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Abstract: Quantum entanglement detection is one of the fundamental tasks in quantum information

science. Conventional methods for quantum state tomography exhibit limitations in scalability as the

number of qubits increases, leading to exponential growth in the number of unknown parameters

and required measurements. Consequently, the accuracy enhancement achieved by these methods is

constrained. In response to this challenge, we developed a tailored convolutional neural network

(CNN) model capable of effectively detecting entanglement in two-qubit quantum states, achieving

an accuracy exceeding 97.5%. Notably, even in the presence of noise, this model retains its robust

performance, displaying resilience against a tolerable level of noise contamination. Furthermore, the

inherent generalization power of CNNs allows our model, which was initially trained on a specific

spectrum of quantum states, to extend its applicability to wider states, positioning it as an outstanding

tool for the further application of machine learning in the field of quantum computing, opening up

new pathways for solving entanglement detection problems in quantum information.

Keywords: entanglement detection; quantum state tomography; neural network; noise resistance;

generalization

1. Introduction

Quantum entanglement empowers qubits [1] to encode and manipulate a huge amount
of data within superposed states, surpassing the limitations inherent in classical compu-
tational models [2]. However, identifying entanglement poses a highly challenging prob-
lem [2–4], primarily due to the intricate nature of quantum correlations. The gold standard
for entanglement detection is comprehensive quantum state tomography [5], which offers
high fidelity but becomes prohibitively resource-intensive as the quantum system scales up.
This exponential growth in the number of accessible states and the dimensionality of the
Hilbert space underscores the need for alternative approaches. In scenarios where full state
information is inaccessible, there arises a demand for direct classification of entanglement
based on incomplete or partial knowledge of the underlying quantum state. This paradigm
shift necessitates the development of efficient methods that can discern entanglement
patterns even with limited data [6–9]. Furthermore, noise introduces a significant impedi-
ment to entanglement detection by disrupting the precise identification and manipulation
of quantum states. The detrimental effects of noise manifest as interference during the
quantum state analysis process, underscoring the importance of noise-resilient detection
strategies to mitigate these challenges [10]. The pursuit of such advanced techniques is cru-
cial for advancing the field of quantum information processing and enabling the practical
implementation of large-scale, fault-tolerant quantum computers.

In recent years, machine learning has become a crucial tool for solving high-complexity
problems in physics [11], particularly when dealing with hierarchically structured and
spatially correlated data [12–14]. More specifically, machine learning has also been widely
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applied in the field of quantum technology, such as combining reinforcement learning
methods for quantum control [15–17]. Convolutional neural network (CNN) is a typical
supervised learning algorithm proposed by LeCun in 1998 [18] and widely used in various
data processing tasks. The supervised learning refers to using samples Xi with target labels
Yi to train a model. During the training progress, the update rate of the parameters is
adjusted based on the difference between the predicted value Y′

i and the target value Yi to
make the model fit the training data more accurately, and the difference is usually defined
as the loss function of supervised learning. Compared to fully connected neural network
architectures, CNNs use weight sharing and local connections as their main strategies, and
can reduce the dimensionality of data as needed, which increase the speed of network
training and mitigate the problem of overfitting to some extent, thus enhancing the model’s
generalization [18,19]. Additionally, during the training process, the method of batch
normalization can be introduced to improve training accuracy and speed [20], and an
orthonormal basis can be created in the latent space of CNNs to avoid overfitting and other
learning pathologies associated with correlated attributions to dimensions of the latent
space [21]. CNNs can effectively process and analyze complex data from simulations or
experimental measurements in many-body quantum systems [22]. A CNN-based scheme
for quantum state tomography outperforms traditional techniques in terms of fidelity and
accuracy of observable estimation [23]. CNNs primarily distinguish between different quan-
tum states by learning from data obtained through quantum measurements for quantum
state classification purposes [24]. Therefore, the CNN-based approach holds promise for
discriminating between entangled and separable states in quantum information processing.

Noise is a pervasive phenomenon in quantum information processing and quantum
computing, which poses a formidable challenge to the realization of reliable and efficient
quantum systems. Due to the high sensitivity of quantum systems and the fragility of quan-
tum states, noise can lead to significant information loss and computational errors [25,26].
Moreover, even minuscule amounts of noise can have a disproportionately large impact on
the system’s performance. Therefore, effectively managing and combating noise is one of
the core challenges in achieving reliable quantum computing and quantum communication
technologies. The sources of noise are diverse, ranging from fluctuations in the environ-
ment to imperfections in hardware components and imprecise measurements. Currently,
various advanced statistical methods have been applied to QST, such as Bayesian inference,
variational quantum eigensolver, and quantum neural networks, which alleviate the prob-
lems of noise handling and low computational efficiency in traditional linear inversion and
maximum likelihood estimators [27].

