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Abstract

This is the first in a series of articles about recovering the full algebraic structure of
a boundary conformal field theory (CFT) from the scaling limit of the critical Ising
model in slit-strip geometry. Here, we introduce spaces of holomorphic functions in
continuum domains as well as corresponding spaces of discrete holomorphic func-
tions in lattice domains. We find distinguished sets of functions characterized by their
singular behavior in the three infinite directions in the slit-strip domains, and note in
particular that natural subsets of these functions span analogues of Hardy spaces. We
prove convergence results of the distinguished discrete holomorphic functions to the
continuum ones. In the subsequent articles, the discrete holomorphic functions will
be used for the calculation of the Ising model fusion coefficients (as well as for the
diagonalization of the Ising transfer matrix), and the convergence of the functions is
used to prove the convergence of the fusion coefficients. It will also be shown that
the vertex operator algebra of the boundary conformal field theory can be recovered
from the limit of the fusion coefficients via geometric transformations involving the
distinguished continuum functions.
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1 Introduction
1.1 Conformal Invariance Results About the Ising Model Scaling Limit

We have witnessed a breakthrough in the mathematically precise understanding of
the conformal invariance properties of the critical planar Ising model, following the
discrete complex analysis ideas pioneered by Smirnov [64]. The conformal invariance
properties arise in the scaling limit of the lattice model, upon zooming out so that the
lattice mesh tends to zero.

One facet of the progress has been advances in the random geometry description of
the scaling limit. It has been proven that interfaces arising with Dobrushin boundary
conditions in both the Ising model and its random cluster model counterpart tend to
conformally invariant random curves known as Schramm-Loewner evolutions (SLE)
[14, 19, 65]. Generalizations of interface convergence results for boundary conditions
other than Dobrushin type have been obtained in [5, 9, 28, 35, 36, 42, 45, 47, 58].
The full collection of all interfaces in the Ising model and its random cluster model
counterpart tend to processes known as conformal loop ensembles (CLE) [8, 46].

Instead of the random geometry of interfaces, the physics tradition as well as the
constructive quantum field theory tradition place focus on correlation functions. The
existence of scaling limits of renormalized Ising model correlation functions, and the
conformal covariance of these scaling limits, have been shown for energy [27, 31]
and spin [15]. Recently a similar conclusion has been obtained for mixed correlation
functions of all primary fields including the spin and energy [16]. It has even been
shown that the set of all possible lattice local fields of the Ising model carries a
representation of the Virasoro algebra [29], a hallmark of conformal field theories
(CFT), and that with generic renormalization local correlation functions of such fields
have conformally covariant limits [26]. Building on the correlation function results,
it has furthermore been proven that the collection of Ising spins viewed as a random
field converges to a conformally covariant scaling limit [10, 11].

The 100 year history of the Ising model contains a wealth of ingenious mathematical
ideas that have enabled rigorous results, including transfer matrix methods [49, 56, 70]
and their fermionic formulations [44, 61] and Toeplitz determinants [24, 54, 68], Kac-
Ward matrices [40], dimer representations [23, 43], discrete complex analysis [41, 53],
commuting families of transfer matrices [67], Yang—Baxter equations [4], non-linear
differential equations (particularly Painlevé type) and difference equations [37, 38, 59,
69], and bosonization [22]; for more on the various mathematical developments see,
e.g.,[3,52,57] and [13, 20]. The recent mathematical breakthroughs on the conformal
invariance of both random geometry and correlation functions of the Ising model,
however, has been enabled mainly by novel notions of discrete complex analysis that
apply particularly well to the Ising model: s-holomorphicity and specific Riemann
boundary value problems [18, 19, 65].
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1.2 The Conformal Field Theory Picture

The prediction of conformal invariance was made in theoretical physics research in
the 1980’s, in a research field titled conformal field theory (CFT). Physicists predicted
that, very generally, models of two-dimensional statistical physics at their critical
points of continuous phase transitions should, in the scaling limit, be described by
field theories with conformal symmetry [7]. Such conformal field theories turn out to
be algebraically very stringently constrained [6]—in mathematical terms their chiral
symmetry algebras are vertex operator algebras (VOA) [25, 33, 39, 51]. This predic-
tion and the associated algebraic structure leads to absolutely remarkable, specific,
exact predictions about the statistical physics models—including values of critical
exponents, formulas for scaling limit correlation functions, modular invariance of
renormalized scaling limit partition functions on tori, etc., see, e.g. [21, 55].

The square lattice Ising model is an archetype of such statistical physics models,
and known results about it lend very strong support to the predicted general picture.
But although there is thus virtually no doubt that the conformal field theory picture for
the scaling limit of the Ising model is correct in an exact sense without approximations,
there is still no mathematical result establishing a complete conformal field theory as
the scaling limit of the critical Ising model, and one even struggles to find a precisely
stated mathematical conjecture about it in the literature!

The general goal of this series of articles is to remedy this situation by showing
that the full algebraic structure of the conformal field theory generally conjectured to
describe the scaling limit of the Ising model is indeed recovered in the scaling limit.
More precisely, the combination of results proven in this series establishes that the
fusion coefficients of the critical Ising model with locally monochromatic boundary
conditions in slit-strip geometry (defined in [2] as renormalized limits of boundary
correlation functions in lattice slit-strips) converge in the scaling limit to the structure
constants of the vertex operator algebra of the fermionic Ising boundary conformal
field theory (Figs. 1,2,3,4,5,6,7,8,9, 10, 11, 12).

1.3 Slit-Strip Geometry and Boundary Conformal Field Theory

In this series of articles we consider the critical Ising model in lattice approximations
of the strip and slit-strip geometries illustrated in Fig. 5. Ising spins will be placed
on the vertices of the graph approximations of these geometries depicted in Fig. 10,
and with locally monochromatic boundary conditions on the vertical boundaries (for
a precise specification of the probabilistic model, see [2]). Likewise, we extensively
use spaces of holomorphic functions in the strip and the slit-strip, as well as discrete
holomorphic functions in their lattice approximations. Let us briefly explain the role
that the strip and slit-strip geometries play in boundary conformal field theory.

The rough idea is that the strip and the slit-strip are for boundary conformal field
theory what the cylinder (or annulus) and the pair-of-pants Riemann surfaces are for
bulk conformal field theory. Let us begin with the more familiar setup of bulk conformal
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(a) Cylinder surface. (b) Strip surface (truncated).

—

(c) Pair-of-pants surface. (d) Slit-strip  surface
(truncated).

Fig. 1 The (truncated) strip and (truncated) slit-strip surfaces have the same role in boundary CFT as the
cylinder and pair-of-pants surfaces have in bulk CFT

field theory. ! The role of geometry is most transparent in Segal’s axiomatization of
conformal field theories [62, 63], in which a CFT is defined as a (projective) functor—
subject to certain axioms—ifrom the category whose morphisms are bordered Riemann
surfaces with parametrized boundary components to the category whose morphisms
are trace-class operators between tensor products of a given Hilbert space. Segal’s
approach is clearly motivated by the transfer matrix formalism in statistical mechanics:
the operators associated to cylider surfaces (of different moduli) form a semigroup
which is thought of as the scaling limit of the semigroup generated by the transfer
matrix itself.

Sewing together bordered Riemann surfaces along (parametrized) boundary com-
ponents is the composition in the category. Cylinder surfaces alone can only be sewn
with each other to form cylinders (sew together two cylinders) as in Fig. 2a. or tori
(sew together the two ends of a cylinder). On the other hand, the pair-of-pants surfaces
can be sewn together as in Fig. 3 to form surfaces of arbitrary genus, and in this sense
they are the building block of all Riemann surfaces. The use of the term vertex operator
(and the symbol Y used for it) originates from the picture of the pair-of pants surface
(a vertex diagram in string theory) and the operator that is associated with this surface.

U Bulk conformal field theory is in fact commonly referred to plainly as conformal field theory (CFT), and
the term boundary conformal field theory (BCFT) is then used to distinguish the case when the domains
of interest have physical boundaries on which boundary conditions can be imposed (for the fields of the
quantum field theory and for the statistical mechanics model that is to be described by the quantum field
theory). If one focuses only on symmetry algebras, the term chiral conformal field theory could be used in
place of boundary conformal field theory as well, although this term originally arises from decomposing
the symmetry algebra of a bulk conformal field theory into two parts: holomorphic and antiholomorphic
chiralities. Our main focus will be the Ising model in domains with boundary, but we use the term conformal
field theory generally to variously refer to any of the above—we then use the epithets boundary, bulk, and
chiral, where attention needs to be drawn to the particularities of the case in question.
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(a) Sewing together cylinders. (b) Sewing together rectangles.

Fig. 2 The sewing together of cylinders in bulk CFT and the sewing together of truncated strips (i.e.,
rectangles) in boundary CFT give rise to semigroups that correspond to the scaling limits of the transfer
matrices

2 o

Fig.3 Sewing many pair-of-pants can produce arbitrary genus surfaces

It is a natural change in the point of view [33, 60] to equip the bordered Riemann
surfaces with tubes (cylinders infinitely extended in one direction) attached to the
boundary components so that the surfaces become punctured surfaces: the punctures
correspond to the infinite extremities of the tubes (and thus there is one for each bound-
ary component of the original bordered Riemann surface) and they become equipped
with a choice of local coordinates. With this point of view, cylinders correspond to the
Riemann sphere with two punctures, and the pair-of-pants corresponds to the Riemann
sphere with three punctures.

A rectangle, or equivalently a truncated strip, is the natural counterpart in boundary
conformal field theory to a cylinder of finite modulus in bulk conformal field theory,
whereas the doubly infinite strip is the counterpart of the cylinder with tubes attached
to each end, i.e., the twice-punctured sphere. The transfer matrix is, indeed, simplest to
use for calculations in rectangles and strips. Along with the main result of this series,
we will of course also verify the familiar statement that the scaling limits of powers
of transfer matrices form the semigroup generated by the energy operator L in the
vertex operator algebra, in agreement with the interpretation in Segal’s formulation.

A truncated slit-strip is the natural counterpart in boundary conformal field theory
for a pair-of-pants surface in bulk conformal field theory, whereas the infinite slit-
strip (with three infinite extremities) is the counterpart of the pair-of-pants with tubes
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Fig.4 Sewing many truncated slit-strips can produce arbitrary multiply connected domains

attached to each end, i.e., the thrice-punctured sphere. By sewing together boundary
intervals of (surfaces conformally equivalent to) truncated slit-strips, it is possible to
build general multiply connected planar domains with boundaries as in Fig. 4. In this
sense the slit-strip geometry is the building block of general domains in boundary
conformal field theory in exactly the same way that the pair-of-pants surface is in bulk
conformal field theory.

Our main result that the fusion coefficients of the Ising model with locally
monochromatic boundary conditions in the lattice slit-strip tend, in the scaling limit,
to the structure constants of the vertex operator algebra, therefore recover the clear
boundary conformal field theory analogue of the role that vertex operators have in
bulk conformal field theory as operators associated with the pair-of-pants geometry.

1.4 Overview

This article concerns the function spaces needed in the analysis of the scaling limit of
the Ising model fusion coefficients. In Sect. 2 we consider spaces of holomorphic solu-
tions to a Riemann boundary value problem in the strip and the slit-strip, and in Sect. 3
their discretized analogues: spaces of s-holomorphic solutions to a Riemann boundary
value problem in a lattice strip and a lattice slit-strip. We will, in particular, study the
restrictions of such functions to a cross-section of the strip or the slit-strip—much
like in Segal’s CFT one would view cross-sections of surfaces as carrying physical
states in the Hilbert space, which are then acted on by the operators associated to Rie-
mann surfaces lying between different cross-sections.” The Riemann boundary values
(and s-holomorphicity) are real-linear conditions, and the function spaces here will
all be real vector spaces. They will have the natural Hilbert space structure coming
from square integrability of the functions on cross-sections. We find and concretely
describe distinguished bases of functions: eigenfunctions of vertical translations in

2 The Hilbert space of functions we consider here is not directly the analogue of the Hilbert space of states
in the quantum field theory, however. Instead, a good analogue of the quantum field theory state space is
the alternating tensor algebra of the subspace of functions which admit a regular extension in one infinite
direction of the strip, i.e., of a suitable analogue of a Hardy space. For details, see the subsequent parts [2,
48].
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the discrete and continuous strips (Sects. 3.3 and 2.2, respectively), and functions in
the discrete and continuous slit-strip which have prescribed singularities in one of
the infinite extremities and which are regular in the other two (Sects. 3.4 and 2.3,
respectively). In Sect. 4, we prove the convergence of the distinguished functions on
the lattices to the distinguished continuum functions, and the convergence of all corre-
sponding inner products. The convergence of the vertical translation eigenfunctions is
done by a direct calculation, whereas the convergence of the distinguished functions
in the slit-strip employs techniques based on the imaginary part of the integral of the
square [18, 19, 64].

