the system faster than it
evolves. Taking a typical ε1 = ε2 = 0.2, this regime can be
reached by using narrow Purcell filters, ηPF ≤ 0.01, and large
bandwidth cavities, κ/2π ≳ 20MHz. Multiplexed non-
demolition qubit readout with similar parameters was
demonstrated in less than Tmeas = 50 ns65.
The experimental overhead for this approach is large in

bigger lattices. As the Purcell filters must be spectrally very
narrow, only one cavity can be brought in direct resonance
with each filter, and so each qubit needs a readout resonator
and a separate Purcell filter. Cavity frequencies must be
spaced sufficiently far apart, at intervals of Δ ≳ 100 MHz.
Another downside to this approach is that narrow filters, while
increasing the qubit lifetime, make it hard to drive the qubits
through the readout line. As we discuss below, we find that
this is a useful tool in preparing states that explore the
system’s many-body properties, and if the readout cannot be
used in this way separate drive lines would be necessary.

● If 0:03
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1ε2=L

p
Aj j t J � ε1 Aj j, measurement speed is limited.

However, if the Stark shift generated by driving the cavity
detunes the measured qubit away from the lattice,
δωq � nχ � ε1 Aj j 
 J, its state is frozen and we can once
again readout a snapshot at a given time.
A design of this form would call for χ 	 �κð Þ=2π 	 5 MHz.

If neighboring qubits are to be measured simultaneously, the
driving pulses must be carefully calibrated to maintain a
frequency detuning, which means the protocol may not be
robust.

● Finally, if J \ ε1 Aj j, we necessarily have Tmeas ≳ 1/J. This is the
weak continuous measurement regime66, and the amount of
information that can be extracted about the system is
reduced: we would not, for example, be able to obtain the
probability statistics required to measure the entropy of a
state. In this regime, full readout can be enabled by turning off
interactions, either directly67, or by making use of frequency-
tunable qubits.
We can effectively freeze out the interactions between the

qubits by mutually detuning their frequencies, essentially
shifting the system into the individual particle regime. Note
that we do not need an infinite array of frequencies, as only
coupled qubits must be detuned from each other. In a square
lattice, qubits can be detuned in a checkerboard pattern, as
described above. This freeze out can be achieved by attaching
fast flux lines to N/2 qubits, requiring comparable or reduced
overhead to the use of individual Purcell filters, similar to
previously realized setups18,19. This method also allows for
more flexibility in measuring observables other than σ̂z , as
rotation pulses can be applied to the qubit between detuning
and measurement, possibly through the cavity array, as
described below.

Although the resonator configuration discussed above enables
selective readout of specific or all qubits, it does not facilitate
individual qubit control with microwave drives when all the qubits
in the lattice are degenerate.

This issue can be overcome in several ways. Most directly, it may
be useful to couple control lines to a single or few specific qubits
to allow for direct microwave control, e.g., to prepare a certain
initial state in the lattice. Alternately, the use of tunable qubits—
which we have suggested above for the purpose of a freeze-out
prior to qubit readout—allows one to address an individual qubit
or a subset of qubits if they are detuned in frequency away from
the otherwise degenerate lattice.
In addition, the readout layout described above can be used to

effect a specific form of system-wide driving. We note, when a
signal line ℓ is driven at near resonance, at ωd ≈ ωq, the effective
Hamiltonian becomes

Ĥ ! ĤHCB þ ~g e�iωdtΣ̂y‘ þ eiωdtΣ̂‘
� �

; (22)

where the driving operator is given by

Σ̂‘ ¼
X
i2S‘

~αi σ̂
�
i : (23)

Here, the summation is over the set of qubits S‘ coupled to the
signal line ℓ (Fig. 5a), ~αi is the effective relative coupling to that
qubit, determined by the resonator’s parameters, and ~g is a
coupling energy proportional to the driving strength. See the
Methods section for the derivation of this operator and the values
of ~g; ~αi .
Although the set of operators Σ̂‘ does not allow us full control of

the system, driving at different strengths or for different lengths of
time allows us access to a set of defined unitary transformations.
As mentioned above, this would allow the measurement of
quantities such as the entropy of a subsystem45,46. As we discuss
below, it also enables the preparation of many-body states whose
nature is determined by the detuning of the drive from the qubit
frequency and can be used to probe the spectrum of the system.