Given their robustness in handling noisy image and signal processing [28], the explo-
ration of CNNs for quantum state classification represents an exciting avenue of research.
They can perform more accurate classifications by extracting characteristic patterns from
noisy data, although they still face challenges in high-noise environments. In this paper, we
primarily focus on the entanglement characteristics of quantum states by simplifying the
regression task of quantum state tomography (QST) into a classification problem. While
improving computational efficiency, we achieve good resistance to noise by leveraging the
inherent generalization capabilities of CNNs. Furthermore, we can maintain considerable
noise resilience while reducing the number of measurement operators that relate to the
information we can obtain. The results show that the model achieves an accuracy rate
exceeding 97.5% in determining entanglement for two-qubit quantum states in the absence
of noise, and it also exhibits resilience to a specific degree of noise interference.

2. Methods

2.1. Basic Idea

In quantum physics, a pure state system is considered separable if it can be expressed
as the tensor product of the states of two subsystems. This description can be extended
to the framework of density matrices to handle mixed states. Mixed states need to be
expressed as a convex combination of separable states [29,30]. In contrast, a composite
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system in an entangled state indicates a nonclassical, strong correlation between its two
subsystems. When systems A and B are entangled, measurements on A inevitably affect B,
causing quantum state collapse. To ensure the reliability of classification, the training CNN
model follows the main principle outlined below:

The input data for the training set consist of probabilities, which are computed using
Born’s rule applied to a specified set of known density matrices ρ and operators {Ok}.
These probabilities reflect the likelihoods of the corresponding measurement outcomes. In
short, the model learns from these probability distributions to identify the properties of
quantum states, particularly distinguishing separable states from entangled states.

In addressing the discrimination in two-qubit systems, we adopt the positive partial
transpose (PPT) criterion [31,32] as a rigorous standard to segregate quantum states into
entangled and separable categories. The density matrix ρ is deemed to represent an
entangled state if its partial transpose matrix possesses at least one negative eigenvalue.
On the contrary, if no negative eigenvalues are encountered in the partial transpose, ρ is
classified as a separable state. Once the PPT criterion has been applied to assign categorical
labels, we establish a mathematical convention of representing separable states with ’1’
and entangled states with ’2’, as illustrated in Figure 1. After rigorous training, the neural
network processes measurement frequencies of unknown quantum states and outputs
their classification as entangled or separable. Reliability depends on network architecture,
training rigor, and dataset quality.

Measurement

     Operators

 Ent/Sep

(standard)

   matrix

(unknown)

measure input

tra
in

probability

PPT criterion

calculate

 matrix

(known)

Measurement

     Operators

output

neural network
frequency

 Ent/Sep

(estimate)

Figure 1. The basic idea of using deep neural networks to implement entanglement detection.

To facilitate this classification, we randomly generate multiple sets of predefined
density matrices ρ, and calculate the probability P = Tr(ρOk) with distinct measurement
operators {Ok} as the input dataset. Subsequently, we apply the PPT criterion to these
inputs, generating the corresponding labels as our output dataset, which serve as the
foundation for training our model.

For binary classification, according to the estimated results and true labels, there are
four situations in total: true positive (TP), false positive (FP), true negative (TN), and false
negative (FN). The results can be evaluated by accuracy, precision, and recall as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Precision =
TP

TP + FP
, (2)
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and

Recall =
TP

TP + FN
. (3)

The accuracy represents the proportion of correctly classified samples out of all sam-
ples, while the precision measures the proportion of true positive examples among all
samples classified as positive. A higher precision indicates a lower likelihood of mis-
classifying negative examples as positive. On the other hand, the recall is the ratio of
successful detections among all true positives. A higher recall rate implies fewer missed
positive examples.

