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Abstract

This work presents recent developments on brane tilings and their vacuum moduli
spaces.

Brane tilings are bipartite periodic graphs on the torus and represent 4d N = 1
supersymmetric worldvolume theories living on D3-branes probing Calabi-Yau 3-fold
singularities. The graph and combinatorial properties of brane tilings make the set
of supersymmetric quiver theories represented by them one of the largest and richest
known so far. The aim of this work is to give a concise pedagogical introduction to brane
tilings and a summary on recent exciting advancement on their classification, dualities
and construction.

At first, particular focus is given on counting distinct Abelian orbifolds of the form
C3/T. The presented counting of Abelian orbifolds of C? and in more general of C”
gives a first insight on the rich combinatorial nature of brane tilings. Following the
classification theme, the work proceeds with the identification of all brane tilings whose
mesonic moduli spaces as toric Calabi-Yau 3-folds are represented by reflexive polygons.
There are 16 of these special convex lattice polygons. It is shown that 30 brane tilings
are associated with them. Some of these brane tilings are related by a correspondence
known as toric duality.

The classification of brane tilings with reflexive toric diagrams led to the discovery
of a new correspondence between brane tilings which we call specular duality. The
new correspondence identifies brane tilings with the same master space — the combined
mesonic and baryonic moduli space. As a by-product, the new correspondence paves
the way for constructing brane tilings which are not confined to the torus but are on
Riemann surfaces with arbitrary genus. We give the first classification of genus 2 brane
tilings, illustrate the corresponding supersymmetric quiver theories and analyse their

vacuum moduli spaces.
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1 Introduction and Outline

1.1 Motivation

The research presented in this work is mainly based on the publications in [1, 2] [3]
4, 5], 6], [7, 8] and has focused on various aspects of supersymmetric gauge theories in
relation to quantum field theory and string theoryE] They have attracted much interest
both on the phenomenology as well as on the more formal side of string theory. One of
the chief obligations of the theoretical particle physics and string theory community is
to reconcile high-energy, supersymmetric and extra-dimensional theories to low-energy
4d gauge dynamics. This is especially important in light of a tour de force in string
phenomenology to construct a framework for beyond-standard-model physics. The flow
of data from the Large Hadron Collider (LHC) provides a powerful guidance for both
experimentalists and theorists, and underscores the importance of the role string theory
can play.

The beauty of studying supersymmetric gauge theories is that many of their properties
can be analysed exactly and non-perturbatively. This provides an ideal environment in
which one can study the dynamics of gauge theories [30, 31, B2], and a wide range of
phenomena such as gauge theory phases and dualities [33], BT, 34] 35, 86, B7]. Most of
these phenomena can be viewed from a string theory perspective. This can be done via
the use of brane configurations and the AdS/CFT correspondence.

The gauge/gravity correspondence [38| [39, 40] has been the guiding beacon for much
research and many advances in the field of theoretical high energy physics. This conjec-
ture is a weak-strong coupling duality, in the sense that it connects the weak (strong)
coupling regime of a gravity theory on AdS with the strong (weak) coupling limit of a
CFT living on its boundary. This is what makes the correspondence, conjectured by
Maldacena in 1997 [38], absolutely non-trivial and thoroughly invigorating: by studying
the weak coupling limit of one side, one can learn a great deal on the strong coupling
limit of the other side.

A very powerful way to construct interesting gauge theories is by probing Calabi-Yau
singularities with D-branes [41] 42} [43]. Through this construction, a very deep connec-
tion between geometry and physics manifests itself, as different singularities give rise to

different conformal field theories. This construction using D3-branes typically leads to

IFor beautiful books and excellent reviews, the reader is referred to a personal selection [19] 20| 21],
22 23] 241 25|, [26], 27 28] [29].
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theories with unitary gauge groups, bifundamental or adjoint matter and some superpo-
tential. The matter content of the theories can be beautifully represented with a graph
known as the quiver. The theory itself is referred to as a quiver theory [44]. A quiver
and a superpotential contain all the information needed to construct the Lagrangian of
the 4d N = 1 supersymmetric gauge theory [45] [46] [47].

Recent fruitful interactions between mathematics and physics are related to super-
symmetric quiver gauge theories in string theory. The space of solutions to the field
equations — the moduli space of vacua — exhibits intricate structures which are of great
interest for instance to algebraic geometry. Moduli spaces can be Calabi-Yau and toric,
and tools from algebraic geometry and even number theory can be used to identify
dualities and to test conformality of the supersymmetric theories.

A powerful tool to study the structure of the moduli space of vacua of a supersymmet-
ric quiver gauge theory is to calculate the associated Hilbert series [48] 149, (50} 511 [52].
It is a partition function of holomorphic gauge invariant operators that play a central
role in characterising the vacuum configuration of the theory. Not only does it carry
information on the spectrum of operators, but also identifies whether the moduli space
is Calabi-Yau or what its volume function and dimension are.

For 4d N' = 1 worldvolume theories of D3-brane at Calabi-Yau 3-fold singularities, the
dual string theory background is AdS5 x X5 where X5 is a Sasaki-Einstein 5-manifold
[45] 53], 42]. The field theory is superconformal [15, [54] and it can be represented by a
periodic bipartite graph on a 2-torus. The graph is called a brane tiling [I5 55] and it
has been used to classify supersymmetric gauge theories with toric Calabi-Yau moduli
spaces and to study new gauge theory dualitiesﬂ

The recent progress in the study of brane tilings, also known as dimer models, is
a classic example of the fruitful interaction between physics and mathematics. The
subject has led to hundreds of papers in the past 7 years, fuelled by new developments
in algebraic/differential geometry and gauge/string theories.

Brane tilings encode the matter content and superpotential of the supersymmetric
quiver gauge theory. The underlying string theory brane construction [66, 67, 68, 15], [55]
led to the term in the early physics literature. The name dimer more often used in
mathematics, originates from the graph’s similarity to a chemical compound consisting
of two molecular components. Dimers have been much studied in early mathematics
literature [66), 67, [69] [70].

Dimers and brane tilings have had an immense impact on mathematics and physics.

The topics in string theory and high-energy physics related to brane tilings areﬂ

*For 3d N = 2 worldvolume theories of M2-branes at 4-fold singularities [56} 57, 58} 59} [60} [61], the dual
M-theory background is AdSs X X7 where X7 is a Sasaki-Einstein 7-manifold [53] 42} [62] [63]. The
brane tiling is modified to incorporate the Chern-Simons levels of the 3d theory [63] [64] [65]. These
modified brane tilings are not the subject of this work and are mentioned here for completeness.

3Note that the references selected here are designed to give a taste of the topics and are far from
complete.
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Figure 1.1: Brane Tiling landscape of physics and mathematics. Brane tilings bring
together a plethora of subjects in physics and mathematics.

AdS/CFT correspondence in 3 + 1d and 2 + 1d: Calabi-Yau cones over Sasaki-
Einstein 5-manifolds [45], 53], [42] and 7-manifolds [53] [42] [62], 63]

Moduli spaces of supersymmetric gauge theories [71], [72, [73] [74] [75] 18, 52| [15] 55]

Seiberg Duality in gauge theory [34} 35, [36), [37]

Local constructions of MSSM and String Phenomenology [76]

Crystal Melting and Wall-Crossing Phenomena [77, [78] [79]

Integrable systems [80 [81]

e N =4 scattering amplitudes [82]

On the mathematics side, dimers have made a great impact in the following subjects:
e Mirror Symmetry [83]
e Graph Theory and Combinatorics [66] 67]

e Tropical Geometry [84]
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e Calabi-Yau algebras [85], [86] [87]
e Number Theory: dessin d’enfant, finite fields [8§]

These are promising topics for further investigation amongst mathematicians and physi-
cists. Figure shows schematically the different areas of mathematics and physics
connected by brane tilings and their properties and the tools used to study them. The
following sections aim to give a concise review on brane tilings. This work is written to
be a helpful guide for the novice reader who wants to learn about the techniques and

recent exciting developments on brane tilings.

1.2 Brane Tilings

The following section is a review on brane tilings [I5, 55]. Brane tilings are graphical
representations of the quiver and superpotential of a 3 + 1 dimensional worldvolume
theory living on a stack of D3-branes which probe a singular toric Calabi-Yau 3-fold.
These theories are superconformal and are dual to Type IIB string theory in a AdSs x X5
background where X5 is a Sasaki-Einstein 5-manifold [45] 42]. Sections and
review quivers and superpotentials for brane tilings respectively. Section gives the
construction of periodic bipartite graphs on the 2-torus and how they are interpreted
as brane tilings.

The following sections are based on the original papers [15, [55], reviews [89, [90] and

extracts from [5 [7].

1.2.1 Quivers

Quiver Q. The matter content of a supersymmetric gauge theory corresponding to a
brane tiling is specified by a directed graph known as the quiver [44] 86, [91]. It consists

of the following components:
e Vertices in Q correspond to U(N;) gauge groups with i =1,...,G.

e Edges in Q correspond to the matter fields X;;. The matter fields are bifun-
damental and transform under the fundamental of U(N;) and antifundamental of
U(N;), imposing a direction on the quiver edges, i — j. The anomaly cancellation
condition for the quiver gauge theory sets the number of incoming and outgoing

edges on a quiver vertex to be equal.

e The incidence matrix doxg for E bifundamental matter fields encodes the

quiver. Its entry for a gauge group U(N;) is —1 for X;;, +1 for Xj;, and 0
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otherwise. The matrix dgx g has G — 1 independent rows which can be collected

in a new matrix called Ag_1)xe-

In general, the ranks of the U(N;) gauge groups are N; > 1. For most parts of the
following work on brane tilings, we consider the ranks of all gauge groups to be equal.
If not explicitly stated otherwise, the quiver is considered to be Abelian where for all i,

N; = 1. For this case, we call the theory and its brane tiling Abelian.

Figure 1.2: The quiver for phase b of the Hirzebruch Fy model.

Example. Figure shows the quiver diagram for phase b of the Hirzebruch Fy model

[92, 55, 15, 93]. The corresponding quiver incidence matrix is

X114 X124 X211 X221 X213 X223 X%Zl X§4 XiQ XZQ XZ:EQ XZLILQ
1 -1 1 1 0 0 0 0 0 0 0 0
o 0 -1 -1 -1 -1 0 0 1 1 1 1
o 0 0 0 1 1 -1 -1 0 0 0 0

(1.2.1)

We note that the columns of the incidence matrix are linearly dependent and hence the

matrix can be reduced to a matrix A with 3 rows.

Anomaly Cancellation. For the most general case where the ranks of the U(N;)
gauge groups in the quiver diagram are V; > 1, the anomaly cancellation condition [54]

can be written in terms of the quiver incidence matrix d as follows

> diN; =0, (1.2.2)

a=(i,j)

where the sum goes over all arrows labelled by a = (7, j) which are between nodes i and

Jj. Nj is the rank of the U(NN;) group represented by node j in the quiver.
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OO

Figure 1.3: Block quivers. For the quiver for phase b of the Hirzebruch Fy model vertices
1 and 3 share the same incidence information with no matter fields between
them. They are combined into a block. All matter fields intersecting the
block are colored red and are combined such that a red arrow represents all

possible connections from and to all vertices within the block.

Block Quivers. If two or more quiver vertices share the same intersection number
with other quiver vertices and have no matter fields between any two of them, then the
quiver vertices can be grouped into a block [94] [95]. This property is illustrated in the
example for phase b of the Hirzebruch Fy model in Figure [1.3

1.2.2 Toric Superpotentials

Toric Superpotential W. The superpotential for a brane tiling is a polynomial in

quiver fields with the following conditions:

e Gauge invariance. Every term in W is a gauge invariant combination of quiver
fields. In terms of the quiver diagram, every term in W corresponds to a closed

directed loop in the quiver.

e Bipartite. The superpotential W has positive and negative terms. The number

of positive terms is equal to the number of negative terms.

e Toric. Every quiver field appears twice in W, once in a positive term and once in
a negative term. This ensures that the critical points xW = 0 in the superpo-
tential, i.e. the F-terms, are relations between monomials. This toric condition

ensures that the vacuum moduli space of the brane tiling is toric [14].

The superpotential W has an overall trace. For conciseness of notation, this trace is
omitted in the following writing and the reader is reminded of this notational simplifi-

cation.
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Ezample. The superpotential for phase b of the Hirzebruch Fy model whose quiver
diagram is shown in Figure is

W = +X3 X1 Xpo+ X5 X7 X5 + X33 X5, X5 + X33 X3, X0y
— X X7y X5y — X5 X1, X — X3 X3, X5y — X535 X5, X4 . (1.2.3)

The superpotential is bipartite and toric. There are precisely 12 quadratic F-terms

which equate single monomials. The first few F-terms are,

1yl 4 2 2 2 3 vl
XioXo1 = XipXoy , Xjp X9y = Xip Xy
1 y1 2 3 2 2 1 4
X1y Xgp = Xy Xipp , X3 Xip = Xy Xpp» -0 (1.2.4)
Mass terms. All terms in W are cubic or of higher degree. Quadratic terms relate
to mass terms which are integrated out. The mass terms correspond to two bifun-

damental fields in the quiver with opposite gauge charges. A generic example is given
by

W = —|—X12X21 — X12P21(X) — X21P12(X) + ..., (125)

where X2, X9 are the quiver fields contributing to the mass term and Pj2(X), Po1(X)

are generic polynomials in quiver fields. The F-terms for fields X2, Xo1 are
X2 = Po1(X) , Xo1 = P2o(X), (1.2.6)
which are used to give
W =—P(X)Py(X)+... . (1.2.7)

Accordingly, quadratic mass terms are irrelevant for the construction of brane tiling
superpotentials. In the brane tiling picture, integrating out mass terms corresponds to

the removal of valence 2 nodes.

1.2.3 Bipartite Graphs and the Brane Tiling

Bipartite graphs have been studied extensively in mathematicsﬁ before they were first
introduced by Hanany and Kennaway as brane tilings in string theory. In mathematics
they have played an important role in representing Calabi-Yau geometry and algebras
[851 ©9].

1A selection of pioneering work by Kenyon and collaborators are [96], 97, 08].
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bipartite periodic 4d N=1 Quiver
graph on T2 Gauge Theory

Edge

B

&
<€

v

Bifundamental or Adjoint Field
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White Node oo (No o)

v

Positive Superpotential Term
W=..-+ABC+...
Black Node

v

Negative Superpotential Term
E W=...— ADE + ...

Face

v

Gauge Group U(N)

Figure 1.4: Brane Tiling Dictionary. A brane tiling consists of nodes, edges and faces
which correspond respectively to superpotential terms, quiver fields and
gauge groups.

Brane Tilings/Dimers. The superpotential and the quiver can be combined into a
single representation. The representation is known as a brane tiling or dimer [I5] [55]

100} [86]. Tt is a periodic bipartite graph on T2 and has the following components:

e White (resp. black) nodes correspond to positive (negative) terms in the

superpotential. They have a clockwise (anti-clockwise) orientation.

e Edges connect to nodes and correspond to the quiver fields in the superpotential.
Going along the induced orientations around nodes, one can identify the matter

fields associated to a specific superpotential term in the correct cyclic order.

e Faces correspond to U(N;) gauge groups. Every edge X;; in the tiling has two
neighbouring faces corresponding to U(V;) and U(N;). The quiver orientation of
the bifundamental field X;; is given by the orientation around the black and white

nodes at the two ends of the corresponding tiling edge.

Figure illustrates the brane tiling dictionary.

Ezxample. Figure[L.5]shows the brane tiling and quiver diagram for the suspended pinch
point (SPP) model [34] 101}, 102]. The corresponding superpotential is

W = +X13X31X11 + X12X23X32 X901 — X120 X01 X171 — X13X30X03X31 .
(1.2.8)

Fundamental Domain. The fundamental domain of the 2-torus 72 on which the

brane tiling is drawn is interpreted as a section of the periodic tiling which contains
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Figure 1.5: Brane tiling and quiver for the suspended pinch point (SPP) model. The
quiver fields are labelled both in the brane tiling and quiver diagram. The
field X711 between two equivalent faces in the brane tiling is an adjoint field.

(1,0)

e L

(0,1)

Figure 1.6: Fundamental cell of the C? brane tiling with heights. By repeated pasting
of the fundamental cell along the a- and b-cycles of the 2-torus, the periodic
brane tiling is constructed. Each copy of the fundamental cell can be given
a height (hg, hp) in relation to the reference fundamental cell (0, 0).

the quiver and superpotential information without repetition. Repeated pasting of the
fundamental domain along the fundamental a- and b-cycles of the torus reproduces the
complete periodic brane tiling. Figure illustrates this process for the C brane tiling.

Every copy of the fundamental cell can be given a height (h,,hp) in relation to a
reference copy of the cell, i.e. the origin. h, and h; count respectively how many copies
of fundamental cells the cell with height (hg,hy) is away from the origin along the a-
and b-cycles of the 2-torus.

Brane Construction [55, [90]. Brane tilings represent superconformal worldvolume

theories living on a stack of D3-branes which probe a singular Calabi-Yau 3-fold. The

singularity is conical and the base of the non-compact toric Calabi-Yau is a Sasaki-
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4d N=1| Superconformal Gauge Theory

A

/\S Stack of D3-branes
worldvolume theory of a
CY3 cone stack of N D3 branes
probing singular CY

Sasaki-Einstein 5-base

v

9+1d Type IIB on AdS; x X;

Figure 1.7: AdS/CFT correspondence. The superconformal gauge theory living on the
probe D3-branes is dual to Type IIB string theory on AdSs x X5.

] 01 2 3 45 6 7 8 9]

D3 |o o o o
CY3 o o o o o o

Table 1.1: D3-branes probing the toric Calabi-Yau 3-fold.

Einstein 5-manifold X5. The worldvolume theory is dual to Type IIB 9+ 1 dimensional
string theory in AdSs x X5 [45,142]. The duality is illustrated schematically in Figure
Table shows the brane configuration in 9 + 1 dimensions.

Under T-duality, the D3-branes are mapped to D5-branes and the CY 3-fold is
mapped to NS5-branes wrapping holomorphic curves. Let us illustrate the connection
with a simple example. Given N = 4 super-Yang-Mills theory with C3 which is dual
to Type IIB string theory in AdSs x S°, we can introduce ny NS5-branes wrapping the
45-directions which give the orbifold C3/Z,,. A further set of ny NS5-branes wrapping
the 67-directions would give the orbifold C3/Z,,, x Zy,. The probe D3-branes dualise to
Db5-branes which are suspended between the set of NS5-branes and are wrapped along
the 46-directions. The 46-directions are precisely where the D5- and NS5-branes inter-
sect and relate to the 2-torus of the brane tiling picture. T-duality precisely acts on
these torus directions. Table shows the 5-brane configuration in 941 dimensions.

In general, the NS5-branes wrap a complex curve f(z,y) where x,y are respectively

y 01 2 3 45 6 7 8 9]

mD5 |o o o o o o
ni NS5 |o o o o o o
no NS5 | o o o o o o

Table 1.2: 5-brane construction underlying a brane tiling on 72 for C3/Z,, x Z,. The
T? directions are 46.
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T-duality

Figure 1.8: Illustration of the 5-brane construction underlying a brane tiling on T2.

| 01 2 3 45 6 7 8 9|

D5 |o o o o o o
NS5 o o o o —f(z,y)—

Table 1.3: 5-brane construction underlying a brane tiling on 72 for a general Calabi-Yau
3-fold. The T2 directions are 46 and f(x,%) is a complex curve in holomorphic
coordinates x,y which respectively are given by the coordinates 45 and 67.
The NS5-branes wrap f(z,y).

holomorphic coordinates in 45 and 67. Accordingly, we can have any toric non-compact
Calabi-Yau 3-fold beyond C?® and its Abelian orbifolds. The presence of NS5-branes
also breaks the supersymmetry from N' = 4 to N' = 1. For the special case of the
NS5-branes wrapping only a curve parameterised by a single holomorphic coordinate x,
the supersymmetry is broken to just A" = 2. Note that this is a natural generalisation
of brane interval [30] and brane box [68] constructions which can be considered as pro-

totypical brane tilings.

1.3 Properties of the Bipartite Graph and Consistency

Brane tilings as periodic bipartite graphs on the 2-torus are computationally far more
superior than a quiver and toric superpotential on their own. This is because as a graph,
brane tilings posses many graphical properties that can be used as effective tools in the
computation of physical quantities of the corresponding superconformal field theory.

The following section gives a summary of the graphical properties of a brane tiling.
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P1 P2 p3

P4 DPs DPe

b PO O

Figure 1.9: Perfect matchings of the suspended pinch point (SPP) model. The SPP
brane tiling has in total 6 perfect matchings. The fundamental domain is
highlighted in green.

1.3.1 Perfect Matchings

Perfect Matching [55, [103]. A perfect matching p, is a set of bifundamental fields
which connects to all nodes in the brane tiling precisely once. It corresponds to a point in
the toric diagram [41], 42] of the Calabi-Yau 3-fold. A perfect matchings which relates
to an extremal (corner) point of the toric diagram has non-zero IR U(1)gr Chargeﬂ
An internal as well as a non-extremal toric point on the perimeter of the toric diagram
has zero R-charge. We call all points on the perimeter external, including extremal
ones. The number of internal, external and extremal perfect matchings is denoted by
n;, ne and n, respectively. All perfect matchings are summarized in a matrix Pex. [71],
where e is the number of matter fields and ¢ the number of perfect matchings. The

perfect matching matrix P.x. takes the form

: (1.3.9)

1 ifXepa
Tl 0 i X ¢ pa

®A discussion on R-charges follows in section §1.5.2]
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where i =1,...,eand a=1,...,c

Example. Figure shows the 6 perfect matchings of the SPP model. The correspond-

ing perfect matching matrix is

pP1 P2 P3 P4 D5 D6

(1.3.10)

9
O O O = O O =
S O B O O O
_ o O O = O O
oSO = O O O = O
S = O O = O O
— o O O O = O

Winding numbers of perfect matchings. A winding number w can be assigned
to an oriented object that passes between two copies of the fundamental cell of a brane
tiling with heights (hg, hy) and (kq, kp). The winding number is the difference in heights
(hq — ka, hy — kp) where the sign of the difference is determined by the orientation of
the object.

Every edge in the brane tiling has an assigned orientation according to white and
black nodes that connect to it. This orientation indicates the gauge charges carried by
the corresponding quiver field. We can now define an orthogonal orientation which
is by convention always along the edge from a white to a black node. Accordingly, every
brane tiling edge X; carries a winding number w(X;) = (h%, hj) under the orthogonal
orientation. If an edge does not cross the boundary of a set fundamental domain, then
it carries a trivial winding number (0, 0).

Using the definition of winding numbers for tiling edges, the winding number of a

perfect matching p,, is defined as

wlpa) = Y w(X;)= Y (hi,hj). (1.3.11)

Xi€pa Xi€pa

When the winding numbers of all perfect matchings of a brane tiling are taken as Z2
lattice coordinates of a set of points, the convex hull of the lattice points forms a polygon
which is identified as the toric diagram of the toric Calabi-Yau 3-fold [55] [103].

Note that the choice of the fundamental cell is GL(2, Z) invariant. Accordingly, wind-
ing numbers of perfect matchings and tiling edges can be GL(2,Z) transformed without

loss of information. In other words, the toric diagram is considered to be invariant
under GL(2,Z).

Example. Figure shows the perfect matchings of the brane tiling of SPP with
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Figure 1.10: Perfect matchings of the SPP model with the toric diagram from the perfect
matching winding numbers. The toric diagram of the non-compact Calabi-
Yau 3-fold is the convex hull of the set of lattice points whose coordinates
are given by the corresponding perfect matching winding numbers.

the corresponding winding numbers for the given perfect matchings. The set of lattice
points which are obtained by taking the winding numbers as coordinates on Z? give the

toric diagram of SPP. The winding numbers are

w(pl) = (07*1) ) w(p2) (*17 *1) ) w(p3) = (*270) )
w(p4) = (050) ) w(pS) = (_170) > w(pﬁ) = (_1’0) . (1'3'12)

From the toric diagram we observe that the perfect matchings p1, p2, p3, p4 are extremal
and the perfect matchings ps, pg are external but not extremal. The two perfect match-

ings have the same winding number and correspond to the same toric point.

GLSM fields. The geometry of the toric Calabi-Yau 3-fold is encoded in the brane
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Figure 1.11: The zig-zag paths of the SPP brane tiling with their winding numbers. The
winding number of every zig-zag path can be represented as vectors in the
72 lattice. The resulting fan corresponds to the (p, q)-web diagram.

tiling as we have seen above. A new basis of fields is defined from the set of quiver fields
in order to describe both F-term and D-term constraints of the supersymmetric gauge
theory. The new fields are known as gauge linear sigma model (GLSM) fields [104] and
precisely correspond to perfect matchings [15] (16, [89] [71] of the brane tiling.

1.3.2 Zig-Zag Paths

Zig-zag paths 7; [105, 16]. A zig-zag path is a closed path along the edges on the
brane tiling which alternates between white and black nodes. The path is such that it
makes precisely one maximal clockwise turn around a white note and then a maximal
anti-clockwise turn around the next black node before reaching the next edge and node
in the sequence. A fundamental cell of a brane tiling has always a finite number of
zig-zag paths. They correspond to the closed curves wrapped by the NS5-branes and
the 46 torus cycles along which the NS5-branes intersect the D5-branes [106, [90].

(p, q)-web diagrams [107, 108]. Every zig-zag path has a winding number in relation

to a reference fundamental cell of the brane tiling. The winding numbers of the zig-zag

paths of a brane tiling can be drawn as rays from the origin of a Z? lattice. We call
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Figure 1.12: The (p,q)-web of SPP and the corresponding triangulations of the toric
diagram. The winding numbers of the zig-zag paths give a reduced (p, q)-
web diagram which can be extended such that the vertices of the web are
all cubic. The dual of an extended (p, ¢)-web diagram is a triangulation of
the toric diagram.

the resulting fan the reduced (p,q)-web diagram. The origin of this diagram is a
N, -valent vertex where IV, is the number of zig-zag paths.

The reduced (p, g)-web diagram can be extended by decomposing the N,,-valent ori-
gin into 3-valent vertices. The dual of the resulting extended (p, ¢)-web diagram is
precisely the toric diagram of the non-compact Calabi-Yau 3-fold. The different ways of
decomposing the N, .-valent origin of the reduced diagram correspond precisely to the

different ways of triangulating the convex toric diagram.

Ezxample. Figure shows the 5 zig-zag paths of the SPP brane tiling and their cor-

responding winding numbers for the given reference fundamental domain. The winding
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numbers of the zig-zag paths are

w(ﬁl) = (_17 1) ) w(ﬁQ) - (_170) ) w(ﬁi’)) - (0’ _1) ) w(ﬁ4) - (1,0) ) w(ﬁ5) = (170) :
(1.3.13)

The corresponding reduced (p, q)-web diagram is shown in Figure We observe
that the origin of the reduced web diagram is 5-valent. There are precisely two distinct
ways of decomposing the 5-valent origin to 3-valent vertices. The two extended (p, q)-
webs correspond to two distinct ways of triangulating the same toric diagram of SPP

as shown in Figure [1.12

1.3.3 Consistency

—

1-

R

T e ——

Figure 1.13: Inconsistent dPy Model. The top row shows the toric diagram of the dPy
model [14} [T5] 16}, 17, (18] with the brane tiling and zig-zag path of the brane
tiling going around the 2-torus. The bottom row shows an inconsistent toric
diagram with an extremal toric point having a multiplicity greater than 1,
and its corresponding double-bonded brane tiling with self-intersecting zig-
zag path.

The notion of consistency of a brane tiling on the 2-torus was first discussed in
[16]. Consistent torus brane tilings are expected to flow in the IR to a superconformal
fixed point with a preferred U(1) R—symmetryﬁ which appears in the superconformal
algebra and determines the scaling dimension of BPS operators. If the consistency

conditions are not satisfied, one normally can expect zero superconformal R-charges to

SR-symmetry is discussed below in section 3.
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be assigned to bifundamental fields under a-maximisation [109, 110, ITT]. In this case,
some dibaryon operators would violate the unitarity bound on the scaling dimension.
In order to discuss brane tiling consistency from a geometric and combinatorial point
of view, we recall that the classical vacuum moduli space of the Abelian theory which
we are considering with only U(1) gauge groups is a toric Calabi-Yau 3-fold. As we
have reviewed above, the Calabi-Yau 3-fold is represented by a convex lattice polygon
known as the toric diagram. In terms of the toric diagram, inconsistency of the brane

tiling and its corresponding supersymmetric gauge theory can be identified when

e Twice the area of the toric diagram is not the number of gauge groups in the

brane tiling.

From a purely graphical point of view, a brane tiling is consistent if it has the

following properties:
e No zig-zag paths self-intersect.
e No edges are ‘multi-bonded’ and hence no faces are 2-sided.

e No extremal toric point corresponds to more than one perfect matching of the

toric diagram.

The above consistency conditions are illustrated in Figure [1.13]

1.4 Moduli Spaces

The following section reviews the vacuum moduli spaces of brane tilings. There are
two moduli spaces of interest: the master space and the mesonic moduli space. Both
are toric Calabi-Yau when all gauge groups of the brane tiling are U(1), i.e. the su-
persymmetric quiver theory is Abelian. In particular, the mesonic moduli space is the
probed toric Calabi-Yau 3-fold which was discussed previously. We first focus on the
moduli spaces of Abelian brane tilings and on how they are characterised by a partition
function of gauge invariant operators know as the Hilbert series. We then review the

non-Abelian theories and their moduli spaces.

1.4.1 The Master Space

Master Space F’ 71, 72, 73|, [74), 75, 18]. The master space is the combined
mesonic and baryonic moduli space. It is determined only by the F-term constraints
of the supersymmetric gauge theory represented by a brane tiling. It has the following

properties for the case of Abelian brane tilings where all gauge groups are U(1):
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1 2 1 g2
X X5 Xi> Xip

Figure 1.14: The brane tiling and quiver diagram of the conifold theory.

e The master space of the one D3-brane theory relates to the following quotient ring
CP[X1, ..., Xg]/Tow=0 , (1.4.14)

where F is the number of bifundamental fields X;. C*[X7, ..., Xg] is the complex
ring over all bifundamental fields, and Zgyw—q is the ideal formed by the F-terms.

e The master space in is usually reducible into components. The largest
irreducible component is known as the coherent component "™ F” and is toric
Calabi-Yau. All other smaller components are generally linear pieces of the form
C!. In our discussion, we will concentrate on the coherent component of the master

space and for simplicity use F? and " F” interchangeably for Abelian theories.

e The dimension of the master space "™ F” is G + 2, where G is the number of

gauge groups. For the Abelian theory, ™ F? is toric Calabi-Yau.

Ezample. The conifold theory [45] has 2 gauge groups U(Np) x U(N3) with the quiver
and brane tiling shown in Figure The superpotential is as follows

W =+ X1, X0 X1r X351 — X1, X5 X1 X, - (1.4.15)

For the Abelian theory with Ny = Ny = 1, the superpotential vanishes and there are
no non-trivial F-terms. The master space "™ F? is simply given by the ring formed by
the bifundamental fields, in other words ™ F? = C4.

Non-Abelian case. We are interested in brane tilings in the IR limit where they flow
to superconformal field theories. In the IR limit, the non-Abelian theory with G gauge
groups U(N;)¢ decomposes to SU(N)® x U(1)%. This is because the U(1)¢ decouple in
the IR. Only SU(N) groups strongly couple in the IR. The remaining gauge symmetries
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SU(N)% have to be quotiented out for the master space of the non-Abelian theory as

follows,
Fi = FJSU(N)® | (1.4.16)

where F? corresponds to the quotient ring formed by the F-terms OW = 0. The dimen-
sion of the master space is 3N + G — 1.

Ezxample. Let us take the Ny = Ny = 2 case for the conifold theory, with the bifun-
damental fields now being 2 x 2 matrices. For notational simplicity, we relabel the

bifundamental fields as
A=Xl,, B=X%,C=XJ,, D=X3 . (1.4.17)
The superpotential is now non-vanishing,
W =+ABCD — ADCB | (1.4.18)

and the F-terms xW = 0 are non-trivial. The F-terms form an ideal, and F” is given

by the quotient ring

C'[Ay1, A1a, A9y, Aga, . .., Da1, Do
/(BCF — DCB,CDA — ADC, DAC — BAD, ABC — CBA) .
(1.4.19)

The master space .7-"]b\,:2 is obtained by quotienting out the SU(2)? charges

Fhea = F/SU(2)% . (1.4.20)

1.4.2 The Mesonic Moduli Space

Mesonic Moduli Space M [52] [5], [34]. The mesonic moduli space is a subspace
of the master space. It is determined by both F- and D-term constraints. It has the

following properties:

e In order to obtain the mesonic moduli space of the one D3-brane theory, the U(1)
charges have to be quotiented out. Note that an overall U(1) decouples, giving in

total only U(1)“~! independent charges that need to be taken into account. The

50



mesonic moduli space is therefore given by

Mmes = T ()Gt (1.4.21)

e The mesonic moduli space for the Abelian theory is a toric Calabi-Yau 3-fold.

Non-Abelian case. We recall that the master space F is the space of mesonic and
baryonic operators. In the IR limit the gauge symmetries U(N)® decompose to a weakly
coupled part U(1)¢ which plays the role of the global baryonic symmetry and a strongly
coupled non-Abelian part SU(N)® which is the remaining non-Abelian gauge symmetry.
In the definition of the master space ]-"]bv for non-Abelian theories in , the gauge
symmetry is quotiented out to remain with a space of baryonic and mesonic gauge
invariant operators. In order to remain with a space of just mesonic gauge invariant
operators, i.e. the mesonic moduli space, the baryonic symmetries U (1)G are quotiented

out from the master space giving
Mes = FR /U (1)6 L (1.4.22)

where an overall U(1) decouples from U(1)¢. The dimension of the mesonic moduli
space M is 3N.

From the point of view of a stack of N D3-branes probing a singular toric Calabi-Yau
3-fold, the mesonic moduli space of the worldvolume theory living on the stack can be
interpreted simply from the mesonic moduli space that arises from a single probe D3-
brane. The key point to consider is that the D3-branes in the stack are indistinguishable.
Considering the C3 theory with a single gauge group U(N) as a simple example, the
Weyl group of U(NV) acts as a permutation group on the individual probe branes, i.e.
on the individual Abelian copies of C3. Accordingly, the non-Abelian mesonic moduli
space can be considered as the symmetric product Sym™ C3. In general, the mesonic
moduli space M7 of a brane tiling with all gauge groups being U (V) is the symmetric
product

(Mmes)N

Manes — SymNMmes — ’
SN

(1.4.23)

where M™ is the mesonic moduli space of the corresponding brane tiling with only

U(1) gauge groups.

Ezample. Let us consider again the Ny = Ny = 2 conifold theory. The corresponding

mesonic moduli space can be expressed as the quotient

N = Flma/U (D). (1.4.24)
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As a symmetric product, the mesonic moduli space is

2
mes, = Sym?C = (Csi : (1.4.25)

where M = C is the mesonic moduli space of the Abelian conifold theory.

1.4.3 The Hilbert Series

Hilbert series [48|, [49, 50, 112, 51, 52, 113]. The Hilbert series is extensively
used to characterise the moduli spaces of brane tilings and more generally of supersym-
metric gauge theories. In algebraic geometry, it is associated to a multivariate graded

polynomial ring or quotient ring. It is defined as
o0
g(t; R) = dim(R,)t" (1.4.26)
n—0

where R is a ring with R, being a component of R of degree n € N. The fugacity ¢
counts the degree of the component.

One can introduce a multiple grading of the components of the ring R. For instance,
the degree of the component Rz is i = (nq,...,n;) with the corresponding fugacities
being t1,...,t;. Under this multi-grading, the corresponding Hilbert series of the ring
would look like

glts, .t R) = - Y dim(Ra)tft . (1.4.27)

7‘L1:0 nk:O

Ezample. Let us consider the ring R = Cla, b, c] over the complex field C and generated
by a,b,c. The spectrum of the ring can be represented by the following sequence of

monomials in a, b, ¢,

17 a’ b7 C7
a2, ab,b?, ac, be, 2,
a®,a%b, ab?, b, a’c, abe, b2c, ac?, bc?, 3, ... . (1.4.28)

Let now the grading of the ring be such that ni,ne,ns count the degrees in a,b,c

respectively. As such, the Hilbert series is written as

oo o0

o0
1
gt to,t3iC) = 30 D0 >0 G = (1.4.29)

A=a)(i- (-t
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Figure 1.15: The lattice structure of the spectrum of Cla,b,c]. The ring Cla,b,c] is
generated by a,b,c. The elements of the spectrum of the ring can each be
represented by a point in a lattice generated by 3 vectors corresponding to
a,b,c.

The Hilbert series converges to a rational function. Effectively, the Hilbert series can
also be considered as a partition function that counts points in a lattice generated by

a,b,c. A schematic illustration of this lattice is given in Figure [1.15

Hilbert series as rational functions. The Hilbert series as a rational function can
be in two distinct forms. As such, the Hilbert series reveals information about the ring
structure and for our purposes the moduli spaces M of brane tilings. In general, the

Hilbert series as a rational function can be written as

P(ti)
Qt;)

g(t; M) = (1.4.30)

The denominator is always factoriseable to take the form

"
Q) = [T -17 (1.4.31)
J
where the product runs over all generators and the n; count the degree of each generator
assigned to the fugacity ¢; in this particular grading.
The numerator is a polynomial in the fugacities ¢;. The polynomial is factoriseable if

the space is a so called complete intersection. The factorisation takes the form
P(t)=[Ja-¢"), (1.4.32)
i

where the product runs over all first order relations formed by the generators M. m;
counts the degrees of the relations for the particular grading.
For the case when the numerator is not factoriseable in the form shown in ((1.4.32)),
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the space is known as a non-complete intersection. The interpretation is that the
first order relations of the generators form relations among themselves, and by doing so
form an infinite tower of relations among relations which are known as syzygies.

Finally, given the Hilbert series of a moduli space M in the form , when the
numerator P(t;) is a palindromic polynomial, then M is Calabi-Yau [4§].

Example. The ring can also be a quotient under an ideal. As such, the Hilbert series
notices the changes to the components under the ideal. Let us take as an example the

quotient ring
Cla, b, ]/ {a® = b) , (1.4.33)

where the ring is generated by a,b,c and the generators form the quadratic relation

a’ = b. As such the spectrum is modified to

17 0/7 b? c7
ab,b?, ac, be, 2,

ab?, b3, abe, b2e,ac?, b, 3, ... . (1.4.34)

Using the grading where ni,no,n3 count the degrees in a, b, ¢ respectively, the Hilbert

series is

11—

e (=S

(1.4.35)

Plethystics. The plethystic logarithm of the Hilbert series encodes information
about the generators of M and the relations formed by them. It is defined as

PLigti M) = 3 P 10g [g(et p)] (1.4.36)
k=1

where p(k) is the Mobius function. If the expansion of the plethystic logarithm is finite,
the space is a complete intersection generated by a finite number of generators subject
to a finite number of relations. If the expansion is infinite, the moduli space is a non-
complete intersection. The first positive terms of the expansion refer to generators of the
moduli spaceﬂ All higher order terms refer to relations among generators and relations
among relations, i.e. the syzygies.

The inverse function of the plethystic logarithm is the plethystic exponential. It

"The Groebner basis of a sequence of monomials, i.e. the spectrum of the ring, relates to the generators
of the corresponding space.
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is defined for a multivariate function f(¢y,...,t,) as follows,

PE[f(t1,....tn)] = exp [i LGS ’tﬁ)] . (1.4.37)

k=1 k

Example. The mesonic moduli space of the Abelian conifold C theory is a complete

intersection. Its Hilbert series, which we will compute explicitly later on, takes the form

1 — tytotsty
t;;C) = . 1.4.38
9(t::€) (1— t1t3)(1 — tots)(1 — t1ta)(1 — tata) ( )
The plethystic logarithm is finite and is given by
PL[g(ti; C)] = t1lg + totg + t1t4 + toty — t1tatsty . (1.4.39)

The first 4 positive terms in the plethystic logarithm correspond to 4 generators of the
mesonic moduli space, which we label respectively as a, b, ¢,d. The first negative term
indicates the degree of the relation formed by the generators. Using the degrees of the

generators, we identify the relation as
ad = bc . (1.4.40)

Accordingly, the conifold can be identified in terms of mesonic moduli space generators

as being the following quotient ring,

Cla, b, c,d]/{ad — be) . (1.4.41)

Master space Hilbert series. The Hilbert series of the master space of Abelian brane
tilings is precisely the Hilbert series of the quotient ring given in . An initial
choice of the grading of the Hilbert series is such that 7 = (n1,...,ng) counts the de-
gree in the F quiver fields with fugacities t1,...,tg. The algebraic geometry computer
system Macaulay2 [114] can be used to compute the Hilbert series in its rational form

for any given quotient ring.
Ezample. The master space of the Abelian conifold theory is '™ F? = C*. The generators

are the four quiver fields X{,, X%, X4,, X2,. Using the grading where the fugacities
t1,te,t3,ts4 count the degrees of the quiver fields Xi, X%, Xa;, X3, respectively, the
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Hilbert series can be written as

1

g(ts; " F) = (1—t1)(1—t2)(1 — t5) (1 — ta)

(1.4.42)

For non-Abelian brane tiling theories, the grading of the Hilbert series of the quo-
tient ring in is such that n; with fugacity ¢; counts the degrees of the com-
ponents of the quiver fields. In addition, one needs to introduce additional fugacities
Zkm Which count the SU(N)Y gauge charges of the quiver field components. The index
j =1,...,N?E where E is the number of quiver fields, k = 1,...,G is the index for
the gauge groups, and m = 1,...,N — 1 is the index for each SU(N) gauge charge.
The SU(N)® gauge symmetry can be summarized in a charge matrix with compo-
nents Qjrm. As such the Hilbert series of F > of the non-Abelian theory would take the

following general form

P(ti, zkm)
Q' m ’
Hj,k(l 1L, anjf t)

g(tis 2hm; F') = (1.4.43)

where P(t;, zkm) is a polynomial in the fugacities.
In order to obtain the Hilbert series for gauge invariant operators of the master
space, one needs to project the Hilbert series in (1.4.43]) to the space of invariants under

SU(N)% charges. This is achieved by the use of the Molien integral formula which

gives the Hilbert series of ij, as follows,

g(ts; F) = HZ{ T desuvy 9(ti 2kms F°) (1.4.44)
k,m

kalzl i

where dugy () is the Haar measure of SU(N)H

Ezample. Let us consider again the N; = Ny = 2 conifold theory. The SU(2)? gauge
charges are summarized in Table We use A, B,C, D for the quiver fields of the
conifold theory, and j =1,...,16, k = 1,2 and m = 1. Accordingly, the Hilbert series

of the master space can be written as

1—23)(1 - 23
glti = t; Fyon) = ?{ j{ dz1dzp 1= = 7))
lz1|=1 /]22|=1

Z1%9
P(t, 21, 22)
(1 — z120t)4(1 — 2125 "#)4(1 — 27 Lat)4 (1 — 27 ey H)4d

(1.4.45)

8For a general review on Haar measure, the reader is referred to [I15].
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’ \ SU(2); SU(2)s \ fugacities

Ay -1 +1 Zflzgtl
Alg -1 -1 21_1Z2_1t2
A21 +1 +1 z129t3
Aoo +1 -1 21Z2_1t4
By +1 -1 legltg)
Bis +1 +1 21 292t6
By -1 -1 Zf1251t7
Bsyo -1 +1 Zl_l,Zth

Table 1.4: SU(2)? gauge charge of the N = 2 conifold theory. All components of the
quiver fields carry SU(2)? gauge charges. The table shows the corresponding
fugacity assignment. Note that the fields A, C and B, D carry the same gauge
charges. In addition, the index m for fugacities zp,, is ignored since we have
SU(2) gauge groups and we have always m = 1.

where the numerator P(t,z1,292) is a non-factoriseable polynomial. We have set for
simplicity all the field component fugacities to ¢t; = t. The result of the Molien integral

1S

1+ 3t2 +6t*

g(t’b = t7f}7\]:2) = (1 o t2)7

(1.4.46)

We note that the numerator is not palindromic and hence the master space of the N = 2

conifold theory is not Calabi-Yau as expected.

Mesonic Hilbert series. For the mesonic Hilbert series, one needs to take into account
the U(1)%~! symmetries. For Abelian theories, these are the only symmetries that have
to be taken into account for the grading of the quotient ring in . We introduce
the fugacities wy, for the U (1)~ charges, where k = 1,...,G — 1 goes over the G — 1
U(1) charges. The U(1)%~! charges can be summarized in a charge matrix Q;;, where
j =1,...,E goes over the quiver fields. The Hilbert series of "™ F” for the Abelian

theory can be expressed as

P(t;, wg) '
[1,(1 — IT,, w*t;)

g(ti, wy; TF) = (1.4.47)

As for the master space Hilbert series, a grading n; is used to count the degrees of the
quiver field with fugacities t;, where i = 1,..., E. Since we are interested in invariants

under U(1)%~1, we make use of the Molien integral formula to obtain the Hilbert series
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’ \ U(l); U(1), \ fugacities

A +1 -1 wlwgltl
B -1 +1 | wy twats
C +1 -1 ’wl’w;ltg
D -1 +1 wl_lwgt4

Table 1.5: U(1)? charges on quiver fields for the Abelian conifold theory. The U(1)?
charges can be taken from the incidence information of arrows in the quiver
diagram. Note that an overall U(1) decouples, and only the charges counted
by w; (or we) will affect the result of the Molien integral.

of mesonic moduli space M™¢5,

d

gt M) =T] f{ SOk ks, wis ) (1.4.48)
iV wkl=1 Wk

Ezample. For the Abelian conifold theory, the U(1)? charges on the 4 quiver fields

are shown in Table The master space ™ F* Hilbert series with the U(1)? charge

fugacities wy, is

1
(1 — wltl)(l — wl_th)(l — wltg)(l — wl_lt4) ‘

g(ti, wy; ") =

(1.4.49)

The Hilbert series of the mesonic moduli space M™¢® is given by the Molien integral

which is

1 — tytotsty
t.;Mmes :% =L g(t;,w ;Irrfb _ )
g( ! ) |wy|=1 w1 g( ok ) (1 — tltg)(l — t1t4)(1 — tgtg)(l — t3t4)

(1.4.50)

Given that the fugacities t1, to, t3, t4 count respectively the degrees of the conifold quiver
fields A, B, C, D, the generators of the mesonic moduli space can be expressed in terms
of quiver fields by using the information provided by the Hilbert series in (|1.4.50]). They

are
a=AB,b=AD ,c=CB,d=CD. (1.4.51)
The relation formed by the generators is ad = bc.

For the non-Abelian case, the Hilbert series of F” needs to be refined under both
fugacities wy, and z;;, which count U (1)¢~1 and SU(N)Y charges respectively. In general,
the Hilbert series is obtained by integrating out both the U(1)“~! and SU(N)“ charges
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y | U(1); UQ1), SU(22)1 SU(2); | fugacities

A -1 +1 -1 +1 wflwnglzgtl
A | -1 +1 -1 o R T e TR
Aoy -1 +1 +1 +1 wflwzzlzﬂg
Ago -1 +1 +1 -1 wflwgzlzz_lu
By +1 -1 +1 -1 wlwglzlz;1t5
Bis +1 -1 +1 +1 w1w51z122t6
B +1 -1 -1 -1 w1w512f1251t7
Bos +1 -1 -1 +1 wlwglzflzgtg

Table 1.6: U(1)? and SU(2)? charges of the N = 2 conifold theory. Note that the
components of A,C and B, D carry the same charges and therefore only the
charges for the components of A, B are shown above.

as follows,

t“ Mmes H%

dwl
dpsy Nk)H]{ - o 9t zim, wi; F2) - (1.4.52)
wy

km‘*
where g(ti, zpm, wy; F?) is the Hilbert series for F? corresponding to the quotient ring in
(1.4.14) with both U(1)¢~! and SU(N)% charge fugacities.

Ezxample. Let us consider again the Ny = Ny = 2 conifold theory. Table shows
the U(1)? x SU(2)? charges on the components of the quiver fields A, B,C,D. The
fugacity w; carries the independent U(1) charge, and the fugacities z1,zy carry the

SU(2)? charges. The mesonic Hilbert series is given by the Molien integral

d 1—29)(1 — 23
g(tl =t mes f % ﬂ dZ d 2( Zl)( ZQ)
|lwi|=1 J|z1|=1 /|

z2|=1 W1 Z1%2
P(t, wl,zl,zQ)
27 2y 1)2(1 — wi e 20t)2(1 — wy P2y 2y M)?
1
(1 —wyz125 ')2(1 — wyz120t)2(1 — w2y P25 1)2(1 — w2y ' 2ot)?

X

(1 —wy ey 20t)2(1 —wi?

X

(1.4.53)

where the numerator in the integrand is a polynomial in the fugacities ¢, w1, z1, z2. For

simplicity, we have set all ¢; = t. The result of the integration is

14+ t2+ 7t* + 36 + 448

ti = t; M) =
g( {J ) N—2) (1 _ t2)3(1 _ t4)3

(1.4.54)

We note that the numerator of the mesonic Hilbert series for the N = 2 conifold theory

is not palindromic. The mesonic moduli space is therefore not Calabi-Yau.
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Hilbert series of symmetric products. The Hilbert series g(t;; Mpy) of the N-
th symmetric product of a moduli space M can be obtained from the Hilbert series
g(t;; M) when N = 1. It is obtained by the use of the following generalised plethystic

exponential formula,

00 k k
ty, ..t M
PE[g<t177tn7M1) 'U] = exp Zg(l kn 1) Q}k
k=1
oo
= 1+ Z g(ti, ...ty M) 0™ (1.4.55)
m=1

where v is the fugacity of the degree of the symmetric product and the expansion in v

gives as coefficients the Hilbert series of the symmetric products.

Ezxample. We can now verify the mesonic Hilbert series of the N1 = Ny = 2 conifold

theory in (1.4.54]) by using the formula for symmetric product Hilbert series in (|1.4.55)).
The mesonic Hilbert series of the Ny = Ny = 1 conifold theory is as we recall from

([[.4.42)

1—¢*

g(t; My) = a—a)p:

(1.4.56)

where we set all t; =t for simplicity. Using the formula in (|1.4.55]), we obtain

11—t 14+t + 764 4+ 30 + 418,
v+ v
(1—2) (1—12)3(1 — t4)3
L1 7t + 130 + 1848 + 31¢19 + 34¢12 + 181 + 16¢16 + 618 N
v
(1= #2)4(1 = #1)2(1 = 9)?

PE[g(t; Mq) v] =1+

(1.4.57)

We observe that the mesonic Hilbert series for the Ny = Ns = 2 conifold theory is
indeed the one computed in (1.4.54)).

1.4.4 The Forward Algorithm

For Abelian brane tilings where all gauge groups are U(1), we can make use of perfect

matchings of the bipartite graph to identify the master and mesonic moduli spaces.

F- and D-term charges and the Forward Algorithm [34, 92, 14, 101, 15| 55|
103]. A new basis of fields can be defined from the set of quiver fields. The purpose

of the new basis of fields is to describe both F-term and D-term constraints of the
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supersymmetric gauge theory with a common setting. The new fields are known as
gauge linear sigma model fields (GLSM) and are represented as perfect matchings in

the brane tiling. They have the following properties:

e As reviewed in section a perfect matching p, is a set of bifundamental
fields which connect to all nodes in the brane tiling precisely once. The perfect
matchings correspond to extremal (corner), internal as well as all non-extremal
toric points on the perimeter of the toric diagram. They are summarized in the
perfect matching matrix Pgx. where F is the number of matter fields and ¢ the

number of perfect matchings.

e F-terms are encoded in the perfect matching matrix Pgy.. The charges under

the F-term constraints are given by the kernel,
Qr (c—G—2)xc — ker (PEXC) . (1458)

e D-terms are of the form [104],

D; = —e? (Z dia’)(a’2 - Cl) ) (1'4'59)

where X, is the matter field corresponding to the a-th column of the incidence
matrix dgx g, ¢ runs over the gauge groups in the quiver, e is the gauge coupling,
and (; is the Fayet-Iliopoulos (FI) parameter. The D-terms are encoded via the
reduced quiver matrix Ag_1)x Eﬂ and are related to the perfect matching matrix

as follows,

AG-1yxr = Qb (G-1)xe-Pex s (1.4.60)

where the Qp (G—1)x. matrix is the charge matrix under D-term constraints.
Equivalently, in terms of an interim matrix Qgxc, which maps perfect match-

ings into their quiver charges, one has the relation
daxe = Qaxe-Plip - (1.4.61)

Overall, the charge matrices Qr and @p can be concatenated to form a (¢ — 3) x ¢

matrix,

Q: = ( SZ ) . (1.4.62)

9Since the sum of rows in dgx g vanishes, there are G — 1 independent rows giving the reduced matrix
A(G—l) xXE-
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The kernel of the charge matrix,
Gy = ker (Qy) , (1.4.63)

precisely encodes the coordinates of the toric diagram points with columns and hence

perfect matchings and GLSM fields corresponding to points of the toric diagram.

The master space Hilbert series. As we have discussed above, the master space is
the moduli space under F-term constraints, given by the quotient in (|1.4.14]). Since the
F-terms are encoded in the charge matrix (), the master space can be expressed as the

following symplectic quotient,
I — ¢/ /Qr (1.4.64)

where now we use a basis of GLSM fields corresponding to perfect matchings of the
brane tiling rather than quiver fields. The ¢ GLSM fields form the space C° known as
the space of perfect matchings.

Given the symplectic quotient description of the master space, the corresponding

Hilbert series can be expressed simply as the following Molien integral

c—G-2

1

Irr b

" 1.4.
(t f H f -1 27TZZZ ] ( t HC G-2 ]QF)]&) ( 65)

where z; are the fugacities for the Qr charges and ¢, are the fugacities for the perfect

matchings pq.

Mesonic Hilbert series. The mesonic moduli space is the space of invariants under

F-term charges Qr and D-term charges (Qp. The symplectic quotient

M™ = (C°//Qr)//Qp - (1.4.66)

is the mesonic moduli space of the quiver gauge theory. The invariants under the
symplectic quotient are mesonic gauge invariant operators. The mesonic Hilbert series

is obtained via the Molien integral formula,

g(ta; M) = 7{ , (1.4.67)
H 2= 1271'@2103[1 11, H] 1z](Qt o)

where c is the number of perfect matchings and (); is the total charge matrix in (1.4.62)).

Ezxample. Chapter §3] and §4] on brane tilings with reflexive polygons and chapter §5| on
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brane tilings on Riemann surfaces use extensively the forward algorithm outlined above.
The reader is referred to these chapters for a comprehensive collections of detailed ex-

amples.

1.4.5 The Fast Forward Algorithm

In section we have reviewed how perfect matchings can have winding numbers
(ha, hp) in relation to a reference fundamental cell of the brane tiling. Furthermore,
section discussed zig-zag paths and their winding numbers (hg, hy). They are
used to identify the (p, ¢)-web diagram which is the dual of the toric diagram of a brane
tiling. Winding numbers are essential tools for finding the toric diagram of the mesonic
moduli space of an Abelian brane tiling.

In this section, we discuss a third method to obtain directly the toric diagram from
a given brane tiling. The algorithm is known as the fast forward algorithm [55] and

centres around an object known as the Kasteleyn matrix.

Kasteleyn Matrix [66), 67, 98, 15]. The Kasteleyn matrix K is the adjacency matrix
of all unique edges in a given fundamental cell of a brane tiling. The matrix is a Ny, X Ny
matrix where N,, and N, are the numbers of white and black nodes respectively in a
given fundamental cell of the tiling. By the bipartite condition on the superpotential,

N, = Np and the Kasteleyn matrix is a square matrix. With the indices i = 1,..., N,

and j = 1,..., N, the elements of the matrix are
Kij = Z gha (X (@) ho(X (7)) (1.4.68)

where X (7, j) is an edge between white node w; and black node b; in the brane tiling’s
fundamental cell. (hq(X (4, 7)), he(X (4, 5)) is the winding number of X (i, j). The fugaci-
ties x and y count the winding number along the a- and b-cycles of the torus respectively.

The important property of the Kasteleyn matrix is that its permanenﬂ satisfies the
following identity,

perm(K) = Z$h”(pa)yhb(p“) , (1.4.69)
Pa

which is a sum over all perfect matchings of the brane tiling weighted by their corre-
sponding winding numbers (hq, hy) for a given fundamental cell. As such, given that
the winding numbers of perfect matchings correspond to the lattice coordinates of toric

points, the permanent of the Kasteleyn matrix gives the toric diagram of the brane tiling.

10The permanent of a matrix is the determinant of the matrix with all signs being positive.
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Figure 1.16: The brane tiling and toric diagram of the Y>?2 theory.

Ezxample. Let us consider an example from a famous class of brane tilings known as Y4
models [116} 117, 118} 119, 120]. This class of theories is special because the correspond-
ing metrics of the Sasaki-Einstein 5-manifolds are explicitly known. As an example, let
us consider the brane tiling of the Y22 theory which is shown in Figure The
fundamental cell for the given brane tiling in Figure gives the following Kasteleyn

matrix
by by b3 by by
wy |14y 1 0 0 1
1 1 1 0 0
K=" (1.4.70)
w3 0 1 v 1 0
Wy 0 0 1 1 1
ws | 1Y 0 0 1 y
The corresponding permanent is given by
1
perm(K) = 1+:py+§+8y+6y2+y3 :
(1.4.71)

We observe that two terms have coefficients greater than 1, corresponding to multiple
perfect matchings associated to the same toric point. The corresponding toric diagram
is shown in Figure [1.16]
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1.5 Symmetries

In the sections above, we have discussed the computation of Hilbert series and by doing
so have mentioned symmetries of supersymmetric gauge theories given by brane tilings.
The following section elaborates on mesonic and baryonic symmetries as well as the
R-symmetry of brane tilings. The computation of charges under these symmetries is
reviewed. We will review the symmetries in the context of Abelian theories where all

gauge groups of the brane tiling are U(1).

1.5.1 Mesonic and Baryonic Symmetries

Master space symmetries. The master space exhibits the following symmetries:

e The mesonic symmetry is U(1)% or an enhancement with rank 3. An enhance-
ment is indicated by extremal perfect matchings which carry the same @) charges.
The mesonic symmetry contains the U(1)g symmetry and the flavor symmetries.

It derives from the isometry of the toric Calabi-Yau 3-fold.

G=1 or an enhancement with rank G — 1. An

e The baryonic symmetry is U(1)
enhancement is indicated by non-extremal perfect matchings which carry the same
Qr charges. It contains both anomalous and non-anomalous symmetries which
have decoupling gauge dynamics in the IR. Non-Abelian extensions of these sym-

metries are known as hidden symmetries [71] [72, [1§].

Let I and E denote respectively the number of internal and external points in the toric

diagramE] They are used to define the following quantities:

e The number of anomalous U(1) baryonic symmetries or the total rank of en-

hanced hidden baryonic symmetries is given by 21.
e The number of non-anomalous baryonic U(1)’s is E — 3.

e The total number of baryonic symmetries is as stated above G — 1. Accordingly,

G E
G—1:21+E—3¢A:§:I+5—1 (1.5.72)
which is Pick’s theorem generalised to toric diagrams. The unit square area A
of a toric diagram is scaled by a factor of 2 in order to relate it to the number of

gauge groups G.

HNote: Points in the toric diagram can carry multiplicities according to the number of perfect matchings
associated to them. I and E is a counting that ignores multiplicities.
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Perfect matchings carry charges under the mesonic and baryonic symmetries. The
choices of assigning charges on perfect matchings are under certain basic constraints

which are reviewed at the end of this section.

Mesonic symmetry. The mesonic moduli space of a given Abelian brane tiling on 72
is a non-compact toric Calabi-Yau 3-fold. The mesonic symmetry of the quiver gauge

theory has rank 3 and hence takes one of the following forms,
e U(l)xU((1) xU(1)
e SU22)xU(1) xU(1)
o SU(2) x SU(2) xU(1)
e SUBB)xU(1),

where the R-symmetry is a subgroup. For A/ = 2 and N/ = 1, the R-symmetry is
respectively SU(2) x U(1) and U(1).

The above global symmetries derive from the isometry group of the Calabi-Yau 3-fold.
The enhancement of a U(1) flavor to SU(2) or SU(3) is indicated by columns in the
total charge matrix Qs which carry the same charge and correspond to external perfect

matchings.

Mesonic and baryonic charges on perfect matchings. The perfect matchings
carry G + 2 charges which relate to the 3 mesonic and G — 1 baryonic symmetries. Each
perfect matching is assigned a G 4 2 dimensional charge vector, and the choice of its

components is arbitrary up to the following constraints:

e All G + 2 dimensional charge vectors are linearly independent to each other.

e The sum of all charge vectors is (0,...,0,2) where the non-zero component 2 is
the total U(1)g-charge.

Note that if two charge vectors are linearly dependent, information about the algebraic
structure of the moduli space is lost. For the purpose of studying specular duality in
chapter §4] the following additional constraints are introduced without loosing track of

the algebraic structure of the master space:

e For a pair of dual brane tilings, the charge vectors can be chosen such that a swap
between internal and external perfect matchings equates to a swap of mesonic

flavour and anomalous or hidden baryonic symmetry charges.

e If the U(1)z-charges are irrational or otherwise incompatible between two specular
dual brane tilings, one can find a set of orthogonal replacement charges without
loosing information on the algebraic structure of the master space. This modifica-

tion corresponds to a mix of the R-symmetry with the remaining global symmetry.
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1.5.2 Computation of R-charges

R-charge constraints on the brane tiling. The U(1)r symmetry of the supercon-

formal field theory sets the following constraints on the brane tiling,

The R-charge of the superpotential W of a brane tiling is R(W) = 2. Accordingly,

the total R-charge around a node in the brane tiling is

> R(Xj)=2. (1.5.73)

Xj€node;
The sum over all nodes in the brane tiling gives
\%
> R(X;) =2V, (1.5.74)
1=1 X;€node;
where V is the number of distinct nodes in the brane tiling.

Given that the quiver gauge theories corresponding to brane tiling are supercon-
formal, the beta functions for every coupling in the theories are required to van-
ish. For the non-Abelian case, the numerator of the SU(N) NSVZ beta function
[121), 54] takes the following form

Bi= Nik SON(R(Xi) ~ ) + 5 SON(R(X) ~ 1), (15.75)
Xii Xij
i#£j

where Xj; is an adjoint quiver field and Xj;; is a bifundamental quiver field. For
the Abelian case where all N; = 1, the above expression in conjunction with the

requirement 5; = 0 leads to the following constraint on the brane tiling,

24+ Y (R(X;)-1)=0, (1.5.76)
Xjcface;

where the sum is over all edges X; adjacent to the i-th face in the brane tiling.

The R-charge constraints on the brane tiling can be represented pictorially by an iso-

radial embedding [16] of the bipartite graph.

Volume of the Sasaki-Einstein Manifold and R-charges. An interesting prop-

erty of the Hilbert series is that its leading pole in the limit where the fugacities go

to 1 gives the complex dimension of the moduli space of the corresponding gauge the-

ory. Furthermore, the mesonic Hilbert series contains information about the volume of
M™e5 Let the Hilbert series g(tq; M%) be fully refined such that there is a fugacity
t, for each GLSM field p,. By introducing parameters g and r,, which in statistical
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mechanics correspond to the Boltzmann constant kg and energy state E, respectively,

the fugacities in the Hilbert series counting GLSM fields can be re-expressed as,
to =€ Hre | (1.5.77)

A natural interpretation of the expression above is that the set of fugacities, and hence
the set of parameters {r,}, form a c-dimensional polyhedral cone on a lattice Z¢, where
p measures the lattice spacing. As discussed in [122], in the limit of a small lattice
spacing, ¢ — 0, the volume of the cone approximates increasingly better the volume of
the Sasaki-Einstein manifold. This process can be interpreted as taking the Riemann
integral over the fully refined Hilbert series, such that the volume of the Sasaki-Einstein
manifold H is given by}

3
Vol(ro: H) = S lim ig(e™"; M7 = C(I)) | (1.5.78)

27 u—0
In converse, the Hilbert series can be expanded in u, where the leading order is related

to the volume of the Sasaki-Einstein base,

Vol(rq; H
Vol(ra; H)

gle M = C(H)) ~ S

(1.5.79)

In the limit where the volume vol(ry; H) is at its minimum, the parameters r, form
a vector known as the Reeb vector 7, with > rq = 2.

In order to determine the R-charges specific to the GLSM fields p,, one recalls that
the GLSM fields and the corresponding points of the toric diagram are associated with
divisors D, of the Calabi—YauE The Hilbert series associated with the divisor D, of
M is given by the following modified form of the Molien-Weyl integral,

c—3 c—3 -1
mes dz; t)ka c
R N I = (ta [T “) 9({tor 2}:C)
i=1"1%l= ¢ k=1

B Hjé c (ta k 1Z’(€Qt)ka) 1550)
|25 = 127rzzZ 5o1 1—tg H;jZ](-Qt)jﬁ ' o

Under an analogous limit to the one in (|1.5.78)), one obtains the volume of the base of
the Calabi-Yau divisor D,,.