The second part of this series [2] will address the Ising model itself, in the lattice
strip and the lattice slit-strip and with locally monochromatic boundary conditions.
It will be shown that there is a way to diagonalize the transfer matrices associated
with the strip and the slit-strip using Clifford algebra valued discrete one-forms built
from one set of distinguished discrete functions in the present article, and that s-
holomorphicity and Riemann boundary values underlie the possibility to perform
contour deformations in the integrals of these one-forms. The contour deformations
are clearly analogous to those used in boundary conformal field theory, and using
them with the other set of distinguished discrete functions of the present article, we
derive a recursive characterization of the fusion coefficients of the Ising model. The
recursion involves inner products of the distinguished discrete functions, and by the
present article’s results on their convergence, we will be able to prove the convergence
of the fusion coefficients in the scaling limit.

In the third part [48] we will arrive at the main statement of the series: from the
scaling limits of the fusion coefficients one can recover the structure constants of the
vertex operator algebra of the fermionic conformal field theory that has been claimed to
describe the Ising model, and conversely from the structure constants one can recover
the scaling limits of the fusion coefficients. The recovery involves only changes of
bases related to the choice of natural local coordinates at the three infinite extremities
of the slit-strip, which again naturally involve the distinguished continuum functions
of the present article.

1.4.1 Novelty

Together, the series provides a fully rigorously worked out model case of a mathe-
matically precise statement about the emergence of the full algebraic structure of a
boundary conformal field theory in the scaling limit of a lattice model of statistical
mechanics. Given the broad conjectured validity of the conformal field theory picture,
this should be viewed as the prototype of a precise conjecture to be formulated about
many other models. Some of our steps are inevitably specific to the Ising model (par-
ticularly the role of s-holomorphicity and Riemann boundary values), but certain steps
could even offer technical insights into the cases of other models.

We do not claim essential technical novelty in any of the results concerning the
strip geometry—this case is included mainly for coherent formulation of the whole:
the definitions are needed in any case, and proofs are provided for self-containedness.
All of our calculations in the lattice strip are fully explicit and in essence equivalent
to the calculations needed to diagonalize the transfer matrix of the Ising model with
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locally monochromatic boundary conditions. The well known diagonalization of this
transfer matrix [1, 57] in particular allows one to conclude without difficulty that
the suitable powers of the transfer matrix converge to the exponentials of the energy
operator L in the vertex operator algebra of the fermionic Ising CFT, for example by
realizing the VOA as an inductive limit of transfer state spaces.

Instead, the technical novelty of our work pertains almost exclusively to the slit-strip
geometry. Key objects for us are the distinguished functions in the lattice slit-strip,
whose asymptotics in one of the extremities matches the behavior of the explicit
strip functions. Such globally defined discrete holomorphic functions are analogous
to objects needed in Segal’s CFT for vertex operators; not merely the semigroup
generated by the energy operator L. The fact that such globally defined s-holomorphic
functions exist at all is crucial to our later contour deformation arguments, and their
convergence is at the heart of the convergence of the Ising model fusion coefficients.
For both of these, recently developed specific techniques of discrete complex analysis
[18, 19, 64, 65] are indispensable. And it is precisely thus established convergence and
recursion properties of the Ising model fusion coefficients which allow us to recover
the vertex operator algebra in the scaling limit.

2 Continuum Function Spaces and Decompositions

In this section, we introduce the function spaces which play a crucial role in our
analysis of the continuum limit of the Ising model fusion coefficients. A key notion
are certain Riemann boundary values for holomorphic functions [64]. The notion has
found some use in functional analysis [32], but it is the analogous notion in the lattice
setup that has turned out particularly fruitful for the study of the Ising model [12, 66].
The straightforward continuum problem considered in the current section provides an
instructive blueprint for what to expect of the lattice discretizations of Sect. 3.

For our purposes, holomorphic functions with Riemann boundary values will be
studied in two different geometries: the infinite strip S and the infinite slit-strip Sgj; of
Fig. 5. In the spirit of Segal’s geometric formulation of conformal field theories [62,
63], we focus in particular on the restrictions of such functions to a crosscut of the strip
or the slit-strip. In both cases, the crosscut is basically an interval, and the appropriate
function space is a space of square-integrable complex valued functions on the cross-
cut interval. This space of complex valued functions is made into a real Hilbert space,
because the Riemann boundary values are a real-linear condition. An obvious differ-
ence to Segal’s formulation is that we consider geometries with boundaries, analogous
to open-string string theory rather than the more common closed-string version for
which Segal’s formulation is directly suitable. Correspondingly the cross sections are
not (disjoint unions of) circles as in Segal’s formulation, but rather (disjoint unions
of) intervals.

In Sect. 2.1 we define the Riemann boundary values, and introduce the appropriate
function spaces for the strip and the slit-strip geometries. In Sect. 2.2 we introduce
the basis of the function space corresponding to vertical translation eigenfunctions
in the strip. These continuum functions are just Fourier modes with a quarter-integer
phase difference between boundaries, but their discrete analogues will be a key to
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the diagonalization of the Ising transfer matrix. In Sect. 2.3 we introduce analogous
functions in the slit-strip, defined locally near each of the three extremities of the
slit-strip, as well as globally defined functions which have prescribed singularities at
the three extremities. The latter will feature naturally in expressions for VOA matrix
elements in [48].

2.1 Functions in the Strip and the Slit-Strip
2.1.1 Riemann Boundary Values for Holomorphic Functions

Let 2 C C be a domain (open, connected subset). Suppose that xo € d€2 is a bound-
ary point of the domain (more precisely a prime end) such that locally near xq the
boundary 9<2 is a smooth curve, and let t(xp) be a unit complex number represent-
ing the direction of the counterclockwise oriented tangent to the boundary at xp. A
holomorphic function F : Q — C which continuously extends to xp has Riemann
boundary value at x if

F(xg) € it(x0)” /?R. 2.1

2.1.2 The Strip and the Slit-Strip

The two domains of interest to us will be the unit width vertical strip
1 1
S:=3z€eC| — - <Ne(z) < = 2.2)
2 2
and the slit-strip

Ssiic := S\ {1y [ y < 0}. (23)

These domains are illustrated in Fig. 5.
According to definition (2.1), a holomorphic function F: S — C in the strip has
Riemann boundary values if for all y € R we have

F(%l +1'1y) ce AR and F(%l +1'1y) AR (24)

For a holomorphic function F: Sgii — C to have Riemann boundary values in the
slit-strip, in addition to the above it is required that for any y < 0, the left and right
limits on the slit part of the boundary satisfy

F(0"+iy) ee™*R and  F(0T +1iy) e e ™*R. 2.5)
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S Sslit

(a) The infinite vertical strip S and its (b) The infinite slit-strip Sq;¢ and its
horizontal cross-section Z. horizontal cross-section Z.

Fig.5 The strip and slit-strip domains

2.1.3 The Horizontal Cross-Section

We study functions on the strip S and the slit-strip Sqjjy domains through their restric-
tions to the horizontal cross-section at zero imaginary part

7| L1 (2.6
'_ [_2’2}’ -6)

and therefore consider appropriate spaces of complex valued functions on this interval.
For this purpose, we use the real Hilbert space

L= LfR(I, 0), 2.7)

of square-integrable complex valued functions on the cross section. The square-
integrability requirement can be seen as imposing the Riemann bounday value also at
the tip of the slit, in an appropriate (conformal) sense. The norm || f|| of f € £ 2 is
obtained from

1
171 = [ 1o a,
-2

as usual, but we emphasize that the inner product takes the form

1

(f.g) = /_21 (e(£ @) e(g)) + 3m(£()) Sm(g(x)) ) d

2
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1

_ / de( £ @) dx. 2.8)

-2

since we view £ as a Hilbert space over R, not C.

2.2 Decomposition Into Vertical Translation Eigenfunctions

First, consider functions in the vertical strip S. We look for holomorphic func-
tions F: S — C with Riemann boundary values (2.4), which are furthermore
eigenfunctions for vertical translations, i.e.,

F(z+1h) = A(h)F(2) forallz € S andh € R. 2.9)

The vertical translation eigenfunction property (2.9) is clearly only possible
if ACh) = eP! for some p, and it also implies that the function must factorize as
F(x +1y) = f(x) e??.Cauchy—Riemann equations then amount to f/(x)+ipf(x) =
0, which yields f(x) o e 1P% The Riemann-boundary values (2.4) in turn can be
satisfied only if e!” = f(51)/f () € iR, ie., p € 7Z + %. The functions of inter-
est to us are therefore basically the analytic continuations of quarter-integer Fourier
modes on the cross-section Z (the argument makes one quarter-turn plus any number
of half-turns from one end of the interval Z to the other).

For indexing the Fourier modes (as well as the fermion modes in the vertex operator
algebra later on), we use the sets of positive half-integers and of all half-integers
denoted in what follows by

j:lC::ICU(—IC):Z+§={:I:%,:I: } (2.10)
Then, for k € £/, we define the function
Er(x +1y) := Cy exp ( — imkx + nky), forx +1y €S, (2.11)
and its restriction to the cross section

er(x) :=Cr e 7 forx e, (2.12)

where the normalization constant is chosen as
Cy = T (k2=1/4) (2.13)
to ensure Ex (5" +iy) € e /4R, and [lex|| = 1. These quarter-integer Fourier

modes (2.12) are illustrated in Fig. 6. Let us start by checking that they form an
orthonormal basis of our function space .#2.
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=1 =1 =1 1
2 2 2 2
(a) The Fourier mode ¢y, for k = 1/2. (b) The Fourier mode ey, for k = —1/2.
=1 +1 =1 1
2 2 2 2
(c) The Fourier mode ey, for k = 7/2. (d) The Fourier mode ey, for k = —7/2.

Fig.6 Examples of real and imaginary parts (blue and orange) of the restrictions ey, of the vertical translation
eigenfunctions Ej to the cross section Z = [5, %]. Riemann boundary conditions (2.4) fix the ratio of
the real and imaginary parts at the two endpoints, and our normalization (2.13) fixes the phase at the left
endpoint. (Color figure online)

Proposition 2.1 The collection (ey); . i is an orthonormal basis for the real Hilbert
space L. In particular, for k, k' € £K we have

(ex, exr) = Sp . (2.14)

Proof Orthonormality (2.14) is shown by a routine trigonometric integral. It thus
remains to show completeness of the collection (ex), -

Given f € .22, a square-integrable complex valued function on the inter-
val [—1/2, +1/2] of length 1, define a period 4 extension of f to R as follows. First
extend fto[—1/2,+3/2]by f(1—x) =1 f(x), and then extend to R by the antiperi-
odicity condition f(x + 2) = — f(x). By ordinary Fourier series, we can write this
extended square-integrable function on [—2,2] as f(x) = ), 7. ¢x e I T/2 | yith
some complex coefficients ¢, € C. It follows from antiperiodicity that the even coeffi-
cients vanish, c,, = 0 for all m € Z. From the reflection property f(1 —x) =1 f(x)
it follows that the odd coefficients satisfy cox + 12k=1er = 0 for all k € £K, ie.,
that ¢y lies on the line RCy in the complex plane. The terms in this Fourier series are
therefore real multiples of the basis functions ey, k € +/XC. Completeness follows. O

Remark 2.2 The functions obtained by imaginary multiplication x — 1e(x), and
complex conjugation x > ei(x) are obviously also square-integrable, and related
by ej(x) = ie_i(x). Note that the expansions of both of these in the basis (ex); .
of .#? (with real coefficients!) contain infinitely many terms. The combination of the
two operations, however, amounts to simply changing the sign of the mode, 1 e (x) =
e_k(x), as is evident also in Fig. 6.
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The positive and negative modes form a splitting of the Hilbert space into two
orthogonally complementary subspaces

2 2 2
L= gT;pole D "gT;

Zero’

where

sz;pole := spanp {ek | k > 0} sz;ZCm := spanp {ek | k < 0}. (2.15)

We denote the orthogonal projections to these two subspaces by

0 ifk<O
T pole : 7 frﬁpole l_[T;pole(ek) = {ek k>0
er ifk <O
HT;Zem: 9%2 - «iﬂ"[g;zero 1—IT;zero(ek) = {O ik >0

2.3 Decomposition of Holomorphic Functions in the Slit-Strip

With particularly the slit-strip Sgji¢ in mind we also use functions defined in the left
and right halves of the strip,

-1 1
st :={z eC ‘ o <@ < o}, SR :={z eC ' 0 < Ne(z) < %} (2.16)
and their restrictions to left and right halves of the cross sections

o= [_71 o], R .= [0, %1] 2.17)

The space of square-integrable functions has an orthogonal decomposition into func-
tions with support in the left and right halves,

L =Ko 4.
where we can interpret (modulo extension by zero to the other half)
L2 =144 0), 2R = LRI~ O).
The quarter-integer Fourier modes for the left and right halves are defined by

EF(x +1y) = CF exp (— i2wkx + 27ky),  eF(x) = Cre 2™ (2.18)
ER(x +1iy) = CR exp (—i27kx +27ky),  eR(x) = CRe ™% (2.19)
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for k € +/C, where we choose C,'; = /2 (k=1/4) gnd C,l} = /2 e /4 0 ensure
EE(5 +1iy) e e /4Ry and [lek|| = 1, and ER(0 +1y) € e /4R, and [|e}|| =
1, respectively.