Coherent-like states
As we have seen, the most interesting behavior of the HCB is
manifest in the finite-excitation density sectors where 0 < n/N < 1.
Within these sectors, energy eigenmodes vary in their behavior
between the edges of the band and its center, exhibiting many-
body properties such as different entanglement entropy laws. To
study these properties, we must be able to prepare such states,
which is challenging. In our proposed implementation, state
preparation can be performed by applying drive pulses that reach
the qubits via the readout resonators. To prepare a specific
eigenstate, we would not only have to tailor a series of specific
pulses, but also know the wavefunction of the prepared state,
negating the premise of a quantum simulator to access states
which are not understood theoretically.
Here, we propose an alternate route to observing the spectral

properties of the HCB. Instead of preparing a specific known
eigenstate, we apply a weak drive using the operators of Eq. (23)
at some detuning from the joint qubit frequency. This prepares
the lattice in a coherent state-like superposition of eigenstates in
multiple n sectors, but with definite kinetic energy within each
sector. This strategy of extracting many-body properties is robust
with regards to experimental control limitations on chip.
To understand this process, we begin by rewriting the

Hamiltonian of Eq. (7) in its eigenmode basis,

ĤHCB ¼
XN
n¼0

Z
dϵρnϵ ωqnþ ϵ

� �
n; ϵj i n; ϵh j (24)

where n; ϵj i are the eigenstates of Eq. (8) and ρnϵ is the density of
states for the sector with n excitations. Then, we rewrite the
driving operator of Eq. (23) in the same basis,

Σ̂y‘ ¼
X
n

Z
dϵdϵ0ρnþ1

ϵ ρnϵ0 nþ 1; ϵ0h jΣy‘ n; ϵj i nþ 1; ϵj i n; ϵ0h j: (25)
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Consider first the perturbative limit, where the driving is very
weak compared with the energy spacing,

8n; ϵ; ϵ0 : ~g nþ 1; ϵ0h jΣy‘ n; ϵj i
��� ���2ρnþ1

ϵ ρnϵ0 � 1: (26)

In this case, the driving operator will couple only eigenstates
differing exactly by the detuning,

ϵ0 � ϵ ¼ δ ¼ ωd � ωq; (27)

and we can approximate it as a combination of defined-energy
raising operators

e�iωdtΣ̂
y
‘ 	

Z
dϵe�iĤHCBtÂ

y
ϵe

iĤHCBt; (28)

Â
y
ϵ ¼

X
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρnþ1
ϵnþ1

ρnϵn

q
nþ 1; ϵnþ1h jΣy‘ n; ϵnj i nþ 1; ϵnþ1j i n; ϵnh j;

where ϵn = ϵ + n × δ. Observe that each Âε couples a subset of
eigenstates of the form n; ϵþ n ´ δj i. In the spectrum outlined in
Fig. 3, these can be identified as the states sitting on a line with
slope δ and intersecting n = 0 at ϵ.
Thus, if we initialize the system in the ground state,

ψ t ¼ 0ð Þj i ¼ 0; 0j i; (29)

it is affected only by Â0; Â
y
0. Inserting the operators of Eq. (28) into

the Hamiltonian of Eq. (22), we find at later times it has a form
reminiscent of a coherent state,

ψ tð Þj i 	 e�iĤHCBt exp �i~g Â0 þ Â
y
0

� �
t

h i
0; 0j i: (30)

While this wavefunction is difficult to evaluate theoretically, it is
composed only of states of a defined energy, n; n ´ δj i, i.e.,

ψ tð Þj i 	
X
n

e�iωdntcn tð Þ n; n ´ δj i (31)

for some time-dependent functions cn tð Þ. As described above,
these eigenstates lie along a line with slope δ in the spectrum
shown in Fig. 3. This form can be observed in Fig. 6a for a
numerical simulation of a system with very weak driving.
In practice, the approximation of Eqs. (26) and (28) are

insufficient to describe the dynamics. For any fixed n/N, the
energy spacing between states shrinks exponentially with N as we
increase the size of the lattice, violating the assumption of Eq. (26).
For weak driving, the qualitative picture remains similar but the
prepared state seen in Eq. (31) acquires a finite width in energy

space, proportional to the driving strength. These features are
seen in Fig. 6.
We have discussed above how to prepare the HCB system in a

coherent-like state. This state has a defined kinetic energy per
excitation, but it does not have a definite excitation number. We
argue that this is not an impediment to measuring the many-body
properties described above.
First, we note that for any measurements purely in the σ̂z basis

we can effectively project the state into a definite n sector by post-
selection.
Second, we have observed in Fig. 4b that the many-body

properties that we are interested in behave similarly in different n
sectors of the spectrum. For these, we expect the state in Eq. (31)
to exhibit the same behavior as a function of its kinetic energy.
As such, preparing these coherent-like states may allow us to

measure many-body properties of the spectrum by varying the
detuning δ. We verify this numerically in Fig. 7, where we
described a state prepared this way and measure its many-body
properties. We find that the correlation length of the state, shown
in Fig. 4a, approximates very well the eigenmode correlation
length for states in similar energy show in Fig. 7b. Similarly, the
entanglement entropy measured as shown in Fig. 7c exhibits the
same behaviors we pointed out in Fig. 4b.