12The factor
7.

130nly the extremal toric points and the corresponding GLSM fields whose corresponding CY divisors
D,, have a base with non-zero volume are of interest. The non-vanishing volume of the base of the

divisors is related to a non-zero R-charge of the corresponding GLSM field.

2771' is for normalisation purposes. In these units the volume of the five-sphere is exactly
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The R-charge R, of the perfect matching p, associated to the divisor D,, is given by

the following normalised p-expansion of the Hilbert series of the divisor,

gD‘* (e—uri : Mmes)
g(e—/“"i; Mmes)

~ 14+ pRo+ ..., (1.5.81)

where the Reeb vector elements 7= (ry,...,r.) take the values at the minimum of the
volume of the base of M™¢ Vol(ry; H), as previously determined. Accordingly, the
R-charge associated to the GLSM field p, can be expressed as the limit,

—1] . (1.5.82)

1 |:gDa(€—;u"i;Mmes)

= lim —
Ra ML)I% L g(e—lu,ri;Mmes)

Furthermore, the requirement that the theory is superconformal imposes the constraint

> R.=2. (1.5.83)

R-charges via a-maximisation. There is a second method of computing R-charges
of perfect matchings and quiver fields which is known as a-maximisation [110] [13].
The procedure makes use of the toric diagram to write down a cubic a-function which
when maximised leads to the R-charges of the perfect matchings. It is shown that a-

maximisation is equivalent to volume minimisation [110} 123].

1.5.3 The refined Hilbert Series

In the sections above on Hilbert series, we have seen two types of fugacities which relate

to the grading of the ring. These two types of refinement are

e Quiver field refinement. There is a set of fugacities ¢; each counting the degree
of a quiver field X;. We have encountered this refinement so far in the computation
of the Hilbert series for the master space and for Hilbert series of moduli spaces

of non-Abelian brane tilings.

e Perfect matching refinement. GLSM fields represented by perfect matchings
pq of the brane tiling are assigned fugacities t,. These fugacities count the degrees
in perfect matchings which in turn relate to the quiver fields of the brane tiling.
One can introduce multiple fugacities p, and for instance s, where respectively
the fugacities count extremal and non-extremal perfect matchings of the brane

tiling["] We have encountered this refinement for the computation of the Hilbert

14This distinction is done in chapters §3]and
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’ ‘SU(Q)Zl SU(2)., Ul U)g ‘ fugacities ‘

A=Xl=m +1 0 +1 1/2 | t1 = zbt'/?

B =X} =p 0 +1 -1 1/2 | ty = zob 1t1/?
C=X}=np; -1 0 +1 1/2 |ty =z bt!/?
D=X2=p, 0 -1 -1 1/2 |ty =25 b7 11/2

Table 1.7: Mesonic and baryonic symmetries of the Abelian conifold theory. The fugac-
ities z1, z2 count charges under the flavor symmetries SU(2),, x SU(2),, and
the fugacity ¢ relates to the U(1)g charges.

series for moduli spaces of Abelian brane tilings.

Given the above choices of refinement, one is always able to introduce a new set of
fugacities orthogonal to the original set. A natural choice is a refinement under the
mesonic flavour and baryonic symmetries of the brane tiling.

Let us consider the mesonic moduli space and an initial set of perfect matching
fugacities. An illustrative example would be a theory with the mesonic symmetry being
SU(3)xU(1)r. We introduce fugacities z1, zo for the SU(3) and ¢ for the U (1) charges.
As such, the perfect matching fugacities can be changed as follows

SU(3) SUB) U()p
ta:z?(“ 252(’2 tal

(1.5.84)
where Qn = (QilU(g), QSQU (3), le(l)R) is a full charge matrix of the mesonic symmetries
of the brane tiling.

Given that SU(3) is a global flavor symmetry of the mesonic moduli space, the fu-
gacities z1, zo are expected to form in the Hilbert series characters of irreducible rep-
resentations of SU(3). We use highest weight notation for characters of irreducible
representation. For instance, the fundamental, antifundamental and adjoint represen-
tations of SU(3) are respectively given by

[170]SU(3) =z +24 L

21 zo 7

0, Jsu@ =+ +2 +2,

2 2
1, 1]su) = [1,0ls0(3)[0, Usu@ —1 =212+ 2L + 2 + 2+ Z+5+ L

2122

(1.5.85)

Example. Let us consider the Abelian conifold theory with U(1)? gauge groups. Every
bifundamental field on its own is a perfect matching of the brane tiling of the Abelian
conifold theory. Accordingly, the perfect matching matrix P is an identity matrix.

Therefore the Qr charge matrix is empty and as we know the master space is C* with
the corresponding Hilbert series in ((1.4.42)).
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The global flavour symmetry of the theory is SU(2),, x SU(2),, with a U(1) sym-
metry. The charges under these symmetries on perfect matchings are summarized in
Table We note that the quartic superpotential of the conifold carries R-charge 2,
and every bifundamental carries a R-charge R(X) = 1/2. We use the following fugacity
map to indicate the symmetries in Table for the mesonic Hilbert series,

(t1,to, t3,t4) = (21b6Y/2, 2ob™ 12 27 10tl/2 2o~ 11 /2) (1.5.86)
Applied on the mesonic Hilbert series of the conifold theory given in ([1.4.50)), the fol-
lowing newly refined mesonic Hilbert series is obtained

1—¢2

g(zi, t; M™) = — — — .
’ (1 — z120t) (1 — 2125 ') (1 — 27 P 20t) (1 — 27 P2y M)

(1.5.87)

Note that the baryonic symmetry is only an isometry of the master space and not
the mesonic moduli space. Accordingly, the mesonic Hilbert series above under the new
charge refinement is independent of the baryonic charge fugacity b. When expanded, the
mesonic Hilbert series in can be expressed in terms of characters of irreducible
representations of the global flavour symmetry SU(2) x SU(2) as follows

gzist; M) = Il (1.5.88)
n=0
where [n;n] = [n]sy(2)., [n]su(2)., are the characters of the irreducible representations

of SU(2),, x SU(2),,.

For more examples of global charge refined mesonic Hilbert series and also master
space Hilbert series with refinement under baryonic symmetries, the reader is referred
to chapters 3] and

1.6 Higgsing and Toric Duality

An important advantage of using brane tilings as representations of supersymmetric
quiver gauge theories is that properties of the bipartite graph can be used as tools
to better understand physical phenomena. In mathematics, graph or so called quiver
mutations have been studied extensively [124], 125] and their interpretation in the con-
text of brane tilings and supersymmetric quiver gauge theories has been intriguing and
fruitful. The following section reviews two such graph mutations which are interpreted
as a Higgs mechanism and toric (Seiberg) duality. The hope is to set a stage for new

mutations of brane tilings, such as specular duality discussed in chapter §4
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1.6.1 Higgsing and Unhiggsing

The Higgs mechanism has a natural interpretation in the brane tiling picture [I01].
By giving a non-zero vacuum expectation value (VEV) to a gauge field in brane tiling
I, and integrating out resulting quadratic mass terms in the superpotential as explained
above, one obtains a new brane tiling I whose mesonic moduli space is a different toric
Calabi-Yau 3-fold to the one of brane tiling I. Giving a VEV to a bifundamental field
X;j results in the removal of the corresponding edge in the brane tiling picture. This
results in an effective merger between two adjacent faces, analogous of combining two
gauge groups into one.

Let us consider the example of the C3/Zy x Zy orbifold theory with orbifold action
((0,1,1)(1,0,1)). The corresponding brane tiling and toric diagram are shown in Fig-

ure |1.17] and the superpotential is

Wi = +X40X03X34 + X31 X714 X3 + Xog X1 X120 + X13X39 X091
— X2 X201 X14 — X31 X12X03 — X024 Xu3X30 — X13X34X41 . (1.6.89)

By giving the bifundamental field X4 a VEV, such that (X14) = 1, the superpotential

becomes,

Wit = +X40X03X34 + X31Xy3 + Xog X1 X2 + X13X39 X091
— X9 X9 — X31X12X03 — X0y Xy3X30 — X13X31X41 (1.6.90)

which in turn, by integrating out the above underlined quadratic mass terms, becomes
Wir = +X13X32X23X31 + X12X21 X11 — X12X23X32X01 — X13X31 X711 . (1.6.91)

Theory II with the above superpotential and brane tiling shown in Figure cor-
responds to the suspended pinch point (SPP) theory. Thus one has, by giving a VEV
to a field in theory I, blown down a toric point in C3/Zy x Zs to give the SPP model.
Figure shows the perfect matchings and their field content for each toric point of
the toric diagrams of C3/Zy x Zs and SPP.

1.6.2 Toric Duality

Two 3 + 1 dimensional worldvolume theories are called toric (Seiberg) dual [33]
34, 135, 36l 02, 14, B7] if in the UV they have different Lagrangians with a different

field content and superpotential, but flow to the same universality class in the IR.
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55 = {X12, X14, X32, X34}

s = {Xa1, Xa1, Xog, Xaz}

P = {XM.,XQI;;.X;;Q,XT}

S1 = {XIS-X14~X23-X24}

s2 = {X31, Xa1, X3, Xao}

t—s5 = {X32, X11

| 2}
D2 = {X13, Xoa, X31, X}
s3 = {Xo1, Xoa, X51, Xaa} s3 = {X12, X13}
sy = {X12, Xa2, X13, Xa3 }- s1 = {Xo1, Xa1}
ps = {X12, Xo1, X34, Xa3} p3 = {X12, X1}
3
<> C°/Zy x Zy SPP
2.0

Figure 1.17: Higgs mechanism. By giving a non-zero vacuum expectation value to the
bifundamental field Xq4 of the C3 /7o x Zg orbifold theory, one obtains
the suspended pinch point (SPP) theory. The bifundamental field X4 is
represented by a red edge in the brane tiling. By setting (X14) = 1, one
obtains quadratic mass terms represented by red nodes in the second brane
tiling, which are integrated out to give the third SPP tiling. The nodes
of the corresponding toric diagrams are labelled with perfect matching
variables and the corresponding sets of bifundamental fields. The Higgsing
procedure corresponds to a blow down from C3?/Zs x Zs to the cone over
the Suspended Pinch Point.

The mesonic moduli spaces of toric (Seiberg) dual theories are toric Calabi-Yau 3-folds
which are identical. The corresponding toric diagrams are GL(2,Z) equivalent, however
multiplicities of internal toric points and hence GLSM fields with zero R-charge can
differ.

The relationship between two toric (Seiberg) dual theories is best illustrated with
an example using brane tilings. Dualizing on a given gauge group has a natural inter-

pretation in the brane tiling picture. Let us consider the Hirzebruch Fy model. The
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s1={X1. XT X34 X5}

€ — 2
51= ()(11'\‘)(12'\} _so={X5,, X5, X3 X5}
N B A R N B
p1={X5, X} s3 = {X1, X2} 1= { X5, X34, Xis, Xis} 51 = { XL, X2, X1, X2
4= { X X3} 55 = { Xig, Xi, Xy, Xis}

ps=1{ P ={X7, Xa5} s = {X14, X, X5, Xl p1 = { Xy, X3y, Xis, Xis}

I
P2 = {X31, X3} P2 :I {X\%erl vXJ:x-Xfx}

M

Figure 1.18: The toric (Seiberg) duality action on the brane tiling of the zeroth Hirze-
bruch surface Fy model with corresponding toric diagrams. The points in
the toric diagram correspond to GLSM fields which are presented as perfect
matchings or sets of bifundamental fields in the brane tiling picture.

corresponding gauge theory has a superpotential of the form

Wi = +‘X114Xi2X213X§1‘+‘X124X§2X223X321‘ - ‘X124Xi2X223X311‘ - ‘X114X422X213X§1‘ )
A B C D

(1.6.92)

whose corresponding brane tiling and toric diagram are shown in the first column of
Figure The terms are labelled A to D and the corresponding brane tiling nodes are
indicated in Figure By dualizing on the gauge group labelled 2, the superpotential

becomes

Wir = +‘X114Xi3X§1‘+‘X124XZ3X§1‘—‘-)(124X23X§1‘_‘X114X23X321‘

A B C D
+ ‘X114X23X3?1‘ + ‘X124X5113X§1‘ - ‘X114Xi3X§1‘ - ‘X124X53X§1‘ (1.6.93)
E F a H

and the corresponding new brane tiling and quiver are shown in the second column
of Figure One observes that under toric (Seiberg) duality, the number of gauge
groups G remains constant, the number of bifundamental fields F and the number of

superpotential terms both increase each by 4.
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The change in the number of bifundamental fields and superpotential terms corre-
sponds to the change in the number of GLSM fields corresponding to internal points of
the corresponding toric diagram. The area of the toric diagram corresponding to the
number of gauge groups G remains constant. The two toric diagrams and brane tilings
in Figure with the corresponding superpotentials given in (1.6.92)) and (1.6.93)) are
called phases of the Fy model.

The duality action often leads to superpotentials with quadratic mass terms. Quadratic
mass terms relate to massive fields which become non-dynamical in the IR. The removal

of quadratic mass terms and the corresponding deformation of the brane tiling have been
discussed in section §1.2.2]

The claim is that the combination of toric duality procedures, integrating out mass
terms, and Higgs mechanisms on the C3/Z4 x Z4 orbifold theory with orbifold action
((1,0,3)(0,1, 3)) results in all possible quiver gauge theories whose mesonic moduli space
is toric Calabi-Yau and has a toric diagram which is a reflexive polygon on ZZE This

is further discussed in chapter §3]

1.7 Outline

Chapter §2]is designed to give an overview of the rich combinatorial structure of brane
tilings. Abelian orbifolds of C* and CP in higher dimensions D are taken as prime
examples of the combinatorial challenge when dealing with brane tilings. Based on [2]
with parts from [I, Bl [4], we describe various counting techniques for distinct Abelian
orbifolds of the form CP/T. A particular emphasis is put on Polya’s Enumeration
Theorem and invariance of Abelian orbifolds under elements of the permutation group
Sp. The counting of distinct Abelian orbifolds with the use of techniques from number
theory sets the stage for the later use of Hilbert series as partition functions for gauge
invariant operators.

Chapter §3|elaborates further on the problem of classification of brane tilings by fo-
cusing on supersymmetric quiver theories whose mesonic moduli space as a toric Calabi-
Yau 3-fold is represented by a particular geometric object known as a reflexive polygon.
There are in total 16 reflexive polygons and it is shown that precisely 30 brane tilings
have a reflexive polygon as their toric diagram. Based on [5], this chapter illustrates the
computation of mesonic Hilbert series and their refinement under global symmetries.
Moreover, it illustrates that the lattice of mesonic moduli space generators provided by
the global charges of the Abelian theories is dual to the reflexive toric diagram of the

Calabi-Yau 3-fold. Intriguingly, we discover a new correspondence between brane tilings

15See appendix for the full C*/Z4 x Z4 orbifold theory.
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from the classification which we call specular duality.

Chapter §4| is based on [7] and describes specular duality which has been discov-
ered in the context of brane tilings with reflexive toric diagrams. Specular duality is a
correspondence between two Abelian brane tilings which have the same master space.
Moreover, the two corresponding brane tilings have mesonic and baryonic symmetries
which are swapped under the duality map analogous to a swap of external and internal
perfect matchings. By explicit computations of the master space Hilbert series refined
under both mesonic and baryonic symmetries, the correspondence is verified. The ac-
tual mutation of the brane tiling involved in specular duality, which is known as the
untwisting map, is identified as a pathway to generate brane tilings beyond the 2-torus.
In fact, a prototypical class of brane tilings on higher genus Riemann surfaces is provided
at the end of the chapter with the corresponding quiver diagrams.

Chapter §5|discusses a new class of brane tilings defined on genus 2 Riemann surfaces.
A complete classification of such brane tilings up to 8 quiver fields and 4 superpotential
terms is provided. Using the standard forward algorithm, the mesonic moduli spaces
of the Abelian field theories are identified and the corresponding Hilbert series are
computed. Based on [9], this chapter provides a pioneering analysis of brane tilings on
higher genus Riemann surfaces.

Chapter §6] summarises the results in this work and provides an overview of new di-

rections on the study of brane tilings. We conclude with a summary of ongoing projects.
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2 Brane Tilings and Abelian Orbifolds

The following chapter covers a study on Abelian orbifolds of C® and in general CP.
Abelian orbifolds of toric Calabi-Yau 3-folds play an important role in studying brane
tilings. This is because for every Abelian orbifold of a toric Calabi-Yau 3-fold, one
expects to find at least one corresponding brane tiling whose mesonic moduli space is
the orbifold itself. Given that C? is the first Calabi-Yau 3-fold to consider, it is natural
to study first Abelian orbifolds of C? in the context of brane tilings.

An important challenge facing us from the onset is due to the infinite number of
Abelian orbifolds of C? or any other toric Calabi-Yau 3-fold. The challenge is to identify
and to classify the distinct Abelian orbifolds of a given toric Calabi-Yau 3-fold and to
know how many there are for a given order of the finite Abelian quotienting group. The
studies in [126, 1] use the parameterisation of Abelian orbifolds of C3 to count and write a
partition function for the number of distinct Abelian orbifolds for arbitrary orders of the
quotienting group. In the following chapter, based on [2], we elaborate on the counting
technique using Polya’s Enumeration Theorem. With particular emphasis on Abelian
orbifolds of the form C3/I" up to C%/I", a counting is presented which highlights Abelian
orbifolds that are invariant under cycles of the permutation group Sp. The resulting
multiplicative sequences, which are controlled by their values on primes and pure powers
of primes, are used to calculate the counting of distinct Abelian orbifolds of the form
CP /T for prime orders of I in any dimension D.

The chapter illustrates well the combinatorial richness of brane tilings and gives an
introduction to the problem of counting by using partition functions. Both subjects will
play a more important role in the following chapters of this work. This chapter is an
edited version of [2] with parts from [T}, [3, [4]. These are parts of research work in col-

laboration with John Davey, Amihay Hanany, Vishnu Jejjala and Sanjaye Ramgoolam.

2.1 Introduction

Advances in enumerating and counting distinct Abelian orbifolds [126], [I] have uncovered
rich structures in the vast family of quiver gauge theories. In the past, quiver gauge
theories [44] 127, 41] as worldvolume theories of D3-branes probing toric non-compact
Calabi-Yau (CY) singularities [45, 53] have been fruitfully studied [15, 55, 00, 17, 16,
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100L [89]. Brane tilings were instrumental in relating worldvolume gauge theories of D3-
branes with probed toric non-compact Calabi-Yau geometries. Trailblazing examples of
study were the Abelian orbifolds of C3 [128, 129, (130}, 131}, 132} 43} (133, 134]. A guiding
principle has been the fact that an infinite sub-class of (3 + 1)-dimensional worldvolume
gauge theories have moduli spaces which are Abelian orbifolds of the form C3/TI" with
I’ being an Abelian subgroup of SU(3). The moduli spaces are toric, and for Abelian
orbifolds of C? the toric diagrams are always elegantly triangles. Accordingly, from the
geometrical perspective, two distinct Abelian orbifolds of C? have toric triangles which
are not related under a GL(2,Z) transformation. A thought-provoking example is the
Abelian orbifold of the form C3/Z3p with action (2,3,25) whose toric triangle cannot
be GL(2,Z) equivalent to an orbifold with an action of the unnecessarily restrictive but
commonly used form (1,a,—1 — a). This and many other untouched orbifolds lead to
the problem of classifying and counting distinct Abelian orbifolds of C? which has been
solved in the pioneering work in [I] and [126].

How about higher dimensional Abelian orbifolds of C”? The most recent break-
throughs which led towards studies on Calabi-Yau four-folds as orbifold backgrounds
have been the works on ABJM theory [56, 57, 58, 59, (59, 60]. These prompted an
upgrade of brane tilings to accommodate the worldvolume gauge theories of M2-branes
which probe toric non-compact CY 4-folds. The worldvolume gauge theories of probe
M2 branes are N’ = 2 (2 + 1)-dimensional quiver Chern-Simons theories [62, [63, 135].
The theories’” Chern-Simons levels are represented in a modified brane tiling [64, 136,
137, 138] which obviates the use of the initially proposed brane crystal constructions
[139] [140]. The special connection to our work has been the observation that an infi-
nite sub-class of (24 1)-dimensional M2-brane worldvolume gauge theories have moduli
spaces which are Abelian orbifolds of the form C*/I" with I' being an Abelian subgroup
of SU(4). As for the CY3 case, the moduli spaces are toric, and the associated toric
diagrams elegantly turn out to be always tetrahedra [64], [141]. Again, from a geometri-
cal perspective two distinct Abelian orbifolds of C* have toric tetrahedra which are not
related under a GL(3,7Z) transformation. Accordingly, not surprisingly we encounter
from this special example of Chern-Simons gauge theories the familiar problem of enu-
merating and counting distinct Abelian orbifolds of C* [126, [1].

By continuation, we expect that higher dimensional Abelian orbifolds of the form
CP /T with T being an Abelian subgroup of SU(D) have toric diagrams which are (D —
1)-dimensional simplices embedded in ZP”~!. An efficient method of testing GL(D—1,7Z)
equivalence between toric simplices has been outlined in detail in [I].

In the following we argue that discrete symmetries of an Abelian orbifold of C” can
be observed directly through its toric diagram using the same method used to test
GL(D — 1,Z) equivalence between toric simplices. Discrete symmetries have played an

integral role in specifying the global symmetries of the gauge theory in 3+ 1 dimensions
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Figure 2.1: The toric diagrams for the Abelian orbifolds of the form C3/Z3 x Zs, (C4/Zg X
Zs x Zs and CP° [Zs x ZLs x Zs x Zs respectively. The 4-dimensional toric
diagram of C°/Zs x Z3 x Zz x Z3 has been projected into 3-space. Z”
lattice points on 1-simplices and 2-simplices are colored yellow and green
respectively, whereas the defining vertex points are in black.

in the past [35] [I4], and so far, they have been identified only through the quiver or
superpotential of the gauge theory. The method we present in this work to ‘measure’
symmetries directly from the toric diagram of a given Abelian orbifold of CP is a novel
approach whose unexpected by-product through Polya’s Enumeration Theorem is the
counting of distinct Abelian orbifolds of CP — something which we believe has never
been done before.

We identify and count explicitly Abelian orbifolds of C? to C® which are invariant
under cycles of the permutation group Sp. This produces multiplicative sequences, each
corresponding to a cycle in the Cycle Index of the permutation group Sp. Multiplica-
tivity states that the sequence values at co-prime orders n; and ngy give as a product the
sequence value at order nins. Accordingly, we put emphasis on orbifolds of the form
CP/I' with the order of I' being a prime number. From this perspective, we propose
a novel generalisation of sequences which count distinct Abelian orbifolds of CP and
Abelian orbifolds which are invariant under cycles of the permutation group Sp. Such a
generalisation enables us to probe and quantify the rich geometrical structure of Abelian
orbifolds of C” in any dimension D.

The chapter is divided into the following sections:

e Section gives a short summary of how to identify distinct Abelian orbifolds of
CP and toric diagrams which are invariant under cycles of the symmetric group
Sp.

e Section §2.3| presents the results of counting for the orbifolds of C3, C*, C® and
CS, and reviews how these results can be encoded in terms of partition functions
for the special cases of C3/T'y and C*/T'y.
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e Section presents the role of values on prime indices of sequences which count
orbifolds that are invariant under cycles of Sp, and discusses how the values on
prime indices affect the derivation of partition functions. We explicitly derive the

partition function counting distinct C5/T.

e Section outlines generalisations for partition functions which count orbifolds
that are invariant under certain cycles of Sp. In addition, a complete generalisa-
tion is presented for sequences which count distinct Abelian orbifolds of the form

CP/I" and their symmetries where the order of I' is prime.

Notation and Nomenclature. A list of the most common notation and nomenclature
used in this chapter is presented below. The reader will be introduced to them in more

detail in the main text.

e A cycle g of the permutation group Sp is denoted by ¢g® to emphasise its corre-
spondence to a conjugacy class H, of Sp. A conjugacy class H, C Sp is labeled

by a cycle index variable .

e Given a sequence g with elements g, = g(n) denoted by integer indices n € Z*,

we write a partition function of the sequence as g(t) = ), gnt".

e Given a sequence g, the new sequence formed by picking elements g, on prime

indices p is called a prime index sequence of g.

2.2 Background and Methods

2.2.1 Introduction to Abelian Orbifolds

Let C3 be parameterised by z1, 20, 23. We consider quotients of the form C3?/T'y with
discrete Abelian I'y € SU(3) and of order N € Z". In general, we consider orbifolds
with T'y = Zy, X Zp, and order nine = N € Z*. Without loss of generality, it is
assumed that ni > no.

Let an irreducible representation of I'y = Z,, x Z,, be called Rinyma) with ele-
ments w6} § =1 .. 3 and ]R(mm)] = N. The elements of the representation

waih{b}) ¢ R, ny) are of the form

i2maq i2mwby 2 ay | by

e " e n2 el 7|—(TL1—~_7L2)

. . . i2mag A i2mwbo . . ag | by
wleb ) = giag | o7 diag | ¢ 2 = diag [ 2 Gitay) . (2.2.1)

i2mwag i27bg . ag | by

e " e "2 ezzﬂ("1+”2)

with (a1 + a2 + a3) mod ny = 0 and (b; + by + b3) mod ny = 0. The zero sum conditions
are a manifestation of the Calabi-Yau condition on the orbifold C3/T'y and the det = 1
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property of SU(3). We introduce notation such that (2.2.1)) can be expressed as

wHaib{bi}) — (an,a2,a3) (b1,b2,b3) — ((a1,a2,a3),(b1,b2,b3)) (2.2.2)
For the element w({@ih{bi}) ¢ Ry, ny) to be also a generator of the representation, it
has to fulfil ged (n1,{a;}) = 1 and ged (ng, {b;}) = 1. In addition, the identity element
of the representation is defined as (w({:}{#:H)N = 1 The Calabi-Yau condition also
results in det(w{eh{bi)) =1,
The generator w{@h{0i}) of the representation R(n, ny) acts on the coordinates of c3
as

b;

plahded) . Ly pUahivd), =, 2r (e (2.2.3)

The dual to the generator w{@:}1:{%}) of the representation R is now the 2x 3 ma-

ni,n2
trix orbifold action ((ai,asz,as), (b1,b2,b3)) generating the represer)rcation R(m,nz) with
ged (n1,{a;}) = 1 and ged (ne, {b;}) = 1. For ged (n1,{a;}) # 1 and ged (ng, {b;}) # 1,
((a1, a2, a3), (b1, b2, b3)) is not an orbifold action of C3/Ty,p,.

Let the set of all generators of representations {R(nhnz)} of I'y orbifold groups of

order N = nyng be called Ay = {A} with k =1,... | Ax|. This set is defined as

(a1 + a2 +a3z) mod n; =0,
A B ( (a1,az,as) ) ‘
N=ning —

(b1 + by + b3) mod ne =0, . (2.24)
(b1> b27 b3)
ged (n1, {ai}) =1, ged (ng, {b;}) =1

As for C? orbifolds, the set of orbifold actions Ay does not consist of distinct inequiv-
alent orbifold actions. The set of orbifold actions Ay at a given order N = nins
can be re-expressed as the union of all orbifold action equivalence classes [Ag]. If
two orbifold actions A; € [Ag] and A,, € [Ag] are of the same equivalence class
[Ax] and are both generators of representations R(m,nz)(Al) and R(,ﬁl,ﬁZ)(Ak-) respec-
tively with N = nine = n1n9, then the two representations of I'y are equivalent
]?(nth)(Al) ~ R(ﬁhﬁz)(Ak) up to a permutation of the complex coordinates of C3.

It is of use to consider an orbifold action in terms of its components. An orbifold
action Aj, in C? consists of two components corresponding to the two rows in the 2 x 3
orbifold action matrix Ay = ((a1,a2,a3), (b1,b2,b3)). We denote the two components
as Al(Cm) = (a1, az,a3) and Agm = (b1, b2, b3) such that the action can be written as
Ay = (A,E:nl),A,(c"Q)). The dual operator has the corresponding notation w(fai}:{ti}) —
(w(al,ag,ag) , w(bl,bg,bg))'

For the case when ny = 1 with ny > nso, the orbifold action and its dual are of the
form A; = (A,(cnl), (0,0,0)) and wHaidAbi}) = (()(@1,02,03) 1) respectively. In this case, it
is beneficial to talk about the effective component A,(Cm) of the orbifold action instead of
the orbifold action Ay itself. In the context of representations, for ged (ny,{a;}) = 1, the

component A}(€n1) is the generator of the representation Rnl of the group I'ny=pn, = Zn,
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with ng = 1.

2.2.2 Abelian Orbifolds as Brane Tilings

Equivalence of two orbifold actions can be illustrated in the setting of brane tilings.
In the context of brane boxes and brane configurations, this has been illustrated in
[68] 142 [143].

We recall, the worldvolume gauge theories that arise when a collection of D-branes
probe a non-compact toric Calabi-Yau (CY) singularity, the CY 3-fold, are quiver gauge
theories. In 10-dimensional Type IIB String Theory, the configuration of the probe D3-
branes on the cone over the CY 3-fold is T-dualised to a configuration of D5-branes
suspended between NS5-branes. The resulting so called brane box configurations of
NS5 and Db5-branes, their corresponding T-dual configuration of D3-branes probing a
non-compact Calabi-Yau singularity, and the (3 4 1)-dimensional D-brane worldvolume
gauge theories have a combined description in the form of a brane tiling [143], [55].

The configuration of ny NS5-branes and ny NS5-branes, the n; x ny brane box config-
uration, is T-dual to the orbifold C3/Z,,, X Z,,. The orbifold action can be considered
as a labelling of distinct n; X ng brane box configurations. Accordingly, under the brane
tiling description of brane box configurations, two inequivalent orbifold actions corre-

spond to two distinct brane tilings.

Brane Tiling Dictionary for Abelian Orbifolds. The order of the orbifold, N =
ning, is the number of faces in the fundamental domain of the tiling corresponding to
the gauge groups U(1)" of the (3 + 1)-dimensional worldvolume gauge theory. Faces
in the tiling for C? orbifolds are hexagonal such that the tiling has 3 symmetry axes
corresponding to 3 fundamental directions

{v},v2 v} (2.2.5)

171

crossing at a face F; in the tiling, with : = 1,..., N, as shown in Figure Note that

Z-l, v?, vf’ at a given face F; are isomorphic to the complex coordinates

{Zh 22, 23} of Cgv

the directions {v

B : {z1,29,23} — {v},v} v} . (2.2.6)

(R a1

Moreover, these correspond to the generators o for a convex polyhedral cone [144] as
shown in the discussion on toric geometry in Section §2.2.4]

To represent the action Ay, in the brane tiling setup of the orbifold action C?/Z,,, X Zy,,
it is useful to specify the face labels F; as a pair of two positive integer numbers F; =

(fi1, fiz) with f;; € Ng. Then the orbifold action can be visualized as acting on the face
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Figure 2.2: The fundamental directions v} Uiz, v

3

2 at a given face F; in the brane tiling

7

of C3.

labels of the tiling in a chosen direction v},

w= ( Zm ) . Fo=(fi, fiz) — ((fi1 + am) mod nq, (fiz + b)) mod ng) , (2.2.7)
m

where A7 is a column of the orbifold action matrix Ay such that Ay = (A}, A2, A3)T.

As an example, the orbifold used in Section C3/Z3 x 7o with action Ay =

((1,0,2),(0,1,1)) has a brane tiling as shown in Figure with an arbitrarily chosen

reference face F1 = (f11, fi2) = (0,0) that has 3 direct neighbours along the fundamental

directions {v},v?,v$}. These direct neighbours share with F; a unique edge in the tiling

and have labels given by

Al 2 (0,0) — (1,0)
A? ¢ (0,0) = (0,1)
A2 o (0,0) = (2,1). (2.2.8)

The entire brane tiling structure can be constructed by finding recursively the face la-

bels of neighbouring faces of all faces {F;} in the brane tiling.

Equivalence of Brane Tilings. It is now instructive to see how the brane tiling
conveys equivalence between orbifold actions. For example, the brane tiling for the
orbifold action A; = ((1,2,3),(0,0,0)) of C3/Zg can be drawn as shown in Figure
For any brane tiling with face labels F; = (fi1, fi2), there is a consistent relabeling of

faces p such that
p: Fi=(fa,fie) — fieNg, (2.2.9)

where | = 1,...,N and f; # f; if | # k. For the tiling corresponding to A; =
((1,2,3),(0,0,0)) with faces {FiAQ}, a straightforward relabelling choice is

PAl : (fiAl) 12141) = fl:fifh (2.2.10)
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Figure 2.3: The brane tiling for the orbifold C3/Z3 x Zy with action Ay =
((1,0,2),(0,1,1)).

Figure 2.4: The brane tiling for the orbifold C3/Zg with action A; = ((1,2,3), (0,0,0)).

since f;o2 = 0 Vi. It can be now shown that there is a consistent relabelling pA2 such

that it maps the face labels {FiAQ} of the tiling for A, in the following way,

A {Fz'AQ} = {(fz'lAQame)} - {fit = PAI({FiAl}) 5 (2.2.11)

where p#2 is the map on the face labels of the A action tiling as shown in ([2.2.10).
In fact, in general if the relation in (2.2.11]) holds for two brane tilings of orbifold
actions A; € R(m,nz) and Ay € R(n/l,n’Q) with nyng = nin, = N, then A; ~ Ay. For the

above two example actions A; and As, the relabelling map on {FiAQ} can be chosen as

=

iy

p* : (0,0)
(1,0)
(2,0)
(0,1)
(1,1)
(2,1)

111 1 11

(2.2.12)

verifying that A; ~ Ay where A; € R(GJ) and Ay € R(372). Accordingly, we have shown
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Orbifold Action Brane Tiling

Figure 2.5: The correspondence between barycentric coordinates of the toric triangle,
coordinates of the hexagonal brane tiling and the complex coordinates of C?
as first illustrated in [1J.

that Ay ~ As in the context of brane tilings verifying the result in Section §2.1]
Another correspondence can be identified between equivalent brane tilings and orb-
ifold actions that are equivalent up to a permutation of the complex coordinates of
C3, {z1,20,23}. By the correspondence between the coordinates {zi, 22,23} and the
2,3

fundamental directions {v},vZ, v

7, vy} of a face F; in the tiling, orbifold equivalence up to

a permutation of coordinates corresponds to tiling equivalence due to permutations of
{fuil, Ul-2, vf’} that are interpreted as reflections or rotations around a face F; in the tiling.

Accordingly, orbifold action equivalence can be identified as a symmetry on the brane

tiling.

2.2.3 Toric Diagrams and Barycentric Coordinates

More generally, two orbifolds of CP are distinct if there is no GL(D — 1,7) transfor-
mation which maps between the corresponding toric diagrams. We give here a short

summary of the method which tests this condition efficiently.

Toric Diagrams and Barycentric Coordinates. Non-compact toric CY singular-
ities are represented by toric diagrams. For Abelian orbifolds of the form C2 /Ty, the
toric diagrams are lines in Z! with length N. For Abelian orbifolds of the form C3/Ty,
the toric diagrams are triangles embedded in Z? with area N. For Abelian orbifolds
of the form C*/Ty, the toric diagrams are tetrahedra embedded in Z3 with volume N.
By continuation, Abelian orbifolds of the form CP /Ty have toric diagrams as (D — 1)-
simplices, henceforth denoted by o”~!, which are embedded in Z”~! with hyper-volume
N.

Every lattice point wy on and enclosed by the boundary of o?~! (wy, € oP~1) divides
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Figure 2.6: Toric tetrahedra corresponding to C*/Zs with orbifold action A =
((1,1,1,1),(0,0,0,0),(0,0,0,0)) and scalings sp = 1, s1 = s3 = 2 and s = 3
respectively. Lattice points on edges (lp), lattice points on faces (I;) and
internal lattice points (I3) are colored yellow, green and red respectively.

0P~V into D sub-simplices of dimension D —1 or less. These sub-simplices have (D —1)-

dimensional hyper-volumes with values Ag1, Axo, ..., Axp. Accordingly, the lattice point

D—-1

wg € 0 can be given in terms of barycentric coordinates of the form

1
wE = N()\kl))‘kﬂa”'7>\ki7"'7)\kD)7 (2213)

where the barycentric coordinate axes are labeled by i = 1,..., D and N is the (D —1)-
dimensional hyper-volume of the simplex o?~1.

It has been proposed in [I] that the barycentric coordinates defined on toric simplices
of CP /T correspond to complex coordinates on CP as well as for D = 3 the zig-zag-paths

on the hexagonal brane tiling of C3. The correspondence is illustrated in Figure

The Topological Character and Scaling. The topological character of a given toric

D—-1

simplex o is defined as the set of barycentric coordinates for all w; € I(ocP~1).

I(oP~1) is the set of relevant lattice points of o”~1, and is defined as

D—-1

(oY) = | La(fs(c™)) . (2.2.14)

d=0

Here, I d(JD ~1) is the set of defining lattice points of all d-dimensional sub-simplices con-
tained in 0P ~1. Accordingly, Io(c” 1) is the set of D corner points of P ~! (Figure.
fs,(0P~1) is a scaled simplex oP~1 such that I;(fs,(cP~1)) # 0 with s; being the scal-
ing coefficient. In we use an overall scaling coefficient s = max (s1,...,5p—1).

Example. Let us take the example shown in Figure for the orbifold of the form

C*/Zy. Here, Iy is the set of the four corner points of the toric tetrahedron which

are ‘visible’ with scaling sp = 1. The internal (red) points and points on edges (yellow)
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Figure 2.7: The Hermite Normal Forms D(2) for C*/Ts.

forming the sets I1 and I3 respectively are visible only with scaling s; = s3 = 2. Finally,
lattice points on faces of the tetrahedron (green) forming the set I3 are visible only with
an overall scaling s3 = 3. In order to collect all topologically significant lattice points

in the overall set I, we scale the toric tetrahedron of C*/Zs to max (sg, s1, 52, 3) = 3.

Overall, the topological character of a toric simplex 0”1 is defined as
1 D-1
T = N()\kl,)\kg,...,)\ki,...,)\kD) ’ Wi GI(O' ) s (2.2.15)

where wy, is the barycentric coordinate defined in ([2.2.13]) of a point in the set [ (O’D -1
defined in ([2.2.14]).

Observation 2.2.1. Two toric simplices of CP /Ty that are related under a GL(D —
1,Z) transformation, and hence are equivalent, have equal topological characters up to

a permutation of the barycentric coordinate axes labeled by i =1,...,D.

2.2.4 Hermite Normal Forms and Symmetries

Hermite Normal Forms. The Hermite Normal Form (HNF) is an upper diagonal

square matrix of size D — 1 with non-negative integer entries. It takes the form

mi1 Mmiz2 ... mij PN ml(D—l)
0 mo2 ... maj e mz(D,l)
0 0 ms; mM3(D-1)
M=1 0 0 m(-1)5 mi-no-1 | (2.2.16)
Myjj Mj(D-1)
0 M(j+1)(D-1)
0 0 ce 0 ce m(D_l)(D_l)
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where det M = HJ-D:_ll mj; = N and the off diagonal entries are restricted by the con-
dition 0 < mj, < mj; with mj, € Ng. For each such matrix one can construct a toric
diagram with hyper-volume N by multiplying the matrix on the Cartesian basis in D
dimensions, {(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)}. The set of all toric diagrams
will henceforth be called the set of HNF’s.

All HNF’s of order N and given dimension D form a set D(N). Denoting the permu-
tation group of order D by S DE| one observes that every permutation g € Sp forms an

automorphism of D(N),

L

g : D(N) > D(N) . (2.2.17)

Observation 2.2.2. Under all g € Sp, D(N) is partitioned into g (N) subsets where
each subset [oP~1] corresponds to a distinct Abelian orbifold of the form CP /Ty.

A consequence of the above observation is the following:

Observation 2.2.3. A subset [P~ € D(N) which corresponds to a distinct orbifold
of the form CP /T is mapped onto itself under all g € Sp.

Example. Let us consider an example with orbifolds of the form C*/T's. The corre-

sponding set of all possible HNF matrices D(2) is given by

100 100 101 10 100 110 0 0
01o)],{o11],f010],[01 ,f 02 0,1 020/, 10 .
00 2 00 2 00 2 00 001 001 01

The corresponding toric tetrahedra are shown respectively in Figure

R
o o w

Orbifold Symmetries. Let Cy be a transformation on the topological character 7 of
a toric simplex o”~! where g € Sp. Cy is defined as the g-permutation of the barycen-

tric coordinate axes which define 7. If for a given transformation C, the topological

D—-1

character 7 of o is invariant, then we call C,; and the corresponding cycle g € Sp a

symmetry of oP~1.

Figure 2.8: The toric diagram of C?/Z3 x Z3.

Example. Let us consider 4 elements of the topological character of the orbifold of the
form C3/Z3 x Z3 with the toric triangle shown in Figure The 4 elements correspond

'Elements of a permutation group are written in cyclic form. For example, S3 =

{(H(2)(3), (1 2)(3), (1)(2 3),(1 3)(2),(123),(1 3 2)}.
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to the barycentric coordinates of the 3 corner points and the green internal point, and

7 ={(0,0,1),(0,1,0),(1,0,0), (1/3,1/3,1/3),...} .

By transforming under C; 5 3y which is a cyclic permutation of all 3 barycentric co-
ordinate axes, we see that the elements which correspond to the corner points are
permuted whilst the element corresponding to the internal point is mapped onto itself.
Accordingly, we note that under C(; 3 3), from considering just the first 4 elements, 7 is

invariant under the cycle (1 2 3) € Ss.

2.2.5 Counting Orbifold Symmetries

Zs, = % (x‘ll + Gx%xz + 3:5% + 8z1x3 + 6x4)

_— _— — _

. ' e 4

T4y G964 23 1234
(13)  (13)24 (124 (1243)
(14 (1423 (132 (1324)
23) (134) (1342
@ 4) (142) (1423
(34) (143) (1432)

(234)

(243)

Figure 2.9: The cycle index of Sy and the Sy cycles corresponding to terms of the cycle
index.

The Cycle Index of Sp. The cycle index Zg, of a permutation group Sp is a
polynomial in D variables where every monomial term corresponds to a conjugacy class
of Sp. The coefficient of a monomial term is the ratio between the number of elements
in the corresponding conjugacy class and the total number of elements in Sp.

Let a cycle g € Sp be denoted as g = {7’} where i = 1,...,|g| = M. Each sub-
cycle 4% € g permutes n; = |;| elements at positions {mi, ..., mﬁ%} Furthermore, let
a=1,..., Ng be the index over conjugacy classes H, of Sp.

Using this notation, the cycle index of Sp is given by

= 5y |Z<\H !me ga> : (2.2.18)

The cycle index of Sp can be found recursively using

D

1

53w Zsy (2.2.19)
r=1
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D | Orbifold | Cycle Index
1 C Zg, = x1
2 (CZ/FN Zg, = % (17% + 172)
3 (CS/FN Zgy = % (ZZT‘;’ + 3z129 + 2333)
4| CYTn | Zs, = 5 (#1 + 63322 + 323 + 82123 + 6x4)
5| C/Ty Zgs = ﬁ (:75‘13 + 10:2%:02 + 151‘1123 + 20:5%333 + 20z9x3 + 302124 + 241:5)
6| CO/Ty Zss = ﬁ(mi + 15atas + 452203 + 1523 + 402373 + 120717973 + 4073
+90z7x4 + 90z224 + 1442125 + 12026)
Zs, = zap(@] + 2128wy + 1052323 + 1053123 + T0x7as + 42027073
7| C"/Ty +210z3z5 + 2807123 + 2102324 + 630212274 + 4202324

+504z3x5 + 5042075 + 84031 26 + 72027)

73y = o530 (@} + 282%x0 + 2102123 + 4202323 + 10523 + 112333
+112023 w223 + 1680712375 + 11202223 + 11202923

8 | C¥Ty +4202 74 + 2520223974 + 12602374 + 3360717374 + 126023
+1344a375 + 403271275 + 26887375 + 33602276 + 33607276
45760127 + 5040x3)

Z3y = =g (@] + 3627ws + 3783323 + 12602523 + 9452123
+16828z3 + 25202 w073 + 756032373 + 25202373
+33602323 + 10080z 7273 + 224023 + 7562374 + 756023214

9 | CTy +11340z 12374 + 15120232374 + 15120207374 + 113402122

+3024xztws + 18144alzoxs + 90722325 + 24192z 235

+18144x 425 + 100801':{’1‘6 + 30240z 2226 + 201602326

+25920w%ar7 + 259202927 + 4536021 x5 + 4032019)

Table 2.1: The first nine cycle indices of Sp and the corresponding Abelian orbifolds.

where Zg, = 1. The first 9 cycle indices are shown in Table

Polya’s Enumeration Theorem. We recall that the set of HNF’s D(N) is invariant
under all g € Sp and is partitioned into g(”) (V) subsets under observation §2.2.2l Each
subset corresponds to a distinct Abelian orbifold of the form CP)/T'y and hence gP(N)
counts the number of distinct Abelian orbifolds of the form CP /Ty at order N.

A single HNF of D(N) is invariant under g € Sp if Cy is a symmetry of the cor-
responding toric simplex o”~!. Let g a(N) be the number of g®-symmetric HNF’s in
D(N) where g¢ € H,. z% is a label of the a-term in the cycle index of Sp, and the
corresponding conjugacy class H,,.

Under Polya’s Enumeration Theorem, Zg,, = gP) (N) if we insert for every mono-
mial factor ® in Zg,, the count gya (N) such that 2% = gga (N). We recall that g(P)(N)
is the number of distinct toric simplices o”~1 of hyper-volume N and equivalently the
number of distinct Abelian orbifolds of the form CP/T'y.

For the first three dimensions, the cycle indices are re-written as

s, = 11 = g(D:U(N) = 8 (N)
_ 1
Zs, = 5 (1 +w) = gP(N) = 2 (g’”%(N) + ng(N)>
(23 4 3120 + 223) = gPI(N) =

& (83 (V) 4 Bgaa (V) + 262,(V))

(2.2.20)
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The Counting Algorithm. In summary, the following algorithm is used to count
distinct orbifolds of the form CP/I'y and HNF’s symmetric under cycles of Sp:

INPUT OUTPUT
Hermite Orbifold @
CD T Normal Forms Counting 9PNty =
/ N M g(D>(N) ZNg(D)(N)tN
T tow
Toric Diagrams Cycle Index of the
ZSD permutation
O'D_] group
Topological C Ga-invariant
Characters 9o HNFs
T Ja-cyclic «(N
\ /  permutation of 8z ( )

barycentric
coordinates

9o € H, C Sp

The input of the algorithm is the dimension D and the order N of orbifolds of the form
CP/T'y where I'y € SU(D). The output is the counting g(®)(N) of distinct Abelian
orbifolds of CP. A by-product is the counting g,«(N) of HNF’s which are invariant
under the cycle g, € Hy, C Sp where H, is a conjugacy class of Sp.

2.3 The Symmetries of Abelian Orbifolds of C3, C*, C° and
C6

2.3.1 Counting Symmetric Orbifolds

Our explicit counting is presented in Table for C3/T'y, in Table for C*/T'y, in
Table and Table for C°/T'y and in Table for C5/I'y.

The orbifold counting confirms the results presented in [1]. The sequences gz« which
count g®symmetric HNF’s of C3/T'y and C*/T'y also match the results in [126]. Ac-
cordingly, the counting method presented above gives a geometrical interpretation to

the sequences in [126].

2.3.2 Partition Functions

Let an infinite sequence g be expressed as a partition function g(t) = > ", g(n)t". The
partition functions gt (t) = 3"%_, g (N)tV for sequences of C3/T'y and C*/T'y are

presented in [126 1], and are summarized belowE]

*Note: We use g(t) for partition functions and g(N) for an element of a sequence.
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Partition Functions for C3/T'y. The partition functions for the sequences that count
g“-symmetric HNF’s which correspond to Abelian orbifolds of C® can be presented
in terms of rational functions f(¢). A partition function g(¢) is expressed as g(t) =
S0, f(t*). The rational functions for the symmetries of C3/T'y are

_ ) _ __ a4+t
(1—1%)?
)= ———) 4 2.3.21
such that the partition function for distinct C3/Ty is
g Py = Yo
k=1
1 oo
= o (Fa ) 3 fam®) 26 () . (2322)
k=1
The rational function for g(P=3)(¢) is
(D=3)() — L
FO=3(t) = —1. (2.3.23)

(1—t)(1+3)(1—13)

We note that the sequences which are generated in ([2.3.21)) can be expressed as Dirichlet

Series and in terms of Riemann zeta functions as shown in [126].

Partition Functions for C*/I'y. The rational functions for the symmetries of C*/T"y
are

oo

fra(t) = Z nm2t™m
n,m=1
oo

ZE%IQ (t) = Z m (tmn — t2m77« + 4t4mn) ,

n,m=1
o0

fz2 (t) _ Z m (tmn o t2mn + 4t4mn) 7

n,m=1

fz1m3(t) = ;[ i tn2+4m2_1]

n,m=—00

fot) = ;[ > t”2+m"+7m2—1] . (2.3.24)

n,m=—00

These can also be expressed as Dirichlet Series and in terms of Riemann zeta functions.
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N |1 2 3 4 5 6 7 8 9 10
g | 1 3 4 7 6 12 8 15 13 18
Seres | 1 1 2 3 2 2 2 5 3 2
grs | 1 0 1 1 0 0 2 0 1 0
gP=3 11 1 2 3 2 3 3 5 4 4
N 11 12 13 14 15 16 17 18 19 20
g3 | 12 28 14 24 24 31 18 39 20 42
Seres | 2 6 2 2 4 7 2 3 2 6
g | O 1 2 0 0 1 0 0 2 0
g@P=3 13 8 4 5 6 9 4 8 5 10
N |21 22 23 24 25 26 27 28 29 30
g5 | 32 36 24 60 31 42 40 56 30 72
Sores | 4 2 2 10 3 2 4 6 2 4
8oy |2 0 0 0 1 0 1 2 0 0
g@P=3 |8 7 5 15 7 3 9 13 6 14
N |31 32 33 34 35 36 37 38 39 40
g3 | 32 63 48 54 48 91 38 60 56 90
Seres | 2 9 4 2 4 9 2 2 4 10
Eos | 2 0 0 0 0 1 2 0 2 0
gP= 17 15 10 10 10 20 8 11 12 20
N 4 42 43 44 45 46 47 48 49 50
g5 | 42 96 44 84 78 72 48 124 57 93
Ceres | 2 4 2 6 6 2 2 14 3 3,
Ges | O 0 2 0 0 0 0 1 3 0
g@P=3 |8 18 9 17 16 13 9 28 12 17
N |51 52 53 54 55 56 57 58 59 60
g3 | 72 98 54 120 72 120 80 90 60 168
Seres | 4 6 2 4 4 10 4 2 2 12
gy | O 2 0 0 0 0 2 0 0 0
gP=3 114 20 10 22 14 25 16 16 11 34

Table 2.2: The symmetry count for C3/T"y with cycle index Zg,.

The partition function for distinct Abelian orbifolds of C* is

g P=9 (1) i4 > ( (%) 4 6 f 130, (") + 3F 12 (%) + 8 fr15 (%) + 6 f2, (tk))
k=1

(2.3.25)

2.4 Prime Index Sequences and Series Convolutions

2.4.1 Series Convolutions

Sequences that count g®-symmetric HNF’s which correspond to Abelian orbifolds of C”
can be expressed in terms of sequence convolutions. A sequence g = {g(1),g(2),g(3),...}

is related to its corresponding partition function by g(t) = 2, g(n)t"
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N |1 2 3 4 5 6 7 8 9 10
g1 | 1 7 13 35 31 91 57 155 130 217
820, | 1 3 5 11 7 15 9 31 18 21
g2 |1 3 5 11 7 15 9 31 18 21
Goras | 1 1 1 2 1 1 3 2 4 1
goy | 1 1 1 3 3 1 1 5 2
gP=911 2 3 7 5 10 7 20 14 18
N 11 12 13 14 15 16 17 18 19 20
g4 | 133 455 183 399 403 651 307 910 381 1085
820, | 13 55 15 27 35 75 19 54 21 77
g2 |13 55 15 27 35 75 19 54 21 77
Govws | 1 2 3 3 1 3 1 4 3 2
goy |1 3 3 1 3 7 3 2 1 9
gP=Y 111 41 15 28 31 58 21 60 25 77
N |21 22 23 24 25 26 27 28 29 30
g4 | T4l 931 553 2015 806 1281 1210 1995 871 2821
820, | 45 39 25 155 38 45 58 99 31 105
g2 |45 39 25 155 38 45 58 99 31 105
Erizs | 3 1 1 2 2 3 7 6 1 1
gy |1 1 1 5 6 3 2 3 3 3
g@P=9 | 49 54 33 144 50 72 75 123 49 158
N |31 32 33 34 35 36 37 38 39 40
g4 | 993 2667 1729 2149 1767 4550 1407 2667 2379 4805
820, | 33 167 65 57 63 198 39 63 75 217
g2 |33 167 65 57 63 198 39 63 75 217
Grizs | 3 3 1 1 3 8 3 3 3 2
gen |1 9 1 3 3 6 3 1 3 15
gP=9 | 55 177 97 112 99 268 75 136 129 286
N 4 42 43 a4 45 46 a7 48 49 50
g4 | 1723 5187 1893 4655 4030 3871 2257 8463 2850 5642
820, |43 135 45 143 126 75 49 375 66 114
g2 |43 135 45 143 126 75 49 375 66 114
Grias | 1 3 3 2 4 1 1 3 6 2
ges |3 1 1 3 6 1 1 7 2 6
g@P=D 1 89 268 97 249 218 190 113 496 146 280

Table 2.3: The symmetry count for C*/T"y with cycle index Zg, .

Partition Functions and Sequence Convolutions. As outlined in [126] and [145],
given a sequence q = r x s generated by a convolution of the sequences r and s, the

partition function for the sequence q, ¢(t), is expressed as,

gt) = D rm)s(k)t™ = " r(m)s(t™) = Y s(m)r(t™), (2.4.26)
m,k=1 m=1 m=1

where 7(t) and s(t) are the partition functions of the sequences r and s respectively. We
invert (2.4.26) as follows

rt) = 3 a(tt)s(k)ulk) | (2.4.27)

m=1

where pi(n) is the Mobius function. It is expected that the above inversion is valid for
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N |1 2 3 4 5 6 7 8 9 10
g5 |1 15 40 155 156 600 400 1395 1210 2340
ey | 1 7 14 43 32 98 58 219 144 224
oz | 1 3 8 19 12 24 16 75 42 36
2y | 1 3 4 8 6 12 10 18 22 18
Conas | 1 1 2 4 2 2 4 6 6 2
Seres | 1 1 2 3 4 2 2 7 4 4
ges |1 0 0 0 1 0 0 0 0 0
g@P=5 11 2 4 10 8 19 13 45 33 47
N 11 12 13 14 15 16 17 18 19 20

s 1464 6200 2380 6000 6240 11811 5220 18150 7240 24180
83, 134 602 184 406 448 995 308 1008 382 1376

g2 | 24 152 28 48 96 251 36 126 40 228
8oy | 12 32 16 30 24 39 18 66 22 48
Gonzs | 2 8 4 4 4 11 2 6 4 8
Cormy | 2 6 4 2 8 19 4 4 2 12

g | 4 0 0 0 0 1 0 0 0 0

g@=5 130 129 43 96 108 226 78 264 102 357

N |21 22 23 24 25 26 27 28 29 30

8.5 16000 21960 12720 55800 20306 35700 33880 62000 25260 93600

1

€, | 812 938 554 3066 838 1288 1354 2494 872 3136
g2 | 128 T2 48 600 98 84 184 304 60 288
g2, | 40 36 24 72 32 48 85 80 30 72
Guors | 8 2 2 12 4 4 13 16 2 4
Coros | 4 2 2 14 10 4 6 6 4 8
g5 | O 0 0 0 1 0 0 0 0 0
g@=9 226 277 163 813 260 425 436 780 297 1092
N |31 32 33 34 35 36 37 38 39 40

] 30784 97155 58560 78300 62400 187550 52060 108600 95200 217620

€., | 994 4251 1876 2156 1856 6192 1408 2674 2576 7008
802 | 64 747 192 108 192 798 76 120 224 900
g2, | 34 81 48 54 60 176 40 66 64 108
123
Gunrs | 4 15 4 2 8 24 4 4 8 12
Gy | 2 31 4 4 8 12 4 2 8 28
gy | 4 0 0 0 0 0 0 0 0 0

gP=>) ] 355 1281 678 856 712 2202 569 1155 1050 2537

Table 2.4: The symmetry count for C>/T'y with cycle index Zg, (Part 1/2).

particular sequences r and s which are discussed and used below.

Multiplicative Sequences. As first noted in [126], the sequences gz« in Tables
which count g“-symmetric HNF’s are multiplicative. Multiplicativity of g, says that

given two integers ¢; and g2 with ged (g1, ¢2) = 1, we have

gzo (q1)8z0 (q2) = 8ao (q1q2) - (2.4.28)

This property can be seen from the counting of orbifold symmetries and is related to

the convolution property in (2.4.26|).

Standard Sequences. Convolution preserves multiplicativity, and therefore it is useful
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C?/Ty

N |4 12 43 44 15 46 47 18 49 50
g | 70644 240000 81400 226920 188760 190800 106080 472440 140050 304590
€y, | 1724 5684 1894 5762 4608 3878 2258 13930 2908 5866
g0 | 84 384 88 456 504 144 96 2008 178 294
820, | 42 120 46 96 132 72 48 156 76 96
Cosrs | 2 8 4 8 12 2 2 22 10 4
Gores | 4 4 2 6 16 2 2 38 4 10
g | 4 0 0 0 0 0 0 0 0 0
gP=9 | 752 2544 856 2447 2048 1944 1093 5388 1447 3083
N |51 52 53 54 55 56 57 58 59 60
g,; | 208300 368900 151740 508200 228384 558000 289600 378900 208920 967200
€., | 4312 7912 2864 9478 4288 12702 5348 6104 3542 19264
€. | 288 532 108 552 288 1200 320 180 120 1824
820, | T2 128 54 255 72 180 88 90 60 192
Ganrs | 4 16 2 13 4 24 8 2 2 16
Gores | 8 12 4 6 8 14 4 4 2 24
gy |0 0 0 0 4 0 0 0 0 0
gP=9 | 2150 3827 1527 5140 2312 5896 2916 3705 2062 9934
N |61 62 63 64 65 66 67 68 69 70
g | 230764 461760 484000 788035 371280 878400 305320 809100 508800 936000
€., | 3784 6958 8352 17587 5888 13132 4558 13244 7756 12992
g2 | 124 192 672 2043 336 576 136 684 384 576
82, | 64 102 220 166 96 44 70 144 96 180
Gases | 4 4 24 22 8 4 4 8 4 8
Coros | 4 2 8 51 16 4 2 12 4 8

g | 4 0 0 0 0 0 0 0 0 0
gD=5 | 2267 4470 4856 8332 3684 8512 2954 7960 4952 8988
N |71 72 73 74 75 76 77 78 79 80
g7 | 363024 1687950 394420 780900 812240 1122200 585600 1428000 499360 1842516
€., | 5114 31536 5404 9856 11732 16426 7772 18032 6322 31840
€2 |144 3150 148 228 784 760 384 672 160 3012
820, | T2 396 76 120 128 176 120 192 82 234
Gunrs | 2 36 4 4 8 16 8 8 4 22
Gy | 2 28 4 4 20 6 4 8 2 76
gy | 4 0 0 0 0 0 0 0 0 1
gP=5 | 3483 17167 3770 7379 7872 10849 5598 13522 4723 18446

Table 2.5: The symmetry count for C>/T'y with cycle index Zg, (Part 2/2).

to discuss basic multiplicative sequences.

e The unit sequence:

o
u={1L1,1,...} & ut)=> t"=t+2+£+...

e The natural number sequence:

n=1

N={1,2,3,...} & N@t)=> nt"=t+2>+3t°+ ...

n=1
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N |1 2 3 4 5 6 7 8 9 10
g |1 31 121 651 781 3751 2801 11811 11011 24211
8otey | 1 15 41 171 157 615 401 1651 1251 2355
823 | 1 7 17 59 37 19 65 371 195 259
gy |1 7 17 59 37 19 65 371 195 259
8utey | 1 7 13 36 31 91 59 162 157 217
Srreazs | 1 3 5 12 7 15 11 34 27 21
2oy | 1 3 5 11 9 15 9 35 19 27
Sooza | 1 3 5 1 9 15 9 35 19 27
gz |1 1 4 6 1 4 17 6 22 1
Erias | 1 1 1 1 1 1 1 1 1 1
8o | 1 1 2 2 1 2 5 2 1
gP=9 11 3 6 17 13 40 27 106 78 127
N 11 12 13 14 15 16 17 18 19 20

8.0 16105 78771 30941 86831 94501 200787 88741 341341 137561 508431
Ertay 1465 7011 2381 6015 6437 14547 5221 18765 7241 26847
1242 145 1003 197 455 629 1987 325 1365 401 2183

8.3 145 1003 197 455 629 1987 325 1365 401 2183

€., | 133 468 185 413 403 68T 307 1099 383 1116
Goroars | 13 60 17 33 35 87 19 81 23 84
€20, |13 55 17 27 45 15 21 57 21 99
Gures | 13 55 17 27 45 15 21 57 21 99
g2 |1 24 29 17 4 27 1 22 41 6
Gorws | B 1 1 1 1 2 1 1 1 1
gy | 1 4 5 5 2 7 1 6 5 2

g P=8"|79 391 129 321 358 832 285 1070 409 1549

Table 2.6: The symmetry count for C%/T"y with cycle index Zg,.

e Powers of the natural number sequence:

oo
N = {19,293 .} & N =) nht"=t+2%7 43"+, (24.31)

n=1

where NO = u.

e The Dirichlet character xj.,, of modulo k£ and index m is defined under the con-

ditions

Xkm(1) = 1
Xkm(a) = Xkm(a+F)
Xbkm (@) Xkm(D) = Xkm(ab)
Xem(a) = 0if ged(k,a) #1 . (2.4.32)

Under these conditions there are several solutions which are parameterized by m.

The Dirichlet characters up to modulo 10 used in this chapter are
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X1,1 =u xs1 =1{1,0,1,0,1,0,1,0,...}

x21 = {1,0,...} xs2 = {1,0,1,0,—-1,0,-1,0,...}
x31=1{1,1,0,...} xs3 =1{1,0,-1,0,1,0,—1,0,...}

x32 = {1,-1,0,...} x84 = {1,0,-1,0,-1,0,1,0,...}
xa1=1{1,0,1,0,...} x91 =1{1,1,0,1,1,0,1,1,0,...}

Xa2 = {1,0,-1,0,...} x92 = {1,w,0,w? —w?,0,~w,—1,0,...}
x50 =1{1,1,1,1,0,...} x03 = {1,w? 0, —w, —w,0,w? 1,0,...}
Xs2 = {1,i,—i,—1,0,...} x94 = {1,-1,0,1,-1,0,1,-1,0,...}
xs3 = {1,-1,-1,1,0,...} x95 = {1, ~w,0,w? w?, 0, ~w, 1,0,...}
x5.4 = {1,—4,i,—1,0,...} x9,6 = {1, —w?% 0, ~w,w,0,w?, —1,0,...}
x6.1 = {1,0,0,0,1,0...} X101 = {1,0,1,0,0,0,1,0,1,0,...}

x62 = {1,0,0,0,—1,0...} X102 = {1,0,4,0,0,0,—4,0,—1,0,... }
x71=1{1,1,1,1,1,1,0...} X103 = {1,0,-1,0,0,0,-1,0,1,0,...}

x72={1,~w,w? w? —w,1,0...}  x104 = {1,0,-4,0,0,0,i,0,—1,0,...}
X7,3:{1,w2,w,7w,7w2771,0...}
x7a={1,1,-1,1,-1,-1,0...}
x75 = {1, ~w, —w? w? w,-1,0...}
x76 = {1,w? —w, ~w,w?1,0...}
where the first elements given above are the periods of the infinite sequences, and

W =expg.

The number of distinct Dirichlet characters of period k is given by the Euler totient
function ¢(k). It is defined as the number of integers less than or equal to k& which are

co-prime to k. For primes p, the totient function takes the values

ep)=p—1. (2.4.33)

Moreover, the direct sum of all distinct Dirichlet characters of period k is given by

(k)
Z Xk,m (1) = ©(k) 0.1 mod & + Okn - (2.4.34)
m=1

The totient function ¢ is related to the natural number sequence N under
pxu=N&p=puxN. (2.4.35)

With N being a multiplicative sequence, both the Euler totient function ¢(n) and Mébius
function p(n) are multiplicative.