The following orthonormal basis properties follow easily from Proposition 2.1
again.

Proposition 2.3 The collections (e,%) kerfc and (e,lf) ketfC are orthonormal bases for

the real Hilbert spaces ELZ and .,S”RZ, respectively. These two collections combined
form a basis for the real Hilbert space £* = ng ) ,,?Rz.

We can further split the functions with support on one of the two halves to those
with negative or positive modes in the corresponding half; i.e., write

2 _ 2 2 2 o2 2

"g’ﬂL - "gL;pole D fL; "%R - fR;pole @ "%R;

Zero’ Zero’

where

2
"?L;pole

L oo = sPANR {ef | k >0} LR, = spanp {ef [k >0}.  (2.20)

= spanp {ek |k <0} %2

o = Spang (X [ £ < 0]

Remark 2.4 In (2.15), the poles corresponded to positive indices k > 0 and zeros to
negative indices k < 0; the former Fourier modes are tending to infinity in the top
extremity of the strip, and the latter to zero. Here in (2.20) we instead care about the
asymptotics in the left and right downwards extremities of the slit-strip, where it is the
modes with negative indices that tend to infinity and modes with positive indices that
tend to zero—hence the opposite convention for the correspondence between labels
and indices.

We have thus introduced two decompositions of the function space £
2 2 2
L= "S/pT;pole ® "S’ﬂngero7 (2.21)
and
2 2 2 2 2
2= gL;pole @ 'iﬂL;zero ® gR;pole & gR;zero‘ (2.22)

The orthogonal projections to the two subspaces in decomposition (2.21) are denoted
by T, pole : K7L .,Z”Tz;pole and TIT. ero K7L ,XTZ;Z“O. We denote the orthogonal
projections onto the four subspaces in decomposition (2.22) by

. 2 2
HL;pOle D L — "gL;

. 2 2
L. zero0 L= &L

L;zero’

. 2 2
ITR; pote : L7 — fR;

. 2 2
HR;zero~ g —> .,Sf

R;zero*

pole’ pole’
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2.3.1 Singular Parts of a Function in the Three Extremities of the Slit-Strip

For a function f € .Z 2 we call

[T pote (f) € ,,S,”Tz; pole its singular part at the top,
L pote (f) € sz; pole its singular part in the left leg,
IR;pote (f) € Z]%; pole its singular part in the right leg. (2.23)

If I, pote (f) = O (resp. Iy pote (f) = Oor IR pole (/) = 0), we say that the function f
admits a regular extension to the top (resp. regular extension to the left leg or regular
extension to the right leg).

The following result shows that a function is uniquely characterized by its singular
parts. It is the analogue of the result that in bounded domains holomorphic functions
with Riemann boundary values must vanish identically, see [27]. In our unbounded
domains the additional requirement is just regular extension to the three infinite extrem-
ities. The proof technique is a simple continuum version of the main tool we will use in
the discrete setup with s-holomorphic functions: the (harmonic conjugate of the imag-
inary part of the) integral of the square of the holomorphic function with Riemann
boundary values.

Lemma 2.5 Ifa function f € £ admits regular extensions to the top, to the left leg,
and to the right leg, then f = 0.

1
Proof First we will show that Jie f i f (x)%dx =0. By the assumption I, pote (f) =
-2

0,wecanwrite f = ),/ crep withreal coefficients ¢, which are square summable,
D =0 c]%, < 00. To obtain smooth approximations, for N € N define the partial sum

N = Z Crex s Fy = Z cv Ey,

—N<k'<0 —N<k'<0
so that fy — f in .#? and Fy is a holomorphic function in the top half
ST:={z eS| 3mw) > 0}

which extends smoothly to the boundary dST, coincides with fy on the cross-
section Z C 9ST, and has Riemann boundary values (2.4) on the left and right
boundaries. Moreover, F (x 4 1y) decays exponentially as y — 4-o00. By Cauchy’s
integral theorem for F ]%, along ST with Riemann boundary values F N(:I:% +iy)? =

+i | Fy (1 +1y)]%, we get

1

2 2
1 SN () dx
-2

+00 1 5 +00 1 2
+1‘1/ Fy(— 5 +1y) dy—ﬁ/ Fy(+4 5 +1y)" dy
0 2 0 2

+oo 1 +ee | N
/ |FN(—§+11y)| dy—f-/ |FN(+§+ny)| dy > 0.
0 0
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Since fy — fin.Z? as N — oo, we conclude

3
1 f(x)%dx > 0.
2

Entirely similar arguments in the left and the right legs yield
0 >
/ 1 fx)?dx <0, / fx)?dx <0.
-1 0
2
1
Together these observations imply that f 2 f(x)?dx = 0, and in particular also
2

+00 1 2
/ ‘FN(E—i—ﬁy)’ dy — 0 as N — oo.
0

Then consider F: ST — C defined as F = Y woCkEp. Since |Ep(x +iy)| <
e_k/”y, we have Fy — F uniformly on {z €S | Jm(z) > 8} for any ¢ > 0, and F is

holomorphic in ST and smooth in sT \ Z. But we now have
+00 1 2 +00 1 2
F(5+iy)| dy= 1 Py (5 +1y)| dy =0
/g ‘ (2+ny) y=Jim | N(2+ny) y
for any ¢ > 0, so F vanishes identically on the right boundary vertical line (similarly
for left). Vanishing on a line segment implies F' = 0, and therefore we get that ¢,y = 0
for all &/, and also f = 0. O

2.3.2 Pulled-Back Monomials

By Lemma 2.5 above, the singular parts (3.17) uniquely characterize a function f €
£? 1tis therefore natural to introduce basis functions, which have exactly one singular
Fourier mode of a given order in one of the three extremities of the slit-strip, and which
are regular in the other two extremities. It is easier to first construct functions which are
a mixture with finitely many singular Fourier modes, and to then recursively extract
the ones with a single singular Fourier mode.

In the upper half plane

H:{wE(C

Sm(w) > 0} ,

the Riemann boundary values (2.1) amount to the requirement that the functions are
purely imaginary on the real axis. Therefore imaginary constant multiples of Laurent
monomial functions centered on the real axis, w +— 1 (w —¢)", n € Z, ¢ € R, are
appropriate singular modes in the half-plane. Conformal transformation as %—forms
preserves the Riemann boundary values (2.1). This guides the construction below.
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Consider the conformal map

@: Sgi — H

@) = = V1 —e 272 (2.24)

N =

from the slit-strip to the upper half-plane, where the branch of the square root is such
that it always has a positive imaginary part. It maps the top extremity of the slit-strip
to 0o, and the left and right downwards extremities to —% and +%, respectively. Illus-

trations of this conformal map (2.24) are given in Figs. 7 and 8. Note the asymptotics
in the three extremities of the slit-strip

wm=§fm+0wm, ¢@=%JW+OM%

|||l—|lili“

——i‘i‘i‘i‘i‘i‘i\iﬁi“

S
[~

‘\;\»
|

—

(a) The mapping z — ie~ "% is con- (b) The mapping z — ¢(z) is confor-
formal from the the strip S to the half mal from the the slit-strip Sgj; to the

half plane H: the level lines of its real
and imaginary parts are shown here.
Fig.7 Illustrations of conformal maps to the strip and the slit-strip

plane H: the level lines of its real and
imaginary parts are shown here.

Fig. 8 Illustration of the conformal map ¢: St — H from the slit-strip to the half-plane: the images in
the half-plane of horizontal and vertical lines in the slit-strip are shown here
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-1 1 . - i . o

0@ =+ e L O(e i) @ (g) = %”e—z’”z + O@E™*)  in the left leg,
11, . P _

() = ;; ~a e O™, /() = L;Ue*z”” + O(e~ 412y in the right leg.

To use the conformal map ¢ for unique pull-backs of %-forms, let us fix a branch
of the square root of the derivative’

V' Sqit = C\ {0}

so that /¢’ (x(])‘) € /4R, for boundary points x(% on the left boundaries and

Ve (xg) € e /4R, for boundary points xg on the right boundaries.* With this
branch choice the asymptotics in the three extremities of the slit-strip are

V') = % eI 1 OB in the top,
Vo' @) = % eTITEtY 4 O(e™1377) in the left leg,
V') = % e ITED) 4 01T in the right leg.

Define, for k € £K (although we will primarily use the case of positive half-integer

k € K), functions P, PL, PR: Sgic — C by the formulas

Pl(2) =1 0@)* 2 Vo)

- 1._,_1

Pl =i (p@+5) ™" : @)

- 1.1

PR@) =i (9@ - 3) 2 o @). (2.25)

The functions (2.25) are holomorphic and have Riemann boundary values (2.5) in the
slit-strip Sgj;¢. Their asymptotics in the corresponding extremities are given by

~ iNk—1 . .
Pl =1 /% (%) ek 4 Oz in the top,

3 Note that since ¢ is conformal, the derivative ¢’ is non-vanishing in the whole domain Sqlit. As this
domain is simply connected, it is possible to choose a single-valued branch of /¢’ on Sgj;;. There are two
possible branch choices, which differ by a sign, and for definiteness we fix one of them here. In our final
results of the series, an even number of these square roots will appear as factors, so the results will actually
be independent of the branch choice made here.

4 The left boundary is taken to include both the case t)ie(x(])“) = —%, and the case that x(])“ is a prime end
on the right side of the slit. The right boundary is taken to include the case ﬂ‘ie(x(]}) = +%, and the case that

xg is a prime end on the left side of the slit.
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PL(z) = et/ /% 4kt3 pi2mks 4 o pi2m =)z in the left leg,
f’,?(z) = — /4 /% (—4)k+% 2Tk L O *=D2y i the right leg.

In particular, for any positive half-integer k € K, the singular parts of P\, PL, 13,5 in
the corresponding extremities contain finitely many singular Fourier modes. Moreover,
it is easy to see that these functions are regular in the other two extremities.

2.3.3 Pure Pole Functions in the Slit-Strip
From the pulled-back monomials above, through a simple upper triangular transfor-

mation, we can construct functions characterized by a single Fourier mode as their
singular parts. The functions are illustrated in Fig. 9.

Proposition 2.6 For all positive half-integers k € IC, there exist functions
T L R 2
P> P Pk € £

characterized by the following singular parts:

T T T
HT;pole(pk) = €k, HL;pole(pk) =0, HR;pole(pk) =0,
L L L L
HT;pole(pk) = 07 HL;pole(pk) =€_y, HR;pole(pk) = Ov
R R R R
HT;pole(pk) =0, HL;pole(pk) =0, HR;pole(pk) =€_- (2.26)
=1 1 =t +
2 \ \? 2 2
(a) The pole function p{ for k = 1/2. (b) The pole function pf for k = 1/2.
WA
=1 +1 =1 bl
2 2 2 2
(¢) The pole function pf for k = 7/2. (d) The pole function p§ for k = 7/2.

Fig. 9 Examples of real and imaginary parts (blue and orange) of the restrictions p;f, p,lj to Z of the pure
pole functions P];F , PIB for the top and right extremities. (The pure pole functions P,:“ for the left leg, and
their restrictions p}(‘, are similar to the ones for the right leg)
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The functions pZ, p,f, p,’f are the restrictions to the cross-section I of globally
defined holomorphic functions P!, PkL, P,f : Syiir = Cwith Riemann boundary values
on the slit-strip, which we call the pure pole functions. We can express these pure
pole functions as finite linear combinations of the pulled-back monomials (2.25) and
vice versa,

T pT L L pL R R pR
Z Ak,k/ Pk/, Pk = Z Ak,k/ Pk/, Pk = Z Ak,k/Pk/’

0<k'<k 0<k'<k 0<k'<k
<, L ~p
= Y BlP = Y BfPL = Y B&P
0<k’'<k 0<k’'<k 0<k’<k
with certain real coefficients AT, AL, AR , BT , BEL BR
k& ok Dk Pk Piok’ s Pk

Proof We sketch the recursive construction of PkT in terms of pulled-back monomials;
the other cases are analogous, and the resulting functions are uniquely characterized
by (2.26) from Lemma 2.5.

