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Tiivistelma

Téssé opinndytetyossa on tutkittu kvanttiviridynamiikan héiriéteorian alim-
man kertaluvun c-, b- ja t-kvarkkiparien tuottoa protoni—protoni- ja protoni—
antiprotoni-torméyksissa. Useita alimman kertaluvun kokonais-, differen-
tioituja ja kinemaattisesti leikattuja vaikutusaloja on laskettu késitellen lop-
putilan kvarkkeja massiivisina. Vaikutusalojen herkkyytta raskaan kvarkin
massan, renormalisaatio- ja faktorisaatioskaalojen arvojen vaihteluille on
tarkasteltu. Teoreettisten ja vastaavien kokeellisten vaikutusalojen eroavaisuu-
det on kvantifioitu K-kertoimien avulla. Tuloksista selvidi, ettd K-kertoimet
ovat samat alimman kertaluvun vaikutusaloille, joiden tarkasteltu térméyspro-

sessi, renormalisaatio- ja faktorisaatioskaalat ovat samat.
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Abstract

In this master’s thesis the theoretical yields of ¢, b and ¢ quark pairs in proton-
proton and proton-antiproton collisions have been studied via the lowest order
perturbation theory of quantum chromodynamics. Several lowest order total,
differential and kinematically cut cross sections have been calculated while
treating the final state quarks massive. Sensitivity of the cross sections to
variations of heavy quark mass, renormalization and factorization scales are
examined. Differences between the theoretical and corresponding experimental
cross sections have been quantified with K factors. The results indicate that
K factors of two different lowest order cross sections correspond to each other
if the cross sections examine the same collision process and have the same

renormalization and factorization scales.
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Kiitokset

Sain apua tamén pro gradu-tutkielman tyostamiseen ohjaajani lisiksi my6s muilta
fysiikan laitoksen henkilokunnan jaseniltd. Haluan erityisesti kiittda yliopistonlehtori
Sami Réasastd numeerisen ohjelman ja ROOTin ongelmien kanssa auttamisesta. Il-
man hénen lukuisia neuvojaan ohjelman tyostaminen olisi vaikeutunut huomattavasti.
Kiitdn myos professori Tuomas Lappia hdnen antamistaan kvanttivaridynamiikan teo-
rian ominaisuuksia koskevista selvennyksista ja vaitoskirjatutkija Oskari Saarimékeé
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1 Johdanto

Kvanttivaridynamiikka on hiukkasfysiikan standardimallin mittakenttateoria, joka ku-
vaa vahvaa vuorovaikutusta kvarkkien, antikvarkkien ja gluonien vélilla. Kvanttivari-
dynamiikan soveltamiseen kaytetadn paadasiassa kvanttivaridynamiikan hairioteoriaa.
Hairioteorian avulla on mahdollista laskea muun muassa eri hiukkastormaysprosessien

vaikutusaloja, jotka mittaavat hiukkastuottoa ja reaktiotodennékoisyytta. [1]

Raskaiden kvarkkiparien (ce, bb, tf) tuotto hadroni- ja ydintérmiyksissi on
yvksi tarkeistd hiukkasfysiikan tutkimusalueista. Naiden prosessien teoreettiset
vaikutusalat ovat laskettavissa kvanttiviridynamiikan hairioteorialla, koska sen
soveltamisen edellytys, vahvan kytkentavakion pienuus, toteutuu hyvin kvarkkien
suurten massojen ansiosta [1]. Vertaamalla teoreettisia ja kokeellisia tuloksia keske-
nian saadaan tietoa kvanttivaridynamiikan toimivuudesta seké tarkennettua sita.
Raskaiden kvarkkiparien tuottoa késittelevit vaikutusalat antavat tietoa esimerkiksi
vahvan kytkentavakion [2] ja partonijakaumafunktioiden arvoista [3, |4]. Lisédksi
monet muut hiukkasfysiikan tutkimusalueet, kuten kvarkkigluoniplasma, Higgsin
fysiikka ja standardimallin ulkopuoliset teoriat, hyotyvét c-, b- ja t-kvarkkiparien

tuottojen tutkimuksesta [5-§].

Tassa pro gradu-tutkielmassa on tarkasteltu kvanttivaridynamiikan hairiéteorian
alimman kertaluvun raskaiden kvarkkiparien tuottoa protoni—protoni- ja protoni—
antiprotoni-tormayksissa. Olen laskenut ja analysoinut useita alimman kertaluvun
vaikutusaloja, sisdltden kokonaisvaikutusaloja seké eri kinemaattisten muuttujien
suhteen differentioituja ja leikattuja vaikutusaloja. Vaikutusalojen tarkastelemiseksi
laskin alimman kertaluvun kvarkki- ja gluonitason vaikutusalat analyyttisesti (lop-
putilakvarkkien massoilla mg > 0) ja tein numeerisen ohjelman, joka laskee kokonais-
prosessien vaikutusalat kollineaarisen faktorisaatioteoreeman avulla. Olen tarkastel-
lut, miten eri parametrien, kuten raskaan kvarkin massan, vaihtelut vaikuttavat
vaikutusaloihin. Huomasin tyoskentelyn aikana, etté renormalisaatio- ja faktorisaa-
tioskaalavalinnat vaikuttavat huomattavasti alimman kertaluvun vaikutusaloihin,
joten olen siksi keskittynyt erityisesti niihin analyysissani. Kvantifioin teoreettisten
ja vastaavien kokeellisten tulosten eroavaisuudet K-kertoimien avulla ja vertasin niita

keskenéan.

Tama tutkielma on jaettu kuuteen lukuun. Luku 2 antaa keskeiset pohjatiedot

raskaiden kvarkkiparien tuottoon liittyvasta tutkimuksesta ja teoriasta. Luvussa 3



johdan Feynmanin sdannoisté aliprosessien vaikutusalat sekd muodostan lausekkeen
poikittaisliikemaaran ja rapiditeettien suhteen differentioidulle kokonaisprosessin
vaikutusalalle. Luku 4 esittelee lyhyesti vaikutusalojen laskemiseksi tekemani nu-
meerisen ohjelman. Tulokset ja niiden analyysi kdydaén léapi luvussa 5 ja yhteenveto
ja lopulliset johtopaatokset ovat luvussa 6. Lisaksi tutkielman osana on kuusi erillista
liitetta.

2 Taustatietoa

Téassé osiossa esitdn pohjustuksena tyossé tarvitsemani perustiedot hiukkasfysiikan
teoriasta sekd matemaattiset metodit. Luvussa 2.1 esittelen raskaiden kvarkkien
ominaisuuksia ja merkitystda hiukkasfysiikalle. Luku 2.2 kasittelee yleisesti hiuk-
kasfysiikan kvantitatiivista kuvaamista ja laskumetodeja. Kvanttivaridynamiikan
hairioteoria, hadronitormaysten kasittely ja laskuissa tarvittavat Feynmanin saénnot
on esitelty lyhyesti luvussa 2.3.

Kéytéan tassa luvussa, kuten jatkossakin, luonnollisia yksikoita eli valonnopeudelle
sovitaan péatevan ¢ = 299 792 458 m/s = 1 [9, |10]. Talléin valonnopeus tulee ole-
maan useissa yhtaloissa implisiittisena ja esimerkiksi massan ja litkemadran yksikot
ilmoitetaan eri muodossa, jotka voivat poiketa totutusta: [m] = eV/c?> = €V ja

[|Ip|] = eV/c = eV, missa eV on energian yksikko elektronivoltti.

2.1 Raskaat kvarkit standardimallissa

Kaikki kappaleisiin kohdistuvat vuorovaikutukset ovat selitettavissd neljéan, fun-
damentaalisen, perusvuorovaikutuksen avulla. Naméa perusvuorovaikutukset ovat
vahva, sahkomagneettinen ja heikko vuorovaikutus seké gravitaatio. Hiukkasfysiikan
tutkimuksen tarkeimpia tavoitteita on kehittad teoria, joka kuvaa naita kaikkia
perusvuorovaikutuksia ja materiaa, samanaikaisesti. |11}, 12]

Hiukkasfysiikan standardimalli on mittakenttéateoria, joka kuvaa vahvaa, sahko-
magneettista ja heikkoa vuorovaikutusta (kuva (1)) |13]. Sitd on kehitetty 1900-luvun
puolivalisté lahtien, ja se on nykyaén todettu kauttaaltaan pitavaksi lukuun ottamatta
paria ristiriitaa, kuten esimerkiksi neutriinojen nollasta poikkeavat massat. Lisédksi
standardimallin avulla ei ole selitetty esimerkiksi pimeda ainetta, materia-antimateria-

asymmetriaa tai gravitaatiota, ja useita sen parametreja on vield selvittdmatta. |11}



2]

Kvarkit (ja antikvarkit) ja vélittdjahiukkanen gluoni ovat ainoat standardimallin
alkeishiukkaset, jotka kokevat vahvan vuorovaikutuksen. Standardimallin kvarkki-
gluoni-vuorovaikutuksia kuvaavaa mittakenttateoriaa nimitetadn kvanttivaridynamii-
kaksi (luku 2.3). Jatkossa kvarkilla viitataan kvarkkiin tai vastaavaan antikvarkkiin,
ellei toisin ole mainittu. Tata nimityskonventiota kaytetadn vastaavasti leptoneille
ja neutriinoille. [1]

Kvarkit ovat massallisia, varattuja, spin-;-hiukkasia [20]. Spin on hiukkasen
luontainen py6rimislitkemééré (sisdinen ominaisuus, toisin kuin mahdollinen rata-
pyOrimismadra) [22]. Spinin suuruutta kuvataan spin-kvanttiluvulla s [22], joka
on nyt siis % kvarkeille. Spinin kvanttimekaanisista ominaisuuksista johtuen sen z-
komponentti (tai x- tai y-komponentti) voi saada mitattessa vain kaksi erilaista arvoa
[22]. Nimitetadn naité tiloja spin-ylos- ja spin-alas-tiloiksi (z-akselin/hiukkassuihkun
suunnan kanssa samansuuntainen ja vastakkaissuuntainen komponentti) [23]. Massan,
sahkoisen varauksen ja spinin liséksi kvarkeilla on vain niille (ja gluoneille) ominainen
ominaisuus, varivaraus. Mahdollisia kvarkkien varitiloja on kuusi: punainen, sini-
nen ja vihred kvarkeille seka antipunainen, antisininen ja antivihrea antikvarkeille.
Kokonaisvirivaraus séilyy aina prosessissa [1]. Vaikka kvarkin véri ei ole mitattavissa
oleva ominaisuus, niin se on kuitenkin todettu kokeellisesti todelliseksi ilmioksi [1]

ja taman kvanttiluvun olemassaolo selittdd muun muassa kevyimpien hadronien

havaitun tilaspektrin [24].

Gluoni on massaton spin-1-hiukkanen [1]. Se on vahvan vuorovaikutuksen mitta-
bosoni eli se vilittaa vahvaa vuorovaikutusta kvanttiviridynamiikan teoriassa [20].
Fotonin tavoin vapaalla (massakuorellaan olevalla) gluonilla on kaksi fysikaalista
(poikittaista) polarisaatiotilaa [25] 26]. Lisdksi gluonilla on kahdeksan mahdollista
varitilaa (mitké eivat siis ole samoja kuin kvarkkien véritilat). Naiden véritilojen
avulla gluoni valittda varivarausta kvarkkien ja muiden gluonien valilla seka sailyttas

kokonaisvérivarauksen prosessissa [1].

Hadroni on kvarkeista (ja gluoneista) muodostunut komposiittihiukkanen. Kvar-
kista ja antikvarkista muodostunutta hadronia kutsutaan mesoniksi ja kolmesta
(anti)kvarkista muodostunutta hadronia (anti)baryoniksi. Myo6s useammasta kvar-

kista koostuvat tilat (eksoottiset mesonit/baryonit) ovat mahdollisia, mutta ne ovat
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Kuva 1. Hiukkasfysiikan standardimallin alkeishiukkaset (ei sisédistd raken-
netta). Hiukkaset jaotellaan kvarkkeihin, leptoneihin, mittabosoneihin seka
skalaaribosoniin. Kvarkit ja leptonit (fermionit) voidaan jakaa kolmeen kvarkki-
generaatioon ja kolmeen leptonigeneraatioon, jotka yhdessd muodostavat kolme
materian generaatiota (I, IT, TIT). Alkeishiukkasen massa (eV = 1,783-10730 kg
9]), séihkovaraus (e = 1,602-107 C [9]) ja spin-kvanttiluku on ilmoitettuna sym-
bolin/nimen alapuolella [14-20]. Kvarkit kokevat kaikki kolme standardimallin
vuorovaikutusta, varatut leptonit sdhkomagneettisen ja heikon, ja neutriinot
pelkéstaan heikon vuorovaikutuksen . Vuorovaikutuksia valittavat mitta-
bosonit gluoni (vahva), fotoni (sdhkomagneettinen) seka Z- ja W-bosonit (heikko)
. Standardimallin ainoa skalaaribosoni on Higgsin bosoni, jonka ominaisuudet
vaikuttavat useisiin standardimallin (ja sen ulkopuolisten mallien) mekanismeihin
. Lisdksi alkeishiukkasiin kuuluvat myds kvarkkien antihiukkaset @, d, 3, €,
b ja T, sekéd leptonien antihiukkaset e*, u*, 7+, v, 7, ja v, . Hiukkasen
ja sen antihiukkasen massa ja spin ovat samat, mutta sdhkovaraukset ovat
vastakkaismerkkiset [20].



huomattavasti harvinaisempia. Hadroni muodostuu aina siten, ettd sen sdhkova-
raus on alkeisvarauksen e monikerta ja ettd sen kokonaisvaritila on muuttumaton
kvanttivaridynamiikan SU(3)-vérirotaatioissa (vérisinglettitila, joskus sanotaan, etté

hadronin kokonaisvérivaraus on nolla). [27]

Hadronisoitumiseksi kutsutaan prosessia, jossa kvarkki muodostaa hadronin
muiden kvarkkien (ja gluonien) kanssa [1]. Tatd muodostumisprosessia ei nykyéaankaan
ymmarreta hyvin, ja useita hadronisaatiomalleja on kehitetty sen mallintamiseksi
[28]. Hiukkastorméysprosessissa tuotettu kvarkki voi esimerkiksi emittoida gluonin,
joka sitten muodostaa kvarkki-antikvarkki-parin, ja toinen néisté parinmuodostuksen
seurauksen syntyneista kvarkeista muodostaa mesonin alkuperaisen kvarkin kanssa
[29]. Kvarkki voi my6s muodostaa hadronin muiden térméysprosessissa syntynei-
den hiukkasten tai niiden jatkotuotteiden kanssa [30} 31]. Hadronisaatiolle on siis
tormaysprosessista riippuvia ja riippumattomia malleja. Kun ollaan kiinnostuneita
siitd, milla todennakoisyydelld tietty hadroni syntyy yhdestéa kvarkista tai gluonista,
hadronisaatiota voidaan kvantitatiivisesti kuvata fragmentaatiofunktioilla. Namé
ovat oleellisesti todennédkoisyystiheysjakaumia, jotka ovat funktioita hadronin ja

kvarkin liikeméérien tai energioiden suhteista |32, |33].

Hiukkastormayksissa tuotettuja kvarkkeja ja gluoneja ei voida koskaan havaita
suoraan erittdin nopeasti tapahtuvien hadronisaatio- ja hajoamisprosessien vuoksi
(ns. véarivankeus) [1}, 27, 34]. Keskimé&érainen kvarkin hadronisoitumiseen kuluva aika
on noin 1072% s [34]. Koska t-kvarkin keskiméériinen hajoamisaika on noin 1072 s,
niin se on ainoa kvarkki, joka ei hadronisoidu [34]. Protonia (uud) (ja antiprotonia,
uud) lukuun ottamatta kaikki hadronit ovat epéstabiileja, ja lisiksi huomattava osa
hadronien (tai ¢-kvarkin) hajoamisten lopputuotteista ovat myo6skin epéstabiileja [34].
Tastéa johtuen vapaan kvarkin syntyminen aiheuttaa hajoamisketjuja, joissa tapahtuu
useita hadronisaatioita ja hajoamisreaktioita. Hajoamisketjuja on useita mahdollisia
eri kvarkeille |35, 36], ja tutkimalla naista syntyneita hiukkasia on mahdollista havaita

tormaysprosesseissa syntyneet kvarkit [1]. Kvarkin hadronisoitumisesta syntyvéa

kollimoitunutta hadronisuihkua nimitetaéan jetiksi [1].

Kolme raskainta standardimallin kvarkkia ovat ¢ (charm, lumo), b (bottom, beauty,
pohja, kaunis) ja t (top, truth, huippu, tosi) [14]. Niiden olemassaolot ennustettiin
60- ja 70-luvuilla [37], ja jokainen niistd on tdmén jalkeen 16ydetty kokeellisesti [20].

Raskailla kvarkeilla on térkea asema hiukkasfysiikan tutkimuksessa niiden erityisten



ominaisuuksien vuoksi.

Massat c- ja b-kvarkeille ovat m. = 1,27 GeV ja m; = 4,18 GeV ja sdhkova-
raukset Q. = %e ja Qp = —%e [14]. c-kvarkki loydettiin marraskuussa 1974, kun
SLACin ja BNLn tutkimusryhmat (Stanford Linear Accelerator Center, Brookhaven
National Laboratory) 16ysivéit erikseen ja samanaikaisesti @-mesonin (tunnetaan
myo6s J-mesonina), joka koostuu c-kvarkista ja c-antikvarkista. Tété 10ytoa ja siité
seurannutta lapimurtojen sarjaa nimitetaén joskus marraskuun vallankumoukseksi
(November Revolution) [38]. Vastaavasti b-kvarkki havaittiin kokeellisesti vuonna
1977 Fermilabin kiihdytinlaboratoriossa (Fermi National Accelerator Laboratory),
kun bb-mesoni T 16ydettiin [37].

Kvarkkien vérivankeudesta johtuen hiukkastorméyksissa syntyneet vapaat c- ja b-
kvarkit hadronisoituvat valittomésti epastabiiileiksi c- ja b-hadroneiksi [34]. Syntyneet
c-hadronit tunnistetaan pédasiassa kahdella tavalla: tutkimalla niiden semilepto-
nisista hajoamisista syntyneita leptoneita tai tutkimalla hadronisista hajoamisista
syntyneitd c-hadroneja [39]. Semileptonisessa hajoamisessa hadroni hajoaa yhdeksi
leptoniksi, leptonia vastaavaksi neutriinoksi ja ainakin yhdeksi hadroniksi [40] (esim.
D® — K~eTv, [41]). Hadronisiksi hajoamisiksi kutsutaan hajoamisia, joissa syntyy
hadroneita [34] (esim. D*(2007)° — D°x° [41] on puhtaasti hadroninen hajoaminen,
lopputuotteina vain hadroneja). b-kvarkkien tunnistamiseen kiytetaan pédasiassa
b-hadronien semileptonisia hajoamiskanavia [5, |7, 42-44]. Parhaimman tunnistus-
metodin valintaan vaikuttavat muun muuassa kaytetyn laitteiston kyky erotella
vuorovaikutuspisteita (luku 2.3), taustaprosessien vaikutukset mittaukseen seké
tuntemus tarkastellusta prosessista [39, 42]. ¢ ja b-kvarkkeja tarkastellessa tulee
ottaa huomioon, etta niita sisaltavia hadroneja voi syntya raskaampien hiukkasten
hajoamisketjuista (feed down), eikd ainoastaan niin sanotusti suoraan torméysproses-
sista [45]. Esimerkiksi b-hadroni voi hajota c-hadroniksi [46] ja t-kvarkki hajoaa aina
b-kvarkiksi ja W-bosoniksi [6].

Ydintormaysten c- ja b-kvarkkituottojen vaikutusalat ovat tarked mittaamisen
kohde useista syista. Niiden avulla testataan kvanttiviaridynamiikan hairioteorian
toimivuutta (luku 2.3) [43] seké erilaisia hadronisaatio- ja fragmentaatiomalleja [45].
Vaikutusalamittaukset toimivat myos luotaimena kvanttiviridynamiikalle. Esimer-
kiksi c-kvarkkituoton mittauksia protoni—protoni-térméyksissa kiytetdan partoni-
jakaumafunktioiden eli kvarkkien ja gluonien lukumaéréitiheysjakaumien tarken-

tamiseen pienilld partoneiden pitkittiisliikeméédriaosuuksien z arvoilla (noin 1074,



yhtéls (81))) [47]. Mittaukset voivat auttaa tarkentamaan erityisesti protonin gluo-
nipartonijakaumafunktiota f,/,, joka on selvisti hallitseva partonijakaumafunktio
pp-torméayksissé ja jonka suhteellinen virhe pienilld z:n arvoilla on jopa 30 % [3]. ¢-
ja b-kvarkkien vaikutusalat luotaavat myos ytimien térméyksessa syntynyttéa vélitilaa
[5]. Namé raskaat kvarkit muodostuvat torméyksessa aikaisin ja kantavat siksi
mukanaan informaatiota systeemin aikaisista vaiheista [5]. Taméa informaatio on
erityisen tarpeellista tutkittaessa kvarkkigluoniplasmaa, jota saadaan muodostettua
tormayttéessi raskaita ytimiéd (esim. lyijy- tai kultaytimia) [5, 48]. Liséksi b-karkkien
tarkan tuoton tunteminen on térkead tutkittaessa standardimallin ulkopuolisia teo-
rioita (Beyond Standard Model), CP-rikkoa seké harvinaisia hajoamisprosesseja
[7].

Raskain kvarkeista, t-kvarkki, 10ytyi kokeellisesti Fermilabin Tevatron-protoni—
antiprotoni-kithdyttimen avulla vuonna 1995 [20]. Sen massa on m; = 172.9 GeV ja
sihkovaraus @, = Ze [14]. Vapaa t-kvarkki hajoaa valittomésti reaktion t — Wb
(t — W~b) mukaisesti, ja prosessi luokitellaan joko leptoniseksi tai hadroniseksi
W-bosonin hajoamistavan mukaan (W= voi hajota joko leptoniksi ja vastaavaksi
neutriinoksi tai kvarkiksi ja antikvarkiksi) [6]. Siten t¢-tuoton lopputilat jaotellaan
taysin hadroniseen kanavaan, leptoni + jetit-kanavaan ja dileptoniseen kanavaan [6].
Kaikkia kolmea kaytetdan kvarkkiparien tuoton havaitsemiseen ydintormayskokeissa
[49].

Kuten ¢ ja b-kvarkkien tapauksessa, ydintorméysten ¢t-kvarkkituottojen vaiku-
tusalat testaavat ja luotaavat kvanttivaridynamiikkaa, erityisesti hairiéteoriaa [49).
Protonin gluonipartonijakaumafunktio f,/, on vihemmén tutkittu korkeilla pitkittais-
liikemaardosuuksien x arvoilla, ja t-kvarkin suuri massa antaa keinon paastéa tahan
alueeseen (yhtdlo (81)) [4]. Vaikutusalamittaukset parantavat t-kvarkin massan
tarkkuutta [2] ja auttavat vastaavan napamassan selvittamisessa [4]. Hairioteoriassa
massan m; tarkka tuntemus vaikuttaa esimerkiksi useiden prosessien korkeamman
kertaluvun korjauksiin [50]. ¢-kvarkki on tarked myo6s monille standardimallin ulko-
puolisille malleille, ja tf-tuotto luotaa ndiden ennustettuja prosesseja [8]. Liséksi ¢-
kvarkkituoton ominaisuudet vaikuttavat vahvasti Higgsin fysiikkaan (Higgsin bosoni)

ja sidhkoheikkoon teoriaan [6].

Kuten edella korostettiinkin, raskaiden kvarkkien massojen arvot vaikuttavat suu-

resti hiukkasfysiikan teoriaan ja ilmiéihin. Nykyéadn nédiden massojen suhteelliset



virheet saadaan méaéaritettyd melko pieniksi (0,23 - 1,57 % yll4 mainituille Particle
Data Groupin ilmoittamille arvoille). Kuitenkin, kvarkin massan arvoa madrittdessé
joudutaan aina tekeméan teoriaan liittyvia, osittain mielivaltaisia, valintoja, jotka
vaikuttavat lopputulokseen. Esimerkiksi kvarkin massan maérityksessa kaytetty
teoreettinen viitekehys voi olla riippuvainen kéytetysta skeemasta (scheme, esim.
MS-, MS- ja 1S-skeemat) ja massaskaalavalinnasta. Niiden lisiksi on olemassa
vield erillinen napamassan késite (pole mass), joka vastaa hiukkaspropagaattorin
napaa. Esimerkiksi elektronin massan on maéaritelty olevan sen napamassa, mutta
samaa yksikasitteista méarittelya ei voida tehdé kvarkeille kvanttivaridynamiikan
infrapunaefektien (non-perturbative infrared effects in QCD) ja kvarkkien varivankeu-
den vuoksi. Siispéd raskaan kvarkin massan arvo on melko epayksikasitteinen, ja
hyva valinta laskussa tai mittauksessa kaytettavaksi massan maaritelmaksi riippuu
tilanteesta. Lisdd massavalinnoista ja niiden vaikutuksista teoreettisiin vaikutusaloi-
hin on luvussa 5. [51}, 52]

2.2 Keskeisia maaritelmia, yhtaloita ja kinematiikkaa

Tulen kayttamaan osassa yhtéloista Einsteinin notaatiota. Tama tarkoittaa, etta
summan merkki )" jatetdan implisiittiseksi ja summa tunnistetaan kahdesta samasta
indeksisté (esim. >, p"p, = p"p,) [10]. Kéytan Einsteinin notaatiota nelivektori-, v-

ja varisummissa, mutten spin- ja polarisaatiosummissa.

2.2.1 Nelivektoreista

Erilaiset nelivektorit ovat tarkeitd matemaattisen mallintamisen tyokaluja hiukkas-

fysiikassa. Esimerkiksi

aO

1
a

a= 1" (1)
a

a3

1

on (kontravariantti) nelivektori, jonka komponentit ovat a°, a!, a? ja a®. Vastaava

kovariantti nelivektori on

d:(ao a; Qo ag,) (2)



missé ag = a’, a; = —a', as = —a? ja a3 = —a®. Nelivektoreiden komponenttien

indeksejé nimitetdén Lorentzin indekseiksi. [10]

Olkoon b nelivektori, jolla on komponentit b°, b*, b? ja b® vastaavasti kuin edell.
Nelivektoreiden a ja b vélinen skalaaritulo on (kontravariantin ja kovariantin nelivek-

torin vélinen pistetulo) [10]
a-b=ad" —a'b' — a®b* — a®V’ = a"b, = a,b". (3)

Maaritellaan lisdksi merkinta

a>=a-a. (4)

Olkoon a, b ja c ovat mielivaltaisia nelivektorita ja hy ja ho vakioita. Nelivektoreiden
skalaaritulolle pétee selvisti seuraavat ominaisuudet (vaihdannaisuus, bilineaarisuus

ja vakiolla kertomisen vaikutus):

a-b=">-a,
a-(b+c)=a-b+a-c
(a+b)-c=a-c+b-c
(hia) - (heb) = hiha(a - b)

Maéritelladn Minkowskin 4-avaruuden metrinen tensori, jonka avulla on voidaan
ilmaista kontravarianttien ja kovarianttien komponettien suhde seka esittéa skalaaritu-
lot. Tensorin komponenteille g,,,,, u,v = 0,1, 2,3, patee goo = 1, g11 = g22 = g33 = —1
ja Guwew = 0, sekd vastaavasti kiddnteiselle metriselle tensorille (¢*) ¢% = 1,
g't = ¢g? = g% = —1 ja ¢ = 0 [10]. Tilloin voidaan kiyttii esimerkiksi
seuraavia esityksia:

ay = gw/aua
L (6)
a” = g"a,
ja
a-b=a'd, =a,b' = g,ad"b" = g"a,b, (7)
(Huomio: Saman lausekkeen kaksi samaa Lorentzin indeksia esitetédén aina siten,

ettd toinen on yldindeksi ja toinen alaindeksi. Siten metristen tensorien voidaan

ajatella "nostavan" ja "laskevan" Lorentzin indekseja. [10])
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Maaritelladn, ettda merkintd g, vastaa Kroneckerin deltaa §*, jolle pétee [10]

1, kun p=v
0", = (8)
0, kun p # v.
Nyt (esimerkiksi)
guagOAV = gul/ = 5lu1/ (9)
ja siten
guuglw = 4. (10)

2.2.2 Kinematiikkaa

Vapaan relativistisen hiukkasen energia on

E =/m? + [p[’, (11)

kun m on hiukkasen massa ja p liikemaara [10]. Vapaalla hiukkasella tarkoitetaan
téssd tapauksessa hiukkasta, johon ei kohdistu ulkoisia vuorovaikutuksia (tai ne
voidaan jattda huomiotta). Kun kappaleen sanotaan olevan relativistinen, niin
se tarkoittaa, ettd kappaleen ominaisuuksien tarkaksi kuvaamiseksi tulee ottaa
huomioon (suppea tai yleinen) suhteellisuusteoria (esimerkiksi kun hiukkasen nopeus

on lahelld valonnopeutta) [53].

Massallisen relativistisen kappaleen liikemadra on

muv

p- (12)
st
missd T on kappaleen nopeus [53]. Massattomalle hiukkaselle (|| = 1)
pl=E (13)

yhtalon (11)) mukaisesti.

Hiukkasen neliliikeméérdvektorin p ensimméinen komponentti on hiukkasen
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energia E ja loput komponentit hiukkasen litkemaarén p = (p,, py, p-) komponentit:

E

p=|"" = (E> (14)
Py P
p-

Neliliikemaaravektorien valiset skalaaritulot ovat Lorentz-invariantteja eli ne eivat
muutu Lorentz-muunnoksissa. Talloin esimerkiksi skalaaritulon lopputulos on sama
koordinaatistoissa, jotka liikkuvat vakionopeuksilla toisiinsa ndhden. Energian ja
liikemadaran sailymislakien nojalla neliliikeméarien summa sailyy missa tahansa

(eristetyn systeemin) prosessissa. [10]

Vapaan hiukkasen neliliikemaéravektorille p patee
P’ =E—p" = m’ (15)

yhtéilon (11)) perusteella. Kun tdmé relaatio p?> = m? on tosi, niin hiukkasen sanotaan

'olevan sen massakuorella'. [10]

Kuvassa [2] on esitettyna useita lopputilahiukkasia siséltava torméaysprosessi, CMS-
koordinaatistossa. CMS-koordinaatistossa (center of momentum) kappaleiden koko-
naisliikeméara on nolla (p, +p, = Xy = 0, f lopputilahiukkanen) [10]. Sovitaan
tavanomaisen konvention mukaisesti ensimmaéisen alkutilahiukkasen (vasemman-
puoleinen, a, 1) liikemééra samansuuntaiseksi z-akselin kanssa. Olkoon 6 lopputi-

lahiukkasen liikeméaarén ja z-akselin valinen sirontakulma.

Y14 esitetyn koordinaatistokonvention mukaisesti voimme maéritella hiukkasen

poikittaisliikemaéaran seuraavasti:

pr = /P2 + P2, (16)

missa p, ja p, ovat liikemaaran x- ja y-komponentti. Taéman avulla voidaan maaritella

toinen hyodyllinen suure, nk. poikittaismassa (transverse mass), |10]

mr = \/m? + p3. (17)
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a Pa

Kuva 2. Torméysprosessi, jonka lopputila sisaltdd useita hiukkasia (nyt 8 kpl),
esitettyna CMS-koordinaatistossa. Harmaa pallo esittaa reaktiota ja koordi-
naatiston keskipistetta. Siihen kohdistuvat nuolet ovat alkutilahiukkasten a ja
b liikemaérat p, ja p,, ja siitd poispain osoittavat nuolet lopputilahiukkasten
liikemaaréat. Yhden lopputilahiukkasen litkemaéran p poikittais- ja z-komponentit
pr ja p. seké sirontakulma 6 ovat esitettyind kuvassa.

Hiukkasen rapiditeetti (suhteessa z-akseliin /hiukkassuihkuun) on

y ;ln(E—i_pZ). (18)

E_pz

Rapiditeettia y kéytetdan relativistisen hiukkasen tilan ja "sirontakulman' ku-

vaamiseen. Vastaava pseudorapiditeetti on

L[l +p-

n==In(— : (19)
2 <‘p | - pz>

Selvasti y = n, kun m = 0. Pseudorapiditeetti on rapiditeettia parempi kulma-

muuttujana, silla sille on vaihtoehtoinen esitystapa, joka on riippuvainen ainoastaan

sirontakulmasta: /
n= —ln{tan(?}. (20)
Esimerkiksi sirontakulmat 0°, 45°, 90°, 135° ja 180° vastaavat pseudorapiditeetteja
00, 0,881, 0, —0,881 ja —oco. [10]
Hiukkasen energia ja hiukkassuihkun suuntainen litkemaérén komponentti on

mahdollista ilmoittaa massan, poikittaisliikemaarén ja rapiditeetin avulla:

E = mpcosh(y) 1)

p. = mypsinh(y).
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Vastaavalla tavoin [10]
p| = prcosh
|l = pr (1) (22)
p, = prsinh(n).

Térked torméysprosessien erikoistapaus on 2 — 2-prosessit (kuva . Olkoon

a Pa Dy b

Kuva 3. Térmaysprosessi a +b — ¢+ d CMS-koordinaatistossa. p,, Dy, P, ja Py
ovat hiukkasia vastaavat liikeméaéréit, sekd 6. ja 6y sirontakulmat.

prosessin a + b — ¢ + d hiukkasia vastaavat neliliikemaérét p,, py, pe ja pqe. Yla
esitettyjen hiukkasten kinemaattisten suureiden lisaksi 2 — 2-torméysprosessin
kuvaamiseen voidaan kayttaa Lorentz-invariantteja Mandelstamin muuttujia s, t ja
w:

§ = (P +m)* = (pe + pa)’

t = (pa—pe)? = (Db — Pa)’ (23)
u= (pa—pa)* = (P — pe),

missa jalkimmaiset esitykset muuttujille saadaan neliliikeméaéaréan sailymisesta

(Pa + Py = Pe + pa)- Neliliikemaaran sailymisen ja yhtalon avulla saadaan myos

seuraava hyodyllinen relaatio:
s+t+u=m2+mi+m?+m3, (24)
missa mg, My, M. ja my ovat vapaita hiukkasia vastaavat massat [10].

2.2.3 Vaikutusaloista

Tarkastellaan prosessia r, a +b — Sy, missa Sy on tarkasteltu lopputila mahdollisine

leikkauksineen. Oletetaan, etta a-hiukkassuihku kattaa (ainakin) alueen V,;, joka
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sisaltdd hiukkasia b lukuméédran N,. Olkoon J, a-hiukkasten vuo tissi alueessa.

Tormaysprosessin r vaikutusala on

W,
JaNb7

Oy = (25)
missd W, on prosessin r reaktiotaajuus alueessa Vj, [34]. Vaikutusala on téarkeéd suure
hiukkasfysiikassa, ja yleensi sen arvo ilmoitetaan barneissa (1 b = 1072® m) [34].
Se voidaan ajatella Lorentz-invarianttina reaktiotaajuuden, reaktiotodennakoisyy-
den tai reaktiota vastaavan vuorovaikutuksen voimakkuuden mittana (joillakin
leikkauksilla/differentiaatioilla vaikutusala ei ole Lorentz-invariantti) [34, 54]. Nimi-
tys vaikutusala (cross section) tulee siita, etta alunperin sirontakokeissa on pyritty

mittaamaan tutkittavan torméyksen hiukkasen kokoa reaktiotaajuuden avulla [54].

Torméyskokeen luminositeetti on
L = J,N,. (26)

Mita suurempi kokeen luminositeetti on, sitd enemmaéan haluttuja reaktioita r tapah-
tuu ja vastaavaa dataa saadaan tutkittavaksi (detektorilaitteiston tehokkuuden
rajoissa, ja olettaen, ettd suihku- tai kohdehiukkasten tiheydet eivit ole liian suuria).
Luminositeetti ei ole vakio ajan funktiona, ja usein se kuvataan eksponentiaalisesti
laskevana. Luminositeettia merkitsevaimpi mitta tormaysten méaralle on integroitu

luminositeetti

T
Liw = / L dt, (27)
0

missd 1" on mittausaika. Useassa osassa tehtavissa tormayskokeissa pyritdan maksi-

moimaan (integroidun) luminositeetin keskiarvo kokonaiskokeen aikana. [34} |55]

Hiukkasfysiikan teorian antama lauseke prosessin a +b — f1 + fo + ... + f,, differen-

tiaaliselle vaikutusalalle on

_Mab = fifa S ST P
dotab = fifetu) = 2/ \(s,m2,m2) (@ 0 et m = 200 5558

(28)

Tassd M(ab — fifs...fn) on prosessin invariantti amplitudi, joka muodostetaan

Feynmanin sidéntéjen avulla, 6 on (neliulotteinen) Diracin deltafunktio, m, ja



15

m,, alkutilahiukkasten massat, ja F; ja p; lopputilahiukkasia vastaavat energiat ja
neliliikeméaarat (differentiaalinen alkio dp; viittaa liikkeméériin p;). A on kolmen

muuttujan funktio, jonka lauseke on
AMa,b,c) = a® + b* + ¢ — 2ab — 2bc — 2ca, (29)

missé a,b,c € R. [34]
2 — 2-tapauksissa t-differentioidun vaikutusalan lauseke on huomattavasti

yksinkertaisempi [34]:

do(ab — cd)  |M(ab — cd)?
dt 16w (s,m2m?)

(30)

Edelld mainittu Diracin deltafunktio on jakauma, jonka kéyttdytymista voidaan

kuvata (1oyhésti) seuraavan kahden yhtélon avulla:

oo, kun x =0
6 (z) = (31)
0,kun x # 0

ja
M (z)dx = 1, (32)
Vn
missd x on vektori n-ulotteisessa avaruudessa ja V;, tdmén avaruuden osa, joka sisaltaé

luvun nolla ja jonkin nollan ympériston [56]. Luonnollisesti (z = (z1, xa, ..., 7))
M () = 8(z1)d(x2)...0(zn). (33)

Yksiulotteiselle deltafunktiolle voidaan todistaa pétevin seuraavat ominaisuudet

(a,b € R ja viimeisessé yhtélossa a # 0) [56]:

0(a) = d(=a)
0(a)o(b) =26(a+b)é(a — b) (34)
§(ab) = |a1|5(b).

Kokeellisen ja teoreettisen vaikutusalan vastaavuutta kuvataan K-kertoimella, joka
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on kokeellinen tulos jaettuna teorettisella. (Mé&éritelmé vaihtelee hieman tilanteesta

riippuen.) [57]

2.2.4 Diracin y-matriiseista ja hiukkasspinoreista

Kvanttivaridynamiikan hairioteorian Feynmanin sadantojen soveltamisen ymmérta-
miseksi on tarpeen esitelli Diracin y-matriisit 7°, v, 4% ja v3, missé ylidindeksi on
Lorentz-indeksi. Alun perin Paul Dirac kehitti nimé Diracin yhtélod varten, joka
kuvaa vapaita relativistisia spin—%—hiukkasia, ja myohemmin «-matriiseista ja niihin
liittyvista laskusdannoista tuli erittdin oleellisia Feynmanin sdantojen ja invarianttien
amplitudien laskemisen kannalta [23] 25].

~v-matriisit ovat ei-yksikasitteisia N x N-neliomatriiseja, N > 4, jotka nou-
dattavat Cliffordin algebraa {v*,7"} = 2¢""14. Seuraavat yhtépitavyydet patevit

Diracin «-matriiseille, kun kdytdmme niille Dirac-Pauli-esitysta (4 x 4) [23] 25]:

(") =1L
= 0yta? (35)
v =g"

TR(y"7") = 4¢" < TR(¢h) = 4a - b
TR(Vy"y#") = 4(g" g*" — g"*g"" + g""g"%) (36)

& TR(dbgd) = 4[(a-b)(c-d) = (a-c)(b-d) + (a-d)(b- )]

V=4

V= =20 S ey = 24 (37)
VA A, = 49" & Y dby, = 4da- b
VAN Y = =20y & b, = —2¢bd

it = a, (38)

missa a, b, ¢ ja d ovat mielivaltaisia nelivektoreita, i, v, ¢ ja xk Lorentzin indeksejé,

(79)? =4947, j = 0,1,2,3, ja ¢ = v*a,. Osassa yhtaloista yksikkomatriisi I on
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jatetty implisiittiseksi.

Laskujen helpottamiseksi on hyva tietad, ettd v-matriisien parittoman méaaran
tulon jélki on aina nolla. Olkoon ~v-matriisit y#t, y#2, ... y#2n Akl n € NUO,
siten, ettéd indeksi u; voi vastata mitd tahansa neljastd matriisista (eli u; =0, 1,2, 3).
Talloin [25]

TRy IAH2. AHnyhont1) = (), (39)

Edelld mainittu Diracin yhtélo voidaan jakaa kahteen, hiukkasia ja antihiukkasia
kuvaavaan, osaan:
(p—m)u=0

(p +m)v =0. o)

u = u(p,s) ja v = v(p,s) ovat ratkaisuspinorit, missé p on vapaan hiukkasen neli-
liikeméaéréavektori ja s spin-tilaf] (s = 1 (ylos) tai 2 (alas)). Vastaavat konjugoidut

spinorit ovat

N
1l
I
-,
)

(41)

<
Il

vA0.
Koska valitsin Diracin matriiseille tyyppia 4 x 4 olevan esityksen, niin siita joh-
tuen spinorit ovat 4-ulotteisia pystyvektoreita ja konjugoidut spinorit 4-ulotteisia

vaakavektoreita. [23]

Tavanomaisella normalisaatiolla (u'(p,s)u(p,s) = 2F) saadaan tulos

> ulp,s)u(p,s) = p+m

s=1,2

> v(p,s)v(p,s) = p—m.

s=1,2

(42)

Néita yhtapitdvyyksid nimitetdan projektio-operaattoreiksi. [23]
Olkoon y-matriisit y#1, v#2. . 4#n=1 ja v n € N, pu; = 0, 1, 2 tai 3, seké hiukkas-

/antihiukkasspinorit w; ja wse. Nyt voidaan laskea

*Tarkalleen ottaen spinorit edustavat spin-ylos- ja spin-alas-tiloja ainoastaan tapauksissa,
joissa hiukkasen liikeméaéra on 0 tai yhdensuuntainen z-akselin kanssa (muulloin spinorit eivét ole
spin-operaattorin S, ominaistiloja). Emme kuitenkaan kisittele spin-polarisoituneita suureita ja
summaamme siten aina spinorien tilojen yli (yhtéld (42)), jolloin tdmé spinoritilojen eksakti luonne
ei vaikuta lopputuloksiin.
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(WyyHLyhe . ytn=tybng,)* = (w1707;t17u2.‘.Vun717unw2)T

_ w;,y/ln'i'/-yﬂnflT‘”/}/NZTV/JITVOTU)I
0 e e e ROV o i L R
= Woy" oyt Ay My, (43)

missd, kilytimme konjugoidun spinorin mééritelmaa seké relaatioita (7°)2 =1,
ja It = A0~in0 . Tama niin kutsuttu konjugaattirelaatio on tarkea tulevien

laskujen kannalta. [25]

Vield on tarpeen esitelld Feynmanin saént6ja varten polarisaationelivektori (p,\)
(komponentit €“(p,\)), joka kuvaa gluonia (tai fotonia) ja jossa A on polarisaatiotila

[25, 26]. Vektoria vastaava polarisaatiotensori on

y " L P+ prpY
P (p) = Y e p A" (pA) = —g" + —————, (44)
A=1,2 p-p
missa
FE
N —Dz E
p= = ( ) : (45)
_py —P
—D:z

2.3 Kvanttivaridynamiikan hairioteoria ja partonimalli

Neljasta perusvuorovaikutustyypistéd vahva vuorovaikutus on selvisti vahvin. Tama
manifestoituu muun muassa siten, ettd vahvan vuorovaikutuksen prosessien vaiku-
tusalat ovat useita kertaluokkia suurempia kuin sahkémagneettisen ja heikon vuoro-
vaikutuksen prosessien vaikutusalat (esim. o(yy = X) < o(pp — X)) [34]. Siten
tutkittaessa esimerkiksi kvarkkituottoa protoni—protoni-torméyksissa on hyvaksyt-
tavaa keskittyd ainoastaan vahvaan vuorovaikutukseen ja jattda huomiotta sdhko-
magneettisen ja heikon vuorovaikutuksen kontribuutiot [20].
Kvanttivaridynamiikka (Quantum Chromodynamics, QCD) on lokaalisti sym-

metrinen SU(3)-mittakenttateoria, joka kuvaa kvarkkien ja gluonien valistd vahvaa
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vuorovaikutusta [1]. Kenttateoria esiteltiin pitkén kehityksen jilkeen vuonna 1972
Harald Fritzschin, Heinrich Leutwylerin ja Murray Gell-Mannin toimesta [58]. Usei-
den kokeiden avulla teoria ollaan todettu erittédin pitavaksi ja nykyédan kvanttivéiridy-
namiikkaa késitellddn tarkednd hiukkasfysiikan standardimallin kulmakivena [1}, 13].
Kvanttiviaridynamiikan keskeisiéd nykytutkimuksen osa-alueita ovat muun muassa

hadronien [59] ja ytimien partonijakaumafunktiot [60] sekéd kvarkkigluoniplasma [61].

Vuorovaikutustyypin kytkentavakiolla kuvataan vuorovaikutuksen voimakkuutta.

Kvanttiviaridynamiikassa vahvalle kytkentavakiolle patee

9:(Qr)

aS(QT‘) 47]' I

(46)

missd (), on renormalisaatioskaala ja gs = ¢gs(Q,) kytkentdvoimakkuus. (Hadmaavasti
molempia muuttujia gs ja a, nimitetdan usein kirjallisuudessa vahvaksi kytkenté-
vakioksi, teen nyt erilaisen nimitysvalinnan sekaannusten valttdmiseksi.) Kvant-
tivaridynamiikka on asymptoottisesti vapaa teoria eli sen kytkentédvakiolle pétee
as(Qr) L, [1] Kéyttaméni kytkentdvakio on esitettyné kuvassa [62].

10?

3
Q, [G&V]

Kuva 4. Vahva kytkentavakio. Laskettu viitteen [62] perusteella.

Skaala Q = /Q? kuvaa energian ja liikeméérin siirtymisté prosessissa. Jos g on
prosessin hiukkasten valilla siirtynyt neliliikeméaara, niin tavanomaisesti méaritellian
Q* = |¢*|. Raskaiden kvarkkiparien tuotossa tyypillisesti Q ~ mr. [1]

Tarkemmin katsottuna skaala on kuitenkin monimerkityksellisempi asia kvant-

tivaridynamiikassa. On mahdollista maaritella skaalan @) lisdksi erikseen edellé
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mainittu renormalisaatioskaala (), ja faktorisaatioskaala @y, joille @, ~ @ ja
Qs ~ Q. Faktorisaatioskaala liittyy lyhyen ja pitkdn kantaman vuorovaikutusefektien
erotteluun ja se toimii nain partonijakaumien maarittelyssa tarvittavana skaalana.
Tavanomaisesti valitaan vain yksi skaala Q = @, = @y prosessille, koska se on
katevia ja koska ndma kolme skaalaa ovat kohtalaisen analogiset keskenaan. Téalloin
kuitenkin tarkka ymmérrys skaalavalintojen vaikutuksesta hadronitorméaysprosessien
vaikutusaloihin saattaa jaada pimentoon, ja siksi kasittelemme nyt renormalisaatio-

ja faktorisaatioskaaloja erikseen (luku 5.1.1). [63]

Useita laskumetodeja on kehitetty kvanttivaridynamiikan kasittelya varten. Naista
kaikista menestynein on hiiridteoria (perturbative quantum chromodynamics, pQCD)

[1]. Sen ideana on approksimoida haluttua lopputulosta vahvan kytkentévakion o
3

S

potenssien sarjana (a2, a2, a?,..., kun muiden vuorovaikutustyyppien kontribuutioita
ei tarkastella) [1},64]. Mita korkeamman kertaluvun approksimaatio, niin sité useampi
termi on otettu huomioon ja sité tarkempi lopputulos (lahempéné kokeellista tulosta).
Tassa tyossa tarkastelluille raskaiden kvarkkien tuottoprosesseille alimman kertalu-
vun approksimaatio (LO, leading order) ottaa huomioon a?-termit [26], sitéd seuraava
kertaluku (NLO, next-to leading order) myos korkeampien potenssien termeja, ja sité
seuraava vield korkeampia (NNLO, nezt-to-next-to leading order). Usein NNNLO- ja
sitd korkeampien kertalukujen korjauksia pidetdan mitdttomina, ja NLO- tai NNLO-
tulosta kédytetaan vertailutuloksena kokeelliselle datalle. (Tarkkaa teoreettista tulosta
madrittaessa otetaan myos huomioon korkeamman kertaluvun korjauksiin vertautuvat
korjaukset, kuten partonisuihkujen kontribuutio [65].) Teoreettisen tuloksen herkkyys
eri renormalisaatio- ja faktorisaatioskaalavalinnoille indikoi korkeamman kertalu-
vun korjausten suuruuksia [66} 67]. Siten skaalavalintojen epayksikésitteisyydesta
kumpuava epavarmuus on pienempi korkeammilla kertaluvuilla [66]. Héiri6teorian

soveltamiseksi edellytetéén, ettd @, 2 1 GeV [1]. Télloin o,(Q,) < 1 (kuva {)) ja

halutun tuloksen approksimointi kytkentévakion potenssien sarjana toimii hyvin [1].

Hairiteorian antaman aliprosessin vaikutusalan (invariantin amplitudin) laskemi-
sessa kdytetddn Feynmanin sdant6jé [68]. Ndiden Feynmanin sadntéjen soveltamiseksi
on tarpeen esitelld SU(3):n virittdjamatriisit t*,a = 1,2,...,8, ja niitd vastaavan

algebran laskusaantojé.

Virittajamatriisit ¢t* vastaavat gluonien kahdeksaa mahdollista varitilaa, ovat her-
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miittisia (eli (¢*)7 = t* ja (t*);; = (t*);:), ja ne eivét ole yksikésitteisid. Valitsemme
niille tavanomaisen, ns. fundamentaaliesityksen (F'), jolloin ne ovat 3 x 3-matriiseja

(Ir = I3) ja jolloin esitysriippuvaisille vakioille Cy (Casimirin operaattori) ja 1" pétee

194 = Cy(F)Ip

(47)
TR(tt") = T(F)5*,
missa 4
Co(F) = 3
: (48)
T(F) =5

(Fundamentaaliesityksessa virittdjamatriisit ovat Gell-Mann-matriisit A* jaettuna
kahdella, t* = 2-.) [68]

Virittajamatriisien kasittelyssa tarkeita tyokaluja ovat tdysin antisymmetrinen
struktuurivakio f%¢ € R (kahden indeksin vaihtaminen keskeniin vaihtaa luvun
merkin) seké tdysin symmetrinen struktuurivakio d*¢ € R (kahden indeksin vaihta-
minen keskenéén ei vaikuta luvun arvoon), missa indeksit a, b ja ¢ vastaavat gluonien
véritiloja tai virittajamatriisien indekseja (lisda struktuurivakioista ja niiden arvoista

lahteessa [68]). Seuraavat relaatiot pateviat fundamentaaliesityksessa:

facdfbcd — N(;ab

facddbcd =0
b (49)
(t1°t%);y = ——= (")

1
TR(t"'t%) = ST(F)(d™ +if™),

missa N = 3, koska kdytdmme 3 x 3-matriiseja. [68]

Olkoon p, v ja ¢ Lorentzin indeksejé, a, b ja ¢ gluonien (tai aaveiden) véritiloja,
¢ ja j kvarkkien varitiloja, m vapaan hiukkasen massa, p, p1, p2 ja ps hiukkasten
nelilifkemérid, s fermionin f (tai antifermionin f) spin-tila sekd A = 1,2 gluonin ¢
polarisaatiotila.

Ulkoisten hiukkasten Feynmanin sddnnot ja graafiset esitykset ovat seuraavat

prosessin alku- ja lopputilafermioneille, alku- ja lopputila-antifermioneille, alkuti-

lagluonille, alkutila-aaveelle seka alkutila-antiaaveelle:
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;s u(p,s) § a(p,s) s 7 7(p,s) § v(p.s) s 7
PR\ OSSR S\

p p p

Pallo edustaa muuta prosessia ja viivojen keskelle piirretyt kolmiot hiukkasnuo-
lia. Hiukkasten hiukkasnuolet ovat samansuuntaisia ja antihiukkasten erisuuntaisia
vastaavan neliliikeméaarin kanssa. [68]

Aaveet ovat tekninen tyokalu, joiden avulla on mahdollista helpottaa gluonin
polarisaatiotilojen késittelemista laskuissa. Ne voidaan ajatella fermionien kaltaisina
hiukkasina, jotka omaavat gluonin tavoin véarivarauksen. Lisaa aaveista ja
polarisaatiotensorin P*(p,\) kasittelystd on luvussa 3.2.

Vuorovaikutuspisteille (verteksit) patevit seuraavat Feynmanin sadnnét (etumerk-

kikonventio voi vaihdella lahteesté riippuen) [68]:

9

P2 é“f L/
ééé“ .1/ /‘

a, S ahe a, ) e
g mmm%%:“@(pl‘pg.pg) g rsswrsEIEY —g, [ p1,
) ‘\
" %ﬁ ) ‘\
P3 mY p2 \ .c
2 *
g

Kolmen gluonin itseiskytkennéssa

S (p1.p2.p3) = —gs [ {g,uu(pl —12)¢ + Gup(D2 — P3)u + Gou(p3 — pl)y] (50)

Propagaattori yhdistda kahden Feynmanin diagrammin vuorovaikutuspisteen.
Feynmanin sadnnot kvarkki- ja gluonipropagaattoreille Feynmanin mittavalinnalla

(Greenin funktiosta tulevat nimittajien +ie-termit on jatetty huomiotta) [68]:

) )
; P, j a,fi L, h,v
> — G000 0000000B0000000
ié'-ijuﬁ""mJ _-i5°b Z_tzv
p?—m? p?

Huomaa, ettd propagaattori ei ole vapaa hiukkanen eli sille ei pade (yleisesti)

p? = m. Alimman kertaluvun Feynmanin diagrammeja nimitetdén usein s-, t- tai



23

u-kanavan diagrammeiksi propagaattorin neliliilkeméirin luonteen mukaan (p? = s,

¢ tai u, méadritelmat (23)). [L} [25]

Feynmanin diagrammit edustavat invariantteja amplitudeja, joiden lausekkeet
muodostetaan Feynmanin sédénnoilla (luvut 3.1 ja 3.2). Mikali samaa prosessia
vastaa useampi Feynmanin diagrammi, niin prosessin invariantti amplitudi saadaan
summaamalla diagrammeja vastaavat invariantit amplitudit. Jos diagrammissa on
ristiinpiirretyt identtiset fermionit, niin vastaavan invariantin amplitudin eteen laite-

taan miinusmerkki. [25]

Nyt voidaan muodostaa (esimerkiksi) invariantit amplitudit M(qg — QQ) ja
M(g9 — QQ) (¢ mielivaltainen kvarkki ja @ raskas kvarkki), ja laskea luvussa
2.2 kerrottujen laskusdéantojen avulla vastaavat vaikutusalat. Kuitenkin, Feynmanin
sdannot ottavat kantaa alku- ja lopputilahiukkasten spin-, véri- ja polarisaatiotiloihin,
joita ei tulla huomioimaan tulevassa analyysissd. Siten on tarpeen méaritelld polar-
isoitumaton invariantin amplitudin neli6 W [25]. Se on invariantin amplitudin
nelio, joka on keskiarvoistettu alkutilan mahdollisten spin-, véiri- ja polarisaatiotilojen

yli ja summattu lopputilan vastaavien tilojen yli. Prosesseille ¢ +§ — Q + Q ja
g+g9— Q+Q [26]

1

Mgz~ QQ)f = 213 > Mg — QM@ — Q0" (5

Spin
Vari

M

53R Z M(gg = QQ)M(gg — QQ)". (52)

-28 Spln
Vari
Pol.

(M(gg — QQ)\2 1

Kéaytannossa esimerkiksi yksittédisten kvarkkien tormayttaminen hiukkaskiihdyttimen
avulla ei ole mahdollista, joten vahvan vuorovaikutuksen prosesseja joudutaan tutki-
maan erilaisten hadroni- ja ydintorméaysten avulla. Hadronitérmaysten teoreettinen
kasittely onnistuu partonimallin avulla. [1]

Richard Feynman esitteli partonimallin idean vuonna 1969 [69]. Siinéd korkealla
energialla torméaavia hadroneja kasitellaan pisteméisind partonikimppuina, missa
partonit ovat hadronin rakenneosia eli kvarkkeja, antikvarkkeja ja gluoneja, joiden
valiset vuorovaikutukset jatetddn huomiotta. Néiden hadronien rakenneosasten

torméaykset aiheuttavat aliprosesseja, jotka muodostavat (mahdollisesti huomioitu-
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jen hadronisoitumisten ja hajoamisten kanssa) kokonaisprosessin. Partonimallin
mukainen hadronitérméaysprosessi 2 — 2-aliprosessilla on esitettynd kuvassa [5] Malli

toimii hyvin, mikali torméaysenergialle patee v/s > mpy, +mpy,. [1]

X ()

/
]
H, |\
\

H,

| LI LI

Kuva 5. Tormaysprosessi Hy + Hy — k+ 1+ X (H + H, - K+ L+ X)
esitettyna partoneittain. H,; ja Hy ovat hadroneja, jotka torméavat korkealla
energialla \/s > my, + my,. Hadronin H; partoni i ja hadronin H, partoni
J ovat 2 — 2-aliprosessin alkutilahiukkasia, ja k ja [ ovat lopputilahiukkasia.
Torméysprosessissa reagoimattomat partonit ja niiden hajoamisketjujen tuotteet
jatetddn huomiotta (X). Koska yksittéisten kvarkkien/gluonien havaitseminen ei
ole mahdollista, mittauksissa tulee tarkastella hiukkasten k ja [ hajoamisketjujen
seurauksena syntyneita lopputiloja K ja L. [1]

Hadronin liikeméarasta osa x € [0,1] kuuluu aliprosessiin osallistuvalle partonille.
Koska torméaysenergiat ovat erittdin suuria, niin hadronin H ja aliprosessiin osallis-

tuvan partonin ¢ neliliikemaéarille patee

Ey Dul
0 0
H 0 0 (53)
+ (04| +|py|
ja
E; D
0 0
pi = T . 54
0 0 (54)
+[p; + [Pyl

Toki x voi olla erittdin pieni, jolloin ylla oleva approksimaatio partonin neliliike-
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madralle ei toimi. Kuitenkin tdménlaisten aliprosessien kontribuutio hadronitason
vaikutusalaan on mitdton korkealla energialla, ja approksimaatioiden (53)) ja (54))

kuvaama mallinnus on tavanomainen hadronitérméyksia késitellessa. [1]

Hadronien rakennetta kuvataan partonijakaumafunktioilla f;/g = fi/u(x,Qy), i = g,
u, d, s, c, b, t, W, d, 3, ¢ b, , jotka ovat riippuvaisia hadronityypista H, pitkit-
taisliikeméérdosuudesta x ja faktorisaatioskaalasta Q. (Yleensé nimityksella par-
tonijakaumafunktio viitataan protonin partonijakaumafunktioon, f; = f;/p.) Arvo
fiyu(2,Qy)dx kertoo kuinka monta partonia ¢ 16ytyy vélilta [x, « + dx], skaalalla Q.

Taten liikeméaran séilymislain nojalla pétee

1
| de 3 wfyn(zQp) =1. (55)

0 1=9,9,9
Protoneilla gluonit kuljettavat noin puolet koko hiukkasen litkeméérésté (faktorisaa-

tioskaala vaikuttaa jonkin verran). [1]

Hadroni sisaltaéd valenssikvarkkien ja gluonien lisaksi myos virtuaalisten kvantti-
fluktuaatioiden synnyttdmia kvarkki-antikvarkkipareja (ns. merikvarkit) [1]. Siten
esimerkiksi protonin rakennetta kuvattaessa tulee ottaa u-kvarkin, d-kvarkin ja gluo-
nin partonijakaumafunktioiden lisdksi my6s muidenkin kvarkkien ja antikvarkkien par-
tonijakaumafunktiot huomioon. Séhkévarauksen sailymisen nojalla voidaan paatella,

ettd protonin partonijakaumafunktioille

[ dathur— ) =2
/01 dz(fasp — fas,) =1 (56)

1
/0 de(fiyp — ;) =0, kun i £ u, d.

Protonin gluonin partonijakaumafunktio hallitsee pienilld = ja valenssikvarkit hallit-
sevat alueessa x Z 1071 (kuvat [L0] [11] [12] ja [L3).

Koska partonijakaumafunktiot ovat tarpeellinen elementti ldhes kaikissa korkeae-
nergisten hadroni- ja ydintérméysreaktioiden teoreettisissa ennusteissa [70], niiden
tarkkuuden parantaminen on yksi kvanttiviridynamiikan tutkimuksen keskeisimpia
tavoitteita [71]. Héiriéteorian eri kertaluvuille on omat partonijakaumafunktionsa

[71]. Mikéli partonijakaumafunktion kdyttaytyminen tiedetédén kokeellisesti skaalalla
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Q5 = Qo ~ 1 GeV, niin se voidaan ennustaa korkeammille skaaloille Q¢ > Qo
DGLAP-yhtaloiden (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi, 1977) avulla [72].
Tassa korkeampien skaalojen kayttaytymisen maarityksessa kaytetdan jakautumis-
ja kerroinfunktioita (splitting functions, coefficient functions), joiden tarkkuus riip-
puu niiden laskemisessa kaytettyjen laskentasilmukoiden méaérasta (1-loop, 2-loop,
3-loop,...) [73]. Vastaavanlaisia laskentasilmukoita kdytetdan myos vahvan kytken-
tavakion méarityksessa [62]. Yleensd héiridteorian alimman kertaluvun approksi-

maatiossa kéytetddn yhden laskentasilmukan funktioita molemmille f;/p(2,Qy) ja

O‘S(QT)-

Mikali hadronitérméysprosessin mahdollisten aliprosessien vaikutusalat seka hadronien
partonijakaumafunktiot ovat tiedossa, koko prosessin vaikutusala on mahdollista

muodostaa kvanttiviaridynamiikan kollineaarisen faktorisaatioteoreeman avulla:

1 1
do(HyHy >kl +X)= 3 /0 /O dayds fiypr, (20,.Q 1) £ 1, (22:Q ) d6 (i — KLY, (57)
ivj:guqﬂa

missd 6 on aliprosessin vaikutusala sekd x, ja xo partoneja i ja j vastaavat pitkittais-
liikeméaaraosuudet. Teoreeman soveltamiseksi edellytetadn, ettéd torméaysprosessille

pitee /s > mpg, +mpg, (ja @, 2 1 GeV). [1]

Edella olevasta lausekkeesta on jatetty kokonaan huomiotta mahdolliset lopputi-
lakvarkkien hadronisaatiot &k — K + X ja l — L 4+ X, joita ei ole mahdollista
kuvata hairidteorian avulla |1]. Hadronisaatio esitettéisiin tavanomaisesti lausek-
keessa fragmentaatiofunktio-osuuden DgQ avulla [32]. Raskaiden kvarkkien @ = ¢, b
hadronisoitumista () — Hg+ X on kuvattu usein Petersonin fragmentaatiofunktiolla,
joka on hadronin kvarkin liikemééaran suuntaisen litkemaéaran komponentin ja kvarkin

liikemdérén suhteen z funktio (kuva[6) [74).

Koska raskaan kvarkin massa on huomattavan suuri, niin sen liikeméaara muuttuu
yleensd hyvin vahén sen muodostaessa hadronin kevyen kvarkin kanssa [5|. Tésté
johtuen on perusteltua approksimoida kvarkin ja hadronin liikemaérat samoiksi ja
korvata fragmentaatiofunktiot mahdollisten lopputilahadronien H¢ fragmentaatio-
osuuksilla f(Q — Hg) = [, DgQ(z)dz [75]. Luonnollisesti kvarkkia (poislukien t)
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Kuva 6. Petersonin fragmentaatiofunktiot ¢- (oranssi) ja b-kvarkeille (violetti).

DgQ(z) = ﬁ, missé €, = 0,15 ja ¢, = 0,016, ja N on valittu siten, etta
LT

I DgQ (z)dz = 1. Siten tassé tapauksessa fragmentaatiofunktiot eivit ota kantaa

muodostuneen hadronin Hg tyyppiin. [74]

vastaavien fragmentaatio-osuuksien summa on 1. Mééaritelldan

f(k— K)- f(l = L), kun k ja [ hadronisoituvat

k— K), kink#Kjal=1L
Pkl kL) =310 ) 7K (58)
Fl—=1L), kuank =K jal# L

1, kun hadronisaatioita ei tarkastella

Talloin kayttamalla edella kuvattua hadronisaatioapproksimaatiota voidaan kirjoittaa

do(H\Hy, — KL+ X) = F(k,] — K,L)do(H,Hy — kl + X). (59)

Taman arvion luotettavuutta on tarkasteltu kriittisesti luvussa 5.2.

3 Vaikutusalojen lausekkeet

Johdan luvuissa 3.1 ja 3.2 aliprosessien ¢ +7 — Q + Q ja g + g — Q + @, missi ¢
on mielivaltainen kvarkki ja ) raskas kvarkki, kvanttivaridynamiikan héiriéteorian
alinta kertalukua vastaavat t-differentioidut vaikutusalat seké kokonaisvaikutusalat.
Kokonaisvaikutusalalla tarkoitetaan nyt leikkaamatonta ja differentioimatonta vaiku-

tusalaa (6(v/3), o(y/s)). Jatkossa Mandelstamin muuttujat 3, £ ja @ edustavat
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aliprosessia, ja s, t ja u kokonaisprosessia. Liséksi johdan luvussa 3.3 prosessin
p+p — Q-+ Q + X lopputilakvarkkien poikittaisliikemaéran ja rapiditeettien
suhteen differentioidun vaikutusalan (LO). Namé lausekkeiden johtamiset ovat paa-

piirteissaan analogisia lahteessé [26] esitettyjen laskujen kanssa, mutta nyt mg # 0.

3.1 Aliprosessi ¢ +q7 — Q + Q

q P

Kuva 7. Torméiysprosessi ¢ + 7 — Q + Q CMS-koordinaatistossa.

Olkoon m, alkutila- ja mg lopputila(anti)kvarkin massa. Indeksit 1, 2, 3 ja 4
vastaavat prosessin hiukkasia ¢, g, Q ja Q (kuva E[) CMS-koordinaatistossa péatee

(vhtélo (L1))

B =\m2+ [p ) = ym2 + |p,|* = E»

(60)
By = \/my + [Bal” = \/m¥ + |pa* = Eu.
Téten
E1+E2:E3—|—E4<i> E1:E3. (61)
Koska E; = E» ja p; + P, = 0, niin (mééaritelma (23))
§=(p1+p2)’ = (B + E»)® = (2E,)* = AE}. (62)

Mandelstamin muuttujalle ¢
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t= (Pl —p3)2
=pi +p3 —2p1 - p3
= m2 +mg — 2[E1 By — [py]|Palcos(6s)]

E? —m? \/Ef — mé
=m2+m? — 2F?|1 — V a 0
my +mg 7 [ E o cos( 3)]
3 4m? 4m?
_mg—i-mé—Z[l—\/(l— (1 — Q)COS(@g)}
5

missé, kaytlmme pistetuloa p; - D3 = ]lepg]cos(Gg) ja 1dent1teetteja p = m?,
E?2 =m?+ |p|>, By = Ej5 seki § = 4E? (yhtalot (15 , . ja (62)). Koska

cos(fs) € [—1,1], niin muuttujan ¢ minimi ja maksimi ovat

~

_ 2 2
tmin — mq + mQ —
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Yhtalon nojalla
§+1+a=2m]+2mp, (64)

Prosessin nelivektorien skalaarituloille patevit nyt seuraavat yhtasuuruudet (mééritelmét

(23)):

8= (pr+p2)* =i +05+2p1-pa=2m2 +2p1 - py
8= (ps+pa)® = ps+pi+2p3-pa=2mH +2p3 - pu
t=(p1—ps)* =pi+p5—2p1-ps=m +mg — 2p1 - ps
t=(po—pa)> =05+ D5 — 22 pa = m_ +mgy — 2ps - py
= (p1—p1)’=pi+pi—2p1-pr=mi+my—2p1-Da
0= (p2—p3)° = ps+p5 — 2p2 - p3 = M + My — 2p2 - P3
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(a) (b)

Kuva 8. Alimman kertaluvun Feynmanin diagrammit prosesseille ¢+ — Q+Q
(Q+Q — Q+ Q), missi ¢ on mielivaltainen kvarkki ja @ raskas kvarkki.
Neliliikeméaarat py, pa2, p3, ps ja qo, kvarkkien véritilat 7, 7, k ja [, gluonin
varitilat a ja b, kvarkkien spin-tilat sy, so, s3 ja s4 sekd Lorentzin indeksit p ja v
ovat merkittyni ensimmaéiseen diagrammiin (polarisoitumattoman) invariantin
amplitudin muodostamisen helpottamiseksi. Neliliikeméaria, hiukkasten tiloja ja
indeksejé ei ole merkittyné jalkimmaiseen Feynmanin diagrammiin, silla sité ei
tulla huomioimaan laskussa.

eli
§ 2
pl'p2:§—mq
§ 2
p3'p4:§_mQ
m? +m3 — & (65)
p1'p3=p2'p4=f
m2+m% — 1
pl'p4:p2'p3:%

Kuvassa |8 on esitettyni prosessia ¢ +§ — Q + @ vastaavat alimman kertaluvun
Feynmanin diagrammit. Jalkimméinen diagrammi (Q + Q — Q + Q) jétetdin
huomiotta sen pienen kontribuution vuoksi, kuten lahteessa [76].
Prosessin ¢ + ¢ — Q + Q invariantti amplitudi on nyt (kuva , do = p1 + p2)
,L'(sabg,uu

—iM(qq = QQ) = Tz(—igs(t*)rv)va(— 2 VU2 (—igs(t) jivu)u

/ng a a pr— # J—
= ?(t )5 (E%) ks 04Ty, U
0
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missd on kaytetty luvussa 2.3 esitettyja Feynmanin sadntoja sekd metrisen tensorin
g" ominaisuuksia (yhtdlo (6)). Kéytin merkintdd u; = u(p1,s1) ja vastaavasti muille

spinoreille.