A direct product of any of the above multiplicative sequences,
AB = {A(1)B(1),A(2)B(2),A(3)B(3),... } & AB(n) = A(n)B(n) , (2.4.36)

is a multiplicative sequence as well. An example is the direct product of x32 and N
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(CS/FN

N=p[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
gy |3 4 6 8 12 14 18 20 24 30 32 38 42 4 48 54
Gmzy |1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
€5 [0 1 0 2 0 2 0 2 0 0 2 2 0 2 0 0
C*Ty
N=p[2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
g+ |7 13 31 57 133 183 307 381 553 871 993 1407 1723 1893 2257 2863
€2, |3 5 7 9 13 15 19 21 25 31 33 39 43 45 49 55
g2 |3 5 7 9 13 15 19 21 25 31 33 39 43 45 49 55
€ows |1 1 1 3 1 3 1 3 1 1 3 3 1 3 1
11 3 1

1
1 3 3 1 1 3 1 3 3 1 1 3
C°/Ty
13 17 19 23 29 31 37 41 43 47 53
8.5 15 40 156 400 1464 2380 5220 7240 12720 25260 30784 52060 70644 81400 106080 151740

Il
hS]
¥
w
ot
.
—
-

8is,, |7 14 32 58 134 184 308 382 554 872 994 1408 1724 1894 2258 2864
.2 |3 8 12 16 24 28 36 40 48 60 64 76 84 8 96 108
€2, |3 4 6 10 12 16 18 22 24 30 34 40 42 46 48 54
Goes |1 2 2 4 2 4 2 4 2 2 4 4 2 4 2 2
Gows |1 2 4 2 2 4 4 2 2 4 2 4 4 2 2 4
gs |0 0O 1 0 4 0 0 0 0 0O 4 0 4 0 0 0

Table 2.7: Sequences of C3/T'y, C*/T'y and C®/T'y for prime N.

which gives
Nys2 = {1,-2,0,4,-5,0,7,—-8,0,...} . (2.4.37)

Furthermore, the direct product of two Dirichlet characters is another Dirichlet charac-

ter.

2.4.2 Functions on Primes for Prime Index Sequences

Multiplicative sequences are determined by their values at indices which are prime
numbers or pure powers of prime. The values on prime indices of sequences in Table
to Table 2.6] for orbifolds of C? to C® are shown in Table 2.7 and Table [2.8]

It is of interest to find for a given sequence g« (p) in Table and Table a function
on primes p, Py . (p), which takes the values Py . (p) = gz (p).

Observation 2.4.4. For every sequence gzo which counts HNF’s symmetric under the
cycle g* € Hy C Sp, there is a well defined function Py . (p) over primes p that takes
the values Py . (p) = gz (p)-
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The function on primes for the sequences of the Abelian orbifolds of C? are as follows:

Pe,(p) = 1+4p (2.4.38)
1 ifp=2
Py () = o (2.4.39)
12 2 ifp#£2
2 ifp=1 mod3
P, (p) = 0 ifp=2 mod3 . (2.4.40)
1 ifp=3

For the case of Abelian orbifolds of C*, the functions on primes are of the form

Peyp) = 1+p+ p’ (2.4.41)
3 ifp=2
P, =P = 2.4.42
6ug, (P) = e () {p+2 ifp £ 2 (2442
3 ifp=1 mod 3
Py, oy(p) = 1  ifp=2 mod3 (2.4.43)
1 ifp=3
3 ifp=1 mod4
Py, ,(p) = ¢ 1 ifp=2 mod4 . (2.4.44)
1 ifp=3 mod4
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CS/Ty

N=p |2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
8.6 31 121 781 2801 16105 30941 88741 137561292561 732541954305 1926221289640535002014985761 8042221
Bada, 15 41 157 401 1465 2381 5221 7241 12721 25261 30785 52061 70645 81401 106081151741
822 | 7 17 37 65 145 197 325 401 577 901 1025 1445 1765 1937 2305 2917
843 7 17 37 65 145 197 325 401 577 901 1025 1445 1765 1937 2305 2917
Budus | 1 13 31 59 133 185 307 383 553 871 995 1409 1723 1895 2257 2863
Erizoxs | O 5 7 1 13 17 19 23 25 31 35 41 43 47 49 55
82w, | 3 5 9 9 13 17 21 21 25 33 33 41 45 45 49 57
Crozy | 3 5 9 9 13 17 21 21 25 33 33 41 45 45 49 57
g:2 1 4 1 17 1 29 1 41 1 1 65 77 1 89 1 1
Crizs | 1 1 1 1 5 1 1 1 1 1 5 1 5 1 1 1
[ 1 2 1 5 1 5 1 5 1 1 5 5 1 5 1 1

Table 2.8: Sequences of C%/T"y for prime N.

For the case of Abelian orbifolds of C°, the functions on primes are of the form

Pes(p) = 1+p+ P’ +p (2.4.45)
7 if p=2
Pgs, (p) = P (2.4.46)
12 pPP4p+2  ifp#2
3 if p=2
Py »(p) = WP (2.4.47)
o172 2p+2 ifp#2
p+3 ifp=1 mod 3
L (p) = { p+1 ifp=2 mod3 (2.4.48)
4 ifp=3
(4 ifp=1 mod3
2 ifp=2 mod 3
= 2.4.49
[ 2 ifp=3
4 ifp=1 mod4
Pg,.(p) = ¢ 1 ifp=2 mod4 (2.4.50)
2 ifp=3 mod4
4 ifp=1 mod5
P, (p)) = ¢ 0 ifp=234 mod5 . (2.4.51)
1 ifp=5

101



For the case of Abelian orbifolds of C%, the functions on primes are of the form

Pee(p) = 1+p+p*+p*+p (2.4.52)
15 if p=2
Py, (p) = 5 o o (2.4.53)
172 PHpi+p+2  ifp#2
7 ifp=2
Py s (p) = Pgy(p) = {ﬁ+%HJ fp o2 (2.4.54)
p>+p+3 ifp=1 mod3
Peq, (0) = P+p+1  ifp=2 mod3 (2.4.55)
13 if p=3

p+4 ifp=1 mod 3
p+2 if p=2 mod 3

Payivney () = 5 fp—2 (2.4.56)
| 5 ifp=3
p+4 ifp=1 mod4
<%ﬁ”@)— egey (D) = p+2 ifp=3 mod4 (2.4.57)
3 ifp=2
2p+3 ifp=1 mod3
Pe,(p) = (1 if p=2 mod 3 (2.4.58)
3
4 ifp=3
5 ifp=1 mod5
eens(P) = ¢ 1 ifp=234 mod5 (2.4.59)
1 ifp=>5
5 ifp=1 mod®6
1 ifp=2 mod®6
P, (p) = L (2.4.60)
2 ifp=3 mod®6
1 ifp=5 mod®6

2.4.3 Series Convolutions from Functions on Primes

The infinite sequences u = {1,1,1...} and N = {1,2,3,...} have functions on primes
P,(p) =1 and Py(p) = p respectively. If we now convolute the two infinite sequences to
obtain ux N = {1,3,4,7,6,12,8,... }, the corresponding function on primes turns out
to be Pun(p) = Pu(p) + Pn(p) =1+ p.

Observation 2.4.5. Multiplicativity turns into additivity on prime indices. One can
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Figure 2.10: The number of distinct orbifolds of C? (blue), C* (red), C° (yellow) and
CS (green) respectively for prime N.

translate between a convolution and a function on primes with
A B
g =N L NGy m, xC & Pe(p) =D p% + ) p¥xa,m, (p) +Cp (2.4.61)
i=1 j=1

where d; is a non-negative integer. C can be any finite or infinite sequence with elements

on prime indices denoted by C,.

The aim is to keep C well-defined under the right combinations of N and Xk,m in the

convolution in (2.4.61]).

Example z3. An example is the sequence g, that counts x3-symmetric HNF’s which
correspond to the Abelian orbifolds of C3. The sequence has a function of period 3 on
primes and is given in ([2.4.40f). The function on primes can be written in terms of the

values on prime indices of basic multiplicative sequences as follows,

P, (p) = 1+x32(p)

= x3,1(p) + x3.2(p) (2.4.62)

When considering the entire sequence with values on non-prime indices, the convolu-
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tions take the form

grxz = UXX32

(o]
= X3,1%X32 % (Z 2, (2.4.63)
a=0

where C =1 and C= ) 7, t3" respectively. As desired, C is a well-defined partition
function for both choices in (2.4.63)).

Under this scheme, sequences which count orbifolds that are invariant under cycles
of Sp can be re-written in terms of convolutions of the form . Table and
Table show choices of sequence convolutions for the orbifolds of C? to C®. Convolu-
tions for the sequences for the Abelian orbifolds of C* and C* have been first presented
in [126]. We present here the convolutions for the Abelian orbifolds of C°.

In the section below, some generalisations are given for sequences on all indices. The
reason why not all sequences on all indices can be generalised is that some sequences
require finite term corrections on power of prime indices. This can be seen for sequences
o122 and gz, ., in Table and Table However, a complete set of generalisations
for the sequences on prime indices can be given. Using the cycle index of Sp, this set of
generalisations lead to the counting of distinct Abelian orbifolds of the form C?/I" with

any prime order of I and any dimension D.

2.5 Generalisations for Orbifold Symmetries of Abelian
Orbifolds of C”

Having discussed the explicit counting of distinct Abelian orbifolds of CP, [2] has made
explicit predictions for a general formula for the counting. In this chapter, we summarise
the predicted counting on prime indices and compare them with the experimental count-

ing. For a detailed account of the predictions, the reader is referred to [2].

2.5.1 Generalisations for Symmetry Sequences with only Prime
Indices

Let us restrict ourselves to elements on prime indices of sequences that count g¢g<-
symmetric HNF’s which correspond to orbifolds of CP. The functions on primes which
reproduce sequence elements on prime indices are fully generalizable to any orbifold
dimension D. We observe in this section patterns of functions on primes and derive

generalisations.
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C%/Tn

i
Z2
C3 /Ty
7 [ uxN
2o | u*ux (t—t2 +2th)
T3 | U*X32
C*'Ty
o | ux N N2
22xg | uxux N (t— 2+ 4t4)
23 | ukuxNx(t— 12+ 4th)
T1T3 | Uk Uk xg2 x (t— 13+ 3t9)
T4 u*u*x472*(t—t2+2t4)
C°/Tn
27 | ux N* N2« N?
23w | ukux N*N2x (t— 2+ 8t)
21235 | uxux N*Nx (t— 32 + 14t — 1268 + 16t16)
z3ws | uxux Nxygox (t— 3+ 99)
ToT3 | Ux Uk Uk x3o* (t— 12+ 2t4) % (t — 3 4 389)
T1T4 | UxuE Uk g2 % (¢ — 267 4 3t + 6¢16 — 832 + 8¢6)
T | U* X52 % X53 % X54

Table 2.9: Summary of the first choice of convolutions for orbifolds of C2, C3, C* and

Co.

The first sequence which we consider is g,, where a € Z*. This sequence counts
HNF’s which are invariant under the cycle (12...a) € S,. The HNF’s are dual to

abelian orbifolds of C%. On prime indices, the elements of the sequence are derived by

the following function on primes:

Proposition 2.5.6. Given the sequence g,, where a € Z™, the corresponding function

on primes is

Py, (p)

e(a) e(k)
Xam®) + D Y xem@®) + D O (2.5.64)
m=1 kEla m=1 kla
1<k<a k=prime
0(a) Gpimoda + D 9(K) Spimodk + . Opr, (2.5.65)
kla kla
1<l‘€<a k:p|rime
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C%/Tn

u
X # (a2 )

C3/Tn

Z1x2

T3

uxN
u X2,1 * (t + 2 ZZO:O t2(a+2)
x3,1 % x32 % (Dacot®)

C*/Tn

173

u* N * N2
U*N*XQ,I* t+4zgo:0t2
uxN *X2,1 * t+4zgo:0 t2(a+2)

(a+2)

U X3.1 % X3.2 * t+3 220:0 t3(a+2)

u * X471 * X472 *x (¢ + 2 ZEO:O t2(a+2)

C°/Tn

$1$2
223

T1T4

5

ux N« N2 xN3

us N N2 s yg g * (t +83 >, 2t

W NN X (41622022 — 262 — 4t — 16¢°)
uk Nk s+ x32* (t +9% 27, t3<a+2))

oo ,2(at2) oo ,3(a+2)
U*X271*X3,1*X372*<t+22a:0t >*<t+32a:0t )
Uk U X1 % Y2 * (t F8Y 2T 42 6t — 618 — 8t32)
X5.1 % X5.2 % X5,3 % X5.4 % (Doe g t5)

Table 2.10: Summary of the second choice of convolutions for orbifolds of C?, C3, C*
and C°.

where p(k) is the Euler totient function which is the number of distinct Dirichlet charac-

ters of periodicity k. The simplification in (2.5.64)) comes from the property in (2.4.54)).

Example. From explicit counting we have

P, (p) = Xx21(p) + 0p2
= 5p,1 mod 2 T 5p2
Pe,.(p) = x31(p) + x32(p) + dp3

= 25;0,1 mod 3 5p3
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C%/Tn

z® nga(p)
r7 |1

x2 5p,1 mod 2 T 6102

C3 /Ty
x® nga (p)
i | 1+p
x1T | 1 +5p,1 mod 2
23 | 20p,1 mod 3 + 0p3

C*Ty
xz° nga (p)
ot | 1+ p+p?

2322 | 14 P+ 6p1mod 2

x% 1+ (]‘ + p)ép,l mod 2 T 25p2
123 | 1+ 20p1 mod 3

T4 5p,1 mod 2 25p,1 mod 4 + 5p2

C°/Ty
% | Pga(p)
23 | 1+p+p?+p
xz{’xg 1+p+p2+571m0d2
2125 | 1+ p+ (14 p)0p1 mod 2
x%ITS I+p+ 251),1 mod 3
T2X3 1+ 6p,1 mod 2 25;0,1 mod 3
2174 | 1+ 6p1mod 2 + 20p,1 mod 4
Ts 4(Sp,l mod 5 5}75

Table 2.11: Derived functions on primes for symmetries of orbifolds of the form C?/T y,
C3/Tn, C*/T'y and C?/T'y where N is prime.

Pe,,(0) = x21(p) + x4,1(P) + x4.2(p) + Op2
= 0p1mod2+ 20,1 mod4 + Op2
P, () = x51(p) + x5.2(P) + x5,3(P) + X5,4(p) + Ips5
= 40p1mod 5 + Ops
Pe.o(0) = x21(p) +x31(p) + x32(p) + X6,1(P) + X6,2(P) + p,2 + Ip3
= Opimod2+ 20p1mod3 + 20p1 mod 6 + Op2 + 0p3 - (2.5.66)

The above functions reproduce the prime index elements of the sequences which have
been obtained by explicit counting for the orbifolds of C? to C% (Table to Table .
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C%/Tn

x“ nga (p)
2 | 1+p+p*+p°+p!
zize | 14+ p+p? + 0%+ 0p1mod 2
l‘%l‘% 1+p+p2+(1+p)5p,1 mod 2
23 | 14+ p+(L+p+p*)0p1mod2 + 40
x?ZES 1+ p+ p2 + 26}),1 mod 3
212223 | 14+ P+ 0p1mod2 + 20p,1 mod 3
2324 | 14+ P+ 6p1mod2 + 20p.1 mod 4
xox4 | 1+ (1 +p)5p,1 mod 2 + 20 1mod4 t 25p2
2% | 14 2(14 p)dp1 mod s + 36p3
2125 | 1 +40p.1 mod 5
Te 5p,1 mod 2 + 25};,1 mod 3 + 20. .1mod6 T 5p2 + 5p3
C"/Tn
% | Py (p)
ol [ 1+p+p>+p° +p +p°
aixy | 14+p+p* 4+ > + 1" + 61 mod 2
wiad | 14+ p+p®+1°+ (14 P)0p1 mod 2
2125 | 1+ p+p> + (1+p+P*)p1 mod 2
xlllx?) 1+p+p2+p3+25,1m0d3
3zows | 14+ p+p? + 0p1mod2 + 2051 mod 3
33‘%%’3 1 +Dp+ (1 +p)5p,1 mod 2 +26 ,1 mod 3
2173 | 1+ p+2(1 + P)dp1 mod 3
x?xll 1+p+ p2 + 5p,1 mod 2 + 2(Sp,l mod 4
12224 | 14+ P+ (14 D)0p1 mod 2 + 20p,1 mod 4
2374 | 14 0p1mod2 + 20p,1 mod 3 + 20p,1 mod 4
x%x5 1+ p+ 45p,1 mod 5
o5 | 14 6p 1 mod 2 + 40p,1 mod 5
T1T6 1+ 6p,1 mod 2 T+ 2(Sp,l mod 3 + 20 ,1 mod 6
x7 65p,1 mod 7 5p7

Table 2.12: Derived functions on primes for symmetries of orbifolds of the form C%/I"y
and C7/T'y where N is prime.

We recall that in Section §2.2.5] we mentioned that an element g% € Sp consists of
M disjoint cycles 7¢ of length n; = |¢¢|. The general form of x® which corresponds to a

conjugacy class H, C Sp and a term in the cycle index of Sp is

M
¢ = H T, -
=1

(2.5.67)
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C¥/Tn

x“ nga (p)
| 1+p+p°+p°+p'+p° +1°
2§z | 1+ p+p* +p° + 0" +9° + 0p1 mod 2
aizd | 1+ p+p? + 0> +p* + (1 + P)dp1 mod 2
233 | 1+ p+p*+p3+ (1 +p+0%)0p1 mod 2
23 | 14+p+p?+ (L +p+p*+03)8p1 mod2 + 82
2izs | 1+p+p?+p° +p* 4+ 28,1 mod 3
33?.%2563 I+p+ p2 + p3 + 5p,1 mod 2 + 25]7,1 mod 3
l’l.’E%.’Bg 1 +p +p2 + (1 + p)ép,l mod 2 + 20 ,1 mod 3
23 | 14+ p+p° +2(1 4 P)0p1 mod 3
2923 | 14+ p+06p1mod2 + 2(1 +D)dp1 mod 3
wizs | 1+p+p° + 0+ 0p1mod 2 + 20p,1 mod 4
1’%1‘2.7)4 1+p+ p2 + (1 + p)(sp,l mod 2 + 20, ,1 mod 4
x§x4 1+p+(1 +p+p2)5p,1 mod 2 + 26 1 m0d4+45p2
r1r3my | 1+ p+ 5p,1 mod 2 + 25}7,1 mod 3 + 2517,1 mod 4
23 | 1+ (1+p)0p1mod2 + 2(1 + P)p1 mod 4 + 20p2
‘T?$5 1+p+p2+45 ,1 mod 5
212275 | 14+ P+ 0p1mod2 + 40p,1 mod 5
xzws | 1+ 25})71 mod 3 + 4517,1 mod 5
x%fBG 1+ P+ 5p,1 mod 2 T+ 26 ,1 mod 3 + 2(5p,1 mod 6
2o | 14 (14 D)0p.1 mod 2 + 20p,1 mod 3 + 20p.1 mod 6 + 20p2
2127 | 14+ 60p.1 mod 7
€y 6p,1 mod 2 T+ 2(5];71 mod 4 1 451),1 mod 8 T 5p2

Table 2.13: Derived functions on primes for symmetries of orbifolds of the form C8/I'y
where N is prime.

We call M the partition number of the symmetry cycle. The dimension D of the
corresponding orbifold of CP is given by Z;{w: 1ni = D. For example, the partition

number of the following cycles are,

M(z3) =3, M(ziroxs) =4, M(z3zs) =3 . (2.5.68)
Using the definition of the partition number, let us define an additional quantity which
will be of use in our generalisation.

Definition 2.5.7. Given the cycle g% of the conjugacy class x® with corresponding

partition number M (x®), let the number of divisions by m of the cycle g be defined as

M (z*

)
Qmz®) = Y > 1, (2.5.69)

=1 mn;
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C%/Tn

2% | Pgu(p)
ol [ 1+p+p” +p° +p' +p° +p° +pf
vz | 1+p+p° +p° +p* +0° + 1% + 1 mod 2
23xy | 1+p+p> +p° +p* + 0" + (1 +D)dp,1 mod 2
ey | L+p+p*+p>+p*+ (14 p+p*)0p1 mod 2
w12y | L4+ p+p° +p° + (L+p+p* +9*)dp1 mod 2
2Szs | 1+p+p? +p>+p* + 0% + 26,1 mod 3
$%$2x3 I+p+ p2 + p3 + P4 + 6[),1 mod 2 25p,1 mod 3
l’l.’E%.’Bg 1+p+p2+p3+ <1+p)6p,1 mod2+25 ,1 mod 3
v3ws | 1+p+p°+ (1+p+*)0p1mod2 + 20p,1 mod 3
z3z3 | 1+ p+p* +p* +2(1+ p)dp1 mod 3
$1$2x§ 1+p+p2+5 1 m0d2+2(1+p)6p,1 mod 3
23 | 1+ p+2(1+p+p*)dp1 mod 3 + 93
2i24 | 14+p+p> +p° + "+ 0p1 mod 2 + 20p,1 mod 4
3xoxs | 1+p+p>+0° + (14 )0p1 mod 2 + 20p.1 mod 4
212524 | 14+ p+p* + (149 +)0p 1 mod 2 + 2051 mod 4
$%$3$4 1+p+ p2 + 61),1 mod 2 + 25]),1 mod 3 + 20, ,1 mod 4
xoxzwy | 1+p+ (1 + P)5p,1 mod 2 + 25p,1 mod 3 + 20. ,1 mod 4
-Tlxi I+p+ (1+p)5p,1 mod2+2(1+p)5p,1 mod 4
lele) 1 +p +p2 + p3 + 45p,1 mod 5
x%fEZxS 1+p+ p2 + 5p,1 mod 2 45p,1 mod 5
I’%.ﬁlf5 1 +p+ (1 +p)5p,1 mod 2 + 46 ,1 mod 5
T1w375 | 1 +P+25 ,1 mod 3 +46p,1 mod 5
T4T5 1+ 5p,1 mod 2 T+ 2(5]3,1 mod 4 + 45;0,1 mod 5
J;?xﬁ 1+p+p2+5,1m0d2+25p,1m0d3+25 ,1 mod 6
r1T2w6 | 1+ p+ (1 + p)(sp,l mod 2 T+ 2510,1 mod 3 + 20, ,1 mod 6
I3Tg 1+ 5p,1 mod 2 + 2(1 + p)(sp,l mod 3 + 26}),1 mod 6 + 35})3
$%$7 1+ p+ 65])71 mod 7
xow7 | 1+ 5p,1 mod 2 1 6(5p,1 mod 7
2128 | 14 0p1 mod 2 + 20p,1 mod 4 + 40p.1 mod 8
T9 | 20p1 mod 3+ 60p1 mod 9 + p3

Table 2.14: Derived functions on primes for symmetries of orbifolds of the form C%/T'y
where N is prime.

where the dimension of the orbifold is given by D = ZkM:(fa) ng. The number of divisions

by 1 is by definition the number of partitions of the cycle g%,
Q1(z%) = M (z%) . (2.5.70)

Accordingly, we derive the number of division by 2, 3 and 4 respectively for a cycle
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of the conjugacy class xox4 as

Qg(x2x4) =2 s Q3($2x4> =0 s Q4(1‘2$4) =1. (2.5.71)

Other examples are x3z3 and z3 with

Qa(x373) =2, Qs(w3x3) =1, Qu(v33) =0,
Q2(23) =3, Qs(23) =0, Qu(a3)=0. (2.5.72)

Let us consider now the most general sequence g,o which counts HNF’s that are
invariant under the cycle g* € Sp where g® is in the conjugacy class denoted by the
cycle index variable x®. The elements of this sequence at prime indices are obtained

from the function on primes Pya(p) which we generalise as follows:

Proposition 2.5.8. Given the cycle g* with partition number M (z%) > 1, the corre-

sponding function on primes has the form

Qa(z?) ¢(d) D

D
Pua(p) = A P Xam(p) + Y s,
d=1 d=2 g=1 m=1 s|D
s=prime
Qs(z*)=M (z*)

1™

D
= pdil + Z pqiltp(d) 617,1 modd + Z SQS(za)iléps 5
d=1 d=2 g¢q=1 s|D
s=prime
Qs (z¥)=M(z%)
1 ¢x®

(2.5.74)

where p(d) is the Euler totient function.

Examples and Derivations. According to the above propositions, we are able to
derive the functions on primes which correspond to any cycle g® € Sp. Tables [2.11]
[2.12] [2.13|and [2.14] present the derived functions on primes for the orbifolds of C? to C°.
The functions on primes reproduce the sequence elements on prime indices presented
in Table 2.2] to Table 2.6] for the orbifolds of C3 to C®. The derived functions for the

orbifolds of C” to C? have not been verified by an explicit counting.

We recall that these sequences count HNF’s which are invariant under cycles of con-
jugacy classes of the permutation group Sp. The HNF’s are dual to abelian orbifolds
of CP where Table and Table present the results for dimensions D = 2, 3,4, 5.

Using the cycle index of the permutation group Sp, the sequences which count g®-
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invariant HNF’s are combined to count distinct abelian orbifolds of CP.

Sequence Predictions for higher dimensional orbifolds. Using the observa-
tions in Section §2.5.1]and the cycle indices in Table we are able to derive the prime
index sequences which count distinct orbifolds of the form CP /'), = CP/Z,. The count-
ing for distinct Abelian orbifolds of the form C7/T,, C8/T, and C°?/T', are presented
in Table Table and Table respectively. Explicit counting which matches
with the predictions is marked by a * in Table Table and Table

The large N limit. Figure 2.11] shows a logarithmic plot of the prime index se-
quences which count distinct orbifolds of the form C3/ I, to c?/ [',. In the limit p — oo,

the logarithmic difference between consecutive sequences becomes

(D)
lim log <g(gD_1()2)> — log (%) . (2.5.75)

This confirms the asymptotic behaviour analysis from [126].
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Figure 2.11: The orbifold counting for C3/T'y to C°/T'x with prime N. The ordering
of the sequences reflects the dimension of the orbifolds, with logarithmic

differences between consecutive sequences approaching log(p/D) at p — cc.

2.6 Discussions and Prospects

By studying the worldvolume gauge theories of probe D3-branes and M2-branes, various
toric singularities were identified and classified [136] 137, [I7]. An open subset of the
infinitely many probed toric singularities have been the Abelian orbifolds of C? and C?,

112



C"/Ty

N 2% 3* 5% * 11 13 17 19 23 29

x] 63* 364%  3906% 19608* 177156 402234 1508598 2613660 6728904 21243690
:ci’a:z 31* 122%* 782% 2802% 16106 30942 88742 137562 292562 732542
:c‘fx% 15* 44%* 162* 408* 1476 2394 5238 7260 12744 25290
xlxg * 26* 62* 114%* 266 366 614 762 1106 1742
x‘llx;; 15* 40%* 156* 402* 1464 2382 5220 7242 12720 25260
z%xgz;; * 14* 32% 60* 134 186 308 384 554 872
zdzy | 3% 8* 12* 18* 24 30 36 42 48 60
xw% 3* 4* 6* 24%* 12 42 18 60 24 30
x?u * 14* 34% 58%* 134 186 310 382 554 874
r1x0Ty4 | 3* 8* 14%* 16* 24 30 38 40 48 62
T3T4 1* 2% 4* 4* 2 6 4 4 2 4
22rs | 3* 4% 6* 8% 16 14 18 20 24 30
ToTs 1* 2% 2% 2% 6 2 2 2 2 2
T1T6 1* 2% 2% 6* 2 6 2 [ 2 2

7 0* 0* 0* 1* 0 0 0 0 0 6
g(D:7) 3* * 19%* 46* 183 333 912 1421 3101 8307

N 31 37 41 43 47 53 59 61 67 71

II 29583456 71270178 118752606 150508644 234330768 426237714 727250580 858672906 1370581548 1830004056
x?xg 954306 1926222 2896406 3500202 4985762 8042222 12326282 14076606 20456442 25774706
x‘l‘x% 30816 52098 70686 81444 106128 151794 208980 230826 305388 363096
173 1986 2814 3446 3786 4514 5726 7082 7566 9114 10226
x‘]lxg 30786 52062 70644 81402 106080 151740 208920 230766 305322 363024
x%xgzg 996 1410 1724 1896 2258 2864 3542 3786 4560 5114
I%Ig 66 78 84 90 96 108 120 126 138 144
leg 96 114 42 132 48 54 60 186 204 72
:ci‘a:;l 994 1410 1726 1894 2258 2866 3542 3786 4558 5114
T12974 | 64 78 86 88 96 110 120 126 136 144
x%xg, 36 38 46 44 48 54 60 66 68 76
ToTs 6 2 6 2 2 2 2 6 2 6
T1Te 6 6 2 6 2 2 2 6 [§ 2

T7 0 0 0 6 0 0 0 0 0 6
g(D=7) 11103 24235 38394 47619 71353 123855 203531 237709 368581 483987

Table 2.15: The derived symmetry count for the orbifolds of the form C7/T'y with

prime N.

plicit counting.

The values on indices marked by a * have been wverified by ex-

4 4

.K//IXI O

Figure 2.12: The Hermite Normal Form toric tetrahedra of the orbifolds of the form
C*/T'3. Lattice points on faces are colored green and lattice points on
edges are colored yellow.

113



C¥/T'y

N 2 3 5 7 11 13 17 19 23 29

¥ 127 1093 19531 137257 1948717 5229043 25646167 49659541 154764793 616067011
x‘l"xz 63 365 3907 19609 177157 402235 1508599 2613661 6728905 21243691
:c‘l‘xg 31 125 787 2809 16117 30955 88759 137581 292585 732571
2223 | 15 53 187 457 1597 2563 5527 7621 13273 26131
T3 15 53 187 457 1597 2563 5527 7621 13273 26131
w3 | 31 121 781 2803 16105 30943 88741 137563 292561 732541
1%@13 15 41 157 403 1465 2383 5221 7243 12721 25261
zadey | 7 17 37 67 145 199 325 403 577 901
222 |7 13 31 73 133 211 307 421 553 871
ol |3 5 7 25 13 43 19 61 25 31
a:‘ll:)c4 15 41 159 401 1465 2383 5223 7241 12721 25263
22womy | T 17 39 65 145 199 327 401 577 903
23wy | T 17 39 65 145 199 327 401 577 903
r1x3%4 | 3 5 9 11 13 19 21 23 25 33

3 |3 5 19 9 13 43 55 21 25 91
2wy |7 13 31 57 137 183 307 381 553 871
r1xox5 | 3 5 7 9 17 15 19 21 25 31
T3T5 1 1 1 3 5 3 1 3 1 1
22rg | 3 5 7 13 13 19 19 25 25 31
Toxe | 3 5 7 13 13 19 19 25 25 31
T1T7 1 1 1 1 1 1 1 1 1 7

g 1 1 3 1 1 3 7 1 1 3
gP=8) |4 9 29 79 411 829 2737 4611 11629 37379

Table 2.16: The derived symmetry count for the orbifolds of the form C8/I"y with prime
N.

and initial work on identifying associated quiver gauge theories [I41] led to the work on
counting distinct Abelian orbifold theories and singularities [126] [1].

In this chapter we have shown that it is possible to predict the number of distinct
Abelian orbifolds of the form CP? /T" for any dimension D where the order of the Abelian
group I' is a square-free product of primes. We have seen that an integral part of
the computation are the discrete symmetries of the Abelian orbifolds of CP which are
Abelian subgroups of the permutation group Sp.

Such discrete symmetries appeared in previous work [35] [I4] as ‘nodal’ quiver sym-
metries in the context of 3+ 1 dimensional quiver gauge theories. We have shown in this
chapter that such discrete symmetries can be identified directly from the toric diagram
of the probed singularity for the Abelian orbifolds of CP.

There are several open questions which await us from here. Firstly, although we are
able to predict the number of distinct Abelian orbifolds of the form CP/I" where the
order of I is a square free product of primes, we are not able to do so for orders which
are powers of prime. A solution to this problem would give us a truly complete picture
of the infinite family of Abelian orbifolds of CP.

Secondly, we have restricted ourselves to distinct Abelian orbifolds of CP. In [126],
Abelian orbifolds of the conifold C and Lg,, theories have been counted explicitly. In

principle, we are not restricted to these toric singularities and are able to count distinct
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C°/Ty

2 3 5 7 11 13 17 19 23 29
255 3280 97656 960800 21435888 67977560 435984840 943531280 3559590240 17865943320
127 1094 19532 137258 1948718 5229044 25646168 49659542 154764794 616067012
63 368 3912 19616 177168 402248 1508616 2613680 6728928 21243720
31 134 812 2858 16238 31124 89048 137942 293114 733412
15 80 312 800 2928 4760 10440 14480 25440 50520
63 364 3906 19610 177156 402236 1508598 2613662 6728904 21243690
31 122 782 2804 16106 30944 88742 137564 292562 732542
15 44 162 410 1476 2396 5238 7262 12744 25290
7 26 62 116 266 368 614 764 1106 1742
15 40 156 416 1464 2408 5220 7280 12720 25260
7 14 32 74 134 212 308 422 554 872
3 13 6 122 12 380 18 782 24 30
31 122 784 2802 16106 30944 88744 137562 292562 732544
15 44 164 408 1476 2396 5240 7260 12744 25292
7 26 64 114 266 368 616 762 1106 1744
7 14 34 60 134 188 310 384 554 874
Tox3xy | 3 8 14 18 24 32 38 42 48 62
zxl |3 8 24 16 24 56 72 40 48 120
;L“fa:5 15 40 156 400 1468 2380 5220 7240 12720 25260
.’L‘%Z‘21‘5 7 14 32 58 138 184 308 382 554 872
13305 3 8 12 16 28 28 36 40 48 60
r1T3T5 | 3 4 6 10 16 16 18 22 24 30
T4T5 1 2 4 2 6 4 4 2 2 4
;r"f:cﬁ 7 14 32 62 134 188 308 386 554 872
T1Toxg | 3 8 12 20 24 32 36 44 48 60
T3T6 1 5 2 20 2 32 2 44 2 2
x?:w 3 4 6 8 12 14 18 20 24 36
Tox7 1 2 2 2 2 2 2 2 2 8
128 1 2 4 2 2 4 8 2 2 4
Tg 0 1 0 2 0 2 0 8 0 0
g(ng) 4 11 40 128 853 1909 7544 13754 39904 153319

Table 2.17: The derived symmetry count for the orbifolds of the form C? /Ty with prime
N.

Abelian orbifolds of any toric singularity using the techniques described in this chapter.
From our observation that the number of distinct Abelian orbifolds relies on the discrete
symmetries of the toric singularity, we can reverse the relationship and ask whether two
toric singularities have the same discrete symmetries if the number of distinct ways of
orbifolding these singularities are the same.

In fact, an unpublished work in collaboration with Amihay Hanany [146] is introduc-
ing a paramterisation of orbifold actions of Abelian orbifolds of the conifold and the
suspended pinch point (SPP). The proposed parameterisation directly translates to the
corresponding brane tiling and can be used to count distinct Abelian orbifolds in the
same way as it is the case for C3/I". Figure and Figure show respectively for
Abelian orbifolds of the form C/I" and SPP /T the toric diagram and the corresponding
proposed orbifold action.

We finally believe that further study of symmetries of Abelian orbifolds of various
toric singularities can give new valuable insights into underlying structures of the cor-

responding quiver gauge theories.
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c C/Z5(0,1,1,0) C/Zs(1,1,1,1) €/Z3(0,1,2,0)

C/Zs(1,1,2,2) C/Z4(0,1,3,0) C/Z4(1,1,3,3) C/Z4(1,2,2,3)
(0,1,1,0)

C/Zy x Ty (1 0.0.1) C/Z5(0,1,4,0) C/Zs5(1,1,4,4) C/Z5(1,2,3,4)

?ﬂ

C/Zs(0,1,5,0)

C/Zb(lv 17 57 5)

C/Z6(17 37 37 5)

C/Z6(27 37 37 4)

C/Z7(O7 17 67 O)

C/Z7(17 17 67 6)

2Q_©o o o o0 9D

C/Z7(17 27 57 6)

Figure 2.13: Toric diagrams corresponding to distinct Abelian orbifolds of the form C /T,
and the corresponding Abelian orbifold actions.

116



SPP SPP/Z5(0,1,1,1) SPP/Z(1,0,0,1) SPP/Z5(0,1,2,1)

A

SPP/Z3(1,2,1,1) SPP/Z3(1,0,0,2) SPP/Z4(0,1,3,1) SPP/Z4(1,3,1,2)

5 SRR

SPP/Z5(1,2,3,1) SPP/Zs5(1,0,0,4)

Figure 2.14: Toric diagrams corresponding to distinct Abelian orbifolds of the form
SPP/T',, and the corresponding orbifold actions.
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# ‘ Orbifold ‘ Orbifold Action ‘ Iy (Corners) ‘ 8.3 8ri0?  Bus

1

Ly | oz ( 000) ) {(0,0,Lo, 0.} |1 1 1
- Total | 1 1 1

21) | c¥/z, (%JQ) (00,010,022} |3 1 0
7 Total | 3 1 1

(3.1) | C3/Z3 < Egég; ) {(0,0),(1,0),(0,3)} 3 1 0
e ez | (oy)  [oaoes |11
Total | 4 2 1

(4.1) | C3/24 < Egég% ) {(0,0),(1,0), (0,4)} 3 1 0
(4.2) | C3/zy < Eéég; ) {(0,0), (1,0), (2,4)} 3 1 0
@3) | 32y x 7 ( Eé&’g ) {(0,0), (2,0, (0, 2)}T | i ; 1

otal

6y | cvzs (ooe) |(©O.0005) |5 1 0
62 (o | (o) | oaoesy s 1 o
Total | 6 2 0

(6.1) | C3/Zg ( Egég; ) {(0,0),(1,0),(0,6)} 3 1 0
62 |Cz | (ey )  [oaoeer s 1 o
63 (o | (aw) |06 o 0 o
Total | 12 2 0

) | ¢y (oon) @000 |3 1 0
(72) | ¥z ( 000) ) [(0,0,,0,7) |3 1 0
(73) | ¥z ( Eééé; ) {0,0,L,0, 37} |2 0o 2
Total | 8 2 2

so (e[ (en)  [oaoesy s 1 o
s2 oz (on)  [oaoes s 1 o
(8.3) | C3/zs ( o) ) {(0,0,(1L,0,(38}) |3 1 0
8.4) | C¥/z < Eéié; ) {(0,0), (1,0), (4,8)} 3 | 0
(85) | C3/Zy x Zy ( o ) {0.0.20.,04) |3 1 0
Total | 15 5 0

Table 2.18: The symmetry counting of distinct Abelian orbifolds C? with corresponding
orbifold actions and toric triangles given in terms of Iy (corner points in
Cartesian coordinates).
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# ‘ Orbifold ‘ Orbifold Action ‘ Iy (Corners) ‘ 8t 82y 82  Bwiws B

(0,0,0)
(0,0,0,0)
(1.1) | C*/z, ((0,0,0,0)) Eé?g; 1 1 1 1 1
0000 ) | o
Total | 1 1 1 1 1
(0,0,0)
(0,0,1,1)
(2.1) | C*/Z;y ((0,0,0,0)) E(l)[l]gg 6 2 2 0 0
0000/ | | o)
(0,0,0)
(1,1,1,1)
(2.2) | C*/Z, (( .,o,o)) Eé?g; 1 1 1 1 1
0000/ | | (112
Total | 7 3 3 1 1
(0,0,0)
(0,0,1,2)
(3.1) | C*/z3 ((070,0,0)) Eé’?’gg 6 2 2 0 0
(0,0,0,0) (0: 0 3)
(0,0,0)
(0,1,1,1)
(3.2) | C*/Z3 ((o,o,o,o)) Eé?gg 4 2 0 1 0
0000/ | | 2
(0,0,0)
(1,1,2,2)
(3.3) | C/z4 ((o 070,0)) Eé?g; 3 1 3 0 1
©000 /| | 11y
Total [ 13 5 5 1 1

Table 2.19: The symmetry counting of distinct Abelian orbifolds of C* with correspond-
ing orbifold actions and toric tetrahedra given in terms of Iy (corner points
in Cartesian coordinates) (Part 1/2).
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# ‘Orbifold ‘Orbifold Action ‘Io (Corners) ‘ng 8u2ey 822 Buims Bua
(0,0,0)
(0,0,1,3)
(4.1) | C*/z,4 ((0,070,0)) Eé?g; 6 2 2 0 0
©000 ) | | oo
(0,0,0)
(0,1,1,2)
(4.2) | C*/zy ((0,0,0,0)) Eé’?’gg 12 2 0 0 0
(0,0,0,0) (0:2:4)
(0,0,0)
(1,1,3,3)
(4.3) | C*/zy ((0,070,0)) Eé?g; 3 1 3 0 1
©000 /| | 11y
(0,0,0)
(1,2,2,3)
(4.4) | C*/zy ((070,070)) Eé’?’gg 6 2 2 0 0
©000 ) | | 1124
(0,0,0)
(1,1,1,1)
(4.5) | C/Z4 ((0,0,0, )) Eé?gg 1 1 1 1 1
0000 ) | | @i
(0,0,0)
(0,1,0,1)
(4.6) | C*/Zy x Zy ((70,1,1)) Eé’g’gg 4 2 0 1 0
©000 ) | | oo
(0,0,0)
(0,0,1,1)
(4.7) | CY/Zy x Zy ((1, ,1)) Eéggg 3 1 3 0 1
(0’ 70) (17072)
Total [ 35 11 11 2 3

Table 2.20: The symmetry counting of distinct Abelian orbifolds of C* with correspond-
ing orbifold actions and toric tetrahedra given in terms of Iy (corner points
in Cartesian coordinates) (Part 2/2).
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3 Brane Tilings and Reflexive Polygons

The previous chapter discussed the work on Abelian orbifold counting using techniques
from combinatorics and number theory. The problem of counting orbifolds can be
considered as part of the more fundamental challenge of brane tiling classification. Given
that every consistent brane tiling refers to a 3 + 1 dimensional N' = 1 supersymmetric
quiver theory with a toric Calabi-Yau mesonic moduli space, one can formulate the
problem of classifying all possible such theories for a fixed number of gauge groups,
quiver fields and superpotential terms. A pioneering work along this line of thought has
been [17] in which such a classification of brane tilings was first attempted.

The following chapter illustrates a fundamentally different approach to the problem
of brane tiling classification. It is important to recall that more than one brane tiling
can have the same mesonic moduli space and hence can be associated to the same toric
Calabi-Yau 3-fold. It seems therefore more efficient to fix first parameters of the moduli
space geometry and to identify the associated brane tilings.

The following chapter gives a classification of a particular set of brane tilings. The set
is defined such that the mesonic moduli space has a toric diagram which is a reflexive
polygon. There exist only 16 reflexive polygons which have attracted much interest
both in mathematics and physics. We find that there are in total 30 brane tilings which
are associated to the 16 reflexive polygons, some of the brane tilings being toric dual
to each other. Through the Hilbert series, we compute the mesonic generators of the
moduli spaces and show that the lattice of generators is the dual reflexive polygon of
the original toric diagram. As such, we show that duality between reflexive polygons is
analogous to the correspondence between the toric diagram of brane tilings and their
lattice of mesonic generators, and vice versa.

The chapter is an edited version of [5]. The published work is a collaboration with

Amihay Hanany.

3.1 Introduction

The study of N' = 1 supersymmetric gauge theories living on D-branes probing singular
non-compact Calabi-Yau 3-folds has been an immensely active and fruitful endeavour

in string theory. As we have seen before, the matter content of the 4 dimensional
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worldvolume theories is encoded in a graph known as the quiver [44]E| An interesting
subset of these theories possess mesonic moduli spaces which are toric and are associated
to convex lattice polygons. We have encountered these polygons above as toric diagrams
[147] of the Calabi-Yau singularity.

In the last two decades, a particular type of polytope caught the attention in string
theory in the context of mirror symmetry [148] 149 150} 151} 152, 153] 154]. This
polytope is known as a reflexive polytope.

A reflexive polytope is a convex lattice polytope which possesses a single internal
lattice pointﬂ For a long time, del Pezzo surfaces [34, 02, 101], 14, 155] and more
generally Fano varieties [156], (157, (158 [159] 160, 161, 162 163, 164, 165, [166] have been
associated to a range of reflexive polytopes.

When Type II superstring theory is compactified on a Calabi-Yau 3-fold, its world-
sheet theory is a N' = (2, 2) superconformal field theory. By swapping the Hodge num-
bers hi1 and his associated to the Calabi-Yau 3-fold, one obtains another Calabi-Yau
3-fold. If one flips the signs of the U(1) R-charges of the left and right moving com-
ponents of the theory’s superalgebra, one obtains another superconformal field theory
which is the one compactified on the “mirror” of the original Calabi-Yau 3-fold.

Reflexive polytopes have played an important role in studying the relationship be-
tween mirror paired Calabi-Yau manifolds and the corresponding superconformal field
theories. The reflexive polytopes are used for constructing Calabi-Yau manifolds as hy-
persurfaces in toric varieties. The underlying property of reflexive polytopes is that they
have a polar dual partner which in turn is reflexive and relates to the mirror Calabi-Yau
manifold. This property led to a systematic study of mirror paired Calabi-Yau mani-
folds. The resulting classification [167, 168, 169, 170, 171, 172] found connections to for
instance heterotic string compactifications [I173, 174, [175] or to F-theory backgrounds
[176, 177, 178, 179).

In the following work, reflexive polygons are used to study mesonic moduli spaces of
4d supersymmetric quiver gauge theories dual to Type IIB string theory on AdSs x X5
where X5 is a Sasaki-Einstein 5-manifold. There are 16 distinct reflexive polygons and
the corresponding theories are worldvolume theories of D3-branes probing Calabi-Yau
3-fold singularities. The mesonic moduli spaces are toric Calabi-Yau 3-folds and the
reflexive polygons are the corresponding toric diagrams.

The aim of the following work is to identify all 4d supersymmetric quiver gauge
theories whose moduli space is represented by a reflexive polygon. In order to do so,
extensive use is made of brane tilings [15, 55]E| on T2

Every consistent brane tiling relates to a consistent quiver gauge theory. Starting
from the brane tiling for the orbifold of the form (C3/Z4 X Z4 with orbifold action

!'For more mathematical reviews on quivers see for example [86, [9T].
2From Latin reflexus, Medieval Latin reflezivus, meaning to be turned back or reflected.
3For applications of brane tilings see for example [100], 16, 180, [89] ©0].
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(1,0,3)(0,1,3) [126 1, 2, B, 4], one applies the Higgs mechanism [101] and uses Seiberg
duality [34), 92], 14, 33| [36], 181, 182] on brane tilings in order to find that there exist
exactly 30 quiver gauge theories corresponding to the 16 reflexive polygons. Seiberg
duality, also known as toric duality in this context, relates theories with different matter
content and superpotential to the same mesonic moduli space.

In order to have a complete classification of the mesonic moduli spaces, the moduli
space generators for all 30 quiver gauge theories are found by computing the Hilbert
series [0 112, 51, (2, T13]. As we have reviewed above, the Hilbert series encodes
information about the moduli space generators. They are identified using a method
known as plethystics [183]. The lattice of generators formed by the mesonic charges is
the dual reflexive polygon for the 16 toric diagrams. It is shown that this is the case for
all 30 quiver gauge theories.

The complete classification of 4d N' = 1 supersymmetric gauge theories corresponding
to the 16 reflexive polygons leads to new observations. The most important observation
is that of a new correspondence between brane tilings which we name specular duality.
It relates brane tilings with different mesonic moduli spaces under a swap of external
and internal points of the toric diagram. Specular duality partitions the set of 30 quiver
gauge theories in dual pairs and illustrates interesting physics at work. An illustration
of this new duality is given at the concluding section, and it is of great interest to explore
it further in future work.

The chapter is structured as follows. In section the concepts and motivations
behind studying reflexive polygons are reviewed. The section also reviews the lattice of
mesonic generators which is a key ingredient of the discussion. Sections to
summarize the 30 quiver gauge theories associated to reflexive polygons, and illustrate
the duality between the toric diagram and generator lattices. In section the trees
illustrating the relationships between toric (Seiberg) dual brane tiling models corre-

sponding to the same reflexive polygon are presented.

3.2 Background and Motivation

3.2.1 Reflexive Polytopes

Mirror Symmetry. Reflexive polytopes have been introduced in string theory in the
context of mirror symmetry [148] 149, 150, 151}, 152, 153| 154]. A way to study mirror
symmetry is to consider Type II superstring theory compactified on a Calabi-Yau 3-fold.
Its string worldsheet theory is a N' = (2,2) superconformal field theory. It contains a
superalgebra with left and right moving components. When one flips the signs of the
U(1) R-symmetry charges of the left and right moving components, the Calabi-Yau

transitions to a different Calabi-Yau manifold with its Hodge numbers hqi; and his
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’ d ‘ Number of Polytopes
1 1
2 16
3 4319
4 473800776

Table 3.1: Number of reflexive lattice polytopes in dimension d < 4. The number of
polytopes forms a sequence which has the identifier A090045 on OEIS.

being interchanged.

The understanding of mirror symmetry in the context of compactified superstring
theory led to a search of mirror paired Calabi-Yau manifolds. Batyrev-Borisov [150),
152] laid the foundations for industrialising the search for mirror paired Calabi-Yau
manifolds by formulating the construction of Calabi-Yau manifolds as hypersurfaces in
toric varieties represented by reflexive polytopes. These reflexive polytopes are on a
lattice with the dual polytope and hence corresponding mirror Calabi-Yau manifold
being identified by a straightforward geometrical transformation.

Let the following summary review the notion of a reflexive polytope and the concept
of its dual:

e A reflexive polytope is a convex polytope with points in a lattice Z¢ and the

origin (0,...,0) being the unique interior point of the polytope.

e A dual (polar) polytope exists for every reflexive polytope. The dual of poly-
tope A, A°, is another lattice polytope with points

A°={0° eZ| (v°,v) > —1Yve A} (3.2.1)

The dual of every reflexive polygon is another reflexive polygon. A reflexive poly-

gon can be self-dual, A = A°.

e A classification of reflexive polytopes [168, 169, [170] is available for the di-
mensions d < 4 with the number of reflexive polytopes given in Table It is

unknown how many exist for higher dimensions.

D-branes on Calabi-Yau. Next to the study of mirror symmetry, reflexive polytopes
are playing an interesting role in a different context in string theory. Witten described
in 1993 an N = (2, 2) supersymmetric field theory with U(1) gauge groups [104] in the
language of what is today known as gauge linear sigma models (GLSM). He illustrated
how the Fayet-Iliopoulos parameter of the N’ = (2,2) supersymmetric field theory in-
terpolates between the Landau-Ginzburg and Calabi-Yau phases of the theory. The
large parameter limit leads to the space of classical vacua as toric Calabi-Yau spaces

determined by the D- and F-terms of the supersymmetric field theory. The formulation
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Figure 3.1: The 16 reflexive polygons. The polygons have been GL(2,7Z) adjusted to
reflect the duality under . The green internal points are the origins. G
is the area of the polygon with the smallest lattice triangle having normalized
area 1, and ng is the number of extremal points which are in black. The
4 polygons with G = 6 are self-dual. The paired polygons in 8 and 10 are
GL(2,7Z) equivalent and are each others dual polygon.

of GLSM is going to be used in the context of D-brane gauge theories in this chapter
even though the FI terms will not play a crucial role during the discussion.

Let the focus be on worldvolume theories living on a stack of D3-branes probing
Calabi-Yau 3-fold singularities. The gravity dual of these theories is Type 1IB string
theory on the background AdSs; x X5 where X5 is a Sasaki-Einstein 5-manifold. The
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worldvolume theories are 4d A/ = 1 supersymmetric quiver gauge theories whose space
of vacua being toric Calabi-Yau 3-fold are described by lattice polygons on Z? known
as the toric diagrams.

A restriction that the toric diagrams are reflexive polygons is introduced for the
purpose of the study. A motivation for introducing the restriction is the fact that there
are only a finite number 16 of these reflexive polygons. The natural question to ask, and
the question which is fully answered in the following discussion, is which supersymmetric
quiver gauge theories exist whose space of vacua correspond to the 16 reflexive polygons.

There are useful properties of the quiver gauge theories which are considered in this
chapter and have been reviewed above. These properties provide the essential tools
for finding all quiver gauge theories corresponding to reflexive polygons and have been

summarized below:

e The Higgs Mechanism [I01] in the context of quiver gauge theories has a natural
interpretation in terms of the geometrical blow down, i.e. ‘higgsing’, or blow up,
i.e. ‘un-higgsing’, of the toric variety corresponding to the gauge theory vacuum
moduli space. All 16 reflexive polygons and the corresponding toric varieties can
be related by the geometrical blow downs starting from the Abelian orbifold of
the form C3/Z4 x Z4 with orbifold action (1,0, 3)(0,1,3) [126] 1, 2, 3] 4].

e Toric (Seiberg) Duality [34], [92] [14], [33], 36l 18T, 182] in the context of quiver
gauge theories relates theories with the same vacuum moduli space. In other
words, two toric dual theories relate to the same reflexive polygon. Consequently,
a single toric variety can be the vacuum moduli space of multiple quiver gauge
theories. Such dual quiver gauge theories are known as toric phases of the moduli
space. More generally, Seiberg duality relates an infinite number of quiver gauge
theories by allowing the ranks of gauge groups in the theory to be greater than
one. In the following discussion based on brane tilings, only U(1) gauge groups
are taken. The search for brane tilings corresponding to the 16 reflexive polygons
uses toric duality in order to identify all toric phases. It turns out that there are

30 brane tiling theories corresponding to the 16 reflexive polygons.

Many of the quiver gauge theories related to reflexive polygons have been studied in
the past. A selection of the available literature is given in Table With the follow-
ing work, a complete classification of all 30 quiver gauge theories related to reflexive
polygons in Witten’s language of GLSM fields is provided for the first time. GLSM
fields relate the points of the toric diagram with the matter fields of the quiver gauge
theory. The F-term and D-term constraint charges on the GLSM fields are used to
obtain the mesonic Hilbert series. The mesonic Hilbert series encodes the moduli

space generators.
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Quiver & W

Generators &

‘ Model # ‘ Model Name (Brane Tiling) Toric Data ‘ Mesonic HS ‘ Generator Lattice
1 C3/Z3 x Z3 (1,0,2)(0,1,2) [15] [131]
2 C3/Zy x Zs (1,0,3)(0,1,1) [15]
3 Li31/Z2 (0,1,1,1) [T00] [IT0) [T10]
4 PdPs , C/Z> x Z» (1,0,0,1)(0,1,1,0) [10T] 151 B3] [71) [10T1 551 [71)
5 PdPy,
6 PdPy, [10T) [71] [184] [I0T) [71] [184] 50]
7 PdP;, , C3/Zs (1,2,3) [15)
8 PdPs. , SPP/Z, (0,1,1,1) [101] [181] 03] [101] 93]
9 PdP3, [T01] [18T] [93] [T0T] 93]
10 dPy (0] (1] (5] (80 093] (701 73] | [0 00 G5 PL @31 73) | 50
11 PdP, [101] B3] [1011 93]
12 dP, (11 (551 (711 [93] (3] [73] (1551 [T7) | [921 1551 [7T] 93] [73] (155 0] [I55)
13 Y22 324 (1,1,2) 51 5] 50) [L18] [119]
14 Y21, dp, (1201 55 (21 93] (03] () (921 [711 93] (102 501 52) (1181 [179)
15 Fo, Y>%, C/Z5 (1,1,1,1) [921 B3] 5] [T7) 93] 711 (73 [75] | [92] [T 93] [73] (1021 [75) 0] (181 019)
16 dPo , C¥/Z;3 (1,1,1) [T4] 5] [16] 7] [18] [92] 1071 18] 50] 52 (18]

Table 3.2: A selection of the literature on quiver gauge theories corresponding to reflex-
ive polygons.

An intriguing property of theories corresponding to reflexive polygons, which is ex-

emplified in the work below, is as follows:

The global charges on moduli space generators form a lattice polygon on Z? which is

reflexive and which is precisely the dual polygon of the toric diagram.

The two sections below provide a review of the physical concepts involved in order
to proceed with the complete classification of quiver gauge theories corresponding to

reflexive polygons.

3.2.2 The Brane Tiling and the Forward Algorithm

The worldvolume theory of a stack of n D3-branes probing singular non-compact Calabi-
Yau 3-folds is a 3 + 1 dimensional N/ = 1 supersymmetric gauge theory. The cor-
responding Lagrangian is specified by the theory’s gauge groups, matter content and
superpotential.

The probed Calabi-Yau 3-fold is toric, and is the mesonic moduli space of the world-
volume theory. It is of great interest to associate to each worldvolume theory the
corresponding mesonic moduli space. The forward algorithm [34] [T06] translates the
gauge theory information into toric data. This algorithm is used extensively for this

work and the reader is referred to the review in section

3.2.3 Hilbert Series and Lattice of Generators

The generating function of mesonic gauge invariant operators (GIOs) is known as the
mesonic Hilbert series [50] 112, 51,52, 113]. The Hilbert series encodes the generators
of the associated moduli space. These are essential for a complete classification of the

mesonic moduli spaces of brane tilings corresponding to reflexive polygons. The moduli
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Figure 3.2: Reflexive Toric Diagrams. The figure shows the 16 reflexive toric diagrams
which correspond to 30 brane tilings. Each polygon is labelled by (G|n,, :
ni|lnw ), where G is the number of U(N) gauge groups, n, is the number of
extremal perfect matchings, n; is the number of internal perfect matchings,
and ny is the number of superpotential terms. A reflexive polygon can
correspond to multiple brane tilings by toric duality.
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space generators can be extracted from the Hilbert series using a method known as
plethystics. These carry charges under the mesonic symmetry. The charges on a
Zo lattice form a convex polygon which is the dual polygon of the toric diagram.

For a comprehensive review of the mesonic Hilbert series and plethystics for brane
tilings, the reader is encouraged to go to the comprehensive review in section
In order to understand a fundamental ingredient — the lattice of mesonic generators —
for the following study of brane tilings related to reflexive polygons, let us revisit the

mesonic symmetry of brane tilings.

Mesonic Symmetry. The mesonic moduli space of a given brane tiling is a non-
compact toric Calabi-Yau 3-fold. The mesonic symmetry of the associated quiver gauge

theory takes one of the following forms,
e U(l)s, xU)f, xU(1)R
o SU(2), xU()f xU(1)r
o SU(2)y, X SU(2)y, xU(1)R
o SU3)arm, x U(R

where the lower case indices denote fugacities of the gauge group with the exemption
of the R-symmetry group U(1)r. The fugacity associated to the U(1)g charge is t. For
a review on how to calculate R-charges, the reader is referred to section

The above global symmetries derive from the isometry group of the Calabi-Yau 3-fold.
The enhancement of a U(1) flavour to SU(2) or SU(3) is indicated by repeated columns

in the total charge matrix ;.

Lattice of Generators. The lattice of generators is determined by the mesonic charges
carried by the generators of the mesonic moduli space. Ignoring the U(1)p factor, the
remaining flavour symmetries have ranks which sum up to 2. Hence, there are always
2 fugacities which count flavour charges. The pair of flavour charges carried by each
generator is taken as coordinates of a point on the plane. The convex hull of the
collection of points corresponding to the collection of moduli space generators forms a
convex polygon. This is known as the lattice of generators.

For a non-vanishing convex polygon on Z2, the flavour charges are subject to the

following constraints:

e The pairs of flavour charges carried by all n, extremal perfect matchings form a
pair of n,-dimensional charge vectors. For a non-trivial choice of flavour charges,

the charge vectors are linearly independent.

e The elements of the n,-dimensional charge vectors sum up to zero.
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e The charges on GLSM fields are scaled such that the charges on mesonic moduli

space generators take integer values and the lattice of generators is on Z2.

The lattice of generators subject to the constraints above still exhibits a remaining
GL(2,Z) degree of freedom. Moreover, each generator also carries a R-charge which
plays the role of a third coordinate for each point in the lattice of generators. In order
to remove these remaining degrees of freedom, one makes use of a particular property

of generator lattices introduced below.

Duality between Generator Lattices and Toric Diagrams.

The lattice of generators of a brane tiling is

the dual of the toric diagram.

The duality between reflerive polygons follows . Hence, for reflexive polygons as
toric diagrams, the lattice of generators is another reflexive polygon in Z2. Accordingly,
the remaining GL(2,7Z) degree of freedom on the lattice of generators can be removed
by making the duality for reflexive polygons exact as defined in . In addition, for
reflexive polygons the lattice of generators always lies on Z2.

When the lattice of generators is considered as a toric diagram of a new brane tiling,
the duality between reflexive polygons manifestly relates between two quiver gauge
theories with toric moduli spaces. In terms of the number of U(n) gauge groups G and

the number of GLSM fields with non-zero R-charge n,, the duality map takes the form

Model A <« Model B
G & 12-@G

ny, & Ny (3.2.2)

as illustrated in Figure [3.2

In the following sections, all 30 quiver gauge theories with their brane tilings corre-
sponding to the 16 reflexive polygons are classified. All 30 quiver gauge theories are
obtained by higgsing and toric (Seiberg) dualizing the theory related to the Abelian
orbifold of the form C3/Z4 x Z, with orbifold action (1,0, 3)(0,1,3). The details for the
parent theory for all reflexive polygon theories are given in appendix §A.4]
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Figure 3.3: The quiver, toric diagram, and brane tiling of Model 1. The red arrows in
the quiver indicate all possible connections between blocks of nodes.

3.3 Model 1: C3/Z3 x Zs3 (1,0,2)(0,1,2)

The superpotential is

w

+X15X56X61 + Xo9Xog1 X192 + X31X18 X383 + X492 X903 X34 + X53X37X75
+Xe7 X720 X26 + X738 Xg9Xo7 + Xs6X64X48 + X94X45X59

—X15X59 X091 — X9 Xog7X79 — X31 X120X03 — Xy Xo6X64 — X53X34X45

— X7 X75X56 — X738 Xg3X37 — XgsXp1X18 — X094 X4g X3 .

The perfect matching

matrix is

(3.3.3)

PLP2 p3|@ @ gs|Ti T2 Ts|wi up ug|vi vy vz|wy wy ws | @y Ty |S1 Sy S3 S4 S5 S ST S5 S9 S0 Su S12 813 Su S15 S16 81T S8 S Sw S,
X1 0 oft 1 ot 0o oo 0o oft o t[1 0o of0o 0o o0f0 0 1 1 00000O0O0O 1 0 0 0 0 0 0 1 1 1 1
Xgz[1 0 01 1 0|0 1 0f0 0 0[O0 1 1{1 0 00 0 0Of0 0 000 O0O0OO0OO 1 1 1 1 1 1 0 0 1 0 0 0
Xys{1 0 of1 1 0f0 0 1]0 0 O0f1 1 0of1 0 0|0 0 0[O0 O 1 1 1 1 100 1 0 1 0 0 0 0 0 0 0 0 0
Xes|1 0 Of1 0 11 0 0[O0 0 Of1T 0 1f0 1 0|0 0 0[O0 0O 0O O0O0OO0T1 1 0 1 0 1 1 0 1 0 0 1 0 0
X1 0 0of1 0 10 1 0f0 0 0[O0 1 1|0 1 0|0 0 Of1 1 00 1 1010 1 0 0 1 0 0 0 0 0 0 0 0
Xog[1 0 01 0 10 0 1|0 0 Of1 1 0[O0 1 0|0 0 0Of1T 01 01 0000 0 0 0 0 0 0 1 1 0 1 1 0
Xpp[1 0 00 1 1|1 0 0[0 0 O[1 0 1|0 0 1|0 0 0f0O 1 01 01 1 110 0 0 0 0 0 0 0 0 0 0 1
Xsg[1 0 00 1 1|0 1 00 0 0[O0 1 1{0 0 1|0 0 Of1 1 00 00000 0 0 0 0 0 1 0 1 1 0 1 1
Xe[1 0 00 1 1o 0 1f0 0 0of1 1 0[O0 0 1|0 0 0[O0 00000101 0 0 1 0 1 1 1 1 0 0 0 0
Xy|0 1 0f1 0 00 0 01 0 0f0O 0O O0Of1 1 0|1 0 1|1 01 0100000 1 0 0 0 0 0 0 1 1 1 0
Xez{0 1 0|1 0 00 0 0]0 1T 0f0 0 0Of1 1 0|0 1 1[0 0 00 O0O0O0O0OO0 1 1 1 1 1 0 1 0 0 1 0 0
X[0 1 01 0 00 0 0f0 0 1|0 0 O[T 1 0|1 1 0f0O 0O 1 1 1 1010 1 0 0 1 0 0 0 0 0 0 0 0
Xp [0 1 00 1 0f0 0 0f1 0 0[0 0 O[T O 1|1 0 1/0 000001010 1 1 0 1 1 00 1 0 0 0
Xp[0 1 0f{0 1 0|0 0 0f0 1 0[O0 0 Of1 0 1|0 1 1|0 1 0 1 01 1 00 1 0 1 0 0 0 0 0 0 0 0 1
Xss|0 1 0|0 1 0|0 0 0|0 0 1[0 0 O0Ol1 0 1|1 1 0[0 0 1 1 000000 O 0 0 0 1 0 1 1 0 1 1
Xes[0O 1 00 0 10 0 0f1 0 0[0 0 0[O 1 1|1 0 1f1 1 00 1 1 1110 0 0 0 0 0 0 0 0 0 0 0
Xsz{0 1 0f0o 0 1f0o 0 0f0 1 0f0 0 0f0O 1 1|0 1 1{1 1 0000 O0O0O0O 0O 0 0 0 0 1 1 0 1 1 1
Xoa[0O 1 00 0 1[0 0 0[0 0 1|0 0 0[O0 1 1|1 1 0f0 000000110 0 0 1 1 1 1 1 0 0 0 0
Xsg[0 0 10 0 01 1 0f1 1 00 0 1|0 0 0|0 0 1f1 1 0000000 0O 1 0 0 0 0 0 0 1 1 1 1
Xga 0O 0 10 0 01 1 0f1 0 1|0 0 1|0 0 0|1 0 0f0 00 0O0O0O0T1 1 0 1 0 1 1 1 0 0 1 0 0 0
Xiz[0 0 10 0 0|1 1 0f0 1 1]{0 0 1{0 0 00 1 O0Of0O 1 0 1 01 010 1 0 0 1 0 0 0 0 0 0 0 1
Xp|0 0 1|0 0 of1 0 1|1 1 0of1 0 0f0O O 0|0 0 1[0 00000101 0 1 1 0 1 0 1 0 0 1 0 0
Xps{0 0 1|0 0 0f1 0 1|1 0 1|1 0 0f0O 0O 0|1 0 0[O0 0O 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Xgg[0 0 10 0 0f1 0 1|0 1 1|1 0 0[O0 0 0|0 1 0[O0 0 1 1020000 0 0 0 0 0 0 1 1 0 1 1 1
X0 0 10 0 00 1 1|1 1 00 1 0[O0 0 0|0 O 1f1 1 00 1 1 100 1 0 1 0 0 0 0 0 0 0 0 0
Xog[0 0 10 0 00 T 1|1 0 1|0 1 0[O0 0O 0|1 0 0Of1 01 01 0000 0 0 0 0 0 1 0 1 1 0 1 0
Xez7[0 0 10 0 0|0 1 10 1 1|0 1 0{0 0 00 1 0[O0 0 000 O0O0OO0OO0O 1 0 1 1 1 1 1 1 0 0 0 0
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L 0@ [UWy [UQ)R | fugacity
pi || 1/3 0 2/3 || &
po || -1/3 | -1/3 | 2/3 || ta
ps || 0 1/3 | 2/3 | ts

Table 3.3: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 1).