First, note that we may define P1 n = [ P1 2 If PT fork = 1/2,. " are
already constructed, we may define

(_l)k—i-%zk - ~ T
Pk’+l = Tpkq_l - Z (ex, dT;n+1) Py
O<k<k’

where gt is the restriction of 15,? to the real line.

Given the existence of pure pole functions, we may express the pulled-back mono-
mials in terms of them as follows. By definition, there exist real coefficients a_;s such
that

PkT(z) =Er(2) + Z a_p E_j(2) for z € Sgi N H.
k'>0

Consider the conformal map @ = 1 e~ from the slit-strip to the slit upper half-
plane H \ [0, 1]. Under a change of variable analogous to (2.25),

1 .
. dz 12 e—nnk i ]
E | — = _7;
k(z(w)) |:dzb:| NG w
and thus
1 . P
dz 12 efnnk ) emk a_p - g1
P, . = 2 - 2,
i (W) [d } LT E
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Since ¢(z) = %\/1 + w(z)? and f’kT is defined precisely as pullbacks of half-plane
monomials,

1 k=1
st [d2 ] (Vi e?) T b 7w 2\
A | ‘n< 2 ) i) =5 ()

pik 2 SN )
= 1+<%)w‘ +--- ) as® — oo.

The above binomial expansion only has finitely many terms with nonnegative powers
of w, and their coefficients are precisely the coefficients in the expansion of PkT in
terms of the pure pole functions:

. . . . p— / . .
where the binomial coefficient is taken as zero when % is not an integer. The other

cases are similar. O

Remark 2.7 The coefficients in Proposition 2.6 implement a change of basis, which
reflects the relationship of the geometry of the slit-strip Sqj;; and the half-plane H via the
conformal map (2.24) between them. These constants of geometric origin appear in our
main result, which reconstructs the structure constants of the vertex operator algebra
(the Ising conformal field theory) from the scaling limits of the fusion coefficients of
the Ising model in lattice slit-strips.

Given that these constants thus account for the most nontrivial geometric input to
our main result, we note that explicit expressions for them can be obtained similarly
to the above proof by expanding monomials of the map (between the slit half-plane

and the half-plane) ¢ (w) = —Vlng and its inverse. In the following, we will write w
for the variable in the half-plane, and w for the slit half-plane; the boundary point 0
in the slit half-plane corresponds to two prime ends 0_, 0., approached from left and
right respectively.

Also note that we are considering holomorphic functions in a neighborhood of a
boundary pole where they have Riemann boundary values. Using a pull-back to the
half-plane, we may define their Schwarz reflection, which may be uniquely expanded
in a Laurent series: this guarantees the existence and uniqueness of the expansions.

The constants can then be expressed as follows:

ik !

, - k-3 4 2
A{kf = (—1) - (coefficient of w¥ ~1 of E\/, (\/4w2 — ]) ? [7w:| around w = 00),
, 7

Vaw? — 1
1 AT 4w 2 1
AL, = (=) - (coefficient of (w + 2) ¥~ % of v/2i ¢42—1) o= dw = —2),
ok (—1) - (coefficient of (w + 2) o fn( w T around w 2)
1 (Jar T 2%l 4w 2 1
AR = (=) - (coefficient of (w — =) ¥ 72 of /2™ (V4uw? — 1 —_— dw=-),
ok (—1) - (coefficient of (w 2) of v2e ( w ) T around w 2)
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1

Vi +0? k_f[ U
2 2V1 4+ w?

ik . el 2 _
B,(T_k, ="K /. (coefficient of ¥ =2 of < :| around W = 00),

k-1 1
, Vi+a?r o1 ? 0 2
B,];k, = —— - (coefficient of w2 -3 of i tw + = [L} around w = 0_),
V2 2 2 2T+ w?
- —k—1 1
Tik , /1 2 1 2 D 2
Blljk/ =< . (coefficient of =7 of i twr 1 [L} around w = 04).
: V2 2 2 2V1 + w?
(2.27)
In particular, we have
k=K' .
T N (T ro_JEemit
A =\ 7 v ) Bew=""Z\rw
2 2

3 Discrete Function Spaces and Decompositions

In this section we study functions on discretized domains, which have the proper-
ties analogous to holomorphicity and Riemann boundary values. We introduce the
spaces of functions analogous to the continuum case, and find analogous distinguished
functions: vertical translation eigenfunctions in the lattice strip, and functions with
prescribed singularities in the extremities of the lattice slit-strip.

As the appropriate notion of discrete holomorphicity we use s-holomorphicity. This
notion and its powerful uses together with Riemann boundary values were pioneered

(a) The square grid strip S, (b) The square grid slit-strip Sﬁfl)'

Fig. 10 The discrete strip and slit-strip graphs
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by Smirnov [64, 65], and have been developed into an extremely powerful tool for the
study of the Ising model [ 18, 19]. We have chosen a route to the main result of this series
which avoids entirely the use of the notions of s-holomorphic poles [27, 31] and s-
holomorphic spinors [15, 17, 34] and square root singularities. The quintessential trick
for s-holomorphic solutions to Riemann boundary value problem is the “imaginary
part of the integral of the square”, and we will be able to employ it largely in its most
standard incarnation in Sect. 4.

In Sect. 3.1 we introduce the discrete domains, and in Sect. 3.2 give the definitions
of the needed notions of discrete complex analysis and of the space of functions
of interest to us. In Sect. 3.3 we study the vertical translation eigenfunctions in the
strip, and the associated decomposition of the function space. In Sect. 3.4 we find the
distinguished functions in the lattice slit-strip, which have prescribed singularities in
the extremities.

3.1 The Lattice Strip and the Lattice Slit-Strip
The lattice analogues of the continuum strip and slit-strip domains S and Sgjj; will be
certain square grid discretizations of these domains.

Fix two integers

a,beZ, a<0<b,

which represent the (horizontal) positions of the left and right boundaries. The slit will
always be placed at the horizontal position 0. The width of the strip (in lattice units)
is

{:=b—a € N. 3.1
For simplicity of notation, we only carry the superscript label for width £ in the notation
to indicate the discretization, although information about a and b is in fact important
as well. We mostly care about a symmetric situation (equal widths for the left and right

substrip) in which b = —a = %E and the limit of large even integer widths £ — oo,
but more general choices are possible and at times in fact clearer.

3.1.1 The Lattice Strip

A discretized version of the cross-section 7 is the integer interval
I:={a,a+1,a+2,...,b—1,b} = [a,b]. 3.2)
The lattice strip is then defined as the graph with vertex set

S© = {x—i—ﬁy‘xel, yeZ}:ﬂa,bﬂxZ, (3.3)
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and with nearest neighbor edges as in Fig. 10a—in other words, the lattice strip is seen
as an induced subgraph S ¢ Z? of the ordinary square lattice.

The set of all edges of the lattice strip is denoted by E(S). We will identify edges
with their midpoints, so that vertical edges are of the form x + 1y’ € E(SY) with
xelandy € Z+ % and horizontal edges are of the form x” + 1y € E(S¥) with
y € Z and x’ € I'* in the half-integer interval defined by

1 3 3 1
I Ca42, b= b— =Y = [a,b]". 3.4
{a+2a+2 : 2} [, b] (3.4)

In fact, it is this half-integer interval I* on which our functions will be defined.

3.1.2 Lattice Slit-Strip

The lattice slit-strip will be the (multi-)graph with the same set of vertices

sfhi={x+iv|rel yez) =[ab]x2 (3.5)
as the lattice strip, and otherwise also the same set of edges, except that there are
double edges between nearest neighbors 0 4+ 1y and 0 + 1(y — 1) for y < 0, i.e,
along the slit. This is illustrated in Fig. 10b. The two different edges between nearest
neighbors on the slit part have exactly the same roles as the two different prime-ends
corresponding to the same boundary point on the slit in the continuum slit-strip Sqj;
of Fig. 5b: one is thought to belong to (the boundary of) the left substrip and the other
to (the boundary of) the right substrip.

The set of all edges of the lattice slit-strip is denoted by E(ngi)t). Despite the presence
of multi-edges, we continue to abuse the notation and usually label edges of the lattice
slit-strip by their midpoints. For any pair of edges along the slit which have coinciding
midpoints, we trust that it will always be sufficiently clear from the context which one
of the two edges is meant (it should be clear whether we are considering the left or
the right substrip).

3.2 S-Holomorphicity, Riemann Boundary Values, and Function Spaces

In this discrete setting, functions will be defined on the edges of the graph. We allow
for functions defined on subgraphs as well, so let V denote the relevant (sub)set of

vertices (V ¢ S® = Sgﬁ)t) and E the relevant (sub)set of edges (E C E(SY) or

EC E(Sgﬁ)t)).5 We consider functions

F:E — C.

5 We furthermore always take the subgraphs to consist of all vertices and edges adjacent to some connected
set of faces of the lattice strip or the slit-strip, so the subsequent definitions in fact contain nontrivial
requirements regarding the functions.
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Fig. 11 S-holomorphicity is a condition for the values of a function on pairs of edges z1, z2 adjacent to the
same face p and vertex v

3.2.1 S-Holomorphicity

A function F: E — Cis said to be s-holomorphic, if for all pairs of edges z1, 2z € E
which are adjacent, in the sense that both are adjacent to the same face p and the same
vertex v, we have

[v— pl

1 v—
Fean) + v — 7|

[ 1
F(z1) = F(z2) +
v—p v—p

F(z2). (3.6)

Equivalently, the values of F at z; and zp have the same projections to the
line 4/i/(v — p)R in the complex plane. Depending on the position of the adja-
cent edges z1, zo with respect to the face, this line is one among four possibilities. In
view of this, yet another explicit way of writing the s-holomorphicity condition is the
following. Define the constant

s ima_ 11

/2

that we will keep using throughout, as is common in related literature. The s-
holomorphicity condition is equivalent to requiring that when N, E, S, W are the four
edges surrounding a face as in Fig. 11, then

FIN)+A"FN) = FW) +A"'F(W),  F(N)+AF(N) = F(E) + AF(E),
F(S)+ 17 F(S) = FW)+ 17 F(W),  F(S)+A’F(S) = F(E) + A’ F(E).

S-holomorphicity implies (but is not implied by) the usual discretized Cauchy—
Riemann equations

Fetg)~Fe—5) =~ (F+2) - F— 1))

around any face or vertex z where all the needed values are defined. This at least
gives the interpretation for s-holomorphicity as a notion of discrete holomorphicity,
which may not have been apparent directly from definition (3.6). Note, however, that
s-holomorphicity is an R-linear condition for the complex-valued function F—not
C-linear!
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3.2.2 Riemann Boundary Values

The discrete version of Riemann boundary values is defined very analogously to the
continuum version. If z € E is a boundary edge, and t(z) denotes the unit complex
number in the direction of the tangent to the boundary oriented counterwlockwise
(i.e., so that the face to the left of the oriented edge is a part of the discrete domain),
then F is said to have a Riemann boundary value at 7 if

F(z) eit() '/*R. (3.7)

We will only use Riemann boundary values on the boundaries of the lattice strip
and lattice slit-strip. These boundaries are taken to consist of the vertical edges on
the left and on the right as well as on the slit. The vertical edges on the left boundary
are of the form z = a + 1y’ with y/ € Z + % and their counterclockwise tangent
points downwards, t(z) = —1i. The vertical edges on the right boundary are of the
formz = b+1y withy’ € Z+ % and their counterclockwise tangent points upwards,
7(z) = +1. The requirement of Riemann boundary values for functions in the lattice
strip S are thus®

Fla+iy)ee™*R and F(b+iy) ee™/*R (3.8)

fory e Z + %

The slit part of the boundary has doubled edges, one for the left side of the slit
(which acts as a right boundary for the left substrip) and one for the right side (which
acts as a left boundary to the right substrip). Denoting these edges respectively by
z=0" +1iy and z = 0" 4 iy’, the Riemann boundary values on the slit part are

F(0"+iy)ee™*R and F(0" +iy) e e ™*R 3.9)

for y’ eZ—}—%,y’ < 0.
Note the analogy of (3.8) and (3.9) with (2.4) and (2.5), and note once more that
Riemann boundary values are R-linear conditions for the complex-valued function F.

3.2.3 Functions on the Discrete Cross-Section

Analogously to the continuum approach in Sect. 2.1, we study s-holomorphic functions
with Riemann boundary values on the lattice strip S(” and lattice slit-strip ngi)t through
their restrictions to the horizontal cross-sections at height zero. These cross-sections
consist of the £ horizontal edges whose midpoints are x” € I* as in (3.4).

