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Tiivistelmä

Tässä opinnäytetyössä on tutkittu kvanttiväridynamiikan häiriöteorian alim-
man kertaluvun c-, b- ja t-kvarkkiparien tuottoa protoni–protoni- ja protoni–
antiprotoni-törmäyksissä. Useita alimman kertaluvun kokonais-, differen-
tioituja ja kinemaattisesti leikattuja vaikutusaloja on laskettu käsitellen lop-
putilan kvarkkeja massiivisina. Vaikutusalojen herkkyyttä raskaan kvarkin
massan, renormalisaatio- ja faktorisaatioskaalojen arvojen vaihteluille on
tarkasteltu. Teoreettisten ja vastaavien kokeellisten vaikutusalojen eroavaisuu-
det on kvantifioitu K-kertoimien avulla. Tuloksista selviää, että K-kertoimet
ovat samat alimman kertaluvun vaikutusaloille, joiden tarkasteltu törmäyspro-
sessi, renormalisaatio- ja faktorisaatioskaalat ovat samat.
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Abstract

In this master’s thesis the theoretical yields of c, b and t quark pairs in proton-
proton and proton-antiproton collisions have been studied via the lowest order
perturbation theory of quantum chromodynamics. Several lowest order total,
differential and kinematically cut cross sections have been calculated while
treating the final state quarks massive. Sensitivity of the cross sections to
variations of heavy quark mass, renormalization and factorization scales are
examined. Differences between the theoretical and corresponding experimental
cross sections have been quantified with K factors. The results indicate that
K factors of two different lowest order cross sections correspond to each other
if the cross sections examine the same collision process and have the same
renormalization and factorization scales.
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1 Johdanto

Kvanttiväridynamiikka on hiukkasfysiikan standardimallin mittakenttäteoria, joka ku-
vaa vahvaa vuorovaikutusta kvarkkien, antikvarkkien ja gluonien välillä. Kvanttiväri-
dynamiikan soveltamiseen käytetään pääasiassa kvanttiväridynamiikan häiriöteoriaa.
Häiriöteorian avulla on mahdollista laskea muun muassa eri hiukkastörmäysprosessien
vaikutusaloja, jotka mittaavat hiukkastuottoa ja reaktiotodennäköisyyttä. [1]

Raskaiden kvarkkiparien (cc, bb, tt) tuotto hadroni- ja ydintörmäyksissä on
yksi tärkeistä hiukkasfysiikan tutkimusalueista. Näiden prosessien teoreettiset
vaikutusalat ovat laskettavissa kvanttiväridynamiikan häiriöteorialla, koska sen
soveltamisen edellytys, vahvan kytkentävakion pienuus, toteutuu hyvin kvarkkien
suurten massojen ansiosta [1]. Vertaamalla teoreettisia ja kokeellisia tuloksia keske-
nään saadaan tietoa kvanttiväridynamiikan toimivuudesta sekä tarkennettua sitä.
Raskaiden kvarkkiparien tuottoa käsittelevät vaikutusalat antavat tietoa esimerkiksi
vahvan kytkentävakion [2] ja partonijakaumafunktioiden arvoista [3, 4]. Lisäksi
monet muut hiukkasfysiikan tutkimusalueet, kuten kvarkkigluoniplasma, Higgsin
fysiikka ja standardimallin ulkopuoliset teoriat, hyötyvät c-, b- ja t-kvarkkiparien
tuottojen tutkimuksesta [5–8].

Tässä pro gradu-tutkielmassa on tarkasteltu kvanttiväridynamiikan häiriöteorian
alimman kertaluvun raskaiden kvarkkiparien tuottoa protoni–protoni- ja protoni–
antiprotoni-törmäyksissä. Olen laskenut ja analysoinut useita alimman kertaluvun
vaikutusaloja, sisältäen kokonaisvaikutusaloja sekä eri kinemaattisten muuttujien
suhteen differentioituja ja leikattuja vaikutusaloja. Vaikutusalojen tarkastelemiseksi
laskin alimman kertaluvun kvarkki- ja gluonitason vaikutusalat analyyttisesti (lop-
putilakvarkkien massoilla mQ > 0) ja tein numeerisen ohjelman, joka laskee kokonais-
prosessien vaikutusalat kollineaarisen faktorisaatioteoreeman avulla. Olen tarkastel-
lut, miten eri parametrien, kuten raskaan kvarkin massan, vaihtelut vaikuttavat
vaikutusaloihin. Huomasin työskentelyn aikana, että renormalisaatio- ja faktorisaa-
tioskaalavalinnat vaikuttavat huomattavasti alimman kertaluvun vaikutusaloihin,
joten olen siksi keskittynyt erityisesti niihin analyysissäni. Kvantifioin teoreettisten
ja vastaavien kokeellisten tulosten eroavaisuudet K-kertoimien avulla ja vertasin niitä
keskenään.

Tämä tutkielma on jaettu kuuteen lukuun. Luku 2 antaa keskeiset pohjatiedot
raskaiden kvarkkiparien tuottoon liittyvästä tutkimuksesta ja teoriasta. Luvussa 3
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johdan Feynmanin säännöistä aliprosessien vaikutusalat sekä muodostan lausekkeen
poikittaisliikemäärän ja rapiditeettien suhteen differentioidulle kokonaisprosessin
vaikutusalalle. Luku 4 esittelee lyhyesti vaikutusalojen laskemiseksi tekemäni nu-
meerisen ohjelman. Tulokset ja niiden analyysi käydään läpi luvussa 5 ja yhteenveto
ja lopulliset johtopäätökset ovat luvussa 6. Lisäksi tutkielman osana on kuusi erillistä
liitettä.

2 Taustatietoa
Tässä osiossa esitän pohjustuksena työssä tarvitsemani perustiedot hiukkasfysiikan
teoriasta sekä matemaattiset metodit. Luvussa 2.1 esittelen raskaiden kvarkkien
ominaisuuksia ja merkitystä hiukkasfysiikalle. Luku 2.2 käsittelee yleisesti hiuk-
kasfysiikan kvantitatiivista kuvaamista ja laskumetodeja. Kvanttiväridynamiikan
häiriöteoria, hadronitörmäysten käsittely ja laskuissa tarvittavat Feynmanin säännöt
on esitelty lyhyesti luvussa 2.3.

Käytän tässä luvussa, kuten jatkossakin, luonnollisia yksiköitä eli valonnopeudelle
sovitaan pätevän c = 299 792 458 m/s = 1 [9, 10]. Tällöin valonnopeus tulee ole-
maan useissa yhtälöissä implisiittisenä ja esimerkiksi massan ja liikemäärän yksiköt
ilmoitetaan eri muodossa, jotka voivat poiketa totutusta: [m] = eV/c2 = eV ja
[|p|] = eV/c = eV, missä eV on energian yksikkö elektronivoltti.

2.1 Raskaat kvarkit standardimallissa

Kaikki kappaleisiin kohdistuvat vuorovaikutukset ovat selitettävissä neljän, fun-
damentaalisen, perusvuorovaikutuksen avulla. Nämä perusvuorovaikutukset ovat
vahva, sähkömagneettinen ja heikko vuorovaikutus sekä gravitaatio. Hiukkasfysiikan
tutkimuksen tärkeimpiä tavoitteita on kehittää teoria, joka kuvaa näitä kaikkia
perusvuorovaikutuksia ja materiaa, samanaikaisesti. [11, 12]

Hiukkasfysiikan standardimalli on mittakenttäteoria, joka kuvaa vahvaa, sähkö-
magneettista ja heikkoa vuorovaikutusta (kuva 1) [13]. Sitä on kehitetty 1900-luvun
puolivälistä lähtien, ja se on nykyään todettu kauttaaltaan pitäväksi lukuun ottamatta
paria ristiriitaa, kuten esimerkiksi neutriinojen nollasta poikkeavat massat. Lisäksi
standardimallin avulla ei ole selitetty esimerkiksi pimeää ainetta, materia-antimateria-
asymmetriaa tai gravitaatiota, ja useita sen parametreja on vielä selvittämättä. [11,
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12]

Kvarkit (ja antikvarkit) ja välittäjähiukkanen gluoni ovat ainoat standardimallin
alkeishiukkaset, jotka kokevat vahvan vuorovaikutuksen. Standardimallin kvarkki-
gluoni-vuorovaikutuksia kuvaavaa mittakenttäteoriaa nimitetään kvanttiväridynamii-
kaksi (luku 2.3). Jatkossa kvarkilla viitataan kvarkkiin tai vastaavaan antikvarkkiin,
ellei toisin ole mainittu. Tätä nimityskonventiota käytetään vastaavasti leptoneille
ja neutriinoille. [1]

Kvarkit ovat massallisia, varattuja, spin-1
2 -hiukkasia [20]. Spin on hiukkasen

luontainen pyörimisliikemäärä (sisäinen ominaisuus, toisin kuin mahdollinen rata-
pyörimismäärä) [22]. Spinin suuruutta kuvataan spin-kvanttiluvulla s [22], joka
on nyt siis 1

2 kvarkeille. Spinin kvanttimekaanisista ominaisuuksista johtuen sen z-
komponentti (tai x- tai y-komponentti) voi saada mitattessa vain kaksi erilaista arvoa
[22]. Nimitetään näitä tiloja spin-ylös- ja spin-alas-tiloiksi (z-akselin/hiukkassuihkun
suunnan kanssa samansuuntainen ja vastakkaissuuntainen komponentti) [23]. Massan,
sähköisen varauksen ja spinin lisäksi kvarkeilla on vain niille (ja gluoneille) ominainen
ominaisuus, värivaraus. Mahdollisia kvarkkien väritiloja on kuusi: punainen, sini-
nen ja vihreä kvarkeille sekä antipunainen, antisininen ja antivihreä antikvarkeille.
Kokonaisvärivaraus säilyy aina prosessissa [1]. Vaikka kvarkin väri ei ole mitattavissa
oleva ominaisuus, niin se on kuitenkin todettu kokeellisesti todelliseksi ilmiöksi [1]
ja tämän kvanttiluvun olemassaolo selittää muun muassa kevyimpien hadronien
havaitun tilaspektrin [24].

Gluoni on massaton spin-1-hiukkanen [1]. Se on vahvan vuorovaikutuksen mitta-
bosoni eli se välittää vahvaa vuorovaikutusta kvanttiväridynamiikan teoriassa [20].
Fotonin tavoin vapaalla (massakuorellaan olevalla) gluonilla on kaksi fysikaalista
(poikittaista) polarisaatiotilaa [25, 26]. Lisäksi gluonilla on kahdeksan mahdollista
väritilaa (mitkä eivät siis ole samoja kuin kvarkkien väritilat). Näiden väritilojen
avulla gluoni välittää värivarausta kvarkkien ja muiden gluonien välillä sekä säilyttää
kokonaisvärivarauksen prosessissa [1].

Hadroni on kvarkeista (ja gluoneista) muodostunut komposiittihiukkanen. Kvar-
kista ja antikvarkista muodostunutta hadronia kutsutaan mesoniksi ja kolmesta
(anti)kvarkista muodostunutta hadronia (anti)baryoniksi. Myös useammasta kvar-
kista koostuvat tilat (eksoottiset mesonit/baryonit) ovat mahdollisia, mutta ne ovat
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Kuva 1. Hiukkasfysiikan standardimallin alkeishiukkaset (ei sisäistä raken-
netta). Hiukkaset jaotellaan kvarkkeihin, leptoneihin, mittabosoneihin sekä
skalaaribosoniin. Kvarkit ja leptonit (fermionit) voidaan jakaa kolmeen kvarkki-
generaatioon ja kolmeen leptonigeneraatioon, jotka yhdessä muodostavat kolme
materian generaatiota (I, II, III). [12] Alkeishiukkasen massa (eV = 1,783·10−36 kg
[9]), sähkövaraus (e = 1,602 ·10−19 C [9]) ja spin-kvanttiluku on ilmoitettuna sym-
bolin/nimen alapuolella [14–20]. Kvarkit kokevat kaikki kolme standardimallin
vuorovaikutusta, varatut leptonit sähkömagneettisen ja heikon, ja neutriinot
pelkästään heikon vuorovaikutuksen [20]. Vuorovaikutuksia välittävät mitta-
bosonit gluoni (vahva), fotoni (sähkömagneettinen) sekä Z- jaW -bosonit (heikko)
[20]. Standardimallin ainoa skalaaribosoni on Higgsin bosoni, jonka ominaisuudet
vaikuttavat useisiin standardimallin (ja sen ulkopuolisten mallien) mekanismeihin
[21]. Lisäksi alkeishiukkasiin kuuluvat myös kvarkkien antihiukkaset u, d, s, c,
b ja t, sekä leptonien antihiukkaset e+, µ+, τ+, νe, νµ ja ντ [20]. Hiukkasen
ja sen antihiukkasen massa ja spin ovat samat, mutta sähkövaraukset ovat
vastakkaismerkkiset [20].
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huomattavasti harvinaisempia. Hadroni muodostuu aina siten, että sen sähköva-
raus on alkeisvarauksen e monikerta ja että sen kokonaisväritila on muuttumaton
kvanttiväridynamiikan SU(3)-värirotaatioissa (värisinglettitila, joskus sanotaan, että
hadronin kokonaisvärivaraus on nolla). [27]

Hadronisoitumiseksi kutsutaan prosessia, jossa kvarkki muodostaa hadronin
muiden kvarkkien (ja gluonien) kanssa [1]. Tätä muodostumisprosessia ei nykyäänkään
ymmärretä hyvin, ja useita hadronisaatiomalleja on kehitetty sen mallintamiseksi
[28]. Hiukkastörmäysprosessissa tuotettu kvarkki voi esimerkiksi emittoida gluonin,
joka sitten muodostaa kvarkki-antikvarkki-parin, ja toinen näistä parinmuodostuksen
seurauksen syntyneistä kvarkeista muodostaa mesonin alkuperäisen kvarkin kanssa
[29]. Kvarkki voi myös muodostaa hadronin muiden törmäysprosessissa syntynei-
den hiukkasten tai niiden jatkotuotteiden kanssa [30, 31]. Hadronisaatiolle on siis
törmäysprosessista riippuvia ja riippumattomia malleja. Kun ollaan kiinnostuneita
siitä, millä todennäköisyydellä tietty hadroni syntyy yhdestä kvarkista tai gluonista,
hadronisaatiota voidaan kvantitatiivisesti kuvata fragmentaatiofunktioilla. Nämä
ovat oleellisesti todennäköisyystiheysjakaumia, jotka ovat funktioita hadronin ja
kvarkin liikemäärien tai energioiden suhteista [32, 33].

Hiukkastörmäyksissä tuotettuja kvarkkeja ja gluoneja ei voida koskaan havaita
suoraan erittäin nopeasti tapahtuvien hadronisaatio- ja hajoamisprosessien vuoksi
(ns. värivankeus) [1, 27, 34]. Keskimääräinen kvarkin hadronisoitumiseen kuluva aika
on noin 10−23 s [34]. Koska t-kvarkin keskimääräinen hajoamisaika on noin 10−25 s,
niin se on ainoa kvarkki, joka ei hadronisoidu [34]. Protonia (uud) (ja antiprotonia,
ūūd̄) lukuun ottamatta kaikki hadronit ovat epästabiileja, ja lisäksi huomattava osa
hadronien (tai t-kvarkin) hajoamisten lopputuotteista ovat myöskin epästabiileja [34].
Tästä johtuen vapaan kvarkin syntyminen aiheuttaa hajoamisketjuja, joissa tapahtuu
useita hadronisaatioita ja hajoamisreaktioita. Hajoamisketjuja on useita mahdollisia
eri kvarkeille [35, 36], ja tutkimalla näistä syntyneitä hiukkasia on mahdollista havaita
törmäysprosesseissa syntyneet kvarkit [1]. Kvarkin hadronisoitumisesta syntyvää
kollimoitunutta hadronisuihkua nimitetään jetiksi [1].

Kolme raskainta standardimallin kvarkkia ovat c (charm, lumo), b (bottom, beauty,
pohja, kaunis) ja t (top, truth, huippu, tosi) [14]. Niiden olemassaolot ennustettiin
60- ja 70-luvuilla [37], ja jokainen niistä on tämän jälkeen löydetty kokeellisesti [20].
Raskailla kvarkeilla on tärkeä asema hiukkasfysiikan tutkimuksessa niiden erityisten
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ominaisuuksien vuoksi.

Massat c- ja b-kvarkeille ovat mc = 1,27 GeV ja mb = 4,18 GeV ja sähköva-
raukset Qc = 2

3e ja Qb = −1
3e [14]. c-kvarkki löydettiin marraskuussa 1974, kun

SLACin ja BNLn tutkimusryhmät (Stanford Linear Accelerator Center, Brookhaven
National Laboratory) löysivät erikseen ja samanaikaisesti ψ-mesonin (tunnetaan
myös J-mesonina), joka koostuu c-kvarkista ja c-antikvarkista. Tätä löytöä ja siitä
seurannutta läpimurtojen sarjaa nimitetään joskus marraskuun vallankumoukseksi
(November Revolution) [38]. Vastaavasti b-kvarkki havaittiin kokeellisesti vuonna
1977 Fermilabin kiihdytinlaboratoriossa (Fermi National Accelerator Laboratory),
kun bb-mesoni Υ löydettiin [37].

Kvarkkien värivankeudesta johtuen hiukkastörmäyksissä syntyneet vapaat c- ja b-
kvarkit hadronisoituvat välittömästi epästabiiileiksi c- ja b-hadroneiksi [34]. Syntyneet
c-hadronit tunnistetaan pääasiassa kahdella tavalla: tutkimalla niiden semilepto-
nisista hajoamisista syntyneitä leptoneita tai tutkimalla hadronisista hajoamisista
syntyneitä c-hadroneja [39]. Semileptonisessa hajoamisessa hadroni hajoaa yhdeksi
leptoniksi, leptonia vastaavaksi neutriinoksi ja ainakin yhdeksi hadroniksi [40] (esim.
D0 → K−e+νe [41]). Hadronisiksi hajoamisiksi kutsutaan hajoamisia, joissa syntyy
hadroneita [34] (esim. D∗(2007)0 → D0π0 [41] on puhtaasti hadroninen hajoaminen,
lopputuotteina vain hadroneja). b-kvarkkien tunnistamiseen käytetään pääasiassa
b-hadronien semileptonisia hajoamiskanavia [5, 7, 42–44]. Parhaimman tunnistus-
metodin valintaan vaikuttavat muun muuassa käytetyn laitteiston kyky erotella
vuorovaikutuspisteitä (luku 2.3), taustaprosessien vaikutukset mittaukseen sekä
tuntemus tarkastellusta prosessista [39, 42]. c- ja b-kvarkkeja tarkastellessa tulee
ottaa huomioon, että niitä sisältäviä hadroneja voi syntyä raskaampien hiukkasten
hajoamisketjuista (feed down), eikä ainoastaan niin sanotusti suoraan törmäysproses-
sista [45]. Esimerkiksi b-hadroni voi hajota c-hadroniksi [46] ja t-kvarkki hajoaa aina
b-kvarkiksi ja W -bosoniksi [6].

Ydintörmäysten c- ja b-kvarkkituottojen vaikutusalat ovat tärkeä mittaamisen
kohde useista syistä. Niiden avulla testataan kvanttiväridynamiikan häiriöteorian
toimivuutta (luku 2.3) [43] sekä erilaisia hadronisaatio- ja fragmentaatiomalleja [45].
Vaikutusalamittaukset toimivat myös luotaimena kvanttiväridynamiikalle. Esimer-
kiksi c-kvarkkituoton mittauksia protoni–protoni-törmäyksissä käytetään partoni-
jakaumafunktioiden eli kvarkkien ja gluonien lukumäärätiheysjakaumien tarken-
tamiseen pienillä partoneiden pitkittäisliikemääräosuuksien x arvoilla (noin 10−4,
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yhtälö (81)) [47]. Mittaukset voivat auttaa tarkentamaan erityisesti protonin gluo-
nipartonijakaumafunktiota fg/p, joka on selvästi hallitseva partonijakaumafunktio
pp-törmäyksissä ja jonka suhteellinen virhe pienillä x:n arvoilla on jopa 30 % [3]. c-
ja b-kvarkkien vaikutusalat luotaavat myös ytimien törmäyksessä syntynyttä välitilaa
[5]. Nämä raskaat kvarkit muodostuvat törmäyksessä aikaisin ja kantavat siksi
mukanaan informaatiota systeemin aikaisista vaiheista [5]. Tämä informaatio on
erityisen tarpeellista tutkittaessa kvarkkigluoniplasmaa, jota saadaan muodostettua
törmäyttäessä raskaita ytimiä (esim. lyijy- tai kultaytimiä) [5, 48]. Lisäksi b-karkkien
tarkan tuoton tunteminen on tärkeää tutkittaessa standardimallin ulkopuolisia teo-
rioita (Beyond Standard Model), CP-rikkoa sekä harvinaisia hajoamisprosesseja
[7].

Raskain kvarkeista, t-kvarkki, löytyi kokeellisesti Fermilabin Tevatron-protoni–
antiprotoni-kiihdyttimen avulla vuonna 1995 [20]. Sen massa on mt = 172.9 GeV ja
sähkövaraus Qt = 2

3e [14]. Vapaa t-kvarkki hajoaa välittömästi reaktion t→ W+b

(t → W−b) mukaisesti, ja prosessi luokitellaan joko leptoniseksi tai hadroniseksi
W -bosonin hajoamistavan mukaan (W± voi hajota joko leptoniksi ja vastaavaksi
neutriinoksi tai kvarkiksi ja antikvarkiksi) [6]. Siten tt-tuoton lopputilat jaotellaan
täysin hadroniseen kanavaan, leptoni + jetit-kanavaan ja dileptoniseen kanavaan [6].
Kaikkia kolmea käytetään kvarkkiparien tuoton havaitsemiseen ydintörmäyskokeissa
[49].

Kuten c- ja b-kvarkkien tapauksessa, ydintörmäysten t-kvarkkituottojen vaiku-
tusalat testaavat ja luotaavat kvanttiväridynamiikkaa, erityisesti häiriöteoriaa [49].
Protonin gluonipartonijakaumafunktio fg/p on vähemmän tutkittu korkeilla pitkittäis-
liikemääräosuuksien x arvoilla, ja t-kvarkin suuri massa antaa keinon päästä tähän
alueeseen (yhtälö (81)) [4]. Vaikutusalamittaukset parantavat t-kvarkin massan
tarkkuutta [2] ja auttavat vastaavan napamassan selvittämisessä [4]. Häiriöteoriassa
massan mt tarkka tuntemus vaikuttaa esimerkiksi useiden prosessien korkeamman
kertaluvun korjauksiin [50]. t-kvarkki on tärkeä myös monille standardimallin ulko-
puolisille malleille, ja tt-tuotto luotaa näiden ennustettuja prosesseja [8]. Lisäksi t-
kvarkkituoton ominaisuudet vaikuttavat vahvasti Higgsin fysiikkaan (Higgsin bosoni)
ja sähköheikkoon teoriaan [6].

Kuten edellä korostettiinkin, raskaiden kvarkkien massojen arvot vaikuttavat suu-
resti hiukkasfysiikan teoriaan ja ilmiöihin. Nykyään näiden massojen suhteelliset
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virheet saadaan määritettyä melko pieniksi (0,23 - 1,57 % yllä mainituille Particle
Data Groupin ilmoittamille arvoille). Kuitenkin, kvarkin massan arvoa määrittäessä
joudutaan aina tekemään teoriaan liittyviä, osittain mielivaltaisia, valintoja, jotka
vaikuttavat lopputulokseen. Esimerkiksi kvarkin massan määrityksessä käytetty
teoreettinen viitekehys voi olla riippuvainen käytetystä skeemasta (scheme, esim.
MS-, MS- ja 1S-skeemat) ja massaskaalavalinnasta. Näiden lisäksi on olemassa
vielä erillinen napamassan käsite (pole mass), joka vastaa hiukkaspropagaattorin
napaa. Esimerkiksi elektronin massan on määritelty olevan sen napamassa, mutta
samaa yksikäsitteistä määrittelyä ei voida tehdä kvarkeille kvanttiväridynamiikan
infrapunaefektien (non-perturbative infrared effects in QCD) ja kvarkkien värivankeu-
den vuoksi. Siispä raskaan kvarkin massan arvo on melko epäyksikäsitteinen, ja
hyvä valinta laskussa tai mittauksessa käytettäväksi massan määritelmäksi riippuu
tilanteesta. Lisää massavalinnoista ja niiden vaikutuksista teoreettisiin vaikutusaloi-
hin on luvussa 5. [51, 52]

2.2 Keskeisiä määritelmiä, yhtälöitä ja kinematiikkaa

Tulen käyttämään osassa yhtälöistä Einsteinin notaatiota. Tämä tarkoittaa, että
summan merkki ∑ jätetään implisiittiseksi ja summa tunnistetaan kahdesta samasta
indeksistä (esim. ∑µ p

µpµ = pµpµ) [10]. Käytän Einsteinin notaatiota nelivektori-, γ-
ja värisummissa, mutten spin- ja polarisaatiosummissa.

2.2.1 Nelivektoreista

Erilaiset nelivektorit ovat tärkeitä matemaattisen mallintamisen työkaluja hiukkas-
fysiikassa. Esimerkiksi

a =


a0

a1

a2

a3

 (1)

on (kontravariantti) nelivektori, jonka komponentit ovat a0, a1, a2 ja a3. Vastaava
kovariantti nelivektori on

ã =
(
a0 a1 a2 a3,

)
(2)
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missä a0 = a0, a1 = −a1, a2 = −a2 ja a3 = −a3. Nelivektoreiden komponenttien
indeksejä nimitetään Lorentzin indekseiksi. [10]

Olkoon b nelivektori, jolla on komponentit b0, b1, b2 ja b3 vastaavasti kuin edellä.
Nelivektoreiden a ja b välinen skalaaritulo on (kontravariantin ja kovariantin nelivek-
torin välinen pistetulo) [10]

a · b ≡ a0b0 − a1b1 − a2b2 − a3b3 = aµbµ = aµb
µ. (3)

Määritellään lisäksi merkintä
a2 ≡ a · a. (4)

Olkoon a, b ja c ovat mielivaltaisia nelivektorita ja h1 ja h2 vakioita. Nelivektoreiden
skalaaritulolle pätee selvästi seuraavat ominaisuudet (vaihdannaisuus, bilineaarisuus
ja vakiolla kertomisen vaikutus):

a · b = b · a,

a · (b+ c) = a · b+ a · c

(a+ b) · c = a · c+ b · c

(h1a) · (h2b) = h1h2(a · b)

(5)

Määritellään Minkowskin 4-avaruuden metrinen tensori, jonka avulla on voidaan
ilmaista kontravarianttien ja kovarianttien komponettien suhde sekä esittää skalaaritu-
lot. Tensorin komponenteille gµν , µ,ν = 0, 1, 2, 3, pätee g00 = 1, g11 = g22 = g33 = −1
ja gµ(ν 6=µ) = 0, sekä vastaavasti käänteiselle metriselle tensorille (gµν) g00 = 1,
g11 = g22 = g33 = −1 ja gµ(ν 6=µ) = 0 [10]. Tälloin voidaan käyttää esimerkiksi
seuraavia esityksiä:

aν = gµνa
µ,

aν = gµνaµ
(6)

ja
a · b = aµbµ = aµb

µ = gµνa
µbν = gµνaµbν (7)

(Huomio: Saman lausekkeen kaksi samaa Lorentzin indeksiä esitetään aina siten,
että toinen on yläindeksi ja toinen alaindeksi. Siten metristen tensorien voidaan
ajatella "nostavan" ja "laskevan" Lorentzin indeksejä. [10])
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Määritellään, että merkintä gµν vastaa Kroneckerin deltaa δµν , jolle pätee [10]

δµν =


1, kun µ = ν

0, kun µ 6= ν.
(8)

Nyt (esimerkiksi)
gµαgαν = gµν = δµν (9)

ja siten
gµνgµν = 4. (10)

2.2.2 Kinematiikkaa

Vapaan relativistisen hiukkasen energia on

E =
√
m2 + |p|2, (11)

kun m on hiukkasen massa ja p liikemäärä [10]. Vapaalla hiukkasella tarkoitetaan
tässä tapauksessa hiukkasta, johon ei kohdistu ulkoisia vuorovaikutuksia (tai ne
voidaan jättää huomiotta). Kun kappaleen sanotaan olevan relativistinen, niin
se tarkoittaa, että kappaleen ominaisuuksien tarkaksi kuvaamiseksi tulee ottaa
huomioon (suppea tai yleinen) suhteellisuusteoria (esimerkiksi kun hiukkasen nopeus
on lähellä valonnopeutta) [53].

Massallisen relativistisen kappaleen liikemäärä on

p = mv√
1− |v|2

, (12)

missä v on kappaleen nopeus [53]. Massattomalle hiukkaselle (|v| = 1)

|p| = E (13)

yhtälön (11) mukaisesti.

Hiukkasen neliliikemäärävektorin p ensimmäinen komponentti on hiukkasen
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energia E ja loput komponentit hiukkasen liikemäärän p = (px, py, pz) komponentit:

p =


E

px

py

pz

 =
E
p

 . (14)

Neliliikemäärävektorien väliset skalaaritulot ovat Lorentz-invariantteja eli ne eivät
muutu Lorentz-muunnoksissa. Tällöin esimerkiksi skalaaritulon lopputulos on sama
koordinaatistoissa, jotka liikkuvat vakionopeuksilla toisiinsa nähden. Energian ja
liikemäärän säilymislakien nojalla neliliikemäärien summa säilyy missä tahansa
(eristetyn systeemin) prosessissa. [10]

Vapaan hiukkasen neliliikemäärävektorille p pätee

p2 = E2 − |p|2 = m2 (15)

yhtälön (11) perusteella. Kun tämä relaatio p2 = m2 on tosi, niin hiukkasen sanotaan
"olevan sen massakuorella". [10]

Kuvassa 2 on esitettynä useita lopputilahiukkasia sisältävä törmäysprosessi, CMS-
koordinaatistossa. CMS-koordinaatistossa (center of momentum) kappaleiden koko-
naisliikemäärä on nolla (pa + pb = ∑

f pf = 0, f lopputilahiukkanen) [10]. Sovitaan
tavanomaisen konvention mukaisesti ensimmäisen alkutilahiukkasen (vasemman-
puoleinen, a, 1) liikemäärä samansuuntaiseksi z-akselin kanssa. Olkoon θ lopputi-
lahiukkasen liikemäärän ja z-akselin välinen sirontakulma.

Yllä esitetyn koordinaatistokonvention mukaisesti voimme määritellä hiukkasen
poikittaisliikemäärän seuraavasti:

pT ≡
√
p2
x + p2

y, (16)

missä px ja py ovat liikemäärän x- ja y-komponentti. Tämän avulla voidaan määritellä
toinen hyödyllinen suure, nk. poikittaismassa (transverse mass), [10]

mT ≡
√
m2 + p2

T . (17)



12

Kuva 2. Törmäysprosessi, jonka lopputila sisältää useita hiukkasia (nyt 8 kpl),
esitettynä CMS-koordinaatistossa. Harmaa pallo esittää reaktiota ja koordi-
naatiston keskipistettä. Siihen kohdistuvat nuolet ovat alkutilahiukkasten a ja
b liikemäärät pa ja pb, ja siitä poispäin osoittavat nuolet lopputilahiukkasten
liikemäärät. Yhden lopputilahiukkasen liikemäärän p poikittais- ja z-komponentit
pT ja pz sekä sirontakulma θ ovat esitettyinä kuvassa.

Hiukkasen rapiditeetti (suhteessa z-akseliin/hiukkassuihkuun) on

y ≡ 1
2ln

(E + pz
E − pz

)
. (18)

Rapiditeettiä y käytetään relativistisen hiukkasen tilan ja "sirontakulman" ku-
vaamiseen. Vastaava pseudorapiditeetti on

η ≡ 1
2ln

( |p|+ pz
|p| − pz

)
. (19)

Selvästi y = η, kun m = 0. Pseudorapiditeetti on rapiditeettia parempi kulma-
muuttujana, sillä sille on vaihtoehtoinen esitystapa, joka on riippuvainen ainoastaan
sirontakulmasta:

η = −ln
[
tan(θ2)

]
. (20)

Esimerkiksi sirontakulmat 0◦, 45◦, 90◦, 135◦ ja 180◦ vastaavat pseudorapiditeetteja
∞, 0,881, 0, −0,881 ja −∞. [10]

Hiukkasen energia ja hiukkassuihkun suuntainen liikemäärän komponentti on
mahdollista ilmoittaa massan, poikittaisliikemäärän ja rapiditeetin avulla:

E = mT cosh(y)

pz = mT sinh(y).
(21)
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Vastaavalla tavoin [10]
|p| = pT cosh(η)

pz = pT sinh(η).
(22)

Tärkeä törmäysprosessien erikoistapaus on 2 → 2-prosessit (kuva 3). Olkoon

Kuva 3. Törmäysprosessi a+ b→ c+ d CMS-koordinaatistossa. pa, pb, pc ja pd
ovat hiukkasia vastaavat liikemäärät, sekä θc ja θd sirontakulmat.

prosessin a + b → c + d hiukkasia vastaavat neliliikemäärät pa, pb, pc ja pd. Yllä
esitettyjen hiukkasten kinemaattisten suureiden lisäksi 2 → 2-törmäysprosessin
kuvaamiseen voidaan käyttää Lorentz-invariantteja Mandelstamin muuttujia s, t ja
u:

s ≡ (pa + pb)2 = (pc + pd)2

t ≡ (pa − pc)2 = (pb − pd)2

u ≡ (pa − pd)2 = (pb − pc)2,

(23)

missä jälkimmäiset esitykset muuttujille saadaan neliliikemäärän säilymisestä
(pa + pb = pc + pd). Neliliikemäärän säilymisen ja yhtälön (15) avulla saadaan myös
seuraava hyödyllinen relaatio:

s+ t+ u = m2
a +m2

b +m2
c +m2

d, (24)

missä ma, mb, mc ja md ovat vapaita hiukkasia vastaavat massat [10].

2.2.3 Vaikutusaloista

Tarkastellaan prosessia r, a+ b→ Sf , missä Sf on tarkasteltu lopputila mahdollisine
leikkauksineen. Oletetaan, että a-hiukkassuihku kattaa (ainakin) alueen Vab, joka
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sisältää hiukkasia b lukumäärän Nb. Olkoon Ja a-hiukkasten vuo tässä alueessa.
Törmäysprosessin r vaikutusala on

σr ≡
Wr

JaNb

, (25)

missä Wr on prosessin r reaktiotaajuus alueessa Vab [34]. Vaikutusala on tärkeä suure
hiukkasfysiikassa, ja yleensä sen arvo ilmoitetaan barneissa (1 b = 10−28 m) [34].
Se voidaan ajatella Lorentz-invarianttina reaktiotaajuuden, reaktiotodennäköisyy-
den tai reaktiota vastaavan vuorovaikutuksen voimakkuuden mittana (joillakin
leikkauksilla/differentiaatioilla vaikutusala ei ole Lorentz-invariantti) [34, 54]. Nimi-
tys vaikutusala (cross section) tulee siitä, että alunperin sirontakokeissa on pyritty
mittaamaan tutkittavan törmäyksen hiukkasen kokoa reaktiotaajuuden avulla [54].

Törmäyskokeen luminositeetti on

L ≡ JaNb. (26)

Mitä suurempi kokeen luminositeetti on, sitä enemmän haluttuja reaktioita r tapah-
tuu ja vastaavaa dataa saadaan tutkittavaksi (detektorilaitteiston tehokkuuden
rajoissa, ja olettaen, että suihku- tai kohdehiukkasten tiheydet eivät ole liian suuria).
Luminositeetti ei ole vakio ajan funktiona, ja usein se kuvataan eksponentiaalisesti
laskevana. Luminositeettia merkitsevämpi mitta törmäysten määrälle on integroitu
luminositeetti

Lint ≡
∫ T

0
L dt, (27)

missä T on mittausaika. Useassa osassa tehtävissä törmäyskokeissa pyritään maksi-
moimaan (integroidun) luminositeetin keskiarvo kokonaiskokeen aikana. [34, 55]

Hiukkasfysiikan teorian antama lauseke prosessin a+ b→ f1 + f2 + ...+ fn differen-
tiaaliselle vaikutusalalle on

dσ(ab→ f1f2...fn) = |M(ab→ f1f2...fn)|2

2
√
λ(s,m2

a,m
2
b)

(2π)4δ(4)(pa + pb −
n∑
i=1

pi)
n∏
i=1

d3pi
2Ei(2π)3 .

(28)

Tässä M(ab → f1f2...fn) on prosessin invariantti amplitudi, joka muodostetaan
Feynmanin sääntöjen avulla, δ(4) on (neliulotteinen) Diracin deltafunktio, ma ja
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mb alkutilahiukkasten massat, ja Ei ja pi lopputilahiukkasia vastaavat energiat ja
neliliikemäärät (differentiaalinen alkio d3pi viittaa liikemääriin pi). λ on kolmen
muuttujan funktio, jonka lauseke on

λ(a,b,c) ≡ a2 + b2 + c2 − 2ab− 2bc− 2ca, (29)

missä a,b,c ∈ R. [34]

2 → 2-tapauksissa t-differentioidun vaikutusalan lauseke on huomattavasti
yksinkertaisempi [34]:

dσ(ab→ cd)
dt

= |M(ab→ cd)|2

16πλ(s,m2
a,m

2
b)
. (30)

Edellä mainittu Diracin deltafunktio on jakauma, jonka käyttäytymistä voidaan
kuvata (löyhästi) seuraavan kahden yhtälön avulla:

δ(n)(x) =


∞, kun x = 0

0, kun x 6= 0
(31)

ja ∫
Vn
δ(n)(x)dx = 1, (32)

missä x on vektori n-ulotteisessa avaruudessa ja Vn tämän avaruuden osa, joka sisältää
luvun nolla ja jonkin nollan ympäristön [56]. Luonnollisesti (x = (x1, x2, ..., xn))

δ(n)(x) = δ(x1)δ(x2)...δ(xn). (33)

Yksiulotteiselle deltafunktiolle voidaan todistaa pätevän seuraavat ominaisuudet
(a,b ∈ R ja viimeisessä yhtälössä a 6= 0) [56]:

δ(a) = δ(−a)

δ(a)δ(b) = 2δ(a+ b)δ(a− b)

δ(ab) = 1
|a|
δ(b).

(34)

Kokeellisen ja teoreettisen vaikutusalan vastaavuutta kuvataan K-kertoimella, joka
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on kokeellinen tulos jaettuna teorettisella. (Määritelmä vaihtelee hieman tilanteesta
riippuen.) [57]

2.2.4 Diracin γ-matriiseista ja hiukkasspinoreista

Kvanttiväridynamiikan häiriöteorian Feynmanin sääntöjen soveltamisen ymmärtä-
miseksi on tarpeen esitellä Diracin γ-matriisit γ0, γ1, γ2 ja γ3, missä yläindeksi on
Lorentz-indeksi. Alun perin Paul Dirac kehitti nämä Diracin yhtälöä varten, joka
kuvaa vapaita relativistisia spin-1

2 -hiukkasia, ja myöhemmin γ-matriiseista ja niihin
liittyvistä laskusäännöistä tuli erittäin oleellisia Feynmanin sääntöjen ja invarianttien
amplitudien laskemisen kannalta [23, 25].

γ-matriisit ovat ei-yksikäsitteisiä N × N -neliömatriiseja, N ≥ 4, jotka nou-
dattavat Cliffordin algebraa {γµ,γν} = 2gµνI4. Seuraavat yhtäpitävyydet pätevät
Diracin γ-matriiseille, kun käytämme niille Dirac-Pauli-esitystä (4 × 4) [23, 25]:

(γ0)2 = I4
γµ† = γ0γµγ0 (35)

γµ = gµνγν

TR(γµγν) = 4gµν ⇔ TR(/a/b) = 4a · b

TR(γµγνγϕγκ) = 4(gµνgϕκ − gµϕgνκ + gµκgνϕ) (36)

⇔ TR(/a/b/c/d) = 4
[
(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)

]

γµγµ = 4

γµγνγµ = −2γν ⇔ γµ/aγµ = −2/a (37)

γµγνγϕγµ = 4gνϕ ⇔ γµ/a/bγµ = 4a · b

γµγνγϕγκγµ = −2γκγϕγν ⇔ γµ/a/b/cγµ = −2/c/b/a

/a2 = a2, (38)

missä a, b, c ja d ovat mielivaltaisia nelivektoreita, µ, ν, ϕ ja κ Lorentzin indeksejä,
(γj)2 ≡ γjγj, j = 0, 1, 2, 3, ja /a ≡ γµaµ. Osassa yhtälöistä yksikkömatriisi I4 on
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jätetty implisiittiseksi.
Laskujen helpottamiseksi on hyvä tietää, että γ-matriisien parittoman määrän

tulon jälki on aina nolla. Olkoon γ-matriisit γµ1 , γµ2 , ... γµ2n , γµ2n+1 , n ∈ N ∪ 0,
siten, että indeksi µi voi vastata mitä tahansa neljästä matriisista (eli µi = 0, 1, 2, 3).
Tällöin [25]

TR(γµ1γµ2 ...γµ2nγµ2n+1) = 0. (39)

Edellä mainittu Diracin yhtälö voidaan jakaa kahteen, hiukkasia ja antihiukkasia
kuvaavaan, osaan:

(/p−m)u = 0

(/p+m)v = 0.
(40)

u = u(p,s) ja v = v(p,s) ovat ratkaisuspinorit, missä p on vapaan hiukkasen neli-
liikemäärävektori ja s spin-tila∗ (s = 1 (ylös) tai 2 (alas)). Vastaavat konjugoidut
spinorit ovat

u ≡ u†γ0

v ≡ v†γ0.
(41)

Koska valitsin Diracin matriiseille tyyppiä 4 × 4 olevan esityksen, niin siitä joh-
tuen spinorit ovat 4-ulotteisia pystyvektoreita ja konjugoidut spinorit 4-ulotteisia
vaakavektoreita. [23]

Tavanomaisella normalisaatiolla (u†(p,s)u(p,s) = 2E) saadaan tulos

∑
s=1,2

u(p,s)u(p,s) = /p+m

∑
s=1,2

v(p,s)v(p,s) = /p−m.
(42)

Näitä yhtäpitävyyksiä nimitetään projektio-operaattoreiksi. [23]
Olkoon γ-matriisit γµ1 , γµ2 ...γµn−1 ja γµn , n ∈ N, µi = 0, 1, 2 tai 3, sekä hiukkas-

/antihiukkasspinorit w1 ja w2. Nyt voidaan laskea

∗Tarkalleen ottaen spinorit edustavat spin-ylös- ja spin-alas-tiloja ainoastaan tapauksissa,
joissa hiukkasen liikemäärä on 0 tai yhdensuuntainen z-akselin kanssa (muulloin spinorit eivät ole
spin-operaattorin Ŝz ominaistiloja). Emme kuitenkaan käsittele spin-polarisoituneita suureita ja
summaamme siten aina spinorien tilojen yli (yhtälö (42)), jolloin tämä spinoritilojen eksakti luonne
ei vaikuta lopputuloksiin.
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(w1γ
µ1γµ2 ...γµn−1γµnw2)∗ = (w†1γ0γµ1γµ2 ...γµn−1γµnw2)†

= w†2γ
µn†γµn−1†...γµ2†γµ1†γ0†w1

= w†2γ
0γµnγ0γ0γµn−1γ0...γ0γµ2γ0γ0γµ1γ0γ0w1

= w2γ
µnγµn−1 ...γµ2γµ1w1, (43)

missä käytimme konjugoidun spinorin määritelmää (41) sekä relaatioita (γ0)2 = I4
ja γj† = γ0γjγ0 (35). Tämä niin kutsuttu konjugaattirelaatio on tärkeä tulevien
laskujen kannalta. [25]

Vielä on tarpeen esitellä Feynmanin sääntöjä varten polarisaationelivektori ε(p,λ)
(komponentit εµ(p,λ)), joka kuvaa gluonia (tai fotonia) ja jossa λ on polarisaatiotila
[25, 26]. Vektoria vastaava polarisaatiotensori on

P µν(p) ≡
∑
λ=1,2

εµ(p,λ)εν∗(p,λ) = −gµν + pµp̂ν + p̂µpν

p · p̂
, (44)

missä

p̂ ≡


E

−px
−py
−pz

 =
 E

−p

 . (45)

2.3 Kvanttiväridynamiikan häiriöteoria ja partonimalli

Neljästä perusvuorovaikutustyypistä vahva vuorovaikutus on selvästi vahvin. Tämä
manifestoituu muun muassa siten, että vahvan vuorovaikutuksen prosessien vaiku-
tusalat ovat useita kertaluokkia suurempia kuin sähkömagneettisen ja heikon vuoro-
vaikutuksen prosessien vaikutusalat (esim. σ(γγ → X)� σ(pp→ X)) [34]. Siten
tutkittaessa esimerkiksi kvarkkituottoa protoni–protoni-törmäyksissä on hyväksyt-
tävää keskittyä ainoastaan vahvaan vuorovaikutukseen ja jättää huomiotta sähkö-
magneettisen ja heikon vuorovaikutuksen kontribuutiot [20].

Kvanttiväridynamiikka (Quantum Chromodynamics, QCD) on lokaalisti sym-
metrinen SU(3)-mittakenttäteoria, joka kuvaa kvarkkien ja gluonien välistä vahvaa
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vuorovaikutusta [1]. Kenttäteoria esiteltiin pitkän kehityksen jälkeen vuonna 1972
Harald Fritzschin, Heinrich Leutwylerin ja Murray Gell-Mannin toimesta [58]. Usei-
den kokeiden avulla teoria ollaan todettu erittäin pitäväksi ja nykyään kvanttiväridy-
namiikkaa käsitellään tärkeänä hiukkasfysiikan standardimallin kulmakivenä [1, 13].
Kvanttiväridynamiikan keskeisiä nykytutkimuksen osa-alueita ovat muun muassa
hadronien [59] ja ytimien partonijakaumafunktiot [60] sekä kvarkkigluoniplasma [61].

Vuorovaikutustyypin kytkentävakiolla kuvataan vuorovaikutuksen voimakkuutta.
Kvanttiväridynamiikassa vahvalle kytkentävakiolle pätee

αs(Qr) ≡
g2
s(Qr)
4π , (46)

missä Qr on renormalisaatioskaala ja gs = gs(Qr) kytkentävoimakkuus. (Hämäävästi
molempia muuttujia gs ja αs nimitetään usein kirjallisuudessa vahvaksi kytkentä-
vakioksi, teen nyt erilaisen nimitysvalinnan sekaannusten välttämiseksi.) Kvant-
tiväridynamiikka on asymptoottisesti vapaa teoria eli sen kytkentävakiolle pätee
αs(Qr)

Qr→∞−−−−→ 0. [1] Käyttämäni kytkentävakio on esitettynä kuvassa 4 [62].
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Kuva 4. Vahva kytkentävakio. Laskettu viitteen [62] perusteella.

Skaala Q =
√
Q2 kuvaa energian ja liikemäärän siirtymistä prosessissa. Jos q on

prosessin hiukkasten välillä siirtynyt neliliikemäärä, niin tavanomaisesti määritellään
Q2 = |q2|. Raskaiden kvarkkiparien tuotossa tyypillisesti Q ∼ mT . [1]

Tarkemmin katsottuna skaala on kuitenkin monimerkityksellisempi asia kvant-
tiväridynamiikassa. On mahdollista määritellä skaalan Q lisäksi erikseen edellä
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mainittu renormalisaatioskaala Qr ja faktorisaatioskaala Qf , joille Qr ∼ Q ja
Qf ∼ Q. Faktorisaatioskaala liittyy lyhyen ja pitkän kantaman vuorovaikutusefektien
erotteluun ja se toimii näin partonijakaumien määrittelyssä tarvittavana skaalana.
Tavanomaisesti valitaan vain yksi skaala Q = Qr = Qf prosessille, koska se on
kätevää ja koska nämä kolme skaalaa ovat kohtalaisen analogiset keskenään. Tällöin
kuitenkin tarkka ymmärrys skaalavalintojen vaikutuksesta hadronitörmäysprosessien
vaikutusaloihin saattaa jäädä pimentoon, ja siksi käsittelemme nyt renormalisaatio-
ja faktorisaatioskaaloja erikseen (luku 5.1.1). [63]

Useita laskumetodeja on kehitetty kvanttiväridynamiikan käsittelyä varten. Näistä
kaikista menestynein on häiriöteoria (perturbative quantum chromodynamics, pQCD)
[1]. Sen ideana on approksimoida haluttua lopputulosta vahvan kytkentävakion αs
potenssien sarjana (α2

s, α
3
s, α

4
s,..., kun muiden vuorovaikutustyyppien kontribuutioita

ei tarkastella) [1, 64]. Mitä korkeamman kertaluvun approksimaatio, niin sitä useampi
termi on otettu huomioon ja sitä tarkempi lopputulos (lähempänä kokeellista tulosta).
Tässä työssä tarkastelluille raskaiden kvarkkien tuottoprosesseille alimman kertalu-
vun approksimaatio (LO, leading order) ottaa huomioon α2

s-termit [26], sitä seuraava
kertaluku (NLO, next-to leading order) myös korkeampien potenssien termejä, ja sitä
seuraava vielä korkeampia (NNLO, next-to-next-to leading order). Usein NNNLO- ja
sitä korkeampien kertalukujen korjauksia pidetään mitättöminä, ja NLO- tai NNLO-
tulosta käytetään vertailutuloksena kokeelliselle datalle. (Tarkkaa teoreettista tulosta
määrittäessä otetaan myös huomioon korkeamman kertaluvun korjauksiin vertautuvat
korjaukset, kuten partonisuihkujen kontribuutio [65].) Teoreettisen tuloksen herkkyys
eri renormalisaatio- ja faktorisaatioskaalavalinnoille indikoi korkeamman kertalu-
vun korjausten suuruuksia [66, 67]. Siten skaalavalintojen epäyksikäsitteisyydestä
kumpuava epävarmuus on pienempi korkeammilla kertaluvuilla [66]. Häiriöteorian
soveltamiseksi edellytetään, että Qr & 1 GeV [1]. Tälloin αs(Qr) � 1 (kuva 4) ja
halutun tuloksen approksimointi kytkentävakion potenssien sarjana toimii hyvin [1].

Häiriöteorian antaman aliprosessin vaikutusalan (invariantin amplitudin) laskemi-
sessa käytetään Feynmanin sääntöjä [68]. Näiden Feynmanin sääntöjen soveltamiseksi
on tarpeen esitellä SU(3):n virittäjämatriisit ta, a = 1, 2, ..., 8, ja niitä vastaavan
algebran laskusääntöjä.

Virittäjämatriisit ta vastaavat gluonien kahdeksaa mahdollista väritilaa, ovat her-
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miittisiä (eli (ta)† = ta ja (ta)∗ij = (ta)ji), ja ne eivät ole yksikäsitteisiä. Valitsemme
niille tavanomaisen, ns. fundamentaaliesityksen (F ), jolloin ne ovat 3× 3-matriiseja
(IF = I3) ja jolloin esitysriippuvaisille vakioille C2 (Casimirin operaattori) ja T pätee

tata = C2(F )IF
TR(tatb) = T (F )δab,

(47)

missä
C2(F ) = 4

3
T (F ) = 1

2 .
(48)

(Fundamentaaliesityksessä virittäjämatriisit ovat Gell-Mann-matriisit λa jaettuna
kahdella, ta = λa

2 .) [68]

Virittäjämatriisien käsittelyssä tärkeitä työkaluja ovat täysin antisymmetrinen
struktuurivakio fabc ∈ R (kahden indeksin vaihtaminen keskenään vaihtaa luvun
merkin) sekä täysin symmetrinen struktuurivakio dabc ∈ R (kahden indeksin vaihta-
minen keskenään ei vaikuta luvun arvoon), missä indeksit a, b ja c vastaavat gluonien
väritiloja tai virittäjämatriisien indeksejä (lisää struktuurivakioista ja niiden arvoista
lähteessä [68]). Seuraavat relaatiot pätevät fundamentaaliesityksessä:

facdf bcd = Nδab

facddbcd = 0

(tatbta)ij = −T (F )
N

(tb)ij

TR(tatbtc) = 1
2T (F )(dabc + ifabc),

(49)

missä N = 3, koska käytämme 3× 3-matriiseja. [68]

Olkoon µ, ν ja ϕ Lorentzin indeksejä, a, b ja c gluonien (tai aaveiden) väritiloja,
i ja j kvarkkien väritiloja, m vapaan hiukkasen massa, p, p1, p2 ja p3 hiukkasten
neliliikemääriä, s fermionin f (tai antifermionin f) spin-tila sekä λ = 1,2 gluonin g
polarisaatiotila.

Ulkoisten hiukkasten Feynmanin säännöt ja graafiset esitykset ovat seuraavat
prosessin alku- ja lopputilafermioneille, alku- ja lopputila-antifermioneille, alkuti-
lagluonille, alkutila-aaveelle sekä alkutila-antiaaveelle:
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Pallo edustaa muuta prosessia ja viivojen keskelle piirretyt kolmiot hiukkasnuo-
lia. Hiukkasten hiukkasnuolet ovat samansuuntaisia ja antihiukkasten erisuuntaisia
vastaavan neliliikemäärän kanssa. [68]

Aaveet ovat tekninen työkalu, joiden avulla on mahdollista helpottaa gluonin
polarisaatiotilojen käsittelemistä laskuissa. Ne voidaan ajatella fermionien kaltaisina
hiukkasina, jotka omaavat gluonin tavoin värivarauksen. [26] Lisää aaveista ja
polarisaatiotensorin P µν(p,λ) käsittelystä on luvussa 3.2.

Vuorovaikutuspisteille (verteksit) pätevät seuraavat Feynmanin säännöt (etumerk-
kikonventio voi vaihdella lähteestä riippuen) [68]:

Kolmen gluonin itseiskytkennässä [68]

H abc
µνϕ(p1,p2,p3) ≡ −gsfabc

[
gµν(p1 − p2)ϕ + gνϕ(p2 − p3)µ + gϕµ(p3 − p1)ν

]
. (50)

Propagaattori yhdistää kahden Feynmanin diagrammin vuorovaikutuspisteen.
Feynmanin säännöt kvarkki- ja gluonipropagaattoreille Feynmanin mittavalinnalla
(Greenin funktiosta tulevat nimittäjien +iε-termit on jätetty huomiotta) [68]:

Huomaa, että propagaattori ei ole vapaa hiukkanen eli sille ei päde (yleisesti)
p2 = m. Alimman kertaluvun Feynmanin diagrammeja nimitetään usein s-, t- tai
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u-kanavan diagrammeiksi propagaattorin neliliikemäärän luonteen mukaan (p2 = s,
t tai u, määritelmät (23)). [1, 25]

Feynmanin diagrammit edustavat invariantteja amplitudeja, joiden lausekkeet
muodostetaan Feynmanin säännöillä (luvut 3.1 ja 3.2). Mikäli samaa prosessia
vastaa useampi Feynmanin diagrammi, niin prosessin invariantti amplitudi saadaan
summaamalla diagrammeja vastaavat invariantit amplitudit. Jos diagrammissa on
ristiinpiirretyt identtiset fermionit, niin vastaavan invariantin amplitudin eteen laite-
taan miinusmerkki. [25]

Nyt voidaan muodostaa (esimerkiksi) invariantit amplitudit M(qq → QQ) ja
M(gg → QQ) (q mielivaltainen kvarkki ja Q raskas kvarkki), ja laskea luvussa
2.2 kerrottujen laskusääntöjen avulla vastaavat vaikutusalat. Kuitenkin, Feynmanin
säännöt ottavat kantaa alku- ja lopputilahiukkasten spin-, väri- ja polarisaatiotiloihin,
joita ei tulla huomioimaan tulevassa analyysissä. Siten on tarpeen määritellä polar-
isoitumaton invariantin amplitudin neliö |M|2 [25]. Se on invariantin amplitudin
neliö, joka on keskiarvoistettu alkutilan mahdollisten spin-, väri- ja polarisaatiotilojen
yli ja summattu lopputilan vastaavien tilojen yli. Prosesseille q + q → Q + Q ja
g + g → Q+Q [26]

∣∣∣M(qq → QQ)
∣∣∣2 = 1

2 · 2
1

3 · 3
∑
Spin
Väri

M(qq → QQ)M(qq → QQ)∗ (51)

∣∣∣M(gg → QQ)
∣∣∣2 = 1

2 · 2
1

8 · 8
∑
Spin
Väri
Pol.

M(gg → QQ)M(gg → QQ)∗. (52)

Käytännössä esimerkiksi yksittäisten kvarkkien törmäyttäminen hiukkaskiihdyttimen
avulla ei ole mahdollista, joten vahvan vuorovaikutuksen prosesseja joudutaan tutki-
maan erilaisten hadroni- ja ydintörmäysten avulla. Hadronitörmäysten teoreettinen
käsittely onnistuu partonimallin avulla. [1]

Richard Feynman esitteli partonimallin idean vuonna 1969 [69]. Siinä korkealla
energialla törmääviä hadroneja käsitellään pistemäisinä partonikimppuina, missä
partonit ovat hadronin rakenneosia eli kvarkkeja, antikvarkkeja ja gluoneja, joiden
väliset vuorovaikutukset jätetään huomiotta. Näiden hadronien rakenneosasten
törmäykset aiheuttavat aliprosesseja, jotka muodostavat (mahdollisesti huomioitu-
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jen hadronisoitumisten ja hajoamisten kanssa) kokonaisprosessin. Partonimallin
mukainen hadronitörmäysprosessi 2→ 2-aliprosessilla on esitettynä kuvassa 5. Malli
toimii hyvin, mikäli törmäysenergialle pätee

√
s� mH1 +mH2 . [1]

Kuva 5. Törmäysprosessi H1 + H2 → k + l + X (H1 + H2 → K + L + X)
esitettynä partoneittain. H1 ja H2 ovat hadroneja, jotka törmäävät korkealla
energialla

√
s � mH1 + mH2 . Hadronin H1 partoni i ja hadronin H2 partoni

j ovat 2 → 2-aliprosessin alkutilahiukkasia, ja k ja l ovat lopputilahiukkasia.
Törmäysprosessissa reagoimattomat partonit ja niiden hajoamisketjujen tuotteet
jätetään huomiotta (X). Koska yksittäisten kvarkkien/gluonien havaitseminen ei
ole mahdollista, mittauksissa tulee tarkastella hiukkasten k ja l hajoamisketjujen
seurauksena syntyneitä lopputiloja K ja L. [1]

Hadronin liikemäärästä osa x ∈ [0,1] kuuluu aliprosessiin osallistuvalle partonille.
Koska törmäysenergiat ovat erittäin suuria, niin hadronin H ja aliprosessiin osallis-
tuvan partonin i neliliikemäärille pätee

pH =


EH

0
0

±|pH |

 ≈

|pH |

0
0

±|pH |

 (53)

ja

pi =


Ei

0
0
±|pi|

 ≈ x


|pH |

0
0

±|pH |

 . (54)

Toki x voi olla erittäin pieni, jolloin yllä oleva approksimaatio partonin neliliike-
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määrälle ei toimi. Kuitenkin tämänlaisten aliprosessien kontribuutio hadronitason
vaikutusalaan on mitätön korkealla energialla, ja approksimaatioiden (53) ja (54)
kuvaama mallinnus on tavanomainen hadronitörmäyksiä käsitellessä. [1]

Hadronien rakennetta kuvataan partonijakaumafunktioilla fi/H = fi/H(x,Qf ), i = g,
u, d, s, c, b, t, u, d, s, c, b, t, jotka ovat riippuvaisia hadronityypistä H, pitkit-
täisliikemääräosuudesta x ja faktorisaatioskaalasta Qf . (Yleensä nimityksellä par-
tonijakaumafunktio viitataan protonin partonijakaumafunktioon, fi ≡ fi/p.) Arvo
fi/H(x,Qf )dx kertoo kuinka monta partonia i löytyy väliltä [x, x+ dx], skaalalla Qf .
Täten liikemäärän säilymislain nojalla pätee

∫ 1

0
dx

∑
i=g,q,q

xfi/H(x,Qf ) = 1. (55)

Protoneilla gluonit kuljettavat noin puolet koko hiukkasen liikemäärästä (faktorisaa-
tioskaala vaikuttaa jonkin verran). [1]

Hadroni sisältää valenssikvarkkien ja gluonien lisäksi myös virtuaalisten kvantti-
fluktuaatioiden synnyttämiä kvarkki-antikvarkkipareja (ns. merikvarkit) [1]. Siten
esimerkiksi protonin rakennetta kuvattaessa tulee ottaa u-kvarkin, d-kvarkin ja gluo-
nin partonijakaumafunktioiden lisäksi myös muidenkin kvarkkien ja antikvarkkien par-
tonijakaumafunktiot huomioon. Sähkövarauksen säilymisen nojalla voidaan päätellä,
että protonin partonijakaumafunktioille

∫ 1

0
dx(fu/p − fu/p) = 2∫ 1

0
dx(fd/p − fd/p) = 1∫ 1

0
dx(fi/p − fi/p) = 0, kun i 6= u, d.

(56)

Protonin gluonin partonijakaumafunktio hallitsee pienillä x ja valenssikvarkit hallit-
sevat alueessa x ' 10−1 (kuvat 10, 11, 12 ja 13).

Koska partonijakaumafunktiot ovat tarpeellinen elementti lähes kaikissa korkeae-
nergisten hadroni- ja ydintörmäysreaktioiden teoreettisissa ennusteissa [70], niiden
tarkkuuden parantaminen on yksi kvanttiväridynamiikan tutkimuksen keskeisimpiä
tavoitteita [71]. Häiriöteorian eri kertaluvuille on omat partonijakaumafunktionsa
[71]. Mikäli partonijakaumafunktion käyttäytyminen tiedetään kokeellisesti skaalalla
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Qf = Q0 ∼ 1 GeV, niin se voidaan ennustaa korkeammille skaaloille Qf > Q0

DGLAP-yhtälöiden (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi, 1977) avulla [72].
Tässä korkeampien skaalojen käyttäytymisen määrityksessä käytetään jakautumis-
ja kerroinfunktioita (splitting functions, coefficient functions), joiden tarkkuus riip-
puu niiden laskemisessa käytettyjen laskentasilmukoiden määrästä (1-loop, 2-loop,
3-loop,...) [73]. Vastaavanlaisia laskentasilmukoita käytetään myös vahvan kytken-
tävakion määrityksessä [62]. Yleensä häiriöteorian alimman kertaluvun approksi-
maatiossa käytetään yhden laskentasilmukan funktioita molemmille fi/H(x,Qf) ja
αs(Qr).

Mikäli hadronitörmäysprosessin mahdollisten aliprosessien vaikutusalat sekä hadronien
partonijakaumafunktiot ovat tiedossa, koko prosessin vaikutusala on mahdollista
muodostaa kvanttiväridynamiikan kollineaarisen faktorisaatioteoreeman avulla:

dσ(H1H2 → kl +X) =
∑

i,j=g,q,q

∫ 1

0

∫ 1

0
dx1dx2fi/H1(x1,Qf )fj/H2(x2,Qf )dσ̂(ij → kl), (57)

missä σ̂ on aliprosessin vaikutusala sekä x1 ja x2 partoneja i ja j vastaavat pitkittäis-
liikemääräosuudet. Teoreeman soveltamiseksi edellytetään, että törmäysprosessille
pätee

√
s� mH1 +mH2 (ja Qr & 1 GeV). [1]

Edellä olevasta lausekkeesta on jätetty kokonaan huomiotta mahdolliset lopputi-
lakvarkkien hadronisaatiot k → K + X ja l → L + X, joita ei ole mahdollista
kuvata häiriöteorian avulla [1]. Hadronisaatio esitettäisiin tavanomaisesti lausek-
keessa fragmentaatiofunktio-osuuden DHQ

Q avulla [32]. Raskaiden kvarkkien Q = c, b
hadronisoitumista Q→ HQ+X on kuvattu usein Petersonin fragmentaatiofunktiolla,
joka on hadronin kvarkin liikemäärän suuntaisen liikemäärän komponentin ja kvarkin
liikemäärän suhteen z funktio (kuva 6) [74].

Koska raskaan kvarkin massa on huomattavan suuri, niin sen liikemäärä muuttuu
yleensä hyvin vähän sen muodostaessa hadronin kevyen kvarkin kanssa [5]. Tästä
johtuen on perusteltua approksimoida kvarkin ja hadronin liikemäärät samoiksi ja
korvata fragmentaatiofunktiot mahdollisten lopputilahadronien HQ fragmentaatio-
osuuksilla f(Q → HQ) =

∫ 1
0 D

HQ
Q (z)dz [75]. Luonnollisesti kvarkkia (poislukien t)
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Kuva 6. Petersonin fragmentaatiofunktiot c- (oranssi) ja b-kvarkeille (violetti).
D
HQ
Q (z) = N

z(1− 1
z
−
εQ

1−z )2 , missä εc = 0,15 ja εb = 0,016, ja N on valittu siten, että∫ 1
0 D

HQ
Q (z)dz = 1. Siten tässä tapauksessa fragmentaatiofunktiot eivät ota kantaa

muodostuneen hadronin HQ tyyppiin. [74]

vastaavien fragmentaatio-osuuksien summa on 1. Määritellään

F (k,l→ K,L) ≡



f(k → K) · f(l→ L), kun k ja l hadronisoituvat

f(k → K), kun k 6= K ja l = L

f(l→ L), kun k = K ja l 6= L

1, kun hadronisaatioita ei tarkastella

(58)

Tällöin käyttämällä edellä kuvattua hadronisaatioapproksimaatiota voidaan kirjoittaa

dσ(H1H2 → KL+X) = F (k,l→ K,L)dσ(H1H2 → kl +X). (59)

Tämän arvion luotettavuutta on tarkasteltu kriittisesti luvussa 5.2.

3 Vaikutusalojen lausekkeet
Johdan luvuissa 3.1 ja 3.2 aliprosessien q + q → Q+Q ja g + g → Q+Q, missä q
on mielivaltainen kvarkki ja Q raskas kvarkki, kvanttiväridynamiikan häiriöteorian
alinta kertalukua vastaavat t̂-differentioidut vaikutusalat sekä kokonaisvaikutusalat.
Kokonaisvaikutusalalla tarkoitetaan nyt leikkaamatonta ja differentioimatonta vaiku-
tusalaa (σ̂(

√
ŝ), σ(

√
s)). Jatkossa Mandelstamin muuttujat ŝ, t̂ ja û edustavat
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aliprosessia, ja s, t ja u kokonaisprosessia. Lisäksi johdan luvussa 3.3 prosessin
p + p(–) → Q + Q + X lopputilakvarkkien poikittaisliikemäärän ja rapiditeettien
suhteen differentioidun vaikutusalan (LO). Nämä lausekkeiden johtamiset ovat pää-
piirteissään analogisia lähteessä [26] esitettyjen laskujen kanssa, mutta nyt mQ 6= 0.

3.1 Aliprosessi q + q → Q +Q

Kuva 7. Törmäysprosessi q + q → Q+Q CMS-koordinaatistossa.

Olkoon mq alkutila- ja mQ lopputila(anti)kvarkin massa. Indeksit 1, 2, 3 ja 4
vastaavat prosessin hiukkasia q, q, Q ja Q (kuva 7). CMS-koordinaatistossa pätee
(yhtälö (11))

E1 =
√
m2
q + |p1|

2 =
√
m2
q + |p2|

2 = E2

E3 =
√
m2
Q + |p3|

2 =
√
m2
Q + |p4|

2 = E4.
(60)

Täten

E1 + E2 = E3 + E4 ⇔ E1 = E3. (61)

Koska E1 = E2 ja p1 + p2 = 0, niin (määritelmä (23))

ŝ = (p1 + p2)2 = (E1 + E2)2 = (2E1)2 = 4E2
1 . (62)

Mandelstamin muuttujalle t̂
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t̂ = (p1 − p3)2

= p2
1 + p2

3 − 2p1 · p3

= m2
q +m2

Q − 2
[
E1E3 − |p1||p3|cos(θ3)

]
= m2

q +m2
Q − 2E2

1

[
1−

√
E2

1 −m2
q

E1

√
E2

1 −m2
Q

E1
cos(θ3)

]

= m2
q +m2

Q −
ŝ

2
[
1−

√
(1−

4m2
q

ŝ
)(1−

4m2
Q

ŝ
)cos(θ3)

]
,

missä käytimme pistetuloa p1 · p3 = |p1||p3|cos(θ3) ja identiteettejä p2 = m2,
E2 = m2 + |p|2, E1 = E3 sekä ŝ = 4E2

1 (yhtälöt (15), (11), (61) ja (62)). Koska
cos(θ3) ∈ [−1,1], niin muuttujan t̂ minimi ja maksimi ovat

t̂min = m2
q +m2

Q −
ŝ

2
[
1 +

√
(1−

4m2
q

ŝ
)(1−

4m2
Q

ŝ
)
]

t̂max = m2
q +m2

Q −
ŝ

2
[
1−

√
(1−

4m2
q

ŝ
)(1−

4m2
Q

ŝ
)
]
.

(63)

Yhtälön (24) nojalla
ŝ+ t̂+ û = 2m2

q + 2m2
Q. (64)

Prosessin nelivektorien skalaarituloille pätevät nyt seuraavat yhtäsuuruudet (määritelmät
(23)):

ŝ = (p1 + p2)2 = p2
1 + p2

2 + 2p1 · p2 = 2m2
q + 2p1 · p2

ŝ = (p3 + p4)2 = p2
3 + p2

4 + 2p3 · p4 = 2m2
Q + 2p3 · p4

t̂ = (p1 − p3)2 = p2
1 + p2

3 − 2p1 · p3 = m2
q +m2

Q − 2p1 · p3

t̂ = (p2 − p4)2 = p2
2 + p2

4 − 2p2 · p4 = m2
q +m2

Q − 2p2 · p4

û = (p1 − p4)2 = p2
1 + p2

4 − 2p1 · p4 = m2
q +m2

Q − 2p1 · p4

û = (p2 − p3)2 = p2
2 + p2

3 − 2p2 · p3 = m2
q +m2

Q − 2p2 · p3
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(a) (b)

Kuva 8. Alimman kertaluvun Feynmanin diagrammit prosesseille q+q → Q+Q
(Q + Q → Q + Q), missä q on mielivaltainen kvarkki ja Q raskas kvarkki.
Neliliikemäärät p1, p2, p3, p4 ja q0, kvarkkien väritilat i, j, k ja l, gluonin
väritilat a ja b, kvarkkien spin-tilat s1, s2, s3 ja s4 sekä Lorentzin indeksit µ ja ν
ovat merkittynä ensimmäiseen diagrammiin (polarisoitumattoman) invariantin
amplitudin muodostamisen helpottamiseksi. Neliliikemääriä, hiukkasten tiloja ja
indeksejä ei ole merkittynä jälkimmäiseen Feynmanin diagrammiin, sillä sitä ei
tulla huomioimaan laskussa.

eli
p1 · p2 = ŝ

2 −m
2
q

p3 · p4 = ŝ

2 −m
2
Q

p1 · p3 = p2 · p4 =
m2
q +m2

Q − t̂
2

p1 · p4 = p2 · p3 =
m2
q +m2

Q − û
2 .

(65)

Kuvassa 8 on esitettynä prosessia q + q → Q + Q vastaavat alimman kertaluvun
Feynmanin diagrammit. Jälkimmäinen diagrammi (Q + Q → Q + Q) jätetään
huomiotta sen pienen kontribuution vuoksi, kuten lähteessä [76].

Prosessin q + q → Q+Q invariantti amplitudi on nyt (kuva 8a, q0 = p1 + p2)

−iM(qq → QQ) = u3(−igs(tb)klγν)v4(−iδ
abgµν

q2
0

)v2(−igs(ta)jiγµ)u1

= ig2
s

q2
0

(ta)ji(ta)klu3γ
µv4v2γµu1,
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missä on käytetty luvussa 2.3 esitettyjä Feynmanin sääntöjä sekä metrisen tensorin
gµν ominaisuuksia (yhtälö (6)). Käytin merkintää u1 ≡ u(p1,s1) ja vastaavasti muille
spinoreille.

Polarisoitumattoman invariantin amplitudin neliö (yhtälö (51)) on

∣∣∣M(qq → QQ)
∣∣∣2

= 1
2 · 2

1
3 · 3

∑
s1,s2
s3,s4

∑
i,j
k,l

M(qq → QQ)M(qq → QQ)∗

= 1
4

1
9
g4
s

q4
0

∑
s1,s2
s3,s4

∑
i,j
k,l

(ta)ji(ta)kl(tc)∗ji(tc)∗klu3γ
µv4v2γµu1(u3γ

ϕv4)∗(v2γϕu1)∗

= 1
4

1
9
g4
s

q4
0

∑
s1,s2
s3,s4

∑
i,j
k,l

(ta)ji(tc)ij(ta)kl(tc)lku3γ
µv4v2γµu1v4γ

ϕu3u1γϕv2

= (1
9
∑
a,b

TR(tatc)TR(tatc))g
4
s

q4
0

(1
2
∑
s1,s2

v2γµu1u1γϕv2)(1
2
∑
s3,s4

u3γ
µv4v4γ

ϕu3)

= C0
g4
s

q4
0
Lq,µϕL

µϕ
Q ,

kun

C0 ≡
1
9TR(tatc)TR(tatc)

Lq,µϕ ≡
1
2
∑
s1,s2

v2γµu1u1γϕv2

LµϕQ ≡
1
2
∑
s3,s4

u3γ
µv4v4γ

ϕu3.

