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Table 1.  Input parameters for calculation.

S8 Bl 2 Bl
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Fig. 1. (a) The normalized potential ¢ , plasma density n , electric field E , electron temperature T , magnetic field B, ion velo-

city v;, E x B drift velocity, electron diamagnetic drift velocity due to density gradient and magnetic gradient vy« and vp, re-

spectively, the grey dashed line in the indicates the exit plane; (b) the density and magnetic gradient on axial position.
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Fig. 2. Including collision effects, the dependence of the frequency (a) and growth rate (b) of the instability on the axial position.
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Fig. 5. Dependence of frequency (a) and growth rate (b) of instability on the axial position, including the gradient of plasma density

and electron collision effects.
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Instabilities triggered off by electron collision, plasma density
gradient, and magnetic field gradient in Hall thruster”
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MENG Wei  GENG Haif GUO Ning JIA Yanhui YANG Juntai

(Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China)
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Abstract

The free energy contained in electron drift, electron collision, and plasma density gradient, temperature,
magnetic field gradient can trigger off the instabilities with different frequencies and wavelengths in hall
thrusters. The instabilities will destroy the stable discharge of plasma, affecting the matching degree between
the thruster and the power processing unit, and reducing the performance of the thruster. Based on this, the
instabilities triggered off by electron collision, plasma density gradient, and magnetic field gradient in the hall
thruster are studied by using dispersion relation derived from the fluid model. The results are shown below.
1) When in the model includes the effects of electron inertia, collision between electrons and neutral atoms, and
electron drift, instability can be excited at any axial position from the near anode region to the plume region of
the thruster. With the increase of azimuthal wavenumber k, = 2r/), the lower-hybrid mode excited by electron
collision transitions into the ion sound mode, where k, = 2n /A, A being the wave length. The real frequency w:
corresponding to the maximum growth rate ~ma slightly decreases with collision frequency increasing for
k, =10 m~'. However, the maximum real frequency and real frequency w; corresponding to the maximum

! will not change with collision frequency for k, =300 m™'. Independent of the value

growth rate k, =300m~
of k,, the growth rate of mode triggered off by electron collision increases with collision frequency increasing.
2) The plasma density gradient effect plays a dominant role in triggering off instabilities when the electron
inertia, electron-neutral collisions and plasma density gradient are simultaneously included in the model. The
dynamic behavior of the model does not change with the increase of k,, but the eigenvalue of the model
increases with the k, increasing. Since the sign of anti-drift frequency induced by the plasma density gradient
is changed, the mode eigenvalues have the opposite change trend on both sides of point xkx. When the sign of
wr and w, are opposite, the density gradient effect has a stabilization effect on instability excitation (xn > 0).
When the sign of ws and w; are the same, the density gradient effect enhances the excitation of instability
(kv <0). 3) If the plasma density gradient, magnetic field gradient, electron inertia and electron-neutral
collisions are included in the dispersion, the mode eigenvalue relies on the electron drift frequency, and the
diamagnetic drift frequency induced by the density gradient and magnetic field gradient. When the density
gradient effect and the magnetic field gradient effect are considered, there is a stable window in the discharge
channel. However, if the electron inertia and electron-neutral collisions are also included, the stable window will

disappear.
Keywords: Hall thruster, density gradient, magnetic gradient, electron collision, instability
PACS: 52.27.-h, 85.30.Fg, 52.75.Di, 52.35.—¢g DOI: 10.7498/aps.74.20241330
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