DISCUSSION
We have offered here a roadmap for the realization of a quantum
many-body simulator of the 2D hard-core Bose–Hubbard model
using a superconducting circuit made up of transmon qubits. An
experimental realization of this setup would allow the exploration
of this analytically hard-to-solve model in regimes where it has not
been realized before. In particular, we have shown how such a
realization could access non-equilibrium states that exhibit many-
body wavefunction behaviors such as a crossover from volume-
law to area-law entanglement. As discussed throughout, the
experimental parameters we consider in this article are within
reach of current fabrication and control systems. The system we
have proposed could be realized in the near term.
In the body of this paper, we have presented numerical results

for a 4 × 4 HCB lattice, which can be diagonalized on a moderately
powerful computer. However, the difficulty of this task grows
exponentially, and a system of 6 × 6 or 7 × 7 sites is beyond
numerical reach for any reasonable resource expenditure. An
experimental realization would thus provide an example of

Fig. 6 Coherent-like state preparation. We show here numerical results for the same 4 × 4 system shown in Fig. 4, Δω = 0.2J, with a driving

term described by Ĥdr ¼ ~g ei ωqþδð ÞtΣ̂þ e�i ωqþδð Þt Σ̂y
� �

, where Σ̂ is as described in Eqs. (43)–(46), taking realistic experimental parameters. We

plot the overlap of the state with different eigenvalues, n; ϵjψ tð Þh ij j2 at different times, and with different driving strength (arbitrary scale,
darker colors denote greater overlap). Here, we drive the system at δ = −J. a We plot the evolution of the state from the initial ψ 0ð Þj i ¼ 0; 0j i
for very weak driving, ~g ¼ 0:5J. We see that at any time the state can be described by a superposition of eigenstates n; δ ´ nj i, as discussed
around Eq. (31). b We plot the prepared state Ψj i ¼ ψðt ¼ 8 ´ J=~g2Þ

�� �
at varying ~g. For stronger driving, the energy width of the prepared state

grows as ΔE / ~g.
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quantum simulation beyond our theoretical and numerical
abilities.
Beyond the model presented here, the paradigm of the QMBS

can be used to explore a variety of other systems. Two immediate
extensions of the model include changing the lattice topology or
varying individual qubit frequencies to understand the role of
disorder in this many-body system. In the longer term, it would be
interesting to explore other parts of the phase diagram in Fig. 2. In
particular, a reliable and long-lived qubit with large anharmonicity
would allow us to realize spin systems and explore their rich
physics, including probing phase transitions and understanding
spin liquids.

METHODS
Driving through a line coupled to multiple qubits
Here, we give the derivation for the driving operator of Eq. (23).
The system used, schematically shown in Fig. 5a, is described by the

Hamiltonian

Ĥ ¼ ĤHCB þ
X
‘

Ĥ
L
‘ þ

X
‘

X
i2S‘

Ĥ
R
‘;i ; (32)

where ĤHCB, given in Eq. (7), describes the qubits, Ĥ
L
‘ the signal line ℓ,

Ĥ
L
‘ ¼

Z
dνν L̂

‘y
ν L̂

‘

ν þ R̂
‘y
ν R̂

‘

ν

� �
(33)

and Ĥ
‘

i the resonator coupling line ℓ to qubit i,

Ĥ
R
‘;i ¼ ωq þ Δi

� �
ĉyi ĉi þ gi ĉi þ ĉyi

� �
σ̂þi þ σ̂�i
� �

�i
ffiffiffiffi
κi

p
ffiffiffi
2

p
Z

dνffiffiffiffiffiffi
2π

p eiντi R̂
‘y
ν þ e�iντi L̂

‘y
ν

� �
ĉi � h:c:

h i
: (34)

Here, ℓ sums over the different signal lines; for each line, R̂
‘

ν (L̂
‘

ν ) are the
annihilation operators for its right (left) moving modes with energy ν, and
S‘ is the set of qubits coupled to it through resonators. For each
resonator coupled to qubit i, ĉi is the annihilation operator for a photon
in the resonator, and Δi, gi, κi, τi are that resonator’s detuning, its coupling
to the qubit i, its linewidth, and its distance from the termination of the
signal line (divided by the speed of light), respectively. This setup is
outlined in Fig. 5(a).