Nimitetään näitä väritekijäksi, alkutilan kvarkkitensoriksi ja lopputilan kvarkkiten-
soriksi. Edellä hyödynnettiin konjugaattirelaatiota (43) ((w1γ

µw2)∗ = w2γ
µw1) ja

SU(3):n virittäjämatriisien hermiittisyyttä (tc)∗ji = (tc)ij. Väritekijä saadaan lasket-
tua yhtälöitä (47) ja (48) hyödyntäen:

C0 = 1
9TR(tatc)TR(tatc) = 1

9T (F )δac(F )δac = 1
9(T (F ))2δaa = 1

9(1
2)2 · 8 = 2

9 .

Esitetään alkutilan kvarkkitensorin lauseke spinorien ja matriisien alkioiden avulla:
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Lq,µϕ ≡
1
2
∑
s1,s2

v2γµu1u1γϕv2

= 1
2
∑
s1,s2

(v2)a(γµ)ab(u1)b(u1)c(γϕ)cd(v2)d

= 1
2
[∑
s2

(v2)d(v2)a
]
(γµ)ab

[∑
s1

(u1)b(u1)c
]
(γϕ)cd.

Nyt voimme käyttää projektio-operaattoreita ∑s=1,2 u(p,s)u(p,s) = /p+m ja∑
s=1,2 v(p,s)v(p,s) = /p−m (yhtälö (42)):

Lq,µν = 1
2(/p2 −mq)da(γµ)ab(/p1 +mq)bc(γϕ)cd

= 1
2TR

[
(/p2 −mq)γµ(/p1 +mq)γϕ

]
= 1

2
[
TR(/p2γµ/p1γϕ) +mqTR(/p2γµγϕ)−mqTR(γµ/p1γϕ)−m2

qTR(γµγϕ)
]
.

γ-matriisien parittoman määrän tulon jälki on nolla (yhtälö (39)). Täten

Lq,µν = 1
2
[
TR(/p2γµ/p1γϕ)−m2

qTR(γµγϕ)
]
.

Loput jäljet on mahdollista ilmaista metristen tensorien avulla käyttämällä iden-
titeettejä TR(γµγν) = 4gµν ja TR(γµγνγϕγκ) = 4(gµνgϕκ − gµϕgνκ + gµκgνϕ), ja
skalaaritulon esitystä a · b = aµbνgµν (yhtälöt (36) ja (7)):

Lq,µν = 1
2
[
pα2p

β
1TR(γαγµγβγϕ)−m2

qTR(γµγϕ)
]

= 1
2
[
pα2p

β
1 · 4(gαµgβϕ − gαβgµϕ + gαϕgµβ)−m2

q · 4gµϕ
]

= 2
[
p2µp1ϕ − (p2 · p1)gµϕ + p2ϕp1µ −m2

qgµϕ
]

= 2
[
p1µp2ϕ + p1ϕp2µ − (m2

q + p1 · p2)gµϕ
]

= 2(p1µp2ϕ + p1ϕp2µ −
ŝ

2gµϕ).

Vastaavalla tavoin
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LµϕQ ≡
1
2
∑
s3,s4

u3γ
µv4v4γ

ϕu3

= 1
2
∑
s3,s4

(u3)a(γµ)ab(v4)b(v4)c(γϕ)cd(u3)d

= 1
2
[∑
s3

(u3)d(u3)a
]
(γµ)ab

[∑
s4

(v4)b(v4)c
]
(γϕ)cd

= 1
2(/p3 +mQ)da(γµ)ab(/p4 −mQ)bc(γϕ)cd

= 1
2TR

[
(/p3 +mQ)γµ(/p4 −mQ)γϕ

]
.

Siispä lopputilan kvarkkitensori saadaan alkutilan kvarkkitensorista korvaamalla p1,
p2 ja mq suureilla p3, p4 ja mQ ja muuttamalla Lorentzin indeksejä:

LµϕQ = 2(pµ3pϕ4 + pϕ3 p
µ
4 −

ŝ

2g
µϕ).

Tensorisumma on (a · b = aµb
µ, gµgµ = 4, yhtälöt (7) ja (10))

Lq,µϕL
µϕ
Q = 4(p1µp2ϕ + p1ϕp2µ −

ŝ

2gµϕ)(pµ3pϕ4 + pϕ3 p
µ
4 −

ŝ

2g
µϕ)

= 4
[
(p1 · p3)(p2 · p4) + (p1 · p4)(p2 · p3)− ŝ

2(p1 · p2) + (p1 · p4)(p2 · p3)

+ (p1 · p3)(p2 · p4)− ŝ

2(p1 · p2)− ŝ

2(p3 · p4)− ŝ

2(p3 · p4) + ŝ2

4 · 4
]

= 4
[
2(p1 · p3)(p2 · p4) + 2(p1 · p4)(p2 · p3)− ŝ((p1 · p2) + (p3 · p4)) + ŝ2

]
= 4

[
2(
m2
q +m2

Q − t̂
2 )2 + 2(

m2
q +m2

Q − û
2 )2 − ŝ( ŝ2 −m

2
q + ŝ

2 −m
2
Q) + ŝ2

]
= 2

[
t̂2 + û2 + 2m2

q ŝ+ 2m2
Qŝ− 2m2

q t̂− 2m2
Qt̂− 2m2

qû− 2m2
Qû+ 2m4

q

+ 2m4
Q + 4m2

qm
2
Q

]
= 2

[
t̂2 + û2 + 2(m2

q +m2
Q)ŝ− 2(m2

q +m2
Q)(t̂+ û) + 2(m2

q +m2
Q)2

]
= 2

[
t̂2 + û2 + 2(m2

q +m2
Q)ŝ− 2(m2

q +m2
Q)(2m2

q + 2m2
Q − ŝ) + 2(m2

q +m2
Q)2

]
= 2

[
t̂2 + û2 + 4(m2

q +m2
Q)ŝ− 2(m2

q +m2
Q)2

]
.

Koska g2
s = 4παs (yhtälö (46)) ja q2

0 = (p1 + p2)2 = ŝ, niin
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∣∣∣M(qq → QQ)
∣∣∣2 = C0

g4
s

q4
0
Lq,µϕL

µϕ
Q

= 64π2α2
s

9ŝ2

[
t̂2 + û2 + 4(m2

q +m2
Q)ŝ− 2(m2

q +m2
Q)2

]
. (66)

Prosessia q + q → Q+Q vastaava λ on (määritelmä (29))

λ(ŝ,m2
q,m

2
q) = ŝ2 +m4

q +m4
q − 2m2

q ŝ− 2m4
q − 2m2

q ŝ

= ŝ2 − 4m2
q ŝ

= ŝ2(1−
4m2

q

ŝ
).

Yhtälön (30) nojalla

dσ̂(qq → QQ)
dt̂

=

∣∣∣M(qq → QQ)
∣∣∣2

16πλ(ŝ,m2
q,m

2
q)

= 4πα2
s

9ŝ4(1− 4m2
q

ŝ
)

[
t̂2 + û2 + 4(m2

q +m2
Q)ŝ− 2(m2

q +m2
Q)2

]
(67)

= 4πα2
s

9ŝ4(1− 4m2
q

ŝ
)

[
t̂2 + (2m2

q + 2m2
Q − ŝ− t̂)2

+ 4(m2
q +m2

Q)ŝ− 2(m2
q +m2

Q)2
]

= 4πα2
s

9ŝ4(1− 4m2
q

ŝ
)

[
ŝ2 + 2t̂2 + 2ŝt̂− 4(m2

q +m2
Q)t̂+ 2(m2

q +m2
Q)2

]
.

(68)

Prosessin q + q → Q+Q t̂-differentioidun vaikutusalan integroimiseksi on tarpeen

laskea sijoitukset
∣∣∣∣∣
t̂max

t̂min

t̂,
∣∣∣∣∣
t̂max

t̂min

t̂2 ja
∣∣∣∣∣
t̂max

t̂min

t̂3. Näistä ensimmäiselle, yhtälöä (63) käyttäen,

saadaan

∣∣∣∣∣
t̂max

t̂min

t̂ = t̂max − t̂min = ŝ

√
(1−

4m2
q

ŝ
)(1−

4m2
Q

ŝ
).

Määritellään laskujen helpottamiseksi
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A ≡ m2
q +m2

Q B ≡ ŝ

2 C ≡

√
(1−

4m2
q

ŝ
)(1−

4m2
Q

ŝ
).

Nyt voidaan kirjoittaa t̂max = A−B(1−C) ja t̂min = A−B(1+C). Toisen potenssin
sijoitukselle

∣∣∣∣∣
t̂max

t̂min

t̂2 =
∣∣∣∣∣
A−B(1−C)

A−B(1+C)
t̂2

= (A−B(1− C))2 − (A−B(1 + C))2

= (4AB − 4B2)C

=
[
2(m2

q +m2
Q)ŝ− ŝ2

]√
(1−

4m2
q

ŝ
)(1−

4m2
Q

ŝ
).

Kolmannen potenssin sijoitus:

∣∣∣∣∣
t̂max

t̂min

t̂3 =
∣∣∣∣∣
A−B(1−C)

A−B(1+C)
t̂3

= (A−B(1− C))3 − (A−B(1 + C))3

= (6A2B − 12AB2 + 6B3 + 2B3C2)C

=
[
6(m2

q +m2
Q)2 ŝ

2 − 12(m2
q +m2

Q)( ŝ2)2 + 6( ŝ2)3

+ 2( ŝ2)3
(√

(1−
4m2

q

ŝ
)(1−

4m2
Q

ŝ
)
)2]√

(1−
4m2

q

ŝ
)(1−

4m2
Q

ŝ
)

=
[
3ŝ(m4

q + 2m2
qm

2
Q +m4

Q)− 3ŝ2(m2
q +m2

Q) + 3ŝ
4

+ ŝ3

4 (1−
4m2

q

ŝ
)(1−

4m2
Q

ŝ
)
]√

(1−
4m2

q

ŝ
)(1−

4m2
Q

ŝ
)

=
[
3m4

q ŝ+ 6m2
qm

2
Qŝ+ 3m4

Qŝ− 3m2
q ŝ

2 − 3m2
Qŝ

2 + 3ŝ3

4

+ ŝ3

4 −m
2
q ŝ

2 −m2
Qŝ

2 + 4m2
qm

2
Qŝ
]√

(1−
4m2

q

ŝ
)(1−

4m2
Q

ŝ
)

=
[
ŝ3 − 4(m2

q +m2
Q)ŝ2 + 10m2

qm
2
Qŝ+ 3(m4

q +m4
Q)ŝ

]√
(1−

4m2
q

ŝ
)(1−

4m2
Q

ŝ
).

Täten prosessin q + q → Q+Q kokonaisvaikutusalaksi saadaan
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σ̂(qq → QQ)

=
∫ t̂max

t̂min
dt̂
dσ̂(qq → QQ)

dt̂

=
∫ t̂max

t̂min
dt̂

4πα2
s

9ŝ4(1− 4m2
q

ŝ
)

{
ŝ2 + 2t̂2 + 2ŝt̂− 4(m2

q +m2
Q)t̂+ 2(m2

q +m2
Q)2

}

= 4πα2
s

9ŝ4(1− 4m2
q

ŝ
)

{2
3

∣∣∣∣∣
t̂max

t̂min

t̂3 +
[
2ŝ− 4(m2

q +m2
Q)
]1
2

∣∣∣∣∣
t̂max

t̂min

t̂2 +
[
ŝ2 + 2(m2

q +m2
Q)2

]∣∣∣∣∣
t̂max

t̂min

t̂
}

= 4πα2
s

9ŝ4(1− 4m2
q

ŝ
)

{2
3
[
ŝ3 − 4(m2

q +m2
Q)ŝ2 + 10m2

qm
2
Qŝ+ 3(m4

q +m4
Q)ŝ

]

·

√
(1−

4m2
q

ŝ
)(1−

4m2
Q

ŝ
) +

[
ŝ− 2(m2

q +m2
Q)
][

2(m2
q +m2

Q)ŝ− ŝ2
]

·

√
(1−

4m2
q

ŝ
)(1−

4m2
Q

ŝ
) +

[
ŝ2 + 2(m2

q +m2
Q)2

]
ŝ

√
(1−

4m2
q

ŝ
)(1−

4m2
Q

ŝ
)
}

= 4πα2
s

9ŝ4(1− 4m2
q

ŝ
)

{2ŝ3

3 −
8
3(m2

q +m2
Q)ŝ2 + 20

3 m
2
qm

2
Qŝ+ 2(m4

q +m4
Q)ŝ

+ 2(m2
q +m2

Q)ŝ2 − ŝ3 − 4m4
q ŝ− 8m2

qm
2
Qŝ− 4m4

Qŝ+ 2(m2
q +m2

Q)ŝ2

+ ŝ3 + 2m4
q ŝ+ 4m2

qm
2
Qŝ+ 2m4

Qŝ
}√

(1−
4m2

q

ŝ
)(1−

4m2
Q

ŝ
)

= 4πα2
s

9ŝ4(1− 4m2
q

ŝ
)

{2ŝ3

3 + 4
3(m2

q +m2
Q)ŝ2 + 8

3m
2
qm

2
Qŝ
}√

(1−
4m2

q

ŝ
)(1−

4m2
Q

ŝ
)

= 8πα2
s

27ŝ (1 + 2
m2
q +m2

Q

ŝ
+ 4

m2
qm

2
Q

ŝ2 )

√√√√√1− 4m2
Q

ŝ

1− 4m2
q

ŝ

. (69)

Koska prosessit c+ c→ Q+Q ja b+ b→ Q+Q vaikuttavat hyvin vähän kokonais-
prosessin vaikutusalaan ja mu,md,ms � mQ < 2mQ = (

√
ŝ)min, niin voimme jättää

massat mq huomiotta. Tällöin vaikutusalojen lausekkeet saavat muodot

dσ̂(qq → QQ)
dt̂

= 4πα2
s

9ŝ4 (t̂2 + û2 + 4m2
Qŝ− 2m4

Q) (70)

= 4πα2
s

9ŝ4 (ŝ2 + 2t̂2 + 2ŝt̂− 4m2
Qt̂+ 2m4

Q) (71)
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ja

σ̂(qq → QQ) = 8πα2
s

27ŝ (1 +
2m2

Q

ŝ
)
√

1−
4m2

Q

ŝ
. (72)

3.2 Aliprosessi g + g → Q +Q

Indeksit 1, 2, 3 ja 4 vastaavat nyt prosessin hiukkasia g, g, Q ja Q (kuva 9a).
Kinemaattisesti törmäysprosessi on sama kuin tapauksessa q + q → Q+Q, lukuun
ottamatta nyt massattomia alkutilahiukkasia. Siten yhtälöiden (63), (64) ja (65)
nojalla pätee

t̂min = m2
Q −

ŝ

2(1 +
√

1−
4m2

Q

ŝ
)

t̂max = m2
Q −

ŝ

2(1−
√

1−
4m2

Q

ŝ
),

(73)

ŝ+ t̂+ û = 2m2
Q, (74)

ja
p1 · p2 = ŝ

2
p3 · p4 = ŝ

2 −m
2
Q

p1 · p3 = p2 · p4 =
m2
Q − t̂
2

p1 · p4 = p2 · p3 =
m2
Q − û
2 .

(75)

Ensimmäistä Feynmanin diagrammia (t-kanava, kuva 9b) vastaava invariantti ampli-
tudi on

−iM1 = εµ1u3(−igs(ta)jiγµ)
iδli(−/q1 +mQ)

q2
1 −m2

Q

(−igs(tb)lkγν)v4ε
ν
2

= − ig2
s

q2
1 −m2

Q

(tatb)jku3γµ(mQ − /q1)γνv4ε
µ
1ε

ν
2

ja toista (u-kanava, kuva 9c) vastaa
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(a) (b)

(c) (d)

(e) (f)

Kuva 9. Prosessi g + g → Q+Q CMS-koordinaatistossa ja vastaavat alimman
kertaluvun Feynmanin diagrammit. Vapaiden hiukkasten neliliikemäärät p1, p2,
p3, p4, propagaattorien neliliikemäärät q1, q2, q3, q4 ja q5, kvarkkien väritilat i, j,
k ja l, gluonien/aaveiden väritilat a, b, c ja d, gluonien polarisaatiotilat λ1 ja λ2,
kvarkkien spin-tilat s3 ja s4 sekä Lorentzin indeksit µ, ν, ϕ ja κ ovat merkittyinä
diagrammeihin.
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−iM2 = εν2u3(−igs(tb)jiγν)
iδli(/q2 +mQ)
q2

2 −m2
Q

(−igs(ta)lkγµ)v4ε
µ
1

= − ig2
s

q2
2 −m2

Q

(tbta)jku3γν(/q2 +mQ)γµv4ε
µ
1ε

ν
2.

Kolmas invariantti amplitudi (s-kanava, kuva 9d) on

−iM3 = u3(−igs(tjk)γκ)v4(−iδ
cdgϕκ

q2
3

)εµ1H abc
µνϕ(p1,p2,− q3)εν2

= −gs
q2

3
(tc)jk

{
− gsfabc

[
gµν(p1 − p2)ϕ + gνϕ(p2 − (−p1 − p2))µ

+ gϕµ(−p1 − p2 − p1)ν
]}
u3γ

ϕv4ε
µ
1ε

ν
2

= g2
s

q2
3

(tc)jkfabcu3γ
ϕv4

[
gµν(p1 − p2)ϕ + gνϕ(p1 + 2p2)µ + gϕµ(−2p1 − p2)ν

]
εµ1ε

ν
2

= g2
s

q2
3

(tc)jkfabcu3γ
ϕv4Kµνϕε

µ
1ε

ν
2,

missä on määritelty

Kµνϕ ≡ gµν(p1 − p2)ϕ + gνϕ(p1 + 2p2)µ + gϕµ(−2p1 − p2)ν .

Prosessia vastaavat aaveamplitudit ovat (kuva 9e)

−iMG1 = u3(−igs(td)jkγν)v4(−iδ
cdgµν

q2
4

) · 1 · (−gsf cbap2µ) · 1

= −g
2
s

q2
4

(tc)jkfabcu3/p2v4

ja (kuva 9f)

−iMG2 = u3(−igs(td)jkγν)v4(−iδ
cdgµν

q2
5

) · 1 · (−gsf cabp1µ) · 1

= g2
s

q2
5

(tc)jkfabcu3/p1v4,

missä fabc = −f cba = f cab.
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Määritellään invarianttien amplitudien lausekkeiden pohjalta

M1µν ≡
g2
s

q2
1 −m2

Q

(tatb)jku3γµ(mQ − /q1)γνv4,

M2µν ≡
g2
s

q2
2 −m2

Q

(tbta)jku3γν(/q2 +mQ)γµv4,

M3µν ≡
ig2
s

q2
3

(tc)jkfabcu3γ
ϕv4Kµνϕ,

ja

Mµν ≡M1µν +M2µν +M3µν .

Tällöin

M(gg → QQ) =Mµνε
µ
1ε

ν
2

Nyt prosessin g + g → Q+Q polarisoitumaton invariantin amplitudin neliö (yhtälö
(52)) on

∣∣∣M(gg → QQ)
∣∣∣2 = 1

8 · 8
1

2 · 2
∑
a,b

∑
λ1,λ2

∑
s3.s4

∣∣∣M(gg → QQ)
∣∣∣2

= 1
64

1
4
∑
a,b

∑
λ1,λ2

∑
s3,s4

|M1 +M2 +M3|2

= 1
64

1
4
∑
a,b

∑
s3,s4

(M1µν +M2µν +M3µν)

(M1αβ +M2αβ +M3αβ)∗(
∑
λ1

εµ1ε
α∗
1 )(

∑
λ2

εν2ε
β∗
2 )

= 1
64

1
4
∑
a,b

∑
s3,s4

MµνM∗
αβP

µα(p1)P νβ(p2)

= 1
64

1
4
∑
a,b

∑
s3,s4

((−gµα)(−gνβ)MµνM∗
αβ −MG1M∗

G1

−MG2M∗
G2)

= 1
64

1
4
∑
a,b

∑
s3,s4

(MµνMµν∗ − |MG1|2 − |MG2|2),
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joka muokattiin lopulliseen, aaveamplitudit sisältävään, muotoon käyttämällä po-
larisaatiotensorin P µν(p) ≡ ∑λ=1,2 ε

µ(p,λ)εν∗(p,λ) = −gµν + pµp̂ν+p̂µpν
p·p̂ (yhtälö (44))

ominaisuuksia, kuten lähteessä [26]. Tässä esityksessä termi MµνMµν∗ sisältää,
Feynmanin mitassa laskettuna, gluonien fysikaalisten polarisaatiotilojen λ1,2 = 1,2
lisäksi epäfysikaaliset, ei-poikittaiset, polarisaatiotilat. Näiden ylimääräisten po-
larisaatiotilojen kontribuutio supistetaan pois kahden aaveamplitudin avulla. Po-
larisoitumattoman invariantin amplitudin neliö

∣∣∣M(gg → QQ)
∣∣∣2 voitaisiin laskea

myös ilman aaveita kolmella Feynmanin diagrammilla, mutta yllä esitetyllä tavalla
lasku saadaan suoraviivaisesti tehdyksi kovariantissa (Feynmanin) mitassa ottamalla
polarisaatiotensoriksi yksinkertaisesti −gµν . [26]

Edeltävän lausekkeen ensimmäinen termi voidaan jakaa kuuteen osaan seuraavasti:

1
64

1
4
∑
a,b

∑
s3,s4

MµνMµν∗ = 1
64

1
4
∑
a,b

∑
s3,s4

(M1µν +M2µν +M3µν)

(Mµν
1 +Mµν

2 +Mµν
3 )∗

= 1
64

1
4
∑
a,b

∑
s3,s4

(M1µνMµν∗
1 +M2µνMµν∗

2 +M3µνMµν∗
3

+ 2Re(M1µνMµν∗
2 +M2µνMµν∗

3 +M1µνMµν∗
3 ))

=M1µνMµν∗
1 +M2µνMµν∗

2 +M3µνMµν∗
3

+ 2Re(M1µνMµν∗
2 +M2µνMµν∗

3 +M1µνMµν∗
3 ),

missä on määritelty, τ , ε = 1, 2, 3,

MτµνMµν∗
ε ≡ 1

64
1
4
∑
a,b

∑
s3,s4

MτµνMµν∗
ε .

Täten

∣∣∣M(gg → QQ)
∣∣∣2 =M1µνMµν∗

1 +M2µνMµν∗
2 +M3µνMµν∗

3

+ 2Re(M1µνMµν∗
2 +M2µνMµν∗

3 +M1µνMµν∗
3 )

− |MG1|2 − |MG2|2.
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Ensimmäinen termi (t-kanava):

M1µνMµν∗
1

= 1
64

1
4
∑
a,b

∑
s3,s4

M1µνMµν∗
1

= 1
64

1
4
∑
a,b

∑
s3,s4

[ g2
s

q2
1 −m2

Q

(tatb)jku3γµ(mQ − /q1)γνv4
][ g2

s

q2
1 −m2

Q

(tatb)jku3γ
µ(mQ − /q1)γνv4

]∗
= g4

s

(q2
1 −m2

Q)2
1
64

1
4
∑
a,b

∑
s3,s4

(tatb)jk(tbta)kju3γµ(mQ − /q1)γνv4v4γ
ν(mQ − /q1)γµu3

=
(∑
a,b

TR(tatbtbta)
64

) g4
s

(q2
1 −m2

Q)2
1
4
∑
s3,s4

u3γµ(/q1 −mQ)γνv4v4γ
ν(/q1 −mQ)γµu3

= C11
g4
s

(q2
1 −m2

Q)2S11,

missä

((tatb)jk)∗ = ((ta)ji(tb)ik)∗ = (ta)ij(tb)ki = (tbta)kj

ja

C11 ≡
TR(tatbtbta)

64
S11 ≡

1
4
∑
s3,s4

u3γµ(/q1 −mQ)γνv4v4γ
ν(/q1 −mQ)γµu3.

Väritekijä on (tata = C(F )IF , C2(F ) = 4
3 , IF = I3, yhtälöt (47) ja (48))

C11 ≡
TR(tatbtbta)

64 = 1
64TR(tatatbtb) = 1

64TR(C2(F )IFC2(F )IF )

= 1
64(C2(F ))2TR(IF ) = 1

64(4
3)2 · 3 = 1

12 .

Jälkimmäinen summa:

S11 ≡
1
4
∑
s3,s4

u3γµ(/q1 −mQ)γνv4v4γ
ν(/q1 −mQ)γµu3
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= 1
4
[∑
s3

(u3)h(u3)a
]
(γµ)ab(/q1 −mQ)bc(γν)cd

[∑
s4

(v4)d(v4)e
]
(γν)ef (/q1 −mQ)fg(γµ)gh

= 1
4(/p3 +mQ)ha(γµ)ab(/q1 −mQ)bc(γν)cd(/p4 −mQ)de(γν)ef (/q1 −mQ)fg(γµ)gh

= 1
4TR

[
(/p3 +mQ)γµ(/q1 −mQ)γν(/p4 −mQ)γν(/q1 −mQ)γµ

]
= 1

4TR
[
γµ(/p3 +mQ)γµ(/q1 −mQ)γν(/p4 −mQ)γν(/q1 −mQ)

]
= 1

4TR
[
(γµ/p3γµ +mQγ

µγµ)(/q1 −mQ)(γν/p4γ
ν −mQγνγ

ν)(/q1 −mQ)
]
.

Käyttämällä relaatioita γµγµ = 4 ja γµ/aγµ = −2/a (yhtälö (37)) saadaan

S11 = 1
4TR

[
(−2/p3 + 4mQ)(/q1 −mQ)(−2/p4 − 4mQ)(/q1 −mQ)

]
= TR

[
(/p3 − 2mQ)(/q1 −mQ)(/p4 + 2mQ)(/q1 −mQ)

]
= TR(/p3/q1/p4/q1)−mQTR(/p3/q1/p4) + 2mQTR(/p3/q1/q1)− 2m2

QTR(/p3/q1)

−mQTR(/p3/p4/q1) +m2
QTR(/p3/p4)− 2m2

QTR(/p3/q1) + 2m3
QTR(/p3)

− 2mQTR(/q1/p4/q1) + 2m2
QTR(/q1/p4)− 4m2

QTR(/q1/q1) + 4m3
QTR(/q1)

+ 2m2
QTR(/p4/q1)− 2m3

QTR(/p4) + 4m3
QTR(/q1)− 4m2

QTR(I4)

= TR(/p3/q1/p4/q1)− 2m2
QTR(/p3/q1) +m2

QTR(/p3/p4)− 2m2
QTR(/p3/q1)

+ 2m2
QTR(/q1/p4)− 4m2

QTR(/q1/q1) + 2m2
QTR(/p4/q1)− 16m4

Q

= TR(/p3/q1/p4/q1) +m2
Q

[
− 2TR(/p3/q1) + TR(/p3/p4)− 2TR(/p3/q1)

+ 2TR(/q1/p4)− 4TR(/q1/q1) + 2TR(/p4/q1)
]
− 16m4

Q.

Tässä voimme käyttää identiteettejä TR(/a/b) = 4a · b ja TR(/a/b/c/d)
= 4

[
(a · b)(c · d)− (a · c)(b · d) + (a · d)(b · c)

]
(yhtälö (36)):

S11 = 4
[
(p3 · q1)(p4 · q1)− (p3 · p4)(q1 · q1) + (p3 · q1)(q1 · p4)

]
+m2

Q

[
− 2 · 4(p3 · q1)

+ 4(p3 · p4)− 2 · 4(p3 · q1) + 2 · 4(q1 · p4)− 4 · 4(q1 · q1) + 2 · 4(p4 · q1)
]
− 16m4

Q

= 4
[
2(p3 · q1)(p4 · q1)− (p3 · p4)q2

1

]
+m2

Q

[
− 16(p3 · q1) + 4(p3 · p4) + 16(p4 · q1)− 16q2

1

]
− 16m4

Q
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= 4
{

2(p3 · q1)(p4 · q1)− (p3 · p4)q2
1

+m2
Q

[
− 4(p3 · q1) + p3 · p4 + 4(p4 · q1)− 4q2

1

]
− 4m4

Q

}
= 4

{
2(p3 · p1 − p2

3)(p4 · p1 − p4 · p3)− (p3 · p4)(p1 − p3)2

+m2
Q

[
− 4(p3 · p1 − p2

3) + p3 · p4 + 4(p4 · p1 − p4 · p3)− 4(p1 − p3)2
]
− 4m4

Q

}

= 4
{

2(
m2
Q − t̂
2 −m2

Q)(
m2
Q − û
2 − ( ŝ2 −m

2
Q))− ( ŝ2 −m

2
Q)t̂

+m2
Q

[
− 4(

m2
Q − t̂
2 −m2

Q) + ŝ

2 −m
2
Q + 4(

m2
Q − û
2 − ( ŝ2 −m

2
Q))− 4t̂

]
− 4m4

Q

}
= 4

{
(−t̂−m2

Q)(
3m2

Q

2 − ŝ

2 −
û

2 )− ( ŝ2 −m
2
Q)t̂

+m2
Q

[
2t̂+ 2m2

Q + ŝ

2 −m
2
Q + 4(

3m2
Q

2 − ŝ

2 −
û

2 )− 4t̂
]
− 4m4

Q

}

= 4
{
−

3m2
Qt̂

2 + ŝt̂

2 + t̂û

2 −
3m4

Q

2 +
m2
Qŝ

2 +
m2
Qû

2 − ŝt̂

2 +m2
Qt̂

+m2
Q

[
2t̂+m2

Q + ŝ

2 + 6m2
Q − 2ŝ− 2û− 4t̂

]
− 4m4

Q

}

= 4
{
t̂û

2 +
m2
Qŝ

2 −
m2
Qt̂

2 +
m2
Qû

2 −
11m4

Q

2 +m2
Q

[
− 3ŝ

2 − 2t̂− 2û+ 7m2
Q

]}

= 4
{
t̂û

2 −m
2
Qŝ−

5m2
Qt̂

2 −
3m2

Qû

2 +
3m4

Q

2

}
= 2(t̂û− 2m2

Qŝ− 5m2
Qt̂− 3m2

Qû+ 3m4
Q)

= 2(t̂û− 2m2
Qŝ− 2m2

Qt̂− 3m2
Q(t̂+ û) + 3m4

Q)

= 2(t̂û− 2m2
Qŝ− 2m2

Qt̂− 3m2
Q(2m2

Q − ŝ) + 3m4
Q)

= 2(t̂û+m2
Qŝ− 2m2

Qt̂− 3m4
Q).

Siispä

M1µνMµν∗
1 = C11

g4
s

(q2
1 −m2

Q)2S11

= 1
12 ·

g4
s

(t̂−m2
Q)2 · 2(t̂û+m2

Qŝ− 2m2
Qt̂− 3m4

Q)

= g4
s

6(m2
Q − t̂)2 (t̂û+m2

Qŝ− 2m2
Qt̂− 3m4

Q).
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Toinen termi (u-kanava):

M2µνMµν∗
2 = 1

64
1
4
∑
a,b

∑
s3,s4

M2µνMµν∗
2

= 1
64

1
4
∑
a,b

∑
s3,s4

[ g2
s

q2
2 −m2

Q

(tbta)jku3γν(/q2 +mQ)γµv4
]

[ g2
s

q2
2 −m2

Q

(tbta)jku3γ
ν(/q2 +mQ)γµv4

]∗
= g4

s

(q2
2 −m2

Q)2
1
64

1
4
∑
a,b

∑
s3,s4

(tbta)jk(tatb)kju3γν(/q2 +mQ)γµv4

v4γ
µ(/q2 +mQ)γνu3

=
(∑
a,b

TR(tbtatatb)
64

) g4
s

(q2
2 −m2

Q)2
1
4
∑
s3,s4

u3γν(/q2 +mQ)γµv4

v4γ
µ(/q2 +mQ)γνu3.

Vaihtamalla indeksejä ja kertomalla molemmat matriisit /q2 +mQ luvulla −1 saadaan

M2µνMµν∗
2 = TR(tatbtbta)

64
g4
s

(q2
2 −m2

Q)2
1
4
∑
s3,s4

u3γµ(−/q2 −mQ)γνv4

v4γ
ν(−/q2 −mQ)γµu3.

Koska q1 = p1 − p3 = p4 − p2, q2 = p1 − p4 = p3 − p2 ja

M1µνMµν∗
1 = TR(tatbtbta)

64
g4
s

(q2
1 −m2

Q)2
1
4
∑
s3,s4

u3γµ(/q1 −mQ)γνv4

v4γ
ν(/q1 −mQ)γµu3,

niin amplitudiM2µνMµν∗
2 saadaan amplitudistaM1µνMµν∗

1 vaihtamalla neliliike-
määrät p1 ja p2 keskenään (q1

p1↔p2−−−−→ −q2). Tämä vaihdos vaikuttaa Mandelstamin
muuttujiin seuraavasti:

ŝ ≡ (p1 + p2)2 p1↔p2−−−−→ (p2 + p1)2 ≡ ŝ
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t̂ ≡ (p1 − p3)2 p1↔p2−−−−→ (p2 − p3)2 ≡ û

û ≡ (p1 − p4)2 p1↔p2−−−−→ (p2 − p4)2 ≡ t̂.

Täten siis

M2µνMµν∗
2 = g4

s

6(m2
Q − û)2 (t̂û+m2

Qŝ− 2m2
Qû− 3m4

Q).

Kolmas termi (s-kanava):

M3µνMµν∗
3 = 1

64
1
4
∑
a,b

∑
s3,s4

M3µνMµν∗
3

= 1
64

1
4
∑
a,b

∑
s3,s4

(ig
2
s

q2
3

(tc)jkfabcu3γ
ϕv4Kµνϕ)(ig

2
s

q2
3

(td)jkfabdu3γ
κv4K

µν
κ)∗

=
(∑
a,b

(tc)jk(td)kjfabcfabd
64

) g4
s

2q4
3
(1
2
∑
s3,s4

u3γ
ϕv4v4γ

κu3)KµνϕK
µν
κ

= C33
g4
s

2q4
3
LϕκQ KµνϕK

µν
κ,

missä väritekijä on

C33 ≡
TR(tctd)fabcfabd

64 .

LϕκQ on luvussa 3.1 laskettu lopputilan kvarkkitensori

LϕκQ ≡
1
2
∑
s3,s4

u3γ
ϕv4v4γ

κu3 = 2(pϕ3 pκ4 + pκ3p
ϕ
4 −

ŝ

2g
ϕκ).

Väritekijä:

C33 ≡
1
64TR(tctd)fabcfabd = 1

64TR(tctd) · 3δcd

= 3
64TR(tctc) = 3

64T (F )δcc = 3
64 ·

1
2 · 8 = 3

16 ,
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missä käytettiin relaatiota facdf bcd = Nδab (yhtälö (49)).

K-tensorisumma:

KµνϕK
µν
κ =

[
gµν(p1 − p2)ϕ + gνϕ(p1 + 2p2)µ + gϕµ(−2p1 − p2)ν

]
[
gµν(p1 − p2)κ + gνκ(p1 + 2p2)µ + g µ

κ (−2p1 − p2)ν
]

= gµνg
µν(p1 − p2)ϕ(p1 − p2)κ + gµνg

ν
κ(p1 − p2)ϕ(p1 + 2p2)µ

+ gµνg
µ
κ (p1 − p2)ϕ(−2p1 − p2)ν + gνϕg

µν(p1 + 2p2)µ(p1 − p2)κ
+ gνϕg

ν
κ(p1 + 2p2)µ(p1 + 2p2)µ + gνϕg

µ
κ (p1 + 2p2)µ(−2p1 − p2)ν

+ gϕµg
µν(−2p1 − p2)ν(p1 − p2)κ + gϕµg

ν
κ(−2p1 − p2)ν(p1 + 2p2)µ

+ gϕµg
µ
κ (−2p1 − p2)ν(−2p1 − p2)ν

= 4(p1 − p2)ϕ(p1 − p2)κ + (p1 − p2)ϕ(p1 + 2p2)κ
+ (p1 − p2)ϕ(−2p1 − p2)κ + (p1 + 2p2)ϕ(p1 − p2)κ
+ gϕκ(p1 + 2p2)2 + (p1 + 2p2)κ(−2p1 − p2)ϕ
+ (−2p1 − p2)ϕ(p1 − p2)κ + (−2p1 − p2)κ(p1 + 2p2)ϕ
+ gκϕ(−2p1 − p2)2

= 4p1ϕp1κ − 4p1ϕp2κ − 4p2ϕp1κ + 4p2ϕp2κ + p1ϕp1κ + 2p1ϕp2κ − p2ϕp1κ

− 2p2ϕp2κ − 2p1ϕp1κ − p1ϕp2κ + 2p2ϕp1κ + p2ϕp2κ + p1ϕp1κ − p1ϕp2κ

+ 2p2ϕp1κ − 2p2ϕp2κ + gϕκ(p2
1 + 2p1 · p2 + 2p1 · p2 + 4p2

2)

− 2p1ϕp1κ − p2ϕp1κ − 4p1ϕp2κ − 2p2ϕp2κ − 2p1ϕp1κ + 2p1ϕp2κ − p2ϕp1κ

+ p2ϕp2κ − 2p1ϕp1κ − 4p2ϕp1κ − p1ϕp2κ − 2p2ϕp2κ

+ gϕκ(4p2
1 + 2p1 · p2 + 2p2 · p1 + p2

2)

= −2p1ϕp1κ − 7p1ϕp2κ − 7p2ϕp1κ − 2p2ϕp2κ + 4gϕκ · 2(p1 · p2)

= −2p1ϕp1κ − 7p1ϕp2κ − 7p2ϕp1κ − 2p2ϕp2κ + 4gϕκŝ,

missä hyödynnettiin tietoa p2
1 = p2

2 = m2
g = 0 (yhtälö (15)).

Lopullinen tensorisumma:

LϕκQ KµνϕK
µν
κ = 2(pϕ3 pκ4 + pκ3p

ϕ
4 −

ŝ

2g
ϕκ)(−2p1ϕp1κ − 7p1ϕp2κ − 7p2ϕp1κ − 2p2ϕp2κ + 4gϕκŝ)
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= 2
{
− 2(p1 · p3)(p1 · p4)− 7(p1 · p3)(p2 · p4)− 7(p1 · p4)(p2 · p3)− 2(p2 · p3)(p2 · p4)

+ 4(p3 · p4)ŝ− 2(p1 · p3)(p1 · p4)− 7(p1 · p4)(p2 · p3)− 7(p1 · p3)(p2 · p4)

− 2(p2 · p3)(p2 · p4) + 4(p3 · p4)ŝ− ŝ

2
[
− 2p2

1 − 7(p1 · p2)− 7(p1 · p2)− 2p2
2 + 16ŝ

]}
= 2

{
− 4(p1 · p3)(p1 · p4)− 4(p2 · p3)(p2 · p4)− 14(p1 · p3)(p2 · p4)

− 14(p1 · p4)(p2 · p3) + 8(p3 · p4)ŝ+ 7(p1 · p2)ŝ− 8ŝ2
}

= 2
{
− 4(p1 · p3)(p1 · p4)− 4(p1 · p4)(p1 · p3)− 14(p1 · p3)(p1 · p3)

− 14(p1 · p4)(p1 · p4) + 8(p3 · p4)ŝ+ 7(p1 · p2)ŝ− 8ŝ2
}

= 2
{
− 8(p1 · p3)(p1 · p4)− 14

[
(p1 · p3)2 + (p1 · p4)2

]
+ 8(p3 · p4)ŝ+ 7(p1 · p2)ŝ− 8ŝ2

}

= 2
{
− 8(

m2
Q − t̂
2 )(

m2
Q − û
2 )− 14

[
(
m2
Q − t̂
2 )2 + (

m2
Q − û
2 )2

]
+ 8( ŝ2 −m

2
Q)ŝ+ 7 ŝ2 ŝ− 8ŝ2

}

= 2
{
− 8

m4
Q −m2

Qt̂−m2
Qû+ t̂û

4 − 14
[m4

Q − 2m2
Qt̂+ t̂2

4 +
m4
Q − 2m2

Qû+ û2

4
]

+ 4ŝ2 − 8m2
Qŝ+ 7

2 ŝ
2 − 8ŝ2

}
= 2

{
− 2m4

Q + 2m2
Qt̂+ 2m2

Qû− 2t̂û− 7
2
[
2m4

Q − 2m2
Qt̂− 2m2

Qû+ t̂2 + û2
]
− 1

2 ŝ
2 − 8m2

Qŝ
}

= 2
{
− 1

2 ŝ
2 − 7

2 t̂
2 − 7

2 û
2 − 2t̂û− 8m2

Qŝ+ 9m2
Qt̂+ 9m2

Qû− 9m4
Q

}
= −ŝ2 − 5t̂2 − 5û2 − 2(t̂+ û)2 − 16m2

Qŝ+ 18m2
Q(t̂+ û)− 18m4

Q

= −ŝ2 − 5t̂2 − 5û2 − 2(2m2
Q − ŝ)2 − 16m2

Qŝ+ 18m2
Q(2m2

Q − ŝ)− 18m4
Q

= −ŝ2 − 5t̂2 − 5û2 − 8m4
Q + 8m2

Qŝ− 2ŝ2 − 16m2
Qŝ+ 36m4

Q − 18m2
Qŝ− 18m4

Q

= −3ŝ2 − 5t̂2 − 5û2 − 26m2
Qŝ+ 10m4

Q.

Siispä

M3µνMµν∗
3 = C33

g4
s

2q4
3
LϕκQ KµνϕK

µν
κ

= 3
16 ·

g4
s

2ŝ2 (−3ŝ2 − 5t̂2 − 5û2 − 26m2
Qŝ+ 10m4

Q)

= 3g4
s

32ŝ2 (−3ŝ2 − 5t̂2 − 5û2 − 26m2
Qŝ+ 10m4

Q).
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Neljäs termi (tu-interferenssi):

M1µνMµν∗
2 = 1

64
1
4
∑
a,b

∑
s3,s4

M1µνMµν∗
2

= 1
64

1
4
∑
a,b

∑
s3,s4

[ g2
s

q2
1 −m2

Q

(tatb)jku3γµ(mQ − /q1)γνv4
]

[ g2
s

q2
2 −m2

Q

(tbta)jku3γ
ν(/q2 +mQ)γµv4

]∗
=
(∑
a,b

(tatb)jk(tatb)kj
64

) g4
s

(q2
1 −m2

Q)(q2
2 −m2

Q)
1
4
∑
s3,s4

u3γµ(mQ − /q1)γνv4v4γ
µ(/q2 +mQ)γνu3

= C12
g4
s

(q2
1 −m2

Q)(q2
2 −m2

Q)S12,

missä on määritelty

C12 ≡
TR(tatbtatb)

64
S12 ≡

1
4
∑
s3,s4

u3γµ(mQ − /q1)γνv4v4γ
µ(/q2 +mQ)γνu3.

Koska (tatbta)ij = −T (F )
3 (tb)ij (yhtälö (49)), niin

C12 ≡
1
64TR(tatbtatb) = 1

64(ta)ij(tbtatb)ji = 1
64(ta)ij(−

T (F )
3 (ta)ji)

= 1
64(−

1
2
3 )TR(tata) = − 1

384T (F )δaa = − 1
384 ·

1
2 · 8 = − 1

96 .

Jälkimmäinen summa on

S12 ≡
1
4
∑
s3,s4

u3γµ(mQ − /q1)γνv4v4γ
µ(/q2 +mQ)γνu3

= 1
4
[∑
s3

(u3)h(u3)a
]
(γµ)ab(mQ − /q1)bc(γν)cd

[∑
s4

(v4)d(v4)e
]
(γµ)ef

(/q2 +mQ)fg(γν)gh
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= 1
4(/p3 +mQ)ha(γµ)ab(mQ − /q1)bc(γν)cd(/p4 −mQ)de(γµ)ef (/q2 +mQ)fg(γν)gh

= 1
4TR

[
(/p3 +mQ)γµ(mQ − /q1)γν(/p4 −mQ)γµ(/q2 +mQ)γν

]
= 1

4
[
mQTR(/p3γµγν/p4γ

µ
/q2γ

ν) +m2
QTR(/p3γµγν/p4γ

µγν)

−m2
QTR(/p3γµγνγ

µ
/q2γ

ν)−m3
QTR(/p3γµγνγ

µγν)

− TR(/p3γµ/q1γν/p4γ
µ
/q2γ

ν)−mQTR(/p3γµ/q1γν/p4γ
µγν)

+mQTR(/p3γµ/q1γνγ
µ
/q2γ

ν) +m2
QTR(/p3γµ/q1γνγ

µγν)

+m2
QTR(γµγν/p4γ

µ
/q2γ

ν) +m3
QTR(γµγν/p4γ

µγν)

−m3
QTR(γµγνγµ/q2γ

ν)−m4
QTR(γµγνγµγν)

−mQTR(γµ/q1γν/p4γ
µ
/q2γ

ν)−m2
QTR(γµ/q1γν/p4γ

µγν)

+m2
QTR(γµ/q1γνγ

µ
/q2γ

ν) +m3
QTR(γµ/q1γνγ

µγν)
]

= 1
4
[
m2
QTR(/p3γµγν/p4γ

µγν)−m2
QTR(/p3γµγνγ

µ
/q2γ

ν)

− TR(/p3γµ/q1γν/p4γ
µ
/q2γ

ν) +m2
QTR(/p3γµ/q1γνγ

µγν)

+m2
QTR(γµγν/p4γ

µ
/q2γ

ν)−m4
QTR(γµγνγµγν)

−m2
QTR(γµ/q1γν/p4γ

µγν) +m2
QTR(γµ/q1γνγ

µ
/q2γ

ν)
]
.

Käyttämällä γ-matriisien ominaisuuksia γµγµ = 4, γµγνγµ = −2γν , γµ/aγµ = −2/a,
γµγνγϕγµ = 4gνϕ, γµ/a/bγµ = 4a · b ,γµγνγϕγκγµ = −2γκγϕγν ja γµ/a/b/cγµ = −2/c/b/a
(yhtälöt (37)) saadaan

S12 = 1
4

{
m2
QTR(/p3(4p4ν)γν)−m2

QTR(/p3(−2γν)/q2γ
ν)

− TR(/p3(−2/p4γν/q1)/q2γ
ν) +m2

QTR(/p3(4q1ν)γν)

+m2
QTR((4p4ν)/q2γ

ν)−m4
QTR((−2γν)γν)

−m2
QTR((−2/p4γν/q1)γν) +m2

QTR((4q1ν)/q2γ
ν)
}

= 1
4

{
2TR(/p3/p4γν/q1/q2γ

ν) +m2
Q

[
4TR(/p3/p4) + 2TR(/p3γν/q2γ

ν) + 4TR(/p3/q1)

+ 4TR(/q2/p4) + 2TR(/p4γν/q1γ
ν) + 4TR(/q2/q1)

]
+ 2m4

QTR(γνγν)
}
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= 1
4

{
8(q1 · q2)TR(/p3/p4) +m2

Q

[
4TR(/p3/p4)− 4TR(/p3/q2) + 4TR(/p3/q1)

+ 4TR(/q2/p4)− 4TR(/p4/q1) + 4TR(/q2/q1)
]

+ 2m4
QTR(4I4)

}
= 2(q1 · q2)TR(/p3/p4) +m2

Q

[
TR(/p3/p4)− TR(/p3/q2) + TR(/p3/q1)

+ TR(/q2/p4)− TR(/p4/q1) + TR(/q2/q1)
]

+ 8m4
Q

= 2(q1 · q2) · 4(p3 · p4) +m2
Q

[
4p3 · p4 − 4p3 · q2

+ 4p3 · q1 + 4q2 · p4 − 4p4 · q1 + 4q2 · q1
]

+ 8m4
Q

= 8((p1 − p3) · (p1 − p4))(p3 · p4) + 4m2
Q

[
p3 · p4 − p3 · (p1 − p4)

+ p3 · (p1 − p3) + (p1 − p4) · p4 − p4 · (p1 − p3) + (p1 − p4) · (p1 − p3)
]

+ 8m4
Q

= 8(p2
1 − p1 · p4 − p1 · p3 + p3 · p4)(p3 · p4) + 4m2

Q

[
p3 · p4 − p1 · p3 + p3 · p4 + p1 · p3

− p2
3 + p1 · p4 − p2

4 − p1 · p4 + p3 · p4 + p2
1 − p1 · p3 − p1 · p4 + p3 · p4

]
+ 8m4

Q

= 8(−p2 · p3 − p1 · p3 + p4 · p3)(p3 · p4)

+ 4m2
Q

[
− p1 · p3 − p1 · p4 + 4p3 · p4 − p2

3 − p2
4

]
+ 8m4

Q.

Neliliikemäärän säilymisen (p1 + p2 = p3 + p4) nojalla

S12 = −8p2
3(p3 · p4) + 4m2

Q

[
− p1 · (p1 + p2) + 4p3 · p4 − p2

3 − p2
4

]
+ 8m4

Q

= −8m2
Q( ŝ2 −m

2
Q) + 4m2

Q

[
− ŝ

2 + 4( ŝ2 −m
2
Q)−m2

Q −m2
Q

]
+ 8m4

Q

= −4m2
Qŝ+ 8m4

Q + 6m2
Qŝ− 24m2

Q + 8m4
Q

= 2m2
Qŝ− 8m4

Q.

Täten

M1µνMµν∗
2 = C12

g4
s

(q2
1 −m2

Q)(q2
2 −m2

Q)S12

= − 1
96 ·

g4
s

(t̂−m2
Q)(û−m2

Q)
(2m2

Qŝ− 8m4
Q)

= g4
s

48(m2
Q − t̂)(m2

Q − û)
(−m2

Qŝ+ 4m4
Q).
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Viides termi (su-interferenssi):

M2µνMµν∗
3

= 1
64

1
4
∑
a,b

∑
s3,s4

M2µνMµν∗
3

= 1
64

1
4
∑
a,b

∑
s3,s4

[ g2
s

q2
2 −m2

Q

(tbta)jku3γν(/q2 +mQ)γµv4
][ig2

s

q2
3

(tc)jkfabcu3γ
ϕv4K

µν
ϕ

]∗
=
(∑
a,b

(tbta)jk(tc)kjfabc
64

) −ig4
s

q2
3(q2

2 −m2
Q)(1

4
∑
s3,s4

u3γν(/q2 +mQ)γµv4v4γ
ϕu3)Kµν

ϕ

= C23
−ig4

s

q2
3(q2

2 −m2
Q)T

ϕ
µν K

µν
ϕ,

kun määritellään

C23 ≡
TR(tbtatc)fabc

64
T ϕ
µν ≡

1
4
∑
s3,s4

u3γν(/q2 +mQ)γµv4v4γ
ϕu3.

Relaatiot facddbcd = 0 ja TR(tatbtc) = 1
2T (F )(dabc + ifabc) (yhtälöt (49)) tarvitaan

väritekijän laskemiseksi:

C23 ≡
1
64TR(tbtatc)fabc = 1

64 ·
1
2T (F )(dbac + if bac)fabc

= 1
64 ·

1
2 ·

1
2(dabcfabc − ifabcfabc) = 1

256(0− i · 3δaa)

= 1
256 · (−3i) · 8 = −3i

32 .

T-tensorille pätee

T ϕ
µν ≡

1
4
∑
s3,s4

u3γν(/q2 +mQ)γµv4v4γ
ϕu3

= 1
4
[∑
s3

(u3)f (u3)a
]
(γν)ab(/q2 +mQ)bc(γµ)cd

[∑
s4

(v4)d(v4)e
]
(γϕ)ef

= 1
4(/p3 +mQ)fa(γν)ab(/q2 +mQ)bc(γµ)cd(/p4 −mQ)de(γϕ)ef
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= 1
4TR

[
(/p3 +mQ)γν(/q2 +mQ)γµ(/p4 −mQ)γϕ

]
= 1

4
[
TR(/p3γν/q2γµ/p4γ

ϕ)−mQTR(/p3γν/q2γµγ
ϕ) +mQTR(/p3γνγµ/p4γ

ϕ)

−m2
QTR(/p3γνγµγ

ϕ) +mQTR(γν/q2γµ/p4γ
ϕ)−m2

QTR(γν/q2γµγ
ϕ)

+m2
QTR(γνγµ/p4γ

ϕ)−m3
QTR(γνγµγϕ)

]
= 1

4
[
TR(/p3γν/q2γµ/p4γ

ϕ)−m2
QTR(/p3γνγµγ

ϕ)

−m2
QTR(γν/q2γµγ

ϕ) +m2
QTR(γνγµ/p4γ

ϕ)
]

= 1
4TR(/p3γν/q2γµ/p4γ

ϕ +
m2
Q

4
[
TR(γνγµ/p4γ

ϕ)

− TR(/p3γνγµγ
ϕ)− TR(γν/q2γµγ

ϕ)
]

= V ϕ
µν +m2

QW
ϕ

µν ,

missä

V ϕ
µν ≡

1
4TR(/p3γν/q2γµ/p4γ

ϕ)

W ϕ
µν ≡

1
4
[
TR(γνγµ/p4γ

ϕ)− TR(/p3γνγµγ
ϕ)− TR(γν/q2γµγ

ϕ)
]
.

Näistä tensoreista jälkimmäinen yksinkertaistuu seuraavasti:

W ϕ
µν ≡

1
4
[
TR(γνγµ/p4γ

ϕ)− TR(/p3γνγµγ
ϕ)− TR(γν/q2γµγ

ϕ)
]

= 1
4
[
pα4TR(γνγµγαγϕ)− pβ3TR(γβγνγµγϕ)− qη2TR(γνγηγµγϕ)

]
= 1

4
[
pα4 · 4(gνµg ϕ

α − gναg ϕ
µ + g ϕ

ν gµα)− pβ3 · 4(gβνg ϕ
µ − gβµg ϕ

ν + g ϕ
β gνµ)

− (pη1 − pη4) · 4(gνηg ϕ
µ − gνµg ϕ

η + g ϕ
ν gηµ)

]
= gνµp

ϕ
4 − g ϕ

µ p4ν + g ϕ
ν p4µ − g ϕ

µ p3ν + g ϕ
ν p3µ − gνµpϕ3

− g ϕ
µ p1ν + gνµp

ϕ
1 − g ϕ

ν p1µ + g ϕ
µ p4ν − gνµpϕ4 + g ϕ

ν p4µ

= 2g ϕ
ν p4µ − g ϕ

µ p3ν + g ϕ
ν p3µ − gνµpϕ3 − g ϕ

µ p1ν + gνµp
ϕ
1 − g ϕ

ν p1µ.
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VK-tensorisummalle pätee

V ϕ
µν Kµν

ϕ = 1
4TR(/p3γν/q2γµ/p4γ

ϕ)
[
gµν(p1 − p2)ϕ + gνϕ(p1 + 2p2)µ + g µ

ϕ (−2p1 − p2)ν
]

= 1
4
[
TR(/p3γ

µ
/q2γµ/p4(/p1 − /p2)) + TR(/p3γϕ/q2(/p1 + 2/p2)/p4γ

ϕ)

+ TR(/p3(−2/p1 − /p2)/q2γµ/p4γ
µ)
]

= 1
4
[
TR(/p3(−2/q2)/p4(/p1 − /p2)) + TR(/p3(−2/p4(/p1 + 2/p2)/q2))

+ TR(/p3(−2/p1 − /p2)/q2(−2/p4))
]

= −1
2
[
TR(/p3/q2/p4(/p1 − /p2)) + TR(/p3/p4(/p1 + 2/p2)/q2)

+ TR(/p3(−2/p1 − /p2)/q2/p4)
]

= −1
2
[
TR(/p3(/p1 − /p4)/p4(2/p1 − /p3 − /p4))

+ TR(/p3/p4(−/p1 + 2/p3 + 2/p4)(/p1 − /p4))

+ TR(/p3(−/p1 − /p3 − /p4)(/p1 − /p4)/p4)
]

= −1
2
[
2TR(/p3/p1/p4/p1)− TR(/p3/p1/p4/p3)− TR(/p3/p1/p4/p4)

− 2TR(/p3/p4/p4/p1) + TR(/p3/p4/p4/p3) + TR(/p3/p4/p4/p4)

− TR(/p3/p4/p1/p1) + TR(/p3/p4/p1/p4) + 2TR(/p3/p4/p3/p1)

− 2TR(/p3/p4/p3/p4) + 2TR(/p3/p4/p4/p1)− 2TR(/p3/p4/p4/p4)

− TR(/p3/p1/p1/p4) + TR(/p3/p1/p4/p4)− TR(/p3/p3/p1/p4)

+ TR(/p3/p3/p4/p4)− TR(/p3/p4/p1/p4) + TR(/p3/p4/p4/p4)
]

= −1
2
[
2TR(/p3/p1/p4/p1)− TR(/p2

3/p1/p4)− TR(/p3/p1/p
2
4)

− 2TR(/p3/p
2
4/p1) + TR(/p2

3/p
2
4) + TR(/p3/p4/p

2
4)

− TR(/p3/p4/p
2
1) + TR(/p3/p4/p1/p4) + 2TR(/p3/p4/p3/p1)

− 2TR(/p3/p4/p3/p4) + 2TR(/p3/p
2
4/p1)− 2TR(/p3/p4/p

2
4)

− TR(/p3/p
2
1/p4) + TR(/p3/p1/p

2
4)− TR(/p2

3/p1/p4)

+ TR(/p2
3/p

2
4)− TR(/p3/p4/p1/p4) + TR(/p3/p4/p

2
4)
]
.

Koska /p2 = p2 ja vapaille hiukkasille p2 = m2 (yhtälöt (38) ja (15)), niin
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V ϕ
µν Kµν

ϕ = −1
2
[
2TR(/p3/p1/p4/p1)−m2

QTR(/p1/p4)−m2
QTR(/p3/p1)

− 2m2
QTR(/p3/p1) +m4

QTR(I4) +m2
QTR(/p3/p4) + 2TR(/p3/p4/p3/p1)

− 2TR(/p3/p4/p3/p4) + 2m2
QTR(/p3/p1)− 2m2

QTR(/p3/p4)

+m2
QTR(/p3/p1)−m2

QTR(/p1/p4) +m4
QTR(I4) +m2

QTR(/p3/p4)
]

= −1
2
[
2TR(/p3/p1/p4/p1) + 2TR(/p3/p4/p3/p1)− 2TR(/p3/p4/p3/p4)

− 2m2
QTR(/p1/p4) + 2m4

QTR(I4)
]

= −TR(/p3/p1/p4/p1)− TR(/p3/p4/p3/p1) + TR(/p3/p4/p3/p4)

+m2
QTR(/p1/p4)−m4

QTR(I4)

= −4
[
(p3 · p1)(p4 · p1)− (p3 · p4)p2

1 + (p3 · p1)(p1 · p4)
]

− 4
[
(p3 · p4)(p3 · p1)− p2

3(p4 · p1) + (p3 · p1)(p4 · p3)
]

+ 4
[
(p3 · p4)(p3 · p4)− p2

3p
2
4 + (p3 · p4)(p4 · p3)

]
+ 4m2

Q(p1 · p4)− 4m4
Q

= 4
[
− (p1 · p3)(p1 · p4)− (p1 · p3)(p1 · p4)− (p1 · p3)(p3 · p4) +m2

Q(p1 · p4)

− (p1 · p3)(p3 · p4) + (p3 · p4)2 −m4
Q + (p3 · p4)2 +m2

Q(p1 · p4)−m4
Q

]
= 8

[
− (p1 · p3)(p1 · p4)− (p1 · p3)(p3 · p4) + (p3 · p4)2 +m2

Q(p1 · p4)−m4
Q

]
= 8

[
−
m2
Q − t̂
2 ·

m2
Q − û
2 −

m2
Q − t̂
2 ( ŝ2 −m

2
Q)

+ ( ŝ2 −m
2
Q)2 +m2

Q

m2
Q − û
2 −m4

Q

]
= 8

[
−
m4
Q

4 +
m2
Qt̂

4 +
m2
Qû

4 − t̂û

4 −
m2
Qŝ

4 +
m4
Q

2 + ŝt̂

4 −
m2
Qt̂

2

+ ŝ2

4 −m
2
Qŝ+m4

Q +
m4
Q

2 −
m2
Qû

2 −m4
Q

]
= 8( ŝ

2

4 + ŝt̂

4 −
t̂û

4 −
5m2

Qŝ

4 −
m2
Qt̂

4 −
m2
Qû

4 +
3m4

Q

4 )

= 2(ŝ2 + ŝt̂− t̂û− 5m2
Qŝ−m2

Q(t̂+ û) + 3m4
Q)

= 2(ŝ2 + ŝt̂− t̂û− 5m2
Qŝ−m2

Q(2m2
Q − ŝ) + 3m4

Q)

= 2(ŝ2 + ŝt̂− t̂û− 4m2
Qŝ+m4

Q).

WK-tensorisumma on
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W ϕ
µν K

µν
ϕ =

[
2g ϕ

ν p4µ − g ϕ
µ p3ν + g ϕ

ν p3µ − gνµpϕ3 − g ϕ
µ p1ν + gνµp

ϕ
1 − g ϕ

ν p1µ
]

[
gµν(p1 − p2)ϕ + gνϕ(p1 + 2p2)µ + g µ

ϕ (−2p1 − p2)ν
]

=
[
2g ϕ

ν p4µ − g ϕ
µ p3ν + g ϕ

ν p3µ − gνµpϕ3 − g ϕ
µ p1ν + gνµp

ϕ
1 − g ϕ

ν p1µ
]

[
gµν(2p1 − p3 − p4)ϕ + gνϕ(−p1 + 2p3 + 2p4)µ + g µ

ϕ (−p1 − p3 − p4)ν
]

= 2g ϕ
ν p4µg

µν(2p1 − p3 − p4)ϕ + 2g ϕ
ν p4µg

ν
ϕ(−p1 + 2p3 + 2p4)µ

+ 2g ϕ
ν p4µg

µ
ϕ (−p1 − p3 − p4)ν − g ϕ

µ p3νg
µν(2p1 − p3 − p4)ϕ

− g ϕ
µ p3νg

ν
ϕ(−p1 + 2p3 + 2p4)µ − g ϕ

µ p3νg
µ
ϕ (−p1 − p3 − p4)ν

+ g ϕ
ν p3µg

µν(2p1 − p3 − p4)ϕ + g ϕ
ν p3µg

ν
ϕ(−p1 + 2p3 + 2p4)µ

+ g ϕ
ν p3µg

µ
ϕ (−p1 − p3 − p4)ν − gνµpϕ3 gµν(2p1 − p3 − p4)ϕ

− gνµpϕ3 gνϕ(−p1 + 2p3 + 2p4)µ − gνµpϕ3 g µ
ϕ (−p1 − p3 − p4)ν

− g ϕ
µ p1νg

µν(2p1 − p3 − p4)ϕ − g ϕ
µ p1νg

ν
ϕ(−p1 + 2p3 + 2p4)µ

− g ϕ
µ p1νg

µ
ϕ (−p1 − p3 − p4)ν + gνµp

ϕ
1 g

µν(2p1 − p3 − p4)ϕ
+ gνµp

ϕ
1 g

ν
ϕ(−p1 + 2p3 + 2p4)µ + gνµp

ϕ
1 g

µ
ϕ (−p1 − p3 − p4)ν

− g ϕ
ν p1µg

µν(2p1 − p3 − p4)ϕ − g ϕ
ν p1µg

ν
ϕ(−p1 + 2p3 + 2p4)µ

− g ϕ
ν p1µg

µ
ϕ (−p1 − p3 − p4)ν

= 4p1 · p4 − 2p3 · p4 − 2p2
4 − 8p1 · p4 + 16p3 · p4 + 16p2

4

− 2p1 · p4 − 2p3 · p4 − 2p2
4 − 2p1 · p3 + p2

3 + p3 · p4

+ p1 · p3 − 2p2
3 − 2p3 · p4 + 4p1 · p3 + 4p2

3 + 4p3 · p4

+ 2p1 · p3 − p2
3 − p3 · p4 − 4p1 · p3 + 8p3

3 + 8p3 · p4

− p1 · p3 − p2
3 − p3 · p4 − 8p1 · p3 + 4p2

3 + 4p3 · p4

+ p1 · p3 − 2p3
3 − 2p3 · p4 + p1 · p3 + p2

3 + p3 · p4

− 2p2
1 + p1 · p3 + p1 · p4 + p2

1 − 2p1 · p3 − 2p1 · p4

+ 4p2
1 + 4p1 · p3 + 4p1 · p4 + 8p2

1 − 4p1 · p3 − 4p1 · p4

− p2
1 + 2p1 · p3 + 2p1 · p4 − p2

1 − p1 · p3 − p1 · p4

− 2p2
1 + p1 · p3 + p1 · p4 + 4p2

1 − 8p1 · p3 − 8p1 · p4

+ p2
1 + p1 · p3 + p1 · p4

= −12p1 · p3 − 12p1 · p4 + 24p3 · p4 + 24m2
Q

= −12p1 · (p1 + p2) + 24p3 · p4 + 24m2
Q

= −12 · ŝ2 + 24( ŝ2 −m
2
Q) + 24m2

Q

= 6ŝ.
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Siispä

M2µνMµν∗
3 = C23

−ig4
s

q2
3(q2

2 −m2
Q)T

ϕ
µν K

µν
ϕ

= C23
−ig4

s

q2
3(q2

2 −m2
Q)(V ϕ

µν Kµν
ϕ +m2

QW
ϕ

µν K
µν
ϕ)

= −3i
32 ·

−ig4
s

ŝ(û−m2
Q)(2(ŝ2 + ŝt̂− t̂û− 4m2

Qŝ+m4
Q) +m2

Q · 6ŝ)

= − 3g4
s

32ŝ(û−m2
Q) · 2(ŝ2 + ŝt̂− t̂û−m2

Qŝ+m4
Q)

= 3g4
s

16ŝ(m2
Q − û)(ŝ2 + ŝt̂− t̂û−m2

Qŝ+m4
Q).

Kuudes termi (st-interferenssi):

M1µνMµν∗
3

≡ 1
64

1
4
∑
a,b

∑
s3,s4

M1µνMµν∗
3

= 1
64

1
4
∑
a,b

∑
s3,s4

[ g2
s

q2
1 −m2

Q

(tatb)jku3γµ(mQ − /q1)γνv4
][ig2

s

q2
3

(tc)jkfabcu3γ
ϕv4K

µν
ϕ

]∗
=
(∑
a,b

(tatb)jk(tc)kjfabc
64

) −ig4
s

q2
3(q2

1 −m2
Q)(1

4
∑
s3,s4

u3γµ(mQ − /q1)γνv4v4γ
ϕu3)Kµν

ϕ

=
(
−
∑
a,b

TR(tatbtc)f bac
64

) −ig4
s

q2
3(q2

1 −m2
Q)(1

4
∑
s3,s4

u3γµ(mQ − /q1)γνv4v4γ
ϕu3)

[
gµν(p1 − p2)ϕ + gνϕ(p1 + 2p2)µ + g µ

ϕ (−2p1 − p2)ν
]

=
(∑
a,b

TR(tbtatc)fabc
64

) −ig4
s

q2
3(q2

1 −m2
Q)(1

4
∑
s3,s4

u3γµ(mQ − /q1)γνv4v4γ
ϕu3)

[
gµν(−p1 + p2)ϕ + gνϕ(−p1 − 2p2)µ + g µ

ϕ (2p1 + p2)ν
]

= C23
−ig4

s

q2
3(q2

1 −m2
Q)(1

4
∑
s3,s4

u3γν(−/q1 +mQ)γµv4v4γ
ϕu3)

[
gνµ(p2 − p1)ϕ + g ν

ϕ (p2 + 2p1)µ + gµϕ(−2p2 − p1)ν
]
.

Viidennen termin lauseke oli
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M2µνMµν∗
3 = C23

−ig4
s

q2
3(q2

2 −m2
Q)T

ϕ
µν K

µν
ϕ

= C23
−ig4

s

q2
3(q2

2 −m2
Q)(1

4
∑
s3,s4

u3γν(/q2 +mQ)γµv4v4γ
ϕu3)

[
gµν(p1 − p2)ϕ + gνϕ(p1 + 2p2)µ + g µ

ϕ (−2p1 − p2)ν
]
.

Täten M1µνMµν∗
3 saadaan amplitudista M2µνMµν∗

3 , kun neliliikemäärät p1 ja p2

vaihdetaan keskenään (q1 = p1 − p3 = p4 − p2 ja q2 = p1 − p4 = p3 − p2). Vaihdos
muokkaa Mandelstamin muuttujia seuraavasti:

ŝ ≡ (p1 + p2)2 p1↔p2−−−−→ (p2 + p1)2 ≡ ŝ

t̂ ≡ (p1 − p3)2 p1↔p2−−−−→ (p2 − p3)2 ≡ û

û ≡ (p1 − p4)2 p1↔p2−−−−→ (p2 − p4)2 ≡ t̂.

Siten

M1µνMµν∗
3 = 3g4

s

16ŝ(m2
Q − t̂)

(ŝ2 + ŝû− t̂û−m2
Qŝ+m4

Q).

Ensimmäinen aaveamplitudi:

|MG1|2 ≡
1
64

1
4
∑
a,b

∑
s3,s4

MG1M∗
G1

= 1
64

1
4
∑
a,b

∑
s3,s4

(−ig
2
s

q2
4

(tc)jkfabcu3/p2v4)(−ig
2
s

q2
4

(td)jkfabdu3/p2v4)∗

=
(∑
a,b

(tc)jk(td)kjfabcfabd
64

)g4
s

q4
4

(1
4
∑
s3,s4

u3/p2v4v4/p2u3)

= CG1
g4
s

q4
4
SG1,

missä
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CG1 ≡
TR(tctd)fabcfabd

64 = C33 = 3
16

SG1 ≡
1
4
∑
s3,s4

u3/p2v4v4/p2u3.

Jälkimmäiselle summalle pätee

SG1 ≡
1
4
∑
s3,s4

u3/p2v4v4/p2u3

= 1
2p2µp2ν(

1
2
∑
s3,s4

u3γ
µv4v4γ

νu3)

= 1
2p2µp2νL

µν
Q

= 1
2p2µp2ν(2(pµ3pν4 + pν3p

µ
4 −

ŝ

2g
µν))

= (p2 · p3)(p2 · p4) + (p2 · p3)(p2 · p4)− ŝ

2p
2
2

= 2(p2 · p3)(p2 · p4)

= 2
m2
Q − û
2 ·

m2
Q − t̂
2

= 1
2(t̂û−m2

Q(t̂+ û) +m4
Q)

= 1
2(t̂û−m2

Q(2m2
Q − ŝ) +m4

Q)

= 1
2(t̂û+m2

Qŝ−m4
Q).

Täten

|MG1|2 = CG1
g4
s

q4
4
SG1

= 3
16 ·

g4
s

ŝ2 ·
1
2(t̂û+m2

Qŝ−m4
Q)

= 3g4
s

32ŝ2 (t̂û+m2
Qŝ−m4

Q).
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Toinen aaveamplitudi:

|MG2|2 ≡
1
64

1
4
∑
a,b

∑
s3,s4

MG2M∗
G2

= 1
64

1
4
∑
a,b

∑
s3,s4

(ig
2
s

q2
5

(tc)jkfabcu3/p1v4)(ig
2
s

q2
5

(td)jkfabdu3/p1v4)∗

=
(∑
a,b

(tc)jk(td)kjfabcfabd
64

)g4
s

q4
5

(1
4
∑
s3,s4

u3/p1v4v4/p1u3)

= CG2
g4
s

q4
5
SG2,

missä

CG2 ≡
TR(tctd)fabcfabd

64 = CG1 = 3
16

SG2 ≡
1
4
∑
s3,s4

u3/p1v4v4/p1u3.

Summalle

SG2 ≡
1
4
∑
s3,s4

u3/p1v4v4/p1u3

= 1
2p1µp1ν(

1
2
∑
s3,s4

u3γ
µv4v4γ

νu3)

= 1
2p1µp1νL

µν
Q

= 1
2p1µp1ν(2(pµ3pν4 + pν3p

µ
4 −

ŝ

2g
µν))

= (p1 · p3)(p1 · p4) + (p1 · p3)(p1 · p4)− ŝ

2p
2
1

= 2(p1 · p3)(p1 · p4)

= 2
m2
Q − t̂
2 ·

m2
Q − û
2

= 1
2(t̂û+m2

Qŝ−m4
Q)

kuten edellä.
Siispä

|MG2|2 = |MG1|2.
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Lasketaan etukäteen erotus

M3µνMµν∗
3 − |MG1|2 − |MG2|2

= 3g4
s

32ŝ2 (−3ŝ2 − 5t̂2 − 5û2 − 26m2
Qŝ+ 10m4

Q)− 2 · 3g4
s

32ŝ2 (t̂û+m2
Qŝ−m4

Q)

= 3g4
s

32ŝ2 (−3ŝ2 − 5t̂2 − 5û2 − 2t̂û− 28m2
Qŝ+ 12m4

Q)

= 3g4
s

32ŝ2 (−3ŝ2 + 8t̂û− 5t̂2 − 10t̂û− 5û2 − 28m2
Qŝ+ 12m4

Q)

= 3g4
s

32ŝ2 (−3ŝ2 + 8t̂û− 5(t̂+ û)2 − 28m2
Qŝ+ 12m4

Q)

= 3g4
s

32ŝ2 (−3ŝ2 + 8t̂û− 5(2m2
Q − ŝ)2 − 28m2

Qŝ+ 12m4
Q)

= 3g4
s

32ŝ2 (−3ŝ2 + 8t̂û− 20m4
Q + 20m2

Qŝ− 5ŝ2 − 28m2
Qŝ+ 12m4

Q)

= 3g4
s

32ŝ2 (−8ŝ2 + 8t̂û− 8m2
Qŝ− 8m4

Q)

= 3g4
s

4ŝ2 (−ŝ2 + t̂û−m2
Qŝ−m4

Q).