The F-term charge matrix Qp = ker (P) is

pipe o pa|a @ g e wyu w wg o v vy e we wy| @ we wy | st se sy si S5 se 87 Sy So S S1 S13 Sig Su S5 S16 S17 Sis Sig 83 s

01 1[0 0o of0 0 0[O0 -1 0|0 0 0[O0 0O Of-1 0 O0Of0O 0O 0O 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 0 0 0 0
01 1[0 0o of0 0o of-1 0 0[0 0 0[O0 0O 0[O0 -1 0[O 0O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00 11 0 of-t 0 of0 0o 0[0 0 0o[0 0 0[O0 O Of-1 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0
00 1[0 0 0of-1 -1 00 0 0[O0 0O 1{0 0 0[O0 O O[O O 0O 0 0O 0O 0O 0 0O 0 O 0 0O 0 0O 0 0 0 0 0 0
00 1[0 0o of-1 0 -1{0 0 01 0 of0 0O 0[O0 O OfO O O 0O 0O 0O 0O 0 0O 0O O 0 O 0O 0O 0 0 0 0 0 0
Op—| 0 0 tfo 0 0o o of-1 -1 0]0o 0 0f0o 0 0f0 0 1]0 0 0 0 0 000 00 0 0 0 00 00 0 0 0 0
=10 0 1o o o]0 o 0|1 0 <1[0o o oo o ofl1 o o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
1
1
1

(3.3.5)

(3.3.6)

The total charge matrix ); exhibits no repeated columns. Accordingly, the global

symmetry group is U(1) ¢, xU(1), x U(1)g. Following the discussion on flavour symme-

try and R-charges in section the charges on GLSM fields with non-zero R-charges
are chosen as shown in Table [3.3]

Products of non-extremal perfect matchings are labelled by a single variable as follows,
q=41q293 , T =T1r2T3 , U = ULUUZ , VU = V1V2V3

21
w = wwaws , T = T1rexr3 , S — H Sm - (337)
m=1

The fugacities t, count extremal perfect matchings corresponding to GLSM fields with
non-zero R-charge. The fugacity of the form y, counts the product of non-extremal

perfect matchings ¢ above.
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The mesonic Hilbert series of Model 1 is calculated using the Molien integral formula

in (1.4.67). It is

91 (o Ygs Yrs Yus Yos Yws Yar Ys3 M) =
1—ydydysysydydys 33
(1 — w2yy2y0ys £3) (1 — yauuy2y2ys t3)(1 — y2y2yyays t3)
1

X .
1- YaUrYuYoYwYzYs t1tats

(3.3.8)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1 (ta Yg> Yrs Yus Yos Yuws Yar» Ys; M) = YqUrYulhohuotiaYs trtats + Ypyrlauys £
FY2YR Yy B+ YayuYoyiys 5 — yiytysySysyyd e33e5 . (3.3.9)

The finite plethystic logarithm indicates that the mesonic moduli space is a complete
intersection.

In terms of the fugacity map

fy = Yab t2 Y B3

1/3,1/3,1/3,1/3,1/3,1/3 1/3 t1/3t1/3t1/33310
1 o ’ 2 - ) . .
Yulr tats YoYuw tit2 Y Y Y s T (3.3.10)

t:yq

where f1, fo and t are the fugacities counting the mesonic charges, the above plethystic

logarithm becomes

PL[g1(t, f1, fo; MT*)] = (1 +fi+ fa+ 1) 39 (3.3.11)
fife

The above plethystics logarithm identifies both the moduli space generators and the
mesonic charges carried by them. The generators and the corresponding mesonic charges
are summarized in Table The generators can be presented on a charge lattice. It
is a convex polygon as shown in Table and is the dual reflexive polygon of the toric
diagram of Model 16.

The relation formed among the generators is as follows,
A Ay Az = B3 . (3.3.12)
With the following fugacity map

1/3
Ty = £ t = 2Pyl B2y 3y ey
—-1/3 p—1/3
Ty = f; 2 P b = b ByL/3y2/3 23y 3,
1/3
Ty = fo/ t = 2323y L3y 3y L3 (3.3.13)
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‘ Generator ‘ U(l)y, ‘ Uy, ‘
Ai=pirows 1 0
As=pdquuw?a?s -1 -1
As :pg rPulvers
B=pipep3sqruvwzes 0

Table 3.4: The generators and lattice of generators of the mesonic moduli space of Model
1 in terms of GLSM fields with the corresponding flavor charges.

Generator Up [ U,
N13 X9 Xo1 = Xo3 Xar X7z = Xu5X56Xe4 1 0
X15X53 X531 = XogXoaXa2 = Xer X7 Xs6 - -1
X12X26X61 = X34 X3 Xs3 = X590 Xo7 X75 0 1
X12X23X31 = X1 X9 X01 56 X61 = X15X50 Xo1 = X13Xs3 X1 = X18Xs6 Xe1 = Xo3 X34 Xap = Xop X4 Xap = X6 X7 X72 0 0
= X9 Xo7X72 = X34 Xy5X53 37 X75X53 = X7 X7 Xy = Xus X59 Xog = Xys X Ne4 = Xus X9 Xy = X6 X7 X75 = X5 X9 Xo7

Table 3.5: The generators in terms of bifundamental fields (Model 1).

the mesonic Hilbert series becomes

1 - T3T5T3

g1(Th, Ty, T3; MT*) = 3.3.14
WL T MU = G omya—ma - o - nmry) o0
with the plethystic logarithm being

PL[g1(Ty, Ty, Ts; M%) = Ty TyT3 + T3 + T3 + T — TPTSTS (3.3.15)

The above refinement of the Hilbert series exemplifies the conical structure of the toric

Calabi-Yau space.

3.4 Model 2: C3/Zy x Zs (1,0,3)(0,1,1)

The superpotential is

W = +X17X72Xo1 + Xog Xg1 X12 + X351 X14 X3 + X42 X3 X34
+X53X36X65 + X6aXa5X56 + X75X58Xg7 + Xs6Xe7X78
—X17X78 X81 — Xog X7 X72 — X31 X120 X03 — Xyo X1 X14
— X353 X34 X5 — XeaXu3X36 — X75X56X67 — X6 X65X58 - (3.4.16)

134



, and brane tiling of Model 2.

iagram

, toric d

iver

The qu

Figure 3.4

1X 1S

The perfect matching matr

0

0

0

V2 Uz U4

v

uy Uz Uy

uy

)

71

a2

Qn

P3

P2

0

Xer

Xas

Xss

X3

X1

Xog

Xs1

Xaz

Xs3

Xso

X8

X34

X2

p=

(3.4.17)

The F-term charge matrix Qp = ker (P) is

51

-1

-1

w3 wyg ws we

wy

wy

Ty

71

]

Qn

p3

p2

(3.4.18)
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L 0@ [UWy [UQ)R | fugacity
ol 14 | 14 | 2/3 &
poll -1/4 | 14 | 2/3 |t
pP3 1/2 0 2/3 tg

Table 3.6: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 2).

The D-term charge matrix is

IS

o Uz m‘:rl vy vz U4 |wp wy wy wg ws

S2 S3 S84 S5  S6

B4

P P2 m‘m ‘2] ‘ L T2 ‘ Uy S10 811

U6 87 9 12

o o0 0f0 0O{0O 0O{O 0 O OjO O O OfO O O O O OO 1 -1 0 0 0 O 0O 0 0 O

o 0 0f0 0{0O 0O{O0O O O 0O{O O O OfO O O O O 0OfO0O O 1 -1 0 O O O O O 0 O

Op = o o0 o0f0 0O(0O 0{0 0 O 0O{O O O OfO O O O O OfO0O O 0O 1 -1 0 O O O O 0 O
o 0 0f0 0{0O 0O{O0O O O 0O{O O 0O OfO O O O O 0OfO0O O O O 1 -1 0 O O O 0 O

o o0 o0f0 0(0O 0{0 0 O 0O(O O O OfO O O O O OfO0O O O O O 1 -1 0 O O 0 O

o 0 0f0 0{0O 0O{O0O O O 0O{O O O OfO O O O O OfO0O O 0O O O O 1 -1 0 0 0 O

o o0 o0f0 0Oj0O 0O{O0O O O OO OO OfO O O O O OfO0O O O O O O O 1 -1 0 0 O

(3.4.19)

The total charge matrix Q)+ does not exhibit repeated columns. Accordingly, the global
symmetry is U(1)s, x U(1)s, x U(1)g. Following the discussion in the flavour
and R-charges on the extremal prefect matchings are found as shown in Table [3.6

Products of non-extremal perfect matchings are set to be associated with a single

variable as follows,

q=q1q2 , " =T1T2 , U = U1UU3U4 , V = V1V2V3V4 ,
12
W = W WawswWaWsWe , S = [ [, Sm -

(3.4.20)

The fugacities t, counts extremal perfect matchings p, with non-zero R-charge. The
fugacity y, counts the product of non-extremal perfect matchings ¢ above.

The mesonic Hilbert series of Model 2 is calculated using the Molien integral formula

in (T4.67). It is

91(ta, Ygs Urs Yu, Yo, Yuw, Ys; M%) =
(1 — yoytynyuymys tit2) (1 — y2ytyayeyays titsts)

1
X 2,,3 2 4 2 34,2 4 2
(1 = y2vayoynys t1)(1 — Y2yuyymys t3)(1 — Ygyrys t3)
v ! (3.4.21)
(1 — ygyry2y2y2ys 1113)(1 — YoyrYuloYuys titats) o
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Generator ‘ UM)p ‘ UL, ‘

Ai=piqrs 1 0
Ay =pipap3 qruv w s 0 0
Az = p?p3 q r u*0® w? s 1 0
Br =p} ¢ vPvw? s -1 1
By = pi r? wvd w? s 1 1

Table 3.7: The generators and lattice of generators of the mesonic moduli space of Model
2 in terms of GLSM fields with the corresponding flavor charges.

Generator Uy | UML)y,
X12Xo1 = X34Xu3 = Xs6Xes = Xrs X7 1 0

X192 X3 X1 = X1 Xos X1 = X14 X4 X1 = X14 X3 X1 = X17X70 X1 = X7 X7 X1 = X3 X4 Xap = Xog X7 Xro = X34 Xu5 X3 0 0

= X36X64Xa3 = X36X5X53 = Xa5X56 X4 = X56Xe7X75 = X5sXsoXes = XXz X75 = X7 X7s X6
X1aXap X3 X1 = X1a Xap Xog X1 = X14X45 X53X31 Xo3 X1 = X17 X720 Xos X1 = X17X75 X8 X1 = Xo3 X6 X4 X2 -1 0
= Xos Xs6 Xe7X72 = X36X64Xu5X53 = X6 Xe7X75 X553 = Xus X5s Xso Xoa = X58 X6 Xe7X75
X1a X5 Xss X1 = X3 X35 X67X72 -1 1
X17X75 X53 X1 = Xog Xse X1 Xao -1 -1

Table 3.8: The generators in terms of bifundamental fields (Model 2).

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(ta: Yg, Yrs Yus Yo, Yo, Yss M) = Yqyrs 15 + YaUrYuloluwys titats

4 4
FYgUrYalalumYs tits + YaUntuays U1 + YrYuluYals o
2.2 2 2 2 2 2.2 4 4 4 2

4
_yqyryuyvywys t%t%tg - yqyryuyvywys tlt% . (3422)
The finite plethystic logarithm indicates that the mesonic moduli space is a complete
intersection.

With the fugacity map

_2/3. —2/3 _9/3 _2/3,~2/3,~2/3,4/3
fio= g By By Ry 2Ry 20y 2 2 S
fo = gy tyuyy ' 157
1/3,1/3,1/3
to= Pyl Byl Byl Py e PP (3.4.23)

where f1, fo and t are the mesonic charge fugacities, the plethystic logarithm becomes

1 1 1
PLgi(t, fi, fo; ME')] = fit? + 7+ — (1 +fo+ ) th— 16— 18
i fa 11

(3.4.24)

From the above plethystic logarithm, one can identify the moduli space generators as
well as their mesonic charges. They are shown in Table The charge lattice of
generators in Table is the dual reflexive polygon of the toric diagram of Model 2.

The two relations formed by the generators are

AyAz = A | B1By = A% . (3.4.25)
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P4

~a {vi, Vo, V3

P3 {0, G} P1

Figure 3.5: The quiver, toric diagram, and brane tiling of Model 3a.

With the fugacity map

T = fl_l/4f§/4 ;= y;/2 3/4,1/4 1/2y§/4 t

T T
—-1/4 ,—1/4
Ty = f A =yl 2y Ay 2y
1/2
Ty = £} t =yl 2yl 2yl 1y (3.4.26)

the mesonic Hilbert series takes the form

(1 - TiTy)(1 — TPT3T3)

g1(T1, T3, T3; M5*®) =
( S = AT TH0 - T - T (1~ )

. (3.4.27)

with the plethystic logarithm being

PL[gy(T1, Ty, Ts; M) = T2 + Ty To Ty + T2T3 + T + Ty — TET2T2 — T
(3.4.28)

The above refinement of the mesonic Hilbert series emphasises the conical structure of

the toric Calabi-Yau space.

3.5 Model 3: Ll’g,l/ZQ (0, 1, 1, 1)
3.5.1 Model 3 Phase a

The superpotential is

W = +X31X18Xs3 + X320 X07X73 + X53X37X75 + X7 Xg1X17
—X14X48 Xs1 — X31 X17X73 — X78 X3 X37 — X6 X61X18
+X14 X415 X56 X61 + X2 X024 Xag Xsgg — X32X04Xy5 X553 — X2 Xo7 X75X56 -
(3.5.29)
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The perfect matching matrix is

S7 S8 S9 S10 S11 S12

s6

S2 83 S84

S1

vy U3

0

U2 U3

uy

T2

71

q2

[

P2 P3 P4

P1

0

0

1

0

0

Xs1

X73

Xs7

Xs6

X2

Xs3

Xe1

X7

Xus

X5

Xs3

X4

X3

X7s

P=

(3.5.30)

The F-term charge matrix Qp = ker (P) is

7 58 S9  S10 S11 S12

56

52 53 54

S1

-1 0

-1

v3

v

0

uz Uz

uy

q2

an
-1

-1

P3 P4

P2

P1

0

Qr=

(3.5.31)

The D-term charge matrix is

S11 S12

S10

72

71

q2

TN

P2 p3 P4

P1

QI} =

(3.5.32)

The total charge matrix does not exhibit repeated columns. Accordingly, the global
symmetry is U(1)s, x U(1)y, x U(1)g. Following the discussion in §3.2.3| the mesonic

charges on the extremal perfect matchings are found as shown in Table

Products of non-extremal perfect matchings are associated to a single variable as
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| 00 [U0p ]  UMr ] fugacity
p| 172 1/2 |Ri=:(5-V7) | ta
P2 0 -1/2 | Ri=3(5-VT) || t
ps || -1/2 | -1/2 | Ry=5 (1+V7) || t3
P4 0 1/2 RQZ%(l—F\ﬁ) t4

Table 3.9: The GLSM fields corresponding to extremal points of the toric diagram
with their mesonic charges (Model 3a). The R-charges are obtained using
a-maximization.

follows

12

9=qq2, T =TiT2 , U = UlU2U3 , V = V1V2V3 , SZHSm-
m=1

(3.5.33)

The fugacity t, counts extremal perfect matchings. The fugacity y, counts the product
of non-extremal perfect matchings g above.

The mesonic Hilbert series of Model 3a is calculated using the Molien integral formula

in (T.4.67). It is

91(ta Ygs Yrs Yus Yo, Yss MEG) = (1= yguiyayoys T80 (1 — yguryuyays tatatits)
1
X
(1= ygyrys 1513) (1 — y3uiuys 11t3) (1 — ygurygydys 1565)

1
X .
(1 - ygyuygys tZtEi)(l — YqUrYuYvlYs t1t2t3t4)

(3.5.34)

The plethystic logarithm of the mesonic Hilbert series is

PLIG1(ta Ygr Yrs Yus Yo Ys; MBS )] = Yqurs 1185 + YaUrYutioys titatsts + yoyayuys L1t
FYZYuYeys tath + YaUrYayeys 13t5 — Yoyryayays titatats — Yoysyaysyl titatht] .
(3.5.35)

The finite plethystic logarithm indicates that the mesonic moduli space is a complete

intersection.
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| Generator UMW)y | Uy, |

Al = p%pg qr s 1 0
As = p2p3 g r u?v? s -1 0
B = p1papsps q 7 uv s 0 0
C) = plpg @ v s -1 -1
Cy = pgpi r2 w? s

Table 3.10: The generators and lattice of generators of the mesonic moduli space of
Model 3a in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ U ‘ Ul)y, ‘
X4 X5 X56X62 = X1sXs1 = X37.X73 1 0
XN14Xas X3 X1 = X1 Xus X6 X1 = X17X75X53 X531 = X17 X7s X3 X1 -1 0

= X17 X7 Xs36X61 = Xo7 X5 X53X30 = Xo7 X7 Xs53X32
X114 X5 X56X61 = Xoa X5 X53X30 = X4 Xag Xgs Xeo = Xor X75X56 X62 = X14Xas X1 0 0
= X17X73X31 = X17X7sXs1 = X138 Xs3X31 = X1s Xs6Xe1 = Xor Xr3 X3p = X7 X75 X553 = X7 X7s Xs3
X17X75X56 X 61 = Xoa Xus X3 X320 -1 -1
X14 X5 X53X 31 = Xo7 X785 X6 X2 0 1

Table 3.11: The generators in terms of bifundamental fields (Model 3a).

Consider the fugacity map

i = ! ;
YulYv
f2 = W ;
Yg t' T t3
o= YWyl Ry
By = yllAylayliylaylt g2 (3.5.36)

where fi and f, are the flavor fugacities, and ¢; and ¢ are the fugacities for the R-charges
Ry and Ry in Table [3.9) respectively. Under the above fugacity map, the plethystic
logarithm becomes

- 1 . o, %8
PL{gi(ta, f1, fos MES)] = fulf + 815+ ( + f2> tty + 2 — ity — L2
fifa fi fi
(3.5.37)

The above plethystic logarithm indicates both the moduli space generators as well as
their mesonic charges. They are summarized in Table The generators can be
presented on a charge lattice. The convex polygon formed by the generators in Table[3.10]
is the dual reflexive polygon of the toric diagram of Model 3a. The generators satisfy

the following relations

A1Ay = B% | AyB = C1C5 . (3.5.38)
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Ps3

{vi, Vo, V3

P1

P4 {ry, r2) P2
Figure 3.6: The quiver, toric diagram, and brane tiling of Model 3b. The red arrows in
the quiver indicate all possible connections between blocks of nodes.

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in terms

of the following 3 fugacities,

ot
= s ygyuy.ft%tat% ’
Ty = 55 013 = ygvayeys 01, Ts = fi & = yeyrys 1183, (3.5.39)

such that
(1 -TPT3TH( - TPTITS)
(1-T3)(1-Ty)(1 — T12T22T3)(1 — T13T22T32)(1 —ThT)T3)
(3.5.40)

g1(T1, 1o, T3; M3°%) =

and

PL{gi (T, T, T5; M5)] = T+ TTTs+To + TET5Ts + TPT5 TS
~T2TIT? — T3TST? (3.5.41)

The above refinement of the mesonic Hilbert series and the plethystic logarithm illus-

trates the conical structure of the toric Calalbi-Yau 3-fold.

3.5.2 Model 3 Phase b
The superpotential is
W = +X31X18Xg3 + X4 X93X34 + X53X37.X75 + Xe7 X729 X096
— X174 X418 Xg1 — XyoXo6X6s — X53X34 X5 — X7 X75X56

+X78 X1 X17 + XgeXeaXug + X14X45X56X61
— X738 Xg3X37 — XgeXe1X18 — X17X72 X023 X31 . (3.5.42)
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The perfect matching matrix is

0 0 0 0 0

0

0 0 0 1

0

v3

71

q2

¢«

P2 P3 P4

p1

0

X7

Xig

Xs1

Xea

X34

Xus

Xog

Xs6

X7

Xso

X4

X7s

Xa

Xs3

Xir

Xug

Xe1

Xog

P =

(3.5.43)

The F-term charge matrix Qp = ker (P) is

S9  S10 811 S12 813 S14

58

u3

ug

Uy

a2

a

-1

-1

P2 P3 P4

P

0

(3.5.44)

The D-term charge matrix is

S$10 S11 S12 813 S14

S9

0

0 010 0

0

(3.5.45)

The total charge matrix does not exhibit repeated columns. Accordingly, the global
symmetry is U(1)s, x U(1)s, x U(1)g. The mesonic charges on the GLSM fields with
non-zero R-charges are the same as for Model 3a and are shown in Table [3.9]

Products of non-extremal perfect matchings are expressed in terms of single variables
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‘ Generator ‘ UM)p ‘ UL, ‘

X1sXs1 = Xo3X37X72 = Xu5 X56 X6 1 0
X114 X412 X06X61 = X14Xas X3 X31 = X14Xus X6 Xp1 = X17X75X53X31 = X17 X758 X33 X31 = X17 X758 X536 X651 1 0
X14 X145 X56X61 = X17X72 X023 X531 = X124 Xug X1 = X17X78 X1 = X1 X3 X531 = X1 Xs6X61 = X3 X34 X2 0 0
= XoXeaXa2 = Xo6Xe7X72 = X34 X5 X3 = X37X75X53 = X37 X785 Xs3 = Xus Xs6 X614 = X56X67X75

X34 X1 Xs3 = X17X72 X026 X61 = X17X75X56 X61 -1 -1
KXo X7 X6 = X14 X2 X3 X351 = X14 X5 X53 X3 0 1

Table 3.12: The generators in terms of bifundamental fields (Model 3b).

Figure 3.7: The quiver, toric diagram, and brane tiling of Model 4a. The red arrows in
the quiver indicate all possible connections between blocks of nodes.

as follows

14
g=qqz2 , T =TTy, U = UjUU3 , V = V{VV3 , S = H Sm - (3.5.46)

m=1
The fugacity t, counts GLSM fields corresponding to extremal perfect matchings p,.
The fugacity y, for instance counts the product of non-extremal perfect matchings ¢

shown above.

The refined mesonic Hilbert series and the corresponding plethystic logarithm are
found using the Molien integral formula in ((1.4.67)). The Hilbert series is found to be
the same as the one for Model 3a given in (3.5.34), (3.5.35) and (3.5.37). Accordingly,

the mesonic moduli spaces of Model 3a and 3b are the same, with the corresponding

quiver gauge theories being toric (Seiberg) duals.

The generators in terms of all perfect matchings of Model 3b are given in Table
with the corresponding mesonic symmetry charges. The corresponding mesonic gener-
ators in terms of quiver fields are given in Table The mesonic moduli space is a
complete intersection, and the generators satisfy the relation in .

144



C/Zsy x Zs (1,0,0,1)(0,1,1,0), PdP;

3.6 Model 4

3.6.1 Model 4 Phase a

The superpotential is

+ X3 X33 Xg1 X 12 + X411 X16X63X34 + Xe7 X754 X5 X56 + Xg5X50 X027 X738
—Xo7 X74 X141 X192 — Xy5X52X23X34 — X3 X38 X35 X56 — X1 X16X67X78

W o=

(3.6.47)

The perfect matching matrix is

$10 S11 S12

59

0 0 0 0 1

0

uy

P

r

q2

q1

P2 P3 P4

P1

0

Xo3

Xn

Xss

Xe7

Xs6

X7s

X34

X12

X4

X52

X6

X3s

Xs1

Xe3

Xor

Xus

P=

(3.6.48)

The F-term charge matrix Qp = ker (P) is

S3 S4 S5 S¢ ST S8 S9 S10 S11 S12

S2

-1

-1

0 -1 -1 0

0

-1

-1

U

Uy

T2

-1

-1

a2

a

P2 p3 P4

4!

Qr =

(3.6.49)
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’ H U(]')fl ‘ U(l)fz ‘ U(l)R H fugacity
P1 1/4 —1/4 1/2 tl
po || 1/4 1/4 1/2 || ¢
pP3 —]_/4 —1/4 1/2 tg
pal| -1/4 | 1/4 1/2 || t4

Table 3.13: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 4a).

The D-term charge matrix is

P1 P2 pP3 P4 @1 Q2|71 T2 U1l U2 | V1 V2|81 S2 S3 S4 S5 S6 ST S8 S9 S10 S11 S12
o o0 o0 00 0Oy0 O}0 OO0 OO0 O 1 =1 0 O 0 0 0 0 0 0
o o0 0 0|0 OO0 O}]0O0 OO OO0 O O -1 0 0 0 0 0o 0 0
_ o o0 o0 0f0 OO0 O}J]O0 OJO O]JO O O O 1 -1 0 0 0 0o 0 o0
@p = o 0 0 0|0 00 O 0j0 O0y0 O O O 0 1 -1 0 0 0 0
o o0 o 00 OO0 O}J]O0 OO O]JO O O O 0 0 1 -1 0 0o 0 o0
o 0 0 0|0 0|0 0 00 O 0 0 0 0 0 0 1 -1 0 0
o 0 0 0|0 OO0 O]O0 O 0j]0 0 0 O 0 0 0 0 1 -1 0 O

(3.6.50)

The total charge matrix @y does not exhibit repeated columns. Accordingly, the global

symmetry is U(1)y, x U(1)g, x U(1)g. The mesonic charges on the extremal perfect
matchings are found following the discussion in They are shown in Table

Products of GLSM fields corresponding to non-extremal perfect matchings are called

by single variables as follows

12
q=4qi1q2 , T =T1T2 , U =UjU2 , UV =V1V2 , S = Hsm. (3.6.51)
m=1
The fugacity t, counts extremal perfect matchings p,. The fugacity y, for instance
corresponds to the product of non-extremal perfect matchings ¢ shown above.

The refined mesonic Hilbert series of Model 4a is calculated using the Molien integral

formula in (1.4.67). It is

91 (s Ygr Yr Yus Yo Yss MUS) = (1 — y2ylyayoys titstats)?

1
X

(1 — y2yuyoys 133) (1 — yguryays t33) (1 — ygurydys t5t3)
. 1

(1 - yvgyuyvys t%ﬁ)(l — YqUrYuYvlYs t1t2t3t4) .

(3.6.52)
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| Generator EOrEors

Ay =pipiqru® s 0 -1
A =p2p3 qrv? s 0 1
Bi=pip3 ¢Cuvs 1 0
Bgzp%pi r2uvs -1 0
C =pipapspagruvs 0 0

Table 3.14: The generators and lattice of generators of the mesonic moduli space of
Model 4a in terms of GLSM fields with the corresponding flavor charges.

The plethystic logarithm of the mesonic Hilbert series is

PLIg1(tas Ygs Yrs Yus Yo» Ysi MG = Yaurtiutiols titatsts + yoyuyoys tts
FYZyuyoys 1385 + YaUrVes toth + YaUrYays 1it3 — 2 Y2ytyoyey? tit5t3t] .
(3.6.53)

The finite plethystic logarithm indicates that the mesonic moduli space is a complete
intersection.

With the fugacity map

_ Yq lalo L= Yo Loty
yr tats Yu t1l3

bl

b= gl Ayl LA A (3.6.54)

where the fugacities fi, fo and ¢t count mesonic charges, the Hilbert series becomes

mes (1 — t8)2
g1(t, f1, fos M) = . (3.6.55)
(=)~ (0~ A1~ L1~ )
The corresponding plethystic logarithm is
mes 1 1 4 8
PL[g(t, fr, fs Mig")] = (1+ A+ T fo+ % tt—2% . (3.6.56)

The above plethystic logarithm identifies the moduli space generators with their mesonic
charges. They are summarized in Table The charge lattice of generators in Ta-
ble [3.14] is the dual reflexive polygon of the toric diagram of Model 4a. The generators

satisfy the following relations

A1Ay = BBy = C? . (3.6.57)
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‘ Generator ‘ Uy ‘ UM, ‘
X16X67 X714 X1 = X23 X35 X535 X52 0 1
X12X23 X34 X1 = X56X67X78 X35 1 0
X12X03 X33 Xs1 = X12Xo7 X714 Xa1 = X16Xe3 X34 X1 = X16Xe7X78Xs1 = X3 X34 X5 X50 = Xo7 X7 X5 X50 = Xas X5 o6 X3 = Xa5 X56Xe67X74 0 0
-1 0
0 1

XH,‘\XbJ}X:HX&l = X27X’,',1X,15X52
K12 X907 X7g X1 = X34 X145 X56X63

Table 3.15: The generators in terms of bifundamental fields (Model 4a).

Figure 3.8: The quiver, toric diagram, and brane tiling of Model 4b. The red arrows in
the quiver indicate all possible connections between blocks of nodes.

The fugacities

7y = Yevays it _ 0 wahite g gelata
to fif2’ Yr taty ’ Yu t1t3 ’

(3.6.58)

can be introduced to rewrite the Hilbert series and plethystic logarithm as

(T To . Th: mes) - (1 B Tl2T22TZ%2)2
g1, 22, 435 MMa T (1-T\ToT5) (1 — T T5) (1 — TVT2T5) (1 — Ty To) (1 — Ty ToT2)
(3.6.59)

and

PL[g1(Ty, Ty, Ts; M7 = Ty ToTs + Ty T3 T3 + ThTs + Ty To T3 + Ty Ty — TETSTS
(3.6.60)

such that powers of the fugacities in the expressions are positive. This illustrates the

cone structure of the variety.
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3.6.2 Model 4 Phase b

The superpotential is

+ X023 X33 X2 + Xu5X56X64 + X63X34 X6 + Xg5X520X08

+ X291 X14X47 X 79 + X61 X138 X87X76

W o=

—X01X18Xg9 — Xy7 X76Xes4 — Xgr X70Xog — X1 X14X46

— X5 X52X93X34 — X3X38X85X56

(3.6.61)

The perfect matching matrix is

—~

Q

©

c
mﬂﬂOUOlOllUlOUOOOlUUl
anOOOlOlOUlOlOOOOOllO
m00010001010001000101
oo~ o0 o0 ~0 000 0 O0C HO HO
Flooco o000 ~C 0 HO OO O H OO
Sloorococooco~0co0coo0coc -0 00 ~0 —~ A O
Flo" oo~ 00 -~ 000 000 -0 o —
Pl o oo 0000 1000 000 A - O
Jo"coo 00000000 A0 H O
FlWmooco o000 o000 0 HO HO
flom o o000 coco0o0C -0 ~0 H OO
Gl o " o0 oco0c o0 coc o000 0 A0 HHO
floococo ~0 00000 0 A0 Ao
Slocco o ~0Cc o000 O 0 HOHO
floro -0 o0coco0coo0 0 -0 000 o o
Sl o - o0 c0 0 ~~0 00000 Ao O
flococoooococooo0o - -0 Q0 -0 —
fJloocoococoococoo0 A -0 o0 - -0 0 o o — —
Sloo- " o0oo0 ~ <0 000000 C HHOO
Sl o0 4 4000000000 O A OO
Slococooco oo o000 o A~ o HO O H
flococoocoocooco -~ -0 00 0SS — —
dlocco -+ " " 0000000 O A~ OO
" " " oo o0 oco0co0c0co0co0Q0co0 o0 A OO

Il

A,

The F-term charge matrix Qp = ker (P) is

(3.6.63)

ST S8 S9 S10 811 S12

S6

-1

-1

0
0

0
0

0
0 -1 -1 0

0

u2

uy

-1

-1

72

1

0

92

an

P2 P3 P4

P1
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‘ Generator ‘ UMy ‘ U, ‘

X56X18 X85 X61 = Xo3 X34 Xa7X72 0 -1
KNogXso = X14X45X56X61 = X14X47X76X61 = X34 X45X56 X63 = X34 X47X76X63 1 0
K01 X14Xy7 X792 = X1 X18 Xg7X76 = X3 X34 Xu5 X520 = X56 X33 Xs5X63 = X14X46X61 = X1 X158 Xs2 0 0
= Xo3X35Xs2 = X5 Xog X5 = XroXog Xg7 = X34 X46X63 = Xus X56X64 = XeaXa7X76

Xa6X6a4 = X021 X18 X85 X502 = Xo1 X138 Xg7 X712 = Xo3 X33 Xg5 X520 = Xo3 X33 X7 X72 -1 0
Xo1X14 Xy5 X50 = X3 X35 Xs7X76 0 1

Table 3.16: The generators in terms of bifundamental fields (Model 4b).

The D-term charge matrix is

PL P2 P3 P4 |qQu Q2|71 Tp|ul ug | U1 V2 |S1 S2 S3 S4 S5 S ST S8 S9 S0 Sl S12
o 0 0 o0}j0 OO OO OO O}jO O O O 1 -1 0 0 0 0 0 0
o 0 o0 ojo0o ofO0O OO OfO OJO O O O O 1 =1 0 0 0 0 0
Op = o 0 o0 o0(0 OfO0O O|O OJO O|O O O O O O 1 -1 0 0 0 0 ( 3 . 6 . 6 4)
o 0 0 o0(0O OO OO OJO O|O O O O O O 0 1 -1 0 0
o 0 o0 ojo0o oOf0O OjJO OJ0O0 OO O O O O O 0 0 1 -1 0
o 0 0 o0(O0O OO OO OJO O|O O O O O O 0 0 0 1 -1
o 0 o of0O OjO O}]O OO O|O O O O O O 0 0 0 0 1 -1

The total charge matrix ); does not have repeated columns. Accordingly, the global
symmetry is U(1)s, x U(1)s, x U(1)g. This is the same global symmetry as for Model
4a, and the same mesonic charges on extremal perfect matchings are assigned as for
Model 4a, as shown in Table

Let products of non-extremal perfect matchings be associated to a single variable as

follows

12
q=qq2 , T=T1T2 , U =UlUL , V =VIVy , § = Hsm. (3.6.65)
m=1
The extremal perfect matchings p, are counted by t,. The fugacity of the form y,
counts the non-extremal perfect matching product g above.

The refined mesonic Hilbert series is calculated using the Molien integral formula
in . The Hilbert series and the corresponding plethystic logarithm turn out to
be the same as for Model 4a. The mesonic Hilbert series and the refined plethystic
logarithms are given in (3.6.52), (3.6.53) and (3.6.56)). Accordingly, the mesonic moduli

spaces of Model 4a and 4b are the same, with the corresponding quiver gauge theories

being toric dual.

The generators in terms of perfect matchings of Model 4b are given in Table
with the correspoding mesonic symmetry charges. The corresponding generators in
terms of quiver fields are shown in Table The mesonic moduli space is a complete
intersection, with the generators satisfying the relations in (3.6.57]).
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© /

P2

Figure 3.9: The quiver, toric diagram, and brane tiling of Model 4c. The red arrows in
the quiver indicate all possible connections between blocks of nodes.

3.6.3 Model 4 Phase c

The superpotential is

W = +X21X14X42 + Xo3X38 X80 + X1 X18X86 + X63X34X46
+X67X74 X145 X56 + X5 X52X27X78
— X291 X18Xs2 — Xo7 X74Xa2 — X1 X14 X6 — Xe7 X738 Xs6
— X5 X520 X203 X34 — X3 X33 X85X56

(3.6.66)
The perfect matching matrix is

PL P2 P3 pa|qu q2|7Ti T2 Ul U2 |vVL V2 |S1 S2 S3 S4 S5 S¢ ST S8 S9 S10 S11 S12 S13 S14
X1 0 0 0|1 01 0fO OfO OO0 0 1 1 1 0 1 0O O O O O 1 O
X7%|1 0 0O Of1 OfO 1|0 OO O}jO O O 0O 1 1 0 0 1 0 1 0 1 0
X311 0 0 0|0 11 0of0 OfO 0|0 O 1 O O 1 0 0 0 1 0 1 10
X1 0 0 0|0 1(0 1({0 0|0 O|1 0O O O O 0 O o 0 0 0 0 O
X510 10 0|1 OO0 Of1 0Of(O Of{O0O 1 0 O O O O O O O 1 0O 0O O
Xe3/0 1 0 0|1 0|0 OfO 10 OO 0 0 1 1 0 1 0 1 O 0O O O 1
X0 1 0 OyO0 1{0 Of1 OfO 0O(O 0 1 1 0 0O O 1 0 1 0 0 0 1
X0 120 00 10 00 140 0j0 0 0 0 0O 1 0 0 1 1 0 1 0 1
X¢r/O O 1 0|O O|{1 OfO Of1 0OjO0O 0 1 1 0 0O 1 0 O 1 O O 0 1

P=| Xg|0 0 1 0(0 0|1 0|0 O[O 1|0 1 0 0 0O O O O O O O 1 0 O (3 . 6 . 6 7)

Xig|0O O 1 0|0 OO 1|0 Of1 0{0 O O O O 1 0 0O 1 1 1 0 0 1
X»3|/0 0 1 0|0 OO0 1f0 O(O 1j0 0 0 1 1 0 0 1 1 O 0O O O 1
X0 0O 0O 1|0 OO Of1 Of12 0O0f{O0 0 1 0 O 1 0 0O O 1 1 0 1 O
X»y|0 0 0 1|0 OO Of1 0fO 1{0 0 1 1 1 0 0 1 O O O O 1 O
X0 0 0 140 0O{O OO 11 01 0 0O O 0O 0O 1 0 0 O 0O O 0 O
Xu|0 0 0 1)y0 00 0f0 10 1{0 0 0 0 1 1 0 0O 1 O O 1 1 0
Xg|1 1 0 Of1 1{1 0f0 10 01 1 0 0 0 0O 1 0 0 O O 1 0 O
Xgp(1 0 1 0f1 012 10 Of1 01 1.0 0 0 0 1 0 0 0O 1 0O 0 O
Xgg/0O 10 10 1(0 0|1 1}j0 11 1 0 0 O O O 1 0O 0O O 1 0 O
X0 0O 1 1|0 OO0 11 O0Of1 1{1 1 0 0O O O O 1 O O 1 O O O
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The F-term charge matrix Qr = ker (P) is

P1 P2 P3 P4| Q1 q2 71 T2 | U1 u2 | v v2 S1 §2 83 S4 S5 S6 ST S8 S9 S10 S11 S12 S13 S14
i1 0 0f(-1 ~-1f0 O}O OO OJ0O0 O O OO O O O O O O 0 0 O
1P 0100 O0(-1 -1f0 OfO0 OO O O O O O O O O O O O 0 O
o190 1{0o o}jo 0|-1 ~-tfy0 OO O O O O O O O O O O O O O
o 01 1{0o oo 0|0 O|-1 -1{yO0 0O O O O O O O O O O O O O
+r 0010 0j0O O0O}O0 0O}0 Of-1 0 0O O O O O O O O O 0 -1 0
o 1100 0fO O|jO OO O}]O0 -1 0 0 0O O O O O 0O O O 0 -1
1P 0o0O0f-1 0|0 ~-1{jO0 OO0 OO0 O O OO -1 0 0 1 0 1 0 0 O

Qr = 10 o{-t 0f-1r 0y0 0O O0O}jO 1 O 1 O O O -1 0 O 0O O O O . (3668)

o o0 101 0O}~ 00 OO OO0 -1 0 O O O O O -1 0 0O 1 0 O
0O 0 1 0|0 0[O0 1 0}j-1 01 -1 0 0 O 0O -1 0 0 0 0

o oo 01 ojo oj{o oftr of0 O OO O O -1 0 0 0 -1 0 0 0
o o0o0oo0f1 0}O0 OO0 OO0 1|0 -1 0 0 -1 0 0 O O O 0O O 0 O
o o0o0oo0{0 10 0|0 O|1 O(-1 0 O O O O O O O -1 0 0 0 O
0O 0 0 0|0 Of1 O 1 0]0 o -1 -10 0 0 O O 0O O O O 0 0
o o0o0oo0{0 OO 10 1|0 O(-1 0 O O O O O O -1 0 0 O 0 O
o o0o0oo0f0 0O}j0 OO0 00 O0O(1 0 O 1 0 O -1 -1 0 0 0 0 0 O

up u2 ‘ v v ‘ S1 82 83 S4 S5 S6 ST S8 S9 S10 S11 S12 S13 S
o o040 0j0o o 0 0 00O 1 -1 0 0 0 0 0 O
o o040 0j0 o 0 0 0O OO 1 -1 0 0 0 0 O
0

ojo ofo o o o o0 o0 o0 0O 1 -1 0 0 0 O ) (3669)

\
Qp =

o
o
o
o
o
o
o
o
o
o
o
o
o
o o o =
o
—
|
—-
o

The global symmetry is U(1)f x U(1)s, x U(1)g. The global symmetry charge as-
signment on the GLSM fields with non-zero R-charges is the same as for Model 4a and
is shown Table B.13

Products of non-extremal perfect matchings are labelled in terms of single variables

as follows

14
g=qiq2 , T=T1T2 , U= UIU2 , V= V1V , S = Hsm. (3.6.70)
m=1

The fugacity which counts GLSM fields corresponding to extremal perfect matchings p,

is to. A product non-extremal perfect matchings, for instance ¢, is assigned a fugacity
of the form y,.

The mesonic Hilbert series and plethystic logarithm for Model 4c is the same form as

for Model 4a. They are given respectively in (3.6.52), (3.6.53]) and (3.6.56|). Accordingly,

the mesonic moduli space of Model 4c is the same as for Model 4a. In other words they

are toric (Seiberg) duals.
The generators in terms of the perfect matching variables of Model 4c¢ are given in
Table with their mesonic charges. The generators in terms of quiver fields are given

in Table [3.17} The mesonic moduli space is a complete intersection and the generators

satisfy the relations given in (3.6.57)).
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‘ Generator ‘ Uy ‘ Uy, ‘

Ko7 X8 Xg2 = X14X45X56 X61 = X34X45X56X63 0 -1
X3 X34 X429 = X56X18Xs5X61 = X56X67X78 X85 1 0
K23 X34 X45 X520 = X52Xo7 X738 X5 = X56 X33 X5 X63 = Xu5 X56X67 X714 = X1 X14Xa2 = X14X46X61 0 0

= X1 X15Xs2 = X1 X158 Xs6 = Xo3 X35 Xs2 = Xaa Xo7 X74 = X34 X46Xe3 = Xer X758 Xs6
X63X38X86 = Xo1X14X45X50 = X5 X207 X714 X50 -
X6 Xe7X74 = X1 X18 X5 X520 = Xo3 X35 X5 X502

S =
= o

Table 3.17: The generators in terms of bifundamental fields (Model 4c).

0J020J0)

Figure 3.10: The quiver, toric diagram, and brane tiling of Model 4d. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

3.6.4 Model 4 Phase d

The superpotential is
W = +X01X1uX1y + Xo3X3sXas + Xo5 X54 X0 + Xor X738 X 3,
+X61X18 X8 + X3 X34 X6 + Xos X Xg + Xo7 X74 X3

*X21X18X§2 — X3 X34 X3, — X25X58X822 — X7 XX}
—Xe1 X14 X} — X3 X358 X% — Xes X54 X3 — XerXsXag  (3.6.71)

The perfect matching matrix is

PL P2 ps Pal@ ga|Ti Ta|wi up|vi Wy |s1 Sp Sy Sa S5 S6 ST S8 So S0 S1 S12 S13 S14 515 516 S1T S8 S0 S0 $a
XL|1 1 0 of1 1 0f1 1]0 0[O 0O 00O O0OO0OO0ODOOO 1 0 1 0 0 0 0 0 0 0 1
X |1 1 0 0 o 1f1 140 0f0O 0O 0O 0O O O O O 0O O O 1 1 1 o 0 0 0 0 0 O
Xl 1 o0 1 1 0 0f1 0|1 0/0O O O 0OO0ODOOOO O O L 1 0 0 0 0 0 0 0 1
Xg2|1 0 1 1 1|0 0{0 10 1|0 O O O 0 0 0 O O 0 1 0 1 1 0o 0 0 0 0 0 O
X1 0 0 0|1 0|0 Of1 O[O O[1L 1 1 1 1 0 0 0O 1 0 0 0 0 1 1 0 0 0 0 1
Xg3/1 0 0 O}1 Of0O OfO 10O Of0O 0 0 1 1 0 0 1 1 0 1 0o 0 0 1 1 0o 0 1 1 0
Xp|1 0 0 0|0 1|0 0|1 0[O O[T 0 0 0O OO O0OOO 1 0 1 0 0 1 1 1 1 1 1 0
X1 0 0 OO0 10 OfO 10O Of1 1 0 1 0 1 0O 1 0O O 0 0 O 1 1 0 1 0 1 0o 0
X0 1 0 1|0 o1 1|1 01 0[O O 0O OO O0OO0OOOO O 1 1 0 0 0 0 0 0 0 1
XLl0o 1 0 1j0 o1 1|0 1|0 1/0 0 0 0 0 0 0 0 0 0 1 0 1 1 o 0 0 0 O 0 0
Xp|0 1 0 OO Of1 Of1 OO OfL 1 1 0 0O 1 1 0 0 1 0o 0 0 0 0 0 1 1 0 0 1

P=| X0 1 0 O[O0 0|1 0|0 1|0 Of0O 0 0 O 0 1 1 1 1 0 1 o 0 0 0 0 1 1 1 1 0 (3-6.72)
X0 1 0 O(0O O}O 11 0O OfO 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 0
X0 10 0f0O OfO 1|0 10 0O 1 1 1 1 1 1 1 1 0 0 0 0 1 o 0 0 0 0 0 0
Xp|0O0O 0 1 1)1 O0Of1 0Of0 O|1 10 0 0O 0 O 0O 0 0 0 O 1 0 1 0o 0 0 0 0 0 O 1
X0 0 1 1j0 10 1{0 0|1 1|0 0 0O O 0O 0 0O 0O 0O 0 0 1 1 1 o 0 0 0 0 0 O
Xxg|0 0O 1 O0O}1 OO OfO Of2 0Of0 1 1 1 1 1 1 1 1 0 O O O O O O 0 O O O 1
Xe1 |0 O 1 0f1 0f0 OO O|O 1|0 O 1 0 1 0 1 0 1 1 1 0o 0 0 0 1 0 1 0 1 0
Xos/0 0O 1 OO0 10 OfO Of1 Of0O 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0
X330 0 1 0f0O 10 OO OO 1|1 1 1 0 0 1 1 0 0 1 0o 0 0 1 (U] 1 1 0o 0 0
Xg|0O 0O 0O 10 O}1 OfO Of1 Of1 1 0 1 0 1 0 1 0 O O 0 0 O 1 0 1 0 1 0 1
Xe7{0 0O O 10 Of1 0|0 0|0 1|1 0 0O 0O 0 0 0 0 0 1 1 0o 0 0 1 1 1 1 1 1 0
Xp3/0 0 0 10 OjO 10 Of1 0Of0O 0 0 1 1 0 0O 1 1 0 0 1 0 0 1 1 0o 0 1 1 0
Xs4/0 0 0O 10O OfO 1|0 OO0 1|1 1 1 1 1 0 0 0 0 1 0o 0 0 1 1 1 0o 0 0 0 0
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The F-term charge matrix Qr = ker (P) is

PLp2 b3 pi|la@ g | r2|wi uz | wi w2 | s1 sy 53 S1 S5 S ST ss So S0 S11 S12 813 514 S15 S5 S17_S1s 519 S:0 S2
T 0 1 0[-1 —1]0 0]0 0|0 0oflo0o 0 0 0 0 0 o0 00 0 0 0 0 0 0 0 0 0 0 0
01 0 1|0 of-1t-1lo oflo 0of0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0o oflo of|-1-1{0 0[O0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000 1 1|0 of|o oflo of-1-1{0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000 0o 1|0 1|0 oflo ofl-1 0|-1 0 00 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1
00 0o of0o ofo oflo ofo 0|1 -1 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
00 0o ofo ofo ofo oflo of0 1 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 -1
00 0 ofo ofo oflo oflo o0 0o 1 -1 0 0 0 0 -1 0 0 0 0 1 0 0 0 0 0 0
00 0o o0fo of|o oflo oflo of0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00 0 ofo ofo oflo ofo 000 0 1 -1 0 0 -1 1 000 00 00 00 0 0 0
Qp=| 0 0 0 0jo 0ofo ofo 0fo 0o 0 0 1 -1 00 0 0 0 0 0 0 -1 1 0 0 0 0 0| (3673)
00 0o ofo ofo oflo ofo of0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0
00 0 ofo ofo oflo oflo of0o 0o 0o 0 0 1 -1 0 0 0 0 0 0 0 0 0 -1 1 0 0 0
00 0 o0f0o ofo oflo oflo of0o 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 -1 1 0 0
00 0o ofo of|o oflo oflo of0o 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 -1 1 0
10 0 o0lo of1 of|-10]0 0ol0 0 0 -1 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
01 0 0|1 o]0 of-10f0o 0|1 10 0 0 0 0 0 0 0O 10 0 0 0 0 0 0 0 0 0
1 -1 0 0=t 0|1 0|0 00 0f-1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 -1 00 oflo o=t 0f1 0ofl0o 0o 0 0 0 0 1 -1 0 00 0 0 0 0 0 0 0 0 0
01 0 0/0 o0f-t 0of-1 0ofl0o 0|1 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0
000 1 o0f0o of1 oflo of-1 0|0 -1 0 1 0 0 0 0 0 0O -1 0 0 0 0 0 0 0 0 0 0
000 0o 1|1 o]0 oflo of-1 0|0 10 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0
00 0 0|1 0|1 of-1 0o|l-1 0|0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
The D-term charge matrix is
P P2 P3 P4 ‘ QG2 ‘ o2 ‘ Uy u2 ‘ v vz ‘ S1 S2 83 S4 S5 S¢ ST S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19  S20 S21
00 0 0fo ofo ofo ofo ofo 00000 0O0OT1-10 00 0 0 0 0 0 0 0 0
00 0 00 0l0 0[O0 0|0 0[O0 0 000 O0O0O0O0O 1 -1 0 0 0 0 0 0 0 0 0
Qo=| © 0 0 0fo 0j0 0j0 0)0 00 0 00000000 0 1 10000 00 00 ( 3.6.7 4)
000 0 00 00 0|0 0|0 0[O0 000 O0O0OO0O0OO0O 0O 0 1 -1 0 0 0 0 0 0 0
00 0 00 0f0 0[O0 0[0 0[O0 00 0O O0OO0OO0O0OOO O 0 0 1 -1 0 0 0 0 0 0
00 0 00 0f0 0|0 0|0 0[O0 0000 O0OO0O0OO0O O 0 0 0 1 -1 0 0 0 0 0
000 0 00 0l0 0|0 0|0 0[O0 0 00 O0O0O0O0OO0O 0 0 0 0 0 1 -1 0 0 0 0

The global symmetry is U(1)g x U(1)s, x U(1)g. The global symmetry charge as-
signment on perfect matchings with non-zero R-charge is the same as for Model 4a and
is shown in Table B.13]

Products of non-extremal perfect matchings are expressed in terms of single variables

as follows
21
g=qiq2 , T=T1T2 , U= UiU2 , V= V1Vy , S = Hsm. (3.6.75)
m=1

The fugacity which counts extremal perfect matchings is t,. A product of non-extremal
perfect matchings such as ¢ is assigned a fugacity of the form y,.

The mesonic Hilbert series and the plethystic logarithm are the same as for Model 4a.
The mesonic Hilbert series and the refined plethystic logarithms are given in ,
and respectively.

The mesonic moduli space generators in terms of perfect matching variables of Model
4d are given in Table [3.14] In terms of quiver fields, the generators with their mesonic
charges are shown in Table [3.I8] The mesonic moduli space is a complete intersection
and the generators satisfy the relations in .
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‘ Generator ‘ U(l)y, ‘ U(l)y, ‘
Xo1 X1u X3, = X3 Xor X7s = X3 X3 Xag = Xe5X58Xag 0
X14X2:X61 = Xop X5 Xy = Xor X78 Xy = X34 X35 X635 1 0
X1 X114 X}y = X114 X} Xe1 = X1 X158 X3y = X1 X158 X35 = X3 X34 X2 = Xo3 X35X3, 0

= X2, Xo5X54 = X5 X58 X% = XbXor X74 = Xor X78 X% = X34 X1 X635 = Xe3X3s X
= X54 X35 X65 = X Xo7X74 = X5 X58 X35 = XerX18 X

X1 X18X2, = Xo3 X35 X2, = X54 X} Xes = X XerXra -1 0
Xe1X18 X% = X3 X34 X}y = X} Xo5 X54 = Xer X1s X 0 1

Table 3.18: The generators in terms of bifundamental fields (Model 4d).

Pa

Figure 3.11: The quiver, toric diagram, and brane tiling of Model 5.

3.7 Model 5: PdPy,

The superpotential is

W = +X01 X17 X792 + X429 X6 X64 + X56X62X05 + X67X71 X106 + X75X53X37
+X13X34 X5 X51 — X13X37X71 — X16X62X01 — X56X64X45
—Xe7X72X26 — X75X51X17 — X5 X53 X34 X402 (3.7.76)

The perfect matching matrix is

PL P2 P3 P4 |q1 G2 |T1 T T3 Ul Up U3 |81 Sp S3 S4 S5 S6 ST S8 89
X501 0 0 0|1 0O O O|jO O O}1 1 0O O O O 1 0 O
Xs31 0 0 0|0 1{0 O O0O|O O O[O O 1 1 0O O 0O 1 O
X1 0 O 1|1 0f{0 O O|O O O[O O 1 O 1 0O 1 1 O
X711 0 0 0|1 0(0O O O|O O O(1 0O 1 1 1 0O 0 O 1
Xe1 0 0 O|jO 1/0 O 0OfO O Of1 1 0 1 0 1 0 0 1
Xn|1 0 0 1|0 1/0 O 00 O Of{O 1 0 O O 1 1 1 0
X0 1 0 0|1 0Of1 0 10 1 O0Of{O0O O O O O O 1 0 O
X0 0 1 110 01 0 01 1 0{0 1 0 O O 1 1 0 O

P X500 10 0|0 1(0 1 1|0 O 1}0 O O O O O O 1 O ( 3 . 7 . 77)
Xss0O 0 1 1|0 0(O 1 0|1 O 1}0 O 1 O 1 O O 1 O
X370 1 0 0|1 0fO 1 1jJ0 O 1|1 O O O 1 O 0 O 1
Xpl0O 01 OO0 0O 1 0|1 O 11 1 0 O O O O O O
Xp|O 10 OO 11 0 1|0 1 0}0 O O 1 0O 1 0 0 1
X330 0 1 0|0 Of1 0 0|1 1 0}0 O 1 1 0O O O O O
Xgl0O 1 0 0|1 O0f1 1 0|1 O O[O0 O 1 O 1 O 0O O O
X»pl0O 1 0 0|0 11 1 0|1 O O[O0 1 O O O 1 0 0 O
Xoy/0O 0 1 1|10 00O O 1|0 1 1/0 O O O O O 1 1 0
Xe7/0 0 1 0|0 0|0 O o 1 141 0 0 1 0 0 O 0 1
X320 0 0O 1|0 00 O OO O O]O0 O O O 1 0 0 1
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L [UWs (UM | TOr ]| ugacity
P1 0 —1/2 R1 ~ 0.577 tl
Do 0 1/2 | Ry ~0.640 || ¢
P3 -1 -1 Rg ~ (0.539 ts
D4 1 1 Ry~ 0.243 || t4

Table 3.19: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 5).

The F-term charge matrix Qp = ker (P) is

Qr =

The D-term charge matrix is

Qp=1| 0

PL P2 P3 P4 | Q1 G2 | T1 T2 T3 U1 Uz Uz | S1 S2 53 54 S5 S¢ ST S8 S
110 O0f-1 -1}jO0 O O{O O O}O O O O O O O 0 O
1 0 0o 0ofo ofo o of1 0 0|0 -1 =1 0 O O O O O
1 0 0 00 O0O]JO O O|0 O 1{-1. 0 0 0 0 O O -1 0
1 0 0 O0|-1 0 1 0 010 0 0 1 -1 0 -1 0 0 0 0 0
o 1 0 0|-1 0 0O -1 0|0 O 0 0 1 0 0O 1 -1 0 0 0
0o 1 0 0 0 0|-1 -1 0|1 0 0 0 0 0 0o 0 0 0 0 0
0o 1 0 0 0 0O|-1 0 =10 1 0 0 0 0 0o 0 0 0 0 0
0 1 1 0 0 0|-1 0 0|0 O —=1]0 0 0 0o 0 0 0 0 0
0o 1 1 0 0 0 o -1 0|0 -1 0 0 0 0 0o 0 0 0 0 0
0 0 1 —-1|1 0|-1 0 010 O 0|-1 0 0 0o 0 1 0 0 0
0O 0 0 O 1 0|-1 0 010 1 0 |-1 1 0 o 0 0 -1 0 0
0O 0 0 O 0 0 0 0 0]0 O 0 1 -1 0 0o 0 1 0 0 -1
P1 P2 P3 P4 ‘ [ ‘ 71 T2 T3 Ul Uz U3 |S1 S2 S3 S4 S5 S6 ST S8 59
o o0 o 0f0O 0O O O}JO O O{O0 O 1 -1 0 O 0 0 O
o 0 o0 0f0O 0|0 O O}]O O O|{O0 O O 1 -1 0 0 0 O
0o 0 0|0 0Oj]O O OjJO O O]JO O O O 1 -1 0 0 0
o o0 o0 0f0O 0|0 O O}JO O O{O0O O O O O 1 -1 0 O
o o0 o0 0f0O 0|0 O OJ]O O O|{O0O O O O O O 1 -1 0
o 0 o0 0f0O OO O O}|O O O{O O O O O O O 1 -1

(3.7.78)

(3.7.79)

The total charge matrix ); does not have repeated columns. Accordingly, the global
symmetry is U(1), x U(1)s, x U(1)g. Following the discussion in the flavour
and R-charges on GLSM fields corresponding to extremal points in the toric diagram
in Figure are found. They are shown in Table

Fine-tuning R-charges. The exact R-charges can be expressed in terms of roots of the

following polynomials

75 + 1102 — 68422 + 1622° + 81z*

—1124565 4 2218649z — 114168322 — 164973

+(746100 — 25971620 + 442823 — 6447613 )y

+(775170 + 520182z — 39025823 —
+(14580 + 100764z + 16426873 + 2624453 )y°
+(—110565 — 26487z — 1968323 — 656123 )y"

+38880y°
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where the roots satisfy the bounds 0 < 1 — xp < 2and0<1-— Yo < 2. The exact

3 3

R-charges are

Ry

Ry

Ry

1

8989575077760
—1223569555569%% + 788576007420y, + 7322446656900z0y0 — 1514870485020x%y0

—8038394721003y0 + 105890430210y3 — 45532791090z0y2 + 616773772782x:22
+132554296962x3y2 — 87638359380y5 — 829308203820x0yp + 57898633140z2y5
+57715867980z5ys + 9044838615y + 3546068963850y — 6641422235123y,
—3755628836123y3)

Yo, R3 =0, (3.7.81)

(—443015521905 + 10382230129225x¢ — 186158810547935%

1

27630249136420257145191668008550400
+1861588105479$(2) + 1223569555569x% — 788576007420yo — 7322446656900x0y0

+151487048502025y0 + 803839472100y — 105890430210y5 + 45532791090z0y7
—616773772782x2y3 — 1325542969622 y3 + 87638359380y5 + 829308203820z0y
—5789863314023y5 — 5771586798023 y5 — 904483861513 — 35460689638520%0
+6641422235122y3 + 37556288361 x5ya) (3435680922231398676675 —
1087593430938330485873 1z + 22088891584652249495972:3
+1149691223996073074763z7 + 1308961575315964402860y0
—5303703543601718636316z0y0 + 1007391627507047358 70825 Y0
+57T767803346582055164x3y — 41445446612526178750y3
+324345443167855962702z0y5 — 267480237660960501378x7y3
—8375712958607268123023y2 — 143402222077829778740y3
+581897049297268121604x0ys — 7366973730943599313223y5
—5386083456469988739623y5 4 46554904501591527955y4
—286145797904951411547z0y¢ + 58286941395335651277x2ya
+31675092179803827579x3y5) - (3.7.82)

(443015521905 — 10382230129225x

Products of non-extremal perfect matchings are expressed in terms of single variables

as follows

9
¢=qq2 , r="T112, U =UU2 , S = H Sm - (3.7.83)

m=1

The fugacity which counts extremal perfect matchings is ¢,. The fugacity of the form
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yq counts the product of non-extremal perfect matchings g.

The mesonic Hilbert series of Model 5 is found using the Molien integral formula in

[CA57). Tt is

g1 (tom Yqs Yry Yus Ys; Mmes) (1 + Yq¥YrYulYs titotsty + yqyzyzys t%tgt‘l

—Yaysynys titatsts — yayryays titatats — yay yays titatst])
1
X .
(1 — y2y2yuys t113) (1 — y2ydy2ys t3t3) (1 — yays tita) (1 — yrylys t5t3)

(3.7.84)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1 (tar Yg> Yr» Yus Us ME®)] = yguryuys trtatsts + Ygys tita + yoyryuys tits
Hyryays T3 + YgUryays tatita + Yoyiyays tats — yayryeyl titat3ts

—ysysyay? Bitatsts — yoylysy? LSt — yourysy? tithtits — youryays tatsts
HYgUryays TG+ (3.7.85)
Consider the following fugacity map
1 1
fl = ; f2 = )
YulYr YuYs
B T T SN SR T T TR
ts=t3, ta=1tg, (3.7.86)

where f; and f, are the fugacities for the flavor charges, and ¢; is the fugacity for the
R-charge R; in table Table In terms of the fugacity map above, the plethystic
logarithm becomes

- f2

PL[g1(fa, f1, fo; ME*)] = t1totsty + fitita + folafs + " 5352+f t4+f tats

1.
— 2% — foltatsty — 7 —hitatata ... . (3.7.87)
1

The above plethystic logarithm exhibits the moduli space generators with their mesonic
charges.

The generators can be presented as points on a Z? with the U(1)f, x U(1)y, charges
giving the lattice coordinates. The convex polygon formed by the generators on the
lattice in Table is the dual reflexive polygon of the toric diagram of Model 5.

The Hilbert series and the plethystic logarithm can be re-expressed in terms of just
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‘ Generator ‘ Ul)y, ‘ U(1)y, ‘

Pipsq s 1 0

pip2p3pa g T u S 0 0

plpg’ q2 r2us 0 1
3.2 2 -1 -1

p3p4 Tu"- s

popipa g uts | -1

pops > ¥ u’s | -1 1

Table 3.20: The generators and lattice of generators of the mesonic moduli space of
Model 5 in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ U(l)y, ‘ U(l)y, ‘
X34 Xy5X53 = X17X71 = Xo6 X2 1 0
X13 X34 X5 X51 = Xo5 X53 X34 X2 = X13X37X71 = X16Xe2 X1 = X16Xe7X71 = X17X72 X1 0 0
= X17X75X51 = Xo5X56Xp2 = XoeXea X2 = XosXe7 X2 = X37X75X53 = Xu5X56 X4
X16X62X25X51 = X16X64 X45X51 = X17 X720 X05 X51 = Xo5 X535 X37 X720 0
X56Xe7X75 = X13X34 X420 X01 -1 -1
X13X34 X420 X05X51 = X13X37 X720 X1 = X13X37 X75 X51 = X16X64X42X01 -1 0
= X16Xe7X72X21 = X16X67X75X51 = Xo5X56X64X42 = Xo5 X56X67X72
X13X37 X720 Xo5X51 = X16X64 X402 X05 X51 = X16X67 X720 X025 X51 -1 1

Table 3.21: The generators in terms of bifundamental fields (Model 5).