Polarisoitumattoman invariantin amplitudin nelié (yhtéls (51)) on

(M(q7 — Q@)\Q

= 553 25, DM@ - Q@Mlaa — QR

83,84 k’,l

11 )
4935 DD )yt ke (2°) 55 (1) sy 04Ty (W) P04) (DY in )
0 s1,82 z]

3,54 k,l

1 1 gS a C C —_— — — —
— =20 Y Y ()i ()i (1) k(8 kT 04T, U Ty P T Yo
4 9 Clo 51,52 4,5

83,84 k1l

4
1
ZTR t¢°)TR(tt)) 972 > Tayutin Ty ypva)( B > usy uatayPus)

a,b 0 81,52 83,54

_ Co 9s Lq oL

kun
1
Cy= §TR(t“tC)TR(t“tC)

1 _ _
Lo = 5 Z V2V pU1U1YpV2

51,52

Ly = 3 Z U3y 0,047 us.

53,54

Nimitetaan naita véritekijaksi, alkutilan kvarkkitensoriksi ja lopputilan kvarkkiten-
soriksi. Edelld hyodynnettiin konjugaattirelaatiota (W' we)* = WayHwn) ja
SU(3):n virittdjamatriisien hermiittisyytta (¢°)7, = (°);;. Véritekijé saadaan lasket-
tua yhtaloita ja hyodyntéen:

1 1,1

Co = ;TR(tatc)TR(t“tC) _ ;T(F)éac(F)(S“C = S(T(F) 5™ = S(5) 8=

Esitetdan alkutilan kvarkkitensorin lauseke spinorien ja matriisien alkioiden avulla:
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L Z V2YpU1U1YpV2

51,82

— ; > (02)a(Vu)ab(w1)o(T) e (V) ea(v2)a

51,52

N | —

Qe =

= 1 [Z(UQ)CZ(@Q%L] (7#)(16 [ Z(ul)b<ﬂl)c} ('7<p>cd~

2 52 S1

Nyt voimme kéyttdé projektio-operaattoreita Y _ , u(p,s)u(p,s) = p +m ja
Zs:l,Q U(p,S)@(p,S) = p -—m (yhtalo ):

L

Q1

(pz - mq)da(’yu)ab(pl + mq)bc(’)ﬁp)cd

TR[(p, — mq) (P, + m4)7,)

[TR(%%%%) + quR(?27M7@> - quR(%,’?l%) - mgTR<7u7@)}-

N RN —=DN| =

~-matriisien parittoman méaran tulon jalki on nolla (yhtalo (39)). Téten
1 2
Lo = B} [TR%W%W) - quR(%%})]

Loput jéljet on mahdollista ilmaista metristen tensorien avulla kayttamalla iden-
titeetteja TR(y#y") = 4g" ja TR(y"y"7y#y") = 4(g" g% — g"?g"" + g""g"¥), ja
skalaaritulon esitystd a - b = a*b”g,, (yhtélot ja (7):

1 (0%
Loy = 2 [p2prR(7a7u757@> - mgTR(%W)}

1 (8%
= 2 [pzp? : 4(ga,ugﬁgo — YaB9up + gme,uﬁ) - mg ) 49;%0}

= 2[p2upltp - (pQ 'pl)gmp + P2ypP1p — ngucp}
= Q[Plum@ + PipP2u — (mi + D 'P2)9ugo]

N

5
= 2(p1uP2yp + P12y — 59#90)-

Vastaavalla tavoin
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1
Lgf = 3 Z U3y vaUsy us
53,54
1
2

(@3)a (V") ab(V4)b(Va)(V¥) ca(3)

|
N —

> (us)a(@s)a] (7 )as | 3o (04)5(Ta)e] (49)ea

53 54

— *<p3 + mQ)da(VM)ab(p‘l - mQ)bC(Vw)cd

— DN

= 5TR[(,;;;S +ma)(p, —ma)”|.

Siispé lopputilan kvarkkitensori saadaan alkutilan kvarkkitensorista korvaamalla pq,

p2 ja my suureilla ps, py ja mg ja muuttamalla Lorentzin indekseja:

A

S
LG = 2(pspf + p5pk — 59")-

Tensorisumma on (a - b = a,b*, g'g, = 4, yhtilot (7) ja (10))

A

5 3
Loyue L = 4(p1upae + ProPop = 59ue) (P3P + 5P — 59'7)
5
=4[(p1 - ps) (P2 - pa) + (p1 - pa) (D2 Ps) — 51 p2) + (p1- pa) (P2 ps)
2 2 2 )
S S S S
+ (01 p3) (P2 pa) = 5 (P1p2) = 5 (03 pa) = (P pa) + 4]

= 4(2(p1 - ps) (P2 - pa) + 2(p1 - p4) (D2 - ) — 3((p1 - 2) + (P - pa)) + ]

m2+m2—f m2 4+ m2 — 4 S S
q Q 2 q Q 2 4 2
—_—= 42— ) —S5(=—m>+ = —
2 ) ( 2 ) 8(2 2

= 2[52 + 0%+ 2m3§ + 2m2Q§ — 2mgf — QmQQf— 2m3ﬁ — Qméﬁ + 2m;l

= 4[2( my) + 8|

4 2 92
+ ZmQ + 4mme}

=2 + 0 + 2(m? + m3)8 — 2(m? + mQ)(E + @) + 2(m + my)?|

(t
= 2| + 0% + 2(m + mQ)8 — 2(m2 + m)(2m + 2m — 8) + 2(mg + m})’]
= 2[7?2 + 02 + 4(m3 + mé)§ — 2(m3 + mé)ﬂ.

Koska g2 = dra, (yhtéls (I6)) ja g3 = (p1 + p2)? = 3, niin
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PN 9s
‘M(qq — QQ)‘ = CO%Lq,u@L%W

64 2.2
= ;QO[S [52 + 0% + 4(m7 +my)8 — 2(m? + mZQ)Q]. (66)

Prosessia ¢ + 7 — Q + Q vastaava A on (médritelmé )

A(8,m2m?) = &+ m;1 + m;’L — 2m3§ - Qm;1 — 2m§§

'y
= §% — 4m?2s
q
Am?
=81 - —1).
3

Yhtélon (30) nojalla

o . — |2
dé(q7 — QQ) _ \M(qq — QQ)\
dt 16mA(8,m2,m2)
47Toz§ . R
= se ™) |2+ 02 + 4(m? + m)s — 2(m? + mp)’] (67)

4’ -
=% (24 2m2+2md —5—1)?
934(1 — i) | e
+ 4(m3 + m2Q)§ — 2(m3 + mQQ)Q]
2
= 8 20+ 281 — (] + my)T + 2(m] + miy)?].

(68)

Prosessin ¢ +7 — Q + @ f—differqntioidun vaikutusalan integroimiseksi on tarpeen

tmax
t,

tmin

tmax

3. Naisté ensimmiiselle, yhtdlod (63) kiyttéen,

tmax
#

laskea sijoitukset ja

tmin tmin

saadaan

i
max/\ R R 4m2 4m2
t:tmax—tminzg\/(l—ﬂ)(l— )
S S

tmin

Maaritelladn laskujen helpottamiseksi
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8 4m? 4m?
A=ml+mj BE5 CE\/(I §q)(1 §Q)

Nyt voidaan kirjoittaa fyax = A — B(1-0C) ja foin = A — B(1+4C). Toisen potenssin

sijoitukselle
tmax A—-B(1-C)
t? = 2
tmin A—B(14-0)
=(A-B(1-0))*—(A-B(1+C))?
= (4AB — 4B*C
4m2 4m?
— [2(m2+mé)s }\/( (1 — AQ).
§ 3
Kolmannen potenssin sijoitus:
tmax A—-B(1-C)
= &
tmin A—-B(1+C)
= (A- ( ~C)’ = (A= B(1+C))
= (6A’B — 12AB* + 6B° + 2BC?)C
§ 3 §
[6 m? +mg) 5 —12(m? + mé)(§)2 + 6(5)3
§ 4m? 4m2 |2 4m? 4m?
23\/1— 9H(1 - —< ¢1— G p—
+2)° (Y (1= =D - =) - =D - =)
33
[3s(m + 2mimg, + mg) — 38°(mi + mg) + 48
8 4m? 4m? \/ 4m2 4m?
(1 - q 1— Q 1— Q
=== =B - - =)
3A3
= [Sm;lé + 6m2m%§ + 3m‘é2§ — 3m2§2 — Bsz + e
3 4m? 4m?
-I—Z—mng—sz +4m sz}\/( 3 (1 — §Q)
4m? 4m?
= [53 — 4(m? +m3)§ + 10mimH8 + 3(my, +mg)3 ]\/( 3 7)(1 §Q)

Téten prosessin g +q — @ + @Q kokonaisvaikutusalaksi saadaan



36

5(qq — QQ)
_ /fm 98047 — QQ)

fmin di\

bmax 470‘5 A2 ) A7 2 277 2 212

:/ dtW{s + 217 + 25t — 4(my, + mg)t + 2(m;, + mg) }

tmin 9§4(1 - Tq)

Ama? 2 fmax fmax finax

= s Br(28 —4m2+md)| =] P+ |2+ 2(mE+md)? f}

9§4(]‘ - 4723) {3 Amin |: ! Q i| 2 fmin |: ! Q :| fmin

4 2
= LQ 2188 — 4(m? + md)E 4+ 10m2md s + 3(m? +mg)s
4mq) q Q q'"°Q q Q

S L S q
\/(1 - 47;@3)(1 ! 2Q) + (8% + 2(m? +m2Q)2]§\/(1 - 4?2)(1 47;%2)}
= 934(41710624”‘){2353 - i( ;tmg)8t+ 230m3m22§ +2(mi +mb)s
+2(m2 +m)8% — 8% — dmis — 8mZmds — 4mps + 2(m2 + m})§?
+ 8+ 2ms + 4mimds + zmgg}\/u - 4?3)(1 - 4”;%2)
- 934(??2“1){? b e+ Suzngaly - 2y 2y

_ 87Toz§(1 n 2mg + m%

275 5

Koska prosessit ¢ +¢ — Q + Q ja b+ b — Q + Q vaikuttavat hyvin vihin kokonais-
prosessin vaikutusalaan ja m,, mg, ms; < mg < 2mg = (\/E)min, niin voimme jattaa

massat m, huomiotta. Talloin vaikutusalojen lausekkeet saavat muodot

do(qq — QQ)  4ma?
U(qqdf QQ) _ gjj (2 4 02 + 4m3§ — 2mb) (70)
Ao . R
= (8" 4 207 + 28F — AmQT + 2myy) (71)

954
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ja
_ 871'042 Qmé 4mé
5(qqg — = 5(1 1— . 72
5(qq — QQ) 273( +—) 3 (72)

3.2 Aliprosessi ¢ +¢g — Q + Q

Indeksit 1, 2, 3 ja 4 vastaavat nyt prosessin hiukkasia ¢, g, Q ja @ (kuva .
Kinemaattisesti torméysprosessi on sama kuin tapauksessa ¢ + 7 — @Q + @, lukuun

ottamatta nyt massattomia alkutilahiukkasia. Siten yhtaloéiden , ja

nojalla patee

R § 4m?
tmin:sz_i(1+ 1- AQ>
R , 8 4mg,

tmaX:mQ_§(1_ -

§+i4a=2mp, (74)
ja
s
Pl'p2=§
§ 2
P3'p4=§—mQ
mé—f (75)
P1-P3=DP2 Py = 5
mé—ﬁ

P1-Pas=P2-P3 =

Ensimmaistd Feynmanin diagrammia (t-kanava, kuva vastaava invariantti ampli-

tudi on

iéli(—gl + mQ)

G — mg

—iMy = efus(—igs(t*) jivu) (—igs(t") iy )vagy

)
195 “ B ,
- _ﬁ(t tb)jku37u(mQ - 511)%1)46%2
ay —my

ja toista (u-kanava, kuva vastaa
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P 9

(a) (b)

(c) (d)

-

b.* b.¥

(e) ()

Kuva 9. Prosessi g + g — Q + Q CMS-koordinaatistossa ja vastaavat alimman
kertaluvun Feynmanin diagrammit. Vapaiden hiukkasten nelilitkeméaréat p, po,
D3, Pa, propagaattorien nelilitkemaérat q1, qo, q3, g4 ja g5, kvarkkien varitilat 4, j,
k ja [, gluonien/aaveiden varitilat a, b, ¢ ja d, gluonien polarisaatiotilat A; ja Ag,
kvarkkien spin-tilat s3 ja s4 seké Lorentzin indeksit u, v, ¢ ja k ovat merkittyina
diagrammeihin.



i(Sli(gQ + TTlQ)

—iMy = e5us(—igs(t°) i)
? ’ g5 —mg

(—1gs(t)kypu)vagl

- 2
ng @ B .
= _ﬁ@bt )ikT37u (4, + mQ)Vuvaches.
q; —mg

Kolmas invariantti amplitudi (s-kanava, kuva on

. . 1 Z.(SCd o abc v
—iMsz = ﬂ3(—lgs(t]k)%)v4(— p )5?%,&(}91@2; — q3)€3
3
gS C aobc
=z )jk{ = 9o/ |91 = P2 + Gug (P2 = (=p1 = P2))s
3

+ Gou(—p1 — P2 — 1)y | }uw“’ma? =

2
_Ys
)

q3
g2
_Js [4c abe— @ um_v
- ﬁ(t )]kf uz?y U4K,uu<p81527
3

missd on madritelty
K,u,wp = g;w(pl - p2)¢ + gwp(pl + 2p2)u + gso,u(_2p1 - p2>u-

Prosessia vastaavat aaveamplitudit ovat (kuva

. _ . d Z-acdg,uu cha
—iMar = Uz(—igs(t?) k7w )va(— 7 )+ 1 (=gsfp2y) - 1
1
2
gS C aoCc—
= == () f ’ Uz, V4
qx
ja (kuva [9f)
. _ . d iéadglw cab
—iMga = Us(—igs(t”) ju ) va(— " )1 (=gsf 1) - 1
5
92 b
= %(tc)jkfa Cﬂgplm,
qs

missa fabc — _fcba — fcab'

39

(8) 30 37704 G (1 = P2)p + Gunp (D1 + 292)yu + Guu(—2p1 — p2) |l
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Maaéritelladén invarianttien amplitudien lausekkeiden pohjalta

2
_ 9s a _
Ml,uu = qg mQ (t tb>jku37,u(mQ - gl)%U47

2
_ 9s ay . —
Moy, = ﬁ(tbt )jk%%(% + mq)Vuva,
4 — Mg
Zgg c abc— . @
M3uu = ?(t )jkf uz”y 'U4K,ump’
3
ja
M = My + Mo, + Mgy
Talloin

M(QQ — Q@) = Muuglfgg

Nyt prosessin g + g — @ + @ polarisoitumaton invariantin amplitudin nelié (yhtild

(52)) on

‘ ~

2

(M(gg — QQ)| 212 > Y [Migg Q@)

A1,\2 83.54

SN My + Mo+ M
b
a,b

8.

6

a,b Ai,\2 83,54

‘H ux‘H
N N s

Z Z (Ml;w + M?uu + M3;w)

83,54

6

g

(Miag + Maag + Msap) (D elef™) Z eses”)
A

644 Z Z Muu /3P“a(p1)PV (pz)

a,b 83,54

64 4 Z > (=" =g MMy = MM,y
a,b 83,54
- MG2M?}2)
644 Z Z MNVMMV* |MG1| - |MG2| )

a,b 53,54
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joka muokattiin lopulliseen, aaveamplitudit sisédltaviaan, muotoon kayttamalld po-
larisaatiotensorin P*(p) = >\_1 2 (p,A)e”* (p.A) = —g" + pupypiup (yhtalo 1'
ominaisuuksia, kuten ldhteessé [26]. Tassd esityksessd termi M, M*™* siséltaa,
Feynmanin mitassa laskettuna, gluonien fysikaalisten polarisaatiotilojen A\; o = 1,2
lisaksi epafysikaaliset, ei-poikittaiset, polarisaatiotilat. Naiden ylimaaraisten po-

larisaatiotilojen kontribuutio supistetaan pois kahden aaveamplitudin avulla. Po-

larisoitumattoman invariantin amplitudin nelio ‘/\/l(gg — Q@)’Q voitaisiin laskea
myos ilman aaveita kolmella Feynmanin diagrammilla, mutta ylla esitetylla tavalla
lasku saadaan suoraviivaisesti tehdyksi kovariantissa (Feynmanin) mitassa ottamalla
polarisaatiotensoriksi yksinkertaisesti —g"”. [26]

Edeltavan lausekkeen ensimmaéinen termi voidaan jakaa kuuteen osaan seuraavasti:

644 Z Z MMVMMV* = 644 Z Z Ml,uu + M2;w + M3;w)

a,b 83,54 a,b $3,54
(M,LLI/ M,UJJ M,uy)*
= D (M ME™ 4 Moy ME™ 4 Moy M5

a,b 83,54

+ 2Re(My, ME”* + Mo ME" 4+ My, ME))
= My M 4 Moy, ME™ + M, ME
+ 2Re(My, ME™ + Moy ME™ + My, MET),

missa on madritelty, 7, e = 1, 2, 3,

DD Mo M

a,b 53,54

q;"‘
»-lk\b—‘

vk __
Mo ME™ =

Taten

— |12
‘M(gg — QQ)’ = MIMVM?V* + MQ;U/MQV* + MSMVMIE;V*
+ QRG(MhWMéW* -+ MQ,WM“V* —+ Ml;waj*)
— [Ma|* = [Meal.
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Ensimmaéinen termi (t-kanava):

lejM,uV*

Y My M

64 4 a,b 83,54 g
2
. gs a — v *
644 st;; [ m3 () itz yu(mq — gl)%w] [q%—mé(t t) jxtisy* (mg — 4, 04}

95 a

= W&M Z D () () sy (mo — d,)vvatay” (mg — ¢,)7" us
a,b 53,54

TR(tt"°t) gt o,

- ;64 >(q 2 —my)P4 3 T, —mapeti (g, — )
a, 83,54
4
- Cll( P) _gS ) )25117
Q
missa
(")) = ((t9);:(t)in) " = ()i ()i = (14
ja
TR(tt"t°t)
C’ —
M 64
1 4
SH = Z Z 537;1(% — TTLQ)’)/Z,U4@4’)/ (gl — mQ)’Y’“US-
83,54

Viritekija on (t%% = C(F)Ip, Co(F) = 4, Ip = I3, yhtalot ja (48))

TR(tt%t%%) 1

1
— _ ajaypbyb -
Cn = —— S TR(H) = S TR(Co(F)1rCa(F)Ir)
1 1 4 1
= (CAF)PTR(R) = (5 3= 1o

Jalkimmainen summa:

Sy = Z T3 Yu(d, — mQ)Vwva¥sy” (¢, — mq)vus

33 S4
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S s )] (), — Qe et | S 00)aT0)e] (5 (4, — M) o)

53 54

=~y + mQ)na (V) (d, — mQ)oc(V)ea(P, — mQ)ae(V )er(d, — m@) rg(¥"*)gn

TR|(p, + mo)vu(d, — m)w(p, — m)7" (4, — m)"]

TR[Y (9, + mo) (g, — mo)(p, — ma)y*(d, — mo)

I el S Bl SN TN R TaN

TR[(’V”}%% +moy ) (d, — me) (P, —mer”) (g, — m@)]-
Kéyttamalla relaatioita v, = 4 ja y*dv, = —2¢ (yhtalo (37))) saadaan

Sy = iTR[(—QpS T dmg)(d, — ma)(~2p, — 4ma)(d, — ma)
= TR(p, — 2mq)(d, — ma) (p, + 2ma)(d, — mo)]
= TR(pyd pd,) — mQTR(Pyd,p,) + 2maTR(pyd, 4,) — 2moTR(p,4,)
—mQTR(pp,d,) + moTR(pp,) — 2maTR(pyd,) + 2mgTR(p,)
—2mQTR(¢ p,d,) + 2m5TR(4,p,) — 4mETR(4,¢,) + 4mTR(4,)
+2mHTR(p,4,) — 2myTR(P,) + 4myTR(g,) — 4mgTR(Ly)

= TR(?:},%%%) - QméTR(%%) + méTR(p3p4) - QmQQTR<p3g1)
+ 2m§2TR(glp4) — 4m§2TR(glgl) + 2m2QTR(p4g1) — 16my,
= TR(pd,p,4,) +m5| — 2TR(yd,) + TR(p,p,) — 2TR(pd,)

+2TR(¢,p,) — ATR(4,¢,) + 2TR(,¢4gl)} — 16my.

Tissi voimme kéyttia identiteetteji TR(¢p) = 4a - b ja TR(dbdd)
=4[(a-b)(c-d) = (a-c)(b-d) + (a-d)(b-c)| (vhtals (36)):

S =4[ q)(ps- @) = (ps - pa)ar - @) + (03 - a1) (a1 - po)| +my| = 2-4(ps - 1)
+4(ps - pa) = 2-4(ps - qr) +2-4(qr - pa) —4-4qr - @) +2-4pa - @)| — 16mf,
= 4[2(ps - q1)(pa - @) — (ps - pa) ]
+mg| = 16(ps - 01) + 4(ps - pa) + 16(ps - 1) — 16g7| — 16my
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= 4{2(]93 ~q1)(ps- 1) — (p3 'P4)Qf

+

mé[— 4(ps-qi) +p3-pa+4ps-q1) — 4qf] - 4m4Q}

= 4{2(}?3 -p1 — p3)(pa-p1 — pa-p3) — (p3 - pa)(p1 — p3)?

+

ng{_ 4(ps - —p%) +p3-ps+4(pa-p1— pa-p3) — 4p —p3)2} - 4m4Q}

A~

—aloMe T MRS i) (- mai

2 2 2 2
2 mé t 2 S 2 m?Q_ﬁ S 2 7 4
. 3m3, & 4 3 R
—af(t-m) (2 -5 =) - (G - mh
§ 3m2 s 1 R
+mg|2f +2m} + oHa(5T -5 - 5) 4] 4m‘5}
3m3it s ta 3mLE mis mia it .
s toty g Tty Tyt

o m25 m3f mia  11m* 35 .

:4{;“r 2Q - 2Q+ ;? - 2Q mé{—;—Qt—Qﬁ%—?mQ@}}
i 5m2t  3m3a  3md

:4{“—mg§— Qb _ MY | Q}
2 2 2 2
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Toinen termi (u-kanava):

MQW/M;QW* _ 644 Z Z MQ;WMNV*

a,b 83,54
(t bya q. +
- G5 5 g rienns, s maried
92 b *
S t tCL AT v 2
[ () gy + ma)y o
9, b
= s (1) 1 (41" ks (4, + Q) V04
(q% )2 64 4 21;332,534 J J 942 Q) Tw
" (4, + M)y us
TR(tbt2t40)
= (% 64 )(q —m3)Ed 532,;4 Uz (g, +mQ) Vv

m*y“(gQ + mg)y us.

Vaihtamalla indekseja ja kertomalla molemmat matriisit ¢, +mq luvulla —1 saadaan

TR(totbtb*) gt 1

Mo MY = =g~ my)? 4 2 (g = mQ) s

047" (=4, — mq)y us.

Koska ¢ = p1 —ps =ps — D2, 2 = p1 — ps = p3 — P2 ja

—  TR(t**"9)
MluuM}f = 64 (q 2 4 Z u37}1 Q)%U4

83,54

4" (4, — m@)y*us,

niin amplitudi My, M5"" saadaan amplitudista M, M} vaihtamalla neliliike-
méadrit p; ja py keskendédn (¢ EARLEN —@2). Tama vaihdos vaikuttaa Mandelstamin

muuttujiin seuraavasti:

§= (i +p)? 2 (pp+p)i =3
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t=(p—ps)? 2 (o —py)’ =4
o= (p1 — pa)? e, (p2 —pa)* =1
Taten siis
9s .
. (t0 + mg3 — 2mya — 3my)

S —"—
Mo Mz 6(m2 — )2

Kolmas termi (s-kanava):

M3;WM§W* _ 644 Z Z Mgw,./\/l#u*

a,b $3,54
ng c abc— . @ Zg? d abd— _ Kk QY o\ *
Z Y (S () e f Uy s K ) (5 (89) i f 3y "0a KM
644 a,b $3,54 q3 a3
). td . fabc rabd 4 1
( )]k( )k]f f ) g Z 'U/3”)/QDU4'U4’}/ u3)K“y<pK nv

_(ab 64 244 23354
gs PR uy
= C’gg L K K",
missa varitekija on
TR(tctd)fabcfabd
033 = .
64

Lgi on luvussa 3.1 laskettu lopputilan kvarkkitensori

K 1 — —_— K K K § K
Lg = - Z Usy U4y us = 2(p5py + p5pi — §9¢ )-
53,54
Varitekija:
1
= 7T cyd\ pabc pabd ) cydy | cd
Cig = o TR f2 o = TR(t447) - 30
3 3 3 1 3
— ZTR(t) = —T(F)5* = = .= -8 = —
( ) 64 ( ) 64 2 16’

64
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missé kéytettiin relaatiota 24 = N3 (vhtilo (49)).

K-tensorisumma:

Kus K" = |G (1 = D2)p + Gup (1 + 2D2), + Gu(—2P1 — P2)u ]
(9" (D1 = Do) + ¢'%(p1 + 2P2)" + g, (=2p1 — p2)”]
= guw 9" (P1 — P2)o(P1 — P2)rx + 99" (P1 — P2) o (P1 + 2p2)"
+ g9 (P1 = P2) o (=21 — P2)" + Gupg"” (P1 + 2P2) u(P1 — P2)s
+ 9009 (D1 + 202)u(P1 + 2P2)" + Gup ! (P1 + 22)u(—2p1 — p2)”
+ Geng" (—2p1 — p2)u(Pr — P2)x + Gou9 (=21 — 2)u (P2 + 2p2)"
+ Goudid (—2p1 — p2)u(—2p1 — pa)”
=4(p1 — p2)o(p1 — P2)s + (P1 — P2)p(P1 + 2p2)s
+ (1 = p2)o(=2p1 — P2)i + (P1 + 2p2) (D1 — P2) s
+ Gor (P14 2p2)° + (p1 + 2p2)(—2p1 — P2),
+ (=2p1 — P2)p(P1 — P2)x + (=2p1 — P2)u(P1 + 2p2),
+ Grp(—2p1 — p2)?
= 4Ap1pP1s — AP1pP2s — AD20P1 T AP2pD2s + P1oP1x + 2D1pD2s — D2oP1s
— 2DPayP2k — 2P1pP1ks — PrpD2as + 2D2oP1k T D2pP2ws + P1pP1s — P1pDas
+ 2p2pPis — 2D2¢P2x + Gor (DT + 21 - P2 + 2p1 - pa + 4p3)
= 2D1pP1s — D2gP1k — AD1pP2k — 2P2oD2k — 2D1,P1k + 2D10pP2k — P2yP1k
+ P2oP2s — 2D1oP1s — AD2pP1s — PrpDar — 2P20P2x
+ G (4T + 2p1 - P2 + 2p2 - 1 + p3)
= —2p1,P1k — TD1pP2e — TD2pD1s — 2P20D2k + 4Gk - 2(P1 - D2)
= —2D1yP1s — TP1pP2s — TD2pP1s — 2D2pD2s + 4GprS,

missé hyddynnettiin tietoa p? = p3 = m?] = 0 (yhtalo )
Lopullinen tensorisumma:

K v K K s K A
Lg Km/apKuﬁ = 2(p§p4 _’_pgpf - 5990 )(_QPMPM - 7p1gop2f< - 7p2g0p1f< - 2p2gop2f< + 499053)
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- 2{ —2(p1 - p3)(p1 - pa) — T(p1 - p3)(p2 - pa) — T(p1 - pa)(p2 - p3) — 2(p2 - p3) (P2 - Pa)

+4(p3 - pa)5 — 2(p1 - p3)(P1 - pa) — T(P1 - Pa) (P2 - 3) — T(p1 - p3) (P2 - Pa)

A

~ S R
—2(p2 'p3)(P2 'p4) + 4(173 'P4)5 - 5[ - 229% —7(p1-p2) — 7(]91 'p2) - 2173 + 165}}

= 2{ —4(p1 - p3)(p1 - pa) — 4(p2 - p3) (P2 - pa) — 14(p1 - p3) (P2 - P4)

— 14(p1 - pa)(p2 - p3) + 8(ps - pa)§ + T(p1 - p2)§ — 8§2}

= 2{ — 4(]91 '}73)(]?1 'p4) - 4(}?1 -p4)(p1 'p3) - 14(171 -pg)(p1 'PB)

— 14(p1 - pa)(p1 - pa) +8(p3 - pa)3 + T(p1 - p2)5 — 8§2}

f
2|
2|

+ 48

g

Siispi

- 8(191 Ps)(

A

pa) — 14[(291 -p3)? + (p M)ﬂ +8(ps - pa)é + T(p1 - p2)é — 8§2}

21

(" t)( <

-8

A 2 A N A
u mq 2 Mg — Uy S 24 A S A2
) — 14{(7) +(T) ] —1—8(5 —mQ)S+7§s—8$ }

4

m‘é — méf— méﬁ + i 14{m4Q — 2m2Qf+ {2 mé — Qméﬁ + ﬁ2}

4 4

7
~ 8mds + 53 - 5

Lo To T,
. _7t _
2% T3

N ~ 7 . R R 1. N
2{ — 2m‘é2 + Qmét + 2mQu — 2ta — 3 {Qm‘é — 2mét — 2méu + 82+ uﬂ — 532 — Smés}

— 2ft — 8m 5+ 9mQt + 9m 9mQ}

§% — 5% — 50% — 2(f +1)* — 16m§8 + 18m(t + @) — 18my,
—§% — 51 — 50” — 2(2mg) — §) — 16m 3 4 18m(2mg), — 8) — 18my,
—§° — 51* — 50° — 8my, + 8mg§ — 28° — 16m8 + 36m¢, — 18mg)s — 18my,
= -3

§* — 5% — 50% — 26mys + 10my,.

e
M?,W,MZ), —

16 282

_ 39 a2 s 52 _og 10
—32§2(— §° — bt* — my s + 10myg,).

4
gs K v
Cay =2 LY K K™,
2q3

3 gt

(=38 — 51 — 50° — 26mH8 + 10my)




Neljés termi (tu-interferenssi):

Ml;leQW* _ 644 Z Z Ml/,Ll/MNV*

a,b 83,54

SR g e

[qgg%@ £) 37 (¢, + M)y vs]”
( Jk t t )k] 9;1
=(Z @@=

4 Z Usyu(mq — )1 va0ay (g, +me)y us

53,54

g
== 012 2 5127
(¢t —md)(3 —md)

missa on maaritelty

TR(tetbtotb
Cie = —( 64 )
1 o — v
Sig = 1 Z Usyu(mg — 911)%1)41)47 (%2 + mq@)7 us.
53,54

Koska (t9¢t%),; = — T (1%),; (yhtils (49)), niin

= Lrrgetety = Ly, ey, — 2oy, (— L) gay
012_64 ( tt ) 64(t )Zﬂ<ttt)]l_64(t )Z]( 3 (t ).71)
1, 1 1 11 1
= —(—=)TR(t"t") = ——T(F))"" = ——— = - 8= ——.
64( 3) R(*tY) 384 (F) 384 2 s 96
Jalkimmaéinen summa on
1 _ o v
Sip = 1 Z Usyu(mq — 911)%v4v4v (gz + m@)7 us
1
= [ @) (@s)a] (h)as(ma = ) oe (W ea [ 2 (0a)a(®)e] (1)es

S3

(¢, +mQ) ra(V)gn
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= i(zﬁ?, +mQ)ha (V)b (M@ — ¢ Joe (V) ea(P, — mQ)ae(V*)er (4, + mQ) 1o(V)gn

- ZILTR[(I):J, + mQ)'VM(mQ - gl)%(% - mQ)V“(gQ + mQ)VV}

= i[mQTR%wWﬂ“M”) +my TR(P 1P,
— my TR(P, 10" 4,7") — myTR(Pyu77")

= TR(pP,vud, wp, 7 4,77) — moTR(Pud 1w, 7Y
+ mTR(P, vt 17" 4,7”) + mGTR(Pyvud, 17Y")

+my TR, 6,7") + mG TR, 7"7")

— my TRV 4,7") — mo TRy

— mQTR(Vud, vwp V" 4,7") — Mo TR(Vud 1l V")

+ myTR(vud, %7"4,7") + myTR(vud, 177"

1 ) )
= 2 [METR(Pwp 1"7") = my TR 07"6,7")
— TR(p,Yud, WP " d,0") + Mo TR, vt 17" Y")
+my TR wp, V' 4,7") — mo TRy ")

— TR, W8, 7"7) + MG TR, 1" 7))

Kayttamalla y-matriisien ominaisuuksia "y, = 4, Y#v"v, = =27, Ydv, = —24,
VYN = 4G, b, = da b Y = 2990 Ja R by, = —2¢bd
(vhtalst (37)) saadaan
1 v v
Si = 3 {mA TR, (4pa)") — M TR, (~27)4,7")
- TR(?3(_2p4%¢1)¢27y) + méTR(%Mq”’)VV)
+mTR((4pa)g,7") — moTR((—27)7")

~ mTR(=2p,70,)7") + m3 TR((ar 0"
- i{QTR(pgpz;%%gﬂV) + mé [4TR<p3p4) + QTR(%%%VV) + 4TR(p3g1)

+ATR(p) + 2TR(p,70,7") + ATR(yg,)] + 24 TR(47") |



o1

= i{S(QI - q2) TR(p,p,) +mi [4TR(p3p4) — 4TR(p,4,) + 4TR(p,4,)
+ATR(g,p,) — ATR(p,g,) + 1TR(d,g,)] + 2myTR(L)

= 2(q1 - @) TR(pp,) + mp [ TR(p,p,) — TRpyd,) + TR(pd,)

+ TR(d,p,) — TRP,4,) + TR(dyd, )] + 8mg

=2(q1- q2) - 4(p3 - pa) + mé [4]93 “ps—4ps3 - @2

+4dps -1 42 pa —4Apa- @ +4Q2'Q1} + 8my,

= 8((p1 = ps) - (P1 — Pa))(p3 - Pa) +4m |ps - pa— ps - (11 — pa)

+ps - (pr—ps) + (p1—pa) - pa— pa- (p1 — ps) + (P — pa) - (p1 — ps)| + 8mé

= 8(p; — p1-Pa— P1- D3+ D3 pa) (D3 - Pa) +4mé{p3 “Pa—P1-P3+P3-PstP1L-P3
— D3 D1Pa— DL D1 DPatDs Pat P —P1ePs— D1 Patps - pa) +8m

= 8(=p2 - ps — p1 - P3 + p1-p3)(P3 - pa)

+4mé[—p1 “P3 = P1-Pa+4Ds - pa — D} —pﬂ + 8my.

Neliliikemadran sailymisen (p; + p2 = ps + ps4) nojalla

Siz = —8p3(ps - pa) + 4my| — p1 - (b1 + pa) + 4ps - pa — P} — P + 8mf

§ 5 §
= —8mé(§ — mé) + 4m2Q{— 3 + 4(5 — m2Q) — mé - mé} + 8m4Q
= —4m35 + 8mygy + 6myHs — 24mg) + 8my,

= 2m2Q§ — 8mé2.

Téten
g
My M5™ = Chy > Sta
S (qf —md)(g5 —mg)

1 9s 2 4

=—— — o (2m58 — 8my,)
96 (& —m@)(a —mp) @ @

g
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Viides termi (su-interferenssi):

MZ/M/MMV*
LYY Mo M
64 4 a,b 83,54 !
Z > [ ") 77 (d, + M) 01 [igg(tc) 'kfabcﬂw“”mK“”r
644@[)8354 QZ Q ! 2 " q% J P
_ (%) i ()i [ —igs ol N
= (azb: ol )qg(qg — 332;4 U3, (4, + mQ)vuvaay us) KM,
-4
—ig
=C 5 T, K" .
P33 —mp) " 4
kun maaritelldan
O B TR(tbtatc>fabc
8=
1
TW“’ = 7 Z ﬂ;»,%(ng + m@) Y, vaTay P us.
53,54

Relaatiot f*dd"? = 0 ja TR(t*t"t¢) = §T(F)(d* + if*) (yhtélot (49)) tarvitaan

varitekijan laskemiseksi:

1
— 7T biayc abc — — .ZT(F bac - prbac\ rabe
Coy = TR [ = - T(F)(d + i)
1 11 abc pabe - pabc pabey L . aa
=51 g ST AT = g (0= 307
1 -3
= — (=3i) -8 = —.
256 (730 32
T-tensorille pétee
— ZU:&% +mQ)%U4@7€OU3
53 S4
1
= [ 20 s) s (@)a] (W )anly + mQ)e()ea| 2o (04)a@a)e] (79)es
S3 S4

= i(pg +mq) fa(Ww)ab(dy +mQ)be(Vu)ea(P, — MQ)de(VF)er



1
= JTR[(p, +mo)n(d, +mo)vu(p, — mo)r”]
1
"4 {TR(%%%%%W) - mQTR(%%Qz%ﬁ‘p) + mQTR(Zbg’V"Wﬂp{y@)
- méTR(ﬁi{)/uﬁ)/u’y(p) + mQTR('YVgQ'Vu%V@) - méTR(’y'/gQV"V@)
+ méTR(%%J%V(p) - m%TR(%ﬁMV(p)]
— TRy ?) = myTR(p,7%0%)
= 7 PR, T) = mo ERP 0y
— myTR(vd,7:77) + méTR(%mm“")]
1 mg
= TR@ " + 2 [TROWP, )

= TR(p;3777) — TROugy17°)]
2
=V,2+moW,.7%,

missa

TR(?37Vg27ﬂp47w>

[ TR(178,7%) = TR(P,1777) — TRt 7:77)] -

e e

%)
Vi
%)
W,
Niéista tensoreista jalkimmaéinen yksinkertaistuu seuraavasti:

1,07 = LT 0%) = TRGpy07) ~ TROu 1)
[pi’“TR(%m%W) — P5TR(Y57%:77) — & TR(%%%W)}

195 4909 = Goad, + 9,°0ua) — 15 - U959, — 50,7 + 957 Gun)
— 1) - 4Gun9,” — Goug,” + gu“’gw)}

= 9uuli — 9,51 + 9,51y — 9,030 + 9,7D3p — Guu

=9, p1v + 97 — 9.,°P1p + 9,°Pav — GouPt + 9, Pay
=29,Pay — 9,5030 + 9,703 — Guuls — 9,710 + Gt — 9,71y

23
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VK-tensorisummalle patee

Vi KM, = iTR(p?,%gprn‘P) (9" (91 = p2)p + 9", (p1 + 22)" + 9./ (=21 — )"
= (TR 40,8, — 1)+ TR 10,6, +28,)p,7°)
+ TR(p, (=2, — p,) 4,0, 7")]
= 1[TR, (~20,)p, 5, — ,)) + TROp, (~2p, 3, +2p,)4,)
+ TR(p,(~2p, — p,)4,(~2p,))]
= 3 [TRO P, — 1)+ TROP, (B, + 20)4,)
+ TR(p,(~2p, = P,)4,0,)
= S [TRG, B, ~ P, — 5, 1)

+ TR(pp, (—p, + 20, +2)(p, — )
+ TR(p,(—p, — Py — V) B, — PP,

- _; {QTR(%%%%) - TR(pgplpzxp:s) o TR%%%%)

— 2TR(pyp,pp,) + TR(PPP.P,) + TR(PP,P.P)
- TR(%%%?J + TR(?3¢4¢11¢4) + 2TR(7)31¢4P3Z¢1)
- 2TR(1¢3¢4¢3P4) + 2TR<p3p4p4p1> B 2TR(¢3¢4¢4¢4)
= TR(pp,p,p) + TR, PP, — TR PP P,)
+ TR(pp,0,8,) — TR(p,p,p.p,) + TR p 2,
— L [2TRyppp) - TROZRP,) - TR P
— 2TR(p,pp,) + TRSP)) + TR(pyp 97

- TR(%%%) + TR<p3p4p1p4) + 2TR(7)37)41¢37)1)

= 2TR(pp,p,p,) + 2TR(ppip,) — 2TR(p,p )

— TR(ppp,) + TR(P,p,P;) — TR(pp, )

+ TR(p2P?) — TR(p,p,,p,) + TRG,p #7)].

Koska p* = p? ja vapaille hiukkasille p* = m? (yhtalot (38) ja (15)), niin
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Vi f KM, = [2TR(pp.p ) — mETR(yp,) — mdTR(pp,)
—2m{yTR(p,p,) + moTR(L) + myTR(p,p,) + 2TR(pp,#.p,)
— 2TR(p,p p,p,) + 2m TR(P,p,) — 2mTR(pp,)
+mgTR(pp,) — mTR(p,p,) + mbTR(L) + myTR(p,p,)]
= S [ITR(ppp) + 2TR(p,p.p) — TR i)
— 2mgTR(pp,) + 2mTR(L,)]
= —TR(pp.p,0,) — TR(PP,058,) + TR(P,PP.0,)
+myTR(p p,) — mgTR(1L)
= —4{(ps - P)(ps- p1) = (B3~ p)PY + (3 P1)(p1 - )|
— 4 (ps - ) (D3 - P1) = Pi(pa- 1) + (P - 1) (Pa - 3)]
+4[(p3 - Pa) (D3 - P1) — P33 + (D3 - a) (pa - ps)| + 4m (pr - pa) — 4
= 4[ — (p1-p3)(P1 - pa) — (P1 - p3)(Pr - pa) — (P1 - p3)(ps - pa) + mé(pl )
— (prps)(ps - pa) + (ps - Pa)* = my + (ps - pa)* + my(pa - pa) — méy|

= 8[ — (p1-p3)(p1 - pa) — (p1 - p3)(ps - pa) + (P3 'P4)2 + sz(pl “Pa) — még}

_mé—f.mé—ﬁ mQQ—fs

=8 — S —m?
[ 2 2 > (5~ ma)
A 2 ~
S 212 g Mg — U 4
+ (5 —mg)” +myg 5 mQ}
N 4 4 4 4 4 2 4 2
A2 2 A
S 2 A 4 mg mou a
t T mastmy+ 5P = == g
22 & fo 5mds§ m3it mia  3md
4 4 4 4 4 4 4
= 2(8* + 5t — 16 — 5mps — my (T + @) + 3my)
= 2(8° + 8 — ta — 5mp8 — m(2m — 8) + 3my,)
= 2(8" + 5t — {0 — 4mQ8 + myy)

WK-tensorisumma on



W,,» K", = [29#’% =9, P30 + 9,°P3u — Gupls — 9,°Prv + Guupi — gfpm]
(9" (01 — Do)y + 9" (p1 + 202)" + g, (—2p1 — p2)"]
= [29,,“’194“ — 9, P30 + 9,°D3p — Gupls — 9,°P1v + Guupi — gfpm]
[9“”(2191 —P3—Pa)p + 9", (=p1 + 2p3 + 2pa)" + g (—=p1 — p3 — p4)”}
= 29,7 papg" (2p1 — p3 — Pa)p + 29,7 Pang” ,(—=p1 + 2p3 + 2pa)”
+29,%Papg ) (=p1 — p3 — pa)” — 9,7 P309" (21 — D3 — Pa)
— 970309 ,(=p1 + 2p3 + 2pa)" — 9,7 3,91 (—p1 — P3 — Pa)”
+ 9,703.9" (2p1 — p3 — pa)p + 9,703.9",(—p1 + 2p3 + 2pa)”
+ 9,039 (=1 — P3 — Pa)” — GuuP59" (21 — P3 — Pa)y
— o5 9", (—p1 + 2p3 + 2pa)" — Guup5 9t (—p1 — P3 — pa)”
= 9, p1,9" (201 — p3 — Pa)p — 9,5P109", (=1 + 2p3 + 2p4)*
— 9,19 (=p1 — p3 — pa)” + GuupT 9" (2p1 — 3 — Pa)y
+ 9uup? 9", (=1 + 203 + 2pa)" 4 guupT 9.t (—p1 — P3 — pa)”
— 6,°P1.9" (2p1 — 3 — Pa)p — 9,7P1u9",(—P1 + 2p3 + 2pa)*
= 9, P19} (—p1 — p3 — pa)”
= 4p1 - ps — 2p3 - s — 2p; — 8p1 - pa + 16p3 - pa + 16p;
— 2p1 - pa— 2ps3 - pa— 205 — 2p1 - p3 + P + D3 - Da
+p1-ps — 2p3 — 2p3 - pa + 4p1 - ps + 4p3 + 4ps - pa
+2p1 - ps — P35 — p3 - pa— 4p1 - ps + 8P + 8ps - py
—D1-D3 —Pg —P3-ps—8p1-P3 +4p§+4p3 P4
+p1ps—2P3 —2p3 - pa+p1-p3+ 5+ D3 pa
—2p} 4+ p1-ps+ 1 Pa+PE — 21 ps — 2p1 - pa
+4pT + 4p1 - p3 + 4Ap1 - pa + 8pT — 4Ap1 - p3 — 4Ap1 - pa
— i +2p1 - p3+2p1 - pa— PT — P1 D3 — D1 Pa
— 2P} 4+ p1-ps+p1-Pa+4p; — 8p1 - ps — 8p1 - pa
+ P+ p1eps o1
= —12p; - p3 — 12p; - ps + 24ps - ps + 24m,
= —12py - (p1 + p2) + 24ps - ps + 24m3)

S s 9 9
=—-12- 3 + 24(5 — mQ) + 24mg,

= 65.
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Siispi

AA A ARV _ng v
MQW/Mg CQ3ﬁT QPK'MQO

Q3((12 Q)
= iz (qjgst) (V,, PK", + m3 W, P K™)
_ ‘32" . §(a__29;%) (2(5 + 5 — i — Am33 + mb) + md - 63)
_ _323(59_3 oy 28 B )
39.

_ 020 af a2 4
= T65m2, — @) (87 + 8t —ta — mys +my).

Kuudes termi (st-interferenssi):

Ml,ul/Mg“/*
= ilz Z Mlm/MgW*
644 a,b $3,54
11 g2 z’gf . wbe— T
=644 > [qu(t t°) iz (mq — 511)%,1)4} [qg(t )i Uy vy K @}
a,b 53,54
() (Vg f  —ige .
- ; v K",
(azz; 64 )q 3(qi —md) 5325:4 Uy (Mg — ¢,) 7 va0ay 7 u3)
TR —ig!
T\ n U3y, (mo — ¢. )7 vatsy¥u
( ;: 64 )qg(Q%—mé)(4s§4 37 (mQ — ¢, )1 vavayus)

9" (D1 = p2)g + 9" (p1 + 2p2)" + gw“(—2p1 - pz)”}

TR(tbtatC)fabc —ig
— 5 sy, ( — . )Y vaTayPus)
5 Jga—m Z ume =4,
[QW(—pl +p2)e + gV (=p1 = 2p2)" + 9" (2p1 + p2)" }
_295 _
= 0232— Z U3 (=4, + mQ)yuvavsy us)
a3 (ql 53 S4

97" (p2 = P1)o + 9.7 (P2 + 201)" + 9", (=2p2 — P1)"].

Viidennen termin lauseke oli



o8

AA A ARUE _Zg
Mo ME™ = Cos— 5 25 T, P K"
e @3(g5 —mg) 7
@95 _
= 0232— Z U (4, + MmQ) Y vaUay us)
Q3(Q2 33,54

(9" (01 = p2)e + 9" (p1 + 202)" + g,/ (—2p1 — p2)").

Taten My, M5 saadaan amplitudista My, ME5”", kun nelilitkemadrat p; ja ps
vaihdetaan keskendén (q; = py — p3s = ps — P2 ja go = p1 — ps = ps — p2). Vaihdos

muokkaa Mandelstamin muuttujia seuraavasti:

Siten
My ME” = 39. (8% + 50 — t0 — mH8 + mp)
p 165(m2 — ) Q® Mg
Ensimmaéinen aaveamplitudi:
—s 11
|MG1’2 = 747 Z Z MGlMGl

a,b 83,54
)
ng aoCc— ng a —_— *
Z > (= )ik S Uz, 0a) (— =5 (47) ji S U, v4)
a,b 83,54 qx
(t° )jk(td)kjf abefobdygt 1l _
- (Z 64 )qzl(i Z u3p2v4v4p2u3)

53,54

missa



B TR(tctd)fabcfabd 3
Car = 64 =Cu=1g
1

SGI = 1 Z ﬂ3p204@4p27j3.

53,54

Jalkimmaiselle summalle patee

1
Se1 = 1 > Usp,valap,us
53,54

1 L W,
= S pouP2 (5 Z U3y V4047 u3)

2 2 o)

1 LV
= ipzupr’Q

1 1% v, M § pv
= §p2up2,,(2(p3p4 + P3Py — 59 )

s

= (p2-p3)(p2-pa) + (p2-p3)(p2 - pa) — §p§

= 2(pa - p3)(p2 - P4)

Taten

3 gy 1. R
:1—6-§-§(tu+més—mQ)
3g2
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Toinen aaveamplitudi:

[Mes|* = 644 Z > MeaaMe,

a,b 53,54

Z Z ng tc fabcﬂ )( 2<td) fabdu v )
644 b )ik 3P,V ik 3P, V4

a,b 83,54

_ (- at mf“ S )gﬂi > ap, viap,us)

a,b 64 ds 83,84
g
= CG2%SG27
ds
missa
TR(tctd)fabcfabd 3
Cao = — Oy = —
G2 64 T
1
Sao = Z Z ﬂ3p1U4@4¢1U3.
53,54
Summalle
1 _ _
Sao = 2 > Uspp VAV, U3
53,54
1 oy
= 5291#171”(5 > usy vy us)
53,54
1 u
= §p1,upluLQ
1 n, v [N § Ny
= §p1up1u(2(p3p4 + 5Pk — 59™))
s
= ( )(pl p4) ( P3)(p1 'p4) - 5]?%

= 2(131 'p3)(P1 'P4)

kuten edella.

Siispé

Meo|? = Ma]*.
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Lasketaan etukiteen erotus

M ME” — | Mai|? — (Mol

39, (—38% — 5t* — 5% — 26mp8 + 10mg) — 2 - 3. (fa +m@H3 —myg)
32§2 S u mQS mQ 32§2 u mQS mQ
3 4
- 329;2(—%2 — 52 — 50 — 2i0 — 28m33 + 12mY)
3g4 ~ 72 A~
= 32;2( —38% 4+ 8thi — 5t2 — 10t4 — 542 — 28m 54 12mQ)
32 . .
3942 (—38% + 8t — 5(f + 0)* — 28mH8 + 12my)
S
3qg2 .
2242 (=38 + 8t — 5(2m) — 8)* — 28mH8 + 12my)
32 .
= goa(— 38 4 8t — 20myg, + 20mH8 — 58° — 28m)8 + 12my))
392 .
329; (—88% + 8fd — 8m2 s — 8mb)
S
395 w2, 2n .
122 (—8% 4 ta — mZQs — mé)

Nyt prosessin g + g — @ + Q polarisoitumaton invariantin amplitudin nelié on

— 12
‘M(gg — QQ)’ = MluVleV* + M2;},VM5V* + MS/M/M?;V*
+ 2Re(My ME™ + Moy ME™ + My, ME™)
— Mai|* = Mol

gt
A)Q (t0 + mg3 — 2mt — 3my,)

4
Gs
+ W(f?u + sz — 2mQu — 3mQ)
30s (32 52 502 2 10
+32§2(—S — 5t* — 5% — 26my8 + 10my,)
94 2 4
+ 2Re 5 —mHs + 4m
(48 (mg — £)( (mg — ﬁ)< @ ?)
B9 (@ s mBe 4 md)
165(m2, — @) @ @
395

+—= 8%+ 50—t — m%8 + m¢
163mQ—ﬂ( @ @)
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395 2o R
—2 5 (ta + mQQs - mQ)
94 2 2 27 4 94
= g ti + mHs — 2miHt — 3my,)) + 5 ti +mys — 2m5i — 3m
6(m§2 _@2( Q Q Q) 6(mé —u) ( Q Q Q)
+3‘q§(—§2+fﬂ—m2§—m4)+ 9 (=m$ s + 4mp)
452 @ Q 24(m — t)(m3 — Q) @ @
394 A2 | AP 1a 2 4 4 394 2 2
+— (8 + 8t —th—mH8+my) + S (85480 —th—mpHs+m
85(m22—u)( Q ?) 8§(mg—t>( Q @

_ 5 2 7 4
- 24[(77122 _@2( (QmQ —5—1) +mg8 — 2mgt — BmQ)
4 A A R
+( b — 5= 7 (t(2md — 8 — 1) + my 5 — 2mP (2mg) — § — ) — 3my,)
Py -
18, 5 4 R A
+§(—$2+t(2m%—s—ﬂ—més—mé)
1
+ ———(—m2% 5 4 4mp,)
() — Dy — @y =5 D)@ T
9 IR . N
MET e A A
9 ) N 2 A~ ~ 2 N I 2 A 4
+ A(mé—ﬂ(s +5(2mQ—s—f)—t(ZmQ—s—t)—sz—i-mQ)}
4
_Y9s 4 oF 2 4 4
_z[ _7?)2 — 8t +mgs — 3myg)
4 o 2 4 22 4
+ (s+f—mé)2(_t — 8t +3mg8 + dmpt — Tmy)
+§—2(—S — £ — 8t — m8 + 2mPHt — mg,)
1 2 4
+ = < —mg8 + 4m
(mé—t)(§+t—mg?)( ? @)
9
+ (8 + 7 + 28 — mQ8 — 2mt + my)

5(5+t+mp)

9
§(m§9—ﬂ(

£+ m2Q§ — 2m2Qf+ mé))} :

Muokataan tama lauseke erilaiseen muotoon, jotta se on selkedmpi ja helpommin

integroitavissa muuttujan ¢ suhteen. Kuusi termiad muuttuvat seuraavasti:



63

4 4 27 2 24 a7 4 27 4
= e pE (—mg + 2mgt — =+ mpé — 8t + 2mg — 2mot — 4my)
4 2 2, 2
:(mé—ﬂ2(_(mQ_ﬂ +s(mQ ﬂ+2mQ mQ t) — 4mQ)

N 2
45 + SmQ 16mQ

md —1  (m} —1)?

— 8t + 3mg)8 + 4mQHt — Tmy,)

A N A~ Ap ) 7~ N ~ ~ n
:WW(—SQ—st—i—més—st—t —l—mét—l—més—l—mét—mé—i—f—i—st

- sz + 2m 5+ ZmQt 2m4Q - 4mé2)

4 o
:m(—(s+t—mQ) +s(s+t—mQ)+2mQ(s+t—mQ) 4mQ)

B 45 + Smé 16mé2

S+t—m  (5+1—md)?

18,
E(—f — —st—sz—i—QmQt my)

9 o
= 5(=28" = 20* — 251 = 2m{3 + Amgi — 2my)

(—mH8 +4my)

—~
3
s
|
N4
—~
VN
_I_
>
QN
S~—

VAN V)Y

—~

mys + 4my,)

§(m2Q—ﬂ( —i—f—mQQ)
4+t —md+md—1
= a2 — 2 (=mgs + 4mg)
$(md —1)(5+1—md)
1 1 9 4
= + = —mpHS + 4m
(§(mé—ﬂ §(§—|—t—m%))< N )
B mé 4m4Q sz 4m‘é

= = + =
my—t  smH—1) S+i-md SE+i-md)
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9 . o
A—2>(32 + 8+ 250 — my8 — 2mBHt + my)

38+t —mg
9 . . o ~ . ~ o
IM(82—1—552—més—i—stvaZ—mét—més—mét—i—mé—i—més)
9 " 2142 2 A
:§(§+f—mé)((8+t_mQ> Fmed)
9 R 9m2
:7(§+t—m2) = 5 Q
3 s—i—t—sz
9 R 9m2
= (48 -mhd) + ——L—

9

(mQ - t)
9

(£ + sz — QmQt + mQ)

s

2Q—752 +m2Q§)

,Cfl
3

QW

N

2
9mQ

VN INe)
>

2
myH —1t)+ -
(mg =) mQQ—t

2
9mQ
3 ~.
mgy — t

(=8t +my38) +

c’ff,‘@

Nyt voidaan kirjoittaa

P _ 9 - A
’M(gg — QQ)‘ o1 {7A2(—75N2 — 8t +mH8 — 3my)
(mg — 1)
4 12 af 2 4 27 4
+ ————F—(—t" =5t +3myS +dmpt — Tm
(§+t—mé)2( « @ 2
18, o =
+§(—3 — 12 — 3t — m? s—|—2mQt Q)

1
(m%—f)@—i—f—mé)
. 9

§(§+£—mg)

+

(—mgs + 4mg)
(8% + 12 + 25f — sz QmQt + mQ)

ﬂ 2 + sz ZmQQf—i— mé)}
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_ (4ma,)? { .y 45 + 87an B 16my,
24 myh—1t  (m} —1)?
5 2 4
45 +A 8my) B lfimQ
§+t—my (541t —mp)?

9 R A . .
+ g(—Zsz — 212 — 25t — 2m2Qs + 4m2Qt — 2m‘é)

B m2Q 4m‘é2 mé 4m‘é2
2 t + 2 i) o Lf 2 o t 2
meg — meg — s+t—mg  3(8+t—mp)
9 9m% 2 A 9mé
+§(s + 8t —mp3) + S+ -, ~|—§—2(—st~|—sz)+ é_f}
2m2a? 9, o . -
= [— 8 + g(—SQ —21% — 25t — 2m2Qs +4m2Qt — Qmé)
4m 1 1
+ (48 +16mL + — ) (———+ ———)
s " mp—t S+1—mg
1 1
— 16my + -
Q((mé —12 (841t mé)Q)}
2m2a? 18
=3 {—174— (—t —st—sz+2mQt Q)
m4 1 1
+4(§+4m22+ N—+ —)
s mp—t S+t—mg
1
— 16my ( - )|
@ ﬂz s—i—t—mé)2 }
Siten #-differentioitu vaikutusala on (yht#ld )
_ — 2
dé(99 — QQ) \M(gg — QQ)\
di ~ 167A(5,0,0)
ol 18
= 24§2[—17+§( # St—sz—l—QmQt Q)
m¢ 1 1
+AE AL + =) (——+ ——)
s mg—1t s+t—mg
1
— 16m; — + - : 77
Q((mg2 — )2 (§+t—mg)2)] )

(76)
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Toisin ilmaistuna

d6(gg — Q@) 7T0é§ [_ 17 18(AA 2 A 4)

dt 2482 §2
4
m 1 1
HAG+HAmL + =) (—5—+ —5—)
S mQ —t mQ —Uu
1
16my + ——|. 78
Nty " Gy "
fmax fmax fmax
Kokonaisvaikutusalan laskemiseksi tarvitaan sijoitusten t, 2, 13,
fmin fmin fmin
fmax frnax imax imax
A (—In(md — 1)), R Ch mg), ﬁ—f ja | ﬁ arvot. Niistd kolme
tmin tmin tmin min

ensimmaistd on laskettu massallisilla alkutilahiukkasilla tapauksessa ¢ +7 — Q + Q.

Asettamalla vastaaville lausekkeille m, = m, = 0 saadaan

t
max R 4m2
f=35/1—- -9
fmin s
tAmax 4m2
2= (2mds — )1 - —2
- S
tmin
2
max 4m2
£ = (8% — 4mQ 8 + 3mpHa) 1 — :
fmin ( Q Q ) §

Neljas sijoitus:

tmax

(—In(mg, — t)) = —{ln [mé — fmax} —1In [mé — fmin}}
8

= ln{mé - (mé - 2(1 - 47?;(2))}
—ln[mé—(mQ—§(1+ 1_471%2))”
:_{1n[§(1— 1_42%)}_1H[A(1+ 1—4”;%)]}
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tAmax
In(8 41 —mg) =In(8 + tmax — my) — In(8 + frym — m3))
Erﬂin
A 4m2
— (5 +md — (1 — /1 — —<) —m2)
2 5
A § 4m?
—In(3+mg — S(1+1- §Q)—mé)
2 4m?
(;(1+ 1—- SQ))
=1In -
3 am
S(1—y1—-—%)
2
1+ /1 — 22
=In = |.
1—4/1- e
Kuudes sijoitus:
O 1
tmin mé - tA B m2Q i:max m2Q tAmin
1 1
- 2 2 ] 4m2Q 2 2 3 4m2Q
mg — (mg —5(1—\1—==%)  mg—(mg—5(1+4/1—-—=%))
B 1
N 4m?2 5 4m?2
SI—y1-=%) S(14+4y1-—=9)
m2 m2
o 1T+\1— 20— (1—4/1-"2)
_§ 4m?2 4m?2
(14 /1= 21— /1 - %)
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2\/1— e
' 4m,

i
2
_ L B 4mg,
mg 5
Seitsemés sijoitus:
ttnax _1 B 1 1
- t— my 8+ — mg 8+ A—— mg
B 1
. 2 4md) 2
1
A 2 3 Amy) 2
§+mg —5(1—/1——=%)—mg
B 1 1
- B 4m2 § 4m
S1-y1- ) 504 1-
2
_ LA
mz? s

kuten edella.

Prosessin g + g — @ + @ kokonaisvaikutusala on
X — fime -d6(99 — QQ)
39— QQ) = [ ai 7199 7 09

tmin dt
_ b d”mg 2 ar 2 4 27 4

=/ 9182 —17—|—§[—t —st—sz+2mQt—mQ}
1 1

+4fs+amd + 2 [——+ ——]

s tmg —t S+t —mg
1 n 1 }
(mg —1)2  (§+1—md)>

4
mg

—16my |



24§2 §2 tmin

2 18 [lmax . fmax .
W@S{_[[ dtf2+(§—2mé)x dtt}
tmin

18 tmax .
- [17+ 2(m2Q3+m4Q)}[ dt

S tmin

A 4 fmax .1 fmax 1
+4[8 +4md + %} [ /t dlﬁmg2 i) dtw}

16m | / S S / g ! ]
R m —_— -~ 4 4

min

ra? [ 181 1[
= 5 — —=|= 53 5 — 2 2 a -EQ
24§2{ 3 [35‘ T mQ>2t«
18 - A fmaxA
- [17 + g(sz + mQ)} ot
tmin
m4 fmax fmax
+48Hdmy + =2 ][] (n(mg — D)+ | (@ +1-md))
tmin tmin
i i,
max 1 max _1
Y Y - T
tAmin mQ_t fmms—i_t_mQ
a2 [ 1871, ) o i 4mg)
5 —2m?2 4mg
Q 24 a2 Q
2 — 1—
+ 9 ( mQS ) 8 }
] R A Am?2
- {17+§(més+m‘é)}s 1-— gQ
m?2 mZ
) L+ 1_4§Q L+ 1_4§Q
+4[3+4m3 + —2] |In +1n
4m?2 4mg
1—4/1— Ze 1—4/1- =2

2 6 18m?2 9
e { | (87— 4mds® 4 3mb3) + (52 — 1) (2ms — )

94582 52 52 5
18 2 4mg
— (175 + — (m3 + mb)) — 16mb - - —=
(178 + §(mQS+mQ>) maq még} 3
md (141 e
+8[5 -+ 4m3 + f"}ln(s)}
S 4m?
1—/1-22

69
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2

_ o . o 18mg  36myg 2 2
_24§2{[—6s+24mQ— SO~ 18m — 18mj,
18mi 4m?
+98 — 178 — 18mg — — 2 — 32mp |1 — —¢
S S
4m?2
A 2 mg L+y1- §Q
+8[5+4mp + —2|In | ———-
S 4m?2
L= y1—-=*
4m?2
o ) 4mg N (L I+4/1——¢
= [—14§—62mQ] 1— — +8[§+4mQ+ A}ln — v
24352 S S 11— am?,

mg[—(7+31m?’9) 1_%+4(1+4m2@+m4@)1n(1+ .

128 5 5 5 52

—_
|
—_
|
= ~
S || w 3
QN QN
\/
| I

—
-~
Ne)

Tarkistin laskemani invariantit amplitudit ja aliprosessien vaikutusalat vertaamalla
niitd vastaaviin ldhteessa [76] esitettyihin tuloksiin. Invarianttien amplitudien
lausekkeiden muodot poikkeavat toisistaan, erityisesti prosessin g + ¢ — Q + @
tapauksessa, jossa laskentatavat ovat olleet erilaiset (kdyttden aaveita ja ilman).

Invarianttien amplitudien yhtapitdvyydet on naytetty liitteessa [A]

3.3 Poikittaisliikemairan ja rapiditeettien suhteen differen-

tioitu vaikutusala

Johdan téssi osiossa prosessin p+p — Q + @ + X alimman kertaluvun vaikutusalan,
joka on differentioitu poikittaisliikeméaaran ja molempien lopputilakvarkkien rapidi-
teettien suhteen. Mahdolliset hadronisaatiot Q@ — Hg+ X ja Q — Hz+ X on otettu

huomioon fragmentaatio-osuuksien avulla.

Indeksit 1 ja 2 edustavat alkutilapartoneja i ja j (¢ +q, ¢+ ¢, g + g) ja indeksit
3 ja 4 raskaita kvarkkeja Q ja Q). Kokonaisprosessin p+p — Q + Q + X CMS-

koordinaatistossa



1 Es E,
x1y/s | 0 Toy/s | O D3z Dax
b1 = 2\/_ D2 = 2\/_ b3 = P4 =
0 0 D3y P4y
1 -1 P3z P4z

approksimaatioiden ja mukaisesti. Tasta voidaan laskea

5= (p +p2)2 = p% +p§ + 2p1 - p2 = T1798.

71

(80)

Yhtélon nojalla aliprosessin i + j — Q + @ (polarisoitumaton) vaikutusala on

d&(ij — QQ)
.. — 2
B ‘;\4, /iiszfjgl o e 2E§er>3 2E%jr)3
- ‘M(igzjng)‘25(4’(p1 +py—ps— Mﬁ??)%'
Kéayttamalla relaatiota d&(ij;Q@ = lg:gg;g%g (yhtalo 1’ saadaan
dé(ij — QQ) = ;W5(4)(p1 +p2— s —p4)%%-

Koska p, = mrcosh(y) ja E = mrcosh(y) (yhtalst (21)), niin (¢ = 1,2,3,4)

fy» = dy-(stmh@i)) = mycosh(y;) = E;
ja siten
pi  Ppirdp;.
Ep = pET]‘ P _ d*pirdy;.

Aliprosessin differentiaalisen vaikutusalan lausekkeesta saadaan nyt
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do(ij — QQ) _  do(ij — QQ)
d3ps3d®py d*psrdysd®pardy,
§ dé(ij — QQ)

= 27TT (Pl + P2 — p3 — Pa).

Koska nyt késitelldan raskaita lopputilakvarkkeja, niin approksimoin fragmentaatio-
funktioiden kontribuutiota vastaavilla fragmentaatio-osuuksilla ja oletan liikemaarat
muuttumattomiksi hadronisaatioissa. Kéayttamalla tata approksimaatiota ja kollineaarista
faktorisaatioteoreemaa (yhtalot ja (p9)) saadaan

da(p'ﬁ — HQH@ + X)
dQPsTd93d2p4Tdy4

— F(QQ — Ho,Hg) Y. / / davds fiyp(21,Q) f/5(@2.Q))

1,7=9,4,9
§ dé(ij — QQ)
dt

do(ij — QQ)
d2p3Tdy3 d2p4Tdy4

=F Z //dmldefZ/p(xlan)f]/p(x27Qf)

1,7=9,4,9

(pl + p2 — p3 — pa),

missé on lyhennetty F' = F(Q,Q — Hq,Hg) (ja missd mahdollisesti Hg = @Q ja/tai
Hg = Q).

Muokataan lausekkeen Diracin deltafunktiota:

6D (py + pa — p3 — pa)
= 0(Ey + By — B3 — E4)5(2) (Dyr + Dor — Par — Par)0 (D12 + P22 — P32 — Daz).