Using standard input–output theory68, the Heisenberg–Langevin
equations of motion for the operators ĉi are

_̂ci tð Þ ¼ � κi
2
þ i ωq þ Δi

� �h i
ĉi tð Þ (35)

�
ffiffiffiffi
κi

p

2

X
j≠i

ffiffiffiffi
κj

p
ĉj t � τi � τj

�� ��� �

þ
ffiffiffiffi
κi

p
ffiffiffi
2

p ξ̂
R
‘ t þ τið Þ þ ξ̂

L
‘ t � τið Þ

� �

where ξ̂
L
‘ ; ξ̂

R
‘ are Gaussian white noise operators describing the vacuum

fluctuations of the left-moving and right-moving modes, respectively, on
the line ℓ coupled to i.
If we drive the line at frequency ωd, we have

hξ̂R‘ i ! Ωe�iωdt hξ̂L‘i ! �Ωe�iωdt (36)

where Ω is the driving field. We find, in steady state,

hĉi tð Þi ¼ �i

ffiffiffiffiffiffi
2κi

p
Ω sin ωdτið Þ

κi
2 þ i ωq þ Δi � ωd

� � e�iωd t (37)

� 1
2

X
j≠i

ffiffiffiffiffiffiffiffi
κiκj

p hĉj t � τi � τj
�� ��� �

i
κi
2 þ i ωq þ Δi � ωd

� � :

In a dispersive readout scheme the linewidths of the cavities are narrow61,ffiffiffiffiffiffiffiffi
κiκj

p � Δij j: (38)

If we then drive near the qubit frequency,

ωd � ωq

�� �� � Δij j; (39)

we can approximate

hĉi tð Þi 	 �
ffiffiffiffiffiffi
2κi

p
Ω

Δi
sin ωdτið Þe�iωd t: (40)

Now, from Eqs. (32) and (34), we have that the driving Hamiltonian can
be described by

Ĥ ! ĤHCB þ
X
‘

X
i2S‘

gi hĉii þ hĉyi i
� �

σ̂þi þ σ̂�i
� �

: (41)

and for ωd ~ ωq, we can take the rotating wave approximation and
combined with Eq. (40) we find

Ĥ 	 ĤHCB þ
X
‘

~g‘ e�iωd tΣ̂
y
‘ þ eiωdt Σ̂‘

� �
; (42)

Fig. 7 Probing many-body properties of the HCB with coherent-like states.We show here numerical results for the same 4×4 system shown

in Fig. 4, Δω = 0.2J, with the driving Ĥdr ¼ ~gðei ωqþδð Þt Σ̂þ e�i ωqþδð ÞtΣ̂yÞ, as in Fig. 6, applied for time t ¼ 8 ´ J=~g2 to prepare the state. Here, we
maintain the driving strength ~g ¼ J and vary over the detuning δ. Ψj i is prepared with Σ̂ is as described in Eqs. (43)–(46), as in Fig. 6, while Ψϕ

�� �
is prepared with Σ̂ ¼

P
eiϕi σ̂�i for uniformly distributed, random ϕi. a We plot the overlap of the prepared state with different eigenvalues,

n; ϵjΨh ij j2 (arbitrary scale, darker colors denote greater overlap). We see that different values of δ access different parts of the many-body
spectrum. b, c We compare the many-body properties of the two prepared wavefunctions at various values of the detuning (black and red
lines) to those of the equivalent eigenmodes we expect it to be composed of (colorful dots). These are reproduced from Fig. 4 with the energy
axis rescaled for comparison. We find remarkable agreement both for b the correlation length [Eq. (11)] and c the ratio sV/sA between the
volume coefficient and area coefficient of the entanglement entropy [Eq. (15)] for the prepared states.
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where

Σ̂‘ ¼
X
i2S‘

~αi σ̂
�
i ; (43)

as in Eq. (23), and

~g‘ ¼ Ω
ffiffiffiffiffiffiffi
2K ‘

p
; (44)

~αi ¼ �
ffiffiffiffi
κi

p
giffiffiffiffiffi

K‘

p
Δi

sin ωdτið Þ; (45)