Nyt prosessin g + g → Q+Q polarisoitumaton invariantin amplitudin neliö on

∣∣∣M(gg → QQ)
∣∣∣2 =M1µνMµν∗

1 +M2µνMµν∗
2 +M3µνMµν∗

3

+ 2Re(M1µνMµν∗
2 +M2µνMµν∗

3 +M1µνMµν∗
3 )

− |MG1|2 − |MG2|2

= g4
s

6(m2
Q − t̂)2 (t̂û+m2

Qŝ− 2m2
Qt̂− 3m4

Q)

+ g4
s

6(m2
Q − û)2 (t̂û+m2

Qŝ− 2m2
Qû− 3m4

Q)

+ 3g4
s

32ŝ2 (−3ŝ2 − 5t̂2 − 5û2 − 26m2
Qŝ+ 10m4

Q)

+ 2Re( g4
s

48(m2
Q − t̂)(m2

Q − û)
(−m2

Qŝ+ 4m4
Q)

+ 3g4
s

16ŝ(m2
Q − û)(ŝ2 + ŝt̂− t̂û−m2

Qŝ+m4
Q)

+ 3g4
s

16ŝ(m2
Q − t̂)

(ŝ2 + ŝû− t̂û−m2
Qŝ+m4

Q))
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− 2 · 3g4
s

32ŝ2 (t̂û+m2
Qŝ−m4

Q)

= g4
s

6(m2
Q − t̂)2 (t̂û+m2

Qŝ− 2m2
Qt̂− 3m4

Q) + g4
s

6(m2
Q − û)2 (t̂û+m2

Qŝ− 2m2
Qû− 3m4

Q)

+ 3g4
s

4ŝ2 (−ŝ2 + t̂û−m2
Qŝ−m4

Q) + g4
s

24(m2
Q − t̂)(m2

Q − û)
(−m2

Qŝ+ 4m4
Q)

+ 3g4
s

8ŝ(m2
Q − û)(ŝ2 + ŝt̂− t̂û−m2

Qŝ+m4
Q) + 3g4

s

8ŝ(m2
Q − t̂)

(ŝ2 + ŝû− t̂û−m2
Qŝ+m4

Q)

= g4
s

24
[ 4
(m2

Q − t̂)2 (t̂(2m2
Q − ŝ− t̂) +m2

Qŝ− 2m2
Qt̂− 3m4

Q)

+ 4
(m2

Q − (2m2
Q − ŝ− t̂))2 (t̂(2m2

Q − ŝ− t̂) +m2
Qŝ− 2m2

Q(2m2
Q − ŝ− t̂)− 3m4

Q)

+ 18
ŝ2 (−ŝ2 + t̂(2m2

Q − ŝ− t̂)−m2
Qŝ−m4

Q)

+ 1
(m2

Q − t̂)(m2
Q − (2m2

Q − ŝ− t̂))
(−m2

Qŝ+ 4m4
Q)

+ 9
ŝ(m2

Q − (2m2
Q − ŝ− t̂))

(ŝ2 + ŝt̂− t̂(2m2
Q − ŝ− t̂)−m2

Qŝ+m4
Q)

+ 9
ŝ(m2

Q − t̂)
(ŝ2 + ŝ(2m2

Q − ŝ− t̂)− t̂(2m2
Q − ŝ− t̂)−m2

Qŝ+m4
Q)
]

= g4
s

24
[ 4
(m2

Q − t̂)2 (−t̂2 − ŝt̂+m2
Qŝ− 3m4

Q)

+ 4
(ŝ+ t̂−m2

Q)2 (−t̂2 − ŝt̂+ 3m2
Qŝ+ 4m2

Qt̂− 7m4
Q)

+ 18
ŝ2 (−ŝ2 − t̂2 − ŝt̂−m2

Qŝ+ 2m2
Qt̂−m4

Q)

+ 1
(m2

Q − t̂)(ŝ+ t̂−m2
Q)

(−m2
Qŝ+ 4m4

Q)

+ 9
ŝ(ŝ+ t̂+m2

Q)
(ŝ2 + t̂2 + 2ŝt̂−m2

Qŝ− 2m2
Qt̂+m4

Q)

+ 9
ŝ(m2

Q − t̂)
(t̂2 +m2

Qŝ− 2m2
Qt̂+m4

Q)
]
.

Muokataan tämä lauseke erilaiseen muotoon, jotta se on selkeämpi ja helpommin
integroitavissa muuttujan t̂ suhteen. Kuusi termiä muuttuvat seuraavasti:
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4
(m2

Q − t̂)2 (−t̂2 − ŝt̂+m2
Qŝ− 3m4

Q)

= 4
(m2

Q − t̂)2 (−m4
Q + 2m2

Qt̂− t̂2 +m2
Qŝ− ŝt̂+ 2m4

Q − 2m2
Qt̂− 4m4

Q)

= 4
(m2

Q − t̂)2 (−(m2
Q − t̂)2 + ŝ(m2

Q − t̂) + 2m2
Q(m2

Q − t̂)− 4m4
Q)

= −4 +
4ŝ+ 8m2

Q

m2
Q − t̂

−
16m4

Q

(m2
Q − t̂)2

4
(ŝ+ t̂−m2

Q)2 (−t̂2 − ŝt̂+ 3m2
Qŝ+ 4m2

Qt̂− 7m4
Q)

= 4
(ŝ+ t̂−m2

Q)2 (−ŝ2 − ŝt̂+m2
Qŝ− ŝt̂− t̂2 +m2

Qt̂+m2
Qŝ+m2

Qt̂−m4
Q + ŝ2 + ŝt̂

−m2
Qŝ+ 2m2

Qŝ+ 2m2
Qt̂− 2m4

Q − 4m4
Q)

= 4
(ŝ+ t̂−m2

Q)2 (−(ŝ+ t̂−m2
Q)2 + ŝ(ŝ+ t̂−m2

Q) + 2m2
Q(ŝ+ t̂−m2

Q)− 4m4
Q)

= −4 +
4ŝ+ 8m2

Q

ŝ+ t̂−m2
Q

−
16m4

Q

(ŝ+ t̂−m2
Q)2

18
ŝ2 (−ŝ2 − t̂2 − ŝt̂−m2

Qŝ+ 2m2
Qt̂−m4

Q)

= 9
ŝ2 (−2ŝ2 − 2t̂2 − 2ŝt̂− 2m2

Qŝ+ 4m2
Qt̂− 2m4

Q)

1
(m2

Q − t̂)(ŝ+ t̂−m2
Q)

(−m2
Qŝ+ 4m4

Q)

= ŝ

ŝ(m2
Q − t̂)(ŝ+ t̂−m2

Q)
(−m2

Qŝ+ 4m4
Q)

=
ŝ+ t̂−m2

Q +m2
Q − t̂

ŝ(m2
Q − t̂)(ŝ+ t̂−m2

Q)
(−m2

Qŝ+ 4m4
Q)

= ( 1
ŝ(m2

Q − t̂)
+ 1
ŝ(ŝ+ t̂−m2

Q)
)(−m2

Qŝ+ 4m4
Q)

= −
m2
Q

m2
Q − t̂

+
4m4

Q

ŝ(m2
Q − t̂)

−
m2
Q

ŝ+ t̂−m2
Q

+
4m4

Q

ŝ(ŝ+ t̂−m2
Q)
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9
ŝ(ŝ+ t̂−m2

Q)
(ŝ2 + t̂2 + 2ŝt̂−m2

Qŝ− 2m2
Qt̂+m4

Q)

= 9
ŝ(ŝ+ t̂−m2

Q)
(ŝ2 + ŝt̂2 −m2

Qŝ+ ŝt̂+ t̂2 −m2
Qt̂−m2

Qŝ−m2
Qt̂+m4

Q +m2
Qŝ)

= 9
ŝ(ŝ+ t̂−m2

Q)
((ŝ+ t̂−m2

Q)2 +m2
Qŝ)

= 9
ŝ

(ŝ+ t̂−m2
Q) +

9m2
Q

ŝ+ t̂−m2
Q

= 9
ŝ2 (ŝ2 + ŝt̂−m2

Qŝ) +
9m2

Q

ŝ+ t̂−m2
Q

9
ŝ(m2

Q − t̂)
(t̂2 +m2

Qŝ− 2m2
Qt̂+m4

Q)

= 9
ŝ(m2

Q − t̂)
((m2

Q − t̂)2 +m2
Qŝ)

= 9
ŝ

(m2
Q − t̂) +

9m2
Q

m2
Q − t̂

= 9
ŝ2 (−ŝt̂+m2

Qŝ) +
9m2

Q

m2
Q − t̂

.

Nyt voidaan kirjoittaa

∣∣∣M(gg → QQ)
∣∣∣2 = g4

s

24
[ 4
(m2

Q − t̂)2 (−t̂2 − ŝt̂+m2
Qŝ− 3m4

Q)

+ 4
(ŝ+ t̂−m2

Q)2 (−t̂2 − ŝt̂+ 3m2
Qŝ+ 4m2

Qt̂− 7m4
Q)

+ 18
ŝ2 (−ŝ2 − t̂2 − ŝt̂−m2

Qŝ+ 2m2
Qt̂−m4

Q)

+ 1
(m2

Q − t̂)(ŝ+ t̂−m2
Q)

(−m2
Qŝ+ 4m4

Q)

+ 9
ŝ(ŝ+ t̂−m2

Q)
(ŝ2 + t̂2 + 2ŝt̂−m2

Qŝ− 2m2
Qt̂+m4

Q)

+ 9
ŝ(m2

Q − t̂)
(t̂2 +m2

Qŝ− 2m2
Qt̂+m4

Q)
]
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= (4παs)2

24
[
− 4 +

4ŝ+ 8m2
Q

m2
Q − t̂

−
16m4

Q

(m2
Q − t̂)2

− 4 +
4ŝ+ 8m2

Q

ŝ+ t̂−m2
Q

−
16m4

Q

(ŝ+ t̂−m2
Q)2

+ 9
ŝ2 (−2ŝ2 − 2t̂2 − 2ŝt̂− 2m2

Qŝ+ 4m2
Qt̂− 2m4

Q)

−
m2
Q

m2
Q − t̂

+
4m4

Q

ŝ(m2
Q − t̂)

−
m2
Q

ŝ+ t̂−m2
Q

+
4m4

Q

ŝ(ŝ+ t̂−m2
Q)

+ 9
ŝ2 (ŝ2 + ŝt̂−m2

Qŝ) +
9m2

Q

ŝ+ t̂−m2
Q

+ 9
ŝ2 (−ŝt̂+m2

Qŝ) +
9m2

Q

m2
Q − t̂

]

= 2π2α2
s

3
[
− 8 + 9

ŝ2 (−ŝ2 − 2t̂2 − 2ŝt̂− 2m2
Qŝ+ 4m2

Qt̂− 2m4
Q)

+ (4ŝ+ 16m2
Q +

4m4
Q

ŝ
)( 1
m2
Q − t̂

+ 1
ŝ+ t̂−m2

Q

)

− 16m4
Q( 1

(m2
Q − t̂)2 + 1

(ŝ+ t̂−m2
Q)2 )

]

= 2π2α2
s

3
[
− 17 + 18

ŝ2 (−t̂2 − ŝt̂−m2
Qŝ+ 2m2

Qt̂−m4
Q)

+ 4(ŝ+ 4m2
Q +

m4
Q

ŝ
)( 1
m2
Q − t̂

+ 1
ŝ+ t̂−m2

Q

)

− 16m4
Q( 1

(m2
Q − t̂)2 + 1

(ŝ+ t̂−m2
Q)2 )

]
. (76)

Siten t̂-differentioitu vaikutusala on (yhtälö (30))

dσ̂(gg → QQ)
dt̂

=

∣∣∣M(gg → QQ)
∣∣∣2

16πλ(ŝ, 0, 0)

= πα2
s

24ŝ2

[
− 17 + 18

ŝ2 (−t̂2 − ŝt̂−m2
Qŝ+ 2m2

Qt̂−m4
Q)

+ 4(ŝ+ 4m2
Q +

m4
Q

ŝ
)( 1
m2
Q − t̂

+ 1
ŝ+ t̂−m2

Q

)

− 16m4
Q( 1

(m2
Q − t̂)2 + 1

(ŝ+ t̂−m2
Q)2 )

]
. (77)



66

Toisin ilmaistuna

dσ̂(gg → QQ)
dt̂

= πα2
s

24ŝ2

[
− 17 + 18

ŝ2 (t̂û−m2
Qŝ−m4

Q)

+ 4(ŝ+ 4m2
Q +

m4
Q

ŝ
)( 1
m2
Q − t̂

+ 1
m2
Q − û

)

− 16m4
Q( 1

(m2
Q − t̂)2 + 1

(m2
Q − û)2 )

]
. (78)

Kokonaisvaikutusalan laskemiseksi tarvitaan sijoitusten
∣∣∣∣∣
t̂max

t̂min

t̂,
∣∣∣∣∣
t̂max

t̂min

t̂2,
∣∣∣∣∣
t̂max

t̂min

t̂3,∣∣∣∣∣
t̂max

t̂min

(−ln(m2
Q − t̂)),

∣∣∣∣∣
t̂max

t̂min

ln(ŝ+ t̂−m2
Q),

∣∣∣∣∣
t̂max

t̂min

1
m2
Q−t̂

ja
∣∣∣∣∣
t̂max

t̂min

−1
ŝ+t̂−m2

Q

arvot. Näistä kolme

ensimmäistä on laskettu massallisilla alkutilahiukkasilla tapauksessa q + q → Q+Q.
Asettamalla vastaaville lausekkeille mq = mg = 0 saadaan

∣∣∣∣∣
t̂max

t̂min

t̂ = ŝ

√
1−

4m2
Q

ŝ∣∣∣∣∣
t̂max

t̂min

t̂2 = (2m2
Qŝ− ŝ2)

√
1−

4m2
Q

ŝ∣∣∣∣∣
t̂max

t̂min

t̂3 = (ŝ3 − 4m2
Qŝ

2 + 3m4
Qŝ)

√
1−

4m2
Q

ŝ
.

Neljäs sijoitus:

∣∣∣∣∣
t̂max

t̂min

(−ln(m2
Q − t̂)) = −

{
ln
[
m2
Q − t̂max

]
− ln

[
m2
Q − t̂min

]}

= −
{
ln
[
m2
Q − (m2

Q −
ŝ

2(1−
√

1−
4m2

Q

ŝ
))
]

− ln
[
m2
Q − (m2

Q −
ŝ

2(1 +
√

1−
4m2

Q

ŝ
))
]}

= −
{
ln
[ ŝ
2(1−

√
1−

4m2
Q

ŝ
)
]
− ln

[ ŝ
2(1 +

√
1−

4m2
Q

ŝ
)
]}
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= −ln
 ŝ

2(1−
√

1− 4m2
Q

ŝ
)

ŝ
2(1 +

√
1− 4m2

Q

ŝ
)



= ln
1 +

√
1− 4m2

Q

ŝ

1−
√

1− 4m2
Q

ŝ

.

Viides sijoitus:

∣∣∣∣∣
t̂max

t̂min

ln(ŝ+ t̂−m2
Q) = ln(ŝ+ t̂max −m2

Q)− ln(ŝ+ t̂min −m2
Q)

= ln(ŝ+m2
Q −

ŝ

2(1−
√

1−
4m2

Q

ŝ
)−m2

Q)

− ln(ŝ+m2
Q −

ŝ

2(1 +
√

1−
4m2

Q

ŝ
)−m2

Q)

= ln
 ŝ

2(1 +
√

1− 4m2
Q

ŝ
)

ŝ
2(1−

√
1− 4m2

Q

ŝ
)



= ln
1 +

√
1− 4m2

Q

ŝ

1−
√

1− 4m2
Q

ŝ

.

Kuudes sijoitus:

∣∣∣∣∣
t̂max

t̂min

1
m2
Q − t̂

= 1
m2
Q − t̂max

− 1
m2
Q − t̂min

= 1

m2
Q − (m2

Q − ŝ
2(1−

√
1− 4m2

Q

ŝ
))
− 1

m2
Q − (m2

Q − ŝ
2(1 +

√
1− 4m2

Q

ŝ
))

= 1
ŝ
2(1−

√
1− 4m2

Q

ŝ
)
− 1

ŝ
2(1 +

√
1− 4m2

Q

ŝ
)

= 2
ŝ
·

1 +
√

1− 4m2
Q

ŝ
− (1−

√
1− 4m2

Q

ŝ
)

(1 +
√

1− 4m2
Q

ŝ
)(1−

√
1− 4m2

Q

ŝ
)



68

= 2
ŝ
·

2
√

1− 4m2
Q

ŝ

1− (1− 4m2
Q

ŝ
)

=
4
√

1− 4m2
Q

ŝ

ŝ
4m2

Q

ŝ

= 1
m2
Q

√
1−

4m2
Q

ŝ
.

Seitsemäs sijoitus:

∣∣∣∣∣
t̂max

t̂min

−1
ŝ+ t̂−m2

Q

= 1
ŝ+ t̂min −m2

Q

− 1
ŝ+ t̂max −m2

Q

= 1

ŝ+m2
Q − ŝ

2(1 +
√

1− 4m2
Q

ŝ
)−m2

Q

− 1

ŝ+m2
Q − ŝ

2(1−
√

1− 4m2
Q

ŝ
)−m2

Q

= 1
ŝ
2(1−

√
1− 4m2

Q

ŝ
)
− 1

ŝ
2(1 +

√
1− 4m2

Q

ŝ
)

= 1
m2
Q

√
1−

4m2
Q

ŝ

kuten edellä.

Prosessin g + g → Q+Q kokonaisvaikutusala on

σ̂(gg → QQ) =
∫ t̂max

t̂min
dt̂
dσ̂(gg → QQ)

dt̂

=
∫ t̂max

t̂min
dt̂
πα2

s

24ŝ2

− 17 + 18
ŝ2

[
− t̂2 − ŝt̂−m2

Qŝ+ 2m2
Qt̂−m4

Q

]

+ 4
[
ŝ+ 4m2

Q +
m4
Q

ŝ

][ 1
m2
Q − t̂

+ 1
ŝ+ t̂−m2

Q

]

− 16m4
Q

[ 1
(m2

Q − t̂)2 + 1
(ŝ+ t̂−m2

Q)2

]



69

= πα2
s

24ŝ2

− 18
ŝ2

[ ∫ t̂max

t̂min
dt̂ t̂2 + (ŝ− 2m2

Q)
∫ t̂max

t̂min
dt̂ t̂

]

−
[
17 + 18

ŝ2 (m2
Qŝ+m4

Q)
] ∫ t̂max

t̂min
dt̂

+ 4
[
ŝ+ 4m2

Q +
m4
Q

ŝ

][ ∫ t̂max

t̂min
dt̂

1
m2
Q − t̂

+
∫ t̂max

t̂min
dt̂

1
ŝ+ t̂−m2

Q

]

− 16m4
Q

[ ∫ t̂max

t̂min
dt̂

1
(m2

Q − t̂)2 +
∫ t̂max

t̂min
dt̂

1
(ŝ+ t̂−m2

Q)2

]
= πα2

s

24ŝ2

− 18
ŝ2

[1
3

∣∣∣∣∣
t̂max

t̂min

t̂3 + (ŝ− 2m2
Q)1

2

∣∣∣∣∣
t̂max

t̂min

t̂2
]

−
[
17 + 18

ŝ2 (m2
Qŝ+m4

Q)
]∣∣∣∣∣
t̂max

t̂min

t̂

+ 4
[
ŝ+ 4m2

Q +
m4
Q

ŝ

][∣∣∣∣∣
t̂max

t̂min

(−ln(m2
Q − t̂)) +

∣∣∣∣∣
t̂max

t̂min

ln(ŝ+ t̂−m2
Q)
]

− 16m4
Q

[∣∣∣∣∣
t̂max

t̂min

1
m2
Q − t̂

+
∣∣∣∣∣
t̂max

t̂min

−1
ŝ+ t̂−m2

Q

]
= πα2

s

24ŝ2

− 18
ŝ2

[1
3(ŝ3 − 4m2

Qŝ
2 + 3m4

Qŝ)
√

1−
4m2

Q

ŝ

+
ŝ− 2m2

Q

2 (2m2
Qŝ− ŝ2)

√
1−

4m2
Q

ŝ

]
−
[
17 + 18

ŝ2 (m2
Qŝ+m4

Q)
]
ŝ

√
1−

4m2
Q

ŝ

+ 4
[
ŝ+ 4m2

Q +
m4
Q

ŝ

]ln
1 +

√
1− 4m2

Q

ŝ

1−
√

1− 4m2
Q

ŝ

+ ln
1 +

√
1− 4m2

Q

ŝ

1−
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1− 4m2
Q

ŝ



− 16m4
Q

[ 1
m2
Q

√
1−

4m2
Q

ŝ
+ 1
m2
Q

√
1−

4m2
Q

ŝ

]
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24ŝ2
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2 + 3m4

Qŝ) + (
18m2

Q

ŝ2 − 9
ŝ
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Qŝ− ŝ2)

− (17ŝ+ 18
ŝ

(m2
Qŝ+m4

Q))− 16m4
Q ·

2
m2
Q

]√
1−

4m2
Q

ŝ

+ 8
[
ŝ+ 4m2

Q +
m4
Q

ŝ

]
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1 +

√
1− 4m2

Q

ŝ

1−
√

1− 4m2
Q

ŝ


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= πα2
s

24ŝ2

[− 6ŝ+ 24m2
Q −

18m4
Q

ŝ
+

36m4
Q

ŝ
− 18m2

Q − 18m2
Q
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Q −

18m4
Q

ŝ
− 32m2

Q
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1−

4m2
Q

ŝ

+ 8
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ŝ+ 4m2

Q +
m4
Q

ŝ

]
ln
1 +

√
1− 4m2

Q

ŝ

1−
√

1− 4m2
Q

ŝ



= πα2
s

24ŝ2

[− 14ŝ− 62m2
Q

]√
1−

4m2
Q

ŝ
+ 8

[
ŝ+ 4m2

Q +
m4
Q

ŝ

]
ln
1 +

√
1− 4m2

Q

ŝ

1−
√

1− 4m2
Q

ŝ



= πα2
s

12ŝ

− (7 +
31m2

Q

ŝ

)√
1−

4m2
Q

ŝ
+ 4

(
1 +

4m2
Q

ŝ
+
m4
Q

ŝ2

)
ln
1 +

√
1− 4m2

Q

ŝ

1−
√

1− 4m2
Q

ŝ

.
(79)

Tarkistin laskemani invariantit amplitudit ja aliprosessien vaikutusalat vertaamalla
niitä vastaaviin lähteessä [76] esitettyihin tuloksiin. Invarianttien amplitudien
lausekkeiden muodot poikkeavat toisistaan, erityisesti prosessin g + g → Q + Q

tapauksessa, jossa laskentatavat ovat olleet erilaiset (käyttäen aaveita ja ilman).
Invarianttien amplitudien yhtäpitävyydet on näytetty liitteessä A.

3.3 Poikittaisliikemäärän ja rapiditeettien suhteen differen-
tioitu vaikutusala

Johdan tässä osiossa prosessin p+ p(–)→ Q+Q+X alimman kertaluvun vaikutusalan,
joka on differentioitu poikittaisliikemäärän ja molempien lopputilakvarkkien rapidi-
teettien suhteen. Mahdolliset hadronisaatiot Q→ HQ+X ja Q→ HQ+X on otettu
huomioon fragmentaatio-osuuksien avulla.

Indeksit 1 ja 2 edustavat alkutilapartoneja i ja j (q + q, q + q, g + g) ja indeksit
3 ja 4 raskaita kvarkkeja Q ja Q. Kokonaisprosessin p + p(–) → Q + Q + X CMS-
koordinaatistossa
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p1 = x1
√
s

2


1
0
0
1

 p2 = x2
√
s

2


1
0
0
−1

 p3 =


E3

p3x

p3y

p3z

 p4 =


E4

p4x

p4y

p4z


approksimaatioiden (53) ja (54) mukaisesti. Tästä voidaan laskea

ŝ = (p1 + p2)2 = p2
1 + p2

2 + 2p1 · p2 = x1x2s. (80)

Yhtälön (28) nojalla aliprosessin i+ j → Q+Q (polarisoitumaton) vaikutusala on

dσ̂(ij → QQ)

=

∣∣∣M(ij → QQ)
∣∣∣2

2
√
λ(ŝ,m2

1,m
2
2)

(2π)4δ(4)(p1 + p2 − p3 − p4) d3p3

2E3(2π)3
d3p4

2E4(2π)3

=

∣∣∣M(ij → QQ)
∣∣∣2

32π2ŝ
δ(4)(p1 + p2 − p3 − p4)d

3p3

E3

d3p4

E4
.

Käyttämällä relaatiota dσ̂(ij→QQ)
dt̂

= |M(ij→QQ)|2
16πλ(s,m2

1,m
2
2) (yhtälö (30)) saadaan

dσ̂(ij → QQ) = ŝ

2π
dσ̂(ij → QQ)

dt̂
δ(4)(p1 + p2 − p3 − p4)d

3p3

E3

d3p4

E4
.

Koska pz = mT cosh(y) ja E = mT cosh(y) (yhtälöt (21)), niin (i = 1, 2, 3, 4)

dpiz
dyi

= d

dyi
(mT sinh(yi)) = mT cosh(yi) = Ei

ja siten
d3pi
Ei

= d2piTdpiz
Ei

= d2piTdyi.

Aliprosessin differentiaalisen vaikutusalan lausekkeesta saadaan nyt
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E3E4
dσ̂(ij → QQ)
d3p3d3p4

= dσ̂(ij → QQ)
d2p3Tdy3d2p4Tdy4

= ŝ

2π
dσ̂(ij → QQ)

dt̂
δ(4)(p1 + p2 − p3 − p4).

Koska nyt käsitellään raskaita lopputilakvarkkeja, niin approksimoin fragmentaatio-
funktioiden kontribuutiota vastaavilla fragmentaatio-osuuksilla ja oletan liikemäärät
muuttumattomiksi hadronisaatioissa. Käyttämällä tätä approksimaatiota ja kollineaarista
faktorisaatioteoreemaa (yhtälöt (57) ja (59)) saadaan

dσ(pp(–)→ HQHQ +X)
d2p3Tdy3d2p4Tdy4

= F (Q,Q→ HQ,HQ)
∑

i,j=g,q,q

∫ 1

0

∫ 1

0
dx1dx2fi/p(x1,Qf )fj/p(–)(x2,Qf )

dσ̂(ij → QQ)
d2p3Tdy3d2p4Tdy4

= F
∑

i,j=g,q,q

∫ 1

0

∫ 1

0
dx1dx2fi/p(x1,Qf )fj/p(–)(x2,Qf )

ŝ

2π
dσ̂(ij → QQ)

dt̂
δ(4)(p1 + p2 − p3 − p4),

missä on lyhennetty F ≡ F (Q,Q→ HQ,HQ) (ja missä mahdollisesti HQ = Q ja/tai
HQ = Q).

Muokataan lausekkeen Diracin deltafunktiota:

δ(4)(p1 + p2 − p3 − p4)

= δ(E1 + E2 − E3 − E4)δ(2)(p1T + p2T − p3T − p4T )δ(p1z + p2z − p3z − p4z).

Kokonaisprosessin CMS-koordinaatistossa päti p1T = p2T = 0, E1 = x1
√
s

2 , E2 = x2
√
s

2 ,
p1z = x1

√
s

2 ja p2z = −x2
√
s

2 . Täten (δ(a) = δ(−a), yhtälö (34))

δ(4)(p1 + p2 − p3 − p4)

= δ(2)(p3T + p4T )δ(
√
s

2 (x1 + x2)− E3 − E4)δ(
√
s

2 (x1 − x2)− p3z − p4z).

Koska δ(a)δ(b) = 2δ(a+ b)δ(a− b) (yhtälö (34)), niin
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δ(4)(p1 + p2 − p3 − p4)

= 2δ(2)(p3T + p4T )δ
[√
sx1 − (E3 + p3z)− (E4 + p4z)

]
δ
[√
sx2 − (E3 − p3z)− (E4 − p4z)

]
= 2δ(2)(p3T + p4T )

δ
[√
sx1 − (m3T cosh(y3) +m3T sinh(y3))− (m4T cosh(y4) +m4T sinh(y4))

]
δ
[√
sx2 − (m3T cosh(y3)−m3T sinh(y3))− (m4T cosh(y4)−m4T sinh(y4))

]
= 2δ(2)(p3T + p4T )δ(

√
sx1 −m3T e

y3 −m4T e
y4)δ(
√
sx2 −m3T e

−y3 −m4T e
−y4).

Kaksiulotteisen deltafunktion nojalla p3T = −p4T . Siten voidaan määritellä |p3T |
= |p4T | ≡ pT . Lisäksi m3 = m4 = mQ, joten määritellään myös m3T = m4T ≡ mT .
Täten

δ(4)(p1 + p2 − p3 − p4)

= 2δ(2)(p3T + p4T )δ(
√
sx1 −mT (ey3 + ey4))δ(

√
sx2 −mT (e−y3 + e−y4))

= 2
s
δ(2)(p3T + p4T )δ(x1 −

mT√
s

(ey3 + ey4))δ(x2 −
mT√
s

(e−y3 + e−y4)),

missä käytettiin lopuksi relaatiota δ(ab) = 1
|a|δ(b) (yhtälö (34)).

Nyt differentioitu vaikutusala on (ŝ = x1x2s)

dσ(pp(–)→ HQHQ +X)
d2p3Tdy3d2p4Tdy4

= F
∑

i,j=g,q,q

∫ 1

0
dx1dx2fi/p(x1,Qf )fj/p(–)(x2,Qf )

x1x2s

2π
dσ̂(ij → QQ)

dt̂

2
s
δ(2)(p3T + p4T )

δ(x1 −
mT√
s

(ey3 + ey4))δ(x2 −
mT√
s

(e−y3 + e−y4))

= F

π

∑
i,j=g,q,q

x1fi/p(x1,Qf )x2fj/p(–)(x2,Qf )
dσ̂(ij → QQ)

dt̂
δ(2)(p3T + p4T ),

missä
x1 = mT√

s
(ey3 + ey4)

x2 = mT√
s

(e−y3 + e−y4).
(81)
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Poikittaisliikemäärävektori on esitettävissä sen pituuden ja atsimuuttikulman φ3

avulla: p3T = (p3x,p3y) = (pT cos(φ3), pT sin(φ3)). Tätä muuttujanvaihtoa vastaava
Jacobin determinantti on J(pT ,φ3) = pT , joten differentiaalisille alkoille pätee [77]

d2p3T = dp3xdp3y = J(pT ,φ3)dpTdφ3 = pTdpTdφ3.

Vaikutusala dσ(pp→HQHQ+X)
d2p3T dy3d2p4T dy4

ei ole riippuvainen tuotetun kvarkin atsimuuttikulmasta.
Siten saadaan

dσ(pp(–)→ HQHQ +X)
dpTdy3dy4

= pT

∫ 2π

0
dφ3

dσ(pp(–)→ HQHQ +X)
pTdpTdφ3dy3dy4

= pT

∫ 2π

0
dφ3

∫
p4T

d2p4T
dσ(pp(–)→ HQHQ +X)
d2p3Tdy3d2p4Tdy4

= pT

∫ 2π

0
dφ3

∫
p4T

d2p4T
F

π

∑
i,j=g,q,q

x1fi/p(x1,Qf )x2fj/p(–)(x2,Qf )
dσ̂(ij → QQ)

dt̂
δ(2)(p3T + p4T )

= 2FpT
∑

i,j=g,q,q
x1fi/p(x1,Qf )x2fj/p(–)(x2,Qf )

dσ̂(ij → QQ)
dt̂

, (82)

kun p3T = −p4T . (Huomio: y3 ja y4 viittaavat nimenomaan kvarkkeihin, eivätkä
niiden hadroneihin.)

Määritetään rapiditeettien y3 ja y4 ylä- ja alarajat sovitulle poikittaisliikemäärälle
pT . Koska vapaille hiukkasille E =

√
m2 + |p|2 ja koska kokonaisprosessin CMS-

koordinaatistossa kvarkki-antikvarkkiparin suurin mahdollinen energian arvo on
√
s

(x1 = x2 = 1), niin

√
s ≥ 2

√
m2
Q + p2

T

⇔ pT ≤
√
s

4 −m
2
Q. (83)

Kvarkin energialle pätee
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E3 = mT cosh(y3)

⇔ |y3| = arcosh( E3

mT

),

joten

|y3| ≤ arcosh(
√
s

2mT

). (84)

Ensimmäisen protonin luovuttamalle pitkittäisliikemääräosuudelle pätee

x1 = mT√
s

(ey3 + ey4)⇔ ey4 =
√
s

mT

x1 − ey3

eli

ey4 ≤
√
s

mT

− ey3 ⇔ y4 ≤ ln(
√
s

mT

− ey3).

Toista protonia (tai antiprotonia) vastaavalle liikemääräosuudelle

x2 = mT√
s

(e−y3 + e−y4)⇔ e−y4 =
√
s

mT

x2 − e−y3

eli

e−y4 ≤
√
s

mT

− e−y3 ⇔ y4 ≥ −ln(
√
s

mT

− e−y3).

Siispä

−ln(
√
s

mT

− e−y3) ≤ y4 ≤ ln(
√
s

mT

− ey3). (85)

Voidaan myös halutessa määrittää ensin antikvarkin rapiditeetin y4 ylä- ja alarajat,
jolloin |y4| ≤ arcosh(

√
s

2mT ) ja −ln(
√
s

mT
− e−y4) ≤ y3 ≤ ln(

√
s

mT
− ey4). Mahdolliset

rapiditeettiparit (y3,y4) ovat luonnollisesti kuitenkin samat.

Differentioidut vaikutusalat dσ̂(qq→QQ)
dt̂

ja dσ̂(gg→QQ)
dt̂

ilmoitetaan Mandelstamin muut-
tujien ŝ, t̂ ja û avulla (yhtälöt (70), (71), (77) ja (78)). Siten vaikutusalojen
dσ(pp(–)→HQHQ+X)

dpT dy3dy4
laskemiseksi on tarpeen ilmoittaa Mandelstamin muuttujat poikit-
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taisliikemäärän pT sekä rapiditeettien y3 ja y4 funktioina.
Aliprosessien neliliikemäärille päti

p1 = x1
√
s

2


1
0
0
1

 p3 =


E3

p3x

p3y

p3z

 =


mT cosh(y3)

p3T

mT sinh(y3)

 .

Siten

ŝ = x1x2s

= mT√
s

(ey3 + ey4)mT√
s

(e−y3 + e−y4)s

= 2m2
T (1 + cosh(y3 − y4)) (86)

t̂ = (p1 − p3)2

= p2
1 + p2

3 − 2p1 · p3

= 0 +m2
Q − 2x1

√
s

2 (mT cosh(y3)−mT sinh(y3))

= m2
Q −

mT√
s

(ey3 + ey4)
√
smT (e

y3 + e−y3

2 − ey3 − e−y3

2 )

= m2
Q −m2

T (1 + ey4−y3) (87)

û = 2m2
Q − ŝ− t̂

= 2m2
Q − 2m2

T (1 + cosh(y3 − y4))− (m2
Q −m2

T (1 + ey4−y3))

= 2m2
Q − 2m2

T − 2m2
T

ey3−y4 + ey4−y3

2 −m2
Q +m2

T +m2
T e

y4−y3

= m2
Q −m2

T (1 + ey3−y4). (88)

Mandelstamin muuttujan ŝ lausekkeista voidaan päätellä, että

4m2
Q

s
≤ 4m2

T

s
≤ x1,2. (89)
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4 Numeerinen ohjelma
Edellä esitettyjen vaikutusalalausekkeiden integroimiseksi tulee käyttää numeerisia
metodeja. Esittelen näitä laskuja varten tekemäni ohjelman lyhyesti tässä luvussa.

Tein numeerisen ohjelman C++-ohjelmointikielellä, hyödyntäen CERNin ROOT-
ohjelmakirjastoa [78]. Ohjelma koostuu laskentaohjelmasta Int.cc sekä vastaavasta
piirto-ohjelmasta Plot.C. Int.cc tarvitsee toimiakseen ns. makefile-tiedoston (joka
luo ajettavan tiedoston int) ja alimman kertaluvun CT14-partonijakaumafunktiot.
Vaikutusalojen laskemisen ja analysoinnin lisäksi Int.cc tuottaa kuvaajadatan Peter-
sonin fragmentaatiofunktioille (c- ja b-kvarkit), vahvalle kytkentävakiolle αs(Qr) ja
CT14-partonijakaumafunktioille (kuvat 4, 6, 10, 11, 12, 13, 14, 15). Int.cc-, Plot.C-
ja makefile-tiedostot ovat esitettyinä liitteissä B, C ja D.

4.1 Vaikutusalafunktiot

Kaikki laskentaohjelmani vaikutusalafunktiot pohjautuvat lausekkeisiin (yhtälöt (57),
(59) ja (82))

σ(pp(–)→ HQHQ +X) = F
∑

i,j=g,q,q

∫ 1

0

∫ 1

0
dx2dx1fi/p(x1,Qf )fj/p(–)(x2,Qf )σ̂(ij → QQ)

(90)

ja

dσ(pp(–)→ HQHQ +X)
dpTdy3dy4

= 2FpT
∑

i,j=g,q,q
x1fi/p(x1,Qf )x2fj/p(–)(x2,Qf )

dσ̂(ij → QQ)
dt̂

,

missä σ̂(qq → QQ), σ̂(gg → QQ), dσ̂(qq→QQ)
dt̂

ja dσ̂(gg→QQ)
dt̂

ovat tunnettuja
(σ̂(ij → QQ) = 0, kun ŝ = x1x2s ≤ 4m2

Q). Lasketut vaikutusalat ovat muotoa
σ(
√
s), σpmin

T <pT<p
max
T , ymin<y<ymax(

√
s), σηmin<η<ηmax(

√
s), dσ

dpT
(pT ), dσymin<y<ymax

dpT
(pT ),

dσ
dy

(y) tai dσ
dη

(η), missä y ja η edustavat toisen tuotetun kvarkin/hadronin rapiditeettia
ja pseudorapiditeettia (kokonaisprosessin CMS-koordinaatistossa), ja pmin

T , pmax
T ,

ymin, ymax, ηmin ja ηmax ovat kinemaattisten leikkausten ala- ja ylärajat. Näistä
vaikutusaloista ensimmäinen edustaa yhtälöä (90) ja loput saadaan yhtälöstä (82)
muuttujanvaihdoilla ja integroimalla.

Muutin vaikutusalojen integroimisalueet muuttujanvaihdoilla hyperkuutioiksi
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(näissä tapauksissa neliöiksi tai kuutioiksi), joiden sisällä integrandit poikkeavat
nollasta (paitsi tapauksessa σpmin

T <pT<p
max
T , ymin<y<ymax) ja ovat jatkuvia. Integroinnin

lopputulos voi vääristyä, mikäli integrandissa on epäjatkuvuuskohtia. Muuttujan-
vaihdot ja lopulliset vaikutusalafunktioiden lausekkeet on esitettynä liitteessä E.

Vaikutusalafunktioille asetettavia parametreja ovat muun muuassa tuotetun
kvarkin massa, lopputilahadronin massa (voi vaikuttaa integroitavaan kvarkin rapidi-
teettiväliin, yQ 6= yHQ , kun pQ = pHQ ja mQ 6= mHQ , liite E), törmäystyyppi (p+ p

tai p+p), skaalojen tyypit (kvarkin massan mQ, poikittaismassan mT tai aliprosessin
Mandelstamin muuttujan ŝmonikerta), fragmentaatio-osuuden f(Q→ HQ) arvo sekä
kinemaattiset leikkaukset (rapiditeetin, pseudorapiditeetin ja poikittaisliikemäärän
rajoitukset). Int.cc:n tärkeimmät yleiset parametrit ovat laskentapisteiden lukumäärä
ja käytetyt partonijakaumafunktiot. Käyttämäni laskentapisteiden lukumäärä oli
joko 150, 300 tai 1200 pistettä, tilanteesta riippuen.

Faktorisaatioskaalan valinnan vaikutuksia tarkastellessa tulee ottaa huomioon
seuraava asia: Kaikkien kertalukujen CT14-partonijakaumafunktiot on generoitu
pitkittäisliikemääräosuuksilla 10−9 < x < 1 ja faktorisaatioskaaloilla 1,3 GeV
< Qf < 105 GeV, ja tämän kaksiulotteisen alueen ulkopuolella funktioiden ar-
vot ekstrapoloidaan [79]. Tämä ekstrapolointi on epäluotettavaa, sillä esimerkiksi
skaalalla Qf = mc

2 = 635 MeV alimman kertaluvun gluonipartonijakaumafunktio saa
negatiivisia arvoja liikemääräosuuksilla x < 0,3 (kuva 10a), minkä ei pitäisi olla mah-
dollista. Pahimmillaan vaikutusalat ovat negatiivisia alle 1,3 GeV:n skaalavalinnoilla.
Olen siksi asettanut vaikutusalafunktioiden faktorisaatioskaalojen minimiksi 1,3 GeV.
Mikäli funktiolle yritetään antaa tätä pienempi skaala, niin skaala kasvatetaan au-
tomaattisesti minimiarvoon. Renormalisaatioskaalan valintaa en ole manipuloinut,
kaikki arvot välillä 635 MeV ≤ Qr ≤ 1,2 TeV kelpaavat vahvalle kytkentävakiolle
αs(Qr) sellaisenaan, koska ollaan alueessa, jossa Qr & 1 GeV.

4.2 Ohjelman tuottamat tulokset

Olkoon raskaan kvarkin massan ja skaalojen oletus-, minimi- ja maksimiarvot mdef
Q ,

mmin
Q , mmax

Q , Qdef
r , Qmin

r , Qmax
r , Qdef

f , Qmin
f , Qmax

f (muuttujan mQ, mT tai ŝ monikerta).
Int.cc laskee alimman kertaluvun vaikutusalan halutulla x-akselin (

√
s, pT , y tai

η) välillä oletusparametreilla (mdef
Q , Qdef

r , Qdef
f ), massan minimi- ja maksimiarvolla

ja kuudella vaihtoehtoisella skaalavalinnalla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ), (Qdef
r ,Qmax

f ),
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(Qmin
r ,Qdef

f ), (Qdef
r ,Qmin

f ) ja (Qmax
r ,Qdef

f ). Vaihtoehtoisia skaalavalintoja käsiteltäessä
pätee aina mQ = mdef

Q . Skaalavalinnat (Qmax
r , Qmin

f ) ja (Qmin
r , Qmax

f ) on jätetty
pois liian suuren skaalaeron välttämiseksi, kuten lähteessä [67]. Ohjelma muo-
dostaa vaihtoehtoisilla massa- ja skaalavalinnoilla lasketuista vaikutusaloista virhever-
hokäyrät massalle ja skaalavalinnalle (esimerkiksi kuva 16b). Lisäksi renormalisaatio-
ja faktorisaatioskaalan vaihteluille muodostetaan omat erilliset virheverhokäyrät
((Qmin

r – Qmax
r , Qdef

f ) ja (Qdef
r , Qmin

f – Qmax
f ), esim. kuva 17a). Mikäli vaikutusalan

laskemisessa on käytetty fragmentaatio-osuutta (F (Q,Q → HQ,HQ) < 1), niin
myös fragmentaatio-osuuden virheestä muodostetaan oma virheverhokäyrä (esim.
kuva 24b). Massan, skaalan ja mahdollisen fragmentaatio-osuuden aiheuttamista
suhteellisista virheistä muodostetaan erilliset virheverhokäyrät (esim. kuva 25b).

CT14-LO-partonijakaumafunktioille ei ole määritetty virhepartonijakaumafunk-
tioita, joiden avulla laskettaisiin LO-partonijakaumafunktioiden epävarmuudesta
johtuva virhe. CT14-NLO-partonijakaumafunktioille virhefunktiot on kuitenkin
määritetty. [62] Laskin vaikutusalan LO-lausekkeita ja NLO-partonijakaumafunktioi-
ta käyttäen virheineen, ja approksimoin LO-tuloksen virhettä asettamalla sille saman
suhteellisen virheen kuin NLO-partonijakaumafunktioita käyttämällä saadulla tulok-
sella (esim. kuva 16a). Vaikutusalan partonijakaumafunktiovirheen määritystapa on
esitettynä ohjelmassa Int.cc sekä lähteessä [80].

Int.cc ei laske vaikutusaloja, mikäli kokeellisia vertailutuloksia ei ole määritetty.
Kokeelliset tulokset voivat olla piste- tai histogrammimuodossa. Histogrammita-
pauksissa teoreettisen tuloksen keskiarvo lasketaan histogrammipylväitä vastaavilla
väleillä tarkan vertailutuloksen saamiseksi (esim. kuva 24). Pistetuloksille voidaan
määrittää asymmetrinen kokonaisvirhe (esim. kuva 16), ja histogrammituloksille
symmetrinen statistinen virhe ja asymmetrinen systemaattinen virhe, jotka esitetään
erikseen (esim. kuva 24). Lisäksi histogrammituloksille on määritettävissä lisävirheet,
jotka eivät lukeudu statistiseksi tai systemaattiseksi virheeksi (nämä vaikuttavat
edempänä mainittaviin K-kerroinsovituksiin).

Ohjelma laskee teoreettista tulosta vastaavat K-kertoimet jokaiselle seitsemälle
skaalavalinnalle. Kokeellisen vertailutuloksen muodosta riippuen K-kertoimet ovat
joko pisteiden arvot jaettuna vastaavilla teoreettisilla arvoilla (esim. kuvat 18
ja 19) tai histogrammipylväiden arvot jaettuna pylväitä vastaavilla teoreettisilla
keskiarvoilla (esim. kuvat 26 ja 27). Pistetuloksen kokonaisvirheet ja histogrammi-
tuloksen statistiset ja systemaattiset virheet jaetaan myös teoreettisilla tuloksilla
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ja esitetään kuvaajissa. Ohjelma tekee K-kerroinsovitukset skaaloja vastaavien
kokonais-K-kertoimen selvittämiseksi. Histogrammitapausten K-kerroinsovituksissa
teoreettisella tuloksella jaetut statistiset, systemaattiset ja lisävirheet yhdistetään
neliöllisesti. Oletusskaalavalintaa vastaavalle vaikutusalalle lasketaan sovituksen
pohjalta K-kertoimella skaalattu vaikutusala (esim. kuva 16b).

Int.cc laskee myös eri partonivuorovaikutusten suhteelliset kontribuutiot koko-
naisprosessin vaikutusalaan, tarkastellun muuttujan funktioina (esim. kuva 17c).
Tämä suhteellinen osuus, merkitään r(ij), lasketaan jakamalla prosessin vaikutusala,
jonka laskemisessa on otettu huomioon vain yksi partonityyppi (g + g, u+ u, d+ d,
s+ s, c+ c tai b+ b, t-kvarkille/t-antikvarkille CT14-LO-partonijakaumafunktioita
ei ole määritetty), normaalisti lasketulla vaikutusalalla. Luonnollisesti r(gg) + r(uu)
+r(dd)+r(ss)+r(cc)+r(bb) = 1. Suhteellisista kontribuutioista tulee ottaa huomioon
se, että aliprosessin Q+Q→ Q+Q t-kanavaa vastaavaa Feynmanin diagrammia ja
(raskaiden) alkutilakvarkkien massoja ei ole otettu huomioon vaikutusalan laskussa
(luku 3.1). Siten r(cc) ja r(bb) eivät ole tarkkoja, vaan enemmänkin approksimoivat
c- ja b-kvarkkien kontribuutioiden suhteellisten osuuksien suuruuksien kertaluokkia.

5 Tulokset
Esitän vaikutusalojen laskemisessa käyttämäni massa- ja skaalavalinnat sekä CT14-
LO-partonijakaumafunktioiden kuvaajat luvussa 5.1. Raskaiden kvarkkiparien tuot-
tojen vaikutusalat sekä niden analyysi ovat esitettyinä luvuissa 5.2, 5.3 ja 5.4.

5.1 Käytetyt parametrit ja partonijakaumafunktiot

5.1.1 Massa- ja skaalavalinnat

Kuten luvussa 2.1 korostettiinkin, c-, b- ja t-kvarkkien massat ovat lopulta hyvin
epäyksikäsitteiset. Olen valinnut kvarkkien oletus-, minimi ja maksimimassat siten,
että ne edustavat mahdollisimman laajasti erilaisia määritys- ja määrittelytapoja.
Massan vaihtelun vaikutuksia tutkailtaessa käytetetään aina oletusskaaloja Qdef

r ja
Qdef
f .
c-kvarkin oletusmassa mdef

c = 1,27(±0,02) GeV edustaa MS-skeemaavalintaa
massaskaalalla µ = mc (mc = mc(µ = mc)) [81]. Tätä oletusmassaa vastaava napa-
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massa on 1,67(±0,07) GeV [81], ja käytän tätä arvoa c-kvarkin massan maksimina.
Minimimassaksi olen valinnut mmin

c = 0,993(±0,008) GeV, joka määritetty myös
MS-skeemassa, mutta massaskaalalla µ = 3 GeV [82–84].

b-kvarkin massan oletusarvo 4,18(+0,03
−0,02) GeV [14] ja minimiarvo 3,610(±0,016)

GeV [82, 83] ovat molemmat määritetty MS-skeemassa, massaskaaloilla µ = mb

(mb = mb(µ = mb)) ja 3 GeV. Olen käyttänyt maksimiarvona napamassaa 4,78(±0,06)
GeV [85].

t-kvarkin massat 172,9(±0,4) GeV, 160(+5
−4) GeV ja 173,1 ± 0,9 GeV edustavat

suoraa massan arvon mittausta, vaikutusalamittausten avulla määritystä ja vaiku-
tusalamittausten avulla saatua napamassaa [14]. Käytän ensimmäistä ja toista arvoa
t-kvarkin massan oletus- ja minimiarvoina. Napamassa ei poikkea juuri lainkaan
oletusarvosta, joten en käytä sitä maksimiarvona sellaisenaan, vaan käytän sen
ylärajaa 173,1 GeV + 0,9 GeV = 174,0 GeV. Kaikki massavalinnat ovat esitettynä
tiivistetysti taulukossa 1.

Olen käsitellyt raskaiden kvarkkien hadronien massoja virheettöminä. Tämä
johtuu siitä, että hadronien massojen suhteelliset virheet ovat mitättömiä verrattuna
valittuihin kvarkkien massojen vaihteluväleihin (luku 5.2).

Taulukko 1. Käytetyt raskaiden kvarkkien massojen arvot, ilmoitettuna gi-
gaelektronivolteissa.

Q mdef
Q mmin

Q mmax
Q

c 1,27 0,993 1,67
b 4,18 3,610 4,78
t 172,9 160 174,0

Olen valinnut pT -riippuvaiseen integrandiin (yhtälö (82)) perustuvien vaikutusalojen
oletus-, minimi- ja maksimiskaaloiksi mT , 1

2mT ja 2mT , kuten lähteissä [67], [86] ja
[42] on tehty. Vastaavat skaalat kokonaisvaikutusaloille ovat 2mQ, mQ ja 4mQ (yhtälö
(90)). Faktorisaatioskaalavalinnoissa tulee kuitenkin ottaa huomioon asetettu minimi-
arvo 1,3 GeV ≤ Qf . Kaikkien laskettujen vaikutusalojen faktorisaatioskaalavalinnat
on tiivistetty taulukkoon 2.



82

Taulukko 2. Käytetyt faktorisaatioskaalat. Nämä arvot pätevät myös vaihtoeh-
toisilla massavalinnoilla mmax

Q ja mmin
Q , sillä ne vaikuttavat vain oletusskaalavalin-

taan. Jokainen differentioiduista vaikutusaloista on laskettu ainakin kahdella eri
CMS-energialla. Vaikutusalat, joiden törmäysprosessien lopputilat ovat muotoa
HQ +X, edustavat moniosaisia prosesseja p+ p→ Q+Q+X → HQ +X.

Vaikutusala Qdef
f Qmin

f Qmax
f

σpp→cc+X(
√
s) 2mc 1,3 GeV 4mc

σpp→cc+X0<pT<8 GeV, 2.0<y<4.5(
√
s) max{1,3 GeV,mT} max{1,3 GeV,12mT} 2mT

dσpp→Hc+X
|y|<0.5
dpT

(pT ) max{1,3 GeV,mT} max{1,3 GeV,12mT} 2mT

σpp→bb+X(
√
s) 2mb mb 4mb

σpp→Hb+X2.0<η<5.0 (
√
s) mT

1
2mT 2mT

dσpp→Hb+X

dη
(η) mT

1
2mT 2mT

σpp(–)→tt+X(
√
s) 2mt mt 4mt

dσpp
(–)

→tt+X

dpT
(pT ) mT

1
2mT 2mT

dσpp
(–)

→tt+X

dy
(y) mT

1
2mT 2mT

5.1.2 Alimman kertaluvun partonijakaumafunktiot

Alimman kertaluvun CT14-partonijakaumafunktiot ovat esitettyinä pitkittäisliike-
määräosuuden x funktiona, faktorisaatioskaaloilla Qf = 635 MeV (1

2mc), 1,3 GeV,
2,09 GeV (1

2mb), 2,54 GeV (2mc), 4,18 GeV (mb), 8,36 GeV (2mb), 16,72 GeV (4mb),
86,45 GeV (1

2mt), 172,9 GeV (mt), 345,8 GeV (2mt), 691,6 GeV (4mt) ja 1 TeV,
kuvissa 10, 11, 12 ja 13. Partonijakaumafunktiot ovat esitettynä myös faktorisaa-
tioskaalan funktioina, eri x:n arvoilla, kuvissa 14 ja 15. LO-partonijakaumafunktiot
(ja vahva kytkentävakio αs) vastaavat yhden laskentasilmukan jakautumis- ja kerroin-
funktioita [62]. CT14-NLO-partonijakaumafunktiot ovat liitteessä F. Keskimäärin
LO-funktiot saavat selvästi korkeampia arvoja kuin NLO-funktiot.

5.2 c-kvarkkiparien tuotto

Käsittelemäni c-kvarkkiparivaikutusalat ovat kokonaisvaikutusala σpp→cc+X(
√
s),

leikattu vaikutusala σpp→cc+X0<pT<8 GeV, 2.0<y<4.5(
√
s) sekä kuusi differentioitua vaikutusalaa

dσpp→D+X
|y|<0.5
dpT

(pT ), D-mesonityypeillä D0 ja D∗+ ja törmäysenergioilla
√
s = 2,76, 5,02 ja

7 TeV. Vaikutusalat, jotka käsittelevät c-hadronien tuottoa, edustavat kaksiosaista
prosessia p+ p→ c+ c+X → Hc(–) +X.
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Kuva 10. CT14-partonijakaumafunktiot xfi(x,Qf) pitkittäisliikemääräosuu-
den x funktiona, faktorisaatioskaaloilla Qf = 635 MeV, 1,3 GeV ja 2,09 GeV
[62]. Vasemmanpuoleiset kuvaajat edustavat ns. tavanomaisten hiukkasten, g
(musta), u (vihreä), d (sininen), s (vaaleansininen), c (oranssi) ja b (violetti),
partonijakaumafunktioita ja oikeanpuoleiset antihiukkasten g, u, d, s, c ja b
partonijakaumafunktioita (värit vastaavasti kuin tavanomaisilla hiukkasilla).
Gluonipartonijakaumafunktion negatiiviset, epäfysikaaliset, arvot faktorisaa-
tioskaalalla Qf = 635 MeV havainnollistavat ekstrapoloinnin epäluotettavuutta
(luku 4.1).
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Kuva 11. CT14-partonijakaumafunktiot xfi(x,Qf ) pitkittäisliikemääräosuuden
x funktiona, faktorisaatioskaaloilla Qf = 2,54 GeV, 4,18 GeV ja 8,36 GeV [62].
Käyrien värit ja kuvien merkitykset ovat samat kuin kuvassa 10.
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Kuva 12. CT14-partonijakaumafunktiot xfi(x,Qf ) pitkittäisliikemääräosuuden
x funktiona, faktorisaatioskaaloilla Qf = 16,72 GeV, 86,45 GeV ja 172,9 GeV
[62]. Käyrien värit ja kuvien merkitykset ovat samat kuin kuvassa 10.
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Kuva 13. CT14-partonijakaumafunktiot xfi(x,Qf ) pitkittäisliikemääräosuuden
x funktiona, faktorisaatioskaaloilla Qf = 345,8 GeV, 691,8 GeV ja 1 TeV [62].
Käyrien värit ja kuvien merkitykset ovat samat kuin kuvassa 10.
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Kuva 14. CT14-partonijakaumafunktiot muuttujan Qf funktioina, pitkittäis-
liikemääräosuuden arvoilla x = 10−8, 10−7, 10−6, 10−5 ja 10−4 [62]. Näillä
x:n arvoilla tavanomaisten hiukkasten ja vastaavien antihiukkasten partoni-
jakaumafunktioiden arvoissa ei ollut näkyviä eroja (logaritmisella asteikolla
fi(x,Qf ) ≈ fi(x,Qf )). Käyrien värit ovat samat kuin kuvassa 10.
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Kuva 15. CT14-partonijakaumafunktiot muuttujan Qf funktioina, pitkittäislii-
kemääräosuuden arvoilla x = 10−3, 10−2 ja 10−1 [62]. Vasemmanpuoleiset kuvat
edustavat ns. tavanomaisia hiukkasia ja oikeanpuoleiset antihiukkasia. Käyrien
värit ovat samat kuin kuvassa 10.
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Prosessin p + p → c + c + X alimman kertaluvun kokonaisvaikutusala virheineen,
vastaavat kokeelliset tulokset ja K-kertoimella skaalattu vaikutusala ovat esitettyinä
kuvassa 16. Skaalavalintojen vaikutukset, massan ja skaalan epävarmuuksien aiheut-
tamat suhteelliset virheet ja eri partonityyppien kontribuutiot vaikutusalaan ovat
esitettynä kuvassa 17. Vaikutusalan oletusskaalavalintaa vastaavat K-kertoimet ovat
esitettynä kuvassa 18 ja muita skaalavalintoja vastaavat K-kertoimet kuvassa 19.

Kokonaisvaikutusalan kokeelliset vertailutulokset on mitattu törmäysenergioilla
√
s = 200 GeV (RHIC, STAR-kollaboraatio) [39], 2,76 TeV (LHCb) [45, 87] ja

7 TeV (LHCb) [47]. Vaikutusalat määritettiin tarkastelemalla D-mesonien täysin
hadronisia hajoamisia D0 → K−π+, D∗+ → D0π+ → K−π+π+, D+ → K−π+π+ ja
D+
s → φπ+ → K−K+π+ sekä vastaavien antimesonien hajoamisprosesseja.

Olen etsinyt kokeellisen vertailutuloksen mahdollisimman monelle CMS-energian
arvolle. Valitsin vertailutuloksen eri vaihtoehdoista käyttämällä tärkeimpänä kritee-
rinä suhteellisen virheen pienuutta, toiseksi tärkeimpänä analyysin laajuutta (määri-
tykseen osallistuneiden kollaboraatioiden määrä ja tutkittujen hajoamiskanavien
lukumäärä) ja kolmanneksi tärkeimpänä tuloksen tuoreutta. Käytin näitä samoja
kriteerejä myös muiden kokeellisten tulosten valinnassa, jotka eivät ole esitettynä
histogrammeina (tapaukset σpp→cc+X0<pT<8 GeV, 2.0<y<4.5, σpp→bb+X , σ

pp→Hb+X
2.0<η<5.0 , σpp→tt+X ja

σpp→tt+X).

Kuvista 16 ja 17 nähdään, että massan ja skaalan vaihtelujen aiheuttamat
epävarmuudet ovat huomattavan isot. Erityisesti skaala vaikuttaa teoreettiseen
vaikutusalaan suuresti: sovitetut kokonais-K-kertoimet eroavat suurimmillaan noin
tekijällä 22 ((Qdef

r ,Qmax
f ) ja (Qdef

r ,Qmin
f ), kuvat 18 ja 19, taulukko 3). Arvioitu

partonijakaumafunktioiden epävarmuudesta tuleva vaikutusalan virhe on noin puolet
massan vaihtelun aiheuttamasta epävarmuudesta.

Gluoni-gluoni-reaktiot hallitsevat c-kvarkkiparien tuottoa törmäysenergiasta riip-
pumatta (kuva 17c). Partonivuorovaikutusten suhteellisista kontribuutioista (sekä
ylipäätään vaikutusaloista) tulee muistaa, että ne ovat sitä epätarkempia mitä
heikommin partonimallin soveltamisen kriteeri

√
s� 2mp toteutuu (luku 2.3).

Seitsemää teraelektronivolttia vastaava K-kerroin hallitsee selvästi kokonais-K-
kerroinsovituksia kaikilla skaalavalinnoilla (kuvat 18 ja 19). K-kerroin, joka vastaa
törmäysenergiaa 200 GeV, poikkeaa aina selvästi sovitetusta K-kertoimesta. Tämä
voi selittyä osittain sillä, että ehto

√
s� 2mp (mp = 938 MeV [9]) toteutuu parem-

min korkeammilla törmäysenergioilla.
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Seuraavaksi tarkastelen leikattua vaikutusalaa σpp→cc+X0<pT<8 GeV, 2.0<y<4.5, jonka kokeelliset
vertailutulokset on mitattu CMS-energioilla 5 , 7 ja 13 TeV (LHCb-kollaboraatio) [88,
89]. Rapiditettiväli 2,0 < y < 4,5 koskee nyt mittauksissa tarkasteltujen hadronien
D0, D+, D∗+, D+

s ja Λ+
c rapiditeetteja. Käsitellyt hadronien hajoamiskanavat olivat

D0 → K−π+, D+ → K−π+π+, D∗+ → D0π+, D+
s → φπ+ ja Λ+

c → pK−π+ (sekä
vastaavat antihadronien hajoamiskanavat). Viiden ja kolmentoista teraelektroni-
voltin mittaukset käsittelivät vain mesoneja ja seitsemän teraelektronivoltin mittaus
lisäksi myös Λ+

c -baryonia. Lopulliset vaikutusalat σ
pp→cc+X
0<pT<8 GeV, 2.0<y<4.5 saatiin laske-

malla keskiarvot hadronien Hc vaikutusalojen σpp→Hc+X0<pT<8 GeV, 2.0<y<4.5 ja vastaavien
fragmentaatio-osuuksien osamääristä. Hadronien vaikutusalat ja fragmentaatio-
osuudet f(c → D0) = 0,565 ± 0,032, f(c → D+) = 0,246 ± 0,020, f(c → D∗+)
= 0,224 ± 0,028, f(c → D+

s ) = 0,080 ± 0,017 ja f(c → Λ+
c ) = 0,094 ± 0,035 [75]

sisältävät suoran c-kvarkin hadronisoitumisen lisäksi myös mahdolliset raskaampien
mesonien hajoamiset kevyemmiksi mesoneiksi (esim. D∗+ → D0π+, siten c-hadronien
fragmentaatio-osuuksien summa on enemmän kuin yksi). Kuitenkaan b-hadronien
hajoamisista lähtöisin olevia c-hadroneja ei ole sisällytetty mittaukseen. [88, 89]

Koska en ole ottanut huomioon c-hadronien fragmentaatiofunktioita, niin vain
hadronien massat (integrointiväli) ja fragmentaatio-osuudet vaikuttavat teoreet-
tiseen vaikutusalaan σpp→cc+X0<pT<8 GeV, 2.0<y<4.5. Käsiteltyjen c-hadronien massat, mD0

= 1864,83 ± 0,05 MeV, mD+ = 1869,65 ± 0,05 MeV, mD∗+ = 2010,26 ± 0,05 MeV,
mD+

s
= 1968,34±0,07 MeV jamΛ+

c
= 2286,46±0,14 MeV [36, 41, 90], ovat keskimäärin

kohtalaisen lähellä toisiaan. En ole siksi laskenut teoreettista c-hadronin vaiku-
tusalaa erikseen, vaan olen laskenut vain yhden vaikutusalan σpp→cc+X0<pT<8 GeV, 2.0<y<4.5,
efektiivisellä hadronin massalla meff

Hc , ja olen verrannut tätä vaikutusalaa kokeel-
lisiin tuloksiin. Laskin efektiivisen massan painotettuna keskiarvona käyttäen pai-
noina fragmentaatio-osuuksia (jätin massojen ja fragmentaatio-osuuksien virheet
huomiotta):

mHeff
c

=
∑
Hc f(c→ Hc)mHc∑
Hc f(c→ Hc)

≈


1,90254 GeV, kun vain D-mesonit on otettu huomioon

1,93239 GeV, kun Λ+
c on otettu myös huomioon

.
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Kuva 16. Kokonaisvaikutusala σpp→cc+X . Ensimmäisessä kuvassa alempi käyrä
on NLO-partonijakaumafunktioilla (ja alimman kertaluvun aliprosessin vaiku-
tusalan lausekkeella) laskettu vaikutusala virheineen (punainen), ja ylempi käyrä
LO-vaikutusala, jonka partonijakaumafunktioiden virhe (oranssi) on approksi-
moitu olettamalla LO- ja NLO-partonijakaumafunktioilla laskettujen vaiku-
tusalojen suhteelliset virheet samoiksi. Kuvassa on esitetty myös kokeelliset
vertailutulokset energioilla

√
s = 0,200, 2,76 ja 7 TeV [39, 45, 47, 87]. Toisessa

kuvassa on esitettynä LO-vaikutusalan skaalavalintojen epäyksikäsitteisyydestä
syntyvä epävarmuus (violetti) ja c-kvarkin massan epäyksikäsitteisyydetä tuleva
epävarmuus (harmaanruskea/tumma violetti). Oranssi verhokäyrä on LO-tulos
skaalattuna oletusskaalavalintaa vastaavalla K-kertoimella (kuva 18).
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Kuva 17. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot kokonaisvaikutusalalle σpp→cc+X .
Kuvassa (a) punainen verhokäyrä edustaa faktorisaatioskaalan vaihtelua
(Qdef

r , Qmin
f –Qmax

f ) ja musta (tummanpunainen) renormalisaatioskaalan vaihte-
lua (Qmin

r –Qmax
r , Qdef

f ). Tummansininen käyrä on vaikutusala skaalavalinnalla
(Qmax

r ,Qmax
f ) ja vaaleansininen skaalavalinnalla (Qmin

r ,Qmin
f ). Kuvassa (b) on

esitettynä massan (harmaanruskea/tumma violetti) ja skaalavalintojen (violetti)
epävarmuuksien aiheuttamat vaikutusalan suhteelliset virheet. Verhokäyrien
ylärajat edustavat ylävirheitä (positiiviset arvot) ja alarajat alavirheitä (negatii-
viset arvot). Kuvassa (c) on esitettynä partonivuorovaikutusten g + g (musta),
u + u (vihreä), d + d (sininen), s + s (vaaleansininen), c + c (oranssi) ja b + b
(violetti, nyt alle 10−4) suhteelliset osuudet vaikutusalasta. Osuuksista r(cc) ja
r(bb) tulee muistaa, että ne eivät ole tarkkoja, vaan enemmänkin kertaluokkien
suuruuksien arvioita (luku 4.2).
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Kuva 18. Kokonaisvaikutusalan σpp→cc+X K-kertoimet oletusskaalavalinnalla
(Qdef

r ,Qdef
f ). K-kertoimen virheet ovat kokeellisen tuloksen virheet jaettuna vas-

taavalla teoreettisella tuloksella (teor. tuloksen virheitä ei ole huomioitu). Ruskea
katkoviiva on K-kerroinsovituksesta saatu kokonais-K-kerroin.

Asetin c-hadronin massaksi 1,9 GeV.
Leikattu vaikutusala σpp→cc+X0<pT<8 GeV, 2.0<y<4.5 ja sen analyysikuvat ovat esitettyinä

CMS-energian funktiona kuvissa 20 ja 21. Seitsemää eri skaalavalintaa vastaavat
K-kertoimet ovat esitettynä kuvissa 22 ja 23. Kuvien merkintä (

√
s)min merkitsee

nyt pienintä mahdollista CMS-energian arvoa reaktion tapahtumiseksi minimirapidi-
teetilla 2,0.

Kuten kokonaisvaikutusalan tapauksessa, skaalavalinta vaikuttaa erittäin paljon
alimman kertaluvun vaikutusalan arvoihin. Massan vaihtelua vastaava suhteellinen
virhe on myös lähes samansuuruinen kuin aiemmin. Nyt kuitenkin arvioitu partoni-
jakaumafunktioiden virhe on korkeilla energioilla melkein yhtä suuri kuin massan
virhe.

Myös eri partonivuorovaikutusten suhteelliset kontribuutiot leikattuun vaiku-
tusalaan ovat lähes samat kuin kokonaisvaikutusalan tapauksessa. Näissä, sekä
myöhemmin käsiteltävissä b- ja t-kvarkkiparien tuottojen kokonais- ja leikattujen
vaikutusalojen, tapauksissa osuudet r(uu) ja r(dd) laskevat ja r(gg) nousee törmäys-
energian

√
s kasvaessa. Tämä johtuu siitä, että pienemmillä pitkittäisliikemääräo-

suuden x1,2 arvoilla gluonipartonijakaumafunktion arvot ovat suurempia suhteessa
u-, u-, d- ja d-partonijakaumafunktioiden arvoihin, kun skaala on pieni (Qf & 1,3
GeV, kuvat 14 ja 15), ja 4m2

T

s
≤ x1,2 (tai 4m2

Q

s
≤ x1,2). Alhaisilla poikittaisliikemäärän

arvoilla ja siten alhaisilla skaaloilla (Qf = mT ) on suurin kontribuutio vaikutusalaan,
mikä on havaittavissa esimerkiksi kuvista 24, 28, 32, 36, 40, 44.
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Kuva 19. Kokonaisvaikutusalan σpp→cc+X K-kertoimet vaihtoehtoisilla
skaalavalinnoilla (Qmax

r ,Qmax
f ), (Qmin

r ,Qmin
f ), (Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f )

ja (Qmax
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 18.
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Taulukko 3. Vaikutusalojen σpp→cc+X ja σpp→cc+X0<pT<8 GeV, 2.0<y<4.5 kokonais-K-
kertoimien arvot seitsemällä eri skaalavalinnalla (kuvat 18, 19, 22 ja 23).

(Qr,Qf ) K(σpp→cc+X) K(σpp→cc+X0<pT<8 GeV, 2.0<y<4.5)
(Qdef

r ,Qdef
f ) 1,25± 0,10 2,58± 0,13

(Qmax
r ,Qmax

f ) 0,79± 0,07 1,15± 0,06
(Qmin

r ,Qmin
f ) 5,4± 0,5 2,03± 0,10

(Qdef
r ,Qmax

f ) 0,48± 0,04 0,65± 0,04
(Qmin

r ,Qdef
f ) 0,64± 0,05 0,83± 0,04

(Qdef
r ,Qmin

f ) 10,4± 0,9 8,1± 0,4
(Qmax

r ,Qdef
f ) 2,1± 0,2 4,4± 0,3

K-kertoimet vastaavat kokonais-K-kerrointa paremmin kuin kokonaisvaikutusalan
tapauksessa. 7 TeV-tuloksen K-kerroin on aina sovitusarvoa ja muita K-kertoimia
pienempi. Tähän voi vaikuttaa se, että 7 TeV-mittaus tarkasteli hieman eri lopputilaa
(Λ+

c -hadroni mukana) kuin 5 TeV- ja 13 TeV-mittaukset.
CMS-energioita

√
s = 5, 7 ja 13 TeV vastaavat leikatun vaikutusalan

σpp→cc+X0<pT<8 GeV, 2.0<y<4.5 teoreettiset arvot ovat 515, 650 ja 970 µb. Mikäli olisin käyt-
tänyt pT -riippumatonta oletusskaalaa 2mc skaalan mT (max{1,3 GeV,mT}) sijasta,
niin vaikutusalan arvot olisivat olleet 874, 1135 ja 1767 µb eli huomattavasti suu-
remmat. Tämä selittyy sillä, että pT -differentioitu vaikutusala on korkeimmillaan
alhaisilla poikittaisliikemäärän arvoilla, missä mT < 2mc, ja sillä, että partonijakau-
mafunktioiden arvot kasvavat hyvin nopeasti faktorisaatioskaalan funktiona alueessa
Qf ∈ [1,3 GeV,2mc]. Partonijakaumafunktioden vaihtelu vaikuttaa selvästi enemmän
vaikutusaloihin kuin vahvan kytkentävakion vaihtelu näin pienillä skaaloilla (kuvat
16 ja 20). Skaalavalinnalla 2mc K-kertoimet ovat 41 – 45 prosenttia pienemmät,
jolloin kokonais-K-kerroin on arviolta noin 1,47. Tämä vastaa paremmin kokonais-
vaikutusalan σpp→cc+X oletusskaalavalintaa vastaavaa K-kerrointa 1,25± 0,10 kuin
2,58± 0,13 (taulukko 3).