Kokonaisprosessin CMS-koordinaatistossa pati p;; = Py = 0, By = 112\/5 , B = ;,;22\/5 ’
pro = 25 ja o, = — 225 Titen (6(a) = d(—a), yhtilo (34))

0@ (py 4 pa — ps — pa)

ﬁ(xl +x9) — B3 — Ey)d(

9 (xl - 3132) — P32 — p4z)-

= (P31 + Par)o(

[

Koska 6(a)d(b) = 26(a + b)d(a — b) (yhtélo (34])), niin
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8 (pr+p2 — ps — pa)

=26 (Psr —l—@T)(;[\/gxl — (B3 +ps3.) — (B +p4z>}

(V52 = (By = paz) = (Ea = p1.)|

= 26 (Pyr + Par)

6 V51 — (marcosh(ys) + marsinh(ys)) — (marcosh(ys) + marsinh(ya))

5:\/5552 — (mgrcosh(ys) — mapsinh(ys)) — (marcosh(yy) — m4Tsinh(y4))}

= 26@ (Dar + Pag)0(V/ 511 — mare?® — myre?)d(v/sxy — mare ¥ — mype¥4).

Kaksiulotteisen deltafunktion nojalla Dy = —p,p. Siten voidaan madaritelld |psp|
= |pyr| = pr. Lisdksi ms = my = my, joten madaritelladn myos mgr = myr = mr.
Taten

5 (p1 +p2 — P3 — Da)
= 26® D3y + Par)6(Vsz1 — myp(e” + €))3(v/522 — mp(e ¥ + ™))

m m _ _
*5(2)(103T + Par)o (21 72(67”’3 +e))d (s — 72(6 “ret)),

missa kiytettiin lopuksi relaatiota d(ab) = n ‘5 (b) (yhtalo 1'

Nyt differentioitu vaikutusala on (§ = x1x95)

da(p"]? — HQH@ -+ X)

d?psrdysd®pardy,
21225 do(ij — QQ
=F > / dxvdzy firp(21,Q1) f; /5 (02,Q) 17: g i )55 ) (Psr + Par)
1,J=9,9,9
B = (e + )i = (e + )
F iy — QQ _
= — Z $1fi/p($17Qf)$2fj/p'($2,Qf)(dt) (p3T + Dar),
T ij=g.0
missa m
T = l(eya + o)
s
(81)
Tog = mT(e ¥4 em).

NG
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Poikittaisliikemadrdavektori on esitettivissa sen pituuden ja atsimuuttikulman ¢s
avulla: Pgp = (Psa.psy) = (prcos(¢s), prsin(¢s)). Tata muuttujanvaihtoa vastaava

Jacobin determinantti on J(pr,p3) = pr, joten differentiaalisille alkoille pétee [77]
d2p3T = dps.dps, = J (pr,¢3)dprdes = prdprdes.

do(pp—Hg HaJrX)
d?p3rdysd®pyrdys

Siten saadaan

Vaikutusala ei ole riippuvainen tuotetun kvarkin atsimuuttikulmasta.

do(pp — HoHg + X)

dprdysdy,
/27r do(pp — HoHg + X)
- ¥ prdprdésdysdy,
2 do(pp — HoH7+ X
:PT/ d¢3/ d*par (Iz)p 2 i )
0 Par d?psrdysd®pardys
o F do(ij — QQ o
:PT/ dos B d2p4T — Z xlfi/p(xl7Qf)$2fj/§(x27Qf)¥6(2)(p3T +p4T)
0 Dyt T ii=g.aa dt
do(ij — QQ
=2Fpr Z xlfi/p<x17Qf)x2fj/p($27Qf>(dA)a (82)
4,J=9,4,q t
kun Py = —pyp. (Huomio: ys ja y, viittaavat nimenomaan kvarkkeihin, eiviatka

niiden hadroneihin.)

Miéaritetadn rapiditeettien ys ja y4 yla- ja alarajat sovitulle poikittaisliikemaérélle
pr. Koska vapaille hiukkasille E = /m? + [p|” ja koska kokonaisprosessin CMS-
koordinaatistossa kvarkki-antikvarkkiparin suurin mahdollinen energian arvo on /s

(1 = x5 = 1), niin

Vs > 2y/md + v}
/s

Kvarkin energialle patee
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E3 = mpcosh(ys)

E
& ys| = arcosh(—2),
mr

joten

NG
< h(—). 84
] < aveosh(30) (34

Ensimméisen protonin luovuttamalle pitkittaisliikemaédrdosuudelle patee

T = ﬂ(ey?’ +e¥) o e = ﬁxl — ¥
mr

»

eli

6y4 g ﬁ _ 62/3 = Ya S ln(ﬁ _ ey3)‘
mr mr

Toista protonia (tai antiprotonia) vastaavalle litkeméardosuudelle

Ty = @(e’yg’ +e ) e e¥ = ﬁl’g —e ¥
mr

V)

eli
e ¥ < ﬁ —e B s Yy > —ln(ﬁ —e ).
mr mr
Siispé
—ln(ﬁ —e %) < yy < lIn( Vs e’). (85)
mr mr

Voidaan myos halutessa maarittaéd ensin antikvarkin rapiditeetin y, yla- ja alarajat,

jolloin |ys| < arcosh(;:£-) ja —ln(m—f —e¥) < yy < In(22 — e®). Mahdolliset

2mr mr

rapiditeettiparit (ys,y4) ovat luonnollisesti kuitenkin samat.

Differentioidut vaikutusalat d&(qugQQ) ja d&(ggd?Q@ ilmoitetaan Mandelstamin muut-

tujien 5, £ ja @ avulla (yhtilot , , ja ) Siten vaikutusalojen

da(p’;’;‘—>HQH§+X
dprdysdys

) laskemiseksi on tarpeen ilmoittaa Mandelstamin muuttujat poikit-
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taisliikeméaran pr seka rapiditeettien y3 ja y4 funktioina.

Aliprosessien neliliikemaérille pati

1 Es h(ys)
mpcosnlys
xl\/g 0 P3z _
pP1 = 5 ps = = Psr
0 pSy .
mysinh(ys)
1 D3z
Siten
§ = x1x98
— n\;g(eyB + 6%)”\}2(6% + e*y4)8
= Qm%(l + cosh(ys — y4)) (86)

tA: (pl—p3)2
2 2
=p]+Dp5—2p1-ps3

Il\/g

=0+ mgy — 2=~ (mgcosh(ys) — mysinh(ys))
Y3 —Y3 Y3 _ o7Y3
= m = (e o) Vame (g~ )
= mgy — mp (1 + e %) (87)

2
2mg
= Qm% — Qm%(l + cosh(ys — y4)) — (mé _ m?p(l )

eY3TY4 | p¥a—Ys
_ 9,2 2 2
= 2mg — 2myp — 2myp 5

=mg —mi(1+ " ™). (88)

2 2 2 ya—
—mg +myp + mye¥t Y3

Mandelstamin muuttujan s lausekkeista voidaan paatella, etté

4m? 4m?
Q < T

S X1,2- (89)

S S
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4 Numeerinen ohjelma

Edella esitettyjen vaikutusalalausekkeiden integroimiseksi tulee kdyttaa numeerisia
metodeja. Esittelen naité laskuja varten tekeméni ohjelman lyhyesti tassa luvussa.

Tein numeerisen ohjelman C++-ohjelmointikielelld, hyodyntden CERNin ROOT-
ohjelmakirjastoa [78]. Ohjelma koostuu laskentaohjelmasta Int.cc seké vastaavasta
piirto-ohjelmasta Plot.C. Int.cc tarvitsee toimiakseen ns. makefile-tiedoston (joka
luo ajettavan tiedoston int) ja alimman kertaluvun CT14-partonijakaumafunktiot.
Vaikutusalojen laskemisen ja analysoinnin lisdksi Int.cc tuottaa kuvaajadatan Peter-
sonin fragmentaatiofunktioille (c- ja b-kvarkit), vahvalle kytkentévakiolle a(Q,) ja

CT14-partonijakaumafunktioille (kuvat , |§|, , , , . Int.cc-, Plot.C-

ja makefile-tiedostot ovat esitettyina liitteissa [B], [C] ja [D}

4.1 Vaikutusalafunktiot

Kaikki laskentaohjelmani vaikutusalafunktiot pohjautuvat lausekkeisiin (yhtalot ,

B ja ()

olop > HoHg+ X) = F Y [ [ dwadn f(01,05) 1,5 (0205 - QQ)

1,J=9,9,9
(90)
ja
do(pp — HoHg + X)
dprdyzdy,

dé(ij — QQ)
dt ’

= 2FpT Z xlfi/p(£17@f)x2fj/xfg($27Qf>

4,J=9,9,9

missé 6(qq — QQ), 6(99 — QQ), d&(qad?Q@ ja d&(ggC;Q@ ovat tunnettuja

(6(1j = QQ) = 0, kun 8 = z1295 < 4mg). Lasketut vaikutusalat ovat muotoa

doy .
0<\/§)7 O-p$i“<pT<p‘Tnax, ymin<y<ymax(\/§)7 Unmin<ﬁ<nmax(\/§)7 do;%‘T(pT)v W(Zhﬁv

do (4)) tai ‘é—g(n), missé y ja 1 edustavat toisen tuotetun kvarkin/hadronin rapiditeettia

d
js pseudorapiditeettia (kokonaisprosessin CMS-koordinaatistossa), ja piin, phax,
Ymins Ymaxs Jmin J& Nmax Ovat kinemaattisten leikkausten ala- ja ylarajat. Naista
vaikutusaloista ensimmaéinen edustaa yhtdloa (90) ja loput saadaan yhtalostéa (82))
muuttujanvaihdoilla ja integroimalla.

Muutin vaikutusalojen integroimisalueet muuttujanvaihdoilla hyperkuutioiksi
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(ndissa tapauksissa nelioiksi tai kuutioiksi), joiden sisdlld integrandit poikkeavat

nollasta (paitsi tapauksessa O pmin < < pma ja ovat jatkuvia. Integroinnin

s ymin<y<ymax)
lopputulos voi vaéristya, mikali integrandissa on epajatkuvuuskohtia. Muuttujan-

vaihdot ja lopulliset vaikutusalafunktioiden lausekkeet on esitettyna liitteessé [E]

Vaikutusalafunktioille asetettavia parametreja ovat muun muuassa tuotetun
kvarkin massa, lopputilahadronin massa (voi vaikuttaa integroitavaan kvarkin rapidi-
teettiviliin, yo # yu,, kun pg = Pu, Ja mq # My, liite , tormaystyyppi (p + p
tai p+p), skaalojen tyypit (kvarkin massan mg, poikittaismassan my tai aliprosessin
Mandelstamin muuttujan § monikerta), fragmentaatio-osuuden f(Q — Hg) arvo seki
kinemaattiset leikkaukset (rapiditeetin, pseudorapiditeetin ja poikittaislilkemaaran
rajoitukset). Int.cc:n tarkeimmat yleiset parametrit ovat laskentapisteiden lukumaara
ja kdytetyt partonijakaumafunktiot. Kayttaméni laskentapisteiden lukuméaéré oli

joko 150, 300 tai 1200 pistetta, tilanteesta riippuen.

Faktorisaatioskaalan valinnan vaikutuksia tarkastellessa tulee ottaa huomioon
seuraava asia: Kaikkien kertalukujen CT14-partonijakaumafunktiot on generoitu
pitkittaisliikeméiridosuuksilla 107° < z < 1 ja faktorisaatioskaaloilla 1,3 GeV
< Qp < 10° GeV, ja tamén kaksiulotteisen alueen ulkopuolella funktioiden ar-
vot ekstrapoloidaan [79]. Taméa ekstrapolointi on epédluotettavaa, silla esimerkiksi
skaalalla @y = 3¢ = 635 MeV alimman kertaluvun gluonipartonijakaumafunktio saa
negatiivisia arvoja litkkemééraosuuksilla z < 0,3 (kuva , minka ei pitaisi olla mah-
dollista. Pahimmillaan vaikutusalat ovat negatiivisia alle 1,3 GeV:n skaalavalinnoilla.
Olen siksi asettanut vaikutusalafunktioiden faktorisaatioskaalojen minimiksi 1,3 GeV.
Mikéli funktiolle yritetdan antaa tata pienempi skaala, niin skaala kasvatetaan au-
tomaattisesti minimiarvoon. Renormalisaatioskaalan valintaa en ole manipuloinut,
kaikki arvot valilla 635 MeV < @, < 1,2 TeV kelpaavat vahvalle kytkentévakiolle

as(Q,) sellaisenaan, koska ollaan alueessa, jossa @, 2 1 GeV.

4.2 Ohjelman tuottamat tulokset

Olkoon raskaan kvarkin massan ja skaalojen oletus-, minimi- ja maksimiarvot m%ef,

mg", mG*, QI QI Q. QIF, QF™, QP (muuttujan me, my tai § monikerta).

Int.cc laskee alimman kertaluvun vaikutusalan halutulla x-akselin (v/s, pr, y tai

n) vélillé oletusparametreilla (md*, Q!

ja kuudella vaihtoehtoisella skaalavalinnalla (Q®,QF*), (QM™,QF™), (Q2,Q7>),

r )

, Q"), massan minimi- ja maksimiarvolla
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(@™, Q9), (QF,QF™) ja (Qr**,Q5"). Vaihtoehtoisia skaalavalintoja kisiteltéessé
patee aina mg = m%ef. Skaalavalinnat (QmM*, Q?in) ja (Qmin Q™) on jitetty
pois liian suuren skaalaeron vélttdmiseksi, kuten ldhteessd [67]. Ohjelma muo-
dostaa vaihtoehtoisilla massa- ja skaalavalinnoilla lasketuista vaikutusaloista virhever-
hokéyrat massalle ja skaalavalinnalle (esimerkiksi kuva . Liséksi renormalisaatio-

ja faktorisaatioskaalan vaihteluille muodostetaan omat erilliset virheverhokayrat
(Qmin — Qmax, Q‘}ef) ja (Qdet Q;ﬂin — QF™), esim. kuva 17a)). Mikéli vaikutusalan

r )
laskemisessa on kiytetty fragmentaatio-osuutta (F(Q,Q — HQ,HQ) < 1), niin
myos fragmentaatio-osuuden virheestd muodostetaan oma virheverhokédyra (esim.
kuva [24bf). Massan, skaalan ja mahdollisen fragmentaatio-osuuden aiheuttamista

suhteellisista virheistd muodostetaan erilliset virheverhokéyrat (esim. kuva [25b]).

CT14-LO-partonijakaumafunktioille ei ole maaritetty virhepartonijakaumafunk-
tioita, joiden avulla laskettaisiin LO-partonijakaumafunktioiden epavarmuudesta
johtuva virhe. CT14-NLO-partonijakaumafunktioille virhefunktiot on kuitenkin
madritetty. [62] Laskin vaikutusalan LO-lausekkeita ja NLO-partonijakaumafunktioi-
ta kayttaen virheineen, ja approksimoin LO-tuloksen virhettad asettamalla sille saman
suhteellisen virheen kuin NLO-partonijakaumafunktioita kdyttamaélla saadulla tulok-
sella (esim. kuva . Vaikutusalan partonijakaumafunktiovirheen méaéritystapa on

esitettynd ohjelmassa Int.cc seké ldhteessé [80)].

Int.cc ei laske vaikutusaloja, mikali kokeellisia vertailutuloksia ei ole maéaritetty.
Kokeelliset tulokset voivat olla piste- tai histogrammimuodossa. Histogrammita-
pauksissa teoreettisen tuloksen keskiarvo lasketaan histogrammipylvaité vastaavilla
vileilld tarkan vertailutuloksen saamiseksi (esim. kuva [24)). Pistetuloksille voidaan
madrittdd asymmetrinen kokonaisvirhe (esim. kuva , ja histogrammituloksille
symmetrinen statistinen virhe ja asymmetrinen systemaattinen virhe, jotka esitetdan
erikseen (esim. kuva[24). Liséksi histogrammituloksille on mééritettévissa lisavirheet,
jotka eivit lukeudu statistiseksi tai systemaattiseksi virheeksi (ndma vaikuttavat

edempénd mainittaviin K-kerroinsovituksiin).

Ohjelma laskee teoreettista tulosta vastaavat K-kertoimet jokaiselle seitsemalle
skaalavalinnalle. Kokeellisen vertailutuloksen muodosta riippuen K-kertoimet ovat
joko pisteiden arvot jaettuna vastaavilla teoreettisilla arvoilla (esim. kuvat
ja tai histogrammipylvaiden arvot jaettuna pylviita vastaavilla teoreettisilla
keskiarvoilla (esim. kuvat [26] ja . Pistetuloksen kokonaisvirheet ja histogrammi-

tuloksen statistiset ja systemaattiset virheet jaetaan myos teoreettisilla tuloksilla
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ja esitetddn kuvaajissa. Ohjelma tekee K-kerroinsovitukset skaaloja vastaavien
kokonais-K-kertoimen selvittamiseksi. Histogrammitapausten K-kerroinsovituksissa
teoreettisella tuloksella jaetut statistiset, systemaattiset ja lisavirheet yhdistetaan
neliollisesti. Oletusskaalavalintaa vastaavalle vaikutusalalle lasketaan sovituksen
pohjalta K-kertoimella skaalattu vaikutusala (esim. kuva [16D)).

Int.cc laskee myos eri partonivuorovaikutusten suhteelliset kontribuutiot koko-
naisprosessin vaikutusalaan, tarkastellun muuttujan funktioina (esim. kuva .
Tama suhteellinen osuus, merkitdén r(ij), lasketaan jakamalla prosessin vaikutusala,
jonka laskemisessa on otettu huomioon vain yksi partonityyppi (¢ + g, u +u, d + d,
s+3, c+¢tai b+ b, t-kvarkille/f-antikvarkille CT14-LO-partonijakaumafunktioita
ei ole maaritetty), normaalisti lasketulla vaikutusalalla. Luonnollisesti r(gg) + r(uu)
+r(dd)+r(s8)+r(ce)+r(bb) = 1. Suhteellisista kontribuutioista tulee ottaa huomioon
se, ettd aliprosessin @Q + Q — Q + Q t-kanavaa vastaavaa Feynmanin diagrammia ja
(raskaiden) alkutilakvarkkien massoja ei ole otettu huomioon vaikutusalan laskussa
(luku 3.1). Siten r(ce) ja r(bb) eivit ole tarkkoja, vaan enemménkin approksimoivat

¢ ja b-kvarkkien kontribuutioiden suhteellisten osuuksien suuruuksien kertaluokkia.

5 Tulokset

Esitan vaikutusalojen laskemisessa kayttdmani massa- ja skaalavalinnat seka CT14-
LO-partonijakaumafunktioiden kuvaajat luvussa 5.1. Raskaiden kvarkkiparien tuot-

tojen vaikutusalat sekéd niden analyysi ovat esitettyinéd luvuissa 5.2, 5.3 ja 5.4.

5.1 Kaytetyt parametrit ja partonijakaumafunktiot

5.1.1 Massa- ja skaalavalinnat

Kuten luvussa 2.1 korostettiinkin, c-, b- ja t-kvarkkien massat ovat lopulta hyvin
epayksikésitteiset. Olen valinnut kvarkkien oletus-, minimi ja maksimimassat siten,
ettd ne edustavat mahdollisimman laajasti erilaisia maaritys- ja maarittelytapoja.
Massan vaihtelun vaikutuksia tutkailtaessa kéytetetdin aina oletusskaaloja Q% ja
jScef.

c-kvarkin oletusmassa md®f = 1,27(40,02) GeV edustaa MS-skeemaavalintaa

massaskaalalla = m. (m. = m.(u = m.)) [81]. Tata oletusmassaa vastaava napa-
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massa on 1,67(£0,07) GeV [81], ja kiytan tatd arvoa c-kvarkin massan maksimina.
Minimimassaksi olen valinnut m™» = 0,993(40,008) GeV, joka méaritetty myos

MS-skeemassa, mutta massaskaalalla u = 3 GeV [82/84].

b-kvarkin massan oletusarvo 4,18@8:8;’) GeV |14] ja minimiarvo 3,610(40,016)
GeV [82, 83| ovat molemmat méaritetty MS-skeemassa, massaskaaloilla g = my
(my, = my(p = my)) ja 3 GeV. Olen kidyttanyt maksimiarvona napamassaa 4,78(+0,06)
GeV [85].

t-kvarkin massat 172,9(40,4) GeV, 160(*}) GeV ja 173,1 £ 0,9 GeV edustavat
suoraa massan arvon mittausta, vaikutusalamittausten avulla maaritystéa ja vaiku-
tusalamittausten avulla saatua napamassaa [14]. Kaytan ensimmaisté ja toista arvoa
t-kvarkin massan oletus- ja minimiarvoina. Napamassa ei poikkea juuri lainkaan
oletusarvosta, joten en kayta sitd maksimiarvona sellaisenaan, vaan kaytan sen
ylarajaa 173,1 GeV + 0,9 GeV = 174,0 GeV. Kaikki massavalinnat ovat esitettyna
tiivistetysti taulukossa [1]

Olen kasitellyt raskaiden kvarkkien hadronien massoja virheettomind. Tama
johtuu siité, ettd hadronien massojen suhteelliset virheet ovat mitattomia verrattuna

valittuihin kvarkkien massojen vaihteluvéleihin (luku 5.2).

Taulukko 1. Kaytetyt raskaiden kvarkkien massojen arvot, ilmoitettuna gi-
gaelektronivolteissa.

mdQef mrélin mgax
1,27 0,993 1,67
4,18 3,610 4,78

1729 160 174,0

| oo |O

Olen valinnut pr-riippuvaiseen integrandiin (yhtalo (82)) perustuvien vaikutusalojen
oletus-, minimi- ja maksimiskaaloiksi my, my ja 2mp, kuten léhteissé [67], [86] ja
[42] on tehty. Vastaavat skaalat kokonaisvaikutusaloille ovat 2mg, mg ja 4mg (yhtalo
(90)). Faktorisaatioskaalavalinnoissa tulee kuitenkin ottaa huomioon asetettu minimi-
arvo 1,3 GeV < Q. Kaikkien laskettujen vaikutusalojen faktorisaatioskaalavalinnat
on tiivistetty taulukkoon
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Taulukko 2. Kaytetyt faktorisaatioskaalat. Nama arvot patevit myos vaihtoeh-
toisilla massavalinnoilla mg*™ ja mgin, silla ne vaikuttavat vain oletusskaalavalin-
taan. Jokainen differentioiduista vaikutusaloista on laskettu ainakin kahdella eri
CMS-energialla. Vaikutusalat, joiden torméysprosessien lopputilat ovat muotoa

Hg + X, edustavat moniosaisia prosesseja p+p — Q + Q + X — Hg + X.

Vaiklltusala Q?ef Q}“in QP
oPP TR (/) 2m, 1,3 GeV 4m,
Ugi;};?éxeev 2.0<y<4.5(\/§> max{1,3 GeV,mr} max{1,3 GeV,%mT} 2my
d pp—Hc+X
%(pﬂ max{1,3 GeV,mr} max{1,3 GeV,smr} 2mr
Upp—)]b{b-:);(\/g) 2mb my 4mb
—
U%<n<b5.o (\/5) mr %mT 2mep
M( ) mr lmT oy
__dn 2
oPPIEX (/) 2my my 4my
%(m) mr Lmg oy

5.1.2 Alimman kertaluvun partonijakaumafunktiot

Alimman kertaluvun CT14-partonijakaumafunktiot ovat esitettyina pitkittaisliike-
médraosuuden x funktiona, faktorisaatioskaaloilla @y = 635 MeV (%mc), 1,3 GeV,
2,09 GeV (3my), 2,54 GeV (2m.), 4,18 GeV (my), 8,36 GeV (2my), 16,72 GeV (4my),
86,45 GeV (3my), 172,9 GeV (my), 345,8 GeV (2my), 691,6 GeV (4my) ja 1 TeV,
kuvissa [10} [11], [12] ja [I3] Partonijakaumafunktiot ovat esitettynd myos faktorisaa-
tioskaalan funktioina, eri z:n arvoilla, kuvissa [14] ja LO-partonijakaumafunktiot
(ja vahva kytkentavakio «) vastaavat yhden laskentasilmukan jakautumis- ja kerroin-
funktioita [62]. CT14-NLO-partonijakaumafunktiot ovat liitteessé [F] Keskimadrin

LO-funktiot saavat selvasti korkeampia arvoja kuin NLO-funktiot.

5.2 c-kvarkkiparien tuotto

Kisitteleméni c-kvarkkiparivaikutusalat ovat kokonaisvaikutusala oPP~<tX(/s),

. . pp—>cE+X . . . o e .
leikattu vaikutusala 002 "¢ qoy. 2.0<y<a5(V/5) sekd kuusi differentioitua vaikutusalaa
dopp%DJrX

|y|<0.5

or—(pr), D-mesonityypeilld DY ja D** ja térméysenergioilla /s = 2,76, 5,02 ja

7 TeV. Vaikutusalat, jotka kasittelevit c-hadronien tuottoa, edustavat kaksiosaista

prosessia p+p —c+c+ X = H; + X.
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Kuva 10. CT14-partonijakaumafunktiot x f;(x,Q) pitkittéisliikemaaraosuu-
den x funktiona, faktorisaatioskaaloilla @)y = 635 MeV, 1,3 GeV ja 2,09 GeV
. Vasemmanpuoleiset kuvaajat edustavat ns. tavanomaisten hiukkasten, g
(musta), u (vihred), d (sininen), s (vaaleansininen), ¢ (oranssi) ja b (violetti),
partonijakaumafunktioita ja oikeanpuoleiset antihiukkasten ¢, @, d, 5, € ja b
partonijakaumafunktioita (véirit vastaavasti kuin tavanomaisilla hiukkasilla).
Gluonipartonijakaumafunktion negatiiviset, epafysikaaliset, arvot faktorisaa-
tioskaalalla @)y = 635 MeV havainnollistavat ekstrapoloinnin epéluotettavuutta
(luku 4.1).
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Kuva 11. CT14-partonijakaumafunktiot = f;(z,Qs) pitkittaisliikeméaardosuuden
x funktiona, faktorisaatioskaaloilla QQ; = 2,54 GeV, 4,18 GeV ja 8,36 GeV .
Kéyrien varit ja kuvien merkitykset ovat samat kuin kuvassa
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Kuva 12. CT14-partonijakaumafunktiot z f;(z,Q) pitkittaisliikeméaardosuuden
x funktiona, faktorisaatioskaaloilla Q) = 16,72 GeV, 86,45 GeV ja 172,9 GeV
[62]. Kéyrien vérit ja kuvien merkitykset ovat samat kuin kuvassa .
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Kuva 13. CT14-partonijakaumafunktiot = f;(z,Qs) pitkittaisliikeméaardosuuden
x funktiona, faktorisaatioskaaloilla Q)5 = 345,8 GeV, 691,8 GeV ja 1 TeV .
Kéyrien varit ja kuvien merkitykset ovat samat kuin kuvassa
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Kuva 14. CT14-partonijakaumafunktiot muuttujan Q)¢ funktioina, pitkittéis-
liikeméddrdosuuden arvoilla z = 1078, 1077, 107%, 107 ja 10~* [62]. Nailla
x:n arvoilla tavanomaisten hiukkasten ja vastaavien antihiukkasten partoni-
jakaumafunktioiden arvoissa ei ollut nakyvié eroja (logaritmisella asteikolla
fi(z,Qr) = fi(x,Qy)). Kayrien vérit ovat samat kuin kuvassa
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Kuva 15. CT14-partonijakaumafunktiot muuttujan @) funktioina, pitkittéislii-
kemédrdosuuden arvoilla z = 1073, 1072 ja 107! [62]. Vasemmanpuoleiset kuvat
edustavat ns. tavanomaisia hiukkasia ja oikeanpuoleiset antihiukkasia. Kéyrien
vérit ovat samat kuin kuvassa
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Prosessin p +p — ¢+ ¢+ X alimman kertaluvun kokonaisvaikutusala virheineen,
vastaavat kokeelliset tulokset ja K-kertoimella skaalattu vaikutusala ovat esitettyina
kuvassa Skaalavalintojen vaikutukset, massan ja skaalan epdvarmuuksien aiheut-
tamat suhteelliset virheet ja eri partonityyppien kontribuutiot vaikutusalaan ovat
esitettynd kuvassa [I7] Vaikutusalan oletusskaalavalintaa vastaavat K-kertoimet ovat

esitettyna kuvassa (18] ja muita skaalavalintoja vastaavat K-kertoimet kuvassa [19]

Kokonaisvaikutusalan kokeelliset vertailutulokset on mitattu tormaysenergioilla
Vs = 200 GeV (RHIC, STAR-kollaboraatio) [39], 2,76 TeV (LHCDb) [45, [87] ja
7 TeV (LHCD) [47]. Vaikutusalat méaaritettiin tarkastelemalla D-mesonien téysin
hadronisia hajoamisia D° — K—7n*, D** — D% " — K—ntnx"t, Dt — K-nt7nt ja
Df — ¢nt — K~ K" seké vastaavien antimesonien hajoamisprosesseja.

Olen etsinyt kokeellisen vertailutuloksen mahdollisimman monelle CMS-energian
arvolle. Valitsin vertailutuloksen eri vaihtoehdoista kayttamalla tdrkeimpéana kritee-
rind suhteellisen virheen pienuutta, toiseksi tarkeimpéané analyysin laajuutta (méadri-
tykseen osallistuneiden kollaboraatioiden maéré ja tutkittujen hajoamiskanavien
lukumaara) ja kolmanneksi tarkeimpéana tuloksen tuoreutta. Kéytin naitd samoja
kriteereja myos muiden kokeellisten tulosten valinnassa, jotka eivat ole esitettyna

. . pp—rcc+X pp—bb+X  _pp—Hy+X  _ppstt+X
histogrammeina (tapaukset T0<pr<8 GeV, 2.0<y<d.5> O 3 02.0<n<5.0 > O Ja

O.pp~>tf+X)'

Kuvista ja nihdéian, ettd massan ja skaalan vaihtelujen aiheuttamat
epavarmuudet ovat huomattavan isot. FErityisesti skaala vaikuttaa teoreettiseen
vaikutusalaan suuresti: sovitetut kokonais-K-kertoimet eroavat suurimmillaan noin
tekijilld 22 ((QIF,Q7™) ja (Q¥,QF™), kuvat [1§ ja [19) taulukko [3). Arvioitu

partonijakaumafunktioiden epédvarmuudesta tuleva vaikutusalan virhe on noin puolet

massan vaihtelun aiheuttamasta epdvarmuudesta.

Gluoni-gluoni-reaktiot hallitsevat c-kvarkkiparien tuottoa torméaysenergiasta riip-
pumatta (kuva [17d). Partonivuorovaikutusten suhteellisista kontribuutioista (seké
ylipdatadn vaikutusaloista) tulee muistaa, ettd ne ovat sitd epatarkempia mité
heikommin partonimallin soveltamisen kriteeri v/s > 2m,, toteutuu (luku 2.3).

Seitseméd teraelektronivolttia vastaava K-kerroin hallitsee selvéisti kokonais-K-
kerroinsovituksia kaikilla skaalavalinnoilla (kuvat [18|ja . K-kerroin, joka vastaa
torméysenergiaa 200 GeV, poikkeaa aina selvéisti sovitetusta K-kertoimesta. Tamé
voi selittyd osittain silld, etta ehto /s > 2m,, (m, = 938 MeV [9]) toteutuu parem-

min korkeammilla térméysenergioilla.



90

. . . pp—}(;E-f—X . .
Seuraavaksi tarkastelen leikattua vaikutusalaa o2, s Gev. 2.0<y<4.5: Jonka kokeelliset

vertailutulokset on mitattu CMS-energioilla 5 , 7 ja 13 TeV (LHCb-kollaboraatio) [88,
89]. Rapiditettivili 2,0 < y < 4,5 koskee nyt mittauksissa tarkasteltujen hadronien
D° Dt D** DF ja A rapiditeetteja. Késitellyt hadronien hajoamiskanavat olivat
D - K—nt, DY - Kntxt, D*" — D% Df — ¢nt ja AT — pK -7t (sekd
vastaavat antihadronien hajoamiskanavat). Viiden ja kolmentoista teraelektroni-

voltin mittaukset kasittelivat vain mesoneja ja seitsemén teraelektronivoltin mittaus
pp—rcc+X
0<pr<8 GeV, 2.0<y<4.5

. . . . pp—)Hc+X . .
malla keskiarvot hadronien H. vaikutusalojen o4, s Gev, 20<y<a5 Ja vastaavien

lisaksi myos A} -baryonia. Lopulliset vaikutusalat o saatiin laske-
fragmentaatio-osuuksien osaméadristd. Hadronien vaikutusalat ja fragmentaatio-
osuudet f(c — D°) = 0,565 & 0,032, f(c — DT) = 0,246 + 0,020, f(c — D**)
= 0,224 + 0,028, f(¢c — D}) = 0,080 &+ 0,017 ja f(c — A) = 0,094 £ 0,035 [75]
sisaltavat suoran c-kvarkin hadronisoitumisen lisdksi myos mahdolliset raskaampien
mesonien hajoamiset kevyemmiksi mesoneiksi (esim. D*T — D% siten c-hadronien
fragmentaatio-osuuksien summa on enemmén kuin yksi). Kuitenkaan b-hadronien

hajoamisista lahtoisin olevia c-hadroneja ei ole siséllytetty mittaukseen. [88, [89]

Koska en ole ottanut huomioon c-hadronien fragmentaatiofunktioita, niin vain
hadronien massat (integrointivili) ja fragmentaatio-osuudet vaikuttavat teoreet-
tiseen vaikutusalaan USZQZTC%XGW’ 2.0<y<45- Kasiteltyjen c-hadronien massat, mpo
= 1864,83 £ 0,05 MeV, mp+ = 1869,65 £ 0,05 MeV, mp«+ = 2010,26 £ 0,05 MeV,
mp+ = 1968,3440,07 MeV jam,+ = 2286,46+0,14 MeV [36, 41, 90|, ovat keskiméaérin

kohtalaisen lahelld toisiaan. En ole siksi laskenut teoreettista c-hadronin vaiku-

pp—cc+X

tusalaa erikseen, vaan olen laskenut vain yhden vaikutusalan on_, 5 Gev. 2.0<y<a.55

efektiiviselld hadronin massalla mSif, ja olen verrannut titd vaikutusalaa kokeel-
lisiin tuloksiin. Laskin efektiivisen massan painotettuna keskiarvona kayttaen pai-
noina fragmentaatio-osuuksia (jatin massojen ja fragmentaatio-osuuksien virheet

huomiotta):

ZHC f(C — Hc)ch
ZHC f(C — Hc)

1,90254 GeV, kun vain D-mesonit on otettu huomioon

Mpett =
c

1,93239 GeV, kun Af on otettu myos huomioon
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Kuva 16. Kokonaisvaikutusala o??~7*+X  Ensimméisessi kuvassa alempi kayra
on NLO-partonijakaumafunktioilla (ja alimman kertaluvun aliprosessin vaiku-
tusalan lausekkeella) laskettu vaikutusala virheineen (punainen), ja ylempi kéyra
LO-vaikutusala, jonka partonijakaumafunktioiden virhe (oranssi) on approksi-
moitu olettamalla LO- ja NLO-partonijakaumafunktioilla laskettujen vaiku-
tusalojen suhteelliset virheet samoiksi. Kuvassa on esitetty myos kokeelliset
vertailutulokset energioilla /s = 0,200, 2,76 ja 7 TeV , , . Toisessa
kuvassa on esitettyna LO-vaikutusalan skaalavalintojen epéayksikasitteisyydesta
syntyva epavarmuus (violetti) ja c-kvarkin massan epéyksikasitteisyydeté tuleva
epavarmuus (harmaanruskea/tumma violetti). Oranssi verhokayra on LO-tulos
skaalattuna oletusskaalavalintaa vastaavalla K-kertoimella (kuva .
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Kuva 17. Skaalavalintojen vaikutukset, suhteelliset epdvarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot kokonaisvaikutusalalle gPP=<+X,
Kuvassa (a) punainen verhokayra edustaa faktorisaatioskaalan vaihtelua

(Q, QF™-Q7*) ja musta (tummanpunainen) renormalisaatioskaalan vaihte-
lua (Qmn—Qmax, Q‘}ef). Tummansininen kiyra on vaikutusala skaalavalinnalla
(QP™,QF*) ja vaaleansininen skaalavalinnalla (Q,‘Pin,Q;{‘in). Kuvassa (b) on
esitettynd massan (harmaanruskea/tumma violetti) ja skaalavalintojen (violetti)
epavarmuuksien aiheuttamat vaikutusalan suhteelliset virheet. Verhokayrien
ylarajat edustavat ylavirheita (positiiviset arvot) ja alarajat alavirheitd (negatii-
viset arvot). Kuvassa (c) on esitettynd partonivuorovaikutusten g + g (musta),
u + 7 (vihred), d + d (sininen), s + 5 (vaaleansininen), ¢ + ¢ (oranssi) ja b + b
(violetti, nyt alle 107*) suhteelliset osuudet vaikutusalasta. Osuuksista r(c¢) ja
7(bb) tulee muistaa, ettd ne eiviit ole tarkkoja, vaan enemménkin kertaluokkien

suuruuksien arvioita (luku 4.2).
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K-kerroin

- N W A g o

OO

Kuva 18. Kokonaisvaikutusalan o??~7“*X K-kertoimet oletusskaalavalinnalla
( Sef,Qﬁef). K-kertoimen virheet ovat kokeellisen tuloksen virheet jaettuna vas-
taavalla teoreettisella tuloksella (teor. tuloksen virheita ei ole huomioitu). Ruskea
katkoviiva on K-kerroinsovituksesta saatu kokonais-K-kerroin.

Asetin c-hadronin massaksi 1,9 GeV.

Leikattu vaikutusala agz:;?éxc;e\,’ 2.0<y<4.5 ja sen analyysikuvat ovat esitettyina
CMS-energian funktiona kuvissa [20] ja 21 Seitsemééa eri skaalavalintaa vastaavat
K-kertoimet ovat esitettyna kuvissa [22ja . Kuvien merkintéd (1/s)min merkitsee
nyt pienintd mahdollista CMS-energian arvoa reaktion tapahtumiseksi minimirapidi-
teetilla 2,0.

Kuten kokonaisvaikutusalan tapauksessa, skaalavalinta vaikuttaa erittain paljon
alimman kertaluvun vaikutusalan arvoihin. Massan vaihtelua vastaava suhteellinen
virhe on myos ldhes samansuuruinen kuin aiemmin. Nyt kuitenkin arvioitu partoni-
jakaumafunktioiden virhe on korkeilla energioilla melkein yhté suuri kuin massan
virhe.

Myos eri partonivuorovaikutusten suhteelliset kontribuutiot leikattuun vaiku-
tusalaan ovat ldhes samat kuin kokonaisvaikutusalan tapauksessa. Naissa, seka
myohemmin kasiteltavissa b- ja t-kvarkkiparien tuottojen kokonais- ja leikattujen
vaikutusalojen, tapauksissa osuudet r(uw) ja r(dd) laskevat ja 7(gg) nousee torméiys-
energian /s kasvaessa. Tadmé johtuu siitd, ettd pienemmilla pitkittéisliikeméadrio-
suuden z; o arvoilla gluonipartonijakaumafunktion arvot ovat suurempia suhteessa
u-, U-, d- ja d-partonijakaumafunktioiden arvoihin, kun skaala on pieni (Q; > 1,3
GeV, kuvat [14] ja , ja % < x1 (tai @ < x1). Alhaisilla poikittaisliikeméaran
arvoilla ja siten alhaisilla skaaloilla (Q¢ = mr) on suurin kontribuutio vaikutusalaan,

miké on havaittavissa esimerkiksi kuvista [24] 28] [32] [36], [0} [44}
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pp—rcc+X pp—rcc+X s T
Taulukko 3. Vaikutusalojen o J& O00cpres Gev, 20<y<45 KOkonais-K

kertoimien arvot seitsemélld eri skaalavalinnalla (kuvat . . . ja E

(Qran) K(O.pp%cEJrX) K( gz;q??éXGeV 2.0<y<4.5)

(QFT.QF) | 1,25+0,10 2,58 £0,13
(Qmax Qm“) 0,79 £ 0,07 1,15 + 0,06

( mm,Q ) 54405 2,03 £ 0,10
(Q¥T.Qy™) | 0,4840,04 0,65 + 0,04
(Qmm,Qdef) 0,64 & 0,05 0,83 & 0,04
(QFT.Qy™) | 104+£0,9 8,1+0,4

(Qmax Qdef) 2,1+0,2 44+0,3

K-kertoimet vastaavat kokonais-K-kerrointa paremmin kuin kokonaisvaikutusalan
tapauksessa. 7 TeV-tuloksen K-kerroin on aina sovitusarvoa ja muita K-kertoimia
pienempi. Tahén voi vaikuttaa se, ettd 7 TeV-mittaus tarkasteli hieman eri lopputilaa
(Af-hadroni mukana) kuin 5 TeV- ja 13 TeV-mittaukset.

CMS-energioita /s = 5, 7 ja 13 TeV vastaavat leikatun vaikutusalan
agijfgxgw, 2.0<y<45 teoreettiset arvot ovat 515, 650 ja 970 pb. Mikali olisin kéyt-
tanyt pp-riippumatonta oletusskaalaa 2m, skaalan mr (max{1,3 GeV,mr}) sijasta,
niin vaikutusalan arvot olisivat olleet 874, 1135 ja 1767 pb eli huomattavasti suu-
remmat. Tamaé selittyy silld, ettd pp-differentioitu vaikutusala on korkeimmillaan
alhaisilla poikittaisliikeméaréan arvoilla, missd mpr < 2m,, ja silla, ettd partonijakau-
mafunktioiden arvot kasvavat hyvin nopeasti faktorisaatioskaalan funktiona alueessa
Qy € [1,3 GeV,2m,]. Partonijakaumafunktioden vaihtelu vaikuttaa selvésti enemmaén
vaikutusaloihin kuin vahvan kytkentdvakion vaihtelu néin pienilla skaaloilla (kuvat
ja . Skaalavalinnalla 2m,. K-kertoimet ovat 41 — 45 prosenttia pienemmaét,
jolloin kokonais-K-kerroin on arviolta noin 1,47. Tama vastaa paremmin kokonais-

vaikutusalan oPP~+X oletusskaalavalintaa vastaavaa K-kerrointa 1,25 4 0,10 kuin
2,58 + 0,13 (taulukko [3)).

Osa kayttamistani D-mesonien vaikutusalojen kokeellisista vertailutuloksista koskevat
yleisesti D-mesonien tuottoa p + p — D + X eivatka kaksiosaista prosessia p + p
—c+c+ X — D+ X. Tama johtuu siita, etta c-hadronien teoreettisien tuottojen
laskemisessa jatetdan usein huomiotta yksittaisten c-kvarkkien syntymekanismit
niiden pienen kontribuution vuoksi (kuten lahteissé [91] ja [92]). Siten laskemani

teoreettiset tulokset ja kayttdmani kokeelliset tulokset ovat vertailukelpoisia.
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Kuva 20. Leikattu vaikutusala op2, s Gev, 2.0<y<s5- Kuvaajien merkitykset

ovat samat kuin kuvassa Kokeelliset vertailutulokset ovat lihteista .
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Kuva 21. Skaalavalintojen vaikutukset, suhteelliset epdvarmuudet ja eri

partonivuorovaikutusten suhteelliset kontribuutiot leikatulle vaikutusalalle

pp—cc+X . . . .
Oo<pr<s Gev, 2.0<y<45- Isuvaajien merkitykset ovat samat kuin kuvassa E
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Kuva 22.  Leikatun vaikutusalan og., §"Gev, 20<y<a5 K-kertoimet ole-

tusskaalavalinnalla (Q(,Q9°"). Merkinnit ovat samat kuin kuvassa .

T o



98

K-kerroin

15

=

0.5

K-kerroin

0.8
0.6
0.4
0.2

15

K-kerroin

10

Ku

1.2~

T T T

10 11 12 13
Vs [TeV]

()

10 11 12 13
Vs [TeV]

(c)

\\\\‘\\\‘\‘\\\\{\

0 11 12 13
s [TeV]

(e)
va 23.

Leikatun vaikutusalan o
chtoisilla skaalavalinnoilla (Qy**,Q7>), (QM™,QF™), (

K-kerroin

K-kerroin

K-kerroin

1.5F

0.5

\\\\‘\\\‘\'T\\\\\N
4

B 0

pp—cc+X
0<pr<8 GeV, 2.0<y<4.5

10 11 12 13
(s [TeV]

5 6 7 8 09
()

K-kertoimet vaihto-

gef’Qfmax) 7 (Q;nin 7 Q(}ef) 7

(Qfef,Q;Pin) ja (Q?aX,Q}IEf). Merkinnat ovat samat kuin kuvassa .
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Ennen D-mesonien pr-jakaumien tarkastelemista on syyta ottaa huomioon seuraava
asia: Tein luvussa 2.3. approksimaation, jossa hadronisoituvan raskaan kvarkin
ja sen hadronin liikemééarat oletetaan samoiksi seka fragmentaatiofunktiot korva-
taan vastaavilla fragmentaatio-osuuksilla (yhtéalot ja (59)). Tamén tekeméni
hadronisaatioapproksimaation vaikutuksia pr-differentioituihin vaikutusaloihin on

mahdollista arvioida tarkastelemalla pr-jakaumien muotoja.

Approksimoidaan D-mesonin fragmentaatiofunktiota mesonin fragmentaatio-
osuuden ja Petersonin fragmentaatiofunktion tulona (nyt f} f(c — D)DHe(2)dz
= f(c — D)). Liikemééraosuus z € [0,1] oli mééritelty hadronin kvarkin liikemaéran
suuntaisen komponentin ja kvarkin liikeméaran suhteeksi. Merkitddn c-kvarkin
liikemadrdd p¢ ja D-mesonin liikemadras p”. Koska kisittelemme D-mesonien
tuotoissa aina keskirapiditeettia |y| < 0,5 ja koska raskaan kvarkin liikeméérén

suunta muuttuu keskimédirin vain vihin hadronisaatiossa, niin p? ~ zp5. Téten

Upp—>D+X

pp—)cc+X " D .
T / PT /dZ fle = D)D.*(2)d(pr — 2p7).
pT

. . e o 7. e e . pp—rcc+X -
Tarpeeksi korkeilla poikittaislitkemééran pr arvoilla 22— ~ —A_ missi A on
de (pT)n !

jokin vakio. Téssé tapauksessa pr £ 4 GeV (kuvat 24D} [28Db| [32b}, [36b] [40b] ja [44D)).

Kiyttien hadronisaatioapproksimaatiota saadaan d"pz;,? =t ((cp;ﬁ)A, ja ps = pk.

Muokkaamalla arviota saadaan

O_pp—>D+X

Upp—>cc+X I b .
= [y — / dz f(e— D)D" ()P — =15)

= f(e— D) / Wi Die(e) Lo~ )
= f(c— D) /dz DHC( )Z(P;Ll)n

_ flc=D)A L ch

a (p?)" /d De*(2)

Siispd osuus [dz 2" 1DHe(z) < 1 antaa arvion siitd, kuinka paljon pienempi pp-
differentioitu vaikutusala olisi laskevalla osuudella pr Z 4 GeV, mikéli olisin kéyttéanyt
fragmentaatiofunktioita fragmentaatio-osuuksien sijaan. Kun vaikutusalan kuvaajan
x- ja y-akselit esitetdan logaritmisesti, niin potenssi n on maaritettiavissa laskevan

suoran kulmakertoimena;:
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doPr—D+X flc— D)A .
og10( 7 ) 2 o124 < log(7(c — D)) — mlog ).
Pt (%)

Logaritmisista kuvaajista arvioidut potenssit n ovat esitettyna taulukossa

Taulukko 4.  D-mesonien pp-differentioitujen vaikutusalojen kuvaajista
arvioidut potenssit n.

Vaikutusala n
dUppHDovLX

Shisos /5= 276 TeV | 4,06
do_pp—)DO+X
Zhisos /5= 5,02 TV | 4,55

dapp—>DO+X

Shlsos L f5=7TeV | 371
dapp—>D*++X
Thiss /5= 2,76 TeV | 3,93
do_pp—)D*++X
Shishr /5 =502 TeV | 4,46

da_pij*++X

Duios /=7 TeV | 4,08

dpr

Potenssin n vaihtelu vélilla 3,71 — 4,55 vastaa tekijin [ dz 2" 'DHe(z) arvoja
0,221 — 0,294. Siispé kayttamani hadronisaatioapproksimaatio arviolta jopa nelinker-
taistaa pp-differentioidut vaikutusalat laskevilla osuuksilla pr £ 4 GeV. Tama vastaa
K-kertoimien pienentymisté neljasosaan fragmentaatiofunktiot huomioon ottavaan
tulokseen nahden.

Vaikka tdméa arvio osoittaa selvasti, ettd fragmentaatiofunktiot tulisi ottaa
huomioon D-mesonien pr-differentioituja vaikutusaloja laskiessa, niin esitédn kuitenkin
hadronisaatioapproksimaatiolla laskemani vaikutusalat. Tekijoiden [ dz 2" 'DHe(z)
<1,n =371 -4,55, vaikutukset vaikutusaloihin ovat kuitenkin kohtalaisen vakioita.

Tamé arvio alentaa myos leikatun vaikutusalan O'gz:;i—gXGew 9.0<y<45 lUOtEtta-

vuutta. Leikkaukset koskevat nimenomaan hadronien poikittaisliikeméaaria ja rapidi-

teetteja (jotka ovat pp-riippuvaisia).

ALICE-kollaboraatio on mitannut D% ja D**-mesonien pp-differentioidut vaiku-
tusalat protoni—protoni-térméyksissi, keskirapiditeetissa |y| < 0,5, CMS-energioilla
Vs = 2,76 TeV |45, 87], 5,02 TeV [93, 94] ja 7 TeV [95, 96]. Kuten tapauksessa

pp—rcc+X
O0<pr<8 GeV, 2.0<y<4.5

otettu huomioon ja b-kvarkkien hajoamisista syntyneet jatetty huomiotta. Mesonit

raskaampien D-mesonien hajoamisista syntyneet D-mesonit on
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tunnistettiin hajoamisten D® — K-t ja D** — D7" — K~ntrT (ja vastaavien
antimesonien hajoamisten) avulla.

Olen esittanyt vastaavat teoreettiset D-mesonien vaikutusalat seké niiden ana-
lyysikuvat kuvissa[24] [25] 28], 29] [32] M0| [41] [44)ja[d5] Kéaytin fragmentaatio-
osuuksia f(c — D°) = 0,557 + 0,023 ja f(c — D**) = 0,238 4+ 0,007, joita
kaytettiin /s = 2,76 teraelektronivoltin mittauksessa [45], ja mesonien massoja
mpo = 1864,83(40,05) MeV ja mp-+ = 2010,26(+0,05) MeV |41]. Oletus- ja vaihto-
ehtoisilla skaalavalinnoilla lasketut K-kertoimet ovat kuvissa [26] 27} [30] [31], [34]
38} B9}, B2} 3} 6] ja f7L

Poikittaisliikemaardjakaumien arvioidut CT14-partonijakaumafunktioiden virheet
ovat nyt jopa suuremmat kuin vastaavat massan virheet. Skaalavalinnat aiheutta-
vat edelleen selvésti suurimman epavarmuuden tuloksiin. Kuitenkin nyt skaalojen
vaihtelusta johtuvat suhteelliset epavarmuudet ovat huomattavasti pienemmét kuin
kokonais- ja leikatun vaikutusalan tapauksissa (kuvat [25b} 29} [33b}, [37b}, [41b|ja [45b)).

Fragmentaatio-osuuksia vastaavat virheet ovat kaikissa tapauksissa ldhes mitédttomat.

Miksi massa vaikuttaa vaikutusaloihin néin vahan? Esimerkiksi tt-tuoton pp-
differentioiduissa vaikutusaloissa massan virhe on paljon merkityksellisempi (luku
5.4, kuvat ja , vaikka t¢-kvarkin massan suhteelliset ylé- ja alavirheet
ovat paljon pienemmét kuin c-kvarkin (luku 5.1.1). c-kvarkkien massan vahai-
nen efekti selittyy seuraavasti: Mandelstamin muuttujat ovat § = 2m2(1 + cosh(yz —
ys)), T = m2 — ma(1 4+ e %) ja @ = m2 — m3(1 + ew¥1) (yhtalot (86)),
ja (88)). Mittauksissa tarkastellut poikittaisliikeméérien arvot ulottuvat varsin
pitkille (maksimiarvo 12 — 36 GeV), joten useimmiten my ~ py (mdf = 1,27 GeV,
m™n =993 MeV ja m™> = 1,67 GeV). Tama selittidi osaltaan myés sitéd, miksi
jakaumien alkupéissa (kuvat [25bl [29b] [33b] [37b}, [41b| ja [45b). Lisdksi Mandelstamin
muuttujien m2-termit kumoutuvat osittain #-differentioitujen aliprosessien vaikutusa-
lojen lausekkeissa (yhtélot ja ) Massan muutos vaikuttaa myos skaalaan
Q" = Q4" = myp = \/m2 + p}. Siten massan kasvattamisesta (laskemisesta) tuleva
aliprosessin vaikutusalan, vahvan kytkentéavakion (@, ) ja integrointialueen (yhtalot

ja (B9), muissa tapauksissa myds (83) ja (84)) pienentyminen (kasvaminen)
kumoutuu osittain partonijakaumafunktioiden f;(z,Q)f) kasvamisella (laskemisella),

max)

) ovat pienempiéd kuin alavirheet (m?

vaikutusalojen massan ylavirheet (m

joka on hyvin nopeaa pienilld faktorisaatioskaalan arvoilla (kuva .
Kuvista [25al, [29a], [33al, [37al, [ATal ja [45a] nahdaan, etta pr-asteikkojen alkupaissi
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(pienemmat skaalat) faktorisaatioskaalan vaihtelu vaikuttaa enemmén vaikutusaloihin
kuin renormalisaatioskaalan vaihtelu ja asteikkojen loppupéissa (suuremmat skaalat)
taas painvastoin. Tamé poikkeaa kokonais- ja leikatun vaikutusalan tapauksista,

joissa faktorisaatioskaala vaikuttaa (lihes aina) selvésti enemman.

Gluonivuorovaikutukset hallitsevat jilleen partonivuorovaikutusten suhteelli-
sissa kontribuutioissa vaikutusaloihin. Kuitenkin prosessien u +u — Q + Q ja
d+d — @Q+ Q osuudet alkavat nousemaan poikittaisliikemaérin kasvaessa. Kun pp
kasvaa, niin sen seurauksena (keskirapiditeettia vastaavat) pitkittaislitkemaaraosuu-
det ;9 = m—\/g(eiyf” + eiy‘*) kasvavat myos. Kun taas z; ja zo kasvavat, niin gluonin
ja valenssikvarkkien (ja niiden antikvarkkien) partonijakaumafunktioiden arvojen
véliset erot pienenevét (kuva , ja siten 7(ut) ja r(dd) nousevat.

Skaalavalintoja koskevissa verhokayrissé ja skaalavalintaa (Qy™, Q™) vastaavien
vaikutusalojen kuvaajissa on nahtavissé ns. taitoksia pienilla poikittaisliikeméaréan pp
arvoilla (kuvat [24b| [25al, 28b}, [29af [32b}, 334}, [36b}, [37al, [40b} 4 1a} {44b|ja 45al). Vastaavat
taitokset ovat myoOs skaalavalintojen suhteellisten epavarmuuksien kuvaajissa (kuvat
125b}, [29b}, [33b}, [37b} [41b| ja 45b)). Lisdksi CMS-energialla /s = 5,02 TeV vaikutusalan

pp—D "+ X
dol, <05

dpr

ja[29b)). Nama kuvaajien kayttédytymiset johtuvat faktorisaatioskaalasta, jonka
miniarvoksi asetin 1,3 GeV. Yhtapitavyys mpr = /m2 + p% = 1,3 GeV toteutuu,
kun m, = md = 1,27 GeV ja pr ~ 0,28 GeV tai kun m. = m™" = 0,993 GeV ja

[

massan (suhteellisen) epdvarmuuden ylarajassa on jyrkka taitos (kuvat

pr ~ 0,839 GeV. Jalkimmainen poikittaisliikeméarédn arvo vastaa yksittaistd massan
virheverhokayréan taitosta. Voidaan myos laskea, etta %mT = 1,3 GeV, kun pr
~ 2,27 GeV (m. = m3®). Vaihtoehtoisilla skaalavalinnoilla (Q{*F, Q™) ja (Q™ Q™)
laskettujen vaikutusalojen taitokset tapahtuvat juuri talla lilkeméarén arvolla.
D-mesonien pp-differentioitujen vaikutusalojen K-kertoimet kédyttaytyvit hyvin
samankaltaisesti: Skaalavalinnoilla (Q°F,Q¢) ja (Q**,Q%") K-kertoimet sijoittuvat
sovitusarvon ympérille ja niiden vaihtelut eivét ole suuria (kuvat , , , ,
, , , , ja . Skaalavalintoja (Q*,QF™), ( fef,Q?laX) ja
(@™ Q¢) vastaavat K-kertoimet ovat pr-asteikkojen aluissa nousevia (kuvat
[27d, 27d} [31a] [31d, [B1d} 354l [35¢, [35d] [39al, [39¢] 39d] [3a] [A3d, [43d] {T7al 7d ja
. Skaalavalinnoilla (Q™,QF™) ja (QI,QF™) K-kertoimet (nousevat aluksi
jyrkiisti ja sen jilkeen) laskevat (27b] R7¢| [31b] [31€], 35D} [35¢, [39b], [39¢] (43D, [43€]
ja[47d). Useat tekijét vaikuttavat pienid poikittaisliikemaéria vastaaviin K-

kertoimiin ja siten mahdollisesti niiden heilahteluihin: Vahvan kytkentévakion a,(Q,)
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ja partonijakaumafunktioiden f;(z,Q) kasvu- ja laskunopeudet poikittaisliikemaarén
suhteen vaihtelevat eri renormalisaatio- ja faktorisaatioskaalavalinnoilla. Hairioteo-
rian soveltamiseksi vaadittiin, ettd @), 2 1 GeV, ja tdmé kriteeri ei tdyty hyvin
minimirenormalisaatioskaalalla @), = %mT, kun pr < 1,55 GeV. (Tosin tdmé pr-alue
esiintyy vain viahén tarkastelluissa vaikutusaloissa.) Minimifaktorisaatioskaalalla
Q;nin = max{1,3 GeV,%mT} vaikutusala ei kasva ns. normaalisti asetetun miniarvon
1,3 GeV vuoksi. Lisdksi fragmentaatiofunktioiden vaikutuksia teoreettisiin vaiku-

da.pp—}cE+X —~ A

tusaloihin on hankala arvioida, kun o o ei pade eli kun pr < 4 GeV.
T

K-kertoimet kuitenkin stabiloituvat korkeammilla poikittaisliikemaaran arvoilla,

ja nama K-kertoimet ovat arviolta noin yhden neljasosan fragmentaatiofunktioita

hy6dyntéaen lasketuista K-kertoimista.

Prosessien p+p —c+e+X - D+ X jap+p—c+c+ X — D*f + X keski-
rapiditeetin |y| < 0,5 poikittaislilkemaaran suhteen differentioitujen vaikutusalojen
kokonais-K-kertoimet ovat esitettyind taulukoissa [f ja [0l Arvoista ndhdddn, etta
samaa torméysprosessia ja skaalavalintaa (Q,,Q)s) vastaavat K-kertoimet ovat usein

kohtalaisen lahelld toisiaan (heilahtelusta huolimatta).

Tein K-kerroinsovitukset erikseen vield poikittaisliikemaarilla pr > 4 GeV, koska
néissa pr-alueissa hadronisaatioapproksimaation vaikutus on arviolta suunnilleen
vakio (taulukot (7] ja . Sovitusten tuloksista havaitaan, ettd samaa prosessia ja
skaalavalintaa vastaavat K-kertoimet alueissa pr > 4 GeV vastaavat toisiaan selvésti
paremmin kuin varsinaiset kokonais-K-kertoimet. Tosin naistd sovituksista tulee
ottaa huomioon se, ettd hadronisaatioapproksimaation arvioitu vaikutus vaihtelee
jonkin verran kulmakerroinpotenssin n mukaan (taulukko [4)), johon skaalavalinta
vaikuttaa. Lisdksi joillakin skaalavalinnoilla vaikutusalakayrat ovat lievisti kaarevia
esittdessa x- ja y-akselit logaritmisella asteikolla. Nama seikat heikentavét hieman

K-kertoimien vertailukelpoisuutta.

5.3 b-kvarkkiparien tuotto

Tarkastelemani b-kvarkkiparivaikutusalat ovat kokonaisvaikutusala gPP—t+X (\/5),
leikattu vaikutusala a%ﬁfﬁ;g(ﬁ) seké differentioidut vaikutusalat W( )
CMS-energioilla /s = 7 TeV ja 13 TeV. Kolme jalkimmaéista vaikutusalaa edustavat

kaksiosaista prosessia p+p —b+b+ X — H, +X.
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Kuva 24. pr-differentioitu  vaikutusala —2=%> CMS-energialla

d )
Vs = 2,76 TeV. Mustien ristien horisontaaliset ViivaiTedustavat kokeellisten
tulosten histogrammipylvaita ja vertikaaliset viivat statistista virhetta. Har-
maat osuudet horisontaalisen viivan yla- ja alapuolella ovat systemaattiset yla-
ja alavirheet. Teoreettista tulosta halkovat mustat horisontaaliset viivat ovat
histogrammipylvasvéileja vastaavat teoreettiset keskiarvot. Kuvassa (b) vihred
verhokéyra on fragmentaatio-osuuden virheen aiheuttama vaikutusalan virhe,
joka ei nay nyt kunnolla pienuutensa vuoksi. Kuvaajien merkitykset ovat muuten
samat kuin kuvassa . Kuviin ei ole merkittyni D°-mesonin hajoamisen haa-
rautumissuhteesta (decay branching ratio) ja normalisaatiosta (luminositeetti,
yhtélo (26])) tulevia kokeellisten tulosten systemaattisia virheitd (1,3 % ja 1,9
%) 45, 87). Nédma virheet on kuitenkin otettu huomioon K-kerroinsovituksissa

(kuvat [26] ja .
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Kuva 25. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-

tonivuorovaikutusten suhteelliset kontribuutiot pp-differentioidulle vaikutusalalle

dapp%DO+X
|y|<0.5

o Vs = 2,76 TeV. Kuvassa (b) vihred verhokdyra on fragmentaatio-
osuuden virheen aiheuttama vaikutusalan suhteellinen virhe. Kuvaajien merki-
tykset ovat muuten samat kuin kuvassa

WHDOJrX

Taulukko 5. Vaikutusalojen 'y'd<°5 kokonais-K-kertoimet eri skaalavahn—

noilla CMS-energioilla /s = 2,76, 5,02 ja 7 TeV (kuvat 26 l l 4f ja
).

(@r.Q) | V/5=276TV +/s=502TeV /s=7TeV
(QIT. Q) 24405 2,26 + 0,06 2.3+0,2
Qe Qmax) 22+04 1,40+0,04  1,6240,14

(Qm™ Q) 27+0,5 1,51 £ 0,05 2,7+0,3
Q0 Q) 1,4+0,3 0,78+£0,03 0,98+ 0,09
(Qmm,Qdef) 1,4+0,3 0,92+0,03 1,22+0,10
(QIT Q) 124038 4,04 +0,11 40+04
(QmaX,Qdef) 3.6 +0,7 3,37 £ 0,08 33+0,3
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do? pp—DO+ X
Kuva 26. pr-differentioidun vaikutusalan %, Vs = 2,76 TeV,

K-kertoimet oletusskaalavalinnalla (Q3,Q}").  Vertikaaliset mustat viivat
ja harmaat laatikot ovat kokeellisten tulosten statistiset ja systemaattiset
virheet jaettuna teoreettisilla tuloksilla (keskiarvo). Ruskea katkoviiva on K-
kerroinsovituksesta saatu kokonais-K-kerroin. K-kerroinsovituksessa on otettu
huomioon statistisen ja systemaattisen virheen lisiksi D°-mesonin hajoamisen
haarautumissuhteesta tuleva virhe 1,3 % ja normalisaatiosta tuleva virhe 1,9 %.

pp—D*T 4 x

do”?
Taulukko 6. Vaikutusalojen “"2275 kokonais-K-kertoimet eri skaalavalin-

noilla CMS-energioilla /s = 2,76, 5,02 ja 7 TeV (kuvat 38| 39, [42] [43] [46] ja

7.

(@QrQf) [Vs=276TeV /s =502TeV /5=7TeV
(Q.QF) 31+006 282007  2,7+02
(@M=QF™) [ 30£06 243+£0,06  20+02
(@ Q™) | 32406 323+00%  33+03

QT QP | 20%£04 156004  127+0,10

(@™, Qd‘*) 10+04 1,64+£0,04  150+0,11
(Qr Q™) 19£1,0 186+0,12  49+04
(@™, Qdef) 44+0,8 4,07 £0,10 39+03




107

c c 6
S S
5] s b5
= X —’—
X X 4
3| o
iESES
- 1
0 1 1 1 1 1 " 1 1 " 1 " 1 " 1 " O " 1 1 1 1 1 1 1 1 " 1 " 1 "
T 2 3 4 5 6 7 8 9 10 11 12 1T 2 3 4 5 6 7 8 9 10 11 12
p, [Gev] p, [Gev]
(a) (b)
s 3 <
o F o
o 2.5 ]
=X E X
X 2 X
156
0.5
0: 1 " 1 1 1 1 " 1 " 1 " 1 " 1 " 1 "
T 2 3 4 5 6 7 8 9 10 11 12
p, [Gev]
(c)
c 14 £
= =
g 12 8
= U
v 10 v
8
6
e——— D N
i3 |
07 1 1 1 1 " 1 1 1 " 1 " 1 " 1 "
T 2 3 7 8 9 10 11 12
p, [Gev]
(e) (f)
dapp—>D0+X
Kuva 27. pp-differentioidun vaikutusalan %, Vs = 276 TeV,

K-kertoimet vaihtoehtoisilla ~skaalavalinnoilla  (Q>,QF*), (Q™,QF™),
(QUL.QF™), (QE™. @), (QUQF™) ja (QEQ3). Merkinnit ovat samat kuin

kuvassa 26 D°-mesonin hajoamisen haarautumissuhteesta ja normalisaatiosta
tulevat systemaattiset virheet on otettu huomioon K-kerroinsovituksissa.
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Kuva 28. pr-differentioitu  vaikutusala —4=%>_  CMS-energialla
dpr

/s = 5,02 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa . Kuviin ei
ole merkittyna D% mesonin hajoamisen haarautumissuhteesta ja integroidusta
luminositeetista (yhtélo (27])) tulevia kokeellisten tulosten systemaattisia virheité
(1,0 % ja 2,1 %, ovat otettuina huomioon K-kerroinsovituksissa) |93, |94].
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Kuva 29. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pr-differentioidulle vaikutusalalle

d pp—DO+X

%, Vs = 5,02 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa
pp—>D0+X

Taulukko 7. Vaikutusalojen % sovitus-K-kertoimet poikittaisliikemaa-

raalueissa pr > 4 GeV eri skaalavalinnoilla CMS-energioilla /s = 2,76, 5,02 ja 7
TeV (kuvat , , ja .

(Qr,Q5) V5 =276TeV /s=502TeV /s=7TeV
(Q.Q%) 2,54+ 0,6 2,414+ 0,07 24403
(Q.Q1™) 2,7+0,6 2,50 + 0,08 2,4+0,3

min Q n) 25+0,6 2,51 40,08 25+0,3
1,940,5 1,77 £ 0,06 1,74+0,2

(@

(@, QF™)

Q. Qdef) 1,6 £ 0,4 158£0,05  156+0,15
( )

(

d 3,8+0,9 3,70 £ 0,11 3,8+£0,4
Qmax Qdef) 3,5+0,8 3,37 £0,10 3,3+0,3
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Kuva 30.
kertoimet oletusskaalavalinnalla (Qd,Q4°).

K-kerroin

pr-differentioidun vaikutusalan

10 15 20 25 30 35
p, [GeV]

pp~>D0+X
\y\<0 5

05 /5 =502 TeV, K-

Merkinnat ovat samat kuin ku-

vassa K-kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen
virheen lisiksi D°-mesonin hajoamisen haarautumissuhteesta tuleva vaikutusalan
virhe 1,0 % ja integroidusta luminositeetista tuleva virhe 2,1 %.

Taulukko 8. Vaikutusalojen

pp—D* T x
|y|<0.5

o sovitus-K-kertoimet poikittaisliikemaa-

raalueissa pr > 4 GeV eri skaalavalinnoilla CMS-energioilla /s = 2,76, 5,02 ja 7

TeV (kuvat , , , ja .