3 fugacities

T = t3~ _ t3
fif2 B3 y2yeys 13137
Ty = fotils = yoyiyuys tits
Ts = f1 tits = ygys tita (3.7.88)

such that

1+ VoD + TRTET — VST — TRTSTs — TPTH TS
(1-D)(1-TT3)(1 - T3)(1 - TPT3T3)

g1(Th, Ty, T3; MF**) =

(3.7.89)
and

PLgy(T1, Ty, Ts; M5°)] = VI Ts + Ty + To + Ty T5 T3 + T T5 + TP T5 Ty
—T\T3Ts — T2T3TE — T2T3Ty — TPTSTE — THTITE + TRTSTE 4 TR T
+ Ty TS + THTSTS + TPTSTS — Ty TS ... . (3.7.90)

The above mesonic Hilbert series and plethystic logarithm illustrates the conical struc-
ture of the toric Calalbi-Yau 3-fold.
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®@+@@ O

P3 {0, G2}

Figure 3.12: The quiver, toric diagram and brane tiling of Model 6a. The red arrows in
the quiver indicate all possible connections between blocks of nodes.

3.8 Model 6: PdP,,

3.8.1 Model 6 Phase a

The superpotential is

W = +X30X97X73 + X14 X5 X56X61 + X31 X17X75X53 + X2 X024 X47X76
—X76X61X17 — X31 X124 Xu7X73 — X390 X04 Xy5 X53 — X2 X027 X75 X556
(3.8.91)

The perfect matching matrix is

=
=
=
I\
=
Py
sl
=
=
S
S
=
W
3
<
i
<
[
3
i
3
™)
@
3
~
®
o
@
o
3
3
@
©
o

(3.8.92)

- = O = 2 000000 oo o oS

s
SR R R R = I I = I = = R
O 00 OO0 OO0 OO KOO =R
C 0O 00O~k =P OO0 0o o oI
C O R H H OO0 O OC O RO OO O
OH OO+ OO KR, O OO0 OO
_— 0O 0 R O, P, OO0 OC oo oo O
O 0O 0 00O+ O RO OO RO
O 0O 0 0O O RO OOKRORO
O R O OO0 00 00O RO O |2
- O 0O 0O R OO0 000 0O R KO
C o O~ OO0 KR, O OO ROOO RS
- 0O 0O 00O~ O 00RO OO RO
OH OO0 0 00O~ HOO OO L&
OO0 0O OO KR OO KOO RO
cC O~ O OO0 O~ OO0 O~ O o
cC O H O R OO0 00O R o o ol
O O OO0 = OO RO OO O o2
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H U(]‘)fl ‘ U(l)f2 ‘ U(l)R

H fugacity

4!
b2
p3
2
Ps

1

o O O

— o O O

-1

Ry ~0.298
R3 ~0.550
Ry ~0.298

ty
to
t3
ty
t5

Table 3.22: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 6a).

The F-term charge matrix Qp = ker (P) is

P1 P2 P3 P4 P5| 1 G2 | T1 T2 §1 S2 83 S4 S5 S ST S8 89
o 0 1 0 1|-1 -1} 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0O 0|-1 -1} 0 0 0 0 0 0 0 0 0
1 0 0 0 1|0 0 0 0|-1 -1 0 0 0 0 0 0 0

Qp = 0O 1 0 0 0}]0 1 0 0 0 0 -1 -1 0 0 0 0 0 (3893)
0O 1 0 0 0]1 0 0 0 0 0 0 0 -1 -1 0 0 0
0O 0 0 1 0}]0 0 1 0 0 0 -1 0 0 o -1 0 0
0O 0 0 1 0}]0 0 0 1 0 0 0 0 o -1 0 -1 0
o 0 0 0 1|0 -1]1 0|-1 0 0 0 0 0 -1 1 0
0O 0 0 0 0]0O0 0 0 0 1 0 0 0 -1 0 0 -1 1

The D-term charge matrix is

P1 P2 P3 P4 P5|q1 QG2 |T1 T2 |S1 S2 S3 S4 S5 S¢ ST S§ S9
o o0 o o0 o0j0 OO OO O 1 -1 0 0 O 0
o o0 o o0 0}j0 0O|jO OO O O 1 -1 0 0 0 O

Qp=|0 0 0 0 00 0/0 0[0 0 0 0 1 -1 0 0 0 |. (3.8.94)
o 0 o o0 0}O0 O|jO OO O O O O 1 -1 0 O
o 0 o o0 o0}j0 O|O OO O O O O O 1 -1 0
o o0 o o0 o0jo ojo0o 0o o 0 0o o0 O O 1 -1

The total charge matrix (); does not exhibit repeated columns. Accordingly, the
global symmetry is U(1)s x U(1), x U(1)r. The mesonic charges on the GLSM fields
corresponding to extremal points in the toric diagram in Figure |3.12|are found following
the discussion in §3.2.3] They are presented in Table [3.22]

Fine-tuning R-charges.

The exact R-charges on extremal perfect matchings can be

expressed in terms of a root x( of the following polynomial

161

0 = 289 — 695z + 3312° + 32 | (3.8.95)



where the root of interest lies in the range 0 < 1 — o < % The exact R-charges are

Ry = Rs=ux,

}%2 - }%4 - ?Z97ZT63U7§6UG55S7Z716ZGé51796617193313697366988§(1791039188638478428147683691212722044339352504896_

1489897938581245099720399561817513883468361262177610<F94656062771165610076127447358392036663718782768401%
+8171632306068776293575876125737079492808889002307418-—10662275916980187263135080855654891328467257996456213
—22312936155603381509800509872608673629726066365173z8<F4762528868015187354760510267495372040181430194304318
+1743657358426337720401847407318855394624519781774718471064023366039130910208225662473447784013785856618918
7576209866897468024485959918181777591355162037881518—#420178930354717433094049925945927510179738217313160
+7212825052981360329273982686349741119531180244911%1+84691631710249529644695474904666891867205565263162
728845127177680312829862811387042101533046922792163——5936715130045788144646704656470430250253226360164
798568203174737761263257326460337456059549812z65——427836112588315949366063712216265071084900zé6)

123 - T67TGZ@@35§5gG366SGZ§ﬁg53T3§Zg6g3gZ3?T?T37g36GﬁZ6%ﬁ55SZZ3g7T7ZZTgg66§T7577571@356@T77€§6@ﬁ71€71€T@1X
(1169229461732080766319602708065371848435839320818952726286766174485578754720869791380548487029993472
+211180778264971290234686689177114661495550847435083609777692608446996489161070763569563200559556608z)
78045911260354654893884448259742088551904830575685775809252492449742813094597380760696064423664722176x%
+7868186882915851426335876977581680670251639520854407669554513212398555158000171156489937456815968256x8
+1061412415136716326837022119308869488382612389978875078709377550354824411184572440342496757041597952$6
—1653502269547432808110213130155065398558657253926330204747817424734038646912023554904414840355605600xg
—180340980535568601096626604060239953748177701261401783053858294696123241435654189496117803499865179618
—54977636746755908973099216387843389195415570888407666629751989073298347831546662010682387313724096815
+156720580081221962531794868098503842914343870648886295037464179045474525846600528930461089519816572813
+143372141123223427893722579570981599815299873016608292988946609826131841127293292913140425912965358418
7613688233093161903664079322747531650516395529165734417290427408319218066807931662878404186231703821160
71113293590933793106422270537761639133335738086439537494201648209333162655868499870321712814024965074161
7102041918652529018684594920735103376517462333159418315892949204114090196647595956807850428412457223162
+423971220164725630883036801237262772103566877143219798793826532397912386224511438398003376083572668163
+180759001526368976093293859900166369755100685781123847882792925416562642901424926786767271598815811154
764076409612708878884915082831557118415463407072251976303703677310275213068268096657416079746613630165
765515048191365797148208738907166511172835001443254598513046452678884061405276488997002820753820879%66

76673543248212741805371881957906917086875901203329952658459597394917113521671659599449171717221560x%7
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+97836181264174206292865246715822448569237089602978340373152935703853514374528289968165924548998573:(1)8
+3743596998189704676218096923916451542387351120245899948167098322376252076440477648997681642932578x69
—275998133977857656048993198548594390031696954517741623737712596072996328801012600935299966017093$%0
—476041152324864443368732013757192469363702044100009981148537231549870724895965447800279556079204%81
—856092768411646596113754207670971923135383442150512155012876797645663813283235144075041426504191%2
+17367562182813808407040196634409802339840610442753700821338207976254354309961105906728375495974133
+88154379492755429728522714405011583605725348176229447676608020510448390598908178530381209354751%4
+810859117231117720381035609644014422426938987804828817976536807039578657743651484402841788080z%5
7192053072909652328210545003570080037621773138610979153812374936807238481083663630535339645040136
7536547465916963306855684181739332349934774148635831117395010981027151389082337797671568704801%7
746337972140131325834238956290910321850872438896348630578789374984349478018933498463565670801%8
7125288849075771386136313950769094507337581594854187196969684084483533817892821528939996160139
71502297452596476410349719722105724798487349802028494174267727244065661237915976256430480z80
78418891003214045205392116768323041884281772276495435205984021439684373541279712292000m81

718079841511425240505298612186248088798565454098873210645653293047869238161800450000%82) . (3.8.9(3)

Products of non-extremal perfect matchings are expressed in terms of single variables

as follows

9
¢=qq2, r="rrz2, §= H Sm, - (3.8.97)
m=1
Extremal perfect matchings are counted by the fugacity ¢,. The fugacity y, is assigned
to the product of non-extremal perfect matchings ¢ above.

The refined mesonic Hilbert series of Model 6a is

91 (s Ygr Yr Yss MEES) = (1 + yqyrys titatstats — y2yoy? tit5titats — yoySy? titatstst?

4 4 4 4
—yayrys BISESEIEE — yoyry? titot3t5ts + yayrys 1U5E3L53 + yoylys t1t5t5tsts)

1
X
(1- yqygys t%tﬂ%)(l — UrYs t%t%t;l)(l — ygyzys t1t§t5)
% 1
(1= y2yrys t3tat3)(1 — yqus ta1513)

(3.8.98)
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’ Generator ‘ Uy, ‘ U(1)y, ‘

P2pips q s 1 0
p%p%p4 rs 0 1
D1P2P3PaP5 G T S 0 0
Papapi ¢° 1 s 0 -1
pipep3 q 1 s -1 0
pipips > 1% s -1 -1

Table 3.23: The generators and lattice of generators of the mesonic moduli space of
Model 6a in terms of GLSM fields with the corresponding flavor charges.

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tas Ygs Yrs Ysi MEEE)] = yqys totits + yrys Bitsta + ygyrys titatstats
FYgYPys titat] + y2yrys tatats + y2ytys tithts — 2 ylytys tHst3tatE
—yiySy? Biatitat + ... . (3.8.99)

Consider the following fugacity map

1 1 -

- - t3
= o= s, b=y s B =taty , B
yr 1315t Yq tat3t? oo ’

" tilotats
(3.8.100)

f1

where f; and f, are the flavour charge fugacities, and #; is the fugacity for the R-charge

R; in Table

In terms of the fugacity map above, the plethystic logarithm becomes

1 1 ~ 1

PLgi (s f1. fos MES)] = (fy + f2) BE + B + ( i ) R
i fa fifa
oy~ 1 - -
— 21313 — Etﬁ%t% SR (3.8.101)

The above plethystic logarithm exhibits the moduli space generators with the corre-
sponding mesonic charges. They are summarized in Table [3.23] The generators can
be presented on a charge lattice. The convex polygon formed by the generators in Ta-
ble is the dual reflexive polygon of the toric diagram of Model 6a.

The mesonic Hilbert series and plethystic logarithm can be re-expressed in terms of

just 3 fugacities

_ _h s _ Bty o 42, 42
T = f2 28205 ylys 13305 Ty = = Ya¥rYs titats

T3 = fo 1113 = yrys tit3ts (3.8.102)
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‘ Generator ‘ U(l)h ‘ U(l)fz ‘

XorX76Xe2 = X14X45X53X31 1 0
X17X73X31 = X9y X45X56 X62 0 1
X17X76X61 = Xor X73 X320 = X154 X7 X73X31 = X14 X45 X56 X651 0 0
= X17X75X53X31 = X204 Xy5 X53X32 = Xy Xy7 X76 X2 = Xo7X75X56 X62

X14X47X75X53X31 = X14X47X76 X61 = Xo7 X75X53X30 0 -1
X4 X47 X75X56 X62 = X17X75X56 X61 = X024 Xy7 X73X30 -1 0
X14 X7 X75 X56 X61 = Xog X7 X75 X53 X302 -1 -1

Table 3.24: The generators in terms of bifundamental fields (Model 6a).

P1 P2
@ {ry, ra} .
O
Ps (0, @}

Figure 3.13: The quiver, toric diagram, and brane tiling of Model 6b. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

such that

91(T, To, T3; Mge™) =
1+ Ny — TVT3Ts — TRTSTs — TRT3TS — T3TSTE + TPTyTE + THTSTS
(1—=T2)(1 —T3)(1 — TWT2)(1 — T2T3Ts) (1 — TPTR12)

(3.8.103)
and

PL{g1(T1, Ty, T3; MG$)] = TEToTE + Ts + TiToTs + To + TETS T + Th T3
—QTETETE — TETST5 + ... . (3.8.104)

The Hilbert series and plethystic logarithm above illustrate the conical structure of the
toric Calabi-Yau 3-fold.
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3.8.2 Model 6 Phase b

The superpotential is

W o=

+ X492 X903 X34 + X7 X792 X06 + X76X6aXa7 + X14Xy5 X56X61 + X31X17X75X53

— X7 X75X56 — X76X61X17 — X490 X06X64 — X53X34X45 — X14 Xy7 X790 X023 X31

The perfect matching matrix is

The F-term charge matrix Qp

Qp =

P1 P2 pP3 P4 P5|q1 G2 |71 T2 |S1 S2 83 S4 S5 S6 ST S8 59
X711 1 0 1 0}0 Of1 O0y1 0 O 0o 1 1 1 0 O
X1 1 0 0O 0(O0 0}jO 140 1 1 1 0 0O 0 1 1
Xp|1 10 0 00 01 01 1 0 1 0 O 0O 0 O
Xul(1 0 0 0 00 0O}jO 140 O O O 1 0 O O O
X301 0 0 0O 00 Of1 0O}jO 1 O O O 1 0 1 O
Xy00 10 O 00 0|0 OJ]O O O O O O 1 0 1
X410 10 1 00 0O O}J1 0 1 1 0 0O O 0 O
X400 0 1 0 11 10 1|0 0O 0O 0O 1 0 1 0 1
Xz|0 O 0 1 1{1 0jO Of1 0 O O 1 O O O O
Xes|0O O O 1 10 1{0 O0O}JO O O O 1 1 1 0 O
X»|0O 0 0 0 1|0 1{0 0}j0O 1 O 1 0O O O O O
X0 O O 1 0|0 00O O}J]O O 1 0 O 1 0 1 O
X0 O O O 11 0{0 O}JO 1T O O O O O 1 1
X6|0 O 1 0o 01 0{0 1}j0 O 1 0 O 0O O 1 1
X470 O 12 0 Of1 01 O}1 0 O O O O O 0 O
X0 0 1 0 00 10 140 0 1 1 O O O O O
X0 O 10 00 1{1 0}j0O 0O O O O 1 1 0 O

= ker (P) is
pP1 p2 p3 P4 P5 | qu G2 | T1 T2 | S1 S2 S3 S4 S5 S ST S8 59
i 010 00 O|-1 -1]0 O O O O O O 0 O
1P 000 10 0|0 O}]0 -1 0 0 -1 0 0 0 O
o100 01 OO O|-1 0 0 0O 0O O O 0 -1
o100 0O}0 1/0 0|0 O O -1 0 0 -1 0 0
o o011 0(-1 0O OO 1 O -1 0 -1 0 0 O
o010 1}{-1 -1{j0 0|0 0O O 0O O O 0 0 O
o 0 0 1 0 0 0 1 0|-1 0 0 O 0 -1 0 0 0
o o001 -1{1 o}0 O0O|-1 1 0 0 O O 0 -1 0
oo o0 o0 o0O}(0 O}]O O|O 1 1 -1 0 0 0 -1 0
Pr P2 P3 P4 P5|q1 G2 |T1 T2|S1 S22 S3 S4 S5 S¢ ST S8 S9
o o o o0 o0j0 0OfO Of1 -1 0 O O O O 0 O
o o o0 o 0|0 0OfO OO 1T -1 0O O O 0 0 O
0o 0 0 0 0|0 OyO0O 0|0 O 1 -1 0 0 0 0 O
0o 0 0 o0 0|0 OO OO O O 1 -1 0 0 0 O
o 0 0o 0 o0 OO O[O O O O 1 -1 0 0 O
o 0 o0 o0 OO0 OO O}O O O O O 1 -1 0 0

(3.8.105)

(3.8.106)

(3.8.107)

(3.8.108)

The global symmetry of Model 6b has the form U(1)¢ xU(1)f, x U(1)g. The charges

under the global symmetry on the extremal perfect matchings p, are the same as for
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Generator ‘ U(l)h ‘ U(l)fz ‘

X5 X56X64 = X17X72X23X31 0 1
Xe7X76 = X14 X420 X023 X31 = X14Xy5X53X31 1 0
X14Xy7 X720 X03X31 = X140 X45X56 X61 = X17X75X53X31 = X17.X76X61 = X023 X34 X142 0 0
= Xog X4 X2 = XogXe7 Xr2 = X34 Xy5X53 = Xyr X76X64 = X56 X67X75

X17X72X06 X1 = X17X75X56 X61 = X3 X34 Xa7 X720 = XogXea Xa7 X702 = X7 X75 X56 X4 -1 0
X1y X7 X75 X53X31 = X14 X402 X206 X61 = X14X47X76 X61 0 -1
X34 X7 X75X53 = X14 X7 X792 X206 X1 = X14 X417 X75 X56 X61 -1 -1

Table 3.25: The generators in terms of bifundamental fields (Model 6b).

P1 P2

o ©)
/ {ry, ra) .

O,
o ®® Ps <q21

Figure 3.14: The quiver, toric diagram, and brane tiling of Model 6¢. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

Model 6a. They are shown in Table
Product of non-extremal perfect matchings are expressed in terms of single variables

as follows

9
g=qigz, r=rir2, 5= [[ sm - (3.8.109)

m=1

The fugacity counting extremal perfect matchings p, is t,. The fugacity y, counts the
product of non-extremal perfect matchings q.

The refined mesonic Hilbert series of Model 6b is identical to the mesonic Hilbert series
for Model 6a. The mesonic Hilbert series and the corresponding plethystic logarithm
is shown in (3.8.98) and ([3.8.99) respectively. The mesonic Hilbert series for Model 6a
and 6b are identical and are not complete intersections.

The generators in terms of perfect matchings of Model 6b are shown in Table

The charge lattice of generators forms a reflexive polygon which is the dual of the toric

diagram. The generators in terms of quiver fields of Model 6b are shown in Table
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3.8.3 Model 6 Phase ¢

The superpotential is

W = +XuX13X2, + X4 Xo3Xay + X5 X56Xe, + Xer X7 Xos + X75X53 X37

+ X4 X1 X16 Xy — Xa1 X16 X3, — Xa2Xo6X oy — Xas X53 X3y
—Xe7X75X56 — X171 X13X37 — X7 X72 X203 X3,

(3.8.110)

The perfect matching matrix is

10 S11 S12

59

$2 83 S4 S5 S¢ ST

S1

r2

r1

'¢]

q

P1 P2 pP3 P4 Ps

0

1
34
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Xer
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The global symmetry of Model 6¢ is U(1)f, x U(1)s, x U(1)g. The global symmetry
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‘ Generator ‘ U(l)fl ‘ U(l)fz ‘

X16X67X71 = X3 X3, X402 = X3 X45X53 1 0
X1 X16Xgy = Xo3X37X72 = Xu5X56X ¢4 0 1
Xz X711 X16 X3y = Xo3 X2, X147 X790 = X13X2, X1 = X13X57 X711 = X1 X16X2, = Xo3 X3, Xuo 0 0
= X402 X06X$y = Xo6 X7 X72 = X3, Xu5X53 = X53X37X75 = Xu5 X56 X2, = X56X67X75

X2 X06X2, = X13X Xar X701 = Xr X1 X16 X3, = X2, X471 X75X53 0 -1
X13 X3, X0 = Xo3 X3, Xar Xro = Xaz Xra Xog Xy = X56Xar X5 Xy -1 0
X13X3, Xar X1 = Xy X2 X6 X3y = Xy Xur Xr5X53 = X6 Xar Xrs X34 -1 -1

Table 3.26: The generators in terms of bifundamental fields (Model 6c¢).

P2

fuy, Up, Ug}

{r1, 1z, 13}

=

Figure 3.15: The quiver, toric diagram, and brane tiling of Model 7.

is the same as for Model 6a and 6b. The charges on the extremal perfect matchings are
shown in Table [3.22
Products of non-extremal perfect matchings are chosen to be associated to a single

variable as shown below

12
q=qiq2 , r="Tir2 , S = H Sm - (3.8.114)
m=1
Extremal perfect matchings are counted by the fugacity ¢,. Products of non-extremal
perfect matchings such as g are counted by fugacities of the form y,.

The refined mesonic Hilbert series of Model 6¢c computed using the Molien integral
formula is identical to the mesonic Hilbert series of Model 6a and 6b in (3.8.98)). Ac-
cordingly, the plethystic logarithm are identical as well and hence the mesonic moduli
space is a non-complete intersection.

The moduli space generators in terms of perfect matchings of Model 6¢ are shown in
Table The lattice of generators is a reflexive polygon and is the dual of the toric
diagram. The generators in terms of quiver fields of Model 6¢ are shown in Table
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3.9 Model 7: C3/Zg (1,2,3), PdPs,

The superpotential is

W =

+X12X06X61 + X63X34Xu6 + X4 Xu3 X309 + X35X51X13 + X411 X15X54

+X56X62X05 — X12X05X51 — X3 X32X06 — Xo4Xu6X62 — X35X54X43
— X411 X13X34 — X56X61X15

The perfect matching matrix is

Qr =

Qp =

The total charge matrix ); does not exhibit repeated columns.

pP1r P2 P3| q q2|T1 T2 T3 | UL U2 U3 |S1 S22 S3 S4 S5 S6
X%|1 O O}1 0|0 O OO O Of1 O O 1 1 O
X221 O OO 1|0 O OO O OO 1 1 0 0 1
X551 0 01 0|0 O O|0 0 OO0 1 1 0 1 0
X501 0 0O 1|0 O OO O Of1 O O 1 0 1
X1 O O3 OO O OO O Of1 O 1 0 0 1
X1 O OO 110 0 00 O OO 1 O 1 1 O
X0 1 01 0|1 0 0|1 1 0]j1 0 O O O O
X320 1 0]0 1|1 0 0|1 1 0|0 1 0O O O O
Xi3/0 1 01 0|0 1 Of1 O 10 O 1 O 0 O
Xs4/0 1 0]0 1]0 1 01 0 1 0O 0 0 1 0 O
X510 1 O0O]1 0|0 0 1[0 1 110 0 0O O 1 O
X610 1 0]0 1|0 0 1|0 1 1{0 0 0 O O 1
Xs¢/ 0 O 1}]0 0|1 1 O0Of1 O Of1 O O 1 0 O
Xp|{0 O 1/0 0O}1 1 01 0 0|0 1 1 0 0 O
Xpa|0 O 10 0|1 0 10 1 Of1 O O 0 0 1
X35/ 0 O 10 0|1 0 1/0 1 OO0 1 O O 1 O
X0 O 1|0 0|0 1 110 O 1/0 0 O 1 1 0
Xe3/0 O 1|0 OO0 1 10 O 10 0 1 0 0 1
= ker (P) is
PL P2 P3| @ G2 | ™1 T2 T3y | w1 Up Uz | S1 S2 83 S1 85 56
1 1 0|-1 -1]0 0 0/0 0 0|0 0 0 0 0 o0
1 0 0 0 0 1 0 0 0 0 0O|-1 -1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0o -1 -1 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0o -1 -1
1 0 0 0 —-1[0 0 0 1 0 0/-1 0 -1 0 0 1
0o 1 1 0 0|-1 0 0 0 0 —-1]0 0 0 0 0 0
0 1 1 0 0 0 -1 0 0o -1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 —-1{-1 0 0 0 0 0 0 0 0
0o 0 1 0 0|-1 -1 0 1 0 0 0 0 0 0 0 0
P1 P2 Pp3 ‘ 91 92 ‘ THoT2 T3 Ul Uz Uz | S 52 83 S4 S5 S6
o 0 o|0 OO0 O OlO O O|1 -1 0 0 0 0
o 0 0|0 OlO O O[O O O}O 1 -1 0 0 0
o o0 0|0 O|0O O OO O O}0 O 1 -1 0 0
o 0 0|0 O|O O OJO O O}O0 O 0 1 -1 0
o 0 0|0 O|O O O|O O OjO0 O 0 0 1 -1

(3.9.115)

(3.9.116)

(3.9.117)

(3.9.118)

Accordingly, the

global symmetry is U(1)¢, x U(1)s, x U(1)g. The flavour and R-charges on the GLSM

fields corresponding to extremal points in the toric diagram in Figure [3.15] are found as
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’ H U(l)g \ U(l)g, \ Ul)r H fugacity
p || 1/2 0 2/3 [ &
p || <16 | 1/3 | 2/3 ||t
ps || -1/3 | -1/3 | 2/3 | t3

Table 3.27: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 7).

shown in Table following the discussion in
Products of non-extremal perfect matchings are expressed in terms of single variables

as follows

6
qg=qiqa , ¥ =T1Tor3 , U = ULULUZ , S = H Sm - (3.9.119)
m=1
Extremal perfect matchings are counted by the fugacity ¢,. Products of non-extremal
perfect matchings such as ¢ are counted by fugacities of the form y,.

The mesonic Hilbert series of Model 7 is

g1 (tou yqa Yrs Yuy Yss M77n65) =
1+ y2yryays 183 + ygyrtus trtats + y2yRysys t5ts + yayivays 1513 + ysysyay? titdi3
(1 —yqus 13)(1 — y3y2viys t9)(1 — y2yuys t3)

(3.9.120)
The plethystic logarithm of the mesonic Hilbert series is
PL[g1(tas Yg» Yrs Yus Ys; MF)] = yqys 11 + YgUryuys titats + ypyuys t3
HygUeynys B3 + Youryays tits + Yoyrysys tats — yoysyys titats
FySYRYRYs 15 — Yoysyays ttsts — yiytysyl Btots + ... (3.9.121)
With the following fugacity map
£ o= ylBym2By 2By (A/3,-2/3,-2/3
1 = yq Yy Yu ys 1 2 3 ’
_ _ —1/3,5/3,-4/3
foo= y2Py BBy / t2/ t3 2,
1/3,1/3,1/3
t = y;/3yi/3y,ﬁ/3y§/3tl/ t2/ t3/ ) (3.9.122)

where the fugacities fi, fo and t count the mesonic symmetry charges. Under the
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’ Generator \ Ul ‘ Uy, ‘

p% qs 1 0
P1P2p3 T U S 0 0
plpg P?ru’s 0 1
pg r?u s -1 -1
p%p% griu’s -1 0 ¢
paps ¢® r* ul s | -1 1
pg e riuts -1 2

Table 3.28: The generators and lattice of generators of the mesonic moduli space of
Model 7 in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ U(l)y, ‘ U(l)y, ‘
Xi15X51 = XogXe2 = X34Xu3 1 0
X12X25X51 = X12X26X61 = X13X34 X1 = X13X35X51 = X15X54 X1 = X15X56 Xe1 0 0
= X024 X43X32 = X4 Xus X2 = Xo5X56X62 = Xo6X63X32 = X34 X46X63 = X35 X54X43
X13 X352 X905 X51 = X13X32X06 X61 = X13X34 X6 X1 = X15X54 X146 X61 = Xos X54Xa3X32 = Xo5 X504 Xa6Xe2 0 1
X12X2aXa1 = X35 X56Xe63 -1 -1
X12 X294 X46X61 = X12X05X54 X1 = X12 X025 X56X61 = X13X32X04 X1 = X13 X35 X54 X1 -1 0
= X13X35X56 X61 = X204 X416 Xe3X32 = Xo5X56 X63X32 = X35 X54Xu6X63
X12X25 X540 X146 X61 = X13 X320 X04 X46 X1 = X13X32X25 X54 X1 -1 1
= X13X32 X095 X56 X61 = X13X35 X54 X6 X61 = X5 X504 X146 X63X32
X13 X532 X025 X54 Xa6 X1 -1 2

Table 3.29: The generators in terms of bifundamental fields (Model 7).

fugacity map above, the above plethystic logarithm becomes

PIL] MY — f 42 L \s_ (L i, Py 6, fe
g1(t, f1, fo; M7°)] = fat" + | 1+ 3+ +fo ) tr4 25 — 0 4 212

fifa fi fi fi
1 7
—<1+7‘2>t +... .

(3.9.123)

The plethystic logarithm above exhibits the moduli space generators with their mesonic
charges. They are summarized in Table The mesonic generators can be presented
on a charge lattice. The convex polygon formed by the generators in Table is the
dual reflexive polygon of the toric diagram of Model 7. For the case of Model 7, the
toric diagram is self-dual, and the charge lattice of the generators forms again the toric
diagram of Model 7.

172



Figure 3.16: The quiver, toric diagram, and brane tiling of Model 8a.

With the fugacity map

1/2
R Y
le/gt 1/2,1/3.2/3.1/6
T, = 1/6 - yq/ yr/ yu/ ys/ ta
N
t
Ty = 23173173 4 (3.9.124)

72 172 —Yr Y)Y 3
1/3 »1/3 r u S
TS

the mesonic Hilbert series becomes

1+ T1T23 + TV T5T5 + T24T3 + T22T32 + T1TQ‘r’T32

91(Th, T, T; M7?) (3.9.125)
! (1-TH(1-T19)(1 - T3)
with the plethystic logarithm being
PL[gi(T1, Ta, Ts; MP)] = T} + Ty T3 + T3 + ToTs + Th Ty
+TyTy — T2T3TE + TS — TYT5Ty — THTyTs + ... (3.9.126)

The above Hilbert series and plethystic logarithm illustrate the conical structure of the
toric Calabi-Yau 3-fold.

3.10 Model 8: SPP/Z, (0,1,1,1), PdPs,

3.10.1 Model 8 Phase a

The superpotential is

W = +X56X62X05 + X65X53X36 + X13X34X45X51 + Xo1 X16X64 X142
—X56X64 X415 — Xo5X51X16 — X13X36X62X21 — Xo5X53X31 X490 .
(3.10.127)
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’ H UMy ‘ Uy, ‘ U(l)r H fugacity

Pl 1 0 Ri=1/V3 |t
p2 || -1/2 1/2 Ri=1/V3 ta
P3 -1 0 Ry=1-1/V3 || t3
pa || 1/2 -1/2 | Ra=1-1/V3 || t4

Table 3.30: The GLSM fields corresponding to extremal points of the toric diagram
with their mesonic charges (Model 8a). The R-charges are obtained using
a-maximization.

The perfect matching matrix is

P1 P2 P3 Pa|qr G2 |T1 T2 |S1 S2 83 S4 S5 S6
Xg|1 0 0 0[1 0[0 0[O0 1 1 0 0 0
X501 0 0 0|1 0/0 0[O0 0 0 0 1 1
Xe2|1 0 0 0|0 1[0 0[1 0 0 0 0 1
Xs3/1 0 0 0[0 1]0 0[0 0 1 1 0 0
X0 1 0 0|1 0[1 0[O0 1 0 0 0 0
Xp5/0 1 0 0|1 0[0 1]0 0 0 0 1 0
P=| Xs|0 1 0 0/0 1|1 0[{0 0 0 1 0 0 (3.10.128)
Xes|O 1 0 0[0 1]0 1|1 0 0 0 0 0
Xs6|0 0 1 1|0 0[1 0[O0 1 1 1 0 0
Xes [0 0 1 1|0 0[0 1|1 0 0 0 1 1
X0 0 1 0[0 0[0 0|1 1 0 0 0 0
X |0 0 1 0[0 0[0 0[O0 0 0 1 1 0
Xep|0 0 0 1|0 0[1 0[0 0 0 0 0 1
Xi3[0 0 0 1[0 0[0 1]0 0 1 0 0 0
The F-term charge matrix Qp = ker (P) is
P1 P2 P3 P4l 1 G2 | T1 T2 | S1 S22 S3 S84 S5 Sg
1 1 0 0|-1 -1]0 0]0 0 0 0 0 0
1 00 0[-1 0[]0 1|-1 1 -1 0 0 0
Qe=|0 1 0 0|-1 0|-1 0|-1 1 0 0 0 1 (3.10.129)
01 0 1|0 0|-1 -1l0 0 0 0 0 0
00 1 0/1 0|0 0|0 -1 0 0 -10
00 1 0/0 1|0 0f|-1 0 0 -1 0 0
The D-term charge matrix is
P1 P2 P3 P4 ‘ a2 ‘ LT ‘ S1 S2 S3 S4 S5 Sg
00 0 0|0 0[O0 0[1 -1 0 0 0
Op—| 0 0 0 0j0o 0)0o 00 1 -1 0 0 0| (3.10.130)
00 0 0[0 0[O0 0[O0 0 1 -1 0 0
00 0 0{0 0[O0 0[O0 0 0 1 -1
00 0 0/0 0[O0 0[O0 0 0 0 1 -1

The total charge matrix ); does not have repeated columns. Accordingly, the global
symmetry is U(1)y, x U(1), x U(1)gr. The mesonic charges on the GLSM fields cor-
responding to extremal points in the toric diagram in Figure |3.16| are presented in
Table The charges have been found using the constraints discussed in
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Products of non-extremal perfect matchings are labelled in terms of single variables

as follows

6
9=qq2, r="rrz2, §= H Sm, - (3.10.131)
m=1
The fugacity which counts extremal perfect matchings p, is to. A product of non-
extremal perfect matchings such as g above is associated to the fugacity of the form
Yq-
The mesonic Hilbert series of Model 8a is calculated using the Molien integral formula

in (T.4.67). It is

91(tas Yo, Urs Ys; Mge ") = (1 + y?y?ys t1t3ts + Ygyrys titatsts — yz?y?y? t3t5t sty

Fygyiys tatsts — yoyry? titatsts — yoyrys titatsts — yaurys titatsty)

1
1 — y2yrys 133) (1 — ygus t3t3)(1 — y2yys t513) (1 — yrys t5t3)

X7 (3.10.132)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1(tas Yg> Yr» Ysi MES®)] = yayrys 115 + Ygys tits + Yayrys trtsts + Ygyrys titatsts

HYYRYs tot] — Yoytys titststs — yautys TSt + yeuiys tatsts — 2 yoylys titotst]
o (3.10.133)

Consider the following fugacity map

tlté/z 75275411/2 - 12, 1/2,1/2 ,1/2,1/2 7 1/2,1/2
fim 22 o= = B =y 0P B =60 0130
Yr 21y Ys U113

where the fugacities f; and f» count flavour charges, and the fugacities t; and ¢y count
R-charges R; and R, in Table respectively. Under the fugacity map above, the
plethystic logarithm becomes
~ ~ ~ ~p ~ 2 ~ ~
PL[g1(Fa, f1, fo; MES)) = fifali + fifits + folits + 515 + j;ﬁ% — L85
1 -
— 38565 + f—z?%t“% — 2,858 ... (3.10.135)

1
The above plethystic logarithm exhibits the moduli space generators with their corre-
sponding mesonic charges. They are summarized in Table [3.31], The generators can
be presented on a charge lattice. The convex polygon formed by the generators in Ta-
ble is the dual reflexive polygon of the toric diagram of Model 8a. For the case of
Model 8a, the toric diagram is self-dual, and the charge lattice of the generators forms

again the toric diagram of Model 8a.
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Generator UMy [ UMy, |

pip3 q 8 1 0
p%pi r s -1 -1
pip2p3p4a @ T S 0 0
pivs ¢ r s 1 1
p3psp; q 7 s -1 0
pip3ps ¢ 1% s 0 1
papi ¢ 17 s -1 1

Table 3.31: The generators and lattice of generators of the mesonic moduli space of
Model 8a in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ U(1)y, ‘ U(l)y, ‘
X16X62X01 = X34 X45X53 1 0
X56X65 = X13X34X42X01 -1 -1
X16X65X51 = Xo5X56X62 = X36X65X53 = X45X56X64 0 0
= X13X36X62X01 = X13X34 X5 X51 = X16X6a X142 X21 = Xo5X53 X34 X0
X16X62X25 X51 = X16X64 X5 X51 = Xo5X53X36X62 = X36X64X45X53 1 1
X13X36X65X51 = Xo5X56X64 X412 = X13X36X64 X420 X21 = X13X34 X420 X05 X551 -1 0
X13X36 X62X25 X51 = X13X36 X64 Xa5X51 = X16X64 X2 X05X51 = Xo5 X553 X36X64 X142 0 1
X13X36X64X42X05X51 -1 1

Table 3.32: The generators in terms of bifundamental fields (Model 8a).

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in terms

of just 3 fugacities

to 2! 4 9 2,2 0z 2

Tl - f12f2 2?11 = ygys t?tQ ) T2 - flf2 tl = yquyS tth ) T3 = fl tth = yqu t1t3 )
(3.10.136)

such that

g1(T1,To, T3; Mg2%) =
L+ TT3 + T ToTs — TVT9Ts + T2T3Ts — TETSTy — TRTETE — TTHT?
(1—T2)(1 —T3)(1 — T2T3)(1 — THTLT?)

(3.10.137)

and

PL[g1(Ty, Ty, T3; MT)] = Ty + T3 + T1T5 + Ty ToTs + TETS — Ty T3Ts — TETY
+T2T2Ty — 212 T3 5 + ... . (3.10.138)

The above Hilbert series and plethystic logarithm in terms of just three fugacities with

positive powers illustrate the conical structure of the toric Calabi-Yau 3-fold.
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P3

Figure 3.17: The quiver, toric diagram, and brane tiling of Model 8b. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

3.10.2 Model 8 Phase b

The superpotential is

W = +X31X12X03 + X56Xe2Xo5 + X4 X2 X6 + X61X15 X5 X36 + X34 X5 X 25
— X531 X15X2; — X36X62 X023 — X56X64Xa5 — Xo1X12X06 — Xo5 X3 X34 X0 .

(3.10.139)
The perfect matching matrix is

P1 P2 P3 Pa|q1 G271 T2|S1 S2 53 S4 S5 S6 57
Xss|1 1 0 0[0 0[1 0[O0 0 1 1 0 0 0
Xps[1 1 0 00 0[0 1|1 0 0 1 0 0 0
Xog|1 0 1 00 1/0 0[1 0 1 1 0 0 0
Xi5[1 0 0 0|0 0|0 0[1 0 0 0 1 0 1
Xsa|1 0 0 00O 0[0 0/0 1 1 0 0 0 1
X0 1 0 1)1 01 1/0 0 0 1 0 0 0
Xp|0 1 0 0/0 0[1 0/0 0 0 0 1 1 0

P=| X0 1 0 0/0 0/0 1/0 1 0 0 0 1 0 (3.10.140)
Xe2[0 0 1 0|1 0|0 0[0 1 0 0 1 1 1
X410 0 1 0|1 0[0 0[O0 0 0 1 0 0 0
X[ 0 0 1 00 1/0 0[1 0 0 0 1 1 0
Xa|0O 0 1 0/0 1]0 0[O0 1 1 0 0 1 0
X120 0 0 1|1 0[1 0/0 0 0 0 1 0 1
Xes |0 0 0 1)1 0[0 1/0 1 0 0 0 0 1
X[ 0 0 0 1[0 1|1 0[0 0 1 0 0 0 0
Xo5/0 0 0 1[0 1/0 1|1 0 0 0 0 0 0
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The F-term charge matrix Qr = ker (P) is

Pr P2 P3 pa| 1 Q2| T1 T2 | ST S2 83 S84 S5 S ST
111 140 Of-1 0}0O0 -1 0 O -1 -1 O
11 0 O0|-1 -1yO0 O|O O O O O O O
Qp = o 1 1 0|0 O}-1 0|1 O -1 0 0 -1 0 . (310141)
o o0 1 0|1 00O OO0 O O O O -1 -1
o o0 o0 1|1 O0O}-1 0|0 -1 1 0 0 -1 0
o o0 o0 11 O0O}-1 01 O O -1 0 -1 0
o o0 o0 1|1 00 —-1{-1 0 1 0 0O 0 -1

The D-term charge matrix is

P4‘ 1 qz‘ﬁ r2‘51

P1 P2 D3 q S2 83 S4 S5 S ST
0 0 0 0{0O OO0 O}JO 1 -1 0 0 0 0
QD: 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 (310142)
0o 0 0o 0[O0 OJO0 O}]0 O O 1 -1 0 0
0o 0 0o 0|0 OJO0 O}]O0 O O 0 1 -1 0
0o 0 0o 0|0 OJO0 O]O0 O O 0 0 1 -1

The total charge matrix ); does not have repeated columns. Accordingly, the global
symmetry is U(1)s x U(1)s, x U(1)g. The flavour and R-charges on the GLSM fields
corresponding to extremal points in the toric diagram are the same as in Model 8a, and

are given in Table
Products of non-extremal perfect matchings are expressed as

7
q=qq2, r=riry, = H Sm - (3.10.143)
m=1
The extremal perfect matchings are counted by t,. Products of non-extremal perfect
matchings such as ¢ are associated to a fugacity of the form y,.

The mesonic Hilbert series and the plethystic logarithm are identical to the ones
for Model 8a and are given in and respectively. As a result, the
mesonic moduli spaces for Models 8a and 8b are the same.

The generators of the mesonic moduli space in terms of all perfect matchings of Model
8b are shown in Table In terms of Model 8b quiver fields, the generators are shown
in Table From the plethystic logarithm in one observes that the mesonic

moduli space is not a complete intersection.
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Generator ‘ Uy ‘ U)g ‘

Xo6Xe2 = X15 X5 X51 = X3 Xus X3 1 0
X15X56X61 = X23 X34 X420 -1 -1
X15 X3 X36X61 = Xos X3 X34 Xao = X120 X203 X351 = X12X26X61 = X15X 5 X531 0 0
= X23X36X62 = XopX56Xe2 = XosXeaXa2 = X34 Xu5X25 = Xu5X56 X4

X19Xo5 X2 X531 = Xos X3 X36X62 = X36X6aXa5X 25 1 1
X19X03X36X61 = X12X25X56X61 = X15X% X36X61 -1 0
= X023 X36X64 X142 = Xo5 X23 X34 X142 = Xo5 X6 X64Xa2

X19Xo5 X2 X356 X61 = Xo5 X33 X36 X6aXa2 = X12 X205 X2, X531 = Xo5 X2, X36 X62 = X36X64 X145 X2 0 1
X19Xo05 X2 X356 Xe1 = Xos X2 X36X64 X420 -1 1

Table 3.33: The generators in terms of bifundamental fields (Model 8b).

Py

Ps

Figure 3.18: The quiver, toric diagram, and brane tiling of Model 9a.

3.11 Model 9: PdP3,

3.11.1 Model 9 Phase a

The superpotential is

W = +X12X26X61 + Xo5X53X32 + Xu2Xo1 X14 + X13X34 X6 X65X51
—X13X32X91 — Xo5X51 X192 — X4 X61X14 — Xo6X65X53X31X49 .
(3.11.144)
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L [0 [UQ)y | U()r | fugacity
p1 || -2/5 12 | Ri=2(-2+V5) || &
po || -1/5 | -1/2 | Ri=2(-24+5) || ta
ps || 2/5 0 |Ri=2(-2+V5) | 3
P4 1/5 0 Ry =7-3V5 ty
Ps 0 0 Ry=7-3V5 ts

Table 3.34: The GLSM fields corresponding to extremal points of the toric diagram
with their mesonic charges (Model 9a). The R-charges are obtained using

a-maximization.

The perfect matching matrix is

=
]
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3
3

=
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s}
[3;

o

=]
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53
v
N
vl
w
v
iy

v
S

w
=
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The F-term charge matrix Qp

p1

p2

P3 P4

O R O B O O R B O O O o o O
= O = O = B2 O O O O © O© O O

SO O O O O = O K OO O = O

O O O O = O = OO O = O = O

is

O O - OO0 R OO0 O RO o o |0
O O R O~ OO0 O KR O O O R~ O
O 0O O - O 0 O KRR OO OO
O OO OO0 KOO KRR~ O OO

_H O O = O O = H O O O O © O

O = = O = =2 O OO O O o © o ©

56

Qr

(=R =

o © © O
== = O

(=Rl

The D-term charge matrix is

el
N
=

s |

=]

1

S2 83 S4

o o o

S6

(035)

o O O o o

o O o o o
S O O O Oz

o O O o o

o O O o o
o O O o o

o o o o olf

o o o o ~ |2

-1 0

o O

(3.11.145)

(3.11.146)

(3.11.147)

The total charge matrix does not exhibit repeated columns. Accordingly, the global
symmetry is U(1)s, x U(1)y, x U(1)g. Following the discussion in §3.2.3| the mesonic
charges on extremal perfect matchings are found. They are shown in Table
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Products of non-extremal perfect matchings are expressed as

6
g=aqa2, s= ] sm - (3.11.148)

m=1

Extremal perfect matchings are counted by t,. Products of non-extremal perfect match-
ings such as g are counted by a fugacity of the form y,.

The mesonic Hilbert series of Model 9a is found using the Molien integral formula in

B23). 1t is

g1 (tou yqa Yss Mg(;es) =

P(ta)
(1 —y2ys t3tat) (1 — yqys titst]) (1 — ys t5tats) (1 — y2ys t1t5¢2) (1 — ygys tatsts)
(3.11.149)
The numerator is given by the polynomial
P(ta) = 1+4ylys titstats + yeys titatstats — yoys titatstits — yoys titatstits

3.2,3,3, ,2,2 29222929292 392924, . .3 292, 39 .3
—YqYs titalalyls — ygys t1t5l3t4ts — yays tilatatats — yuys titytstatsy

Fyayd tHS3EHE + ydyd B3 + 0yt BeSeged (3.11.150)
The plethystic logarithm of the mesonic Hilbert series is

PL[gl (taa Yqs Ys; Mg(l;es)] =Ys t§t4t5 + Yqys titatstats + Yqys t%t?)ti + YqUs t%t?)t%
Fyays tt5tats + y2ys titsts + y2ys titat] — 2 Y2yl G515t562 — y2y? titatitits
—y2y? L33t . (3.11.151)

Consider the following fugacity map

_ —2/3,2/3,4/3 tits - 1/3,1/3,1/3 7 1/2,1/2
fl :yq 2/3y;/3 tl / t2/ tg/ , f2 _ % , t :y;/3y§/3 tl/ t2/ t3/ , t2 :t4/ t5/

Y

(3.11.152)

where the fugacities f; and fo count flavour charges, and the fugacities £; and £, count
the R-charges Ry and Ry in Table [3.34] respectively. Under the fugacity map above, the
plethystic logarithm becomes

g . mes\] _ f 7232 l 7372 i L é 7472
PL[g1(ta, f1, f2: Mgg®)] = futits + (1 + fa+ f2> 32 + (f1 TR T fl) w2

1\ -
) 4+ ... . (3.11.153)

_<2+f2+fQ

This plethystic logarithm exhibits the moduli space generators with their mesonic

181



Generator ‘ U)p ‘ UQ)y, ‘

P3paps S 1 0
pipspi q s 0 1
pépapgmps qs 0 0 ) PY
DPop3Py q S 0 -1
pipepi ¢ s -1 1
pip3paps ¢* s -1 0
pip3ps ¢* s -1 -1

Table 3.35: The generators and lattice of generators of the mesonic moduli space of
Model 9a in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ Uy ‘ Uy, ‘
X12Xo1 = X34 X46X65X53 1 0
X12X06X65X51 = X14X46X65X51 = Xo6X65X53X32 0 1
X13X34 X46 X65X51 = Xo6X65X53X34 X g2 = X12X05X51 = X12X06X61 0 0

= X13X32X01 = X14 X412 X01 = X14X46X61 = Xo5X53X32

X13X34 X490 X071 = X13X34 X46X61 = Xo5X53 X34 X142 0 -1
X13X32 X026 X65X51 = X14X42X06X65X51 -1 1
X13X34 X420 X206 X65X51 = X13X32X05X51 = X13X32 X206 X61 = X14 X 42 X25X51 = X14 X142 X26X61 -1

X13X34 X490 Xo5X51 = X13X34 X492 X06X61 -1 -1

Table 3.36: The generators in terms of bifundamental fields (Model 9a).

charges. They are summarized in Table The generators can be presented on
a charge lattice. The convex polygon formed by the generators in Table is the
dual reflexive polygon of the toric diagram of Model 9a. For the case of Model 9a, the
toric diagram is self-dual, and the charge lattice of the generators forms again the toric

diagram of Model 9a.

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in terms
of 3 fugacities
14

V= 513 > T2 = yous titaty . Ts = ygys titst] , (3.11.154)
yqys t1t4

such that

91(T1, Ta, T; Mgy™®) =
(1+ T3 + TVToTs — TiTyTs — TWToTy — TETsTy — TETETE — TETyTs — TPTETS

FTETITE + TETSTS 4+ THTSTS)
1
1—Ty) (1 —T3)(1 — T2T3)(1 — TyT2)(1 — T2T2T3)

x7 (3.11.155)
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Py

Ps

Figure 3.19: The quiver, toric diagram, and brane tiling of Model 9b. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

and

PL[g1(Ty, Ta, T5; M5 = TiT5 + T ToTs + Ts + TET5T5 + Th Ty + TET5 + T
—TRTETE — TV ToT2 — T3TSTS + ... . (3.11.156)

The above Hilbert series and plethystic logarithm illustrate the conical structure of the
toric Calabi-Yau 3-fold.

3.11.2 Model 9 Phase b

The superpotential is

W = +X3;X53X32 + X56X62X05 + X13X34Xa5X51 + Xo1X16X64Xa2
—X13X32X21 — X356 X64 X145 — X16X62 X5 X51 — Xas X53 X34 X2 -
(3.11.157)

The perfect matching matrix is

s
=
3
N

pP3 P4 D5

s
)
=
i)
)
)
A
)
o
o)
o)
~
o)
o
o)
=
)
3

(==}

(3.11.158)

_ O O O = O O O = O o O O

g

O O O O O O O O O O o e
C OO0 0O O KR RF~L OO OO
C O R - - OO0 OO OO

=R N R S S R i I = S Y < Y S
O 00000 O KR O RO RO KR
C 0O 00O O O RO RO RO
O 00 O R R OO RO OO RO|2
— - 0O 00 0 00O, OO O
O O R = OO KR OO O RO OO
O OO R O RO KR OO OO O |2
O = - OO0 O+~ O O RO OO O|&
- O O OO0 00 oo = o o g
O O O R OO0 00RO RO Ol
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The F-term charge matrix Qr = ker (P) is

P1 P2 P3 P4 P5| @1 G2 | S1 S22 83 S4 S5 S ST
1 1.0 0 0|-1 1|0 0 0 0 0 0
0000 1 1]0 0|-1-10 0 0

Qr=| 1 0 0 0 1/-1 0|1 0 0 0 -1 (3.11.159)
1000 1/0 1|0 0 1 0 0 -1 —1
001 1 1 0[0 0|-1 0 0 -1 -1 0 0
000 1 0 0[1 0|0 0 0 -1 0 0 -1

The D-term charge matrix is

P1 P2 P3 P4 Ps5 ‘ n @ ‘ 51 82 83 sS4 85 86 ST
00 00 0[0 Ol -1 0 0 0 0 0

op—| 0 0 0 00000 1 ~1 0 0 0 0 (3.11.160)
00 00 0[0 0|0 0 -1 .0 0 0
00 00 0[0 0|0 0 -1 0 0
00 00 0[0 0|0 0 0 0 1 —1

The total charge matrix ); does not have repeated columns. Accordingly, the global
symmetry group for the Model 9b theory is U(1)f, x U(1)s, x U(1)r. The flavour and
R-charges on the extremal perfect matchings p, are the same as for Model 9a, and are
summarised in Table [3:34] They are found following the discussion in §3.2:3

Products of non-extremal perfect matchings are expressed as

7
¢=qq, s= ] sm. (3.11.161)
m=1
The fugacity counting extremal perfect matchings p, is t,. The fugacity y, counts the
product of non-extremal perfect matchings ¢ above.

The mesonic Hilbert series for Model 9b is identical to the one for Model 9a. The
mesonic Hilbert series is shown in . The corresponding plethystic logarithm
in indicates that the mesonic moduli space is not a complete intersection. As
a summary, both Model 9a and 9b mesonic moduli spaces are identical.

The generators of the mesonic moduli space in terms of the perfect matching fields of
Model 9b are presented in Table The charge lattice of mesonic generators forms a
convex polygon which is another reflexive polygon precisely being the dual of the toric

diagram. The generators of the mesonic moduli space in terms of quiver fields of Model
9b are shown in Table [3.31
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Generator ‘ U(l)fl ‘ U(l)fz ‘

X16Xp2X21 = X34 X45X53 1 0
X35 X53X30 = X16X62X95X51 = X16X64X15X51 0 1
X13X32X01 = X3:X56X62 = X35 X53X32 = X45X56Xe4 0 0
= X13 X34 X145 X51 = X16X64X12X21 = X16X62X55X51 = X5 X53 X34 X142

X2 X56X62 = X13 X34 X40X21 = X5 X53 X34 X0 0 -1
X13X30 X5 X51 = X16X6a X142 X a5 X51 -1 1
X13X30X2: X51 = X35 X56 X64 X2 = X13X34 X420 X 35 X51 = X16X64 X420 X5 X51 -1 0
X2 X56X64Xa2 = X13X34 X142 X5 X51 -1 -1

Table 3.37: The generators in terms of bifundamental fields (Model 9b).

L Pa

> {01, G2} .
\
P2 Ps

Figure 3.20: The quiver, toric diagram, and brane tiling of Model 9c. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

3.11.3 Model 9 Phase ¢

The superpotential is

W = +X01X16X% + XoaXus X3, + X35 X535 X35 + X51X13X35 + X54X46 X5 X35
—X13X35X01 — Xoa X6 X3 — X5 X53 X3 — X54Xu3 X35 — X16X 9 X55X51 -
(3.11.162)
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The perfect matching matrix is

P1 P2 P3 P4 P5 |41 G2 |S1 S2 S3 S4 S5 S¢ ST S8
X1 0 0 1 01 0/0 1 0000 00
XL|i1 0 0 1 00 1]1 0 0 0 0 0 0 1
X310 1 0 0 11 0[0 1 0 0 0 0 0 0
X%,[0 1 0 0 10 1]1 0 0 0 0 0 0 1
X1 0 0 0 01 0[0 0 1 1 0 1 0 0
Xsi[1 0 0 0 00 1[0 0 00 0 1 1 0
X0 1 0 0 0[1 0[0 0 1 1 1 0 0 0

P=| Xsa|0 1 0 0 0/0 1/0 0 0 0 1 0 1 0 (3.11.163)
Xs3/0 0 1 0 0[]0 0[0 0 1 1 1 1 1 0
XL[0 0 1 0 00 0[0 0 0 1 0 0 0 1
X3Z[1 1 0 0 01 1]0 0 0 1 0 0 0 1
X [0 0 1 1 0[]0 0[0 1 0 0 1 0 1 0
Xa [0 0 1 0 10 0[0 1 0 0 0 1 1 0
X[0 0 0 1 00 0[1 0 1 0 1 0 0 0
X0 0 0 0 10 0[1 0 1 0 0 1 0 0
Xs5/0 0 1 1 1]0 0[1 1 0 0 0 0 0 1

The F-term charge matrix Qp = ker (P) is

P1 P2 P3 P4 Ps| @1 Q2 | S1 S2 S3 S4 S5 S¢ ST S8
1 1 00 0|-1 -1|/0 0 0 0 0 0 0 0
000 1 1[0 0|-1 =10 0 0 0 0 0

Or = 1 0 0 0 1|{-1 0]-1 0 0 O 1 0o -1 0 (311164)
1 0 00 1|-1 0|-1 0 1 0 0 -1 0 0
001 0 1 0f|-1 0|=1 0 1 0 -1 0 0 0
00 1 0 0[1 0[0 -1 0 -1 0 0 0 0
0000 0[0 0|-1 0 1 -1 0 0 0 1

The D-term charge matrix is

P1 P2 P3 P4 P5 |41 G2 ‘ 51 S2 83 S4 S5 S¢ ST S8
00 00 0[00[0 1 -1 0 0 0 0 0

QD: 0 0 0 0 0]0 O 0 0 1 -1 0 0 0 (311165)
00 00 0[0 00 0 0 1 -1 0 0
00 00 0/0 0l0O 0 0 0 1 -120 0
00 00 0/0 0/0O 0 0 0 0 0 1 -1

The total charge matrix ); does not have repeated columns. Accordingly, the global
symmetry of Model 9c is the same as for Model 9a and 9b above and takes the form
U(l)f, xU(1)g, x U(1)g. The mesonic charges on the extremal perfect matchings are
summarised in Table [3.34]

The following products of non-extremal perfect matchings are assigned single variables

8
g=qa2, s= ] sm - (3.11.166)
m=1

The extremal perfect matchings are counted by the fugacity t,. Products of non-

extremal perfect matchings such as ¢ above are associated to fugacities of the form

Yq-
The mesonic Hilbert series is identical to the mesonic Hilbert series of Model 9a and
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Generator ‘ U(l)y ‘ UQl)y, ‘

X35X53 = X16X5pX01 = XoaXu6 Xy 1 0
X16X 8 X X1 = XoaXas Xy = X Xs55X1, 0 1
X16Xg X3 X51 = Xds XsaXas Xy = X13X 3 Xo1 = X13X35X51 = 0
X16X3HXo1 = Xo4Xu3X3) = Xoa X6 X3y = X35 X53X3, = X3; X53 X3y = X35 X54 X3

X3 X51 X46 Xy = X13X2, Xo1 = X2 X53.X2, 0 -1
X13XH X X51 = X16X5H X0 X1 = X XsuXu3 X3, -1 1
X13X2 X0 X1 = X13 XAy X2 Xo1 = X16X2, X2 X5t = Xk Xsa Xag X2 = Xde X5a X6 X2, = X2 X34 X3 Xy | -1 0
X13X 5 X3 X51 = X2 Xo4 X435 X2, = X2 Xsa Xa6 X2, 1 1

Table 3.38: The generators in terms of bifundamental fields (Model 9c).

Py Ps

Ps

Figure 3.21: The quiver, toric diagram, and brane tiling of Model 10a.

9b. The mesonic Hilbert series is given in (3.11.149)) with the corresponding plethystic

logarithm in (3.11.151)). The mesonic Hilbert series of Models 9a, 9b and 9c are identical
and are not complete intersections.

The generators of the mesonic moduli space in terms of Model 9¢ GLSM fields are
shown in Table [3.35] The mesonic charges of the generators correspond to lattice co-
ordinates of points which form a reflexive polygon being the dual of the toric diagram.

The generators in terms of quiver fields of Model 9¢ are shown in Table [3.38

3.12 Model 10: dP;

3.12.1 Model 10 Phase a

The superpotential is

W = +X13X30X91 + X56X64Xu5 + X43X35X50X06X61X14
—X13X35X56X61 — X14Xu5X50X01 — Xo6X64X43X32 . (3.12.167)
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’ H Uy ‘ U(l)y, ‘ Ul)r H fugacity

P1 -1 0 1/3 tl
P2 -1 1 1/3 tQ
pP3 1 0 1/3 tg
P4 1 -1 1/3 t4
D5 0 0 1/3 t5
Pe 0 0 1/3 t6

Table 3.39: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 10a).

The perfect matching matrix is

pP1 P2 p3 P+ P5 P6|S1 S2 53 S4 S5 S6
X101 0 0 0 1 01 0 0 0 1 0
X311 0 0 0 0 11 0 0 0 0 1
Xs6/0 11 0 0 O0Oj0 1 1 0 0 O
X0 1 0 1 0 O0J]0 1 0 1 0 O
X0 0 1 0 1 O0}j0 0O 1 0 1 O
P=| Xg|0 0 0 1 0 1|0 0 0 1 0 1 (3.12.168)
X|1 0 0 0 0 O0j0 1 0 0 0 O
X0 10 0O 0O 01 0 0 0 0 O
Xwu{0O 0 1 0 0 0|0 O 0 0 0 1
X0 0 0 1 0 00 O O 0 1 0
Xe1/0 0O 0 O 1 00 O O 1 0 O
X520 0 0 O O 1/0 O 1 0 0 O
The F-term charge matrix Qp = ker (P) is
Pt P2 P3 P4 P5 De ‘ S1 82 83 S4 S5 S6
$1 1 0 0 0O Of-1 -1 0 O 0 O
Qe=0 0 0 1 1 0[0 0 0 -1 -1 0 (3.12.169)
o 1 0 0 1 1|{-1 0 -1 -1 0 O
o 0 1 o 0 10 O -1 0 0 -1
The D-term charge matrix is
DL P2 P3 P4 D5 Pe|S1 S22 S3  S4 S5 S
o o o o o ofj1 -1 0 0 0 O
Qp = o o o0 o o0 o(0 1 -1 0 0 O (3.12.170)
0 0 0 0 0 00 O -1 0 0
o 0 0 o0 0 o0oy0 0 O 1 -1 0
0 0 0 0 0 00 O 0 1 -1

The total charge matrix ); does not exhibit repeated columns. Accordingly, the
global symmetry is U(1)¢ x U(1), x U(1)r. The mesonic charges on the GLSM fields
corresponding to extremal points in the toric diagram in Figure|3.21|are found following
the discussion in They are presented in Table
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The product of all internal perfect matchings is labelled as follows

s=]] sm- (3.12.171)

The fugacity counting extremal perfect matchings is t,. The product of internal perfect
matchings is associated to the fugacity ys.

The refined mesonic Hilbert series of Model 10a is found using the Molien integral

formula in (1.4.67)). It is

91t s M) = H)
ay ISy -
@ (1 — ys 13t3tat5) (1 — ys t1tat3t2)(1 — ys t3tstite)
1
X .
(1 — ys t3tst2te) (1 — ys tatat3t2)(1 — ys t3tat5t2)
(3.12.172)
The numerator is given by the polynomial
P(ta) = 1+ys tibatstatste — yi titst5titdts — ya tit5t5tat5te — 3 titst3titsts

=2 g3 G — yF Gtat3tatdty + yl (58 + ud IS
—y tittstitsts — yF titatstititg +yd (08 + 2 yl Q0
3 BSESRSHE + yl SSESIEHG + ul (SERNISHG — u) H1E5tatiat

—yo B55L3LY (3.12.173)
The plethystic logarithm of the mesonic Hilbert series is

PL{g1(ta, ys; MUK = ys titatstatste + ys titstats + ys tatstits + ys titatity
Y tibat3t5 + s Btatstd + ys t3050ats — 3 y) 556530 — yF ltat3tatdty
—y2 tit3t3thtste — y? titstitste — y? 3t tatits — y? titotstatit]
—y2 33 s 4.
(3.12.174)

Under the following fugacity map

tat tat
fi = %  fa = % |t /6 §/641/0,1/6,1/6,1/6,1/6 (3.12.175)

where f1, fo and t are the mesonic charge fugacities, the mesonic Hilbert series and the
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| Generator U [UQ), |

P3P3PaDs S 1 1
P1P2p3DE S 0 1
P3P3pipe S 1 0
P1P2P3P4P5P6 S 0 0
Pipspipes -1 0
P1P2PIDE 0 -1
PIpapspE -1 -1

Figure 3.22: The generators and lattice of generators of the mesonic moduli space of
Model 10a in terms of GLSM fields with the corresponding flavor charges.