2.2. Noise Models

Pauli noise is a comprehensive noise model that includes Pauli matrices (σx, σy, σz),
representing quantum bit flipping, simultaneous bit and phase flipping, and phase flipping,
respectively. In quantum systems, this type of noise can cause errors in the state of quantum
bits, ranging from simple flipping to more complex errors. In a two-qubit system, qubit
Pauli noise is defined as [33]

ϵ(ρ) = (1 − ε)ρ + ε
16

∑
k=1

pk(σ1,i ⊗ σ2,j)ρ(σ1,i ⊗ σ2,j)
†. (4)

In this model, ρ represents the initial density matrices of the two-qubit quantum state.
ε is a parameter characterizing the intensity of the noise, with a value ranging between
0 and 1. σ1,i ⊗ σ2,j denotes the combination of Pauli operations (including an additional
2 × 2 identity matrix I) applied to the two qubits, where σ1,i and σ2,j are Pauli operators
acting on the first and second qubit, respectively. k represents the probability distribution
for the kth combination of operations, satisfying ∑

16
k=1 pk = 1 to ensure the completeness of

probabilities. To simplify our analysis, we opted for the basic formula,

ϵ(ρ) = (1 − ε)ρ + ε(I ⊗ σ2,x)ρ(I ⊗ σ2,x)
†, (5)

and it is worth noting that other forms can adhere to the same logical framework as well.
Depolarizing noise causes a quantum bit to gradually lose its specific state, transi-

tioning toward a completely mixed state. Depolarizing noise makes the information in a
quantum bit more random. The formula for two-qubit depolarizing noise is

ϵ(ρ) = (1 − ε)ρ +
εI

4
, (6)

and the definitions of each parameter are consistent with those previously mentioned.
Dephasing noise primarily affects the phase of a quantum bit rather than its amplitude.

Phase damping does not change the probabilities of the qubit being in |0⟩ and |1⟩ but causes
changes in their phase relationships. In a two-qubit system, dephasing noise is given by

ϵ(ρ) = (1 − ε)ρ +
ε

2
((σz ⊗ I)ρ(σz ⊗ I)† + (I ⊗ σz)ρ(I ⊗ σz))

†. (7)

Amplitude-damping noise is often associated with energy loss, such as the transition of
a quantum bit from an excited state to a ground state. This type of noise is particularly
common in quantum optical systems, where quantum bits lose energy through interactions
with the environment. Amplitude-damping noise is defined with the Kraus operator.
E0 = |0⟩⟨0| +

√
1 − ε|1⟩⟨1| and E1 =

√
ε |0⟩⟨1|. Its operator-sum representation can be

expressed as

ϵ(ρ) = E0ρE†
0 + E1ρE†

1. (8)

The four noise models enable us to simulate the detrimental effects of noise by mix-
ing the original quantum state with its counterparts that have undergone diverse Pauli
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transformations, where the noise intensity is governed by the parameter ε. By meticulously
adjusting both the ε value and the probabilities pk associated with each specific combination
of Pauli operations σ1,i ⊗ σ2,j, we can thoroughly analyze the evolution of the quantum state
under a given noise scenario. These noise models mentioned are then applied directly to
the density matrices, enabling us to quantify the influence of noise, and, consequently, sim-
ulate its implications on the performance of entanglement detection utilizing CNNs. This
approach provides insights into the robustness of entanglement detection in the presence
of various noise scenarios.

2.3. CNN Training

We use Werner states as follows to implement the network training and entanglement
detection:

ρ = p|ψ⟩⟨ψ|+ 1 − p

4
I, (9)

here |ψ⟩ =
√

2
2 (|10⟩ − |01⟩), p ∈ (0, 1), and I represents the 2 × 2 identity matrix.

We implement entanglement detection with a CNN constructed by the Deep Learn-
ing Toolbox of MATLAB. The networks’ hidden layers include two convolution layers
activated by the leaky rectified linear unit (ReLU) function, two max-pooling layers, and
one fully connected layer, and the softmax function is used to activate the output layer.
The specific architecture and hyperparameters used in our neural network training are
detailed in Tables 1 and 2. This information is crucial for understanding and replicating
our experimental results.

Table 1. The structure of our model.

Complete Measurement Incomplete Measurement

Image Input Layer 16 × 1 × 1 4 × 1 × 1
Input channels 1 1

2D-Convolution Layer
Input channels 1 1

Kernel 2 × 1 1 × 1
Stride 1, No Padding 1, NO Padding

Output channels 8 8
Activation function leakyReLU (α = 0.01) leakyReLU (α = 0.01)
Max-Pooling Layer

Input channels 8 8
Kernel 2 × 1 1 × 1
Stride 2, No Padding 1, NO Padding

Output channels 8 8
2D-Convolution Layer

Input channels 8 8
Kernel 2 × 1 2 × 1
Stride 1, No Padding 1, NO Padding

Output channels 16 16
Activation function leakyReLU (α = 0.01) leakyReLU (α = 0.01)
Max-Pooling Layer

Input channels 16 16
Kernel 2 × 1 2 × 1
Stride 2, No Padding 1, NO Padding

Output channels 16 16
Fully-Connected Layer

Units 2 2
Classification Output Layer

Activation function Softmax Softmax
Loss function Crossentropy Crossentropy
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Table 2. The hyperparameters of our model.