The space

FO .=cl (3.10)

6 In the article [30] an unfortunate misprint occurs at the statement of the Riemann boundary values: the
conditions on the left and right boundaries are reversed. Formulas (3.8) here are correct with the conventions
used in both articles.
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is thought of as the space of all complex valued functions f: I* — C on the dis-
crete cross-section /™. Because the main operations we consider are R-linear, we
interpret .Z (©) as a real vector space of dimension

dimp (#©) = 2¢.

We equip it with the inner product defined by the formula

(fogh =3 (Me(F) Re(g(x)) +3m(f () Im(g))) G

x'el*
for f, g € .F®. This inner product induces the familiar norm
1/2
1= (X 1rehr)
x'el*
3.3 Vertical Translation Eigenfunctions in the Lattice Strip

In Sect. 2.2 we saw that among the holomorphic functions with Riemann boundary
values in the strip, the vertical translation eigenfunctions were exactly the extensions
of quarter integer Fourier modes on the cross-section. Here we address the analogous
discrete question.

3.3.1 Discrete Analytic Continuation by One Vertical Step
The operation of discrete analytic continuation by one vertical step was considered

in [30]. We take from there the following result, whose proof is a straightforward
calculation from definitions (3.6) and (3.8).

Proposition 3.1 ([30, Lemmas 4 and 6]) For any f € F O there exists a unique
function F: E(S®©) — C which is s-holomorphic and has Riemann boundary values
in the lattice strip S(D, and whose restriction to the discrete cross-section coincides
with f:

F(xX')= f(x') forallx' e I* c ESY).
If we define a new function Af : I — C in terms of this extension F by

(Af)(x/) =FX +1) forx eI”,

then Af is explicitly given by

Af) ) =2 )+ = f(X + D+ = f(x' —1
(AF) ) f(x)+ﬁf(x+>+ﬁf(x )
-V2f&)+ if(x’+1)+if(x'— 1) forx" #a+ l,b— 1,
V2 V2 2 2
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’ 1 ! 23 o
(Af)(XL):(1-‘1-%)](()61)-‘1-%]()611-‘1-1)
+(A3+—)L_3)f(x/)+if(x’+1) forx/:a-i-l
ﬁ J ML ﬁ L L 3
’ 1 o A3 ,
(Af) ) = (1+ ﬁ) SR+ [ =)
+<A73+£)f(x,)+if(x,—l) forx/:b—1
V2 TR p R R 2

where A = ¢'7/*. The mapping f +— Af defines a linear operator
A: 7O 5 7O,

By the above it is clear that F : E(S“)) — C is a vertical translation eigenfunction
if and only if its restriction f = F|, to the discrete cross-section is an eigenfunction
of the operator A. More precisely for any A # 0, the property

F(z+1ih) = A" F(z) forallz e E(S®)andh eZ
is equivalent to
Af =Af.

In [30] many qualitative properties of the spectrum of A were proven directly: it is
symmetric, invertible, conjugate to its own inverse, all eigenvalues have multiplicity
one, and 1 is not an eigenvalue. Moreover, the complexification of A was shown to be
conjugate to the induced rotation of the Ising transfer matrix with locally monochro-
matic boundary conditions, whose spectrum is well-known [1, 57]. We will need the
eigenvectors and eigenvalues explicitly, and we thus rederive such properties via a
direct calculation below.

The following qualitative property related to reflections across the cross-section is,
however, instructive and useful to note first.

Remark 3.2 For any vertical translation eigenfunction that is exponentially growing in
the upwards direction, there is a corresponding vertical translation eigenfunction that
is exponentially growing in the downwards direction. Namely if F': ES®) —» Cis
s-holomorphic and has Riemann boundary values, then also F:ES®) — C defined
by

F(x +1iy) = —i F(x — i)
is s-holomorphic and has Riemann boundary values. If F satisfies F(z + 1h) =
A" F(z) with A € R\ {0}, then F satisfies F (z 4+ 1h) = (1/A)" F(z).

In the function space .7 (), the corresponding operation

fr f=Rf, RAW):=—ifQ)
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is a unitary involution R: .Z® — .7 by which A is conjugate to its inverse A~ !

3.3.2 A Dispersion Relation

The vertical translation eigenfunctions in the continuum strip are essentially the
quarter-integer Fourier modes. The vertical translation eigenfunctions in the lattice
strip turn out to be mixtures of two discrete Fourier modes with opposite frequencies.
Which frequencies can appear is ultimately determined by the boundary conditions.
Before addressing that, let us observe that a relation between the vertical translation
eigenvalue and the frequency of the Fourier mode is obtained from the first of the
formulas of Proposition 3.1, which governs the discrete analytic continuation away
from boundaries.

Lemma3.3 Let w € R\ 2nZ, and let A be a solution to the equation
A?+ (2cos(w) —4) A +1=0. (3.12)
Define
fxh=ct etiox’ | o= i’ forx' e I*,
where the constants C, C~ € C are related by

- 242 cos(3 + w) — A e
V2(1 = cos(w))

Then for any x' € I* \ {a + %, b— %}, we have (Af)(x/) = A f(x').
Proof Inserting the defining formula of f(x’) into the the explicit expression
for (A f ) (x”) from Proposition 3.1, a straightforward calculation yields
, , o 37 —_—
(Af)(x) — A f(x) = et <c+ (2 ++/2cos (T + o) — A) + C*(ﬁcos(w) - ﬁ))
+ i’ (C* (2 + /2 cos (3% — a)) — A) +C7+(«/§cos(w) — «/E)) .
Using the relationship between the constants C +, C, the coefficient of et1o% above

vanishes immediately. It remains to check the vanishing of the coefficient of e~iox’,

For this purpose, observe that using the trigonometric identities cos (37” + w) +

cos (I — w) = —+/2 cos(w) and cos (3 + w) cos (3 — w) = 1 cos(2w) we can

write

3 3
(2+\/§ COS(T + w) — A)(Z—Fﬁ COS(T —w) — A)
= A? — (4 —2c0s(w)) A + 4 + cos(2w) — 4 cos(w).
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When A is a solution to (3.12), this expression further simplifies to
3 + cos(2w) — 4 cos(w) = 2(1 — cos(w))’.

We thus see that an alternative equivalent form of the relationship between the con-
stants Ct, C~ is

B V2(1 = cos(w))
- 2+\/§cos(37”—w)—A

C.

From this relationship we immediately see the desired vanishing of the coefficient
" )
of e7'®* | 50 the proof is complete. O

Remark 3.4 For a given w, Eq. (3.12) has two roots, which are positive real numbers
and inverses of each other. This reflects the observation from Remark 3.2 by which
vertical translation eigenfunctions can be reflected to produce eigenfunctions with the
inverse eigenvalue. Indeed for functions of the form f(x') = Ct et 4 €= i’
as above, (Rf)(x’) = —1if(x’) is also of the same form (with different coefficients),
and it has the inverse eigenvalue for A.

3.3.3 Boundary Conditions and Equation on Frequencies

By the above calculation, the discrete Fourier modes of any frequency w € R and
its opposite can be combined to satisfy the equation (Af)(x’) = A f(x’) for x" not
adjacent to the boundaries, provided that w and A are related by (3.12). However, such
functions can satisfy the equation (Af)(x’) = A f(x’) near the boundaries only if
the frequency is chosen judiciously. It is sufficient for us to prove that under a certain
hypothesis on the frequency w, an eigenfunction exists; simple counting afterwards
will show that all eigenfunctions are thus found.

Lemma 3.5 Suppose that w € R is a solution to

w —=3_-22 (3.13)
cos ((E — %) a)) ' .

and let A be a solution to (3.12). Then there exists non-zero f € F © such that

Af =Af.

Proof Let us denote by

2+\/§cos(37”+a)) — A
«/5(1 — Cos(a)))

R =R, A) =

the ratio in Lemma 3.3 which relates the coefficient of one Fourier mode to the complex
conjugate of the coefficient of the opposite one. We will show that f € .Z© of the
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form
f(x’) — Ce+ﬁwx’ + Rge—fm)x’

works, with suitably chosen C # 0.

Given the result of Lemma 3.3, the only remaining properties to verify are
(Af)(x)) = A f(x{)and (Af)(xg) = A f(xg), where x{ =a+ 1 andxp =b— 1.
In view of Proposition 3.1, these amount to the equations

0=Celot <A+ + RB+) 4+ Ceiont (B_ + RA—)

0 = Cel®% (F T RB—+) + Ce o (F + RF),

where
AT = A (w, A) :=1+i+’\—3eﬂw—A
b ﬁ ﬁ I
_3 1 .
Bt = B¥(w) := 13 + == + —eti@,
V2 2

Either one of the two equations fixes the argument of C modulo 7, in that one can
solve for C/C from them. The former equation requires

_ .+ BT+ RA™
C C - _ —112wa ,
/ ¢ AT+ RBT

and after first taking complex conjugates, the second requires

At +
C/C = — e 20% ﬂ
B~ + RA™

Evidently the modulus of these expressions are the inverses of each other, so when
we have the equality of the two, the existence of nonzero C € C satisfying the
eigenfunction requirements follows. The equality of the two expressions simply reads

(A7 + RB)’ _ 20D

(B~ + RA-)’
Our goal is therefore to show that this equality follows from our assumption (3.13)
(in fact the two are equivalent). The numerator and denominator on the left hand side
are by construction expressed as polynomials in A of degrees 2 and 4, but since by
assumption A satisfies the quadratic Eq. (3.12), we can reduce both to first order
polynomials in A. This is straightforward but slightly tedious.” We first simplify the

T A symbolic computation in the quotient IF[A 1]/ (A2 +(q+ q*l —4HA+ 1) of the polynomial ring F[A]
over the field F = C(g) of rational functions of g = e isa quick way to check the formulas.
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numerator and denominator before taking the squares

(A= V2OAA+e A3 4i(1 —V/2)
2(1 — cos(w)) ’
(V2 =1 A =21l A +1iel+ (1 —/2)23
2(1 — cos(w)) '

AT (w, A) 4+ R(w, A) BT () =

B™ (w) + R(w, A) A" (w, A) =

It is useful to notice that B~ + RA™ = —A(A_+ + RF). Then we take the squares
and simplify further to

2 (eﬁa) -1 e*il3a)

(A% + REY) = (1416529 —2V2262) A + V20 ) (1 = (3 = 2V2)e™)
(B~ +RA™) = % (1416522 —2V2263) A + V22 6) (3 = 2v2) — ¢1?).

Cancellations in the ratio of these two yield

(A+ +RB+)2 (3 —2\/5) eﬁw —1

(B-+RA) €= (3-2V2)

—2iw

The desired equality of the expressions thus ultimately amounts to

(3 - 2ﬁ) o _ 1
el — (3 —24/2)

12w

— ’

which is easily seen to be equivalent to (3.13). This finishes the proof. O
3.3.4 Allowed Frequencies

In the continuum, vertical translation eigenfunctions were associated to all quarter-
integer Fourier modes. By contrast, in the discrete setup there are only finitely many
possible frequencies, and these are only approximately quarter integers (in the appro-
priate units). We consider the strip width £ € N in lattice units fixed, and to display
the parallel with the continuum, we use positive half-integers k to index the allowed
positive frequencies. Finite-dimensionality now restricts the index set to

1 13 1
KO = [o,e]m<Z+§)= {5,5,...,3—5}. (3.14)

The following lemma describes the positive frequencies which satisfy (3.13).

Lemma 3.6 Forany k € K©, the Eq. (3.13),

cos (€ + 3) ) 325
cos ((€ — %) ) B '

@ Springer



Slit-Strip Ising Boundary Conformal Field Theory 1... Page330f53 30

has a unique solution w = a),(f) on the interval ((k — %)7‘[/6, kn/@).

Proof Using the trigonometric formula for cos(e + ) in both the numerator and the
denominator, we can rewrite the left hand side of (3.13) as

cos ((Z + %) a)) cos(w/2) cos(fw) — sin(w/2) sin(fw)
cos ((Z — -) w) - cos(w/2) cos(fw) + sin(w/2) sin({w)
1 — tan(w/2) tan(fw)
1+ tan(w/2) tan(lw)’

On the interval w € [(k — %)JT /L, km /2), the expression tan(w/2) tan({w) increases
from 0 to 400, so there is a unique @ € ((k — $)7/¢, kx/€) such that
tan(w/2) tan(fw) = ThlS is the desired unique solution. O

3.3.5 Explicit Eigenfunctions and Eigenvalues
We can now describe the eigenvalues and eigenfunctions of vertical translations explic-

itly. We use positive and negative indices k for eigenfunctions that are growing in the
downwards and upwards directions.