[ Generator [ Uy, [UW)y, |
X14X13X32 X091 = X124 X3 X35 X56 X1
X114 X145 X56X61 = X124 X43X32 X026 Xo1
X35 X56X64 X143 = X14 X3 X35 X520 X1
X14X13 X35 X520 X026 Xe1 = X13X32X01 = Xu5X56X64 = X13X35X56 X61 = X14Xa5X52X01 = XogXe4Xa3X32
X13X32 X026 X61 = X14X45 X520 X26X61
Xi13X35 X520 X01 = Xo6X64X43X35X50
Xo6X6aXu5X52 = X13X35 X520 X026 Xo1

' '
._.O,_.OMOHL—I/
Ll ocoocor e~

Figure 3.23: The generators in terms of bifundamental fields (Model 10a).
plethystic logarithm are expressed as

g1(t, f1, fas MYq") = (1 +1° - (2 + fl + fi+ E + ﬁ + fo + f1f2) t'
+(2+;+f1+; +ﬁ+f2+f1f2> tlg—t24—t3°) x
1
(1= 419) (1= £19) (1= £19) (1= 75t) (1 = o)1 = fufot?)
(3.12.176)

and

PLgu (1, f. fo: M3 = (1+}+f1+} ot i)

1 1 1 1
(3+f—+f1+f +f2+ff +f1f2)t12+2<2+ﬁ+f1+£+f2

+ﬁ + f1f2>t18 . (3.12.177)

The above plethystic logarithm exhibits both the moduli space generators and the cor-
responding mesonic charges. They are summarized in Table The generators can
be presented on a charge lattice. The convex polygon formed by the generators in Ta-
ble 3.22]is the dual reflexive polygon of the toric diagram of Model 10a.
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pL Pes

Ps

Ps

Figure 3.24: The quiver, toric diagram and brane tiling of Model 10b. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

Under the following fugacity map

t6 toty tsts
= E = Ys t%t4t5tg y TQ = f1 = E N T3 = f2 = —, (3.12.178)

the mesonic Hilbert series and the plethystic logarithm can be rewritten as

Th

91(T1, To, Ty M) = (1 + TVIRTs — (2TPT5T5 + TEToT5 + TET5TS + TET5 T
+T2Ts + T2TETS + TPTSTS) + (TPTSTS + TYTETS + Ty TS + T3TST3
+TPTSTS + TPTETS + TPTy 1Y) — TV Ty Ty — TYTSTS) x

1
(1-TNT3)(1 —TVT3T5)(1 — TvTo)(1 — 1) (1 — TV I,T2) (1 — TWT3T?)

(3.12.179)

and
PL[g1(t, f1, fo; M) = Vo Ts + ThTs + TV T3 Ts + TV T + TVIL Ty + Ty + TVI5T5
—(3TRTETE + TPToT? + TPTSTE + TETETs + TETITS + TEToTs + TETETS)
FATPTETS + T3TETS 4+ T3y T3 + TPTET2 + TPTSTy + TT3TE + TTyTs + ...
(3.12.180)

such that the powers of the fugacities are all positive indicating the cone structure of

the variety.
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3.12.2 Model 10 Phase b

The superpotential is

W = 4X31X15X53 + X4 X03X314 + X56X64 X5 + X52X06X61 X14 X5
— X492 X26X6a — X53X34 X5 — X56X61X15 — X124 X35 X50X03X31

(3.12.181)
The perfect matching matrix is
P1 P2 P3 P4 P5 P6 |51 S2 53 54 S5 S 57
X1 0 0 0 0 1[0 0 0 0 1 0 0
X5[1 0 1 0 1 0/0 0 0 0 1 1 0
Xy|1 0 0 0 1 0[1 0 1 0 0 1 0
X1 0 0 0 0 0[1 0 0 1 0 0 0
Xpp|0 1 0 1 0 1[0 0 0 0 1 0 1
Xs6/0 1 0 1 0 0|1 0 0 1 0 0 1
P=| Xk|0 1 1 0 0 0[0 0 0 0 1 0 0 (3.12.182)
Xp [0 1 0 0 0 0[1 0 1 0 0 0 0
Xes |0 0 1 0 1 00 1 1 0 0 1 0
Xo3/0 0 1 0 0 0/0 1 0 1 0 0 0
X300 0 0 1 0 1[0 1 0 1 0 0 1
X0 0 0 1 0 0[0 0 0 0 0 1 0
Xs2/0 0 0 0 1 0[0 0 0 0 0 0 1
X1 |0 0 0 0 0 1]0 1 1 0 0 0 0
The F-term charge matrix Qp = ker (P) is
Pr P2 P3 P4 P5 Pe | S1 S22 83 S4 S5 S St
1 1.0 0 0 O[-10 0 0 -1 0 0
1 010 -1 00 0 0 -1 -1 0 1
Qr = . (3.12.183)
1 00 1 0 —1|-10 1 0 0 -1 0
000 1 1 0/0 0 0 0 0 -1 —1
00 0 0 0 0 1 -1 -1 0 0 0
The D-term charge matrix is
P1 P2 P3 p4a P5 Pe|S1 S22 S3 S4 S5 S¢ ST
000 0 0 0 0/0 1 -1 0 0 0
000 0 0 0 0/0 0 1 -1 0 0
Qp = (3.12.184)
000 0 0 0 0/0 0 0 1 -1 0
00 0 0 0 0[0 0 0 1 -1
00 0 0 0 0[0 0 O 0 1 -1

The total charge matrix Q) does not exhibit repeated columns. Accordingly, the global
symmetry of Model 10b is identical to the one for Model 10a, U(1)f x U(1)s, x U(1)g.
The flavour and R-charges on the extremal perfect matchings are found following the
discussion in They are identical to Model 10a, and are shown in Table |3.39
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‘ Generator ‘ U(l)y ‘ U(l)y, ‘
X15X50X03X31 = X3 X34 X5 X5p = XoX64 X J5 X52 1
X15X50X06X61 = Xo3 X34 X35 X50 = Xo6 X4 X35 X5 0
X5 X56X61 = X14X 15 X50 X023 X31 1
X14 X3 X520 X3 X531 = X14 X5 X50X26 X61 = X15X53 X531 = X15X56X61 = Xo3 X34 Xa2 = Xo6X6a X2 = X34 X5 X53 = X2 X56 X4 0
X34 X35 X553 = X14X 35 X50X26X61 -1
X14X10X03X31 = X14X s X3 X1 = X14X }5 X56X61 0
X14X12Xo6Xe1 = X14 X35 X53 X531 = X14X 55 X356 X61 1

Table 3.40: The generators in terms of bifundamental fields (Model 10b).

L Pes

®® © )

Figure 3.25: The quiver, toric diagram, and brane tiling of Model 10c. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

The product of all internal perfect matchings is given by the variable

7
s=]] sm- (3.12.185)

The fugacity for extremal perfect matchings p, is t, and the fugacity for the above
product of internal perfect matchings is ys.

The mesonic Hilbert series of Model 10a and 10b are identical. They are called
phases of the same toric moduli space. The Hilbert series is found in (3.12.173) with
the plethystic logarithm in . The moduli space is not a complete intersection.

The generators of the mesonic moduli space in terms of the perfect matchings of
Model 10b are shown in Table The generators in terms of quiver fields of Model
10b are shown in Table The charge lattice of generators is the dual reflexive
polygon of the toric diagram of Model 10b.

3.12.3 Model 10 Phase ¢

The superpotential is

W = +XpuX13X3, + XuoXo3Xa, + Xis X5 X0 Xoy + X51 X16 X4 X7
~ X1 X16X2, — XaaXo6 Xy — Xox Xs50X03 X3, — X51 X13X0, X 15 .
(3.12.186)
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The perfect matching matrix is

Pi1 P2 P3 P4 P5 P6 |51 S2 83 S4 S5 S¢ S7 58
X1 0 0 01 1/0 0 1 0 1 1 0 0
X3|1 0 0 0 1 0/0 1 0 0 0 0 0 1
X4|1 0 0 0 0 1/0 0 0 0 0 0 1 1
Xs0/1 0 0 0 0 0/{0 0 0 1 0 1 0 0
Xu|0 1 1 1 0 0/0 0 1 1 0 1 0 0
X400 1.1 0 0 0O 0 0 0 0 0 1 1
P=| XL|0 1 0 1 0 0[0 1 0 0 0 0 0 1 (3.12.187)
Xs2/0 1 0 0 0 0/{0 0 0 0 1 1 0 0
Xil0 010 1 0[0 0 1 0 0 0 0 0
Xp3/0 0 1 0 0 0/1 0 0 1 0 0 1 0
Xx|0o 0 0 1 0 1/0 0 1 0 0 0 0 0
X6/0 0 0 1 0 0|1 1 0 1 0 0 0 0
Xi|0 0 0 0 1 0|1 1 0 0 1 0 0 0
Xi|0 0 0 0 0 1|1 0 0 0 1 0 1 0
The F-term charge matrix Qp = ker (P) is
Pr P2 P3 P4 P5 P6 | S1 S22 S3  S4 S5 S ST S8
1 1000 0[O0 0 0 0 0 -1 0 -1
1 00 1 0 -1/0 -1 0 0 -1 0 0
Qr=]0 0 1 0 0 1|0 0 -1 0 0 -1 0 (3.12.188)
000 0 1 1 0[0 -1 —1 0 0 0 0
000 00 0|1 -1 0 0 0 0 -1 1
0000 00 0|1 0 0 -1 -1 1 0 0
The D-term charge matrix is
Pt P2 pP3 P4 P5 P6|S1 S2 83 5S4 S5 S S71 S8
000 000 0[]0 0110 0 0 0
op=| 0 000 00j0 00 1 10 0 0 f (3.12.189)
000 0 00 0[]0 00 0 1 -1 0 0
00 0 0 0 0[0 0 0 0 1 -1 0
000 0 00 0[]0 00 0 0 0 1 -1

The global symmetry for Model 10c is identical to the global symmetries of Model
10a and Model 10b, U(1)y, x U(1)s, x U(1)r. The mesonic charges on the extremal
perfect matchings with non-zero R-charge are shown in Table [3.39]

The product of all internal perfect matchings is expressed as

s= ][] sm- (3.12.190)

The fugacity t, counts extremal perfect matchings and the fugacity ys counts the above
product of internal perfect matchings.

The mesonic Hilbert series is identical to the Hilbert series for Models 10a and 10b
in (BIZI7D).

The moduli space generators in terms of all perfect matchings of Model 10c are shown
in Table with the corresponding lattice of generators being the dual reflexive
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Generator ‘ U(l)h ‘ U(l)fz ‘

X16X5 X0 = Xos XL XL Xs5 = XogX&, X1 X0 1 1
X13X§4X41 = X23X§4X425X52 = X26Xé4X425X52 0 1
X16X 2, XL X5 = Xo3 X2, X1 X5 1 0
X13X2, X1 = X16X5, X101 = Xo3 X3, Xuo = Xos Xy Xa2 0 0
= X13 X3, X5 X51 = X16 X4 X35 X51 = Xo3 X3, X5 X50 = Xo6 X8, X5 X520

X135 XL, X2 X51 = Xo6X2, X2 X50 1 0
X03X2,X42 = X13X2, XL X351 = X16X2, X1 X5 0 1
Xo6 X2, X142 = X13X2, X2 X351 = X16X2, X2 X5, -1 -1

Table 3.41: The generators in terms of bifundamental fields (Model 10c).

P Pa

Figure 3.26: The quiver, toric diagram, and brane tiling of Model 10d. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

polygon of the toric diagram. The generators in terms of quiver fields of Model 10c are

shown in Table [3.41]

3.12.4 Model 10 Phase d
The superpotential is
W = +X15X5, X5 + Xo5 X5, Xp + Xo6 X34 Xy + X4y X13X3,
+X16 X4 X0 + XipX03 X3y — X15X3, X5, — X13X35, X7
— X3 X3, X5 — Xos X3, X3 — X1 X16 X5y — Xip X6 X4y -
(3.12.191)
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The perfect matching matrix is

DL P2 P3 P4 D5 D6 |S1 S2 83 S4 S5 S6 ST S8 S9 S10 Sl

X3,/1 0 1 0 1 0/00 0001100 0 0
X,/1 0 0 1 0 000 00T1T100 0 0
XL|1 0 0 0 1 000010100 0 0
Xu|l1 0 0 0 1 0/0 0 1 10000 1 0 1
Xee|1 0 0 00 1/0 1 1000000 1 1
X5/1 0 00 0 0/1 00 101000 1 1
xX3lo 1 1 o0 0/0 000 1 0100 0 0
X4|0o 1 1 00 0/0 11000000 1 1

P=|xL/0 1 1 1 0 0000001100 0 0 (3.12.192)
X3/0 1 0 1 0 1/0 000 1 01 00 0 0
X3/0 1 0 1 0 0/0 0 1 1L 00O0GO0T1 0 1
Xps[0 1 0 0 0 0|1 00 1 1 00 00 1 1
Xsl0 0 1 0 0/0 1 10000 1 1 0 0
X3/0 01 00 0[1 1 0001010 1 0
x40 0o 0 1 o0 01 1000011 0 0
X0 0 0 1 0 0/1 00 1 010 1 1 0 0
X0 0 0 0 1 0|1 00 1 1 00 1 1 0 0
Xps[0 0 0 0 0 1|1 1 00 1 00 1 0 1 0
The F-term charge matrix Qp = ker (P) is

P1 P2 P3 P4 Ps P6 51 52 53 5S4 S5 56 ST S8 89 510 S11

1 1 0 -1 1 0]/0 0 000 0 01 0 -1 0
100 1 0 —-1/0 0 0 0 0 -1 0 1 -1 0 0
100 1 0 —1]0 0 0 0 0 -1 0 0 0 1 -1

O = 0o 1 0 -1 0 tr{o0 o o 1 -1 0 O O O 0 -1 ) (312193)

001 0 -1 0 1/0 0 00 0 1 -1 0 0 -1 0
001 0 0 1/0 1000 0 100 0 0
000 0 0 01 0 1 00 0 0 0 -1 -1 0
000 0 0 00 1 0 1 0 0 0 0 1 -1 0
000 0 0 0]l0 1 -1 0 0 0 0 0 0 -1 1

The D-term charge matrix is

o 0 0 0 0 O 0
o o0 0 0 0 o0o}jo0o O O O O 1 -1 0 0 0 0
o= A (3.12.194)
o 0 0 0 0O oOfO0O O O O 0 O 1 -1 0 0 0
o 0 0 0 0 o0 O O O O O 0 1 -1 0 0
o 0 0 0 0 OO0 O O O 0 O 0 0 1 -1 0

The symmetry U(1)y, x U(1)s, x U(1)r of Model 10d is identical to Models 10a to
10c discussed above. The symmetry charges on the extremal perfect matchings with
non-zero R-charges are shown in Table

The product of all internal perfect matchings is

s=]] sm- (3.12.195)

m=1
The fugacity ys counts the above product of internal perfect matchings whereas the
fugacity ¢, counts the external perfect matchings pq.
The mesonic Hilbert series of Model 10d is identical to Models 10a, 10b and 10c.

This indicates that the mesonic moduli spaces are identical, and given the correspond-
ing plethystic logarithm in (3.12.174)), the mesonic moduli spaces are not complete
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‘ Generator ‘ U)p ‘ U)p, ‘

X13X§4X§1 = X§1X16X§4 = Xi2X25X§4 = X412X26X§4 1 1
X13X§4Xf1 = Xf1X15X514 = X422X25X§4 = X/%2X26X34 0 1
X13X§4X21 = X421X16Xg4 = X23X§4X412 = X22X25X§4 1 0
X13X§4X21 = X13X§4th = X21X15X514 = X21X15X524 = XileﬁXé = XlelﬁXéz; = X23X314X4}2 0 0
= X23X§4X32 = X32X25Xg4 = X22X25X§4 = Xi2X26Xé4 = X22X26Xg4

X13X§4Xi1 = X411X15X§4 = X23X§4X§2 = X422X26Xé4 -1 0
XHX15X3) = X3 X16Xgy = Xo3 X3, X3y = X Xo5 X2, 0 -1
X41X15X524 = XLXIGX(%AL = X23X§4Xjf2 = Xf2X26Xé4 -1 -1

Figure 3.27: The generators in terms of bifundamental fields (Model 10d).

Py

P3

Figure 3.28: The quiver, toric diagram, and brane tiling of Model 11.

intersections.
The moduli space generators in terms of all perfect matchings of Model 10d are shown

in Table with the corresponding charge lattice of generators forming a reflexive
polygon which is the dual polygon of the toric diagram. The generators in terms of
quiver fields of Model 10d are shown in Table

3.13 Model 11: PdP,

The superpotential is

W = +X21X14Xuo + X53X32 X% + X2 X12 X5 + X13X34 X 45 X5
~X13X32X01 — X14X45 X2 — X X12X55 — X53X34 X402 X0 -
(3.13.196)
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[ T0Wn [0 [ UMe [ fugacity

P1 -1/4 —1/3 R1 ~ 0.622 i1
P2 —1/4 0 RQ ~ 0.502 tg
p3 0 2/3 | Ry ~0.306 || t3
P4 1/2 —1/3 R4 ~ 0.570 ty

Table 3.42: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 11).

The perfect matching matrix is

P1 P2 P3 P4 Q1 Q2| S1 S2 S3 S4 S5
Xyl 0 0 01 0|1 0 0 1 O
X1 0 0 0[0 1|1 0 0 0 1
X310 0 01 0|0 1 0 0 O
X%/0 1 1 0|1 0|0 1 0 0 0
X4/1 0 0o 0[O0 1|0 0O 1L 0 O

o XZ|(0 1 1 0[0 1|0 0O 1 0 0 (3.13.197)
X0 1 0 01 0/0 0 0 1 0
Xp|[0 1 0 0[0 1|0 0 0 0 1
X1 [0 0 1 1]/0 0/0 1 1 0 0
X0 0 0 10 0|1 0 0 1 1
X3 [0 0 1 0[0 O|1 0 0 0 O
X450 0 0 1[0 0|0 1 0 0 1
X530 0 0 1]/0 0/0 0 1 1 0

The F-term charge matrix Qp = ker (P) is

p1 P2 P3 P4 ‘ 9 g2 ‘ 51 82 83 sS4 S5
1 1.0 0|-1 -1/0 0 0 0 ©

Qr=| 1 1 0 1|-1 0)0 0 -1 0 -1 |. (3.13.198)
0 1 -1 0|-1 0|1 0 0 -1
00 0 1|1 0[]0 -1 0 -1 0

The D-term charge matrix is

p1 P2 P3 P4 ‘ a2 ‘ 51 52 83 S4 S5
0 00 0/{0 0|1 -1 0 0 0

Qb= 0 0o 0o oo of0o 1 -1 0 o |. (3.13.199)

000 0/0 0|0 0 1 -1

0600 0j/0 0|0 0 0 1 -1

The total charge matrix @); does not exhibit repeated columns. Accordingly, the
global symmetry is U(1)f, x U(1)s, x U(1)g. The flavour and R-charges on the GLSM
fields corresponding to extremal points in the toric diagram in Figure [3.28| are found
following the discussion in They are presented in Table [3.42]

Fine-tuning R-charges. The exact R-charges are expressed in terms of the root z( in

the range 0 <1 — g < % of the polynomial

27 — 422 — 682 + 4223 + 92 = 0, (3.13.200)
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where

1
Ry = 1+ 15 (=63 + 2502 — 42202 — 384 + 2612( + 5daf)
1
Ry = 1+ (—189 + 281z + 257xf — 177z — 362()
1
Ry = 1+ ¢ (333 — 1351z — 294§ + 1450x] — 327z — 99z7)
Ry = 1—ux. (3.13.201)

Products of non-extremal perfect matchings are assigned the following variables

5
(=qq, s=]] sm- (3.13.202)
m=1
The fugacities y, and y, count respectively the above products of internal perfect match-
ings. The fugacity ¢, counts all other extremal perfect matchings p,,.

The mesonic Hilbert series of Model 11 is found using the Molien integral formula in

[CA67). Tt is

mes

91(tas Yg, Yss MTT®) = (14 yqys trtatsts + yoys titsts + ylys titsts — yoys tHtst3t]
—yays titatst] — Yoyl t33t5t — yoy? titatsts — Yoyl ttt3L] + ygys t3t3ta)
1
X .
(1 —y2ys tit2)(1 — y2ys t5t3) (1 — ygus t7ta)(1 — ys t3t})

(3.13.203)

The plethystic logarithm of the mesonic Hilbert series is

PLIg1(ta: Yg ysi MTI)] = yqus tita + s t3t] + yoys tita + ygys titatsts
HyZys titsts + Ygus tatsta + yoys ttsts + ylys tats — oyl titatst]

—yoy? tit5tats — 2 Y2yl G5 + ... . (3.13.204)

Consider the following fugacity map

3/4,1/4 —1/4

fl:y(; ) f2:yq y;1/47
R R e e N R ) T S TRV T
(3.13.205)

where the fugacities f; and fo count flavour charges, and the fugacity ¢; counts the
R-charge R; in Table [3.42]
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Generator ‘ U(l)g ‘ UQ)y, ‘

pgpi S 1 0
Pipa q s 0 -1
P1P2P3P4 q S 0 0
P3p3pa q s 0 1
pip2 ¢* s -1 -1 P
pivaps ¢ s -1 0
pPipap3 ¢° s -1 1
pap3 ¢* s -1 2

Table 3.43: The generators and lattice of generators of the mesonic moduli space of
Model 11 in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ U(l)y ‘ U(l)y, ‘
X12X91 = X34 X45X53 1 0
X2 X X3 = X14X45 X} = X32X2 X3 0 -1
X13X34Xa5 XY = X34 X35 X53 X0 = X12 X3 X3 = X120 X5 X4 0 0
= X1 X13X30 = Xo1 X14 X4 = X1uXus X2 = X52X3 X3
X120 X2 X2 = X1 X13X34 X140 = X13 X34 Xus XF = X34 X2 X53Xu2 0 1
X X4 X13X3 = X35 X3 X14 X2 1 1
XX X13X34 X0 = XJs X2 X13X 30 = X2 XL X153 X0 = X5 X2 X14Xup = X XH X1uXao | -1 0
XEX2 X13X30 = X2 X2 X14Xao = X3 X2 X13 X34 X0 = X2 X4 X153 X34 X0 -1 1
X2 X2 X13X31 X2 -1 2

Table 3.44: The generators in terms of bifundamental fields (Model 11).
Under the fugacity map above, the plethystic logarithm becomes
g . mes 1"‘2” 7 72 1 37 ngangangang 1”‘2"‘2~
PL[gl (tas f1, f2; M7} )] = —t1ta + fitsty + —t1te + titatsty + —t7t5t3
f2 fife fi
72727 f2~ 7372 f22 7473 1 837 7 2 1 AT T 72727272
bil fi f2 fife
(3.13.206)

The plethsytic logarithm above exhibits the moduli space generators with the corre-
sponding mesonic charges. They are summarized in Table The generators can
be presented on a charge lattice. The convex polygon formed by the generators in Ta-
ble is the dual reflexive polygon of the toric diagram of Model 11.

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in terms

of just 3 fugacities

t 1
_fata  t T =+
f2

_f EEQ_y t1t27 %Eélzyqys t%téla T3:fl 53512123/5 t3t4217
1 t1ly s 4

Ty

(3.13.207)
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Figure 3.29: The quiver, toric diagram, and brane tiling of Model 12a.

such that

g1(T1, Ty, T3; MTT*°) =
(1 + TWToTs + TPTETE + TETETs — TETETS — TVT3Ts — TRTSTs — TETsTs
1

—TATATS + T>THT?
VT L) X T (- 1T (- To)(1 - )

(3.13.208)
and

PL{gy(Ty, To, Ts; MP1)] = Ty + Ts + Ty T5 + TV ToTs + TP T3 Ts + TE TR TS
+TPTETE + THTETS — T2T3Ty — TVT2Ts + 2T2T2TE + ... . (3.13.209)

The powers of the fugacities in the Hilbert series and plethystic logarithm above are all

positive. This illustrates the conical structure of the toric Calabi-Yau 3-fold.

3.14 Model 12: dP»

3.14.1 Model 12 Phase a

The superpotential is

W = +Xo1X14Xjp + X5 X53X30 + X5 Xo5 X51 X13X34
—X13X32X01 — X14 X5 X3 X51 — Xax X53 X34 X4y . (3.14.210)
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L o UMy, | U)r | fugacity
| 1/2 0 | Ri=q(-21+5V33) | t1
pa || -1/2 0 Ry =2(19-3V33) || ta
3 0 -1/2 | Ry=+5(19-3v33) | t3
pa| 0 1/2 | Ri= & (-21+5v33) || ta
D5 0 0 R3 = % (—5 + \/?E) ts

Table 3.45: The GLSM fields corresponding to extremal points of the toric diagram
with their mesonic charges (Model 12a). The R-charges are obtained using
a-maximization [13].

The perfect matching matrix is

P1 P2 P3 P4 P5|S1 S2 53 S4 55
Xu|1 0 0 0 01 0 0 0 1
X0 1 0 O Of1 0 0 0 O
X1 0 0 0 0|0 1 0 0 O
X210 1 0 0 1|0 1 0 0 O
X} 1 1 1
po | M0 0 L0000 (3.14.211)
X210 0 0 1 0/0 0O 1 0 O
X1 0 1 0 01 0 1 0 O
X0 1 0 1 0[0 1 0 1 0
X51/0 0 1 0 00 O O 1 O
Xs310 0 0 1 00 O O 1 1
Xi3/0 0 0 0 10 0 0 0 1
The F-term charge matrix Qr = ker (P) is
P1 P2 P3 P4 D5 ‘ 51 S22 S3 S84 S5
110 0 0f|-1 -1 0 0
= 3.14.212
@r 001 1 0|0 0 -1 -1 ( )
01 0 -1 -1|-1 0 1 0 1
The D-term charge matrix is
pP1 P2 P3 P4 P5|S1 S22 83 S4 S5
o o0 o0 o o0}j1 -1 0 0 O
Qp=|0 0 0 0 0[0 1 -1 0 (3.14.213)
0O 0 0 0 0]0 O 1 -1 0
o 0 0 0o 0j]0 0 O 1 -1

The total charge matrix ); does not exhibit repeated columns. Accordingly, the
global symmetry is U(1)y, x U(1)s, x U(1)r. The mesonic charges on the extremal
perfect matchings are found following the discussion in §3.2.3] They are presented in

Table [3.45
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The product of all internal perfect matchings is

s=]] sm- (3.14.214)

The above product is counted by the fugacity ys. The extremal perfect matchings p,
are counted by .

The mesonic Hilbert series of Model 12a is calculated using the Molien integral formula

in (T4.67). It is

mes P(toé)

91(ta,ys; 120) = 1 2 1 2\(1 242 1 242 1 2423
( —Ys t1t3t4)( —Ys t1t2t4>( —Ys t1t3t5)( —Ys t2t4t5)( —Ys t2t3t5)
(3.14.215)

where the numerator is the polynomial
P(ta) = 1+ys titatstats — Y2 titat3tits — y2 1113tstts + y tatat3td + s totstat?

—y? thtotatyt? — 2 y2 2363632 — o2 t1t5tst3e2 + o2 tHAS3E + 2 33t h2

—yy (H3tatS — y3 0SS + yd (15630003 + ys titatstats . (3.14.216)

The mesonic moduli space of Model 12a is not a complete intersection. The plethystic

logarithm of the mesonic Hilbert series is

PL[g1(ta, ys; MT55)] = ys titsts + ys titat] + ys trtatstats + ys t1t5t5 + ys t3tits
+ys totatat? + y, titatats + ys tatats — y2 t3tat3t3ts — y2 t3tatstots
=3 o2 B2 — o2 Btotitat? — o2 titstatit: + ... . (3.14.217)

Consider the following fugacity map

totd - /2 = 12 & totstats
f1 =t3ts, f2:T14 , t1=y§/4t1/ , By =yl t1/ , 13 = »

. (3.14.218)

where f; and f, are flavour charge fugacities, and ¢; is the fugacity for R-charge R; in
Table Under the fugacity map above, the above plethystic logarithm becomes

PLgy (o fro for MEED)] = (Fr + fo) BlE + (1 Sy jﬁ) PRy
1 1)\- 1. s
+ <fl + f2> 81385 + mtgtg — (i + f2) EiB5ts
— <3 — fj - ff) tHsta + ... . (3.14.219)
2 1

The above plethystic logarithm with its refinement exhibits all the moduli space gener-
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’ Generator ‘ U(l)y, ‘ UL)y, ‘

pip3pa S 1 0
p1pap; S 0 1
Ppips 1 -1
D1P2P3P4D5 S 0 0
P3Dips -1 1
P1p2papE s 0 -1
P3p3pap? s -1 0
P3p3PE s -1 -1

Table 3.46: The generators and lattice of generators of the mesonic moduli space of
Model 12a in terms of GLSM fields with the corresponding flavor charges.

‘ Generator ‘ Ul)p, ‘ U(l)y, ‘
X2 X53X32 = X14X 5 X2 X51 1 0
X14X2, X01 = X5 X53X34X2, 0 1
X13X32 X205 X51 = X14 X1 X35 X51 1 -1
X13 X34 X5 X3 X51 = X14 X5 X2 X51 = Xip X553 X34 X o = X13X32X01 = X14 X} Xo1 = X35 X53X30 0 0
X13 X34 XH X0 = X3 X53 X34 X5, -1 1
X13X34 X3 X5 X51 = X13X30X 5 X51 = X14 X}y X35 X1 0 1
X13 X34 X5H X% X51 = X13X34 X b Xo1 = XF X553 X34 X4y -1 0
X13X34Xi2X225X51 -1 -1

Table 3.47: The generators in terms of bifundamental fields (Model 12a).

ators with their mesonic charges. They are summarized in Table [3.46] The generators
can be presented on a charge lattice. The convex polygon formed by the generators in
Table is the dual reflexive polygon of the toric diagram of Model 12a.

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in terms
of just 3 fugacities
ta ts

— _ = CTo = f1 By = ys Btgty , Ty = fo Lofs = ys titat?
B 20 h = f1 tita = ys titats , T3 = fo tita = ys tilal]

Ty
(3.14.220)

such that

gl(TlaTQaT3; 7173((218) =
(1 + TVToT3 — T\T3Ty — Ty To T3 + T2T3Ts + TP Ty T — T2T5Ty — 2021212

—TETTS + TPTSTE + TPTETS — TPTSTE — TPTSTS + TPTSTS + THTyTy)
1
M- - T30 - LI (1 - TI2)(1 — TPT2TY)

(3.14.221)
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P1

@ Ps P2

Figure 3.30: The quiver, toric diagram, and brane tiling of Model 12b. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

and

PL[g\(Ty, Ty, T3; M) = Ty + T3 + Ty T T3 + Th T3 + Th T + TETo T3 + TETETy
FTITETE — T\ T3Ts — TV ToTs — TETSTs — 3TETSTS — TETSTs — TR TS
+.... (3.14.222)

The above Hilbert series and plethystic logarithm illustrate the conical structure of the
toric Calabi-Yau 3-fold.

3.14.2 Model 12 Phase b

The superpotential is

W = +X15X5X3 + X3 X1 Xds + Xa5 X5 X0z + X13 X34 X5 X3
~X14XH X5 — X15 X5 X3) — X34 X jp Xog — Xg) X13X35X5, .
(3.14.223)
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The perfect matching matrix is

P1 P2 P3 P4 P5|S1 S22 S3 S4 S5 S6
Xh4|1 0 1.0 01 0 0 0 0 O
XL|1 0 0 0 0j0 1 1 0 0 0
X310 1 1 0 1|1 0 0 0 0 O
X3/0 1 0 1 0[1 0 0 0 0 0
Xp|1 0 0 1 01 0 0 0 0 1

o XL|{o 1 0 0 1]0 1 1 0 0 0 (3'14'224)
XL|0 0 1 0 1[0 1 0 1 0 0
X410 0 0 1 0[/0 1 0 1 0 O
X501 0 0 0 0[0 0 1 0 1 1
X3/0 1 0 0 0[0 0 1 0 1 0
X3[0 0 1 0 0[0 0 0 1 1 0
X4[0 0 0 1 0[0 0 0 1 1 1
Xi3|0 0 0 0 1[0 0 0 0 0 1

The F-term charge matrix Qp = ker (P) is

pP1 P2 P3 P4 P5 | S1 S22 S3  S4 S5 S6
110 0 0[-1 0 -1 0 0 0

Qr=| 0 0 1 1 0|-1 0 0 -1 0 (3.14.225)
01 1 0 -1/-1 0 0 0 -1 1
0000 0[0 1 -1 -1 1 0

The D-term charge matrix is

P1r P2 pP3 P4 Ps|S1 S22 83 S4 S5  S6
00 00 0|1 =10 0 0 0

Q=0 0 0 0 0|0 0 1 -1 0 o0 [. (3.14.226)

00 00 0|0 0 0 -1

00 00 0j]0O 0 0 0 1 -1

The total charge matrix ); does not have repeated columns. Accordingly, the global
symmetry is U(1)y, x U(1)s, x U(1)r. The charge assignment on the extremal perfect
matchings with non-zero R-charge is the the same as for Model 12a in Table

The product of all internal perfect matchings is expressed as

6
s=]] sm - (3.14.227)

m=1

The product is counted by the fugacity ys. The remaining extremal perfect matchings
Po are counted by the fugacity t.

The mesonic Hilbert series and the plethystic logarithm of the Hilbert series is the
same as for Model 12a. They are shown respectively in (3.14.215), (3.14.217) and
. Accordingly, the mesonic moduli spaces of Model 12a and 12b are toric

duals.

The moduli space generators in terms of perfect matching variables of Model 12b are

shown in Table [3.46] with their corresponding mesonic charges. The generators in terms
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Generator

[0 [Ty, |

XMX;Zngl = X15X§2xgl = X23X31X§2
XX X5 = X15 X5 X5 = X X5 X5,
X15X5,X5) = X13X34XH X0

X1uXjp X3 = X13X35X5 X3

X13 X34 X5 X5 = X13X55XH X3

Xi5XH X% = X13X3u X5 X0 = X13X35 X X3, = X13X34X32X§]
X1uXip X5 = X13X35X5 X3 = X13X5uXjp X3 = X13X35X5, X3,

X3 X35 X2, X3 = X13 X34 X5 X5 = X1uuX b X} = XuXhX3 = X15X2,X3 = Xi5 X5 X5 = Xo3 Xsa X b = X3 X35 X3,

o
'
—_ - O

o
o

,_.
\ \
Lo Lo

Table 3.48: The generators in terms of bifundamental fields (Model 12b).

{au, a2}

P1

P2

Pa

Figure 3.31: The quiver, toric diagram, and brane tiling Model 13.

of quiver fields are shown in Table

3.15 Model 13: C3/Zy, (1,1,2), Y??2

The superpotential is

W = +X[hXoaXi + X1 X5 X%, + X7 X13X0, + X2, X42X05

— X1 X3:X31 — X13X2, X1y — X3 X35 X4 — X3, X149 X55 . (3.15.228)

The perfect matching matrix is

P1 P2 P3| q1 q2|S1 S2 S3 S4
X411 0 0|1 0|1 0 0 O
X310 1 0|1 0|1 0 0 O
X1 0 0|1 0|0 1 0 0
XLl0 1 0[1 0|0 1 0 O
X1 0 0|0 1|0 0 1 0

P=| X210 1 0|0 1/0 0 1 0
X1 0 0|0 1]0 0 0 1
X210 1 0|0 1|0 0 0 1
Xog| 0O O 10 O1 0 1 O
X300 0 10 01 0 0 1
X310 0 10 00 1 1 O
Xpp| 0O 0 10 00 1 0 1
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’ H U(l)f \ SU(2), \ U)r H fugacity
|| /4 | 12 | 2/3 | &
po || 14 | 172 | 2/3 ||t
D3 1/2 0 2/3 t3

Table 3.49: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 13).

The F-term charge matrix Qp = ker (P) is

b1 P2 ps‘ a1 g2 ‘ 51 82 83 854

1 1 0|-1 —1]0 0 0 o0
- . 3.15.230
@r 00 1,1 0|-1 -1 0 0 ( )

o 0o 10 1|0 0 -1 -1

The D-term charge matrix is

b1 P2 P3‘q1 Q2‘81 s2 83 54
o 0 0j0 Oj1 -1 0 0

- . 3.15.231
@p 00 0lo 0l0o 1 -1 0 ( )

0o 0 0|0 OO0 O 1 -1

The GLSM fields p; and po are equally charged under the F-term and D-term con-
straints. This is shown by the corresponding columns in the total charge matrix @
which are identical. Accordingly, the global symmetry is enhanced from U(1)? to
SU(2), x U(1)y x U(1)r with U(1)g being the R-symmetry. The mesonic charges on
the GLSM fields corresponding to extremal points in the toric diagram in Figure [3.31
are found following the discussion in §3.2.3] They are presented in Table

Products of non-extremal perfect matchings are expressed as follows

4
g=qq, s=[] sm - (3.15.232)
m=1
The fugacities counting the above products are respectively y, and y,. The fugacity
which counts extremal perfect matchings is t,.

The mesonic Hilbert series of Model 13 is computed using the Molien integral formula

in [TA.67). It is

91(ta, Yg, ys; M15°) =
1+ g2y, t3ts + y2ys 363 + y2ys 0183 + ygys t3ts + yays titots + yays tits + ydy? t1t3ts
(1—y2ys tH (1 — y2ys t3)(1 — ys t3)

(3.15.233)

The mesonic moduli space of Model 13 is not a complete intersection. The plethystic
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logarithm of the mesonic Hilbert series is

PL[g1(ta, Yqs Ys; MIE®)] = ys t:%, + Yq¥s t1tats + Yqys t%t3 + Yq¥s t%t3 + ygys til

+yoys tite + ypys U5 + yoys tats + ypys t3 — 2 Yoyl tit5t5 + .. .(3.15.234)

Consider the following fugacity map
_ _ t
F=y Pyl PR B = e = =Byl P (3.15.235)

where the fugacities f, z and t are mesonic charge fugacities. x is the charge fugacity
for the enhanced symmetry SU(2),. Using the redefinition of this fugacity to & = /=
and the fugacities f and ¢, one can rewrite the expansion of the Hilbert series in terms

of characters of irreducible representations of SU(2) as follows

g1(t&, i MEE) = 30N ([2mlaf "2 4 (404 1) + 2m]p U Dpm)E)
m=0n=0

(3.15.236)

The corresponding plethystic logarithm is

PL[gi(t, &, [; MT5*)] = ft* + [2]3t° + [4]50;&4 — (14 [4]2)° = ([2)z + [4]5&)]10t7
~(1+ [4]f)flgt8 + ([2)z + [412)¢° + (1 +2[2]5 + 2[4]z + [6]i>;t1° +o

(3.15.237)

In terms of the mesonic charge fugacities f, x and ¢, the above plethystic logarithm
exhibits the moduli space generators and their mesonic charges. They are summarized
in Table The flavour charges of generators are integers using f and x. They can
be presented on a charge lattice. The convex polygon formed by the generators is the
dual reflexive polygon of the toric diagram.

As indicated in (3.15.237), the generators fall into irreducible representation of SU(2)

with the characters

1 1 1 1\1
2+ 20 + [4]5?754 = ft* + (52 +1+ x2> 3+ <:f:4 + 32+ 1+ =+ x4> ?t‘l .
(3.15.238)

The above three terms correspond to the three columns of points in the lattice of gen-
erators in Table The generators in terms of quiver fields are shown in Table
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Generator ‘ U(l)s \ SU(2), ‘

pg s 1 0
pips q s 0 1
P1p2p3 q $ 0 0
P3ps q s 0 -1 !
p‘lL q2 s -1 2
pipe 4% s -1 1
Pivs ¢° s -1 0
pips ¢* s -1 -1
p% q2 s -1 -2

Table 3.50: The generators and lattice of generators of the mesonic moduli space of
Model 13 in terms of GLSM fields with the corresponding flavor charges.

[ Generator UM, [5U@2). ]
X13X31 = X4 Xg2 1 0
X X3 X1 = X X04 Xy = X13 X3, Xy = X33 X4, Xao 0 1
X1y X33 Xa1 = X{p Xo4 Xy = X[ X5 X1 = X} X0 X7 = X1 Xy XF) = X13X3, X ]y = X33X5, Xao = X5X5 X2 | 0 0
X{pX53X51 = Xip Xou X5 = X13 X5, X5 = X33X3, Xao 0 -1
Xhxhochx, G
1 1
1 0
-1 1
-1 2

XlzX;:sX:thll = X.122X£3X111Xf1 = X122X;3X§/1X/}1 = X122X223X:14X411

X112X213X314X-:fl = X112X53X§4X411 = X112X§3X.314Xi1 = X%‘zX'zlsXéinl = X%2X§:3X§4Xfl = X%ZX%3X§4Xi1
X112X§3X§4X31 = X112X§3X§4X31 = X112X§3X§4Xi1 = X122X§3X§4Xf1

Xy X5, X3, X5

Table 3.51: The generators in terms of bifundamental fields (Model 13).

With the fugacity map

Ty= V02 b= gyl Ty = 2 =P
Ty = f1/2 ¢t =yt (3.15.239)

the mesonic Hilbert series takes the form

1+ TP + TETE + TV T35 + TETs 4+ ThInTs + T3 Ts + TET5 T

a (1-TH(1 -TH(1 - T3) ’
(3.15.240)

g1 (T, T, Ty; MT5)

with the plethystic logarithm becoming

PL[gy(T1, Ty, Ts; M) = T2 + Ty To Ty + T3 + T3Ts + T 4+ TTy + T2T%
+T\Ts + Ty — 2TPT3TE + ... . (3.15.241)

The above Hilbert series and plethystic logarithm is written in terms of just three fugac-
ities with positive powers. This illustrates the conical structure of the toric Calabi-Yau
3-fold.
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Pa

Figure 3.32: The quiver, toric diagram, and brane tiling of Model 14.

3.16 Model 14: dP;,

The superpotential is

W = +X5X14Xjo + Xoy X33 X530 + X5 Xy X135 X34
— X1 X30 X0 — X1 XX — Xy X5 X34 X4 (3.16.242)

The perfect matching matrix is

P1 P2 P3 P4|S1 S2 S3 S4
xz |1 0 0 0 0 0
Xp|1 0 0 00 1 0

X310 10 0 0 0
X310 1 0 1|1 0 0 0

P=| xLl0 0 1 0|0 1 0 0 |. (3.16.243)
X450 0 0 110 1 0 0
X0 0 1 0/0 0 1 0
X%|0o 0 0 1]/0 0 1 0
Xu|1 0 0 0/0 0 1 1
X0 1 0 0|0 0 0 1

The F-term charge matrix Qp = ker (P) is

P1 P2 P3 P4 ‘ S1 S22 S3  S4

Qr = ( 1 1.0 0[-1 0 0 -1 ) : (3.16.244)
1 0 1 1{-1 -1 -1 0

The D-term charge matrix is

p1 P2 P3 P4‘81 §2 83 54

0 0 -1 0 0
O = N B (3.16.245)
o 0 0 0|0 O 1 -1

The total charge matrix ); does not have repeated columns. Accordingly, the global
symmetry is U(1)g x U(1)s, x U(1)g. The flavour and R-charges on the GLSM fields

corresponding to extremal points in the toric diagram in Figure [3.32| are found following
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[ oWy [UM)y ] Uk [ fugacity

D1 1 0 Ry =+v13-3 1
P2 1 1 | Ry=(5V13-17)/3 || t2
p3 -1 -1 Ry =4(4—v13)/3 | t3
P4 -1 0 Ry =4(4—V13)/3 | ta

Table 3.52: The GLSM fields corresponding to extremal points of the toric diagram
with their mesonic charges (Model 14). The R-charges are obtained using
a-maximization [13].

the discussion in §3.2.3] They are presented in Table [3.52

The product of all internal perfect matchings is

4
s=]] sm- (3.16.246)

The fugacity counting the above product is ys. The fugacity which counts the remaining
extremal perfect matchings pg, is 4.

The mesonic Hilbert series of Model 14 is found using the Molien integral formula in

[CA57). It is

P(ta)
91 (tas ys; M) = , (3.16.247)
o " (1 —Ys t%t3)(1 —Ys 753753)(1 —Ys t%tél)(l —Ys t%ti)

where the numerator is given by the polynomial

P(to) = 1+4vys titatd +ys titatsts — y2 t3tatdts + ys 33t — y2 21334,
ys titot] — Y2 Bitotst] + ys tatsts — y2 titatsts — Yo titststs — yo titatats .

(3.16.248)
The plethystic logarithm of the mesonic Hilbert series is

PL[g1(ta, ys; MTE®)] = s tita + ys 173 + ys trtatsts + ys trtat] + ys titat]
s tataty + ys tats 4y, titsts +ys tats — y2 titatsts — y2 titatity + ... .
(3.16.249)

Consider the following fugacity map

~1/2,1/2 ty - ~ ~ 1/2,1/2
f=ts P02 =P b= b=y e =1 (316250)

where the fugacities f; and f» count flavour charges, and the fugacity #; count the
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Generator ‘ U(l)y, ‘ U)y, ‘

p%pg s 1 -1
p1p2p3 s 0 -1
P3D3 s -1 -1
p%p4 s 1 0
P1p2p3p4 S 0
P3p3pa 8 -1 0 ¢
p1pap] S 0 1
Papspy S -1 1
p3p} s -1 2

Table 3.53: The generators and lattice of generators of the mesonic moduli space of
Model 14 in terms of GLSM fields with the corresponding flavor charges.
The lattice of generators is the toric diagram of Model 3.

Generator ‘ U)s ‘ Uy, ‘
X113X32X221 = X14Xi2X221 1 -1
X3 X3 X (o X5 = X{3 X320 X3) = X14 X X5, 0 -1
Xig X5a Xjp X3, -1 -1
X123X32X221 = X14X22X221 1 0
X113X34XZ2X221 = X123X34Xi2X221 = X113X32X211 = X%3X32XS1 = X14Xi2X211 = X14XZ2X'231 0 0
X113X34X412X211 = X113X34X22X§1 = X%3X34Xi2X§1 -1 0
X%3X34X22X221 = X123X32X211 = X14X22X211 0 1
X113X34X22X211 = X%3X34Xi2X211 = X123X34X§2X§1 -1 1
X123X34XZ2X211 -1 2

Table 3.54: The generators in terms of bifundamental fields (Model 14).
R-charge R; in Table Accordingly, the plethystic logarithm becomes

N N\ - 1\ - -
PLp oo i MEN] = (54 1) Bt (14 1o+ ) BB
1 1 Jo f22>~2~3 < f1>~3~“3

+ | =+ —+F+= |t — | i+ = ) titats + ... . (3.16.251

(fl hfe A A) PP f) 70 ( )

The first positive terms in the above plethystic logarithm correspond to moduli space
generators with the corresponding flavour charge counted by the fugacities f; and fo.
The generators and the corresponding mesonic charges are shown in Table The
generators can be presented on a charge lattice. The convex polygon formed by the
generators in Table is the dual reflexive polygon of the toric diagram of Model 14.

The mesonic Hilbert series and the plethystic logarithm can be re-expressed in terms
of just 3 fugacities
_ faty to 1 27

= = = =7 T2 = - t1t3 =Y t%tg T3 = f1 t?fg =Y L‘%t4 (3.16.252)
BR - wf TR T it

1
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Figure 3.33: The quiver, toric diagram, and brane tiling of Model 15a.

such that

g1(T1, To, T3; MT°) =
(L+ T3 + TV ToTs — TT5Ts + TET5T5 — TR T + Th Ty — TV T3 + TP LTy

1
—T2T2T2 — T2ToT3 — T3T3T3
P = R = ) Xy (19 (1 Ty (1 — 17)

(3.16.253)

and

PL{g\(Th, To, Ts; M) = Ts + To + VT3 + T T3 + TV T3 + TP T3 Ty + TETS
+ T TS + THTS — TVToTy — ThToT3 + ... . (3.16.254)

The above Hilbert series and plethystic logarithm illustrate the conical structure of the
toric Calabi-Yau 3-fold.

3.17 Model 15: C/Z, (1,1,1,1), F

3.17.1 Model 15 Phase a

The superpotential is

W = +X[,X03X5 X5 + X1pX53X3, X4 — X1 X533 X5, X4y — X1o X093 X3, X7, -
(3.17.255)
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[ [ SU@)a [ SUQR)a [ U(D)g || fugacity

1 1/2 0 1/2 t1
P2 —1/2 0 1/2 t2
p3 0 1/2 1/2 ts
P4 0 —1/2 1/2 t4

Table 3.55: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 15a).

The perfect matching matrix is

P1 P2 P3 Pa|S1 S2 83 84
XHhi1 0 0 0|1 0 0 0
X3 |0 0 0|1 0 0 O
XL,/1 0 0 0l0 1 0 0

P=|xl0o 1 0 0lo 1 0 0 |- (3.17.256)

X0 0 1 0/0 0 1 0
X210 0 0 1[0 0 1 0
XL4]0 0 1 00 0 0 1
X210 0 0 1/0 0 0 1

The F-term charge matrix Qp = ker (P) is

P1 P2 P3 PA‘ 51 82 53 84
Qr=| 1 1 0 0|-1 -1 0 o0 |. (3.17.257)
00 1 1

The D-term charge matrix is

p1 P2 P3 [)4‘81 §2 83 54

0 0 -1 0 0
Qp = NS R (3.17.258)
o 0 0 0|0 O 1 -1

The pairs of GLSM fields {p1,p2} and {p3,ps} have the same charge under the F-
term and D-term constraints. This is shown by the identical columns in the total
charge matrix Q. Accordingly, the global symmetry is enhanced from U(1)? x U(1)g
to SU(1)z, X SU(2)z, X U(1)g. The mesonic charges on the GLSM fields corresponding
to extremal points in the toric diagram in Figure|3.33|are found following the discussion

in They are presented in Table
The product of all internal perfect matchings labelled by

4
s=]] sm- (3.17.259)

The above product is counted by the fugacity ys. All remaining extremal perfect match-
ings p, are counted by the fugacity t,.

The mesonic Hilbert series of Model 15a is calculated using the Molien integral formula
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in (TA.67). It is

P(ta)
g1 (ta, ys; MTES) = , (3.17.260
orst MIS) = G, )0 3 30— v B0y, ) 1)
where the numerator is given by the polynomial
Pta) = 1+ ys titots + ys titsts + ys titalsts + ys tatsts — y2 11551
+ys titat] — yZ titat5t] — yI (568 — yI 03] -yl HeStat] -yl G5
(3.17.261)

The plethystic logarithm of the mesonic Hilbert series is

PL[g1 (ta, ys; M) = ys 133 + ys titot] + ys 1363 + ys Litsts + ys titatsty
+ys tatata + ys 185 + ys titat] + ys 315 — y3 115t — y? titatity
—2 Y2 Gt5t5ta — y7 titdtits — yl 1515 — 2 Y7 ttatit] — 4 7 1151585
—2 yZ titstaty — Y totsty — y titotsty — 2 Y2 it3tsts — vl titotst]

—2 B+ (3.17.262)

From the infinite plethystic logarithm one concludes that the moduli space is not a
complete intersection.

Consider the following fugacity map

t ¢
FH=x1= é , Ty =g = i L=yt e (3.17.263)

where x1, o and t are mesonic charge fugacities. In terms of Z; and Zo both the Hilbert
series and the plethystic logarithm can be expressed in terms of characters of irreducible
representations of SU(2) x SU(2). The Taylor expansion of the Hilbert series takes the

form
(o]
gut, E1, B MIES) =) (205 20z, 2, £ (3.17.264)
n=0

The plethystic logarithm in terms of characters of irreducible representations of SU(2) x
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’ Generator ‘ SU(2)s, ‘ SU(2)z, ‘

Pip3 s 1 1 O @ O
p1p2p3 s 0 1
P3P s -1 1
p%p3p4 S 1 0 ¢ ® )
P1DP2P3P4 S 0 0
P3pspa S -1 0
pipi s 1 -1
p1pop] s 0 -1 . O .
P3P s -1 -1

Table 3.56: The generators and lattice of generators of the mesonic moduli space of
Model 15a in terms of GLSM fields with the corresponding flavor charges.

SU(2) is

PL[gi(t, &1, &2; MT35)] = 1220z ,5t" — (14 45002, + [25 2]z0,20 + (05 4)1,2,)1°
+(2;0]z,,2, + [45 021,20 + [0 27,30 + 2[25 2]3,,20 + [45 271,50 + (05423,
+[24)z,,2,)t" — (4]2; 01z, 50 + [4: 012, 5 + 6502, 5 + 4[0; 2]z, 50 + 525 27, 2,
+4[4; 2]z, 75 + [6;2)2,,25 + [054]7, 25 +41254]7, 25 + [454]21,20 + [0;6]z, 2,

125 6]5,.5,)t 0 4+ ... (3.17.265)

In terms of the fugacities x1 and xo the above plethystic logarithm exhibits the moduli
space generators with their mesonic charges, where the flavour charges as powers of x1
and o take integer values. They are summarized in Table The generators can
be presented on a charge lattice. The generators form a convex polygon on the charge
lattice which is the dual of the toric diagram of Model 15a.

As indicated in (3.17.265)), the generators fall into an irreducible representation of
SU(2) x SU(2) with the character

1 1
2; 2], 2ot = (@% +1+ ~2> (a;% +14 ~2> . (3.17.266)
7 Lo

The generators in terms of quiver fields are shown in Table [3.57

By introducing the fugacity map

4
T) =

=y 22 Th=a1 = — , Ty =29 = — 3.17.267
.'E]_SUQ yS 2v4 2 1 t2 9 3 1172 t4 9 ( )
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‘ Generator ‘ SU(2) 4, ‘ SU(2)g, ‘
Xip X3 X5, X1y 1 1
X112X213X§4Xi1 = X122X213X§4Xi1 0 1
Xy X3 X5, X4y -1 1
X112X213X§4X21 = X112X223X§4Xi1 1 0
X112X213X§4XZ1 = X112X223X§4X411 = X122X213X§4X421 = X122X223X§4X411 0 0
X122X213X324X21 = X122X223X§4Xi1 -1 0
XipX33X5, X3 1 -1
X112X223X§4X31 = X122X223X§4X421 0 -1
Xy X33X5, X3 -1 -1

Table 3.57: The generators in terms of bifundamental fields (Model 15a).

Figure 3.34: The quiver, toric diagram, and brane tiling of Model 15b. The red arrows
in the quiver indicate all possible connections between blocks of nodes.

the mesonic Hilbert series can be expressed as

g1 (T1, To, Tsy M) = (1 + TV T + T Ts + ThT5 15 + T T + TV o T5
—(TETSTE + TEToTs + TETSTS + TET5 Ts + TETSTS) — TPTSTS) x

1
(1-T)(1-TTFH(1-TTF(A - T1T3T3)

(3.17.268)

The corresponding plethystic logarithm has the form

PL[gy(T1, Ty, T3; MTEH] = TYTET? + TyToTi + ThT2 + Ty T5Ts + Ty T T3 + T1 T
+TVTE + T Ty + Ty — T2Ty — TETSTS + ... . (3.17.269)

The above Hilbert series and plethystic logarithm are in terms of three fugacities which
carry only positive powers. This illustrates the conical structure of the toric Calabi-Yau
3-fold.

218



3.17.2 Model 15 Phase b

The superpotential is

W = +X3 X1, Xpp+ X5 X7 X5 + X33 X5, X5 + X33 X3, X0y
— X X7y X5y — X5 X1, X — X3 X3, X5y — X5, X3, X5 . (3.17.270)

The perfect matching matrix is

P1 P2 D3 P4 |S1 S2 S3 S4 Sp
X4,/1 0 1 00 0 1 0 0
X0 11 00 0 1 0 0
XbHh|!1 0 0 1/0 0 1 0 0
XL10 1 0 1|0 0 1 0 0
X411 0 0 0|1 0 0 1 0
P=|x3(0 1 0 0|1 0 0 1 0 (3.17.271)
X411 0 0 0|0 1 0 1 0
X400 1. 0 0/0 1 0 1 0
X410 0 1 0|1 0 0 0 1
XLl0 0 0 1|1 0 0 0 1
XL,10 0 1 00 1 0 0 1
X410 0 0 1|0 1 0 0 1
The F-term charge matrix Qp = ker (P) is
P1 P2 P3 P4 ‘ S1 82 83 S4 Sp
|11 0 0|0 0 -1 -1 0 3.17.272
@ =19 01 1]oo0 -1 0 1| (3.17.272)
00 0 0 1 0 -1 -1
The D-term charge matrix is
P1 P2 p3 P4 ‘ S1 S22 S3 S4 S
00 0|0 1 -1 0 0
Qp = : (3.17.273)
00 0/0 0 1 -1 0

o 0 0 0j0 0 0 1 -1

The total charge matrix (); exhibits two pairs of identical columns. Accordingly, the
global symmetry is enhanced to SU(2),;, X SU(2)z, X U(1)gr. The mesonic charges
on extremal perfect matchings are found following the discussion in They are
identical to the ones for Model 15a and are presented in Table [3.55

The product of all internal perfect matchings is expressed as

5
s=]] sm- (3.17.274)

The fugacity which counts the above product is ys. The fugacity which counts the
remaining extremal perfect matchings p,, is tq.

The mesonic Hilbert series for Model 15b is found using the Molien integral formula
in . The mesonic Hilbert series of Model 15b is identical to the one for Model
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Generator ‘ SU(2), ‘ SU(2>12 ‘

X114X52X%1 = X%:sX:?.iXZz L 1
X114X§2X%1 = X124X4T2X2§1 = X§3X§4X%2 = X§3X§4sz 0 1
KpXedn =Xl L, ! !
A A N - B XT XXX, — X0 - XA XL XL - X2 xAxL | o 0
X114X4izX§| = X124X.;132X22| = X114X2§2X'_z§1 = X|24X412X€1 = X3 X34 X = X3 X5, Xipp = X5 X354 Xy = X55 X5, X0 0 0
X«IfXﬁQX%I = X%4X%2Xi1 = X3 X34 Xip = X53X3, X o -1 0
MeXaXa=tpduXe . i : !
X;Z4X%2X%1 = X114Xzi2X211 = X3 X34 Xip = Xo3 X35y Xp 0 -1
XX X5y = X3 X354 Xy -1 -1

Table 3.58: The generators in terms of bifundamental fields (Model 15b).

P1

Figure 3.35: The quiver, toric diagram, and brane tiling of Model 16.

15a in (3.17.260)).

The moduli space generators in terms of perfect matchings of Model 15b are shown
in Table In terms of quiver fields of Model 15b, they are presented in Table

The lattice of generators is a reflexive polygon and the dual of the toric diagram.

3.18 Model 16: C3/Z; (1,1,1), dPy

The superpotential is

W = +X[,X3:X5 + X15 X33 X5) + X5 X33 X3,
—X1h X33 X531 — X5 X533 X5 — X1o X5 X5, (3.18.275)

The perfect matching matrix is

P1 P2 P3| S1 S2 83
Xh11 0 0|1 0 0
X311 0 0|0 1 0
Xh|1 0 0|0 0 1
XL|0o 1 0|1 0 0

P= L2 (3.18.276)
X310 1 0|0 1 0
X%2/0 1 0|0 0 1
X%l0 0 1|1 0 0
XH10 0 1/0 1 0
Xs10 0 110 0 1
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’ H SU(3) (21,20) ‘ Ul)r H fugacity

pr || (-1/3, -1/3) 2/3 t1
p2 || (+2/3, -1/3) 2/3 tg
ps || (173, +2/3) | 2/3 s

Table 3.59: The GLSM fields corresponding to extremal points of the toric diagram with
their mesonic charges (Model 16).

The F-term charge matrix Qr = ker (P) is

O (pll p12 pf i11 i 4’?1> ‘ (3.18.277)

The D-term charge matrix is

p1 P2 P3 ‘ s1 82 53
Qp=| 0 0 0|1 -1 0 |. (3.18.278)
00 0[0 1 -1

One observes that the GLSM fields corresponding to the extremal points of the toric
diagram in Figure are equally charged under the F- and D-term constraints. This
is shown by three identical columns of the total charge matrix ;. This leads to the

enhancement of the global symmetry from U(1)3 to SU(3) y X U(1)Rr. Accordingly,

(w1,22
the mesonic charges on the GLSM fields corresponding to extremal points in the toric di-
agram in Figure|3.35|can be found following the discussion in §3.2.3} They are presented
in Table 3.591

The product of all internal perfect matchings expressed as

3
s= ] sm- (3.18.279)

m=1

The above product is counted by the fugacity ys. The remaining extremal perfect
matchings p, are counted by t.

The mesonic Hilbert series of Model 16 is calculated using the Molien integral formula

in (T.4.67). It is
g1(ta, ys; MTE)
1+ ys thty + ys 1113 + ys tots + ys titats + ys tats + ys 113 + ys tots + y2 31343
(1 —Ys tzlj))(l —Ys tg)(l —Ys t%)

(3.18.280)

221



The plethystic logarithm of the mesonic Hilbert series is

PLIg1 (ta, ys; MTE")] = ys £ + ys t1ta + ys t1t5 + Y 15 + s tits + ys tatats
+ys B3ts + ys 1113 + s tot3 +ya £5 — 2 £113 — y2 155 — o2 1165
—y? titats — 2 7 315t — 2 yZ Bithts — y? titats — yl 15 — 2 y? titat3
=3z 1315 — 2 yF ttdts — yl 6565 — uF 4165 — 2 2 titatd — 2y L5 — u 6343
—y2 243 — 2 titats — 2 3t 4. . (3.18.281)

Consider the following fugacity map

to t3 13 /3,173,173 (3.18.282)

tl’ tl’ Ys 1 2 3 )

where z1, 9 and ¢ count the mesonic charges. The fugacities z1 and xo with their powers

being integers count integer flavour charges. With a further redefinition of fugacities,

= by T 18.2
T = w , Lo = 2/3 (3 8. 83)
Ty T Lo

the Hilbert series and plethystic logarithm can be expressed in terms of characters of

irreducible representations of SU(3). The expansion of the Hilbert series takes the form

o
gty B1, By MTE) = [30, 0]z, ) £ - (3.18.284)
n=0

The plethystic logarithm is

PL[gl(t Z1,%2; e )] [3 O] (21 12) - [2 2](5:1 ig)tG + ([1 1](:51 Z2) + []' 4](5:1,152)

+2[2, 2](11,52) + [2, 5](@1,52) +2[3, 0](21,22) +2[3, 3](:21,:22) + 2[4, 1](51@2)
+[5, 2]z ,50) )t (3.18.285)

In terms of fugacities 1 and x5 the above plethystic logarithm exhibits the moduli space
generators with their integer flavour charges and R-charges. They are summarized
in Table 3.60] The generators can be presented on a charge lattice. The lattice of
generators is the dual polygon of the toric diagram. As indicated in , the

generators fall into an irreduciable representation of SU(3) with the character being

~2 ~2 1 1
3 3
[3,0] (2,20t —<$1+x1$2+2+x1—|—1+ 3+~%+—1+x12+ 3>t

(3.18.286)
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Generator | SU(3)

(z1,22)

p? $ ('17 '1)

p%pQ S (O7 '1)

plp% S (1’ '1)

pg § (2’ ‘1)

Pips s (-1, 0)

P1p2p3 S (0, 0) °
p%pg S (1’ 0)

pip3 S (-1, 1)

paps s (0, 1) ®
pg S ('17 2)

Table 3.60: The generators and lattice of generators of the mesonic moduli space of
Model 16 in terms of GLSM fields with the corresponding flavor charges.

‘ Generator | SU(3)(z1,z2) ‘
XihXps X5 (-1, -1)
X112X213X§1 = X%2X213X§1 = X§2X223X§1 (0, -1)
X112X213X§1 = X112X223X§1 = X§2X223X§1 (1, -1
Xip X5, X3 (2, -1)
X122X213X§1 = X%2X213X§1 = X%2X§3X§1 . (-1, 0)
X112X213X§1 = X112X§3X§1 = X122X213X§1 = X122X223X§1 = X§2X223X§1 = X§2X§3X§1 (0, 0)
X112X223X§1 = X112X§3X§1 = X122X223X§1 (1, 0)
X122X213X§1 = X122X§3X§1 = X§2X§3X§1 (-1, 1)
X112X§3X§1 = X122X223X§1 = X122X§3X§1 (0, 1)
X X3 X5 (-1, 2)

Table 3.61: The generators in terms of bifundamental fields (Model 16).

The generators of the mesonic moduli space in terms of quiver fields of Model 16 are
shown in Table [3.611

With the fugacity map

x2/3t x2/3t
Ti= 55 =", To= "5 =5t Ts= 25 =y, (3.18.287)
Ty Ty ZTq x

the mesonic Hilbert series becomes

g1(Th, Tz, T3; M) =
1+ TP + ThT5 + TP + T To T3 4+ T5T3 + Th T3 + ToT3 + TET3 T3
(1-T79)(1 - 13)(1 - TF) ’
(3.18.288)
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with the plethystic logarithm becoming

PL{gi(Ty, To, Ts; MTES)] = T2 + TPy + ThTE + Ty + TPTs + TiToTs + T3 Ts
VTS + ToT2 + T3 — T2 — T3TS — TATY — T Ts — 2 T3T3Ts — 2 THTSTy
—T\TyT3 — TS — 2 T3 TS — 3 T2T3TE — 2 TVTST2 — TyTy — TT3
2 TETLTS — 2 VTETS — T3T3 — Ty — TV Ty — T3T4 + ... . (3.18.289)

The above Hilbert series and plethystic logarithm are in terms of three fugacities with

positive powers. This illustrates the conical structure of the toric Calabi-Yau 3-fold.