(Qr,Q;) [ Vs=276TeV /s =502TeV /s=7TeV
(QT.Q%) 32+0,7 2,08 + 0,08 28+0,3
(Qr=,QP™) 35+0,7 3,07 £ 0,08 28+0,3
( mln Il) 3,1 =+ 0,7 3,11 + 0708 3’1 —+ 073
Q1 def X) 25+05 2,18 £ 0,06 2,0%0,2

(Qm“‘ Qdef) 21405 1,04+0,05 1,84+0,15
(QIF, Q™) 46+1,0 4,61 £ 0,12 46+04
(Qmax, Qdef) 44409 4,16 £0,11 4,0+0,4
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Kuva 31. pr-differentioidun vaikutusalan ‘y;%, Vs = 5,02 TeV,

K-kertoimet ~vaihtoehtoisilla skaalavalinnoilla  (QP>,QF*), (Q™",QF™),
(Qdt, 7, (Qmm,Qdef), (Qdt, mm) ja (Qmex QdEf). Merklnnéit ovat samat
kuin kuvassa 26| D0 mesonin hajoamlsen haarautumlssuhteesta ja integroi-
dusta luminositeetista tulevat systemaattiset virheet on otettu huomioon K-
kerroinsovituksissa.
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Kuva 32. pp-differentioitu vaikutusala —4=%>—  CMS-energialla /s = 7 TeV.

dpr
Kuvaajien merkitykset ovat samat kuin kuvassa 24 Kuviin ei ole merkittyna

normalisaatiosta tulevaa kokeellisten tulosten systemaattista virhetta (3,7 %,
otettu huomioon K-kerroinsovituksissa) [95, |96].
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Kuva 33. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pr-differentioidulle vaikutusalalle

dopp—>D0+X

—l=05 " /g =7 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa
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Kuva 34. pr-differentioidun vaikutusalan —#=%5— " /s = 7 TeV, K-kertoimet
dpr

.
kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen virheen

lisaksi normalisaatiosta tuleva virhe 3,7 %.

oletusskaalavalinnalla (Q2,Q9*"). Merkinnét ovat samat kuin kuvassa . K-

Kokonaisvaikutusala gPP=0+X ja sen analyysikuvat ovat esitettyna kuvissa [48]ja
Eri skaalavalintoja vastaavat K-kertoimet ovat kuvissa [50] ja [51]

Kaikki kokeelliset vertailutulokset mééritettiin tutkimalla b-hadronien, tai b-
hadroneista syntyneiden c-hadronien, semileptonisia hajoamisia. Vaikutusalat, jotka
mitattiin energioilla /s = 200 GeV (PHENIX-kollaboraatio) |42, 97], 2,76 TeV
(ALICE) [45, 98] ja 7 TeV (ALICE) [44], kasittelivit hajoamisista syntyneita elek-
troneja (ja positroneja). Torméysenergialla /s = 500 GeV (PHENIX) [5] tehty
mittaus tarkasteli b- ja b-hadroneista syntyneitd samanmerkkisii myonipareja pu*u*.

Kuten cc-kokonaisvaikutusalan tapauksessa, partonijakaumafunktioita vastaava
virhe on mitatén. Skaalavalinnasta tuleva (suhteellinen) epavarmuus sen sijaan
on nyt huomattavasti pienempi kuin c-kvarkkien tapauksissa (kuvat ja .
Té&ma johtuu siitéd, ettd vahva kytkentévakio ja partonijakaumafunktiot stabiloituvat
renormalisaatio- /faktorisaatioskaalan kasvaessa (kuvat [4] [14D] [14d, [14d] [14€] [L54] ja
. Kuvasta nahddan myos, ettd renormalisaatioskaalan vaihtelun merkitys on

nyt suurempi.

Massan vaihtelun vaikutus vaikutusalaan oPP~“+X on pienempi kuin vaiku-
tusalaan gPP=bb+X (kuvat [L7b| ja , vaikka c-kvarkin massan suhteellinen vaihtelu
on suurempaa kuin b-kvarkin (mdef = 1,27 GeV, m™" = 993 MeV, m™** = 1,67 GeV,

mget = 4,18 GeV, mi"™® = 3,610 GeV, m®>* = 4,78 GeV). Tamé selittyy sill4,

ettd massan nostaminen (laskeminen) nostaa (laskee) myos faktorisaatioskaalaa.
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Kuva 35. pr-differentioidun vaikutusalan %TO;’, Vs =7 TeV, K-kertoimet
vaihtoehtoisilla  skaalavalinnoilla  (Qr®*,Q7*), (QM™,QF™), (Q,Q™),

r o

(Q;ni“,Qief), (Qdet Ql}“n) ja (Qf‘ax,Q?ef). Merkinnit ovat samat kuin kuvassa

T

. Normalisaatiosta tuleva virhe on otettu huomioon K-kerroinsovituksissa.
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Kuva 36. pr-differentioitu vaikutusala “"2;7‘;, CMS-energialla

Vs = 2,76 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa . Kuviin ei
ole merkittyna D**t-mesonin hajoamisen haarautumissuhteesta ja normalisaa-
tiosta tulevia kokeellisten tulosten systemaattisia virheitd (1,5 % ja 1,9 %, ovat
otettuina huomioon K-kerroinsovituksissa) [45], 87].
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Kuva 37. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pr-differentioidulle vaikutusalalle
dopp—>D*++X

Wd;—‘;, Vs = 2,76 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa
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Kuva 38. pr-differentioidun vaikutusalan dei';, Vs = 2,76 TeV, K-

kertoimet oletusskaalavalinnalla (Q{°",Q¢). Merkinnét ovat samat kuin kuvassa

20l K-kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen
virheen lisdksi D**-mesonin hajoamisen haarautumissuhteesta tuleva vaiku-
tusalan virhe 1,5 % ja normalisaatiosta tuleva virhe 1,9 %.

Partonijakaumafunktiot kasvavat faktorisaatioskaalan funktiona nopeammin valill&
1,3 GeV < @Qf < 4m, kuin valilld m, < Qf < 4m, (poislukien pééllekkainen
osuus mp < Qf < 4m,), ja siten massan vaihtelun vaikutus vaikutusalaan vaimenee

vahemmén b-kvarkkiparituoton tapauksessa kuin c-kvarkkiparituoton.

Seitseméd teraelektronivolttia vastaavat K-kertoimet hallitsevat kaikissa K-kerroin-
sovituksissa. Kahden alimman mittausenergian K-kertoimet poikkeavat aina eniten
sovitusarvoista, erityisesti 500 GeV:n K-kerroin ei koskaan vastaa sovitusta. Toisaalta
néilla kahdella, K-kertoimella on suurimmat virheet. Lisiksi on havaittu, ettd héirio-
teorian korkeamman kertaluvun bb-tuoton vaikutusalat eivit vastaa hyvin kokeellisia
tuloksia, kun torméysenergia on alhainen [b]. Téten edelld havaitut K-kertoimien
suuret poikkeamat eivit ole puhtaasti LO-tulosten ominaisuus.

Kokonaisvaikutusalan kokonais-K-kertoimissa on yksi erikoinen ominaisuus: ne
ovat erittdin pienet, itse asiassa oletusskaalavalinnalla K ~ 1 (taulukko @ Palaan
tahén havaintoon myohemmin, alaluvun lopussa.

LHCDb-kollaboraatio on mitannut leikatun vaikutusalan 05%2172”;3( CMS-energioilla
7 ja 13 TeV [7, 99, |100]. H, on nyt b-hadroni, joka sisaltda b-kvarkin, mutta
ei b-antikvarkkia ja joka on ldhtoisin bb-parintuotosta. Mittauksessa tarkasteltiin

prosesseja, joissa hadroni hajoaa semileptonisesti myoniksi ja perustilassa olevaksi D-
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Kuva 39. pr-differentioidun vaikutusalan 'y'fhii‘;, Vs = 2,76 TeV,

K-kertoimet vaihtoehtoisilla ~skaalavalinnoilla  (Q>,QF*), (Q™,QF™),
(QQF™), (@™ QF), (QIQF™) Ja (@™ Q). Merkinniit ovat samat kuin
kuvassa 26 D**-mesonin hajoamisen haarautumissuhteesta ja normalisaatiosta
tulevat systemaattiset virheet on otettu huomioon K-kerroinsovituksissa.
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Kuva 40. pr-differentioitu vaikutusala “"2;7‘;, CMS-energialla

/s = 5,02 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa . Kuviin ei
ole merkittynd D**T-mesonin hajoamisen haarautumissuhteesta ja integroidusta
luminositeetista tulevia kokeellisten tulosten systemaattisia virheitd (1,3 % ja 2,1
%, ovat otettuina huomioon K-kerroinsovituksissa) [93, 94].
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Kuva 41. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pr-differentioidulle vaikutusalalle
dapp—>D*++X

'y'fl;i‘;, Vs = 5,02 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa
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Kuva 42. pp-differentioidun vaikutusalan Wdzi‘;, Vs =5,02 TeV, K-

kertoimet oletusskaalavalinnalla (Q4,Q¢”'). Merkinnét ovat samat kuin ku-
vassa K-kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen
virheen lisiksi D*T-mesonin hajoamisen haarautumissuhteesta tuleva vaiku-
tusalan virhe 1,3 % ja integroidusta luminositeetista tuleva virhe 2,1 %.

mesoniksi. Mittauksessa maaritettiin myos pseudorapiditeetin suhteen differentioidut
vaikutusalat % (2,0 < n < 5,0 eli suunnilleen 0,77° < § < 15,41°) molemmilla

tormaysenergioilla.

Olen esittianyt vastaavat teoreettiset vaikutusalat ja niiden analyysikuvat kuvissa
B3], 56 67, [60] ja K-kertoimet ovat kuvissa [54] [55], 58], 59} [62] ja [63] Koska
mittaukseen sisaltymattomien bb-mesonien osuus b-hadronien kokonaistuotannosta
on hyvin pieni (jo kevyempien bé-mesonien osuus hadroneista on arviolta alle 0,1
prosettia [7]), niin asetin f(b — H) = 1.

Arvioisin, ettd kayttaméni hadronisaatioapproksimaatio vadristaa b-hadronien
leikattua ja differentioituja vaikutusaloja huomattavasti vihemman kuin c-hadronien:
Hadronisaatiossa raskaan kvarkin lilkemadran suunnan muutos on yleensa pieni
ja keskimédrin nolla. Siten hadronisaation yksinkertaistettu mallinnus vaikuttaa
todennékoisesti vain vahaisesti b-hadronien pseudorapiditeetteihin (n = —In [tan(g)} ).

Leikatun ja n-differentioitujen vaikutusalojen arvioidut partonijakamaumafunk-
tiovirheet ovat suuremmat kuin kokonaisvaikutusalan tapauksessa, mutta ne ovat
kuitenkin vihapatoiset verrattuna skaalavalintaa ja massaa vastaaviin epavarmuuk-
siin. Skaalavalinnan suhteelliset epavarmuudet ovat suunnilleen samat kuin koko-
naisvaikutusalan. Massan vaihtelun vaikutus on pienempi, mika selittyy samoin kuin

D-mesonien pp-differentioitujen vaikutusalojen tapauksessa (luku 5.2). (Kuitenkin
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Kuva 43. pr-differentioidun vaikutusalan Wdzi';, Vs = 5,02 TeV,

K-kertoimet ~vaihtoehtoisilla skaalavalinnoilla  (QP>,QF*), (Q™",QF™),
( SEf,Q}“aX), (Q;ni“,Q‘}ef), ( Sef,Q;“in) ja (Q;naX,Q%ef). Merkinndt ovat samat
kuin kuvassa 26, D**-mesonin hajoamisen haarautumissuhteesta ja integroi-
dusta luminositeetista tulevat systemaattiset virheet on otettu huomioon K-
kerroinsovituksissa.
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Kuva 44. pr-differentioitu vaikutusala —*=>—— CMS-energialla \/s = 7 TeV.

Kuvaajien merkitykset ovat samat kuin kuvassa 24 Kuviin ei ole merkittyna
normalisaatiosta tulevaa kokeellisten tulosten systemaattista virhetta (3,8 %,
otettu huomioon K-kerroinsovituksissa) [95, |96].
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Kuva 45. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pr-differentioidulle vaikutusalalle
dapp—>D*++X

Wdzi‘;, Vs = 7 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa
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Kuva 46. pr-differentioidun vaikutusalan “"2;7';, Vs =7 TeV, K-kertoimet

oletusskaalavalinnalla (Q2,Q9*"). Merkinnét ovat samat kuin kuvassa . K-
kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen virheen
lisaksi normalisaatiosta tuleva virhe 3,8 %.

nyt késittelemme pseudorapiditeetin suhteen leikattua ja differentioituja vaikutusa-
loja, joihin suurin kontribuutio tulee alhaisilla poikittaisliikemaéran arvoilla, jolloin
myp-termit eivit vaimenna massan vaikutusta darimméisen paljon.)

Hairioteorian alimman kertaluvun leikatun vaikutusalan arvot energioilla 7 ja 13
TeV ovat 71,2 ja 133,4 ub. Mikéli olisin kayttanyt pp-riippumattomatonta skaalaa
2my, skaalan mp sijasta, niin arvot olisivat olleet 75,9 ja 148,4 ub. Tama on huomat-
tavasti pienempi muutos kuin leikatun vaikutusalan Ugi;ﬁi_%x(}ew 2.0<y<45 tapauksessa,
jossa skaalatyypin vaihtaminen nosti kokeellisia tuloksia vastaavia teoreettisia arvoja
70 — 82 prosenttia. Tama havainnollistaa sité, ettd vahva kytkentévakio ja partoni-
jakaumafunktiot stabiloituvat renormalisaatio- ja faktorisaatioskaalojen kasvaessa.
Mahdollisesti vaikutusalan 0%25[2;8( lausekkeen integrandin (yhtélo 1' suurin
painoarvo on alueessa, jossa mp == 2my,.

n-differentioidut vaikutusalat kéyttéytyvéit hyvin samankaltaisesti (kuvat ,
ja . Suurin eroavaisuus nédyttaisi olevan faktorisaatioskaalan vaikutuksen lievé
kasvaminen suhteessa renormalisaatioskaalaan torméaysenergian kasvaessa (kuvat
ja . Suuremmilla CMS-energioilla pitkittaisliikeméérédosuuden x; » miniarvo
pienenee: @ < x15 (yhtalo ) Liikemadraosuuden pienentyessa partonijakauma-
funktioiden x f;(x,Q)s) arvot kasvavat (kuva [14) ja siten faktorisaatioskaala vaikuttaa

enemman 7-differentioituun vaikutusalaan suuremmilla energioilla.

Kuvista ja nahdain, ettd r(uu) ja r(dd) kasvavat, kun pseudorapidi-
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Kuva 47. pp-differentioidun vaikutusalan d“"% Vs =7 TeV, K-kertoimet
vaihtoehtoisilla ~ skaalavalinnoilla  (Q,QF>), (Qmn Qmm), (Qdet QF™),
(@M. Q). (QIF,QF™) ja (Q™,Q%). Merkmnét ovat samat kum kuvassa

. Normalisaatlosta tuleva virhe on otettu huomioon K-kerroinsovituksissa.
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Kuva 48. Kokonaisvaikutusala o¢P?~%*+X  Kuvaajien merkitykset ovat samat
kuin kuvassa Kokeelliset vertailutulokset ovat lahteista [5, 42144, 93].
K-kertoimella skaalattua vaikutusalaa ei ole esitetty kuvassa (b), koska ole-
tusskaalavalintaa vastaava kokonais-K-kerroin on tassa tapauksessa noin yksi.
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Kuva 49. Skaalavalintojen vaikutukset, suhteelliset epédvarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot kokonaisvaikutusalalle gPP=%+X
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Kuva 50. Kokonaisvaikutusalan oPP~%*+X K-kertoimet oletusskaalavalinnalla
(Q9",Q9°"). Merkinnat ovat samat kuin kuvassa .
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Kuva 51. Kokonaisvaikutusalan o?P~%+X K-kertoimet vaihtoehtoisilla

skaalavalinnoilla (6271:r18u(’625{139()7 (Q?in’Q}nin)’ ( Seij}nax)’ (62;,nin762?ef)7 ( 7(}efjc‘%cnin)
ja (Qr*,Q9°"). Merkinnét ovat samat kuin kuvassa
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teetti kasvaa. Tamakin efekti seuraa partonijakaumafunktioiden kayttaytymisesté.:
Aikaisemmin naytettiin, ettd x; = m—\/g(ey?’ +e%) (ja xg = m—ﬁ(e*y?’ + e~ ¥), yhtélo
(81])). Raskaan kvarkin rapiditeetti kasvaa pseudorapiditeetin kasvaessa (yhtaloisté
ja saadaan y; = arsinh(ZZsinh(n))). Téten (keskimdérdinen) x; kasvaa
samalla (ja xo vaihtelee muuttujien pr ja y4 vaihdellessa integroitaessa), ja gluonin

ja valenssikvarkkien partonijakaumafunktioiden véliset erot kaventuvat (kuvat [14] ja
1),

. pp— Hp+X
Vaikutusalan 22— "=

dn
skaalavalinnalla CMS-energialla /s = 7 TeV (kuvat [58| ja . Myo6s kolmeatoista

teraelektronivolttia vastaavan vaikutusalan K-kertoimien kuvaajat toistavat samaa

K-kertoimet toistavat saman muodon kaikilla seitsemaélla

muotoa, joka on hieman erilainen kuin seitsemaélld teraelektronivoltilla (kuvat [62] ja
. Tama K-kertoimien kayttaytyminen ei johdu LO-vaikutusalan ominaisuuksista
itsessdan: sama tapahtuu myos teoreettisen FONLL-tuloksen (fized order + next-to-

leading log) kanssa, johon kokeellisia tuloksia on alun perin verrattu [7, 99, |100].

Leikatun ja differentioitujen vaikutusalojen kokonais-K-kertoimet ovat esitettyna
taulukoissa [9) ja [I0} Taulukoista nahdédn, ettd niiden kolmen tapauksen K-kertoimet
vastaavat erittdin hyvin toisiaan. Kuten kokonaisvaikutusalan oPPbb+X tapauksessa,
leikatun ja differentioitujen vaikutusalojen K-kertoimet ovat hyvin pienet ja ole-
tusskaalavalinnalla K ~ 1. Itse asiassa laskemani n-differentioidut LO-vaikutusalat

ovat arvoiltaan jopa suurempia kuin vastaavat FONLL-vaikutusalat |7} 99].

Miksi b-kvarkkiparien vaikutusalojen K-kertoimet ovat néin pienet? Molempia c- ja
t-kvarkkeja vastaavat kokonais-K-kertoimet ovat selvésti (keskiméérin) suurempia.
Lopulta ainoa parametri, joka toistuu jokaisessa vaikutusalalausekkeessa ja joka
on eri c-, b- ja t-tapauksille, on raskaan kvarkin massa. Koska m. < m, < my,
niin olisin olettanut, etta b-kvarkkiparien vaikutusalojen K-kertoimet ovat c- ja t-
kvarkkiparien K-kertoimien vélissa, jos naiden arvoissa olisi havaittu eroja. Toisaalta,
b-kvarkkiparien (oletusskaalavalintoja vastaavat) vaikutusalat ovat reilu 30 prosenttia
pienemmaét, kun kéytetddn napamassaa 4,78 GeV (kuvat [49b| [53b] [57b| ja [61D]).

Talloin vastaavat K-kertoimet kasvavat arviolta noin 43 prosenttia. Kuitenkin, b-

kvarkkiparien vaikutusalojen oletusskaalavalintoja vastaavat K-kertoimet olisivat silti
pienemmét kuin suurimmalla osalla muista vaikutusaloista (poikkeuksina gPP~%X
do? /5 =1,96 TeV, ja d"@dﬁ, T*X, V5 = 1,96 TeV). On myés mahdollista, etté

korkeamman kertaluvun korjaukset ovat hyvin pienié, elleivat jopa negatiivisia. Téama
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Kuva 52. Leikattu vaikutusala 032,25 . Kuvaajien merkitykset ovat samat
kuin kuvassa [16] Kokeelliset vertailutulokset ovat lihteisté (7 100]. K-
kertoimella skaalattua vaikutusalaa ei ole esitetty kuvassa (b), koska ole-
tusskaalavalintaa vastaava kokonais-K-kerroin on téasséa tapauksessa noin yksi.

do.pp—er+X

selittaisi, miksi vaikutusalojen 7

kuin LO-tuloksien.

FONLL-tuloksien arvot ovat pienempia
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Kuva 53. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
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Kuva 54. Leikatun vaikutusalan a%ﬁf jgff K-kertoimet oletusskaalavalinnalla

(Q4,Q9°"). Merkinnat ovat samat kuin kuvassa .
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[1b]
S
|

pp - H+X

(b)

Kuva 56. n-differentioitu vaikutusala d"pp;ﬂ, CMS-energialla /s = 7 TeV.
Kuvaajien merkitykset ovat samat kuin kuvassa 24 Kokeelliset vertailutulokset
ovat lahteistd [7, [100]. K-kertoimella skaalattua vaikutusalaa ei ole esitetty

kuvassa (b), koska oletusskaalavalintaa vastaava kokonais-K-kerroin on téssé
tapauksessa noin yksi.

Taulukko 9. Vaikutusalojen o?P="+X ja gfP M X kokonais-K-kertoimet eri

2.0<n<5.0
skaalavalinnoilla (kuvat , ja .

(@rQyp) | K(o™™X)  K(obhlnta0)
(Q%TQI) | 11402  1,03+0,09
@) | 11402 0,96+ 0,08
@™ Q) [ 11£02  134£0,11
QT .QF>) | 0,78+0,15 0,67+ 0,06
(@™ Q) | 0,72+£0,13 0,64 +0,06
( )
(

def Qpim 1,7+0,3 2,14+0,2

QX Q") 1,54+0,3 1,48 40,12
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Kuva 57. Skaalavalintojen vaikutukset, suhteelliset epdvarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot n-differentioidulle vaikutusalalle

w , Vs =7 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa
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Kuva 58. n-differentioidun vaikutusalan ¢ TR Vs =7 TeV, K-kertoimet
oletusskaalavalinnalla (Q2°",Q¢"). Merkinnét ovat samat kuin kuvassa
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Kuva 59. n-differentioidun vaikutusalan s Vs =7 TeV, K-kertoimet

vaihtoehtoisilla  skaalavalinnoilla  (Qy**,Q7*), (QM™,QF™),  (Q,QF™),
(@M, Q%), (QI,QF™) ja (Q*,Q%). Merkinnét ovat samat kuin kuvassa
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[Hb]

[ub]

Kuva 60. n-differentioitu vaikutusala %, CMS-energialla /s = 13 TeV.
Kuvaajien merkitykset ovat samat kuin kuvassa 24, Kokeelliset vertailutulokset
ovat ldhteista . K-kertoimella skaalattua vaikutusalaa ei ole esitetty
kuvassa (b), koska oletusskaalavalintaa vastaava kokonais-K-kerroin on téssé

100¢

tapauksessa noin yksi.

Taulukko 10. Vaikutusalan

do.pp—>Hb+X

(b)

kokonais-K-kertoimet eri skaalavalin-

noilla CMS-energioilla /s = 7 TeV Ja 13 TeV (kuvat |5 . . 62| ja (63 E

(QQp) [ Vs=T7TTeV /s =13 TeV

(Q¥F.QF) [ 1,01+0,04 1,06+0,05
( maX,QmaX) 0,97+£0,04 0,93+0,05
QM) | 1,29+0,05  1,47+0,07
( ;?ef,QmaX) 0,67£0,03 0,65+0,03
(e, Qdef) 0,63+£0,03 0,65+0,03
Q¥ .Qrm) [ 2,06+0,08 2,33+0,11
(Qmax, Qdef) 1,46 £0,06 1,504 0,07
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Kuva 61. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot n-differentioidulle vaikutusalalle

w . v/ = 13 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa
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Kuva 62. n-differentioidun vaikutusalan ¢ T Vs = 13 TeV, K-kertoimet
oletusskaalavalinnalla (Q2°",Q¢"). Merkinnét ovat samat kuin kuvassa



140

c C c o]
S S .F
g 15- g 2o
¥ r X  2F
L e — C -
- - — I e E—
— =
0.5~ F
r 0.5
L | | | | | - E | | | | |
O35 "3 35 4 45 5 O35 "3 35 4 45 &
n n
(a) (b)
c c r
S 1.2F S 1.2
£ 1 g
X r X r
0.8 — 0.8 B
o6 T T “E— o6 T T e
0.4~ 0.4
0.2 0.2
O %5 3 35 4 45 & O %5 3 35 4 45 &5
n n
(c) (d)
£ F £ 3
S < E
5 4r 5 250
¥ ¢ o
X 3k — X 2 —
-+ —_— C | EE— ———
e R —— i3+ —1"——m——— — —— -k
2 =
E 1;,
¥
Il Il Il Il Il P :\ Il Il Il Il Il
% 2.5 3 35 4 45 5 % 2.5 3 3.5 4 45 5
n n
(e) (f)
. .. . dgpp"Hb+X .
Kuva 63. n-differentioidun vaikutusalan R Vs = 13 TeV, K-kertoimet

vaihtoehtoisilla  skaalavalinnoilla  (Qr**,Q7*), (QM™,QF™), (Q,QF™),
(Q?‘i“,Qﬁef), (QSEf,Q}“i“) ja (Q?aX,leef). Merkinnit ovat samat kuin kuvassa
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5.4 t-kvarkkiparien tuotto

Tutkin alimman kertaluvun ¢f-tuottoa protoni—protoni-torméysten lisiksi protoni—
antiprotoni-torméyksissa. Kasitteleméni vaikutusalat olivat kokonaisvaikutusalat
BT . 7 . .. . doPP—tt+X .
app_’“fX (/) ja oPPHX(\/3), differentioidut valkutusalati"T(pT) ja
p—tt+X . .- —tt+X . —tt+X
%ﬂm), CMS-energialla /s = 1,96 TeV, seka %(p%) ja %(yt),

CMS-energialla /s = 13 TeV.

Protoni—antiprotoni-térmaéysten t-kvarkkiparien tuoton kokonaisvaikutusala ja sen
analyysikuvat ovat esitettynéd kuvissa[64]ja[65] Seitseméa eri skaalavalintaa vastaavat
K-kertoimet ovat kuvissa [66] ja [67]

Kokeelliset vertailutulokset on mitattu CMS-energioilla /s = 1,8 TeV (CDF-
kollaboraatio) [101-103] ja 1,96 TeV (CDF ja Df) [104]. Molemmissa tapauksissa hyo-
dynnettiin taysin hadronisia, dileptonisia ja leptoni + jetit-kanavia (luku 2.1). Olen
lisiksi esittanyt vaihtoehtoisen kokeellisen vertailutuloksen energialla /s = 1,8 TeV
(D@, kuva [105], koska se tayttad myos hyvin luvussa 5.2 luettelemani kriteerit
kokeellisten vertailutulosten valitsemiselle ja koska se poikkeaa ensisijaisesta ver-
tailutuloksesta. Tulos maaritettiin hyodyntamalla hajoamisia ¢ — Wb, missa
W+ = etv,, pv,, 77v., ud, us, ub, cd, cs tai cb, seki vastaavia antihiukkasten ha-
joamisprosesseja. Vaihtoehtoista vertailutulosta ei ole otettu huomioon K-kertoimien
maéaarityksessa.

Arvioitu partonijakaumafunktioiden epdvarmuuden aiheuttama virhe on jélleen
mitaton. Massa ja skaalavalinta vaikuttavat vaikutusalan arvoon selvésti eniten,
mutta kuitenkin vihemmén kuin ¢- ja b-kvarkkien tapauksissa (kuva [65b)). Massaa
vastaavan alavirheen pienuus johtuu siité, etta oletus- ja maksimimassan vélinen ero
on nyt hyvin pieni (m{ef = 172,9 GeV, m™® = 160 GeV ja m®* = 174,0 GeV).

Alimman kertaluvun t-kvarkkiparien tuotto protoni—antiprotoni-torméyksissa,

seké protoni-protoni-térméayksissi, painottuu alueeseen x Z 107!, Kuvasta

(69al, 744l [78al, [82al [86a)) huomataan, ettd nyt vaikutusala laskee faktorisaatioskaalan

noustessa. Vastaava hallitsevien partonijakaumafunktioiden (g, u ja d, pp-torméyksissa
myods U ja d) kiytos on nihtéivissd kuvasta , joka vastaa pitkittaisliike-
médraosuuden arvoa x = 107!, Kuvista [12¢] ja nahdaan myos, etta t-
kvarkkiparituoton vaikutusaloja vastaavilla skaaloilla (taulukko [2)) u-kvarkin partoni-
jakaumafunktio saa selvasti suurempia arvoja kuin gluonin partonijakaumafunktio,

kun 2 2 107!, Tama selittdd, miksi u + u-reaktiot hallitsevat protoni-antiprotoni-
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Kuva 64. Kokonaisvaikutusala o?P~#+X Kokeellisten tulosten [101-104] oikean-
puoleiset siniset pisteet ovat vaihtoehtoiset vertailutulokset [105]. Kuvaajien
merkitykset ovat muuten samat kuin kuvassa .

torméyksissd (kuva [65d]).
Vaikutusalan o?P~?#+X K-kertoimet ovat hyvin stabiilit. Sama muoto toistuu

skaalavalinnasta riippumatta.

Prosessin p+p — t+t+ X kokonaisvaikutusala ja vastaavat analyysikuvat ovat esitet-
tyné kuvissa [68]ja[69] K-kertoimet ovat kuvissa[70]ja[7I] Olen liséksi esittanyt vaiku-
tusalat oPP X ja oPPH+X gamagsa kuvassa [72 protonin ja antiprotonin erilaisen
valenssikvarkkirakenteen vaikutuksen havainnollistamiseksi. Mainittakoon myos, etta
vaikutusaloilla gPP7HX ja gPP=etX g vaikutusaloilla oPP0HX ja gPP=0b+X i ollut

kuvaajista havaittavia eroavaisuuksia.
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Kuva 65. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot kokonaisvaikutusalalle gPP~#+X
Kuvaajien merkitykset ovat samat kuin kuvassa [I7}
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Kuva 66. Kokonaisvaikutusalan o?P~%+X K_kertoimet oletusskaalavalinnalla
(QUF,Q9°"). Merkinnat ovat samat kuin kuvassa .
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Taulukko 11. Vaikutusalojen o?P7#+X ja gPP~"+X kokonais-K-kertoimet eri

skaalavalinnoilla (kuvat , , ja .

(Q,Q f) K(Upfoatﬂx ) K(UPPHtZ+X>
(QFFQFH | 1,62+0,09  1,91+0,05
( maX,QmaX) 216+0,12 2,46 +0,06
(Qrin Qmm) 1,18 40,07 1,464 0,04
QS def Q™) | 1.824£0,10 2,06 + 0,05
(Qmm Qdef) 1,34+0,08 1,58 +0,04
(Qt Qmm) 1,434+0,08 1,76+ 0,05
(Qmax Qdef) 1,93+0,11  2,27+0,06

Kéyttaméni kokeelliset tulokset on mééritetty torméysenergioilla /s = 5,02 TeV
(CMS, e*/u* + jetit- ja dileptoniset u*u=- ja e*puT-kanavat) [4], 7 TeV (ATLAS ja
CMS, kaikki kolme hajoamiskanavatyyppié) [49], 8 TeV (ATLAS ja CMS, dileptoniset
lopputilat e*u¥) [8] ja 13 TeV (CMS, dileptoniset lopputilat ete™, pTu~ ja e*pu¥)
[106]. Olen lisdksi esittanyt vaihtoehtoiset kokeelliset tulokset energioilla /s = 7 TeV
(CMS, dileptoniset lopputilat eTe™, uTu~ ja e*u™) [107] ja 13 TeV (CMS, e*/u* +
jetit-lopputilat) [108].

Kokonaisvaikutusalan o??~"+X kuvaajista ja analyysikuvista nahdéén, etté se
kéyttaytyy hyvin samankaltaisesti kuin kokonaisvaikutusala o??~"+X  Kuitenkin nyt
vaikutusala saa pienempia arvoja ja gluoni-gluoni-reaktiot alkavat hallitsemaan al-
haisemmalla torméysenergialla (kuva. Nama eroavaisuudet tulevat siita, etta pro-
tonin partonijakaumafunktioille f,/,(x,Q) > fap(2,Q¢) ja fa/p(2,Qy) > fa/p(x,Qf)
(kuvat , , ja .

K-kertoimet vastaavat sovitusarvoja erittain hyvin. Tama on néhtéavissa myos

K-kerroinskaalatusta vaikutusalasta kuvassa [630]

Df-kollaboraatio on méérittanyt prosessin p +p — ¢ + £ + X t-(anti)kvarkin poikit-
taislilkemaéran ja rapiditeetin itseisarvon suhteen differentioidut vaikutusalat CMS-

energialla /s = 1,96 TeV. Mittaus kisitteli e*/u* + jetit-hajoamiskanavia. [109]

Vastaavat alimman kertaluvun vaikutusalat ovat esitettyné kuvissa [73] [74] [77] ja

8 (LO-vaikutusalalle Cﬁ‘;' (ly) = Z—Z(y) + fl—‘;(—y) = QZ—Z(y).) K-kerroinkuvaajat ovat

kuvissa [75], [76], [79] ja [80]
Skaalavalinnan aiheuttama epdvarmuus on suunnilleen sama kuin kokonaisvaiku-
tusaloilla torméysenergialla /s = 1,96 TeV (kuvat [65b], [69b}, [74Db| ja [82b]). Massan
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Kuva 68. Kokonaisvaikutusala o??~"+X  Kuvaajien merkitykset ovat samat
kuin kuvassa . Kokeelliset vertailutulokset ovat lahteista [4, |8, |49} [106-108].
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Kuva 69. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot kokonaisvaikutusalalle gPP=#+X
Kuvaajien merkitykset ovat samat kuin kuvassa [I7}
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Kuva 70. Kokonaisvaikutusalan oPP~+X K_kertoimet oletusskaalavalinnalla
(QUF,Q9°"). Merkinnat ovat samat kuin kuvassa .
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Kokonaisvaikutusalan o?P~#+X K kertoimet vaihtoehtoisilla

skaalavalinnoilla, (6271,naux’Cg}nax)7 (Qinianzcnin)’ (QEeij;nax)’ (Q,,r,nin,Q?ef), (Q(Tief’Q?in)

ja (Q*,Q9°"). Merkinnét ovat samat kuin kuvassa
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Kuva T72. Alimman kertaluvun t¢-kvarkkiparituoton kokonaisvaiku-

tusalat protoni—antiprotoni- (tummanpunainen) ja protoni—protoni-torméyksissa
(musta).

vaihtelu vaikuttaa paljon pp-differentioidun vaikutusalan arvoon pienilld poikit-
taisliikemaaran arvoilla ja korkeilla vahaisesti. Tamé kaytos selittyy samoin kuin
D-mesonien tuoton tapauksessa (luku 5.2). Kuitenkin nyt raskaan kvarkin massa on
huomattavasti suurempi suhteessa tarkasteltuihin poikittaisliikeméaaran arvoihin ja
siten se vaikuttaa enemmaén pp-differentioituun vaikutusalaan. |y|-differentioidulla
vaikutusalalla taas massan vaikutus kasvaa rapiditeetin itseisarvon kasvaessa. Tama
kéaytos johtuu luultavasti aliprosessien vaikutusalojen ominaisuuksista (yhtalot
ja (7).

Differentioitujen vaikutusalojen r(uu) kasvaa ja r(gg) pienenee, kun poikittais-
liikem&ara /rapiditeetin itseisarvo nousee. Tadméa partonivuorovaikutusten suhteel-
listen kontribuutioiden kéytos selittyy samoin kuin D-mesonien pr- ja b-hadronien

n-differentioitujen vaikutusalojen tapauksissa (luvut 5.2 ja 5.3).

Tormaysprosessin p +p — t + ¢t + X differentioitujen vaikutusalojen kokonais-
K-kertoimet vastaavat toisiaan kéytettiessi samaa skaalavalintaa (taulukko [12)).
K-kerroinkuvaajien muodot ovat samat renormalisaatio- ja faktorisaatioskaalojen

varioinnista huolimatta, kuten kokonaisvaikutusalojenkin tapauksessa.

CMS-kollaboraatio on mitannut protoni—protoni-torméayksessa tuotettujen t-kvarkki-
parien pi- ja y,-differentioidut vaikutusalat, missd indeksi ¢ viittaa ¢-kvarkkiin,
CMS-energialla 13 TeV. (Vaikutusalat ovat kdytdnnosséd samat kuin vastaavat i-

antikvarkkien vaikutusalat.) Vaikutusalojen mééritys perustui dileptonisten lopputilo-
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Kuva 73. pr-differentioitu  vaikutusala WZ}%, CMS-energialla

Vs = 1,96 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa . Kuviin
ei ole merkittyna integroidusta luminositeetista tulevaa kokeellisten tulosten
systemaattista virhettd (1,6 %, on otettu huomioon K-kerroinsovituksissa) [109].

Taulukko 12. Vaikutusalojen d"pil;tHX j kokonais-K-kertoimet eri

skaalavalinnoilla CMS-energialla /s = 1,96 TeV kuvat . . 79| ja [80) .

do.pp—>tt+X

(QrQp) | K(#255)  K(22)
Q" Q5" 1,40 £0,08 1,34 +0,09
(Qmax QmaX) 1,00+0,11 1,82+0,12
(@) | 0,99+0,06 0,96 =+ 0,07
( Sef max) 1158 40,09 1,51 +0,10
(Qm, Qdef) 1,1440,07  1,09+0,08
Q¥ Q™) [ 1,22+0,07  1,17+0,08
(Qmax, Qdef) 1,68+0,10 1,61+0,11
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Kuva 74. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pp-differentioidulle vaikutusalalle

—d(,pz;;ﬂx, Vs = 1,96 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa
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Kuva 75. pp-differentioidun vaikutusalan d"pzp#, Vs =196 TeV, K-

kertoimet oletusskaalavalinnalla ( fef,Q‘}ef). Merkinnat ovat samat kuin ku-
vassa K-kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen
virheen lisaksi integroidusta luminositeetista tuleva virhe 1,6 %.

te~, ptuT ja et uT tarkastelemiseen. (Kvarkkiparituottoreaktioita kasiteltiin

jen e
joko ns. partoni- tai hiukkastasolla ja vaikutusalat méaritettiin molemmille tapauk-

sille erikseen. Kéytin kokeellisina vertailutuloksina partonitason tuloksia.) [2,|110]

Alimman kertaluvun differentioidut vaikutusalat analyysikuvineen ovat esitettyna
kuvissa [81] [82] [85] ja [86] Vastaavat K-kertoimet ovat kuvissa [83], [84] [87] ja [B8]

Skaalavalinnan ja massan epavarmuudet (kuvat ja |86b|) ovat pienemmaét kuin
protoni-antiprotonitormaysten differentioiduilla vaikutusaloilla (kuvat ja [78D)).
Skaalavalinnan vaikutuksen laskeminen johtuu tasaisemmista partonijakaumafunk-
tioista: Kuvista ja nahdian, ettd protoni—protoni-torméyksissa hallitseva
gluonin partonijakaumafunktio on nouseva skaalan funktiona pitkittaisliikemaéréo-
suudella z = 1072 ja laskeva liikeméaérdosuudella x = 10™! (sama koskee my6s u-, u-,
d- ja d-partonijakaumafunktioita). Siten gluonin partonijakaumafunktio muuttuu
nousevasta laskevaksi vililld 1072 < z < 107!, Kuvista [82a] ja [86a] nahdaén, etta fak-
torisaatioskaalan nostaminen laskee vaikutusalaa/partonijakaumafunktioiden arvoja
(skaalavalinnat (Q>,Q7*) ja (QP™,Q7™)), kuten protoni-antiprotoni-térméysten
tapauksessa. Pitkittaisliikeméaraosuuksien x; ja xo painoarvot ovat nyt alempana
kuin aiemmin suuremman torméysenergian seurauksena (@ < x1 9, yhtalo 1@)
mutta kuitenkin siten, ettd painoarvoalue on arvon x = 1072 ylipuolella. Talléin siis
(ainakin) gluonin partonijakaumafunktion suhteellinen vaihtelu on pienempéé kuin
CMS-energialla /s = 1,96 TeV. Renormalisaatio-

do-PE—”fZ‘FX a da.pﬁ—nt?—‘—X
dpr J dly|

tapauksissa
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Kuva 76. pr-differentioidun vaikutusalan %, Vs =1,96 TeV,
pT

K-kertoimet ~vaihtoehtoisilla ~skaalavalinnoilla  (Q>,QF*), (Q™,QF™),
(Q",QF™), (QM™Q%), (QrL.QF™) ja (QP™,Q¢"). Merkinnit ovat samat kuin

kuvassa Integroidusta luminositeetista tuleva systemaattinen virhe on otettu
huomioon K-kerroinsovituksissa.
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Kuva 77. |y|-differentioitu  vaikutusala %, CMS-energialla

Vs = 1,96 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa . Kuviin
ei ole merkittyna integroidusta luminositeetista tulevaa kokeellisten tulosten
systemaattista virhettd (1,6 %, on otettu huomioon K-kerroinsovituksissa) [109].
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Kuva 78. Skaalavalintojen vaikutukset, suhteelliset epdvarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot |y|-differentioidulle vaikutusalalle

d”pi”;yTH, Vs = 1,96 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa
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Kuva 79. |y|-differentioidun vaikutusalan d"ﬁd‘%, Vs =1,96 TeV, K-

kertoimet oletusskaalavalinnalla ( fef,Q(}ef). Merkinnat ovat samat kuin ku-
vassa K-kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen
virheen lisdksi integroidusta luminositeetista tuleva virhe 1,6 %.

skaala ei vaikuta tidhin skaalavalinnan epivarmuuden pienentymiseen, koska 4,
QM ja QM ovat samat kuin aiemmin. Differentioitujen vaikutusalojen massan
epavarmuuden pienentyminen johtuu ainakin osittain partonijakaumafunktioiden

stabiloitumisesta (Qr = Qf(my,pr)).

do.pp%t?+x . do.pp%terX
dp?, a dyt

tyinéd taulukossa[l3] Ne vastaavat toisiaan ldhes yhté hyvin kuin protoni-antiprotoni-

Vaikutusalojen sovitetut kokonais-K-kertoimet ovat esitet-

torméysten differentioitujen vaikutusalojen tapauksessa.

Vertaamalla prosessien p +p — t+t+ X jap+p — t+t+ X K-kertoimia
(taulukot ja niahdaan, etta ne eroavat toisistaan, vaikka skaalavalinta olisi
valittu samaksi. Itse asiassa, ne eroavat melko konsistentilla tavalla: pp-tapausten
kokonais-K-kertoimet ovat keskimaarin suunnilleen 20 prosenttia suuremmat. t-
kvarkkipareja synnyttavilla gluonireaktioilla on enemman merkitysta protoni—protoni-
tormayksissi kuin protoni—antiprotoni-tormayksissa. Siten korkeamman kertaluvun
vaikutusaloihin siirryttdessd gluonin partonijakaumafunktion f,/, ja aliprosessin
g+ g — t 4+t Feynmanin diagrammien yhteiskontribuutio nousee enemmaén kuin
vastaava kvarkkien ¢ partonijakaumafunktioiden fq/p Ja aliprosessien ¢ +q — ¢ +1

diagrammien yhteiskontribuutio.
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doPP—tt+X

Kuva 80. |y|-differentioidun vaikutusalan TR Vs = 1,96 TeV, K-kertoi-

met vaihtoehtoisilla skaalavalinnoilla (QP**,Q7), (QM™,QF™), (Qi,Q7™),
(@M,Q%), (QF,Q7™) ja (QF*,Q9"). Merkinnét ovat samat kuin kuvassa .
Integroidusta luminositeetista tuleva systemaattinen virhe on otettu huomioon

K-kerroinsovituksissa.
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Kuva 81. pi-differentioitu vaikutusala

do.pp—)tt+X
d t

, CMS-energialla /s = 13 TeV.

Kuvaajien merkitykset ovat samat kuin kuvassa . Kokeelliset vertailutulokset

ovat lahteista |2, [110].

Taulukko 13. Vaikutusalojen

dapp%ttJrX .

dapp%tt«l»x

kokonais-K-kertoimet eri

dpk.

skaalavalinnoilla CMS-energialla /s = 13 TeV kuvat . . . 87| ja |88 E

(QrQy) | K(#7r™) (22
(Q¥TQFN | 1,624+0,06  1,67+0,05
(Qm"”‘ QmaX) 2,00+£0,07 2,13+£0,06
(@M™QF™) | 1,23+£0,04 1,2840,04
( Sef, ffnaX) 1,754+0,06 1,77 +0,05
(Qmm Q%) | 134+0,06 1,36+ 0,04
(QIFQm™) | 1,50+£0,06 1,57 40,04
(Qr=>Q%") | 1,94£0,07 2,01£0,05
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Kuva 82. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-

tonivuorovaikutusten suhteelliset kontribuutiot pi-differentioidulle vaikutusalalle
do.pp—>tf+X

——, v/$ = 13 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa .
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Kuva 83. pi-differentioidun vaikutusalan %, Vs = 13 TeV, K-kertoimet
T

oletusskaalavalinnalla ( fef,Q;lef). Merkinnat ovat samat kuin kuvassa .
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Kuva 84. pi-differentioidun vaikutusalan
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Kuva 85. y-differentioitu vaikutusala d”pd—yt, CMS-energialla /s = 13 TeV.
Kuvaajien merkitykset ovat samat kuin kuvassa Kokeelliset vertailutulokset

ovat lahteista .
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Kuva 86. Skaalavalintojen vaikutukset, suhteelliset epavarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot y;-differentioidulle vaikutusalalle

%7 Vs = 13 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa
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Kuva 87. y;-differentioidun vaikutusalan %, /s =13 TeV, K-kertoimet

oletusskaalavalinnalla ( fef,Q‘}lef). Merkinnat ovat samat kuin kuvassa



K-kerroin

K-kerroin

K-kerroin

25

3.5

25

15

0.5

25

0.5

AN RARANRARRNRRRRN|

|

=

LRRNRRRRRRRRRN R

1.5 — ==

\

=

(e)

K-kerroin

K-kerroin

K-kerroin

Kuva 88. y,-differentioidun vaikutusalan
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% , V/5 = 13 TeV, K-kertoimet

(lein7@r}1in), (Q?ef’Q?ax)’

;ni“,Q?ef), (QfEf,Q}ni“) ja (QH‘aX,Q?ef). Merkinnat ovat samat kuin kuvassa
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6 Yhteenveto ja johtopaitokset

Olen laskenut kvanttiviaridynamiikan hairiéteorian alimman kertaluvun vaikutusa-
loja c-, b- ja t-kvarkkiparien tuotoille protoni—protoni- seké protoni—antiprotoni-
tormayksissa. Kokonaisvaikutusalojen lisaksi tarkastelin useiden eri muuttujien
suhteen leikattuja ja differentioituja vaikutusaloja. Olen tutkinut laskemieni vaiku-
tusalojen eri epavarmuus- ja virhetekijoita. Erityisesti keskityin raskaiden kvarkkien
massojen, renormalisaatio- ja faktorisaatioskaalavalintojen vaikutuksiin, silla namé
kolme tekijaa olivat selvasti kaikista merkityksellisimmat. Etsin kokeelliset vertailutu-
lokset tiettyja kriteerejéa kdyttaen ja kvantifioin niiden ja teoreettisten tulosten véliset

eroavaisuudet K-kertoimilla. K-kertoimet on laskettu usealla eri skaalavalinnalla.

Laskemillani alimman kertaluvun vaikutusaloilla on yhtenevid ominaisuuksia. Tu-
lokset osoittavat, ettd kun vaikutusalojen tarkasteltu térméysprosessi (mahdolli-
nen hadronisaatio huomioon otettuna) ja skaalavalinta ovat samat, niin niiden
K-kertoimet ovat myds samat. Tamé on néhtavissa taulukoista [9] [10] [I2] ja [I3]
Lisdksi D-mesonien pp-differentioitujen vaikutusalojen K-kertoimet vastaavat toi-
siaan hyvin alueessa, jossa hadronisaatioapproksimaation (fragmentaatiofunktiot
korvattu fragmentaatio-osuuksilla) vaikutukset ovat arvioitavissa (pr £ 4 GeV,
taulukot [7] ja . Se, ettd onko vaikutusala tyypiltadn kokonais-, differentioitu tai
leikattu vaikutusala, ei naytéd vaikuttavan K-kertoimiin. Prosessin torméysenergian
/s arvo ei myoskaan tunnu vaikuttavan, lukuun ottamatta mahdollisesti tapauksia,
joissa /s S 500 GeV (kokonaisvaikutusalat o?P+X ja gPP=+X kyyat
ja . Torméysprosessin alkutilahadroneilla on merkitysta, silla protoni—protoni-
ja protoni—antiprotoni-tormaysten t-kvarkkiparien tuottojen K-kertoimet eroavat

toisistaan.

c-, b- ja t-kvarkkiparien alimman kertaluvun vaikutusalat vastaavat eri tavoin
keskeisten parametrien vaihteluihin. Skaalavalinta vaikuttaa vaikutusalaan sité
vahemmaén mitéd raskaampaa kvarkkia tarkastellaan. Tamaé johtuu siité, ettda vahva
kytkentdavakio a((Q),) ja partonijakaumafunktiot f;(x,0)s) ovat stabiilimpia korkeam-
milla renormalisaatio- ja faktorisaatioskaalojen arvoilla. Massan vaihtelun aiheut-
tama epavarmuus on sen sijaan suunnillen sama kaikissa tapauksissa pois lukien
pr-differentioidut ja pienten torméysenergioiden vaikutusalat, joiden kaytos mas-

san suhteen johtuu vastaavien vaikutusalalausekkeiden muodoista, sekéa t-kvarkkien
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vaikutusalojen massaepavarmuuden alaraja ja y-differentioidut vaikutusalat korkeilla
rapiditeetin itseisarvoilla. Tamaé oli minulle hieman yllattavaé, koska raskaan kvarkin
massan suhteellinen vaihtelu on sitd pienempad mita raskaampi kvarkki on (taulukko
1). Tama massaepavarmuuksien kéaytos selittyi kuitenkin ainakin osittain faktorisaa-
tioskaalan massariippuvuudella: Kokonaisvaikutusaloille () on massan monikerta
ja muille vaikutusalatyypeille poikittaismassan monikerta (taulukko . Partoni-
jakaumafunktiot f;(x,Q)s) voivat olla sekd nousevia etta laskevia faktorisaatioskaalan
funktiona, riippuen tarkasteluvéilisté ja pitkittaislitkemédraosuuden z arvosta (kuvat
ja . Siten vaikutusalat voivat olla laskevia tai nousevia faktorisaatioskaalan
funktiona, riippuen siitd, millad pitkittaisliikeméaraosuuden x arvoilla on suurin
painoarvo tarkastellulla vaikutusalalla ja mitka partonijakaumafunktiot /aliprosessit
hallitsevat. c-kvarkkiparien vaikutusalat ovat nousevia faktorisaatioskaalan funk-
tiona, b-kvarkkiparien vahemmén nousevia ja t-kvarkkiparien laskevia. Siten b-
kvarkkiparien vaikutusaloissa partonijakaumafunktioiden kiytos redusoi vahemman
massan vaikutusta kuin c-kvarkkiparien vaikutusaloissa, ja t-kvarkkiparien tapauk-
sessa partonijakaumafunktiot vahvistavat massan vaihtelun vaikutusta. Arvioitu
CT14-partonijakaumafunktioista tuleva vaikutusalan virhe on mitaton suhteessa

skaalavalinnan aiheuttamaan epavarmuuteen kaikissa tapauksissa.

c-kvarkkiparien vaikutusalat ovat kaikista epdvarmimpia. Suuren skaalavalinnan
aiheuttaman epavarmuuden liséksi vaikutusaloihin liittyy tekijoita, jotka alentavat nii-
den luotettavuutta. Selvisti merkittdavin naista on kdyttaméani hadronisaatioapproksi-
maatio. Luvussa 5.2 tekeméni arvion perusteella fragmentaatiofunktioiden korvaami-
nen vastaavilla fragmentaatio-osuuksilla muuttaa D-mesonien pr-differentioitujen
vaikutusalojen arvoja huomattavasti. Taméa approksimaatio vaikuttaa myos vaiku-
tusalaan agf;;;?gx@ev, 2.0<y<d.5, jonka leikkaukset koskevat lopputilahadroneja D°, D*,
D*t, D} ja Af. Kvanttiviaridynamiikan héirioteorian soveltamisen ehto @, = 1 GeV
(tal as(Q,) < 1) toteutuu c-kvarkeilla heikommin kuin b- ja t-kvarkeilla, ja eri-
tyisesti leikatun ja differentioitujen vaikutusalojen minimirenormalisaatioskaalalle
pitee QMin = %mT < 1 GeV, kun pr < 1,55 GeV. Harkitsin naistd syista c-
kvarkkiparituoton késittelyn kokonaan pois jattamista. Kuitenkin, D-mesonien
pr-differentioitujen vaikutusalojen K-kertoimien kdyttdytyminen pr-alueessa, jossa
hadronisaatioapproksimaation vaikutukset ovat arvioitavissa, vahvistaa havaintoani,
jonka mukaan prosessien p+p — Q + Q + X(— Hg + Hg + X) alimman ker-

taluvun vaikutusalojen K-kertoimet ovat samat, kun skaalavalinta ja tarkasteltu
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tormaysprosessi ovat samat.

Alimman kertaluvun b-kvarkkiparituoton vaikutusalat ovat vihemmén herkkia eri
tekijoille kuin c-kvarkkiparien vaikutusalat. Skaalavalinnan vaikutus on pienempi ja
hadronisaatioapproksimaatio muuttaa arviolta vain vihaisesti b-hadroneja kéasittele-
via vaikutusaloja. Vaikutusalan K-kerroinkuvaajien muodot toistuvat ldhes samoina
kaikilla skaalavalinnoilla, toisin kuin c-kvarkkiparitapauksissa. Erikoisin havaitsemani
b-kvarkkiparituoton ominaisuus on se, ettd alimman kertaluvun vaikutusalojen arvot
ovat erittain lahelld vastaavia kokeellisia tuloksia (oletusskaalavalinnoilla K ~ 1).
Tamén opinndytetyon puitteissa, laskematta NLO-vaikutusaloja, en pystyne paét-
telemadn, miksi raskaiden kvarkkiparien tuotoista korkeamman kertaluvun korjaukset
vaikuttavat vahiten juuri b-kvarkkiparien tuottoon.

Prosessien p+p —t+t+ X jap+p — ¢t +t+ X alimman kertaluvun vaiku-
tusalat omaavat pienemmat skaalaepavarmuudet kuin prosessien p+p — c+¢+ X
jap4+p — b+b+ X. t-kvarkkiparien vaikutusaloja voidaan pitdé kaikista tarkimpina,
myo6s siind mielessé, ettd hadronisaatioapproksimaatio ei vaikuta niihin ja h&irio-
teorian soveltamisen kriteeri @), = 1 GeV toteutuu selvisti. Edelld mainitut tekijat
selittavat vaikutusaloja vastaavien K-kertoimien stabiiliutta: Yksittaisen vaikutusalan
K-kertoimet vastaavat hyvin sovitettua kokonais-K-kerrointa kaikilla skaalavalin-
noilla. Erityisesti kokonaisvaikutusalan o??%+X K-kertoimien vélinen vastaavuus

on huomattavaa.

Gluoni-gluoni-reaktiot hallitsevat selvasti ¢- ja b-kvarkkiparien tuottoa protoni—
protoni-torméyksissd. u+1u- ja d+ d-reaktioiden merkitys on huomattavasti suurempi
t-kvarkkiparien tuotossa, mika johtuu protonin ja antiprotonin valenssikvarkkiraken-
teesta. Protoni—antiprotoni-tormayksissé u + u-reaktiot ovat jopa g + g-reaktioita
merkityksellisempié. s-, ¢- ja b-merikvarkkien kontribuutiot vaikutusaloihin ovat

jokaisessa tapauksessa vahaiset. s + s-reaktioiden osuus on suurimmillaan noin
pp—DO4+X

do
vhden sadasosan (—¥=%2— /s =502 TeV) ja ¢ + c¢-reaktioiden puoli sadasosaa

_ dpr
(da.pp—>tt+X

A V/$ =13 TeV) (ja luonnollisesti r(bb) < r(cc)). Siten (anti)protonin c- ja
b-merikvarkit voidaan jattda huomiotta alimman kertaluvun raskaiden kvarkkiparien
tuottojen vaikutusaloja laskiessa. ¢+ ¢ ja b + b-reaktioiden (arvioidut) osuudet
niyttavit myos sen, ettd t-merikvarkkien kontribuutio on taysin mitéton (koska

Me < My < My).

Havaintoni, jonka mukaan prosessien p + p — Q + Q + X(— Hg + Hz + X)
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alimman kertaluvun vaikutusalat omaavat samat K-kertoimet, mikéli torméyspro-
sessi ja skaalavalinta ovat samat, vaatii huomattavasti lisatarkastelua sen yleisen
paikkansapitdavyyden todentamiseksi (mikali se ei ole kumottavissa). Tarkastelin
vain kahdeksaatoista eri vaikutusalaa, joista kolmessatoista on edella kuvattuja
K-kertoimien yhteneviisyyksia ja joista viisi vaikutusalaa edustavat poikkevaa skaa-
lavalintaa tai tormaéaysprosessia. Erityisesti hadronisaation vaikutuksesta on nyt
vain vahan informaatiota: fragmentaatiofunktioiden puute muokkaa c-hadronien
tuottoa kéasittelevien vaikutusalojen arvoja huomattavasti ja b-hadronien vaikutusa-
loille f(b — Hp) ~ 1. Koska hadronisaatio on hiirioteorian ulkopuolinen prosessi,
niin voi olla, etta fragmentaatiofunktioiden tarkka huomioiminen vaikuttaa vaiku-
tusaloihin siten, etta edelld kuvattu K-kertoimien yhtenevyys ei toteudu yleisesti

tormaysprosesseille, jotka sisaltavit raskaiden kvarkkien hadronisaatioita.

Alimman kertaluvun vaikutusaloja ja niiden K-kertoimien yhtenevyyksia voidaan
lisatarkastella myos muilla tavoilla kuin lisdamalla vaikutusalatapausten méaraa.
Olisi mielenkiintoista nahda kuinka kokonais-, differentioidut ja leikatut vaikutusalat

vertautuvat keskenaén, kun niiden skaalavalinta on asetettu samaksi. Kun kokonais-

. . .. . do(pp—HoH=+X
vaikutusala lasketaan differentioidun vaikutusalan U(pzp_; d;; dy‘i ) lausekkeesta

kolmiulotteisella integroinnilla, niin vastaavat renormalisaatio- ja faktorisaatioskaalat

voidaan asettaa poikittaismassan my monikerroiksi. (Differentioitujen ja leikattujen
vaikutusalojen skaalat voidaan myo6s valita raskaan kvarkin massan monikerroiksi.)
c- ja b-kvarkkiparien tuotto protoni—antiprotoni-térméayksissa voisi olla myoskin
hyva lisatutkimisen ja vertaamisen kohde, samoin kuin ydintorméysten raskaiden

kvarkkiparien tuotto.

Alimman kertaluvun vaikutusaloja voidaan laskea tarkemmin vahentamalla ap-
proksimaatioiden maaraia. Kuten olen korostanut, hadronisaatioapproksimaatio
vaaristi huomattavasti osaa vaikutusaloista. Fragmentaatiofunktiot tulee ottaa
ehdottomasti huomioon tarkasteltaessa prosesseja, jotka sisaltavét c-kvarkkien (tai
b-kvarkkien) hadronisaatioita. Lisdksi jouduin asettamaan faktorisaatioskaalalle mi-
nimin 1,3 GeV, koska téata pienemmilla skaaloilla CT14-partonijakaumafunktioiden
arvot ovat epéluotettavia ekstrapoloinnin vuoksi. Tama keinotekoinen faktorisaa-
tioskaalan muokkaaminen, joka vaikuttaa vaikutusaloihin, on paremmin valtettévissa,
mikali kdytetadn partonijakaumafunktioita, joiden laskemisessa on kaytetty pienem-
paa alkuskaalaa, Qo < 1,3 GeV (luku 2.3). Jatin myos alkutilakvarkkien massat

ja prosessin Q + @ — Q + Q t-kanavan Feynmanin diagrammin huomiotta. Nama
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kuitenkin vaikuttavat kaytdnnossd ainoastaan aliprosesseihin ¢ +¢ — ¢ + ¢ ja

b+ b — b+ b, ja siten erittdin vahin kokonaisprosessien vaikutusaloihin.
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Liite A: Invarianttien amplitudien nelididen yhtapitiavyys

Tutkielmassa on laskettu aliprosessien polarisoitumattomien invarianttien ampli-
tudien neliot kayttaen aaveita apuna. Tassa liitteessa naytetadn, ettda nama in-
varianttien amplitudien neliét (yhtélot (66) ja (76)) ovat yhtépitévit lahteessa [76]

esitettyjen tulosten kanssa, jotka on laskettu ilman aaveita.

Prosessi ¢ + 7 — @ + @ (aloitan ldhteen [76] esittdméistid muodosta):
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/1 TAemAe pro gradu-tutkielmaa varten tehty ohjel ma | askee ja anal ysoi
kvant ti vAaridynaniikan hAegiri Afteorian alinmmn kertal uvun (raskai den)
kvar kki pari en tuottoa protoni-protoni- sekAa protoni-antiprotoni-tAfrmA
oyksi ssAa. Skaal a- ja massaval i nnan sekAa fragnmentaati of rakti oi den ja PDF-
settien virheiden ai heuttamat epAovarnuudet | asketaan ja esitet AaAon
autommattisesti lasketuille eri vaikutusaloille (syAftettyjen asetusten/
paranmetrien pohjalta). K-tekijAst (kok.tulos/LOtulos) |asketaan er
skaal aval i nnoi | l e. Li sAeksi kvarkki parien tuottoon kontribuoivien er

al i prosessi en suhteel |iset vai kutukset |asketaan. NAgiden tul osten
graafinen esitys (ja K-kerroinsovitukset) on tehty piirto-ohjel massa
Plot.C. // Teenmu Kovanen

/1 JyvAaskyl Aan vyl i opi sto

/1l Fysiikan laitos

/1 25.10. 2019

#1 ncl ude <i ostreanr

#i ncl ude "TWMat h. h"

#i ncl ude "TF1. h"

#i ncl ude "TF2. h"

#i ncl ude "TF3. h"

#i ncl ude "THLD. h"

#i ncl ude "TCanvas. h"

#i ncl ude "ct1lpdf. h"
#include "TFile. h"

#i ncl ude "TG aph. h"

#i ncl ude "TG aphErrors. h" #include "TG aphAsymErrors. h"
#include "TFitResultPtr. h"

/| KAmytetyt partonijakaumafunktiot ja vastaavat tiedostot: https://

hep. pa. nsu. edu/ ct eq/ publ i c/i ndex. ht n

int pdfs = 59; // LO ja NLO PDF-settien yhteislukumieAar Ao

int types = 6; //Aliprosesseissa vuorovai kuttavi en hi ukkasparien | ukumieA
or An, sisAaltAcAa tapaukset g, u, d, s, ¢, b (hiukkanen + anti hi ukkanen).
PDF: AcAa hi ukkaselle t ei ol e kAaytetyi ssAa PDF-setei ssAo. int points =
150; string it[59] =

{" CT14n. 00. pds", "CT14n. 01. pds", "CT14n. 02. pds", "CT14n. 03. pds", "CT14n. 04. pds
", "CT14n. 05. pds", "CT14n. 06. pds", "CT14n. 07. pds", "CT14n. 08. pds", "CT14n. 09. pd
s","CT14n. 10. pds", "CT14n. 11. pds", "CT14n. 12. pds", "CT14n. 13. pds", "CT14n. 14. p
ds", " CT14n. 15. pds", "CT14n. 16. pds", "CT14n. 17. pds", "CT14n. 18. pds", "CT14n. 19.
pds", " CT14n. 20. pds", "CT14n. 21. pds", "CT14n. 22. pds", " CT14n. 23. pds", "CT14n. 24
. pds", "CT14n. 25. pds", "CT14n. 26. pds", "CT14n. 27. pds", "CT14n. 28. pds", "CT14n. 2
9. pds", "CT14n. 30. pds", "CT14n. 31. pds", "CT14n. 32. pds", "CT14n. 33. pds", " CT14n.
34. pds", "CT14n. 35. pds", "CT14n. 36. pds", "CT14n. 37. pds", "CT14n. 38. pds", "CT14n
. 39. pds", "CT14n. 40. pds", "CT14n. 41. pds", "CT14n. 42. pds", "CT14n. 43. pds", "CT14
n. 44. pds", " CT14n. 45. pds", "CT14n. 46. pds", "CT14n. 47. pds", "CT14n. 48. pds", " CT1
4n. 49. pds", " CT14n. 50. pds", "CT14n. 51. pds", "CT14n. 52. pds", " CT14n. 53. pds", "CT
14n. 54. pds", "CT14n. 55. pds", "CT14n. 56. pds", " CT14LN. pds", "CT14LL. pds"};

cteqpdf ct 14n;

/1 CT14-LO ja CT14-NLO settien ilnoittamat nmassoj en arvot (GeV)

double ng = O;

double mu = 0.001; double nd = 0.001;

double ms = 0. 2;

double nc = 1. 3;

double nmb = 4.75; //HUOM poi kkeaa huomattavasti Particle Data G oupin



ilmoittamasta arvosta (4.18 GeV)
double nmt = 172;

/1l Funktiot ja integrandit

doubl e YksTesti (double *x, double *p);
doubl e Tot CSpp(doubl e *x, double *p);
doubl e I ntgpp(double *x, double *p);
doubl e Pet FF(doubl e *x, double *p);
doubl e Pet FFeff (doubl e *x, double *p);
doubl e D fCS1(double *x, double *p);
doubl e D fCS2(double *x, double *p);
doubl e D flIntgl(double *x, double *p);
doubl e D f CS3(double *x, double *p);
double D flntg2(double *x, double *p);
doubl e Cut CS1(double *x, double *p);
doubl e Cutlntgl(double *x, double *p);
doubl e D fCS4(double *x, double *p);
doubl e Di flntg3(double *x, double *p);
doubl e Cut CS2(doubl e *x, double *p);
doubl e Cutlntg2(double *x, double *p);

usi ng nanespace std;

int main() {

/*
/1 Tarkistetaan silnmukkakehittelyjen | ukumAeAerAa, NLO lle 1, LN le 2 ja
LL:Ile 1.
ctl4n.setct11(it[O0]);
cout << "Order of PDFs for CT14NLO " << ctl14n.lorder << endl;
ct14n. pdfexit();

ctl4n.setct11(it[57]);
cout << "Order of PDFs for CT14LO (LN): " << ctl14n.lorder << endl;
ct 14n. pdfexit();

ctl4n.setct11(it[58]);

cout << "Order of PDFs for CT14LO (LL): " << ctl4n.lorder << endl;
ct 14n. pdfexit();

*/

ctl4n.setct11(it[58]);

/*

/1 Tarkistetaan hal utessa, ettAe protonin sisAeltAanien eri partonien
| i i kemAaAar Acosuuksi en summa on yksi .

double Qyt = 1.3;

TF1 *fYksTesti = new TF1("fYksTesti", YksTesti, 0, 1, 3);

f YksTesti ->Set Paraneter (0, Qt); // PDF:.ien skaal avalinta

f YksTesti ->Set Paraneter (1, 1); // d uoni en osuuden kerroin

f YksTesti->Set Parameter (2, 1); // Kvarkkien ja antikvarkki en osuuden
kerroin

doubl e yt = fYksTesti->Integral (0.0,1.0);

cout<< "Integrointitesti antaa arvon " << yt << endl;



f YksTesti - >Set Paraneter (1, 0);
doubl e ppl = fYksTesti->Integral (0.0,1.0);

f YksTesti ->Set Paraneter (1, 1);
f YksTesti ->Set Paraneter (2, 0); double pp2 = fYksTesti->Integral (0.0,1.0);
f YksTesti ->Set Paraneter (2, 1); //Pal autus oi keaksi

cout << "Kvarkki en ja antikvarkki en osuus protonin |iikemAcAar Aost Aa on "
<< ppl << " ja gluonien " << pp2 << ", skaalavalinnalla Q=" << Qt <<
" " <<endl; */

/'l Petersonin fragnmentaatiofunktio c-kvarkille (hadronille |uovutetun

lii kemAeAar Acosuuden z funktio) (Peterson, C. et al. Phys.Rev. D27 (1983)
105 SLAC-PUB-2912) TF1 *fPetFFc = new TF1("fPetFFc", PetFF, 0.0, 1.0, 2);
f Pet FFc- >Set Par anmeter (0, 0.15); // Kvarkki a vastaava Petersonin
fragnent aati of unkti on paranetri (katso paperi) fPetFFc->Set Paraneter (1,
1.28267); // Normalisaatio siten, ettAa integraali mAeAarittel yal ueen yli
antaa arvon yksi .