Parameters Value

Optimizer Adam
Initial Learning Rate 0.01

Mini Batch Size 6000
Max Epochs 800

The positive examples considered include entangled states and separable states, which
are characterized by five indices: accuracy (Acc), the precision of entangled states (Pre-Ent),
the precision of separable states (Pre-Sep), the recall of entangled states (Rec-Ent), and the
recall of separable states (Rec-Sep).

3. Results

3.1. Entanglement Detection without Noise

Using the corresponding measured frequencies as input dataset, our trained model will
output corresponding detection results, with labels ’1’ and ’2’ representing separable and
entangled states respectively, which is the same as previously stipulated. The measurement
is conducted on 100,000 randomly generated density matrices. Using the probability
P = Tr(ρOk), the measurement process without additional interference is simulated with
the Monte Carlo method and logical operation. The number of random numbers generated
can be adjusted to vary the number of simulated measurement operations.

A minimum of 15 parameters are needed to determine a two-qubit density matrix
completely, known as complete measurement [1]. To optimize resource utilization and
improve efficiency, we aim to manipulate incomplete measurements for reliable results.
In our work, we initially employ 16 optical polarization operators with an additional one
ensuring measurement completeness.

When simulating incomplete measurement, we gradually eliminate the aforemen-
tioned complete measurement operators. Finally, for the specific random states of interest,
we reduce the number of operators to 4 as listed below:

O1 = |00⟩⟨00|;
O2 = |01⟩⟨01|;
O3 = |10⟩⟨10|;
O4 = |11⟩⟨11|.

(10)

The models’ computation time is shown in Table 3 and the classification results without
noise are shown in Figure 2. Except for the Rec-Sep, which is slightly lower than that of the
other indicators when measured 1000 times, all the judgment indicators exceed 97.5%. This
classification model performs well without noise.

Table 3. Model’s computation time.

Classification Time Training Time

Complete measurement 0.003249 s 1 min 50 s
Incomplete measurement 0.002577 s 1 min 47 s
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Copies

 Acc  Pre-Ent  Pre-Sep  Rec-Ent  Rec-Sep

0.94
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1.00

Copies
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Figure 2. Results of entanglement detection without noise. The accuracy of both complete and

incomplete measurements exceeded 97.5%, and the precision and recall exceeded 96%. Under

10,000 simulated measurements, the accuracy increased to over 99%, and both the precision and recall

exceeded 98%. (a) Result of the complete measurement. (b) Result of the incomplete measurements

obtained by 4 measurement operators.

3.2. Demonstration of Robust Performance in the Presence of Noise

To simulate the detection under the influence of noise, we apply the operations shown
in Equations (5)–(8) to randomly generate density matrices after obtaining the labels by
PPT criterion. Then, we conduct complete or incomplete measurements on the processed
matrices and feed the resulting data into the trained model previously. Finally, we compare
the output results with the standard labels while applying four types of noise models to
the measured state and increasing the error rate ε. The results under both complete and
incomplete measurements are shown in Figure 3 and Figure 4, respectively.

This classification model tends to classify more states as the same type of state (sep-
arable or entangled states) under high error rates, which will result in a decrease in the
recall for one type of quantum state and an increase in another’s precision at meantime,
with the overall accuracy decreasing. The classification model gradually deteriorates under
the influence of noise. When the error rate is not excessively high, the generalization of
CNNs ensures our models’ high resistance to noise impact. As shown in Figure 3, when
conducting complete measurement, for depolarizing noise, dephasing noise, and amplitude
damping noise, the accuracy only dropped by less than 2% even with an error rate ε of 20%.

In Figure 4, for incomplete measurement with a raised error rate of 10%, the accuracy
dropped by less than 5% under four types of noise influence. Due to measurement incom-
pleteness, less information about the density matrices can be determined, resulting in lower
resistance to noise compared to complete measurement.
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Figure 3. Complete measurement results with four types of noise models, where ε represents the

error rate, increasing from 0 to 0.2. Except for Pauli noise, the decrease in accuracy under the other

noise models is less than 2%.
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Figure 4. Incomplete measurement results with four types of noise models, where ε represents the

error rate. The error rate increases from 0 to 0.1, with the accuracy decreasing by about 5% under the

four types of noise.