Osa käyttämistäniD-mesonien vaikutusalojen kokeellisista vertailutuloksista koskevat
yleisesti D-mesonien tuottoa p + p → D + X eivätkä kaksiosaista prosessia p + p

→ c+ c+X → D +X. Tämä johtuu siitä, että c-hadronien teoreettisien tuottojen
laskemisessa jätetään usein huomiotta yksittäisten c-kvarkkien syntymekanismit
niiden pienen kontribuution vuoksi (kuten lähteissä [91] ja [92]). Siten laskemani
teoreettiset tulokset ja käyttämäni kokeelliset tulokset ovat vertailukelpoisia.
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Kuva 20. Leikattu vaikutusala σpp→cc+X0<pT<8 GeV, 2.0<y<4.5. Kuvaajien merkitykset
ovat samat kuin kuvassa 16. Kokeelliset vertailutulokset ovat lähteistä [88, 89].
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Kuva 21. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri
partonivuorovaikutusten suhteelliset kontribuutiot leikatulle vaikutusalalle
σpp→cc+X0<pT<8 GeV, 2.0<y<4.5. Kuvaajien merkitykset ovat samat kuin kuvassa 17.
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Kuva 22. Leikatun vaikutusalan σpp→cc+X0<pT<8 GeV, 2.0<y<4.5 K-kertoimet ole-
tusskaalavalinnalla (Qdef

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa 18.
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Kuva 23. Leikatun vaikutusalan σpp→cc+X0<pT<8 GeV, 2.0<y<4.5 K-kertoimet vaihto-
ehtoisilla skaalavalinnoilla (Qmax

r ,Qmax
f ), (Qmin

r ,Qmin
f ), (Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ),

(Qdef
r ,Qmin

f ) ja (Qmax
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 18.
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Ennen D-mesonien pT -jakaumien tarkastelemista on syytä ottaa huomioon seuraava
asia: Tein luvussa 2.3. approksimaation, jossa hadronisoituvan raskaan kvarkin
ja sen hadronin liikemäärät oletetaan samoiksi sekä fragmentaatiofunktiot korva-
taan vastaavilla fragmentaatio-osuuksilla (yhtälöt (58) ja (59)). Tämän tekemäni
hadronisaatioapproksimaation vaikutuksia pT -differentioituihin vaikutusaloihin on
mahdollista arvioida tarkastelemalla pT -jakaumien muotoja.

Approksimoidaan D-mesonin fragmentaatiofunktiota mesonin fragmentaatio-
osuuden ja Petersonin fragmentaatiofunktion tulona (nyt

∫ 1
0 f(c → D)DHc

c (z)dz
= f(c→ D)). Liikemääräosuus z ∈ [0,1] oli määritelty hadronin kvarkin liikemäärän
suuntaisen komponentin ja kvarkin liikemäärän suhteeksi. Merkitään c-kvarkin
liikemäärää pc ja D-mesonin liikemäärää pD. Koska käsittelemme D-mesonien
tuotoissa aina keskirapiditeettia |y| < 0,5 ja koska raskaan kvarkin liikemäärän
suunta muuttuu keskimäärin vain vähän hadronisaatiossa, niin pDT ≈ zpcT . Täten

dσpp→D+X

dpDT
=
∫
dpcT

dσpp→cc+X

dpcT

∫
dz f(c→ D)DHc

c (z)δ(pDT − zpcT ).

Tarpeeksi korkeilla poikittaisliikemäärän pT arvoilla dσpp→cc+X

dpcT
≈ A

(pcT )n , missä A on
jokin vakio. Tässä tapauksessa pT ' 4 GeV (kuvat 24b, 28b, 32b, 36b, 40b ja 44b).
Käyttäen hadronisaatioapproksimaatiota saadaan dσpp→D+X

dpDT
= f(c→D)A

(pcT )n , ja pcT = pDT .

Muokkaamalla arviota saadaan

dσpp→D+X

dpDT
=
∫
dpcT

dσpp→cc+X

dpcT

∫
dz f(c→ D)DHc

c (z)δ(pDT − zpcT )

= f(c→ D)
∫
dpcT

A

(pcT )n
∫
dz DHc

c (z)1
z
δ(p

D
T

z
− pcT )

= f(c→ D)
∫
dz DHc

c (z)1
z

A

(p
D
T

z
)n

= f(c→ D)A
(pDT )n

∫
dz zn−1DHc

c (z).

Siispä osuus
∫
dz zn−1DHc

c (z) ≤ 1 antaa arvion siitä, kuinka paljon pienempi pT -
differentioitu vaikutusala olisi laskevalla osuudella pT ' 4 GeV, mikäli olisin käyttänyt
fragmentaatiofunktioita fragmentaatio-osuuksien sijaan. Kun vaikutusalan kuvaajan
x- ja y-akselit esitetään logaritmisesti, niin potenssi n on määritettävissä laskevan
suoran kulmakertoimena:
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log10(dσ
pp→D+X

dpDT
) ≈ log10(f(c→ D)A

(pcT )n ) = log10(f(c→ D)A)− nlog10(pcT ).

Logaritmisista kuvaajista arvioidut potenssit n ovat esitettynä taulukossa 4.

Taulukko 4. D-mesonien pT -differentioitujen vaikutusalojen kuvaajista
arvioidut potenssit n.

Vaikutusala n

dσpp→D
0+X

|y|<0.5
dpT

,
√
s = 2,76 TeV 4,06

dσpp→D
0+X

|y|<0.5
dpT

,
√
s = 5,02 TeV 4,55

dσpp→D
0+X

|y|<0.5
dpT

,
√
s = 7 TeV 3,71

dσpp→D
∗++X

|y|<0.5
dpT

,
√
s = 2,76 TeV 3,93

dσpp→D
∗++X

|y|<0.5
dpT

,
√
s = 5,02 TeV 4,46

dσpp→D
∗++X

|y|<0.5
dpT

,
√
s = 7 TeV 4,08

Potenssin n vaihtelu välillä 3,71 – 4,55 vastaa tekijän
∫
dz zn−1DHc

c (z) arvoja
0,221 – 0,294. Siispä käyttämäni hadronisaatioapproksimaatio arviolta jopa nelinker-
taistaa pT -differentioidut vaikutusalat laskevilla osuuksilla pT ' 4 GeV. Tämä vastaa
K-kertoimien pienentymistä neljäsosaan fragmentaatiofunktiot huomioon ottavaan
tulokseen nähden.

Vaikka tämä arvio osoittaa selvästi, että fragmentaatiofunktiot tulisi ottaa
huomioonD-mesonien pT -differentioituja vaikutusaloja laskiessa, niin esitän kuitenkin
hadronisaatioapproksimaatiolla laskemani vaikutusalat. Tekijöiden

∫
dz zn−1DHc

c (z)
≤ 1, n = 3,71 – 4,55, vaikutukset vaikutusaloihin ovat kuitenkin kohtalaisen vakioita.

Tämä arvio alentaa myös leikatun vaikutusalan σpp→cc+X0<pT<8 GeV, 2.0<y<4.5 luotetta-
vuutta. Leikkaukset koskevat nimenomaan hadronien poikittaisliikemääriä ja rapidi-
teetteja (jotka ovat pT -riippuvaisia).

ALICE-kollaboraatio on mitannut D0- ja D∗+-mesonien pT -differentioidut vaiku-
tusalat protoni–protoni-törmäyksissä, keskirapiditeetissa |y| < 0,5, CMS-energioilla
√
s = 2,76 TeV [45, 87], 5,02 TeV [93, 94] ja 7 TeV [95, 96]. Kuten tapauksessa

σpp→cc+X0<pT<8 GeV, 2.0<y<4.5, raskaampien D-mesonien hajoamisista syntyneet D-mesonit on
otettu huomioon ja b-kvarkkien hajoamisista syntyneet jätetty huomiotta. Mesonit
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tunnistettiin hajoamisten D0 → K−π+ ja D∗+ → D0π+ → K−π+π+ (ja vastaavien
antimesonien hajoamisten) avulla.

Olen esittänyt vastaavat teoreettiset D-mesonien vaikutusalat sekä niiden ana-
lyysikuvat kuvissa 24, 25, 28, 29, 32, 33, 36, 37, 40, 41, 44 ja 45. Käytin fragmentaatio-
osuuksia f(c → D0) = 0,557 ± 0,023 ja f(c → D∗+) = 0,238 ± 0,007, joita
käytettiin

√
s = 2,76 teraelektronivoltin mittauksessa [45], ja mesonien massoja

mD0 = 1864,83(±0,05) MeV ja mD∗+ = 2010,26(±0,05) MeV [41]. Oletus- ja vaihto-
ehtoisilla skaalavalinnoilla lasketut K-kertoimet ovat kuvissa 26, 27, 30, 31, 34, 35,
38, 39, 42, 43, 46 ja 47.

Poikittaisliikemääräjakaumien arvioidut CT14-partonijakaumafunktioiden virheet
ovat nyt jopa suuremmat kuin vastaavat massan virheet. Skaalavalinnat aiheutta-
vat edelleen selvästi suurimman epävarmuuden tuloksiin. Kuitenkin nyt skaalojen
vaihtelusta johtuvat suhteelliset epävarmuudet ovat huomattavasti pienemmät kuin
kokonais- ja leikatun vaikutusalan tapauksissa (kuvat 25b, 29b, 33b, 37b, 41b ja 45b).
Fragmentaatio-osuuksia vastaavat virheet ovat kaikissa tapauksissa lähes mitättömät.

Miksi massa vaikuttaa vaikutusaloihin näin vähän? Esimerkiksi tt-tuoton pT -
differentioiduissa vaikutusaloissa massan virhe on paljon merkityksellisempi (luku
5.4, kuvat 74b ja 82b), vaikka t-kvarkin massan suhteelliset ylä- ja alavirheet
ovat paljon pienemmät kuin c-kvarkin (luku 5.1.1). c-kvarkkien massan vähäi-
nen efekti selittyy seuraavasti: Mandelstamin muuttujat ovat ŝ = 2m2

T (1 + cosh(y3−
y4)), t̂ = m2

c − m2
T (1 + ey4−y3) ja û = m2

c − m2
T (1 + ey3−y4) (yhtälöt (86), (87)

ja (88)). Mittauksissa tarkastellut poikittaisliikemäärien arvot ulottuvat varsin
pitkälle (maksimiarvo 12 – 36 GeV), joten useimmiten mT ≈ pT (mdef

c = 1,27 GeV,
mmin
c = 993 MeV ja mmax

c = 1,67 GeV). Tämä selittää osaltaan myös sitä, miksi
vaikutusalojen massan ylävirheet (mmin

c ) ovat pienempiä kuin alavirheet (mmax
c )

jakaumien alkupäissä (kuvat 25b, 29b, 33b, 37b, 41b ja 45b). Lisäksi Mandelstamin
muuttujien m2

c-termit kumoutuvat osittain t̂-differentioitujen aliprosessien vaikutusa-
lojen lausekkeissa (yhtälöt (70) ja (78)). Massan muutos vaikuttaa myös skaalaan
Qdef
r = Qdef

f = mT =
√
m2
c + p2

T . Siten massan kasvattamisesta (laskemisesta) tuleva
aliprosessin vaikutusalan, vahvan kytkentävakion αs(Qr) ja integrointialueen (yhtälöt
(85) ja (89), muissa tapauksissa myös (83) ja (84)) pienentyminen (kasvaminen)
kumoutuu osittain partonijakaumafunktioiden fi(x,Qf ) kasvamisella (laskemisella),
joka on hyvin nopeaa pienillä faktorisaatioskaalan arvoilla (kuva 14).

Kuvista 25a, 29a, 33a, 37a, 41a ja 45a nähdään, että pT -asteikkojen alkupäissä
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(pienemmät skaalat) faktorisaatioskaalan vaihtelu vaikuttaa enemmän vaikutusaloihin
kuin renormalisaatioskaalan vaihtelu ja asteikkojen loppupäissä (suuremmat skaalat)
taas päinvastoin. Tämä poikkeaa kokonais- ja leikatun vaikutusalan tapauksista,
joissa faktorisaatioskaala vaikuttaa (lähes aina) selvästi enemmän.

Gluonivuorovaikutukset hallitsevat jälleen partonivuorovaikutusten suhteelli-
sissa kontribuutioissa vaikutusaloihin. Kuitenkin prosessien u + u → Q + Q ja
d+ d→ Q+Q osuudet alkavat nousemaan poikittaisliikemäärän kasvaessa. Kun pT
kasvaa, niin sen seurauksena (keskirapiditeettia vastaavat) pitkittäisliikemääräosuu-
det x1,2 = mT√

s
(e±y3 + e±y4) kasvavat myös. Kun taas x1 ja x2 kasvavat, niin gluonin

ja valenssikvarkkien (ja niiden antikvarkkien) partonijakaumafunktioiden arvojen
väliset erot pienenevät (kuva 14), ja siten r(uu) ja r(dd) nousevat.

Skaalavalintoja koskevissa verhokäyrissä ja skaalavalintaa (Qmin
r ,Qmin

f ) vastaavien
vaikutusalojen kuvaajissa on nähtävissä ns. taitoksia pienillä poikittaisliikemäärän pT
arvoilla (kuvat 24b, 25a, 28b, 29a, 32b, 33a, 36b, 37a, 40b, 41a, 44b ja 45a). Vastaavat
taitokset ovat myös skaalavalintojen suhteellisten epävarmuuksien kuvaajissa (kuvat
25b, 29b, 33b, 37b, 41b ja 45b). Lisäksi CMS-energialla

√
s = 5,02 TeV vaikutusalan

dσpp→D
0+X

|y|<0.5
dpT

massan (suhteellisen) epävarmuuden ylärajassa on jyrkkä taitos (kuvat
28b ja 29b). Nämä kuvaajien käyttäytymiset johtuvat faktorisaatioskaalasta, jonka
miniarvoksi asetin 1,3 GeV. Yhtäpitävyys mT =

√
m2
c + p2

T = 1,3 GeV toteutuu,
kun mc = mdef

c = 1,27 GeV ja pT ≈ 0,28 GeV tai kun mc = mmin
c = 0,993 GeV ja

pT ≈ 0,839 GeV. Jälkimmäinen poikittaisliikemäärän arvo vastaa yksittäistä massan
virheverhokäyrän taitosta. Voidaan myös laskea, että 1

2mT = 1,3 GeV, kun pT

≈ 2,27 GeV (mc = mdef
c ). Vaihtoehtoisilla skaalavalinnoilla (Qdef

r ,Qmin
f ) ja (Qmin

r ,Qmin
f )

laskettujen vaikutusalojen taitokset tapahtuvat juuri tällä liikemäärän arvolla.

D-mesonien pT -differentioitujen vaikutusalojen K-kertoimet käyttäytyvät hyvin
samankaltaisesti: Skaalavalinnoilla (Qdef

r ,Qdef
f ) ja (Qmax

r ,Qdef
f ) K-kertoimet sijoittuvat

sovitusarvon ympärille ja niiden vaihtelut eivät ole suuria (kuvat 26, 27f, 30, 31f,
34, 35f, 38, 39f, 42, 43f, 46 ja 47f). Skaalavalintoja (Qmax

r ,Qmax
f ), (Qdef

r ,Qmax
f ) ja

(Qmin
r ,Qdef

f ) vastaavat K-kertoimet ovat pT -asteikkojen aluissa nousevia (kuvat 27a,
27c, 27d, 31a, 31c, 31d, 35a, 35c, 35d, 39a, 39c, 39d, 43a, 43c, 43d, 47a, 47c ja
47d). Skaalavalinnoilla (Qmin

r ,Qmin
f ) ja (Qdef

r ,Qmin
f ) K-kertoimet (nousevat aluksi

jyrkästi ja sen jälkeen) laskevat (27b, 27e, 31b, 31e, 35b, 35e, 39b, 39e, 43b, 43e,
47b ja 47e). Useat tekijät vaikuttavat pieniä poikittaisliikemääriä vastaaviin K-
kertoimiin ja siten mahdollisesti niiden heilahteluihin: Vahvan kytkentävakion αs(Qr)
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ja partonijakaumafunktioiden fi(x,Qf ) kasvu- ja laskunopeudet poikittaisliikemäärän
suhteen vaihtelevat eri renormalisaatio- ja faktorisaatioskaalavalinnoilla. Häiriöteo-
rian soveltamiseksi vaadittiin, että Qr & 1 GeV, ja tämä kriteeri ei täyty hyvin
minimirenormalisaatioskaalalla Qr = 1

2mT , kun pT < 1,55 GeV. (Tosin tämä pT -alue
esiintyy vain vähän tarkastelluissa vaikutusaloissa.) Minimifaktorisaatioskaalalla
Qmin
f = max{1,3 GeV,12mT} vaikutusala ei kasva ns. normaalisti asetetun miniarvon

1,3 GeV vuoksi. Lisäksi fragmentaatiofunktioiden vaikutuksia teoreettisiin vaiku-
tusaloihin on hankala arvioida, kun dσpp→cc+X

dpT
≈ A

pnT
ei päde eli kun pT / 4 GeV.

K-kertoimet kuitenkin stabiloituvat korkeammilla poikittaisliikemäärän arvoilla,
ja nämä K-kertoimet ovat arviolta noin yhden neljäsosan fragmentaatiofunktioita
hyödyntäen lasketuista K-kertoimista.

Prosessien p+ p→ c+ c+X → D0 +X ja p+ p→ c+ c+X → D∗+ +X keski-
rapiditeetin |y| < 0,5 poikittaisliikemäärän suhteen differentioitujen vaikutusalojen
kokonais-K-kertoimet ovat esitettyinä taulukoissa 5 ja 6. Arvoista nähdään, että
samaa törmäysprosessia ja skaalavalintaa (Qr,Qf ) vastaavat K-kertoimet ovat usein
kohtalaisen lähellä toisiaan (heilahtelusta huolimatta).

Tein K-kerroinsovitukset erikseen vielä poikittaisliikemäärillä pT ≥ 4 GeV, koska
näissä pT -alueissa hadronisaatioapproksimaation vaikutus on arviolta suunnilleen
vakio (taulukot 7 ja 8). Sovitusten tuloksista havaitaan, että samaa prosessia ja
skaalavalintaa vastaavat K-kertoimet alueissa pT ≥ 4 GeV vastaavat toisiaan selvästi
paremmin kuin varsinaiset kokonais-K-kertoimet. Tosin näistä sovituksista tulee
ottaa huomioon se, että hadronisaatioapproksimaation arvioitu vaikutus vaihtelee
jonkin verran kulmakerroinpotenssin n mukaan (taulukko 4), johon skaalavalinta
vaikuttaa. Lisäksi joillakin skaalavalinnoilla vaikutusalakäyrät ovat lievästi kaarevia
esittäessä x- ja y-akselit logaritmisella asteikolla. Nämä seikat heikentävät hieman
K-kertoimien vertailukelpoisuutta.

5.3 b-kvarkkiparien tuotto

Tarkastelemani b-kvarkkiparivaikutusalat ovat kokonaisvaikutusala σpp→bb+X(
√
s),

leikattu vaikutusala σpp→Hb+X2.0<η<5.0 (
√
s) sekä differentioidut vaikutusalat dσpp→Hb+X

dη
(η)

CMS-energioilla
√
s = 7 TeV ja 13 TeV. Kolme jälkimmäistä vaikutusalaa edustavat

kaksiosaista prosessia p+ p→ b+ b+X → Hb
(–) +X.
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(b)

Kuva 24. pT -differentioitu vaikutusala
dσpp→D

0+X
|y|<0.5
dpT

, CMS-energialla√
s = 2,76 TeV. Mustien ristien horisontaaliset viivat edustavat kokeellisten

tulosten histogrammipylväitä ja vertikaaliset viivat statistista virhettä. Har-
maat osuudet horisontaalisen viivan ylä- ja alapuolella ovat systemaattiset ylä-
ja alavirheet. Teoreettista tulosta halkovat mustat horisontaaliset viivat ovat
histogrammipylväsvälejä vastaavat teoreettiset keskiarvot. Kuvassa (b) vihreä
verhokäyrä on fragmentaatio-osuuden virheen aiheuttama vaikutusalan virhe,
joka ei näy nyt kunnolla pienuutensa vuoksi. Kuvaajien merkitykset ovat muuten
samat kuin kuvassa 16. Kuviin ei ole merkittynä D0-mesonin hajoamisen haa-
rautumissuhteesta (decay branching ratio) ja normalisaatiosta (luminositeetti,
yhtälö (26)) tulevia kokeellisten tulosten systemaattisia virheitä (1,3 % ja 1,9
%) [45, 87]. Nämä virheet on kuitenkin otettu huomioon K-kerroinsovituksissa
(kuvat 26 ja 27).
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(c)

Kuva 25. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pT -differentioidulle vaikutusalalle
dσpp→D

0+X
|y|<0.5
dpT

,
√
s = 2,76 TeV. Kuvassa (b) vihreä verhokäyrä on fragmentaatio-

osuuden virheen aiheuttama vaikutusalan suhteellinen virhe. Kuvaajien merki-
tykset ovat muuten samat kuin kuvassa 17.

Taulukko 5. Vaikutusalojen
dσpp→D

0+X
|y|<0.5
dpT

kokonais-K-kertoimet eri skaalavalin-
noilla CMS-energioilla

√
s = 2,76, 5,02 ja 7 TeV (kuvat 26, 27, 30, 31, 34 ja

35).

(Qr,Qf )
√
s = 2,76 TeV

√
s = 5,02 TeV

√
s = 7 TeV

(Qdef
r ,Qdef

f ) 2,4± 0,5 2,26± 0,06 2,3± 0,2
(Qmax

r ,Qmax
f ) 2,2± 0,4 1,40± 0,04 1,62± 0,14

(Qmin
r ,Qmin

f ) 2,7± 0,5 1,51± 0,05 2,7± 0,3
(Qdef

r ,Qmax
f ) 1,4± 0,3 0,78± 0,03 0,98± 0,09

(Qmin
r ,Qdef

f ) 1,4± 0,3 0,92± 0,03 1,22± 0,10
(Qdef

r ,Qmin
f ) 4,2± 0,8 4,04± 0,11 4,0± 0,4

(Qmax
r ,Qdef

f ) 3,6± 0,7 3,37± 0,08 3,3± 0,3
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Kuva 26. pT -differentioidun vaikutusalan
dσpp→D

0+X
|y|<0.5
dpT

,
√
s = 2,76 TeV,

K-kertoimet oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Vertikaaliset mustat viivat
ja harmaat laatikot ovat kokeellisten tulosten statistiset ja systemaattiset
virheet jaettuna teoreettisilla tuloksilla (keskiarvo). Ruskea katkoviiva on K-
kerroinsovituksesta saatu kokonais-K-kerroin. K-kerroinsovituksessa on otettu
huomioon statistisen ja systemaattisen virheen lisäksi D0-mesonin hajoamisen
haarautumissuhteesta tuleva virhe 1,3 % ja normalisaatiosta tuleva virhe 1,9 %.

Taulukko 6. Vaikutusalojen
dσpp→D

∗++X
|y|<0.5
dpT

kokonais-K-kertoimet eri skaalavalin-
noilla CMS-energioilla

√
s = 2,76, 5,02 ja 7 TeV (kuvat 38, 39, 42, 43, 46 ja

47).

(Qr,Qf )
√
s = 2,76 TeV

√
s = 5,02 TeV

√
s = 7 TeV

(Qdef
r ,Qdef

f ) 3,1± 0,6 2,82± 0,07 2,7± 0,2
(Qmax

r ,Qmax
f ) 3,0± 0,6 2,43± 0,06 2,0± 0,2

(Qmin
r ,Qmin

f ) 3,2± 0,6 3,23± 0,08 3,3± 0,3
(Qdef

r ,Qmax
f ) 2,0± 0,4 1,56± 0,04 1,27± 0,10

(Qmin
r ,Qdef

f ) 1,9± 0,4 1,64± 0,04 1,50± 0,11
(Qdef

r ,Qmin
f ) 4,9± 1,0 4,86± 0,12 4,9± 0,4

(Qmax
r ,Qdef

f ) 4,4± 0,8 4,07± 0,10 3,9± 0,3
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(f)

Kuva 27. pT -differentioidun vaikutusalan
dσpp→D

0+X
|y|<0.5
dpT

,
√
s = 2,76 TeV,

K-kertoimet vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ),
(Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat kuin

kuvassa 26. D0-mesonin hajoamisen haarautumissuhteesta ja normalisaatiosta
tulevat systemaattiset virheet on otettu huomioon K-kerroinsovituksissa.
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(b)

Kuva 28. pT -differentioitu vaikutusala
dσpp→D

0+X
|y|<0.5
dpT

, CMS-energialla√
s = 5,02 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kuviin ei

ole merkittynä D0-mesonin hajoamisen haarautumissuhteesta ja integroidusta
luminositeetista (yhtälö (27)) tulevia kokeellisten tulosten systemaattisia virheitä
(1,0 % ja 2,1 %, ovat otettuina huomioon K-kerroinsovituksissa) [93, 94].



109

0 5 10 15 20 25 30 35
 [GeV]

T
p

3−10

2−10

1−10

1

10

210

b/
G

eV
]

µ [
T

dp|y
|<

0.
5

+
X

0
 D

→
pp

 
σd

  

(a)

0 5 10 15 20 25 30 35
 [GeV]

T
p

100−

0

100

200

300

S
uh

te
el

lin
en

 v
irh

e 
[%

]   

(b)

0 5 10 15 20 25 30 35
 [GeV]

T
p

4−10

3−10

2−10

1−10

1
r(

ij)
  

(c)

Kuva 29. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pT -differentioidulle vaikutusalalle
dσpp→D

0+X
|y|<0.5
dpT

,
√
s = 5,02 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 25.

Taulukko 7. Vaikutusalojen
dσpp→D

0+X
|y|<0.5
dpT

sovitus-K-kertoimet poikittaisliikemää-
räalueissa pT ≥ 4 GeV eri skaalavalinnoilla CMS-energioilla

√
s = 2,76, 5,02 ja 7

TeV (kuvat 26, 27, 30, 31, 34 ja 35).

(Qr,Qf )
√
s = 2,76 TeV

√
s = 5,02 TeV

√
s = 7 TeV

(Qdef
r ,Qdef

f ) 2,5± 0,6 2,41± 0,07 2,4± 0,3
(Qmax

r ,Qmax
f ) 2,7± 0,6 2,50± 0,08 2,4± 0,3

(Qmin
r ,Qmin

f ) 2,5± 0,6 2,51± 0,08 2,5± 0,3
(Qdef

r ,Qmax
f ) 1,9± 0,5 1,77± 0,06 1,7± 0,2

(Qmin
r ,Qdef

f ) 1,6± 0,4 1,58± 0,05 1,56± 0,15
(Qdef

r ,Qmin
f ) 3,8± 0,9 3,70± 0,11 3,8± 0,4

(Qmax
r ,Qdef

f ) 3,5± 0,8 3,37± 0,10 3,3± 0,3
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Kuva 30. pT -differentioidun vaikutusalan
dσpp→D

0+X
|y|<0.5
dpT

,
√
s = 5,02 TeV, K-

kertoimet oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin ku-
vassa 26. K-kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen
virheen lisäksi D0-mesonin hajoamisen haarautumissuhteesta tuleva vaikutusalan
virhe 1,0 % ja integroidusta luminositeetista tuleva virhe 2,1 %.

Taulukko 8. Vaikutusalojen
dσpp→D

∗++X
|y|<0.5
dpT

sovitus-K-kertoimet poikittaisliikemää-
räalueissa pT ≥ 4 GeV eri skaalavalinnoilla CMS-energioilla

√
s = 2,76, 5,02 ja 7

TeV (kuvat 38, 39, 42, 43, 46 ja 47).

(Qr,Qf )
√
s = 2,76 TeV

√
s = 5,02 TeV

√
s = 7 TeV

(Qdef
r ,Qdef

f ) 3,2± 0,7 2,98± 0,08 2,8± 0,3
(Qmax

r ,Qmax
f ) 3,5± 0,7 3,07± 0,08 2,8± 0,3

(Qmin
r ,Qmin

f ) 3,1± 0,7 3,11± 0,08 3,1± 0,3
(Qdef

r ,Qmax
f ) 2,5± 0,5 2,18± 0,06 2,0± 0,2

(Qmin
r ,Qdef

f ) 2,1± 0,5 1,94± 0,05 1,84± 0,15
(Qdef

r ,Qmin
f ) 4,6± 1,0 4,61± 0,12 4,6± 0,4

(Qmax
r ,Qdef

f ) 4,4± 0,9 4,16± 0,11 4,0± 0,4
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(f)

Kuva 31. pT -differentioidun vaikutusalan
dσpp→D

0+X
|y|<0.5
dpT

,
√
s = 5,02 TeV,

K-kertoimet vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ),
(Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat

kuin kuvassa 26. D0-mesonin hajoamisen haarautumissuhteesta ja integroi-
dusta luminositeetista tulevat systemaattiset virheet on otettu huomioon K-
kerroinsovituksissa.
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(b)

Kuva 32. pT -differentioitu vaikutusala
dσpp→D

0+X
|y|<0.5
dpT

, CMS-energialla
√
s = 7 TeV.

Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kuviin ei ole merkittynä
normalisaatiosta tulevaa kokeellisten tulosten systemaattista virhettä (3,7 %,
otettu huomioon K-kerroinsovituksissa) [95, 96].
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(c)

Kuva 33. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pT -differentioidulle vaikutusalalle
dσpp→D

0+X
|y|<0.5
dpT

,
√
s = 7 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 25.
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Kuva 34. pT -differentioidun vaikutusalan
dσpp→D

0+X
|y|<0.5
dpT

,
√
s = 7 TeV, K-kertoimet

oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 26. K-
kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen virheen
lisäksi normalisaatiosta tuleva virhe 3,7 %.

Kokonaisvaikutusala σpp→bb+X ja sen analyysikuvat ovat esitettynä kuvissa 48 ja 49.
Eri skaalavalintoja vastaavat K-kertoimet ovat kuvissa 50 ja 51.

Kaikki kokeelliset vertailutulokset määritettiin tutkimalla b-hadronien, tai b-
hadroneista syntyneiden c-hadronien, semileptonisia hajoamisia. Vaikutusalat, jotka
mitattiin energioilla

√
s = 200 GeV (PHENIX-kollaboraatio) [42, 97], 2,76 TeV

(ALICE) [45, 98] ja 7 TeV (ALICE) [44], käsittelivät hajoamisista syntyneitä elek-
troneja (ja positroneja). Törmäysenergialla

√
s = 500 GeV (PHENIX) [5] tehty

mittaus tarkasteli b- ja b-hadroneista syntyneitä samanmerkkisiä myonipareja µ±µ±.
Kuten cc-kokonaisvaikutusalan tapauksessa, partonijakaumafunktioita vastaava

virhe on mitätön. Skaalavalinnasta tuleva (suhteellinen) epävarmuus sen sijaan
on nyt huomattavasti pienempi kuin c-kvarkkien tapauksissa (kuvat 48b ja 49b).
Tämä johtuu siitä, että vahva kytkentävakio ja partonijakaumafunktiot stabiloituvat
renormalisaatio-/faktorisaatioskaalan kasvaessa (kuvat 4, 14b, 14c, 14d, 14e, 15a ja
15b). Kuvasta 49a nähdään myös, että renormalisaatioskaalan vaihtelun merkitys on
nyt suurempi.

Massan vaihtelun vaikutus vaikutusalaan σpp→cc+X on pienempi kuin vaiku-
tusalaan σpp→bb+X (kuvat 17b ja 49b), vaikka c-kvarkin massan suhteellinen vaihtelu
on suurempaa kuin b-kvarkin (mdef

c = 1,27 GeV, mmin
c = 993 MeV, mmax

c = 1,67 GeV,
mdef
b = 4,18 GeV, mmin

b = 3,610 GeV, mmax
b = 4,78 GeV). Tämä selittyy sillä,

että massan nostaminen (laskeminen) nostaa (laskee) myös faktorisaatioskaalaa.
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(f)

Kuva 35. pT -differentioidun vaikutusalan
dσpp→D

0+X
|y|<0.5
dpT

,
√
s = 7 TeV, K-kertoimet

vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ), (Qdef
r ,Qmax

f ),
(Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa

26. Normalisaatiosta tuleva virhe on otettu huomioon K-kerroinsovituksissa.
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(b)

Kuva 36. pT -differentioitu vaikutusala
dσpp→D

∗++X
|y|<0.5
dpT

, CMS-energialla√
s = 2,76 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kuviin ei

ole merkittynä D∗+-mesonin hajoamisen haarautumissuhteesta ja normalisaa-
tiosta tulevia kokeellisten tulosten systemaattisia virheitä (1,5 % ja 1,9 %, ovat
otettuina huomioon K-kerroinsovituksissa) [45, 87].
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Kuva 37. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pT -differentioidulle vaikutusalalle
dσpp→D

∗++X
|y|<0.5
dpT

,
√
s = 2,76 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 25.
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Kuva 38. pT -differentioidun vaikutusalan
dσpp→D

∗++X
|y|<0.5
dpT

,
√
s = 2,76 TeV, K-

kertoimet oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa
26. K-kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen
virheen lisäksi D∗+-mesonin hajoamisen haarautumissuhteesta tuleva vaiku-
tusalan virhe 1,5 % ja normalisaatiosta tuleva virhe 1,9 %.

Partonijakaumafunktiot kasvavat faktorisaatioskaalan funktiona nopeammin välillä
1,3 GeV ≤ Qf ≤ 4mc kuin välillä mb ≤ Qf ≤ 4mb (poislukien päällekkäinen
osuus mb ≤ Qf ≤ 4mc), ja siten massan vaihtelun vaikutus vaikutusalaan vaimenee
vähemmän b-kvarkkiparituoton tapauksessa kuin c-kvarkkiparituoton.

Seitsemää teraelektronivolttia vastaavat K-kertoimet hallitsevat kaikissa K-kerroin-
sovituksissa. Kahden alimman mittausenergian K-kertoimet poikkeavat aina eniten
sovitusarvoista, erityisesti 500 GeV:n K-kerroin ei koskaan vastaa sovitusta. Toisaalta
näillä kahdella K-kertoimella on suurimmat virheet. Lisäksi on havaittu, että häiriö-
teorian korkeamman kertaluvun bb-tuoton vaikutusalat eivät vastaa hyvin kokeellisia
tuloksia, kun törmäysenergia on alhainen [5]. Täten edellä havaitut K-kertoimien
suuret poikkeamat eivät ole puhtaasti LO-tulosten ominaisuus.

Kokonaisvaikutusalan kokonais-K-kertoimissa on yksi erikoinen ominaisuus: ne
ovat erittäin pienet, itse asiassa oletusskaalavalinnalla K ≈ 1 (taulukko 9). Palaan
tähän havaintoon myöhemmin, alaluvun lopussa.

LHCb-kollaboraatio on mitannut leikatun vaikutusalan σpp→Hb+X2.0<η<5.0 CMS-energioilla
7 ja 13 TeV [7, 99, 100]. Hb on nyt b-hadroni, joka sisältää b-kvarkin, mutta
ei b-antikvarkkia ja joka on lähtöisin bb-parintuotosta. Mittauksessa tarkasteltiin
prosesseja, joissa hadroni hajoaa semileptonisesti myoniksi ja perustilassa olevaksi D-
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(f)

Kuva 39. pT -differentioidun vaikutusalan
dσpp→D

∗++X
|y|<0.5
dpT

,
√
s = 2,76 TeV,

K-kertoimet vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ),
(Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat kuin

kuvassa 26. D∗+-mesonin hajoamisen haarautumissuhteesta ja normalisaatiosta
tulevat systemaattiset virheet on otettu huomioon K-kerroinsovituksissa.
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(b)

Kuva 40. pT -differentioitu vaikutusala
dσpp→D

∗++X
|y|<0.5
dpT

, CMS-energialla√
s = 5,02 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kuviin ei

ole merkittynä D∗+-mesonin hajoamisen haarautumissuhteesta ja integroidusta
luminositeetista tulevia kokeellisten tulosten systemaattisia virheitä (1,3 % ja 2,1
%, ovat otettuina huomioon K-kerroinsovituksissa) [93, 94].
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(c)

Kuva 41. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pT -differentioidulle vaikutusalalle
dσpp→D

∗++X
|y|<0.5
dpT

,
√
s = 5,02 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 25.
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Kuva 42. pT -differentioidun vaikutusalan
dσpp→D

∗++X
|y|<0.5
dpT

,
√
s = 5,02 TeV, K-

kertoimet oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin ku-
vassa 26. K-kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen
virheen lisäksi D∗+-mesonin hajoamisen haarautumissuhteesta tuleva vaiku-
tusalan virhe 1,3 % ja integroidusta luminositeetista tuleva virhe 2,1 %.

mesoniksi. Mittauksessa määritettiin myös pseudorapiditeetin suhteen differentioidut
vaikutusalat dσpp→Hb+X

dη
(2,0 ≤ η ≤ 5,0 eli suunnilleen 0,77◦ ≤ θ ≤ 15,41◦) molemmilla

törmäysenergioilla.

Olen esittänyt vastaavat teoreettiset vaikutusalat ja niiden analyysikuvat kuvissa
52, 53, 56, 57, 60 ja 61. K-kertoimet ovat kuvissa 54, 55, 58, 59, 62 ja 63. Koska
mittaukseen sisältymättömien bb-mesonien osuus b-hadronien kokonaistuotannosta
on hyvin pieni (jo kevyempien bc-mesonien osuus hadroneista on arviolta alle 0,1
prosettia [7]), niin asetin f(b→ Hb) = 1.

Arvioisin, että käyttämäni hadronisaatioapproksimaatio vääristää b-hadronien
leikattua ja differentioituja vaikutusaloja huomattavasti vähemmän kuin c-hadronien:
Hadronisaatiossa raskaan kvarkin liikemäärän suunnan muutos on yleensä pieni
ja keskimäärin nolla. Siten hadronisaation yksinkertaistettu mallinnus vaikuttaa
todennäköisesti vain vähäisesti b-hadronien pseudorapiditeetteihin (η = −ln

[
tan( θ2)

]
).

Leikatun ja η-differentioitujen vaikutusalojen arvioidut partonijakamaumafunk-
tiovirheet ovat suuremmat kuin kokonaisvaikutusalan tapauksessa, mutta ne ovat
kuitenkin vähäpätöiset verrattuna skaalavalintaa ja massaa vastaaviin epävarmuuk-
siin. Skaalavalinnan suhteelliset epävarmuudet ovat suunnilleen samat kuin koko-
naisvaikutusalan. Massan vaihtelun vaikutus on pienempi, mikä selittyy samoin kuin
D-mesonien pT -differentioitujen vaikutusalojen tapauksessa (luku 5.2). (Kuitenkin
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Kuva 43. pT -differentioidun vaikutusalan
dσpp→D

∗++X
|y|<0.5
dpT

,
√
s = 5,02 TeV,

K-kertoimet vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ),
(Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat

kuin kuvassa 26. D∗+-mesonin hajoamisen haarautumissuhteesta ja integroi-
dusta luminositeetista tulevat systemaattiset virheet on otettu huomioon K-
kerroinsovituksissa.
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(b)

Kuva 44. pT -differentioitu vaikutusala
dσpp→D

∗++X
|y|<0.5
dpT

, CMS-energialla
√
s = 7 TeV.

Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kuviin ei ole merkittynä
normalisaatiosta tulevaa kokeellisten tulosten systemaattista virhettä (3,8 %,
otettu huomioon K-kerroinsovituksissa) [95, 96].
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(c)

Kuva 45. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pT -differentioidulle vaikutusalalle
dσpp→D

∗++X
|y|<0.5
dpT

,
√
s = 7 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 25.
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Kuva 46. pT -differentioidun vaikutusalan
dσpp→D

∗++X
|y|<0.5
dpT

,
√
s = 7 TeV, K-kertoimet

oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 26. K-
kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen virheen
lisäksi normalisaatiosta tuleva virhe 3,8 %.

nyt käsittelemme pseudorapiditeetin suhteen leikattua ja differentioituja vaikutusa-
loja, joihin suurin kontribuutio tulee alhaisilla poikittaisliikemäärän arvoilla, jolloin
mT -termit eivät vaimenna massan vaikutusta äärimmäisen paljon.)

Häiriöteorian alimman kertaluvun leikatun vaikutusalan arvot energioilla 7 ja 13
TeV ovat 71,2 ja 133,4 µb. Mikäli olisin käyttänyt pT -riippumattomatonta skaalaa
2mb skaalan mT sijasta, niin arvot olisivat olleet 75,9 ja 148,4 µb. Tämä on huomat-
tavasti pienempi muutos kuin leikatun vaikutusalan σpp→cc+X0<pT<8 GeV, 2.0<y<4.5 tapauksessa,
jossa skaalatyypin vaihtaminen nosti kokeellisia tuloksia vastaavia teoreettisia arvoja
70 – 82 prosenttia. Tämä havainnollistaa sitä, että vahva kytkentävakio ja partoni-
jakaumafunktiot stabiloituvat renormalisaatio- ja faktorisaatioskaalojen kasvaessa.
Mahdollisesti vaikutusalan σpp→Hb+X2.0<η<5.0 lausekkeen integrandin (yhtälö (82)) suurin
painoarvo on alueessa, jossa mT ≈ 2mb.

η-differentioidut vaikutusalat käyttäytyvät hyvin samankaltaisesti (kuvat 56, 57,
60 ja 61). Suurin eroavaisuus näyttäisi olevan faktorisaatioskaalan vaikutuksen lievä
kasvaminen suhteessa renormalisaatioskaalaan törmäysenergian kasvaessa (kuvat
57a ja 61a). Suuremmilla CMS-energioilla pitkittäisliikemääräosuuden x1,2 miniarvo
pienenee: 4m2

T

s
≤ x1,2 (yhtälö (89)). Liikemääräosuuden pienentyessä partonijakauma-

funktioiden xfi(x,Qf ) arvot kasvavat (kuva 14) ja siten faktorisaatioskaala vaikuttaa
enemmän η-differentioituun vaikutusalaan suuremmilla energioilla.

Kuvista 57c ja 61c nähdään, että r(uu) ja r(dd) kasvavat, kun pseudorapidi-
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Kuva 47. pT -differentioidun vaikutusalan
dσpp→D

∗++X
|y|<0.5
dpT

,
√
s = 7 TeV, K-kertoimet

vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ), (Qdef
r ,Qmax

f ),
(Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa

26. Normalisaatiosta tuleva virhe on otettu huomioon K-kerroinsovituksissa.
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Kuva 48. Kokonaisvaikutusala σpp→bb+X . Kuvaajien merkitykset ovat samat
kuin kuvassa 16. Kokeelliset vertailutulokset ovat lähteistä [5, 42–44, 97, 98].
K-kertoimella skaalattua vaikutusalaa ei ole esitetty kuvassa (b), koska ole-
tusskaalavalintaa vastaava kokonais-K-kerroin on tässä tapauksessa noin yksi.
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Kuva 49. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot kokonaisvaikutusalalle σpp→bb+X .
Kuvaajien merkitykset ovat samat kuin kuvassa 17.
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Kuva 50. Kokonaisvaikutusalan σpp→bb+X K-kertoimet oletusskaalavalinnalla
(Qdef

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa 18.
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(f)

Kuva 51. Kokonaisvaikutusalan σpp→bb+X K-kertoimet vaihtoehtoisilla
skaalavalinnoilla (Qmax

r ,Qmax
f ), (Qmin

r ,Qmin
f ), (Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f )

ja (Qmax
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 18.
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teetti kasvaa. Tämäkin efekti seuraa partonijakaumafunktioiden käyttäytymisestä:
Aikaisemmin näytettiin, että x1 = mT√

s
(ey3 + ey4) (ja x2 = mT√

s
(e−y3 + e−y4), yhtälö

(81)). Raskaan kvarkin rapiditeetti kasvaa pseudorapiditeetin kasvaessa (yhtälöistä
(21) ja (22) saadaan y3 = arsinh( pT

mT
sinh(η))). Täten (keskimääräinen) x1 kasvaa

samalla (ja x2 vaihtelee muuttujien pT ja y4 vaihdellessa integroitaessa), ja gluonin
ja valenssikvarkkien partonijakaumafunktioiden väliset erot kaventuvat (kuvat 14 ja
15).

Vaikutusalan dσpp→Hb+X

dη
K-kertoimet toistavat saman muodon kaikilla seitsemällä

skaalavalinnalla CMS-energialla
√
s = 7 TeV (kuvat 58 ja 59). Myös kolmeatoista

teraelektronivolttia vastaavan vaikutusalan K-kertoimien kuvaajat toistavat samaa
muotoa, joka on hieman erilainen kuin seitsemällä teraelektronivoltilla (kuvat 62 ja
63). Tämä K-kertoimien käyttäytyminen ei johdu LO-vaikutusalan ominaisuuksista
itsessään: sama tapahtuu myös teoreettisen FONLL-tuloksen (fixed order + next-to-
leading log) kanssa, johon kokeellisia tuloksia on alun perin verrattu [7, 99, 100].

Leikatun ja differentioitujen vaikutusalojen kokonais-K-kertoimet ovat esitettynä
taulukoissa 9 ja 10. Taulukoista nähdään, että näiden kolmen tapauksen K-kertoimet
vastaavat erittäin hyvin toisiaan. Kuten kokonaisvaikutusalan σpp→bb+X tapauksessa,
leikatun ja differentioitujen vaikutusalojen K-kertoimet ovat hyvin pienet ja ole-
tusskaalavalinnalla K ≈ 1. Itse asiassa laskemani η-differentioidut LO-vaikutusalat
ovat arvoiltaan jopa suurempia kuin vastaavat FONLL-vaikutusalat [7, 99].

Miksi b-kvarkkiparien vaikutusalojen K-kertoimet ovat näin pienet? Molempia c- ja
t-kvarkkeja vastaavat kokonais-K-kertoimet ovat selvästi (keskimäärin) suurempia.
Lopulta ainoa parametri, joka toistuu jokaisessa vaikutusalalausekkeessa ja joka
on eri c-, b- ja t-tapauksille, on raskaan kvarkin massa. Koska mc < mb < mt,
niin olisin olettanut, että b-kvarkkiparien vaikutusalojen K-kertoimet ovat c- ja t-
kvarkkiparien K-kertoimien välissä, jos näiden arvoissa olisi havaittu eroja. Toisaalta,
b-kvarkkiparien (oletusskaalavalintoja vastaavat) vaikutusalat ovat reilu 30 prosenttia
pienemmät, kun käytetään napamassaa 4,78 GeV (kuvat 49b, 53b, 57b ja 61b).
Tällöin vastaavat K-kertoimet kasvavat arviolta noin 43 prosenttia. Kuitenkin, b-
kvarkkiparien vaikutusalojen oletusskaalavalintoja vastaavat K-kertoimet olisivat silti
pienemmät kuin suurimmalla osalla muista vaikutusaloista (poikkeuksina σpp→cc+X ,
dσpp→tt+X

dpT
,
√
s = 1,96 TeV, ja dσpp→tt+X

d|y| ,
√
s = 1,96 TeV). On myös mahdollista, että

korkeamman kertaluvun korjaukset ovat hyvin pieniä, elleivät jopa negatiivisia. Tämä
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Kuva 52. Leikattu vaikutusala σpp→Hb+X2.0<η<5.0 . Kuvaajien merkitykset ovat samat
kuin kuvassa 16. Kokeelliset vertailutulokset ovat lähteistä [7, 99, 100]. K-
kertoimella skaalattua vaikutusalaa ei ole esitetty kuvassa (b), koska ole-
tusskaalavalintaa vastaava kokonais-K-kerroin on tässä tapauksessa noin yksi.

selittäisi, miksi vaikutusalojen dσpp→Hb+X

dη
FONLL-tuloksien arvot ovat pienempiä

kuin LO-tuloksien.
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Kuva 53. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot leikatulle vaikutusalalle σpp→Hb+X2.0<η<5.0 .
Kuvaajien merkitykset ovat samat kuin kuvassa 17.
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Kuva 54. Leikatun vaikutusalan σpp→Hb+X2.0<η<5.0 K-kertoimet oletusskaalavalinnalla
(Qdef

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa 18.
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Kuva 55. Leikatun vaikutusalan σpp→Hb+X2.0<η<5.0 K-kertoimet vaihtoehtoisilla
skaalavalinnoilla (Qmax

r ,Qmax
f ), (Qmin

r ,Qmin
f ), (Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f )

ja (Qmax
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 18.
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Kuva 56. η-differentioitu vaikutusala dσpp→Hb+X

dη
, CMS-energialla

√
s = 7 TeV.

Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kokeelliset vertailutulokset
ovat lähteistä [7, 100]. K-kertoimella skaalattua vaikutusalaa ei ole esitetty
kuvassa (b), koska oletusskaalavalintaa vastaava kokonais-K-kerroin on tässä
tapauksessa noin yksi.

Taulukko 9. Vaikutusalojen σpp→bb+X ja σpp→Hb+X2.0<η<5.0 kokonais-K-kertoimet eri
skaalavalinnoilla (kuvat 50, 51, 54 ja 55).

(Qr,Qf ) K(σpp→bb+X) K(σpp→Hb+X2.0<η<5.0 )
(Qdef

r ,Qdef
f ) 1,1± 0,2 1,03± 0,09

(Qmax
r ,Qmax

f ) 1,1± 0,2 0,96± 0,08
(Qmin

r ,Qmin
f ) 1,1± 0,2 1,34± 0,11

(Qdef
r ,Qmax

f ) 0,78± 0,15 0,67± 0,06
(Qmin

r ,Qdef
f ) 0,72± 0,13 0,64± 0,06

(Qdef
r ,Qmin

f ) 1,7± 0,3 2,1± 0,2
(Qmax

r ,Qdef
f ) 1,5± 0,3 1,48± 0,12
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Kuva 57. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot η-differentioidulle vaikutusalalle
dσpp→Hb+X

dη
,
√
s = 7 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 25.
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Kuva 58. η-differentioidun vaikutusalan dσpp→Hb+X

dη
,
√
s = 7 TeV, K-kertoimet

oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 26.
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(f)

Kuva 59. η-differentioidun vaikutusalan dσpp→Hb+X

dη
,
√
s = 7 TeV, K-kertoimet

vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ), (Qdef
r ,Qmax

f ),
(Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa

26.
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Kuva 60. η-differentioitu vaikutusala dσpp→Hb+X

dη
, CMS-energialla

√
s = 13 TeV.

Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kokeelliset vertailutulokset
ovat lähteistä [7, 99, 100]. K-kertoimella skaalattua vaikutusalaa ei ole esitetty
kuvassa (b), koska oletusskaalavalintaa vastaava kokonais-K-kerroin on tässä
tapauksessa noin yksi.

Taulukko 10. Vaikutusalan dσpp→Hb+X

dη
kokonais-K-kertoimet eri skaalavalin-

noilla CMS-energioilla
√
s = 7 TeV ja 13 TeV (kuvat 58, 59, 62 ja 63).

(Qr,Qf )
√
s = 7 TeV

√
s = 13 TeV

(Qdef
r ,Qdef

f ) 1,01± 0,04 1,05± 0,05
(Qmax

r ,Qmax
f ) 0,97± 0,04 0,93± 0,05

(Qmin
r ,Qmin

f ) 1,29± 0,05 1,47± 0,07
(Qdef

r ,Qmax
f ) 0,67± 0,03 0,65± 0,03

(Qmin
r ,Qdef

f ) 0,63± 0,03 0,65± 0,03
(Qdef

r ,Qmin
f ) 2,06± 0,08 2,33± 0,11

(Qmax
r ,Qdef

f ) 1,46± 0,06 1,50± 0,07
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Kuva 61. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot η-differentioidulle vaikutusalalle
dσpp→Hb+X

dη
,
√
s = 13 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 25.
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Kuva 62. η-differentioidun vaikutusalan dσpp→Hb+X

dη
,
√
s = 13 TeV, K-kertoimet

oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 26.
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(f)

Kuva 63. η-differentioidun vaikutusalan dσpp→Hb+X

dη
,
√
s = 13 TeV, K-kertoimet

vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ), (Qdef
r ,Qmax

f ),
(Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa

26.
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5.4 t-kvarkkiparien tuotto
Tutkin alimman kertaluvun tt-tuottoa protoni–protoni-törmäysten lisäksi protoni–
antiprotoni-törmäyksissä. Käsittelemäni vaikutusalat olivat kokonaisvaikutusalat
σpp→tt+X(

√
s) ja σpp→tt+X(

√
s), differentioidut vaikutusalat dσpp→tt+X

dpT
(pT ) ja

dσpp→tt+X

d|y| (|y|), CMS-energialla
√
s = 1,96 TeV, sekä dσpp→tt+X

dptT
(ptT ) ja dσpp→tt+X

dyt
(yt),

CMS-energialla
√
s = 13 TeV.

Protoni–antiprotoni-törmäysten t-kvarkkiparien tuoton kokonaisvaikutusala ja sen
analyysikuvat ovat esitettynä kuvissa 64 ja 65. Seitsemää eri skaalavalintaa vastaavat
K-kertoimet ovat kuvissa 66 ja 67.

Kokeelliset vertailutulokset on mitattu CMS-energioilla
√
s = 1,8 TeV (CDF-

kollaboraatio) [101–103] ja 1,96 TeV (CDF ja D/0) [104]. Molemmissa tapauksissa hyö-
dynnettiin täysin hadronisia, dileptonisia ja leptoni + jetit-kanavia (luku 2.1). Olen
lisäksi esittänyt vaihtoehtoisen kokeellisen vertailutuloksen energialla

√
s = 1,8 TeV

(D/0, kuva 64) [105], koska se täyttää myös hyvin luvussa 5.2 luettelemani kriteerit
kokeellisten vertailutulosten valitsemiselle ja koska se poikkeaa ensisijaisesta ver-
tailutuloksesta. Tulos määritettiin hyödyntämällä hajoamisia t → W+b, missä
W+ → e+νe, µ+νµ, τ+ντ , ud, us, ub, cd, cs tai cb, sekä vastaavia antihiukkasten ha-
joamisprosesseja. Vaihtoehtoista vertailutulosta ei ole otettu huomioon K-kertoimien
määrityksessä.

Arvioitu partonijakaumafunktioiden epävarmuuden aiheuttama virhe on jälleen
mitätön. Massa ja skaalavalinta vaikuttavat vaikutusalan arvoon selvästi eniten,
mutta kuitenkin vähemmän kuin c- ja b-kvarkkien tapauksissa (kuva 65b). Massaa
vastaavan alavirheen pienuus johtuu siitä, että oletus- ja maksimimassan välinen ero
on nyt hyvin pieni (mdef

t = 172,9 GeV, mmin
t = 160 GeV ja mmax

t = 174,0 GeV).
Alimman kertaluvun t-kvarkkiparien tuotto protoni–antiprotoni-törmäyksissä,

sekä protoni–protoni-törmäyksissä, painottuu alueeseen x ' 10−1. Kuvasta 65a
(69a, 74a, 78a, 82a, 86a) huomataan, että nyt vaikutusala laskee faktorisaatioskaalan
noustessa. Vastaava hallitsevien partonijakaumafunktioiden (g, u ja d, pp-törmäyksissä
myös u ja d) käytös on nähtävissä kuvasta 15e (15f), joka vastaa pitkittäisliike-
määräosuuden arvoa x = 10−1. Kuvista 12c, 12e ja 13 nähdään myös, että t-
kvarkkiparituoton vaikutusaloja vastaavilla skaaloilla (taulukko 2) u-kvarkin partoni-
jakaumafunktio saa selvästi suurempia arvoja kuin gluonin partonijakaumafunktio,
kun x ' 10−1. Tämä selittää, miksi u+ u-reaktiot hallitsevat protoni–antiprotoni-
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Kuva 64. Kokonaisvaikutusala σpp→tt+X . Kokeellisten tulosten [101–104] oikean-
puoleiset siniset pisteet ovat vaihtoehtoiset vertailutulokset [105]. Kuvaajien
merkitykset ovat muuten samat kuin kuvassa 16.

törmäyksissä (kuva 65c).

Vaikutusalan σpp→tt+X K-kertoimet ovat hyvin stabiilit. Sama muoto toistuu
skaalavalinnasta riippumatta.

Prosessin p+p→ t+t+X kokonaisvaikutusala ja vastaavat analyysikuvat ovat esitet-
tynä kuvissa 68 ja 69. K-kertoimet ovat kuvissa 70 ja 71. Olen lisäksi esittänyt vaiku-
tusalat σpp→tt+X ja σpp→tt+X samassa kuvassa 72 protonin ja antiprotonin erilaisen
valenssikvarkkirakenteen vaikutuksen havainnollistamiseksi. Mainittakoon myös, että
vaikutusaloilla σpp→cc+X ja σpp→cc+X , ja vaikutusaloilla σpp→bb+X ja σpp→bb+X , ei ollut
kuvaajista havaittavia eroavaisuuksia.
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Kuva 65. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot kokonaisvaikutusalalle σpp→tt+X .
Kuvaajien merkitykset ovat samat kuin kuvassa 17.
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Kuva 66. Kokonaisvaikutusalan σpp→tt+X K-kertoimet oletusskaalavalinnalla
(Qdef

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa 18.
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Kuva 67. Kokonaisvaikutusalan σpp→tt+X K-kertoimet vaihtoehtoisilla
skaalavalinnoilla (Qmax

r ,Qmax
f ), (Qmin

r ,Qmin
f ), (Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f )

ja (Qmax
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 18.



145

Taulukko 11. Vaikutusalojen σpp→tt+X ja σpp→tt+X kokonais-K-kertoimet eri
skaalavalinnoilla (kuvat 66, 67, 70 ja 71).

(Qr,Qf ) K(σpp→tt+X) K(σpp→tt+X)
(Qdef

r ,Qdef
f ) 1,62± 0,09 1,91± 0,05

(Qmax
r ,Qmax

f ) 2,16± 0,12 2,46± 0,06
(Qmin

r ,Qmin
f ) 1,18± 0,07 1,46± 0,04

(Qdef
r ,Qmax

f ) 1,82± 0,10 2,06± 0,05
(Qmin

r ,Qdef
f ) 1,34± 0,08 1,58± 0,04

(Qdef
r ,Qmin

f ) 1,43± 0,08 1,76± 0,05
(Qmax

r ,Qdef
f ) 1,93± 0,11 2,27± 0,06

Käyttämäni kokeelliset tulokset on määritetty törmäysenergioilla
√
s = 5,02 TeV

(CMS, e±/µ± + jetit- ja dileptoniset µ+µ−- ja e±µ∓-kanavat) [4], 7 TeV (ATLAS ja
CMS, kaikki kolme hajoamiskanavatyyppiä) [49], 8 TeV (ATLAS ja CMS, dileptoniset
lopputilat e±µ∓) [8] ja 13 TeV (CMS, dileptoniset lopputilat e+e−, µ+µ− ja e±µ∓)
[106]. Olen lisäksi esittänyt vaihtoehtoiset kokeelliset tulokset energioilla

√
s = 7 TeV

(CMS, dileptoniset lopputilat e+e−, µ+µ− ja e±µ∓) [107] ja 13 TeV (CMS, e±/µ± +
jetit-lopputilat) [108].

Kokonaisvaikutusalan σpp→tt+X kuvaajista ja analyysikuvista nähdään, että se
käyttäytyy hyvin samankaltaisesti kuin kokonaisvaikutusala σpp→tt+X . Kuitenkin nyt
vaikutusala saa pienempiä arvoja ja gluoni-gluoni-reaktiot alkavat hallitsemaan al-
haisemmalla törmäysenergialla (kuva 69c). Nämä eroavaisuudet tulevat siitä, että pro-
tonin partonijakaumafunktioille fu/p(x,Qf ) > fu/p(x,Qf ) ja fd/p(x,Qf ) > fd/p(x,Qf )
(kuvat 10, 11, 12 ja 13).

K-kertoimet vastaavat sovitusarvoja erittäin hyvin. Tämä on nähtävissä myös
K-kerroinskaalatusta vaikutusalasta kuvassa 68b.

D/0-kollaboraatio on määrittänyt prosessin p+ p→ t+ t+X t-(anti)kvarkin poikit-
taisliikemäärän ja rapiditeetin itseisarvon suhteen differentioidut vaikutusalat CMS-
energialla

√
s = 1,96 TeV. Mittaus käsitteli e±/µ± + jetit-hajoamiskanavia. [109]

Vastaavat alimman kertaluvun vaikutusalat ovat esitettynä kuvissa 73, 74, 77 ja
78. (LO-vaikutusalalle dσ

d|y|(|y|) = dσ
dy

(y) + dσ
dy

(−y) = 2dσ
dy

(y).) K-kerroinkuvaajat ovat
kuvissa 75, 76, 79 ja 80.

Skaalavalinnan aiheuttama epävarmuus on suunnilleen sama kuin kokonaisvaiku-
tusaloilla törmäysenergialla

√
s = 1,96 TeV (kuvat 65b, 69b, 74b ja 82b). Massan



146

0 2 4 6 8 10 12 14
 [TeV]s

10

210

310

 )
 [p

b]
s

(
+

X
t t

→
pp

 
σ

  

(a)

0 2 4 6 8 10 12 14
 [TeV]s

10

210

310

 )
 [p

b]
s

(
+

X
t t

→
pp

 
σ

  

(b)

Kuva 68. Kokonaisvaikutusala σpp→tt+X . Kuvaajien merkitykset ovat samat
kuin kuvassa 64. Kokeelliset vertailutulokset ovat lähteistä [4, 8, 49, 106–108].
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Kuva 69. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot kokonaisvaikutusalalle σpp→tt+X .
Kuvaajien merkitykset ovat samat kuin kuvassa 17.
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Kuva 70. Kokonaisvaikutusalan σpp→tt+X K-kertoimet oletusskaalavalinnalla
(Qdef

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa 18.
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Kuva 71. Kokonaisvaikutusalan σpp→tt+X K-kertoimet vaihtoehtoisilla
skaalavalinnoilla (Qmax

r ,Qmax
f ), (Qmin

r ,Qmin
f ), (Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f )

ja (Qmax
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 18.
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Kuva 72. Alimman kertaluvun t-kvarkkiparituoton kokonaisvaiku-
tusalat protoni–antiprotoni- (tummanpunainen) ja protoni–protoni-törmäyksissä
(musta).

vaihtelu vaikuttaa paljon pT -differentioidun vaikutusalan arvoon pienillä poikit-
taisliikemäärän arvoilla ja korkeilla vähäisesti. Tämä käytös selittyy samoin kuin
D-mesonien tuoton tapauksessa (luku 5.2). Kuitenkin nyt raskaan kvarkin massa on
huomattavasti suurempi suhteessa tarkasteltuihin poikittaisliikemäärän arvoihin ja
siten se vaikuttaa enemmän pT -differentioituun vaikutusalaan. |y|-differentioidulla
vaikutusalalla taas massan vaikutus kasvaa rapiditeetin itseisarvon kasvaessa. Tämä
käytös johtuu luultavasti aliprosessien vaikutusalojen ominaisuuksista (yhtälöt (70)
ja (78)).

Differentioitujen vaikutusalojen r(uu) kasvaa ja r(gg) pienenee, kun poikittais-
liikemäärä/rapiditeetin itseisarvo nousee. Tämä partonivuorovaikutusten suhteel-
listen kontribuutioiden käytös selittyy samoin kuin D-mesonien pT - ja b-hadronien
η-differentioitujen vaikutusalojen tapauksissa (luvut 5.2 ja 5.3).

Törmäysprosessin p + p → t + t + X differentioitujen vaikutusalojen kokonais-
K-kertoimet vastaavat toisiaan käytettäessä samaa skaalavalintaa (taulukko 12).
K-kerroinkuvaajien muodot ovat samat renormalisaatio- ja faktorisaatioskaalojen
varioinnista huolimatta, kuten kokonaisvaikutusalojenkin tapauksessa.

CMS-kollaboraatio on mitannut protoni–protoni-törmäyksessä tuotettujen t-kvarkki-
parien ptT - ja yt-differentioidut vaikutusalat, missä indeksi t viittaa t-kvarkkiin,
CMS-energialla 13 TeV. (Vaikutusalat ovat käytännössä samat kuin vastaavat t-
antikvarkkien vaikutusalat.) Vaikutusalojen määritys perustui dileptonisten lopputilo-
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Kuva 73. pT -differentioitu vaikutusala dσpp→tt+X

dpT
, CMS-energialla√

s = 1,96 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kuviin
ei ole merkittynä integroidusta luminositeetista tulevaa kokeellisten tulosten
systemaattista virhettä (1,6 %, on otettu huomioon K-kerroinsovituksissa) [109].

Taulukko 12. Vaikutusalojen dσpp→tt+X

dpT
ja dσpp→tt+X

d|y| kokonais-K-kertoimet eri
skaalavalinnoilla CMS-energialla

√
s = 1,96 TeV (kuvat 75, 76, 79 ja 80).

(Qr,Qf ) K(dσpp→tt+X
dpT

) K(dσpp→tt+X
d|y| )

(Qdef
r ,Qdef

f ) 1,40± 0,08 1,34± 0,09
(Qmax

r ,Qmax
f ) 1,90± 0,11 1,82± 0,12

(Qmin
r ,Qmin

f ) 0,99± 0,06 0,96± 0,07
(Qdef

r ,Qmax
f ) 1,58± 0,09 1,51± 0,10

(Qmin
r ,Qdef

f ) 1,14± 0,07 1,09± 0,08
(Qdef

r ,Qmin
f ) 1,22± 0,07 1,17± 0,08

(Qmax
r ,Qdef

f ) 1,68± 0,10 1,61± 0,11
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(c)

Kuva 74. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot pT -differentioidulle vaikutusalalle
dσpp→tt+X

dpT
,
√
s = 1,96 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 17.
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Kuva 75. pT -differentioidun vaikutusalan dσpp→tt+X

dpT
,
√
s = 1,96 TeV, K-

kertoimet oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin ku-
vassa 26. K-kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen
virheen lisäksi integroidusta luminositeetista tuleva virhe 1,6 %.

jen e+e−, µ+µ− ja e±µ∓ tarkastelemiseen. (Kvarkkiparituottoreaktioita käsiteltiin
joko ns. partoni- tai hiukkastasolla ja vaikutusalat määritettiin molemmille tapauk-
sille erikseen. Käytin kokeellisina vertailutuloksina partonitason tuloksia.) [2, 110]

Alimman kertaluvun differentioidut vaikutusalat analyysikuvineen ovat esitettynä
kuvissa 81, 82, 85 ja 86. Vastaavat K-kertoimet ovat kuvissa 83, 84, 87 ja 88.

Skaalavalinnan ja massan epävarmuudet (kuvat 82b ja 86b) ovat pienemmät kuin
protoni–antiprotonitörmäysten differentioiduilla vaikutusaloilla (kuvat 74b ja 78b).
Skaalavalinnan vaikutuksen laskeminen johtuu tasaisemmista partonijakaumafunk-
tioista: Kuvista 15c ja 15e nähdään, että protoni–protoni-törmäyksissä hallitseva
gluonin partonijakaumafunktio on nouseva skaalan funktiona pitkittäisliikemääräo-
suudella x = 10−2 ja laskeva liikemääräosuudella x = 10−1 (sama koskee myös u-, u-,
d- ja d-partonijakaumafunktioita). Siten gluonin partonijakaumafunktio muuttuu
nousevasta laskevaksi välillä 10−2 < x < 10−1. Kuvista 82a ja 86a nähdään, että fak-
torisaatioskaalan nostaminen laskee vaikutusalaa/partonijakaumafunktioiden arvoja
(skaalavalinnat (Qmax

r ,Qmax
f ) ja (Qmin

r ,Qmin
f )), kuten protoni–antiprotoni-törmäysten

tapauksessa. Pitkittäisliikemääräosuuksien x1 ja x2 painoarvot ovat nyt alempana
kuin aiemmin suuremman törmäysenergian seurauksena (4m2

T

s
≤ x1,2, yhtälö (89)),

mutta kuitenkin siten, että painoarvoalue on arvon x = 10−2 yläpuolella. Tällöin siis
(ainakin) gluonin partonijakaumafunktion suhteellinen vaihtelu on pienempää kuin
tapauksissa dσpp→tt+X

dpT
ja dσpp→tt+X

d|y| CMS-energialla
√
s = 1,96 TeV. Renormalisaatio-
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(f)

Kuva 76. pT -differentioidun vaikutusalan dσpp→tt+X

dpT
,
√
s = 1,96 TeV,

K-kertoimet vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ),
(Qdef

r ,Qmax
f ), (Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat kuin

kuvassa 26. Integroidusta luminositeetista tuleva systemaattinen virhe on otettu
huomioon K-kerroinsovituksissa.
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Kuva 77. |y|-differentioitu vaikutusala dσpp→tt+X

d|y| , CMS-energialla√
s = 1,96 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kuviin

ei ole merkittynä integroidusta luminositeetista tulevaa kokeellisten tulosten
systemaattista virhettä (1,6 %, on otettu huomioon K-kerroinsovituksissa) [109].
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Kuva 78. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot |y|-differentioidulle vaikutusalalle
dσpp→tt+X

d|y| ,
√
s = 1,96 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 17.
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Kuva 79. |y|-differentioidun vaikutusalan dσpp→tt+X

d|y| ,
√
s = 1,96 TeV, K-

kertoimet oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin ku-
vassa 26. K-kerroinsovituksessa on otettu huomioon statistisen ja systemaattisen
virheen lisäksi integroidusta luminositeetista tuleva virhe 1,6 %.

skaala ei vaikuta tähän skaalavalinnan epävarmuuden pienentymiseen, koska Qdef
r ,

Qmin
r ja Qmax

r ovat samat kuin aiemmin. Differentioitujen vaikutusalojen massan
epävarmuuden pienentyminen johtuu ainakin osittain partonijakaumafunktioiden
stabiloitumisesta (Qf = Qf (mt,pT )).

Vaikutusalojen dσpp→tt+X

dptT
ja dσpp→tt+X

dyt
sovitetut kokonais-K-kertoimet ovat esitet-

tyinä taulukossa 13. Ne vastaavat toisiaan lähes yhtä hyvin kuin protoni–antiprotoni-
törmäysten differentioitujen vaikutusalojen tapauksessa.

Vertaamalla prosessien p + p → t + t + X ja p + p → t + t + X K-kertoimia
(taulukot 11, 12 ja 13) nähdään, että ne eroavat toisistaan, vaikka skaalavalinta olisi
valittu samaksi. Itse asiassa, ne eroavat melko konsistentilla tavalla: pp-tapausten
kokonais-K-kertoimet ovat keskimäärin suunnilleen 20 prosenttia suuremmat. t-
kvarkkipareja synnyttävillä gluonireaktioilla on enemmän merkitystä protoni–protoni-
törmäyksissä kuin protoni–antiprotoni-törmäyksissä. Siten korkeamman kertaluvun
vaikutusaloihin siirryttäessä gluonin partonijakaumafunktion fg/p ja aliprosessin
g + g → t + t Feynmanin diagrammien yhteiskontribuutio nousee enemmän kuin
vastaava kvarkkien q(–) partonijakaumafunktioiden fq(–)

/p ja aliprosessien q + q → t+ t

diagrammien yhteiskontribuutio.
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(f)

Kuva 80. |y|-differentioidun vaikutusalan dσpp→tt+X

d|y| ,
√
s = 1,96 TeV, K-kertoi-

met vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ), (Qdef
r ,Qmax

f ),
(Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa 26.

Integroidusta luminositeetista tuleva systemaattinen virhe on otettu huomioon
K-kerroinsovituksissa.
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(b)

Kuva 81. ptT -differentioitu vaikutusala dσpp→tt+X

dptT
, CMS-energialla

√
s = 13 TeV.

Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kokeelliset vertailutulokset
ovat lähteistä [2, 110].

Taulukko 13. Vaikutusalojen dσpp→tt+X

dptT
ja dσpp→tt+X

dyt
kokonais-K-kertoimet eri

skaalavalinnoilla CMS-energialla
√
s = 13 TeV (kuvat 83, 84, 87 ja 88).