/'l Petersonin fragmentaatiofunktio b-kvarkille

TF1 *f Pet FFb = new TF1("f Pet FFb", PetFF, 0.0, 1.0, 2);

f Pet FFb- >Set Par aneter (0, 0.016);

f Pet FFb- >Set Par anmet er (1, 0.247843);

/'l Petersonin fragnmentaatiofunktion karkeasti approksinoitu efekti c-
hadroni en p_T-jakauman arvoi hin, integrandi (katso graduteksti) TF1

*f Pet FFCEf f = new TF1("f Pet FFcEff", PetFFeff, 0.0, 1.0, 3);

f Pet FFCEf f - >Set Par aneter (0, 0.15); // Kvarkkia vastaava paranetri

f Pet FFCEf f - >Set Paranmet er (1, 1.28267); // Al kuper Agi nen normal i saatio
(kat so fPet FFc-funkti o)

f Pet FFCEf f - >Set Paramet er (2, 3.71); // Kuvasta mAcAmritetty jakauman kA
oyt t Aoyt yni st Aa kuvaavan potenssin itseisarvo

doubl e ddeceffl = fPet FFcEff->Integral (0.0, 1.0);
f Pet FFCEf f - >Set Par anet er (2, 4.55);
doubl e ddeceff2 = fPet FFcEff->Integral (0.0, 1.0);

/] cout << "Approksinmitu keski mAaAar Aai nen c-hadroni en tuoton p_T-

di fferentioi dun vai kutusal an | asku, kun fragnmentaati of unkti o otetaan
huomi oon, on pieni mill AsAon " << 100*(1.0-ddeceffl) << " %ja
suurinmllaan " << 100*(1.0-ddeceff2) << " %" << endl;

/'l Vastaava efektin suuruutta kuvaava integrandi b-hadroneille
TF1 *f Pet FFbEff = new TF1("f Pet FFbEff", PetFFeff, 0.0, 1.0, 3);
f Pet FFbEf f - >Set Par anet er (0, 0. 016);

f Pet FFbEf f - >Set Paraneter (1, 0.247843);

f Pet FFbEf f - >Set Par aneter (2, 4.0)

/] cout << "Approksinmitu keski mAaAar Aai nen b-hadroni en tuoton p_T-

di fferenti oi dun vai kutusal an | asku, kun fragnmentaati of unkti o ot etaan
huom oon, on " << 100*(1.0-(fPetFFbEff->Integral (0.0,1.0))) << " %" <<
endl ;

/1] VAl KUTUSALQJEN FUNKTI OT ///
/] YleistAao funktioista:



/1 1. Funktiot |askevat alimman kertal uvun vai kutusal oja, jotka ovat yhden
nmuut t uj an funkti ot a.

/1 2. Funktioiden | ausekkei den ja vastaavien paranetrien

yksi tyi skoht ai si nmat kuvaukset | AfytyvAat riveiltAs, joissa kyseistAa

| auseket t a kAoyt et AvAan ensi mmAri sen kerran ohjel massa. // 3. Vain
kvar kki pari en tuottoa on kAesitelty (katso graduteksti). LAeshtAftilan
partonit on oletettu massattom ksi. // 4. Hadronien tuottojen

vai kut usal oj en | askem sessa on ol etettu, ettAs |iikemAeAor Aan suunta ja
suuruus sAgilyvAat hadroni saati ossa. Hadroni en fragnentaati of unktioita ei
ole siten kAmytetty, vaan niiden sijasta hadronisaatiota on kAesitelty
vast aavi en fragment aati of rakti oi den avul | a. TAemAacn appr oksi maati on

vai kutusta on arvioitu karkeasti Petersonin fragnentaatiofunktion avulla
(katso graduteksti ja funktiot). // 5. Jokaisella funktiolla on
mahdol | i suus valita pp- taikka pp_bar-tAfrmiays.

/1 6. Funktioissa (ja kaikkialla nmuuallakin ohjel mnassa) skaal al | a
tarkoitetaan arvoa Q ei arvoa QA&2.

/] 7. Funktioiden paranmetrit "g ... b ja b_bar" vastaavat eri partonien VA
al i sten reaktioi den osuuksi a | asketusta vai kutusal asta. CT14-
partoni j akaumaf unkti ot ei vAat sisAaltAcneet t-kvarkin jakaumaa. Siksi sitA
g el ole otettu huom oon eri partonien suhteellisia osuuksia

vai kut usal asta | askettaessa. // 8. Tarkastellun | opputil ahi ukkasen
(hadronin) massa tulee ilnmittaa joissain tapauksi ssa paranetreissa, sillA
o sen arvo vai kuttaa mm rapiditeetin integroimsvAaliin. // 9.

Al i prosessi n kokonai svai kut usal an | auseketta kAayt et AcAen yhdessAo

t apauksessa (Tot CSpp), kai ki ssa nuissa se on kolnesti differentioitu

| auseke. // 10. Kai kki vai kutusal at on | askettu yksi kAfi ssAa (GeV)a»A2 tai
(GeV) a»A3. Tapauskoht ai set yksi kAfnnuunnosparanetrit (sekAo

fragnmentaati ofraktiot) on viety tarkoituksella integrandiin

| askent at ar kkuuden t akaam seksi (arvoiltaan |iian pienet integrandit

| asket aan epAotarkasti). // 11. Lausekkeiden 2D- ja 3D-integraalien

| askent at ar kkuudet on asetettu suuriksi, jotta eri partonien reaktioiden
suhteel I i sten osuuksi en arvot saadaan tarkasti |askettua. // 12. ROOTi ssa
aj ett aessa saat etaan saada varoituksia liittyen integraalien

| askent at ar kkuuksiin, joita ei ole kyetty saavuttamaan. Optinointi
mahdol | i sta nAsiden il noitusten avul | a.

/| Tot CSpp: Lasketaan tarkasteltujen kvarkkien (tai hadroni en) tuoton
kokonai svai kut usal a CV5-ener gi an funkti ona.

doubl e cEm n1 2*0.00127; /] TeV
doubl e cEmax1 8. 0;
double cEvalil = cEmaxl - cEm nl

TF1 *fTot CSccl = new TF1("fTotCSccl”, TotCSpp, 0, cEmax1, 17); // MAeA
orittel yvAali al kaa kokonai svai kutusal oilla nollasta, sillAa
massaparanetria tul ee pystyAe nuokkaamaan, katso grcmmax- ja grcnm n-
graafit

f Tot CSccl- >Set Paraneter (0, 1.27); // Kvarkin nassa

f Tot CSccl->Set Paraneter(1, 1); // 1 = protoni-protoni-tAfrmiays, -1 =
protoni -anti protoni tAfrmiays

f Tot CSccl- >Set Paraneter (2, 2.0); // Skaal akerroin alfalle, skaala on nassa
kertaa t AamAa | uku

f Tot CSccl- >Set Paraneter (3, 2.0); // Vastaava skaal akerroin PDF:ille

f Tot CSccl- >Set Paraneter(4, 0); // Kun =1, niin Qalfalle on aliprosessin
kokonai senergi an (sqrt(s”)) kertal uku fTot CSccl->Set Paraneter (5, 0); //



Vast aava skaal atyypi n val i ntaparanetri partonijakaumafunktioille

f Tot CScc1- >Set Paraneter (6, 2.0); // Qon sqrt(s”) kertaa tAamAe | uku, kun
al fan skaal aval i ntaparanmetri on yhtAs kuin 1 fTotCSccl->Set Paraneter(7,
2.0); /Il Vastaava skaal aval i ntaparanmetri PDF.ille

f Tot CSccl- >Set Par aneter (8, 1.000); // Fragnentaatiofraktion arvo

f Tot CSccl- >Set Parameter (9, 1000): // Yksi kAfnnuunnosparanetri CMS-
energialle // TeV --> GV

f Tot CScc1- >Set Par anet er (10, 0. 389379337919); // Yksi kAfnnuunnospar anet r i
vai kutusal al | e. 0.3893793656, kun (GeV)a»A2 --> b f Tot CSccl-

>Set Paraneter (11, 1); // g

f Tot CSccl- >Set Paraneter (12, 1); // u ja u_bar

f Tot CSccl- >Set Paraneter (13, 1); // d ja d_bar
f Tot CSccl- >Set Paraneter (14, 1); // s ja s_bar
f Tot CSccl- >Set Paraneter (15, 1); // ¢ ja c_bar
f Tot CSccl- >Set Paraneter (16, 1); // b ja b_bar

/'l CutCS2: Lasketaan integroitu vai kutusal a tarkasteltujen kvarkkien tai
hadronien tuotolle, valituilla rapiditeetti- ja p_T-Ieikkauksilla, CMV5-
energi an funktiona. Lei kkausrajoitukset koskevat ainoastaan toista
t uot et ui sta kvarkei st a/ hadr onei st a.

double cEm n2 = 0.016; // TeV //HUOM Rapiditeetti (siis c-kvarkin
rapiditetti) vai kuttaa energian mnimin!

doubl e cEmax2 = 14.0;

doubl e cEvali2 = cEmax2 - cEm n2;

TF1 *f Cut CSccl = new TF1("fCutCSccl", CutCS2, 0, cEmax2, 22);

f Cut CSccl- >Set Paraneter (0, 1.27); // Tuotetun kvarkin nassa

f Cut CSccl->Set Paraneter (1, 1.9); // Tuotetun kvarkin/hadronin massa // Nyt
appr oksi moi tu c- hadroni n keski mMeAer Aci nen massa (katso vast aavat
kokeel i set tul okset ja graduteksti) fCutCSccl->SetParaneter(2, 1); //
TAr mMeyksen tyyppi: 1 = pp, -1 = pp_bar

f Cut CSccl- >Set Paraneter (3, 0.0); // p_T-1ei kkauksen al araja

f Cut CSccl- >Set Paranmeter (4, 8.0); // p_T-1eikkauksen yl Aaraj a

f Cut CSccl->Set Paraneter (5, 2.0); // Rapiditeettilei kkauksen al araj a

f Cut CSccl- >Set Parameter (6, 4.5); // Rapiditeettilei kkauksen yl Aaraj a

f Cut CSccl- >Set Parameter (7, 2.0); // Afan skaala on nassa kertaa tAcmAa

| uku

f Cut CSccl1- >Set Parameter (8, 2.0); // PDF:ien skaala on massa kertaa tAcmAa
[l uku f Cut CSccl->Set Paraneter (9, 1); // Kun =1, niin alfan skaala on mT:n
kertal uku

f Cut CSccl- >Set Paraneter (10, 1); // Vastaava skaal aval i nt aparanetri
PDF:ille

f Cut CSccl- >Set Parameter (11, 1.0); // Alfan skaala on mT kertaa t AemAa

| uku, kun al fan skaal aval inta paranetri on yhtAes kuin 1 fCutCSccl-

>Set Paraneter (12, 1.0); // Vastaava vai ht oehtoi nen skaala PDF:ille

f Cut CSccl- >Set Par aneter (13, 1.000); //Fragnmentaatiofraktio

f Cut CSccl- >Set Par amet er (14, 1000): // Yksi kAfnmuunnosparametri CVS-
energialle // TeV --> &V

f Cut CSccl1- >Set Par amet er (15, 389.379337919); // Yksi kAfnmuunnospar anetri
vai kutusal al | e. 389, 379337919, kun (GeV)a»A2 --> Aub fCut CSccl-

>Set Paraneter (16, 1); // ¢

f Cut CSccl- >Set Paraneter (17, 1); // u ja u_bar

f Cut CSccl->Set Paraneter (18, 1); // d ja d_bar

f Cut CSccl->Set Paraneter (19, 1); // s ja s_bar



f Cut CSccl- >Set Paraneter (20, 1); // c¢ ja c_bar
f Cut CSccl->Set Paraneter (21, 1); // b ja b_bar

/1 DifCSl: Lasketaan kvarkin tai kka hadronin p_T-differentioitu
vai kutusal a halutulla energialla ja rapiditeettil ei kkauksella. Lei kkaus
koskee vain toista kahdesta tuotetusta kvarki sta/hadroni st a.

doubl e chym nl -0.5;

doubl e chymax1 0. 5;

doubl e cEl = 2. 76*1000;

doubl e cptm nl 1.0; /1 GV

doubl e cpt max1 12. 0;

double cptvalil = cptmax1l - cptmnl

TF1 *fDi f CSccl new TF1("fDi fCSccl", DifCSl1l, cptm nl, cptmaxl, 21);

fD fCSccl->Set Paraneter (0, 1.27); // Tuotetun kvarkin massa

fD fCSccl->Set Paraneter (1, 1.86483); // +- 0,00005 GeV // Tarkastellun
hadronin (tai kvarkin) nassa

fDi f CSccl- >Set Parameter (2, cE1l); // CMVS-tAfrmAaysenergi a (GeV)

fDi f CSccl->Set Parameter(3, 1); // 1 = pp-tAfrmAays, -1 = pp_bar-tAfrmiays
fD fCSccl->Set Paraneter (4, chymnl); // Rapiditeettilei kkauksen al araj a

f Di f CSccl- >Set Parameter (5, chymax1); // Rapiditeettilei kkauksen yl Aaraja
fD fCSccl->Set Paraneter (6, 2.0); // Skaal akerroin alfalle, skaala on nassa
kertaa t AamAa | uku fDi f CSccl->Set Paraneter(7, 2.0); // Vastaava

skaal akerroin PDF:ille

fD fCSccl->Set Paranmeter(8, 1); // Kun =1, niin alfan skaala on mT:n
kertal uku

fD fCSccl->Set Paraneter (9, 1); // Vastaava skaal aval i ntaparametri PDF:.ille
f D f CSccl- >Set Par aneter (10, 1.0); // Vai htoehtoi nen skaal akerroin alfalle,
skaala on mT kertaa tAomAa | uku fDi f CSccl->Set Paraneter (11, 1.0); //

Vast aava skaal akerroin PDF:ille

fD fCSccl->Set Paraneter (12, 0.557); // Fragnentaatiofraktion arvo

fDi f CSccl- >Set Paranmeter (13, 1.0); // Yksi kAfnnuunnospar anetri

poi ki ttaisliikemioAarAalle, GeV

f Di f CSccl- >Set Par anet er (14, 389.379337919); // Yksi kAfnnuunnospar anetri .
389, 3793379, kun (GeV)a»A® ---> Aub/ GeV fDifCSccl->SetParaneter(15, 1); /

/g

fD fCSccl->Set Paraneter (16, 1); // u ja u_bar
fDi fCSccl->Set Paraneter (17, 1); // d ja d_bar
fD fCSccl->Set Paraneter (18, 1); // s ja s_bar
fD fCSccl->Set Paraneter (19, 1); // c¢ ja c_bar
fDi fCSccl->Set Paraneter (20, 1); // b ja b_bar

double cptmn2 = 2.0; // GeV double cptmax2 = 12. 0;
doubl e cptvali2 = cptmax2 - cptm n2,;
TF1 *fDi fCScc2 = new TF1("fD fCScc2", D fCSl, cptmn2, cptnmax2, 21);

fD f CScc2->Set Paraneter (0, 1.27); // Kvarkin massa

fD f CScc2->Set Paraneter (1, 1.86965); // +- 0,00005 GeV // Hadronin nassa
fD f CScc2->Set Paraneter (2, cEl); // CVM5-energia

fDi f CScc2- >Set Parameter (3, 1); // TAfrmAaystyyppi

fD f CScc2->Set Paraneter (4, chymnl); // Rapiditeettilei kkauksen al araj a
f Di f CScc2- >Set Par anet er (5, chymax1); // Rapiditeettilei kkauksen yl Aaraja
fD f CScc2->Set Paraneter (6, 2.0); // Skaal aval i nnat



fDi f CScc2->Set Par anet er (7,
fDi f CScc2- >Set Par anet er ( 8,
f Di f CScc2- >Set Par anet er (9,
f D f CScc2- >Set Par anet er (10,
fD f CScc2- >Set Par anet er (11,
fDi f CScc2- >Set Par aneter (12,
f D f CScc2- >Set Par anet er (13,
f D f CScc2- >Set Par anet er (14,
389, 3793379, kun (GeV) a»As

2.0);
1);
1);
1.0);
1.0);
0.226); // Fragnentaatiofraktio
1.0); /1 GeV
389.379337919); // Yksi kAfnmuunnosparanetri .
---> Aub/ GeV fDifCScc2->Set Paraneter (15, 1);

/| g fDifCScc2->Set Paraneter (16, 1); // u ja u_bar

f Di f CScc2- >Set Par anet er (17,
f D f CScc2- >Set Par anet er (18,
f D f CScc2- >Set Par anet er (19,
f Di f CScc2- >Set Par anet er ( 20,

1); // dja d_bar
1); // s ja s_bar
1); // c ja c_bar
1); /1 bja b_bar

TF1 *fDi fCScc3 = new TF1("fD fCScc3", D fCSl, cptm n2, cptnmax2, 21);

f Di f CScc3- >Set Par anet er (0,
fDi f CScc3->Set Par aneter (1,
f D f CScc3->Set Par anet er ( 2,
f Di f CScc3- >Set Par anet er ( 3,
f D f CScc3->Set Par anet er (4,
f D f CScc3->Set Par anet er (5,
f Di f CScc3- >Set Par anet er ( 6,
fDi f CScc3->Set Par aneter (7,
f D f CScc3->Set Par anet er ( 8,
f D f CScc3->Set Par anet er (9,
f D f CScc3->Set Par anet er (10,
f Di f CScc3- >Set Par anet er (11,
fDi f CScc3->Set Par anet er (12,
>Set Paraneter (13, 1.0); //
f Di f CScc3- >Set Par anet er ( 14,
389, 3793379, kun (GeV) a»As

I g

1.27); /1 Kvarkin nmassa
2.01026); // +- 0,00005 GeV // Hadronin nassa
cEl); // CM5-energia

1); // TAfr mAayst yyppi
chymnl); // Rapiditeettilei kkauksen al araj a
chymax1); // Rapiditeettilei kkauksen yl Aaraja
2.0); I/ Skaal aval i nnat
2.0);

1);

1);

1.0);

1.0);

0.238); // Fragnmentaatiofraktio fD fCScc3-
GeV

389.379337919) ; // Yksi kAfnnuunnosparanetri .
---> Aub/ GeV fDifCScc3->Set Parameter (15, 1);

fD fCScc3->Set Paraneter (16, 1); // u ja u_bar
fD f CScc3->Set Paraneter (17, 1); // d ja d_bar
fD fCScc3->Set Paraneter (18, 1); // s ja s_bar
fDi f CScc3->Set Paraneter (19, 1); // ¢ ja c_bar
fD f CScc3->Set Paraneter (20, 1); // b ja b_bar
double cE2 = 5. 02*1000;

double cptmn3 = 0.0; // GV

doubl e cpt max3 = 36. 0;

doubl e cptvali3 = cptmax3 - cptm n3;

TF1 *fDi f CScc4

f Di f CScc4- >Set Par anet er (0,
fDi f CScc4- >Set Par anet er (1,
fDi f CScc4- >Set Par anet er ( 2,
f Di f CScc4- >Set Par anet er ( 3,
f D f CScc4- >Set Par anet er (4,
f D f CScc4- >Set Par anet er (5,
f D f CScc4- >Set Par anet er (6,

new TF1("fDi f CScc4", DifCS1l, cptm n3, cptmax3, 21);

1.27); /1 Kvarkin massa

1.86483); // +- 0,00005 GeV // Hadronin massa
cE2); // CM5-energia

1); // TAfr mAayst yyppi

chyminl); // Rapiditeettilei kkauksen al araj a
chymax1); // Rapiditeettileikkauksen yl Aaraja
2.0); /Il Skaal aval i nnat

/

/



fDi f CScc4- >Set Par anet er (7,
f D f CScc4- >Set Par anet er ( 8,
f Di f CScc4- >Set Par anet er (9,
fDi f CScc4- >Set Par anet er (10,
fD f CScc4->Set Par anet er (11,
fDi f CScc4- >Set Par aneter (12,
fDi f CScc4- >Set Par anet er (13,
f D f CScc4- >Set Par anet er (14,

2.0);
1);
1);
1.0);
1.0);
0.557); /! Fragnentaatiofraktio
1.0); /1 CGeV
389.379337919); // Yksi kAfnmuunnosparanetri .

389, 3793379, kun (GeV)a»A® ---> Aub/ GeV fDifCScc4->Set Paraneter (15, 1); /
Ig

fDi fCScc4->Set Paraneter(16, 1); // u ja u_bar

fD f CScc4->Set Paraneter (17, 1); // d ja d_bar

fD fCScc4->Set Paraneter (18, 1); // s ja s_bar

fDi fCScc4->Set Paraneter (19, 1); // ¢ ja c_bar

fD f CScc4->Set Paraneter (20, 1); // b ja b_bar

double cptmnd4d = 1.0; // GV

doubl e cptmax4 = 36. 0;

doubl e cptvali4 = cptmax4 - cptm n4,;

TF1 *fDi f CScch

f D f CScch- >Set Par anet er (0,
>Set Paraneter (1, 2.01026);
f Di f CScch- >Set Par anet er ( 2,
f D f CScch- >Set Par anet er ( 3,
f D f CScch- >Set Par anet er (4,
f D f CScch- >Set Par anet er (5,
f D f CScch- >Set Par anet er ( 6,
f Di f CScch- >Set Par anet er (7,
f D f CScch- >Set Par anet er ( 8,
fDi f CScch- >Set Par anet er (9,
f Di f CScch- >Set Par anet er (10,
f D f CScch- >Set Par anet er (11,
f D f CScch- >Set Par anet er (12,
f D f CScch- >Set Par anet er (13,
f D f CScch- >Set Par anet er (14,

new TF1("fDi f CSccbh",

D fCS1, cptm n4, cptmax4, 21);

/'l Kvarkin massa fDi f CScc5-

/1l +- 0,00005 GeV // Hadronin massa

cE2); // CM5-energia

1); // TAfr mAayst yyppi

chymnl); // Rapiditeettilei kkauksen al araj a
chymax1); // Rapiditeettilei kkauksen yl Aaraja

1.27);

2.0); /1 Skaal aval i nnat
2.0);
1);
1);
1.0);
1.0);
0.238); // Fragnentaatiofraktio
1.0); /1 GV

389.379337919); // Yksi kAfnmuunnosparametri .

389, 379337919, kun (GeV)a»A® ---> Aub/ GeV fDifCScch->Set Paraneter (15, 1);
Il g

fD f CScch->Set Paraneter (16, 1); // u ja u_bar

fD f CScch->Set Paraneter (17, 1); // d ja d_bar

fD f CScch->Set Paraneter (18, 1); // s ja s_bar

fD f CScch->Set Paraneter (19, 1); // ¢ ja c_bar fD fCScch->Set Paranet er (20
1); // b ja b_bar

doubl e cE3 = 7*1000;

double cptmn5 = 1.0; // GV

doubl e cpt max5 = 16. O;

doubl e cptvali5 = cptmax5 - cptm nb5;

TF1 *fDi fCScc6 = new TF1("fD f CScc6",

fDi f CScc6->Set Par anet er (0,
f D f CScc6->Set Par anet er (1,
f D f CScc6->Set Par anet er ( 2,

D fCS1, cptm n5, cptmax5, 21);

1.27); /1 Kvarkin massa
1.86483); // +- 0,00005 GeV // Hadronin nmassa
cE3); // CM5-energia



f Di f CScc6->Set Parameter (3, 1); // TAfrmAayst yyppi

fD f CScc6->Set Paraneter (4, chymnl); // Rapiditeettilei kkauksen al araj a
f Di f CScc6- >Set Par amet er (5, chymax1); // Rapiditeettilei kkauksen yl Aaraja
fDi f CScc6->Set Paraneter (6, 2.0); // Skaal aval i nnat

fD f CScc6->Set Paraneter (7, 2.0);

fDi f CScc6- >Set Par aneter (8, 1);

f D f CScc6->Set Par aneter (9, 1);

fD f CScc6->Set Par aneter (10, 1.0);

fD f CScc6->Set Paraneter (11, 1.0);

f D f CScc6->Set Par aneter (12, 0.557); // Fragnentaatiofraktio

fDi f CScc6- >Set Paraneter (13, 1.0); // GV fD f CScc6->Set Par anet er ( 14,
389.379337919); // Yksi kAfnmuunnosparanetri. 389, 3793379, kun (GeV)a»As --
-> Aub/ GeV fDifCScc6->Set Paraneter (15, 1); // ¢

fDi f CScc6->Set Paraneter (16, 1); // u ja u_bar

fD f CScc6->Set Paraneter (17, 1); // d ja d_bar

fD f CScc6->Set Paraneter (18, 1); // s ja s_bar

fD f CScc6->Set Paraneter (19, 1); // c¢ ja c_bar

fD f CScc6->Set Paraneter (20, 1); // b ja b_bar

double cptmn6 = 1.0; // GV

doubl e cptmax6 = 24.0;

doubl e cptvali 6 = cptmax6 - cptm n6;

TF1 *fDi f CScc7 new TF1("fDi fCScc7", DifCS1l, cptm n6, cptmax6, 21);

fD fCScc7->Set Paraneter (0, 1.27); // Kvarkin nassa

fD fCScc7->Set Paraneter (1, 2.01026); // +- 0,00005 GeV // Hadronin massa
fD fCScc7->Set Paraneter (2, cE3); // CM5-energia

fDi f CScc7->Set Parameter (3, 1); // TAfrmAaystyyppi

fD fCScc7->Set Paraneter (4, chymnl); // Rapiditeettilei kkauksen al araj a
f Di f CScc7->Set Parameter (5, chymax1); // Rapiditeettilei kkauksen yl Aaraja
fDi fCScc7->Set Paraneter (6, 2.0); // Skaal avalinnat fD fCScc7-

>Set Paraneter (7, 2.0);

fD fCScc7->Set Paraneter (8, 1);

fD fCScc7->Set Paraneter (9, 1);

fD fCScc7->Set Paraneter (10, 1.0);

fD fCScc7->Set Paraneter (11, 1.0);

fD fCScc7->Set Paraneter (12, 0.238); // Fragnentaatiofraktio

fDi fCScc7->Set Paraneter (13, 1.0); // GV

f Di f CScc7- >Set Par amet er (14, 389.379337919); // Yksi kAfnmuunnospar anetri .
389, 3793379, kun (GeV)a»A® ---> Aub/ GeV fDifCScc7->SetParaneter(15, 1); /

I g

fD fCScc7->Set Paraneter (16, 1); // u ja u_bar
fD fCScc7->Set Paranmeter (17, 1); // d ja d_bar
fDifCScc7->Set Paraneter(18, 1); // s ja s_bar
fD fCScc7->Set Paraneter (19, 1); // c¢ ja c_bar
fD fCScc7->Set Paranmeter (20, 1); // b ja b_bar

doubl e bEmM n1 2*0.00418; // TeV
doubl e bEmax1 8. 0;
doubl e bEvalil = bEmax1l - bEm ni;

TF1 *f Tot CSbbl = new TF1("f Tot CSbbl", Tot CSpp, 0, bEmax1l, 17);



f Tot CSbbl- >Set Par aneter (0, 4.18); // Mssa

f Tot CSbb1- >Set Parameter (1, 1); // TAfrmAaystyyppi

f Tot CSbbl- >Set Par aneter (2, 2.0); // Skaal aval i nnat f Tot CSbbl-

>Set Paraneter (3, 2.0);

f Tot CSbbl- >Set Par aneter (4, 0);

f Tot CSbb1l- >Set Par aneter (5, 0);

f Tot CSbbl- >Set Par aneter (6, 2.0);

f Tot CSbbl- >Set Par aneter (7, 2.0);

f Tot CSbbl- >Set Par aneter (8, 1.000); //Fragnentaatiofraktio

f Tot CSbb1- >Set Par aneter (9, 1000); // CMs-energi an yksi kAfnnuunnos, TeV -->
GeV

f Tot CSbb1- >Set Par aret er (10, 389.379337919); // Yksi kAfnmuunnospar anetri .
389, 379337919, kun (GeV)a»A? --> Aub f Tot CSbbl->Set Paraneter (11, 1); // g
f Tot CSbbl- >Set Paranmeter (12, 1); // u ja u_bar

f Tot CSbbl- >Set Paraneter (13, 1); // d ja d_bar

f Tot CSbbl- >Set Paraneter (14, 1); // s ja s_bar

f Tot CSbbl- >Set Par aneter (15, 1); // c¢ ja c_bar

f Tot CSbbl- >Set Paraneter (16, 1); // b ja b_bar

/1 CutCSl: Lasketaan integroitu vai kutusala halutulla
pseudorapiditettil ei kkauksell a CMs-energi an funkti ona.

Pseudorapi diteettil ei kkaus koskee vain toista tuotetuista kvarkei sta/

hadr onei st a.

doubl e bEm n2 = 2*0.00418; // TeV // Pseudorapiditeetti ei vaikuta
energien alarajaan (mutta rapiditeettilei kkaus vai kuttaisi). double bEmax2
= 14.0;

doubl e bEvali 2

bEmax2 - bEm n2

TF1 *f Cut CSbbl

new TF1("f Cut CSbb1", CutCS1, 0, bEmax2, 19);

f Cut CSbb1l- >Set Par aneter (0, 4.18); // Tuotetun kvarkin nassa

f Cut CSbb1- >Set Paraneter (1, 1); // TAfrmAayksen tyyppi: 1 = pp, -1 = pp_bar
f Cut CSbb1- >Set Parameter (2, 2.0); // PseudorapiditeettivAalin alaraja

f Cut CSbb1- >Set Paraneter (3, 5.0); // PseudorapiditeettivAalin ylAaraja

f Cut CSbb1- >Set Paraneter (4, 2.0); // Afan skaala on nassa kertaa tAamAa
[ uku

f Cut CSbbl- >Set Par aneter (5, 2.0); // Partonijakaumafunktioi den skaal a on
massa kertaa tAemAe | uku

f Cut CSbb1- >Set Parameter (6, 1); // Kun tAemAec parametri on 1, niin alfan
skaala on m T:n kertal uku

f Cut CSbbl- >Set Paraneter (7, 1); // Vastaava skaal atyypin valinta PDF.ille
f Cut CSbb1- >Set Parameter(8, 1.0); // Alfan skaala on mT kertaa t AemAa

| uku, kun yllAe mainittu skaal aval i ntaparanmetri on 1 fCut CSbbl-

>Set Paraneter (9, 1.0); // Vastaava vai ht oeht oi nen skaala PDF.ille

f Cut CSbb1l- >Set Par anet er (10, 1.000); //Fragnentaatiofraktio // b-
hadroneille noin yksi, sillAa b hadronisoituu | Aches ai na ennen

haj oam st aan f Cut CSbbl->Set Paraneter (11, 1000); // TeV --> GV

f Cut CSbb1- >Set Par anet er (12, 389.379337919); // Yksi kAfnmuunnospar anetr i
vai kut usal al | e. 389, 379337919, kun (GeV)a»A --> Aub f Cut CSbbi-

>Set Paraneter (13, 1); // g

f Cut CSbbl- >Set Paraneter (14, 1); // u ja u_bar
f Cut CSbbl- >Set Paraneter (15, 1); // d ja d_bar
f Cut CSbbl- >Set Paraneter (16, 1); // s ja s_bar
f Cut CSbbl- >Set Paraneter (17, 1); // c¢ ja c_bar
f Cut CSbbl- >Set Paraneter (18, 1); // b ja b_bar



/'l DifCS4: Lasketaan toisen tuotetun kvarkin/hadronin pseudorapiditeetin
suhteen differentioitu vai kutusal a halutulla CV5-energi all a.

doubl e betam nl = 2.0;
doubl e betamax1l = 5.0;
doubl e betavalil = be
doubl e bE1 = 7.0*1000

tamaxl - betam nl;

TF1 *fDi f CSbbl = new TF1("fD f CSbbl", D fCS4, betam nl, betamaxl, 17);

f D f CSbbl- >Set Par aneter (0, 4.18); // Tuotetun kvarkin nassa
fDi f CSbbl- >Set Paraneter(1, bEl); // CMS-energia (GV)
f Di f CSbbl- >Set Parameter (2, 1): // 1 = pp-tAfrmAays, pp_bar-tAfrmiays
f D f CSbbl- >Set Paraneter (3, 2.0); // Skaal akerroin alfalle, skaala on nassa
kertaa t AamAa | uku
f D f CSbbl- >Set Paraneter (4, 2.0); // Vastaava skaal akerroin PDF:ille
fD f CSbbl- >Set Paraneter (5, 1); // Kun = 1, niin alfan skaala on mT:n
kertal uku
f D f CSbbl- >Set Paraneter (6, 1); // Vastaava skaal aval i ntaparametri PDF:.ille
f D f CSbbl- >Set Parameter (7, 1.0); // Vai htoehtoi nen skaal akerroin alfalle,
skaala on m T kertaa t AemAa | uku fDi f CSbbl->Set Paraneter (8, 1.0);: //
Vast aava skaal akerroin PDF:ille
f D f CSbbl- >Set Paraneter (9, 1.000); // Fragnentaatiofraktion arvo
f Di f CSbb1- >Set Par amet er (10, 389.379337919); // Yksi kAfnmuunnospar anetri .
389, 379337919, kun (GeV)a»A? ---> Aub fDifCSbbl->Set Paraneter (11, 1); //

g

fD f CSbbl- >Set Paraneter (12, 1); // u ja u_bar

f D f CSbbl- >Set Paraneter (13, 1); // d ja d_bar fD fCSbbl->Set Paraneter (14,
1); // s ja s_bar

f D f CSbbl- >Set Paraneter (15, 1); // ¢ ja c_bar

fDi f CSbbl->Set Paraneter (16, 1); // b ja b_bar

doubl e bE2 = 13. 0*1000;
TF1 *fDi f CSbb2 = new TF1("fD f CSbb2", D fCS4, betam nl, betamaxl, 17);

f D f CSbb2- >Set Par aneter (0, 4.18); // Kvarkin nassa

f D f CSbb2- >Set Par aneter (1, bE2); // CM5-energia

f Di f CSbb2- >Set Parameter (2, 1): // TAfrmAayst yyppi

f D f CSbb2- >Set Paraneter (3, 2.0); // Skaal aval i nnat

f D f CSbb2- >Set Par aneter (4, 2.0);

f D f CSbb2- >Set Par aneter (5, 1);

f D f CSbb2- >Set Par aneter (6, 1);

f D f CSbb2- >Set Par aneter (7, 1.0);

f D f CSbb2- >Set Par aneter (8, 1.0);

f D f CSbb2- >Set Par aneter (9, 1.000); // Fragnmentaatiofraktio

f Di f CSbb2- >Set Par anet er (10, 389.379337919); // Yksi kAfnnuunnosparanetri .
389, 379337919, kun (GeV)a»A? ---> Aub fDif CSbb2->Set Paraneter (11, 1): //

g

f D f CSbb2- >Set Paraneter (12, 1); // u ja u_bar

f D f CSbb2- >Set Paraneter (13, 1); // d ja d_bar

f D f CSbb2- >Set Par aneter (14, 1); // s ja s_bar fDifCSbb2->Set Paraneter (15,
1); /1 c ja c_bar

f D f CSbb2- >Set Paraneter (16, 1); // b ja b_bar



double tEm nl = 2*0.1729; // TeV

doubl e t Emaxl = 3. 0;

double tEvalil = tEmaxl - tEm nl;

TF1 *fTotCStt1 = new TF1("fTotCStt1l", TotCSpp, 0, tEmaxl, 17);
f Tot CStt 1- >Set Par aneter (0, 172.9); // Massa

f Tot CStt 1- >Set Par anet er (1,
f Tot CStt 1- >Set Par anet er ( 2,
f Tot CStt 1- >Set Par anet er ( 3,
f Tot CStt 1- >Set Par anet er ( 4,
f Tot CStt 1- >Set Par anet er ( 5,
f Tot CStt 1- >Set Par anet er ( 6,
f Tot CStt 1- >Set Par anet er (7,
f Tot CStt 1- >Set Par anet er ( 8,
f Tot CStt 1- >Set Par anet er (9,
energialle, Tev --> GV

f Tot CStt 1- >Set Par anet er ( 10,

-1); // TAfrmAayst yyppi

2.0); // Skaal aval i nnat

2.0);

0);

0);

2.0);

2.0);

1.000); //Fragnmentaatiofraktio

1000); // Yksi kAfnrmuunnosparanetri CVS-

389379337.919); // Yksi kAfnmuunnos.

389379337, 919 kun (GeV)a»A2 --> pb
fTotCStt 1- >Set Paraneter (11, 1); // ¢

f Tot CStt 1- >Set Paraneter (12, 1); // u ja u_bar

fTot CStt 1- >Set Paraneter (13, 1); // d ja d_bar

fTotCStt 1- >Set Paraneter(14, 1); // s ja s_bar fTotCStt1->Set Paraneter (15,
1); // c ja c_bar

f Tot CStt 1- >Set Paraneter (16, 1); // b ja b_bar

double tEm n2 = 2*0.1729; // TeV

doubl e t Emax2 = 14.0;

double tEvali2 = tEmax2 - tEm n2;

TF1 *fTotCStt2 = new TF1("fTotCStt2", TotCSpp, 0, tEmax2, 17);
f Tot CStt 2- >Set Paraneter (0, 172.9); // Massa

f Tot CStt 2- >Set Par anet er (1,
f Tot CStt 2- >Set Par anet er ( 2,
f Tot CStt 2- >Set Par anet er ( 3,
f Tot CStt 2- >Set Par anet er (4,
f Tot CStt 2- >Set Par anet er ( 5,
f Tot CStt 2- >Set Par anet er ( 6,
f Tot CStt 2- >Set Par aneter (7,
f Tot CStt 2- >Set Par anet er ( 8,
f Tot CStt 2- >Set Par anet er (9,
energialle, Tev --> GV

f Tot CStt 2- >Set Par anet er (10,
389379337, 919 kun (GeV) a»A2
f Tot CStt 2- >Set Par anet er (11,
f Tot CStt 2- >Set Par anet er (12,
f Tot CStt 2- >Set Par anet er (13,
f Tot CStt 2- >Set Par anet er ( 14,
f Tot CStt 2- >Set Par anet er (15,
f Tot CStt 2- >Set Par anet er (16,

/1 D fCS2: Lasketaan p_t-di

1); // TAfr mAayst yyppi

2.0); /Il Skaal aval i nnat

2.0);

0);

0);

2.0);

2.0);

1.000); //Fragnentaatiofraktio

1000); // Yksi kAfnnuunnosparametri CNMS-

389379337.919); // Yksi kAfnmuunnos.

> pb

1); 119

1); // uja u_bar
1); // dja d_bar
1); // s ja s _bar
1); // c ja c_bar
1); // b ja b_bar

fferentioitu vai kutusal a kvar kki en/ hadr oni en



tuotolle (ilman rapiditeettil ei kkauksi a).

double tE1 = 1.96*1000;

double tptmnl = 0.0; // TeV

doubl e tptmax1l = 0. 500;

double tptvalil = tptmaxl - tptmnl;

TF1 *fDIfCStt 1l new TF1("fDifCstt1", DifCS2, tptmnl, tptmaxl, 18);

fD fCStt1l->SetParanmeter (0, 172.9); // Tuotetun kvarkin massa
fDfCSttl->SetParaneter(1, tEl); // CVM5-energia (GeV)

fDifCStt1->Set Paraneter(2, -1); // 1 = pp-tAfrmAays, -1 = pp_bar-tAfrmiays
fDfCSttl->SetParanmeter(3, 2.0); // Skaal akerroin alfalle, skaala on nassa
kertaa t AamAa | uku

fDfCStt1l->Set Paraneter(4, 2.0); // Vastaava skaal akerroin PDF:ille
fDfCSttl->SetParanmeter(5, 1); // Kun = 1, niin alfan skaala on mT:n
kertal uku

fDfCStt1l->SetParaneter(6, 1); // Vastaava valintaparanetri PDF:.ille
fDfCStt1l->SetParanmeter(7, 1.0); // Vai htoehtoi nen skaal akerroin alfalle,
skaala on mT kertaa tAemAe | uku fDi fCStt1->Set Parameter (8, 1.0); //

Vast aava skaal akerroin PDF:ille

fDfCStt1l->SetParanmeter (9, 1.000); // Fragnmentaatiofraktion arvo

fDi fCStt 1->Set Paranet er (10, 1000.0); // Yksi kAfnmuunnospar anetr i

poi kittaisliikemioAarAalle // TeV --> GeV fDi fCStt 1->Set Paranet er (11,
389379337919); // Yksi kAfnnuunnosparametri. 389379337919, kun (GeV)a»3 ---
> pb/ Tev fDfCSttl->SetParanmeter(12, 1); // g

fDfCStt 1- >Set Paraneter (13, 1); // u ja u_bar
fDfCStt1l->SetParaneter (14, 1); // d ja d_bar
fDfCStt1l->SetParanmeter (15, 1); // s ja s_bar
fDfCSttl->SetParanmeter (16, 1); // c¢ ja c_bar
fDfCStt1l->SetParanmeter (17, 1); // b ja b_bar

/1 DifCS3: Lasketaan rapiditeetin suhteen differentioitu vaikutusal a
kvarkin tuotolle.

doubl e tavym nl = 0. O0;

doubl e tavymaxl = 1.50;

doubl e tavyvalil = tavymax1l - tavym nl;

TF1L *fDIfCStt2 = new TFL("fDifCStt1", D fCS3, tavym nl, tavymaxl, 16);
fDfCStt2->SetParanmeter (0, 172.9); // Tuotetun kvarkin massa

fDfCStt2->SetParaneter (1, tEl); // CV5-energia (GeV)

fDi fCStt2->SetParameter(2, -1); // 1 = pp-tAfrmAays, -1 = pp_bar-tAfrmiays

fD fCStt2->SetParaneter (3, 2.0); // Skaal akerroin alfalle, skaala on nassa

kertaa t AamAa | uku

fDfCStt 2- >Set Paraneter(4, 2.0); // Vastaava skaal akerroin PDF:.ille

fDfCStt2->SetParaneter (5, 1); // Kun = 1, niin skaala on mT:n kertal uku

fDfCStt2->Set Paraneter (6, 1); // Vastaava skaal aval i ntaparametri PDF:ille

fD fCStt2->SetParaneter (7, 1.0); // Vai htoehtoinen skaal akerroin alfalle,

skaala on mT kertaa tAemAe | uku fDi f CStt2->Set Parameter (8, 1.0); //

Vast aava skaal akerroin PDF:ille

fDi f CStt2->Set Parameter (9, 2*389379337.919); // Yksi kAfnnuunnos-/

skaal ausparanetri. 389379337,919, kun (GeV)a»2 ---> pb, kerroin 2 tulee

rapiditeetin itseisarvosta fD fCStt2->SetParaneter(10, 1); // ¢

fD fCStt2->SetParanmeter (11, 1); // u ja u_bar

fDfCStt2->SetParaneter (12, 1); // d ja d_bar fD fCStt2->Set Paraneter (13,
1); // s ja s_bar



fD fCStt2->SetParaneter (14, 1); // c ja c_bar
fDfCStt2->SetParaneter (15, 1); // b ja b_bar
double tE2 = 13. 0*1000;

double tptmn2 = 0.0; // GV

doubl e t pt max2 = 550. 0;

doubl e tptvali?2

fD fCStt 3- >Set Par anet er (0,
fDfCStt 3->Set Paraneter (1,
fD fCStt 3- >Set Par anet er ( 2,
fD fCStt 3- >Set Par anet er ( 3,
fD fCStt 3- >Set Par anet er (4,
fD fCStt 3- >Set Par anet er (5,
fD fCStt 3- >Set Par anet er ( 6,
fDfCStt 3- >Set Par aneter (7,
fDi fCStt 3- >Set Par anet er (8,
fD fCStt 3- >Set Par anet er (9,
fD fCStt 3- >Set Par anet er (10,
fD fCStt 3- >Set Par anet er (11,

389379337, 919, kun (GeV)éa»3 ---> pb/ GV
/| g fDifCStt3->Set Paraneter (13,

fD fCStt 3- >Set Par anet er (14,
fD fCStt 3- >Set Par anet er (15,
fD fCStt 3- >Set Par anet er (16,
fD fCStt 3->Set Paranet er (17,

doubl e tym nl
doubl e tymax1l
doubl e tyvalil
TF1 *fDifCStt4

-2.6;
2.6;

fD fCStt4->Set Paraneter (0,
fDfCStt4->Set Paraneter (1,
fDifCStt 4->Set Par anet er ( 2,
fD fCStt4->Set Paranet er (3,
fD fCStt4->Set Par anet er (4,
fDifCStt4->Set Par anet er (5,
fD fCStt4->Set Par anet er (6,
fDfCStt4->Set Paraneter (7,
fDifCStt 4->Set Par anet er (8,
fD fCStt4->Set Paraneter (9,
skaal ausparanetri .
>Set Paraneter (10, 1); // g
fDfCStt4->Set Paraneter (11,
1); // dja d_bar

fD fCStt4->Set Paranet er (13,
fD fCStt 4->Set Par anet er (14,
fDi fCStt 4->Set Par anet er (15,

389379337, 919, kun (GeV)a»2 ---> pb

t pt max2 - tptmn2;
TF1 *fDifCStt3 = new TF1("fD fCStt 3",

D fCS2, tptm n2, tptmax2, 18);

172.9); // Kvarkin massa

tE2); // CMS-energia

1); // TAfr mAayst yyppi

2.0); // Skaal aval i nnat

2.0);

1);

1);

1.0);

1.0);

1.000); // Fragnentaatiofraktion arvo
1.0); /] CGeVv
389379337.919); // Yksi kAfnmuunnosparametri .

fD fCStt3->Set Paraneter (12, 1);

1); // u ja u_bar
1); /1 dja d_bar
1); // s ja s_bar
1); // c ja c_bar
1); // bja b_bar

tymax1l - tym nl;
new TF1("fDi fCStt4",

D fCS3, tymnl, tymax1l, 16);
172.9); // Kvarkin massa

tE2); // CMS-energia

1); // TAfr mAayst yyppi

2.0); /Il Skaal aval i nnat

2.0);

1);

1);

1.0);

1.0);
389379337.919); // Yksi kAfnmuunnos-/

fDifCStt4-

1); // uja u_bar fD fCStt4->SetParaneter (12,
1); // s ja s_bar
1); // c ja c_bar
1); /1 bja b_bar

/



/11 TEHDA, A, N JA TALLENNETAAN GRAAFI T/ H STOGRAM T ///

TFile *file = new TFile("file.root", " RECREATE") ;
file->cd();

/'l Petersonin fragnmentaatiofunktiot c- ja b-tapauksille
TG aph *gr Pet FFc;

TG aph *gr Pet FFb;

doubl e z[ poi nts], val FFc[ points], val FFb[ points];
for(int i =0; i < points; i++){

z[i] = (i+1.0)/points;

i f(i==0){

z[i] = 0.0;

}

val FFc[i] = fPetFFc->Eval (z[i]);
val FFb[i] = fPet FFb->Eval (z[i]);

}

gr Pet FFc = new TG aph(points, z, val FFc);
gr Pet FFc->Wite("grPet FFc");

gr Pet FFb = new TG aph(points, z, val FFb);
gr Pet FFb->W it e( " gr Pet FFb") ;

/| Vahvan vuorovai kut uksen kyt ki nvaki o (LO LL)

TG aph *gral pha;
doubl e xA[ poi nts], yA[ points];
for(int i = 0; i < points; i++){
xAli] = 0.635 + 1199. 365*pow 10000, (i+1.0)/points-1.0);
i f(i==0){
xA[i1] = 0.635;
}

yA[i] = ctl4n. al phas(xA[i]);
}

gral pha = new TG aph(poi nts, XA, YA);
gral pha->Wite("gral pha");

cout << "Vahvan vuorovai kut uksen kyt ki nvaki o skaal an funktiona | askettu"
<< endl ;

ct 14n. pdfexit();



/1 Partonijakaumafunktiot (x*f _j(x,Q) x:n funktiona, eri skaalan Q
arvoilla (LO(LL) ja NLO(0/56))

const int scales = 13;
doubl e scal e[scales] = {0.635, 1.3, 2.09, 2.54, 4.18, 5.08, 8.36, 16.72,
86.45, 172.9, 345.8, 691.6, 1000.0};

TG aph *grnl opdf[scal es][types];

TG aph *grl opdf[scal es][types];

TG aph *grnl opdf ah[ scal es] [types];

TG aph *grl opdf ah[ scal es] [types];

doubl e xpdf [ poi nts];

doubl e ynl o[ poi nts], yl o] poi nts], ynl oah[ poi nts], yl oah[ poi nts];

for(int i =0; i < points; i++){

xpdf[i] = pow( 100000000, (i *1.0)/points-1.0); // Al kupiste nyt 10a»a, <
4*mcA2/sA2, s = 13 TeV // 150:11 Ao pisteel |l Ao toisiksi viimeinen piste on
X = 0.782, ihan hyvAa |ogaritmisella asteikolla esitettynAa

if(i == points-1){ N .
xpdf[i] = 0.999999; // Tasan yksi nenee jostain syystAa PDF:.ien mAcA
arittel yal ueen ul kopuolelle

}
}

for (int i =0; i < scales; i++){

for (int j =0; j < types; j++){

for (int k = 0; k < points; k++){
ct14n. setct 11(it[0]);

ynlo[k] = (xpdf[k])*ct14n. parton(j, xpdf[k], scale[i]);
if(0 < j){

inloah[k] = (xpdf[k])*ct14n. parton(-j, xpdf[k], scale[i]);

ct 14n. pdfexit();

ct14n. setct11(it[58]);

ylo[k] = (xpdf[k])*ct14n.parton(j, xpdf[k], scale[i]);
i (0 < j){

yloah[ k] = (xpdf[k])*ctl1l4n.parton(-j, xpdf[k], scale[i]);
}

ct14n. pdfexit();
}

grnlopdf[i][j] = new TG aph(points, xpdf,ynlo); grnlopdf[i][]]->Wite(
Form(" grnl opdf Q@®1i p%®1i", i, j) );

grliopdf[i][j] = new TG aph(points, xpdf, ylo);



griopdf[i][j]->Wite( Forn("grlopdf @®1li p%®Li", i, j) );

() = 0){

grnlopdfah[i][j] = new TG aph(points, xpdf, ynl oah);
grnlopdfah[i][j]->Wite( Form("grnl opdf @®1li p%®1i ah", i, j) );
grlopdfah[i][j] = new TG aph(points, xpdf, yl oah);
grlopdfah[i][j]->Wite( Forn("grlopdf @®1i p%®1li ah", i, j) );

}

}

}

cout << "Partonijakaumafunktiot nuuttujan x funktiona | askettu." << endl;

ct14n.setct11(it[58]);

[l CT14-LO partonijakaumafunktiot Qn funktiona, eri x:n arvoilla

const int xs = 8;
doubl e xval s[xs] = {0.00000001, 0.0000001, 0.000001, 0.00001, O0.0001,
0.001, 0.01, O0.1};

TG aph *grl opdf J xs][types];

TG aph *grl opdf ah xs][types];
doubl e val s{J poi nts];

doubl e yl o{ poi nts], yl oah{ poi nt s];

for(int i =0; i < points; i++){

valsQi] = 0.635 + 1199. 365*i *1. 0/ poi nt s;
if(i == points-1){ valsi] = 1200.0;

}

}

for (int i =0; I < xs; i++){

for (int j =0; j < types; j++){
for (int k = 0; k < points; k++){

yloQ k] = ctldn.parton(j, xvals[i], valsQKk]);

if (0 < j){

yl oah@@ k] = ctl4n.parton(-j, xvals[i], valsqQk]);
}

}

grliopdfi][j] = new TG aph(points, valsQ vyl oQ;



griopdfi][j]->Wite( Form("grlopdf x%®1ip%®Li", i, j) );

() = 0){

grlopdfani][j] = new TG aph(points, val sQ yl oahQ ;
grliopdfanhi][j]->Wite( Form("grlopdf x%®1i p%®1i ah", i, j) );
}

}

}

cout << "Partonijakaumafunkti ot skaal an Q funktiona | askettu." << endl;

/*
/1 TAel| Ae vanhalla osiolla tutkailtiin LO ja NLO PDF:ien arvojen
er oavai suuksi a

ct 14n. pdfexit();

TG aph *grdif[scal es][types];

TG aph *gradif[scal es][types];

TG aph *grnl o[ scal es][types];

TG aph *grlo[scal es][types];

doubl e xpdf [ poi nts];

doubl e ynl o[ poi nts], yl o] poi nts], yd[ poi nts], yda[points];
for (int j = 0; j < scales; j++){

for (int k = 0; k < types; k++){

for (int | =0; | < points; |++){

doubl e aa, ba;

xpdf[I] = 0.01*pow( 10000000, | *1. 0/ poi nts-1);
ct14n.setct11(it[0]);

double a = ctl4n.parton(k, xpdf[l], scale[j]);
ynlo[l] = a;

if (0 < 1){

aa = ctl4n.parton(-k, xpdf[I], scale[j]);
}

ct 14n. pdfexit();

ct14n.setct 11(it[58]);

double b = ctl4n.parton(k, xpdf[l], scale[]]);
ylo[l] = b;
if (0 < 1){

ba = ctl4n.parton(-k, xpdf[l], scale[]]);
}



ct 14n. pdfexit();

yd[l1] = a - b;

if (0 < 1){

yda[l] = aa - ba;

}

}

grdif = new TG aph( poi nts, xpdf, yd);

[j]10k]
grdif[j][k]->Wite( Form("grdifQ@®2i p®2i", j, k) );

gradif[j][k] = new TG aph(points, xpdf, yda);
gradif[j][K]->Wite( Form("gradifQ@®2i p-%®2i", j, k) );

grnlo[j][k] = new TG aph(points, xpdf,ynlo); grnlo[j][k]->Wite(
Form("grnl oQ®2i p¥®2i ", j, k) );

grlo[j][k] = new TG aph(points, xpdf, ylo);
grlo[j][K]->Wite( Form("grloQ@®2i p¥®2i", j, k) );
}

}
*/
ct14n.setct11(it[58]);

/1] KOKEELLI SI A TULOKSI A JA TEOREETTI STEN ARVQJEN LASKEM STA KOSKEVAT
ASETUKSET ///

/1 Alla oleviin taulukoihin tulee ilnpbittaa teoreettisia arvoja | askevien
funkti oi den ja vastaavien kokeellisten tul osten tiedot.

/1 HUOM Teoreettisia tuloksia ei |asketa, jos yhtAckAcAcn vast aavaa
kokeel lista vertailutulosta ei ole (datapisteet tai histogramm jakauns).
/1 MKkAali datapisteille (ei histogramm) on vaihtoehtoisia esitettAavi Ao
arvoja (esim samalla energialla), niin nAemAa pisteet kirjataan

dat api st et aul ukoi hin ja ne otetaan huonioon il noitetussa pisteiden | ukumA
oAar AassAa,

/1] LASKETTAVAT ASIAT ///

/] Ohjelma | askee ja tekee graafit/histogrammt seuraaville asioille:

/1 1. Kokeelliset tul okset (ja vaihtoehtoiset datapisteet). Eri virhel A
oht eet esitetAcAan eri graafien avulla. // 2. K-kertoinet seitsemialle er
skaal aval i ntaparille (Qa, Q) (kok.tulos/LOtulos, LOtulos ajatellaan tA
al | Afi n virheett AfmAanAa) (histogranmeilla teor. vertailutulos on

keski arvo binin yli, tAemAa keski arvoj en histogrammi muodost et aan nyAfs).
Hi st ogranmi en K-kertoim ssa statistinen ja systemmattinen virhe esitetAgA
on erikseen. Miut virheiden | Achteet otetaan huom oon tul oksen K-kertoi nen
mAaAar i t yksessAe (sovitus tehdAcAan Plot.C: ssAs). // 3. NLO PDF:ien avulla
appr oksi moi dut LO-virherajat teor. tuloksille (virhesettejAs ei ollut
CT14-LO-PDF:ille).

/1 4. Teoreettiset tul okset. SisAaltAcAc skaal an, massan ja
fragnment aati of rakti on epAavar muudest a/ epAayksi kAasi tt ei syydest Aa j oht uvat
virherajat. // 5. Qa:n (renornmalisaatio) ja Q:n (faktorisaatio)

vai ht el usta syntyvAat virhe-bandit ja kAayr Aot (katso yksityi skohdat



alta).

/1 6. Eri partonityyppien vAalisten vuorovai kutusten suhteelliset
kontribuutiot vai kutusalaan. // 7. Raskaiden kvarkkiparien tuottojen
kokonai svai kut usal at pp_bar -t Afr mMayksi ssAa (vertailua varten).

/1 Huom oita | askusta/sil nukast a:

/1 1. YhtAe tul osta kohti kAesitell AcAon seitsemiaAa er

skaal aval intaparia, joita kApytetApApn C}V|rhebandejAp sekAn K-kertoinia

| askett aessa. TAessAm on haluttu pitAsAa Qa:n ja Q:n vAalinen suhteelinen
ero alle 4:n (yli 1/4:n). Ohjel man tekemAa skaal aval i ntoj en tarkastelu on
koht al ai sen hel posti nuokattavissa. // 2. LQ(LL)-PDF-setti on asetettu

ol et ukseksi, mkAe ei vAalttAamAottAc ol e ohjel man kAeytt Agj Aan ni el een.

const int cases = 19; o
const int Quer = 7; // Eri skaal aparivalintojen | ukumAeAarAa // (Qa, Q) =

(Qadef, Qpdef ), (Qamax, Qomax), (Qam n, Qmi n), (Qadef, Qpmax),
(Qani n, Qpdef), (Qadef, @nin) ja (Qamax, Qodef) tAassAc j AorjestyksessAa

/'l Funktiot TFl *f[cases] = {fTotCSccl, fCutCSccl, fDi fCSccl, fDi fCScc2,
fD fCScc3, fDifCScc4, fD fCScch5, fDifCScc6, fDi fCScc7, fTotCShbl,

f Cut CSbbl, fD fCSbbl, fD fCSbb2, fTotCSttl, fTotCStt2, fDfCSttl,
fofCStt2, fDfCStt3, fDfCStt4}; string tcase[cases] = {"cl", "ccutl",
"cdif1", "cdif2", "cdif3", "cdif4", "cdif5", "cdif6", "cdif7", "bl"
"bcutl1l", "bdifl", "bdif2", "t1", "t2", "tdif1", "tdif2", "tdif3",
"tdif4"}; // Funktioiden paranetrien | ukumicAar Aot

int npar[cases] = {17, 22, 21, 21, 21, 21, 21, 21, 21, 17, 19, 17, 17, 17,
17, 18, 16, 18, 16};

const int np = 25; // Integrointipisteiden | ukumieAar Ao | nt egral Fast -

| askui ssa

double x[np]; // x ja w eivAat tee pAaivitetyll Aa integroinsnetodilla
mtAcAan (nutta ovat silti nukana) (Cal cGaussLegendreSanplingPoints turha)
doubl e W np];

/* |/ TAat Aa osuutta kAoytet AsAon sopivan integrointipisteiden mAoAar Aan
np mAeAarittAami seen. KAmytin tarkastel ussa kAesiteltyjen funktioiden

vast aavi en kokeel | i sten binien vAal ej A, joissa funktiot ovat jyrkimmillA
oAan/ kaar evi nmi | | aan tai kka joi ssa binien | eveydet ovat suurinmllaan. //
Nel j Aen nmerkitsevAan |uvun tarkkuudella il noitetut integraalien arvot
olivat samat (nAri ssAm kahdessat oi sta tapauksessa), kun np:n arvoa

vai hdel tiin vAalillAs 10:stAc 150:een. Siten np = 25 tulisi olla ainakin
riittAevAan tarkka (ainakin viiden nmerkitsevAan nuneron tarkkuudel | a sama
kuin 150: n pisteen tapaus, jokaisessa kahdessatoi sta tapauksessa).

doubl e parccl[21] = {1.28, 1.86483, cEl, 1, -0.5, 0.5, 2.0, 2.0, 1, 1

1.0, 1.0, 0.557, 1.0, 389.379337919, 1, 1, 1, 1, 1, 1}; double parcc3[21]
= {1.28, 1.86965, cE1, 1, -0.5, 0.5, 2.0, 2.0, 1, 1, 1.0, 1.0, 0.238, 1.0,
389.379337919, 1, 1, 1, 1, 1, 1}; double parcc4[21] = {1.28, 1.86483, cE2,
1, -0.5, 0.5, 2.0, 2.0, 1, 1, 1.0, 1.0, 0.557, 1.0, 389.379337919, 1, 1

1, 1, 1, 1}; double parcc5[21] = {1.28, 1.86965, cE2, 1, -0.5, 0.5, 2.0,
2.0, 1, 1, 1.0, 1.0, 0.238, 1.0, 389.379337919, 1, 1, 1, 1, 1, 1}; double
parcc6[ 2 1] = {1.28, 1.86483, cE3, 1, -0.5, 0.5, 2.0, 2.0, 1, 1, 1.0, 1.0,
0.557, 1.0, 389.379337919, 1, 1, 1, 1, 1, 1}; double parbbl[17] = {4.18,
bE1, 1, 2.0, 2.0, 1, 1, 1.0, 1.0, 1.000, 389.379337919, 1, 1, 1, 1, 1, 1};
double partt1[18] = {173.1, tE1, -1, 2.0, 2.0, 1, 1, 1.0, 1.0, 1.000,
1000. 0, 389379337919, 1, 1, 1, 1, 1, 1};



doubl e partt3[18] {173.1, tE2, 1, 2.0, 2.0, 1, 1, 1.0, 1.0, 1.000, 1.0,

389379337.919, 1, 1, 1, 1, 1, 1};
doubl e partt4[16] = {173.1, tE2, 1, 2.0, 2.0, 1, 1, 1.0, 1.0,
389379337.919, 1, 1, 1, 1, 1, 1};

cout << fDifCSccl->Integral Fast(np, x, w, 1.0, 2.0, parccl, 1l.e-9) <<
§231'<< fDi fCSccl->Integral Fast(np, x, w, 8.0, 12.0, parccl, 1l.e-9) <<
endl ; cout << fDi fCScc3->Integral Fast(np, x, w, 8.0, 12.0, parcc3, 1l.e-9)
z;ufngL’fEXfCScc4->lntegralFast(np, X, w, 0.0, 0.5, parcc4, 1l.e-9) <<
§231’<< fD f CScch->I ntegral Fast(np, x, w, 24.0, 36.0, parcch, 1l.e-9) <<
§231’<< fD fCScc6->I ntegral Fast(np, x, w, 3.0, 4.0, parcc6, 1l.e-9) <<
§2311<< fD f CSbbl->I ntegral Fast(np, x, w, 2.5, 3.0, parbbl, 1.e-9) <<
?231’<< fDfCSttl->Integral Fast(np, x, w, 0.000, 0.045, parttl, 1l.e-9) <<
§231’<< fDfCSttl->Integral Fast(np, x, w, 0.300, 0.500, parttl, 1l.e-9) <<
§231’<< fDfCStt3->Integral Fast(np, x, w, 0.0, 65.0, partt3, 1l.e-9) <<
§231'<< fDfCStt3->Integral Fast(np, x, w, 400.0, 500.0, partt3, 1l.e-9) <<
5231’<< fDfCStt4->Integral Fast(np, x, w, 1.8, 2.6, partt4, 1l.e-9) <<
endl ;

*/

TH1D *erstaerr|[cases];

TG aphAsymmErrors *ersyserr|[cases];
TG aphAsymErrors *erp[ cases];

TG aphAsymErrors *erpal t[ cases];

TH1D *teor ka[ cases];

THLD *kfstaerr[cases] [ Quer]; TG aphAsymErrors *kfsyserr[cases][ Quer];
TG aphAsymmErrors *kftoterr[cases][ Quer];

TG aphAsymErrors *kf p[ cases] [ Quer];

/'l Asetetaan, onko funktiota vastaavat kokeelliset tul okset esitetty

hi st ogr ammei na vai yksitt Aci si nAe pi st ei nAe

bool ishist[cases] = {false, false, true, true, true, true, true, true,
true, false, false, true, true, false, false, true, true, true, true};

/'l Kokeel l'i sten tul osten datapi stei den (nukaan | uki en vai ht oeht oi set
arvot) tai histogramibinien | ukumicAar Aa,

const int bp[cases] = {3, 3, 5, 4, 4, 22, 19, 9, 10, 4, 2, 6, 6, 3, 6, 6,
6, 6, 10};

const int bpmax = 22;

/1 Ala ol evissa taul ukoi ssa tyhj Aat arrayt edustavat eri t yyppi Ae ol evi a
kokeel I'i sia tul oksia (ishist) (nmuista tyhjAst kohdat nuokatessa
kokeel l'i sten tul osten mAcAar AnAa!)

/] x:n arvot (energia) datapisteillAa



doubl e erxpO[ cases] [ bpmax] = { {0.200, 2.76, 7.0},
{5.0, 7.0, 13.0},

{}
{}
{}

[t Wt |
—

{},

. 200, 0.500, 2.76, 7.0},
.0, 13.0},

1.8, 1.96},
7.0, 7.0, 8.0, 13.0, 13.0},
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/1 x:n virhe datapisteille
doubl e erxperrO[cases][bpmax] ={ {0, 0, 0},

{0, 0, 0},
{},
{},
| 0.
| .
"0, 0, 0},

o
—

o
o
- =

[t et Nt N W W Wt W W Waan Y ~= ~=
=
——
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/1 Hi stogramm bi nien raj at
doubl e bi nboO[ cases] [ bpmax+1] = { {},

{},
{1.0, 2.0, 4.0, 6.0, 8.0, 12.0},
{2.0, 4.0, 6.0, 8.0, 12.0},
{2.0, 4.0, 6.0, 8.0, 12.0},
{0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 4.0, 4.5, 5.0, 5.5,
6.0, 6.5 7.0, 7.5, 8.0, 9.0, 10.0, 12.0, 16.0, 24.0, 36.0}, {1.0, 2.0,
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0,
12.0, 16.0, 24.0, 36.0}, {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0,
8.0, 12.0, 16.0},
{1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 12.0, 16.0, 24.0}, {},
{},
{2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0},
{2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0}
{},
{},
{0, 0.045, 0.090, 0.140, 0.200, 0.300, O.500},



{0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50},
{0, 65, 125, 200, 290, 400, 550},
{-2.6, -1.8, -1.35, -0.9, -0.45, 0.00, 0.45, 0.9, 1.35 1.8, 2.6} };

/'l Vai kutusal oj en arvot datapisteille ja histogrammeille (nuista tarkistaa
yksi kAft)
doubl e val O[ cases] [ bpmax] = { {0.797, 4.8, 7.44},
{1395, 1419, 2840},
{207.0, 44.1, 8.4, 1.75, 0.44},
{18.0, 3.82, 0.93, 0.27},

{23.2, 4.90, 1.00, 0.22}, {79.2, 149, 186, 144, 103, 69.5, 52.3, 33.1,
21.9, 14.8, 10.8, 8.23, 5.15, 4.01, 2.84, 2.18, 1.36, 0.924, 0.495, 0.153,
0. 0357, 0.00452}, {61.5, 47.1, 35.3, 23.2, 17.1, 12.1, 7.76, 5.03, 4.07,
2.94, 1.99, 1.39, 1.26, 0.801, 0.520, 0.235, 0.0937, 0.0167, 0.00366},
{180.0, 115.0, 59.7, 29.1, 12.5, 6.37, 3.07, 1.23, 0.215},

{100.0, 51.8, 28.0, 11.01, 5.7, 3.26, 1.74, 0.677, 0.16, 0.027},

{3.2, 25.2, 130, 281},

{72.0, 144},

{27.2, 30.0, 29.8, 25.8, 19.0, 12.6},

{45.2, 57.4, 58.4, 54.6, 43.2, 29.2},

{6.5, 5.69, 7.60},

{69.5, 173.3, 161.9, 241.5, 803.0, 888.0},

{27.76, 69.70, 41.47, 22.84, 4.18, 0.32},

{8.50, 9.46, 6.72, 4.64, 2.73, 0.63}, {3.48728, 5.09407, 2.83826,

0. 842426, 0.187431, 0.0345005},

{60. 0026, 131.967, 188.386, 227.428, 245.169, 247.354, 232.557, 184. 441,

133. 14, 62.9843} };

/1 Statistisen virheen arvot histogranmeille
doubl e staerr[cases][bpmax] = { {},

{},

{84.0, 7.7, 1.5, 0.50, 0.15},

{4.6, 0.77, 0.26, 0.09},

{6.9, 0.95, 0.26, 0.07},

{19.8, 19.5, 24.5, 10.7, 5.78, 3.16, 2.09, 1.34, 0.946, 0.673, 0.521,
0.406, 0.312, 0.268, 0.213, 0.179, 0.0935, 0.0714, 0.0366, 0.0144,
0.00430, 0.00106}, {11.7, 5.23, 3.02, 1.65, 1.10, 0.626, 0.434, 0.275,
0.218, 0.167, 0.123, 0.0979, 0.0857, 0.0498, 0.0383, 0.0181, 0.00732,
0.00230, 0.000715}, {30.0, 11.0, 4.3, 2.1, 1.1, 0.7, 0.47, 0.13, 0.05},
{22.0, 5.9, 2.3, 0.87, 0.45, 0.27, 0.21, 0.05, 0.016, 0.004},

{},

w-'w-'l_\ow-'
_SJOI\J
_SJOI\J
_OI\J
—

{
{
{
{
{
{

3.31, 4.07, 2.78, 1.51, 0.56, 0.20},

{0.51, 0.67, 0.67, 0.64, 0.49, 0.16},

{0.0389853, 0.0504538, 0.0257184, 0.0105405, 0.00293571, 0.00130963},
{1.17175, 1.37921, 1.9326, 2.15482, 2.30488, 2.26936, 2.09552, 1.78576,
1.35818, 1.15752} };

/| Systenmmattisten virheiden yl Aarajojen arvot histogrameille
doubl e syserrup[cases][bpmax] = { {},
{},
{64, 11, 2.2, 0.42, 0.11},
{4.6, 0.92, 0.25, 0.06}, {6.0, 1.22, 0.20, O0.04},



{7.58, 10.3, 19.1, 11.7, 8.53, 5.96, 3.73, 2.48, 1.67, 1.17, 0.857,

0. 643, 0.450, 0.343, 0.251, 0.189, 0.120, 0.0759, 0.0401, 0.0139, 0.00309,
0. 000375}, {7.11, 3.75, 2.43, 1.56, 1.06, 0.689, 0.452, 0.281, 0.225,
0.162, 0.111, 0.0783, 0.0695, 0.0452, 0.0292, 0.0135, 0.00530, 0.00100,

0. 000205}, {48.0, 20.0, 8.5, 4.2, 1.8, 0.94, 0.50, 0.19, 0.037},

{28.0, 8.7, 4.6, 1.82, 0.97, 0.55, 0.30, 0.113, 0.030, 0.007},

{3.21, 1.79, 3.34, 1.25, 0.41, 0.07}, {0.67, 0.63, 0.29, 0.36, O.66,
0. 25},

{0.277739, 0.467258, 0.21118, 0.0514395, 0.0130281, 0.00302404},
{6.14237, 9.75978, 13.1304, 15.7261, 17.1774, 19.1451, 16.331, 13.1025,
10. 3442, 5.61076} };

/'l Systemmattisten virheiden alarajojen arvot histogrammeille
doubl e syserrdo[ cases] [ bpmax] = { {},

{},

{103, 14, 2.3, 0.43, 0.11},

{5.1, 0.97, 0.26, 0.07},

{6.5, 1.26, 0.20, 0.04},

{7.57, 10.2, 18.7, 11.3, 8.19, 5.63, 3.47, 2.25, 1.49, 1.01, 0.741,
0.558, 0.385, 0.296, 0.214, 0.163, 0.103, 0.0671, 0.0358, 0.0130, 0.00297,
0.000368}, {6.99, 3.65, 2.32, 1.49, 0.982, 0.662, 0.428, 0.271, 0.218,
0.158, 0.107, 0.0753, 0.0674, 0.0435, 0.0282, 0.0129, 0.00513, 0.000975,
0. 000204}, {98.0, 33.0, 12.6, 5.8, 2.3, 1.08, 0.53, 0.21, 0.038},

{565.0, 13.2, 5.2, 1.88, 1.0, 0.57, 0.30, 0.116, 0.031, 0.007},

{4.29, 2.88, 3.45, 1.34, 0.39, 0.09},

{0.99, 0.88, 0.30, 0.41, 0.63, 0.25},

{0.277739, 0.467258, 0.21118, 0.0514395, 0.0130281, 0.00302404},

{6.14237, 9.75978, 13.1304, 15.7261, 17.1774, 19.1451, 16.331, 13.1025,
10. 3442, 5.61076} };

/1 Mahdollinen statistisiin ja systemmattisiin virheisiin sisAaltymAatAfn
lisAavirhe (yl Aaraja) (neliAfllisesti yhdistetty, mikAali useita tA
al | ai sia virheen ai heuttajia) (esim lumnositeetti, normalisointi,
branching ratio). O etaan huom oon K-tekijAs-sovituksissa. double
adderrup[ cases] [ bpmax] = { {},

{}.