K‘ ¼
X

i2S‘
κi
g2i
Δi

sin2 ωdτið Þ: (46)

Circuit analysis of the floating transmon qubit
We review the Hamiltonian of a floating transmon qubit coupled to a
harmonic oscillator mode, depicted in Fig. 8a. This allows us to extract
effective values for the qubit capacitance Cq and the coupling capacitance
Cc comparable to those of a grounded transmon qubit, shown in Fig. 8b. In
the Results section, we utilize this result to compare unwanted crosstalk in
an architecture with floating transmon qubits versus an architecture that
makes use of grounded transmons.
Following the node flux representation described in ref. 69 we can write

down the Lagrangian for the circuit in Fig. 8a as

L ¼ T � Φ2
3

2Lr
þ EJ cosðϕ1 � ϕ2Þ; (47)

T ¼ C1

2
_Φ
2
1 þ

C2

2
_Φ2 þ

Csh

2
_Φ1 � _Φ2

� �2
(48)

þ Cr

2
_Φ
2
3 þ

Cg1

2
_Φ1 � _Φ3

� �2 þ Cg2

2
_Φ2 � _Φ3

� �2
;

where Φi are node fluxes and ϕi = 2πΦi/Φ0 node phases, with Φ0 the
magnetic flux quantum. EJ = Φ0Ic/2π is the Josephson energy of the
Josephson junction with critical current Ic. The kinetic part of the
Lagrangian can also be written as

T ¼ 1
2
Φ
!� T

� �C � Φ!
�

(49)

where Φ
!¼ ðΦ1 Φ2 Φ3ÞT and �C the capacitance matrix defined by Eq. (48).

In order to recover the relevant transmon degree of freedom, we
perform a variable transformation in the transmon subspace to ‘plus-
minus’ variables Φ± = Φ1 ± Φ2. With the transformation matrix

S ¼
1 1 0

1 �1 0

0 0 1

0
B@

1
CA (50)

we can rewrite the capacitive part of the Lagrangian as

T ¼ 1
2
ðSΦ!

�

Þ
T

� S�1�CS�1 � SΦ!
�

� 1
2
Φ
!� 0T

� �C � Φ!
�

: (51)

Here Φ
!0

¼ S � Φ!¼ ðΦþ Φ� Φ3ÞT, and the capacitance matrix in the
transformed basis becomes �C ¼ S�1�CS�1.

A Legendre transformation yields the circuit Hamiltonian

H ¼ 1
2
q!

0T � �C�1 � q!0 þ Φ2
3

2Lr
� EJ cosϕ�; (52)

where q!0 ¼ ðqþ q� q3ÞT. Since the ‘+’-mode of the transmon does not have
an inductive term in the Hamiltonian, its frequency is not relevant for qubit
operation. Conversely, the Josephson energy of the transmon enters via the
‘−’-mode. We can therefore trace over the q+ degree of freedom, to find

H ! 1
2

q�
q3

	 

� Trþ�C

�1
h i

�
q�
q3

	 
T

þ Φ2
3

2Lr
� EJ cosϕ�; (53)

where

Trþ�C
�1 ¼

�C�1
h i

�;�
�C�1
h i

�;3

�C�1
h i

3;�
�C�1
h i

3;3

0
B@

1
CA (54)

is the matrix �C�1
with the column and row corresponding to the + mode

removed.
The effective Hamiltonian of Eq. (53) has the same form as the

Hamiltonian resulting from analysis of the circuit Fig. 8b, with the
substitutions Φ1 → Φ−, q1 → q+. We can then find the effective parameters
of the reduced circuit by identifying

Tr þ�C
�1

h i�1
� �Ceff ¼

Cq þ Cc � Cc

�Cc C0
r þ Cc:

	 

(55)

We therefore find the effective transmon capacitance, including
coupling capacitances to the resonator, from the diagonal entry,

Cq;eff ¼ Cq þ Cc ¼ Csh þ
1

C1 þ Cg1
þ 1
C2 þ Cg2

	 
�1

; (56)

and from the off-diagonal entries we can extract the effective coupling
capacitance between the floating transmon qubit and the resonator

Cc ¼
Cg1C2 � Cg2C1

C1 þ C2 þ Cg1 þ Cg2
: (57)

Applied to the circuit in Fig. 5b, we find the parasitic coupling between
the floating transmon qubit and the resonator

CðfÞ
eff ¼

CG CP � C0
P

� �
2CG þ CP þ C0

P

(58)

taking Cg1 = Cg2 = CG.
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