Proposition 3.7 For k € K9, denote by

ol e ((k - %)n/ﬁ, kn/E)

the unique solution to (3.13) on this interval. Denote by

A,(f) =2 - cos(a)k )) —i—\/ cos(wk (1 cos(a)k ))

the corresponding solution to (3.12) with A,(f) > 1, and by Ag,)( = l/A,(f) < 1 the
other solution. Then there exists non-zero functions

k. Skt ES) — €
which are s-holomorphic and have Riemann boundary values and satisfy
2y — (A O\ ()
Stk(z +1ih) = (A" S+x(z)  forallz € E(S*) and h € Z,
and these are uniquely determined by the normalization conditions that the argument
on the left boundary is Fr(a + 1y') € e /4R, fory € 7+ % and that their

restrictions

far = Fax|,. € FY

]*

to the cross-section have unit norm ||fyr| = L.
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The following relations hold for the normalized eigenfunctions with opposite
indices:

for(x) = — 1 fe(x), S—k(x +1y) = —1 Fk(x —1y).

The functions i, k € +K© | form an orthonormal basis of F©.

Proof Lemma 3.5 gives the existence of non-zero eigenfunctions fi; of A with the
desired eigenvalues Aﬁ, and it is clear that unit norm ||fx|| = 1 fixes these up to
a sign in the real vector space .# ), and the argument on the left boundary fixes the
remaining sign.

The relation between f and §_j as well as between §x and §_ are straightforward
from Remark 3.2, since the reflected function F (x +1y) = —1 F(x —1y) has the same
argument as F on the left boundary (which we used for normalization purposes).

Among fi, k € £K©, we have 2 #K© normalized eigenfunctions of the symmetric
operator A with distinct eigenvalues. In view of 2#K® = 2¢ = dim .Z©, these form
an orthonormal basis. O

In particular, all the earlier qualitative statements about the spectrum of A can of
course be verified from the above explicit diagonalization of it.

3.3.6 Decomposition of the Function Space

Analogously to the continuous case, we split . ©) into orthogonally complementary
subspaces

ZO _ z®

(0)
T;pole D f

T;zero’

where

[4 . [4 ¢
y’l(“;[))ole ‘= spanp {fk | k e IC( )} ﬁ( )

T;zero

= span {f_k |k e /C“)}, (3.15)
with associated orthogonal projection operators

. g a0 (€ N X (2) a0
T;pole o - jT;pole’ 1-[T;zero' & — '/T;zero'

The subspace f{f;ole consists of functions whose s-holomorphic extensions with
Riemann boundary values in the lattice strip grow exponentially fast in the upwards

-~ @
direction, and ﬁmero

downwards direction.

of functions whose extensions grows exponentially fast in the
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3.4 Functions in the Lattice Slit-Strip

We now consider functions in the lattice slit-strip Sgﬁ)t of Fig. 10b. We use three
subgraphs

T; () L: () R: (¢) ()
Sie » Sqit > Sair . € Sqie

T; (€)

of the lattice slit-strip. The top part S_j;;™ is taken to consist of all vertices and edges

of ngi)t with non-negative imaginary part. The left leg part SSLl;it(e) is taken to consist
of vertices and edges with non-positive imaginary part and non-positive real part,

except for those of the doubled edges along the slit which are considered to form the
left boundary of the right substrip. The right leg part SR s defined similarly. Note

slit
that these three subgraphs of Séﬁ){ have otherwise disjoint edge sets except that each
horizontal edge in the cross-section I* belongs to both the top part and either the left
or the right leg. We correspondingly partition the cross-section Iy = [a, b]* into the
left and right halves, I} = [a,0]* and I§ = [0, b]*, and decompose the discrete

function space to functions with support on the left and right halves,
70 =72 0 7

where we define ﬁﬁe) = C' and féz) = C’k, and interpret both as subspaces

inCl" =70,
© graphs coincide exactly in the top part SE©

The strip S and the slit-strip Sqit St 0
and in particular s-holomorphic functions F : E(SSTl;it(e)) — C with Riemann boundary
values in the top part are as in the strip: the discrete analytic continuation upwards
from the cross-section I* is achieved by the same operator A: .#® — Z©),

Downwards from the cross-section, on the other hand, the lattice slit-strip Ssm
separate left and right halves Si‘f © and Sg;t(z) , which coincide with lower halves of
lattice strips of smaller widths £ = —a and R = b. Note that due to the double
edges on the slit, the left and right halves have their own sets of edges on which
functions are defined, and the Riemann boundary values (3.9) are exactly what one
would require in the smaller width substrips. Therefore the discrete analytic continu-

ation downwards from the cross-section /™* in the lattice slit-strip is then simply the

direct sum (A(ZL))*] @ (A(ER) )~ 1 of inverses of operators defined as in Sect. 3.3 but
in substrips of widths ¢, ¢R.

9 has

3.4.1 Decompositions of the Function Space

The decomposition .#©) = 3‘1(@) @ 3"]3) is clearly an orthogonal direct sum, and in
each summand we get an orthonormal basis in the same way as for the lattice strip.
Instead of (3.14), the indexing sets for the (positive) modes are now

[CCRTY E SR e =2 w1
2127 ) 2 ) 721 ) 2

N =
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In the same way as in Proposition 3.7, for each k € £ we define the normalized
L
eigenvector fL.x € 3‘1(@) of AUY) with eigenvalue A,(f ) and the extension

Sri: ESEYY - ¢,

slit

and for each k € +K) the normalized eigenvector fr.x € ﬁg) of AU with

R
eigenvalue A,(f ) and the extension

Fri: ESS) = €,

slit

Together, (L. k)kei e and (fRr. k)kEi P form an orthonormal basis of .7 ©,

Given these bases, we may decompose

® Z0

R;zero’

9{4) _ 9(5)

() O _ gz
L;pole ® 7 cgZR =7

L;zero’ R;pole

where

FO = span ff [ £ < 0] 0 = spang {fes | £ <0]

féf;ero := span {fL;k | k > 0} ﬁé‘gem := spanp {fR;k | k > 0}, (3.16)

() o n® o

with respective orthogonal projection operators ITy . pole’ TTR:pote> TTL:7ero» TTR: zero"

We have thus introduced the decompositions of .7 ()

® 7

T;zero’

© _ z®
F - yT;pole

and

Z0 _ 7O

() ) (0)
L;pole ® 7 ® F ® 7

L;zero R;pole R;zero”

3.4.2 Singular Parts
As in the continuous case, for a function f € % © we call

0o

14
oot (f) € Z1i)

Tipole  its singular part at the top,

I I(f)p oe(f) € .,Z”Lz; pole  itssingular part in the left leg,

Hl(é)p oe(f) € ﬁg; ole its singular part in the right leg. (3.17)
I (f) = 0(esp. I (f) = 00r I (f) = 0), we say that the function f
T;pole - p- L;pole - R;pole - ’ y

admits a regular extension to the top (resp. regular extension to the left leg or regular
extension to the right leg).

The following result shows that a function is uniquely characterized by its singular
parts.
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Lemma 3.8 Ifafunction f € .F© admits regular extensions to the top, to the left leg,
and to the right leg, then f = 0.

We postpone the proof of this lemma to Sect. 4.2, where we have at our disposal
the necessary discrete complex analysis tools needed to carry out the proof analogous
to the continuum.

3.4.3 Functions with Prescribed Singular Parts

In the discrete setting, the construction of the functions with prescribed singular parts
can now be achieved simply by finite-dimensional linear algebra.

Lemma 3.9 Forany gr € 55}20[6, gL € 3322018, &R € fgzole, there exists a unique
function f € FO© such that
{4 £ (4
H;";;ole(f) =& nggi)ole(f) = 8L Hj?;)pole(f) = &R

Proof Consider the linear map
(0) 0 ()
f = (HT;pole(f)’ 1-[L;polc(f)’ 1_IR;pole(f))

on the function space .% (). It maps the space .7 () of dimension dimp (F ©y =2¢

to the external direct sum yT((;Z;))ole ® ﬁg;ole @ fgf;ole, which is a space of dimension

s

T;pole ) + dimR(f([) Y=+ + R =20

. 4
)+ dlmR(ﬁ( ) T:pole

dimR ( T;pole

Its injectivity follows from Lemma 3.8, so bijectivity follows by the equality of the
dimensions. O

By the above, in analogy with (2.26) we define
pri € FY fork e K9, prpe FY fork e IC“L), prx € .Z© fork e IC“R),

as the functions whose singular parts are

4 14 14
H(T;)pole(pT;k) = k. Hi;Lole(pT;k) =0, Hl({fpole(m;k) =0,
14 14 {4
M o) =0, 0 (L) = friks i (Pran) =0,
14 14 {4
M e (R0 =0, T (R =0, TR (orep) = frok- (3.18)

These are functions which are singular under s-holomorphic propagation in one
direction, while admitting regular extensions in the remaining two directions. Denote
the corresponding s-holomorphic functions with Riemann boundary values in the
lattice slit-strip by

) > C,  Pru: ESY

slit

Pri: BESUH - C,  Prs: ES)

slit

) — C
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We call these the discrete pole functions. Note that these are defined globally in
the lattice slit-strip, unlike for example §1.x, §r:x» and §x (each of these is globally
defined in a suitable lattice strip which only coincides with the lattice slit-strip in one
of the three subgraphs).

These functions have asympotics analogous to (2.26):

Pra(r +iy) — Ju(x +iy) =o(1)  asy — 400 andx + iy € SO
P +iy) — Lk (x +iy) =o(1)  asy — —oo andx + iy € SE,

Prex (x +iy) — re 4 (x +iy) =o(1)  asy — —oo andx + iy € K
(3.19)

Together with the regular extension to the other two extremities in each case, the
asymptotics (3.19) characterize the discrete pole functions.

4 Discrete Complex Analysis and Scaling Limit Results

In Sects. 2 and 3 we introduced spaces of functions in continuum and discrete settings,
respectively, and distinguished functions adapted to the strip and the slit-strip geome-
tries in each case. In this section, we prove convergence of the discrete functions to the
continuum ones, as the lattice width increasese, £ — co. We must require a /¢ — _Tl
and b/l — +71 as £ — 00, and in order for the functions f; defined on the discrete
cross-section I* = [a, b]* to approximate the functions e; defined on Z = [_71, +71],
their arguments must be rescaled by a factor £~!. Because of the norms induced by
(3.11) and (2.8) for discrete and continuous functions, also the values of the discrete
functions must be rescaled by £!/2 (the norm-squared of the constant function 1 in
the discrete is £). Similarly for functions on the discrete strip and slit-strip (both with
vertex sets [a, b] x 7Z), we rescale arguments by £~ and values by £!/2. In order
to discuss convergence (typically uniformly over compact subsets), we will interpret
the discrete functions being interpolated to the continuum in any reasonable manner®
without explicit mention.

In Sect. 4.1 we first prove the convergence in the scaling limit of the discrete
vertical translation eigenfunctions in the strip. The formulas we have in this case are
sufficiently explicit for the proof to be done without analytical tools. In Sects. 4.2—
4.4 we introduce the regularity theory for s-holomorphic functions as it is needed for
the remaining main results. The key tool is the “imaginary part of the integral of the
square” of an s-holomorphic function introduced by Smirnov [64]: a function defined
on both vertices and faces which behaves almost like a harmonic function and has
constant boundary values on any part of the boundary on which the s-holomorphic

8 The details of the interpolation are irrelevant except for the fact that the equicontinuity established for the
values on the lattice functions has to be inherited by their interpolations to the continuum. One possibility
is to extend by local averages to a triangulation that refines the lattice on which the values are defined, and
then to linearly interpolate on the triangles. Another possibility is to linearly interpolate along line segments
on which adjacent values are defined, and then to harmonically interpolate to the areas surrounded by the
line segments.
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function had Riemann boundary values. This will be introduced in Sect. 4.2. Notably,
the almost harmonicity implies suitable versions of maximum principles, Beurling-
type estimates, and equicontinuity results. In Sect. 4.3, the maximum principle will be
used to prove that an s-holomorphic function on the discrete slit-strip admitting regular
extensions to all three directions is zero, and therefore any s-holomorphic function is
uniquely characterized by its singular parts. In Sect. 4.4, the Beurling-type estimates
and equicontinuity results will be used to prove the convergence of the discrete pole
functions in the slit-strip to the continuum ones.

4.1 Convergence of Vertical Translation Eigenfunctions

We start from the distinguished functions in the strip geometry, i.e., the vertical trans-
lation eigenfunctions of Sects. 2.2 and 3.3. The convergence of these can be proven
directly from the explicit formulas we have obtained.

4.1.1 Auxiliary Asymptotics

Let us record auxiliary observations about the explicit formulas for the functions f+; €
Z© and the involved frequencies a),(f) and eigenvalues A;f,){ In the scaling limit setup,
we consider the index k € K fixed, and consider the limit £ — oo of infinite width (in
lattice units).