{TMat h:: Sgrt (pow( 0. 013, 2) +pow 0. 019, 2)) * 207,

Thvat h: : Sgrt (pow 0. 013, 2) +pow 0. 019, 2))*44. 1,
Thvat h: : Sgrt (pow 0. 013, 2) +pow 0. 019, 2)) *8. 4,
Thvat h: : Sgrt (pow 0. 013, 2) +pow 0. 019, 2) ) *1. 75,
TMat h: : Sqrt (pow 0. 013, 2) +pow( 0. 019, 2)) *0. 44},
{TMat h: : Sgrt (pow( 0. 021, 2) +pow 0. 019, 2)) *18. 0,
That h: : Sgrt (pow 0. 021, 2) +pow 0. 019, 2)) *3. 82,
That h: : Sgrt (pow 0. 021, 2) +pow 0. 019, 2)) *0. 93,
That h: : Sgrt (pow 0. 021, 2) +pow 0. 019, 2)) *0. 27},
{Twvat h: : Sgrt (pow( 0. 015, 2) +pow 0. 019, 2)) *23. 2,



TMat h: :
TWVat h: :
TMat h:

{ T™vat h:

Sgrt (pow( 0. 015, 2) +pow( 0. 019, 2)) *4. 90,

Sqrt (pow 0. 015, 2) +pow( 0. 019, 2)) * 1. 00,

Sqrt (pow( 0. 015, 2) +pow( 0. 019, 2)) *0. 22},
:Sqrt (pow 0. 010, 2) +pow( 0. 021, 2)) *79. 2,

TWMat h: :
TWMat h: :
TMat h: :
TWVat h: :
TMat h: :
TWMat h: :
TWMat h: :

TMat h:

TWMat h: :
TWMat h: :
TMat h: :
TWVat h: :
TWMat h: :
TMat h: :
TWVat h: :

That h:
TMat h:

That h: :
That h: :
TMat h: :

That h: :

Sqrt(pow( 0.
Sgrt (pow 0.
Sqrt (pow 0.
Sqgrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
:Sgrt (pow O.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqgrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
: Sgrt (powO.
:Sgrt (pow 0.
Sqrt (pow 0.
Sgrt (pow 0.

Sqrt (pow 0.
Sqrt (pow 0.

010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.

010, 2) +pow 0.
010, 2) +pow 0.

021, 2) ) * 149,
021, 2)) * 186,
021, 2)) * 144,
021, 2)) * 103,
021, 2)) *69.
021, 2)) *52.
021, 2)) * 33.
021, 2))*21
021, 2)) * 14.
021, 2)) * 10.
021, 2)) *8. 23,
021, 2)) *5. 15,
021, 2)) *4. 01,
021, 2)) *2. 84,
021, 2))*2. 18,
021, 2)) *1. 36,
021, 2)) *0. 924,
021, 2)) *0. 495,
021, 2))*0. 153,
021, 2)) *0. 0357,
021, 2)) *0. 00452},

00 ©F WUl

{TMat h: : Sqrt (pow( 0. 013, 2) +pow( 0. 021, 2) ) *61. 5,

That h: :

That h: :

That h:

TWMat h: :
TWMat h: :
TMat h: :
TWMat h: :
TWMat h: :
TMat h: :
TWVat h: :

That h:
That h:

TWVat h: :
TWMat h: :
TMat h: :
TWVat h: :
TWMat h: :

TMat h: :

Sqrt (pow 0.
Sqrt (pow 0.

:Sgrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
:Sqrt (pow 0.
:Sgrt (pow 0.
Sqrt (pow 0.
Sgrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.

Sgrt (pow 0.
Sqrt (pow 0.

013, 2) +pow 0.
013, 2) +pow 0.

013, 2) +pow 0.

013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.

013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow( 0.
013, 2) +pow 0.
013, 2) +pow( 0.
013, 2) +pow 0.
013, 2) +pow 0.

013, 2) +pow( 0.
013, 2) +pow 0.

021, 2)) *47. 1,
021, 2)) * 35.
021, 2)) *23.
021,2))*17. 1,
021,2))*12. 1,
021,2))*7. 76,
021, 2)) *5. 03,
021, 2)) *4. 07,
021, 2)) *2. 94,
021, 2)) *1. 99,
021, 2)) *1. 39,
021, 2)) *1. 26,
021, 2)) *0. 801,
021, 2)) *0. 520,
021, 2)) *0. 235,
021, 2)) *0. 0937,
021, 2))*0. 0167,

021, 2))*0. 00366}, {0.037*180. 0,

0.037*115.0, 0.037*59.7, 0.037*29.1, 0.037*12.5, 0.037*6.37, 0.037+*3.07,
0.037*1.23, 0.037%0.215}, {0.038*100.0, 0.038*51.8, 0.038*28.0,
0.038*11.01, 0.038*5.7, 0.038*3.26, 0.038*1.74, 0.038*0.677, 0.038*0. 16,
0.038*0.027}, {},

{}.

{o, o, o, 0, 0, O},

{o, o, o, 0, 0, 0},

{}.

{}.

{1.69336, 4.2517, 2.52967, 1.39324, 0.25498, 0.01952},
{0.5185, 0.57706, 0.40992, 0.28304, 1.6653, 0.03843},
{o, o, o, 0, 0, 0O},

{0, o, o, 0, 0, O, O, O, O, O} };



/1 Mahdol l'inen statistisiin ja systemmattisiin virheisiin sisAaltymiatAfn
lisAavirhe (alaraja) (neliAfllisesti yhdistetty, m kAali useita tAsllaisia
virheen ai heuttajia) double adderrdo[cases][bpmax] = { {},

{}.
{T™vat h: : Sgrt (pow( 0. 013, 2) +pow( 0. 019, 2)) *207,

TWMat h: :
TMat h: :
TWVat h: :
TMat h: :
{TWat h: :
TWMat h: :

TMat h:

{Tw™at h: :
That h: :
That h: :

TMat h:
{TMat h: :

TMat h: :

That h:
TMat h:

TWMat h: :
TWMat h: :
TMat h: :
TWMat h: :
TWMat h: :
TMat h: :
TWVat h: :

That h:

TWMat h: :
TWMat h: :
TMat h: :
TWMat h: :
TWMat h: :
TMat h: :
TWVat h: :

That h:
TMat h:
That h: :

That h: :

TWMat h: :
TWMat h: :
TMat h: :
TWMat h: :

That h:
TMat h:

TWMat h: :
TMat h: :
TWMat h: :
TWMat h: :
TMat h: :
TWMat h: :
TWMat h: :

That h:

That h: :
That h: :

Sgrt (pow( 0. 013, 2) +pow( 0. 019, 2)) *44. 1,
Sgrt (pow( 0. 013, 2) +pow( 0. 019, 2)) *8. 4,

Sqrt (pow 0. 013, 2) +pow( 0. 019, 2)) *1. 75,
Sqrt (pow 0. 013, 2) +pow( 0. 019, 2)) *0. 44},

Sqrt (pow( 0. 021, 2) +pow( 0. 019, 2)) *18. 0,

Sqrt (pow 0. 021, 2) +pow( 0. 019, 2)) *3. 82,

:Sgrt (pow 0. 021, 2) +pow 0. 019, 2) ) *0. 93,
Tiat h: :

Sqrt (pow( 0. 021, 2) +pow( 0. 019, 2) ) *0. 27},

Sqgrt (pow 0. 015, 2) +pow 0. 019, 2)) *23. 2,

Sgrt (pow( 0. 015, 2) +pow 0. 019, 2)) *4. 90,

Sqrt (pow 0. 015, 2) +pow( 0. 019, 2)) * 1. 00,

:Sqrt (pow 0. 015, 2) +pow( 0. 019, 2)) *0. 22},
Sgrt (pow( 0. 010, 2) +pow 0. 021, 2)) *79. 2,

Sqrt (pow 0.
: Sgrt (powO.
:Sgrt (pow 0.
Sqrt (pow 0.
Sgrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sgrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
:Sgrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqgrt (pow 0.
:Sqrt (pow 0.
:Sgrt (pow 0.

Sqgrt (pow 0.

Sqrt (pow 0.
Sqrt (pow 0.

Sgrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
: Sgrt (powO.
:Sgrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
Sqrt (pow 0.
:Sgrt (pow O.
Sqgrt (pow 0.
Sqrt (pow 0.

010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow 0.
010, 2) +pow O.

010, 2) +pow 0.
010, 2) +pow 0.

013, 2) +pow 0.
013, 2) +pow 0.

013, 2) +pow( O.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.
013, 2) +pow 0.

021, 2) ) * 149,
021, 2)) * 186,
021, 2)) * 144,
021, 2)) * 103,
021, 2)) *69.
021, 2)) *52.
021, 2)) *33.
021, 2))*21
021, 2)) * 14.
021, 2)) * 10.
021, 2)) *8. 23,
021, 2)) *5. 15,
021, 2)) *4. 01,
021, 2)) *2. 84,
021, 2))*2. 18,
021, 2)) *1. 36,
021, 2)) *0.
021, 2)) *0.
021, 2)) *0.
021, 2)) *O0.
021, 2)) *0.

0 ©F WU

495,

021, 2)) *47. 1,
021, 2)) *35. 3,
021, 2)) *23. 2,
021,2))*17. 1,
021, 2))*12. 1,
021,2))*7. 76,
021, 2)) *5. 03,
021, 2)) *4. 07,
021, 2)) *2. 94,
021, 2)) *1. 99,
021, 2)) *1. 39,
021, 2)) *1. 26,
021, 2)) *0. 801,
021, 2) ) *0.
021, 2)) *0.
021, 2)) *0.
021, 2))*0.

924,

153,
0357,
00452},
{TMat h: : Sqrt (pow( 0. 013, 2) +pow( 0. 021, 2) ) *61. 5,

520,
235,
0937,
0167,



TMat h: : Sgrt (pow( 0. 013, 2) +pow( 0. 021, 2) ) *0. 00366}, {0. 037*180. 0,
0.037*115.0, 0.037*59.7, 0.037*29.1, 0.037*12.5, 0.037*6.37, 0.037*3.07,
0.037*1.23, 0.037+0.215}, {0.038*100.0, 0.038*51.8, 0.038*28.0,
0.038*11.01, 0.038*5.7, 0.038*3.26, 0.038*1.74, 0.038*0.677, 0.038*0. 16,
0.038*0. 027}, {},

0, 0, 0, 0, 0}
’ Oa Oa O; O, O},

{}
{0
{0
{},
{},
{1.69336, 4.2517, 2.52967, 1.39324, 0.25498, 0.01952},
{0.5185, 0.57706, 0.40992, 0.28304, 1.6653, 0.03843},
{0, o, o, o0, O, 0O},

{0, o, o, 0, 0, O, O, O, O, O} };

/1 Vai kutusal an yl Aavirhe datapisteille

doubl e ptoterrup[cases][bpmax] = { {0.295574017803, 2.90234388038,

0. 596657355607}, {104. 470091414, 133.510299228, 226. 735528755},
{}

{
{
{
{

~= =
[ S I N Y W W )

{1.84390889146, 11.840608092, 45.13967213, 63.356136258},
{6.8066144301, 21.0237960416},

, 1.59552499, 0. 41},
10.1, 6.72458177, 8.5, 32.0780297, 32.8633535},

N

[t Yt Nt N W W W Waa |
e 00

(S

/1 Vai kutusal an al avirhe datapisteille

doubl e ptoterrdo[cases][bpmax] = { {0.36211186117, 1.58543369461,
0. 596657355607},

{104. 470091414, 133.510299228, 226. 735528755},

{}

{1.70293863659, 10.0244700608, 52.376235069, 64.3117407633},
{6.8066144301, 21.0237960416},

i},
, 1.59552499, 0.41},

4
.4, 10.1, 6.64906008, 8.5, 32.0780297, 34.4673759},

{+ b



/'l Funktion indeksit, jotka vastaavat alfan ja PDF:.ien skaal akertoima //
HUOM O a huom oon skaal an tyyppi (n*m n*s”, n*mT, n kerroin) int

Qai nd[ cases] = {2, 11, 10, 10, 10, 10, 10, 10, 10, 2, 8, 7, 7, 2, 2, 7, 7,
7, T},

int Qind[cases] = {3, 12, 11, 11, 11, 11, 11, 11, 11, 3, 9, 8, 8, 3, 3,
8, 8, 8, 8};

/| KAoytettAovien skaal akertoinmien ol etus-, maksimi- ja nminimarvot double
Qdef[cases] = {2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0,
1.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0};

doubl e Qmax[cases] = {4.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 4.0,
2.0, 2.0, 2.0, 4.0, 4.0, 2.0, 2.0, 2.0, 2.0};
double Qm n[cases] = {1.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5 0.5, 0.5, 1.0,
0.5, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 0.5, 0.5};

/'l Al kupi steet (vai kutusala on erisuuri kuin yksi oi keanpuol ei si ssa

pi st ei ssAa) ja vastaavat vAalien pituudet

doubl e al kup[cases] = {cEm nl, cEm n2, cptmnl, cptmn2, cptm n2, cptm n3,
cptmnd4, cptmn5, cptm n6, bEm nl, bEm n2, betam nl, betam nl, tEm nl,
tEmn2, tptmnl, tavymnl, tptmn2, tymnl}; double vali[cases] =
{cEvalil, cEvali2, cptvalil, cptvali2, cptvali?2, cptvali3, cptvali4,
cptvali5, cptvali6, bEvalil, bEvali2, betavalil, betavalil, tEvalil
tEvali 2, tptvalil, tavyvalil, tptvali2, tyvalil};

/* [/ Tarkistetaan varuilta, ettAs vaikutusala ei saa arvoa nolla ensi nmA
ai sessAa eval uoi nti pi steessAa. Miuuten tul ee ongel ma ratio-graafien kanssa
(nol lall a jakam nen).

for(int i = 0; i < cases; i++){
cout << f[i]->Eval (al kup[i]+0.00001) << endl;

}
*/
doubl e xplin[ points], xpl og[ poi nts];

TG aph *grnl o[ cases];

TG aph *grLNf cases];

TG aph *grLL[ cases];

TG aphAsymErrors *grL( cases];
TG aphAsymErrors *gr NLJ cases] ;
TG aph *grconi 3] ;

TG aph *grr[cases][types];

TG aph *gr nmax|[ cases];
TG aph *grnm n[ cases] ;

TG aphAsymErrors *gr Qa[ cases];
TG aphAsymErrors *gr Q[ cases];
TG aphAsymErrors *gr{ cases];
TG aph *gr QQmax[ cases];

TG aph *gr QQm n[ cases] ;

TG aphAsymmErrors *grQel [ cases];

TG aphAsymErrors *gr FF[ cases];
TG aphAsymmErrors *gr FFrel [ cases];



/'l d uoneja vastaava i ndeks

int gind[cases] = {11, 16, 15, 15, 15, 15, 15, 15, 15, 11, 13, 11, 11, 11
11, 12, 10, 12, 10};

/1 Kvarkin massaa vastaavat funktioiden indeksit sekAs ol etus-, maksim -
ja mnimarvot

int mnd[cases] = {0, 0, 0, 0,0 O, O, O, O, O, O, O, O, O, O, O, 0O, O, O,
0};

doubl e nfcases] = {1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27,
4.18, 4.18, 4.18, 4.18, 172.9, 172.9, 172.9, 172.9, 172.9, 172.9}; // mc
= 1.27+0.02 GV, mb = 4.18+0.03-0.02 GV, mt = 172.9+-0.4 GV doubl e
mmax|[ cases] = {1.67, 1.67, 1.67, 1.67, 1.67, 1.67, 1.67, 1.67, 1.67, 4.78,
4.78, 4.78, 4.78, 174.0, 174.0, 174.0, 174.0, 174.0, 174.0}; // mc =
1.67+-0.07 GV, mb = 4.78+-0.06 GV, mt = 174.0 GeV (173.1+0.9) doubl e
mm n[ cases] = {0.993, 0.993, 0.993, 0.993, 0.993, 0.993, 0.993, 0.993,
0.993, 3.610, 3.610, 3.610, 3.610, 160, 160, 160, 160, 160, 160}; // mc =
0.993+-0.008 GV, mb = 3.610+-0.016 GV, mt = 160+5-4 GV

/1l Indeksit, arvot ja vastaavat virheet fragnentaatiofraktioille (-1 = ei
FF: AcAc/ FF = 1. 000)

int FFind[cases] = {-1, -1, 12, 12, 12, 12, 12, 12, 12, -1, -1, -1, -1, -
1, -1, -1, -1, -1, -1}; double FF[cases] = {1.0, 1.0, 0.557, 0.226, 0.238,
0. 557, 0.238, 0.557, 0.238, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0}; double FFuperr[cases] = {0.0, 0.0, 0.023, 0.010, 0.007, 0.023,

0. 007, 0.023, 0.007, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
doubl e FFl owerr[cases] = {0.0, 0.0, 0.023, 0.010, 0.007, 0.023, 0.007,
0. 023, 0.007, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

int totCScoltypeind =1

/1 Valitaan, onko ratio-graafien x-akselin pisteet |ineaarisesti vai

| ogaritm sesti valittuja

bool rlogp[cases] = {true, true, false, false, false, true, true, true,
true, true, true, false, false, true, true, false, false, true, false};

/1 Laskent asi |l nukka

for(int i = 0; i < cases; i++){

i f(tcase[i].conpare("cdif2") == 0){ // En tule kAssittel emAnAen tapausta
"cdif2" (pp --> Da°) tul osten anal yysi ssAa

conti nue;

}

if(bpli] == 0){ _
cout << "Kokeel liset tul okset puutuvat tapauksessa " << i+l << "/" <<
cases << endl

conti nue;

}
/1] KOKEELLI SET TULOKSET JA VASTAAVAT K- TEKI JA-I DEN ARVOT ///

if(ishist[i] == true){ // H stogramm tapaukset

doubl e bi nbo[ bp[i]+1];
doubl e bkk[bp[i]];
doubl e bvp[bp[i]];
doubl e val [bp[i]];



doubl e upsyserr[bp[i]];
doubl e | owsyserr[bp[i]];
doubl e binkaQ Quer][bp[i]];
doubl e kfval [bp[i]];
doubl e kfupsyserr[bp[i]];
doubl e kfl owsyserr[bp[i]]
11;
i]]

] < bp[i]+1;

doubl e kfuptoterr[bpl[i

]
|
doubl e kflowtoterr[bp[i]

for(int j = O j+H){

bi nbo[j] = binboO[i][j];
}

doubl e params[npar[i]];
for(int j = 0;

j < mnpar[i]; j++){

params] ] |

}

for(int j

f[i]->CetParaneter(j);;

0; J <bpli]; j++){
(binbo[j+1] + binbo[j])/2;
bvp[j ] (bi nbo[j +1] - binbo[j])/2;
val[j] = valO[i][j];
upsyserr[j] = syserrup[i][j];
| owsyserr[j] = syserrdo[i][j];

bkK[ ] ]

j
[
/*

/| Nopeanpi (mutta epAatarkenpi) tapa | askea binej Az vast aavat

teoreettiset vertail uarvot/K-kertoinet:

bi ni n keski pi st eessAa.
bi nkaQ 0] [j] = f[i]->Eval (bkk[j]):

f[i]->SetParanmeter(Qaind[i],
f[i]->Set Paraneter (Qoind[i],
binkaQQ 1][j] = f[i]->Eval (bkk[j]);

fl[i]->SetParanmeter(Qaind[i], Qnn[i
f[i]->SetParameter(Qind[i], Qmn[i
binkad 2][j] = f[i]->Eval (bkk[]]);

f[i]->SetParaneter(Qaind[i],
f[i]->SetParanmeter (Qouind[i],
binkaQ(3][j] = f[i]->Eval (bkk[j]);

f[i]->SetParanmeter(Qaind[i], Qmn[i
f[i]->SetParameter (Qind[i], Qdef[i
binka 4][j] = f[i]->Eval (bkk[j]);

f[i]->SetParameter (Qaind[i], Qef[i
f[i]->SetParameter(QQind[i], Qmn[i
bi nkaQQ 5][j] = f[i]->Eval (bkk[j]);

Quax[i]);
Quax[i]);

Qdef[i]);
Qax[i]);

Ei

keski arvoa, arvo vain | askettu



f[i]->SetParanmeter(Qaind[i], Qmax[i]);
fl[i]->SetParanmeter(Qind[i], Qdef[i]); binkaQ6][j] = f[i]-
>Eval (bkk[]j]);

f[i1]->SetParanmeter(Qaind[i], def[i]);
fl[i]->SetParanmeter(Qind[i], Qef[i]);

cout << "Ns. vAcAorAot keskiarvot (teor.) binille (kok.) " <<j + 1 << "/
" << bp[i] << " laskettu tapauksessa " << i + 1 << "/" << cases << "." <<
endl ; */

binkaQ 0][j] = (f[i]->Integral Fast(np, X, w, binbo[j], binbo[j+1],
parans, 1.e-9))/(binbo[j+1] - binbo[]]);

parans[ Qai nd[i]] Qrax[i];

par ans[ Qpi nd[1]] Qrax[i];

binkaQ 1][j] = (f[i]->Integral Fast(np, X, w, binbo[]], binbo[j+1],
parans, 1.e-9))/(binbo[j+1] - binbo[]]);

params[ Qaind[i]] = Qmn[i];

params[ Qoind[i]] = Qmin[i];

binkad 2][j] = (f[i]->Integral Fast(np,
parans, 1.e-9))/(binbo[j+1] - binbo[j]);

] Qdef[i];
] Qmax[i];

X
=

bi nbo[j], binbo[j+1],

par ans[ Qai nd[ =
par anms[ Qpi nd[ =
[
[

[
[
binkaQ 3][j] = (f[i]->Integral Fast(np, X, w, binbo[j], binbo[j+1],
parans, 1.e-9))/(binbo[j+1] - binbo[j]);
parans[ Qaind[i]] = Qmin[i];
par ans[ Qoi nd[ i ] Qdef[i];

]
]
(
(
]
]
(
(

binkaQ( 4][j] = ffi]->|ntegraIFast(np, X, W, binbo[]], binbo[j+1],
parans, 1.e-9))/(binbo[j+1] - binbo[]]);

parans[ Qaind[i]] = Qdef[i];

params[ Qoi nd[i]] = Qmin[i];

binkaQ 5][j] = (f[i]->Integral Fast(np, x, w, binbo[]j], binbo[j+1],
parans, 1.e-9))/(binbo[j+1] - binbo[j]);

par ans[ Qai nd[1]] Qrax[i];

parans[ Qoi nd[i]] Qdef[i];

binkaQ 6][j] = (f[i]->Integral Fast (np,
parans, 1.e-9))/(binbo[j+1] - binbo[j]);

par ans[ Qai nd[i]] Qdef[i];
parans[ Qoi nd[i]] Qdef[i];

cout << "Keskiarvot (teor.) binille (kok.) " << j + 1 << "/" << bp[i] <<
" laskettu tapauksessa " << i + 1 << "/" << cases << "." << endl;

}

f[i]->SetParaneter(Qaind[i], Qef[i]): // ROOT 62
f[i]->Set Paraneter (Qpind[i], Qdef[i]):

X
=

bi nbo[j], binbo[j+1],

teorka[i] = new THLD( For m(" %st eorka",tcase[i].c_str()),
Form(" %t eorka",tcase[i].c_str()), bp[i], binbo);
for(int j =0; j <bp[i]; J+H{



teorka[i]->SetBi nContent(j+1, binkaQQO][j]); 3
teorkali]->SetBinError(j+1, 0.00000000000000001); // Pieni katsojalle nA
akymAat Affn virhe lisAstty, jotta histogramm piirretAcAan oi kein kuvaan }

teorkal[i]->Wite( Fornm("%steorka",tcase[i].c_str()) );

erstaerr[i] = new THLD(Forn("%erstaerr",tcase[i].c_str()),
Form("%erstaerr",tcase[i].c_str()), bp[i], binbo);

for(int j =0; j <bp[i]; j+H){
erstaerr[i]->SetBi nContent (j+1, val[]
erstaerr[i]->SetBinError(j+1, staerr]

}

erstaerr[i]->Wite( Form("%erstaerr”,tcase[i].c_str()) );

1);
i10j1);

ersyserr[i] = new TG aphAsymmErrors(bp[i], bkk, val, bvp, bvp, |owsyserr,
upsyserr);
ersyserr[i]->Wite( Form("%sersyserr",tcase[i].c_str()) );
for(int k = 0; k < Quer; k++){
kfstaerr[i][k] = new THLD( For n(" %skfstaerrQ@®1li", tcase[i].c_str(), k),
For m( " %skf staerr%®1i",tcase[i].c_str(), k), bp[i], binbo);
for(int j =0; j <bp[i]; j++){
kfval[j] = (valO[i][j])/(binkaQK][j]);

kfstaerr[i][k]->SetBi nContent(j+1, valO[i][j]/(binkadKk][j]));
1031/ [i1));

kfstaerr[i][k]->SetBinError(j+1, staerr[i ( bi nkaq k]
kfupsyserr[j] = (syserrup[i][j])/(binkaQKk][j]);
kfl owsyserr[j] = (syserrup[i][j])/(binkaQK][]j]);

kfuptoterr[j] = TMath::Sqgrt(powstaerr[i][j], 2) + powsyserrup[i][j], 2)
+ pow adderrup[i][)j], 2))/(binkaQ k][]j]); kflowtoterr[j] =
TMat h:: Sqrt (pow(staerr[i][j], 2) + pow(syserrdo[i][j], 2) +

pow adderrdo[i][j], 2))/(binkaQk][]j]);

}

kfstaerr[i][k]->Wite( Form("%kfstaerrQ®1i", tcase[i].c_str(), k) );
kf syserr[i][k] = new TG aphAsymmErrors(bp[i], bkk, kfval, bvp, bvp,

kfl owsyserr, kfupsyserr);

kf syserr[i][Kk]->Wite( Form("%skfsyserr@®1li", tcase[i].c_str(), k) );
kftoterr[i][k] = new TG aphAsymmErrors(bp[i], bkk, kfval, bvp, bvp,

kfl omtoterr, kfuptoterr);
kftoterr[i][k]->Wite( Form"%skftoterrQ®1li", tcase[i].c_str(), k) );

}
el se{ // Datapistetapaukset

i nt ndef p;
int naltp = O;



for(int j =1; j < bp[i]; j++){

erxpO[i][j]){

i f(erxpO[i][j-1]

nal t p++;

}

}

ndefp = bp[i] - naltp;
doubl e erxp[ ndef p] ;

doubl e
doubl e
doubl e
doubl e

er xperr [ ndef p];

val [ ndef p] ;

er pupt ot err [ ndef p] ;
er pl owt ot err [ ndef p] ;

doubl e
doubl e
doubl e
doubl e
doubl e

erxpal t[ nal t p];
erxperral t[naltp];

val al t[ nal t p];
erpuptoterral t[naltp];
erplowtoterralt[naltp];

doubl e teorval d Quer] [ ndef p];

doubl e
doubl e
doubl e

kf val [ ndef p] ;
kf upt ot err [ ndef p];
kfl owt ot err [ ndef p] ;

int defptag = 0;
for(int j = 0; |j

RECY 0) Il
erxp[defptag] = erxpO[i][j]
er xper r [ def pt ag]
val [defptag] = valO[i][]j];
er pupt ot er r [ def pt ag]
er pl owt ot err [ def pt ag]

< bp[il];

t eorval 4 0] [ def pt ag]

f[i]->SetParaneter (Qaind[i],
f[i]->SetParaneter(Qind[i],
teorval J 1] [ def pt ag]

f[1]->SetParaneter(Qaind[i],
f[1]->SetParanmeter (Qind[i],
t eorval (J 2] [ def pt ag]

f[1]->SetParaneter (Qaind[i],
f[i]->SetParaneter(Qind[i],
teorval (J 3] [ def pt ag]

f[i1]->SetParaneter (Qaind[i],
f[1]->SetParanmeter (Qind[i],
t eorval (J 4] [ def pt ag]

(erxpO[i][]-1]

= ptoterrup|
= ptoterrdo[

= f[|]_

= f[|]_

= f[|]-

= f[|]_

= f[|]_

j )

= erxpO[i][j]1)){

erxperrO[i][j];

10i1;
i1l

j
[il;
>Eval (er xp[ def ptag]);

Qrax[i]);
Qrax[i]);
>Eval (erxp[ def ptag]);

Quin[i]);
Quin[i]);
>Eval (er xp[ def ptag]);

Qdef [i]);
Qrax[i]);
>Eval (erxp[ defptag]);

Quin[i]);

Qdef[i]);
>Eval (er xp[ defptag]);



f[i]->SetParaneter(Qaind[i], Qdef[i]); f[i]->SetParameter(Qoind[i],
Quin[i]);

teorval @ 5] [defptag] = f[i]->Eval (erxp[defptag]);
f[i1]->SetParanmeter(Qaind[i], Qmax[i]);

fl[i]->SetParanmeter(Qind[i], Qef[i]);

teorval Q6] [defptag] = f[i]->Eval (erxp[defptag]);

f[i]->SetParanmeter(Qaind[i], def[i]);
f[i]->SetParaneter(Qind[i], Qef[i]);

def pt ag++;
}

}

erp[i] = new TG aphAsymmErrors(ndefp, erxp, val, erxperr, erxperr,
erplowtoterr, erpuptoterr);

erp[i]->Wite( Form("erp%", tcase[i].c_str()) );

if(0 < naltp){

int altptag = O;

for(int j =1; j < bp[i]; j+H){

i f(erxpO[i][j-1] == erxpO[i][j]){

erxpalt[altptag] = erxpO[i][j] + 0.0065*vali[i];

erxperralt[altptag] = erxperrO[i][j];
valalt[altptag] = valO[i][j];

erpuptoterralt[altptag] = ptoterrup[i][]j];

erplowoterralt[altptag] = ptoterrdo[i][])];
al t pt ag++;

}

}

erpalt[i] = new TG aphAsymmErrors(naltp, erxpalt, valalt, erxperralt,
erxperralt, erplowtoterralt, erpuptoterralt); erpalt[i]->Wite(
Form("erp%alt"”, tcase[i].c_str()) );

}
for(int k = 0; k < Quer; k++){
for(int j = 0; j < ndefp; j++){

kfval[j] = (val[j])/(teorvaldK][j]);

kfuptoterr[j] = (erpuptoterr[j])/(teorval QKk][])]
kflomoterr[j] = (erplowtoterr[j])/(teorval QK]]|

}
kfp[i][k] = new TG aphAsymmErrors(ndefp, erxp, kfval, erxperr, erxperr,

)
il);



kfl omtoterr, kfuptoterr);
kKfp[i][Kk]->Wite( Forn("%kfpQ@®1li", tcase[i].c_str(), k) );

}

}

cout << "Kokeel liset tulosten ja vastaavi en k-tekijAfi den kuvaaj at
hoi dettu tapauksessa " << i + 1 << "/" << cases << "." << endl;

/1] TEOREETTTI SET TULOKSET ///

for(int j =0; j < points; j++){

xplin[j] = al kup[i]+0.00001+j*(vali[i])/points;//E voi aloittaa suoraan
pi st eest Aa 2*m kokonai svai kutusal oi | | a, tAal|Afin PDF:ien kanssa tul ee
ongel m a. Toi sekseen eri partoni en vai kutusal aosuuksia tutkittaessa ei
voi da jakaa nollalla. TAemAa arvon |isAeys voi daan toki sisAallyttAcAa
itse funktioi den mieAarittel yvAal ei hin, mikAali se tuntuu kAatevAammial t A
o. // 10a»ap < 0,5/1200, 0,5 on pienin kAaytetty nuneerinen arvo vAalin
pituudelle. if(j==(points-1)){

xplin[j] = alkup[i] + vali[i];

xplog[j] = al kup[i] + (vali[i])*pow 1000, (j+1.0)/points-1); //
Logaritm nen pisteitten valinta // 10a»aup < 0,5*10007(1/150-1) if(j==0){
xplog[j] = al kup[i]+0.00001;

}

}

ct 14n. pdfexit();
FHEEEEEEErr i rrirrirrirrlin
doubl e ypal I [ pdf s] [ poi nts];

doubl e ypLN points];

doubl e ypLL[ poi nts];

doubl e ypNL( poi nt s] ;

doubl e xpPDFerr [ poi nts];

doubl e ypNLO ower err [ poi nts];

doubl e ypNLQuppererr|[points]; double ypLO owererr[points];
doubl e ypLQuppererr|[ points];

for (int k = 0; k < pdfs; k++){
ct14n.setct 11(it[k]);

for (int j =0; j < points; j++){
ypal I [KI[j] = f[i]->Eval (xplin[j]);

}

if(k '=58){
ct 14n. pdfexit();



for (int j =0; j < points; j++){

yPLN[j] = ypal I[57][j];
ypLL[j] = ypal I[58][]];
doubl e bl = O;
doubl e b2 = O;

double y0 = ypal I[0][j];
ypNLd j] = yO0;

for(int k = 1; k < 24; k++){
doubl e y1 = ypal I [2*k-1][]j];
doubl e y2 = ypal I [2*K][]];

double al = y1-yO0;

if(al < (y2-y0)){

al = y2-y0;
}
if(al < 0){
al = 0;

}

bl += pow(al, 2);

doubl e a2 = y0-yl1;

if(a2 < (y0-y2)){

a2 = y0-y2;

}

if(0 > a2){

a2 = 0;

}

b2 += pow a2z, 2);

}

doubl e c1 Thvat h: : Sqgrt (bl);

doubl e c2 TMat h: : Sqrt (b2);



ypNLQuppererr|[j]
ypNLO owererr[j]

cl;
c2;

ypLQuppererr|[j]
ypLO owererr[j]

}

grnlo[i] = new TG aph(points, xplin, ypNLO);
grnlo[i]->Wite( Form("gr%nlo", tcase[i].c_str()) );

(cl/y0)*ypLL[j];
(c2/y0)*ypLL[j];

grLN[i] = new TG aph(points, xplin, ypLN);
grLN[i]->Wite( Form("gr%sLN', tcase[i].c_str()) );

grLL[i] = new TG aph(points, xplin,ypLL);

grLL[i]->Wite( Form("gr%sLL", tcase[i].c_str()) );

grNLg i] = new
TG aphAsymmEr r or s( poi nts, xpl i n, ypNLO, xpPDFer r, xpPDFerr, ypNLO owererr, ypNLO
uppererr);

grNLg i]->Wite( Form("gr%NLO', tcase[i].c_str()) );

grLgi] = new
TG aphAsymtEr ror s(poi nts, xplin, ypLL, xpPDFerr, xpPDFerr, ypLO owererr, ypLQupp
ererr);

grLgi]->Wite( Form("gr%sLO', tcase[i].c_str()) );

cout << "PDF-virhegraafit hoidettu (" << i+l << "/" << cases << ")." <<
endl ;

FEEEEEEEE i rrrrrrty
if((tcase[i].conmpare("cl") == 0)]||(tcase[i].conpare("bl") ==

O)||(tcase[i].conpare("t2") == 0)){
doubl e ypconi poi nts];

f[1]->Set Paraneter(totCScol typeind, -1);

for (int j =0; j < points; j++){

ypcon{j] = f[i]->Eval (xplin[j]);

}

f[1]->Set Paraneter(totCScoltypeind, 1);

int b;

if(tcase[i].conpare("cl") == 0){
b = 0;

}

if(tcase[i].conpare("bl") == 0){
b = 1;

}

if(tcase[i].conpare("t2") == 0){



b = 2;

}

grconf b] = new TG aph(points, xplin,ypcom;
grconfb]->Wite( Form("grconts", tcase[i].c_str()) );

cout << "pp vs. pp_bar-vertail ukAeyr As nuodostettu" << endl;

}

FELLTTEEIEL i irrrri
doubl e xpr[ points];

if(rlogp[i] == true){

for(int j =0; j < points; j++){

Xff[i] = xplog[j];

}el sef
for(int j = 0; j < points; j++){
ipr[j] = xplin[j];

}
doubl e ypr[ points];

for (int k = 0; k < types; k++){

for (int j =0; j < points; j++){
doubl e kok; . .
if(rlogp[i] == true){ // SAcAmstetAcAan hi eman | askent a-ai kaa
f[i]->SetParameter(gind[i], 1);
fl[i]->SetParaneter(gind[i] + 1, 1);
f[i]->SetParaneter(gind[i] + 2, 1);
fl[i]->SetParaneter(gind[i] + 3, 1);
fl[i]->SetParaneter(gind[i] + 4, 1);
f[i]->SetParaneter(gind[i] + 5, 1);
kok = f[i]->Eval (xpr[j]);
}el se{
kok = ypLL[j];
}
f[i]->Set Paraneter(gind[i], 0);
f[i]->SetParaneter(gind[i] + 1, 0);
f[i]->SetParameter(gind[i] + 2, 0);
f[i]->SetParaneter(gind[i] + 3, 0);
f[i]->SetParaneter(gind[i] + 4, 0);
f[i]->SetParaneter(gind[i] + 5, 0);



f[i]->SetParanmeter(gind[i] + k, 1); // Asetetaan tarkasteltavien
hi ukkasten tyyppi

doubl e osa = f[i]->Eval (xpr[j]);
ypr[j] = osalkok;
grr[i][k] = new TG aph(points, xpr, ypr);

grr[i][k]->Wite( Form("gr%r9%1li", tcase[i].c_str(), k) );
}

f[i]->SetParaneter(gind[i], 1);

f[i]->SetParameter(gind[i] + 1, 1);
f[i]->SetParaneter(gind[i] + 2, 1);
f[i]->SetParanmeter(gind[i] + 3, 1);
f[i]->SetParameter(gind[i] + 4, 1);
[I1f[i]->SetParaneter(gind[i] + 5, 1);

cout << "Eri vuorovai kutustyyppi en (g+g/ g+g"bar) suhteelliset osuudet
vai kutusal asta | askettu." << endl;

FELLTTEEIEL i rrrrri
doubl e ypmmax[ poi nts], ypnm n[ points];
for (int j =0; j < points; j++){
fl[i]->SetParanmeter(mnd[i], mrax[i]);
ypmmex[j] = f[i]->Eval (xplin[j]);
fl[i]->SetParaneter(mnd[i], nmn[i]);
ypmmin[j] = f[i]->Eval (xplin[j]);

}

f[i]->SetParameter(mnd[i], nfi]);

grmmex[i] = new TG aph(points, xplin, ypmax) ;
grmmax[i]->Wite( Forn("gr%snmmax", tcase[i].c_str()) );

grmmn[i] = new TG aph(points, xplin,ypmm n);
grnm n[i]->Wite( Form("gr%smmn", tcase[i].c_str()) );
cout << "Massan epAavar nuuden ai heuttamat virhekAoyrAot | askettu." <<
endl ;

FEEEEEEEE bbb brrrrird

doubl e xpQerr [ points];
doubl e
ypQauperr[ poi nts], ypQal owerr[ poi nts], ypQouperr[ points], ypQol owerr[ points];
doubl e ypQuppererr[points], ypd owererr[points];
doubl e ypQ uperr[points],ypQ | owerr|[points];

doubl e ypQQrax|[ poi nt s], ypQQm n[ poi nts];



doubl e ypQ [ poi nts];
for (int j =0; j < points; j++){
xpQerr[j] = 0;

f[i]->SetParanmeter(Qaind[i], Quax[i]);
f[i]->SetParanmeter(Qind[i], Qmax[i]);
ypQQex[j] = f[i]->Eval (xplin[j]);

f[i1]->SetParanmeter(Qaind[i], Qmin[i])
f[i]->SetParameter(QQind[i], Quin[i]);
ypQQmin[j] = f[i]->Eval (xplin[j]);

f[i]->SetParameter (Qaind[i], def
f[i1]->SetParanmeter (Qind[i], Qmax
double yp3 = f[i]->Eval (xplin[j]);
f[i]->SetParaneter (Qaind[i], Quin[i]);
fl[i]->SetParanmeter(Qind[i], Qef[i]);
doubl e yp4 = f[i]->Eval (xplin[j]);
f[i]->SetParaneter (Qaind[i], Qef[i]);
fl[i]->SetParanmeter(Qind[i], Qmn[i]);
doubl e yp5 = f[i]->Eval (xplin[j]);

fl[i]->SetParaneter(Qaind[i], Qmax[i]);
f[i]->SetParanmeter(Qind[i], def[i]);
double yp6 = f[i]->Eval (xplin[j]);

ypQauperr[j] = yp4 - ypLL[j];

ypQalowerr[j] = ypLL[j] - yp6;

i f(ypQauperr[j] < O || ypQalowerr[j] < 0){

cout << "Jokin on erittAeain pielessAa Qa:n vai htelun ai heuttaman virhe-
bandi n kanssa: ylAevirhe on " << ypQauperr[j] << " ja alavirhe " <<
ypQal owerr[j] << " pisteessAa (indeksi) " << j << "/" << points-1 << "
t apauksessa " << i+l << "/" << cases << "." << endl; }

ypQpuperr[j] = yp3 - ypLL[j];
ypQplowerr[j] = ypLL[j] - ypsS;

if(ypQouperr[j] < 0 & ypQlowerr[j] < 0){ cout << "Tapauksessa " << i +1
<< "/" << cases << " (" << tcase[i].c_str() << ") pisteessAa (indeksi)" <<
j << "I" << points-1 << " @:n arvon nostam nen pi enent AcAe vai kut usal an
arvoa ja vAchent Aemi nen suurentaa." << endl; } // Negatiiviset virheet
ei vAot haittaa, sillAa TG aphAsymmErrors-1uokka tul kitsee ne tAallAfin
oi keaoppi sesti: negatiiviset virheet (lowerr, uperr) ovat graafille sam
asia kuin (-uperr,-lowerr).

if((ypQouperr[j] < 0 && ypQplowerr[j] > 0) || (ypQouperr[j] > 0 &&

ypQol owerr[j] < 0)){ _
cout << "@:n vaihtelu vai kuttaa samaan suuntaan (tapaus " <<

tcase[i].c_str() << ", piste " << j << "/" << points-1 << "): ylAsraja ="
<< ypQouperr[j] << " ja alaraja =" << ypQlowerr[j] << "." << endl; }
doubl e ypQraxval = yp3; // Kolnme eri vaihtoehtoa naksimlle ja mnimlle

i f(ypQraxval < yp4){



ypQraxval = yp4;
}

i f (ypQraxval < ypQQm n[j]){
i/peraxval = ypQQm n[j ] ;

ypQuppererr[j] = ypQraxval - ypLL[j];
doubl e ypQm nval = ypb5;

i f(ypQm nval > yp6){
ypQni nval = yp6;
}

i f(ypQm nval > ypQQmax[j]){
ypQm nval = ypQQmax[j];

}
ypQowererr[j] = ypLL[j] - ypQm nval;
ypQ[j] = 0;

if(ypLL[j] = 0){ _ _
ypQruperr[j] 100*ypQuppererr[j]/ypLL[j];
ypQlowerr[j] 100*ypQ owererr[j]/ypLL[j];
}el se{

ypQuperr[j] = O;
ypQlowerr[j] = 0;
}
}

f[i]->SetParameter(Qaind[i], Qdef[i]); // Miokkaukset al kuper Aai si ksi
fl[i]->SetParanmeter(Qind[i], Qef[i]);

grQlf[i] = new
TG aphAsymEr ror s(poi nts, xplin, ypLL, xpQerr, xpQerr, ypQal owerr, ypQauperr);
grQafi]->Wite( Form("gr%sQa", tcase[i].c_str()) );

grQ[i] = new
TG aphAsymtEr ror s(poi nts, xplin, ypLL, xpQerr, xpQerr, ypQl owerr, ypQouperr); /
/ Negatiiviset virheet tulkitaan oikein, katso komentti ylenpAasnAo
grQ[i]->Wite( Form("gr%sQ", tcase[i].c_str()) );

grdi] = new
TG aphAsymEr r or s( poi nts, xplin, ypLL, xpQerr, xpQerr, ypQ owererr, ypQuppererr)
;ogr@i]->Wite( Form("grQ®s", tcase[i].c_str()) );

grQmax[i] = new TG aph(points, xplin, ypQQrax) ;
grQmax[i]->Wite( Form("gr%QQrax", tcase[i].c_str()) );

grQQmin[i] = new TG aph(points, xplin,ypQQm n);
grQQmin[i]->Wite( Form("gr%sQQmin", tcase[i].c_str()) );

grQel[i] = new
TG aphAsymEr ror s(poi nts, xplin, ypQ, xpQerr, xpQerr, ypQ |l owerr, ypQuperr);
grQel[i]->Wite( Form("gr%sQel", tcase[i].c_str()) );



cout << "Qgraafit laskettu." << endl;
FEEETELEE i rrirrrri
if(0 <= FFind[i]){

doubl e xpFFerr[ points], ypFFl owerr[ poi nts], ypFFuperr[ points];
doubl e ypFFr[ poi nts], ypFFrl owerr[ poi nts], ypFFruperr[ points];

for(int j =0; jJ < points; j++){
xpFFerr[j] = O;

ypFFlowerr[j] = FFlowerr[i]*ypLL[]];
ypFFuperr[j] = FFuperr[i]*ypLL[j];
ypFFr[j] = 0;

ypFFriowerr[j] = 100.0*FFlowerr[i]/FF[i];

ypFFruperr[j] = 100.0*FFuperr[i]/FF[i];

f[i]->SetParaneter(FFind[i], FF[i]);

grFF[i] = new
TG aphAsymmEr r or s( poi nts, xplin, ypLL, xpFFerr, xpFFerr, ypFFl owerr, ypFFuperr);
grFF[i]->Wite( Form("gr%sFF", tcase[i].c_str()) );

grFFrel[i] = new
TG aphAsymtEr ror s( poi nts, xplin, ypFFr, xpFFerr, xpFFerr, ypFFrl owerr, ypFFruper

r);
grFFrel[i1]->Wite( Form("gr%sFFrel", tcase[i].c_str()) );

}
FEEEEEEEEr bbb brrrriri

cout << "Tapaus " << i + 1 << "/" << cases << " (" << tcase[i].c_str() <<
") evaluoitu." << endl;

}
file->C ose();
cout << "Laskenta suoritettu." << endl:

return O;

}

doubl e YksTesti (double *x, double *p){
double v = x[0];
double Q = p[0];
double kO = p[1];
doubl e kq = p[2];



return v*(kO*ct 14n. parton(0, v, Q +kg*(ctl14n.parton(1

Q +ct14n.parton(-1, v, Q +ctl4n.parton(2, v, Q +ctl4n.parton(-2,
Q +ctl4n.parton(3, v, Q +ctldn.parton(-3, v, Q +ctldn. parton(4,

Vv,

Vv,
Vv,

Q +ct l1l4n.parton(-4, v, Q +ctl4n.parton(5, v, Q +ctl4n.parton(-5, v,

}

doubl e Pet FF(doubl e *x, double *p){
double z = x[0];
doubl e eQ = p[0];
double N = p[1];

if(z <= 0){
return O;

}

return N (z*pow((1-1/z-eQ (1-2)),2));
}

doubl e Pet FFeff (doubl e *x, double *p){
double z = x[0];
double eQ = p[0];
double N = p[1];
doubl e n p[ 2] ;

if(z <= 0){
return O;

}

return (N powm(z,(n-2.0)))/powm(1-1/z-eQ (1-2)), 2);
}

doubl e Tot CSpp(doubl e *x, double *p){
doubl e ynme = p[9];

double s = pow( x[ 0] *yne, 2);
double m = p[0];

int coltype = p[1];

double ka = p[2];

double kp = p[3];

int Qva = p[4];

int Qup = p[5];

doubl e Qvka = p[6];

doubl e Qvkp = p[7];

double FF = p[8];
double ym = p[10];
doubl e kO = p[11];
double k1 = p[12];
doubl e k2 = p[13];
doubl e k3 = p[14];
doubl e k4 = p[15];
doubl e k5 = p[16];
if(s <= 4*powm(m 2)){
return O,

}

Q));



TF2 *fInt = new TF2("fInt", Intgpp, 0.0, 1.0, 0.0, 1.0, 17);
f1nt->Set Paraneter (0, s);

flnt->Set Paraneter(1, ;

f1nt->Set Paranmeter (2, coltype); flnt->SetParaneter(3, ka);
f1nt->Set Paraneter (4, Kkp);

flnt->Set Paraneter (5, Qua);

f1nt->Set Paraneter (6, Qup);

f1nt->Set Paraneter (7, Quka);

f1nt->Set Paraneter (8, Qkp);

f1nt->Set Paraneter (9, FF)

flnt->Set Paraneter (10, ym

f1nt->Set Paranmeter (11, kO);

fInt->Set Paraneter (12, kl1);

f1nt->Set Paraneter (13, k2);

f1nt->Set Paraneter (14, k3);

f I nt->Set Par anet er (15, k4);

f 1 nt->Set Paraneter (16, k5);

return fint->Integral (0.0, 1.0, 0.0, 1.0, 5.e-5);
}

doubl e I ntgpp(doubl e *x, double *p){

double r1 x[0];
double r2 x[1];
double s = p[0];
double m= p[1];
int coltype = p[2];
doubl e ka p[ 3] ;
doubl e Qkp p[ 4] ;
int Qva = p[35];

int Qup = p[6];
double Qvka = p[7];
doubl e Qvkp = p[8];

double FF = p[9];
double ym = p[ 10];
doubl e kO = p[11];
double k1 = p[12];
doubl e k2 = p[13];
doubl e k3 = p[ 14];
doubl e k4 = p[15];
doubl e k5 = p[16]

doubl e x1m n
doubl e x1max 1
doubl e dx1 = x1max - x1mn; double x1 = x1Imn + r1*dx1;

doubl e x2mn = 4*pow(m 2)/ (s*x1);
doubl e x2max = 1;

doubl e dx2 = x2max - x2mn;
doubl e x2 = x2mn + r2*dx2;

doubl e jacob = dx1*dx2;

doubl e Qa, Q;



if (Qva==1){

Qa = Qvka*Tiat h: : Sgrt (x1*x2*s);
} else {
}Qa = ka*m

if (Quvp==1){

Q = Qukp*TwMat h:: Sgrt (x1*x2*s);
} else {

}Qo = xp*m

|f(Cp 3){ /1 1,3 GeV on pienin skaalavalinta il man extrapol ointia

Qo
}

double h = 1-4*pow(m 2)/ (s*x1*x2);

return ynmfFF*pow ct 14n. al phas(Qa), 2) *TMvat h: : Pi () *(kO*ct 14n. parton(0, x1,
Q) *ct 14n. parton(0, x2, Q)*(1./(12*s*x1*x2))*(-(7+31*powm m 2)/
(x1*x2*s))*TMat h: : Sgrt (h) +4* (1+4*pow(m 2)/ (s*x1*x2) +pow( m 4) /
pow s*x1*x2,2))*TMat h: : Log((1+TMat h::Sqrt(h))/(1-TMath::Sqgrt(h)))) + (k1*
(ctl4n. parton(l, x1, @p)*ctldn.parton(coltype*(-1), x2, @)+ctldn. parton(-
1, x1, @Q)*ctldn.parton(coltype*l, x2, Q)) + k2*(ctldn.parton(2, x1,
Q) *ct 14n. parton(col type*(-2), x2, @)+ctldn.parton(-2, x1,
Q) *ct 14n. parton(col type*2, x2, @)) + k3*(ctl4n.parton(3, x1,
Q) *ct 14n. parton(col type*(-3), x2, @Q)+ctldn.parton(-3, x1,
Q) *ct 14n. parton(col type*3, x2, @)) + k4*(ctldn.parton(4, x1,
Q) *ct 14n. parton(col type*(-4), x2, Q)+ctl4dn.parton(-4, x1
Q) *ct 14n. parton(col type*4, x2, @)) + k5*(ctldn.parton(5, x1,
Q) *ct 14n. parton(col type*(-5), x2, @)+ctl4n.parton(-5, x1
Q) *ct 14n. parton(col type*5, x2, Q)))*(8./(27*pow s*x1*x2,2)))*
(s*x1*x2+2*pow(m 2)) *Tivat h: : Sqrt (h) ) *j acob

}

doubl e D fCS1(double *x, double *p){

doubl e ynpt = p[13]; double pt = x[0]*ynpt;
doubl e nq p[ O] ;
doubl e nmh p[ 1] ;
double e = p[2];

int coltype = p[3];
doubl e yhm n p[ 4] ;
doubl e yhmax p[ 5] ;
doubl e ka = p[6];
double kp = p[7];
int Quva = p[8];

int Qvp = p[9];
doubl e Qvka = p[10];
doubl e Qvkp = p[11];

double FF = p[12];
double ym = p[ 14];
doubl e kO = p[15]
doubl e k1 = p[16]
double k2 = p[17];
doubl e k3 = p[ 18]



doubl e k4
doubl e k5

p[ 19];
p[ 20] ;

doubl e ygm n, yqgnmax;

ygm n = TWMat h: : ASi nH( TMat h: : Sgrt (( pow mh, 2) +pow( pt, 2))/
(pow( nt, 2) +pow pt, 2))) *TMat h: : Si nH(yhmi n)) ;

ygmax = TMat h: : ASi nH( TMWat h: : Sgrt (( pow mh, 2) +pow( pt, 2))/
(pow( nt, 2) +pow pt, 2))) *TMat h: : Si nH( yhmax) ) ;

if(ygmn <= -TMat h:: ACosH(e/ (2* TMat h: : Sgrt (pow( ng, 2) +pow(pt, 2))))){ //
Tarki stetaan, ettAc ynin ja ymax ovat teoreettisten rajojen sisAall Ag:
| yl] <= arcosh(e/(2*mT)) ygmn = -TMath:: ACosH( e/

(2*Twat h: : Sqrt (pow ng, 2) +pow( pt, 2))));

}

i f(TMat h: : ACosH(e/ (2*TMat h: : Sqrt (pow ng, 2) +tpow(pt, 2)))) <= yqmax){ yqmax
TMat h: : ACosH(e/ (2*TMat h: : Sgrt (pow ng, 2) +tpow(pt, 2))));

>~ 1 =

TF2 *fDiflntl = new TR2("fDifIntl", Dflntgl, ygmn, yqmax, 0.0, 1.0, 18);
fD flntl->SetParaneter(0, pt);

fD flntl->SetParaneter(1l, nqg);

fDi flntl->SetParaneter(2, e),;

fD flntl->SetParaneter(3, coltype);
fD flntl->SetParaneter(4, ka);

fD flntl->SetParaneter(5, Qkp);

fD flntl->SetParaneter(6, Qua);
fDflntl->SetParaneter(7, Qp);

fD flntl->SetParaneter (8, Quka);

fDi flntl->SetParaneter(9, Qkp);

fD flntl->SetParaneter (10, FF);

fD flntl->SetParaneter(1l, yn;

fD flntl->SetParaneter(12, kO);

fD flntl->SetParaneter (13, kl);

fD flntl->SetParaneter (14, k2);

fD flntl->SetParaneter (15, k3);

fDi flntl->SetParaneter (16, k4);

fD flntl->SetParaneter(17, k5);

return fDiflntl->Integral (ygmn, yqmax, 0.0, 1.0, 2.e-6);
}

doubl e D f CS2(doubl e *x, double *p){

doubl e ynpt = p[10];
doubl e pt = x[0] *ynpt;
double m = p[0];
double e = p[1];

int coltype = p[2];

doubl e Gka = p[3];

double kp = p[4]; int Qua = p[5];
int Qup = p[6];

doubl e Qvka = p[7];



doubl e Qvkp = p[8];

double FF = p[9];
double ym = p[11];
doubl e kO = p[12];
doubl e k1 = p[13];
doubl e k2 = p[14];
doubl e k3 = p[15];
doubl e k4 = p[16];
doubl e k5 = p[17]

double ymn
doubl e ymax

- TMat h: : ACosH(e/ (2*TMat h: : Sgrt (pow m 2) +pow pt, 2))));
Tiat h: : ACosH(e/ (2* Tivat h: : Sqrt (pow( m 2) +pow pt, 2))));

TF2 *fDiflnt2 = new TR2("fDifInt2", Difintgl, ymn, ymax, 0.0, 1.0, 18);
fD flnt2->SetParaneter (0, pt);

fDflnt2->SetParaneter (1, m;

fDi flnt2->SetParaneter(2, e);

fD flnt2->SetParaneter (3, coltype);

fD flnt2->SetParaneter (4, ka);

fDi flnt2->SetParaneter (5, Q&p);

fD flnt2->SetParaneter (6, Qua);

fDi flnt2->SetParaneter(7, Qup);

fDi flnt2->SetParaneter (8, Qka);

fD flnt2->SetParaneter (9, Qkp);

fD flnt2->Set Paraneter (10, FF);

fD flnt2->SetParaneter (11, ym;

fD flnt2->SetParaneter (12, kO0);

fD flnt2->SetParaneter (13, kl);

fD flnt2->SetParaneter (14, k2);

fD flnt2->SetParaneter (15, k3); fDiflnt2->SetParaneter(16, k4);
fDi flnt2->SetParaneter (17, k5);

return fDiflnt2->Integral (ymn, ymax, 0.0, 1.0, 2.e-6);
}
double D fIntgl(double *x, double *p){

double y1 = x[0];

double z = x[1];
double pt = p[0];
double m= p[1];
double e = p[2];
double s = powe, 2);
int coltype = p[3];
doubl e ka = p[4];
double kp = p[5];
int Quva = p[6];
int Qup = p[7];
doubl e Qvka = p[8];
doubl e Qvkp = p[9];
doubl e FF = p[10];
double ym = p[11];
doubl e kO = p[12]
doubl e k1 = p[13]
doubl e k2 = p[ 14];
doubl e k3 = p[15]



doubl e k4
doubl e k5

p[ 16];
p[ 17];

doubl e Qa, Q;

if (Qva==1){

Qa = Qvka*TMat h: : Sgrt (pow m 2) +pow pt, 2));
} else {
}Qa = Kka*m

if (Qup==1){
Q = Qukp*TMat h:: Sgrt (pow m 2) +pow pt, 2));

.3){ /1 1,3 GV pienin pienin skaalavalinta ilnman extrapolointia

double y2 = (1-z)*(-1)*TMath: : Log(e/ (TMVat h: : Sqrt (pow m 2) +pow pt, 2))) -
TMat h: : Exp(-y1l))+z*TiWat h: : Log(e/ (TMvat h: : Sgrt (pow( m 2) +pow pt, 2))) -
TMvat h: : Exp(y1)); double jacob = TwMath:: Log(s/(pow(m 2)+pow pt, 2))+1-2*e/
(TMat h:: Sgrt (pow m 2) +pow pt, 2))) *TMat h: : CosH(y1));

double x1 = Tmath::Sqgrt((pow m 2) +pow pt,2))/s)*

(TMat h: : Exp(y1l) +TMat h: : Exp(y2));

double x2 = TMWath::Sqrt((pow(m 2) +pow( pt, 2))/s)*(ThMat h: : Exp(-
y1l) +TMat h: : Exp(-Yy2));

doubl e ss = 2*(powm m 2) +pow pt, 2))*(1+TMat h: : CosH(y1l-y2));
double tt = powm(m 2)-(pow m 2) +pow pt, 2))*(1+TMat h: : Exp(-yl+y2));
doubl e uu = pow(m 2)-(pow m 2) +tpow pt, 2))*(1+TMat h: : Exp(y1l-y2));

return ynmfFF*2*pt *x1*x2* pow ct 14n. al phas(Qa), 2)*TMat h: : Pi () / pow(ss, 2) *
((k1*(ctl4n.parton(1l, x1, Q)*ctldn.parton(coltype*(-1), x2,
Q) +ct 14n. parton(-1, x1, Q)*ctldn.parton(coltype*l, x2, Q)) + k2*
(ctl4n. parton(2, x1, @)*ctldn.parton(coltype*(-2), x2, @Q)+ctldn. parton(-
2, x1, Q)*ctldn.parton(coltype*2, x2, @Q)) + k3*(ctldn.parton(3, x1,
Q) *ct 14n. parton(col type*(-3), x2, @)+ctldn.parton(-3, x1,
Qo) *ct 14n. parton(col type*3, x2, Q)) + kd*(ctl4n.parton(4, x1,
Q) *ct 14n. parton(col type*(-4), x2, Q)+ctldn.parton(-4, x1,
Q) *ct 14n. parton(col type*4, x2, @)) + kb5*(ctldn.parton(5, x1,
Q) *ct 14n. parton(col type*(-5), x2, @)+ctldn.parton(-5, x1
Q) *ct 14n. parton(col type*5, x2, Q)))*(4/(9*pow ss, 2))*(pow (powm m 2) -
tt), 2) +tpow (powm m 2)-uu), 2) +2*pow m 2) *ss) ) +k0*ct 14n. parton(0, x1,
Q) *ct 14n. parton(0, x2, Q)*(1./24)*(-17-(9.0/ pow(ss,2))*
(powmtt, 2) +pow uu, 2) - pow ss, 2) +6*pow m 2) *ss- 2*pow( m 4) ) +4*
(ss+4*pow(m 2) +pow(m 4)/ss) *(1/ (powm(m 2) -tt) +1/ (pow(m 2) - uu)) - 16*pow( m 4) *
(1/ pow( (powm(m 2) -tt), 2) +1/ pow( (pow( m 2) - uu), 2)))) *j acob;

}

doubl e D f CS3(doubl e *x, double *p){

double y1 = x[0];
double m = p[0];
double e = p[1];



int coltype = p[2];

double ka = p[3];
doubl e kp = p[4];
int Quva = p[5];
int Qvp = p[6];
double Qvka = p[7];
doubl e Qvkp = p[8];
double ym = p[9];
doubl e kO = p[10]
doubl e k1 = p[11];
double k2 = p[12];
doubl e k3 = p[13]
doubl e k4 = p[ 14];
doubl e k5 = p[15]
if(e <= 2*m{
return O,
}

TF2 *fDiflnt3 = new TR2("fDifInt3",
fDi flnt3->Set Paranet er (0,
fD flnt3->Set Paraneter(1
fDi flnt3->Set Paraneter (2,
f D flnt3->Set Par anet er ( 3,
fD flnt3->Set Par anet er ( 4,
fDi flnt3->Set Paraneter (5,
f D flnt3->Set Par anet er ( 6,
fD flnt3->Set Paraneter (7,
fD flnt3->Set Paranet er (9,
fD flnt3->Set Paranet er (10,
fDi flnt3->SetParaneter (11,
fDi flnt3->SetParaneter (12,
fDi flnt3->Set Paraneter (13,
fD flnt3->Set Paranet er (14,
fDi flnt3->Set Paranet er (15,
fD flnt3->Set Paranet er (16,

return fDiflnt3->Integral (0,

}

doubl e D flntg2(double *Xx,

double w = x[0];
double z = x[1];
double y1 = p[O0];
double m= p[1];
double e = p[2];
double s = pow e, 2);
int coltype = p[3];
double ka = p[4];
double kp = p[5];

i nt Cwa = p[6];

i nt = p[7];
double Qvka = p[8];
doubl e Qvkp = p[9];
double ym = p[ 10];

yl);
m;

e);

col type);

Xa) ;
&Xp);
Qva);
Qp);

Qvkp) ;

yn;
k0) ;
k1);
k2);
k3) ;
k4);
k5);

1.0, 0.0,

fD flnt3->Set Paraneter (8, Quka);

doubl e *p){

D flntg2, O,

1.0, 0.0,

1.0, 4.e-6);

1.0,

17);



doubl e kO = p[11];
double k1 = p[12];
doubl e k2 = p[13];
doubl e k3 = p[ 14];
doubl e k4 = p[15];
doubl e k5 = p[16];

double pt = wTMath::Sqrt(s/ (4*pow Tvat h: : CosH(yl),2)) - pow(m 2));

/| Teoreettisten rajojen ylittAeni nen on mahdollista: esim vastaavan
kokeel i sen tul oksen rapiditeetti-bin voi ulottua rajan yli. Tarkistetaan
siksi, ettAa ynin ja ymax ovat teoreettisten rajojen sisAollAa. if(yl <= -
TMat h: : ACosH(e/ (2* TMWat h: : Sqrt (pow( m 2) +pow( pt, 2))))){

return O,

}

i f(TMat h: : ACosH(e/ (2*TMat h: : Sgrt (pow m 2) +pow(pt, 2)))) <= y1){
return O;

}
double Qa, Qp;

if (Qua==1){

Qa = Quka*Tiwat h: : Sgrt (pow m 2) +pow pt, 2));
} else {
}Qa = ka*m

if (Qup==1){
Q = Qvkp*TMat h:: Sqgrt (pow( m 2) +pow( pt, 2)) ;
} else {

Q = Kp*m

< 1.3){ /] 1,3 GV pienin pienin skaalavalinta ilmn extrapolointia
1.3;

double y2 = (1-z)*(-1)*TMath: : Log(e/ (TMat h: : Sqrt (pow m 2) +pow pt, 2))) -
TMat h: : Exp(-y1l))+z*TiWat h: : Log(e/ (TMvat h: : Sgrt (pow( m 2) +pow pt, 2))) -
Thvat h: : Exp(yl)); double jacob = (TMath::Sqrt(s/(4*pow TMat h:: CosH(yl), 2))
- pow(m 2)))*TMat h:: Log(s/ (pow m 2) +pow pt, 2)) +1- 2*e/
(Twat h: : Sqrt (powm m 2) +pow pt, 2))) *TMvat h: : CosH(y1));
double x1 = TMath::Sqgrt((pow m 2) +pow pt, 2))/s)*
(TMat h: : Exp(y1l) +TMat h: : Exp(y2));
double x2 = TMWath::Sqrt ((pow(m 2) +pow pt, 2))/s)*(That h: : Exp( -
y1l) +TMat h: : Exp(-y2));
doubl e ss = 2*(pow(m 2) +pow pt, 2)) *(1+TMat h: : CosH(yl-y2));
double tt = pow(m 2)-(pow m 2) +pow pt, 2))*(1+TMat h: : Exp(-yl+y2));
doubl e uu = pow(m 2)-(pow m 2) +tpow pt, 2))*(1+TMat h: : Exp(y1l-y2));
return ynmr2*pt*x1*x2*pow( ct 14n. al phas(Qa), 2) *TMat h: : Pi ()/ pow ss, 2) *((k1*
(ctl4n. parton(l, x1, @p)*ctldn.parton(coltype*(-1), x2, @Q)+ctldn. parton(-
1, x1, @Q)*ctldn.parton(coltype*l, x2, @Q)) + k2*(ctldn.parton(2, x1,
Q) *ct 14n. parton(col type*(-2), x2, @)+ctldn.parton(-2, x1
Q) *ct 14n. parton(col type*2, x2, Q)) + k3*(ctldn.parton(3, x1,
Q) *ct 14n. parton(col type*(-3), x2, @) +ctldn.parton(-3, x1,
Qo) *ct 14n. parton(col type*3, x2, Q)) + kd4*(ctl4n.parton(4, x1,
Q) *ct 14n. parton(col type*(-4), x2, @)+ctldn.parton(-4, x1,