3.3. The Generalization of Our Classification Model

The resistance of this classification model is related to the generalization of the CNN to
a certain extent, which generally refers to the situation in which the training dataset differs
from the testing dataset. Generalization is a fundamental metric that assesses a model’s
capability to learn general patterns from training data and successfully apply them to new,
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unseen data. In the context of CNNs, the max pooling layer serves as a vital component,
playing a pivotal role in enhancing the model’s generalization. By adopting the strategy of
selecting the maximum value within a local region as the output, max pooling effectively
reduces the dimensionality of feature maps, decreases the computational complexity of the
model, and simultaneously strengthens its robustness against minor variations in input
data. This local invariance enables the model to enhance its generalization.

In the case of the aforementioned results, we employ a randomized sampling approach
to procure our datasets, ensuring that there is a minimal chance of direct overlap between
the training dataset and testing dataset. This strategy inherently promotes a scenario where
the model is tested on data that are genuinely novel and unseen during the training process.
Consequently, the foundation for the model’s generalization is firmly established and
validated, as it demonstrates its ability to adapt and apply learned patterns to dissimilar
data instances, thereby reinforcing its capacity to generalize effectively.

Here, we proceed to validate the model’s generalization capability through testing.

We still use the network above trained with random states ρ = p|ψ⟩⟨ψ| + 1−p
4 I; here,

|ψ⟩ =
√

2
2 (|01⟩ − |10⟩). We change to obtain the testing set from |ψ⟩ =

√
2

2 (|01⟩+ |10⟩),√
2

2 (|00⟩ − |11⟩), or
√

2
2 (|00⟩+ |11⟩). The comparison results are shown in Figure 5. When

changing within a certain range, the classification model can still achieve good performance.

0.94

0.96

0.98

1.00

| =|00 -|11

| =|01 +|10

 Acc  Pre-Ent  Pre-Sep  Rec-Ent  Rec-Sep

(b)(a)

Copies
0.94

0.96

0.98

1.00

Copies

0.88

0.90

0.92

0.94

0.96

0.98

1.00
| =|00 +|11(c)

Copies
0.90

0.92

0.94

0.96

0.98

1.00
(d)

Copies

| =|01 -|10

1,000 10,000 1,000

10,0001,000 10,000 1,000

10,000

Figure 5. Detection results for other ranges of quantum states. The testing dataset is expanded to

different ranges of state |ψ⟩.

For states |ψ⟩ =
√

2
2 (|01⟩ + |10⟩), the accuracy is almost the same as the testing

dataset |ψ⟩ =
√

2
2 (|01⟩ − |10⟩) similar to the training dataset with the measurements

repeated 1000 times, and decreases from 99.30% to 98.59% in 10, 000 repeated measurements.
Although the accuracy decreases even further when the testing dataset is expanded to

|ψ⟩ =
√

2
2 (|00⟩ ± |11⟩), the accuracies exceed 96% and 97% in repeated measurements of

1000 and 10,000, respectively, indicating that our model’s generalization is relatively reliable.
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4. Discussion

In this work, we employed the impressive recognition and generalization of convo-
lution neural networks for complex multidimensional data to implement entanglement
detection. This classification model achieved an accuracy exceeding 97.5%, making it a
reliable tool for determining entanglement solely based on measurement results, without
requiring complete information about the quantum states. Despite the impact of noise, this
classification model maintains its excellent performance, demonstrating resilience against a
certain degree of noise influence. Additionally, the generalization of convolutional neural
networks enables this classification model, which was trained on a certain range of quan-
tum states, to a certain extent, to extend to different states, making it an exceptional tool for
entanglement detection. The model schemes hold great potential for future applications in
the field of entanglement detection, and we are exploring optimization schemes to make the
model more effective to higher dimensional systems. Furthermore, although our model has
yielded positive results, we recognize that the quantum states we are currently studying
have relatively simple density matrix forms. In future research, we can further consider
improving the model structure or mixing noisy samples into the training data, aiming to
enhance the performance of this noise-resistant model in handling quantum states with
greater randomness and expand its applicability.
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The following abbreviations are used in this manuscript:

CNN Convolutional neural network

PPT Positive partial transpose

TP True positive

FP False positive

TN True negative

FN False negative

ReLU Rectified linear unit

Acc Accuracy

Pre-Ent Precision of entangled states

Pre-Sep Precision of separable states

Rec-Ent Recall of entangled states

Rec-Sep Recall of separable states
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