(Qr,Qf ) K(dσpp→tt+X
dptT

) K(dσpp→tt+X
dyt

)
(Qdef

r ,Qdef
f ) 1,62± 0,06 1,67± 0,05

(Qmax
r ,Qmax

f ) 2,09± 0,07 2,13± 0,06
(Qmin

r ,Qmin
f ) 1,23± 0,04 1,28± 0,04

(Qdef
r ,Qmax

f ) 1,75± 0,06 1,77± 0,05
(Qmin

r ,Qdef
f ) 1,34± 0,05 1,36± 0,04

(Qdef
r ,Qmin

f ) 1,50± 0,05 1,57± 0,04
(Qmax

r ,Qdef
f ) 1,94± 0,07 2,01± 0,05
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(c)

Kuva 82. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot ptT -differentioidulle vaikutusalalle
dσpp→tt+X

dptT
,
√
s = 13 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 17.
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Kuva 83. ptT -differentioidun vaikutusalan dσpp→tt+X

dptT
,
√
s = 13 TeV, K-kertoimet

oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 26.
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Kuva 84. ptT -differentioidun vaikutusalan dσpp→tt+X

dptT
,
√
s = 13 TeV, K-kertoimet

vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ), (Qdef
r ,Qmax

f ),
(Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa

26.
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(b)

Kuva 85. yt-differentioitu vaikutusala dσpp→tt+X

dyt
, CMS-energialla

√
s = 13 TeV.

Kuvaajien merkitykset ovat samat kuin kuvassa 24. Kokeelliset vertailutulokset
ovat lähteistä [2, 110].
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(c)

Kuva 86. Skaalavalintojen vaikutukset, suhteelliset epävarmuudet ja eri par-
tonivuorovaikutusten suhteelliset kontribuutiot yt-differentioidulle vaikutusalalle
dσpp→tt+X

dyt
,
√
s = 13 TeV. Kuvaajien merkitykset ovat samat kuin kuvassa 17.
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Kuva 87. yt-differentioidun vaikutusalan dσpp→tt+X

dyt
,
√
s = 13 TeV, K-kertoimet

oletusskaalavalinnalla (Qdef
r ,Qdef

f ). Merkinnät ovat samat kuin kuvassa 26.
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(f)

Kuva 88. yt-differentioidun vaikutusalan dσpp→tt+X

dyt
,
√
s = 13 TeV, K-kertoimet

vaihtoehtoisilla skaalavalinnoilla (Qmax
r ,Qmax

f ), (Qmin
r ,Qmin

f ), (Qdef
r ,Qmax

f ),
(Qmin

r ,Qdef
f ), (Qdef

r ,Qmin
f ) ja (Qmax

r ,Qdef
f ). Merkinnät ovat samat kuin kuvassa

26.
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6 Yhteenveto ja johtopäätökset

Olen laskenut kvanttiväridynamiikan häiriöteorian alimman kertaluvun vaikutusa-
loja c-, b- ja t-kvarkkiparien tuotoille protoni–protoni- sekä protoni–antiprotoni-
törmäyksissä. Kokonaisvaikutusalojen lisäksi tarkastelin useiden eri muuttujien
suhteen leikattuja ja differentioituja vaikutusaloja. Olen tutkinut laskemieni vaiku-
tusalojen eri epävarmuus- ja virhetekijöitä. Erityisesti keskityin raskaiden kvarkkien
massojen, renormalisaatio- ja faktorisaatioskaalavalintojen vaikutuksiin, sillä nämä
kolme tekijää olivat selvästi kaikista merkityksellisimmät. Etsin kokeelliset vertailutu-
lokset tiettyjä kriteerejä käyttäen ja kvantifioin niiden ja teoreettisten tulosten väliset
eroavaisuudet K-kertoimilla. K-kertoimet on laskettu usealla eri skaalavalinnalla.

Laskemillani alimman kertaluvun vaikutusaloilla on yhteneviä ominaisuuksia. Tu-
lokset osoittavat, että kun vaikutusalojen tarkasteltu törmäysprosessi (mahdolli-
nen hadronisaatio huomioon otettuna) ja skaalavalinta ovat samat, niin niiden
K-kertoimet ovat myös samat. Tämä on nähtävissä taulukoista 9, 10, 12 ja 13.
Lisäksi D-mesonien pT -differentioitujen vaikutusalojen K-kertoimet vastaavat toi-
siaan hyvin alueessa, jossa hadronisaatioapproksimaation (fragmentaatiofunktiot
korvattu fragmentaatio-osuuksilla) vaikutukset ovat arvioitavissa (pT ' 4 GeV,
taulukot 7 ja 8). Se, että onko vaikutusala tyypiltään kokonais-, differentioitu tai
leikattu vaikutusala, ei näytä vaikuttavan K-kertoimiin. Prosessin törmäysenergian
√
s arvo ei myöskään tunnu vaikuttavan, lukuun ottamatta mahdollisesti tapauksia,

joissa
√
s / 500 GeV (kokonaisvaikutusalat σpp→cc+X ja σpp→bb+X , kuvat 18, 19, 50

ja 51). Törmäysprosessin alkutilahadroneilla on merkitystä, sillä protoni–protoni-
ja protoni–antiprotoni-törmäysten t-kvarkkiparien tuottojen K-kertoimet eroavat
toisistaan.

c-, b- ja t-kvarkkiparien alimman kertaluvun vaikutusalat vastaavat eri tavoin
keskeisten parametrien vaihteluihin. Skaalavalinta vaikuttaa vaikutusalaan sitä
vähemmän mitä raskaampaa kvarkkia tarkastellaan. Tämä johtuu siitä, että vahva
kytkentävakio αs(Qr) ja partonijakaumafunktiot fi(x,Qf ) ovat stabiilimpia korkeam-
milla renormalisaatio- ja faktorisaatioskaalojen arvoilla. Massan vaihtelun aiheut-
tama epävarmuus on sen sijaan suunnillen sama kaikissa tapauksissa pois lukien
pT -differentioidut ja pienten törmäysenergioiden vaikutusalat, joiden käytös mas-
san suhteen johtuu vastaavien vaikutusalalausekkeiden muodoista, sekä t-kvarkkien
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vaikutusalojen massaepävarmuuden alaraja ja y-differentioidut vaikutusalat korkeilla
rapiditeetin itseisarvoilla. Tämä oli minulle hieman yllättävää, koska raskaan kvarkin
massan suhteellinen vaihtelu on sitä pienempää mitä raskaampi kvarkki on (taulukko
1). Tämä massaepävarmuuksien käytös selittyi kuitenkin ainakin osittain faktorisaa-
tioskaalan massariippuvuudella: Kokonaisvaikutusaloille Qf on massan monikerta
ja muille vaikutusalatyypeille poikittaismassan monikerta (taulukko 2). Partoni-
jakaumafunktiot fi(x,Qf ) voivat olla sekä nousevia että laskevia faktorisaatioskaalan
funktiona, riippuen tarkasteluvälistä ja pitkittäisliikemääräosuuden x arvosta (kuvat
14 ja 15). Siten vaikutusalat voivat olla laskevia tai nousevia faktorisaatioskaalan
funktiona, riippuen siitä, millä pitkittäisliikemääräosuuden x arvoilla on suurin
painoarvo tarkastellulla vaikutusalalla ja mitkä partonijakaumafunktiot/aliprosessit
hallitsevat. c-kvarkkiparien vaikutusalat ovat nousevia faktorisaatioskaalan funk-
tiona, b-kvarkkiparien vähemmän nousevia ja t-kvarkkiparien laskevia. Siten b-
kvarkkiparien vaikutusaloissa partonijakaumafunktioiden käytös redusoi vähemmän
massan vaikutusta kuin c-kvarkkiparien vaikutusaloissa, ja t-kvarkkiparien tapauk-
sessa partonijakaumafunktiot vahvistavat massan vaihtelun vaikutusta. Arvioitu
CT14-partonijakaumafunktioista tuleva vaikutusalan virhe on mitätön suhteessa
skaalavalinnan aiheuttamaan epävarmuuteen kaikissa tapauksissa.

c-kvarkkiparien vaikutusalat ovat kaikista epävarmimpia. Suuren skaalavalinnan
aiheuttaman epävarmuuden lisäksi vaikutusaloihin liittyy tekijöitä, jotka alentavat nii-
den luotettavuutta. Selvästi merkittävin näistä on käyttämäni hadronisaatioapproksi-
maatio. Luvussa 5.2 tekemäni arvion perusteella fragmentaatiofunktioiden korvaami-
nen vastaavilla fragmentaatio-osuuksilla muuttaa D-mesonien pT -differentioitujen
vaikutusalojen arvoja huomattavasti. Tämä approksimaatio vaikuttaa myös vaiku-
tusalaan σpp→cc+X0<pT<8 GeV, 2.0<y<4.5, jonka leikkaukset koskevat lopputilahadronejaD0, D+,
D∗+, D+

s ja Λ+
c . Kvanttiväridynamiikan häiriöteorian soveltamisen ehto Qr & 1 GeV

(tai αs(Qr) � 1) toteutuu c-kvarkeilla heikommin kuin b- ja t-kvarkeilla, ja eri-
tyisesti leikatun ja differentioitujen vaikutusalojen minimirenormalisaatioskaalalle
pätee Qmin

r = 1
2mT < 1 GeV, kun pT < 1,55 GeV. Harkitsin näistä syistä c-

kvarkkiparituoton käsittelyn kokonaan pois jättämistä. Kuitenkin, D-mesonien
pT -differentioitujen vaikutusalojen K-kertoimien käyttäytyminen pT -alueessa, jossa
hadronisaatioapproksimaation vaikutukset ovat arvioitavissa, vahvistaa havaintoani,
jonka mukaan prosessien p + p(–) → Q + Q + X(→ HQ + HQ + X) alimman ker-
taluvun vaikutusalojen K-kertoimet ovat samat, kun skaalavalinta ja tarkasteltu
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törmäysprosessi ovat samat.
Alimman kertaluvun b-kvarkkiparituoton vaikutusalat ovat vähemmän herkkiä eri

tekijöille kuin c-kvarkkiparien vaikutusalat. Skaalavalinnan vaikutus on pienempi ja
hadronisaatioapproksimaatio muuttaa arviolta vain vähäisesti b-hadroneja käsittele-
viä vaikutusaloja. Vaikutusalan K-kerroinkuvaajien muodot toistuvat lähes samoina
kaikilla skaalavalinnoilla, toisin kuin c-kvarkkiparitapauksissa. Erikoisin havaitsemani
b-kvarkkiparituoton ominaisuus on se, että alimman kertaluvun vaikutusalojen arvot
ovat erittäin lähellä vastaavia kokeellisia tuloksia (oletusskaalavalinnoilla K ≈ 1).
Tämän opinnäytetyön puitteissa, laskematta NLO-vaikutusaloja, en pystyne päät-
telemään, miksi raskaiden kvarkkiparien tuotoista korkeamman kertaluvun korjaukset
vaikuttavat vähiten juuri b-kvarkkiparien tuottoon.

Prosessien p + p → t + t + X ja p + p → t + t + X alimman kertaluvun vaiku-
tusalat omaavat pienemmät skaalaepävarmuudet kuin prosessien p+ p→ c+ c+X

ja p+p→ b+ b+X. t-kvarkkiparien vaikutusaloja voidaan pitää kaikista tarkimpina
myös siinä mielessä, että hadronisaatioapproksimaatio ei vaikuta niihin ja häiriö-
teorian soveltamisen kriteeri Qr & 1 GeV toteutuu selvästi. Edellä mainitut tekijät
selittävät vaikutusaloja vastaavien K-kertoimien stabiiliutta: Yksittäisen vaikutusalan
K-kertoimet vastaavat hyvin sovitettua kokonais-K-kerrointa kaikilla skaalavalin-
noilla. Erityisesti kokonaisvaikutusalan σpp→tt+X K-kertoimien välinen vastaavuus
on huomattavaa.

Gluoni-gluoni-reaktiot hallitsevat selvästi c- ja b-kvarkkiparien tuottoa protoni–
protoni-törmäyksissä. u+u- ja d+d-reaktioiden merkitys on huomattavasti suurempi
t-kvarkkiparien tuotossa, mikä johtuu protonin ja antiprotonin valenssikvarkkiraken-
teesta. Protoni–antiprotoni-törmäyksissä u+ u-reaktiot ovat jopa g + g-reaktioita
merkityksellisempiä. s-, c- ja b-merikvarkkien kontribuutiot vaikutusaloihin ovat
jokaisessa tapauksessa vähäiset. s + s-reaktioiden osuus on suurimmillaan noin

yhden sadasosan (
dσpp→D

0+X
|y|<0.5
dpT

,
√
s = 5,02 TeV) ja c + c-reaktioiden puoli sadasosaa

(dσpp→tt+X
dptT

,
√
s = 13 TeV) (ja luonnollisesti r(bb) < r(cc)). Siten (anti)protonin c- ja

b-merikvarkit voidaan jättää huomiotta alimman kertaluvun raskaiden kvarkkiparien
tuottojen vaikutusaloja laskiessa. c + c- ja b + b-reaktioiden (arvioidut) osuudet
näyttävät myös sen, että t-merikvarkkien kontribuutio on täysin mitätön (koska
mc < mb < mt).

Havaintoni, jonka mukaan prosessien p + p(–) → Q + Q + X(→ HQ + HQ + X)
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alimman kertaluvun vaikutusalat omaavat samat K-kertoimet, mikäli törmäyspro-
sessi ja skaalavalinta ovat samat, vaatii huomattavasti lisätarkastelua sen yleisen
paikkansapitävyyden todentamiseksi (mikäli se ei ole kumottavissa). Tarkastelin
vain kahdeksaatoista eri vaikutusalaa, joista kolmessatoista on edellä kuvattuja
K-kertoimien yhteneväisyyksiä ja joista viisi vaikutusalaa edustavat poikkevaa skaa-
lavalintaa tai törmäysprosessia. Erityisesti hadronisaation vaikutuksesta on nyt
vain vähän informaatiota: fragmentaatiofunktioiden puute muokkaa c-hadronien
tuottoa käsittelevien vaikutusalojen arvoja huomattavasti ja b-hadronien vaikutusa-
loille f(b → Hb) ≈ 1. Koska hadronisaatio on häiriöteorian ulkopuolinen prosessi,
niin voi olla, että fragmentaatiofunktioiden tarkka huomioiminen vaikuttaa vaiku-
tusaloihin siten, että edellä kuvattu K-kertoimien yhtenevyys ei toteudu yleisesti
törmäysprosesseille, jotka sisältävät raskaiden kvarkkien hadronisaatioita.

Alimman kertaluvun vaikutusaloja ja niiden K-kertoimien yhtenevyyksiä voidaan
lisätarkastella myös muilla tavoilla kuin lisäämällä vaikutusalatapausten määrää.
Olisi mielenkiintoista nähdä kuinka kokonais-, differentioidut ja leikatut vaikutusalat
vertautuvat keskenään, kun niiden skaalavalinta on asetettu samaksi. Kun kokonais-
vaikutusala lasketaan differentioidun vaikutusalan dσ(pp(–)→HQHQ+X)

dpT dy3dy4
lausekkeesta (82)

kolmiulotteisella integroinnilla, niin vastaavat renormalisaatio- ja faktorisaatioskaalat
voidaan asettaa poikittaismassan mT monikerroiksi. (Differentioitujen ja leikattujen
vaikutusalojen skaalat voidaan myös valita raskaan kvarkin massan monikerroiksi.)
c- ja b-kvarkkiparien tuotto protoni–antiprotoni-törmäyksissä voisi olla myöskin
hyvä lisätutkimisen ja vertaamisen kohde, samoin kuin ydintörmäysten raskaiden
kvarkkiparien tuotto.

Alimman kertaluvun vaikutusaloja voidaan laskea tarkemmin vähentämällä ap-
proksimaatioiden määrää. Kuten olen korostanut, hadronisaatioapproksimaatio
vääristi huomattavasti osaa vaikutusaloista. Fragmentaatiofunktiot tulee ottaa
ehdottomasti huomioon tarkasteltaessa prosesseja, jotka sisältävät c-kvarkkien (tai
b-kvarkkien) hadronisaatioita. Lisäksi jouduin asettamaan faktorisaatioskaalalle mi-
nimin 1,3 GeV, koska tätä pienemmillä skaaloilla CT14-partonijakaumafunktioiden
arvot ovat epäluotettavia ekstrapoloinnin vuoksi. Tämä keinotekoinen faktorisaa-
tioskaalan muokkaaminen, joka vaikuttaa vaikutusaloihin, on paremmin vältettävissä,
mikäli käytetään partonijakaumafunktioita, joiden laskemisessa on käytetty pienem-
pää alkuskaalaa, Q0 < 1,3 GeV (luku 2.3). Jätin myös alkutilakvarkkien massat
ja prosessin Q+Q→ Q+Q t-kanavan Feynmanin diagrammin huomiotta. Nämä
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kuitenkin vaikuttavat käytännössä ainoastaan aliprosesseihin c + c → c + c ja
b+ b→ b+ b, ja siten erittäin vähän kokonaisprosessien vaikutusaloihin.
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Liite A: Invarianttien amplitudien neliöiden yhtäpitävyys

Tutkielmassa on laskettu aliprosessien polarisoitumattomien invarianttien ampli-
tudien neliöt käyttäen aaveita apuna. Tässä liitteessä näytetään, että nämä in-
varianttien amplitudien neliöt (yhtälöt (66) ja (76)) ovat yhtäpitävät lähteessä [76]
esitettyjen tulosten kanssa, jotka on laskettu ilman aaveita.

Prosessi q + q → Q+Q (aloitan lähteen [76] esittämästä muodosta):

∣∣∣M(qq → QQ)
∣∣∣2 = 64
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Qŝ− 2m2

Q(t̂+ û) + 2m4
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9ŝ2 (t̂2 + û2 + 2m2
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Q − ŝ) + 2m4

Q)

= 64π2α2
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Prosessi g + g → Q+Q:
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= g4
s
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(−m2
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ŝ2 (ŝ2 + 2m2
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2ŝ+ 4m2
Q + 1

m2
Q − û
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Qŝt̂+m4
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(2m2
Qŝ
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// TÃ¤mÃ¤ pro gradu-tutkielmaa varten tehty ohjelma laskee ja analysoi
kvanttivÃ¤ridynamiikan hÃ¤iriÃ¶teorian alimman kertaluvun (raskaiden)
kvarkkiparien tuottoa protoni-protoni- sekÃ¤ protoni-antiprotoni-tÃ¶rmÃ
¤yksissÃ¤. Skaala- ja massavalinnan sekÃ¤ fragmentaatiofraktioiden ja PDF-
settien virheiden aiheuttamat epÃ¤varmuudet lasketaan ja esitetÃ¤Ã¤n
automaattisesti lasketuille eri vaikutusaloille (syÃ¶tettyjen asetusten/
parametrien pohjalta). K-tekijÃ¤t (kok.tulos/LO-tulos) lasketaan eri
skaalavalinnoille. LisÃ¤ksi kvarkkiparien tuottoon kontribuoivien eri
aliprosessien suhteelliset vaikutukset lasketaan. NÃ¤iden tulosten
graafinen esitys (ja K-kerroinsovitukset) on tehty piirto-ohjelmassa
Plot.C. // Teemu Kovanen
// JyvÃ¤skylÃ¤n yliopisto
// Fysiikan laitos
// 25.10.2019

#include <iostream>
#include "TMath.h"
#include "TF1.h"
#include "TF2.h"
#include "TF3.h"
#include "TH1D.h"
#include "TCanvas.h"
#include "ct11pdf.h"
#include "TFile.h"
#include "TGraph.h"
#include "TGraphErrors.h" #include "TGraphAsymmErrors.h"
#include "TFitResultPtr.h"

// KÃ¤ytetyt partonijakaumafunktiot ja vastaavat tiedostot: https://
hep.pa.msu.edu/cteq/public/index.html
int pdfs = 59; // LO- ja NLO-PDF-settien yhteislukumÃ¤Ã¤rÃ¤
int types = 6; //Aliprosesseissa vuorovaikuttavien hiukkasparien lukumÃ¤Ã
¤rÃ¤, sisÃ¤ltÃ¤Ã¤ tapaukset g, u, d, s, c, b (hiukkanen + antihiukkanen).
PDF:Ã¤Ã¤ hiukkaselle t ei ole kÃ¤ytetyissÃ¤ PDF-seteissÃ¤. int points =
150; string it[59] =
{"CT14n.00.pds","CT14n.01.pds","CT14n.02.pds","CT14n.03.pds","CT14n.04.pds
","CT14n.05.pds","CT14n.06.pds","CT14n.07.pds","CT14n.08.pds","CT14n.09.pd
s","CT14n.10.pds","CT14n.11.pds","CT14n.12.pds","CT14n.13.pds","CT14n.14.p
ds","CT14n.15.pds","CT14n.16.pds","CT14n.17.pds","CT14n.18.pds","CT14n.19.
pds","CT14n.20.pds","CT14n.21.pds","CT14n.22.pds","CT14n.23.pds","CT14n.24
.pds","CT14n.25.pds","CT14n.26.pds","CT14n.27.pds","CT14n.28.pds","CT14n.2
9.pds","CT14n.30.pds","CT14n.31.pds","CT14n.32.pds","CT14n.33.pds","CT14n.
34.pds","CT14n.35.pds","CT14n.36.pds","CT14n.37.pds","CT14n.38.pds","CT14n
.39.pds","CT14n.40.pds","CT14n.41.pds","CT14n.42.pds","CT14n.43.pds","CT14
n.44.pds","CT14n.45.pds","CT14n.46.pds","CT14n.47.pds","CT14n.48.pds","CT1
4n.49.pds","CT14n.50.pds","CT14n.51.pds","CT14n.52.pds","CT14n.53.pds","CT
14n.54.pds","CT14n.55.pds","CT14n.56.pds","CT14LN.pds","CT14LL.pds"};

cteqpdf ct14n;

//CT14-LO- ja CT14-NLO-settien ilmoittamat massojen arvot (GeV)
double mg = 0;
double mu = 0.001; double md = 0.001;
double ms = 0.2;
double mc = 1.3;
double mb = 4.75; //HUOM: poikkeaa huomattavasti Particle Data Groupin



ilmoittamasta arvosta (4.18 GeV)
double mt = 172;

// Funktiot ja integrandit
double YksTesti(double *x, double *p);
double TotCSpp(double *x, double *p);
double Intgpp(double *x, double *p);
double PetFF(double *x, double *p);
double PetFFeff(double *x, double *p);
double DifCS1(double *x, double *p);
double DifCS2(double *x, double *p);
double DifIntg1(double *x, double *p);
double DifCS3(double *x, double *p);
double DifIntg2(double *x, double *p);
double CutCS1(double *x, double *p);
double CutIntg1(double *x, double *p);
double DifCS4(double *x, double *p);
double DifIntg3(double *x, double *p);
double CutCS2(double *x, double *p);
double CutIntg2(double *x, double *p);

using namespace std;

int main() {

/*
// Tarkistetaan silmukkakehittelyjen lukumÃ¤Ã¤rÃ¤. NLO:lle 1, LN:le 2 ja
LL:lle 1.
ct14n.setct11(it[0]);
 cout << "Order of PDFs for CT14NLO: " << ct14n.Iorder << endl;
ct14n.pdfexit();

ct14n.setct11(it[57]);
cout << "Order of PDFs for CT14LO (LN): " << ct14n.Iorder << endl;
ct14n.pdfexit();

ct14n.setct11(it[58]);
cout << "Order of PDFs for CT14LO (LL): " << ct14n.Iorder << endl;
ct14n.pdfexit();
*/

ct14n.setct11(it[58]);

/*
// Tarkistetaan halutessa, ettÃ¤ protonin sisÃ¤ltÃ¤mien eri partonien
liikemÃ¤Ã¤rÃ¤osuuksien summa on yksi.
double Qyt = 1.3;
TF1 *fYksTesti = new TF1("fYksTesti", YksTesti, 0, 1, 3);
fYksTesti->SetParameter(0, Qyt); // PDF:ien skaalavalinta
fYksTesti->SetParameter(1, 1); // Gluonien osuuden kerroin
fYksTesti->SetParameter(2, 1); // Kvarkkien ja antikvarkkien osuuden
kerroin
double yt = fYksTesti->Integral(0.0,1.0);
cout<< "Integrointitesti antaa arvon " << yt << endl;



fYksTesti->SetParameter(1, 0);
double pp1 = fYksTesti->Integral(0.0,1.0);

fYksTesti->SetParameter(1, 1);
fYksTesti->SetParameter(2, 0); double pp2 = fYksTesti->Integral(0.0,1.0);
fYksTesti->SetParameter(2, 1); //Palautus oikeaksi

cout<< "Kvarkkien ja antikvarkkien osuus protonin liikemÃ¤Ã¤rÃ¤stÃ¤ on "
<< pp1 << " ja gluonien " << pp2 << ", skaalavalinnalla Q = " << Qyt <<
"." <<endl; */

// Petersonin fragmentaatiofunktio c-kvarkille (hadronille luovutetun
liikemÃ¤Ã¤rÃ¤osuuden z funktio) (Peterson, C. et al. Phys.Rev. D27 (1983)
105 SLAC-PUB-2912) TF1 *fPetFFc = new TF1("fPetFFc", PetFF, 0.0, 1.0, 2);
fPetFFc->SetParameter(0, 0.15); // Kvarkkia vastaava Petersonin
fragmentaatiofunktion parametri (katso paperi) fPetFFc->SetParameter(1,
1.28267); // Normalisaatio siten, ettÃ¤ integraali mÃ¤Ã¤rittelyalueen yli
antaa arvon yksi.

// Petersonin fragmentaatiofunktio b-kvarkille
TF1 *fPetFFb = new TF1("fPetFFb", PetFF, 0.0, 1.0, 2);
fPetFFb->SetParameter(0, 0.016);
fPetFFb->SetParameter(1, 0.247843);
 // Petersonin fragmentaatiofunktion karkeasti approksimoitu efekti c-
hadronien p_T-jakauman arvoihin, integrandi (katso graduteksti) TF1
*fPetFFcEff = new TF1("fPetFFcEff", PetFFeff, 0.0, 1.0, 3);
fPetFFcEff->SetParameter(0, 0.15); // Kvarkkia vastaava parametri
fPetFFcEff->SetParameter(1, 1.28267); // AlkuperÃ¤inen normalisaatio
(katso fPetFFc-funktio)
fPetFFcEff->SetParameter(2, 3.71); // Kuvasta mÃ¤Ã¤ritetty jakauman kÃ
¤yttÃ¤ytymistÃ¤ kuvaavan potenssin itseisarvo

double ddeceff1 = fPetFFcEff->Integral(0.0,1.0);
fPetFFcEff->SetParameter(2, 4.55);
double ddeceff2 = fPetFFcEff->Integral(0.0,1.0);

//cout << "Approksimoitu keskimÃ¤Ã¤rÃ¤inen c-hadronien tuoton p_T-
differentioidun vaikutusalan lasku, kun fragmentaatiofunktio otetaan
huomioon, on pienimmillÃ¤Ã¤n " << 100*(1.0-ddeceff1) << " % ja
suurimmillaan " << 100*(1.0-ddeceff2) << " %." << endl;

// Vastaava efektin suuruutta kuvaava integrandi b-hadroneille
TF1 *fPetFFbEff = new TF1("fPetFFbEff", PetFFeff, 0.0, 1.0, 3);
fPetFFbEff->SetParameter(0, 0.016);
fPetFFbEff->SetParameter(1, 0.247843);
fPetFFbEff->SetParameter(2, 4.0);

//cout << "Approksimoitu keskimÃ¤Ã¤rÃ¤inen b-hadronien tuoton p_T-
differentioidun vaikutusalan lasku, kun fragmentaatiofunktio otetaan
huomioon, on " << 100*(1.0-(fPetFFbEff->Integral(0.0,1.0))) << " %." <<
endl;

/// VAIKUTUSALOJEN FUNKTIOT ///
// YleistÃ¤ funktioista:



// 1. Funktiot laskevat alimman kertaluvun vaikutusaloja, jotka ovat yhden
muuttujan funktiota.
// 2. Funktioiden lausekkeiden ja vastaavien parametrien
yksityiskohtaisimmat kuvaukset lÃ¶ytyvÃ¤t riveiltÃ¤, joissa kyseistÃ¤
lauseketta kÃ¤ytetÃ¤Ã¤n ensimmÃ¤isen kerran ohjelmassa. // 3. Vain
kvarkkiparien tuottoa on kÃ¤sitelty (katso graduteksti). LÃ¤htÃ¶tilan
partonit on oletettu massattomiksi. // 4. Hadronien tuottojen
vaikutusalojen laskemisessa on oletettu, ettÃ¤ liikemÃ¤Ã¤rÃ¤n suunta ja
suuruus sÃ¤ilyvÃ¤t hadronisaatiossa. Hadronien fragmentaatiofunktioita ei
ole siten kÃ¤ytetty, vaan niiden sijasta hadronisaatiota on kÃ¤sitelty
vastaavien fragmentaatiofraktioiden avulla. TÃ¤mÃ¤n approksimaation
vaikutusta on arvioitu karkeasti Petersonin fragmentaatiofunktion avulla
(katso graduteksti ja funktiot). // 5. Jokaisella funktiolla on
mahdollisuus valita pp- taikka pp_bar-tÃ¶rmÃ¤ys.
// 6. Funktioissa (ja kaikkialla muuallakin ohjelmassa) skaalalla
tarkoitetaan arvoa Q, ei arvoa QÂ².
// 7. Funktioiden parametrit "g ... b ja b_bar" vastaavat eri partonien vÃ
¤listen reaktioiden osuuksia lasketusta vaikutusalasta. CT14-
partonijakaumafunktiot eivÃ¤t sisÃ¤ltÃ¤neet t-kvarkin jakaumaa. Siksi sitÃ
¤ ei ole otettu huomioon eri partonien suhteellisia osuuksia
vaikutusalasta laskettaessa. // 8. Tarkastellun lopputilahiukkasen
(hadronin) massa tulee ilmoittaa joissain tapauksissa parametreissa, sillÃ
¤ sen arvo vaikuttaa mm. rapiditeetin integroimisvÃ¤liin. // 9.
Aliprosessin kokonaisvaikutusalan lauseketta kÃ¤ytetÃ¤Ã¤n yhdessÃ¤
tapauksessa (TotCSpp), kaikissa muissa se on kolmesti differentioitu
lauseke. // 10. Kaikki vaikutusalat on laskettu yksikÃ¶issÃ¤ (GeV)â»Â² tai
(GeV)â»Â³. Tapauskohtaiset yksikÃ¶nmuunnosparametrit (sekÃ¤
fragmentaatiofraktiot) on viety tarkoituksella integrandiin
laskentatarkkuuden takaamiseksi (arvoiltaan liian pienet integrandit
lasketaan epÃ¤tarkasti). // 11. Lausekkeiden 2D- ja 3D-integraalien
laskentatarkkuudet on asetettu suuriksi, jotta eri partonien reaktioiden
suhteellisten osuuksien arvot saadaan tarkasti laskettua. // 12. ROOTissa
ajettaessa saatetaan saada varoituksia liittyen integraalien
laskentatarkkuuksiin, joita ei ole kyetty saavuttamaan. Optimointi
mahdollista nÃ¤iden ilmoitusten avulla.

 //TotCSpp: Lasketaan tarkasteltujen kvarkkien (tai hadronien) tuoton
kokonaisvaikutusala CMS-energian funktiona.

double cEmin1 = 2*0.00127; // TeV
double cEmax1 = 8.0;
double cEvali1 = cEmax1 - cEmin1;

TF1 *fTotCScc1 = new TF1("fTotCScc1", TotCSpp, 0, cEmax1, 17); // MÃ¤Ã
¤rittelyvÃ¤li alkaa kokonaisvaikutusaloilla nollasta, sillÃ¤
massaparametria tulee pystyÃ¤ muokkaamaan, katso grcmmax- ja grcmmin-
graafit

fTotCScc1->SetParameter(0, 1.27); // Kvarkin massa
fTotCScc1->SetParameter(1, 1); // 1 = protoni-protoni-tÃ¶rmÃ¤ys, -1 =
protoni-antiprotoni tÃ¶rmÃ¤ys
fTotCScc1->SetParameter(2, 2.0); // Skaalakerroin alfalle, skaala on massa
kertaa tÃ¤mÃ¤ luku
fTotCScc1->SetParameter(3, 2.0); // Vastaava skaalakerroin PDF:ille
fTotCScc1->SetParameter(4, 0); // Kun = 1, niin Q alfalle on aliprosessin
kokonaisenergian (sqrt(s^)) kertaluku fTotCScc1->SetParameter(5, 0); //



Vastaava skaalatyypin valintaparametri partonijakaumafunktioille
fTotCScc1->SetParameter(6, 2.0); // Q on sqrt(s^) kertaa tÃ¤mÃ¤ luku, kun
alfan skaalavalintaparametri on yhtÃ¤ kuin 1  fTotCScc1->SetParameter(7,
2.0); // Vastaava skaalavalintaparametri PDF:ille
fTotCScc1->SetParameter(8, 1.000); // Fragmentaatiofraktion arvo
fTotCScc1->SetParameter(9, 1000); // YksikÃ¶nmuunnosparametri CMS-
energialle // TeV --> GeV
fTotCScc1->SetParameter(10, 0.389379337919); // YksikÃ¶nmuunnosparametri
vaikutusalalle. 0.3893793656, kun (GeV)â»Â² --> mb fTotCScc1-
>SetParameter(11, 1); // g
fTotCScc1->SetParameter(12, 1); // u ja u_bar
fTotCScc1->SetParameter(13, 1); // d ja d_bar
fTotCScc1->SetParameter(14, 1); // s ja s_bar
fTotCScc1->SetParameter(15, 1); // c ja c_bar
fTotCScc1->SetParameter(16, 1); // b ja b_bar

// CutCS2: Lasketaan integroitu vaikutusala tarkasteltujen kvarkkien tai
hadronien tuotolle, valituilla rapiditeetti- ja p_T-leikkauksilla, CMS-
energian funktiona. Leikkausrajoitukset koskevat ainoastaan toista
tuotetuista kvarkeista/hadroneista.
 double cEmin2 = 0.016; // TeV //HUOM: Rapiditeetti (siis c-kvarkin
rapiditetti) vaikuttaa energian minimiin!
double cEmax2 = 14.0;
double cEvali2 = cEmax2 - cEmin2;

TF1 *fCutCScc1 = new TF1("fCutCScc1", CutCS2, 0, cEmax2, 22);

fCutCScc1->SetParameter(0, 1.27); // Tuotetun kvarkin massa
fCutCScc1->SetParameter(1, 1.9); // Tuotetun kvarkin/hadronin massa // Nyt
approksimoitu c-hadronin keskimÃ¤Ã¤rÃ¤inen massa (katso vastaavat
kokeelliset tulokset ja graduteksti) fCutCScc1->SetParameter(2, 1); //
TÃ¶rmÃ¤yksen tyyppi: 1 = pp, -1 = pp_bar
fCutCScc1->SetParameter(3, 0.0); // p_T-leikkauksen alaraja
fCutCScc1->SetParameter(4, 8.0); // p_T-leikkauksen ylÃ¤raja
fCutCScc1->SetParameter(5, 2.0); // Rapiditeettileikkauksen alaraja
fCutCScc1->SetParameter(6, 4.5); // Rapiditeettileikkauksen ylÃ¤raja
fCutCScc1->SetParameter(7, 2.0); // Alfan skaala on massa kertaa tÃ¤mÃ¤
luku
fCutCScc1->SetParameter(8, 2.0); // PDF:ien skaala on massa kertaa tÃ¤mÃ¤
luku fCutCScc1->SetParameter(9, 1); // Kun = 1, niin alfan skaala on m_T:n
kertaluku
fCutCScc1->SetParameter(10, 1); // Vastaava skaalavalintaparametri
PDF:ille
fCutCScc1->SetParameter(11, 1.0); // Alfan skaala on m_T kertaa tÃ¤mÃ¤
luku, kun alfan skaalavalinta parametri on yhtÃ¤ kuin 1 fCutCScc1-
>SetParameter(12, 1.0); // Vastaava vaihtoehtoinen skaala PDF:ille
fCutCScc1->SetParameter(13, 1.000); //Fragmentaatiofraktio
fCutCScc1->SetParameter(14, 1000); // YksikÃ¶nmuunnosparametri CMS-
energialle // TeV --> GeV
fCutCScc1->SetParameter(15, 389.379337919); // YksikÃ¶nmuunnosparametri
vaikutusalalle. 389,379337919, kun (GeV)â»Â² --> Âµb fCutCScc1-
>SetParameter(16, 1); // g
fCutCScc1->SetParameter(17, 1); // u ja u_bar
fCutCScc1->SetParameter(18, 1); // d ja d_bar
fCutCScc1->SetParameter(19, 1); // s ja s_bar



fCutCScc1->SetParameter(20, 1); // c ja c_bar
fCutCScc1->SetParameter(21, 1); // b ja b_bar

 // DifCS1: Lasketaan kvarkin taikka hadronin p_T-differentioitu
vaikutusala halutulla energialla ja rapiditeettileikkauksella. Leikkaus
koskee vain toista kahdesta tuotetusta kvarkista/hadronista.

double chymin1 = -0.5;
double chymax1 = 0.5;
double cE1 = 2.76*1000;
double cptmin1 = 1.0; // GeV
double cptmax1 = 12.0;
double cptvali1 = cptmax1 - cptmin1;
TF1 *fDifCScc1 = new TF1("fDifCScc1", DifCS1, cptmin1, cptmax1, 21);

fDifCScc1->SetParameter(0, 1.27); // Tuotetun kvarkin massa
fDifCScc1->SetParameter(1, 1.86483); // +- 0,00005 GeV // Tarkastellun
hadronin (tai kvarkin) massa
fDifCScc1->SetParameter(2, cE1); // CMS-tÃ¶rmÃ¤ysenergia (GeV)
fDifCScc1->SetParameter(3, 1); // 1 = pp-tÃ¶rmÃ¤ys, -1 = pp_bar-tÃ¶rmÃ¤ys
fDifCScc1->SetParameter(4, chymin1); // Rapiditeettileikkauksen alaraja
fDifCScc1->SetParameter(5, chymax1); // Rapiditeettileikkauksen ylÃ¤raja
fDifCScc1->SetParameter(6, 2.0); // Skaalakerroin alfalle, skaala on massa
kertaa tÃ¤mÃ¤ luku fDifCScc1->SetParameter(7, 2.0); // Vastaava
skaalakerroin PDF:ille
fDifCScc1->SetParameter(8, 1); // Kun = 1, niin alfan skaala on m_T:n
kertaluku
fDifCScc1->SetParameter(9, 1); // Vastaava skaalavalintaparametri PDF:ille
fDifCScc1->SetParameter(10, 1.0); // Vaihtoehtoinen skaalakerroin alfalle,
skaala on m_T kertaa tÃ¤mÃ¤ luku fDifCScc1->SetParameter(11, 1.0); //
Vastaava skaalakerroin PDF:ille
fDifCScc1->SetParameter(12, 0.557); // Fragmentaatiofraktion arvo
fDifCScc1->SetParameter(13, 1.0); // YksikÃ¶nmuunnosparametri
poikittaisliikemÃ¤Ã¤rÃ¤lle, GeV
fDifCScc1->SetParameter(14, 389.379337919); // YksikÃ¶nmuunnosparametri.
389,3793379, kun (GeV)â»Â³ ---> Âµb/GeV  fDifCScc1->SetParameter(15, 1); /
/ g
fDifCScc1->SetParameter(16, 1); // u ja u_bar
fDifCScc1->SetParameter(17, 1); // d ja d_bar
fDifCScc1->SetParameter(18, 1); // s ja s_bar
fDifCScc1->SetParameter(19, 1); // c ja c_bar
fDifCScc1->SetParameter(20, 1); // b ja b_bar

double cptmin2 = 2.0; // GeV double cptmax2 = 12.0;
double cptvali2 = cptmax2 - cptmin2;
TF1 *fDifCScc2 = new TF1("fDifCScc2", DifCS1, cptmin2, cptmax2, 21);

fDifCScc2->SetParameter(0, 1.27); // Kvarkin massa
fDifCScc2->SetParameter(1, 1.86965); // +- 0,00005 GeV // Hadronin massa
fDifCScc2->SetParameter(2, cE1); // CMS-energia
fDifCScc2->SetParameter(3, 1); // TÃ¶rmÃ¤ystyyppi
fDifCScc2->SetParameter(4, chymin1); // Rapiditeettileikkauksen alaraja
fDifCScc2->SetParameter(5, chymax1); // Rapiditeettileikkauksen ylÃ¤raja
fDifCScc2->SetParameter(6, 2.0); // Skaalavalinnat



fDifCScc2->SetParameter(7, 2.0);
fDifCScc2->SetParameter(8, 1);
fDifCScc2->SetParameter(9, 1);
fDifCScc2->SetParameter(10, 1.0);
fDifCScc2->SetParameter(11, 1.0);
fDifCScc2->SetParameter(12, 0.226); // Fragmentaatiofraktio
fDifCScc2->SetParameter(13, 1.0); // GeV
fDifCScc2->SetParameter(14, 389.379337919); // YksikÃ¶nmuunnosparametri.
389,3793379, kun (GeV)â»Â³ ---> Âµb/GeV  fDifCScc2->SetParameter(15, 1); /
/ g fDifCScc2->SetParameter(16, 1); // u ja u_bar
fDifCScc2->SetParameter(17, 1); // d ja d_bar
fDifCScc2->SetParameter(18, 1); // s ja s_bar
fDifCScc2->SetParameter(19, 1); // c ja c_bar
fDifCScc2->SetParameter(20, 1); // b ja b_bar

TF1 *fDifCScc3 = new TF1("fDifCScc3", DifCS1, cptmin2, cptmax2, 21);

fDifCScc3->SetParameter(0, 1.27); // Kvarkin massa
fDifCScc3->SetParameter(1, 2.01026); // +- 0,00005 GeV // Hadronin massa
fDifCScc3->SetParameter(2, cE1); // CMS-energia
fDifCScc3->SetParameter(3, 1); // TÃ¶rmÃ¤ystyyppi
fDifCScc3->SetParameter(4, chymin1); // Rapiditeettileikkauksen alaraja
fDifCScc3->SetParameter(5, chymax1); // Rapiditeettileikkauksen ylÃ¤raja
fDifCScc3->SetParameter(6, 2.0); // Skaalavalinnat
fDifCScc3->SetParameter(7, 2.0);
fDifCScc3->SetParameter(8, 1);
fDifCScc3->SetParameter(9, 1);
fDifCScc3->SetParameter(10, 1.0);
fDifCScc3->SetParameter(11, 1.0);
fDifCScc3->SetParameter(12, 0.238); // Fragmentaatiofraktio fDifCScc3-
>SetParameter(13, 1.0); // GeV
fDifCScc3->SetParameter(14, 389.379337919); // YksikÃ¶nmuunnosparametri.
389,3793379, kun (GeV)â»Â³ ---> Âµb/GeV  fDifCScc3->SetParameter(15, 1); /
/ g
fDifCScc3->SetParameter(16, 1); // u ja u_bar
fDifCScc3->SetParameter(17, 1); // d ja d_bar
fDifCScc3->SetParameter(18, 1); // s ja s_bar
fDifCScc3->SetParameter(19, 1); // c ja c_bar
fDifCScc3->SetParameter(20, 1); // b ja b_bar

double cE2 = 5.02*1000;
double cptmin3 = 0.0; // GeV
double cptmax3 = 36.0;
double cptvali3 = cptmax3 - cptmin3;
TF1 *fDifCScc4 = new TF1("fDifCScc4", DifCS1, cptmin3, cptmax3, 21);

fDifCScc4->SetParameter(0, 1.27); // Kvarkin massa
fDifCScc4->SetParameter(1, 1.86483); // +- 0,00005 GeV // Hadronin massa
fDifCScc4->SetParameter(2, cE2); // CMS-energia
fDifCScc4->SetParameter(3, 1); // TÃ¶rmÃ¤ystyyppi
fDifCScc4->SetParameter(4, chymin1); // Rapiditeettileikkauksen alaraja
fDifCScc4->SetParameter(5, chymax1); // Rapiditeettileikkauksen ylÃ¤raja
fDifCScc4->SetParameter(6, 2.0); // Skaalavalinnat



fDifCScc4->SetParameter(7, 2.0);
fDifCScc4->SetParameter(8, 1);
fDifCScc4->SetParameter(9, 1);
fDifCScc4->SetParameter(10, 1.0);
fDifCScc4->SetParameter(11, 1.0);
fDifCScc4->SetParameter(12, 0.557); // Fragmentaatiofraktio
fDifCScc4->SetParameter(13, 1.0); // GeV
fDifCScc4->SetParameter(14, 389.379337919); // YksikÃ¶nmuunnosparametri.
389,3793379, kun (GeV)â»Â³ ---> Âµb/GeV  fDifCScc4->SetParameter(15, 1); /
/ g
fDifCScc4->SetParameter(16, 1); // u ja u_bar
fDifCScc4->SetParameter(17, 1); // d ja d_bar
fDifCScc4->SetParameter(18, 1); // s ja s_bar
fDifCScc4->SetParameter(19, 1); // c ja c_bar
fDifCScc4->SetParameter(20, 1); // b ja b_bar

double cptmin4 = 1.0; // GeV
double cptmax4 = 36.0;
double cptvali4 = cptmax4 - cptmin4;
TF1 *fDifCScc5 = new TF1("fDifCScc5", DifCS1, cptmin4, cptmax4, 21);

fDifCScc5->SetParameter(0, 1.27); // Kvarkin massa fDifCScc5-
>SetParameter(1, 2.01026); // +- 0,00005 GeV // Hadronin massa
fDifCScc5->SetParameter(2, cE2); // CMS-energia
fDifCScc5->SetParameter(3, 1); // TÃ¶rmÃ¤ystyyppi
fDifCScc5->SetParameter(4, chymin1); // Rapiditeettileikkauksen alaraja
fDifCScc5->SetParameter(5, chymax1); // Rapiditeettileikkauksen ylÃ¤raja
fDifCScc5->SetParameter(6, 2.0); // Skaalavalinnat
fDifCScc5->SetParameter(7, 2.0);
fDifCScc5->SetParameter(8, 1);
fDifCScc5->SetParameter(9, 1);
fDifCScc5->SetParameter(10, 1.0);
fDifCScc5->SetParameter(11, 1.0);
fDifCScc5->SetParameter(12, 0.238); // Fragmentaatiofraktio
fDifCScc5->SetParameter(13, 1.0); // GeV
fDifCScc5->SetParameter(14, 389.379337919); // YksikÃ¶nmuunnosparametri.
389,379337919, kun (GeV)â»Â³ ---> Âµb/GeV  fDifCScc5->SetParameter(15, 1);
// g
fDifCScc5->SetParameter(16, 1); // u ja u_bar
fDifCScc5->SetParameter(17, 1); // d ja d_bar
fDifCScc5->SetParameter(18, 1); // s ja s_bar
fDifCScc5->SetParameter(19, 1); // c ja c_bar fDifCScc5->SetParameter(20,
1); // b ja b_bar

double cE3 = 7*1000;
double cptmin5 = 1.0; // GeV
double cptmax5 = 16.0;
double cptvali5 = cptmax5 - cptmin5;
TF1 *fDifCScc6 = new TF1("fDifCScc6", DifCS1, cptmin5, cptmax5, 21);

fDifCScc6->SetParameter(0, 1.27); // Kvarkin massa
fDifCScc6->SetParameter(1, 1.86483); // +- 0,00005 GeV // Hadronin massa
fDifCScc6->SetParameter(2, cE3); // CMS-energia



fDifCScc6->SetParameter(3, 1); // TÃ¶rmÃ¤ystyyppi
fDifCScc6->SetParameter(4, chymin1); // Rapiditeettileikkauksen alaraja
fDifCScc6->SetParameter(5, chymax1); // Rapiditeettileikkauksen ylÃ¤raja
fDifCScc6->SetParameter(6, 2.0); // Skaalavalinnat
fDifCScc6->SetParameter(7, 2.0);
fDifCScc6->SetParameter(8, 1);
fDifCScc6->SetParameter(9, 1);
fDifCScc6->SetParameter(10, 1.0);
fDifCScc6->SetParameter(11, 1.0);
fDifCScc6->SetParameter(12, 0.557); // Fragmentaatiofraktio
fDifCScc6->SetParameter(13, 1.0); // GeV fDifCScc6->SetParameter(14,
389.379337919); // YksikÃ¶nmuunnosparametri. 389,3793379, kun (GeV)â»Â³ --
-> Âµb/GeV  fDifCScc6->SetParameter(15, 1); // g
fDifCScc6->SetParameter(16, 1); // u ja u_bar
fDifCScc6->SetParameter(17, 1); // d ja d_bar
fDifCScc6->SetParameter(18, 1); // s ja s_bar
fDifCScc6->SetParameter(19, 1); // c ja c_bar
fDifCScc6->SetParameter(20, 1); // b ja b_bar

double cptmin6 = 1.0; // GeV
double cptmax6 = 24.0;
double cptvali6 = cptmax6 - cptmin6;
TF1 *fDifCScc7 = new TF1("fDifCScc7", DifCS1, cptmin6, cptmax6, 21);

fDifCScc7->SetParameter(0, 1.27); // Kvarkin massa
fDifCScc7->SetParameter(1, 2.01026); // +- 0,00005 GeV // Hadronin massa
fDifCScc7->SetParameter(2, cE3); // CMS-energia
fDifCScc7->SetParameter(3, 1); // TÃ¶rmÃ¤ystyyppi
fDifCScc7->SetParameter(4, chymin1); // Rapiditeettileikkauksen alaraja
fDifCScc7->SetParameter(5, chymax1); // Rapiditeettileikkauksen ylÃ¤raja
fDifCScc7->SetParameter(6, 2.0); // Skaalavalinnat fDifCScc7-
>SetParameter(7, 2.0);
fDifCScc7->SetParameter(8, 1);
fDifCScc7->SetParameter(9, 1);
fDifCScc7->SetParameter(10, 1.0);
fDifCScc7->SetParameter(11, 1.0);
fDifCScc7->SetParameter(12, 0.238); // Fragmentaatiofraktio
fDifCScc7->SetParameter(13, 1.0); // GeV
fDifCScc7->SetParameter(14, 389.379337919); // YksikÃ¶nmuunnosparametri.
389,3793379, kun (GeV)â»Â³ ---> Âµb/GeV  fDifCScc7->SetParameter(15, 1); /
/ g
fDifCScc7->SetParameter(16, 1); // u ja u_bar
fDifCScc7->SetParameter(17, 1); // d ja d_bar
fDifCScc7->SetParameter(18, 1); // s ja s_bar
fDifCScc7->SetParameter(19, 1); // c ja c_bar
fDifCScc7->SetParameter(20, 1); // b ja b_bar

double bEmin1 = 2*0.00418; // TeV
double bEmax1 = 8.0;
double bEvali1 = bEmax1 - bEmin1;

TF1 *fTotCSbb1 = new TF1("fTotCSbb1", TotCSpp, 0, bEmax1, 17);



fTotCSbb1->SetParameter(0, 4.18); // Massa
fTotCSbb1->SetParameter(1, 1); // TÃ¶rmÃ¤ystyyppi
fTotCSbb1->SetParameter(2, 2.0); // Skaalavalinnat fTotCSbb1-
>SetParameter(3, 2.0);
fTotCSbb1->SetParameter(4, 0);
fTotCSbb1->SetParameter(5, 0);
fTotCSbb1->SetParameter(6, 2.0);
fTotCSbb1->SetParameter(7, 2.0);
fTotCSbb1->SetParameter(8, 1.000); //Fragmentaatiofraktio
fTotCSbb1->SetParameter(9, 1000); // CMS-energian yksikÃ¶nmuunnos, TeV -->
GeV
fTotCSbb1->SetParameter(10, 389.379337919); // YksikÃ¶nmuunnosparametri.
389,379337919, kun (GeV)â»Â² --> Âµb fTotCSbb1->SetParameter(11, 1); // g
fTotCSbb1->SetParameter(12, 1); // u ja u_bar
fTotCSbb1->SetParameter(13, 1); // d ja d_bar
fTotCSbb1->SetParameter(14, 1); // s ja s_bar
fTotCSbb1->SetParameter(15, 1); // c ja c_bar
fTotCSbb1->SetParameter(16, 1); // b ja b_bar

// CutCS1: Lasketaan integroitu vaikutusala halutulla
pseudorapiditettileikkauksella CMS-energian funktiona.
Pseudorapiditeettileikkaus koskee vain toista tuotetuista kvarkeista/
hadroneista.
 double bEmin2 = 2*0.00418; // TeV // Pseudorapiditeetti ei vaikuta
energien alarajaan (mutta rapiditeettileikkaus vaikuttaisi). double bEmax2
= 14.0;
double bEvali2 = bEmax2 - bEmin2;

TF1 *fCutCSbb1 = new TF1("fCutCSbb1", CutCS1, 0, bEmax2, 19);

fCutCSbb1->SetParameter(0, 4.18); // Tuotetun kvarkin massa
fCutCSbb1->SetParameter(1, 1); // TÃ¶rmÃ¤yksen tyyppi: 1 = pp, -1 = pp_bar
fCutCSbb1->SetParameter(2, 2.0); // PseudorapiditeettivÃ¤lin alaraja
fCutCSbb1->SetParameter(3, 5.0); // PseudorapiditeettivÃ¤lin ylÃ¤raja
fCutCSbb1->SetParameter(4, 2.0); // Alfan skaala on massa kertaa tÃ¤mÃ¤
luku
fCutCSbb1->SetParameter(5, 2.0); // Partonijakaumafunktioiden skaala on
massa kertaa tÃ¤mÃ¤ luku
fCutCSbb1->SetParameter(6, 1); // Kun tÃ¤mÃ¤ parametri on 1, niin alfan
skaala on m_T:n kertaluku
fCutCSbb1->SetParameter(7, 1); // Vastaava skaalatyypin valinta PDF:ille
fCutCSbb1->SetParameter(8, 1.0); // Alfan skaala on m_T kertaa tÃ¤mÃ¤
luku, kun yllÃ¤ mainittu skaalavalintaparametri on 1 fCutCSbb1-
>SetParameter(9, 1.0); // Vastaava vaihtoehtoinen skaala PDF:ille
fCutCSbb1->SetParameter(10, 1.000); //Fragmentaatiofraktio // b-
hadroneille noin yksi, sillÃ¤ b hadronisoituu lÃ¤hes aina ennen
hajoamistaan fCutCSbb1->SetParameter(11, 1000); // TeV --> GeV
fCutCSbb1->SetParameter(12, 389.379337919); // YksikÃ¶nmuunnosparametri
vaikutusalalle. 389,379337919, kun (GeV)â»Â² --> Âµb fCutCSbb1-
>SetParameter(13, 1); // g
fCutCSbb1->SetParameter(14, 1); // u ja u_bar
fCutCSbb1->SetParameter(15, 1); // d ja d_bar
fCutCSbb1->SetParameter(16, 1); // s ja s_bar
fCutCSbb1->SetParameter(17, 1); // c ja c_bar
fCutCSbb1->SetParameter(18, 1); // b ja b_bar



// DifCS4: Lasketaan toisen tuotetun kvarkin/hadronin pseudorapiditeetin
suhteen differentioitu vaikutusala halutulla CMS-energialla.

double betamin1 = 2.0;
double betamax1 = 5.0;
double betavali1 = betamax1 - betamin1;
double bE1 = 7.0*1000;

TF1 *fDifCSbb1 = new TF1("fDifCSbb1", DifCS4, betamin1, betamax1, 17);
 fDifCSbb1->SetParameter(0, 4.18); // Tuotetun kvarkin massa
fDifCSbb1->SetParameter(1, bE1); // CMS-energia (GeV)
fDifCSbb1->SetParameter(2, 1); // 1 = pp-tÃ¶rmÃ¤ys, pp_bar-tÃ¶rmÃ¤ys
fDifCSbb1->SetParameter(3, 2.0); // Skaalakerroin alfalle, skaala on massa
kertaa tÃ¤mÃ¤ luku
fDifCSbb1->SetParameter(4, 2.0); // Vastaava skaalakerroin PDF:ille
fDifCSbb1->SetParameter(5, 1); // Kun = 1, niin alfan skaala on m_T:n
kertaluku
fDifCSbb1->SetParameter(6, 1); // Vastaava skaalavalintaparametri PDF:ille
fDifCSbb1->SetParameter(7, 1.0); // Vaihtoehtoinen skaalakerroin alfalle,
skaala on m_T kertaa tÃ¤mÃ¤ luku fDifCSbb1->SetParameter(8, 1.0); //
Vastaava skaalakerroin PDF:ille
fDifCSbb1->SetParameter(9, 1.000); // Fragmentaatiofraktion arvo
fDifCSbb1->SetParameter(10, 389.379337919); // YksikÃ¶nmuunnosparametri.
389,379337919, kun (GeV)â»Â² ---> Âµb  fDifCSbb1->SetParameter(11, 1); //
g
fDifCSbb1->SetParameter(12, 1); // u ja u_bar
fDifCSbb1->SetParameter(13, 1); // d ja d_bar fDifCSbb1->SetParameter(14,
1); // s ja s_bar
fDifCSbb1->SetParameter(15, 1); // c ja c_bar
fDifCSbb1->SetParameter(16, 1); // b ja b_bar

double bE2 = 13.0*1000;

TF1 *fDifCSbb2 = new TF1("fDifCSbb2", DifCS4, betamin1, betamax1, 17);

fDifCSbb2->SetParameter(0, 4.18); // Kvarkin massa
fDifCSbb2->SetParameter(1, bE2); // CMS-energia
fDifCSbb2->SetParameter(2, 1); // TÃ¶rmÃ¤ystyyppi
fDifCSbb2->SetParameter(3, 2.0); // Skaalavalinnat
fDifCSbb2->SetParameter(4, 2.0);
fDifCSbb2->SetParameter(5, 1);
fDifCSbb2->SetParameter(6, 1);
fDifCSbb2->SetParameter(7, 1.0);
fDifCSbb2->SetParameter(8, 1.0);
fDifCSbb2->SetParameter(9, 1.000); // Fragmentaatiofraktio
fDifCSbb2->SetParameter(10, 389.379337919); // YksikÃ¶nmuunnosparametri.
389,379337919, kun (GeV)â»Â² ---> Âµb  fDifCSbb2->SetParameter(11, 1); //
g
fDifCSbb2->SetParameter(12, 1); // u ja u_bar
fDifCSbb2->SetParameter(13, 1); // d ja d_bar
fDifCSbb2->SetParameter(14, 1); // s ja s_bar  fDifCSbb2->SetParameter(15,
1); // c ja c_bar
fDifCSbb2->SetParameter(16, 1); // b ja b_bar



double tEmin1 = 2*0.1729; // TeV
double tEmax1 = 3.0;
double tEvali1 = tEmax1 - tEmin1;

TF1 *fTotCStt1 = new TF1("fTotCStt1", TotCSpp, 0, tEmax1, 17);

fTotCStt1->SetParameter(0, 172.9); // Massa
fTotCStt1->SetParameter(1, -1); // TÃ¶rmÃ¤ystyyppi
fTotCStt1->SetParameter(2, 2.0); // Skaalavalinnat
fTotCStt1->SetParameter(3, 2.0);
fTotCStt1->SetParameter(4, 0);
fTotCStt1->SetParameter(5, 0);
fTotCStt1->SetParameter(6, 2.0);
fTotCStt1->SetParameter(7, 2.0);
fTotCStt1->SetParameter(8, 1.000); //Fragmentaatiofraktio
fTotCStt1->SetParameter(9, 1000); // YksikÃ¶nmuunnosparametri CMS-
energialle, Tev --> GeV
fTotCStt1->SetParameter(10, 389379337.919); // YksikÃ¶nmuunnos.
389379337,919 kun (GeV)â»Â² --> pb
fTotCStt1->SetParameter(11, 1); // g
fTotCStt1->SetParameter(12, 1); // u ja u_bar
fTotCStt1->SetParameter(13, 1); // d ja d_bar
fTotCStt1->SetParameter(14, 1); // s ja s_bar  fTotCStt1->SetParameter(15,
1); // c ja c_bar
fTotCStt1->SetParameter(16, 1); // b ja b_bar

double tEmin2 = 2*0.1729; // TeV
double tEmax2 = 14.0;
double tEvali2 = tEmax2 - tEmin2;

TF1 *fTotCStt2 = new TF1("fTotCStt2", TotCSpp, 0, tEmax2, 17);

fTotCStt2->SetParameter(0, 172.9); // Massa
fTotCStt2->SetParameter(1, 1); // TÃ¶rmÃ¤ystyyppi
fTotCStt2->SetParameter(2, 2.0); // Skaalavalinnat
fTotCStt2->SetParameter(3, 2.0);
fTotCStt2->SetParameter(4, 0);
fTotCStt2->SetParameter(5, 0);
fTotCStt2->SetParameter(6, 2.0);
fTotCStt2->SetParameter(7, 2.0);
fTotCStt2->SetParameter(8, 1.000); //Fragmentaatiofraktio
fTotCStt2->SetParameter(9, 1000); // YksikÃ¶nmuunnosparametri CMS-
energialle, Tev --> GeV
fTotCStt2->SetParameter(10, 389379337.919); // YksikÃ¶nmuunnos.
389379337,919 kun (GeV)â»Â² --> pb
fTotCStt2->SetParameter(11, 1); // g
fTotCStt2->SetParameter(12, 1); // u ja u_bar
fTotCStt2->SetParameter(13, 1); // d ja d_bar
fTotCStt2->SetParameter(14, 1); // s ja s_bar
fTotCStt2->SetParameter(15, 1); // c ja c_bar
fTotCStt2->SetParameter(16, 1); // b ja b_bar

// DifCS2: Lasketaan p_t-differentioitu vaikutusala kvarkkien/hadronien



tuotolle (ilman rapiditeettileikkauksia).

double tE1 = 1.96*1000;
double tptmin1 = 0.0; // TeV
double tptmax1 = 0.500;
double tptvali1 = tptmax1 - tptmin1;
TF1 *fDifCStt1 = new TF1("fDifCStt1", DifCS2, tptmin1, tptmax1, 18);

fDifCStt1->SetParameter(0, 172.9); // Tuotetun kvarkin massa
fDifCStt1->SetParameter(1, tE1); // CMS-energia (GeV)
fDifCStt1->SetParameter(2, -1); // 1 = pp-tÃ¶rmÃ¤ys, -1 = pp_bar-tÃ¶rmÃ¤ys
fDifCStt1->SetParameter(3, 2.0); // Skaalakerroin alfalle, skaala on massa
kertaa tÃ¤mÃ¤ luku
fDifCStt1->SetParameter(4, 2.0); // Vastaava skaalakerroin PDF:ille
fDifCStt1->SetParameter(5, 1); // Kun = 1, niin alfan skaala on m_T:n
kertaluku
fDifCStt1->SetParameter(6, 1); // Vastaava valintaparametri PDF:ille
fDifCStt1->SetParameter(7, 1.0); // Vaihtoehtoinen skaalakerroin alfalle,
skaala on m_T kertaa tÃ¤mÃ¤ luku fDifCStt1->SetParameter(8, 1.0); //
Vastaava skaalakerroin PDF:ille
fDifCStt1->SetParameter(9, 1.000); // Fragmentaatiofraktion arvo
fDifCStt1->SetParameter(10, 1000.0); // YksikÃ¶nmuunnosparametri
poikittaisliikemÃ¤Ã¤rÃ¤lle // TeV --> GeV fDifCStt1->SetParameter(11,
389379337919); // YksikÃ¶nmuunnosparametri. 389379337919, kun (GeV)â»3 ---
> pb/TeV  fDifCStt1->SetParameter(12, 1); // g
fDifCStt1->SetParameter(13, 1); // u ja u_bar
fDifCStt1->SetParameter(14, 1); // d ja d_bar
fDifCStt1->SetParameter(15, 1); // s ja s_bar
fDifCStt1->SetParameter(16, 1); // c ja c_bar
fDifCStt1->SetParameter(17, 1); // b ja b_bar

// DifCS3: Lasketaan rapiditeetin suhteen differentioitu vaikutusala
kvarkin tuotolle.

double tavymin1 = 0.0;
double tavymax1 = 1.50;
double tavyvali1 = tavymax1 - tavymin1;
TF1 *fDifCStt2 = new TF1("fDifCStt1", DifCS3, tavymin1, tavymax1, 16);
 fDifCStt2->SetParameter(0, 172.9); // Tuotetun kvarkin massa
fDifCStt2->SetParameter(1, tE1); // CMS-energia (GeV)
fDifCStt2->SetParameter(2, -1); // 1 = pp-tÃ¶rmÃ¤ys, -1 = pp_bar-tÃ¶rmÃ¤ys
fDifCStt2->SetParameter(3, 2.0); // Skaalakerroin alfalle, skaala on massa
kertaa tÃ¤mÃ¤ luku
fDifCStt2->SetParameter(4, 2.0); // Vastaava skaalakerroin PDF:ille
fDifCStt2->SetParameter(5, 1); // Kun = 1, niin skaala on m_T:n kertaluku
fDifCStt2->SetParameter(6, 1); // Vastaava skaalavalintaparametri PDF:ille
fDifCStt2->SetParameter(7, 1.0); // Vaihtoehtoinen skaalakerroin alfalle,
skaala on m_T kertaa tÃ¤mÃ¤ luku fDifCStt2->SetParameter(8, 1.0); //
Vastaava skaalakerroin PDF:ille
fDifCStt2->SetParameter(9, 2*389379337.919); // YksikÃ¶nmuunnos-/
skaalausparametri. 389379337,919, kun (GeV)â»2 ---> pb, kerroin 2 tulee
rapiditeetin itseisarvosta  fDifCStt2->SetParameter(10, 1); // g
fDifCStt2->SetParameter(11, 1); // u ja u_bar
fDifCStt2->SetParameter(12, 1); // d ja d_bar fDifCStt2->SetParameter(13,
1); // s ja s_bar



fDifCStt2->SetParameter(14, 1); // c ja c_bar
fDifCStt2->SetParameter(15, 1); // b ja b_bar

double tE2 = 13.0*1000;
double tptmin2 = 0.0; // GeV
double tptmax2 = 550.0;
double tptvali2 = tptmax2 - tptmin2;
TF1 *fDifCStt3 = new TF1("fDifCStt3", DifCS2, tptmin2, tptmax2, 18);

fDifCStt3->SetParameter(0, 172.9); // Kvarkin massa
fDifCStt3->SetParameter(1, tE2); // CMS-energia
fDifCStt3->SetParameter(2, 1); // TÃ¶rmÃ¤ystyyppi
fDifCStt3->SetParameter(3, 2.0); // Skaalavalinnat
fDifCStt3->SetParameter(4, 2.0);
fDifCStt3->SetParameter(5, 1);
fDifCStt3->SetParameter(6, 1);
fDifCStt3->SetParameter(7, 1.0);
fDifCStt3->SetParameter(8, 1.0);
fDifCStt3->SetParameter(9, 1.000); // Fragmentaatiofraktion arvo
fDifCStt3->SetParameter(10, 1.0); // GeV
fDifCStt3->SetParameter(11, 389379337.919); // YksikÃ¶nmuunnosparametri.
389379337,919, kun (GeV)â»3 ---> pb/GeV  fDifCStt3->SetParameter(12, 1); /
/ g fDifCStt3->SetParameter(13, 1); // u ja u_bar
fDifCStt3->SetParameter(14, 1); // d ja d_bar
fDifCStt3->SetParameter(15, 1); // s ja s_bar
fDifCStt3->SetParameter(16, 1); // c ja c_bar
fDifCStt3->SetParameter(17, 1); // b ja b_bar

double tymin1 = -2.6;
double tymax1 = 2.6;
double tyvali1 = tymax1 - tymin1;
TF1 *fDifCStt4 = new TF1("fDifCStt4", DifCS3, tymin1, tymax1, 16);

fDifCStt4->SetParameter(0, 172.9); // Kvarkin massa
fDifCStt4->SetParameter(1, tE2); // CMS-energia
fDifCStt4->SetParameter(2, 1); // TÃ¶rmÃ¤ystyyppi
fDifCStt4->SetParameter(3, 2.0); // Skaalavalinnat
fDifCStt4->SetParameter(4, 2.0);
fDifCStt4->SetParameter(5, 1);
fDifCStt4->SetParameter(6, 1);
fDifCStt4->SetParameter(7, 1.0);
fDifCStt4->SetParameter(8, 1.0);
fDifCStt4->SetParameter(9, 389379337.919); // YksikÃ¶nmuunnos-/
skaalausparametri. 389379337,919, kun (GeV)â»2 ---> pb  fDifCStt4-
>SetParameter(10, 1); // g
fDifCStt4->SetParameter(11, 1); // u ja u_bar fDifCStt4->SetParameter(12,
1); // d ja d_bar
fDifCStt4->SetParameter(13, 1); // s ja s_bar
fDifCStt4->SetParameter(14, 1); // c ja c_bar
fDifCStt4->SetParameter(15, 1); // b ja b_bar



/// TEHDÃ„Ã„N JA TALLENNETAAN GRAAFIT/HISTOGRAMMIT ///

TFile *file = new TFile("file.root","RECREATE");
file->cd();

// Petersonin fragmentaatiofunktiot c- ja b-tapauksille

TGraph *grPetFFc;
TGraph *grPetFFb;
double z[points], valFFc[points], valFFb[points];

for(int i = 0; i < points; i++){

 z[i] = (i+1.0)/points;
 if(i==0){
 z[i] = 0.0;
 }

 valFFc[i] = fPetFFc->Eval(z[i]);
 valFFb[i] = fPetFFb->Eval(z[i]);

}

grPetFFc = new TGraph(points, z, valFFc);
grPetFFc->Write("grPetFFc");

grPetFFb = new TGraph(points, z, valFFb);
grPetFFb->Write("grPetFFb");

// Vahvan vuorovaikutuksen kytkinvakio (LO, LL)

TGraph *gralpha;
double xA[points], yA[points];

for(int i = 0; i < points; i++){
   xA[i] = 0.635 + 1199.365*pow(10000, (i+1.0)/points-1.0);
 if(i==0){
 xA[i] = 0.635;
 }

 yA[i] = ct14n.alphas(xA[i]);

}

gralpha = new TGraph(points, xA, yA);
gralpha->Write("gralpha");

cout << "Vahvan vuorovaikutuksen kytkinvakio skaalan funktiona laskettu"
<< endl;

ct14n.pdfexit();



// Partonijakaumafunktiot (x*f_j(x,Q)) x:n funktiona, eri skaalan Q
arvoilla (LO(LL) ja NLO(0/56))

const int scales = 13;
double scale[scales] = {0.635, 1.3, 2.09, 2.54, 4.18, 5.08, 8.36, 16.72,
86.45, 172.9, 345.8, 691.6, 1000.0};

TGraph *grnlopdf[scales][types];
TGraph *grlopdf[scales][types];
TGraph *grnlopdfah[scales][types];
TGraph *grlopdfah[scales][types];
double xpdf[points];
double ynlo[points],ylo[points],ynloah[points],yloah[points];

for(int i = 0; i < points; i++){
   xpdf[i] = pow(100000000,(i*1.0)/points-1.0); // Alkupiste nyt 10â»â¸ <
4*mcÂ²/sÂ², s = 13 TeV // 150:llÃ¤ pisteellÃ¤ toisiksi viimeinen piste on
x = 0.782, ihan hyvÃ¤ logaritmisella asteikolla esitettynÃ¤

 if(i == points-1){
 xpdf[i] = 0.999999; // Tasan yksi menee jostain syystÃ¤ PDF:ien mÃ¤Ã
¤rittelyalueen ulkopuolelle
 }

}

for (int i = 0; i < scales; i++){

 for (int j = 0; j < types; j++){

 for (int k = 0; k < points; k++){

 ct14n.setct11(it[0]);

 ynlo[k] = (xpdf[k])*ct14n.parton(j, xpdf[k], scale[i]);

 if(0 < j){
 ynloah[k] = (xpdf[k])*ct14n.parton(-j, xpdf[k], scale[i]);
 }

 ct14n.pdfexit();

 ct14n.setct11(it[58]);

 ylo[k] = (xpdf[k])*ct14n.parton(j, xpdf[k], scale[i]);

 if (0 < j){
 yloah[k] = (xpdf[k])*ct14n.parton(-j, xpdf[k], scale[i]);
 }

 ct14n.pdfexit();
 }

 grnlopdf[i][j] = new TGraph(points,xpdf,ynlo);  grnlopdf[i][j]->Write(
Form("grnlopdfQ%01ip%01i", i, j) );

 grlopdf[i][j] = new TGraph(points,xpdf,ylo);



 grlopdf[i][j]->Write( Form("grlopdfQ%01ip%01i", i, j) );

 if(j != 0){

 grnlopdfah[i][j] = new TGraph(points,xpdf,ynloah);
 grnlopdfah[i][j]->Write( Form("grnlopdfQ%01ip%01iah", i, j) );

 grlopdfah[i][j] = new TGraph(points,xpdf,yloah);
 grlopdfah[i][j]->Write( Form("grlopdfQ%01ip%01iah", i, j) );

 }

 }

}

cout << "Partonijakaumafunktiot muuttujan x funktiona laskettu." << endl;

ct14n.setct11(it[58]);

// CT14-LO-partonijakaumafunktiot Q:n funktiona, eri x:n arvoilla

const int xs = 8;
double xvals[xs] = {0.00000001, 0.0000001, 0.000001, 0.00001, 0.0001,
0.001, 0.01, 0.1};

TGraph *grlopdfQ[xs][types];
TGraph *grlopdfahQ[xs][types];
double valsQ[points];
double yloQ[points],yloahQ[points];

for(int i = 0; i < points; i++){

 valsQ[i] = 0.635 + 1199.365*i*1.0/points;

 if(i == points-1){  valsQ[i] = 1200.0;
 }

}

for (int i = 0; i < xs; i++){

 for (int j = 0; j < types; j++){

 for (int k = 0; k < points; k++){

 yloQ[k] = ct14n.parton(j, xvals[i], valsQ[k]);

 if (0 < j){
 yloahQ[k] = ct14n.parton(-j, xvals[i], valsQ[k]);
 }

 }

 grlopdfQ[i][j] = new TGraph(points,valsQ,yloQ);



 grlopdfQ[i][j]->Write( Form("grlopdfQx%01ip%01i", i, j) );

 if(j != 0){

 grlopdfahQ[i][j] = new TGraph(points,valsQ,yloahQ);
 grlopdfahQ[i][j]->Write( Form("grlopdfQx%01ip%01iah", i, j) );

 }

 }

}

cout << "Partonijakaumafunktiot skaalan Q funktiona laskettu." << endl;

/*
// TÃ¤llÃ¤ vanhalla osiolla tutkailtiin LO- ja NLO-PDF:ien arvojen
eroavaisuuksia

ct14n.pdfexit();

TGraph *grdif[scales][types];
TGraph *gradif[scales][types];
TGraph *grnlo[scales][types];
TGraph *grlo[scales][types];
double xpdf[points];
double ynlo[points],ylo[points],yd[points], yda[points];
 for (int j = 0; j < scales; j++){

 for (int k = 0; k < types; k++){

 for (int l = 0; l < points; l++){

 double aa, ba;

 xpdf[l] = 0.01*pow(10000000,l*1.0/points-1);

 ct14n.setct11(it[0]);
 double a = ct14n.parton(k, xpdf[l], scale[j]);
 ynlo[l] = a;

 if (0 < l){
 aa = ct14n.parton(-k, xpdf[l], scale[j]);
 }

 ct14n.pdfexit();

 ct14n.setct11(it[58]);
 double b = ct14n.parton(k, xpdf[l], scale[j]);
 ylo[l] = b;

 if (0 < l){
 ba = ct14n.parton(-k, xpdf[l], scale[j]);
 }



 ct14n.pdfexit();

 yd[l] = a - b;

 if (0 < l){
 yda[l] = aa - ba;
 }
 }

 grdif[j][k] = new TGraph(points,xpdf,yd);
 grdif[j][k]->Write( Form("grdifQ%02ip%02i", j, k) );

 gradif[j][k] = new TGraph(points,xpdf,yda);
 gradif[j][k]->Write( Form("gradifQ%02ip-%02i", j, k) );

 grnlo[j][k] = new TGraph(points,xpdf,ynlo);  grnlo[j][k]->Write(
Form("grnloQ%02ip%02i", j, k) );

 grlo[j][k] = new TGraph(points,xpdf,ylo);
 grlo[j][k]->Write( Form("grloQ%02ip%02i", j, k) );
 }

 }
*/
ct14n.setct11(it[58]);

/// KOKEELLISIA TULOKSIA JA TEOREETTISTEN ARVOJEN LASKEMISTA KOSKEVAT
ASETUKSET ///
// Alla oleviin taulukoihin tulee ilmoittaa teoreettisia arvoja laskevien
funktioiden ja vastaavien kokeellisten tulosten tiedot.
// HUOM: Teoreettisia tuloksia ei lasketa, jos yhtÃ¤kÃ¤Ã¤n vastaavaa
kokeellista vertailutulosta ei ole (datapisteet tai histogrammijakauma).
// MikÃ¤li datapisteille (ei histogrammi) on vaihtoehtoisia esitettÃ¤viÃ¤
arvoja (esim. samalla energialla), niin nÃ¤mÃ¤ pisteet kirjataan
datapistetaulukoihin ja ne otetaan huomioon ilmoitetussa pisteiden lukumÃ
¤Ã¤rÃ¤ssÃ¤.