Q) *ct 14n. parton(col type*4, x2, @)) + kb5*(ctldn.parton(5, x1,

Q) *ct 14n. parton(col type*(-5), x2, @)+ctldn.parton(-5, x1

Q) *ct 14n. parton(col type*5, x2, @Q)))*(4/(9*pow ss, 2))*(pow (powm m 2) -
tt), 2) +tpow (powm m 2)-uu), 2) +2*pow m 2) *ss) ) +kO0*ct 14n. parton(0, x1,

Q) *ct 14n. parton(0, x2, Q)*(1./24)*(-17-(9.0/ pow(ss,2))*

(powmtt, 2) +pow uu, 2) - pow ss, 2) +6*powm m 2) *ss- 2*pow( m 4) ) +4*

(ss+4*pow(m 2) +pow(m 4)/ss) *(1/ (powm(m 2) -tt) +1/ (pow(m 2) - uu)) - 16*pow( m 4) *
(1/ pow( (powm(m 2) -tt), 2) +1/ pow( (pow( m 2) -uu), 2)))) *j acob;

}

doubl e Cut CS1(doubl e *x, doubl e *p){

double yme = p[11];
double e = x[ 0] *yne;
double m = p[0];

int coltype = p[1];
doubl e etamn = p[2];
doubl e etamax = p[ 3];
doubl e ka = p[4];
double kp = p[5];
int Qva = p[6];

int Qup = p[7];
doubl e Qvka = p[8];
double Quvkp = p[9];

doubl e FF = p[10];
double ym = p[12];
doubl e kO = p[13];
doubl e k1 = p[14];
doubl e k2 = p[15];
doubl e k3 = p[16];
doubl e k4 = p[17];
doubl e k5 = p[18];
if(e <= 2*m{
return O,
}
TF3 *fCutIintl = new TF3("fCutlntl", Cutlntgl, O, 1.0, etamn, etanmax, 0.0,
1.0, 17);

f Cut I nt 1- >Set Paraneter (0, e);
fCutlnt1l->Set Paraneter (1, nm;

f Cut I nt 1- >Set Paraneter (2, coltype);
f Cut I nt 1- >Set Par aneter (3, ka);
fCutl nt 1- >Set Paraneter (4, QKp);
fCutl nt 1->Set Paraneter (5, Qua); fCutlntl->SetParaneter(6, Qp);
f Cut I nt 1- >Set Paraneter (7, Quka);

f Cut | nt 1- >Set Paraneter (8, Qukp);

f Cut I nt 1- >Set Paraneter (9, FF);

f Cutl nt 1- >Set Paraneter (10, ym;

f Cut I nt 1- >Set Par anet er (11, kO);
fCut I nt 1- >Set Paraneter (12, kl1);

f Cut I nt 1- >Set Par anet er (13, k2);

f Cut I nt 1- >Set Par anet er (14, k3);

f Cut I nt 1- >Set Par anet er (15, k4);

f Cut I nt 1- >Set Par anet er (16, k5);



return fCutintl->Integral (0, 1.0, etamn, etamax, 0.0, 1.0, 3.e-4);
}

doubl e Cutlntgl(double *x,double *p){
double w = x[0];

double eta = x[1];
double z = x[2];

double e = p[0];
double s = pow e, 2);
double m= p[1];

int coltype = p[2];
double ka = p[ 3];

double kp = p[4];
int Quva = p[5];
int Qup = p[6];

doubl e Qvka = p[7];
doubl e Quvkp = p[8];

double FF = p[9];

double ym = p[ 10];

doubl e kO = p[11];

double k1 = p[12];

doubl e k2 = p[13];

doubl e k3 = p[14];

doubl e k4 = p[15];

doubl e k5 = p[16];

double pt = wTMath::Sqgrt(s/4 - pow(m2))/(TMath:: CosH(eta));
if(pt <= 0){

return 0; }

doubl e y1 = TMath: : ASi nH( (pt/
TMat h: : Sqrt (pow( m 2) +pow pt, 2)))*TMat h: : SinH(eta)) ;

if(yl <= -TMath:: ACosH(e/ (2*TMat h: : Sgrt (pow(m 2) +pow(pt, 2))))){ // _
Tarki st et aan, ettAo ymn ja ymax ovat teoreettisten rajojen si sAal | Aa:
| yl| <= arcosh(e/(2*m.T)) return O;

}

i f(TMat h: : ACosH(e/ (2*TMat h: : Sgrt (pow( m 2) +pow(pt, 2)))) <= y1){
return O;

}
doubl e Qa, Q;

if (Qua==1){

Qa = Qvka*Tiwat h: : Sgrt (pow m 2) +pow pt, 2));
} else {

}Qa = Kka*m

if (Qup==1){
Q = Qukp*TMat h:: Sgrt (pow m 2) +pow pt, 2));
} else {



< 1.3){ /1 1,3 GV pienin pienin skaalavalinta ilnman extrapolointia
1.3;

double y2 = (1-z)*(-1)*TMath: : Log(e/ (TMath: : Sqrt (pow m 2) +pow( pt, 2))) -
Tiat h: : Exp(-y1))+z*TMat h: : Log(e/ (TMat h: : Sqrt (pow( m 2) +pow( pt, 2))) -
Thvat h: : Exp(yl)); double jacob = pt*TMath::Sqrt((s/4 - pow(m2))/
(pow(m 2) +pow( pt * Tivat h: : CosH(eta), 2))) *TMat h: : Log(s/

(pow(m 2) +pow( pt, 2)) +1-2* e/

(Twat h: : Sqrt (powm m 2) +pow pt, 2))) *TMat h: : CosH(y1));

double x1 = TMath::Sqgrt((pow m 2) +pow pt, 2))/s)*

(TMat h: : Exp(y1l) +TMat h: : Exp(y2));

double x2 = TMath::Sgrt((pow m 2) +pow pt, 2))/s)*(TMat h: : Exp( -
y1l) +TMat h: : Exp(-y2));

doubl e ss = 2*(pow(m 2) +pow pt, 2)) *(1+TMat h: : CosH(yl-y2));

double tt = pow(m 2)-(pow m 2) +pow pt, 2))*(1+TMat h: : Exp(-yl+y2));
doubl e uu = pow(m 2)-(pow m 2) +tpow pt, 2))*(1+TMat h: : Exp(y1l-y2));

return ymfFF*2*pt *x1*x2*pow ct 14n. al phas(Qa), 2) *TMWat h: : Pi ()/ pow ss, 2) *
((k1*(ct14n.parton(1l, x1, Q)*ctldn.parton(coltype*(-1), x2,

Q) tct 14n. parton(-1, x1, Q)*ctl4n.parton(coltype*l, x2, @Q)) + k2*
(ctl4n. parton(2, x1, @)*ctldn.parton(coltype*(-2), x2, @Q)+ctldn. parton(-
2, x1, Q)*ctldn.parton(coltype*2, x2, Q)) + k3*(ctl4n.parton(3, x1,
Q) *ct 14n. parton(col type*(-3), x2, @Q)+ctldn.parton(-3, x1,

Q) *ct 14n. parton(col type*3, x2, @)) + k4*(ctldn.parton(4, x1,

Q) *ct 14n. parton(col type*(-4), x2, Q)+ctl4dn.parton(-4, x1

Q) *ct 14n. parton(col type*4, x2, @)) + k5*(ctldn.parton(5, x1,

Q) *ct 14n. parton(col type*(-5), x2, @)+ctl4n.parton(-5, x1

Q) *ct 14n. parton(col type*5, x2, Q)))*(4/(9*powss, 2))*(pow (pow( m 2) -
tt), 2) +pow (powm m 2) -uu), 2) +2*pow m 2) *ss) ) +k0*ct 14n. parton(0, x1,

Q) *ct 14n. parton(0, x2, Q)*(1./24)*(-17-(9.0/ pow(ss,2))*

(powmtt, 2) +pow uu, 2) - pow Ss, 2) +6*pow m 2) *ss- 2*pow( m 4) ) +4*
(ss+4*pow(m 2) +pow(m 4)/ss) *(1/ (powm(m 2) -tt) +1/ (pow(m 2) - uu)) - 16*pow( m 4) *
(1/ pow( (powm(m 2) -tt), 2) +1/ pow( (pow( m 2) - uu), 2)))) *j acob;

}

doubl e D f CS4(doubl e *x, doubl e *p){

double eta = x[0];
double m = p[0];
double e = p[1];
int coltype = p[2];

double ka = p[ 3];
double kp = p[4];
int Qva = p[5];

int Qup = p[6];
doubl e Qvka = p[7];

doubl e Qvkp = p[8];
double FF = p[9];

double ym = p[10]
doubl e kO = p[11]
double k1 = p[12];
doubl e k2 = p[13]



doubl e k3 = p[ 14];

doubl e k4 = p[15];

doubl e k5 = p[16];
if(e <= 2*m{
return O;

}

TF2 *fDiflnt4 = new TF2("fDifInt4", Diflntg3, 0.0, 1.0, 0.0, 1.0, 18);
fD flnt4->Set Paraneter (0, eta);

fDi flnt4->SetParaneter (1, m;

fD flnt4->Set Paraneter (2, e);

fD flnt4->Set Paraneter (3, coltype);

fDi flnt4->Set Paraneter (4, ka);

fD flnt4->Set Paraneter (5, Q&kp);

fD flnt4->Set Paraneter (6, Qua);

fD flnt4->Set Paraneter (7, Qup); fDiflnt4->SetParaneter (8, Qka);
fD flnt4->Set Paraneter (9, Qukp);

fD flnt4->Set Paraneter (10, FF);

fDi flnt4->SetParaneter (11, ym;

fD flnt4->Set Paraneter (12, kO);

fD flnt4->Set Paraneter (13, kl);

fDi flnt4->Set Paraneter (14, k2);

f D flnt4->Set Paranet er (15, k3);

fD flnt4->Set Paraneter (16, k4);

fD flnt4->Set Paraneter (17, k5);

return fDiflnt4->Integral (0.0, 1.0, 0.0, 1.0, 2.e-5);
}
doubl e D flntg3(double *x,double *p){

doubl e w
doubl e z

x[O];
x[1];

double eta = p[O];

double m= p[1];
double e = p[2];
double s = pow e, 2);
int coltype = p[3];
double ka = p[4];
doubl e kp = p[5];
int Qva = p[6];

int Qup = p[7];

doubl e Qvka = p[8];
doubl e Qvkp = p[9];

doubl e FF = p[10];
double ym = p[11];
double kO = p[12];
double k1 = p[13];
doubl e k2 = p[14];
doubl e k3 = p[15];
doubl e k4 = p[16];
doubl e k5 = p[17];

doubl e pt wTMat h: : Sqrt(s/4 - pow(m 2))/ TWvat h: : CosH( et a) ;



if(pt <= 0){

return O,

}

doubl e y1 = TMath: : ASi nH( (pt/

TMWat h: : Sqrt (pow( m 2) +pow pt, 2)))*TMat h: : SinH(eta)) ;

double Qa, Q;

if (Qua==1){
Qa = Qvka*TMat h: : Sqrt (pow( m 2) +pow( pt, 2));

if (Qup==1){

Q = Qukp*TiMat h:: Sqrt (pow m 2) +pow pt, 2));
} else {

}Qp = kp*m

if(Q < 3){ // 1,3 GV pienin pienin skaalavalinta il mn extrapolointia
@ = 1.3
}

double y2 = (1-z)*(-1)*TMath: : Log(e/ (TMat h: : Sqrt (pow m 2) +pow pt, 2))) -
TMat h: : Exp(-y1l))+z*TMat h: : Log(e/ (TMat h: : Sgrt (pow( m 2) +pow pt, 2))) -
TMat h: : Exp(y1)); double jacob = pt*TMath::Sqrt((s/4 - pow(m2))/
(powm( m 2) +pow pt * TMWat h: : CosH(eta), 2)))*TMat h: : Log(s/

(pow(m 2) +pow( pt, 2)) +1-2* e/

(Twat h: : Sqrt (powm m 2) +pow pt, 2))) *TMat h: : CosH(y1));

double x1 = TMath::Sgrt((pow m 2) +pow pt,2))/s)*
(TMat h: : Exp(y1l) +TMat h: : Exp(y2));
double x2 = TMath::Sgrt((pow m 2) +pow pt, 2))/s)*(That h: : Exp( -
y1l) +TMat h: : Exp(-Yy2));
doubl e ss = 2*(powm m 2) +pow pt, 2))*(1+TMat h: : CosH(y1l-y2));
double tt = powm(m 2)-(pow m 2) +pow pt, 2))*(1+TNat h: : Exp(-yl+y2)); double
uu = pow(m 2)-(pow m 2) +pow(pt, 2) ) *(1+TMat h: : Exp(yl-y2));

return ynrFF*2*pt *x1*x2* pow ct 14n. al phas(Qa), 2)*TMat h: : Pi () / pow(ss, 2)*
((kl*(ctl4n.parton(l, x1, @)*ctl4n.parton(coltype*(-1), x2,
Q) +ct 14n. parton(-1, x1, Q)*ctl4n.parton(coltype*l, x2, Q)) + k2*
(ctl4n. parton(2, x1, @)*ctldn.parton(coltype*(-2), x2, @Q)+ctldn. parton(-
2, x1, Q)*ctldn.parton(coltype*2, x2, @)) + k3*(ctl4n.parton(3, x1,
Q) *ct 14n. parton(col type*(-3), x2, @)+ctldn.parton(-3, x1,
Qo) *ct 14n. parton(col type*3, x2, Q)) + kd*(ctl4n.parton(4, x1,
Q) *ct 14n. parton(col type*(-4), x2, Q)+ctldn.parton(-4, x1,
Q) *ct 14n. parton(col type*4, x2, @Q)) + kb5*(ctldn.parton(5, x1,
Q) *ct 14n. parton(col type*(-5), x2, @)+ctldn.parton(-5, x1,
Q) *ct 14n. parton(col type*5, x2, Q)))*(4./(9*pow ss, 2))*(pow (powm m 2) -
tt), 2) +pow (pow m 2) -uu), 2) +2*powm m 2) *ss) ) +kO*ct 14n. parton(0, x1,
Q) *ct 14n. parton(0, x2, Q)*(1./24)*(-17-(9./powss,2))*
(pow(tt, 2) +pow uu, 2) - pow( sS, 2) +6*powm m 2) *ss- 2* pow( m 4) ) +4*
(ss+4*powm(m 2) +powm(m 4)/ss)*(1./(pow(m 2)-tt)+1./(powm m 2)-uu)) -
16*pow(m 4) *( 1./ pow( (powmm 2)-tt), 2)+1./pow( (pow m 2)-uu), 2)))) *j acob;

}



doubl e Cut CS2(doubl e *x, doubl e *p){

doubl e yne = p[14];
doubl e e = x[ 0] *yne;
doubl e nq p[ O] ;

doubl e mh p[1];

int coltype = p[2];
double ptmn = p[3];
doubl e ptmax = p[4];

doubl e yhm n p[ 5] ;
doubl e yhmax = p[6];
double ka = p[7];
double kp = p[8];
int Qua = p[9];

int Qvp = p[10];
doubl e Qvka = p[11];
doubl e Qvkp = p[12];

doubl e FF = p[13]

double ym = p[ 15];

doubl e kO = p[16]

double k1 = p[17];

doubl e k2 = p[18];

doubl e k3 = p[19]

doubl e k4 = p[20];

doubl e k5 = p[21];

TF3 *fCutInt2 = new TR3("fCutlnt2", Cutlntg2, ptmn, ptrmax, yhmn, yhnax,
0, 1.0, 18);

f Cut | nt 2- >Set Paraneter (0, e);

f Cut I nt 2- >Set Paraneter (1, nqg);

f Cutl nt 2- >Set Paraneter (2, nh);

f Cut | nt 2- >Set Paraneter (3, coltype);
f Cut I nt 2- >Set Paraneter (4, ka); fCutlnt2->SetParaneter(5, &p);
f Cut |l nt 2- >Set Paraneter (6, Qua);

f Cut | nt 2- >Set Paraneter (7, Qp);

f Cut | nt 2- >Set Par aneter (8, Quka);

f Cut | nt 2- >Set Paraneter (9, Qkp);

f Cut | nt 2- >Set Par anet er (10, FF);

f Cut I nt 2- >Set Paraneter (11, yn);

f Cut | nt 2- >Set Paraneter (12, kO);

f Cut | nt 2- >Set Par anet er (13, kl1);

f Cut | nt 2- >Set Par anet er (14, k2);

f Cut | nt 2- >Set Par anet er (15, k3);

f Cut | nt 2- >Set Par anet er (16, k4);

f Cut I nt 2- >Set Par aneter (17, k5);

return fCutlnt2->Integral (ptmn, ptmax, yhmn, yhmax, 0, 1.0, 2.e-4);
}

doubl e Cutlntg2(double *x,double *p){

double pt = x[0];

double y = x[1];
double z = x[2];
double e = p[0];



double s = pow e, 2);
double m= p[1];
double mh = p[2];
int coltype = p[3];
doubl e ka p[ 4] ;
doubl e Qkp p[ 5] ;
int Qva = p[6];

int Qup = p[7];
doubl e Qvka = p[8];
doubl e Qvkp = p[9];

doubl e FF = p[10];
double ym = p[11];
double kO = p[12];
doubl e k1 = p[13];
doubl e k2 = p[14];
doubl e k3 = p[15];
doubl e k4 = p[16];
doubl e k5 = p[17];
if(pt <= 0){
return O,
}

double y1 = TMmat h:: ASi nH( TMat h: : Sgrt (( pow mh, 2) +pow( pt, 2))/
(pow(m 2) +pow(pt, 2))) *TMat h: : Si nH(y) ) ;

if(e <= 2*TMath:: Sgrt(pow m 2) +pow pt, 2))*TMat h: : CosH(y1)){
return O;

}
doubl e Qa, Q;

if (Qua==1){

Qa = Qvka*Tiwat h: : Sgrt (pow m 2) +pow pt, 2));
} else {

}Qa = Kka*m

if (Qvp==1){
Q = Qukp*TiMat h:: Sqgrt(pow m 2) +pow pt, 2));
} else {

< 1.3){ /1 1,3 GV pienin pienin skaalavalinta ilnman extrapolointia
1.3;

double y2 = (1-z)*(-1)*TMath: : Log(e/ (TMath: : Sqrt (pow m 2) +pow pt, 2))) -
Tiat h: : Exp(-y1))+z*TMat h: : Log(e/ (TMat h: : Sqrt (pow( m 2) +pow( pt, 2))) -
That h: : Exp(yl)); double jacob = ((TMath:: CosH(y))/

TMvat h: : Sgrt ((pow( m 2) +pow(pt, 2))/

(pow( M, 2) +pow pt, 2)) +pow TMat h: : Si nH(y), 2))) *TMat h: : Log( s/

(powm m 2) +pow pt, 2)) +1- 2*e/

(TMat h: : Sgrt (powm m 2) +pow( pt, 2))) *TMat h: : CosH(y1));

double x1 = TMath::Sqgrt((pow m 2) +pow pt, 2))/s)*
(TMat h: : Exp(y1l) +TMvat h: : Exp(y2)); double x2 =



TMat h: : Sgrt ((pow(m 2) +pow( pt, 2))/s)*(TMat h: : Exp(-yl) +TMat h: : Exp(-y2));
doubl e ss = 2*(powm m 2) +pow pt, 2))*(1+TMWat h: : CosH(y1l-y2));
doubl e tt pow(m 2) - (pow( m 2) +pow pt, 2)) *(1+TMat h: : Exp(-yl+y2));
doubl e uu powm 2) - (pow( m 2) +pow pt, 2)) *(1+TMat h: : Exp(yl-y2));

return ynmfFF*2*pt *x1*x2* pow ct 14n. al phas(Qa), 2)*TMat h: : Pi () / pow(ss, 2)*
((kl*(ctl4n.parton(l, x1, @)*ctl4n.parton(coltype*(-1), x2,
Q) +ct 14n. parton(-1, x1, Q)*ctl4n.parton(coltype*l, x2, @Q)) + k2*
(ctl4n. parton(2, x1, @)*ctldn.parton(coltype*(-2), x2, @Q)+ctldn. parton(-
2, x1, Q)*ctldn.parton(coltype*2, x2, @Q)) + k3*(ctl4n.parton(3, x1,
Q) *ct 14n. parton(col type*(-3), x2, @)+ctldn.parton(-3, x1,
Q) *ct 14n. parton(col type*3, x2, Q)) + kd*(ctl4dn.parton(4, xl1,
Q) *ct 14n. parton(col type*(-4), x2, @) +ctl4n.parton(-4, x1,
Q) *ct 14n. parton(col type*4, x2, @)) + kb5*(ctl14n.parton(5, x1,
Q) *ct 14n. parton(col type*(-5), x2, @)+ctldn.parton(-5, x1,
Q) *ct 14n. parton(col type*5, x2, Q)))*(4./(9*pow ss, 2))*(pow (powm m 2) -
tt), 2) +pow (pow m 2) -uu), 2) +2*powm m 2) *ss) ) +kO*ct 14n. parton(0, x1,
Q) *ct 14n. parton(0, x2, Q)*(1./24)*(-17-(9./powss,2))*
(pow(tt, 2) +pow uu, 2) - pow( ss, 2) +6*powm m 2) *ss- 2* pow( m 4) ) +4*
(ss+4*powm(m 2) +powm(m 4)/ss)*(1./(powm(m 2)-tt)+1./(powm m 2)-uu)) -
16*pow(m 4) *(1./pow( (pow(m 2)-tt), 2) +1./pow( (pow( m 2) -uu), 2)))) *j acob;

}



/1 TAemAe piirto-ohjelna tuottaa kuvat ohjelmassa Int.cc |asketuille

tul oksille. LisAeksi tAemAe ohjel ma tekee K-kerroinsovitukset (jokaisella
skaal aval i nnnal l a (Qa, @), 7 kpl per tapaus) ja |askee tAostAa K-
kertoi mel | a skaal atun LO-tul oksen (ol etusskaal avalinta). // Teemu Kovanen
/1 JyvAsskyl Aan yliopisto

/'l Fysiikan | aitos

/1 6.9.2020

doubl e Kfit(double *x, double *p);
void Plot(){

gStyl e- >Set LegendText Si ze(0. 075) ;
gStyl e- >Set LegendBor der Si ze(0) ;

gStyl e- >Set PadLef t Margi n( 0. 135) ;
gSt yl e- >Set PadRi ght Mar gi n( 0. 043) ;
gSt yl e- >Set PadBot t omvar gi n( 0. 16) ;
gSt yl e- >Set PadTopMar gi n( 0. 045) ;

TFile *file = TFile:: Open("file.root","read");

const int types = 6;
int color[types] = {kGay+3, kG een-1, kBl ue, kCyan+1, kOrange+7, kVi ol et };

bool savesecpics = true;
/'l Petersonin fragmentaati of unkti ot

TG aph *gr Pet FFc;
TG aph *gr Pet FFb;
TCanvas *cPet FF;

grPet FFc = (TG aph*)fil e->CGet ("grPet FFc");

gr Pet FFc- >Set Mar ker Si ze(0) ;

gr Pet FFc- >Set Mar ker Col or (col or[4]); grPet FFc->Set Li neCol or(col or[4]);
gr Pet FFc- >Set Li neW dt h(2) ;

grPet FFb = (TG aph*)fil e->Get (" gr Pet FFb") ;
gr Pet FFb- >Set Mar ker Si ze( 0) ;

gr Pet FFb- >Set Mar ker Col or (col or[ 5] ) ;

gr Pet FFb- >Set Li neCol or (col or[ 5] );

gr Pet FFb- >Set Li neW dt h(2) ;

cPet FF = new TCanvas ("cPet FF", "cPetFF", 1200.0, 500.0);

cPet FF->cd();

gr Pet FFc- >Set Maxi mun( 4. 0) ;

gr Pet FFc- >Set M ni mun{ 0. 0) ;

gr Pet FFc- >Get Xaxi s()->SetLimts(0.0, 1.0);

grPet FFc->Set Title(" ");

/1 grPet FFc->SetTitl e("Petersonin fragnentaati ofunktiot c- ja b-
kvarkeille");

gr Pet FFc- >Cet Xaxi s()->SetTitle("z");



gr Pet FFc- >Get Yaxi s()->SetTitle("DM{H{Q} {QG(2)");
gr Pet FFc- >CGet Xaxi s() - >Set Label Si ze(0. 075) ;

gr Pet FFc- >CGet Yaxi s() - >Set Label Si ze( 0. 075) ;

gr Pet FFc- >Get Xaxi s()->SetTitl eSi ze(0. 075) ;

gr Pet FFc- >CGet Yaxi s()->SetTitl eSi ze(0. 070) ;

gr Pet FFc- >CGet Xaxi s()->SetTitl eO fset (0. 95);

gr Pet FFc- >Get Yaxi s()->SetTitl eOff set (0. 55);

gr Pet FFc- >Get Xaxi s() - >Set Ndi vi si ons(50206, true);
gr Pet FFc- >Get Yaxi s() - >Set Ndi vi si ons(50205, true); grPetFFc->Draw("al p");
gr Pet FFb- >Dr aw( " SAME") ;

cPet FF- >Redr awAxi s() ;

i f(savesecpics == true){
cPet FF- >SaveAs( " Pi ct ures/ cPet FF. pdf ") ;
}

/1 Vahva kytkent Aevaki o nmuuttujan Qr funktiona

TG aph *gral pha;
TCanvas *cal pha
TLegend *addQ beg;

gral pha = (TG aph*)fil e->Get("gral pha");
gr al pha- >Set Mar ker Col or (1) ;

gr al pha- >Set Mar ker Si ze(0) ;

gr al pha->Set Li neW dt h( 2) ;

gr al pha- >Set Li neCol or (1) ;

cal pha = new TCanvas ("cal pha", "cal pha", 1200.0, 500.0);

cal pha->cd();

cal pha- >Set Logx() ;

gr al pha- >Set Maxi nun( 1. 4) ;

gr al pha->Set M ni nun( 0. 0) ;

gr al pha- >Get Xaxi s()->Set Li mts(0.635, 1200.0);

gr al pha- >Get Xaxi s() - >Set Label Si ze( 0. 075) ;

gr al pha- >Get Yaxi s() - >Set Label Si ze( 0. 075) ;

gr al pha- >Get Xaxi s()->Set Titl eSi ze(0. 075);

gr al pha- >Get Yaxi s()->Set Titl eSi ze(0. 070);

gr al pha- >Get Xaxi s()->SetTitl eOfset(1.02);

gral pha->Get Yaxi s()->SetTitl eOf fset (0. 65);

/1 gral pha->Get Xaxi s()->Set Ndi vi si ons(50206, true);

gr al pha- >Get Yaxi s() - >Set Ndi vi si ons(20206, true); gral pha->Draw("al p");
gral pha->SetTitle(" ");

/1 gral pha->SetTitl e("Vahvan vuorovai kut uksen kyt kent #ddot { a} vaki on arvo
renor mal i saati oskaal an funktiona");

gral pha->Get Xaxi s()->SetTitle("Q{r} [GV]");

gr al pha- >Get Yaxi s()->Set Titl e("#al pha_{s}(Q{r})");

addQ beg = new TLegend(0. 121, 0.10, 0.171, 0.05);
addQ beg- >Set Header ("#frac{m {c}}{2}","C");

addQ beg->SetFil | Styl e(0);

addQ beg->Draw() ;

cal pha- >Redr awAxi s() ;



i f(savesecpics == true){
cal pha->SaveAs("Pi ctures/ cal pha. pdf");
}

/1 LO ja NLO partonijakaumafunktiot (x*f _j, j =g, u, u_bar, d, d_bar, s,
s_bar, c, c_bar, b, b_bar, t, t_bar) nuuttujan x funktiona, er
skaal avalinnoilla Qf

const int scales = 13;

string tscal e[scales] = {"635 MeV', "1.3 GeV', "2.09 GV', "2.54 GV'
"4,18 GeV', "5.08 GeV', "8.36 GeV', "16.72 GeV', "86.45 GV', "172.9 GV
"345.8 GeV', "691.6 GV', "1 TeV'};

TG aph *grnl opdf[scal es][types];

TG aph *grl opdf[scal es][types];

TG aph *grnl opdf ah[ scal es][types]; TG aph *grl opdfah[scal es][types];
TCanvas *cnl opdf [ scal es];

TCanvas *cl opdf[scal es];

TCanvas *cnl opdf ah[ scal es];

TCanvas *cl opdf ah[ scal es];

doubl e nl oxm n[ scal es] = {0.00000001, 0.00000001, 0.0000001, 0.00000001,
0. 0000001, 0.00000001, 0.0000001, 0.0000001, O.0001, 0.0001, O0.0001,

0. 0001, 0.0001}; double I oxm n[scales] = {0.00000001, 0.00000001,

0. 0000001, 0.00000001, 0.0000001, 0.00000001, 0.0000001, 0O.0000001,

0. 0001, 0.0001, 0.0001, 0.0001, 0.0001};

/I doubl e nl opdf max|[scales] = {25, 3.2, 4.2, 4.6, 7, 9, 13, 22, 55, 100,
100, 100, 100};
/ I doubl e nl opdf m n[scales] = {-80, 0, 0, O, O, O, O, O, O, O, O, O, 0O};
/ I doubl e | opdf max[ scales] = {6, 4.0, 4.0, 4.6, 7, 10, 15, 30, 75, 150,
150, 150, 150};
/ / doubl e | opdf m n[scales] = {-32, 0, 0, O, O, O, O, O, O, O, O, O, 0O};

doubl e nl opdf max[scales] = {25, 3.2, 4.2, 4.6, 7, 9, 8, 14, 4, 4.2, 5, 6,
6}

doubl e nl opdf m n[scales] = {-80, O, O, O, O, O, O, O, O, O, O, O, 0O};
doubl e | opdf max[scales] = {6, 4.0, 4.0, 4.6, 7, 10, 10, 15, 4, 5, 6, 6,
6}

doubl e | opdf m n[scales] = {-31, 0, O, O, O, O, O, O, O, O, O, 0O, O};

int ydivnl opdf[scal es] = {50207, 50204, 50205, 50205, 50204, 50205, 50204,
503, 50204, 50205, 50205, 50206, 50206},
i nt ydivlopdf[scal es] = {50206, 50204, 50204, 50205, 50204, 50205, 50205,
503, 50204, 50205, 50206, 50206, 50206},

for(int i = 0; i < scales; i++){
for(int j = 0; j < types; j++){

grnlopdf[i][j] = (TG aph*)file->CGet( Form("grnlopdf @Ol p¥®@1i", i, j) );
grnlopdf[i][]]->Set Marker Styl e(20);
grnlopdf[i][j]->Set MarkerCol or(color[j]);
grnlopdf[i][]j]->Set Marker Si ze(0);

grnlopdf[i][j]->SetLineWdth(2);



grnlopdf[i][j]->SetLineColor(color[j]);
(0 < j){

grnlopdfah[i][j] = (TG aph*)file->CGet( Form("grnl opdf @®1li p%®1i ah", i, j)
) .

gr nl opdf ah[ i
grnl opdf ah[i
gr nl opdf ah[ i
gr nl opdf ah[i

}
}

] - >Set Mar ker St yl e( 20) ;

] - >Set Mar ker Col or (color[j]);

j]->Set Marker Si ze(0); grnlopdfah[i][]j]->SetLi neWdth(2);
j]->SetLineColor(color[j]);

[ iy Sy S—
— — ————
[ S W S —

grnlopdf[i][0]->Cet Xaxi s()->SetLimts(nloxmn[i], 1.0);
grnl opdf[i][0]->Set Maxi mun( nl opdf max[i]);
grnlopdf[i][0]->SetM ni mum(nl opdfmn[i]);

cnlopdf[i] = new TCanvas (Fornm("cnl opdf @®1i", i), Form("cnl opdf @®1i", 1),
800. 0, 470.0);

cnlopdf[i]->cd();

cnl opdf[i]->Set Logx();

grnlopdf[i][0] ->Draw"al p");

grnlopdf[i][0]->SetTitle(" ");
[1grnlopdf[i][0]->SetTitle(Form "Perushi ukkasten NLO PDF:ien arvot
kerrottuna nmuuttujalla x, x:n funktiona, skaalalla Q{f} = %",
tscale[i].c_str())); grnlopdf[i][0]->Cet Xaxis()->SetTitle("x");

[1grnlopdf [i][0]->CetYaxis()->SetTitle( Form("xf {i}(x,Q{f} =9%), i = g,
q", tscale[i].c_str()) );

grnlopdf[i][0]->CGet Yaxis()->SetTitle( Fornm("xf _{i}(x,Q{f} = %)",
tscale[i].c_str()) );

grnl opdf[i][0]->Cet Xaxi s()->Set Label Si ze(0. 075);

grnl opdf[i][0]->Cet Yaxi s()->Set Label Si ze(0.075); grnlopdf[i][0]-

>CGet Xaxi s()->SetTitl eSi ze(0.075);

grnlopdf [i][0]->Cet Yaxis()->SetTitl eSi ze(0.075);
grnlopdf[i][0] ->CGet Xaxi s()->SetTitl eOfset(1.05);
grnlopdf[i][0]->Get Yaxi s()->SetTitl eOfset(0.85);

grnl opdf[i][0]->Cet Yaxi s()->Set Ndi vi si ons(ydivnl opdf[i], true);

for (int j =1; j < types; j++){
grnlopdf[i][j]->Draw "sane, pl");

}

cnl opdf [ 1] ->RedrawAxi s();

i f(savesecpics == true){

cnl opdf[i]->SaveAs( Form("Pictures/cnlopdf %01i.pdf", i) );
}

grnl opdfah[i][1]->Cet Xaxis()->SetLimts(nloxmn[i], 1.0);
grnl opdf ah[i ][ 1] - >Set Maxi mum( nl opdf max[i]);
grnl opdfah[i][1]->Set M ni mum(nl opdf m n[i]);

cnl opdfah[i] = new TCanvas (Form("cnl opdf ahQ®1i",



i), Form("cnl opdf ah@®1i ", i), 800.0, 470.0);

cnl opdfah[i]->cd();

cnl opdf ah[i]->Set Logx();

grnl opdfah[i][1] ->Draw("al p");

grnlopdfah[i][1]->SetTitle(" "); //grnlopdfah[i][1]->SetTitle(

For m(" Anti hi ukkasten NLO PDF:ien arvot kerrottuna muuttujalla x, X:n
funktiona, skaalalla Q{f} = %", tscale[i].c_str()) ); grnlopdfah[i][1]-
>Cet Xaxi s()->SetTitle("x");

/1 grnlopdfah[i][1]->CetYaxis()->SetTitle( Form("xf {i}(x,Q{f} = %),
g, #bar{q}", tscale[i].c_str()) );
grnlopdfah[i][1]->CGetYaxis()->SetTitle( Form("xf _{i}(x,Q{f} = %)",
tscale[i].c_str()) );

grnl opdfah[i][ 1] - >Get Xaxi s() - >Set Label Si ze(0. 075);

grnl opdf ah[i][ 1] - >Get Yaxi s()->Set Label Si ze( 0. 075) ;

grnl opdfah[i][ 1] ->CGet Xaxi s()->SetTitl eSi ze(0.075);

grnl opdfah[i][1]->CetYaxis()->SetTitleSize(0.075);

grnl opdfah[i][1]->Get Xaxis()->SetTitleOfset(1.05);

grnl opdfah[i][1]->Get Yaxis()->SetTitl eOfset(0.85);

grnl opdfah[i][ 1] - >CGet Yaxi s()->Set Ndi vi si ons(ydi vnl opdf[i], true);

for (int j =2; j < types; j++){
grnlopdfah[i][j]->Draw "sane, pl");

}

grnlopdf[i][0]->Draw"sane, pl ");
cnl opdf ah[i] - >Redr awAxi s();

i f(savesecpics == true){ cnlopdfah[i]->SaveAs( Forn("Pictures/
cnl opdf ah%®1i . pdf", i) );
}
for(int j =0; j < types; j++){
griopdf[i][j] = (TG aph*)file->CGet( Form("grlopdf @®1i p%®1i", i, j) );
grliopdf[i][]]->Set Marker Styl e(20);
grlopdf[i][]j]->Set Marker Col or(color[j]);
grlopdf[i][]j]->Set Marker Si ze(0);
grliopdf[i][]j]->SetLineWdth(2);
grlopdf[i][j]->SetLineCol or(color[j]);
(0 < j){
grlopdfah[i][j] = (TG aph*)file->Get( Forn("grlopdf @®O1i p%®1i ah", i, j)
);
grlopdfah[i][]j]->Set Marker Styl e(20);
grlopdfah[i][]j]->Set Marker Col or(color[j]);
grlopdfah[i][j]->Set Marker Si ze(0);
grlopdfah[i][j]->SetLi neWdth(2);
grlopdfah[i][]j]->SetLineColor(color[j]);

}
}

grlopdf[i1][0]->Cet Xaxi s()->SetLimts(loxmn[i], 1.0);



grlopdf[i][0]->Set Maxi mun( | opdf max[i]);
grlopdf[i][0]->SetM ni mun(l opdfmn[i]);

clopdf[i] = new TCanvas (Form("cl opdf @®1i", i), Form("clopdf QO1Li",

800.0, 470.0); clopdf[i]->cd();

clopdf[i]->SetLogx();

grlopdf[i][0]->Draw "al p");

grliopdf[i][0]->SetTitle(" ");
[1grlopdf[i][0]->SetTitle(Form"Perushi ukkasten LO PDF:ien arvot
kerrottuna nmuuttujalla x, x:n funktiona, skaalalla Q{f} = %",
tscale[i].c_str())); grlopdf[i][0]->GetXaxis()->SetTitle("x");
[1grlopdf[i][0]->GetYaxis()->SetTitle( Form("xf {i}(x,Q{f} = %),
q", tscale[i].c_str()) );

grlopdf[1][0]->CetYaxis()->SetTitle( Form("xf_{i}(x,Q{f} = 9%)",
tscale[i].c_str()) );
grlopdf[i][0]->Cet Xaxi s()->Set Label Si ze(0.075);
grlopdf[i1][0]->Cet Yaxi s()->Set Label Si ze(0.075);
grlopdf[i1][0]->Cet Xaxi s()->SetTitleSi ze(0.075);
grlopdf[1][0]->Cet Yaxi s()->SetTitleSize(0.075);
grlopdf[i][0]->Cet Xaxi s()->SetTitleOffset(1.05);
grlopdf[i][0]->Cet Yaxis()->SetTitleOfset(0.85);
grlopdf[i][0]->CetYaxis()->SetNdivisions(ydivlopdf[i], true);

for (int j =1; j < types; j++){
grliopdf[i][]j]->Draw"sane, pl");

}

cl opdf[i]->RedrawAxi s();

i f(savesecpics == true){

clopdf[i]->SaveAs( Form("Pictures/clopdf %01li.pdf", i) );
}

grlopdfah[i][1]->CGet Xaxis()->SetLimts(loxmn[i], 1.0);
grlopdfah[i][1]->Set Maxi mun( | opdf max[i]);
grlopdfah[i][1]->SetM ni mun(lopdfmn[i]);

i),

:g'

cl opdfah[i] = new TCanvas (Forn{"cl opdf ahQ®1i", i), Fornm("cl opdf ah@®1i ",

i), 800.0, 470.0);

cl opdfah[i]->cd();

cl opdf ah[i]->Set Logx();
grlopdfah[i][1]->Draw "al p");
grlopdfah[i][1]->SetTitle(" ");

/1grlopdfah[i][1]->SetTitle( Fornm("Antihiukkasten LO PDF:ien arvot

kerrottuna nuuttujalla x, x:n funktiona, skaalalla Q{f} = %",
tscale[i].c_str()) ); grlopdfah[i][1]->CetXaxis()->SetTitle("x");

[1grlopdfah[i][1]->GetYaxis()->SetTitle( Form("xf_{i}(x,Q{f} = %),

g, #bar{q}", tscale[i].c_str()) );

grl opdf ah[i][1]->Get Yaxi s()->SetTitle( Forn("xf {i}(x,Q{f} = %)",

tscale[i].c_str()) );
grlopdfah[i][1]->Cet Xaxi s()->Set Label Si ze(0.075);

grlopdfah[i][1]->Cet Yaxi s()->Set Label Si ze(0.075); grlopdfah[i][1]-

>Cet Xaxi s()->SetTitl eSi ze(0.075);

grlopdfah[i][1]->CetYaxis()->SetTitleSize(0.075);
grlopdfah[i][1]->Cet Xaxis()->SetTitleOfset(1.05);
grlopdfah[i][1]->CetYaxis()->SetTitleOfset(0.85);



grlopdfah[i][1]->Cet Yaxi s()->Set Ndi vi si ons(ydi vlopdf[i], true);
for (int j =2; j < types; j++){
grlopdfah[i][j]->Draw("sane, pl");

}

grlopdf[i][0]->Draw "sane, pl");
cl opdf ah[i ] - >Redr awAxi s() ;

i f(savesecpics == true){
cl opdf ah[i]->SaveAs( Form("Pictures/clopdfah%®li.pdf", i) );
}

}

[l LO partonijakaumafunktiot (f j, j =g, u, u bar, d, d_bar, s, s_bar, c,
c_bar, b, b_bar, t, t_bar) nuuttujan Qf funktiona, eri x:n arvoilla

const int xs = 8;
const string tx[xs] = {"10~{-8}", "10~{-7}", "10~{-6}", "10~{-5}", "10~{-
4} n , n 10/\{ - 3} n , n 10/\{ - 2} n , n 10/\{ - 1} ll} ;

doubl e pdf Qrax[xs] = {22.ell, 6.el0, 22.e8, 7.e7, 22.e5, 6.e4, 1.e3,

22.0};

doubl e pdf Qrin[xs] = {11.e7, 11.e6, 11.e5, 2.e5, 9.e3, 4.e2, 9, 0.095};
TG aph *grl opdf J xs][types];

TG aph *grl opdf ah{ xs][types];

TCanvas *cl opdf  xs];
TCanvas *cl opdf ahq xs] ;
TLegend *add(X beg;

for(int i =0; i < xs; i++){

for(int j =0; j < types; j++){

griopdfi][j] = (TG aph*)file->CGet( Form("grlopdf x%®01i p%®1i", i, j) );
grliopdfi][j]->Set MarkerColor(color[j]);
grliopdfi][)j]->Set Marker Si ze(0);

grlopdfi][j]->SetLi neWdth(2);

grlopdf@i][j]->SetLineColor(color[j]);

(0 <j){

grlopdfani][j] = (TG aph*)file->Get( Form("grl opdf x%®1i p%®1i ah", i, j)
);

grlopdfahi][j]->Set Marker Col or(color[j]);
grlopdfahdi][j]->Set Marker Si ze(0);

grlopdfahi][j]->SetLineWdth(2);
grlopdfahi][j]->SetLineColor(color[j]);

}



}

grlopdfan@i][0] = (TG aph*)file->Get( Form("grl opdf x%®1i p0", i) );

grl opdf ah i ][ O] - >Set Mar ker Col or ( kBl ack) ;

grl opdfah i ][ 0] ->Set Mar ker Si ze(0) ;

grlopdfah@i][0]->SetLineWdth(2); grlopdfahQ i][0]->SetLineCol or(kBl ack);

grlopdf @ i][0]->Get Xaxi s()->SetLimts(0.635, 1200.0);
grlopdf @ i][0]->Set Maxi mun{ pdf Quax[i]);
grliopdf@i][0]->SetM ni mun(pdf Qmin[i]);

clopdfi] = new TCanvas (Form("cnl opdf x%®1i ", i), Form("cnl opdf x%®1i ",
i), 800.0, 470.0);

clopdf @ i]->cd();

clopdf Ji]->SetLogy();

grlopdfi][0]->Draw"al p");

grliopdfi][0]->SetTitle(" ");

[1grlopdfJi][0]->SetTitle( Fornm("Perushi ukkasten LO PDF:ien arvot skaal an
Q funktiona, suhteellisella |iikem#ddot{a}#ddot{a}r#ddot{a}osuudella x =
%", tx[i].c_str()) ); grlopdfi][0]->CetXaxis()->SetTitle("Q{f}
[GeV]™);

[1grlopdfi][0]->CGetYaxis()->SetTitle( Form("f _ {j}(x =9%,Q{f}), | = g,
q*, tx[i].c_str()) );

grliopdf@i][0]->CetYaxis()->SetTitle( Form("f _{i}(x = %,Q{f})",
tx[i].c_str()) );

grlopdf@i][0]->CGet Xaxi s()->Set Label Si ze(0. 075) ;
grlopdf@i][0]->CetYaxis()->SetLabel Si ze(0.075);

grlopdfi][0]->CGet Xaxis()->SetTitleSize(0.075); grlopdfi][O0]-

>Cet Yaxi s()->SetTitl eSi ze(0.075);
grlopdf@i][0]->CetXaxis()->SetTitleCOfset(0.95);
grlopdf@i][0]->GetYaxis()->SetTitleOfset(0.85);

grlopdfi][0]->CGet Xaxi s()->Set Ndi vi si ons(50207, true);

for(int j =1; j < types; j++){
grliopdfi][j]->Draw"sane, pl");
}

addQ¥ beg = new TLegend(0.12,0.098,0.17,0.048);
addQ beg- >Set Header ("#frac{m {c}}{2}","C");
addQ¥ beg->SetFi |l | Styl e(0);

addQ¥ beg->Draw() ;

clopdf @ i]->RedrawAxi s();
i f(savesecpics == true){

clopdf Ji]->SaveAs( Form("Pictures/clopdf Q®1li.pdf", i) );
}

grlopdfah@i][0]->Get Xaxi s()->SetLimts(0.635, 1200.0);
grl opdf ah i ][ 0] - >Set Maxi mun{ pdf Qrax[i]);
grlopdfah@i][0]->SetM ni mun(pdf Qrin[i]);

clopdfah@i] = new TCanvas (Forn("cnl opdf ahQx%®1i ",



i), Form("cnl opdf ah@x%®1i ", i), 800.0, 470.0);

clopdf ah i]->cd();

cl opdf ah i]->Set Logy();

grlopdfahi][0]->Draw("al p");

grlopdfan@i][0]->SetTitle(" "); //grlopdfah@i][0]->SetTitle(

Form(" Anti hi ukkasten LO PDF:ien arvot skaal an Q funktiona, suhteellisella
I1i ken#ddot { a} #ddot { a} r #ddot { a} osuudel l a x = %", tx[i].c_str()) );
grlopdfah@i][0]->Get Xaxis()->SetTitle("Q{f} [GV]");
/1grlopdfah@i][0]->CetYaxis()->SetTitle( Form("f {j}(x = %,Q{f}), | =
g, #bar{q}", tx[i].c_str()) );

grlopdfah@i][0]->Get Yaxis()->SetTitle( Form("f _{i}(x = %,Q{f})",
tx[i].c_str()) );

grl opdfah@ i ][ 0] - >Get Xaxi s()->Set Label Si ze( 0. 075) ;

grl opdfah i ][ 0] - >Get Yaxi s()->Set Label Si ze( 0. 075) ;

grlopdfah@ i][0]->Cet Xaxi s()->SetTitleSize(0.075);

grlopdfah@i][0]->Get Yaxis()->SetTitleSize(0.075);
grlopdfah@i][0]->Get Xaxi s()->SetTitl eOfset(0.95);
grlopdfah@i][0]->Get Yaxis()->SetTitl eOfset(0.85);

grl opdfah@ i ][ 0] - >Get Xaxi s()->Set Ndi vi si ons(50207, true);

for(int j =1; j < types; j++){
grlopdfahdi][j]->Draw("sang, pl");
}

addQ¥ beg->Dr awm ) ;
cl opdf ahQ i ] - >Redr awAxi s() ;

i f(savesecpics == true){ clopdfahQi]->SaveAs( Forn("Pictures/
cl opdf ahQ@®1i . pdf", i) );
}

}

/]l Tarvittavia asetuksia ja tietoja

const int cases = 19;

string tcase[cases] = {"cl1l", "ccutl", "cdifl", "cdif2", "cdif3", "cdif4",
"“cdi f5", "cdif6", "cdif7", "b1", "bcutl", "bdif1", "bdif2", "t1l", "t2",
"tdifl", "tdif2", "tdif3", "tdif4"}; const bool ishist[cases] = {fal se,
false, true, true, true, true, true, true, true, false, false, true, true,
fal se, false, true, true, true, true};

const int points = 1200;

const int Quer = 7,

/'l Kokeel li set tul okset ja vastaavat K-kertoinella skaal atut teoreettiset
t ul okset (ensimmAainen ja toinen kuva).

TG aphAsymErrors *erp[cases];

bool isaltp[cases] = {false, false, false, false, false, false, false,
fal se, false, false, false, false, false, true, true, false, false, false,
fal se}; TG aphAsymmErrors *erpalt[cases];

TH1D *erstaerr|[cases];

TG aphAsymErrors *ersyserr[cases];

TH1D *t eorka[ cases];

TG aphAsymmErrors *kscfit[cases];

TF1 *fkscfit[cases]; TG aphErrors *ksc[cases];



const int nnoksc = 4;

string noksc[nnoksc] = {"b1", "bcutl", "bdifl", "bdif2"}; // E K-
kertoimel | a skaal atun teoreettisen tul oksen piirtAanistAa nAaj ssAa
t apauksi ssa

/1 EnsinmmAei nen kuva: NLO-setin avul | a saadut tul okset PDF-virheineen ja
LO-tul os, jonka PDF:ien aiheuttamaa virhettAa on approksi moitu NLO settien
ant aman tul oksen avul | a. LisAcksi kokeel liset tul okset esitetAsAon. TG aph
*grnl o] cases] ;

TG aph *grLN cases];

TG aph *grLL[ cases];

TG aphAsymErrors *gr NLJ cases] ;

TG aphAsymErrors *grL( cases];

TCanvas *caper [ cases];

/1l Verrataan c-, b- ja t-kvarkkiparien tuottojen kokonai svai kutusal oj a pp-
ja pp_bar-tAfr mAayksi ssAa. Nyt kol me kuvaa.

const int ncom = 3;

TG aph *grconf nconi;

TG aph *grLLcon{ cases];

string tconfncom = {"cl", "bl", "t2"};

string tqgp[ncon] = {"c#bar{c}", "b#bar{b}", "t#bar{t}"};

string comun[ncon] = {"nb", "#nub", "pb"};

doubl e ycommax[ ncomnj {6.6, 400, 520};

doubl e ycomm n[ nconj {0.0, 0.0, 1}; bool com slog[ncon] = {fal se, false,
true};

TCanvas *cconi nconi;

/1 Toinen kuva: PAcActul okset, @, m ja FF-virhekAayrAot (envel ope). LisA
oksi kokeel |l iset tul okset ja vastaava K-kerroin-skaal attu kAayrAo esitetA
oAan. TGraph *grlLLnr[cases];

TG aph *grnmax|[ cases];

TG aph *grmm n[ cases];

TG aphAsymErrors *grnfcases];

TG aphAsymErrors *gr{ cases];

TG aphAsymErrors *gr FF[ cases];

const bool isFF[cases] = {false, false, true, true, true, true, true,
true, true, false, false, false, false, false, false, false, false, false,
fal se}; TCanvas *cnr[cases];

/1 Akselien asetukset ensinmmAci sessAa, toisessa, kol mannessa ja

vi i dennessAa kuvassa.

doubl e xmax[cases] = {8, 14.0, 12.0, 12.0, 12.0, 36.0, 36.0, 16.0, 24.0,
8.0, 14.0, 5.0, 5.0, 3.0, 14.0, 0.500, 1.50, 550, 2.6};

doubl e xm n[cases] = {0.0, 0.0, 1.0, 2.0, 2.0, 0.0, 1.0, 1.0, 1.0, O.0,
0.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.6}; double ymax[cases] = {12.0,
3200, 550, 51.0, 51.0, 750, 210, 800, 320, 620.0, 230.0, 56.0, 100.0,
15.0, 1010.0, 100, 11.0, 10.0, 275};

doubl e ym n[cases] = {0.0, 0.0, 0.05, 0.020, 0.020, 0.0005, 0.0002, 0.03,
0.002, 1.0, 1.0, 0.0, 0.0, 0.0, 8.0, 0.1, 0, 0.02, 0};

const bool nrlog[cases] = {false, false, true, true, true, true, true,
true, true, true, false, false, false, false, true, true, false, true,
fal se};

string nrx[cases] = {"#sqrt{s} [TeV]",
"#sqrt{s} [TeV]",
"p_{T} [GeV]",



"p{T} [CeV]",
"p_{T} [CeV]",
"p_{T} [CeV]",
"p{T} [GeV]",
"p_{T} [CeV]",
p_{T}t [GeV]",
"#sqrt{s} [ TeV] ",
"#sqrt{s} [TeV]",

"#eta",

"#eta",

"#sqrt{s} [TeV]",

"#sqrt{s} [TeV]", "p_{T} [TeV]",
“lyl",

pMt} {TE [GeV]”

"y {t}"}

string nry[cases] = {"#sigma™{pp #rightarrow c#bar{c}+X}(#sqrt{s} ) [nb]"
'#S|gnaA{pp #rlghtarrOM/c#bar{c}+X} {0< p {T}< 8 GV, 2.0<y<4. 5}(#sqrt{s}
) [#mub]"

"#frac{ d#si gma™{ pp #rightarrow D'{0}+X} {|y|<0.5}}{dp_{T}} [#nub/ GeV]",
"#frac{d#si gma™{pp #rightarrow D{+}+X} {|y|<0.5}}{dp_{T}} [#mub/ GeV]",
"#frac{d#si gma™{pp #rightarrow D*"{+}+X} {]|y|<0.5}}{dp_{T}} [#mub/ GeV]"
"#f rac{d#si gma™{pp #rightarrow D'{0}+X} {|y|<0.5}}{dp_{T}} [#mub/ GeV]",
"#frac{d#si gma™{pp #rightarrow D"{+}+X} {]|y|<0.5}}{dp _{T}} [#mub/ GeV]",
"#frac{d#si gma™{pp #rightarrow D'{0}+X} {|y|<0.5}}{dp_{T}} [#mub/ CGeV]",
"#frac{d#si gma™{pp #rightarrow D**{+}+X} {]|y| <O. 5}}{d {T}} [#mub/ GeV]",

"#si gma™{ pp #rightarrow b#bar{b}+X}(#sqrt{s} ) [#nub]"

"#si gma™M{ pp #rightarrow b#bar{b}+X} {2.0<#et a<5. 0}(#sqrt{s} ) [#mub]"
"#frac{d#si gma™{pp #rightarrow H {b}+X}}{d#eta} [#nmub]"

"#frac{d#si gma™{pp #rightarrow H {b}+X}}{d#et a} [#nub]",

"#si gmaN{ p#bar { p} #rightarrow t#bar{t}+X}(#sqrt{s} ) [pb]",
"#sigma™{ pp #rightarrow t#bar{t}+X}(#sqrt{s} ) [pb]",
"#frac{d#si gma"{ p#bar{p} #rightarrow t#bar{t}+X}}{dp {T}} [pb/ TeV]",
"#f rac{d#si gma{ p#bar{p} #rightarrow t#bar{t}+X}}{d|y|} [pb]"
"#frac{d#si gma™{pp #rightarrow t#bar{t}+X}}{dp™{t} _{T}} [pb/ GV]",
"#frac{d#si gma™{pp #rightarrow t#bar{t}+X}}{dy _{t}} [pb]"};

doubl e nrtsizeprim= 0.070; double nrtosprinfcases] = {0.51, 0.86, 0.83,
0.83, 0.83, 0.83, 0.83, 0.83, 0.83, 0.65, 0.80, 0.70, 0.70, 0.62, 0.62,
0.83, 0.75, 0.83, 0.83};

// doubl e nrtossec[cases] = {0.8, 1.08, 0.80, 1.00, 0.75, 0.80, 0.77, 0.80,
0.77, 0.8, 1.00, 0.81, 0.81, 0.8, 0.89, 0.85, 0.85, 0.85, 0.87};

doubl e | absi zel = 0. 075;
doubl e | absi ze2 = 0. 075;
doubl e xtsizel = 0.075;

doubl e xtosl = 0. 95;

doubl e xtsize2 0. 075;
doubl e xtos2 = 0. 95;

doubl e ytsize2 0. 075;
doubl e ytos2 = 0. 85;

doubl e ktsizel 0. 075:;



doubl e ktosl = 0. 57;

string nrtitle[cases] = {"c#bar{c}-kvarkki parien tuoton
kokonai svai kut usal a nuuttuj an #sqrt{s} funktiona pp-

t #ddot { o} r m#ddot { a} yksi ss#ddot {a}", "c#bar{c}-kvarkki parien tuoton
kokonai svai kutusal a, |eikkauksilla O < p {T} <8 GV, 2.0 <y < 4.5,
muuttuj an #sqrt{s} funktiona pp-t#ddot{o}rn¥#ddot{a}yksi ss#ddot{a}", "Dn
{0}-nmesonien tuoton p {T}-differentioitu vai kutusal a
rapiditeettil ei kkauksella |y| < 0,5 ja t#ddot{o}rn¥#ddot{a}ysenergialla

#sqrt{s} = 2,76 TeV", "DM +}-mesonien tuoton p_{T}-differentioitu

vai kutusal a rapiditeettil ei kkauksella |y|] < 0,5 ja

t #ddot { o} r n##ddot { a} ysenergi al | a #sqrt{s} = 2,76 TeV', "DM *+}-mesoni en
tuoton p_{T}-differentioitu vai kutusala rapiditeettilei kkauksella |y| <
0,5 ja t#ddot{o}rm#ddot{a}ysenergialla #sqrt{s} = 2,76 TeV", "DM0}-
mesoni en tuoton p_{T}-differentioitu vai kutusala rapiditeettil ei kkauksell a
|yl < 0,5 ja t#ddot{o}rm#ddot{a}ysenergialla #sqrt{s} = 5,02 TeV", "DM

+}-nmesoni en tuoton p {T}-differentioitu vai kutusal a
rapiditeettil ei kkauksella |y| < 0,5 ja t#ddot{o}rn¥#ddot{a}ysenergialla

#sqrt{s} = 5,02 TeV", "DM{0}-nesonien tuoton p {T}-differentioitu

vai kutusal a rapiditeettil ei kkauksella |y|] < 0,5 ja

t #ddot { o} r n##ddot { a} ysenergi al | a #sqrt{s} = 7 TeV"', "DM *+}-nmesoni en
tuoton p_{T}-differentioitu vai kutusala rapiditeettilei kkauksella |y| <
0,5 ja t#ddot{o}rm#tddot{a}ysenergialla #sqrt{s} = 7 TeV", "Prosessin pp

#ri ght arrow b#bar { b} +X kokonai svai kut usal a muuttuj an #sqrt{s} funktiona",
"Prosessin pp #rightarrow b#bar {b}+X kokonai svai kut usal a, | ei kkauksel |l a
2.0 < #eta < 5.0, nmuuttujan #sqrt{s} funktiona",
"Prosessin pp #rightarrow b#bar{b}+X #eta-differentioitu vai kutusal a b-
hadroni n (tai kka #bar{b}-hadroni n) pseudorapiditeetin funktiona,

energialla #sqrt{s} = 7 TeV', "Prosessin pp #rightarrow b#bar{b}+X #et a-
differentioitu vai kutusal a b-hadroni n (tai kka #bar{b}-hadroni n)
pseudor api diteetin funktiona, energialla #sqrt{s} = 13 TeV", "Prosessin

p#bar { p} #rightarrow t#bar{t}+X kokonai svai kutusal a nmuuttuj an #sqrt{s}
funktiona",

"Prosessin pp #rightarrow t#bar{t}+X kokonai svai kut usal a rmuuttuj an
#sqrt{s} funktiona",

"Prosessin p#bar{p} #rightarrow t#bar{t}+X p_{T}-differentioitu
vai kut usal a poi ki ttaisliikem#ddot{a}#ddot{a}r#ddot{a}n funktiona,

energialla #sqrt{s} = 1.96 TeV", "Prosessin p#bar{p} #rightarrow
t#bar{t}+X |y|-differentioitu vai kutusala nuuttujan rapiditeetin
i tsei sarvon funktiona, energialla #sqrt{s} = 1.96 TeV", "Prosessin pp

#rightarrow t#bar{t}+X p_{T}-differentioitu vai kutusala t-kvarkin

poi ki ttaisliikem#ddot {a}#ddot {a}r#ddot{a}n funktiona, energialla #sqrt{s}
= 13 TeV", "Prosessin pp #rightarrow t#bar{t}+X y-differentioitu

vai kutusal a t-kvarkin rapiditeetin funktiona, energialla #sqrt{s} = 13
TeV'};

/1 Kol mas kuva: Eri skaal aval i ntojen ai heuttamat epAevarnmuudet. Qr:n ja
Q f:n vaihtelujen "envel opet" sekAa (Q {max},Q {max})- ja (Q{mn},Q
{min})-kAeyrAot. TG aph *gr Qdef[cases];

TG aph *gr QQmax[ cases];
TG aph *gr QQm n[ cases];
TG aphAsymErrors *gr Qa[ cases];
TG aphAsymErrors *gr Q[ cases];
TCanvas *cQaQp[ cases];

string Qitle[cases] = {"Skaal aval i ntoj en vai kut ukset vai kutusal aan
#si gma™{ pp #rightarrow c#bar{c}+X}",



" Skaal aval i nt oj en vai kut ukset vai kut usal aan #si gma™{pp #ri ghtarrow
c#bar{c}+X} _{O<p_{T}<8 GeV, 2.0<y<4.5}",

"Skaal aval i nt oj en vai kut ukset vai kut usal aan #frac{d#si gma™{pp #rightarrow
DMO}+X} {|y|<0,5}}{dp {T}}, #sqrt{s} = 2,76 TeV", " Skaal aval i nt o] en
vai kut ukset vai kut usal aan #frac{d#si gma™{pp #rightarrow D'{+}+X} {]| Y|
<0,5}}{dp_{T}}, #sqgrt{s} = 2,76 TeV"', " Skaal aval i nt oj en vai kut ukset
vai kut usal aan #frac{d#si gma™{pp #rightarrow D"{*+}+X} {|y| <0, 5}}{dp_{T}},
#sqrt{s} = 2,76 TeV", " Skaal aval i nt oj en vai kut ukset vai kut usal aan
#frac{d#si gma"{pp #rightarrow D{0}+X} {]|y|<0,5}}{dp {T}}, #sqrt{s} = 5,02
TeV", " Skaal aval i nt oj en vai kut ukset vai kut usal aan #frac{d#si gma™{pp
#rightarrow DM{*+}+X} _{]|y| <0, 5}}{dp_{T}}, #sqrt{s} = 5,02 TeV"
" Skaal aval i nt oj en vai kut ukset vai kut usal aan #frac{d#si gma™{pp #ri ghtarrow

DM O} +X} _{|y|<0O,5}}{dp_{T}}, #sart{s} =7 TeV", " Skaal aval i nt oj en
vai kut ukset vai kut usal aan #frac{d#si gma*{pp #rightarrow D'{*+}+X} {]V]
<0, 5} }{dp_{T}}, #sqrt{s} = 7 TeV", " Skaal aval i nt oj en vai kut ukset

vai kut usal aan #si gma™{pp #ri ghtarrow b#bar{b}+Xx}"

" Skaal aval i nt oj en vai kut ukset vai kut usal aan #si gma™{pp #ri ghtarrow

b#bar { b} +X} {2. O<#et a<5. 0} (#sqrt{s} )", " Skaal aval i nt oj en vai kut ukset
vai kut usal aan #frac{d#si gma”{pp #rightarrow H {b}+X}}{d#eta}, #sqrt{s} =7
TeV',

" Skaal aval i nt oj en vai kut ukset vai kut usal aan #frac{d#si gma™{pp #rightarrow
H {b}+X}}{d#eta}, #sqrt{s} = 13 TeV'

"Skaal aval i nt oj en vai kut ukset vai kut usal aan #si gma™{ p#bar{p} #rightarrow
t#bar {t}+X}"

" Skaal aval i nt oj en vai kut ukset vai kut usal aan #si gma™{pp #ri ghtarrow

t#bar {t}+X} ",

" Skaal aval i nt oj en vai kut ukset vai kut usal aan #frac{d#si gma”{ p#bar { p}
#rightarrow t#bar{t}+X}}{dp_{T}}, #sqrt{s} = 1.96 TeV'

" Skaal aval i nt oj en vai kut ukset vai kut usal aan #frac{d#si gma”{ p#bar { p}

#rightarrow t#bar{t}+X}}{d|y|}, #sqrt{s} = 1.96 TeV', " Skaal aval i nt oj en
vai kut ukset vai kut usal aan #frac{d#si gma™{pp #rightarrow t#bar{t}+X}}{dp_
{T}}, #sqrt{s} = 13 TeV', "Skaal aval i nt oj en vai kut ukset vai kut usal aan

#f rac{d#si gma™{pp #rightarrow t#bar{t}+X}}{dy_{t}}, #sqrt{s} = 13 TeV'};

/1 NeljAss kuva: Skaal an, massan ja fragmentaati of rakti on epAevar muuksi en
suhteel li set virheet.