Soletk € K be fixed. For £ € N, £ > k, let o’ € ((k — D)m/t, kn/e) be

the unique solution to (3.13) as in Lemma 3.6, and let A,(f) =2 — cos(w,(f)) +
\/ (3- cos(w,g))) (1- cos(w,(f))) be the corresponding solution to (3.12) with A,(f) >
1.

Lemma 4.1 With a fixed k € K, as £ — oo we have

o) = T+ 0, @.1)
AY =14 %k + O, 4.2)

Proof For the first formula, it is simple to use the method of proof of Lemma 3.6. Since
0 < w,ie) < kme~!, we have 0 < tan a),(f)/Z < ct~! for some ¢ > 0. Therefore the
equation tan (w;” /2) tan (fw”) = \/Lj implies tan (£ay”) > ¢’ £ for some ¢’ > 0,

and the first order pole of tan at k7 then requires k™' — ¢ €72 < 0¥ < k™!

for some ¢” > 0, which gives (4.1).

For the second formula, let A(w) = 2 — cos(w) + \/(3 — cos(a)))(l — cos(a)))
for o > 0. This has a power series representation on w € (0,w) with initial
terms A(w) = 1 + w + O(w?). The second formula (4.2) thus follows from the
first (4.1) in view of A" = A(w"). o
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Lemma4.2 Letk € K, and let Cfle_, Cﬁ;_ € C denote the coefficients in

fae () = CEFF exp (+ i x") + CEF T exp (— i x).

Then as £ — oo, we have

|C(€)§+ — O(£—3/2)’ ‘C—(‘flzs*‘ — 3—1/2 + O(£—3/2)’
|C(E) i+ 71/2 4 O(£73/2)’ }C(_KIZV_| — O(Z73/2)

Proof Consider the case of positive index k € K. Recall from Lemma 3.3 that we have

. 3 _
Cf;l’ = R(w (D) Cy (Z) *, where R(w) = 2+ﬁ\/;o(sl( ‘L(IZZ))A(‘U). A calculation shows

R(@) = =22 4+ O(w), and since o = O(¢™), we see that |R(w")| > ¢ for
some ¢ > 0, i.e.,

|C(€) +| < |C(f) |
Therefore for the values of the eigenfunction f, we have
() =0 (exp (—iofx') + 0.
The unit norm normalization condition ||f¢|| = 1 gives

L= 16l = Y Iie@)? = ¢|C 7P (1+ ow™).

x'el*
We conclude that |C(() } f + O3y and |C(w T = O3/2). The case
of negative indices can be done similarly, but it also follows from the above using
Remark 3.2. O

4.1.2 Limit Result for the Strip Functions

We can now state and straightforwardly verify the scaling limit result for vertical
translation eigenfunctions.

Theorem 4.3 Choose sequences (ay), N, (bn),cN of integers ay, b, € Z such that

e a, <0< b, foralln;
e !, =b, —a, > +ooasn — oo;
e a,/l, — —% and b, [, — +% asn — oo.

Let f,(f") and g,‘f") denote the functions of Proposition 3.7 in the lattice strips
with a = a, and b = by,. Then for any k € £K, as n — 0o we have

Ve f;(f")(xfn) — e (x) uniformly on T > x,
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\/Zn Sl(f") (zﬂn) — Ex(2) uniformly on compact subsets of S > z.

Proof Consider k € K. We will use the normalization constant Cy of the quarter-
integer Fourier mode e, given by (2.13), and the normalization constants C f,;’>;i as
in the previous lemma but in lattice strip with a = a, and b = b,,. Let us denote

(Ln);—
C
& = —(lj)]j— .
|C+k \ Cr
Then |§,] = 1, so &, is a phase factor, and we will first factor it out. In view of

£, w,ﬁl”) — km and /¢, |C_(f,?);_| — 1 (two previous lemmas) and the asymptotics
for f; from the previous lemma, we get

£n);—
Ve e Va
- & (x@n) =
&n &n

—> Cy exp ( — ﬁknx) = er(x)

(exp (=i xt,) + O, ))

uniformly over x € 7. Since
(AN = (14 7k /, + O )" — e,
and 5 (x + iy) = (AL)” i (x), we also have

‘g—e_" T ((x +iy)y) — €V ep(x) = Ex(x)

uniformly on compact subsets of S = Z x R. To finish the proof of the convergence
assertions, it only remains to show that the phase factor is asymptotically correct, &, —
1. This is indeed a consequence of the chosen normalizations. We have defined C Ef/?); B
and Cy so that arg (3x) = —n/4 and arg (E;) = —/4 on the left boundaries of the
lattice strip and continuum strip, respectively, so the uniform convergence on compacts
that we established above is only possible if also &, — 1.

The case of negative indices can be done similarly, but it also follows from the
above using Remark 3.2. O

4.2 The Imaginary Part of the Integral of the Square

In the remaining part, Sects. 4.2—4.4, we recall the regularity theory for s-holomorphic
functions, and apply it to prove the main results. Analogous to the continuous case, the
lattice discretization of Cauchy—Riemann equations are equivalent to the existence of
the line integral of F, i.e., the closedness of the (discretization of the) 1-form F(z) dz.
S-holomorphicity is a strictly stronger notion which also implies closedness of (the
discretization of) another form, Im [F (2)? dz] [19], so that the “imaginary part of the
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integral of the square” becomes well-defined. We remark that the literature contains
a few different conventions about s-holomorphicity.” Our conventions coincide with
those of [18, 19] presented in the general context of isoradial graphs, but they differ by
a multiplicative factor and the orientation of the square grid from most of the literature
specific to the square lattice such as [15].

4.2.1 Refinements to the Lattice Domains

Since we use discrete complex analysis only in the lattice strip S® and lattice slit-
strip Séfi)t, we will present the tools in the simplest form that applies to these cases.
Moreover, since our main objective is to show convergence results in the scaling limit
framework, where the lattice variables are rescaled by a factor £~!, we will present the
key notions in the context of the rescaled square lattice & 7% for 8 > 0: the choice § = 1
corresponds to the original lattice setup, and the choice § = £~! will be used for scaling
limit results.

The following graph notations will be needed. We denote the set of vertices by V =
§SWY = SSEI?[, and the set of edges by E; so E = SE(SY) or E = 8E(S§ﬁ)t). We
moreover use the notation V* for the set of faces. The “imaginary part of the integral
of the square” will be defined on V U V*. For the treatment of boundary values, we
also introduce boundary faces, which are imagined faces across the boundary edges
as in Fig. 12. The set of boundary faces is denoted by dV*, and it is by definition in
bijective correspondence with the set of boundary edges.

Let us also define a corner of our graph to be a pair ¢ = (v, p) consisting of a
vertex v € V and a face p € V* which are adjacent to each other.

Fig. 12 The faces of degree one
are the boundary faces which
have reduced weight. The
boundary faces next to the slit
are virtual faces accessed across
the slit from an interior face

9 With some alternative conventions the additional closed form is e [F (z)2 dz] instead.
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4.2.2 S-Holomophicity and the Imaginary Part of the Integral of the Square

The definition (3.6) of s-holomorphicity of a function F: E — C can be reinter-
preted as follows. For any corner ¢ = (v, p), the values F(z1) and F(z2) on both
edges z1, z2 € E adjacent to v and p have the same projection to the line \/1/(v — p) R
in the complex plane, i.e., we may associate a well-defined value to the function F at
the corner ¢ = (v, p) by
1 1lv — p| —— .
F@ =t fror(F@)) = 5(F(z,-) S FGp).  forj=1.2
As mentioned above, this definition is identical to [19, (3.3)], and therefore we use
the verbatim results in [19] concerning deterministic s-holomorphic functions without
explicit reference to underlying probabilistic models. Nonetheless, we note that our
locally monochromatic boundary condition for the (spin-)Ising model on the vertices
does correspond to the wired boundary condition [19, (4.1)] for the FK-Ising model
on the primal lattice.
For any s-holomorphic function

F:E—C
there exists a function
H:VUV* > R,

defined uniquely up to an additive real constant by the condition that for any vertex v
and adjacent face p, with ¢ = (v, p) the associated corner, we have

H() — H(p) := Sm(2 F(c)* (v— p)) =268 |F(0))? = 0; (4.3)
see [19, Proposition 3.6(i)]. The factor two in front of the squared value is included

because of the definition of the values on corners: if u, u’ are two adjacent vertices of

faces and z = %”/ € E the edge between them, then a calculation [19, Proposition
3.6(ii)] from (4.3) shows

Hw') — H(u) = ;“sm(F(z)z ' — u)). 4.4)
We denote

H=Sm</ F2>,
X

and call H the “imaginary part of the integral of the square” of F. Note that from the
definition (4.3) it is clear that for a vertex v € V and an adjacent face p € V*, we
always have H (v) > H(p).
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When F has Riemann boundary value (3.7) on a boundary edge z between adjacent
boundary vertices v, v/, we see from (4.4) that H(v) = H(v'). Therefore Riemann
boundary values for an s-holomorphic function F imply that H = Im (f, F?) is
constant on the boundary vertices of each boundary part. We then extend the definition
to the boundary faces by the same constant, and obtain a function

H:VUV*UJV* - R.

4.3 Sub- and Superharmonicity and the Maximum Principle

Unlike in the continuous case, the “imaginary part of the integral of the square”
H = 3m ( f < F 2) of an s-holomorphic function F is not (discrete) harmonic. The
remarkable observation is that it nevertheless mimics the behavior of harmonic
functions extremely well: its restriction H |y to vertices is superharmonic, and its
restriction H |y+ to faces is subharmonic, and because of the boundary values, the
values on vertices and faces are suitably close. The first incarnation of this almost
harmonicity of H is the following version of the maximum principle.

Lemma 4.4 ([19, Proposition 3.6(iii) and Lemma 3.14]) Let F: E — C be
s-holomorphic with Riemann boundary values, and let H = 3m ( fx Fz),
H: VUV*U3V* — R be defined as above. Then we have:

(i) At any interior vertex v, the value of H is at most the simple arithmetic average
of the values at the four neighboring vertices,

H(v) < %(H(v+8) Y H@+i8) 4+ Hw—8)+ H( —1'16)).

In particular H can not have a strict local maximum at an interior vertex.
(ii) At any interior face p, the value of H is at least the weighted average of the values
at the four neighboring faces,

D seis.is—s.—isy WP+ ) H(p +5)
D sels,i6,—5,—is) WP +5)

H(p) =

where w(p') = 1 for p’ € V¥, and w(p') = 2(~2—1) for p' € dV*. In particular
H can not have a strict local minimum at an interior face.

With this version of the maximum principle we can give the proof of Lemma 3.8:
If a function f € .Z© admits regular extensions to the top, to the left leg, and to the
right leg, then f = 0.

Proof of Lemma 3.8 Suppose f € .7 © admits regular extensions to all three extrem-
ities of the slit-strip.

Consider the s-holomorphic extension F: E(ngi)t) — C of f to the lattice slit-
strip, with Riemann boundary values. The regular extensions assumption implies that

F decays exponentially in all three extremities: the norm of its restrictions to horizontal
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L R
cross-sections decreases by at least a factor A(_Zi 5 < 1 (resp. max{A(_Zl}z, A(_el/)z} <

1) on each vertical step in the upwards direction (resp. downwards direction). It follows
that on horizontal lines in the top part, the differences of all values of H = J3m ( / F 2)
to the boundary values tend to zero:

maxyes+ |H(x +1y) — H(a + iy)| — 0

. . asy — +oo.
H(x +1iy) = H(b +1iy)| - 0

maxxel*

Recalling that the boundary values H(a + iy), H(b + 1iy) are constant (indepen-
dent of y), it follows first of all that the values on the two boundaries are equal,
H(a +1iy) = H(b + 1y) =: M, and furthermore that H (x + iy) approaches these
boundary values M as y — +o0. Similarly, the values in the horizontal cross-sections
of the left and right legs are tending to the same constant M, and in particular the
boundary values on the slit part are also equal to M.

It then follows from the maximum principle on vertices, Lemma 4.4(i), that H|y <
M. Similarly by the minimum principle on faces, Lemma 4.4(ii), we get H |y+ > M.
But as the values on vertices are at least the values on adjacent faces, we get H = M.
We thus conclude that F = 0 and in particular f = 0.

4.4 Convergence of the Distinguished Functions in the Slit-Strip

Besides the maximum principle, we need more quantitative tools of the regularity
theory of s-holomorphic functions to prove the scaling limit result for the distinguished
functions in the slit-strip.