3.19 Seiberg Duality Trees

The above sections have identified all 30 supersymmetric gauge theories with brane
tilings corresponding to the 16 reflexive polygons. 8 reflexive polygons are associated to
multiple quiver gauge theories as summarized in Figure [3.36] These are called phases
of the corresponding toric variety. For a given toric variety, the phases are so called
toric (Seiberg) dual and are related under toric (Seiberg) duality as discussed in section
Multiple toric duality actions on various U(n) gauge groups corresponding to
4-sided faces in the brane tiling create closed orbits among the phases.

In Figure to Figure a summary of the orbits presented as duality trees is
shown, where nodes represent the brane tiling of the phase, and arrows are labelled with
the index of the gauge group on which one acts under toric (Seiberg) duality to obtain

the phase at the head of the arrow.
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Figure 3.36: Toric Diagrams of toric (Seiberg) dual phases of quiver gauge theories with
brane tilings. The label (G|n, : ni|n,) is used, where G, np, n; and n,, are
the number of U(n) gauge groups, GLSM fields with non-zero R-charge,
internal toric points and superpotential terms respectively.
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2,4,5,6

25

The duality tree for Li31/Zo with orbifold action (0,1,1,1) [Model 3].

Figure 3.37:

(8let - vl8)

3,7

1,3,5,7

~
0
“
-

(0,1,1,0)(1,0,0,1)

Figure 3.38: The duality tree for C/Zs X Zo with orbifold action

[Model 4].
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Figure 3.39: The duality tree for PdP4, [Model 6].

1,2,3,4

(011 : 719)

1,4

Figure 3.40: The duality tree for SPP/Zy with orbifold action (0,1,1,1) [Model 8].

(

otls

gl9)

3,6

tree for PdPg(;) [Model 9].

Figure 3.41: The duality
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Figure 3.42: The duality tree for dP3 [Model 10].

(44 : 5/8)

Figure 3.43: The duality tree for dPy [Model 12].

(4]4 : 4]4)
(44 : 5[8)

Figure 3.44: The duality tree for C/Zy with orbifold action (1,1,1,1) or the cone over
Fy [Model 15].
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3.20 Specular Duality and Conclusions

The work above uses the 16 reflexive polygons in Figure as toric diagrams of Calabi-
Yau moduli spaces of 3 + 1 dimensional N/ = 1 supersymmetric gauge theories. These
quiver gauge theories are represented by brane tilings. A natural question to ask from
this setup is to identify all brane tilings corresponding to the 16 reflexive polygons. Mo-
tivated by this line of thought, the following comprehensive results have been presented

in this chapter:

e There are exactly 30 brane tilings encoding supersymmetric quiver gauge theories
whose mesonic moduli spaces are represented by reflexive polygons. All gauge
theories are related by a cascade of Higgs mechanisms. In addition, toric (Seiberg)

duality maps multiple gauge theories to the same reflexive polygon.

e The generating function of mesonic gauge invariant operators known as the mesonic
Hilbert series is computed using the Molien integral formula for each of the 30
quiver theories. Fugacities of the Hilbert series are related both to perfect match-
ings and hence points in the toric diagram as well as charges under the global
symmetry of the gauge theory. Hilbert series of toric dual phases have been

shown to be identical.

e The generators of the mesonic moduli space of all 30 quiver gauge theories have
been found both in terms of chiral fields of the gauge theory as well as the perfect

matchings of the brane tiling.

e The mesonic charges on the moduli space generators have been found such that
they form for each generator a point on Z2. The convex hull of all such points
is a reflexive polygon. For all 30 quiver gauge theories, these reflexive polygons

known as lattice of generators are exactly the polar duals to the toric diagrams.

The above observations made by classifying all brane tilings corresponding to reflexive
polygons lead to a comprehensive overview of a special set of quiver gauge theories.
This overview is the precursor to a discovery of a new duality of quiver gauge theories.
This specular duality is best observed in the context of toric diagrams with points
labelled by perfect matchings of the brane tiling. Recall that extremal perfect matchings
correspond to the corner points coloured black in the toric diagrams in Figure [3.2]
whereas internal perfect matchings are points lying strictly within the perimeter of
the polygon. External perfect matchings are all points on the perimeter of the polygon
including the extremal ones. All except extremal perfect matchings correspond to GLSM
fields with zero R-charge.

The new duality we propose exchanges the internal perfect matchings with the exter-

nal perfect matchings. For the set of brane tilings corresponding to reflexive polygons,
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the duality map is unique by forming duality pairs between models as follows

11
2 4d, 3a <+ 4c, 3b+~ 3b, 4da < 4a , 4b < 4b
5 ¢ 6c, 6a <> 6a , 6b < 6b
74> 10d , 8a <> 10c, 8b <> 9c, 9a <> 100, 9b <> 9b, 10a <> 10a
11 ¢ 12b, 12a < 12a
13+ 150, 14 < 14, 15a < 15a
16 < 16 (3.20.290)

For instance, the dual pair 13 < 156 in Figure is exact under the indicated swap
between external and internal perfect matchings.
Si = Pi
P1,2,3 > S1,2;3

13 Q1,2 77 545 15b

{a1. 42}
P4 P2 4

Pi = S
P2 51,2,3 > D1,2,3 P

S45 > (1,2

Figure 3.45: Specular duality between Model 13 (C3/Z4(1,1,2)) and Model 15b (Fy,
phase b). The exchange of internal and external perfect matchings map

between the two models.

Accordingly, specular duality maps between brane tilings whose corresponding quiver
gauge theories have different mesonic moduli spaces. In the following chapter, which is
an edited version of [7], it is illustrated how specular duality maps not the mesonic mod-
uli spaces but the master spaces |71} [73} [75, I8, [72] [74] of the dual pairs in (3.20.290).
The master space is the complete moduli space including both the mesonic and bary-
onic branches. It is shown that the master spaces of the dual pairs in (3.20.290) are
tdentical under a translation of fields given by the mapping of perfect matchings of the
corresponding brane tilings. Further study of this duality is of great interest and some

interpretations are given in chapter
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4 Brane Tilings and Specular Duality

In the previous chapter, we have classified all 30 brane tilings whose mesonic moduli
space is a toric Calabi-Yau 3-fold with a reflexive toric diagram. The classification not
only gave us a full understanding about the relationship between reflexive toric diagrams
and lattice of mesonic generators for the brane tilings, but also led to the discovery of
a new correspondence which we call specular duality. The new correspondence relates
brane tilings with the same master spaces and is a direct result of the classification we
have made based on reflexive polygons. This is a classic example of how classification
of brane tilings can lead to a new discovery.

Furthermore, brane tiling classification highlights the viewpoint that supersymmetric
theories should be handled as ensembles rather than one by one. We have already
encountered ensembles of brane tilings as toric duality trees in the previous chapter
in section More tree diagrams will be given in this chapter to illustrate the
relationship between brane tilings under toric duality, higgsing/unhiggsing and specular
duality.

In the following chapter, we study specular duality by computing the refined Hilbert
series of the master space of brane tilings with reflexive toric diagrams. The Hilbert
series encodes the generators and defining relations of the combined mesonic and bary-
onic moduli space. The study of specular duality leads us to a new discovery of a class
of yet unexplored supersymmetric quiver theories. The chapter is an edited version of

[7] which is a publication in collaboration with Amihay Hanany.

4.1 Introduction

Dualities have vastly contributed towards a better understanding of string theory and
beyond. A particular example is mirror symmetry [186} 148, 187, 149] 150l 151 152,
153], 154] which identifies two Type II superstring theories compactified on Calabi-Yau
3-folds whose Hodge numbers are swapped. A similar example, although only true at
low energies, is toric (Seiberg) duality [34, 02, [14) [33] [36] 181, 182]. It relates brane
tilings with the same mesonic moduli space.

The rich combinatorial structure of brane tilings led recently to new insights beyond
toric duality. For instance, certain toric diagrams have a single interior point and exhibit

the special property of appearing in polar dual pairs [167, 168, 169] 170, T71, 172]. They
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Figure 4.1: The three dualities for Brane Tilings with Reflexive Toric Diagrams. The
arrows indicate toric duality (red), specular duality (blue), and reflexive
duality (green) which is discussed in [5]. The black nodes of the duality
tree represent distinct brane tilings, where the labels are taken from [5] and

Figure

are called reflexive toric diagrams and relate to a correspondence between brane tilings
which was studied in [5]. Given brane tilings A and B whose reflexive toric diagrams
are a dual pair, the toric diagram of brane tiling A is the lattice of generators of the

mesonic moduli space of brane tiling B, and vice versa. We call this correspondence
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reflexive duality.

In the following, we discuss a new correspondence that was named in [5] specular
duality. It identifies brane tilings which have isomorphic combined mesonic and bary-
onic moduli spaces, also known as master spaces F°. The following scenarios of brane

tilings apply to this new duality:
1. Dual brane tilings A and B are both on T2. They have reflexive toric diagrams.

2. Brane tiling A is on 72 and dual brane tiling B is not on 72. Brane tiling A has

a toric diagram which is not reflexive.
3. Both brane tilings A and B are not on 72.

For brane tilings with reflexive toric diagrams, specular duality manifests itself not

only as an isomorphism between master spaces. The additional properties are:

e The external/internal perfect matchings of brane tiling A are the internal /external

perfect matchings of brane tiling B.

e The mesonic flavour symmetries of brane tiling A are the hidden or anomalous

baryonic symmetries of brane tiling B, and vice versa.

The following work studies specular duality restricted to brane tilings with reflexive
toric diagrams. The Hilbert series of F > is computed explicitly to illustrate its invariance
under the new correspondence. The swap between external and internal perfect match-
ings, and mesonic and baryonic symmetries is explained. Moreover, we illustrate that
specular duality is a reflection of the Calabi-Yau cone of F” along a hyperplane. The
properties of specular duality apply to all 30 brane tilings with reflexive toric diagrams
in [5].

The new correspondence extends beyond brane tilings with reflexive toric diagrams.
Accordingly, specular duality can lead to brane tilings on spheres or Riemann surfaces
with genus g > 2. These have no known AdS dual and have mesonic moduli spaces which
are not necessarily Calabi-Yau 3-folds [54] (188, 89]. Their quiver and superpotential
however admit a master space which can be traced back to a brane tiling on 72.

Specular duality for brane tilings that are not on 7 may lead to new insights into
quiver gauge theories and Calabi-Yau moduli spaces. The work concludes with this
observation and highlights the importance of future studies as well as the initial study
in chapter

The chapter is divided into the following sections. Section §4.2| begins with a short
review on toric duality and compares its properties with the characteristics of specular
duality. The new correspondence between brane tilings is explained in terms of the
untwisting map [83), 81, 88] and modified shivers [52] 189, [64]. Section studies and
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summarises the transformation of the brane tiling, the exchange of perfect matchings,
and the swap of mesonic and baryonic symmetries under specular duality. The conclud-
ing section gives a short introduction on how specular duality relates brane tilings on

T? with tilings on spheres and Riemann surfaces of genus g > 2.

4.2 An introduction to Specular Duality

The following section reviews the summary on toric duality for brane tilings in section
J1.6.2] and compares it with specular duality. The section illustrates how the new cor-
respondence is related to the untwisting map [83], 8], 88] and the shiver [52] [189] [64].

We focus on the 30 brane tilings with reflexive toric diagrams.

4.2.1 Toric Duality and Specular Duality

Toric Duality. Two 4d quiver gauge theories with brane tilings are called toric dual
[34, 92], 14 B3], [36], 1811 [182] if in the UV they have different Lagrangians with a different
field content and superpotential, but flow to the same universality class in the IR.

Let us summarise the properties of toric duality for brane tilings:

e The mesonic moduli spaces M™€ are the same, but the master spaces "™ F? are

not [73]. The mesonic Hilbert series are the same up to a fugacity map.

e The toric diagrams of M™¢ are GL(2,7) equivalent. However, multiplicities of

internal toric points with zero R-charge can differ.

e The number of gauge groups G remains constant.

Specular Duality. The new correspondence has the following properties for dual brane

tilings:
o ' FP are isomorphi and the Hilbert series are the same up to a fugacity map.
e Except for self-dual cases, M are not the same.
e The number of gauge groups G remains invariant.

e The number of matter fields F remains invariant.

'Note: The master space here is the complete moduli space for one brane. Specular duality extends to
the full master space fb, not just its largest irreducible component It 72 We restrict the discussion
here to ' F”.
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’ d ‘ Number of Polytopes
1 1
2 16
3 4319
4 473800776

Table 4.1: Counting Reflexive Polytopes. Number of distinct reflexive lattice polytopes
in dimension d < 4. The number of polytopes forms a sequence which has
the OEIS identifier A090045.

There are 16 reflexive toric diagrams. They are summarized in Figure [5] and
relate to 30 brane tilings. Specular duality exhibits additional properties for this set of

brane tilings:

e Internal/external perfect matchings of brane tiling A become external/internal

perfect matchings of the dual brane tiling B.

e The mesonic flavour symmetries of brane tiling A become the anomalous or en-

hanced hidden baryonic symmetries of brane tiling B.

As for toric duality, the properties of specular duality apply to the IR moduli spaces of
brane tilings.

As noted above, specular duality exhibits additional properties for brane tilings with
reflexive toric diagrams. Many of the 30 brane tilings which correspond to the 16
reflexive polygons are toric duals [5]. The properties of specular duality have been
checked for all of the 30 brane tilings with reflexive toric diagrams.

Reflexive polytopes have the following properties:

e A reflexive polytope is a convex Z¢ lattice polytope whose unique interior point
is the origin (0,...,0).

e A dual (polar) polytope exists for every reflexive polytope A. The dual A° is
another lattice polytope with points

A° = {v° e Z%| (v°,v) > -1 Vv € A} (4.2.1)

A° is another reflexive polytope. There are self-dual polytopes, A = AOEI

e A classification of reflexive polytopes [168, 169, [170] is available for the di-
mensions d < 4 as shown in Table

2Note that this duality between reflexive polytopes does not correspond to specular duality.
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Figure 4.2: Toric and Specular Duality. These are the duality trees of brane tilings
(nodes) with reflexive toric diagrams. The brane tiling labels are taken
from [5] and Figure Arrows indicate toric duality (red) and specular
duality (blue).

O—0—"0

Specular duality preserves the reflexivity of the toric diagram and the set of 30 brane
tilings in Figure

11
2 4d, 3a <> 4c, 3b+~ 3b, 4da < 4a , 4b < 4b
5 < 6¢, 6a <> 6a , 6b <> 6b
74> 10d , 8a <> 10c, 8b <> 9c, 9a <> 100, 9b <> 9b , 10a <> 10a
11 < 12b, 12a < 12a
13+ 150, 14 < 14, 15a < 15a
16 <> 16 . (4.2.2)

All brane tilings with reflexive toric diagrams have specular duals as illustrated in Fig-
ure The figure illustrates that dual pairs are related by a swap of internal and

external perfect matchings.

Self-dual Brane Tilings. Certain brane tilings with reflexive toric diagrams are self-

dual. These are:
1,3b,4a, 4b, 6a, 6b, 95, 10a, 12a, 14, 15a, 16, (4.2.3)

which are summarized in Figure [£.4 The toric diagram and brane tiling are invariant

under specular duality.
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(21,21)

3b (14,14) 4a (12,12) 4b (12,12)

2 2
ot ot
2 12 |2 2 12 |2
Q—0—0 O—0—0
ot ot
6a 9,9 6b 9,9)
9b (7,7 10a (6, 6)
12a (5,5)

14 (4,4) 15a (4,4)

16 (3,3)

»

3 3§ 4 J 5 §J 6 § 7 J 8 J 9 |
v !
&

Figure 4.4: Self-duals under Specular Duality. These are the 12 reflexive toric diagrams
which have self-dual brane tilings. The models are labelled with (n;,n.),
where n; and n. are the number of internal and external perfect matchings
respectively.

4.2.2 Specular Duality and ‘Fixing’ Shivers

As illustrated in Section §4.2.1] toric duality has a natural interpretation on the brane
tiling. The following section identifies the interpretation of specular duality on the brane
tiling.

A toric singularity has an associated characteristic polynomial, also known as the
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Newton polynomial,

P(w,z) = Z Any W 2" (4.2.4)
(n1,n2)€A

where the sum runs over all points in the toric diagram, and ay, », is a complex number.

The geometric description of the mirror manifold [190] 191, [83] is

Y = P(w>),
Y = wv, (4.2.5)

where w,z € C* and u,v € C. The curve P(w,z) — Y = 0 describes a punctured

Riemann surface Xy with
e the genus g corresponding to the number I of internal toric points
e the number of punctures corresponding to the number E of external toric points.

The Riemann surface is fibered over each point in Y. Of particular interest to us is the
Riemann surface ¥ fibered over the origin Y = 0. It is related to the brane tiling on 72
under the untwisting map ¢, [83] 81l [8§].

A brane tiling consists of zig-zag paths n; [105, [16]. These are collections of edges
in the tiling that form closed non-trivial paths on 72. Zig-zag paths maximally turn left
at a black node and then maximally turn right at the next adjacent white node. The
winding numbers (p, q) of zig-zag paths relate to the Z? direction of the corresponding
leg in the (p, ¢)-web [107]. The dual of the (p, g)-web is the toric diagram. By thickening
the (p, ¢)-web, one obtains the punctured Riemann surface X.

The untwisting map ¢,, has the following action on the brane tiling:

Oy - brane tiling on 72 — shiver on %
zig-zag path n; +— puncture ;
face/gauge group U(N), +— zig-zag path 7,
node/term wy, by +— node/term wy, by
edge/field Xo, — edge/field X;; , (4.2.6)

where a,b count U(N) gauge groups/brane tiling faces, i, j count zig-zag paths on the
original brane tiling on T2, and 7j, are zig-zag paths of the shiver on ¥. An illustration
of the untwisting map is in Figure

The untwisted brane tiling on ¥ is known as a shiver [52] [I89] 64]. It is not associated
to a quiver, a superpotential and a field theory moduli space, and therefore can be

interpreted as a ‘pseudo-brane tiling’ on a punctured Riemann surface. An interesting
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shiver on X
puncture 7y;
zig-zag path 7,
node/term wy, by

edge/field X;;

brane tiling on 72
zig-zag path n;
face/gauge group U(N),
node/term wy, by

edge/field X,

U

U(n)g X Vi
i
"O—F—@® O o
nj i )
! U(n)p W X%

Figure 4.5: The Untwisting Map ¢,. The untwisting map relates a brane tiling on 72
to a shiver on a punctured Riemann surface X.

question to ask at this point is whether a shiver can be ‘fixed’ by a map ¢ such that
it becomes a consistent brane tiling.

The main obstructions are the punctures of ¥ which have no interpretation in the
quiver gauge theory context. Let the punctures therefore be identified with U(N) gauge

groups under the following definition of the shiver fixing map:

oy - shiver on ¥ — brane tiling on X

puncture v; +— face/gauge group U(N); , (4.2.7)

with the zig-zag paths 7),, nodes w;, and b, and edges X;; on the shiver remaining
invariant.
Accordingly, using the shiver fixing map ¢, and the untwisting map ¢,, specular

duality on brane tilings can be defined as follows

Gspecular = Pf © Py brane tiling A on 72 — brane tiling B on ¥
zig-zag path n; +— face/gauge group U(N);
face/gauge group U(N), + zig-zag path 7,
node/term wy, br +— node/term wy, by
edge/field Xo, +— edge/field X;; , (4.2.8)

where @gpecular is invertible. A graphical illustration of ¢gpecular is in Figure

For a brane tiling to have a Calabi-Yau 3-fold as its mesonic moduli space and to
have a known AdS dual [54] [188], [89], it needs to be on T?2. Brane tilings with reflexive
toric diagrams have a specular dual which is always on ¥ = T2. This is because, as we

recall, reflexive toric diagrams always have by definition I = 1 and their (p, ¢)-web has
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brane tiling A on 72 o shiver on ¥ k2t brane tiling B on ¥
zig-zag path n; — puncture 7; — face/gauge group U(N);
face/gauge group U(N), — zig-zag path 7, — zig-zag path 7,
node/term wy, by — node/term wy, by — node/term wy, by
edge/field X, — edge/field Xj; — edge/field Xj;
U(”)a ‘ﬁu X7 U(n)z i
>
i
Wy by wi C >< . b, Wy by
nj i i <& b Tia
= +— =
o U(n)y D X i o 13 U(n),;

Figure 4.6: Specular Duality on a Brane Tiling. The map ¢specular = @ © ¢, Which
defines specular duality first untwists a brane tiling and then replaces punc-
tures with U (V) gauge groups.

(a)

Pspecular
3

b o

Figure 4.7: Untwisting the Superpotential. There are two equivalent ways of untwisting
the brane tiling. The order of fields around either a white (clockwise) or
black (anti-clockwise) node in the brane tiling is reversed under the untwist-
ing. Either way results in the same brane tiling.

therefore always genus g = 1.

Invariance of the master space '* F*. Specular duality has an important effect on a

brane tiling’s superpotential W which can be demonstrated with the following example
W=---+ABC — ADE + ... , (4.2.9)

where A,...,E are quiver ﬁeldsﬂ The corresponding nodes in the brane tiling are
illustrated along with zig-zag paths in the left panel of Figure
Specular duality untwists the brane tiling in such a way that the order of quiver fields

around either white (clockwise) nodes or black (anti-clockwise) nodes is reversed. For

3There is an overall trace in the superpotential which is not written down for simplicity.
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the example in , the superpotential of the dual brane tiling has either the form
Wa =-+ACB - ADE + ... (4.2.10)
or the form
Wy =++ABC - AED + ... (4.2.11)

as illustrated in the right panel of Figure [£.7] The options of reversing the orientation
around white nodes or black nodes are equivalent up to an overall swap of node colours.

For the case of single D3 brane theories with U(1) gauge groups, the fields commute
such that

The U(1) superpotential is invariant under specular duality. Since the master space
It 75 i5 defined in terms of F-terms, the observation in (4.2.12)) implies that it is invari-

ant under specular duality.

No specific Quiver from an Abelian W. In order to show that the master spaces
of dual one brane theories are isomorphic, it is sufficient to illustrate that the super-
potentials are the same when the quiver fields commute. However, it is important to
note that if the cyclic order of fields in a given superpotential is not recorded, its corre-
spondence to a specific quiver and hence a brane tiling is not unique. A simple example
would be the Abelian potential for C3 or the conifold C which is W = 0. In contrast
to the distinct non-Abelian superpotentials, the trivial Abelian superpotential for these
models encodes no information about the field content of the associated brane tilings.

Since specular duality is a well defined map between brane tilings, not just between
Abelian superpotentials, we study in the following sections the new correspondence with
the help of characteristics of the mesonic moduli space. An important observation is that
specular duality exchanges internal and external perfect matchings for brane tilings with
reflexive toric diagrams. The difference between internal and external perfect matchings
is a property of the mesonic moduli space and its toric diagram.

Perfect matchings as GLSM fields are used for the symplectic quotient description of
It 79 Since perfect matchings represent a choice of coordinates to identify the master
space cone, one is free to introduce a new set of coordinates that correspond to the
global symmetry of the field theory. In the following sections, we identify coordinate
transformations that relate the exchange of internal and external perfect matchings to
the exchange of mesonic flavour symmetries and hidden or anomalous baryonic symme-

tries. Moreover, one can find a third set of coordinates which relate to the boundaries of
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Figure 4.8: Brane Tiling of Model 13 with the edges labelled by quiver fields.

the Calabi-Yau cone and are used to illustrate how an exchange of internal and external

perfect matchings leads to a reflection of the "™ F” cone along a hyperplane.

4.3 Model 13 (Y?2, Fy, C3/Z,) and Model 15b (Y2 F,
C/Z)
In the following section, we study specular duality with Model 13 which is known as

Y22 Fy or C3/Z4 with action (1,1,2) in the literature, and Model 15b which is known
as phase II of Y20 Fy or C/Zy with action (1,1,1,1).

4.3.1 Brane Tilings and Superpotentials

Figure shows how the untwisting map ¢, acts on the brane tiling of Model 13 to
give a shiver. The fixing map ¢ then takes the shiver to give the brane tiling of Model
15b. Beginning with the superpotential of Model 13,

Wiz = +X[hXouXh + X1 X5 X2 + X3 X13X0, + X5 X X3,
—X1p X33 Xa31 — X13X5, X4t — Xf1 X1oXoa — X5y X2 X5, (4.3.13)

the zig-zag paths are identified as follows

m = {X1127X2137X§47Xi1}7

e = { Xy, Xos, Xiy, X3, X34, Xuo, Xo3, X1},

n3 = {X§37X§4,X21,X122},

n = {Xi3, X%, Xuz, X35, X31, Xio, Xoa, X3} . (4.3.14)
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Figure 4.9: Specular Duality between Models 18 and 15b. The untwisting map ¢,, acts
on the brane tiling of Model 13 which results in a shiver. The shiver is then
fixed with ¢; which results in the brane tiling of Model 15b.

The intersections of zig-zag paths highlighted in Figure [4.9] are

(A,B,C,D,E,F,G,H,I,J,K,L) =
(X317 X13, X122a X§47 XZlv X2237 Xoa, Xa2, Xil? X2137 X1127 X324I4'3'15)

Under specular duality, the intersections are mapped to the ones for zig-zag paths on
the brane tiling of Model 15b.
In terms of intersections, the superpotential in (4.3.13|) takes the form

Wis = +KGI+ ACF+EBD + LHJ
~KJA- BLI — ECG — DHF (4.3.16)

The intersections are also fields in the dual brane tiling of Model 15b. Accordingly, the
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P1

{0, )
P4

P2
_ 1 1 2 2 2 1 2 1
Wiz = +XipX0a X}y + X1 X75X53 + Xi1 X13 X3, + X3, Xa2X03
— X1y X3 X1 — X13X3, X4 — X5 X9 Xo4 — X3, X420 X33
Figure 4.10: The quiver, toric diagram, brane tiling and superpotential of Model 13.

corresponding superpotential can be written as

Wis=Wis = +X1,X5X3 +XbhXEX5, + X3 X5HX0 + X} XHXE
X1 Xip X5 — XX Xiy — X5 Xip X35 — X3 X3, XDy
= +KGI+ACF+ EBD+ LHJ
_KAJ - BIL - EGC — DFH . (4.3.17)

We note that the two superpotentials are the same up to a reversal of cyclic order of
negative terms in (4.3.17]). For the Abelian single D3 brane theory, the superpotentials
and the corresponding F-terms are the same and hence lead to the same master space
Irrfb

4.3.2 Perfect Matchings and the Hilbert Series

In order to illustrate that specular duality exchanges internal and external perfect
matchings of brane tilings, we consider the symplectic quotient description of ™ F?.

It uses GLSM fields which relate to perfect matchings in a brane tiling. They are
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Pa

00,

Wish = +X{3 X1 X0 + Xih X35 X34 + X35, X35 Xo + X7, X5, X5,
~ X1 Xip X5 — XX X1y — X5 Xip X35 — X03X54 XD
Figure 4.11: The quiver, toric diagram, brane tiling and superpotential of Model 15b.

summarized in matrices which are for Model 13 and 15b respectively

P1 P2 P3| q1 g2 |S1 S2 83 S84 P1 P2 P3 P4|S1 S2 S3 S4 Sp

I=X4 |1 0 0|1 0l1 0 0 O I=X4 |1 0 0 0|1 0 0 1 0
E=X}]10 1 0|1 01 0 0 0 E=X3|1 0 0 0/0 1 0 1 0
J=X311 0 0|1 0|0 1 0 0 J=X310 1 0 0|1 0 0 1 0
F=X%10 1 0|1 0|0 1 0 0 F=X4/0 1 0 0/0 1 0 1 0
C=X%|1 0 0|0 1|0 0 1 0 C=X%]10 0 1 0|1 0 0 0 1
P3=| K=xL10 1 0|0 1]0 0 1 0 |[,P®=] K=x,]0 0 1 0[0 1 0 0 1
D=Xl|1 0 o]0 1]0 0 0 1 D=X5L|0 0 0 1|1 0 0 0 1
L=X%|0 1 0[0 1|0 0 0 1 L=X%1]10 0 0 1|0 1 0 0 1
H=Xpu|0 0 1|0 01 0 1 0 H=X%|1 0 1 0[{0 0 1 0 O
A=X5 /0 0 1]0 01 0 0 1 A=XL|1 0 0 1/0 0 1 0 0
B=X;3/0 0 1/0 0[0 1 1 0 B=X}%|0 1 1 0[0 0 1 0 0
G=X»|0 0 1/0 0[0 1 0 1 G=XhL|0 1 0 1/0 0 1 0 0

(4.3.18)

The corresponding F-term charge matrices are

pP1 P2 P3 ‘ q1 q2 ‘51 52 83 54 P1 P2 P3 pa|S1 S22 S3 S4 S5

| 00 —1[-1L 01 10 0 o [ 110 0)0 0 -1 -1 0
F 00 -1l0 -1/0 o 1 1 | °F 00 1 1]0 0 -1 0 -1
1 1 0/-1 -1/0 0 0 0 000 0 0|1 1 0 -1 -1

(4.3.19)

From the quiver incidence matrices, one obtains the following D-term charge matrices

S1 S22 83 S84 P1 p2 p3 p4‘$1 S2 83 S84 S

p1 P2 P3 ‘ g2
QY — o 0 0|1 =140 0 0 O Qut — 60 0 0}j0 1 -1 0 O
0 0 00 O -1 0 0 60 0 0}j0 0 1 -1 0

o
o
o
o
o
o
o
—_
|
—
o
o
—_
|
—

0 0 0 010
(4.3.20)

The kernel of the total charge matrix @); leads to the coordinates of points in the toric
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diagram,

P1 p2 Pp3 ‘ q1 g2 ‘ S1 S22 S3 S4 P1 P2 P3 P4 |S1 S22 S3 S4 S5

G — o 0o 2|0 01 1 1 1 qIsb 2 0 2 01 1 1 1 1
t = ) t -

2 0 —-1}j1 1,0 O 0 O o 0 -1 170 O O O O

1 1 1 1 171 1 1 1 1 1 1 11 1 1 1 1

(4.3.21)
Note that the corresponding toric diagrams in Figure and Figure are GL(2,7)
transformed.
The columns in the G; matrices indicate the coordinates of points in the toric diagram
with the associated perfect matchings. Using this information, one relates columns of
the matrices Qr, @p and P to either external or internal perfect matchings.

Specular duality swaps external and internal perfect matchings as follows

(p1,p2, D3, 41, G2, 51, 52, 53, 54)13 <> (81, 52, 83, S4, S5, D1, P2, P3, P4)15b - (4.3.22)

Accordingly, the duality maps the perfect matching matrix P'3 to P as well as the F-

term charge matrix Q% to Q};r’b by a swap of matrix columns. As a result, the following

symplectic quotient descriptions of the master spaces ™ F” are isomorphic

g = Clpr, p2,ps, 41, g2, 51, 59, 53, 54) / /QE
Irr]:lf5b = C%[p1,p2,P3,Pas 51, 52, 53, 54, 55) /| QE" . (4.3.23)

Specular duality can therefore be observed on the level of the Hilbert series of ' F?.
Starting with Model 15b, its symplectic quotient leads to the following refined Hilbert

series

3
dz; 1
Irr v
( ©ae 15b) zl_Il |zi|=1 27T7JZZ' (1 — thl)(l - thg)(l - thg)(l - 22t4)(1 - 2381)

1
(1 - 2382)(1 - Z1lz2 83)(1 - 21123 84)(1 - ﬁ‘%)
_ P(t’uysz)
(1 — t1t2y53)(1 - t2t3ys3)(1 - t1t4y53)(1 o t2t4y83)
1
X
(1 —t151Ys, ) (1 — t2519s0) (1 — t1¥sy¥ss ) (1 — t2Ys,Ys,)
1

X 9
(1 — t3ys, YUss ) (1 — tays, Yss ) (1 — t3yso¥ss ) (1 — taysoYss)
(4.3.24)

where the numerator P(t;,ys,) is presented in appendix Fugacities t; and ys,

count external and internal perfect matchings p; and s; of Model 15b respectively. The
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plethystic logarithm of the Hilbert series is

PL{g1(ti, Y3 ™ Flsp)] = Ys1 Ysat1 + YsoUsatt + Yo Ysat2 + Vs Usata + sy Yssls + YsoYssts
FTYs1Yssta + YsoYssta + Ysstils + Ysslots + Ysslita + Ysstola — Ysy YsoYsaYssL1t3
— Y1 YsaYsaYsstals — Usi YsoYsa¥sst1ts — Yo YssYsaUsstota — Ys, Ysa Yo, b1tz — Ys, Yss Yo tata
—Ys1YsaYsat18213 — Yso Ysz Ysa T11213 — Ysy Ysz Ysat1l2la — Ysy Ysz Ysal1lola — Ys, Ysz YssT1lala
—YsoYssYsst1tats — s, YssYsstatata — YsyYsy Ysstatats — yotitatsts + ... (4.3.25)

It is not finite and therefore indicates that the master space is not a complete intersec-
tion.

By specular duality, we obtain the Hilbert series in terms of the perfect matching
fugacities of Model 13. The perfect matching map in translates to the fugacity

map

(ysiy t1,2,37 yql72)13 A (tzu Ysi,2,39 y84,5)15b ’ (4326)

where (ys,,t1,2,3,Yq,,) are the fugacities for perfect matchings (s;,t123,q1,2) of Model

13 respectively.

4.3.3 Global Symmetries and the Hilbert Series

In order to discuss global symmetries, let us introduce the notation of subscripts and
superscripts on groups which refer to fugacities and model numbers respectively.

The F-term charge matrix for Model 13 indicates that the global symmetry is SU (2 )[13}
U 5 sUu@) < su@) < U@ x U1, where SU@)R x U <o)
represents the mesonic symmetry, SU (2 )[13] x SU(2 )[ 23] the hidden baryonic symmetry,
and U(1 )l[7 3 the remaining baryonic symmetry. In comparison, for Model 15b, where
internal and external perfect matchings are swapped under specular duality, the global
symmetry is SU(2 )“56] x SU(2 )[15b] x SU(2 )[1151)] x U(1 )[125b] x U(1 )[1517] x U(1 )“51)} The
mesonic symmetry is SU (2 )[15b] x SU(2 )[15b] x U(1 )[15b] the hidden baryonic symmetry
is SU(2 )[15b] x U (1)2251)], and the remaining baryonic symmetry is U (1 )21517}.
Accordingly, we observe that the swap of external and internal perfect matchings

under specular duality leads to the following correspondence between global symmetries

SU@EY < U™ o SU@) < U,
SU@ET x sU@)E « sU@)E < su(2)
v« v, (4.3.27)

It is a swap between mesonic flavour and hidden baryonic symmetries.
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[ [50@), [U(); | 50@m [ SU@, [ U, | U1 | fugacity
p1 +1 +1 0 0 0 2/3 tq
D2 -1 +1 0 0 0 2/3 to
D3 0 -2 0 0 0 2/3 t3
q1 0 0 0 0 +1 0 Yqu
Q2 0 0 0 0 -1 0 Ygo
$1 0 0 +1 0 0 0 Ys,
S92 0 0 -1 0 0 0 Ysy
S3 0 0 0 +1 0 0 Yss
S4 0 0 0 -1 0 0 Ysa

Table 4.2: Perfect matchings of Model 13 with global charge assignment.

[ [50), [50@), [ S0@, [ 00, [ UM, [ U(1)x | Tugacity

p |+l 0 0 0 0 12 | 4
pp| -1 0 0 0 0 1/2 |ty
ps| 0 +1 0 0 0 1/2 | t3
pa| O -1 0 0 0 1/2 |ty
$1 0 0 +1 +1 0 0 | ys
52 0 0 -1 +1 0 0 | Ys,
s3 0 0 0 -2 0 0 | Yss
si| 0 0 0 0 +1 0 | ys,
S5 0 0 0 0 -1 0 | Yss

Table 4.3: Perfect matchings of Model 15b with global charge assignment.

Following the review in section one can find global charges on perfect matchings
such that the swap of external and internal perfect matchings corresponds to a swap
of mesonic flavor and hidden baryonic symmetry charges. A choice of such perfect
matching charges for Model 13 and Model 15b is in Table and Table respectively.

Starting from Model 15b, the following fugacity map

1/2,—
t= (y81y82y33ys4y35t1t2t3t4)1/4 , T = tl 9
- 1/2 —1/2 _1/4

b= (y34ys5)1/2 (t1t2)1/4 (t3t4) A ’ h’l = ysl/ Ysz / ) h2 = (951952ys4ys5)1/4 Yss / )

(4.3.28)

9

/2,-1/2 Ly = t;ﬂt;lﬂ

leads to the refined Hilbert series in (4.3.24)) and the corresponding plethystic logarithm
in (4.3.25) in terms of characters of irreducible representations of the global symmetry.
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The expansion of the Hilbert series takes the form

g1 (ta z,Y, hiv ba Irrf%f)b) -

o o oo
—2 — 2
Z Z Z h;uﬂw n3y, ni+ng [n2+n3;n1+n3;n1+n2]tn1+n2+ n3 ,

n1=0mn2=0n3=0

(4.3.29)

where [n1;ng;n3] = [n1]z[n2]y[ns]n, is the combined character of representations of
SU(2)z x SU(2)y x SU(2)h1E| The corresponding plethystic logarithm is

PL{gi(t, 2,y hi, b, " Fis)] = [1;0; 1]hobt + [0; 15 1]hob™ 't + [1;1; 0]y *#?
—[1;1;0]h3t% — [1;0; 1]hy "o~ 12 — [0; 15 1]hy tot?
—h3b*t: — h3b 22—yttt L (4.3.30)

In comparison, in terms of global charges on perfect matchings of Model 13, the

fugacity map

_,1/2,-1/2
1/37 _tl t2

t = (Ys1 Yss YszYsaYqu yq2t1t2t3) T

_ —1/3
[ = (1/311/823/833/84) 1/12 (yq1yq2t1t2)l/6 12 / )

Y

h = yalPys L he = ualPyn
_ 1/2 —1/2
b = (y81y82)1/4 (y83y84) 1/4 yq1/ yqz / 9 (4331)

leads to the following Hilbert series

91(75,55'7 f) hi7 b;IrT‘F€3) =

[eS) ) [
2 : § : § :fn1+n272n3b7n1+n2 [n1+n2;n2+n3;nl+n3] tn1+n2+n3 ,

n1=0mn2=0n3=0

(4.3.32)

where [n1;n2;n3] = [n1]z[n2]n, [n3]n, is the combined character of representations of
SU(2)z x SU(2)p, x SU(2)p,.

The U(1)g charges on perfect matchings of Model 15b are not mapped by specular
duality to U(1) g charges on perfect matchings of Model 13. This is mainly because only
extremal perfect matchings carry non-zero R-charges. In order to illustrate specular
duality in terms of the refined Hilbert series, one can without loosing track of the
algebraic structure of the moduli space mix the U(1)gr symmetry with the remaining

symmetry. This effectively modifies the charge assignment under the global symmetryﬂ

“cf. [73] with a choice of charges on fields which relates to the choice presented here. The identification
F1 = SU(Q)I, Fz = SU(Q)y, A2 = SU(Q);,,I, A1 = U(l)hz, B = U(l)b and R = U(l)R is made.
5The algebraic structure of the moduli space is not lost when the orthogonality of global charges on
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The modification is done via the fugacity map

1/2,-1/2
1/47 =11

t= (ys1 YsoYssYsaYqu yq2t1t2t3) T

~ —1/4
f= (yquq2t1t2)1/4 i3 / )
1/2 —1/2 1/2 —1/2
hl:ys{ ySg/ s h22953{ 3/84/ )

b= (y81y82)1/4 (y53y54)_1/4 y;l/qu_glm s (4.3.33)

Y

which leads to the Hilbert series

gl(fv Z, fv hi? b7 Irrflb:ﬂ) =

oo 0

)
§ : § : § :fn1+n272n3b7n1+n2[n1+n2;n2+n3;n1+n3]t~n1+n2+2n37

n1=0n92=0n3=0

(4.3.34)

where [n1;n2;n3] = [n1]z[n2]n, [n3]h,. One observes that the fugacity map equivalent to

the exchange of mesonic flavour and hidden baryonic symmetries is
(x, f.E,h1, ho, b1z« (ha, hayt, 2,9, b) 155 - (4.3.35)

It relates the Hilbert series in (4.3.29) to the one in (4.3.34)).

4.3.4 Generators, the Master Space Cone and the Hilbert Series

The master space is toric Calabi-Yau and has a conical structure. Since the dimension
of the master space is G + 2 = 6, the corresponding Hilbert series can be rewritten in
terms of 6 fugacities T; such that the exponents of T; are positive only. This means that
all elements of the ring and the corresponding integral points of the moduli space cone
relate to monomials of the form [[, 7;"™ with m; > 0 in the Hilbert series expansion.
The appropriate interpretation for these monomials is that if b 7; vanish in [], 7;™, the
associated integral point is on a codimension b cone. All points associated to monomials
[L 7™ with m; > 0 for all ¢ lie within the codimension 0 cone. The boundary of the
codimension 0 cone is defined by monomials of the form 7;™ with m; > 0.

Starting with the perfect matchings of Model 15b, the fugacity map

T=a=t"t"" Ty=y=1t"7,

Is=b= (y84y85>1/2 (t1t2)1/4 (t3t4)71/4 )
Ty =hi = sl "y "> ) Ts = ho = (Y, Ysayss) 4y "

T6 = zyblehg = (ysly82y83y84y85t1t2t3t4>1/4 5 (4.3.36)

perfect matchings is preserved as discussed in section §1.5.1]
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Ty

specular axis

«/

TV T3TyT5T6

Figure 4.12: The Specular Axis. This is a schematic illustration of the master space cone
of Models 13 and 15b. The rays corresponding to the basis of the cone are
labelled with the associated fugacities T; of the Hilbert series. The cone is
symmetric along a hyperplane which we call the specular axis.

allows us to re-write the Hilbert series such that the corresponding plethystic logarithm

in (4.3.25) takes the form

PL[g(T; ™ Fip)] = TPToTET2TETs + TP ToTET2 Ty + ToTET2TETs + Ty T2T2Ts
T TETET2Ts + TV TS TETs + TiTETE T + TV T2 Ts + TETSTITITE + Ty TS T3 TS
+TTTETITE + T T TETTE — TRTSTITITATE — TV TS TR T2 ToTY
—TITYTITRTATE — Ty T2TATATE — TRT2TYTATATE — TET2TTAT2
—T3TYTITITETE — TITYTITITETS — TRTITIT T2TS — TRT3 TS T T2TS
—TITSTETITETE — TS T2TIT2TE — TRTST2TT2TE — TP T2 TR T2TS
~TITSTSTTE + ... (4.3.37)

As desired, the plethystic logarithm as for the Hilbert series is such that the exponents
of the fugacities T; are positive. In comparison, in relation to perfect matchings of

Model 13, the fugacity map

t

Ti=x,To=f,T3=b,Ta=h,Ts=hy, Tg= ——
1 o=f, 13 1=nhy, Ts =hs , Tg Foinhn

(4.3.38)
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generator ‘ fields ‘ SU

—

2), [U(); | SU@n, [ SU@), | U0, | UL | fugacity

p3 s153 | X 0 ) +1 +1 0 1/3 | TPTITPTRTE
P3 8184 Xil 0 -2 +1 -1 0 1/3 TfT%TfTsTGQ
p3 8283 | Xk 0 2 1 +1 0 | 1/3 | LTSS
D3 5254 X4 0 -2 -1 -1 0 1/3 | TRT2TAT5T2
prqist | Xis +1 +1 +1 0 +1 1/3 | TPTITTITHTs
prqusa | Xi +1 +1 -1 0 +1 1/3 | THT3T3T5Ts
p2ai st | X3 -1 +1 +1 0 +1 | 1/3 | T3T3TITsTs
p2qise | Xy -1 +1 -1 0 +1 | 1/3 | T2TET5Tq

P sy | Xip +1 +1 0 +1 -1 1/3 | TPTTTETs
P12 sa | Xsi +1 +1 0 -1 -1 1/3 | THT3TyTs
P22 sz | X3 -1 +1 0 +1 -1 1/3 | T3y T2 Te
P22 54 | X2 -1 +1 0 -1 -1 1/3 | T3TyTs

Table 4.4: The generators of the master space of Model 13 with the corresponding
charges under the global symmetry.

generator ‘ fields ‘ SU(2), ‘ SU(2)y ‘ SU

—~

2n, | UM, [ UM, [ U)g | fugacity \

pips 53 | X +1 +1 0 -2 0 1 TRTST2TIT?
pipa 3 | Xiy +1 -1 0 -2 0 1 T3 TT2TE
pap3 83 | X -1 +1 0 -2 0 1 TISTIT2TE
papa 53 | Xio -1 -1 0 -2 0 1 TVIYTITTE
P1 S154 X4 +1 0 +1 +1 +1 1/2 | TYTTITA T,
P2 S154 X221 -1 0 +1 +1 +1 1/2 TQTSQTZTEZTg
p1 sess | X2 +1 0 -1 +1 +1 1/2 | TP TET2Ts
p2 5281 | X -1 0 -1 +1 +1 1/2 | ToT3T2Ts

3 5185 X2 0 +1 +1 +1 -1 1/2 | \T3T3T2Ts
P4 5185 X3 0 -1 +1 +1 -1 1/2 | WT3T2Ts

P3 8285 X4 0 +1 -1 +1 -1 1/2 | WT3T2Ts

P4 5255 X2 0 -1 -1 +1 -1 1/2 | TiT2Ts

Table 4.5: The generators of the master space of Model 15b with the corresponding
charges under the global symmetry.

rewrites the Hilbert series and plethystic logarithm such that they are related to the

ones from Model 15b via
(Th, T2, T3, Ty, T5,T) <> (Tu, T5,T5,T1, T2, Tg) - (4.3.39)

Note that the above map for fugacities T; relates to the one for global symmetry fugac-
ities in (4.3.35)).

Given that the fugacities T; relate to the boundary of the Calabi-Yau cone, the above
fugacity map can be interpreted as a reflection along a hyperplane which is associated
to monomials of the form T3"*Tg"%. We call the hyperplane the specular axis. It is
schematically illustrated in Figure [4.12

The generators of the master space in terms of perfect matchings of Model 13 and
Model 15b are shown with the corresponding global symmetry charges in Table
and Table respectively. The master space cone with a selection of generators and
the specular axis are illustrated schematically in Figure Specular duality maps

generators into each other along the specular axis.
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Ty T3TET?

w ToT3TTETs
Ty /
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Tfrzrmro/‘\\

ﬂ\__TquszzTﬁ

Ty

TETYTET

Figure 4.13: The Specular Azis and Moduli Space Generators. The schematic illustra-
tion shows a selection of master space generators of Model 15b and Model
13 which are highlighted in red and blue respectively. The dotted lines
indicate the identifications of generators under specular duality.

4.4 Beyond the torus and Conclusions

Our work discusses specular duality between brane tilings which represent 4d N = 1
supersymmetric gauge theories with toric Calabi-Yau moduli spaces.
Starting from the observations made in [5], this work identifies the following properties

of specular duality for brane tilings on T2 with reflexive toric diagrams:

e Dual brane tilings have the same master space "™ F?. The corresponding Hilbert

series are the same up to a fugacity map.
e The new correspondence swaps internal and external perfect matchings.
e Mesonic flavor and anomalous or hidden baryonic symmetries are interchanged.

e Specular duality represents a hyperplane along which the cone of ™ F? is symmet-

ric.

The new duality is an automorphism of the set of 30 brane tilings with reflexive toric
diagrams [5]. It is of great interest to identify additional properties shared by dual brane
tilings.
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Figure 4.14: The quiver of the specular dual of the brane tiling for the Abelian orbifold
of the form C3/Zy,, with orbifold action (1,1, —2).

When specular duality acts on a brane tiling whose toric diagram is not reflexive, the
dual brane tiling is either on a sphere or on a Riemann surface of genus 2 or higher.
Such brane tilings have no known AdS duals and their mesonic moduli spaces are not
necessarily Calabi-Yau 3-folds [54] 188 [89].

In general, the number of faces G of a brane tiling relates to the number of faces G
of the dual tiling by

G=E=G-2I+2. (4.4.40)

I and E are respectively the number of internal and external toric points for the original
brane tiling.

First examples of brane tilings on Riemann surfaces can be generated from Abelian
orbifolds of C3 [126], [3, 2, [1, 4]. Consider the brane tilings which correspond to the
Abelian orbifolds of the form C3/Zs, with orbifold action (1,1,—2) and n > 0. The
dual brane tiling is on a Riemann surface of genus n — 1. For the first few examples

with n = 1,2, 3, the superpotentials are

Wesgmo, = XsXaXu+ X5 XeXe - X5 XnXis - X3 XX, (4441)

W(Cg/i:’(/l“) = X3 X1 Xi3 + X3 X1 Xo5 + X3, X5 X3 + X34 X 5 X35

— X5, X5 X3 — X34 X5 Xo3 — X5 X 11 XT3 — X34 X o X35(4.4.42)
oy X5y Xin Xig + X5 X Xog + X3, X0 XT3 + X5, X X3

+ X3 X5 Xy + X5 X35 X5y — X3, X X3 — X34 X3 X3

~ X3 X 4 XTs — X5 X1 X35 — Xy X5 X3 — X5, X5 X55(4.4.43)

The corresponding quivers are shown in Figure {.14] The Hilbert series of the master
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< “XZ b X3S~ o

Figure 4.15: Brane Tiling on a g = 2 Riemann Surface. The figure shows the octagonal
fundamental domain of the brane tiling which is the specular dual of C3/Zg
with action (1,1,4).

spaces are,

Il 11—t
91t C3 /2o 11,0)) = EDEE

— 1+ 6t3 + 65 4+ ¢7
nEC Zagrn) = ——q @

91(t;C3/Zg 11,4)) = (1 + 3> + 7¢* + 18t° + 38¢% + 72'0 4 122" + 186t + 267¢'°
+363t'8 + 456t20 + 5372 + 588t%* + 603t%° + 58828 + 53730 + 456132

+363t3* + 26730 1+ 186438 + 122440 + 724%2 4 38444 + 18440 4+ 7448

1_231_4
é_;%é_;%. (4.4.44)

+3t°0 + £52) x

The fundamental domain of the brane tiling for the specular dual of C3/ Zg,(1,1,4) 18 in
Figure It is of great interest to study such brane tilings on higher genus Riemann
surfaces. One obtains a new class of quivers and field theories via specular duality which

is the subject of the following chapter.
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5 Brane Tilings and Riemann Surfaces

In the previous chapter we have reviewed the new correspondence between brane tilings
which we call specular duality. It opens a path for brane tilings on higher genus Riemann
surfaces. These bipartite graphs on Riemann surfaces beyond the 2-torus translate to
supersymmetric quiver theories using the conventional brane tiling dictionary. It is
natural to ask what the moduli space of these new theories are, whether the moduli
spaces are Calabi-Yau and what dimensions they have.

The first example of a brane tiling on a genus 2 Riemann surface using specular duality
is the dual of the C3/Zs (1,1,3) brane tiling. The toric diagram of C3/Zs (1,1,3) is
the smallest Zo lattice triangle with precisely two internal points corresponding to the
genus of the Riemann surface. It is now of interest whether there are genus 2 brane
tilings with less quiver fields and less gauge groups than the specular dual of C3/Zj
(1,1, 3).

The following chapter introduces new technologies which we use to classify the first
few brane tilings on a genus 2 Riemann surfaces. It can be seen from the classifica-
tion that many brane tilings on a genus 2 Riemann surface are not specular dual to
consistent torus tilings and hence cannot be easily generated by specular duality. The
classification consists of 16 distinct genus 2 brane tilings with up to 8 quiver fields and
4 superpotential terms. The Higgs mechanism is used to relate the different theories.
The chapter, which is an edited version of [9] under collaboration with Stefano Cre-
monesi and Amihay Hanany, is a pioneering step towards a wide and rich range of new

supersymmetric quiver theories.

5.1 Introduction

As we have explored above, brane tilings [15], 55] provide one of the largest known classes
of 4d N' = 1 supersymmetric gauge theories living on D3-branes which probe Calabi-
Yau 3-fold singularities. As bipartite periodic graphs on the 2-torus, which encode both
field theory information and geometry, brane tilings represent an epitome of the rich
interface between algebraic geometry and string theory. Our work attempts to upgrade
this active relationship by introducing and classifying brane tilings not confined to the

traditional 2-torus.
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Brane tilings have been used to classify 4d A/ = 1 toric quiver gauge theories with their
mesonic and baryonic moduli spaces [50, 51} 52} 192, [17), R6l, 113], 183, 18, 74} [75] [72] [71],
dualities [14], 92), 36, I81] and symmetries [110, 95]. With the understanding of 3d
N = 2 Chern-Simons theories as worldvolume theories of M2-branes [60}, 56] 57, 58, 59,
193], this tour de force of research and discovery reached new heights and led to the
introduction of Chern-Simons levels on brane tilings [63], (64, (1941 137, 166, 195, 196, 197].

The work on brane boxes [68] described the construction of a prototypical brane tiling
on a surface with boundaries such as a disc or cylinder. This idea recently re-emerged
as bipartite graphs on discs in relation to string scattering amplitudes [198, [82]. The
connection between supersymmetric gauge theories and brane tilings on surfaces with
boundaries was further studied in [8].

In parallel, as explored in the previous chapters, brane tilings associated to Calabi-
Yau geometries whose toric diagrams are reflexive polygons [5] were found to have the
same combined mesonic and baryonic moduli spaces under a map which is known as
specular duality [7]. The fascinating properties of specular duality further motivates
our work.

Specular duality makes use of the untwisting map [83] 52] which relates theories with
the same master space [73, [I8], [74} [75, [72), [71] and generates new brane tilings that are
not necessarily confined to the 2-torus. The simplest example of this capability is the
C3/Zs (1,1, 3) orbifold theory [126, [T, [3, 4, 2] whose brane tiling can be untwisted to
give a dual on a g = 2 Riemann surface. This is an important example of a brane tiling

beyond the 2-torus and sheds light on a new infinite class of unexplored field theories.

@-*@-*@-*@-*

A-type quivers brane tilings Chern-Simons brane tilings
and T2 Theories and 5 /
brane intervals weighted g=2
st brane tilings P
k, T2

Figure 5.1: The evolution of brane tilings. Brane tilings have evolved from representing
A-type quivers to N = 1 4d supersymmetric theories and N' = 2 3d Chern-
Simons theories. This work studies brane tilings on g = 2 Riemann surfaces
associated to Calabi-Yau 5-folds.

This work introduces a new procedure of classifying brane tilings on Riemann surfaces.

We continue to call the new periodic bipartite graphs on Riemann surfaces as brane
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tilings since they are natural generalisations of the tilings on the 2-torus. Although the
brane construction for the generalisation is not yet fully understood, we believe that
our classification is an important step towards a better understanding of the problem.

Despite the efficiency of generating brane tilings on g = 2 or higher genus Riemann
surfaces with specular duality, only a subset of these new brane tilings can be identified
with this method. Most other brane tilings, often with much smaller number of fields
and gauge groups, can only be obtained via a direct construction on the Riemann
surfaceE The work will give the first classification of brane tilings on a g = 2 Riemann
surface with up to 8 quiver fields and 4 superpotential terms. Our classification identifies
precisely 16 distinct g = 2 brane tilings which can be related by a successive application
of the Higgs mechanism.

The mesonic moduli space of each brane tiling in the classification is computed by
imposing F-and D-term constraints. These moduli spaces are all toric Calabi-Yau 5-
folds. The moduli space dimension is in general 2g + 1 where the number of homology
1-cyles on the genus g Riemann surface is 2¢g. By computing the Hilbert series, we
specify the explicit algebraic structure of the moduli space and relate new geometries
to classical field theories.

For generic ranks of the gauge groups, it is not clear whether the beta functions of
all couplings can be set to ZeroE| Accordingly, understanding the IR behaviour of the
brane tilings may be challenging. For the moment, the classification of ¢ = 2 brane
tilings should be considered as an important step towards a better understanding of
recent lines of thought. We believe that such extensions to the field theories classified
in this work along with a better understanding of the brane construction will lead to
new exciting progress in the near future.

The structure of the chapter is as follows. Section §
g = 2 brane tiling by untwisting the brane tiling for the C3/Zs (1,1,3) theory and then

5.2| gives a first glimpse of a

proceeds to outline an algorithm for classifying all distinct brane tilings on a g = 2 Rie-
mann surface. The results are summarized in section Section continues
with a discussion on consistency of brane tilings that plays an important role in the
case of the 2-torus. The section explains that restrictions are set on g = 2 brane tilings
to reduce the number of models in the classification even though the restrictions are
not well motivated from a field theory perspective. Section summarises the basic
properties of the mesonic moduli spaces and continues with section by explaining
how the Higgs mechanism relates the theories in the classification and acts as a check

of the classification. In the second part of the chapter, section summarises the full

!These are in fact under specular duality often related to inconsistent brane tilings on the 2-torus.
Consistency of brane tilings on the 2-torus has been studied from many perspectives [100} 16}, [85], [106],
and the most important properties are reviewed in this work.

2Tt is well known [16] that if the ranks of the gauge groups are all equal and none of the couplings
vanish, the beta functions cannot all be zero.
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classification data for ¢ = 2 brane tilings, including the computation of the Hilbert se-
ries. Appendix includes a more concise summary of the classification. In addition,

g = 2 brane tilings with self-intersecting zig-zag paths are presented in appendix §A.7

5.2 Brane Tilings on Riemann Surfaces

In this section we present the classification scheme which we used for the g = 2 brane
tilings. A brief summary is given for what is meant by a g > 1 brane tiling, with an

overview of their field theoretic and geometric properties.

5.2.1 The Construction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X1 Xu Xjs XF5 Xss X5y X3 X Xjy X3 Xao Xy, X{, Xos X3

Figure 5.2: Brane tiling and toric diagram of C3/Zs (1,1,3).

As seen in [7], specular duality and the untwisting map [52, [83] can be used to
generate brane tilings on Riemann surfaces with genus g > 1. The simplest example is
the brane tiling for C3/Zs with orbifold action (1,1, 3), whose toric diagram is a lattice
triangle with exactly two internal points. The toric diagram and the brane tiling are in
Figure with the quiver diagram in Figure The superpotential has the form

W = +X3X1uXj5 + X35 X53X3 + X3, X402 X035 + X35 X51 X[ + X1p Xo5 X2,
— X5 X19X05 — X35 X5 X4 — X3, X5 X53 — X33 X35 X420 — X5 X53X31 -
(5.2.1)

Given that the superpotential has an overall trace, which is omitted for brevity, let
us use the notation which replaces terms in the superpotential as a cyclic permuta-

tion of integers [199]. The integers themselves label fields with the dictionary given in
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1 2 3 4 ) 6 7 8 9 10 11 12 13 14 15
X, Xjy Xg X X3 X5 XD X§ X3 XY, Xiy Xy XD X3y XD

Figure 5.3: Specular dual brane tiling of C?/Zs (1,1,3) on a g = 2 Riemann surface with
its fundamental domain.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
X3 Xu Xig X Xss X3y X3 Xao Xog X5 Xz Xy XP, Xos X3
Xy, Xg3 X3 Xb X5 X5 X X3 X3 Xy Xy X5 XD, X33 X5

Figure 5.4: The (a) quiver of C3/Zs (1,1,3) and (b) its specular dual quiver with the
field map under the untwisting move.

Figure [5.2]

W = +(123)+(456)+(789)+ (10 11 12) + (13 14 15)
—(11214)—(4152)—(735)— (106 8) — (139 11) .  (5.2.2)

The specular dual tiling is on a ¢ = 2 Riemann surface and the corresponding su-
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persymmetric field theory has a 5d toric Calabi-Yau mesonic moduli space. The brane
tiling is shown in Figure with the quiver in Figure The superpotential of the
specular dual is easily obtained by reversing the permutations which correspond to the
negative (or equivalently the positive) terms in the original superpotential in .
This g = 2 brane tiling is the one that can be generated via specular duality with the
least number of fields. In fact, there are g = 2 brane tilings with much fewer fields that
cannot be obtained via specular duality on 2-torus tilings. In the following section, we
illustrate a method of generating such tilings and give a full classification up to 8 quiver

fields and 4 superpotential terms.

5.2.2 Classification of ¢ = 2 Brane Tilings
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Figure 5.5: Fundamental domains of higher genus brane tilings. These are choices for

fundamental domains for Riemann surfaces of genus g = 1,2, 3.

The brane tiling as a bipartite graph satisfies the Fuler formula,
F—-FE+4+V=2-2g, (5.2.3)

where E, V and F are respectively the number of edges, nodes and faces of the brane
tiling and g is the genus of the Riemann surface. The fundamental domain of the genus
g brane tiling is a 4g-sided polygon with our identification of sides being the one shown
in Figure Accordingly, there are 2¢g fundamental cycles with every zig-zag path of
the brane tiling having 2¢g winding numbers. This leads to rank 2g mesonic symmetry
in the associated field theory [15] [89].
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| E |V | F || # Models
5121 1
6|22 3
7123 1
7141 1
8|24 2
8 | 412 8

Table 5.1: The Fuler formula and the classification. These are the numbers of distinct
brane tilings on a ¢ = 2 Riemann surface without self-intersecting zig-zag
paths and without multi-bonded edges for specific numbers of edges E, num-
ber of vertices V' and faces F'.

For g = 2, the first few values of F/, V' and F satisfying the Euler formula are given
in Table By setting (F,V, F) for g = 2, we generate all possible permutations of E
integers. From this set of permutations, all possible pairings of permutations are taken.
For each permutation pair one is marked as positive and the other one as negative. We

associate a pairing to a brane tiling if it satisfies the following brane tiling conditions:

e The number of cycles in the positive permutation is the same as the number of
cycles in the negative permutation. This translates to the condition that there

are the same number of positive and negative superpotential terms.

e Every integer precisely appears once in a positive permutation cycle and a negative

permutation cycle. This translates to the toric condition of the brane tiling.

e The associated brane tiling has no self-intersecting zig-zag paths and no multi-
bonded edges [100, [16] [85] as discussed in §5.2.3l We adopt these restrictions in

the classification for g = 2 brane tilings to reduce the number of identified models.

Two brane tilings on any genus Riemann surface are the same if they satisfy the

following equivalence conditions:

e The brane tilings are on the same Riemann surface with the same genus g.

The quiver diagrams are equivalent graphs.

The superpotential as a permutation pairing is the same partition of integers.

The zig-zag paths [106] [109] are the same partition of integers.
e The mesonic moduli spaces M™ [52] 5], [34] are the same.

Note that a subset of the conditions above may not be enough to identify brane tiling

equivalence. An example is a pair of distinct toric dual brane tilings which are related
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Figure 5.6:

Classification of g = 2 brane tilings with no self-intersecting zig-zag paths
and no multi-bonded edges. These are the first 16 brane tiling on a g = 2
Riemann surface with up to £ =8 and V = 4.

by the urban renewal move. The dual brane tilings have the same mesonic moduli space

[15]. In fact, for g > 1 brane tilings, two distinct brane tilings which are not related by
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the urban renewal move can have the same mesonic moduli space.

Following the procedure which is outlined above, we classify all distinct brane tilings
on a ¢ = 2 Riemann surface with up to £ = 8 edges and V = 4 superpotential terms.
We identify 16 distinct g = 2 brane tilings. They are summarized in Figure [5.6, and
their mesonic moduli spaces are identified and discussed in Section We emphasise
that the 16 brane tilings are restriced, in other words they do not have self-intersecting
zig-zag paths and no multi-bonded edges. All other tilings are not discussed in detail

in this work and are subject for future studies.

5.2.3 Consistency of Brane Tilings on a 2-torus

We have reviewed in section the notion of consistency of a brane tiling on the
2-torus. For a g = 2 or higher genus brane tiling, the physical interpretation of these
consistency conditions on the 2-torus breaks down. It is of great interest to study the
properties of brane tilings on higher genus Riemann surface and to reinterpret and adapt

the consistency conditions on the 2-torus.

Restrictions for ¢ = 2 brane tilings. For the following classification of brane
tilings on a g = 2 Riemann surface, we restrict ourselves to brane tilings with no self-
intersecting zig-zag paths and no multi-bonded edges. We call these restricted g = 2
brane tilings. We apply the restriction in order to reduce the number of brane tilings
identified in the classification, even though we believe that it is of interest to study un-
restricted brane tilings on g = 2 Riemann surfaces. We leave the study of unrestricted

brane tilings for future work.

5.2.4 Mesonic Moduli Spaces

The mesonic moduli space M™¢ of a brane tiling is the vacuum moduli space of the
corresponding supersymmetric gauge theory under both F-and D-term constraints. The
forward algorithm [34],[92] [14] 10T 15, (55, 103] has been used extensively in the case for
brane tilings on T2 to identify the mesonic moduli space of Abelian gauge theories with
only U(1) gauge groups. It is summarized in section

The forward algorithm can be used to identify M™¢® for supersymmetric gauge the-
ories represented by brane tilings on Riemann surfaces of arbitrary genus. The mesonic
moduli spaces of the Abelian gauge theory is a (2g + 1)-dimensional toric Calabi-Yau
variety.