TG aphAsymmErrors *grQel [ cases];

TG aphAsymErrors *grnrel [ cases];

TG aphAsymmErrors *gr FFrel [ cases];

doubl e rel errmax[ cases] = {220, 460, 300, 500, 150, 340, 380, 420, 420,
160, 200, 80, 80, 350, 300, 80, 100, 80, 80};

double relerrm n[cases] = {-100, -100, -100, -100, -100, -100, -100, -100,
-100, -100, -100, -80, -80, -100, -100, -40, -40, -40, -40};

TCanvas *crel err[cases];

string relerrtitle[cases] = {"Skaal an ja massan ep#ddot {a}var nuuden
ai heuttamat suhteelliset virheet vai kutusal alle #sigma™{pp #rightarrow

c#bar {c}+X}", "Skaal an ja massan ep#ddot{a}varnuuden ai heutt anmat
suht eel I i set virheet vai kutusal alle #sigma™{pp #rightarrow c#bar{c}+X}
{O<p_{T}<8 GV, 2.0<y<4.5}", "Skaalan, massan ja fragnentaaati ofraktion

ep#ddot { a} var nruuden ai heuttamat suhteelliset virheet vai kutusalalle
#frac{d#si gma"{pp #rightarrow D{0}+X} {|y|<0,5}}{dp {T}}, #sqrt{s} = 2,76
TeV", "Skaal an, massan ja fragnentaati of rakti on ep#ddot{a}var nuuden

ai heuttamat suhteelliset virheet vaikutusal alle #frac{d#si gma™{pp
#rightarrow DM{+}+X} _{|y| <0, 5}}{dp_{T}}, #sqrt{s} = 2,76 TeV', " Skaal an,
massan ja fragnentaatiofrakti on ep#ddot {a}varmuuden ai heuttamat
suhteel I'i set virheet vaikutusal alle #frac{d#si gma™{pp #rightarrow D"{*



+}+X} {|y|<0,5}}{dp {T}}, #sqrt{s} = 2,76 TeV"', " Skaal an, massan ja
fragnment aati of rakti on ep#ddot {a} var nuuden ai heuttamat suhteelliset virheet
vai kut usal al | e #frac{d#si gma*{pp #rightarrow D*{0}+X} {|y| <0, 5}}{dp_{T}},
#sqrt{s} = 5,02 TeV", "Skaal an, massan ja fragnmentaati ofraktion
ep#ddot { a} var nruuden ai heuttamat suhteelliset virheet vai kutusalalle
#frac{d#si gma™{pp #rightarrow D{*+}+X} {|y|<0,5}}{dp_ {T}}, #sqrt{s} =
5,02 TeV', "Skaal an, massan ja fragnentaati of rakti on ep#ddot {a}var nuuden
ai heuttamat suhteelliset virheet vai kutusal all en #frac{d#si gma™{pp
#rightarrow DM{0}+X} _{|y| <0, 5}}{dp_{T}}, #sqgrt{s} = 7 TeV', " Skaal an,
massan ja fragnentaatiofrakti on ep#ddot {a}varnmuuden ai heuttamat
suhteel li set virheet vai kutusal all e #frac{d#si gma”{pp #rightarrow D'{*

+}+X} {]|y|<0,5}}{dp {T}}, #sqrt{s} = 7 TeV", " Skaal an ja massan
ep#ddot { a} var nruuden ai heuttamat suhteelliset virheet vai kutusalalle

#si gma™{ pp #rightarrow b#bar{b}+X}", "Skaal an ja massan
ep#ddot { a} var mruuden ai heuttamat suhteelliset virheet vai kutusalalle

#si gma™{ pp #rightarrow b#bar{b}+X} {2. O<#eta<b5.0} (#sqrt{s} )", " Skaal an

j @ massan ep#ddot { a} var nuuden ai heuttamat suhteelliset virheet
vai kut usal al | e #frac{d#si gma*{pp #rightarrow H {b}+X}}{dp _{#eta}},

#sqrt{s} = 7 TeV', "Skaalan ja massan ep#ddot{a}varmuuden ai heutt amat
suhteel | i set virheet vaikutusal alle #frac{d#si gma™{pp #rightarrow H_
{b}+X}}{dp_{#eta}}, #sqrt{s} = 13 TeV', "Skaalan ja massan
ep#ddot { a} var nruuden ai heuttamat suhteelliset virheet vai kutusalalle
#si gma™{ p#bar {p} #rightarrow t#bar{t}+X}", "Skaal an ja massan
ep#ddot { a} var ruuden ai heuttamat suhteelliset virheet vai kutusalalle
#si gma™{pp #rightarrow t#bar{t}+X}", "Skaal an ja massan

ep#ddot { a} var nuuden ai heuttanmat suhteelliset virheet vaikutusalalle
#frac{d#si gma"{ p#bar{p} #rightarrow t#bar{t}+X}}{dp {T}}, #sqgrt{s} = 1.96
TeV", "Skaal an ja massan ep#ddot{a}varnuuden ai heuttamat suhteelliset

vi rheet vai kutusal al | e #frac{d#si gma™{ p#bar{p} #rightarrow t#bar{t}+Xx}}
{d|y|}, #sqrt{s} = 1.96 TeV", "Skaal an ja massan ep#ddot {a}var nuuden

ai heuttamat suhteelliset virheet vai kutusal all e #frac{d#si gma™{pp
#rightarrow t#bar{t}+X}}{dp_{T}}, #sqgrt{s} = 13 TeV', " Skaal an ja nmassan
ep#ddot { a} var nruuden ai heuttamat suhteelliset virheet vai kutusalalle
#frac{d#si gma™{pp #rightarrow t#bar{t}+X}}{dy_{t}}, #sqrt{s} = 13 TeV'},;

/1 Viides kuva: Eri partonityyppien vuorovai kutusten (g+g. u+u_bar,
d+d_bar, s+s_bar, c+c_bar, b+b_bar (PDF: AeAc t/t_bar-kvarkille ei ole))
suht eel | i set osuudet | asketusta vai kutusal asta. TG aph *grr[cases][types];
doubl e rxm n[cases] = {2*0.00127+0. 00001, 0.01501, 1.0, 2.0, 2.0, 0.00001,
1.0, 1.0, 1.0, 2*0.00418+0.00001, 2*0.00418+0.00001, 2.0, 2.0,

2*0.1729+0. 00001, 2*0.1729+0.00001, 0.0, 0.0, 0.0, -2.6}; double
rym n[ cases] = {0.0001, 0.00004, 0.000001, 0.000001, 0.000001, O.0001,

0. 0001, 0.00006, 0.0001, 0.00006, 0.0004, 0.00001, 0.00001, 0.000001,

0. 0001, 0.000005, 0.00003, 0.001, 0.0008}; const bool rlog[cases] = {true,
true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true};

TCanvas *cr[cases];

string rtitle[cases] = {"Eri vuorovai kutustyyppi en suhteel | i set osuudet
kokonai svai kut usal asta #si gma™{pp #ri ghtarrow c#bar{c}+X} nuuttujan
#sqrt{s} funktiona", "Eri vuorovai kut ust yyppi en suhteel | i set osuudet
kokonai svai kut usal ast a #si gma™{pp #rightarrow c#bar{c}+X} {O<p {T}<8 GeV,
2.0<y<4.5} muuttujan #sqrt{s} funktiona", "Eri vuorovai kutustyyppien
suhteel |l i set osuudet p {T}-differentioidusta D'{0}-nmesoni en tuoton
vuorovai kut usal asta, |ei kkauksella |y|] < 0,5 ja energialla #sqrt{s} = 2,76
TeV, nmuuttujan p_{T} funktiona", "Eri vuorovai kut ust yyppi en suhteel | i set
osuudet p {T}-differentioidusta D{+}-nesoni en tuoton vuorovai kut usal ast a,



| ei kkauksella |y| < 0,5 ja energialla #sqrt{s} = 2,76 TeV, muuttujan p {T}
funktiona", "Eri vuorovai kutustyyppi en suhteelliset osuudet p_{T}-
differentioi dusta D'{*+}-nesoni en tuoton vuorovai kut usal ast a,

| ei kkauksella |y| < 0,5 ja energialla #sqrt{s} = 2,76 TeV, muuttujan p_{T}
funktiona", "Eri vuorovai kut ustyyppi en suhteelliset osuudet p_{T}-

di fferentioi dusta D' 0}-nesoni en tuoton vuorovai kutusal asta, | ei kkauksella
|yl < 0,5 ja energialla #sqrt{s} = 5,02 TeV, nmuuttujan p_{T} funktiona",
"Eri vuorovai kut ustyyppi en suhteelliset osuudet p_{T}-differentioidusta D"
{*+}-mesoni en tuoton vuorovai kutusal asta, |ei kkauksella |y|] < 0,5 ja
energialla #sqgrt{s} = 5,02 TeV, nuuttujan p_{T} funktiona", "Eri

vuor ovai kut ust yyppi en suhteel li set osuudet p {T}-differentioi dusta D*{0}-
nmesoni en tuoton vuorovai kut usal asta, |ei kkauksella |y|] < 0,5 ja energialla
#sqrt{s} = 7 TeV, muuttujan p_{T} funktiona", "Eri vuorovai kut ust yyppi en
suhteel |l i set osuudet p {T}-differentioidusta D{*+}-nmesoni en tuoton

vuor ovai kut usal asta, |ei kkauksella |y|] < 0,5 ja energialla #sqrt{s}

TeV, nmuuttujan p_{T} funktiona", "Eri vuorovai kut ust yyppi en suhteel | i set
osuudet kokonai svai kut usal asta #si gma™{pp #ri ghtarrow b#bar { b} +X}
muutt uj an #sqrt{s} funktiona", "Eri vuorovai kut ust yyppi en suhteel |l iset
osuudet vai kut usal asta #si gma™{pp #rightarrow b#bar{b}+X} {2.0<#et a<5. 0}
muut tuj an #sqrt{s} funktiona", "Eri vuorovai kutustyyppi en suhteel i set
osuudet protoni-protoni-t#ddot{o}rn#ddot{a}ysten b#bar{b}-tuoton #eta-

di fferentioi dusta vai kutusal asta, energialla #sqrt{s} = 7 TeV, nuuttujan
#eta funktiona", "Eri vuorovai kutustyyppi en suhteelliset osuudet protoni-
prot oni -t #ddot { o} r n¥ddot { a} yst en b#bar{b}-tuoton #eta-differentioi dusta
vai kut usal asta, energialla #sqrt{s} = 13 TeV, nuuttujan #eta funktiona",
"Eri vuorovai kutustyyppi en suhteel | i set osuudet kokonai svai kut usal ast a

#si gma™{ p#bar {p} #rightarrow t#bar{t}+X} muuttujan #sqrt{s} funktiona",
"Eri vuorovai kut ust yyppi en suhteelliset osuudet kokonai svai kutusal asta

#si gma™{pp #rightarrow t#bar{t}+X} nuuttujan #sqrt{s} funktiona", " Er
vuor ovai kut ust yyppi en suhteel | i set osuudet p _{T}-differentioidusta
protoni-anti protoni-t#ddot{o}rn¥#ddot{a}ysten t#bar{t}-parien tuoton

vuor ovai kut usal asta, energialla #sqrt{s} = 1.96 TeV, nmuuttujan p {T}
funktiona", "Eri vuorovai kutustyyppi en suhteel | i set osuudet |y]|-

di fferentioi dusta protoni-antiprotoni-t#ddot{o}rm#ddot{a}ysten t#bar{t}-
pari en tuoton vuorovai kutusal asta, energialla #sqgrt{s} = 1.96 TeV,
muuttuj an |y| funktiona", "Eri vuorovai kutustyyppi en suhteel |l iset
osuudet p_{T}-differentioi dusta protoni-protoni-t#ddot{o}rn¥#ddot{a}ysten

t #bar{t}-parien tuoton vuorovai kutusal asta, energialla #sqrt{s} = 13 TeV,
muuttujan p_{T} funktiona", "Eri vuorovai kut ustyyppi en suhteel |l iset
osuudet y {t}-differentioidusta protoni-protoni-t#ddot{o}rnm#ddot{a}ysten

t #bar{t}-parien tuoton vuorovai kutusal asta, energialla #sqrt{s} = 13 TeV,
muuttujan y_{t} funktiona"};

TLegend *addval [ cases];

bool addsv|[cases] = {true, true, false, false, false, false, false, false,
false, true, true, false, false, true, true, false, false, false, false};
string sv[cases] = {"2m{c}","(#sqrt{s})_{mn}", " " » " = "=, oo
","2m {b}", "2n1{b}" emymryr2m ey, 2m e, o, oyt "y,

double | xpos[ cases] {O 1325 0.149, 0, 0, 0, O, O O O 0. 1325, 0.1325,
0, 0, 0.129, 0.129, O 0, 0, 0};

/1 Kuvat 6-12: K-kertoimet bineittAsin/pisteittAsin sekAe vastaava
sovitus, seitsemAall Aa eri skaal aval i nnal | a.

TG aphAsymErrors *kf p[ cases] [ Quer];

TH1D *kf staerr[cases][ Quer];

TG aphAsymErrors *kfsyserr[cases][ Quer];

TG aphAsymmErrors *kftoterr[cases][ Quer];



TF1 *f K[ cases] [ Quver];

TCanvas *ckf[cases][ Quer];

string kfQuer] = {"(Q{def}, Q{def})","(Q{max}, Q{mx})", "(Q{mn},
Qf{mn})", "(Qf{def}, Q{max})", "(Q{mn}, Q{def})", "(Qfdef}, Q
{mn})", " (Q{max}, Qf{def})"};

/1 TAet Ao osiota kAoytet AsAan, mi kAeli K-kerroin-kuvien y-akselin yl Aaraja
j oudut aan asettamaan manuaal i sesti. Normaalisti akselin ylAeraja on kaksi
kertaa K-kerroin-sovituksen arvo (ja alaraja 0). const int nkfsc = 9;
string kftagsc[nkfsc] = {"cl1", "cdifl", "cdif2", "cdif3", "cdif4",

"cdif5", "cdife6", "cdif7", "b1l"};

doubl e kf maxsc[nkfsc][Qer] ={ {6.0, 7.0, 10.0, 4.5, 3.2, 18.0, 10.0},
{5.0, 4.5, 6.0, 3.0, 2.7, 14.0, 8.0},

{5.6, 6.0, 7.0, 4.3, 3.5, 11.0, 8.4},

{6.2, 6.2, 8.0, 4.1, 3.7, 14.0, 8.8},

{4.5, 3.2, 7.0, 2.3, 2.0, 14.0, 6.8},

{5.6, 5.0, 8.0, 4.0, 3.3, 14.5, 8.2},

{4.6, 3.3, 9.0, 2.3, 2.4, 16.5, 6.6},

{5.4, 4.5, 9.0, 3.5, 3.0, 17.0, 8.0},

{4.7, 6.3, 3.5, 4.5, 3.2, 5.2, 6.4} };

string kftitle[cases] {"K-tekij#ddot{a}n arvot vai kutusal al |l e #si gma™{pp
#rightarrow c#bar{c}+Xx}",

"K-tekij#ddot{a}n arvot vai kutusal al |l e #si gma™{pp #rightarrow c#bar{c}+X}
{O0<p_{T}<8 GV, 2.0<y<4.5}", "K-tekij#ddot{a}n arvot vaikutusal alle
#frac{d#si gma™{pp #rightarrow D{0}+X} {|y|<0,5}}{dp {T}}, #sqrt{s} = 2,76
TeV", "K-tekij#ddot{a}n arvot vai kutusal al | e #frac{d#si gma™{pp
#rightarrow DM +}+X} _{|y|<0O,5}}{dp_{T}}, #sqart{s} = 2,76 TeV", " K-

t eki j #ddot {a} n arvot vai kutusal al | e #frac{d#si gma™{pp #rightarrow D'{*
+}+X} {|y|<0,5}}{dp _{T}}, #sqrt{s} = 2,76 TeV", "K-tekij#ddot{a}n arvot
vai kutusal al | e #frac{d#si gma™{pp #rightarrow D"{0}+X}_{]|y|<0,5}}{dp_{T}},
#sqrt{s} = 5,02 TeV", "K-tekij#ddot{a}n arvot vai kutusalalle

#f rac{d#si gma™{pp #rightarrow D*{*+}+X} {]|y|<0,5}}{dp_{T}}, #sqrt{s} =
5,02 TeV', "K-tekij#ddot{a}n arvot vai kutusal all e #frac{d#si gma™{pp
#rightarrow DM{0}+X} _{|y| <0, 5}}{dp_{T}}, #sqrt{s} = 7 TeV', " K-

t eki j #ddot{a} n arvot vai kutusal al | e #frac{d#si gma™{pp #rightarrow D'{*
+}+X} _{|y|<0,5}}{dp_{T}}, #sqrt{s} = 7 TeV", "K-tekij#ddot{a}n arvot
vai kut usal al | e #si gma™{pp #rightarrow b#bar{b}+X}"

"K-tekij#ddot{a}n arvot vai kutusal al | e #si gma™{pp #rightarrow b#bar{b}+X}
_{2. O<#et a<b. 0} ",

"K-tekij#ddot{a}n arvot vai kutusal al | e #frac{d#si gma™{pp #rightarrow H_
{b}+X}}{d#eta}, #sqrt{s} =7 TeV'

"K-tekij#ddot{a}n arvot vai kutusal alle #frac{d#si gma™{pp #rightarrow H_
{b}+X}}{d#eta}, #sqrt{s} = 13 TeV"

"K-tekij#ddot{a}n arvot vai kutusal al | e #si gma"{ p#bar{p} #rightarrow
t#bar {t}+X} ",

"K-tekij#ddot{a}n arvot vai kutusal al | e #si gma™{pp #ri ghtarrow
t#bar{t}+X}",

"K-tekij#ddot{a}n arvot vai kutusal al | e #frac{d#si gma™{ p#bar { p}
#rightarrow t#bar{t}+X}}{dp_{T}}, #sqrt{s} = 1.96 TeV", " K-

t ekij #ddot {a} n arvot vai kutusal al | e #frac{d#si gma™{p#bar{p} #rightarrow
t#bar{t}+X}}{d|y|}, #sqrt{s} = 1.96 TeV"', "K-tekij#ddot{a}n arvot

vai kut usal al | e #frac{d#si gma™{pp #rightarrow t#bar{t}+X}}{dp _{T}},
#sqrt{s} = 13 TeV",

"K-tekij#ddot{a}n arvot vai kutusal al | e #frac{d#si gma™{pp #ri ghtarrow
t#bar{t}+X}}{dy_{t}}, #sqrt{s} = 13 TeV'};



bool manxdiv = true;

int xdivl[cases] = {209, 208, 212, 211, 211, 508, 507, 208, 212, 209, 208,
507, 507, 507, 208, 50206, 504, 50206, 50206} ;

int xdiv2[cases] = {208, 207, 212, 211, 211, 508, 507, 208, 212, 208, 207,
507, 507, 50204, 207, 50206, 504, 50206, 50206};

int xdiv3[cases] = {208, 211, 212, 211, 211, 508, 507, 208, 212, 209, 214,
507, 507, 507, 215, 50206, 504, 50206, 50206} ;

bool manydiv = true;

int ydivn]cases] = { 20207, 50204, 0, 0, O, O, O, O, O, 0O, 505, 50206,
50206, 20208, 0, 0, 50206, 0, 506}; int ydivrelerr[cases] = { 507, 506,
50205, 0, 506, 50205, 50205, 50206, 50206, 506, 507, 504, 504, 50205,
50205, 20207, 20208, 20207, 20207}; int ydivk[Qer][cases] = { {506, 506,
50206, 0, 507, 50205, 50206, 50205, 50206, 50205, 505, 505, 505, 507,
50204, 506, 506, 507, 507}, {20207, 505, 50205, 0, 507, 507, 50206, 507,
50205, 507, 504, 504, 504, 50205, 50205, 50205, 50204, 50205, 50205},
{50205, 50205, 50207, 0, 50205, 508, 50205, 50205, 50205, 508, 506, 506,
506, 505, 506, 505, 504, 505, 506}, {50206, 20207, 507, 0, 50205, 505,
50205, 505, 508, 50205, 20207, 20207, 20207, 508, 50205, 507, 507, 508,
508}, {508, 504, 506, 0, 508, 504, 507, 505, 507, 507, 20207, 20207,
20207, 506, 507, 505, 505, 506, 506}, {504, 505, 20208, 0, 20208, 20208,
20208, 504, 504, 506, 50205, 50205, 50205, 506, 508, 505, 505, 506, 507},
{50205, 50205, 50205, 0, 50205, 507, 50205, 50207, 50205, 507, 506, 506,
507, 50204, 50205, 507, 507, 50204, 50205} };

TLegend *addext val [ cases];

bool addextv|[cases] = {false, false, false, false, false, false, true,
true, true, false, false, false, false, false, false, false, false, false,
fal se}; string extv[cases] = {" "," ", ", " ", = w om0

" 1 " " 1 " " 1 " " 1 " " 1 " " 1 " " 1 " " 1 " "} ;

doubl e extvxpos[cases] = {0, O, 0, O, O, O, 0.108, 0.108, 0.108, 0, O, O,
o, 0, 0, 0, 0, 0, 0}

bool showtitles = false;

string picformat = "pdf";
bool savepics = true;

// HUOM Envel opet saatetaan piirtAcAa joskus vAcAorin kahden ensi mmAri sen
t ai kka kahden viinmei sen pisteen vAelillAs. TAemAro ef ekti nAoytt Agi si

kui tenkin nit Aot Afi tyvAan, kun pisteill Ao ei ole isoa vAalimatkaa

t oi si i nsa nAchden.

for(int i = 0; i < cases; i++){
if(tcase[i].conpare("cdif2") == 0){ // En tule tarkastel emaan tapausta
"cdi f2" tul osten anal yysi ssAs
conti nue;
}
doubl e k;

doubl e kerr;



fkscfit[i] = new TF1( Forn("fkscfito®1li", i), Kfit, -1000000, 1000000, 1);
// HUOM -1000000 - 1000000

if(ishist[i] == true){

erstaerr[i] = (THLD*)file->CGet( Form("%serstaerr"”, tcase[i].c_str()) );
erstaerr[i]->SetLineCol or (kBI ack) ;

ersyserr[i] = (TG aphAsymErrors*)file->Get( Forn("%ersyserr",
tcase[i].c_str()) );
ersyserr[i]->SetFill Col or(920);

teorka[i] = (THLD*)file->Get( Forn("%teorka", tcase[i].c_str()) );
teorkali]->SetLineCol or (kGay+3);

kscfit[i] = (TG aphAsymmErrors*)file->Get( Forn("%kftoterrQ",
tcase[i].c_str()) );

kscfit[i]->Fit( Form("fkscfit®@li", i),"Q);

k = fkscfit[i]->Cet Paraneter (0);
kerr = fkscfit[i]->GetParError(0);

}el sef
erp[i] = (TG aphAsymErrors*)file->CGet( Form("erp%", tcase[i].c_str())
).

erp[i]->Set Marker Styl e(20);
erp[i]->Set Marker Si ze(0.5);
erp[i]->Set Mar ker Col or (kBl ack) ;
erp[i]->SetLi neCol or (kBl ack);

if(isaltp[i] == true){

erpalt[i] = (TG aphAsymmErrors*)file->Get( Form("erp%alt"”,
tcase[i].c_str()) );

erpalt[i]->Set Mar ker Styl e(20);

erpalt[i]->Set Marker Si ze(0. 5);

erpal t[i]->Set Mar ker Col or (860) ;
erpalt[i]->SetLineCol or (600);

}

kscfit[i] = (TG aphAsymmErrors*)file->Cet( Forn("%kfpQ",
tcase[i].c_str()) );

kscfit[i]->Fit( Form("fkscfito®1li", i),"Q");

k = fkscfit[i]->CetParaneter(0);
kerr = fkscfit[i]->GetParError(0);

}

grnlo[i] = (TG aph*)file->CGet( Form("gr%snlo",tcase[i].c_str()) );
grnl o[ i]->Set Mar ker Col or (kBl ack) ;
grnlo[i]->Set Mar ker Si ze(0);

[*grLN[i] = (TG aph*)file->Get( Form("gr%sLN',tcase[i].c_str()) );



grLN[i]->Set Mar ker Col or (kBl ack); grLNi]->Set Marker Si ze(0);*/

grLL[i] = (TG aph*)file->Get( Fornm("gr%sLL",tcase[i].c_str()) );
grLL[i]->Set Mar ker Col or (kBI ack) ;
grLL[i]->Set Marker Si ze(0);

grLLmr[i] = (TG aph*)file->Get( Form("gr%sLL",tcase[i].c_str()) );
grLLnr[i]->Set Mar ker Col or ( kBl ack) ;
grLLmr[i]->Set Mar ker Si ze(0);

grNLg i] = (TG aphAsymmErrors*)file->CGet( Form("gr%NLO',tcase[i].c_str())
);

grNLg i ] - >Set Mar ker Col or ( kBl ack) ;

grNLg i]->Set Fi || Col or Al pha(632, 0.50);

grLdi] = (TG aphAsymmErrors*)file->Get( Form("gr%LO',tcase[i].c_str())
);

grLdi]->Set Mar ker Col or ( kBl ack) ;

grLdi]->SetFill Col or Al pha(807, 0.50);

doubl e xksc|[ poi nts], xkscerr [ poi nts], yksc[ poi nts], ykscerr[points];
for(int j = 0; j < points; j++){

doubl e xLL, yLL

grLL[i]->GetPoint(j, xLL, yLL);

xksc[j] = xLL;
xkscerr[j] = O;
yksc[j] = k*yLL;
ykscerr[j] = kerr*yLL;

}

ksc[i] = new TG aphErrors(points, xksc, yksc, xkscerr, ykscerr); ksc[i]-
>Set Fi | | Col or Al pha( 808, O0.45);

FEEEEEEErr i rrirrirr

caper[i] = new TCanvas(Forn("caper%®1li",i+1), Forn("caper%1li",i+1),
1200. 0, 500.0);
caper[i]->cd();

if(nrlog[i] == true){
caper[i]->Set Logy();
}

grLL[i]->Set Maxi mum(ymax[i]); // HUOM Vain yksi ylAa-/al arajan asetus per
graafi, ei voi nuuttaa. Sama koskee otsikon (title) asettam sta. grLL[i]-
>Set M ni mum(ymin[i]);

grLL[i]->CGet Xaxis()->SetLimts(xmn[i], xmax[i]);

i f(manxdiv == true){
grLL[i]->CGet Xaxi s()->Set Ndi vi si ons(xdiv1l[i], true);
}



i f(manydiv == true & & nrlog[i] == fal se){
grLL[i]->Cet Yaxi s()->Set Ndi vi si ons(ydivn{i], true);
}

grLL[i]->CGet Xaxi s()->Set Label Si ze(| absi zel);
grLL[1]->Cet Yaxi s()->Set Label Si ze(| absi zel);

grLL[i]->Get Xaxis()->SetTitleOfset(xtosl);
grLL[i]->GetYaxis()->SetTitleOfset(nrtosprinfi]);

if(showitles == true){

grLL[i]->SetTitle( Form("%",nrtitle[i].c_str()) );
} else { grLL[i]->SetTitle(" ");

}

grLL[i]->Cet Xaxis()->SetTitle( Form("9%",mx[i].c_str()) );
grLL[i]->GetYaxis()->SetTitle( Form("%",my[i].c_str()) );

grLL[i]->Cet Xaxi s()->SetTitleSi ze(xtsizel),;
grLL[1]->CetYaxis()->SetTitleSize(nrtsizeprim;

grLL[i]->Drawm "al p");
if(ishist[i] == true){

ersyserr[i]->Draw("E2 SAME");
erstaerr[i]->Draw"sanme");
teorka[i]->Draw(" SAME") ;

}

grNLQ i ] ->Draw("E3 SAME");
grLdi]->Draw("E3 SAME");
grnlo[i]->Draw "sane");

i f(ishist[i] == fal se){

erp[i]->Dram"p sane");
if(isaltp[i] == true){
erpalt[i]->Draw("p sane");
}

}

grLL[i]->Draw "sanme");
if(ishist[i] == true){
teorkal[i]->Draw " SAME") ;
}

caper[i]->Redr awAxi s();

i f(addextv[i] == true){
addextval [i] = new TLegend(extvxpos[i],0.1311, extvxpos[i]+0.0500, 0.0811);
addextval [ 1] ->Set Header (extv[i].c_str(),"C");
addextval [i]->SetFill Styl e(0);
addextval [i]->Drawm);



i f(savepics == true){
caper[i]->SaveAs( Forn("Pictures/caper%.%", tcase[i].c_str(),
picformat.c_str()) );

}
FEEEEEEErr i it rrirr

grnmax[i] = (TG aph*)file->Get( Fornm("gr%snmmax",tcase[i].c_str()) );
gr mmax][i] - >Set Mar ker Col or (803) ;

gr nmex[ i ] - >Set Mar ker Si ze(0) ;

grrmin[i] = (TGaph*)file->Get( Form("gr%snm n",tcase[i].c_str()) );
grmmi n[i ] ->Set Mar ker Col or (803) ;

grmm n[i]->Set Mar ker Si ze(0);

doubl e xnf poi nts], xnmer [ poi nts], yn{ poi nts], upni poi nts], | owr poi nts];
doubl e ynr[ points], | ownr [ points], upnr[ points];

for(int j =0; J < points; j++){
doubl e xmm d, ynm d, ynup, ym ow;

xmer[j] = 0;

ym[j] =0;

grLL[i]->CGetPoint(j, xmmd, ymmd);

grmmax[i]->CetPoint(j, xmmd, ymow); // Yleisesti ottaen (vaikuttaa

myAfs arvoihin Qa/Q ja Q/ Q) massan arvon nostani nen pi enent AcAo
vai kutusal aa. grmmin[i]->GetPoint(j, xmid, ynup);

'ymup) && (ym ow < ymup)){

upnf{j] = ymup - ynmid;

} else {

if(ymmid < ynlow){

cout << "Tapauksessa "<< i << "/" << cases-1 << " pisteessAn " << j << "/
' << points - 1 << " m{max}-kAayr Aa mAcAarittAeAas vastaavan envel open yl A
araj an" << endl; upnij] = ymow - ynm d;

} else {

cout << "Tapauksessa "<< i << "/" << cases-1 << " pisteessAm " << j << "/

' << points - 1 << " m{max}- sekAs m{min}-kAeyrien arvot alittavat
vast aavan pAcAot ul oksen arvon" << endl; upnij] = O;

}
}
if((ymmid > ymow) && (ymup > ym ow)){

lown{j] = ymmd - ymnl ow



} else {
if(ymmd > ynmup){

cout << "Tapauksessa "<< i << "/" << cases-1 << " pisteessAp " << j <<
' << points - 1 << " m{mn}-kAoyr Ae mAcAaritt AcAa vastaavan envel open

al araj an" << endl; low{j] = ymmd - ynup;

} else { B

cout << "Tapauksessa "<< i << "/" << cases-1 << " pisteessAa " << j <<
"I" << points - 1 << " m{max}- sekAs m{mn}-kAryrien arvot ylittAdavAsot
vast aavan pAcAat ul oksen arvon" << endl; lownfj] = O;

}

}
if(ymmd = 0){

lownt[j] = 100*(1own{j])/ymmi d;
upnr[j] = 100*(upn{j])/ynm d;

}el sef

lownr[j] = O
upnr[j] = 0

}
}

grnfi] = new TG aphAsymErrors(points, xmym xmer, xnmer, | owm upm ;
grnfi]->SetFill Col or Al pha(804, 0.30);

grnrel[i] = new TG aphAsynmError s(poi nts, xm ynr, xmer, xnmer, | ownr, upnr) ;
grnrel[i]->SetFill Col or Al pha(804, 0.30);

gri] = (TG aphAsymErrors*)file->CGet( Form("grQs",tcase[i].c_str()) );
gri]->SetFill Col or Al pha(616, 0.40);

cmm[i] = new TCanvas(Fornm("cnr9%®1i",i+1), Form("cnr9%®1li",i+1), 1200.0,
500. 0);
cnr [ ]->cd();

if(nrlog[i] == true){
cnr[i]->SetLogy();
}

grLLnr[i]->Set Maxi mum{ymax[i]);
grLLmr[i]->SetM nimum(ymin[i]); grLLnr[i]->CetXaxis()->SetLimts(xmn[i],
xmax[i]);

i f(manxdiv == true){
grLLnr[i]->Get Xaxi s()->Set Ndi vi si ons(xdi v1l[i], true);
}

"/



i f(manydiv == true & & nrlog[i] == fal se){
grLLnr[i]->CetYaxi s()->Set Ndi vi sions(ydivn{i], true);
}

grLLnr[i]->Cet Xaxi s()->Set Label Si ze(| absi zel);
grLLnr[i]->Get Yaxi s()->Set Label Si ze(| absi zel);

grLLnmr[i]->Get Xaxi s()->SetTitl eOfset(xtosl);
grLLmr[i]->GetYaxis()->SetTitleOfset(nrtosprinfi]);

if(showitles == true){

grLLmr[i]->SetTitle( Form("%",nrtitle[i].c_str()) );
} else {

grLLmr[i]->SetTitle(" ");

}

grLLnmr[i]->Get Xaxis()->SetTitle( Form("%",mx[i].c_str()) );
grLLnmr[i]->CGetYaxis()->SetTitle( Form("%",nmry[i].c_str()) );

grLLnr[i]->Get Xaxi s()->SetTitleSi ze(xtsizel);
grLLnmr[i]->GetYaxis()->SetTitleSi ze(nrtsizeprim;

grLLnr[i]->Drawm "al p");
if(ishist[i] == true){
ersyserr[i]->Drawm"E2 SAME");

erstaerr[i]->Draw("sane");
teorkali]->Drawm " SAVE");

}
gri]->Drawm "E3 SAME");
grnfi]->Draw("E3 SAME");

int isksc = O;
for(int j = 0; j < nnoksc; j++){

if(tcase[i].conpare(noksc[j]) == 0){
i sksc++;

}
}

i f(isksc == 0){
ksc[i]->Draw("E3 SAME");
}

if(isFF[i] == true){
grFF[i] = (TG aphAsymErrors*)file->Get( Form("gr%sFF",tcase[i].c_str())
).

gr FF[i]->Set Fi | | Col or Al pha(820, 0. 55):

grFF[i]->Draw("E3 SAME");
}

if(ishist[i] == fal se){



erp[i]->Dram"p sanme");
if(isaltp[i] == true){
erpalt[i]->Draw("p sane");
}

}

grLLnv[i]->Draw("sane, pl");
if(ishist[i] == true){
teorka[i]->Draw(" SAMVE") ;

}

cnr[i]->RedrawAxis();

i f(addextv[i] == true){
addextval [i]->Draw();

}

i f(savepics == true){

cnr[i]->SaveAs( Form("Pictures/cmm%. %", tcase[i].c_str(),
picformat.c_str()) );

}

FHEETEEEE i rirrrrri

grQef[i] = (TG aph*)file->CGet( Form("gr%LL",tcase[i].c_str()) );
gr Qdef[i]->Set Mar ker Col or (kBIl ack) ;

gr Qdef[i]->Set Mar ker Si ze(0) ;

grQmax[i] = (TG aph*)file->CGet( Form("gr%QQmax", tcase[i].c_str()) );
gr QQmax[i]->Set Li neCol or (602) ;
gr Qmax[i]->Set Li neWdth(2);

grQQmin[i] = (TG aph*)file->Cet( Form("gr%sQQm n", tcase[i].c_str()) );
grQQm n[i]->Set Li neCol or (867);
grQQmn[i]->SetLineWdth(2);

gr@fi] = (TG aphAsymmErrors*)file->Get( Fornm("gr%Qa",tcase[i].c_str())
é}cp[i]->5etFi||co|orA|pha(1, 0.28):

gr[i] = (TG aphAsymErrors*)file->Get( Form("gr%Qp",tcase[i].c_str())
é}cp[i]->5etFi||co|orA|pha(632, 0. 45) ;

cQa[i] = new TCanvas(Fornm("cQaQ%®1li",i+1), Form("cQaQp%®1li",i+1),
1200. 0, 500.0);
cQaQ[i]->cd();

if(mlog[i] == true){

cQaQp[i]->SetLogy();

}

gr Qdef[i]->Set Maxi mum(ymax[i]);

grdef[i]->SetM ni mum(ym n[i]);

grQdef[i]->CGet Xaxis()->SetLimts(xmn[i], xmax[i]);

if(manxdiv == true){ grQdef[i]->CetXaxis()->SetNdivisions(xdivl[i],
true);



}

if(manydiv == true & & nrlog[i] == false){
gr Qdef[i]->CGet Yaxi s()->Set Ndi vi si ons(ydivn{i], true);

if(showitles == true){

grQdef[i]->SetTitle( Form("%",Qitle[i].c_str()) );
} else {

grQdef[i]->SetTitle(" ");

}

grdef[i]->CGet Xaxis()->SetTitle( Form("%",mx[i].c_str()) );
grQdef[i]->CGetYaxis()->SetTitle( Form("9%",nry[i].c_str()) );

gr Qdef [i]->Get Xaxi s()->Set Label Si ze(| absi zel);
gr def [i]->Get Yaxi s()->Set Label Si ze(| absi zel);

grdef[i]->CGet Xaxi s()->SetTitl eSi ze(xtsizel);
grQdef[i]->CGetYaxis()->SetTitleSi ze(nrtsizeprin;

grdef[i]->CGet Xaxi s()->SetTitl eOfset(xtosl);
grQdef[i]->CGetYaxis()->SetTitleOfset(nrtosprinfi]);

grQdef[i]->Draw("al p");
grQa[i]->Draw("E3 SAME");
grQ[i]->Draw("E3 SAME");
gr QQmax[i]->Draw(" SAME") ;
grQQm n[i]->Drawm " SAME") ;
grLL[i]->Draw "sanme");

cQuaQp[i]->RedrawAxi s();

i f(addextv[i] == true){ addextval[i]->Draw);
}

i f(savepics == true){
cQup[i]->SaveAs( Fornm("Pictures/ cQQ%. %", tcase[i].c_str(),
picformat.c_str()) );

}
FEEEEEEEEr i bbbt irrr

grQel[i] = (TG aphAsymErrors*)fil e->Cet (
Form("gr%Qel",tcase[i].c_str()) );
grQel[i]->SetFill Col or Al pha(616, 0.40);

if(isFF[i] == true){

grFFrel[i] = (TG aphAsymErrors*)fil e->Cet (
Form("gr%FFrel ", tcase[i].c_str()) );
grFFrel[i]->SetFill Col or Al pha(820, 0.55);

}

crelerr[i] = new TCanvas(Fornm("crel 991i",i+1), Form("crel 9%91i",i+1),
800. 0, 470.0);
crelerr[i]->cd();



grQel[i]->Set Maxi mum(rel errmax[i]);
grQel[i]->SetMnimum(relerrmn[i]);
grQel[i]->CGetXaxis()->SetLimts(rxmn[i], xmax[i]);

i f(manxdiv == true){
grQel[i]->CGet Xaxi s()->Set Ndi vi si ons(xdiv2[i], true);
}

i f(manydiv == true){
grQel[i]->CetYaxis()->SetNdivisions(ydivrelerr[i], true);
}

if(showitles == true){ grQel[i]->SetTitle(
Form("9%",relerrtitle[i].c_str()) );

} else {

grQel[i]->SetTitle(" ");

}

grQel[i]->CGetXaxis()->SetTitle( Form("%",mx[i].c_str()) );
grQel[i]->CGetYaxis()->SetTitle("Suhteellinen virhe [A4");

grQel[i]->GetXaxi s()->Set Label Si ze(| absi ze2);
grQel[i]->GetVYaxis()->SetLabel Si ze(l absi ze2);

grQel[i]->CGetXaxis()->SetTitleSi ze(xtsize2),;
grQel[i]->GetYaxis()->SetTitleSize(ytsize2);

grQel[i]->CGetXaxis()->SetTitleOfset(xtos2);
grQel[i]->CGetYaxis()->SetTitl eOfset(ytos2);

grQel[i]->Draw("ALP E3");
grnrel [i]->Draw("E3 SAME") ;
if(isFF[i] == true){
grFFrel[i]->Draw("E3 SAMVE");
}

crelerr[i]->RedrawAxis();

i f(addsv[i] == true){
addval [i] = new TLegend(I| xpos[i],0.1311, | xpos[i]+0.0500, 0.0811);
addval [i]->Set Header (sv[i].c_str(),"C");
addval [i]->SetFill Styl e(0);
addval [i]->Draw);

}
i f(addextv[i] == true){
addextval [i]->Draw() ;
}
i f(savepics == true){ crelerr[i]->SaveAs( Form("Pictures/crelerr%. %",

tcase[i].c_str(), picformat.c_str()) );

}
FEEEEEEEE bbb bbb it rrrr

for(int j =0; j < types; j++){

grr[i][j] = (TG aph*)file->CGet( Form("gr%r%01li",tcase[i].c_str(),)) );

/



/ 0, 1, 2, 3, 4, 5 = g+g, u+u_bar, d+d _bar, s+s_bar, c+c_bar, b+b_bar
grri][j]->Set Marker Styl e(20);
grr[i][j]->Set Marker Col or(color[j]);
grr[i][j]->SetLineColor(color[j]);
grr[i][j]->SetMarker Si ze(0);
grr[i][j]->SetLi neWdth(2);
}

cr[i] = new TCanvas(Form("cr%®1i",i+1), Form("cro%®1i",i+1), 800.0, 470.0);
crii]->cd();

if(rlog[i] == true){
cr[i]->SetLogy();
}
grr[i][0]->Set Maxi nun( 1. 4);
grr[i][0]->SetM ni mum(rymn[i]);
grr[i][0]->Get Xaxis()->SetLimts(rxmn[i], xmax[i]);

i f(manxdiv == true){
grr[i][0]->Get Xaxi s()->Set Ndi vi si ons(xdi v2[i], true);

/*

double xr0, xrl, xr2, xr3, xr4, xr5, yr0O, yrl, yr2, yr3, yr4, yrb;
grr[i][0]->CGetPoint(0, xr0, yr0);

grr[i][1]->GetPoint (0, xrl, yrl);

grr[i][2]->CGetPoint(0, xr2, yr2);

grr[i][3]->CGetPoint(0, xr3, yr3);

grr[i][4]->CGetPoint(0, xr4, yrd);

grr[i][5]->CGetPoint(0, xr5, yrb5);

cout << "Ratio-graafien aloituspisteet (tapaus "<< i+l << "/" << cases <<
"):" << endl;

cout <<"("<< xr0 << "," << yr0 <<")" << endl;

cout <<"("<< xrl1 << "," << yrl <<")" << endl;

cout <<"("<< xr2 << "," << yr2 <<")" << endl;

cout <<"("<< xr3 << "," << yr3 <<")" << endl;

cout <<"("<< Xxr4 << "," << yr4 <<")" << endl;

cout <<"("<< Xr5 << ", " << yr5 <<")" << endl;

cout << Suhteelllsten osuuksi en summa alkuplsteessAn "<

yrO+yr 1+yr 2+yr 3+yr4+yr5 << endl ;

/1 Ilmeisesti liian pienillAa x:n (sart(s), pt, y) arvoilla suhteellisten

osuuksi en | askenmi nen nuuttuu erittAain epAatarkaksi (nollautuvat
vai kutusal at ?). Tul ee ottaa huom oon. */

if(showmitles == true){

grr[i][0]->SetTitle( Form("9%",rtitle[i].c_str()) );
} else { grr[i][0]->SetTitle(" ");
}

grr[i][0]->CGet Xaxis()->SetTitle( Form("%",mx[i].c_str()) );
grr[i][0]->CGetYaxis()->SetTitle("r(ij)");

grr[i][0]->Cet Xaxi s()->Set Label Si ze(| absi ze2);
grr[i][0]->GetYaxis()->SetLabel Si ze(l absi ze2);



grr[i][0]->CGet Xaxi s()->SetTitleSi ze(xtsize2);
grr[i][0]->CGet Xaxis()->SetTitl eOfset(xtos2);

grr[i][0]->CGetYaxis()->SetTitleSize(ytsize2);
grr[i][0]->CGetYaxis()->SetTitleOfset(ytos2);

grr[i][0]->Draw("al p");
for(int j =1; j < types; j++){
grr[i][j]->Draw("sane, pl ") ;

}
cri]->RedrawAxis();

i f(addsv[i] == true){
addval [i]->Draw);
}

i f(addextv[i] == true){
addextval [i]->Draw();
}

i f(savepics == true){
cr[i]->SaveAs( Forn("Pictures/cr%. %", tcase[i].c_str(),
picformat.c_str()) );

}
FEEEEEEEE bbb rri i

if(ishist[i] == true){

for(int k = 0; k < Qer; k++){

kfstaerr[i][k] = (THID*)fil e->Get( Form("%skfstaerr Q®1Li",
tcase[i].c_str(), k) );

kf staerr[i][Kk]->SetLineCol or (kBl ack) ;

kf syserr[i][k] = (TG aphAsymmErrors*)file->Cet( Forn("%kfsyserrQ@O1i",
tcase[i].c_str(), k) );
kf syserr[i][k]->SetFill Col or(920);

kftoterr[i][k] = (TG aphAsymmErrors*)file->Get( Form("%kftoterr Q®1i",
tcase[i].c_str(), k) );

fK[i][K] = new TF1("fK", Kfit, -1000000, 1000000, 1): // HUOM -1000000 -
1000000

if(k == 0){

ckf[i][k] = new TCanvas(Forn("ckf%Q@®1li ", tcase[i].c_str(), k),
Form("ckf % Q@®1i", tcase[i].c_str(), k), 1200.0, 500.0);

} else {

ckf[i][k] = new TCanvas(Forn("ckf%Q@®1li ", tcase[i].c_str(), k),
Form("ckf % Q@®1li", tcase[i].c_str(), k), 800.0, 470.0);

}

ckf[i][k]->cd():



if(showitles == true){

kfstaerr[i][k]->SetTitle( Form("%s, %",kftitle[i].c_str(),
kf @ Kk].c_str()) );

} else {

kfstaerr[i][k]->SetTitle(" ");

kf staerr[i][Kk]->Cet Xaxis()->SetTitle( Form("9%",mx[i].c_str()) );
kf staerr[i][k]->CetYaxis()->SetTitle("K-kerroin");
kfstaerr[i][k]->Set Stats(false);

if(k == 0){

kf staerr[i][k]->CGet Xaxi s()->Set Label Si ze(| absi zel);
kf staerr[i][k]->Cet Yaxi s()->Set Label Si ze(| absi zel);

kf staerr[i][k]->Cet Xaxis()->SetTitleSi ze(xtsizel);
kf staerr[i][k]->CetYaxis()->SetTitleSi ze(ktsizel);

kf staerr[i][k]->Cet Xaxis()->SetTitleO fset(xtosl);
kf staerr[i][k]->Get Yaxis()->SetTitleOfset(ktosl);

} else {

kf staerr[i][Kk]->Get Xaxi s()->Set Label Si ze(| absi ze2);
kf staerr[i][k]->Cet Yaxi s()->Set Label Si ze(| absi ze2);

kf staerr[i][k]->Cet Xaxis()->SetTitleSi ze(xtsize2);
kf staerr[i][k]->CetYaxis()->SetTitleSi ze(ytsize2);

kf staerr[i][k]->Cet Xaxis()->SetTitleOfset(xtos2);
kf staerr[i][k]->CetYaxis()->SetTitleO fset(ytos2);

}

kftoterr[i][K]->Fit("fK"', "QRN"); fK[i][K]->SetLineCol or (804);
fK[i][k]->SetLineStyle(9);
fK[i][k]->SetLi neWwdth(1);

kf staerr[i][k]->CGet Xaxi s()->Set Ndi vi sions(xdiv3[i], true);

i f(manxdiv == true){
kf staerr[i][k]->Cet Xaxi s()->Set Ndi vi sions(xdiv3[i], true);

i f(manydiv == true){
kf staerr[i][k]->Get Yaxis()->Set Ndivisions(ydivk[Kk][i], true);

for(int j = 0; j < nkfsc; j++){

if(tcase[i].conpare(kftagsc[j]) == 0){

kf staerr[i][Kk]->Set Maxi mum( kf maxsc[j][K]);

br eak;

}el se{

kf staerr[i][k]->Set Maxi mum(2*(fK[i][k]->Cet Paraneter(0)));
}

}



kf staerr[i][Kk]->Set M ni mum 0);

kfstaerr[i][k]->Draw);

kf syserr[i][Kk]->Dram"E2 SAME");
kfstaerr[i][Kk]->Draw("SAME");
fK[1][K]->Draw"sane");

ckf[i][k]->RedrawAxis();

i f(addextv[i] == true){
addextval [i]->Draw();
}

i f(savepics == true){ ckf[i][k]->SaveAs( Forn("Pictures/ckf%sQ®1li.%",
tcase[i].c_str(), k, picformat.c_str()) );

}

cout << "Tapauksessa " << i + 1 << "/" << cases << Form(" (%) ",
tcase[i].c_str()) << "skaalavalinnalla " << Forn("%",kfQk].c_str()) <<
sovitettu K-tekijAa saa arvon " << fK[i][Kk]->CetParaneter(0) << "+-" <<

fK[i][K]->GetParError(0) << "." << endl;
}

} else {

for(int k = 0; k < Qer; k++){

kfp[i][K] (TG aphAsymmErrors*)fil e->Get ( Forn(" %kfpQ®1i",
tcase[i].c_str(), k) );
kf p[i][k]->Set varker Styl e(20);
kfp[i][K]->Set Marker Si ze(0. 62);
kf p[i][Kk]->Set Mar ker Col or ( kBl ack) ;
kf p[i][Kk]->SetLi neCol or (kBI ack) ;

fK[i]1[k] = new TF1("fK", Kfit, -1000000, 1000000, 1); // HUOM -1000000 -
1000000

if(k == 0){

ckf[i][k] = new TCanvas(Forn("ckf%Q®1li", tcase[i].c_str(), k),
Form("ckf % Q@®1i", tcase[i].c_str(), k), 1200.0, 500.0);

} else { ckf[i][k] = new TCanvas(Fornm("ckf%Q@®1li", tcase[i].c_str(),
k), Form("ckf%Q@®1li", tcase[i].c_str(), k), 800.0, 470.0);

}

ckf[i][k]->cd();
if(showitles == true){
kfp[i][Kk]->SetTitle( Form "%, %",kftitle[i].c_str(), kf@k].c_str()) );

} else {
kfp[i][k]->SetTitle(" ");
}

kfp[i][K]->Cet Xaxis()->SetTitle( Form("9%",mx[i].c_str()) );
kfp[i][k]->CGetYaxis()->SetTitle("K-kerroin");

if(k == 0){



kfp[i][K]->Get Xaxi s()->Set Label Si ze(| absi zel);
kf p[i][Kk]->Cet Yaxi s()->Set Label Si ze(| absi zel);

kfp[i][K]->CGet Xaxi s()->SetTitleSize(xtsizel);
kfp[i][k]->CetYaxis()->SetTitleSi ze(ktsizel);

kfp[i][K]->CGet Xaxis()->SetTitleOfset(xtosl);
kfp[i][K]->CGetYaxis()->SetTitleOfset(ktosl);

} else {

kf p[ i
kf p[ i

kf p[
kf p[ i

kfp[i][K]->Cet Xaxis()->SetTitleOfset(xtos2);
kfp[i][K]->GetYaxis()->SetTitleOfset(ytos2);

}

kKfp[i][K]->Fit("fK","QN");
fK[i][Kk]->SetLineCol or(804);
fK[i][K]->SetLineStyle(9);
fK[i][K]->SetLi neWdth(1);

] [ K] - >Cet Xaxi s() - >Set Label Si ze(| absi ze2) ;
1[ k] ->Get Yaxi s() - >Set Label Si ze(| absi ze2);
I ][ K] ->Cet Xaxi s()->SetTitl eSi ze(xtsize2);
][ K] ->Cet Yaxis()->SetTitleSize(ytsize2);

for(int j =0; j < nkfsc; j++){

i f(tcase[i].conpare(kftagsc[j]) == 0){
kfp[i][K]->Set Maxi mun( kf maxsc[j][K]);
br eak;

}el sef
kfp[i][K]->Set Maxi mun(2*(fK[i][K]->Get Paraneter(0)));
}

}
kf p[i][k]->SetM ni mun(0);
i f(manxdiv == true){

kf p[i][K]->Cet Xaxi s()->Set Ndi vi si ons(xdiv3[i], true);

i f(manydiv == true){

kfp[i][K]->Get Yaxi s()->Set Ndi vi si ons(ydi vk[k][i], true);

}

kfp[i][k]->Draw("ap”);
fKIi][K]->Draw"same");

ckf[i][k]->RedrawAxi s();
i f(addextv[i] == true){
addext val [i]->Draw();

}

i f(savepics == true){

ckf[i][k]->SaveAs( Form("Pictures/ckf%Q®1li.%", tcase[i].c_str(),

picformat.c_str()) );:

k,



}

cout << "Tapauksessa " << i + 1 << "/" << cases << Form(" (%) ",

tcase[i].c_str()) << "skaalavalinnalla " << Form("%",kfQ@k].c_str()) << "
sovitettu K-tekijAa saa arvon " << fK[i][Kk]->GetParanmeter(0) << "+-" <<
fK[i][K]->GetParError(0) << "." << endl; }

}
FEEEEEEEE it bbb rri i

int iscom= 0;
int b;

for(int j =0; j < ncom j++){
if(tcase[i].compare(tconfj]) == 0){
I scomt+;

b =j;

}

}

if(iscom== 1){

grLLconfi] = (TG aph*)file->CGet( Fornm("gr%LL",tcase[i].c_str()) );
grLLconfi]->Set Mar ker Col or (kBI ack) ;

grLLconfi]->Set Marker Si ze(0);

grLLconfi]->SetLineWdth(2);

grconib] = (TG aphAsymErrors*)file->Get( Form("grconts",
tcase[i].c_str()) ); grconib]->SetLineCol or(633);

gr coni b] - >Set Mar ker Si ze(0) ;

grconi b] - >Set Li neWdt h(2);

cconfb] = new TCanvas( Fornm("ccon®s", tcase[i].c_str()), Fornm("cconts",
tcase[i].c_str()), 1200.0, 500.0);
cconi b] - >cd();

i f(comslog[b] == true){
cconi b] - >Set Logy() ;
}

gr conf b] - >Set Maxi munm( ycommax|[ b] ) ;
grconi b] - >Set M ni munm(yconm n[ b] ) ;
grconf b] ->Get Xaxi s()->SetLimts(xmn[i], xmax[i]);

if(showtitles == true){

grconf b]->SetTitl e( Form("Prosessien p#bar{p} #rightarrow % ja pp
#rightarrow % LO kokonai svai kutusalat", tqp[b].c_str(), tgp[b].c_str())
);
} else {
grconfb]->SetTitle(" ");
}

grcon b] ->Get Xaxi s()->SetTitle( Form("%",mrx[i].c_str()) );
grconf b] ->Get Yaxi s()->SetTitle( Form("#sigma {%s}(#sqrt{s} ) [%]",
tgp[b].c_str(), comun[b].c_str()) );



gr conf b] - >Get Xaxi s() - >Set Label Si ze(| absi zel);

gr conf b] - >Get Yaxi s() - >Set Label Si ze(| absi zel);
grconi b] - >Get Xaxi s()->Set Titl eSi ze(xtsizel);

grconf b] - >Get Yaxi s()->SetTitl eSi ze(nrtsizeprin;

grconi b] - >Get Xaxi s()->SetTitl eOfset (xtosl);
grconf b] ->Get Yaxi s()->SetTitleOfset(0.65); // b!

grconi b] - >Get Xaxi s() - >Set Ndi vi si ons(xdi vl[i], true);
grconf b] ->Draw "al p");
grLLconfi]->SetLineWdth(2);
grLLconfi]->Draw("sane"); // c- ja b-kvarkkiparien tuottojen
kokonai svai kut usal oi ssa ei nAekyvi Aa eroj a.
cconi b] - >Redr awAxi s() ;
i f(savepics == true){
cconi b] - >SaveAs( Form("Pi ctures/ccom?®1li.%", b, picformat.c_str()) );
}
}
}

}
doubl e Kfit(double *x, double *p){

return p[0];

}
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Liite E: Muuttujanvaihdot

Tassé liitteessé esitetddn ohjelman Int.cc vaikutusalafunktioiden muuttujanvaihdot

seké (integroitavat) lausekkeet. Kokonaisvaikutusalat saadaan lausekkeella
11 —
o(pp = HoHg+X)=F Y /0 /O davdzs fip(1,Q 1) f, 15 (02,Q1)5 (1] — QQ)
4,J=9,4>4

ja leikatut seka differentioidut vaikutusalat integroimalla lauseketta

do(ij — QQ)
dt

do(pp — HoHg + X)
dprdysdys

=2Fpr A Z 7x1fi/p<xlaQ?‘)x2fj/ﬁ(1'27@?“)
0,j=9,4:

Numeerinen integrointi on tarkempaa ja tehokkaampaa, kun integrointialue on hyper-

kuutio, jonka sisilli integrandi on jatkuva ja erisuuri kuin nolla. 6(ij — QQ) = 0,

kun § = x1x98 < 4m§2. Vastaavasti leikattu/differentioitu vaikutusala on nolla

alueissa, joissa aiemmin johdetut kinemaattiset rajat

S 2
pr < Z_mQ

lys| < arcosh(

s
Smy)

mr mr

_ln(ﬁ _ 6_y3) < Ya < hl( \/g _ €y3)

eivit toteudu. Naista rajoituksista johtuen minkaén vaikutusalan integrointialue ei
ole automaattisesti halutun kaltainen hyperkuutio, vaan ne tulee muuttaa sellaisiksi

erikseen.

Tapaus o(+/s):

4mg, < § = x129s, joten (esimerkiksi)

2
4mQ
S

2
4mQ

IS

Esitetddn x1 ja xo uusien muuttujien r1,79 € [0,1] avulla:
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4Am? 4m?

p =y (1 - 210
2 4m2

To = Q +r - Q)
IS IS

Tasta saadaan osittaisderivaatat

%_ 1 4mQ

ja
) Am2
9r2 _ 4 _ Q).
ory 18

Muuttujanvaihtoa (x1,xe) — (r1,m9) vastaava Jacobin determinantti on

Oz Ozy
__|or or
J(rl’r2) - 6902 69:2
r1  Ora
Oz
— |Om 0
Oz Oz
37'1 87‘2
8:61 81'2
87"1 87'2

4m? 4m?
—(1-—91-—)>0.
s 1S
Nyt kokonaisvaikutusala voidaan laskea integroimalla numeerisesti hyperkuutiossa

(ei aluetta § = 1255 < 4mg):

oVs)=F ¥ [ [ dudaafiypl@1.Q0)f,5(02:Q00005 — QQ)

4,J=9,9,9

=F Z /01 /01 drydry fiyp(21,Qf) f 5 (22,Q5)6 (i — QQ)J(ry,rs).

4,J=9,9,9
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Tapaus o-prqr«‘in<pT<p¥ax, ymin<y<ymax(\/§):

Téssa tapauksessa tulee ottaa huomioon aikaisemmin sovittu hadronisaation mal-
linnusapproksimaatio, jossa alkuperaisen kvarkin () ja sen hadronin H ajatellaan
omaavan sama litkeméaara. Merkitdan hadronin kinemaattisia suureita ilman indeksia

(p2, y). Koska litkeméérén z-komponentti siilyy hadronisaatiossa, niin

D3z = Pz

< mypsinh(ys) = mygrsinh(y)
mpr
mr

missi myr = \/Wja mr = \/m

Ilmoitetaan antikvarkin rapiditeetti y4 uuden muuttujan w € [0,1] avulla:

S S
ys = (w—1DIn(, | —5—— — ) +wn(,| 5 — *
(= in( o = e i o)

Nyt voimme siirtyd muuttujista (pr,ys,ys) muuttujiin (pyr,y,w):

& y3 = arsinh( sinh(y)),

pPr = Pr
ys = ys(pr.,y)
Yqg = y4(pT7va)

Vanhoille muuttujille saadaan laskettua osittaisderivaatat

dys 1 mur
— = : cosh(y)
9y \/1 + (F2%sinh(y))*  mr
cosh(y)
m2 +p2. . 19
\/ mf@ oz + sinh?(y)

ja
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B ln(mQ + p% me + vy (% +e7%) +1)
s s
= In(——— + 1 — 2,/ ———cosh(ys)).
<mé+p2T mQQ—kp?p (3))

Opr Opr Opr
opr oy ow
_ |0 0, 0,
J(pT> Y, U}) - 35; %y?’ %
Oys  Oya  Oysa
opr oy ow

1 0 0
__|oys O
= | % o

Oys  Oya  Oya
opr y ow

ay:a Y4
T Oy ow
h
= cosh(y) In( S t1-2 ;cosh(yg)) > 0.
77 2,y Mo T PE mé + pi
\/ Q — 7 +sinh”(y) @ Q
mHQ p

(%% > 0, silla W +1—-2 /5" cosh (y3) > 0, koska 2F3 = 2mqcosh(ys) < +/s.)
Téten

max

Ys

/yZ“"‘X (pr,y3) do

2 o dund
0, min max . (\/E) / y4 y3 T Aar Aoy
pp' "t <pr<pp®*, y <y<y; i
min <Y <Yimas pminJymin - Jymin g,y T dprdysdys

/mx/ym”‘/ld dydw—7 )
w— LY, W).
P min /0 pray dprdysdy, by

min

do
dprdysdya

Siten alhaisilla CMS-energioilla hyperkuution sisddn jaa alueita, joissa integrandi on

=0, kun g < mypcosh(ys), koska energiaa ei ole télloin tarpeeksi reaktioon.

nolla. Kuitenkaan epédjatkuvuuskohtia ei synny télla muuttujanvaihdolla.

Tapaukset anmm<n<nmax(\/_ ) ja dZ (n):

Koska kvarkin ja vastaavan hadronin liikeméaarat on approksimoitu samoiksi, niin

myos niiden pseudorapiditeetit n3 ja n ovat samat (n = lln({z }Jrﬁ B2P=)) - Kvarkin litke-

maéérille patee |ps| = prcosh(n), joten



Ey = \Jm + |ps|* = \/m?, + pheosh?(n)

ja taten
E3 — mé
br cosh(n)
Koska F5 < %, niin
=
br = cosh(n)

Rapiditeetille ja pseudorapiditeetille patee seuraava riippuvuus:
P32z = P32

< mypsinh(ys) = prsinh(n)

&y = arsinh(p—Tsinh(n)).
mr

Voimme siirtyd muuttujista (pr,ys,ys) muuttujiin (wy,n,ws):

ys = arsinh(p—Tsinh(n))
mr

[ S S
ys = (wo — Dn(, | —5—5 — %) + woln(, [ ———5 — *?).
( ) ( m2Q+p’_2F ) 2 ( m2Q+pC2F )

Vanhoille muuttujille patevit seuraavat osittaisderivaatat:

Opr 1~ Mg
owy cosh(n)

187
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Opr iy
- h
In cosh?(n) sinh(n)
s 2
Lo
= h
cosh(n) tanh(n)
- —thanh(n)
1. L
dys 1 [ mr — pr - (mQ+pT) pr dpr () + P coshi )}
an \/ 1+ (2 SlIlh (n))? ma 677 e
— = —= )= h h 2= cosh
[ mT)( prtanh(n))sinh(n) + mTcos (fr;)}

\/ 1+ %sinhQ(n)
T

_ prcosh(n) { -

\J/m3 + p2sinh?(n)
pTCOSh(n) mQ + pT p% )

- 2 2 2 [1_ (m2 T2 mE 2 Jtanh (77)}
\/mQ + prcosh”(n) Q TPt o+ pr

_ prcosh(n) - mé
\/m? + phcosh’ () m + pp

f;T Ytanh?(n) + 1}

tanhQ( )

dys _ Oys Ipr
ow, OprOow;’
missa
O3 _ ! Lomp —pr - j(mg +p7) -QPTSinh( )
— — 2
Opr \/1 + <mj; sinh(n)) m2.
1 2
B > — " )sinh(n)
\/m% + p2sinh®(n) mg + Py
cosh(n) mg + py pr ) sinh(n)
\/m? + pheosh®(n) Mo +Pr mg +pr cosh(n)
h m2
coshin) € __tanh(n).

N \/ me + pAcosh?(n) mg + pr

8y4 ‘
Osittaisderivaatta on sama kuin tapauksessa o, min < <pmax gy <ymax( NOE
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S
— =In(———5 +1—2,/—5——cosh(ys3)).
Ows (mé + p \| mg + p% (3))
Taten Jacobin determinantti on
Opr  Opr Opr
ow1 on Ows
J<w17777w2>: gigi %7%; g%z
Oys  Oys  Oya
owq on Owa
d d
_|o d
=ja o
Oys  Oys  Oys
Owy on Owa
_ [Oprdys  Oys %] Iy
Oow; dn  Ow, On J 0w,
_ Opr % . dys Opr 5PT} 9ya
LOwy, On Opr Owy On ! Qws
_ 19y Oys 8PT} Ipr Oya
LOn  Opr On 10w, Ows
_ h m2
_ PrCcos (77) N Q tanhz(n))
L 2 2 2 m2 + 2
\/mQ + pfcosh”(n) Q tPhr
cosh(n) mg

\/sz + p2cosh?(n) M + Pt

cosh(n)

S
m + pr

In( +1

prcosh(n)

prcosh(n)

tanh(n)(—prtanh(n))]

S
———cosh(y3))
m2Q + p%

2
mg

-|

prcosh(n) mé

\/mé + pa-cosh®(n) \/mg2 + p2cosh®(n) Mo + Pt

\/sz + p2.cosh?(n) Mo + P

In(

+1-—2
mé-I—p%

(n)

s _

2
L)

tanh?(n)

tanh? (77)}

S
————cosh
/mgg +p%cos (y3))

S

In(

ZPTJ

mg + pAcosh?(n)

mg + pr

S
+1—2,/———cosh(y3)) > 0.
o o)

Pseudorapiditeetin suhteen leikatun vaikutusalan lausekkeeksi saadaan
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max ( max

(pr,y3) do

*(Mmax) Y3) Y
U"]min <77<7]max / / / ’ dy4 de dy3 .
57 (1hmin) v (prys) dprdysdy,

—/ /nmax/ dwydndw diaj(w ws)
“Jo o o 1an 2dedy3dy4 1,7, W2).

Tapauksessa Z—‘;(n) vaikutusalan lauseke on sama kuin leikatulla vaikutusalalla

O nmin<n<nmax: MUtta nyt pseudorapiditeetin yli ei integroida:

do 1ol do
— = dwydw; ———-—J .
dn (77) /0 /0 W2 wldedygdy4 (w1;777w2)

o . doy, max
Tapaukset dC]lTT(pT) ja iR ()

Siirrytddn integroitavista muuttujista (ys,ys) muuttujiin (ys,w):

Ys = Y3

s S
ys = (w—1Dn(, | ———5 — ™) +wln(, | ——— — %),
4 ( ) ( mé—I—p% ) ( sz-i-p% )

missa jalkimmaiselle rapiditeetille patee jalleen

0y S S
7:1n7+1—2 7(}08}1 .
ow (mé + p2 me + pr (1))
Nyt
e~ N I VI G
Y4 S
J(ys, w Oys  Ow| _ = =hn(——++1-2 cosh(ys
(v, w) = gzg % % % ow (mé + p3 m + vy )
ja
do Y3 (pr)  ryf*(pT,ys3) do
-pr) = | / dysdysdpr ————
de( r) (pT> i ran ST G dysdys

J
/ Yz ( do
y

dwdys ———— J (ys,
i / dedy dys G

Tapaukselle daynﬂr‘d;%(pﬂ vaikutusalan lauseke on sama kuin edelld, mutta nyt
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my +
§ arcosh(%) kun arcosh( ) < ar51nh(7+?sinh(ymax))
ygn * = m + Q
arsinh(— +ZTsmh(ymaX)) muutoin
m
my  +
- —arcosh(5Y> s ), kun — arcosh( *[T) > arsmh(%sinh(ymm))
Ys = m +pT
arsmh(ﬁsinh(ymm)), muutoin.
mQ

Tapaus ‘;—‘y’ (y):

Merkitdan y = y3 (hadronisaatiota ei késitelld téssa tapauksessa). Poikittaisliike-

méaérd voidaan ilmoittaa (anti)kvarkin massan, rapiditeetin ja energian avulla:

E5 = mypcosh(ys)

E3 2
= =
cosh®(y3) r
= —-m
br cosh?(ys) Q

Siispé

s
< 27 0 .52 a2 )
pr = J cosh?(ys) o \/4cosh2(y3) mQ

Siirrytédén muuttujiin (wq,ws):

s
=wy, | ———— — m?
br ! \/4(:0:sh2 (y3) @

3 3
ys = (wo — DIn(, [———5 — e %) +woln(, | —5—5 — e
sz + p sz + p )

Opr [ s o
Owr 4cosh?(ys3) @

ja
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4 = In( ° +1-2 %Cosh(yg)).

me + pr mg + pr

Jacobin determinantti on

Opr  Opr Opr
J(wy,wy) = |2¥1 Owz) = 9w 0 - 9pr Oys
12 Oys  Oya s Oya|  Jw; Owsy

owi  Ows | Oow;  Owa

s ) s S
= |/———n———m> In(————-+1—-2, |————cosh > 0.
\/4cosh2(y3) Q (mé + pZ \| mg + v () =

Nyt (anti)kvarkin rapiditeetin y suhteen differentioitu vaikutusala on

max

do ( ) PR (y)  ryl™ (pr,y) dund do
-—\Y) = / / . Yadpr——7F———
dy 0 ey dprdysdys

Y dwnduwy—2
_/0 /0 O dysdy, (wn, wa).
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Liite F: NLO-partonijakaumafunktiot

Téassé liitteessa on esitetty CT14-NLO-partonijakaumafunktiot [62], joita on hyo-
dynnetty, kun LO-vaikutusaloille on arvioitu LO-partonijakaumafunktioiden epévar-

muudesta tulevat virheet.

o % 3

O] O]

™ ™

— i

1l 1 2

o o

a2 =

= = 1
0—8 7 6 ‘—5 ‘-4 ‘—3 ‘—2 1
10° 10" 10™ 10 10" 10° 10° 10 1

X

(b)

xf(x,Q, = 2.09 GeV)
xf(x,Q, = 2.09 GeV)

0 0
107 10°® 10° 10* 10° 102 10 1 107 10® 10° 10* 10° 102 10t 1
X X

(c) (d)

Kuva F1. CT14-NLO-partonijakaumafunktiot = f;(z,Qs) pitkittaisliikeméaérao-
suuden z funktiona, faktorisaatioskaaloilla @)y = 1,3 ja 2,09 GeV [62]. Vasemman-
puoleiset kuvaajat edustavat ns. tavanomaisten hiukkasten, g (musta), u (vihrea),
d (sininen), s (vaaleansininen), ¢ (oranssi) ja b (violetti), partonijakaumafunk-
tioita ja oikeanpuoleiset antihiukkasten g, @, d, 5, € ja b partonijakaumafunktioita

(varit vastaavasti kuin tavanomaisilla hiukkasilla).
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Kuva F2. CT14-NLO-partonijakaumafunktiot z f;(z,Qs) pitkittaisliikemaara-
osuuden = funktiona, faktorisaatioskaaloilla Q; = 2,54, 4,18 ja 8,36 GeV [62].
Kayrien vérit ja kuvien merkitykset ovat samat kuin kuvassa
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Kuva F3. CT14-NLO-partonijakaumafunktiot = f;(z,Qs) pitkittaisliikeméaérao-
suuden x funktiona, faktorisaatioskaaloilla Qf = 16,72, 86,45 ja 172,9 GeV [62].
Kayrien vérit ja kuvien merkitykset ovat samat kuin kuvassa
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Kuva F4. CT14-NLO-partonijakaumafunktiot = f;(z,0Q)s) pitkittaisliikeméaérao-
suuden z funktiona, faktorisaatioskaaloilla Q) = 345,8 GeV, 691,8 GeV ja 1 TeV
[62]. Kéayrien varit ja kuvien merkitykset ovat samat kuin kuvassa
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