/// LASKETTAVAT ASIAT ///
// Ohjelma laskee ja tekee graafit/histogrammit seuraaville asioille:
// 1. Kokeelliset tulokset (ja vaihtoehtoiset datapisteet). Eri virhelÃ
¤hteet esitetÃ¤Ã¤n eri graafien avulla. // 2. K-kertoimet seitsemÃ¤lle eri
skaalavalintaparille (Qa, Qp) (kok.tulos/LO-tulos, LO-tulos ajatellaan tÃ
¤llÃ¶in virheettÃ¶mÃ¤nÃ¤) (histogrammeilla teor. vertailutulos on
keskiarvo binin yli, tÃ¤mÃ¤ keskiarvojen histogrammi muodostetaan myÃ¶s).
Histogrammien K-kertoimissa statistinen ja systemaattinen virhe esitetÃ¤Ã
¤n erikseen. Muut virheiden lÃ¤hteet otetaan huomioon tuloksen K-kertoimen
mÃ¤Ã¤rityksessÃ¤ (sovitus tehdÃ¤Ã¤n Plot.C:ssÃ¤). // 3. NLO-PDF:ien avulla
approksimoidut LO-virherajat teor. tuloksille (virhesettejÃ¤ ei ollut
CT14-LO-PDF:ille).
// 4. Teoreettiset tulokset. SisÃ¤ltÃ¤Ã¤ skaalan, massan ja
fragmentaatiofraktion epÃ¤varmuudesta/epÃ¤yksikÃ¤sitteisyydestÃ¤ johtuvat
virherajat.  // 5. Qa:n (renormalisaatio) ja Qp:n (faktorisaatio)
vaihtelusta syntyvÃ¤t virhe-bandit ja kÃ¤yrÃ¤t (katso yksityiskohdat



alta).
// 6. Eri partonityyppien vÃ¤listen vuorovaikutusten suhteelliset
kontribuutiot vaikutusalaan. // 7. Raskaiden kvarkkiparien tuottojen
kokonaisvaikutusalat pp_bar-tÃ¶rmÃ¤yksissÃ¤ (vertailua varten).

// Huomioita laskusta/silmukasta:
// 1. YhtÃ¤ tulosta kohti kÃ¤sitellÃ¤Ã¤n seitsemÃ¤Ã¤ eri
skaalavalintaparia, joita kÃ¤ytetÃ¤Ã¤n Q-virhebandejÃ¤ sekÃ¤ K-kertoimia
laskettaessa. TÃ¤ssÃ¤ on haluttu pitÃ¤Ã¤ Qa:n ja Qp:n vÃ¤linen suhteelinen
ero alle 4:n (yli 1/4:n). Ohjelman tekemÃ¤ skaalavalintojen tarkastelu on
kohtalaisen helposti muokattavissa. // 2. LO(LL)-PDF-setti on asetettu
oletukseksi, mikÃ¤ ei vÃ¤lttÃ¤mÃ¤ttÃ¤ ole ohjelman kÃ¤yttÃ¤jÃ¤n mieleen.

const int cases = 19;
const int Qver = 7; // Eri skaalaparivalintojen lukumÃ¤Ã¤rÃ¤ // (Qa, Qp) =
(Qadef,Qpdef), (Qamax, Qpmax), (Qamin,Qpmin), (Qadef,Qpmax),
(Qamin,Qpdef), (Qadef,Qpmin) ja (Qamax,Qpdef) tÃ¤ssÃ¤ jÃ¤rjestyksessÃ¤

// Funktiot TF1 *f[cases] = {fTotCScc1, fCutCScc1, fDifCScc1, fDifCScc2,
fDifCScc3, fDifCScc4, fDifCScc5, fDifCScc6, fDifCScc7, fTotCSbb1,
fCutCSbb1, fDifCSbb1, fDifCSbb2, fTotCStt1, fTotCStt2, fDifCStt1,
fDifCStt2, fDifCStt3, fDifCStt4}; string tcase[cases] = {"c1", "ccut1",
"cdif1", "cdif2", "cdif3", "cdif4", "cdif5", "cdif6", "cdif7", "b1",
"bcut1", "bdif1", "bdif2", "t1", "t2", "tdif1", "tdif2", "tdif3",
"tdif4"}; // Funktioiden parametrien lukumÃ¤Ã¤rÃ¤t
int npar[cases] = {17, 22, 21, 21, 21, 21, 21, 21, 21, 17, 19, 17, 17, 17,
17, 18, 16, 18, 16};

const int np = 25; // Integrointipisteiden lukumÃ¤Ã¤rÃ¤ IntegralFast-
laskuissa
double x[np]; // x ja w eivÃ¤t tee pÃ¤ivitetyllÃ¤ integroimismetodilla
mitÃ¤Ã¤n (mutta ovat silti mukana) (CalcGaussLegendreSamplingPoints turha)
double w[np];

/* // TÃ¤tÃ¤ osuutta kÃ¤ytetÃ¤Ã¤n sopivan integrointipisteiden mÃ¤Ã¤rÃ¤n
np mÃ¤Ã¤rittÃ¤miseen. KÃ¤ytin tarkastelussa kÃ¤siteltyjen funktioiden
vastaavien kokeellisten binien vÃ¤lejÃ¤, joissa funktiot ovat jyrkimmillÃ
¤Ã¤n/kaarevimmillaan taikka joissa binien leveydet ovat suurimmillaan.  //
NeljÃ¤n merkitsevÃ¤n luvun tarkkuudella ilmoitetut integraalien arvot
olivat samat (nÃ¤issÃ¤ kahdessatoista tapauksessa), kun np:n arvoa
vaihdeltiin vÃ¤lillÃ¤ 10:stÃ¤ 150:een. Siten np = 25 tulisi olla ainakin
riittÃ¤vÃ¤n tarkka (ainakin viiden merkitsevÃ¤n numeron tarkkuudella sama
kuin 150:n pisteen tapaus, jokaisessa kahdessatoista tapauksessa).

double parcc1[21] = {1.28, 1.86483, cE1, 1, -0.5, 0.5, 2.0, 2.0, 1, 1,
1.0, 1.0, 0.557, 1.0, 389.379337919, 1, 1, 1, 1, 1, 1};  double parcc3[21]
= {1.28, 1.86965, cE1, 1, -0.5, 0.5, 2.0, 2.0, 1, 1, 1.0, 1.0, 0.238, 1.0,
389.379337919, 1, 1, 1, 1, 1, 1}; double parcc4[21] = {1.28, 1.86483, cE2,
1, -0.5, 0.5, 2.0, 2.0, 1, 1, 1.0, 1.0, 0.557, 1.0, 389.379337919, 1, 1,
1, 1, 1, 1}; double parcc5[21] = {1.28, 1.86965, cE2, 1, -0.5, 0.5, 2.0,
2.0, 1, 1, 1.0, 1.0, 0.238, 1.0, 389.379337919, 1, 1, 1, 1, 1, 1}; double
parcc6[21] = {1.28, 1.86483, cE3, 1, -0.5, 0.5, 2.0, 2.0, 1, 1, 1.0, 1.0,
0.557, 1.0, 389.379337919, 1, 1, 1, 1, 1, 1}; double parbb1[17] = {4.18,
bE1, 1, 2.0, 2.0, 1, 1, 1.0, 1.0, 1.000, 389.379337919, 1, 1, 1, 1, 1, 1};
double partt1[18] = {173.1, tE1, -1, 2.0, 2.0, 1, 1, 1.0, 1.0, 1.000,
1000.0, 389379337919, 1, 1, 1, 1, 1, 1};



double partt3[18] = {173.1, tE2, 1, 2.0, 2.0, 1, 1, 1.0, 1.0, 1.000, 1.0,
389379337.919, 1, 1, 1, 1, 1, 1};
double partt4[16] = {173.1, tE2, 1, 2.0, 2.0, 1, 1, 1.0, 1.0,
389379337.919, 1, 1, 1, 1, 1, 1};

cout << fDifCScc1->IntegralFast(np, x, w, 1.0, 2.0, parcc1, 1.e-9) <<
endl;
cout << fDifCScc1->IntegralFast(np, x, w, 8.0, 12.0, parcc1, 1.e-9) <<
endl; cout << fDifCScc3->IntegralFast(np, x, w, 8.0, 12.0, parcc3, 1.e-9)
<< endl;
cout << fDifCScc4->IntegralFast(np, x, w, 0.0, 0.5, parcc4, 1.e-9) <<
endl;
cout << fDifCScc5->IntegralFast(np, x, w, 24.0, 36.0, parcc5, 1.e-9) <<
endl;
cout << fDifCScc6->IntegralFast(np, x, w, 3.0, 4.0, parcc6, 1.e-9) <<
endl;
cout << fDifCSbb1->IntegralFast(np, x, w, 2.5, 3.0, parbb1, 1.e-9) <<
endl;
cout << fDifCStt1->IntegralFast(np, x, w, 0.000, 0.045, partt1, 1.e-9) <<
endl;
cout << fDifCStt1->IntegralFast(np, x, w, 0.300, 0.500, partt1, 1.e-9) <<
endl;
cout << fDifCStt3->IntegralFast(np, x, w, 0.0, 65.0, partt3, 1.e-9) <<
endl;
cout << fDifCStt3->IntegralFast(np, x, w, 400.0, 500.0, partt3, 1.e-9) <<
endl;
cout << fDifCStt4->IntegralFast(np, x, w, 1.8, 2.6, partt4, 1.e-9) <<
endl;
*/

TH1D *erstaerr[cases];
TGraphAsymmErrors *ersyserr[cases];
TGraphAsymmErrors *erp[cases];
TGraphAsymmErrors *erpalt[cases];

TH1D *teorka[cases];
TH1D *kfstaerr[cases][Qver]; TGraphAsymmErrors *kfsyserr[cases][Qver];
TGraphAsymmErrors *kftoterr[cases][Qver];
TGraphAsymmErrors *kfp[cases][Qver];

// Asetetaan, onko funktiota vastaavat kokeelliset tulokset esitetty
histogrammeina vai yksittÃ¤isinÃ¤ pisteinÃ¤
bool ishist[cases] = {false, false, true, true, true, true, true, true,
true, false, false, true, true, false, false, true, true, true, true};

// Kokeellisten tulosten datapisteiden (mukaan lukien vaihtoehtoiset
arvot) tai histogrammibinien lukumÃ¤Ã¤rÃ¤.
const int bp[cases] = {3, 3, 5, 4, 4, 22, 19, 9, 10, 4, 2, 6, 6, 3, 6, 6,
6, 6, 10};
const int bpmax = 22;

// Alla olevissa taulukoissa tyhjÃ¤t arrayt edustavat eri tyyppiÃ¤ olevia
kokeellisia tuloksia (ishist) (muista tyhjÃ¤t kohdat muokatessa
kokeellisten tulosten mÃ¤Ã¤rÃ¤Ã¤!)

// x:n arvot (energia) datapisteillÃ¤



double erxp0[cases][bpmax] = { {0.200, 2.76, 7.0},
 {5.0, 7.0, 13.0},
 {},
   {},
 {},    {},
 {},
   {},
 {},
 {0.200, 0.500, 2.76, 7.0},
 {7.0, 13.0},
 {},
 {},
 {1.8, 1.8, 1.96},
 {5.02, 7.0, 7.0, 8.0, 13.0, 13.0},
 {},
 {},
 {},
 {} };

// x:n virhe datapisteille
double erxperr0[cases][bpmax] = { {0, 0, 0},
 {0, 0, 0},
   {},
 {},
 {},
   {},
 {},
   {},
 {},
 {0, 0, 0, 0},
 {0, 0},
 {},  {},
 {0, 0, 0},
 {0, 0, 0, 0, 0, 0},
 {},
 {},
 {},
 {} };

// Histogrammibinien rajat
double binbo0[cases][bpmax+1] = { {},
 {},
 {1.0, 2.0, 4.0, 6.0, 8.0, 12.0},
   {2.0, 4.0, 6.0, 8.0, 12.0},
 {2.0, 4.0, 6.0, 8.0, 12.0},
   {0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 
6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0, 12.0, 16.0, 24.0, 36.0},  {1.0, 2.0,
2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 9.0, 10.0,
12.0, 16.0, 24.0, 36.0},    {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 
8.0, 12.0, 16.0},
 {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 12.0, 16.0, 24.0},  {},
 {},
 {2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0},
 {2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0},
 {},
 {},
 {0, 0.045, 0.090, 0.140, 0.200, 0.300, 0.500},



 {0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50},
 {0, 65, 125, 200, 290, 400, 550},
 {-2.6, -1.8, -1.35, -0.9, -0.45, 0.00, 0.45, 0.9, 1.35, 1.8, 2.6} };

// Vaikutusalojen arvot datapisteille ja histogrammeille (muista tarkistaa
yksikÃ¶t)
double val0[cases][bpmax] = { {0.797, 4.8, 7.44},
 {1395, 1419, 2840},
  {207.0, 44.1, 8.4, 1.75, 0.44},
  {18.0, 3.82, 0.93, 0.27},
 {23.2, 4.90, 1.00, 0.22},  {79.2, 149, 186, 144, 103, 69.5, 52.3, 33.1,
21.9, 14.8, 10.8, 8.23, 5.15, 4.01, 2.84, 2.18, 1.36, 0.924, 0.495, 0.153,
0.0357, 0.00452},  {61.5, 47.1, 35.3, 23.2, 17.1, 12.1, 7.76, 5.03, 4.07,
2.94, 1.99, 1.39, 1.26, 0.801, 0.520, 0.235, 0.0937, 0.0167, 0.00366},
{180.0, 115.0, 59.7, 29.1, 12.5, 6.37, 3.07, 1.23, 0.215},
 {100.0, 51.8, 28.0, 11.01, 5.7, 3.26, 1.74, 0.677, 0.16, 0.027},
 {3.2, 25.2, 130, 281},
 {72.0, 144},
 {27.2, 30.0, 29.8, 25.8, 19.0, 12.6},
 {45.2, 57.4, 58.4, 54.6, 43.2, 29.2},
  {6.5, 5.69, 7.60},
 {69.5, 173.3, 161.9, 241.5, 803.0, 888.0},
 {27.76, 69.70, 41.47, 22.84, 4.18, 0.32},
 {8.50, 9.46, 6.72, 4.64, 2.73, 0.63},  {3.48728, 5.09407, 2.83826,
0.842426, 0.187431, 0.0345005},
 {60.0026, 131.967, 188.386, 227.428, 245.169, 247.354, 232.557, 184.441,
133.14, 62.9843} };

// Statistisen virheen arvot histogrammeille
double staerr[cases][bpmax] = { {},
 {},
   {84.0, 7.7, 1.5, 0.50, 0.15},
 {4.6, 0.77, 0.26, 0.09},
 {6.9, 0.95, 0.26, 0.07},
 {19.8, 19.5, 24.5, 10.7, 5.78, 3.16, 2.09, 1.34, 0.946, 0.673, 0.521,
0.406, 0.312, 0.268, 0.213, 0.179, 0.0935, 0.0714, 0.0366, 0.0144,
0.00430, 0.00106},  {11.7, 5.23, 3.02, 1.65, 1.10, 0.626, 0.434, 0.275,
0.218, 0.167, 0.123, 0.0979, 0.0857, 0.0498, 0.0383, 0.0181, 0.00732,
0.00230, 0.000715},  {30.0, 11.0, 4.3, 2.1, 1.1, 0.7, 0.47, 0.13, 0.05},
{22.0, 5.9, 2.3, 0.87, 0.45, 0.27, 0.21, 0.05, 0.016, 0.004},
 {},
 {},
 {0.4, 0.2, 0.2, 0.2, 0.2, 0.2},
 {1.6, 0.8, 1.2, 0.8, 1.0, 1.0},
 {},
 {},
 {3.31, 4.07, 2.78, 1.51, 0.56, 0.20},
 {0.51, 0.67, 0.67, 0.64, 0.49, 0.16},
 {0.0389853, 0.0504538, 0.0257184, 0.0105405, 0.00293571, 0.00130963},
 {1.17175, 1.37921, 1.9326, 2.15482, 2.30488, 2.26936, 2.09552, 1.78576,
1.35818, 1.15752} };

// Systemaattisten virheiden ylÃ¤rajojen arvot histogrammeille
double syserrup[cases][bpmax] = { {},
 {},
 {64, 11, 2.2, 0.42, 0.11},
   {4.6, 0.92, 0.25, 0.06},  {6.0, 1.22, 0.20, 0.04},



 {7.58, 10.3, 19.1, 11.7, 8.53, 5.96, 3.73, 2.48, 1.67, 1.17, 0.857,
0.643, 0.450, 0.343, 0.251, 0.189, 0.120, 0.0759, 0.0401, 0.0139, 0.00309,
0.000375},  {7.11, 3.75, 2.43, 1.56, 1.06, 0.689, 0.452, 0.281, 0.225,
0.162, 0.111, 0.0783, 0.0695, 0.0452, 0.0292, 0.0135, 0.00530, 0.00100,
0.000205},  {48.0, 20.0, 8.5, 4.2, 1.8, 0.94, 0.50, 0.19, 0.037},
 {28.0, 8.7, 4.6, 1.82, 0.97, 0.55, 0.30, 0.113, 0.030, 0.007},
 {},
 {},
 {3.0, 2.8, 2.8, 2.2, 1.6, 1.2},
 {4.8, 6.0, 5.8, 5.4, 4.4, 3.0},
 {},
 {},
 {3.21, 1.79, 3.34, 1.25, 0.41, 0.07},  {0.67, 0.63, 0.29, 0.36, 0.66,
0.25},
 {0.277739, 0.467258, 0.21118, 0.0514395, 0.0130281, 0.00302404},
 {6.14237, 9.75978, 13.1304, 15.7261, 17.1774, 19.1451, 16.331, 13.1025,
10.3442, 5.61076} };

// Systemaattisten virheiden alarajojen arvot histogrammeille
double syserrdo[cases][bpmax] = { {},
 {},
 {103, 14, 2.3, 0.43, 0.11},
   {5.1, 0.97, 0.26, 0.07},
 {6.5, 1.26, 0.20, 0.04},
 {7.57, 10.2, 18.7, 11.3, 8.19, 5.63, 3.47, 2.25, 1.49, 1.01, 0.741,
0.558, 0.385, 0.296, 0.214, 0.163, 0.103, 0.0671, 0.0358, 0.0130, 0.00297,
0.000368},  {6.99, 3.65, 2.32, 1.49, 0.982, 0.662, 0.428, 0.271, 0.218,
0.158, 0.107, 0.0753, 0.0674, 0.0435, 0.0282, 0.0129, 0.00513, 0.000975,
0.000204},  {98.0, 33.0, 12.6, 5.8, 2.3, 1.08, 0.53, 0.21, 0.038},
 {55.0, 13.2, 5.2, 1.88, 1.0, 0.57, 0.30, 0.116, 0.031, 0.007},
 {},
 {},
 {3.0, 2.8, 2.8, 2.2, 1.6, 1.2},
 {4.8, 6.0, 5.8, 5.4, 4.4, 3.0},
 {},
 {},
 {4.29, 2.88, 3.45, 1.34, 0.39, 0.09},
 {0.99, 0.88, 0.30, 0.41, 0.63, 0.25},
 {0.277739, 0.467258, 0.21118, 0.0514395, 0.0130281, 0.00302404},
 {6.14237, 9.75978, 13.1304, 15.7261, 17.1774, 19.1451, 16.331, 13.1025,
10.3442, 5.61076} };
 // Mahdollinen statistisiin ja systemaattisiin virheisiin sisÃ¤ltymÃ¤tÃ¶n
lisÃ¤virhe (ylÃ¤raja) (neliÃ¶llisesti yhdistetty, mikÃ¤li useita tÃ
¤llaisia virheen aiheuttajia) (esim. luminositeetti, normalisointi,
branching ratio). Otetaan huomioon K-tekijÃ¤-sovituksissa. double
adderrup[cases][bpmax] = { {},
 {},
 {TMath::Sqrt(pow(0.013,2)+pow(0.019,2))*207,
TMath::Sqrt(pow(0.013,2)+pow(0.019,2))*44.1,
TMath::Sqrt(pow(0.013,2)+pow(0.019,2))*8.4,
TMath::Sqrt(pow(0.013,2)+pow(0.019,2))*1.75,
TMath::Sqrt(pow(0.013,2)+pow(0.019,2))*0.44},    
{TMath::Sqrt(pow(0.021,2)+pow(0.019,2))*18.0,
TMath::Sqrt(pow(0.021,2)+pow(0.019,2))*3.82,
TMath::Sqrt(pow(0.021,2)+pow(0.019,2))*0.93,
TMath::Sqrt(pow(0.021,2)+pow(0.019,2))*0.27},
{TMath::Sqrt(pow(0.015,2)+pow(0.019,2))*23.2,



TMath::Sqrt(pow(0.015,2)+pow(0.019,2))*4.90,
TMath::Sqrt(pow(0.015,2)+pow(0.019,2))*1.00,
TMath::Sqrt(pow(0.015,2)+pow(0.019,2))*0.22},
{TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*79.2,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*149,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*186,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*144,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*103,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*69.5,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*52.3,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*33.1,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*21.9,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*14.8,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*10.8,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*8.23,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*5.15,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*4.01,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*2.84,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*2.18,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*1.36,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*0.924,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*0.495,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*0.153,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*0.0357,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*0.00452},
 {TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*61.5,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*47.1,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*35.3,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*23.2,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*17.1,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*12.1,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*7.76,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*5.03,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*4.07,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*2.94,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*1.99,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*1.39,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*1.26,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.801,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.520,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.235,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.0937,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.0167,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.00366},  {0.037*180.0,
0.037*115.0, 0.037*59.7, 0.037*29.1, 0.037*12.5, 0.037*6.37, 0.037*3.07,
0.037*1.23, 0.037*0.215},  {0.038*100.0, 0.038*51.8, 0.038*28.0,
0.038*11.01, 0.038*5.7, 0.038*3.26, 0.038*1.74, 0.038*0.677, 0.038*0.16,
0.038*0.027},  {},
 {},
 {0, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0, 0},
 {},
 {},
 {1.69336, 4.2517, 2.52967, 1.39324, 0.25498, 0.01952},
   {0.5185, 0.57706, 0.40992, 0.28304, 1.6653, 0.03843},
   {0, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} };



// Mahdollinen statistisiin ja systemaattisiin virheisiin sisÃ¤ltymÃ¤tÃ¶n
lisÃ¤virhe (alaraja) (neliÃ¶llisesti yhdistetty, mikÃ¤li useita tÃ¤llaisia
virheen aiheuttajia) double adderrdo[cases][bpmax] = { {},
 {},
 {TMath::Sqrt(pow(0.013,2)+pow(0.019,2))*207,
TMath::Sqrt(pow(0.013,2)+pow(0.019,2))*44.1,
TMath::Sqrt(pow(0.013,2)+pow(0.019,2))*8.4,
TMath::Sqrt(pow(0.013,2)+pow(0.019,2))*1.75,
TMath::Sqrt(pow(0.013,2)+pow(0.019,2))*0.44},    
{TMath::Sqrt(pow(0.021,2)+pow(0.019,2))*18.0,
TMath::Sqrt(pow(0.021,2)+pow(0.019,2))*3.82,
TMath::Sqrt(pow(0.021,2)+pow(0.019,2))*0.93,
TMath::Sqrt(pow(0.021,2)+pow(0.019,2))*0.27},
{TMath::Sqrt(pow(0.015,2)+pow(0.019,2))*23.2,
TMath::Sqrt(pow(0.015,2)+pow(0.019,2))*4.90,
TMath::Sqrt(pow(0.015,2)+pow(0.019,2))*1.00,
TMath::Sqrt(pow(0.015,2)+pow(0.019,2))*0.22},
{TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*79.2,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*149,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*186,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*144,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*103,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*69.5,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*52.3,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*33.1,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*21.9,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*14.8,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*10.8,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*8.23,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*5.15,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*4.01,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*2.84,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*2.18,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*1.36,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*0.924,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*0.495,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*0.153,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*0.0357,
TMath::Sqrt(pow(0.010,2)+pow(0.021,2))*0.00452},
 {TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*61.5,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*47.1,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*35.3,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*23.2,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*17.1,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*12.1,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*7.76,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*5.03,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*4.07,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*2.94,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*1.99,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*1.39,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*1.26,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.801,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.520,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.235,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.0937,
TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.0167,



TMath::Sqrt(pow(0.013,2)+pow(0.021,2))*0.00366},  {0.037*180.0,
0.037*115.0, 0.037*59.7, 0.037*29.1, 0.037*12.5, 0.037*6.37, 0.037*3.07,
0.037*1.23, 0.037*0.215},  {0.038*100.0, 0.038*51.8, 0.038*28.0,
0.038*11.01, 0.038*5.7, 0.038*3.26, 0.038*1.74, 0.038*0.677, 0.038*0.16,
0.038*0.027},  {},
 {},
 {0, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0, 0},
 {},
 {},
 {1.69336, 4.2517, 2.52967, 1.39324, 0.25498, 0.01952},
 {0.5185, 0.57706, 0.40992, 0.28304, 1.6653, 0.03843},
 {0, 0, 0, 0, 0, 0},
 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0} };

// Vaikutusalan ylÃ¤virhe datapisteille
double ptoterrup[cases][bpmax] = { {0.295574017803, 2.90234388038,
0.596657355607},   {104.470091414, 133.510299228, 226.735528755},
   {},
   {},
   {},
   {},
   {},
   {},
   {},
 {1.84390889146, 11.840608092, 45.13967213, 63.356136258},
 {6.8066144301, 21.0237960416},
 {},
 {},
 {1.7, 1.59552499, 0.41},
 {8.4, 10.1, 6.72458177, 8.5, 32.0780297, 32.8633535},
 {},
 {},
 {},
 {} };

// Vaikutusalan alavirhe datapisteille
double ptoterrdo[cases][bpmax] = { {0.36211186117, 1.58543369461,
0.596657355607},
 {104.470091414, 133.510299228, 226.735528755},
   {},
   {},
   {},
   {},
   {},    {},
   {},
 {1.70293863659, 10.0244700608, 52.376235069, 64.3117407633},
 {6.8066144301, 21.0237960416},
 {},
   {},
 {1.4, 1.59552499, 0.41},
 {8.4, 10.1, 6.64906008, 8.5, 32.0780297, 34.4673759},
 {},
 {},
 {},
   {} };



// Funktion indeksit, jotka vastaavat alfan ja PDF:ien skaalakertoimia //
HUOM: Ota huomioon skaalan tyyppi (n*m, n*s^, n*m_T, n kerroin) int
Qaind[cases] = {2, 11, 10, 10, 10, 10, 10, 10, 10, 2, 8, 7, 7, 2, 2, 7, 7,
7, 7};
int Qpind[cases] = {3, 12, 11, 11, 11, 11, 11, 11, 11, 3, 9, 8, 8, 3, 3,
8, 8, 8, 8};

// KÃ¤ytettÃ¤vien skaalakertoimien oletus-, maksimi- ja minimiarvot double
Qdef[cases] = {2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0,
1.0, 2.0, 2.0, 1.0, 1.0, 1.0, 1.0};
double Qmax[cases] = {4.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 4.0,
2.0, 2.0, 2.0, 4.0, 4.0, 2.0, 2.0, 2.0, 2.0};
double Qmin[cases] = {1.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1.0,
0.5, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5, 0.5, 0.5};

// Alkupisteet (vaikutusala on erisuuri kuin yksi oikeanpuoleisissa
pisteissÃ¤) ja vastaavat vÃ¤lien pituudet
double alkup[cases] = {cEmin1, cEmin2, cptmin1, cptmin2, cptmin2, cptmin3,
cptmin4, cptmin5, cptmin6, bEmin1, bEmin2, betamin1, betamin1, tEmin1,
tEmin2, tptmin1, tavymin1, tptmin2, tymin1}; double vali[cases] =
{cEvali1, cEvali2, cptvali1, cptvali2, cptvali2, cptvali3, cptvali4,
cptvali5, cptvali6, bEvali1, bEvali2, betavali1, betavali1, tEvali1,
tEvali2, tptvali1, tavyvali1, tptvali2, tyvali1};

/* // Tarkistetaan varuilta, ettÃ¤ vaikutusala ei saa arvoa nolla ensimmÃ
¤isessÃ¤ evaluointipisteessÃ¤. Muuten tulee ongelmia ratio-graafien kanssa
(nollalla jakaminen).

for(int i = 0; i < cases; i++){
 cout << f[i]->Eval(alkup[i]+0.00001) << endl;
}
*/

double xplin[points],xplog[points];

TGraph *grnlo[cases];
TGraph *grLN[cases];
TGraph *grLL[cases];
TGraphAsymmErrors *grLO[cases];
TGraphAsymmErrors *grNLO[cases];
TGraph *grcom[3];

TGraph *grr[cases][types];

TGraph *grmmax[cases];
TGraph *grmmin[cases];

TGraphAsymmErrors *grQa[cases];
TGraphAsymmErrors *grQp[cases];
TGraphAsymmErrors *grQ[cases];
TGraph *grQQmax[cases];
TGraph *grQQmin[cases];
TGraphAsymmErrors *grQrel[cases];

TGraphAsymmErrors *grFF[cases];
TGraphAsymmErrors *grFFrel[cases];



// Gluoneja vastaava indeksi
int gind[cases] = {11, 16, 15, 15, 15, 15, 15, 15, 15, 11, 13, 11, 11, 11,
11, 12, 10, 12, 10};
 // Kvarkin massaa vastaavat funktioiden indeksit sekÃ¤ oletus-, maksimi-
ja minimiarvot
int mind[cases] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0};
double m[cases] = {1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27, 1.27,
4.18, 4.18, 4.18, 4.18, 172.9, 172.9, 172.9, 172.9, 172.9, 172.9}; // m_c
= 1.27+-0.02 GeV, m_b = 4.18+0.03-0.02 GeV, m_t = 172.9+-0.4 GeV double
mmax[cases] = {1.67, 1.67, 1.67, 1.67, 1.67, 1.67, 1.67, 1.67, 1.67, 4.78,
4.78, 4.78, 4.78, 174.0, 174.0, 174.0, 174.0, 174.0, 174.0}; // m_c =
1.67+-0.07 GeV, m_b = 4.78+-0.06 GeV, m_t = 174.0 GeV (173.1+0.9) double
mmin[cases] = {0.993, 0.993, 0.993, 0.993, 0.993, 0.993, 0.993, 0.993,
0.993, 3.610, 3.610, 3.610, 3.610, 160, 160, 160, 160, 160, 160}; // m_c =
0.993+-0.008 GeV, m_b = 3.610+-0.016 GeV, m_t = 160+5-4 GeV

// Indeksit, arvot ja vastaavat virheet fragmentaatiofraktioille (-1 = ei
FF:Ã¤Ã¤/FF = 1.000)
int FFind[cases] = {-1, -1, 12, 12, 12, 12, 12, 12, 12, -1, -1, -1, -1, -
1, -1, -1, -1, -1, -1}; double FF[cases] = {1.0, 1.0, 0.557, 0.226, 0.238,
0.557, 0.238, 0.557, 0.238, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
1.0};  double FFuperr[cases] = {0.0, 0.0, 0.023, 0.010, 0.007, 0.023,
0.007, 0.023, 0.007, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
double FFlowerr[cases] = {0.0, 0.0, 0.023, 0.010, 0.007, 0.023, 0.007,
0.023, 0.007, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

int totCScoltypeind = 1;

// Valitaan, onko ratio-graafien x-akselin pisteet lineaarisesti vai
logaritmisesti valittuja
bool rlogp[cases] = {true, true, false, false, false, true, true, true,
true, true, true, false, false, true, true, false, false, true, false};

// Laskentasilmukka
for(int i = 0; i < cases; i++){

 if(tcase[i].compare("cdif2") == 0){ // En tule kÃ¤sittelemÃ¤Ã¤n tapausta
"cdif2" (pp --> Dâº) tulosten analyysissÃ¤
 continue;
 }

 if(bp[i] == 0){
 cout << "Kokeelliset tulokset puutuvat tapauksessa " << i+1 << "/" <<
cases << endl;
 continue;
 }

  /// KOKEELLISET TULOKSET JA VASTAAVAT K-TEKIJÃ–IDEN ARVOT ///

 if(ishist[i] == true){ // Histogrammitapaukset

 double binbo[bp[i]+1];
 double bkk[bp[i]];
 double bvp[bp[i]];
 double val[bp[i]];



 double upsyserr[bp[i]];
 double lowsyserr[bp[i]];
 double binkaQ[Qver][bp[i]];
 double kfval[bp[i]];
 double kfupsyserr[bp[i]];
 double kflowsyserr[bp[i]];
 double kfuptoterr[bp[i]];
 double kflowtoterr[bp[i]];

 for(int j = 0; j < bp[i]+1; j++){

 binbo[j] = binbo0[i][j];

 }

 double params[npar[i]];

 for(int j = 0; j < npar[i]; j++){

 params[j] = f[i]->GetParameter(j);;

 }

 for(int j = 0; j < bp[i]; j++){

 bkk[j] = (binbo[j+1] + binbo[j])/2;
 bvp[j] = (binbo[j+1] - binbo[j])/2;
 val[j] = val0[i][j];
 upsyserr[j] = syserrup[i][j];
 lowsyserr[j] = syserrdo[i][j];

 /*
  // Nopeampi (mutta epÃ¤tarkempi) tapa laskea binejÃ¤ vastaavat
teoreettiset vertailuarvot/K-kertoimet: Ei keskiarvoa, arvo vain laskettu
binin keskipisteessÃ¤.

 binkaQ[0][j] = f[i]->Eval(bkk[j]);

 f[i]->SetParameter(Qaind[i], Qmax[i]);
 f[i]->SetParameter(Qpind[i], Qmax[i]);
 binkaQ[1][j] = f[i]->Eval(bkk[j]);

 f[i]->SetParameter(Qaind[i], Qmin[i]);
 f[i]->SetParameter(Qpind[i], Qmin[i]);
 binkaQ[2][j] = f[i]->Eval(bkk[j]);

 f[i]->SetParameter(Qaind[i], Qdef[i]);
 f[i]->SetParameter(Qpind[i], Qmax[i]);
 binkaQ[3][j] = f[i]->Eval(bkk[j]);

 f[i]->SetParameter(Qaind[i], Qmin[i]);
 f[i]->SetParameter(Qpind[i], Qdef[i]);
 binkaQ[4][j] = f[i]->Eval(bkk[j]);

 f[i]->SetParameter(Qaind[i], Qdef[i]);
 f[i]->SetParameter(Qpind[i], Qmin[i]);
 binkaQ[5][j] = f[i]->Eval(bkk[j]);



 f[i]->SetParameter(Qaind[i], Qmax[i]);
 f[i]->SetParameter(Qpind[i], Qdef[i]);  binkaQ[6][j] = f[i]-
>Eval(bkk[j]);

 f[i]->SetParameter(Qaind[i], Qdef[i]);
 f[i]->SetParameter(Qpind[i], Qdef[i]);

 cout << "Ns. vÃ¤Ã¤rÃ¤t keskiarvot (teor.) binille (kok.) " << j + 1 << "/
" << bp[i] << " laskettu tapauksessa " << i + 1 << "/" << cases << "." <<
endl;  */

 binkaQ[0][j] = (f[i]->IntegralFast(np, x, w, binbo[j], binbo[j+1],
params, 1.e-9))/(binbo[j+1] - binbo[j]);

 params[Qaind[i]] = Qmax[i];
 params[Qpind[i]] = Qmax[i];
 binkaQ[1][j] = (f[i]->IntegralFast(np, x, w, binbo[j], binbo[j+1],
params, 1.e-9))/(binbo[j+1] - binbo[j]);

 params[Qaind[i]] = Qmin[i];
 params[Qpind[i]] = Qmin[i];
 binkaQ[2][j] = (f[i]->IntegralFast(np, x, w, binbo[j], binbo[j+1],
params, 1.e-9))/(binbo[j+1] - binbo[j]);

 params[Qaind[i]] = Qdef[i];
 params[Qpind[i]] = Qmax[i];
 binkaQ[3][j] = (f[i]->IntegralFast(np, x, w, binbo[j], binbo[j+1],
params, 1.e-9))/(binbo[j+1] - binbo[j]);
  params[Qaind[i]] = Qmin[i];
 params[Qpind[i]] = Qdef[i];
 binkaQ[4][j] = (f[i]->IntegralFast(np, x, w, binbo[j], binbo[j+1],
params, 1.e-9))/(binbo[j+1] - binbo[j]);

 params[Qaind[i]] = Qdef[i];
 params[Qpind[i]] = Qmin[i];
 binkaQ[5][j] = (f[i]->IntegralFast(np, x, w, binbo[j], binbo[j+1],
params, 1.e-9))/(binbo[j+1] - binbo[j]);

 params[Qaind[i]] = Qmax[i];
 params[Qpind[i]] = Qdef[i];
 binkaQ[6][j] = (f[i]->IntegralFast(np, x, w, binbo[j], binbo[j+1],
params, 1.e-9))/(binbo[j+1] - binbo[j]);

 params[Qaind[i]] = Qdef[i];
 params[Qpind[i]] = Qdef[i];

 cout << "Keskiarvot (teor.) binille (kok.) " << j + 1 << "/" << bp[i] <<
" laskettu tapauksessa " << i + 1 << "/" << cases << "." << endl;

 }

 f[i]->SetParameter(Qaind[i], Qdef[i]); // ROOT 6?
 f[i]->SetParameter(Qpind[i], Qdef[i]);

 teorka[i] = new TH1D(Form("%steorka",tcase[i].c_str()),
Form("%steorka",tcase[i].c_str()), bp[i], binbo);
   for(int j = 0; j < bp[i]; j++){



 teorka[i]->SetBinContent(j+1, binkaQ[0][j]);
 teorka[i]->SetBinError(j+1, 0.00000000000000001); // Pieni katsojalle nÃ
¤kymÃ¤tÃ¶n virhe lisÃ¤tty, jotta histogrammi piirretÃ¤Ã¤n oikein kuvaan  }

 teorka[i]->Write( Form("%steorka",tcase[i].c_str()) );

 erstaerr[i] = new TH1D(Form("%serstaerr",tcase[i].c_str()),
Form("%serstaerr",tcase[i].c_str()), bp[i], binbo);

 for(int j = 0; j < bp[i]; j++){
 erstaerr[i]->SetBinContent(j+1, val[j]);
 erstaerr[i]->SetBinError(j+1, staerr[i][j]);
 }

 erstaerr[i]->Write( Form("%serstaerr",tcase[i].c_str()) );

 ersyserr[i] = new TGraphAsymmErrors(bp[i], bkk, val, bvp, bvp, lowsyserr,
upsyserr);
 ersyserr[i]->Write( Form("%sersyserr",tcase[i].c_str()) );

 for(int k = 0; k < Qver; k++){

 kfstaerr[i][k] = new TH1D(Form("%skfstaerrQ%01i", tcase[i].c_str(), k),
Form("%skfstaerr%01i",tcase[i].c_str(), k), bp[i], binbo);
  for(int j = 0; j < bp[i]; j++){

 kfval[j] = (val0[i][j])/(binkaQ[k][j]);

 kfstaerr[i][k]->SetBinContent(j+1, val0[i][j]/(binkaQ[k][j]));
 kfstaerr[i][k]->SetBinError(j+1, staerr[i][j]/(binkaQ[k][j]));

 kfupsyserr[j] = (syserrup[i][j])/(binkaQ[k][j]);
 kflowsyserr[j] = (syserrup[i][j])/(binkaQ[k][j]);

 kfuptoterr[j] = TMath::Sqrt(pow(staerr[i][j], 2) + pow(syserrup[i][j], 2)
+ pow(adderrup[i][j], 2))/(binkaQ[k][j]);  kflowtoterr[j] =
TMath::Sqrt(pow(staerr[i][j], 2) + pow(syserrdo[i][j], 2) +
pow(adderrdo[i][j], 2))/(binkaQ[k][j]);

 }

 kfstaerr[i][k]->Write( Form("%skfstaerrQ%01i", tcase[i].c_str(), k) );

 kfsyserr[i][k] = new TGraphAsymmErrors(bp[i], bkk, kfval, bvp, bvp,
kflowsyserr, kfupsyserr);
 kfsyserr[i][k]->Write( Form("%skfsyserrQ%01i", tcase[i].c_str(), k) );
  kftoterr[i][k] = new TGraphAsymmErrors(bp[i], bkk, kfval, bvp, bvp,
kflowtoterr, kfuptoterr);
 kftoterr[i][k]->Write( Form("%skftoterrQ%01i", tcase[i].c_str(), k) );

 }

 }else{ // Datapistetapaukset

 int ndefp;
 int naltp = 0;



 for(int j = 1; j < bp[i]; j++){

 if(erxp0[i][j-1] == erxp0[i][j]){

 naltp++;

 }

 }

 ndefp = bp[i] - naltp;

 double erxp[ndefp];
 double erxperr[ndefp];
 double val[ndefp];
 double erpuptoterr[ndefp];
 double erplowtoterr[ndefp];

 double erxpalt[naltp];
 double erxperralt[naltp];
 double valalt[naltp];
 double erpuptoterralt[naltp];
 double erplowtoterralt[naltp];

 double teorvalQ[Qver][ndefp];
 double kfval[ndefp];
 double kfuptoterr[ndefp];
 double kflowtoterr[ndefp];

 int defptag = 0;

 for(int j = 0; j < bp[i]; j++){

 if((j == 0) || (erxp0[i][j-1] != erxp0[i][j])){
  erxp[defptag] = erxp0[i][j];
 erxperr[defptag] = erxperr0[i][j];
 val[defptag] = val0[i][j];
 erpuptoterr[defptag] = ptoterrup[i][j];
 erplowtoterr[defptag] = ptoterrdo[i][j];

 teorvalQ[0][defptag] = f[i]->Eval(erxp[defptag]);

 f[i]->SetParameter(Qaind[i], Qmax[i]);
 f[i]->SetParameter(Qpind[i], Qmax[i]);
 teorvalQ[1][defptag] = f[i]->Eval(erxp[defptag]);

 f[i]->SetParameter(Qaind[i], Qmin[i]);
 f[i]->SetParameter(Qpind[i], Qmin[i]);
 teorvalQ[2][defptag] = f[i]->Eval(erxp[defptag]);

 f[i]->SetParameter(Qaind[i], Qdef[i]);
 f[i]->SetParameter(Qpind[i], Qmax[i]);
 teorvalQ[3][defptag] = f[i]->Eval(erxp[defptag]);

 f[i]->SetParameter(Qaind[i], Qmin[i]);
 f[i]->SetParameter(Qpind[i], Qdef[i]);
 teorvalQ[4][defptag] = f[i]->Eval(erxp[defptag]);



 f[i]->SetParameter(Qaind[i], Qdef[i]);  f[i]->SetParameter(Qpind[i],
Qmin[i]);
 teorvalQ[5][defptag] = f[i]->Eval(erxp[defptag]);

 f[i]->SetParameter(Qaind[i], Qmax[i]);
 f[i]->SetParameter(Qpind[i], Qdef[i]);
 teorvalQ[6][defptag] = f[i]->Eval(erxp[defptag]);

 f[i]->SetParameter(Qaind[i], Qdef[i]);
 f[i]->SetParameter(Qpind[i], Qdef[i]);

 defptag++;
 }

 }

 erp[i] = new TGraphAsymmErrors(ndefp, erxp, val, erxperr, erxperr,
erplowtoterr, erpuptoterr);
 erp[i]->Write( Form("erp%s", tcase[i].c_str()) );

 if(0 < naltp){

 int altptag = 0;

 for(int j = 1; j < bp[i]; j++){

 if(erxp0[i][j-1] == erxp0[i][j]){

 erxpalt[altptag] = erxp0[i][j] + 0.0065*vali[i];
 erxperralt[altptag] = erxperr0[i][j];
 valalt[altptag] = val0[i][j];
 erpuptoterralt[altptag] = ptoterrup[i][j];
 erplowtoterralt[altptag] = ptoterrdo[i][j];
   altptag++;
 }

 }

 erpalt[i] = new TGraphAsymmErrors(naltp, erxpalt, valalt, erxperralt,
erxperralt, erplowtoterralt, erpuptoterralt);  erpalt[i]->Write(
Form("erp%salt", tcase[i].c_str()) );

 }

 for(int k = 0; k < Qver; k++){

 for(int j = 0; j < ndefp; j++){

 kfval[j] = (val[j])/(teorvalQ[k][j]);

 kfuptoterr[j] = (erpuptoterr[j])/(teorvalQ[k][j]);
 kflowtoterr[j] = (erplowtoterr[j])/(teorvalQ[k][j]);

 }

 kfp[i][k] = new TGraphAsymmErrors(ndefp, erxp, kfval, erxperr, erxperr,



kflowtoterr, kfuptoterr);
 kfp[i][k]->Write( Form("%skfpQ%01i", tcase[i].c_str(), k) );

}
 }

 cout << "Kokeelliset tulosten ja vastaavien k-tekijÃ¶iden kuvaajat
hoidettu tapauksessa " << i + 1 << "/" << cases << "." << endl;

 /// TEOREETTTISET TULOKSET ///

 for(int j = 0; j < points; j++){
  xplin[j] = alkup[i]+0.00001+j*(vali[i])/points;//Ei voi aloittaa suoraan
pisteestÃ¤ 2*m kokonaisvaikutusaloilla, tÃ¤llÃ¶in PDF:ien kanssa tulee
ongelmia. Toisekseen eri partonien vaikutusalaosuuksia tutkittaessa ei
voida jakaa nollalla. TÃ¤mÃ¤ arvon lisÃ¤ys voidaan toki sisÃ¤llyttÃ¤Ã¤
itse funktioiden mÃ¤Ã¤rittelyvÃ¤leihin, mikÃ¤li se tuntuu kÃ¤tevÃ¤mmÃ¤ltÃ
¤. // 10â»âµ < 0,5/1200, 0,5 on pienin kÃ¤ytetty numeerinen arvo vÃ¤lin
pituudelle.  if(j==(points-1)){
 xplin[j] = alkup[i] + vali[i];
 }

 xplog[j] = alkup[i] + (vali[i])*pow(1000,(j+1.0)/points-1); //
Logaritminen pisteitten valinta // 10â»âµ < 0,5*1000^(1/150-1)  if(j==0){
 xplog[j] = alkup[i]+0.00001;
 }

 }

 ct14n.pdfexit();

 /////////////////////////////////////

 double ypall[pdfs][points];
 double ypLN[points];
 double ypLL[points];
 double ypNLO[points];
 double xpPDFerr[points];
 double ypNLOlowererr[points];
 double ypNLOuppererr[points];  double ypLOlowererr[points];
 double ypLOuppererr[points];

 for (int k = 0; k < pdfs; k++){

 ct14n.setct11(it[k]);

 for (int j = 0; j < points; j++){

 ypall[k][j] = f[i]->Eval(xplin[j]);

 }

 if(k != 58){
 ct14n.pdfexit();



 }
 }

 for (int j = 0; j < points; j++){

 ypLN[j] = ypall[57][j];
 ypLL[j] = ypall[58][j];

 double b1 = 0;
 double b2 = 0;

 double y0 = ypall[0][j];
 ypNLO[j] = y0;

 for(int k = 1; k < 24; k++){

 double y1 = ypall[2*k-1][j];
 double y2 = ypall[2*k][j];

 double a1 = y1-y0;

 if(a1 < (y2-y0)){

 a1 = y2-y0;

 }

 if(a1 < 0){

 a1 = 0;

 }

 b1 += pow(a1,2);

 double a2 = y0-y1;

 if(a2 < (y0-y2)){

 a2 = y0-y2;

 }

 if(0 > a2){

 a2 = 0;

 }

 b2 += pow(a2,2);

 }

 double c1 = TMath::Sqrt(b1);
 double c2 = TMath::Sqrt(b2);



 ypNLOuppererr[j] = c1;
 ypNLOlowererr[j] = c2;

 ypLOuppererr[j] = (c1/y0)*ypLL[j];
 ypLOlowererr[j] = (c2/y0)*ypLL[j];

 }

 grnlo[i] = new TGraph(points,xplin,ypNLO);
 grnlo[i]->Write( Form("gr%snlo", tcase[i].c_str()) );

 grLN[i] = new TGraph(points,xplin,ypLN);
 grLN[i]->Write( Form("gr%sLN", tcase[i].c_str()) );

 grLL[i] = new TGraph(points,xplin,ypLL);
 grLL[i]->Write( Form("gr%sLL", tcase[i].c_str()) );

 grNLO[i] = new
TGraphAsymmErrors(points,xplin,ypNLO,xpPDFerr,xpPDFerr,ypNLOlowererr,ypNLO
uppererr);
 grNLO[i]->Write( Form("gr%sNLO", tcase[i].c_str()) );

 grLO[i] = new
TGraphAsymmErrors(points,xplin,ypLL,xpPDFerr,xpPDFerr,ypLOlowererr,ypLOupp
ererr);
 grLO[i]->Write( Form("gr%sLO", tcase[i].c_str()) );

 cout << "PDF-virhegraafit hoidettu (" << i+1 << "/" << cases << ")." <<
endl;

 /////////////////////////////////////

 if((tcase[i].compare("c1") == 0)||(tcase[i].compare("b1") ==
0)||(tcase[i].compare("t2") == 0)){
  double ypcom[points];

 f[i]->SetParameter(totCScoltypeind, -1);

 for (int j = 0; j < points; j++){

 ypcom[j] = f[i]->Eval(xplin[j]);

 }

 f[i]->SetParameter(totCScoltypeind, 1);

 int b;

 if(tcase[i].compare("c1") == 0){
 b = 0;
 }

 if(tcase[i].compare("b1") == 0){
 b = 1;
 }

 if(tcase[i].compare("t2") == 0){



 b = 2;
 }

 grcom[b] = new TGraph(points,xplin,ypcom);
 grcom[b]->Write( Form("grcom%s", tcase[i].c_str()) );

 cout << "pp vs. pp_bar-vertailukÃ¤yrÃ¤ muodostettu" << endl;
 }

 /////////////////////////////////////

 double xpr[points];

 if(rlogp[i] == true){

 for(int j = 0; j < points; j++){
xpr[j] = xplog[j];
 }

 }else{

 for(int j = 0; j < points; j++){
 xpr[j] = xplin[j];
 }

 }

 double ypr[points];

 for (int k = 0; k < types; k++){

 for (int j = 0; j < points; j++){

 double kok;
  if(rlogp[i] == true){ // SÃ¤Ã¤stetÃ¤Ã¤n hieman laskenta-aikaa

 f[i]->SetParameter(gind[i], 1);
 f[i]->SetParameter(gind[i] + 1, 1);
 f[i]->SetParameter(gind[i] + 2, 1);
 f[i]->SetParameter(gind[i] + 3, 1);
 f[i]->SetParameter(gind[i] + 4, 1);
 f[i]->SetParameter(gind[i] + 5, 1);

 kok = f[i]->Eval(xpr[j]);

}else{

 kok = ypLL[j];

 }

 f[i]->SetParameter(gind[i], 0);
 f[i]->SetParameter(gind[i] + 1, 0);
 f[i]->SetParameter(gind[i] + 2, 0);
 f[i]->SetParameter(gind[i] + 3, 0);
 f[i]->SetParameter(gind[i] + 4, 0);
 f[i]->SetParameter(gind[i] + 5, 0);



 f[i]->SetParameter(gind[i] + k, 1); // Asetetaan tarkasteltavien
hiukkasten tyyppi

 double osa = f[i]->Eval(xpr[j]);

 ypr[j] = osa/kok;
 }

 grr[i][k] = new TGraph(points,xpr,ypr);
 grr[i][k]->Write( Form("gr%sr%01i", tcase[i].c_str(), k) );
  }

 f[i]->SetParameter(gind[i], 1);
 f[i]->SetParameter(gind[i] + 1, 1);
 f[i]->SetParameter(gind[i] + 2, 1);
 f[i]->SetParameter(gind[i] + 3, 1);
 f[i]->SetParameter(gind[i] + 4, 1);
 //f[i]->SetParameter(gind[i] + 5, 1);

 cout << "Eri vuorovaikutustyyppien (g+g/q+q^bar) suhteelliset osuudet
vaikutusalasta laskettu." << endl;

 /////////////////////////////////////

 double ypmmax[points], ypmmin[points];

 for (int j = 0; j < points; j++){

 f[i]->SetParameter(mind[i], mmax[i]);

 ypmmax[j] = f[i]->Eval(xplin[j]);

 f[i]->SetParameter(mind[i], mmin[i]);

 ypmmin[j] = f[i]->Eval(xplin[j]);

 }

 f[i]->SetParameter(mind[i], m[i]);

 grmmax[i] = new TGraph(points,xplin,ypmmax);
 grmmax[i]->Write( Form("gr%smmax", tcase[i].c_str()) );

 grmmin[i] = new TGraph(points,xplin,ypmmin);
 grmmin[i]->Write( Form("gr%smmin", tcase[i].c_str()) );
  cout << "Massan epÃ¤varmuuden aiheuttamat virhekÃ¤yrÃ¤t laskettu." <<
endl;

 /////////////////////////////////////

 double xpQerr[points];
 double
ypQauperr[points],ypQalowerr[points],ypQpuperr[points],ypQplowerr[points];
 double ypQuppererr[points],ypQlowererr[points];
 double ypQruperr[points],ypQrlowerr[points];
 double ypQQmax[points],ypQQmin[points];



 double ypQr[points];

 for (int j = 0; j < points; j++){

 xpQerr[j] = 0;

 f[i]->SetParameter(Qaind[i], Qmax[i]);
 f[i]->SetParameter(Qpind[i], Qmax[i]);
 ypQQmax[j] = f[i]->Eval(xplin[j]);

 f[i]->SetParameter(Qaind[i], Qmin[i]);
 f[i]->SetParameter(Qpind[i], Qmin[i]);
 ypQQmin[j] = f[i]->Eval(xplin[j]);

 f[i]->SetParameter(Qaind[i], Qdef[i]);
 f[i]->SetParameter(Qpind[i], Qmax[i]);
 double yp3 = f[i]->Eval(xplin[j]);

 f[i]->SetParameter(Qaind[i], Qmin[i]);
 f[i]->SetParameter(Qpind[i], Qdef[i]);
 double yp4 = f[i]->Eval(xplin[j]);
  f[i]->SetParameter(Qaind[i], Qdef[i]);
 f[i]->SetParameter(Qpind[i], Qmin[i]);
 double yp5 = f[i]->Eval(xplin[j]);

 f[i]->SetParameter(Qaind[i], Qmax[i]);
 f[i]->SetParameter(Qpind[i], Qdef[i]);
 double yp6 = f[i]->Eval(xplin[j]);

 ypQauperr[j] = yp4 - ypLL[j];
 ypQalowerr[j] = ypLL[j] - yp6;
 if(ypQauperr[j] < 0 || ypQalowerr[j] < 0){
 cout << "Jokin on erittÃ¤in pielessÃ¤ Qa:n vaihtelun aiheuttaman virhe-
bandin kanssa: ylÃ¤virhe on " << ypQauperr[j] << " ja alavirhe " <<
ypQalowerr[j] << " pisteessÃ¤ (indeksi) " << j << "/" << points-1 << "
tapauksessa " << i+1 << "/" << cases << "." << endl;  }

 ypQpuperr[j] = yp3 - ypLL[j];
 ypQplowerr[j] = ypLL[j] - yp5;

 if(ypQpuperr[j] < 0 && ypQplowerr[j] < 0){  cout << "Tapauksessa " << i+1
<< "/" << cases << " (" << tcase[i].c_str() << ") pisteessÃ¤ (indeksi)" <<
j << "/" << points-1 << " Qp:n arvon nostaminen pienentÃ¤Ã¤ vaikutusalan
arvoa ja vÃ¤hentÃ¤minen suurentaa." << endl;  } // Negatiiviset virheet
eivÃ¤t haittaa, sillÃ¤ TGraphAsymmErrors-luokka tulkitsee ne tÃ¤llÃ¶in
oikeaoppisesti: negatiiviset virheet (lowerr, uperr) ovat graafille sama
asia kuin (-uperr,-lowerr).

 if((ypQpuperr[j] < 0 && ypQplowerr[j] > 0) || (ypQpuperr[j] > 0 &&
ypQplowerr[j] < 0)){
 cout << "Qp:n vaihtelu vaikuttaa samaan suuntaan (tapaus " <<
tcase[i].c_str() << ", piste " << j << "/" << points-1 << "): ylÃ¤raja = "
<< ypQpuperr[j] << " ja alaraja = " << ypQplowerr[j] << "." << endl;  }

 double ypQmaxval = yp3; // Kolme eri vaihtoehtoa maksimille ja minimille

 if(ypQmaxval < yp4){



 ypQmaxval = yp4;
 }

 if(ypQmaxval < ypQQmin[j]){
 ypQmaxval = ypQQmin[j];
 }

 ypQuppererr[j] = ypQmaxval - ypLL[j];
  double ypQminval = yp5;

 if(ypQminval > yp6){
 ypQminval = yp6;
 }

 if(ypQminval > ypQQmax[j]){
 ypQminval = ypQQmax[j];
 }

 ypQlowererr[j] = ypLL[j] - ypQminval;

 ypQr[j] = 0;

 if(ypLL[j] != 0){
 ypQruperr[j] = 100*ypQuppererr[j]/ypLL[j];
ypQrlowerr[j] = 100*ypQlowererr[j]/ypLL[j];
 }else{
 ypQruperr[j] = 0;
ypQrlowerr[j] = 0;
 }

 }

 f[i]->SetParameter(Qaind[i], Qdef[i]); // Muokkaukset alkuperÃ¤isiksi
 f[i]->SetParameter(Qpind[i], Qdef[i]);

 grQa[i] = new
TGraphAsymmErrors(points,xplin,ypLL,xpQerr,xpQerr,ypQalowerr,ypQauperr);
 grQa[i]->Write( Form("gr%sQa", tcase[i].c_str()) );

 grQp[i] = new
TGraphAsymmErrors(points,xplin,ypLL,xpQerr,xpQerr,ypQplowerr,ypQpuperr); /
/ Negatiiviset virheet tulkitaan oikein, katso kommentti ylempÃ¤nÃ¤
grQp[i]->Write( Form("gr%sQp", tcase[i].c_str()) );

 grQ[i] = new
TGraphAsymmErrors(points,xplin,ypLL,xpQerr,xpQerr,ypQlowererr,ypQuppererr)
;  grQ[i]->Write( Form("grQ%s", tcase[i].c_str()) );

 grQQmax[i] = new TGraph(points,xplin,ypQQmax);
 grQQmax[i]->Write( Form("gr%sQQmax", tcase[i].c_str()) );

 grQQmin[i] = new TGraph(points,xplin,ypQQmin);
 grQQmin[i]->Write( Form("gr%sQQmin", tcase[i].c_str()) );

 grQrel[i] = new
TGraphAsymmErrors(points,xplin,ypQr,xpQerr,xpQerr,ypQrlowerr,ypQruperr);
 grQrel[i]->Write( Form("gr%sQrel", tcase[i].c_str()) );



 cout << "Q-graafit laskettu." << endl;

 /////////////////////////////////////

 if(0 <= FFind[i]){

 double xpFFerr[points],ypFFlowerr[points],ypFFuperr[points];
 double ypFFr[points],ypFFrlowerr[points],ypFFruperr[points];

 for(int j = 0; j < points; j++){

 xpFFerr[j] = 0;

 ypFFlowerr[j] = FFlowerr[i]*ypLL[j];

 ypFFuperr[j] = FFuperr[i]*ypLL[j];

 ypFFr[j] = 0;

 ypFFrlowerr[j] = 100.0*FFlowerr[i]/FF[i];

 ypFFruperr[j] = 100.0*FFuperr[i]/FF[i];

 }
  f[i]->SetParameter(FFind[i], FF[i]);

 grFF[i] = new
TGraphAsymmErrors(points,xplin,ypLL,xpFFerr,xpFFerr,ypFFlowerr,ypFFuperr);
 grFF[i]->Write( Form("gr%sFF", tcase[i].c_str()) );

 grFFrel[i] = new
TGraphAsymmErrors(points,xplin,ypFFr,xpFFerr,xpFFerr,ypFFrlowerr,ypFFruper
r);
 grFFrel[i]->Write( Form("gr%sFFrel", tcase[i].c_str()) );

 }

 /////////////////////////////////////

 cout << "Tapaus " << i + 1 << "/" << cases << " (" << tcase[i].c_str() <<
") evaluoitu." << endl;
}

file->Close();

cout << "Laskenta suoritettu." << endl;

return 0;

}

double YksTesti(double *x, double *p){
double v = x[0];
double Q = p[0];
double k0 = p[1];
double kq = p[2];



return v*(k0*ct14n.parton(0, v, Q)+kq*(ct14n.parton(1, v,
Q)+ct14n.parton(-1, v, Q)+ct14n.parton(2, v, Q)+ct14n.parton(-2, v,
Q)+ct14n.parton(3, v, Q)+ct14n.parton(-3, v, Q)+ct14n.parton(4, v,
Q)+ct14n.parton(-4, v, Q)+ct14n.parton(5, v, Q)+ct14n.parton(-5, v, Q)));
}

 double PetFF(double *x, double *p){
double z = x[0];
double eQ = p[0];
double N = p[1];

if(z <= 0){
 return 0;
}

return N/(z*pow((1-1/z-eQ/(1-z)),2));
}

double PetFFeff(double *x, double *p){
double z = x[0];
double eQ = p[0];
double N = p[1];
double n = p[2];

if(z <= 0){
 return 0;
}

return (N*pow(z,(n-2.0)))/pow((1-1/z-eQ/(1-z)),2);
}

double TotCSpp(double *x, double *p){
double yme = p[9];
double s = pow(x[0]*yme,2);
double m = p[0];
int coltype = p[1];
double Qka = p[2];
double Qkp = p[3];
int Qva = p[4];
int Qvp = p[5];
double Qvka = p[6];
double Qvkp = p[7];
double FF = p[8];
double ym = p[10];
double k0 = p[11];
double k1 = p[12];
double k2 = p[13];
double k3 = p[14];
double k4 = p[15];
double k5 = p[16];

if(s <= 4*pow(m,2)){
 return 0;
}



TF2 *fInt = new TF2("fInt", Intgpp, 0.0, 1.0, 0.0, 1.0, 17);
fInt->SetParameter(0, s);
fInt->SetParameter(1, m);
fInt->SetParameter(2, coltype); fInt->SetParameter(3, Qka);
fInt->SetParameter(4, Qkp);
fInt->SetParameter(5, Qva);
fInt->SetParameter(6, Qvp);
fInt->SetParameter(7, Qvka);
fInt->SetParameter(8, Qvkp);
fInt->SetParameter(9, FF);
fInt->SetParameter(10, ym);
fInt->SetParameter(11, k0);
fInt->SetParameter(12, k1);
fInt->SetParameter(13, k2);
fInt->SetParameter(14, k3);
fInt->SetParameter(15, k4);
fInt->SetParameter(16, k5);

return fInt->Integral(0.0, 1.0, 0.0, 1.0, 5.e-5);
}

double Intgpp(double *x, double *p){

double r1 = x[0];
double r2 = x[1];
double s = p[0];
double m = p[1];
int coltype = p[2];
double Qka = p[3];
double Qkp = p[4];
int Qva = p[5];
int Qvp = p[6];
double Qvka = p[7];
double Qvkp = p[8];
double FF = p[9];
double ym = p[10];
double k0 = p[11];
double k1 = p[12];
double k2 = p[13];
double k3 = p[14];
double k4 = p[15];
double k5 = p[16];

double x1min = 4*pow(m,2)/s;
double x1max = 1;
double dx1 = x1max - x1min; double x1 = x1min + r1*dx1;

double x2min = 4*pow(m,2)/(s*x1);
double x2max = 1;
double dx2 = x2max - x2min;
double x2 = x2min + r2*dx2;

double jacob = dx1*dx2;

double Qa, Qp;



if (Qva==1){
 Qa = Qvka*TMath::Sqrt(x1*x2*s);
} else {
 Qa = Qka*m;
}

if (Qvp==1){
 Qp = Qvkp*TMath::Sqrt(x1*x2*s);
} else {
 Qp = Qkp*m;
}

if(Qp < 1.3){ // 1,3 GeV on pienin skaalavalinta ilman extrapolointia
 Qp = 1.3;
}

double h = 1-4*pow(m,2)/(s*x1*x2);
  return ym*FF*pow(ct14n.alphas(Qa),2)*TMath::Pi()*(k0*ct14n.parton(0, x1,
Qp)*ct14n.parton(0, x2, Qp)*(1./(12*s*x1*x2))*(-(7+31*pow(m,2)/
(x1*x2*s))*TMath::Sqrt(h)+4*(1+4*pow(m,2)/(s*x1*x2)+pow(m,4)/
pow(s*x1*x2,2))*TMath::Log((1+TMath::Sqrt(h))/(1-TMath::Sqrt(h)))) + (k1*
(ct14n.parton(1, x1, Qp)*ct14n.parton(coltype*(-1), x2, Qp)+ct14n.parton(-
1, x1, Qp)*ct14n.parton(coltype*1, x2, Qp)) + k2*(ct14n.parton(2, x1,
Qp)*ct14n.parton(coltype*(-2), x2, Qp)+ct14n.parton(-2, x1,
Qp)*ct14n.parton(coltype*2, x2, Qp)) + k3*(ct14n.parton(3, x1,
Qp)*ct14n.parton(coltype*(-3), x2, Qp)+ct14n.parton(-3, x1,
Qp)*ct14n.parton(coltype*3, x2, Qp)) + k4*(ct14n.parton(4, x1,
Qp)*ct14n.parton(coltype*(-4), x2, Qp)+ct14n.parton(-4, x1,
Qp)*ct14n.parton(coltype*4, x2, Qp)) + k5*(ct14n.parton(5, x1,
Qp)*ct14n.parton(coltype*(-5), x2, Qp)+ct14n.parton(-5, x1,
Qp)*ct14n.parton(coltype*5, x2, Qp)))*(8./(27*pow(s*x1*x2,2)))*
(s*x1*x2+2*pow(m,2))*TMath::Sqrt(h))*jacob;

}

double DifCS1(double *x, double *p){

double ympt = p[13]; double pt = x[0]*ympt;
double mq = p[0];
double mh = p[1];
double e = p[2];
int coltype = p[3];
double yhmin = p[4];
double yhmax = p[5];
double Qka = p[6];
double Qkp = p[7];
int Qva = p[8];
int Qvp = p[9];
double Qvka = p[10];
double Qvkp = p[11];
double FF = p[12];
double ym = p[14];
double k0 = p[15];
double k1 = p[16];
double k2 = p[17];
double k3 = p[18];



double k4 = p[19];
double k5 = p[20];

double yqmin, yqmax;

yqmin = TMath::ASinH(TMath::Sqrt((pow(mh,2)+pow(pt,2))/
(pow(mc,2)+pow(pt,2)))*TMath::SinH(yhmin));

yqmax = TMath::ASinH(TMath::Sqrt((pow(mh,2)+pow(pt,2))/
(pow(mc,2)+pow(pt,2)))*TMath::SinH(yhmax));

if(yqmin <= -TMath::ACosH(e/(2*TMath::Sqrt(pow(mq,2)+pow(pt,2))))){ //
Tarkistetaan, ettÃ¤ ymin ja ymax ovat teoreettisten rajojen sisÃ¤llÃ¤:
|y1| <= arcosh(e/(2*m_T))  yqmin = -TMath::ACosH(e/
(2*TMath::Sqrt(pow(mq,2)+pow(pt,2))));
}

if(TMath::ACosH(e/(2*TMath::Sqrt(pow(mq,2)+pow(pt,2)))) <= yqmax){  yqmax
= TMath::ACosH(e/(2*TMath::Sqrt(pow(mq,2)+pow(pt,2))));
}

TF2 *fDifInt1 = new TF2("fDifInt1", DifIntg1, yqmin, yqmax, 0.0, 1.0, 18);
fDifInt1->SetParameter(0, pt);
fDifInt1->SetParameter(1, mq);
fDifInt1->SetParameter(2, e);
fDifInt1->SetParameter(3, coltype);
fDifInt1->SetParameter(4, Qka);
fDifInt1->SetParameter(5, Qkp);
fDifInt1->SetParameter(6, Qva);
fDifInt1->SetParameter(7, Qvp);
fDifInt1->SetParameter(8, Qvka);
fDifInt1->SetParameter(9, Qvkp);
fDifInt1->SetParameter(10, FF);
fDifInt1->SetParameter(11, ym);
fDifInt1->SetParameter(12, k0);
fDifInt1->SetParameter(13, k1);
fDifInt1->SetParameter(14, k2);
fDifInt1->SetParameter(15, k3);
fDifInt1->SetParameter(16, k4);
fDifInt1->SetParameter(17, k5);

return fDifInt1->Integral(yqmin, yqmax, 0.0, 1.0, 2.e-6);
}

double DifCS2(double *x, double *p){

double ympt = p[10];
double pt = x[0]*ympt;
double m = p[0];
double e = p[1];
int coltype = p[2];
double Qka = p[3];
double Qkp = p[4]; int Qva = p[5];
int Qvp = p[6];
double Qvka = p[7];



double Qvkp = p[8];
double FF = p[9];
double ym = p[11];
double k0 = p[12];
double k1 = p[13];
double k2 = p[14];
double k3 = p[15];
double k4 = p[16];
double k5 = p[17];

double ymin = -TMath::ACosH(e/(2*TMath::Sqrt(pow(m,2)+pow(pt,2))));
double ymax = TMath::ACosH(e/(2*TMath::Sqrt(pow(m,2)+pow(pt,2))));