4.4.1 Beurling-Type Estimates

We will need the following weak Beurling-type estimates (meaning that the exponent
does not have to be optimal) for discrete harmonic measures on vertices and faces
from [18]. The optimal exponent S is known to be equal to 1 near straight boundary
and 1/2 in general case: see [50].

Proposition 4.5 ([18, Proposition 2.11]) There exists absolute constants 3, const. > 0
such that the following holds. Let dV denote the set of boundary vertices, and dVy C
dV a subset. Then the discrete harmonic function w,: V — [0, 1] on vertices, with
boundary values O on dVy and 1 on dV \ aVy, satisfies

dist(v, dV) )/3

o (v) < const. - (———"—"
@o(v) < cons <dist(v, IV \ aVo)

Similarly, let 9V* denote the set of boundary faces, and Vi C dV* a subset. Then the
discrete harmonic function (w.r.t. modified boundary face weights as in Lemma 4.4)
we: V¥ — [0, 1] on faces with boundary values 0 on 9V and 1 on dV*\ 0V{;, satisfies

dist(p, oV*) )ﬂ

we(p) < const. - (dist(p, oV
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4.4.2 Precompactness Estimates

The following result from [19] yields uniform boundedness and equicontinuity (i.e.,
precompactness in the Arzela-Ascoli sense) for both F and H, given control on |H|.

Theorem 4.6 ([19, Theorem 3.12]) There exists absolute constants (independent of
lattice mesh & and lattice domains) such that the following estimates hold. Let F : E —
C be s-holomorphic with Riemann boundary values, and let H = Im (fx Fz), H: VU
V* — R be defined as above. Suppose that the ball B,(xy), with r > const. - 8, is
contained in the lattice domain and does not intersect its boundary. Then forz,7 € E
adjacent edges contained in the smaller ball By ;>(xo), we have

max H
\F()| < const, - .| "Bt [H
r

|F(z/) — F(Z)| < const. - maxag, (xp) |H|

5 < . 4.5)

4.4.3 Limit Result for the Slit-Strip Functions

With the above tools, we can prove the scaling limit result for the pole functions.

Theorem 4.7 Choose sequences (ay), N, (bn),cN of integers ay, by, € Z such that

e a, <0 < b, forall n;
e !, :=b, —a, > +ooasn — oo;
e a,/l, — —% and b, [, — +% asn — oo.

Fork € IC, let ‘,]3(Te’]’<) ‘,]3(2 n) ‘,]3(@ ") denote the functions of Sect. 3.3 in the lattice strips

witha = a, andb = b,,, and let PkT, PkL, P,f : Sgiir = Cdenote the pure pole functions
of Proposition 2.6. Then, as n — 00, we have

Vi &B(z”) (zﬁn) — PkT(z) uniformly on compact subsets of S 2 z
VA %(ﬁ” (zén) — PkL(z) uniformly on compact subsets of St  z
VA ‘B(e" (zﬁn) — P,f(z) uniformly on compact subsets of S 3 z.

Proof Let us consider the convergence of the left leg pole functions—the other
cases are similar. Including the rescalings in the definition, let us define func-

tions F™ on L Sgﬁ';) by the formula F™ (z) = /€, ‘B(z" (zﬂn) Define also H® =
JIm ( f < F ) ), with the additive constant chosen so that this function vanishes at

the tip of the slit, H M (0) = 0. Then H™ vanishes on the entire slit (it is constant
on boundary components), and since F" decays exponentially in the top and the
right leg extremities, the same argument as in the proof of Lemma 3.8 shows that the
boundary values of H also on the left and right boundaries are zero, and that H
tends to zero in the top and right extremities.
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For K > 0, consider a horizontal cross-cut L%’) of the leftleg of éSgl’;)
(n)
slit

atimaginary

part — K (more precisely, the horizontal line of the lattice %S with largestimaginary

part below —K), and consider the truncated slit-strip S;?) C éSgﬁ’t’) defined as the

component of the complement of this cross-section that contains the top and right
H™|, where L(K”) is interpreted to consist of

extremities. Define Mg') i= max,; m
K
both the vertices on the horizontal line and the faces just below that horizontal line.

By the maximum principle, Lemma 4.4, we have M;?) = max y» |H™|, so in view

sY
of Sg') C Sg’,) for K < K’ we have that Mg’) is increasing in K.
We will later prove that for any K > 0, the sequence (M;?))n <N is bounded, i.e.,

we have Mk := sup,.Ny M g) < oo. We now first prove the convergence of F
to P,} assuming this. Denote by L the horizontal cross-cut of the left leg of the
continuum slit-strip Sgjj; at imaginary part —K, and by Sxg C Sgjir the component
of Sgiit \ Lx which contains the top and right extremities. Then by the boundedness
of (M 5("))" <N the functions H ™) restricted to the part Sk are uniformly bounded, and
therefore as a consequence of Theorem 4.6, both H ™) and F™ are equicontinuous
and uniformly bounded on compact subsets of Sx. By the Arzela-Ascoli theorem,
along a subsequence we have uniform convergence of H™ and F™ on compact
subsets of Sk, and since this holds for any K > 0, by diagonal extraction there exists
a subsequence along which H™ and F converge uniformly on compact subsets of
the whole slit-strip Sgji. We must show that in any such subsequential limit (H, F)
we in fact have F = P

Note that in such a subsequential limit we have H = Sm( [ F (2)? dz), and as

a locally uniform limit of both subharmonic and superharmonic functions (H on
vertices and faces), H is harmonic. It follows that F' 2 = 2i d, H is holomorphic, and
thus F is also holomorphic. By Lemma 4.4, H™ is bounded above by M}?) o,

where a)g") is the discrete harmonic measure on the vertices of S;;z) of the cross-

cut Lg’g). Similarly H is bounded below by —M;?) o, where (" is the discrete

harmonic measure on the faces of Sg’) just below the cross-cut L([?) (with the modified
boundary weights). By Beurling estimates, Proposition 4.5, these harmonic measures
decay at the top and right extremities uniformly in n, so the subsequential limit H of
the H™ decays at the top and right extremities. On the subdomain (say) S g’ll these
harmonic measures, and therefore H ™, also have the uniform decay | H"™ (x +iy)| <
const.M}?) |x —c|? for ¢ = :I:% and ¢ = 0 (if y < 0) upon approaching the boundary,
again by virtue of the Beurling estimates. We conclude that H also tends to zero on
the boundary. Then also F decays at top and right extremities, by Theorem 4.6, and F
has Riemann boundary values by [19, Remark 6.3]. In order to conclude that F' = P, L
it remains to show that F — E- « decays in the left leg extremity.
By definition of the discrete pole function By .«, in the left leg we can write

F™(2) = F" () + v/0n 311 (280),
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where F(g") decays in the left leg extremity. From Theorem 4.3, we already know that
the second term on the right hand side above converges to E- &> uniformly on compact

2
subsets. To control Fé"), consider Hé") = Jm (f x Fén) ) From the above uniform

decay of H™ near boundary and (4.5), we may estimate at the y = 0 level

|F™ (x)| < const. Ml(")|x—c|% forc € {—%0%} 4.6)

Again from Theorem 4.3, we know that §p._(x€,) = fr.—k(x£,) is uniformly
bounded (since it uniformly converges to e';k, bounded by 1). So Hé") must be
bounded by const.M\" on L{" and decay in the left extremity. By similar arguments
as above for H one shows that one can extract subsequences from (H(g"), Fém)
which converge uniformly on compacts in the left leg, and that for any subsequential
limit (Hy, Fo) we have that Fyy decays in the left leg extremity. But such an Fy(z) is,
as the limit of F™ (2) — /€, FL._x(z€), equal to F(z) — EEk (z). We have thus seen
that F is holomorphic with Riemann boundary values in the slit-strip, F' decays at
the top and right leg extremities, and F — EL- « decays at the left leg extremity. We
conclude that F = PkL.

To finish the proof, we must still show the boundedness of (Mg’))neN. Sup-
pose that instead M;;l) — oo along some subsequence, for some K > 0
and therefore by monotonicity for all large enough K. Now (M;?))_l |H (")| is
bounded by 1 on L%’), and by selecting a large enough K we get by Beurl-
ing estimates as before that (M;(”))_1 ‘H(”)‘ < % on L(()”). Again decompose
FM(z) = Fé")(z) + €y FL.—k(z€y,) in the left leg, and denote by Hé") the imag-
inary part of the integral of the square of FO(”). Noting (4.6) and that, as n — 00
along the subsequence, we have (M;?))_l/zm |31k (z€n)| — O uniformly
on Sk > z, we see that (MI(?))_1 ‘Hé")‘ < 2on L(()”) for large enough n. By
the decay in the left leg and the maximum principle, Hé") is bounded by its val-
ues on L(()") , SO (M;?))’1 !Hé") | < % everywhere. But similarly by the smallness of
(M[(?))_l/2 J |§L;,k(z£n)| on Sx41 3 z, we see that the difference H™ — Hén)
is small, so that in particular (M;(n))_1 |H(”)| < % on L(,?), for large n in the subse-

quence. This is a contradiction with the definition of M;?), so indeed (M;?))n <N had
to be bounded and the proof is complete. O

4.4.4 Convergence of Inner Products

For applications to the convergence of the Ising model fusion coefficients, it is not
enough for us to have the uniform convergence on compacts of the distinguished
discrete functions to the distinguished continuum ones. We need the convergence of
the inner products of their restrictions to the cross-section as well.

Corollary 4.8 Choose sequences (an),cN, (bn), <N of integers ay, by, € 7 such that
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e a, <0 < b, foralln;
e !, :=b, —a, > +ocoasn — oo;
e a,/l, — —% and b, [, — +% asn — oQ.

Fork € K, let

(€n) (€n) n)  ¢Un)  ¢(ln) n) (tn)
Prics Pris PR Taks folie friae € F

denote the functions defined before in the lattice strips with a = a, and b = b,,.
Correspondingly, let

T L R L R 2
Dis Px» P €+k, €iy, exx € L

be the continuum functions defined before.
Then as n — oo, we have the convergence of all inner products in F ) to the
corresponding ones in L*:

(R, 55 — (ep.ef)) forx,+ € {T,L,R} andk, k' e £K,

(z ) f(, ) = (Prs ek,) forx,* € {T,L,R} andk € K, k' € £K,

<pi‘;1 Py = (phopl) forx, ¥ € (T.L.R} andk.K €K

(where the hitherto undefined notations are interpreted so that f1.x = fx and e,{ = ex).

Proof The proofs of all cases are similar, so we will only consider in detail a typical
one,

(PLks i) — (PEs ex)

©

gir» and now use the functions x

We again work in the rescaled slit-strip ; S

Vi, p(Z )(xEn), x = /l, f]((,” (x¢,) with p1ecewise constant interpolation for con-
venience (by the equicontinuity estimates, this does not change the convergence
statements). The discrete inner product can be written as the integral of the piece-
wise constant interpolation

[n Kn ln i
e =Y e @)
x'€llan.bn]*
by /tn '
_%e</ (n)(xg)\/»f ”)(xﬁ)dx>
an/ln
For small € > 0, let I° := [~ + ¢, —¢] U [€, ; — €]. By Theorem 4.3, we have
) . 11
\/Z'fk’ (xln) — e (x) uniformlyonZ = | — 3 5]2%
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and by Theorem 4.7, we have
Ve p(f.’;f (xly) = pr(x) uniformly on Z° > x.

Comparing the discrete inner product with the continuum inner product

+1/2
(ppsex) = Me ( f Pr(x) e (x) dx)

—1/2

the uniform convergence shows that the contributions to the integrals from Z° converge
to the desired ones for any € > 0, and it remains to show that the contributions from
within distance € to the points —%, 0, % are negligible in the limit € — O.

Note that |ex(x)| < 1 for all x € Z, and its discrete counterpart /¢, f,(f”)(xﬁn) is
bounded by an absolute constant, too, as remarked in the proof of Theorem 4.7. It there-

fore remains to control the discrete pole functions /¢, pg’,‘c) (xﬁ ,,) and their continuous

counterparts. But by the same proof, the pole function F ™ (z) = /7, ‘43(5’}() (zZn) sat-

isfies the estimate (4.6) (also M f") < const.). With these estimates of the two types
of functions to be integrated, we see that the contribution to the integrals from within
distance € to the points —%, 0, % is in this case O(e11#)/2), This proves the desired
convergence (pLix. fir) — (pk. ex).

Note that among the many cases in the statement, the above type of reasoning
results in the worst bounds for two pole type functions (no a priori bounds besides the
Beurling estimates are available for either factors). But even in that case the product
in the integrand is O(]x — c|[#~") for ¢ € {~1,0, 1}, and the contributions to the
integrals from within distance € to the points —%, 0, % are O(e?) as € — 0, which is
sufficient for the convergence of the inner products. O
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