TF2 *fDifInt2 = new TF2("fDifInt2", DifIntg1, ymin, ymax, 0.0, 1.0, 18);
fDifInt2->SetParameter(0, pt);
fDifInt2->SetParameter(1, m);
fDifInt2->SetParameter(2, e);
fDifInt2->SetParameter(3, coltype);
fDifInt2->SetParameter(4, Qka);
fDifInt2->SetParameter(5, Qkp);
fDifInt2->SetParameter(6, Qva);
fDifInt2->SetParameter(7, Qvp);
fDifInt2->SetParameter(8, Qvka);
fDifInt2->SetParameter(9, Qvkp);
fDifInt2->SetParameter(10, FF);
fDifInt2->SetParameter(11, ym);
fDifInt2->SetParameter(12, k0);
fDifInt2->SetParameter(13, k1);
fDifInt2->SetParameter(14, k2);
fDifInt2->SetParameter(15, k3); fDifInt2->SetParameter(16, k4);
fDifInt2->SetParameter(17, k5);

return fDifInt2->Integral(ymin, ymax, 0.0, 1.0, 2.e-6);
}

double DifIntg1(double *x, double *p){

double y1 = x[0];
double z = x[1];
double pt = p[0];
double m = p[1];
double e = p[2];
double s = pow(e,2);
int coltype = p[3];
double Qka = p[4];
double Qkp = p[5];
int Qva = p[6];
int Qvp = p[7];
double Qvka = p[8];
double Qvkp = p[9];
double FF = p[10];
double ym = p[11];
double k0 = p[12];
double k1 = p[13];
double k2 = p[14];
double k3 = p[15];



double k4 = p[16];
double k5 = p[17];

double Qa, Qp;

if (Qva==1){
 Qa = Qvka*TMath::Sqrt(pow(m,2)+pow(pt,2));
} else {
 Qa = Qka*m;
}

if (Qvp==1){
 Qp = Qvkp*TMath::Sqrt(pow(m,2)+pow(pt,2));
} else {
 Qp = Qkp*m;
}

if(Qp < 1.3){ // 1,3 GeV pienin pienin skaalavalinta ilman extrapolointia
 Qp = 1.3;
}
 double y2 = (1-z)*(-1)*TMath::Log(e/(TMath::Sqrt(pow(m,2)+pow(pt,2)))-
TMath::Exp(-y1))+z*TMath::Log(e/(TMath::Sqrt(pow(m,2)+pow(pt,2)))-
TMath::Exp(y1)); double jacob = TMath::Log(s/(pow(m,2)+pow(pt,2))+1-2*e/
(TMath::Sqrt(pow(m,2)+pow(pt,2)))*TMath::CosH(y1));

double x1 = TMath::Sqrt((pow(m,2)+pow(pt,2))/s)*
(TMath::Exp(y1)+TMath::Exp(y2));
double x2 = TMath::Sqrt((pow(m,2)+pow(pt,2))/s)*(TMath::Exp(-
y1)+TMath::Exp(-y2));
double ss = 2*(pow(m,2)+pow(pt,2))*(1+TMath::CosH(y1-y2));
double tt = pow(m,2)-(pow(m,2)+pow(pt,2))*(1+TMath::Exp(-y1+y2));
double uu = pow(m,2)-(pow(m,2)+pow(pt,2))*(1+TMath::Exp(y1-y2));
 return ym*FF*2*pt*x1*x2*pow(ct14n.alphas(Qa),2)*TMath::Pi()/pow(ss,2)*
((k1*(ct14n.parton(1, x1, Qp)*ct14n.parton(coltype*(-1), x2,
Qp)+ct14n.parton(-1, x1, Qp)*ct14n.parton(coltype*1, x2, Qp)) + k2*
(ct14n.parton(2, x1, Qp)*ct14n.parton(coltype*(-2), x2, Qp)+ct14n.parton(-
2, x1, Qp)*ct14n.parton(coltype*2, x2, Qp)) + k3*(ct14n.parton(3, x1,
Qp)*ct14n.parton(coltype*(-3), x2, Qp)+ct14n.parton(-3, x1,
Qp)*ct14n.parton(coltype*3, x2, Qp)) + k4*(ct14n.parton(4, x1,
Qp)*ct14n.parton(coltype*(-4), x2, Qp)+ct14n.parton(-4, x1,
Qp)*ct14n.parton(coltype*4, x2, Qp)) + k5*(ct14n.parton(5, x1,
Qp)*ct14n.parton(coltype*(-5), x2, Qp)+ct14n.parton(-5, x1,
Qp)*ct14n.parton(coltype*5, x2, Qp)))*(4/(9*pow(ss,2))*(pow((pow(m,2)-
tt),2)+pow((pow(m,2)-uu),2)+2*pow(m,2)*ss))+k0*ct14n.parton(0, x1,
Qp)*ct14n.parton(0, x2, Qp)*(1./24)*(-17-(9.0/pow(ss,2))*
(pow(tt,2)+pow(uu,2)-pow(ss,2)+6*pow(m,2)*ss-2*pow(m,4))+4*
(ss+4*pow(m,2)+pow(m,4)/ss)*(1/(pow(m,2)-tt)+1/(pow(m,2)-uu))-16*pow(m,4)*
(1/pow((pow(m,2)-tt),2)+1/pow((pow(m,2)-uu),2))))*jacob;

}

double DifCS3(double *x, double *p){

double y1 = x[0];
double m = p[0];
double e = p[1];



int coltype = p[2];
double Qka = p[3];
double Qkp = p[4];
int Qva = p[5];
int Qvp = p[6];
double Qvka = p[7];
double Qvkp = p[8];
double ym = p[9];
double k0 = p[10];
double k1 = p[11];
double k2 = p[12];
double k3 = p[13];
double k4 = p[14];
double k5 = p[15];

if(e <= 2*m){
 return 0;
}

TF2 *fDifInt3 = new TF2("fDifInt3", DifIntg2, 0, 1.0, 0.0, 1.0, 17);
fDifInt3->SetParameter(0, y1);
fDifInt3->SetParameter(1, m);
fDifInt3->SetParameter(2, e);
fDifInt3->SetParameter(3, coltype);
fDifInt3->SetParameter(4, Qka);
fDifInt3->SetParameter(5, Qkp);
fDifInt3->SetParameter(6, Qva);
fDifInt3->SetParameter(7, Qvp); fDifInt3->SetParameter(8, Qvka);
fDifInt3->SetParameter(9, Qvkp);
fDifInt3->SetParameter(10, ym);
fDifInt3->SetParameter(11, k0);
fDifInt3->SetParameter(12, k1);
fDifInt3->SetParameter(13, k2);
fDifInt3->SetParameter(14, k3);
fDifInt3->SetParameter(15, k4);
fDifInt3->SetParameter(16, k5);

return fDifInt3->Integral(0, 1.0, 0.0, 1.0, 4.e-6);
}

double DifIntg2(double *x, double *p){

double w = x[0];
double z = x[1];
double y1 = p[0];
double m = p[1];
double e = p[2];
double s = pow(e,2);
int coltype = p[3];
double Qka = p[4];
double Qkp = p[5];
int Qva = p[6];
int Qvp = p[7];
double Qvka = p[8];
double Qvkp = p[9];
double ym = p[10];



double k0 = p[11];
double k1 = p[12];
double k2 = p[13];
double k3 = p[14];
double k4 = p[15];
double k5 = p[16];

double pt = w*TMath::Sqrt(s/(4*pow(TMath::CosH(y1),2)) - pow(m,2));
 // Teoreettisten rajojen ylittÃ¤minen on mahdollista: esim. vastaavan
kokeellisen tuloksen rapiditeetti-bin voi ulottua rajan yli. Tarkistetaan
siksi, ettÃ¤ ymin ja ymax ovat teoreettisten rajojen sisÃ¤llÃ¤. if(y1 <= -
TMath::ACosH(e/(2*TMath::Sqrt(pow(m,2)+pow(pt,2))))){
 return 0;
}

if(TMath::ACosH(e/(2*TMath::Sqrt(pow(m,2)+pow(pt,2)))) <= y1){
 return 0;
}

double Qa, Qp;

if (Qva==1){
 Qa = Qvka*TMath::Sqrt(pow(m,2)+pow(pt,2));
} else {
 Qa = Qka*m;
}

if (Qvp==1){
 Qp = Qvkp*TMath::Sqrt(pow(m,2)+pow(pt,2));
} else {
 Qp = Qkp*m;
}

if(Qp < 1.3){ // 1,3 GeV pienin pienin skaalavalinta ilman extrapolointia
 Qp = 1.3;
}

double y2 = (1-z)*(-1)*TMath::Log(e/(TMath::Sqrt(pow(m,2)+pow(pt,2)))-
TMath::Exp(-y1))+z*TMath::Log(e/(TMath::Sqrt(pow(m,2)+pow(pt,2)))-
TMath::Exp(y1)); double jacob = (TMath::Sqrt(s/(4*pow(TMath::CosH(y1),2))
- pow(m,2)))*TMath::Log(s/(pow(m,2)+pow(pt,2))+1-2*e/
(TMath::Sqrt(pow(m,2)+pow(pt,2)))*TMath::CosH(y1));
 double x1 = TMath::Sqrt((pow(m,2)+pow(pt,2))/s)*
(TMath::Exp(y1)+TMath::Exp(y2));
double x2 = TMath::Sqrt((pow(m,2)+pow(pt,2))/s)*(TMath::Exp(-
y1)+TMath::Exp(-y2));
double ss = 2*(pow(m,2)+pow(pt,2))*(1+TMath::CosH(y1-y2));
double tt = pow(m,2)-(pow(m,2)+pow(pt,2))*(1+TMath::Exp(-y1+y2));
double uu = pow(m,2)-(pow(m,2)+pow(pt,2))*(1+TMath::Exp(y1-y2));
 return ym*2*pt*x1*x2*pow(ct14n.alphas(Qa),2)*TMath::Pi()/pow(ss,2)*((k1*
(ct14n.parton(1, x1, Qp)*ct14n.parton(coltype*(-1), x2, Qp)+ct14n.parton(-
1, x1, Qp)*ct14n.parton(coltype*1, x2, Qp)) + k2*(ct14n.parton(2, x1,
Qp)*ct14n.parton(coltype*(-2), x2, Qp)+ct14n.parton(-2, x1,
Qp)*ct14n.parton(coltype*2, x2, Qp)) + k3*(ct14n.parton(3, x1,
Qp)*ct14n.parton(coltype*(-3), x2, Qp)+ct14n.parton(-3, x1,
Qp)*ct14n.parton(coltype*3, x2, Qp)) + k4*(ct14n.parton(4, x1,
Qp)*ct14n.parton(coltype*(-4), x2, Qp)+ct14n.parton(-4, x1,



Qp)*ct14n.parton(coltype*4, x2, Qp)) + k5*(ct14n.parton(5, x1,
Qp)*ct14n.parton(coltype*(-5), x2, Qp)+ct14n.parton(-5, x1,
Qp)*ct14n.parton(coltype*5, x2, Qp)))*(4/(9*pow(ss,2))*(pow((pow(m,2)-
tt),2)+pow((pow(m,2)-uu),2)+2*pow(m,2)*ss))+k0*ct14n.parton(0, x1,
Qp)*ct14n.parton(0, x2, Qp)*(1./24)*(-17-(9.0/pow(ss,2))*
(pow(tt,2)+pow(uu,2)-pow(ss,2)+6*pow(m,2)*ss-2*pow(m,4))+4*
(ss+4*pow(m,2)+pow(m,4)/ss)*(1/(pow(m,2)-tt)+1/(pow(m,2)-uu))-16*pow(m,4)*
(1/pow((pow(m,2)-tt),2)+1/pow((pow(m,2)-uu),2))))*jacob;

}

double CutCS1(double *x,double *p){

double yme = p[11];
double e = x[0]*yme;
double m = p[0];
int coltype = p[1];
double etamin = p[2];
double etamax = p[3];
double Qka = p[4];
double Qkp = p[5];
int Qva = p[6];
int Qvp = p[7];
double Qvka = p[8];
double Qvkp = p[9];
double FF = p[10];
double ym = p[12];
double k0 = p[13];
double k1 = p[14];
double k2 = p[15];
double k3 = p[16];
double k4 = p[17];
double k5 = p[18];

if(e <= 2*m){
 return 0;
}

TF3 *fCutInt1 = new TF3("fCutInt1", CutIntg1, 0, 1.0, etamin, etamax, 0.0,
1.0, 17);
fCutInt1->SetParameter(0, e);
fCutInt1->SetParameter(1, m);
fCutInt1->SetParameter(2, coltype);
fCutInt1->SetParameter(3, Qka);
fCutInt1->SetParameter(4, Qkp);
fCutInt1->SetParameter(5, Qva); fCutInt1->SetParameter(6, Qvp);
fCutInt1->SetParameter(7, Qvka);
fCutInt1->SetParameter(8, Qvkp);
fCutInt1->SetParameter(9, FF);
fCutInt1->SetParameter(10, ym);
fCutInt1->SetParameter(11, k0);
fCutInt1->SetParameter(12, k1);
fCutInt1->SetParameter(13, k2);
fCutInt1->SetParameter(14, k3);
fCutInt1->SetParameter(15, k4);
fCutInt1->SetParameter(16, k5);



return fCutInt1->Integral(0, 1.0, etamin, etamax, 0.0, 1.0, 3.e-4);
}

double CutIntg1(double *x,double *p){

double w = x[0];
double eta = x[1];
double z = x[2];

double e = p[0];
double s = pow(e,2);
double m = p[1];
int coltype = p[2];
double Qka = p[3];
double Qkp = p[4];
int Qva = p[5];
int Qvp = p[6];
double Qvka = p[7];
double Qvkp = p[8];
double FF = p[9];
double ym = p[10];
double k0 = p[11];
double k1 = p[12];
double k2 = p[13];
double k3 = p[14];
double k4 = p[15];
double k5 = p[16];

double pt = w*TMath::Sqrt(s/4 - pow(m,2))/(TMath::CosH(eta));

if(pt <= 0){
 return 0; }

double y1 = TMath::ASinH((pt/
TMath::Sqrt(pow(m,2)+pow(pt,2)))*TMath::SinH(eta));

if(y1 <= -TMath::ACosH(e/(2*TMath::Sqrt(pow(m,2)+pow(pt,2))))){ //
Tarkistetaan, ettÃ¤ ymin ja ymax ovat teoreettisten rajojen sisÃ¤llÃ¤:
|y1| <= arcosh(e/(2*m_T))  return 0;
}

if(TMath::ACosH(e/(2*TMath::Sqrt(pow(m,2)+pow(pt,2)))) <= y1){
 return 0;
}

double Qa, Qp;

if (Qva==1){
 Qa = Qvka*TMath::Sqrt(pow(m,2)+pow(pt,2));
} else {
 Qa = Qka*m;
}

if (Qvp==1){
 Qp = Qvkp*TMath::Sqrt(pow(m,2)+pow(pt,2));
} else {



 Qp = Qkp*m;
}

if(Qp < 1.3){ // 1,3 GeV pienin pienin skaalavalinta ilman extrapolointia
 Qp = 1.3;
}

double y2 = (1-z)*(-1)*TMath::Log(e/(TMath::Sqrt(pow(m,2)+pow(pt,2)))-
TMath::Exp(-y1))+z*TMath::Log(e/(TMath::Sqrt(pow(m,2)+pow(pt,2)))-
TMath::Exp(y1)); double jacob = pt*TMath::Sqrt((s/4 - pow(m,2))/
(pow(m,2)+pow(pt*TMath::CosH(eta),2)))*TMath::Log(s/
(pow(m,2)+pow(pt,2))+1-2*e/
(TMath::Sqrt(pow(m,2)+pow(pt,2)))*TMath::CosH(y1));
 double x1 = TMath::Sqrt((pow(m,2)+pow(pt,2))/s)*
(TMath::Exp(y1)+TMath::Exp(y2));
double x2 = TMath::Sqrt((pow(m,2)+pow(pt,2))/s)*(TMath::Exp(-
y1)+TMath::Exp(-y2));
double ss = 2*(pow(m,2)+pow(pt,2))*(1+TMath::CosH(y1-y2));
double tt = pow(m,2)-(pow(m,2)+pow(pt,2))*(1+TMath::Exp(-y1+y2));
double uu = pow(m,2)-(pow(m,2)+pow(pt,2))*(1+TMath::Exp(y1-y2));
 return ym*FF*2*pt*x1*x2*pow(ct14n.alphas(Qa),2)*TMath::Pi()/pow(ss,2)*
((k1*(ct14n.parton(1, x1, Qp)*ct14n.parton(coltype*(-1), x2,
Qp)+ct14n.parton(-1, x1, Qp)*ct14n.parton(coltype*1, x2, Qp)) + k2*
(ct14n.parton(2, x1, Qp)*ct14n.parton(coltype*(-2), x2, Qp)+ct14n.parton(-
2, x1, Qp)*ct14n.parton(coltype*2, x2, Qp)) + k3*(ct14n.parton(3, x1,
Qp)*ct14n.parton(coltype*(-3), x2, Qp)+ct14n.parton(-3, x1,
Qp)*ct14n.parton(coltype*3, x2, Qp)) + k4*(ct14n.parton(4, x1,
Qp)*ct14n.parton(coltype*(-4), x2, Qp)+ct14n.parton(-4, x1,
Qp)*ct14n.parton(coltype*4, x2, Qp)) + k5*(ct14n.parton(5, x1,
Qp)*ct14n.parton(coltype*(-5), x2, Qp)+ct14n.parton(-5, x1,
Qp)*ct14n.parton(coltype*5, x2, Qp)))*(4/(9*pow(ss,2))*(pow((pow(m,2)-
tt),2)+pow((pow(m,2)-uu),2)+2*pow(m,2)*ss))+k0*ct14n.parton(0, x1,
Qp)*ct14n.parton(0, x2, Qp)*(1./24)*(-17-(9.0/pow(ss,2))*
(pow(tt,2)+pow(uu,2)-pow(ss,2)+6*pow(m,2)*ss-2*pow(m,4))+4*
(ss+4*pow(m,2)+pow(m,4)/ss)*(1/(pow(m,2)-tt)+1/(pow(m,2)-uu))-16*pow(m,4)*
(1/pow((pow(m,2)-tt),2)+1/pow((pow(m,2)-uu),2))))*jacob;

}

double DifCS4(double *x,double *p){

double eta = x[0];
double m = p[0];
double e = p[1];
int coltype = p[2];
double Qka = p[3];
double Qkp = p[4];
int Qva = p[5];
int Qvp = p[6];
double Qvka = p[7];
double Qvkp = p[8];
double FF = p[9];
double ym = p[10];
double k0 = p[11];
double k1 = p[12];
double k2 = p[13];



double k3 = p[14];
double k4 = p[15];
double k5 = p[16];

if(e <= 2*m){
 return 0;
}

TF2 *fDifInt4 = new TF2("fDifInt4", DifIntg3, 0.0, 1.0, 0.0, 1.0, 18);
fDifInt4->SetParameter(0, eta);
fDifInt4->SetParameter(1, m);
fDifInt4->SetParameter(2, e);
fDifInt4->SetParameter(3, coltype);
fDifInt4->SetParameter(4, Qka);
fDifInt4->SetParameter(5, Qkp);
fDifInt4->SetParameter(6, Qva);
fDifInt4->SetParameter(7, Qvp); fDifInt4->SetParameter(8, Qvka);
fDifInt4->SetParameter(9, Qvkp);
fDifInt4->SetParameter(10, FF);
fDifInt4->SetParameter(11, ym);
fDifInt4->SetParameter(12, k0);
fDifInt4->SetParameter(13, k1);
fDifInt4->SetParameter(14, k2);
fDifInt4->SetParameter(15, k3);
fDifInt4->SetParameter(16, k4);
fDifInt4->SetParameter(17, k5);

return fDifInt4->Integral(0.0, 1.0, 0.0, 1.0, 2.e-5);
}

double DifIntg3(double *x,double *p){

double w = x[0];
double z = x[1];

double eta = p[0];
double m = p[1];
double e = p[2];
double s = pow(e,2);
int coltype = p[3];
double Qka = p[4];
double Qkp = p[5];
int Qva = p[6];
int Qvp = p[7];
double Qvka = p[8];
double Qvkp = p[9];
double FF = p[10];
double ym = p[11];
double k0 = p[12];
double k1 = p[13];
double k2 = p[14];
double k3 = p[15];
double k4 = p[16];
double k5 = p[17];

double pt = w*TMath::Sqrt(s/4 - pow(m,2))/TMath::CosH(eta);



if(pt <= 0){
 return 0;
}
 double y1 = TMath::ASinH((pt/
TMath::Sqrt(pow(m,2)+pow(pt,2)))*TMath::SinH(eta));

double Qa, Qp;

if (Qva==1){
 Qa = Qvka*TMath::Sqrt(pow(m,2)+pow(pt,2));
} else {
 Qa = Qka*m;
}

if (Qvp==1){
 Qp = Qvkp*TMath::Sqrt(pow(m,2)+pow(pt,2));
} else {
 Qp = Qkp*m;
}

if(Qp < 1.3){ // 1,3 GeV pienin pienin skaalavalinta ilman extrapolointia
 Qp = 1.3;
}

double y2 = (1-z)*(-1)*TMath::Log(e/(TMath::Sqrt(pow(m,2)+pow(pt,2)))-
TMath::Exp(-y1))+z*TMath::Log(e/(TMath::Sqrt(pow(m,2)+pow(pt,2)))-
TMath::Exp(y1)); double jacob = pt*TMath::Sqrt((s/4 - pow(m,2))/
(pow(m,2)+pow(pt*TMath::CosH(eta),2)))*TMath::Log(s/
(pow(m,2)+pow(pt,2))+1-2*e/
(TMath::Sqrt(pow(m,2)+pow(pt,2)))*TMath::CosH(y1));

double x1 = TMath::Sqrt((pow(m,2)+pow(pt,2))/s)*
(TMath::Exp(y1)+TMath::Exp(y2));
double x2 = TMath::Sqrt((pow(m,2)+pow(pt,2))/s)*(TMath::Exp(-
y1)+TMath::Exp(-y2));
double ss = 2*(pow(m,2)+pow(pt,2))*(1+TMath::CosH(y1-y2));
double tt = pow(m,2)-(pow(m,2)+pow(pt,2))*(1+TMath::Exp(-y1+y2)); double
uu = pow(m,2)-(pow(m,2)+pow(pt,2))*(1+TMath::Exp(y1-y2));
  return ym*FF*2*pt*x1*x2*pow(ct14n.alphas(Qa),2)*TMath::Pi()/pow(ss,2)*
((k1*(ct14n.parton(1, x1, Qp)*ct14n.parton(coltype*(-1), x2,
Qp)+ct14n.parton(-1, x1, Qp)*ct14n.parton(coltype*1, x2, Qp)) + k2*
(ct14n.parton(2, x1, Qp)*ct14n.parton(coltype*(-2), x2, Qp)+ct14n.parton(-
2, x1, Qp)*ct14n.parton(coltype*2, x2, Qp)) + k3*(ct14n.parton(3, x1,
Qp)*ct14n.parton(coltype*(-3), x2, Qp)+ct14n.parton(-3, x1,
Qp)*ct14n.parton(coltype*3, x2, Qp)) + k4*(ct14n.parton(4, x1,
Qp)*ct14n.parton(coltype*(-4), x2, Qp)+ct14n.parton(-4, x1,
Qp)*ct14n.parton(coltype*4, x2, Qp)) + k5*(ct14n.parton(5, x1,
Qp)*ct14n.parton(coltype*(-5), x2, Qp)+ct14n.parton(-5, x1,
Qp)*ct14n.parton(coltype*5, x2, Qp)))*(4./(9*pow(ss,2))*(pow((pow(m,2)-
tt),2)+pow((pow(m,2)-uu),2)+2*pow(m,2)*ss))+k0*ct14n.parton(0, x1,
Qp)*ct14n.parton(0, x2, Qp)*(1./24)*(-17-(9./pow(ss,2))*
(pow(tt,2)+pow(uu,2)-pow(ss,2)+6*pow(m,2)*ss-2*pow(m,4))+4*
(ss+4*pow(m,2)+pow(m,4)/ss)*(1./(pow(m,2)-tt)+1./(pow(m,2)-uu))-
16*pow(m,4)*(1./pow((pow(m,2)-tt),2)+1./pow((pow(m,2)-uu),2))))*jacob;

}



double CutCS2(double *x,double *p){

double yme = p[14];
double e = x[0]*yme;
double mq = p[0];
double mh = p[1];
int coltype = p[2];
double ptmin = p[3];
double ptmax = p[4];
double yhmin = p[5];
double yhmax = p[6];
double Qka = p[7];
double Qkp = p[8];
int Qva = p[9];
int Qvp = p[10];
double Qvka = p[11];
double Qvkp = p[12];
double FF = p[13];
double ym = p[15];
double k0 = p[16];
double k1 = p[17];
double k2 = p[18];
double k3 = p[19];
double k4 = p[20];
double k5 = p[21];

TF3 *fCutInt2 = new TF3("fCutInt2", CutIntg2, ptmin, ptmax, yhmin, yhmax,
0, 1.0, 18);
fCutInt2->SetParameter(0, e);
fCutInt2->SetParameter(1, mq);
fCutInt2->SetParameter(2, mh);
fCutInt2->SetParameter(3, coltype);
fCutInt2->SetParameter(4, Qka); fCutInt2->SetParameter(5, Qkp);
fCutInt2->SetParameter(6, Qva);
fCutInt2->SetParameter(7, Qvp);
fCutInt2->SetParameter(8, Qvka);
fCutInt2->SetParameter(9, Qvkp);
fCutInt2->SetParameter(10, FF);
fCutInt2->SetParameter(11, ym);
fCutInt2->SetParameter(12, k0);
fCutInt2->SetParameter(13, k1);
fCutInt2->SetParameter(14, k2);
fCutInt2->SetParameter(15, k3);
fCutInt2->SetParameter(16, k4);
fCutInt2->SetParameter(17, k5);

return fCutInt2->Integral(ptmin, ptmax, yhmin, yhmax, 0, 1.0, 2.e-4);
}

double CutIntg2(double *x,double *p){

double pt = x[0];
double y = x[1];
double z = x[2];

double e = p[0];



double s = pow(e,2);
double m = p[1];
double mh = p[2];
int coltype = p[3];
double Qka = p[4];
double Qkp = p[5];
int Qva = p[6];
int Qvp = p[7];
double Qvka = p[8];
double Qvkp = p[9];
double FF = p[10];
double ym = p[11];
double k0 = p[12];
double k1 = p[13];
double k2 = p[14];
double k3 = p[15];
double k4 = p[16];
double k5 = p[17];
 if(pt <= 0){
 return 0;
}

double y1 = TMath::ASinH(TMath::Sqrt((pow(mh,2)+pow(pt,2))/
(pow(m,2)+pow(pt,2)))*TMath::SinH(y));

if(e <= 2*TMath::Sqrt(pow(m,2)+pow(pt,2))*TMath::CosH(y1)){
 return 0;
}

double Qa, Qp;

if (Qva==1){
 Qa = Qvka*TMath::Sqrt(pow(m,2)+pow(pt,2));
} else {
 Qa = Qka*m;
}

if (Qvp==1){
 Qp = Qvkp*TMath::Sqrt(pow(m,2)+pow(pt,2));
} else {
 Qp = Qkp*m;
}

if(Qp < 1.3){ // 1,3 GeV pienin pienin skaalavalinta ilman extrapolointia
 Qp = 1.3;
}

double y2 = (1-z)*(-1)*TMath::Log(e/(TMath::Sqrt(pow(m,2)+pow(pt,2)))-
TMath::Exp(-y1))+z*TMath::Log(e/(TMath::Sqrt(pow(m,2)+pow(pt,2)))-
TMath::Exp(y1)); double jacob = ((TMath::CosH(y))/
TMath::Sqrt((pow(m,2)+pow(pt,2))/
(pow(mh,2)+pow(pt,2))+pow(TMath::SinH(y),2)))*TMath::Log(s/
(pow(m,2)+pow(pt,2))+1-2*e/
(TMath::Sqrt(pow(m,2)+pow(pt,2)))*TMath::CosH(y1));

double x1 = TMath::Sqrt((pow(m,2)+pow(pt,2))/s)*
(TMath::Exp(y1)+TMath::Exp(y2)); double x2 =



TMath::Sqrt((pow(m,2)+pow(pt,2))/s)*(TMath::Exp(-y1)+TMath::Exp(-y2));
double ss = 2*(pow(m,2)+pow(pt,2))*(1+TMath::CosH(y1-y2));
double tt = pow(m,2)-(pow(m,2)+pow(pt,2))*(1+TMath::Exp(-y1+y2));
double uu = pow(m,2)-(pow(m,2)+pow(pt,2))*(1+TMath::Exp(y1-y2));
 return ym*FF*2*pt*x1*x2*pow(ct14n.alphas(Qa),2)*TMath::Pi()/pow(ss,2)*
((k1*(ct14n.parton(1, x1, Qp)*ct14n.parton(coltype*(-1), x2,
Qp)+ct14n.parton(-1, x1, Qp)*ct14n.parton(coltype*1, x2, Qp)) + k2*
(ct14n.parton(2, x1, Qp)*ct14n.parton(coltype*(-2), x2, Qp)+ct14n.parton(-
2, x1, Qp)*ct14n.parton(coltype*2, x2, Qp)) + k3*(ct14n.parton(3, x1,
Qp)*ct14n.parton(coltype*(-3), x2, Qp)+ct14n.parton(-3, x1,
Qp)*ct14n.parton(coltype*3, x2, Qp)) + k4*(ct14n.parton(4, x1,
Qp)*ct14n.parton(coltype*(-4), x2, Qp)+ct14n.parton(-4, x1,
Qp)*ct14n.parton(coltype*4, x2, Qp)) + k5*(ct14n.parton(5, x1,
Qp)*ct14n.parton(coltype*(-5), x2, Qp)+ct14n.parton(-5, x1,
Qp)*ct14n.parton(coltype*5, x2, Qp)))*(4./(9*pow(ss,2))*(pow((pow(m,2)-
tt),2)+pow((pow(m,2)-uu),2)+2*pow(m,2)*ss))+k0*ct14n.parton(0, x1,
Qp)*ct14n.parton(0, x2, Qp)*(1./24)*(-17-(9./pow(ss,2))*
(pow(tt,2)+pow(uu,2)-pow(ss,2)+6*pow(m,2)*ss-2*pow(m,4))+4*
(ss+4*pow(m,2)+pow(m,4)/ss)*(1./(pow(m,2)-tt)+1./(pow(m,2)-uu))-
16*pow(m,4)*(1./pow((pow(m,2)-tt),2)+1./pow((pow(m,2)-uu),2))))*jacob;

}



// TÃ¤mÃ¤ piirto-ohjelma tuottaa kuvat ohjelmassa Int.cc lasketuille
tuloksille. LisÃ¤ksi tÃ¤mÃ¤ ohjelma tekee K-kerroinsovitukset (jokaisella
skaalavalinnnalla (Qa,Qp), 7 kpl per tapaus) ja laskee tÃ¤stÃ¤ K-
kertoimella skaalatun LO-tuloksen (oletusskaalavalinta). // Teemu Kovanen
// JyvÃ¤skylÃ¤n yliopisto
// Fysiikan laitos
// 6.9.2020

double Kfit(double *x, double *p);

void Plot(){

gStyle->SetLegendTextSize(0.075);
gStyle->SetLegendBorderSize(0);

gStyle->SetPadLeftMargin(0.135);
gStyle->SetPadRightMargin(0.043);
gStyle->SetPadBottomMargin(0.16);
gStyle->SetPadTopMargin(0.045);

TFile *file = TFile::Open("file.root","read");

const int types = 6;
int color[types] = {kGray+3,kGreen-1,kBlue,kCyan+1,kOrange+7,kViolet};

bool savesecpics = true;

// Petersonin fragmentaatiofunktiot

TGraph *grPetFFc;
TGraph *grPetFFb;
TCanvas *cPetFF;

grPetFFc = (TGraph*)file->Get("grPetFFc");
grPetFFc->SetMarkerSize(0);
grPetFFc->SetMarkerColor(color[4]); grPetFFc->SetLineColor(color[4]);
grPetFFc->SetLineWidth(2);

grPetFFb = (TGraph*)file->Get("grPetFFb");
grPetFFb->SetMarkerSize(0);
grPetFFb->SetMarkerColor(color[5]);
grPetFFb->SetLineColor(color[5]);
grPetFFb->SetLineWidth(2);

cPetFF = new TCanvas ("cPetFF", "cPetFF", 1200.0, 500.0);
cPetFF->cd();
grPetFFc->SetMaximum(4.0);
grPetFFc->SetMinimum(0.0);
grPetFFc->GetXaxis()->SetLimits(0.0, 1.0);
grPetFFc->SetTitle(" ");
//grPetFFc->SetTitle("Petersonin fragmentaatiofunktiot c- ja b-
kvarkeille");
grPetFFc->GetXaxis()->SetTitle("z");



grPetFFc->GetYaxis()->SetTitle("D^{H_{Q}}_{Q}(z)");
grPetFFc->GetXaxis()->SetLabelSize(0.075);
grPetFFc->GetYaxis()->SetLabelSize(0.075);
grPetFFc->GetXaxis()->SetTitleSize(0.075);
grPetFFc->GetYaxis()->SetTitleSize(0.070);
grPetFFc->GetXaxis()->SetTitleOffset(0.95);
grPetFFc->GetYaxis()->SetTitleOffset(0.55);
grPetFFc->GetXaxis()->SetNdivisions(50206, true);
grPetFFc->GetYaxis()->SetNdivisions(50205, true); grPetFFc->Draw("alp");
grPetFFb->Draw("SAME");
cPetFF->RedrawAxis();

if(savesecpics == true){
cPetFF->SaveAs("Pictures/cPetFF.pdf");
}

// Vahva kytkentÃ¤vakio muuttujan Q_r funktiona

TGraph *gralpha;
TCanvas *calpha;
TLegend *addQrbeg;

gralpha = (TGraph*)file->Get("gralpha");
gralpha->SetMarkerColor(1);
gralpha->SetMarkerSize(0);
gralpha->SetLineWidth(2);
gralpha->SetLineColor(1);

calpha = new TCanvas ("calpha", "calpha", 1200.0, 500.0);
calpha->cd();
calpha->SetLogx();
gralpha->SetMaximum(1.4);
gralpha->SetMinimum(0.0);
gralpha->GetXaxis()->SetLimits(0.635, 1200.0);
gralpha->GetXaxis()->SetLabelSize(0.075);
gralpha->GetYaxis()->SetLabelSize(0.075);
gralpha->GetXaxis()->SetTitleSize(0.075);
gralpha->GetYaxis()->SetTitleSize(0.070);
gralpha->GetXaxis()->SetTitleOffset(1.02);
gralpha->GetYaxis()->SetTitleOffset(0.65);
//gralpha->GetXaxis()->SetNdivisions(50206, true);
gralpha->GetYaxis()->SetNdivisions(20206, true); gralpha->Draw("alp");
gralpha->SetTitle(" ");
//gralpha->SetTitle("Vahvan vuorovaikutuksen kytkent#ddot{a}vakion arvo
renormalisaatioskaalan funktiona");
gralpha->GetXaxis()->SetTitle("Q_{r} [GeV]");
gralpha->GetYaxis()->SetTitle("#alpha_{s}(Q_{r})");

addQrbeg = new TLegend(0.121, 0.10, 0.171, 0.05);
addQrbeg->SetHeader("#frac{m_{c}}{2}","C");
addQrbeg->SetFillStyle(0);
addQrbeg->Draw();

calpha->RedrawAxis();



if(savesecpics == true){
calpha->SaveAs("Pictures/calpha.pdf");
}

// LO- ja NLO-partonijakaumafunktiot (x*f_j, j = g, u, u_bar, d, d_bar, s,
s_bar, c, c_bar, b, b_bar, t, t_bar) muuttujan x funktiona, eri
skaalavalinnoilla Q_f

const int scales = 13;
string tscale[scales] = {"635 MeV", "1.3 GeV", "2.09 GeV", "2.54 GeV",
"4.18 GeV", "5.08 GeV", "8.36 GeV", "16.72 GeV", "86.45 GeV", "172.9 GeV",
"345.8 GeV", "691.6 GeV", "1 TeV"};

TGraph *grnlopdf[scales][types];
TGraph *grlopdf[scales][types];
TGraph *grnlopdfah[scales][types]; TGraph *grlopdfah[scales][types];
TCanvas *cnlopdf[scales];
TCanvas *clopdf[scales];
TCanvas *cnlopdfah[scales];
TCanvas *clopdfah[scales];

double nloxmin[scales] = {0.00000001, 0.00000001, 0.0000001, 0.00000001,
0.0000001, 0.00000001, 0.0000001, 0.0000001, 0.0001, 0.0001, 0.0001,
0.0001, 0.0001}; double loxmin[scales] = {0.00000001, 0.00000001,
0.0000001, 0.00000001, 0.0000001, 0.00000001, 0.0000001, 0.0000001,
0.0001, 0.0001, 0.0001, 0.0001, 0.0001};

//double nlopdfmax[scales] = {25, 3.2, 4.2, 4.6, 7, 9, 13, 22, 55, 100,
100, 100, 100};
//double nlopdfmin[scales] = {-80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
//double lopdfmax[scales] = {6, 4.0, 4.0, 4.6, 7, 10, 15, 30, 75, 150,
150, 150, 150};
//double lopdfmin[scales] = {-31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

double nlopdfmax[scales] = {25, 3.2, 4.2, 4.6, 7, 9, 8, 14, 4, 4.2, 5, 6,
6};
double nlopdfmin[scales] = {-80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double lopdfmax[scales] = {6, 4.0, 4.0, 4.6, 7, 10, 10, 15, 4, 5, 6, 6,
6};
double lopdfmin[scales] = {-31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int ydivnlopdf[scales] = {50207, 50204, 50205, 50205, 50204, 50205, 50204,
503, 50204, 50205, 50205, 50206, 50206};
int ydivlopdf[scales] = {50206, 50204, 50204, 50205, 50204, 50205, 50205,
503, 50204, 50205, 50206, 50206, 50206};

for(int i = 0; i < scales; i++){

for(int j = 0; j < types; j++){

 grnlopdf[i][j] = (TGraph*)file->Get( Form("grnlopdfQ%01ip%01i", i, j) );
 grnlopdf[i][j]->SetMarkerStyle(20);
 grnlopdf[i][j]->SetMarkerColor(color[j]);
 grnlopdf[i][j]->SetMarkerSize(0);
 grnlopdf[i][j]->SetLineWidth(2);



 grnlopdf[i][j]->SetLineColor(color[j]);

 if(0 < j){

 grnlopdfah[i][j] = (TGraph*)file->Get( Form("grnlopdfQ%01ip%01iah", i, j)
);
 grnlopdfah[i][j]->SetMarkerStyle(20);
 grnlopdfah[i][j]->SetMarkerColor(color[j]);
 grnlopdfah[i][j]->SetMarkerSize(0);  grnlopdfah[i][j]->SetLineWidth(2);
 grnlopdfah[i][j]->SetLineColor(color[j]);

 }
}

grnlopdf[i][0]->GetXaxis()->SetLimits(nloxmin[i], 1.0);
grnlopdf[i][0]->SetMaximum(nlopdfmax[i]);
grnlopdf[i][0]->SetMinimum(nlopdfmin[i]);

cnlopdf[i] = new TCanvas (Form("cnlopdfQ%01i", i),Form("cnlopdfQ%01i", i),
800.0, 470.0);
cnlopdf[i]->cd();
cnlopdf[i]->SetLogx();
grnlopdf[i][0]->Draw("alp");
grnlopdf[i][0]->SetTitle(" ");
//grnlopdf[i][0]->SetTitle(Form("Perushiukkasten NLO-PDF:ien arvot
kerrottuna muuttujalla x, x:n funktiona, skaalalla Q_{f} = %s",
tscale[i].c_str())); grnlopdf[i][0]->GetXaxis()->SetTitle("x");
//grnlopdf[i][0]->GetYaxis()->SetTitle( Form("xf_{i}(x,Q_{f} = %s), i = g,
q", tscale[i].c_str()) );
grnlopdf[i][0]->GetYaxis()->SetTitle( Form("xf_{i}(x,Q_{f} = %s)",
tscale[i].c_str()) );
grnlopdf[i][0]->GetXaxis()->SetLabelSize(0.075);
grnlopdf[i][0]->GetYaxis()->SetLabelSize(0.075); grnlopdf[i][0]-
>GetXaxis()->SetTitleSize(0.075);
grnlopdf[i][0]->GetYaxis()->SetTitleSize(0.075);
grnlopdf[i][0]->GetXaxis()->SetTitleOffset(1.05);
grnlopdf[i][0]->GetYaxis()->SetTitleOffset(0.85);
grnlopdf[i][0]->GetYaxis()->SetNdivisions(ydivnlopdf[i], true);

for (int j = 1; j < types; j++){

 grnlopdf[i][j]->Draw("same,pl");

}

cnlopdf[i]->RedrawAxis();

if(savesecpics == true){
 cnlopdf[i]->SaveAs( Form("Pictures/cnlopdf%01i.pdf", i) );
}

grnlopdfah[i][1]->GetXaxis()->SetLimits(nloxmin[i], 1.0);
grnlopdfah[i][1]->SetMaximum(nlopdfmax[i]);
grnlopdfah[i][1]->SetMinimum(nlopdfmin[i]);

cnlopdfah[i] = new TCanvas (Form("cnlopdfahQ%01i",



i),Form("cnlopdfahQ%01i", i), 800.0, 470.0);
cnlopdfah[i]->cd();
cnlopdfah[i]->SetLogx();
grnlopdfah[i][1]->Draw("alp");
grnlopdfah[i][1]->SetTitle(" "); //grnlopdfah[i][1]->SetTitle(
Form("Antihiukkasten NLO-PDF:ien arvot kerrottuna muuttujalla x, x:n
funktiona, skaalalla Q_{f} = %s", tscale[i].c_str()) ); grnlopdfah[i][1]-
>GetXaxis()->SetTitle("x");
//grnlopdfah[i][1]->GetYaxis()->SetTitle( Form("xf_{i}(x,Q_{f} = %s), i =
g, #bar{q}", tscale[i].c_str()) );
grnlopdfah[i][1]->GetYaxis()->SetTitle( Form("xf_{i}(x,Q_{f} = %s)",
tscale[i].c_str()) );
grnlopdfah[i][1]->GetXaxis()->SetLabelSize(0.075);
grnlopdfah[i][1]->GetYaxis()->SetLabelSize(0.075);
grnlopdfah[i][1]->GetXaxis()->SetTitleSize(0.075);
grnlopdfah[i][1]->GetYaxis()->SetTitleSize(0.075);
grnlopdfah[i][1]->GetXaxis()->SetTitleOffset(1.05);
grnlopdfah[i][1]->GetYaxis()->SetTitleOffset(0.85);
grnlopdfah[i][1]->GetYaxis()->SetNdivisions(ydivnlopdf[i], true);

for (int j = 2; j < types; j++){

 grnlopdfah[i][j]->Draw("same,pl");

}

grnlopdf[i][0]->Draw("same,pl");
cnlopdfah[i]->RedrawAxis();

if(savesecpics == true){  cnlopdfah[i]->SaveAs( Form("Pictures/
cnlopdfah%01i.pdf", i) );
}

for(int j = 0; j < types; j++){

 grlopdf[i][j] = (TGraph*)file->Get( Form("grlopdfQ%01ip%01i", i, j) );
 grlopdf[i][j]->SetMarkerStyle(20);
 grlopdf[i][j]->SetMarkerColor(color[j]);
 grlopdf[i][j]->SetMarkerSize(0);
 grlopdf[i][j]->SetLineWidth(2);
 grlopdf[i][j]->SetLineColor(color[j]);

 if(0 < j){

 grlopdfah[i][j] = (TGraph*)file->Get( Form("grlopdfQ%01ip%01iah", i, j)
);
 grlopdfah[i][j]->SetMarkerStyle(20);
 grlopdfah[i][j]->SetMarkerColor(color[j]);
 grlopdfah[i][j]->SetMarkerSize(0);
 grlopdfah[i][j]->SetLineWidth(2);
 grlopdfah[i][j]->SetLineColor(color[j]);

 }
}

grlopdf[i][0]->GetXaxis()->SetLimits(loxmin[i], 1.0);



grlopdf[i][0]->SetMaximum(lopdfmax[i]);
grlopdf[i][0]->SetMinimum(lopdfmin[i]);

clopdf[i] = new TCanvas (Form("clopdfQ%01i", i),Form("clopdfQ%01i", i),
800.0, 470.0); clopdf[i]->cd();
clopdf[i]->SetLogx();
grlopdf[i][0]->Draw("alp");
grlopdf[i][0]->SetTitle(" ");
//grlopdf[i][0]->SetTitle(Form("Perushiukkasten LO-PDF:ien arvot
kerrottuna muuttujalla x, x:n funktiona, skaalalla Q_{f} = %s",
tscale[i].c_str())); grlopdf[i][0]->GetXaxis()->SetTitle("x");
//grlopdf[i][0]->GetYaxis()->SetTitle( Form("xf_{i}(x,Q_{f} = %s), i = g,
q", tscale[i].c_str()) );
grlopdf[i][0]->GetYaxis()->SetTitle( Form("xf_{i}(x,Q_{f} = %s)",
tscale[i].c_str()) );
grlopdf[i][0]->GetXaxis()->SetLabelSize(0.075);
grlopdf[i][0]->GetYaxis()->SetLabelSize(0.075);
grlopdf[i][0]->GetXaxis()->SetTitleSize(0.075);
grlopdf[i][0]->GetYaxis()->SetTitleSize(0.075);
grlopdf[i][0]->GetXaxis()->SetTitleOffset(1.05);
grlopdf[i][0]->GetYaxis()->SetTitleOffset(0.85);
grlopdf[i][0]->GetYaxis()->SetNdivisions(ydivlopdf[i], true);

for (int j = 1; j < types; j++){

 grlopdf[i][j]->Draw("same,pl");

}

clopdf[i]->RedrawAxis();
 if(savesecpics == true){
 clopdf[i]->SaveAs( Form("Pictures/clopdf%01i.pdf", i) );
}

grlopdfah[i][1]->GetXaxis()->SetLimits(loxmin[i], 1.0);
grlopdfah[i][1]->SetMaximum(lopdfmax[i]);
grlopdfah[i][1]->SetMinimum(lopdfmin[i]);

clopdfah[i] = new TCanvas (Form("clopdfahQ%01i", i),Form("clopdfahQ%01i",
i), 800.0, 470.0);
clopdfah[i]->cd();
clopdfah[i]->SetLogx();
grlopdfah[i][1]->Draw("alp");
grlopdfah[i][1]->SetTitle(" ");
//grlopdfah[i][1]->SetTitle( Form("Antihiukkasten LO-PDF:ien arvot
kerrottuna muuttujalla x, x:n funktiona, skaalalla Q_{f} = %s",
tscale[i].c_str()) ); grlopdfah[i][1]->GetXaxis()->SetTitle("x");
//grlopdfah[i][1]->GetYaxis()->SetTitle( Form("xf_{i}(x,Q_{f} = %s), i =
g, #bar{q}", tscale[i].c_str()) );
grlopdfah[i][1]->GetYaxis()->SetTitle( Form("xf_{i}(x,Q_{f} = %s)",
tscale[i].c_str()) );
grlopdfah[i][1]->GetXaxis()->SetLabelSize(0.075);
grlopdfah[i][1]->GetYaxis()->SetLabelSize(0.075); grlopdfah[i][1]-
>GetXaxis()->SetTitleSize(0.075);
grlopdfah[i][1]->GetYaxis()->SetTitleSize(0.075);
grlopdfah[i][1]->GetXaxis()->SetTitleOffset(1.05);
grlopdfah[i][1]->GetYaxis()->SetTitleOffset(0.85);



grlopdfah[i][1]->GetYaxis()->SetNdivisions(ydivlopdf[i], true);

for (int j = 2; j < types; j++){

 grlopdfah[i][j]->Draw("same,pl");

}

grlopdf[i][0]->Draw("same,pl");
clopdfah[i]->RedrawAxis();

if(savesecpics == true){
 clopdfah[i]->SaveAs( Form("Pictures/clopdfah%01i.pdf", i) );
}

}

// LO-partonijakaumafunktiot (f_j, j = g, u, u_bar, d, d_bar, s, s_bar, c,
c_bar, b, b_bar, t, t_bar) muuttujan Q_f funktiona, eri x:n arvoilla

const int xs = 8;
const string tx[xs] = {"10^{-8}", "10^{-7}", "10^{-6}", "10^{-5}", "10^{-
4}", "10^{-3}", "10^{-2}", "10^{-1}"};

double pdfQmax[xs] = {22.e11, 6.e10, 22.e8, 7.e7, 22.e5, 6.e4, 1.e3,
22.0};
double pdfQmin[xs] = {11.e7, 11.e6, 11.e5, 2.e5, 9.e3, 4.e2, 9, 0.095};
 TGraph *grlopdfQ[xs][types];
TGraph *grlopdfahQ[xs][types];

TCanvas *clopdfQ[xs];
TCanvas *clopdfahQ[xs];
TLegend *addQfbeg;

for(int i = 0; i < xs; i++){

for(int j = 0; j < types; j++){

 grlopdfQ[i][j] = (TGraph*)file->Get( Form("grlopdfQx%01ip%01i", i, j) );
 grlopdfQ[i][j]->SetMarkerColor(color[j]);
 grlopdfQ[i][j]->SetMarkerSize(0);
 grlopdfQ[i][j]->SetLineWidth(2);
 grlopdfQ[i][j]->SetLineColor(color[j]);

 if(0 < j){

 grlopdfahQ[i][j] = (TGraph*)file->Get( Form("grlopdfQx%01ip%01iah", i, j)
);
 grlopdfahQ[i][j]->SetMarkerColor(color[j]);
 grlopdfahQ[i][j]->SetMarkerSize(0);
 grlopdfahQ[i][j]->SetLineWidth(2);
 grlopdfahQ[i][j]->SetLineColor(color[j]);

 }



}

grlopdfahQ[i][0] = (TGraph*)file->Get( Form("grlopdfQx%01ip0", i) );
grlopdfahQ[i][0]->SetMarkerColor(kBlack);
grlopdfahQ[i][0]->SetMarkerSize(0);
grlopdfahQ[i][0]->SetLineWidth(2); grlopdfahQ[i][0]->SetLineColor(kBlack);

grlopdfQ[i][0]->GetXaxis()->SetLimits(0.635, 1200.0);
grlopdfQ[i][0]->SetMaximum(pdfQmax[i]);
grlopdfQ[i][0]->SetMinimum(pdfQmin[i]);

clopdfQ[i] = new TCanvas (Form("cnlopdfQx%01i", i),Form("cnlopdfQx%01i",
i), 800.0, 470.0);
clopdfQ[i]->cd();
clopdfQ[i]->SetLogy();
grlopdfQ[i][0]->Draw("alp");
grlopdfQ[i][0]->SetTitle(" ");
//grlopdfQ[i][0]->SetTitle( Form("Perushiukkasten LO-PDF:ien arvot skaalan
Q funktiona, suhteellisella liikem#ddot{a}#ddot{a}r#ddot{a}osuudella x =
%s", tx[i].c_str()) ); grlopdfQ[i][0]->GetXaxis()->SetTitle("Q_{f}
[GeV]");
//grlopdfQ[i][0]->GetYaxis()->SetTitle( Form("f_{j}(x = %s,Q_{f}), j = g,
q", tx[i].c_str()) );
grlopdfQ[i][0]->GetYaxis()->SetTitle( Form("f_{i}(x = %s,Q_{f})",
tx[i].c_str()) );
grlopdfQ[i][0]->GetXaxis()->SetLabelSize(0.075);
grlopdfQ[i][0]->GetYaxis()->SetLabelSize(0.075);
grlopdfQ[i][0]->GetXaxis()->SetTitleSize(0.075); grlopdfQ[i][0]-
>GetYaxis()->SetTitleSize(0.075);
grlopdfQ[i][0]->GetXaxis()->SetTitleOffset(0.95);
grlopdfQ[i][0]->GetYaxis()->SetTitleOffset(0.85);
grlopdfQ[i][0]->GetXaxis()->SetNdivisions(50207, true);

for(int j = 1; j < types; j++){

 grlopdfQ[i][j]->Draw("same,pl");

}

addQfbeg = new TLegend(0.12,0.098,0.17,0.048);
addQfbeg->SetHeader("#frac{m_{c}}{2}","C");
addQfbeg->SetFillStyle(0);
addQfbeg->Draw();

clopdfQ[i]->RedrawAxis();

if(savesecpics == true){
 clopdfQ[i]->SaveAs( Form("Pictures/clopdfQ%01i.pdf", i) );
}

grlopdfahQ[i][0]->GetXaxis()->SetLimits(0.635, 1200.0);
grlopdfahQ[i][0]->SetMaximum(pdfQmax[i]);
grlopdfahQ[i][0]->SetMinimum(pdfQmin[i]);

clopdfahQ[i] = new TCanvas (Form("cnlopdfahQx%01i",



i),Form("cnlopdfahQx%01i", i), 800.0, 470.0);
clopdfahQ[i]->cd();
clopdfahQ[i]->SetLogy();
grlopdfahQ[i][0]->Draw("alp");
grlopdfahQ[i][0]->SetTitle(" "); //grlopdfahQ[i][0]->SetTitle(
Form("Antihiukkasten LO-PDF:ien arvot skaalan Q funktiona, suhteellisella
liikem#ddot{a}#ddot{a}r#ddot{a}osuudella x = %s", tx[i].c_str()) );
grlopdfahQ[i][0]->GetXaxis()->SetTitle("Q_{f} [GeV]");
//grlopdfahQ[i][0]->GetYaxis()->SetTitle( Form("f_{j}(x = %s,Q_{f}), j =
g, #bar{q}", tx[i].c_str()) );
grlopdfahQ[i][0]->GetYaxis()->SetTitle( Form("f_{i}(x = %s,Q_{f})",
tx[i].c_str()) );
grlopdfahQ[i][0]->GetXaxis()->SetLabelSize(0.075);
grlopdfahQ[i][0]->GetYaxis()->SetLabelSize(0.075);
grlopdfahQ[i][0]->GetXaxis()->SetTitleSize(0.075);
grlopdfahQ[i][0]->GetYaxis()->SetTitleSize(0.075);
grlopdfahQ[i][0]->GetXaxis()->SetTitleOffset(0.95);
grlopdfahQ[i][0]->GetYaxis()->SetTitleOffset(0.85);
grlopdfahQ[i][0]->GetXaxis()->SetNdivisions(50207, true);

for(int j = 1; j < types; j++){
 grlopdfahQ[i][j]->Draw("same,pl");
}

addQfbeg->Draw();

clopdfahQ[i]->RedrawAxis();

if(savesecpics == true){  clopdfahQ[i]->SaveAs( Form("Pictures/
clopdfahQ%01i.pdf", i) );
}

}

// Tarvittavia asetuksia ja tietoja
const int cases = 19;
string tcase[cases] = {"c1", "ccut1", "cdif1", "cdif2", "cdif3", "cdif4",
"cdif5", "cdif6", "cdif7", "b1", "bcut1", "bdif1", "bdif2", "t1", "t2",
"tdif1", "tdif2", "tdif3", "tdif4"}; const bool ishist[cases] = {false,
false, true, true, true, true, true, true, true, false, false, true, true,
false, false, true, true, true, true};
const int points = 1200;
const int Qver = 7;

// Kokeelliset tulokset ja vastaavat K-kertoimella skaalatut teoreettiset
tulokset (ensimmÃ¤inen ja toinen kuva).
TGraphAsymmErrors *erp[cases];
bool isaltp[cases] = {false, false, false, false, false, false, false,
false, false, false, false, false, false, true, true, false, false, false,
false}; TGraphAsymmErrors *erpalt[cases];
TH1D *erstaerr[cases];
TGraphAsymmErrors *ersyserr[cases];
TH1D *teorka[cases];
TGraphAsymmErrors *kscfit[cases];
TF1 *fkscfit[cases]; TGraphErrors *ksc[cases];



const int nnoksc = 4;
string noksc[nnoksc] = {"b1", "bcut1", "bdif1", "bdif2"}; // Ei K-
kertoimella skaalatun teoreettisen tuloksen piirtÃ¤mistÃ¤ nÃ¤issÃ¤
tapauksissa

// EnsimmÃ¤inen kuva: NLO-setin avulla saadut tulokset PDF-virheineen ja
LO-tulos, jonka PDF:ien aiheuttamaa virhettÃ¤ on approksimoitu NLO-settien
antaman tuloksen avulla. LisÃ¤ksi kokeelliset tulokset esitetÃ¤Ã¤n. TGraph
*grnlo[cases];
TGraph *grLN[cases];
TGraph *grLL[cases];
TGraphAsymmErrors *grNLO[cases];
TGraphAsymmErrors *grLO[cases];
TCanvas *caper[cases];

// Verrataan c-, b- ja t-kvarkkiparien tuottojen kokonaisvaikutusaloja pp-
ja pp_bar-tÃ¶rmÃ¤yksissÃ¤. Nyt kolme kuvaa.
const int ncom = 3;
TGraph *grcom[ncom];
TGraph *grLLcom[cases];
string tcom[ncom] = {"c1", "b1", "t2"};
string tqp[ncom] = {"c#bar{c}", "b#bar{b}", "t#bar{t}"};
string comun[ncom] = {"mb", "#mub", "pb"};
double ycommax[ncom] = {6.6, 400, 520};
double ycommin[ncom] = {0.0, 0.0, 1}; bool comislog[ncom] = {false, false,
true};
TCanvas *ccom[ncom];

// Toinen kuva: PÃ¤Ã¤tulokset, Q-, m- ja FF-virhekÃ¤yrÃ¤t (envelope). LisÃ
¤ksi kokeelliset tulokset ja vastaava K-kerroin-skaalattu kÃ¤yrÃ¤ esitetÃ
¤Ã¤n. TGraph *grLLmr[cases];
TGraph *grmmax[cases];
TGraph *grmmin[cases];
TGraphAsymmErrors *grm[cases];
TGraphAsymmErrors *grQ[cases];
TGraphAsymmErrors *grFF[cases];
const bool isFF[cases] = {false, false, true, true, true, true, true,
true, true, false, false, false, false, false, false, false, false, false,
false}; TCanvas *cmr[cases];

// Akselien asetukset ensimmÃ¤isessÃ¤, toisessa, kolmannessa ja
viidennessÃ¤ kuvassa.
double xmax[cases] = {8, 14.0, 12.0, 12.0, 12.0, 36.0, 36.0, 16.0, 24.0,
8.0, 14.0, 5.0, 5.0, 3.0, 14.0, 0.500, 1.50, 550, 2.6};
double xmin[cases] = {0.0, 0.0, 1.0, 2.0, 2.0, 0.0, 1.0, 1.0, 1.0, 0.0,
0.0, 2.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, -2.6}; double ymax[cases] = {12.0,
3200, 550, 51.0, 51.0, 750, 210, 800, 320, 620.0, 230.0, 56.0, 100.0,
15.0, 1010.0, 100, 11.0, 10.0, 275};
double ymin[cases] = {0.0, 0.0, 0.05, 0.020, 0.020, 0.0005, 0.0002, 0.03,
0.002, 1.0, 1.0, 0.0, 0.0, 0.0, 8.0, 0.1, 0, 0.02, 0};
const bool mrlog[cases] = {false, false, true, true, true, true, true,
true, true, true, false, false, false, false, true, true, false, true,
false};

string mrx[cases] = {"#sqrt{s} [TeV]",
 "#sqrt{s} [TeV]",
 "p_{T} [GeV]",



 "p_{T} [GeV]",
 "p_{T} [GeV]",
 "p_{T} [GeV]",
 "p_{T} [GeV]",
 "p_{T} [GeV]",
 "p_{T} [GeV]",
 "#sqrt{s} [TeV]",
 "#sqrt{s} [TeV]",
 "#eta",
 "#eta",
 "#sqrt{s} [TeV]",
 "#sqrt{s} [TeV]",   "p_{T} [TeV]",
 "|y|",
 "p^{t}_{T} [GeV]",
 "y_{t}"};

string mry[cases] = {"#sigma^{pp #rightarrow c#bar{c}+X}(#sqrt{s} ) [mb]",
 "#sigma^{pp #rightarrow c#bar{c}+X}_{0< p_{T}< 8 GeV, 2.0<y<4.5}(#sqrt{s}
) [#mub]",
 "#frac{d#sigma^{pp #rightarrow D^{0}+X}_{|y|<0.5}}{dp_{T}} [#mub/GeV]",
 "#frac{d#sigma^{pp #rightarrow D^{+}+X}_{|y|<0.5}}{dp_{T}} [#mub/GeV]",
 "#frac{d#sigma^{pp #rightarrow D*^{+}+X}_{|y|<0.5}}{dp_{T}} [#mub/GeV]",
 "#frac{d#sigma^{pp #rightarrow D^{0}+X}_{|y|<0.5}}{dp_{T}} [#mub/GeV]",
 "#frac{d#sigma^{pp #rightarrow D*^{+}+X}_{|y|<0.5}}{dp_{T}} [#mub/GeV]",
 "#frac{d#sigma^{pp #rightarrow D^{0}+X}_{|y|<0.5}}{dp_{T}} [#mub/GeV]",
 "#frac{d#sigma^{pp #rightarrow D*^{+}+X}_{|y|<0.5}}{dp_{T}} [#mub/GeV]",
"#sigma^{pp #rightarrow b#bar{b}+X}(#sqrt{s} ) [#mub]",
 "#sigma^{pp #rightarrow b#bar{b}+X}_{2.0<#eta<5.0}(#sqrt{s} ) [#mub]",
 "#frac{d#sigma^{pp #rightarrow H_{b}+X}}{d#eta} [#mub]",
 "#frac{d#sigma^{pp #rightarrow H_{b}+X}}{d#eta} [#mub]",
 "#sigma^{p#bar{p} #rightarrow t#bar{t}+X}(#sqrt{s} ) [pb]",
 "#sigma^{pp #rightarrow t#bar{t}+X}(#sqrt{s} ) [pb]",
 "#frac{d#sigma^{p#bar{p} #rightarrow t#bar{t}+X}}{dp_{T}} [pb/TeV]",
 "#frac{d#sigma^{p#bar{p} #rightarrow t#bar{t}+X}}{d|y|} [pb]",
 "#frac{d#sigma^{pp #rightarrow t#bar{t}+X}}{dp^{t}_{T}} [pb/GeV]",
 "#frac{d#sigma^{pp #rightarrow t#bar{t}+X}}{dy_{t}} [pb]"};

double mrtsizeprim = 0.070; double mrtosprim[cases] = {0.51, 0.86, 0.83,
0.83, 0.83, 0.83, 0.83, 0.83, 0.83, 0.65, 0.80, 0.70, 0.70, 0.62, 0.62,
0.83, 0.75, 0.83, 0.83};
//double mrtossec[cases] = {0.8, 1.08, 0.80, 1.00, 0.75, 0.80, 0.77, 0.80,
0.77, 0.8, 1.00, 0.81, 0.81, 0.8, 0.89, 0.85, 0.85, 0.85, 0.87};

double labsize1 = 0.075;
double labsize2 = 0.075;

double xtsize1 = 0.075;
double xtos1 = 0.95;

double xtsize2 = 0.075;
double xtos2 = 0.95;

double ytsize2 = 0.075;
double ytos2 = 0.85;

double ktsize1 = 0.075;



double ktos1 = 0.57;

string mrtitle[cases] = {"c#bar{c}-kvarkkiparien tuoton
kokonaisvaikutusala muuttujan #sqrt{s} funktiona pp-
t#ddot{o}rm#ddot{a}yksiss#ddot{a}",  "c#bar{c}-kvarkkiparien tuoton
kokonaisvaikutusala, leikkauksilla 0 < p_{T} < 8 GeV, 2.0 < y < 4.5,
muuttujan #sqrt{s} funktiona pp-t#ddot{o}rm#ddot{a}yksiss#ddot{a}",   "D^
{0}-mesonien tuoton p_{T}-differentioitu vaikutusala
rapiditeettileikkauksella |y| < 0,5 ja t#ddot{o}rm#ddot{a}ysenergialla
#sqrt{s} = 2,76 TeV",   "D^{+}-mesonien tuoton p_{T}-differentioitu
vaikutusala rapiditeettileikkauksella |y| < 0,5 ja
t#ddot{o}rm#ddot{a}ysenergialla #sqrt{s} = 2,76 TeV",   "D^{*+}-mesonien
tuoton p_{T}-differentioitu vaikutusala rapiditeettileikkauksella |y| <
0,5 ja t#ddot{o}rm#ddot{a}ysenergialla #sqrt{s} = 2,76 TeV",   "D^{0}-
mesonien tuoton p_{T}-differentioitu vaikutusala rapiditeettileikkauksella
|y| < 0,5 ja t#ddot{o}rm#ddot{a}ysenergialla #sqrt{s} = 5,02 TeV",   "D^{*
+}-mesonien tuoton p_{T}-differentioitu vaikutusala
rapiditeettileikkauksella |y| < 0,5 ja t#ddot{o}rm#ddot{a}ysenergialla
#sqrt{s} = 5,02 TeV",   "D^{0}-mesonien tuoton p_{T}-differentioitu
vaikutusala rapiditeettileikkauksella |y| < 0,5 ja
t#ddot{o}rm#ddot{a}ysenergialla #sqrt{s} = 7 TeV",   "D^{*+}-mesonien
tuoton p_{T}-differentioitu vaikutusala rapiditeettileikkauksella |y| <
0,5 ja t#ddot{o}rm#ddot{a}ysenergialla #sqrt{s} = 7 TeV",   "Prosessin pp
#rightarrow b#bar{b}+X kokonaisvaikutusala muuttujan #sqrt{s} funktiona",
 "Prosessin pp #rightarrow b#bar{b}+X kokonaisvaikutusala, leikkauksella
2.0 < #eta < 5.0, muuttujan #sqrt{s} funktiona",
 "Prosessin pp #rightarrow b#bar{b}+X #eta-differentioitu vaikutusala b-
hadronin (taikka #bar{b}-hadronin) pseudorapiditeetin funktiona,
energialla #sqrt{s} = 7 TeV",  "Prosessin pp #rightarrow b#bar{b}+X #eta-
differentioitu vaikutusala b-hadronin (taikka #bar{b}-hadronin)
pseudorapiditeetin funktiona, energialla #sqrt{s} = 13 TeV",   "Prosessin
p#bar{p} #rightarrow t#bar{t}+X kokonaisvaikutusala muuttujan #sqrt{s}
funktiona",
 "Prosessin pp #rightarrow t#bar{t}+X kokonaisvaikutusala muuttujan
#sqrt{s} funktiona",
 "Prosessin p#bar{p} #rightarrow t#bar{t}+X p_{T}-differentioitu
vaikutusala poikittaisliikem#ddot{a}#ddot{a}r#ddot{a}n funktiona,
energialla #sqrt{s} = 1.96 TeV",   "Prosessin p#bar{p} #rightarrow
t#bar{t}+X |y|-differentioitu vaikutusala muuttujan rapiditeetin
itseisarvon funktiona, energialla #sqrt{s} = 1.96 TeV",   "Prosessin pp
#rightarrow t#bar{t}+X p_{T}-differentioitu vaikutusala t-kvarkin
poikittaisliikem#ddot{a}#ddot{a}r#ddot{a}n funktiona, energialla #sqrt{s}
= 13 TeV",   "Prosessin pp #rightarrow t#bar{t}+X y-differentioitu
vaikutusala t-kvarkin rapiditeetin funktiona, energialla #sqrt{s} = 13
TeV"};
 // Kolmas kuva: Eri skaalavalintojen aiheuttamat epÃ¤varmuudet. Q_r:n ja
Q_f:n vaihtelujen "envelopet" sekÃ¤ (Q_{max},Q_{max})- ja (Q_{min},Q_
{min})-kÃ¤yrÃ¤t. TGraph *grQdef[cases];
TGraph *grQQmax[cases];
TGraph *grQQmin[cases];
TGraphAsymmErrors *grQa[cases];
TGraphAsymmErrors *grQp[cases];
TCanvas *cQaQp[cases];

string Qtitle[cases] = {"Skaalavalintojen vaikutukset vaikutusalaan
#sigma^{pp #rightarrow c#bar{c}+X}",



 "Skaalavalintojen vaikutukset vaikutusalaan #sigma^{pp #rightarrow
c#bar{c}+X}_{0<p_{T}<8 GeV, 2.0<y<4.5}",
 "Skaalavalintojen vaikutukset vaikutusalaan #frac{d#sigma^{pp #rightarrow
D^{0}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 2,76 TeV",   "Skaalavalintojen
vaikutukset vaikutusalaan #frac{d#sigma^{pp #rightarrow D^{+}+X}_{|y|
<0,5}}{dp_{T}}, #sqrt{s} = 2,76 TeV",   "Skaalavalintojen vaikutukset
vaikutusalaan #frac{d#sigma^{pp #rightarrow D^{*+}+X}_{|y|<0,5}}{dp_{T}},
#sqrt{s} = 2,76 TeV",   "Skaalavalintojen vaikutukset vaikutusalaan
#frac{d#sigma^{pp #rightarrow D^{0}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 5,02
TeV",   "Skaalavalintojen vaikutukset vaikutusalaan #frac{d#sigma^{pp
#rightarrow D^{*+}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 5,02 TeV",
"Skaalavalintojen vaikutukset vaikutusalaan #frac{d#sigma^{pp #rightarrow
D^{0}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 7 TeV",   "Skaalavalintojen
vaikutukset vaikutusalaan #frac{d#sigma^{pp #rightarrow D^{*+}+X}_{|y|
<0,5}}{dp_{T}}, #sqrt{s} = 7 TeV",   "Skaalavalintojen vaikutukset
vaikutusalaan #sigma^{pp #rightarrow b#bar{b}+X}",
 "Skaalavalintojen vaikutukset vaikutusalaan #sigma^{pp #rightarrow
b#bar{b}+X}_{2.0<#eta<5.0}(#sqrt{s} )",   "Skaalavalintojen vaikutukset
vaikutusalaan #frac{d#sigma^{pp #rightarrow H_{b}+X}}{d#eta}, #sqrt{s} = 7
TeV",
 "Skaalavalintojen vaikutukset vaikutusalaan #frac{d#sigma^{pp #rightarrow
H_{b}+X}}{d#eta}, #sqrt{s} = 13 TeV",
 "Skaalavalintojen vaikutukset vaikutusalaan #sigma^{p#bar{p} #rightarrow
t#bar{t}+X}",
 "Skaalavalintojen vaikutukset vaikutusalaan #sigma^{pp #rightarrow
t#bar{t}+X}",
 "Skaalavalintojen vaikutukset vaikutusalaan #frac{d#sigma^{p#bar{p}
#rightarrow t#bar{t}+X}}{dp_{T}}, #sqrt{s} = 1.96 TeV",
"Skaalavalintojen vaikutukset vaikutusalaan #frac{d#sigma^{p#bar{p}
#rightarrow t#bar{t}+X}}{d|y|}, #sqrt{s} = 1.96 TeV",   "Skaalavalintojen
vaikutukset vaikutusalaan #frac{d#sigma^{pp #rightarrow t#bar{t}+X}}{dp_
{T}}, #sqrt{s} = 13 TeV",   "Skaalavalintojen vaikutukset vaikutusalaan
#frac{d#sigma^{pp #rightarrow t#bar{t}+X}}{dy_{t}}, #sqrt{s} = 13 TeV"};

// NeljÃ¤s kuva: Skaalan, massan ja fragmentaatiofraktion epÃ¤varmuuksien
suhteelliset virheet.
TGraphAsymmErrors *grQrel[cases];
TGraphAsymmErrors *grmrel[cases];
TGraphAsymmErrors *grFFrel[cases];
double relerrmax[cases] = {220, 460, 300, 500, 150, 340, 380, 420, 420,
160, 200, 80, 80, 350, 300, 80, 100, 80, 80};
double relerrmin[cases] = {-100, -100, -100, -100, -100, -100, -100, -100,
-100, -100, -100, -80, -80, -100, -100, -40, -40, -40, -40};
TCanvas *crelerr[cases];

string relerrtitle[cases] = {"Skaalan ja massan ep#ddot{a}varmuuden
aiheuttamat suhteelliset virheet vaikutusalalle #sigma^{pp #rightarrow
c#bar{c}+X}",   "Skaalan ja massan ep#ddot{a}varmuuden aiheuttamat
suhteelliset virheet vaikutusalalle #sigma^{pp #rightarrow c#bar{c}+X}_
{0<p_{T}<8 GeV, 2.0<y<4.5}",  "Skaalan, massan ja fragmentaaatiofraktion
ep#ddot{a}varmuuden aiheuttamat suhteelliset virheet vaikutusalalle
#frac{d#sigma^{pp #rightarrow D^{0}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 2,76
TeV",   "Skaalan, massan ja fragmentaatiofraktion ep#ddot{a}varmuuden
aiheuttamat suhteelliset virheet vaikutusalalle #frac{d#sigma^{pp
#rightarrow D^{+}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 2,76 TeV",   "Skaalan,
massan ja fragmentaatiofraktion ep#ddot{a}varmuuden aiheuttamat
suhteelliset virheet vaikutusalalle #frac{d#sigma^{pp #rightarrow D^{*



+}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 2,76 TeV",   "Skaalan, massan ja
fragmentaatiofraktion ep#ddot{a}varmuuden aiheuttamat suhteelliset virheet
vaikutusalalle #frac{d#sigma^{pp #rightarrow D^{0}+X}_{|y|<0,5}}{dp_{T}},
#sqrt{s} = 5,02 TeV",   "Skaalan, massan ja fragmentaatiofraktion
ep#ddot{a}varmuuden aiheuttamat suhteelliset virheet vaikutusalalle
#frac{d#sigma^{pp #rightarrow D^{*+}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} =
5,02 TeV",   "Skaalan, massan ja fragmentaatiofraktion ep#ddot{a}varmuuden
aiheuttamat suhteelliset virheet vaikutusalallen #frac{d#sigma^{pp
#rightarrow D^{0}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 7 TeV",   "Skaalan,
massan ja fragmentaatiofraktion ep#ddot{a}varmuuden aiheuttamat
suhteelliset virheet vaikutusalalle #frac{d#sigma^{pp #rightarrow D^{*
+}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 7 TeV",   "Skaalan ja massan
ep#ddot{a}varmuuden aiheuttamat suhteelliset virheet vaikutusalalle
#sigma^{pp #rightarrow b#bar{b}+X}",   "Skaalan ja massan
ep#ddot{a}varmuuden aiheuttamat suhteelliset virheet vaikutusalalle
#sigma^{pp #rightarrow b#bar{b}+X}_{2.0<#eta<5.0}(#sqrt{s} )",   "Skaalan
ja massan ep#ddot{a}varmuuden aiheuttamat suhteelliset virheet
vaikutusalalle #frac{d#sigma^{pp #rightarrow H_{b}+X}}{dp_{#eta}},
#sqrt{s} = 7 TeV",  "Skaalan ja massan ep#ddot{a}varmuuden aiheuttamat
suhteelliset virheet vaikutusalalle #frac{d#sigma^{pp #rightarrow H_
{b}+X}}{dp_{#eta}}, #sqrt{s} = 13 TeV",  "Skaalan ja massan
ep#ddot{a}varmuuden aiheuttamat suhteelliset virheet vaikutusalalle
#sigma^{p#bar{p} #rightarrow t#bar{t}+X}",   "Skaalan ja massan
ep#ddot{a}varmuuden aiheuttamat suhteelliset virheet vaikutusalalle
#sigma^{pp #rightarrow t#bar{t}+X}",   "Skaalan ja massan
ep#ddot{a}varmuuden aiheuttamat suhteelliset virheet vaikutusalalle
#frac{d#sigma^{p#bar{p} #rightarrow t#bar{t}+X}}{dp_{T}}, #sqrt{s} = 1.96
TeV",   "Skaalan ja massan ep#ddot{a}varmuuden aiheuttamat suhteelliset
virheet vaikutusalalle #frac{d#sigma^{p#bar{p} #rightarrow t#bar{t}+X}}
{d|y|}, #sqrt{s} = 1.96 TeV",   "Skaalan ja massan ep#ddot{a}varmuuden
aiheuttamat suhteelliset virheet vaikutusalalle #frac{d#sigma^{pp
#rightarrow t#bar{t}+X}}{dp_{T}}, #sqrt{s} = 13 TeV",   "Skaalan ja massan
ep#ddot{a}varmuuden aiheuttamat suhteelliset virheet vaikutusalalle
#frac{d#sigma^{pp #rightarrow t#bar{t}+X}}{dy_{t}}, #sqrt{s} = 13 TeV"};

// Viides kuva: Eri partonityyppien vuorovaikutusten (g+g. u+u_bar,
d+d_bar, s+s_bar, c+c_bar, b+b_bar (PDF:Ã¤Ã¤ t/t_bar-kvarkille ei ole))
suhteelliset osuudet lasketusta vaikutusalasta. TGraph *grr[cases][types];
double rxmin[cases] = {2*0.00127+0.00001, 0.01501, 1.0, 2.0, 2.0, 0.00001,
1.0, 1.0, 1.0, 2*0.00418+0.00001, 2*0.00418+0.00001, 2.0, 2.0,
2*0.1729+0.00001, 2*0.1729+0.00001, 0.0, 0.0, 0.0, -2.6}; double
rymin[cases] = {0.0001, 0.00004, 0.000001, 0.000001, 0.000001, 0.0001,
0.0001, 0.00006, 0.0001, 0.00006, 0.0004, 0.00001, 0.00001, 0.000001,
0.0001, 0.000005, 0.00003, 0.001, 0.0008}; const bool rlog[cases] = {true,
true, true, true, true, true, true, true, true, true, true, true, true,
true, true, true, true, true, true};
TCanvas *cr[cases];

string rtitle[cases] = {"Eri vuorovaikutustyyppien suhteelliset osuudet
kokonaisvaikutusalasta #sigma^{pp #rightarrow c#bar{c}+X} muuttujan
#sqrt{s} funktiona",   "Eri vuorovaikutustyyppien suhteelliset osuudet
kokonaisvaikutusalasta #sigma^{pp #rightarrow c#bar{c}+X}_{0<p_{T}<8 GeV,
2.0<y<4.5} muuttujan #sqrt{s} funktiona",  "Eri vuorovaikutustyyppien
suhteelliset osuudet p_{T}-differentioidusta D^{0}-mesonien tuoton
vuorovaikutusalasta, leikkauksella |y| < 0,5 ja energialla #sqrt{s} = 2,76
TeV, muuttujan p_{T} funktiona",   "Eri vuorovaikutustyyppien suhteelliset
osuudet p_{T}-differentioidusta D^{+}-mesonien tuoton vuorovaikutusalasta,



leikkauksella |y| < 0,5 ja energialla #sqrt{s} = 2,76 TeV, muuttujan p_{T}
funktiona",   "Eri vuorovaikutustyyppien suhteelliset osuudet p_{T}-
differentioidusta D^{*+}-mesonien tuoton vuorovaikutusalasta,
leikkauksella |y| < 0,5 ja energialla #sqrt{s} = 2,76 TeV, muuttujan p_{T}
funktiona",   "Eri vuorovaikutustyyppien suhteelliset osuudet p_{T}-
differentioidusta D^{0}-mesonien tuoton vuorovaikutusalasta, leikkauksella
|y| < 0,5 ja energialla #sqrt{s} = 5,02 TeV, muuttujan p_{T} funktiona",
"Eri vuorovaikutustyyppien suhteelliset osuudet p_{T}-differentioidusta D^
{*+}-mesonien tuoton vuorovaikutusalasta, leikkauksella |y| < 0,5 ja
energialla #sqrt{s} = 5,02 TeV, muuttujan p_{T} funktiona",   "Eri
vuorovaikutustyyppien suhteelliset osuudet p_{T}-differentioidusta D^{0}-
mesonien tuoton vuorovaikutusalasta, leikkauksella |y| < 0,5 ja energialla
#sqrt{s} = 7 TeV, muuttujan p_{T} funktiona",   "Eri vuorovaikutustyyppien
suhteelliset osuudet p_{T}-differentioidusta D^{*+}-mesonien tuoton
vuorovaikutusalasta, leikkauksella |y| < 0,5 ja energialla #sqrt{s} = 7
TeV, muuttujan p_{T} funktiona",   "Eri vuorovaikutustyyppien suhteelliset
osuudet kokonaisvaikutusalasta #sigma^{pp #rightarrow b#bar{b}+X}
muuttujan #sqrt{s} funktiona",   "Eri vuorovaikutustyyppien suhteelliset
osuudet vaikutusalasta #sigma^{pp #rightarrow b#bar{b}+X}_{2.0<#eta<5.0}
muuttujan #sqrt{s} funktiona",   "Eri vuorovaikutustyyppien suhteelliset
osuudet protoni-protoni-t#ddot{o}rm#ddot{a}ysten b#bar{b}-tuoton #eta-
differentioidusta vaikutusalasta, energialla #sqrt{s} = 7 TeV, muuttujan
#eta funktiona",  "Eri vuorovaikutustyyppien suhteelliset osuudet protoni-
protoni-t#ddot{o}rm#ddot{a}ysten b#bar{b}-tuoton #eta-differentioidusta
vaikutusalasta, energialla #sqrt{s} = 13 TeV, muuttujan #eta funktiona",
"Eri vuorovaikutustyyppien suhteelliset osuudet kokonaisvaikutusalasta
#sigma^{p#bar{p} #rightarrow t#bar{t}+X} muuttujan #sqrt{s} funktiona",
"Eri vuorovaikutustyyppien suhteelliset osuudet kokonaisvaikutusalasta
#sigma^{pp #rightarrow t#bar{t}+X} muuttujan #sqrt{s} funktiona",   "Eri
vuorovaikutustyyppien suhteelliset osuudet p_{T}-differentioidusta
protoni-antiprotoni-t#ddot{o}rm#ddot{a}ysten t#bar{t}-parien tuoton
vuorovaikutusalasta, energialla #sqrt{s} = 1.96 TeV, muuttujan p_{T}
funktiona",   "Eri vuorovaikutustyyppien suhteelliset osuudet |y|-
differentioidusta protoni-antiprotoni-t#ddot{o}rm#ddot{a}ysten t#bar{t}-
parien tuoton vuorovaikutusalasta, energialla #sqrt{s} = 1.96 TeV,
muuttujan |y| funktiona",   "Eri vuorovaikutustyyppien suhteelliset
osuudet p_{T}-differentioidusta protoni-protoni-t#ddot{o}rm#ddot{a}ysten
t#bar{t}-parien tuoton vuorovaikutusalasta, energialla #sqrt{s} = 13 TeV,
muuttujan p_{T} funktiona",   "Eri vuorovaikutustyyppien suhteelliset
osuudet y_{t}-differentioidusta protoni-protoni-t#ddot{o}rm#ddot{a}ysten
t#bar{t}-parien tuoton vuorovaikutusalasta, energialla #sqrt{s} = 13 TeV,
muuttujan y_{t} funktiona"};

TLegend *addval[cases];
bool addsv[cases] = {true, true, false, false, false, false, false, false,
false, true, true, false, false, true, true, false, false, false, false};
string sv[cases] = {"2m_{c}","(#sqrt{s})_{min}"," "," "," "," "," "," ","
","2m_{b}","2m_{b}"," "," ","2m_{t}","2m_{t}"," "," "," "," "};
double lxpos[cases] = {0.1325, 0.149, 0, 0, 0, 0, 0, 0, 0, 0.1325, 0.1325,
0, 0, 0.129, 0.129, 0, 0, 0, 0};

// Kuvat 6-12: K-kertoimet bineittÃ¤in/pisteittÃ¤in sekÃ¤ vastaava
sovitus, seitsemÃ¤llÃ¤ eri skaalavalinnalla.
TGraphAsymmErrors *kfp[cases][Qver];
TH1D *kfstaerr[cases][Qver];
TGraphAsymmErrors *kfsyserr[cases][Qver];
TGraphAsymmErrors *kftoterr[cases][Qver];



TF1 *fK[cases][Qver];
TCanvas *ckf[cases][Qver];
string kfQ[Qver] = {"(Q_{def}, Q_{def})","(Q_{max}, Q_{max})", "(Q_{min},
Q_{min})", "(Q_{def}, Q_{max})", "(Q_{min}, Q_{def})", "(Q_{def}, Q_
{min})","(Q_{max}, Q_{def})"};

// TÃ¤tÃ¤ osiota kÃ¤ytetÃ¤Ã¤n, mikÃ¤li K-kerroin-kuvien y-akselin ylÃ¤raja
joudutaan asettamaan manuaalisesti. Normaalisti akselin ylÃ¤raja on kaksi
kertaa K-kerroin-sovituksen arvo (ja alaraja 0). const int nkfsc = 9;
string kftagsc[nkfsc] = {"c1", "cdif1", "cdif2", "cdif3", "cdif4",
"cdif5", "cdif6", "cdif7", "b1"};
double kfmaxsc[nkfsc][Qver] = { {6.0, 7.0, 10.0, 4.5, 3.2, 18.0, 10.0},
 {5.0, 4.5, 6.0, 3.0, 2.7, 14.0, 8.0},
 {5.6, 6.0, 7.0, 4.3, 3.5, 11.0, 8.4},
 {6.2, 6.2, 8.0, 4.1, 3.7, 14.0, 8.8},
 {4.5, 3.2, 7.0, 2.3, 2.0, 14.0, 6.8},
 {5.6, 5.0, 8.0, 4.0, 3.3, 14.5, 8.2},
 {4.6, 3.3, 9.0, 2.3, 2.4, 16.5, 6.6},
 {5.4, 4.5, 9.0, 3.5, 3.0, 17.0, 8.0},
 {4.7, 6.3, 3.5, 4.5, 3.2, 5.2, 6.4} };

string kftitle[cases] = {"K-tekij#ddot{a}n arvot vaikutusalalle #sigma^{pp
#rightarrow c#bar{c}+X}",
 "K-tekij#ddot{a}n arvot vaikutusalalle #sigma^{pp #rightarrow c#bar{c}+X}
_{0<p_{T}<8 GeV, 2.0<y<4.5}",  "K-tekij#ddot{a}n arvot vaikutusalalle
#frac{d#sigma^{pp #rightarrow D^{0}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 2,76
TeV",   "K-tekij#ddot{a}n arvot vaikutusalalle #frac{d#sigma^{pp
#rightarrow D^{+}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 2,76 TeV",   "K-
tekij#ddot{a}n arvot vaikutusalalle #frac{d#sigma^{pp #rightarrow D^{*
+}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 2,76 TeV",   "K-tekij#ddot{a}n arvot
vaikutusalalle #frac{d#sigma^{pp #rightarrow D^{0}+X}_{|y|<0,5}}{dp_{T}},
#sqrt{s} = 5,02 TeV",   "K-tekij#ddot{a}n arvot vaikutusalalle
#frac{d#sigma^{pp #rightarrow D^{*+}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} =
5,02 TeV",   "K-tekij#ddot{a}n arvot vaikutusalalle #frac{d#sigma^{pp
#rightarrow D^{0}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 7 TeV",   "K-
tekij#ddot{a}n arvot vaikutusalalle #frac{d#sigma^{pp #rightarrow D^{*
+}+X}_{|y|<0,5}}{dp_{T}}, #sqrt{s} = 7 TeV",   "K-tekij#ddot{a}n arvot
vaikutusalalle #sigma^{pp #rightarrow b#bar{b}+X}",
 "K-tekij#ddot{a}n arvot vaikutusalalle #sigma^{pp #rightarrow b#bar{b}+X}
_{2.0<#eta<5.0}",
 "K-tekij#ddot{a}n arvot vaikutusalalle #frac{d#sigma^{pp #rightarrow H_
{b}+X}}{d#eta}, #sqrt{s} = 7 TeV",
 "K-tekij#ddot{a}n arvot vaikutusalalle #frac{d#sigma^{pp #rightarrow H_
{b}+X}}{d#eta}, #sqrt{s} = 13 TeV",
 "K-tekij#ddot{a}n arvot vaikutusalalle #sigma^{p#bar{p} #rightarrow
t#bar{t}+X}",
 "K-tekij#ddot{a}n arvot vaikutusalalle #sigma^{pp #rightarrow
t#bar{t}+X}",
 "K-tekij#ddot{a}n arvot vaikutusalalle #frac{d#sigma^{p#bar{p}
#rightarrow t#bar{t}+X}}{dp_{T}}, #sqrt{s} = 1.96 TeV",   "K-
tekij#ddot{a}n arvot vaikutusalalle #frac{d#sigma^{p#bar{p} #rightarrow
t#bar{t}+X}}{d|y|}, #sqrt{s} = 1.96 TeV",   "K-tekij#ddot{a}n arvot
vaikutusalalle #frac{d#sigma^{pp #rightarrow t#bar{t}+X}}{dp_{T}},
#sqrt{s} = 13 TeV",
 "K-tekij#ddot{a}n arvot vaikutusalalle #frac{d#sigma^{pp #rightarrow
t#bar{t}+X}}{dy_{t}}, #sqrt{s} = 13 TeV"};



bool manxdiv = true;
int xdiv1[cases] = {209, 208, 212, 211, 211, 508, 507, 208, 212, 209, 208,
507, 507, 507, 208, 50206, 504, 50206, 50206};
int xdiv2[cases] = {208, 207, 212, 211, 211, 508, 507, 208, 212, 208, 207,
507, 507, 50204, 207, 50206, 504, 50206, 50206};
int xdiv3[cases] = {208, 211, 212, 211, 211, 508, 507, 208, 212, 209, 214,
507, 507, 507, 215, 50206, 504, 50206, 50206};

bool manydiv = true;
int ydivm[cases] = { 20207, 50204, 0, 0, 0, 0, 0, 0, 0, 0, 505, 50206,
50206, 20208, 0, 0, 50206, 0, 506}; int ydivrelerr[cases] = { 507, 506,
50205, 0, 506, 50205, 50205, 50206, 50206, 506, 507, 504, 504, 50205,
50205, 20207, 20208, 20207, 20207}; int ydivk[Qver][cases] = { {506, 506,
50206, 0, 507, 50205, 50206, 50205, 50206, 50205, 505, 505, 505, 507,
50204, 506, 506, 507, 507},   {20207, 505, 50205, 0, 507, 507, 50206, 507,
50205, 507, 504, 504, 504, 50205, 50205, 50205, 50204, 50205, 50205},
{50205, 50205, 50207, 0, 50205, 508, 50205, 50205, 50205, 508, 506, 506,
506, 505, 506, 505, 504, 505, 506},   {50206, 20207, 507, 0, 50205, 505,
50205, 505, 508, 50205, 20207, 20207, 20207, 508, 50205, 507, 507, 508,
508},   {508, 504, 506, 0, 508, 504, 507, 505, 507, 507, 20207, 20207,
20207, 506, 507, 505, 505, 506, 506},   {504, 505, 20208, 0, 20208, 20208,
20208, 504, 504, 506, 50205, 50205, 50205, 506, 508, 505, 505, 506, 507},
{50205, 50205, 50205, 0, 50205, 507, 50205, 50207, 50205, 507, 506, 506,
507, 50204, 50205, 507, 507, 50204, 50205} };

TLegend *addextval[cases];
bool addextv[cases] = {false, false, false, false, false, false, true,
true, true, false, false, false, false, false, false, false, false, false,
false}; string extv[cases] = {" "," "," "," "," "," ","1","1","1"," ","
"," "," "," "," "," "," "," "," "};
double extvxpos[cases] = {0, 0, 0, 0, 0, 0, 0.108, 0.108, 0.108, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0};

bool showtitles = false;

string picformat = "pdf";
bool savepics = true;

// HUOM: Envelopet saatetaan piirtÃ¤Ã¤ joskus vÃ¤Ã¤rin kahden ensimmÃ¤isen
taikka kahden viimeisen pisteen vÃ¤lillÃ¤. TÃ¤mÃ¤ efekti nÃ¤yttÃ¤isi
kuitenkin mitÃ¤tÃ¶ityvÃ¤n, kun pisteillÃ¤ ei ole isoa vÃ¤limatkaa
toisiinsa nÃ¤hden.

for(int i = 0; i < cases; i++){

if(tcase[i].compare("cdif2") == 0){ // En tule tarkastelemaan tapausta
"cdif2" tulosten analyysissÃ¤
 continue;
}

double k;
double kerr;



fkscfit[i] = new TF1( Form("fkscfit%01i", i), Kfit, -1000000, 1000000, 1);
// HUOM: -1000000 - 1000000

if(ishist[i] == true){

 erstaerr[i] = (TH1D*)file->Get( Form("%serstaerr", tcase[i].c_str()) );
 erstaerr[i]->SetLineColor(kBlack);

 ersyserr[i] = (TGraphAsymmErrors*)file->Get( Form("%sersyserr",
tcase[i].c_str()) );
 ersyserr[i]->SetFillColor(920);

 teorka[i] = (TH1D*)file->Get( Form("%steorka", tcase[i].c_str()) );
 teorka[i]->SetLineColor(kGray+3);

 kscfit[i] = (TGraphAsymmErrors*)file->Get( Form("%skftoterrQ0",
tcase[i].c_str()) );

 kscfit[i]->Fit( Form("fkscfit%01i", i),"Q");

 k = fkscfit[i]->GetParameter(0);
 kerr = fkscfit[i]->GetParError(0);

}else{
  erp[i] = (TGraphAsymmErrors*)file->Get( Form("erp%s", tcase[i].c_str())
);
 erp[i]->SetMarkerStyle(20);
 erp[i]->SetMarkerSize(0.5);
 erp[i]->SetMarkerColor(kBlack);
 erp[i]->SetLineColor(kBlack);

 if(isaltp[i] == true){

 erpalt[i] = (TGraphAsymmErrors*)file->Get( Form("erp%salt",
tcase[i].c_str()) );
 erpalt[i]->SetMarkerStyle(20);
 erpalt[i]->SetMarkerSize(0.5);
 erpalt[i]->SetMarkerColor(860);
 erpalt[i]->SetLineColor(600);

 }

 kscfit[i] = (TGraphAsymmErrors*)file->Get( Form("%skfpQ0",
tcase[i].c_str()) );

 kscfit[i]->Fit( Form("fkscfit%01i", i),"Q");

 k = fkscfit[i]->GetParameter(0);
 kerr = fkscfit[i]->GetParError(0);

}

grnlo[i] = (TGraph*)file->Get( Form("gr%snlo",tcase[i].c_str()) );
grnlo[i]->SetMarkerColor(kBlack);
grnlo[i]->SetMarkerSize(0);

/*grLN[i] = (TGraph*)file->Get( Form("gr%sLN",tcase[i].c_str()) );



grLN[i]->SetMarkerColor(kBlack); grLN[i]->SetMarkerSize(0);*/

grLL[i] = (TGraph*)file->Get( Form("gr%sLL",tcase[i].c_str()) );
grLL[i]->SetMarkerColor(kBlack);
grLL[i]->SetMarkerSize(0);

grLLmr[i] = (TGraph*)file->Get( Form("gr%sLL",tcase[i].c_str()) );
grLLmr[i]->SetMarkerColor(kBlack);
grLLmr[i]->SetMarkerSize(0);

grNLO[i] = (TGraphAsymmErrors*)file->Get( Form("gr%sNLO",tcase[i].c_str())
);
grNLO[i]->SetMarkerColor(kBlack);
grNLO[i]->SetFillColorAlpha(632, 0.50);

grLO[i] = (TGraphAsymmErrors*)file->Get( Form("gr%sLO",tcase[i].c_str())
);
grLO[i]->SetMarkerColor(kBlack);
grLO[i]->SetFillColorAlpha(807, 0.50);

double xksc[points],xkscerr[points],yksc[points],ykscerr[points];

for(int j = 0; j < points; j++){

 double xLL, yLL;

 grLL[i]->GetPoint(j, xLL, yLL);

 xksc[j] = xLL;
 xkscerr[j] = 0;
 yksc[j] = k*yLL;
 ykscerr[j] = kerr*yLL;

}

ksc[i] = new TGraphErrors(points,xksc,yksc,xkscerr,ykscerr); ksc[i]-
>SetFillColorAlpha(808, 0.45);

////////////////////////////////////////////

caper[i] = new TCanvas(Form("caper%01i",i+1), Form("caper%01i",i+1),
1200.0, 500.0);
caper[i]->cd();

if(mrlog[i] == true){
 caper[i]->SetLogy();
}

grLL[i]->SetMaximum(ymax[i]); // HUOM: Vain yksi ylÃ¤-/alarajan asetus per
graafi, ei voi muuttaa. Sama koskee otsikon (title) asettamista. grLL[i]-
>SetMinimum(ymin[i]);
grLL[i]->GetXaxis()->SetLimits(xmin[i], xmax[i]);

if(manxdiv == true){
 grLL[i]->GetXaxis()->SetNdivisions(xdiv1[i], true);
}



if(manydiv == true && mrlog[i] == false){
 grLL[i]->GetYaxis()->SetNdivisions(ydivm[i], true);
}

grLL[i]->GetXaxis()->SetLabelSize(labsize1);
grLL[i]->GetYaxis()->SetLabelSize(labsize1);

grLL[i]->GetXaxis()->SetTitleOffset(xtos1);
grLL[i]->GetYaxis()->SetTitleOffset(mrtosprim[i]);

if(showtitles == true){
 grLL[i]->SetTitle( Form("%s",mrtitle[i].c_str()) );
} else {  grLL[i]->SetTitle(" ");
}

grLL[i]->GetXaxis()->SetTitle( Form("%s",mrx[i].c_str()) );
grLL[i]->GetYaxis()->SetTitle( Form("%s",mry[i].c_str()) );

grLL[i]->GetXaxis()->SetTitleSize(xtsize1);
grLL[i]->GetYaxis()->SetTitleSize(mrtsizeprim);

grLL[i]->Draw("alp");

if(ishist[i] == true){

 ersyserr[i]->Draw("E2 SAME");
 erstaerr[i]->Draw("same");
 teorka[i]->Draw("SAME");

}

grNLO[i]->Draw("E3 SAME");
grLO[i]->Draw("E3 SAME");
grnlo[i]->Draw("same");

if(ishist[i] == false){

 erp[i]->Draw("p same");
 if(isaltp[i] == true){
 erpalt[i]->Draw("p same");
 }

}

grLL[i]->Draw("same");
if(ishist[i] == true){
 teorka[i]->Draw("SAME");
}

caper[i]->RedrawAxis();

if(addextv[i] == true){
 addextval[i] = new TLegend(extvxpos[i],0.1311,extvxpos[i]+0.0500,0.0811);
 addextval[i]->SetHeader(extv[i].c_str(),"C");
 addextval[i]->SetFillStyle(0);
 addextval[i]->Draw();
}



 if(savepics == true){
 caper[i]->SaveAs( Form("Pictures/caper%s.%s", tcase[i].c_str(),
picformat.c_str()) );
}

////////////////////////////////////////////

grmmax[i] = (TGraph*)file->Get( Form("gr%smmax",tcase[i].c_str()) );
grmmax[i]->SetMarkerColor(803);
grmmax[i]->SetMarkerSize(0);

grmmin[i] = (TGraph*)file->Get( Form("gr%smmin",tcase[i].c_str()) );
grmmin[i]->SetMarkerColor(803);
grmmin[i]->SetMarkerSize(0);

double xm[points],xmer[points],ym[points],upm[points],lowm[points];
double ymr[points],lowmr[points],upmr[points];

for(int j = 0; j < points; j++){

 double xmmid,ymmid,ymup,ymlow;

 xmer[j] = 0;
 ymr[j] = 0;

 grLL[i]->GetPoint(j, xmmid, ymmid);
 grmmax[i]->GetPoint(j, xmmid, ymlow); // Yleisesti ottaen (vaikuttaa
myÃ¶s arvoihin Qa/Qr ja Qp/Qf) massan arvon nostaminen pienentÃ¤Ã¤
vaikutusalaa.  grmmin[i]->GetPoint(j, xmmid, ymup);

 xm[j] = xmmid;
 ym[j] = ymmid;
   if((ymmid < ymup) && (ymlow < ymup)){

 upm[j] = ymup - ymmid;

 } else {

if(ymmid < ymlow){

 cout << "Tapauksessa "<< i << "/" << cases-1 << " pisteessÃ¤ " << j << "/
" << points - 1 << " m_{max}-kÃ¤yrÃ¤ mÃ¤Ã¤rittÃ¤Ã¤ vastaavan envelopen ylÃ
¤rajan" << endl;   upm[j] = ymlow - ymmid;

 } else {

 cout << "Tapauksessa "<< i << "/" << cases-1 << " pisteessÃ¤ " << j << "/
" << points - 1 << " m_{max}- sekÃ¤ m_{min}-kÃ¤yrien arvot alittavat
vastaavan pÃ¤Ã¤tuloksen arvon" << endl;  upm[j] = 0;

 }

 }

 if((ymmid > ymlow) && (ymup > ymlow)){

 lowm[j] = ymmid - ymlow;



 } else {

if(ymmid > ymup){

 cout << "Tapauksessa "<< i << "/" << cases-1 << " pisteessÃ¤ " << j << "/
" << points - 1 << " m_{min}-kÃ¤yrÃ¤ mÃ¤Ã¤rittÃ¤Ã¤ vastaavan envelopen
alarajan" << endl;   lowm[j] = ymmid - ymup;

 } else {
  cout << "Tapauksessa "<< i << "/" << cases-1 << " pisteessÃ¤ " << j <<
"/" << points - 1 << " m_{max}- sekÃ¤ m_{min}-kÃ¤yrien arvot ylittÃ¤vÃ¤t
vastaavan pÃ¤Ã¤tuloksen arvon" << endl;  lowm[j] = 0;

 }

 }

 if(ymmid != 0){

 lowmr[j] = 100*(lowm[j])/ymmid;
 upmr[j] = 100*(upm[j])/ymmid;

 }else{

 lowmr[j] = 0;
 upmr[j] = 0;

 }

}

grm[i] = new TGraphAsymmErrors(points,xm,ym,xmer,xmer,lowm,upm);
grm[i]->SetFillColorAlpha(804, 0.30);

grmrel[i] = new TGraphAsymmErrors(points,xm,ymr,xmer,xmer,lowmr,upmr);
grmrel[i]->SetFillColorAlpha(804, 0.30);

grQ[i] = (TGraphAsymmErrors*)file->Get( Form("grQ%s",tcase[i].c_str()) );
grQ[i]->SetFillColorAlpha(616, 0.40);

cmr[i] = new TCanvas(Form("cmr%01i",i+1), Form("cmr%01i",i+1), 1200.0,
500.0);
cmr[i]->cd();

if(mrlog[i] == true){
 cmr[i]->SetLogy();
}

grLLmr[i]->SetMaximum(ymax[i]);
grLLmr[i]->SetMinimum(ymin[i]); grLLmr[i]->GetXaxis()->SetLimits(xmin[i],
xmax[i]);

if(manxdiv == true){
 grLLmr[i]->GetXaxis()->SetNdivisions(xdiv1[i], true);
}



if(manydiv == true && mrlog[i] == false){
 grLLmr[i]->GetYaxis()->SetNdivisions(ydivm[i], true);
}

grLLmr[i]->GetXaxis()->SetLabelSize(labsize1);
grLLmr[i]->GetYaxis()->SetLabelSize(labsize1);

grLLmr[i]->GetXaxis()->SetTitleOffset(xtos1);
grLLmr[i]->GetYaxis()->SetTitleOffset(mrtosprim[i]);

if(showtitles == true){
 grLLmr[i]->SetTitle( Form("%s",mrtitle[i].c_str()) );
} else {
 grLLmr[i]->SetTitle(" ");
}

grLLmr[i]->GetXaxis()->SetTitle( Form("%s",mrx[i].c_str()) );
grLLmr[i]->GetYaxis()->SetTitle( Form("%s",mry[i].c_str()) );

grLLmr[i]->GetXaxis()->SetTitleSize(xtsize1);
grLLmr[i]->GetYaxis()->SetTitleSize(mrtsizeprim);

grLLmr[i]->Draw("alp");

if(ishist[i] == true){

 ersyserr[i]->Draw("E2 SAME");
 erstaerr[i]->Draw("same");
 teorka[i]->Draw("SAME");

}
 grQ[i]->Draw("E3 SAME");
grm[i]->Draw("E3 SAME");

int isksc = 0;

for(int j = 0; j < nnoksc; j++){

 if(tcase[i].compare(noksc[j]) == 0){
 isksc++;
 }
}

if(isksc == 0){
 ksc[i]->Draw("E3 SAME");
}

if(isFF[i] == true){
 grFF[i] = (TGraphAsymmErrors*)file->Get( Form("gr%sFF",tcase[i].c_str())
);
 grFF[i]->SetFillColorAlpha(820, 0.55);

 grFF[i]->Draw("E3 SAME");
}

if(ishist[i] == false){



 erp[i]->Draw("p same");
 if(isaltp[i] == true){
 erpalt[i]->Draw("p same");
 }

}

grLLmr[i]->Draw("same,pl");
if(ishist[i] == true){
 teorka[i]->Draw("SAME");
}

cmr[i]->RedrawAxis();

if(addextv[i] == true){
 addextval[i]->Draw();
}

if(savepics == true){
 cmr[i]->SaveAs( Form("Pictures/cmr%s.%s", tcase[i].c_str(),
picformat.c_str()) );
}

////////////////////////////////////////////
 grQdef[i] = (TGraph*)file->Get( Form("gr%sLL",tcase[i].c_str()) );
grQdef[i]->SetMarkerColor(kBlack);
grQdef[i]->SetMarkerSize(0);

grQQmax[i] = (TGraph*)file->Get( Form("gr%sQQmax", tcase[i].c_str()) );
grQQmax[i]->SetLineColor(602);
grQQmax[i]->SetLineWidth(2);

grQQmin[i] = (TGraph*)file->Get( Form("gr%sQQmin", tcase[i].c_str()) );
grQQmin[i]->SetLineColor(867);
grQQmin[i]->SetLineWidth(2);

grQa[i] = (TGraphAsymmErrors*)file->Get( Form("gr%sQa",tcase[i].c_str())
);
grQa[i]->SetFillColorAlpha(1, 0.28);

grQp[i] = (TGraphAsymmErrors*)file->Get( Form("gr%sQp",tcase[i].c_str())
);
grQp[i]->SetFillColorAlpha(632, 0.45);

cQaQp[i] = new TCanvas(Form("cQaQp%01i",i+1), Form("cQaQp%01i",i+1),
1200.0, 500.0);
cQaQp[i]->cd();

if(mrlog[i] == true){
 cQaQp[i]->SetLogy();
}
grQdef[i]->SetMaximum(ymax[i]);
grQdef[i]->SetMinimum(ymin[i]);
grQdef[i]->GetXaxis()->SetLimits(xmin[i], xmax[i]);

if(manxdiv == true){  grQdef[i]->GetXaxis()->SetNdivisions(xdiv1[i],
true);



}

if(manydiv == true && mrlog[i] == false){
 grQdef[i]->GetYaxis()->SetNdivisions(ydivm[i], true);
}

if(showtitles == true){
 grQdef[i]->SetTitle( Form("%s",Qtitle[i].c_str()) );
} else {
 grQdef[i]->SetTitle(" ");
}

grQdef[i]->GetXaxis()->SetTitle( Form("%s",mrx[i].c_str()) );
grQdef[i]->GetYaxis()->SetTitle( Form("%s",mry[i].c_str()) );

grQdef[i]->GetXaxis()->SetLabelSize(labsize1);
grQdef[i]->GetYaxis()->SetLabelSize(labsize1);

grQdef[i]->GetXaxis()->SetTitleSize(xtsize1);
grQdef[i]->GetYaxis()->SetTitleSize(mrtsizeprim);

grQdef[i]->GetXaxis()->SetTitleOffset(xtos1);
grQdef[i]->GetYaxis()->SetTitleOffset(mrtosprim[i]);

grQdef[i]->Draw("alp");
grQa[i]->Draw("E3 SAME");
grQp[i]->Draw("E3 SAME");
grQQmax[i]->Draw("SAME");
grQQmin[i]->Draw("SAME");
grLL[i]->Draw("same");

cQaQp[i]->RedrawAxis();

if(addextv[i] == true){  addextval[i]->Draw();
}

if(savepics == true){
 cQaQp[i]->SaveAs( Form("Pictures/cQaQp%s.%s", tcase[i].c_str(),
picformat.c_str()) );
}

////////////////////////////////////////////

grQrel[i] = (TGraphAsymmErrors*)file->Get(
Form("gr%sQrel",tcase[i].c_str()) );
grQrel[i]->SetFillColorAlpha(616, 0.40);

if(isFF[i] == true){
 grFFrel[i] = (TGraphAsymmErrors*)file->Get(
Form("gr%sFFrel",tcase[i].c_str()) );
 grFFrel[i]->SetFillColorAlpha(820, 0.55);
}

crelerr[i] = new TCanvas(Form("crel%01i",i+1), Form("crel%01i",i+1),
800.0, 470.0);
crelerr[i]->cd();



grQrel[i]->SetMaximum(relerrmax[i]);
grQrel[i]->SetMinimum(relerrmin[i]);
grQrel[i]->GetXaxis()->SetLimits(rxmin[i], xmax[i]);

if(manxdiv == true){
 grQrel[i]->GetXaxis()->SetNdivisions(xdiv2[i], true);
}

if(manydiv == true){
 grQrel[i]->GetYaxis()->SetNdivisions(ydivrelerr[i], true);
}

if(showtitles == true){  grQrel[i]->SetTitle(
Form("%s",relerrtitle[i].c_str()) );
} else {
 grQrel[i]->SetTitle(" ");
}

grQrel[i]->GetXaxis()->SetTitle( Form("%s",mrx[i].c_str()) );
grQrel[i]->GetYaxis()->SetTitle("Suhteellinen virhe [%]");

grQrel[i]->GetXaxis()->SetLabelSize(labsize2);
grQrel[i]->GetYaxis()->SetLabelSize(labsize2);

grQrel[i]->GetXaxis()->SetTitleSize(xtsize2);
grQrel[i]->GetYaxis()->SetTitleSize(ytsize2);

grQrel[i]->GetXaxis()->SetTitleOffset(xtos2);
grQrel[i]->GetYaxis()->SetTitleOffset(ytos2);

grQrel[i]->Draw("ALP E3");
grmrel[i]->Draw("E3 SAME");
if(isFF[i] == true){
 grFFrel[i]->Draw("E3 SAME");
}

crelerr[i]->RedrawAxis();

if(addsv[i] == true){
 addval[i] = new TLegend(lxpos[i],0.1311,lxpos[i]+0.0500,0.0811);
 addval[i]->SetHeader(sv[i].c_str(),"C");
 addval[i]->SetFillStyle(0);
 addval[i]->Draw();
}

if(addextv[i] == true){
 addextval[i]->Draw();
}

if(savepics == true){  crelerr[i]->SaveAs( Form("Pictures/crelerr%s.%s",
tcase[i].c_str(), picformat.c_str()) );
}

////////////////////////////////////////////

for(int j = 0; j < types; j++){
 grr[i][j] = (TGraph*)file->Get( Form("gr%sr%01i",tcase[i].c_str(),j) ); /



/ 0, 1, 2, 3, 4, 5 = g+g, u+u_bar, d+d_bar, s+s_bar, c+c_bar, b+b_bar
grr[i][j]->SetMarkerStyle(20);
 grr[i][j]->SetMarkerColor(color[j]);
 grr[i][j]->SetLineColor(color[j]);
 grr[i][j]->SetMarkerSize(0);
 grr[i][j]->SetLineWidth(2);
}

cr[i] = new TCanvas(Form("cr%01i",i+1), Form("cr%01i",i+1), 800.0, 470.0);
cr[i]->cd();

if(rlog[i] == true){
 cr[i]->SetLogy();
}
grr[i][0]->SetMaximum(1.4);
grr[i][0]->SetMinimum(rymin[i]);
grr[i][0]->GetXaxis()->SetLimits(rxmin[i], xmax[i]);

if(manxdiv == true){
 grr[i][0]->GetXaxis()->SetNdivisions(xdiv2[i], true);
}

/*
double xr0, xr1, xr2, xr3, xr4, xr5, yr0, yr1, yr2, yr3, yr4, yr5;
 grr[i][0]->GetPoint(0, xr0, yr0);
grr[i][1]->GetPoint(0, xr1, yr1);
grr[i][2]->GetPoint(0, xr2, yr2);
grr[i][3]->GetPoint(0, xr3, yr3);
grr[i][4]->GetPoint(0, xr4, yr4);
grr[i][5]->GetPoint(0, xr5, yr5);

cout << "Ratio-graafien aloituspisteet (tapaus "<< i+1 << "/" << cases <<
"):" << endl;
cout <<"("<< xr0 << "," << yr0 <<")" << endl;
cout <<"("<< xr1 << "," << yr1 <<")" << endl;
cout <<"("<< xr2 << "," << yr2 <<")" << endl;
cout <<"("<< xr3 << "," << yr3 <<")" << endl;
cout <<"("<< xr4 << "," << yr4 <<")" << endl;
cout <<"("<< xr5 << "," << yr5 <<")" << endl;
cout << "Suhteellisten osuuksien summa alkupisteessÃ¤: " <<
yr0+yr1+yr2+yr3+yr4+yr5 << endl;

// Ilmeisesti liian pienillÃ¤ x:n (sqrt(s), pt, y) arvoilla suhteellisten
osuuksien laskeminen muuttuu erittÃ¤in epÃ¤tarkaksi (nollautuvat
vaikutusalat?). Tulee ottaa huomioon. */

if(showtitles == true){
 grr[i][0]->SetTitle( Form("%s",rtitle[i].c_str()) );
} else {  grr[i][0]->SetTitle(" ");
}

grr[i][0]->GetXaxis()->SetTitle( Form("%s",mrx[i].c_str()) );
grr[i][0]->GetYaxis()->SetTitle("r(ij)");

grr[i][0]->GetXaxis()->SetLabelSize(labsize2);
grr[i][0]->GetYaxis()->SetLabelSize(labsize2);



grr[i][0]->GetXaxis()->SetTitleSize(xtsize2);
grr[i][0]->GetXaxis()->SetTitleOffset(xtos2);

grr[i][0]->GetYaxis()->SetTitleSize(ytsize2);
grr[i][0]->GetYaxis()->SetTitleOffset(ytos2);

grr[i][0]->Draw("alp");

for(int j = 1; j < types; j++){

 grr[i][j]->Draw("same,pl");

}

cr[i]->RedrawAxis();

if(addsv[i] == true){
 addval[i]->Draw();
}

if(addextv[i] == true){
 addextval[i]->Draw();
}

if(savepics == true){
 cr[i]->SaveAs( Form("Pictures/cr%s.%s", tcase[i].c_str(),
picformat.c_str()) );
}

////////////////////////////////////////////

if(ishist[i] == true){

 for(int k = 0; k < Qver; k++){
  kfstaerr[i][k] = (TH1D*)file->Get( Form("%skfstaerrQ%01i",
tcase[i].c_str(), k) );
 kfstaerr[i][k]->SetLineColor(kBlack);

 kfsyserr[i][k] = (TGraphAsymmErrors*)file->Get( Form("%skfsyserrQ%01i",
tcase[i].c_str(), k) );
 kfsyserr[i][k]->SetFillColor(920);

 kftoterr[i][k] = (TGraphAsymmErrors*)file->Get( Form("%skftoterrQ%01i",
tcase[i].c_str(), k) );

 fK[i][k] = new TF1("fK", Kfit, -1000000, 1000000, 1); // HUOM: -1000000 -
1000000

 if(k == 0){
 ckf[i][k] = new TCanvas(Form("ckf%sQ%01i", tcase[i].c_str(), k),
Form("ckf%sQ%01i", tcase[i].c_str(), k), 1200.0, 500.0);
 } else {
 ckf[i][k] = new TCanvas(Form("ckf%sQ%01i", tcase[i].c_str(), k),
Form("ckf%sQ%01i", tcase[i].c_str(), k), 800.0, 470.0);
 }

 ckf[i][k]->cd();



 if(showtitles == true){
 kfstaerr[i][k]->SetTitle( Form("%s, %s",kftitle[i].c_str(),
kfQ[k].c_str()) );
 } else {
 kfstaerr[i][k]->SetTitle(" ");
 }
  kfstaerr[i][k]->GetXaxis()->SetTitle( Form("%s",mrx[i].c_str()) );
 kfstaerr[i][k]->GetYaxis()->SetTitle("K-kerroin");
 kfstaerr[i][k]->SetStats(false);

 if(k == 0){

 kfstaerr[i][k]->GetXaxis()->SetLabelSize(labsize1);
 kfstaerr[i][k]->GetYaxis()->SetLabelSize(labsize1);

 kfstaerr[i][k]->GetXaxis()->SetTitleSize(xtsize1);
 kfstaerr[i][k]->GetYaxis()->SetTitleSize(ktsize1);

 kfstaerr[i][k]->GetXaxis()->SetTitleOffset(xtos1);
 kfstaerr[i][k]->GetYaxis()->SetTitleOffset(ktos1);

 } else {

 kfstaerr[i][k]->GetXaxis()->SetLabelSize(labsize2);
 kfstaerr[i][k]->GetYaxis()->SetLabelSize(labsize2);

 kfstaerr[i][k]->GetXaxis()->SetTitleSize(xtsize2);
 kfstaerr[i][k]->GetYaxis()->SetTitleSize(ytsize2);

 kfstaerr[i][k]->GetXaxis()->SetTitleOffset(xtos2);
 kfstaerr[i][k]->GetYaxis()->SetTitleOffset(ytos2);

 }

 kftoterr[i][k]->Fit("fK","QRN");   fK[i][k]->SetLineColor(804);
 fK[i][k]->SetLineStyle(9);
 fK[i][k]->SetLineWidth(1);

 kfstaerr[i][k]->GetXaxis()->SetNdivisions(xdiv3[i], true);

 if(manxdiv == true){
 kfstaerr[i][k]->GetXaxis()->SetNdivisions(xdiv3[i], true);
 }

 if(manydiv == true){
 kfstaerr[i][k]->GetYaxis()->SetNdivisions(ydivk[k][i], true);
 }

 for(int j = 0; j < nkfsc; j++){

 if(tcase[i].compare(kftagsc[j]) == 0){
 kfstaerr[i][k]->SetMaximum(kfmaxsc[j][k]);
 break;
 }else{
 kfstaerr[i][k]->SetMaximum(2*(fK[i][k]->GetParameter(0)));
 }
 }



 kfstaerr[i][k]->SetMinimum(0);

 kfstaerr[i][k]->Draw();
 kfsyserr[i][k]->Draw("E2 SAME");
 kfstaerr[i][k]->Draw("SAME");
 fK[i][k]->Draw("same");

ckf[i][k]->RedrawAxis();

 if(addextv[i] == true){
 addextval[i]->Draw();
 }

 if(savepics == true){  ckf[i][k]->SaveAs( Form("Pictures/ckf%sQ%01i.%s",
tcase[i].c_str(), k, picformat.c_str()) );
 }

 cout << "Tapauksessa " << i + 1 << "/" << cases << Form(" (%s) ",
tcase[i].c_str()) << "skaalavalinnalla " << Form("%s",kfQ[k].c_str()) << "
sovitettu K-tekijÃ¤ saa arvon " << fK[i][k]->GetParameter(0) << "+-" <<
fK[i][k]->GetParError(0) << "." << endl;

 }

} else {

 for(int k = 0; k < Qver; k++){

 kfp[i][k] = (TGraphAsymmErrors*)file->Get( Form("%skfpQ%01i",
tcase[i].c_str(), k) );
 kfp[i][k]->SetMarkerStyle(20);
 kfp[i][k]->SetMarkerSize(0.62);
 kfp[i][k]->SetMarkerColor(kBlack);
 kfp[i][k]->SetLineColor(kBlack);

 fK[i][k] = new TF1("fK", Kfit, -1000000, 1000000, 1); // HUOM: -1000000 -
1000000

 if(k == 0){
 ckf[i][k] = new TCanvas(Form("ckf%sQ%01i", tcase[i].c_str(), k),
Form("ckf%sQ%01i", tcase[i].c_str(), k), 1200.0, 500.0);
 } else {  ckf[i][k] = new TCanvas(Form("ckf%sQ%01i", tcase[i].c_str(),
k), Form("ckf%sQ%01i", tcase[i].c_str(), k), 800.0, 470.0);
 }

 ckf[i][k]->cd();

 if(showtitles == true){
 kfp[i][k]->SetTitle( Form("%s, %s",kftitle[i].c_str(), kfQ[k].c_str()) );
 } else {
 kfp[i][k]->SetTitle(" ");
 }

 kfp[i][k]->GetXaxis()->SetTitle( Form("%s",mrx[i].c_str()) );
 kfp[i][k]->GetYaxis()->SetTitle("K-kerroin");

 if(k == 0){



 kfp[i][k]->GetXaxis()->SetLabelSize(labsize1);
 kfp[i][k]->GetYaxis()->SetLabelSize(labsize1);

 kfp[i][k]->GetXaxis()->SetTitleSize(xtsize1);
 kfp[i][k]->GetYaxis()->SetTitleSize(ktsize1);

 kfp[i][k]->GetXaxis()->SetTitleOffset(xtos1);
 kfp[i][k]->GetYaxis()->SetTitleOffset(ktos1);

 } else {

 kfp[i][k]->GetXaxis()->SetLabelSize(labsize2);
 kfp[i][k]->GetYaxis()->SetLabelSize(labsize2);
  kfp[i][k]->GetXaxis()->SetTitleSize(xtsize2);
 kfp[i][k]->GetYaxis()->SetTitleSize(ytsize2);

 kfp[i][k]->GetXaxis()->SetTitleOffset(xtos2);
 kfp[i][k]->GetYaxis()->SetTitleOffset(ytos2);

 }

 kfp[i][k]->Fit("fK","QN");
 fK[i][k]->SetLineColor(804);
 fK[i][k]->SetLineStyle(9);
 fK[i][k]->SetLineWidth(1);

 for(int j = 0; j < nkfsc; j++){

 if(tcase[i].compare(kftagsc[j]) == 0){
 kfp[i][k]->SetMaximum(kfmaxsc[j][k]);
 break;
 }else{
 kfp[i][k]->SetMaximum(2*(fK[i][k]->GetParameter(0)));
 }
 }

 kfp[i][k]->SetMinimum(0);

 if(manxdiv == true){
 kfp[i][k]->GetXaxis()->SetNdivisions(xdiv3[i], true);
 }

 if(manydiv == true){
 kfp[i][k]->GetYaxis()->SetNdivisions(ydivk[k][i], true);
 }

 kfp[i][k]->Draw("ap");
 fK[i][k]->Draw("same");

ckf[i][k]->RedrawAxis();
  if(addextv[i] == true){
 addextval[i]->Draw();
 }

 if(savepics == true){
 ckf[i][k]->SaveAs( Form("Pictures/ckf%sQ%01i.%s", tcase[i].c_str(), k,
picformat.c_str()) );



 }

 cout << "Tapauksessa " << i + 1 << "/" << cases << Form(" (%s) ",
tcase[i].c_str()) << "skaalavalinnalla " << Form("%s",kfQ[k].c_str()) << "
sovitettu K-tekijÃ¤ saa arvon " << fK[i][k]->GetParameter(0) << "+-" <<
fK[i][k]->GetParError(0) << "." << endl;  }

}

////////////////////////////////////////////

int iscom = 0;
int b;

for(int j = 0; j < ncom; j++){
 if(tcase[i].compare(tcom[j]) == 0){
 iscom++;
 b = j;
 }
}

if(iscom == 1){

 grLLcom[i] = (TGraph*)file->Get( Form("gr%sLL",tcase[i].c_str()) );
 grLLcom[i]->SetMarkerColor(kBlack);
 grLLcom[i]->SetMarkerSize(0);
 grLLcom[i]->SetLineWidth(2);

 grcom[b] = (TGraphAsymmErrors*)file->Get( Form("grcom%s",
tcase[i].c_str()) );  grcom[b]->SetLineColor(633);
 grcom[b]->SetMarkerSize(0);
 grcom[b]->SetLineWidth(2);

 ccom[b] = new TCanvas( Form("ccom%s", tcase[i].c_str()), Form("ccom%s",
tcase[i].c_str()), 1200.0, 500.0);
 ccom[b]->cd();

 if(comislog[b] == true){
 ccom[b]->SetLogy();
 }

 grcom[b]->SetMaximum(ycommax[b]);
 grcom[b]->SetMinimum(ycommin[b]);
 grcom[b]->GetXaxis()->SetLimits(xmin[i], xmax[i]);

 if(showtitles == true){
 grcom[b]->SetTitle( Form("Prosessien p#bar{p} #rightarrow %s ja pp
#rightarrow %s LO-kokonaisvaikutusalat", tqp[b].c_str(), tqp[b].c_str())
);
 } else {
 grcom[b]->SetTitle(" ");
 }

 grcom[b]->GetXaxis()->SetTitle( Form("%s",mrx[i].c_str()) );
 grcom[b]->GetYaxis()->SetTitle( Form("#sigma_{%s}(#sqrt{s} ) [%s]",
tqp[b].c_str(), comun[b].c_str()) );



 grcom[b]->GetXaxis()->SetLabelSize(labsize1);
 grcom[b]->GetYaxis()->SetLabelSize(labsize1);
  grcom[b]->GetXaxis()->SetTitleSize(xtsize1);
 grcom[b]->GetYaxis()->SetTitleSize(mrtsizeprim);

 grcom[b]->GetXaxis()->SetTitleOffset(xtos1);
 grcom[b]->GetYaxis()->SetTitleOffset(0.65); // b!

 grcom[b]->GetXaxis()->SetNdivisions(xdiv1[i], true);

 grcom[b]->Draw("alp");
 grLLcom[i]->SetLineWidth(2);
 grLLcom[i]->Draw("same"); // c- ja b-kvarkkiparien tuottojen
kokonaisvaikutusaloissa ei nÃ¤kyviÃ¤ eroja.

 ccom[b]->RedrawAxis();

 if(savepics == true){
ccom[b]->SaveAs( Form("Pictures/ccom%01i.%s", b, picformat.c_str()) );
 }

}

}

}

double Kfit(double *x, double *p){

return p[0];

}
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Liite E: Muuttujanvaihdot

Tässä liitteessä esitetään ohjelman Int.cc vaikutusalafunktioiden muuttujanvaihdot
sekä (integroitavat) lausekkeet. Kokonaisvaikutusalat saadaan lausekkeella

σ(pp(–)→ HQHQ +X) = F
∑

i,j=g,q,q

∫ 1

0

∫ 1

0
dx1dx2fi/p(x1,Qf )fj/p(–)(x2,Qf )σ̂(ij → QQ)

ja leikatut sekä differentioidut vaikutusalat integroimalla lauseketta

dσ(pp(–)→ HQHQ +X)
dpTdy3dy4

= 2FpT
∑

i,j=g,q,q
x1fi/p(x1,Q

2
f )x2fj/p(–)(x2,Q

2
f )
dσ̂(ij → QQ)

dt̂
.

Numeerinen integrointi on tarkempaa ja tehokkaampaa, kun integrointialue on hyper-
kuutio, jonka sisällä integrandi on jatkuva ja erisuuri kuin nolla. σ̂(ij → QQ) = 0,
kun ŝ = x1x2s ≤ 4m2

Q. Vastaavasti leikattu/differentioitu vaikutusala on nolla
alueissa, joissa aiemmin johdetut kinemaattiset rajat

pT ≤
√
s

4 −m
2
Q

|y3| ≤ arcosh(
√
s

2mT

)

−ln(
√
s

mT

− e−y3) ≤ y4 ≤ ln(
√
s

mT

− ey3)

eivät toteudu. Näistä rajoituksista johtuen minkään vaikutusalan integrointialue ei
ole automaattisesti halutun kaltainen hyperkuutio, vaan ne tulee muuttaa sellaisiksi
erikseen.

Tapaus σ(
√
s):

4m2
Q ≤ ŝ = x1x2s, joten (esimerkiksi)

4m2
Q

s
≤ x1 ≤ 1

4m2
Q

x1s
≤ x2 ≤ 1.

Esitetään x1 ja x2 uusien muuttujien r1,r2 ∈ [0,1] avulla:
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x1 =
4m2

Q

s
+ r1(1−

4m2
Q

s
)

x2 =
4m2

Q

x1s
+ r2(1−

4m2
Q

x1s
).

Tästä saadaan osittaisderivaatat

∂x1

∂r1
= (1−

4m2
Q

s
)

ja

∂x2

∂r2
= (1−

4m2
Q

x1s
).

Muuttujanvaihtoa (x1,x2)→ (r1,r2) vastaava Jacobin determinantti on

J(r1,r2) =

∣∣∣∣∣∣
∂x1
∂r1

∂x1
∂r2

∂x2
∂r1

∂x2
∂r2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∂x1
∂r1

0
∂x2
∂r1

∂x2
∂r2

∣∣∣∣∣∣
= ∂x1

∂r1

∂x2

∂r2

= (1−
4m2

Q

s
)(1−

4m2
Q

x1s
) ≥ 0.

Nyt kokonaisvaikutusala voidaan laskea integroimalla numeerisesti hyperkuutiossa
(ei aluetta ŝ = x1x2s ≤ 4m2

Q):

σ(
√
s) = F

∑
i,j=g,q,q

∫ 1

0

∫ 1

0
dx1dx2fi/p(x1,Qf )fj/p(–)(x2,Qf )σ̂(ij → QQ)

= F
∑

i,j=g,q,q

∫ 1

0

∫ 1

0
dr1dr2fi/p(x1,Qf )fj/p(–)(x2,Qf )σ̂(ij → QQ)J(r1,r2).
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Tapaus σpmin
T <pT<p

max
T , ymin<y<ymax(

√
s):

Tässä tapauksessa tulee ottaa huomioon aikaisemmin sovittu hadronisaation mal-
linnusapproksimaatio, jossa alkuperäisen kvarkin Q ja sen hadronin HQ ajatellaan
omaavan sama liikemäärä. Merkitään hadronin kinemaattisia suureita ilman indeksiä
(pz, y). Koska liikemäärän z-komponentti säilyy hadronisaatiossa, niin

p3z = pz

⇔ mT sinh(y3) = mHT sinh(y)

⇔ y3 = arsinh(mHT

mT

sinh(y)),

missä mHT =
√
m2
HQ

+ p2
T ja mT =

√
m2
Q + p2

T .

Ilmoitetaan antikvarkin rapiditeetti y4 uuden muuttujan w ∈ [0,1] avulla:

y4 = (w − 1)ln(
√

s

m2
Q + p2

T

− e−y3) + wln(
√

s

m2
Q + p2

T

− ey3)

Nyt voimme siirtyä muuttujista (pT ,y3,y4) muuttujiin (pT ,y,w):

pT = pT

y3 = y3(pT ,y)

y4 = y4(pT ,y,w)

Vanhoille muuttujille saadaan laskettua osittaisderivaatat

∂y3

∂y
= 1√

1 + (mHT

mT
sinh(y))2

· mHT

mT

cosh(y)

= cosh(y)√
m2

Q+p2
T

m2
HQ

+p2
T

+ sinh2(y)

ja

∂y4

∂w
= ln(

√
s

m2
Q + p2

T

− e−y3) + ln(
√

s

m2
Q + p2

T

− ey3)
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= ln( s

m2
Q + p2

T

−
√

s

m2
Q + p2

T

(ey3 + e−y3) + 1)

= ln( s

m2
Q + p2

T

+ 1− 2
√

s

m2
Q + p2

T

cosh(y3)).

Nyt

J(pT , y, w) =

∣∣∣∣∣∣∣∣∣
∂pT

∂pT

∂pT

∂y
∂pT

∂w
∂y3
∂pT

∂y3
∂y

∂y3
∂w

∂y4
∂pT

∂y4
∂y

∂y4
∂w

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 0 0
∂y3
∂pT

∂y3
∂y

0
∂y4
∂pT

∂y4
∂y

∂y4
∂w

∣∣∣∣∣∣∣∣∣
= ∂y3

∂y

∂y4

∂w

= cosh(y)√
m2

Q+p2
T

m2
HQ

+p2
T

+ sinh2(y)
ln( s

m2
Q + p2

T

+ 1− 2
√

s

m2
Q + p2

T

cosh(y3)) ≥ 0.

(∂y4
∂w
≥ 0, sillä s

m2
Q+p2

T
+ 1− 2

√
s

m2
Q+p2

T
cosh(y3) ≥ 0, koska 2E3 = 2mT cosh(y3) ≤

√
s.)

Täten

σpmin
T <pT<p

max
T , ymin<y<ymax(

√
s) =

∫ pmax
T

pmin
T

∫ ymax
3

ymin
3

∫ ymax
4 (pT ,y3)

ymin
4 (pT ,y3)

dy4dy3dpT
dσ

dpTdy3dy4

=
∫ pmax

T

pmin
T

∫ ymax

ymin

∫ 1

0
dpTdydw

dσ

dpTdy3dy4
J(pT , y, w).

dσ
dpT dy3dy4

= 0, kun
√
s

2 ≤ mT cosh(y3), koska energiaa ei ole tälloin tarpeeksi reaktioon.
Siten alhaisilla CMS-energioilla hyperkuution sisään jää alueita, joissa integrandi on
nolla. Kuitenkaan epäjatkuvuuskohtia ei synny tällä muuttujanvaihdolla.

Tapaukset σηmin<η<ηmax(
√
s) ja dσ

dη
(η):

Koska kvarkin ja vastaavan hadronin liikemäärät on approksimoitu samoiksi, niin
myös niiden pseudorapiditeetit η3 ja η ovat samat (η ≡ 1

2 ln( |p|+pz

|p|−pz
)). Kvarkin liike-

määrälle pätee |p3| = pT cosh(η), joten
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E3 =
√
m2
Q + |p3|

2 =
√
m2
Q + p2

T cosh2(η)

ja täten

pT =

√
E2

3 −m2
Q

cosh(η) .

Koska E3 ≤
√
s

2 , niin

pT ≤

√
s
4 −m

2
Q

cosh(η) .

Rapiditeetille ja pseudorapiditeetille pätee seuraava riippuvuus:

p3z = p3z

⇔ mT sinh(y3) = pT sinh(η)

⇔ y3 = arsinh( pT
mT

sinh(η)).

Voimme siirtyä muuttujista (pT ,y3,y4) muuttujiin (w1,η,w2):

pT = w1

√
s
4 −m

2
Q

cosh(η)
y3 = arsinh( pT

mT

sinh(η))

y4 = (w2 − 1)ln(
√

s

m2
Q + p2

T

− e−y3) + w2ln(
√

s

m2
Q + p2

T

− ey3).

Vanhoille muuttujille pätevät seuraavat osittaisderivaatat:

∂pT
∂w1

=

√
s
4 −m

2
Q

cosh(η)
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∂pT
∂η

= −w1

√
s
4 −m

2
Q

cosh2(η)
sinh(η)

= −w1

√
s
4 −m

2
Q

cosh(η) tanh(η)

= −pT tanh(η)

∂y3

∂η
= 1√

1 + ( pT

mT
sinh(η))2

[1 ·mT − pT · 1
2(m2

Q + p2
T )− 1

2 · 2pT
m2
T

∂pT
∂η

sinh(η) + pT
mT

cosh(η)
]

= 1√
1 + p2

T

m2
T
sinh2(η)

[
( 1
mT

− p2
T

m3
T

)(−pT tanh(η))sinh(η) + pT
mT

cosh(η)
]

= pT cosh(η)√
m2
T + p2

T sinh2(η)

[
− (1− p2

T

m2
T

)tanh2(η) + 1
]

= pT cosh(η)√
m2
Q + p2

T cosh2(η)

[
1− (

m2
Q + p2

T

m2
Q + p2

T

− p2
T

m2
Q + p2

T

)tanh2(η)
]

= pT cosh(η)√
m2
Q + p2

T cosh2(η)
(1−

m2
Q

m2
Q + p2

T

tanh2(η))

∂y3

∂w1
= ∂y3

∂pT

∂pT
∂w1

,

missä

∂y3

∂pT
= 1√

1 + ( pT

mT
sinh(η))2

·
1 ·mT − pT · 1

2(m2
Q + p2

T )− 1
2 · 2pT

m2
T

sinh(η)

= 1√
m2
T + p2

T sinh2(η)
(1− p2

T

m2
Q + p2

T

)sinh(η)

= cosh(η)√
m2
Q + p2

T cosh2(η)
(
m2
Q + p2

T

m2
Q + p2

T

− p2
T

m2
Q + p2

T

) sinh(η)
cosh(η)

= cosh(η)√
m2
Q + p2

T cosh2(η)
m2
Q

m2
Q + p2

T

tanh(η).

Osittaisderivaatta ∂y4
∂w2

on sama kuin tapauksessa σpmin
T <pT<p

max
T , ymin<y<ymax(

√
s):
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∂y4

∂w2
= ln( s

m2
Q + p2

T

+ 1− 2
√

s

m2
Q + p2

T

cosh(y3)).

Täten Jacobin determinantti on

J(w1, η, w2) =

∣∣∣∣∣∣∣∣∣
∂pT

∂w1

∂pT

∂η
∂pT

∂w2
∂y3
∂w1

∂y3
∂η

∂y3
∂w2

∂y4
∂w1

∂y4
∂η

∂y4
∂w2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∂pT

∂w1

∂pT

∂η
0

∂y3
∂w1

∂y3
∂η

0
∂y4
∂w1

∂y4
∂η

∂y4
∂w2

∣∣∣∣∣∣∣∣∣
=
[∂pT
∂w1

∂y3

∂η
− ∂y3

∂w1

∂pT
∂η

] ∂y4

∂w2

=
[∂pT
∂w1

∂y3

∂η
− ∂y3

∂pT

∂pT
∂w1

∂pT
∂η

] ∂y4

∂w2

=
[∂y3

∂η
− ∂y3

∂pT

∂pT
∂η

]∂pT
∂w1

∂y4

∂w2

=
[ pT cosh(η)√

m2
Q + p2

T cosh2(η)
(1−

m2
Q

m2
Q + p2

T

tanh2(η))

− cosh(η)√
m2
Q + p2

T cosh2(η)
m2
Q

m2
Q + p2

T

tanh(η)(−pT tanh(η))
]

√
s
4 −m

2
Q

cosh(η) ln( s

m2
Q + p2

T

+ 1− 2
√

s

m2
Q + p2

T

cosh(y3))

=
[ pT cosh(η)√

m2
Q + p2

T cosh2(η)
− pT cosh(η)√

m2
Q + p2

T cosh2(η)
m2
Q

m2
Q + p2

T

tanh2(η)

+ pT cosh(η)√
m2
Q + p2

T cosh2(η)
m2
Q

m2
Q + p2

T

tanh2(η)
]

√
s
4 −m

2
Q

cosh(η) ln( s

m2
Q + p2

T

+ 1− 2
√

s

m2
Q + p2

T

cosh(y3))

= pT

√√√√ s
4 −m

2
Q

m2
Q + p2

T cosh2(η)
ln( s

m2
Q + p2

T

+ 1− 2
√

s

m2
Q + p2

T

cosh(y3)) ≥ 0.

Pseudorapiditeetin suhteen leikatun vaikutusalan lausekkeeksi saadaan



190

σηmin<η<ηmax(
√
s) =

∫ ymax
3 (ηmax)

ymin
3 (ηmin)

∫ pmax
T (y3)

0

∫ ymax
4 (pT ,y3)

ymin
4 (pT ,y3)

dy4dpTdy3
dσ

dpTdy3dy4
.

=
∫ 1

0

∫ ηmax

ηmin

∫ 1

0
dw1dηdw2

dσ

dpTdy3dy4
J(w1, η, w2).

Tapauksessa dσ
dη

(η) vaikutusalan lauseke on sama kuin leikatulla vaikutusalalla
σηmin<η<ηmax , mutta nyt pseudorapiditeetin yli ei integroida:

dσ

dη
(η) =

∫ 1

0

∫ 1

0
dw2dw1

dσ

dpTdy3dy4
J(w1, η, w2).

Tapaukset dσ
dpT

(pT ) ja dσymin<y<ymax
dpT

(pT ):

Siirrytään integroitavista muuttujista (y3,y4) muuttujiin (y3,w):

y3 = y3

y4 = (w − 1)ln(
√

s

m2
Q + p2

T

− e−y3) + wln(
√

s

m2
Q + p2

T

− ey3),

missä jälkimmäiselle rapiditeetille pätee jälleen

∂y4

∂w
= ln( s

m2
Q + p2

T

+ 1− 2
√

s

m2
Q + p2

T

cosh(y3)).

Nyt

J(y3, w) =

∣∣∣∣∣∣
∂y3
∂y3

∂y3
∂w

∂y4
∂y3

∂y4
∂w

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1 0
∂y4
∂y3

∂y4
∂w

∣∣∣∣∣∣ = ∂y4

∂w
= ln( s

m2
Q + p2

T

+ 1− 2
√

s

m2
Q + p2

T

cosh(y3)) ≥ 0.

ja

dσ

dpT
(pT ) =

∫ ymax
3 (pT )

ymin
3 (pT )

∫ ymax
4 (pT ,y3)

ymin
4 (pT ,y3)

dy4dy3dpT
dσ

dpTdy3dy4

=
∫ ymax

3 (pT )

ymin
3 (pT )

∫ 1

0
dwdy3

dσ

dpTdy3dy4
J(y3, w).

Tapaukselle dσymin<y<ymax
dpT

(pT ) vaikutusalan lauseke on sama kuin edellä, mutta nyt
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ymax
3 =


arcosh(

√
s

2mT
), kun arcosh(

√
s

2mT
) ≤ arsinh(

m2
HQ

+p2
T

m2
Q+p2

T
sinh(ymax))

arsinh(
m2

HQ
+p2

T

m2
Q+p2

T
sinh(ymax)), muutoin

ymin
3 =


−arcosh(

√
s

2mT
), kun − arcosh(

√
s

2mT
) ≥ arsinh(

m2
HQ

+p2
T

m2
Q+p2

T
sinh(ymin))

arsinh(
m2

HQ
+p2

T

m2
Q+p2

T
sinh(ymin)), muutoin.

Tapaus dσ
dy

(y):

Merkitään y ≡ y3 (hadronisaatiota ei käsitellä tässä tapauksessa). Poikittaisliike-
määrä voidaan ilmoittaa (anti)kvarkin massan, rapiditeetin ja energian avulla:

E3 = mT cosh(y3)

⇔ E2
3

cosh2(y3)
= m2

T

⇔ pT =

√√√√ E2
3

cosh2(y3)
−m2

Q.

Siispä

pT ≤

√√√√ (
√
s

2 )2

cosh2(y3)
−m2

Q =
√

s

4cosh2(y3)
−m2

Q.

Siirrytään muuttujiin (w1,w2):

pT = w1

√
s

4cosh2(y3)
−m2

Q

y4 = (w2 − 1)ln(
√

s

m2
Q + p2

T

− e−y3) + w2ln(
√

s

m2
Q + p2

T

− ey3)

Nyt

∂pT
∂w1

=
√

s

4cosh2(y3)
−m2

Q

ja
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∂y4

∂w2
= ln( s

m2
Q + p2

T

+ 1− 2
√

s

m2
Q + p2

T

cosh(y3)).

Jacobin determinantti on

J(w1, w2) =

∣∣∣∣∣∣
∂pT

∂w1

∂pT

∂w2
∂y4
∂w1

∂y4
∂w2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∂pT

∂w1
0

∂y4
∂w1

∂y4
∂w2

∣∣∣∣∣∣ = ∂pT
∂w1

∂y4

∂w2

=
√

s

4cosh2(y3)
−m2

Q ln( s

m2
Q + p2

T

+ 1− 2
√

s

m2
Q + p2

T

cosh(y3)) ≥ 0.

Nyt (anti)kvarkin rapiditeetin y suhteen differentioitu vaikutusala on

dσ

dy
(y) =

∫ pmax
T (y)

0

∫ ymax
4 (pT ,y)

ymin
4 (pT ,y)

dy4dpT
dσ

dpTdy3dy4

=
∫ 1

0

∫ 1

0
dw1dw2

dσ

dpTdy3dy4
J(w1, w2).
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Liite F: NLO-partonijakaumafunktiot

Tässä liitteessä on esitetty CT14-NLO-partonijakaumafunktiot [62], joita on hyö-
dynnetty, kun LO-vaikutusaloille on arvioitu LO-partonijakaumafunktioiden epävar-
muudesta tulevat virheet.
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Kuva F1. CT14-NLO-partonijakaumafunktiot xfi(x,Qf ) pitkittäisliikemääräo-
suuden x funktiona, faktorisaatioskaaloilla Qf = 1,3 ja 2,09 GeV [62]. Vasemman-
puoleiset kuvaajat edustavat ns. tavanomaisten hiukkasten, g (musta), u (vihreä),
d (sininen), s (vaaleansininen), c (oranssi) ja b (violetti), partonijakaumafunk-
tioita ja oikeanpuoleiset antihiukkasten g, u, d, s, c ja b partonijakaumafunktioita
(värit vastaavasti kuin tavanomaisilla hiukkasilla).
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(f)

Kuva F2. CT14-NLO-partonijakaumafunktiot xfi(x,Qf) pitkittäisliikemäärä-
osuuden x funktiona, faktorisaatioskaaloilla Qf = 2,54, 4,18 ja 8,36 GeV [62].
Käyrien värit ja kuvien merkitykset ovat samat kuin kuvassa F1.
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(f)

Kuva F3. CT14-NLO-partonijakaumafunktiot xfi(x,Qf ) pitkittäisliikemääräo-
suuden x funktiona, faktorisaatioskaaloilla Qf = 16,72, 86,45 ja 172,9 GeV [62].
Käyrien värit ja kuvien merkitykset ovat samat kuin kuvassa F1.
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Kuva F4. CT14-NLO-partonijakaumafunktiot xfi(x,Qf ) pitkittäisliikemääräo-
suuden x funktiona, faktorisaatioskaaloilla Qf = 345,8 GeV, 691,8 GeV ja 1 TeV
[62]. Käyrien värit ja kuvien merkitykset ovat samat kuin kuvassa F1.
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