In order to compute the structure of the mesonic moduli space, we evaluate the

Hilbert series of M™¢%. The Hilbert series is refined with fugacities which count charges

265



’ # ‘ Mmes \ Global Symmetry

5.2 C? SU(5) x U(1)g
6.2a (0 SU(B) x U(1)r
6.2b NC1 SU(3)2 x U(1)g
6.2c NC1 SUB3)?2 xU(1)r
7.2 C?x¢C SU(2)3 xU(1) x U(1)g
74 | Cx Mss UL*xU(1)g
8.2a NC2 SU(2)?2 xU(1)?2xU(1)g
8.2b NC3 SUR2)* xU(1)g
4

8.4a Ms3 UL*xU()g

8.4b | C*> x C%/Zy | SU(3) x SU(2) x U(1) x U(1)g

84dc | C3 x C?/Zy | SU(3) x SU(2) x U(1) x U(1)g
4

8.4d C x ./\/l372 U(l) X U(l)R
8.4e NC4 UL xU)g
8.4f My UL xU(1)g
8.4g NC5 UL*xU()g
8.4h NC3 SU(2)* x U(1)g

Table 5.2: Mesonic moduli spaces and global symmetries. These are the theories in the
classification with their mesonic moduli spaces and global symmetries of total
rank 5.

under the global symmetries. The global symmetry group has total rank 2¢g 41 and can
have for the case of g = 2 brane tilings SU(2), SU(3), SU(4) and SU(5) enhancements.
Table summarises the global symmetries which are observed in the classification.
In field theory, the superpotential is conventionally assigned R-charge 2, when the
supercharges have unit R-charge. For simplicity, we rescale the R-symmetry generator:
quiver fields are assigned R-charges such that every perfect matching carries a R-charge
of 1. This is a notational simplification in the following sections. For the actual R-
charges the reader is reminded that the charges for perfect matchings should be rescaled
such that the superpotential carries R-charge 2 rather than equal to the number of

perfect matchings.

Figure 5.7:  Urban renewal move of a brane tiling. The first step shows the urban
renewal move which creates bivalent nodes. These correspond to mass terms
that are integrated out and removed in the second step.
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[ oM™ ] H#ET |
C® 5.2, 6.2a
NC1 6.2b, 6.2c
Cx Msp 7.4, 8.4d
NC3 8.2b, 8.4h
C3 x C?/Zy | 8.4b, 8.4c

Table 5.3: Brane tilings on g = 2 which share the same Abelian mesonic moduli space.
NC1 is the first non-complete intersection mesonic moduli space in the clas-
sification.

By analysing the mesonic moduli spaces of the g = 2 brane tilings in the classification
shown in Figure[5.6] we observe interesting new phenomena. In the case of torus brane
tilings, the mesonic moduli spaces of two brane tilings are the same if the brane tilings
are related by an urban renewal move as depicted in Figure Such a move seems
to be still a sufficient condition for moduli space equivalence for brane tilings on higher
genus Riemann surfaces. However, we observe examples of g = 2 brane tilings which are
not related by urban renewal, but have the same mesonic moduli space. The examples
identified in the classification are shown in Table 5.3

The above classification of the mesonic moduli spaces are based on the fact that we
restrict to Abelian theories with only U (1) gauge groups. Whether as in the case of toric
duality the supersymmetric theories share the same mesonic moduli spaces in the non-

Abelian extension is unclear. It is of great interest to study this problem in future work.

5.2.5 Higgsing g = 2 Brane Tilings

Section explained the procedure which is followed in this work to identify g = 2
brane tilings with up to £ = 8 fields and V' = 4 superpotential terms. We expect
Higgsing [15, 101), 5] to be an exploratory way to relate the discovered brane tilings and
at the same time to check the classification for consistency. Higgsing is the procedure of
giving VEVs to bifundamental fields in order to solve D-term equations in the presence
of FI parameters, and to integrate out mass terms in the resulting superpotential of the
theory. It translates to removing edges in the brane tiling and reducing the graph such
that there are no bivalent nodes. The procedure is illustrated in Figure [5.8

Given that our classification is restricted to g = 2 brane tilings with no self-intersecting
zig-zag paths and no multi-bonded edges, Higgsing is expected to relate them to unre-
stricted models. In fact, starting from the 16 restricted brane tilings in Figure [5.6] one
also generates 10 unrestricted brane tilings with self-intersecting zig-zag paths which are
summarized with the corresponding superpotentials and quiver diagrams in appendix

gA7 A ‘Higgsing tree’, which illustrates brane tilings as nodes and VEVs as arrows, is
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2 » D

Figure 5.8: Higgsing in a brane tiling. The first step shows the removal of the edge
which corresponds to the bifundamental field which is assigned a VEV. The
Higgsing results in a bivalent node which corresponds to a mass term. This
is integrated out in the second step.

shown in Figure 5.9

5.3 A Classification of ¢ = 2 Brane Tilings

This section summarizes the classification of g = 2 brane tilings with up to £ = 8 fields
and V = 4 superpotential terms. The mesonic moduli spaces are studied by computing
the Hilbert series of the corresponding algebraic variety. We discover several interesting

geometries which are related to the new brane tilings.

5.3.1 5 Fields, 2 Superpotential Terms, 1 Gauge Group
Model 5.2: C?

The first g = 2 brane tiling of our classification and the corresponding quiver diagram
are shown in Figure [5.10] and Figure [5.11] respectively. The brane tiling is made of
a single decagonal face which is the single gauge group with 5 adjoints in the quiver

diagram. The superpotential is
W = + X1, X7 X7, X11 X7y — X7 X3 X7, X7, X (5.3.4)

A single adjoint on its own forms a perfect matching of the brane tiling. Accordingly,
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R
~
N
~
N
[ce]
4,5
; 8.4a 8.4b @ 8.4g 8.4h
M3 C¥xC?Z, CxC*/Z, NC5 NC3

Figure 5.9: Higgsing tree for g = 2 brane tilings with up to 8 quiver fields. The mod-
els labeled with italics correspond to unrestricted brane tilings with self-
intersecting zig-zag paths. The arrows correspond to a single field Higgsing,
with the field numbers given on the arrows (see and for field
labels).
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1 2 3 4 )
X4 Xf Xh XY XD

Figure 5.10: The Model 5.2 brane tiling on a g = 2 Riemann surface with 5 fields and 2
superpotential terms.

C=0

Figure 5.11: The quiver diagram for Model 5.2, a brane tiling on a ¢ = 2 Riemann
surface with 5 fields and 2 superpotential terms.

the perfect matching matrix is the identity matrix

ap a2 az a4 as
XLl1 0 0 0 O
p_ X210 1 0 0 0 (5.3.5)
X310 0 1 0 0
XHEl0o 0 0 1 0
X510 0 0 0 1

The perfect matching matrix is always the identity matrix for models with just 2 su-

perpotential terms. The zig-zag paths of the brane tiling are

m = (X1117X121) , T2 = (X1217X%1) y M3 = (X%prl) )
N4 = (X%17X151) y M5 = (X1517X111) . (536)

There are only trivial F- and D-terms. The mesonic moduli space is a toric Calabi-
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Yau 5-fold. More specifically, Model 5.2’s mesonic moduli space is C° with the refined
Hilbert series being

1
g(ag M) = ————— (5.3.7)
[l- (1 — )
where the fugacities a; count the perfect matchings a; respectively.
Given that the mesonic moduli space is C?, the global symmetry group is found as
SU(5) x U(1)gr, where the U(1)g is the R-symmetry. The global symmetry charges

assigned to perfect matchings are shown below.

’ ‘ SU(B)z, UQ)r ‘ fugacity

ay | (1,0,0,0) 1 o1 = x1t

as | (-1,1,0,0) 1 Qg =z wot
az | (0-1,1,0) 1 a3 = 1y w3t
ag | (0,0-1,1) 1 o4 = a3 wgt
as | (0,0,0-1) 1 a5 =x, 't

Under the above global symmetry charge assignment, the Hilbert series can be ex-

pressed in terms of characters of irreducible representations of SU(5),

(e}

g1(wi, t; M™) = Z[nvaOvO]SU(5)tn - (5.3.8)

n=0

The toric diagram of the mesonic moduli space is a 4 dimensional lattice polytope.

The coordinates of the toric points are encoded in the matrix

ay ay a3 a4 as
1 0 0 0 O
G, — 01 0 0 0 (5.3.9)
0 0 1 0 O
0 0 0 1 O
0 0 0 0 1

The projected toric diagram is a unit lattice 4-simplex.
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Figure 5.12: The Model 6.2a brane tiling on a ¢ = 2 Riemann surface with 6 fields and
2 superpotential terms.

CO———@O

Figure 5.13: The quiver diagram for Model 6.2a, a brane tiling on a ¢ = 2 Riemann
surface with 6 fields and 2 superpotential terms.

5.3.2 6 Fields, 2 Superpotential Terms, 2 Gauge Groups

Model 6.2a: C?

The brane tiling on a g = 2 Riemann surface and the corresponding quiver diagram are
shown in Figure and Figure respectively. The superpotential is

W =4 X120 X X5 X1 X1 X2 — X190 X5 X0 X1 X3 X (5.3.10)
The quiver incidence matrix is

Xi, X7 X3 X3 X Xy
o 0o o o 1 -1 |. (5.3.11)
0 0 0 0 -1 1

d

The brane tiling has 6 perfect matchings. Since there are only 2 superpotential terms,

every field on its own represents a perfect matching. The perfect matching matrix is
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therefore the identity matrix,

ap az a3z a4 p1 P2
X411 0 0 0 0 O
X310 1 0 0 0 0
P=| X,|0 0 1 0 0 0 (5.3.12)
X410 0 0 1 0 0
X120 0 0 0 1 O
Xo1 O 0O 0 0 0 1
The zig-zag paths in the brane tiling of Model 6.2a are
m= (X1117X121) » 2 = (X212:X222) )
13 = (X2, X35, Xo1, X11) , 1 = (X2, X35, Xo1, X)) - (5.3.13)

The superpotential for a theory with only U(1) gauge groups vanishes W = 0, and
therefore the kernel of the perfect matching matrix is empty. There are no F-terms, and

there are no F-term charges
Qr=0. (5.3.14)

The D-term charges are encoded in the quiver incidence matrix d and are summarized

in the following charge matrix,

ayp a2 a3 a4 PpP1 P2
_ . 5.3.15
@p ( 0 0 0 0 1 -1 ) ( )

Accordingly, the total charge matrix Q; = QF, and the mesonic moduli space is given

by the symplectic quotient of the form
M™e =C8//Q; . (5.3.16)

By associating the fugacities «a;,t; to the perfect matchings a;,p; respectively, the
fully refined Hilbert series of M™¢® is given by the following Molien integral

1 dzy 1 1
o, Bi; M) = . — X -
gl( B ) (2772) fzﬂ:l 21 H?:l(l — O[Z‘) (1 — thl)(l — Zl 1t2)

1 1
[T (1 — ) 0 —tity) (5.3.17)

Accordingly, the mesonic moduli space is a freely generated space, M™¢ = C?.

The @p charge matrix in (5.3.15)) indicates a symmetry of SU(4) x U(1) x U(1)rg.
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| | SUM@)., U(1), U(Q1)g | fugacity

ap | (1,0,0) 0 1 a1 =zt

as | (-1,1,0) 0 1 e
as | (0,-1,1) 0 1 az = x5 lwst
as | (0,0,-1) 0 1 aq = a3 't
p1 | (0,0,0) 1 1 t = bt

p2 | (0,0,0) -1 1 to = b1t

Under the above charge assignment, the Hilbert series of M™® can be expressed as
1 oo
gz, EM™S) = s > 1,0, 0lspt"™ - (5.3.18)
n=0
Since the moduli space space is C?, we expect a SU(5) symmetry. The fully enhanced

global symmetry is therefore SU(5) x U(1)g. This can be observed by modifying the

global charges on the perfect matchings p; and ps. A possible choice can be:

| suG).,  U)R fugacity |

ai (1,0,0,0) 1 o = x1t

az | (-1,1,0,0) 1 O
as | (0,-1,1,0) 1 a3 = 1’2—1953t
as | (0,0-1,1) 1 a4 = z4m3 't
p | (0,00-1/2)  1/2  ty =a P12
po | (0,00-1/2)  1/2  ty=a; P2

Under the above charge assignment, the mesonic Hilbert series can be expressed as

expected in terms of characters of SU(5) irreducible representations,

oo

g1 (@i t; M) = > "[n,0,0,0)50(5)t" - (5.3.19)
n=0

The toric diagram of the mesonic moduli space is a 4 dimensional lattice polytope.

The coordinates of the toric points are encoded in the matrix

ay az a3 a4 p1 P2

1 0 0 0 0 O
O 1 0 0 0 O
G, = (5.3.20)
O 0 1 0 0 O
O 0 0O 1 0 O
o 0 o0 0o 1 1

Recall that perfect matchings correspond to toric points. We observe that the perfect
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matchings p; and ps correspond to the same toric point.

Model 6.2b: NC1

01! "°6
-0
_dL
0 1 2 2~°3.4
566 4bsoad "o

1 2 3 4 5 6
Xy Xy Xfp X5 XP, X5

Figure 5.14: The Model 6.2b brane tiling on a g = 2 Riemann surface with 6 fields and
2 superpotential terms.

© O,

Figure 5.15: The quiver diagram for Model 6.2b, a brane tiling on a ¢ = 2 Riemann
surface with 6 fields and 2 superpotential terms.

The second brane tiling on a g = 2 Riemann surface with 2 superpotential terms with
6 fields is shown with the corresponding quiver diagram in Figure and Figure [5.15

respectively. The superpotential is
I vl v2 v2 v3 v3 1 v2 v2 v3 v3 vl
W = +X15 X0 X15 X9, Xi5 X5y — X X5 Xi5 X5, Xip Xy, . (5.3.21)
The quiver incidence matrix is

X, X{h, Xiy Xy X3 X3
d= 1 1 1 -1 -1 -1 |. (5.3.22)
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The brane tiling has ¢ = 6 perfect matchings, each of them given by a bifundamental

field. The perfect matching matrix is the identity matrix,

a1 az asz by by b3

XHh|1 0 0 0 0 0
X410 1.0 0 0 0
P=| x50 0 1 0 0 0 (5.3.23)
X310 0o 0o 1 0 0
X310 0 0 0 1 0
X310 0 0 0 0 1
The zig-zag paths of the brane tiling are
m = (X112,X211) y 2 = (X1227X221) » M3 = (Xf’zanﬁ) )
N4 = (X112aX2217X?27X2117X1227X§1) . (5.3.24)

The Abelian superpotential vanishes W = 0, and the kernel of the perfect matching
matrix is empty. There are no F-terms, therefore no F-term charges. The D-term

charges are encoded in the quiver incidence matrix d:

ar a2 az by by b3
_ . 5.3.25
@ ( 1 1 1 -1 -1 —1) ( )

The total charge matrix ; = @p, and the mesonic moduli space is the symplectic

quotient
M™S5 =C8//Qy . (5.3.26)

By associating the fugacities o; and 3; to the perfect matchings a; and b; respectively,

the fully refined Hilbert series of M€ is given by the Molien integral

(H azﬁz) (aiaﬁi)

d
g1 (e, Bis M) :f 5 - 3 ! == ;
|z|=1 #TTt% —1 A
Ijl(l —zay)(1 —2z715;) 11 (1—yfBy)
(5.3.27)
where
3
P(o, Bi) = Ha gt - Za '8y +Z i+ BB - 2—Zazﬂj+ﬂa,@.
WJ=1 J=1 i,j=1 i=1
" " ’ (5.3.28)
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Accordingly, the mesonic moduli space is a non-complete intersection of dimension 5.
By setting the fugacities a; = 3; = t, the unrefined Hilbert series is

144+t

g1t M) = a_ep (5.3.29)

The palindromic numerator of the Hilbert series indicates that M™¢® is a Calabi-Yau
5-fold. The plethystic logarithm of the refined Hilbert series of M™% is of the form

3 3
PL[91(04¢,B¢;M7”65)] = Z Oéiﬁj — Z ailﬁﬁaizﬁjg 4+ ... . (5.3.30)
i,j=1 i1712,J1 772

The generators of the mesonic moduli space in terms of perfect matching variables are

’ generator ‘ perfect matchings ‘

Ay aib; |

which are subject to the first order relations
eIz Ay i Ay =0 (5.3.31)

One can assign the following enhanced SU(3) x SU(3) x U(1)g global charges to the

perfect matching variables

’ ‘ SU3), SU@B3), U)gr ‘ fugacity ‘

al (1,0) 0 1 a1 =zt

az | (—1,1) 0 1 Qg = :Eflmgt
az | (0,—1) 0 1 a3 = x5 't
by 0 (—1,0) 1 B =yt
ba 0 (1,-1) 1 Bo = ylyglt
b3 0 (0,1) 1 B3 = yat

Under the above charge assignment, the Hilbert series of M can be expressed as

[o¢]
g1 (x4, yi, t; M™E®) = Z[n,O;O,n]th , (5.3.32)
n=0
where [n,0;0,n] = [n,0]s1(3),[0,n]s0(3),- The generators and the first order relations

formed by them are encoded in the plethystics logarithm, which now takes the form
PL[gy (x5, ys, t; M™)] = [1,0;0, 1]t> — [0, 1; 1,01t + ... . (5.3.33)

The toric diagram of the mesonic moduli space is a 4 dimensional lattice polytope.
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The coordinates of the toric points are encoded in the matrix

P1r P2 P3 P4 P5 D6
1 0O 0 0 0 1
Gy = -0 0010 (5.3.34)
1 0O 0 1 0 O
-1 0 1 0 0 0
1 1 1 1 1 1

Note that the mesonic moduli space here is the same as the master space of C3/Z3 [52].

Model 6.2¢c: NC1

.
‘oo

1 2 3 4 5 6
Xy Xy Xy X5 Xiy X3

Figure 5.16: The Model 6.2c brane tiling on a ¢ = 2 Riemann surface with 6 fields and
2 superpotential terms.

© O

Figure 5.17: The quiver diagram for Model 6.2¢c, a brane tiling on a ¢ = 2 Riemann
surface with 6 fields and 2 superpotential terms.

The brane tiling and quiver for Model 6.2¢ are shown in Figure and Figure [5.17
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respectively. The superpotential is

W = +X15 X0) X X5, X5 X5 — X5 X7, X5, X7y X1 X

(5.3.35)

In the Abelian gauge theory the superpotential vanishes, giving the same model as in the

previous section. (The non-Abelian gauge theories differ by superpotential interactions.)

There is a difference in the zig-zag paths, which now are

m = (XSI’X%Q) y M2 = (X§27X221) y M3 = (X2217X122) )
N4 = (X122aX211) y M5 = (X211,Xf’2) y M6 = (Xf’QanH) .

5.3.3 7 Fields, 2 Superpotential Terms, 3 Gauge Groups

Model 7.2: CZ x C

ROAN

3\0-412-09 ~

1 ) 3 4 5 6 7
X3 X33 X3 Xz X9 X2 X3

(5.3.36)

Figure 5.18: The Model 7.2 brane tiling on a ¢ = 2 Riemann surface with 3 gauge

groups, 7 fields and 2 superpotential terms.

The brane tiling and corresponding quiver for Model 7.2 is shown in Figure and
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Figure 5.19: The quiver diagram for Model 7.2, a brane tiling on a ¢ = 2 Riemann
surface with 3 gauge groups, 7 fields and 2 superpotential terms.

Figure respectively. The superpotential is

W = +X13X33 X33 X350 X5, X190 X5 — X13X55 X35 X30 X5 X12X5; -
(5.3.37)

The quiver incidence matrix is
1 2 1 2
X33 X33 X9 X5 X Xiz Xp

o 0 1 1 -1 -1 0
d= . (5.3.38)

Model 7.2 has ¢ = 7 perfect matchings, each made out of a single field in the quiver.

The perfect matching matrix is therefore the identity matrix,

ap az by by p1 p2 p3

X1 0 0 0 0 0 O

X%10 1 0 0 0 0 0

X110 0 1 0 0 0 O
P= 21 (5.3.39)

X410 0 0 1 0 0 0

X120 0 0 O 1 0 O

Xi3]10 0 0 0O O 1 O

X320 0 0 0 0 0 1

The brane tiling has the following zig-zag paths,
m = (X33, X33) » m2 = (X1, X12) , m3 = (X2, X51) ,

ma = (X13, X33, X32, X3,) , 15 = (X13, X33, X32, X3,) . (5.3.40)
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There are only trivial F-term constraints. The D-term constraints are encoded in the

charge matrix

ap az by b2 p1 p2 p3
Qp=]1 0 0 1 1 -1 0 -1 |. (5.3.41)
0O 0 0 0 0 1 -1

Model 7.2’s mesonic moduli space is expressed as the following symplectic quotient,
M™ =C"//Qp . (5.3.42)

By associating the fugacities «y, 8;,t; to the perfect matchings as, b;, p; respectively,

the fully refined Hilbert series of M is given by the following Molien integral

1 le dZQ ng
. e mes — _- _“ _ 2
gl(amﬂu is M ) (27”')3 %zﬂ:l 21 Jim=1 22 Jpsg=1 23
1
=)
[To (1 — i) (1 —218)
1

X
(1 — 27 1) (1 — 29t2) (1 — 27 125 Mt3)
1 — B1Bat1tats .
[T, (1 — i)(1 — Bit1) (1 — Bitats)

(5.3.43)

From the Hilbert series, we observe that the mesonic moduli space is a complete
intersection. It is a 5-dimensional Calabi-Yau space. More specifically, the mesonic

moduli space is M™¢ = C? x C where the conifold generators are

generator | perfect matchings
A bip1
B; bipaps

The conifold relation is
€9A;B; =0 . (5.3.44)

The global symmetry is enhanced to SU(2) x SU(2) x U(1)? x U(1)g according to
the charge matrix in ([5.3.41]). One can assign the following global symmetry charges to
the perfect matchings.

281



[ SU@. SU@), U@ U@, UQ)r | fugacity

al +1 0 0 +1 ap = at

as -1 0 0 +1 | =o't

b1 0 +1 0 -1 +1 | B =yby 't
by 0 -1 0 -1 +1 | o=y byt
P 0 0 0 +1 +1 | t; = bot

P2 0 +1 0 +1 ty = byt

P3 0 -1 +1 +1 |ty =by bot

Under the above charge assignment, the Hilbert series of M™¢® can be expressed in

terms of characters of irreducible representations of the global symmetry,

m 1 o0 o0
9oy EMO) = gy 2 D el

n1=0mn2=0

= XY Skl G

m=0n1=0n9=0

We expect however from the conifold itself two SU(2) symmetries and therefore a
fully enhanced symmetry of SU(2)3 x U(1) x U(1)g. The full symmetry can be probed

by modifying the above charge assignment on perfect matchings as follows.

| | su@. su), su@. U1), U1)g | fugacity

a1 +1 0 0 0 +1 a1 =t

as -1 0 0 0 +1 | ag=a"

by 0 +1 0 -1 +1 | L =yby 't

by 0 -1 0 -1 +1 | Be=y byt

p1 0 0 +1 +1 +1 |t = 2bt

P2 0 0 S1/2 0 41/2 0 41/2 |ty = 2721212
P3 0 0 1/2 0 412 41/2 |ty = 2~ V2p1 /2412

With the above refinement, the Hilbert series displays the full SU(2)? symmetry,

(o oo o]

gi(x,y, z, t; M%) = Z Z[m]x[ng]y[ng]ztm”"? (5.3.46)

n1=0n2=0
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The toric diagram of M™¢* is given by

ar a2 by by p1 p2 p3

1 0 00 0 0
01 0 0 0 0

G, = : (5.3.47)
00 1 0 1 0
00 0 1 1 0 0
00 0 0 1 -1 -1

where we notice that the perfect matchings po and ps relate to the same toric point.

5.3.4 7 Fields, 4 Superpotential Terms, 1 Gauge Group

Model 7.4: C x M3

1 2 3 4 ) 6 7
Xio Xfo XpoXn Xh Xh XY

Figure 5.20: The Model 7.4 brane tiling on a g = 2 Riemann surface with 1 gauge group,
7 fields and 4 superpotential terms.

C=@

Figure 5.21: The quiver diagram for Model 7.4, a brane tiling on a ¢ = 2 Riemann
surface with 1 gauge group, 7 fields and 4 superpotential terms.
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The brane tiling and corresponding quiver for Model 7.4 is shown in Figure and
Figure respectively. The superpotential is

W =+X, X1 X7 X1 + XD X0 X, — XH X0 X1 X9 — XL XD X
(5.3.48)

The brane tiling is made of a single 14-sided face with the quiver having 7 adjoints. The

brane tiling has overall ¢ = 9 perfect matchings,

b1 p2 P3 P4 P5 D6 DPv

X410 0 0 0 0 0 1

X3|1 0 0 1 0 0 O

X310 1 0 0 1 0 0
P= }11 (5.3.49)

X510 0 1 0 0 1 O

X411 1.1 0 0 0 0

X610 0 0o 0 0 0 1

xXHlo o 0o 1 1 1 0

The zig-zag paths of the brane tiling are,
m= (XIQI’X%I) » 12 = (XflﬂXfl) » T3 = (X151,X171) )

na = (Xiy, X7, X0, XT1) 5 ms = (X{y, X1, X9y, X)) (5.3.50)

The F-term constraints are summarized by

b1 P2 P3 P4 DP5 DPe D7
Qrp=| 1 0 -1 -1 0 1 0 |. (5.3.51)
o 1 -1 0 -1 1 0

There are only trivial D-term constraints.
Overall, Model 7.4’s mesonic moduli space is expressed as the following symplectic

quotient,
M™S =CT//Qp . (5.3.52)

By associating the fugacity ¢; to the perfect matching p;, the fully refined Hilbert
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series of M™% is given by the following Molien integral

1 dzl dZQ
t,;Mmes — : hate} hatc}
ol : (2mi)? 7{”1 21 7{22|1 22

1
X -1_-1
(1 — thl)(l — Zztg)(l — 21 %9 tg)
1 1
X —1 —1 X
(1 =z 'ta)(1 — 25 't5)(1 — z120t6) (1 —1t7)
B 1 y 1 — tqtotstststs
(1 —t7) © (1 —t1tg)(1 — tots)(1 — tatg)(1 — titats)(1 — tatste)

(5.3.53)

From the Hilbert series, we observe that the mesonic moduli space is a complete

intersection. It is a 5-dimensional Calabi-Yau space. The generators of the moduli

space are shown below.

generator | perfect matchings

Ay P1P4
Az P2ps
As D3D6
By D1P2P3
By P4P5D6
C p7

The relation formed by the above generators is
A1A2A3 = BBy . (5354)

The global symmetry is U(1)* x U(1)g. The toric diagram of M™¢* is given by

b1 P2 P3 P4 P5 DPe Pr
1 0 0o 1 0 0 O
G, = O 1 0 O 1 0 O (5.3.55)
0O 0 1 0 O 1 O
0O 0 O 1 1 1 O
O 0 O O 0 0 1
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ISTANID
CAN

1 2 3 4 5 6 7 8

X Xj3 Xsa X3z X X3 X1 X3

Figure 5.22: The Model 8.2a brane tiling on a ¢ = 2 Riemann surface with 4 gauge
groups, 8 fields and 2 superpotential terms.

Figure 5.23: The quiver diagram for Model 8.2a, a brane tiling on a ¢ = 2 Riemann
surface with 4 gauge groups, 8 fields and 2 superpotential terms.

5.3.5 8 Fields, 2 Superpotential Terms, 4 Gauge Groups

Model 8.2a: NC?2

The brane tiling and quiver of Model 8.2a are shown in Figure and Figure [5.23

respectively. The superpotential is

W = + X14 X 13 X34 X35 X350 X0 X190 X5 — X14X 15 X34 X33 X350 X0 X 10X,
(5.3.56)
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The quiver incidence matrix is

Xy X3 Xiz X3z Xip Xy Xz Xy
1 1 0 0 -1 -1 0 0
d=| -1 -1 0 o0 1 0 1 0 . (5.3.57)

The brane tiling has ¢ = 8 perfect matchings, each made out of a single field. The

perfect matching matrix is therefore the identity matrix,

ap az by by p1 p2 p3 pa
X411 0 0 0 0 0 0 O
X310 1.0 0 0 0 0 0
X0 0 1 0 0 0 0 0
P=| X%/0 0 0 1 0 0 0 0 (5.3.58)
X120 O 0 O 1 0 0 O
X0 O 0 0O 0 1 0 o0
X320 O 0 O O O 1 0
X340 O 0 O O 0 0 1
The brane tiling of Model 8.2a has the following zig-zag paths
m = (Xis3 X34) , m2 = (X34, X33) , 13 = (Xg1, X12) , ma = (X12, X3,) ,
N5 = (X14, Xi3, X532, X31) , 16 = (X14, X35, X32, X3) . (5.3.59)

There are only trivial F-terms due to the identity perfect matching matrix. The

D-term charge matrix is as follows

ap az by by p1 p2 p3 D4
1 1 0 0 -1 0 -1 O

_ . 5.3.60
©p 00 1 1 0 0 -1 -1 ( )

o 0 0 0 01 -1 0

The symplectic quotient describing the mesonic moduli space is as follows,
M™ =C%//Qp . (5.3.61)

By associating the fugacities oy, 8;,t; to the perfect matchings a;, b;, p; respectively,
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the fully refined Hilbert series of M"™® is given by the following Molien integral

1 le dZQ dZ3
iy "t.;Mm(iS = 7573 T 9 2
gl(Oéz Bz i ) (27T2)3 fTZﬂl 21 |z2|=1 zZ2 |z3|=1 zZ3
1
X
[ (1 = 2z105) (1 — 223;)
1

X - g =)
(1 — 27 t1)(1 — 23t2)(1 — 27 "2y 25 t3)(1 — 25 ta)
(arazfBatitatsts) P(ay, Bi, ti)
T2, (1 — it ) (1 = Bita) TT7 ;= (1 — iBjtats)

(5.3.62)

where the numerator is
2 2
Ploi, Bivi) = optag BB g e =D ot =Y BT+
i=1 i=1

2 2
—ty Motaty + > autatstyt + Y Bity Hats — a1aaBi Bathts .

i=1 i=1
(5.3.63)
By setting the fugacities a; = 3; = t; = t, the unrefined Hilbert series is
1— 415 4 4410 — ¢19
g1(t M) i (5.3.64)

(1= 2)3(1 — t4)3

The Hilbert series above indicates that the mesonic moduli space is not a complete

intersection. The plethystic logarithm of the Hilbert series is,

2 2

PL[gi(as, Bi, tis M) = > (aits + Bita) + Y cifjtats

i=1 ij=1
2
— Z(Ozlagﬁitltgtgg + Oéiﬁlﬁztgtgu) —+ ... (5.3.65)

=1

The first order generators are as follows.

generator ‘ perfect matchings ‘

A; a;p1
B; bips
Cij a;bjpaps3

The generators form the following first order relations

EiligAilcizj =0, 6J‘1J’2B].1C'ij2 =0. (5.3.66)
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The global symmetry is enhanced to SU(2) x SU(2) x U(1)? x U(1)g. The perfect

matchings carry the following global charges.

| | SU@. SU@), UQw, U@, UL)g | fugacity |

al 1 0 1 0 1 a1 = xbit
as -1 0 1 0 1 as =z it
by 0 1 0 1 1 B1 = ybot
by 0 -1 0 1 1 Bo =y~ thot
P 0 0 -1 0 1 | t=b't
P2 0 0 -1 0 1 ty = by 't
P3 0 0 0 -1 1 t3 = by 't
P4 0 0 0 -1 1 ty=by't

The Hilbert series of the mesonic moduli space can be expressed in terms of characters

of irreducible representations of the global symmetry group. It is

c© oo 00
g1(x,y, bi7t;Mmes) _ Z Z Z[n2+n3;n1+n3}t2n1+2n2+4n3 , (5.3.67)

n1=0mn2=0n3=0

where [ng + n3;ny + ng| = [na + ng]SU(Q)w[TLl + ng]SU(z)y.
The toric diagram of M™¢* is given by

ap az by by p1 p2 p3 pa

G, (5.3.68)

= o O O =
_ o O = O
_ O = O O
= = O O O
_ o O = =
_ o O O O
- o O O O
— = =R O O

Model 8.2b: NC3

The brane tiling and quiver of Model 8.2b are shown in Figure and Figure [5.25

respectively. The superpotential is

W = + X1y X153 X350 X1 X1y X5 X5 X531 — X1y X35 X530 X531 X1y X3 X35 X1 -
(5.3.69)
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1 2 3 4 5t 6 7 8
Xy Xl X3 Xy Xfy X X3 X3

Figure 5.24: The Model 8.2b brane tiling on a ¢ = 2 Riemann surface with 4 gauge
groups, 8 fields and 2 superpotential terms.

Figure 5.25: The quiver diagram for Model 8.2b, a brane tiling on a ¢ = 2 Riemann
surface with 4 gauge groups, 8 fields and 2 superpotential terms.

The quiver incidence matrix is

Xy Xis X3 X3 X§y X3y X5 X5
-1 0 0 1 -1 0 0 1
d=| o o 1 -1 0 o 1 -1 |. (5.3.70)

The brane tiling has ¢ = 8 perfect matchings, each made of a single quiver field. The
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perfect matching matrix is the identity matrix,

ar as by by ¢ ca di dy
XH|1 0 0 0 0 0 0 0
X210 1.0 0 0 0 0 O
X510 0 1.0 0 0 0 O

P=] X210 0 0 1 0 0 0 0 (5.3.71)
X410 0 0 01 0 0 O
X210 0 0 0 0 1 0 O
X310 0 0 0 0 0 1 0
X210 0 0 0 0 0 0 1

The zig-zag paths of the brane tiling are
m = (X114,Xi3,X322,X221,X124,X423,X3127X211) )
2 = (Xiy, Xig, X5, Xo1, XTy, Xz, X390, X31) - (5.3.72)

There is no F-term charge matrix. The D-term charge matrix is as follows

ay az b1 b2 Ccl1 C2 dl d2

11 0 0 0 O -1 -1
= . 5.3.73
=10 011 00 -1 (5:3.73)

o 0 0 01 1 -1 -1

The symplectic quotient describing the mesonic moduli space is
M™S =C8//Qp . (5.3.74)

By associating the fugacity t; to the perfect matching p;, the fully refined Hilbert

series of M€ is given by the following Molien integral

1 d d dz-
g1 (i, Biy i, 65, M™) = ﬁ Zlfj s &

27i)3 Jizy=1 21 Jjmj=1 22 Jjg=1 23
1
T2 —1_—1_-1
i=1 (L = 210)) (1 — 290 )(1 — 237 ) (1 — 21 "29 "23 05
[T (1 )(1 — 220;)(1 )(1 di)
P(c, Bi, i, 6i)
5 .
17 kie1 (1 — ciBjvk01)

(5.3.75)

The numerator P(«;, 3;, i, i) is too large to be presented here. We unrefine the above

Hilbert series by setting the fugacities a; = 8; = v; = 6; = t. The unrefined Hilbert
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series is

141184 + 1188 + ¢12

gl(t; MmeS) (1 _ t4)5

(5.3.76)

The Hilbert series above indicates that the mesonic moduli space is not a complete
intersection. It is a Calabi-Yau 5-fold.

The plethystic logarithm of the refined Hilbert series is,

2
PL[gi(c, Bi, i 05 M™) = > iy
ij kl=1

2 2
T Bt (7433 (ia;" + BB + i7" + 65 )
m=1

i#j
2
—i—Z(aiaj_lﬁkﬁl_l + aiaj_lfyk'yl_l + aiaj_lékél_l
i#j
k#l
BB+ il o i 0T
(5.3.77)

The first order generators are shown below.

’ generator ‘ perfect matchings ‘

’ Aijki ‘ aibjcrd; ‘

The generators form the following first order simplified relations

1192 A . . — j1J2 A. . . —
€ A'LljlklllAzzjzkglg =0, ¢V Alljlk‘lllAZz]Qlez =0,

kik — lLil2 A, . o —
et 2Ailj1k111Ai2j2k212 =0, ¢! 2A11J1k111A12j2k212 =0. (5'3'78)

The above are 112 relations which reduce to 55 independent ones in the representations
[2;2;0;0] with permutations and [0; 0; 0; 0].

The global symmetry is enhanced to SU(2)* x U(1)z. The perfect matchings carry
the following global charges.
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5
n
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™
<
n
~
™
bl
n
~
o

Jw U)gr ‘ fugacity ‘

aq 1 0 0 0 1 ap = xt
as -1 0 0 0 1 as =zt
by 0 1 0 0 1 B =yt
by 0 -1 0 0 1 Bo =1yt
cl 0 0 1 0 1 v = 2t
c3 0 0 -1 0 1 yo =271t
di 0 0 1 1 51 = wt
do 0 0 -1 1 Sy =wt

The Hilbert series of the mesonic moduli space can be expressed in terms of characters
of irreducible representations of the global symmetry group. It is
o0

g1(z,y, z,w, t; M™) = Z[n;n;n;n}t‘m , (5.3.79)

n=0

where [n;n; ;1] = [n]su(2), [?]su(), [Psu@). [M]su ), 1s the character of the irreducible
representation of SU(2)%.
The toric diagram of M€ is given by

ar ax b1 by c1 ca di do

1 0 1 0 1 0 1 0
1 -1 0 0 0 0 0 0
Gy = (5.3.80)
00 1 -1 0 0 0 0
0 0 1 -1 0 0
0 0 0 0 1 -1

5.3.6 8 Fields, 4 Superpotential Terms, 2 Gauge Groups
Model 8.4a: M3

The brane tiling on a ¢ = 2 Riemann surface and the corresponding quiver are shown
in Figure and Figure respectively. The quartic superpotential is

W = +X30 X5 X5, Xo1 X12 + XL XTXT) — Xn X1 X0 X1 X2 — X090 X5, X3,
(5.3.81)
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Figure 5.26: The Model 8.4a brane tiling on a ¢ = 2 Riemann surface with 2 gauge
groups, 8 fields and 4 superpotential terms.

C0O O

Figure 5.27: The quiver diagram for Model 8.4a, a brane tiling on a ¢ = 2 Riemann
surface with 2 gauge groups, 8 fields and 4 superpotential terms.

The quiver incidence matrix is

X212 X222 ng Xo1 X2 X111 X121 X%l
d= 0 0 0 1 -1 0 0 0 . (5.3.82)
0 0 0 —1 1 0 0 0

The brane tiling has ¢ = 9 perfect matchings. The perfect matchings are encoded in
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the matrix

b1 P2 P3 P4 P5 P6 DP7 P8 P9

XLi1 0 0 1 0 0 1 0 0

X310 1.0 0 1 0 0 1 0

X510 0 1 0 0 1 0 0 1
P=] Xo1|0 0 0 0 0 0O 0 0 0 (5.3.83)

X120 0 0 0O O O 0 0 O

X411 11 0 0 0 0 0 0

X410 0 0 1 1 1 0 0 0

X410 0 0 0 0 0 1 1 1

The brane tiling has the following zig-zag paths,
m= (X212’X222) y M2 = (X222>X222) » 3= (Xo1, X12) , ma = (X111>X§1) )

5 = (X%I’X%l) y M6 = (X212’X§27X21’X1117X121’X12) . (5.3.84)

The F-term constraints can be expressed as charges carried by the perfect matchings.

The charges are given by

pP1r p2 P3 P4 P5 P6 Pr P8 DP9
0O -1 0 0 0 -1 0
1 0O 0 0 0 -1
0o o 1 0 -1 -1 O
0 O 1 -1 0 -1

QF = (5.3.85)

o O O =
— = = =

There are no D-term constraints. The mesonic moduli space can be expressed as the

symplectic quotient
M™s =C%/Qp . (5.3.86)

By associating the fugacity t; to the perfect matching p;, the fully refined Hilbert
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series of M™% is given by the following Molien integral

(t Mmes) 1 % dzlf dZQ d2’3 dZ4
g1(ts; = o5 - - - —
' (2mi)® |z1]=1 #1 J|zg|=1 22 Jiz3|=1 %3 J|zy|=1 %4
1
X -1_-1
(1—21t1)(1—2’2t2)(1—21 Z9 t3)
1
X -1_-1
(1—23t4)(1—24t5)(1—z3 2, tG)
1
X

(1 — 27 23 M) (1 — 25 M2y Ms) (1 — 21222324t0)

1 — tytotstatstetatsto
(1 — t1tats) (1 — tatsts)(1 — trtste) (1 — t1tats)(1 — tatsts)(1 — tstet)
(5.3.87)

Accordingly, the mesonic moduli space is a complete intersection of dimension 5. It
is a Calabi-Yau 5-fold and its generators can be written in terms of perfect matching

variables as follows:

generator | perfect matchings

Ay P1P2pP3
Az P4P5P6
As P7P8PY
By P1P4P7
By D2P5Ps8
Bs D3P6P9

The generators form a single relation of the form
A1AsAs = B1ByBs . (5.3.88)

The global symmetry is U(1)* x U(1)g and experiences no enhancement. The toric

diagram of the Calabi-Yau 5-fold is given by

P1 P2 P3 P4 P5 P6 P P8 DP9
1 0 0 1 0 0 1 0 O
G, = o 1.0 0 1 O 0 1 O (5.3.80)
O 0o 1.0 0 1 0 0 1
1 1.1 0 0O O O O O
O 0o 0 1.1 1 0 0 O
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Model 8.4b: C3 x C2/Z,

Q@ 2
2)-4.56"7 5\6‘17.“053

1 2 3 4 5 6 7 8
X211 X1 X112 X212 X222 X232 X221 X122

Figure 5.28: The Model 8.4b brane tiling on a ¢ = 2 Riemann surface with 2 gauge
groups, 8 fields and 4 superpotential terms.

O &0

Figure 5.29: The quiver diagram for Model 8.4b, a brane tiling on a ¢ = 2 Riemann
surface with 2 gauge groups, 8 fields and 4 superpotential terms.

For Model 8.4b, the brane tiling and corresponding quiver is shown in Figure [5.28
and Figure respectively. The quartic superpotential is
W = + X5 X11 X5 X00 X35 + X5p X351 Xy — X1 X715 X35 X050 X5 — X1 X1, X5, -
(5.3.90)

The quiver incidence matrix is

Xy Xu Xy X5 X3 X5, X5 Xi
1 0o -1 0o o0 o0 1 -1 |. (5.3.91)
-1 0 1 0 0 0 -1 1

d

The brane tiling has ¢ = 7 perfect matchings. The perfect matchings are encoded in
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the matrix

ap az az by b2 p1 p2

X1 0 0 0 0 0 0

XH»|0 1 0 0 0 0 0

X210 0 1 0 0 0 O
P=| X351 1 1 0 0 0 0 (5.3.92)

XLl0 0 0 0 1 1 0

X410 0 0 1 0 1 0

X310 0 0 1 0 0 1

X310 0 0 0 1 0 1

The brane tiling has the zig-zag paths,
m = (X212?X222) y M2 = (X117X112?X§2’X221) y M3 = (X211aX11’X122’X:232) )

= (X3, Xip, X, X351, X, X35) - (5.3.93)

The F-term constraints can be expressed as charges carried by the perfect matchings.

The charges are given by

by b
QF_(M az as 1 2 P1 D2 ) (5'3.94)

0o 0 0 1 1 -1 -1

The D-term charges are encoded in the quiver incidence matrix d and are

by b
QD:(CM az a3 01 b2 p1 P2 ) (5.3.95)

o 0 0 1 1 0 -2

The combined charges can be written as

ar a2 a3z by by p1 p2
Q=0 0 0 1 1 -1 -1 |, (5.3.96)
0O 0 O 0 O 1 -1

where the mesonic moduli space can be expressed as the symplectic quotient
MM =CT//Qy . (5.3.97)

By associating to perfect matchings a;, b;, p; the fugacities «y, 5;, t;, the fully refined
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Hilbert series of M™% is given by the following Molien integral

1 le dZQ 1
bt — Lo f dag o dn
oo ity ) @27 Ji=1 21 Sisimr 2 TT (10— o) Ty (1 — 2181)
y 1
(1 — 27 20t1) (1 — 27 P2y M)
1 117, B2

[P0 —a) (1= Biatita) [y (1 — BPtata)
(5.3.98)

Accordingly, the mesonic moduli space is a complete intersection of dimension 5. It is a
Calabi-Yau 5-fold and its generators can be found in terms of perfect matching variables

as follows:

generator | perfect matchings
A; a;
B;; b;ibjp1p2

A; generate C? and B;; form a single relation of C?/Zy which can be expressed as
det B=0. (5.3.99)

The global symmetry is SU(3) x SU(2) x U(1) x U(1)g. The perfect matchings carry

the global symmetry charges as follows.

| | sUB). SU@), UL U1)g | fugacity

ap | (1,0) 0 0 1 o1 = 31t

as | (=1,1) 0 0 1 g =z xot
as | (0,—-1) 0 0 1 a3 =1yt
by | (0,0) 1 0 1 B =yt

by | (0,0) -1 0 1 Bo =1yt
p1 | (0,0) 0 1 1 t, = ht

p2 | (0,0) -1 1 ty = h™1t

Under the above assignment of global charges the refined Hilbert series of the mesonic

moduli space can be written as

g1(zi,y, t; M™% = Z Z[nl,o;ng]t”1+4n2, (5.3.100)

n1=0n9=0

where [n1, 0;n2] = [n1,0]50(3), [n2]su(2), are characters of irreducible representations of
SU(3)z x SU(2)y.
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The toric diagram is given by

1 0 0 0 0 0
0 1 0 0 0 0

Gy = (5.3.101)
0 0 1 0 0 0
00 0 1 —1 0 0
00 0 0 2 1 1

Model 8.4c: C? x C?/Z

1 2 3 4 5 6 7 8
X112 X212 X222 X%Q X211 X1 X122 X221

Figure 5.30: The Model 8.4c brane tiling on a g = 2 Riemann surface with 2 gauge
groups, 8 fields and 4 superpotential terms.

&0 o=

Figure 5.31: The quiver diagram for Model 8.4c, a brane tiling on a ¢ = 2 Riemann
surface with 2 gauge groups, 8 fields and 4 superpotential terms.

For Model 8.4c, the brane tiling and corresponding quiver is shown in Figure [5.38
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and Figure |5.39| respectively. The quartic superpotential is

W =+ X1, X5 X5 X5, X3 + X11 X710 X3) — X0 X5 X1 X5, X355 — X11X [, Xy, -
(5.3.102)

The quiver incidence matrix is

Xl Xpp X3 X5 Xy Xu XP X3
d=| -1 0o 0 0 1 0 -1 1 : (5.3.103)
1 0o o0 O0 -1 0 1 -1

The brane tiling has ¢ = 7 perfect matchings. The perfect matchings are encoded in

the matrix
ar az az bi by p1 p2
XLl0 0 0 1 0 0 1
X110 0 0 0 1 0 1
X410 0 0 0 1 1 0
P=| X310 0 0 1 0 1 0 (5.3.104)
Xppp1 11 0 0 0 0
XL11 0 0 0 0 0 0
X210 1 0 0 0 0 0
X510 0 1 0 0 0 O
The zig-zag paths of the brane tiling of Model 8.4c are
m= (X1127X211) » 2 = (X2127X§2) » T3 = (X2227X§2) » T4 = (X1227X221) )
M5 = (X390, X351, X11, X1) » m6 = (Xia, X200, X351, X11) - (5.3.105)

As we will see below, and seen above with the quiver diagram, Model 8.4c has many
similar properties as Model 8.4b in section §5.3.6l The zig-zag paths of Model 8.4c in

(5.3.146)) are however distinct from the ones for Model 8.4b in ([5.3.93)).

The F-term constraints can be expressed as charges carried by the perfect matchings.

The charges are given by

by b
QF‘(al az az 01 by p1 p2 ) _ (5.3.106)

0o 0 0 1 1 -1 -1

The D-term charges are encoded in the quiver incidence matrix d and are

ar a2 a3 by by p1 po
= . 5.3.107
o ( 000 0 1 1 -2 0 ) (5:3.107)
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The charges can be combined to give

ar a2 a3z by by p1 p2
Q=0 0 0 1 1 -1 -1 |, (5.3.108)
O 0 0O 0 O 1 -1

which is precisely the total charge matrix for Model 8.4b in §5.3.6

Accordingly, the mesonic moduli space as the following symplectic quotient
M™e =C7//Qy , (5.3.109)

is identical to the one in Model 8.4b. The mesonic moduli space is C3 x C?/Zy which
is a toric Calabi-Yau 5-fold.

Model 8.4d: C x M3,

1 2 3 4 5 6 7 8
X3 Xon Xi, X7 X X3 X3 Xy

Figure 5.32: The Model 8.4d brane tiling on a ¢ = 2 Riemann surface with 2 gauge

groups, 8 fields and 4 superpotential terms.

The brane tiling and corresponding quiver for Model 8.4d is shown in Figure and
Figure [5.33| respectively. The superpotential is

W =+ X350 X1 X1 X7 X12 + X5, X535 Xop — Xn X1 X1 X12X55 — X099 X5, X5 -
(5.3.110)
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CQ D

Figure 5.33: The quiver diagram for Model 8.4d, a brane tiling on a ¢ = 2 Riemann
surface with 2 gauge groups, 8 fields and 4 superpotential terms.

The quiver incidence matrix is

X3 Xo X{; X} X X3 X3, X3
d= o 1 o o -1 0 o0 o0 |. (5.3.111)
0 -1 0 0 1 0 0 0

Model 8.4d’s brane tiling has ¢ = 9 perfect matchings. The perfect matchings are

encoded in the matrix

b1 P2 P3 P4 P5 P6 Pr P8 P9
XH»|0 0 0 0 1 0 0 0 0
X1 0 0 0 0 1 0 0 0
XhH10 1.0 0 0 0O 1 0 O

P=| X4/0 0 1 0 0 0 0 1 0 (5.3.112)

Xi2{0 0 0 1 0 0 0 0 1
X431 111 0 0 0 0 0
X310 0 0 0 1 0 0 0 0
XL510 0 0 0 0 1 1 1 1

The brane tiling has the following zig-zag paths,

m= (X1117X121) y M2 = (X2227X§2) )
3 = (X212>X217X121aX127X327X242) y M4 = (X2127X222>X327X21aX1117X12)(5'3'113)

The F-term charge matrix is

p1 P2 P3 P4 Ps Pe Pt P8 DP9

1 00 -1 0 -1 0 0 1
Qr = : (5.3.114)
01 0 -1 0 0 -1 0 1

o o1 -1 0 0 0 -1 1

The D-term charge matrix is

(5.3.115)

Op = P1 P2 P3 P4 P5 P6 Pr P8 P9
1 0 0 -1 0 0 0 0 0"
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The mesonic moduli space of Model 8.4d in terms of a symplectic quotient is
M™e =C%//Qy . (5.3.116)

By associating the fugacity t; to the perfect matching p;, the fully refined Hilbert

series of M€ is given by the following Molien integral

(t Mmes) 1 % dz; dzo dzs dzy
g1(ti; S — — — —
Z @)t Ji=1 21 Jz=1 22 Jiza=1 28 Jjsg=1 2
1
X 11,11
(1 — z124t1) (1 — 2ot2)(1 — 23t3)(1 — 27 "2y 23 24 ta)
1

X
(1 — t5)(1 — Zl_lt(j)(l — 22_1t7)(1 — Z?)_ltg)(l — Z1222’3t9)
1 — titotstatetriste
(1 —t5)(1 — titateto) (1 — toty)(1 — tsts)(1 — titatsts) (1 — tetrtsty) .
(5.3.117)

From the Hilbert series, we observe that the mesonic moduli space is a complete

intersection. It is a 5-dimensional Calabi-Yau space. The generators of the mesonic

moduli space are:

generator | perfect matchings

Ay P1P4P6P9
Az p2p7
As D3P
B, P1p2pP3p4
By D6P7P8PY
C Ps5

The A;, B; generators form a single relation,
A1A2A3 = B1Bs . (5.3.118)

The global symmetry is U(1)* x U(1)g and has no enhancement. The toric diagram

of the mesonic moduli space is given by

b1 P2 pP3 P4 D5 P6 P7 P8 P9
0o 1. 0 0 0 0 1 0 O
Gt = 0000000 (5.3.119)
1 0 0 1 0 1 0 0 1
o 0 0 01 0 0 O O
11 1 1 0 0 0 O O
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Model 8.4e: NC4

1 2 3 4 5 6 7 8
X1 X112 X211 X122 X221 X132 Xo2 X§1

Figure 5.34: The Model 8.4e brane tiling on a ¢ = 2 Riemann surface with 2 gauge
groups, 8 fields and 4 superpotential terms.

CO~—>

Figure 5.35: The quiver diagram for Model 8.4e, a brane tiling on a ¢ = 2 Riemann
surface with 2 gauge groups, 8 fields and 4 superpotential terms.

Model 8.4¢e’s brane tiling and quiver are shown in Figure [5.34] and Figure respec-
tively. The superpotential is

W = +X11 X1, X3 X1 X3 + XD X002 X3, — X5 X0 X5 X1 X51 — X1 X$ X3, .
(5.3.120)

The quiver incidence matrix is

Xu Xiy, Xo Xip X3 XP) Xop X3
d= 0 -1 1 -1 1 -1 0 1 . (5.3.121)
o 1 -1 1 -1 1 0 -1
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Model 8.4e has ¢ = 9 perfect matchings which are

P1 P2 P3 Pa Ps P6 D7 P8 D9

Xyu[0 0 0 0 1 0 0 0 0

XHh|1T 0 0 0 0 1 0 0 0

X310 1.0 0 0 0 1 0 0
P=]1X%/0 0 1 0 0 0 0 1 0 (5.3.122)

X210 0 0 1 0 0 0 0 1

X511 111 0 0 0 0 0

X[ 0 0O 0 0 1 0 0 0 O

X3l0 0 0 0 0 1 1 1 1

The brane tiling has 6 zig-zag paths, which are
m = (X1127X211) y 12 = (X1227X211) ) 13 = (X1227X221) ) T4 = (X%ngl) )

ns = (X11, Xi9, X2, X31) , 16 = (X11, X3y, Xo9, X3,) . (5.3.123)

The F-terms are encoded in the charge matrix

b1 b2 P3 P4 Ps Pe Pr P8 DP9
1 0 0 -1 0 -1 O 0 1
= ) 5.3.124
©r 01 0 -1 0 0 -1 0 1 ( )

0o o1 -1 0 0O O -1 1

The D-terms are given by the matrix

b1 P2 P3 P4 P5 P66 P7 P8 DP9
= . 5.3.125
@p ( 2 -1 1 -1 0 -1 0 0 0 ) ( )
As a symplectic quotient the mesonic moduli space is
M™ =CY//Qy . (5.3.126)

By associating the fugacity t; to the perfect matching p;, the fully refined Hilbert
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series of M™% is given by the following Molien integral

1 dz; dzy dzs dzy
e R ol It Y I
(2mi) |z1|=1 ?1 Jlza|=1 *2 J|zz|=1 ?3 J|zy|=1 #4
y 1
(1-— zlzitl)(l - Zzzzltg)(l — zgz4t3)(1 — zflzglzglzllu)
1
X 11 ) )
(1 — t5)(1 — 21 2 t6)(1 — 29 t7)(1 — %3 tg)(l — Z12223t9)
_ P(t;)
(1 — t5)(1 — t1t2t6t7)(1 — t2t3t7t8)(1 — t1t4t6t9)(1 — t3t4t8t9)
1
X )
(1 — t113tstaty) (1 — titatstite) (1 — t1tdtrtsto)(1 — tatalrtite)
(5.3.127)
where the numerator is
P(t;) = 1 —t2t2tgt3tatrtg — t1tatatatrtato — titatatatetrtaty + totatatatetotgty — totatatatatatyto — t1tatatatototate

—titotatatitite + totatatatatotaty + tatatatatetrtats — tatatatatatrtata + tatatattatatets + tatatattatotyta
2,2 2,2 2 2,2 2,3,3,8 2,2,2 2,2,2,2.,2,2,2,2 2 3,2,2.2 3,4.,3,3,2,3,2,2
—titotatitatrtaty — titatatatrtaty + tatatatatetataty + At tatat tatataty + titatatatototaty — thtatatstatotaty
2,2 2,2 2 2 2,3,2 2 2,2 2 28 2,2 2 2,22 2 2 2 2 28
— 330242453454 242 4 11125ttt Rt e + t1tatatatototats — tototatatatotots + totatatatatotats 4+ totatatatatytaty
3,3,3,4,2

2,2,3 3,2,2.3,3,2,2.3 2,2,3,3,2,2.,3.3 2 2,2,3,2,3.3 3,3,3,3,3,3,3,3 3,2,2,2,4,3,3,3

—titotatatotataty — titotatatatataty — titotatatatataty + titatstytatataty — titatatytatstaty — trtatatytgtatyty
2,2,3,2,3,3,4.,3 4,44 .4 .4.4.4 4

—titotatstototgte + ttatatytotataty - (5.3.128)

By setting all perfect matching fugacities to t; = ¢, the Hilbert series takes the form

1 1+ 2t* + 216 4 2¢8 4 ¢12
g1(t; M%) = a9 X 1201 )2 ) (5.3.129)

It can be seen that the mesonic moduli space is a Calabi-Yau 5-fold. It is not a complete
intersection. The plethystic logarithm of the refined Hilbert series in ((5.3.127) is

PL[g1(t;; M™%)] = t5+ (titatets + tatstrts + titatete + tatatste) + (t1t5tstaty
+titatatite + titatrtsto + tatatrtaty) — titatstatetrtsto
—(t33tstttoty + tit3titItrtsty + titotstititity + titstytat tot)
— (t33tatatattaty + tit3titattetoty + tototstat it gt
Ftitotititetotats) + ... (5.3.130)

The first order generators of the mesonic moduli space can be found from the above
plethystic logarithm and are shown below.
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generator | perfect matchings

Ay P1P2P6P7
Az P2D3PTDs
As P1P4P6DY
Ay P3PaPPe
By PLP3P3PADT
By P1P2D3PP
Bs PLPEPTDSDY
By P3P6PTPEPY
C Ps

The generators above form the following first order relations,

{ AsA3 =A1Ay, A3By = A1By, AsBs = A1By, A4B3s = A3By, AyBy = A3By ,
A1AsA3 = B1B3 , AgA3Ay = BoBy , AgA% = BoBs , A3A3 = BiB,} . (5.3.131)

The global symmetry is not enhanced and remains U(1)* x U(1)g. The toric diagram

is given by

P1 P2 P3 P4 P5 P66 Pt P8 P9

Gy (5.3.132)

S = O O =
S = O = O
S = = O
- o O O
_ O O =
_ 0 = O
o O O O
o O O =
o O R O O

Model 8.4f: M,
The brane tiling and corresponding quiver for Model 8.4f is shown in Figure [5.36] and

Figure respectively. The superpotential is

W = +X30 X0 X1, X5, X5 + X35 X5 X015 — X230 X5, X5, X3y — X1 X1 X5 X5 -
(5.3.133)

The quiver incidence matrix is
1 1 1 2 3 4 2 2
Xy X1 Xpp Xgp Xpp Xy X5 X

d=| o 1 -1 0 o0 o0 1 -1 |. (5.3.134)
o -1 1 0 0 0 -1 1
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Figure 5.36: The Model 8.5f brane tiling on a ¢ = 2 Riemann surface with 2 gauge
groups, 8 fields and 4 superpotential terms.

Q0

Figure 5.37: The quiver diagram for Model 8.5f, a brane tiling on a g = 2 Riemann
surface with 2 gauge groups, 8 fields and 4 superpotential terms.

Model 8.4f’s brane tiling has ¢ = 8 perfect matchings. The perfect matchings are

encoded in the matrix

P1 P2 P3 P4 P5 Pe P7 D8
XH,|0 1.0 0 0 0 0 0
X410 0 10 1 0 1 0
X1t 0 0 0 0 0 0 0

P=] X3/0 0 0 1 0 1 0 1 (5.3.135)

XHh|0 0 1 1 0 0 0 0
X310 0 0 0 1 1 0 0
X510 0 0 0 0 0 1 1
XL|1 1.0 0 0 0 0 0
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The brane tiling has 6 zig-zag paths, which are

m= (X1127X211) y M2 = (X1227X221) y 13 = (X2127X§2) y M4 = (X2227X§2) )
5 = (X211aX1227X§27X212) y M6 = (X2217X112>X2227X§2) . (5'3'136)

The F-term charge matrix is

b1 P2 P3 P4 P5 P6 Pt D8
Qp=| 0 0 1 -1 0 0 -1 1 |. (5.3.137)
O 0 0 O 1 -1 -1 1

The D-terms are encoded in the matrix

b1 P2 P3 P4 P5 Pe P7 P8
= . 5.3.138
@p ( 1 -1 -1 1.0 0 0 0 ) ( )

The symplectic quotient description of the mesonic moduli space of Model 8.4f is

given in terms of the total charge matrix @,
M™es =C8//Q; . (5.3.139)

By associating the fugacity t; to the perfect matching p;, the fully refined Hilbert

series of M€ is given by the following Molien integral

(t,.Mmes) _ 1 % dzl% % %
g1(ti; (271'2)3 |z1|=1 1 |z2|=1 z9 |z3|=1 z3
1
X _ 1 _ -1 1
(1 thl)(l Z3 tg)(l 2123 tg)(l 21 23t4)
1

X
(1 — Z2t5)(1 — Zg_ltﬁ)(l — zflzgltﬂ(l — 21Z2t8)
1 — titotstatstetsts
(1 — t1t2) (1 — t3tq)(1 — t5te) (1 — trts) (1 — titststr) (1 — tatatets)
(5.3.140)

From the Hilbert series, we observe that the mesonic moduli space is a complete
intersection. As expected for a g = 2 tiling, it is a 5-dimensional Calabi-Yau space. The

generators of the mesonic moduli space are:
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generator | perfect matchings

Ay P1p2
Az P3P4
As D5D6
Ay p7p8
By DP1P3P5P7
Ba P2papePs

The generators form a single relation
A1A2A3A4 = B1By . (5.3.141)

The global symmetry is U(1)* x U(1)z and has no enhancement. The toric diagram of
the Calabi-Yau 5-fold is given by

b1 P2 P3 P4 P5 DPe Pr D8

(5.3.142)

Gy

o O o o =
_ o O O
S O O =
—_ O O =
o O = O
_ 0 = O
o = O O
= = O O O

We further note that one can apply the urban renewal move on face 1 of the brane
tiling. It can be shown that Model 8.4f is self-dual under toric duality on face 1 up to

a sign of the superpotential.

Model 8.4g: NC5
For Model 8.4g, the brane tiling and corresponding quiver is shown in Figure |5.38| and

Figure [5.39 respectively. The quartic superpotential is

W =+ X5 X1, X5 X1y + X351 X1, X5, X1y — Xoy X1 X5, XP) — Xo, X1 X5, X3,
(5.3.143)

The quiver incidence matrix is
1 1 2 2 3 3 4 4
Xo1 Xip X5 Xip X5 Xy Xy Xy

d=| 1 -1 1 -1 -1 1 -1 1 : (5.3.144)
-1 1 -1 1 1 -1 1 -1

The brane tiling has ¢ = 10 perfect matchings. The perfect matchings are encoded
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1 2 3 4 5t 6 7 8
Xy X X3 Xph X5 X} X5 X

Figure 5.38: The Model 8.4g brane tiling on a ¢ = 2 Riemann surface with 2 gauge
groups, 8 fields and 4 superpotential terms.

Q=0

Figure 5.39: The quiver diagram for Model 8.4g, a brane tiling on a ¢ = 2 Riemann
surface with 2 gauge groups, 8 fields and 4 superpotential terms.

in the matrix

PL P2 P3 P4 D5 P6 Pr P8 P9 Plo
X310 1 0 0 1 0 0 1 0 O
XHh|1T 0 0 0 0 00 0 0 O
X310 0 1 0 0 1 0 0 1 0
P=|1X%4/0 0 0 1 0 0 1 0 0 1 (5.3.145)
X311 0 0 0 0 0 0 0 0 O
X5/0 1110 0 0 0 0 O
X410 0 0 0 1 1 1 0 0 O
X510 0 0 0 00 O 1 1 1
The brane tiling has 6 zig-zag paths, which are
m= (X2117X122) » M2 = (X2217X122) ) 13 = (XSpXilz) ) T4 = (Xéleilz) )
15 = (Xa1, X1, Xo1, Xi) 5 m6 = (Xia, X531, Xi, X3)) - (5.3.146)
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The F-term constraints can be expressed as charges carried by the perfect matchings.

The charges are given by

b1 P2 P3 P4 PpP5 P6 Pr P8 P9 Pio

o 10 -1.0 0 0 -1 0 1
Qp=1 0 0 1 -1 0 0 0 0 -1 1 (5.3.147)
o 0o o 0 10 -1 -1 0 1
0 0 O o 1 -1 0 -1 1
The D-term charges are encoded in the quiver incidence matrix d and are
Op = pP1 p2 P3 P4 Ps P Pr P8 P9 P10 . (5.3.148)
1 -1 -1 1 1 0 0 -1 0 O

Using the total charge matrix, the mesonic moduli space can be expressed as the

symplectic quotient
M™es =Cl0//Q, . (5.3.149)

By associating the fugacity ¢; to the perfect matching p;, the fully refined Hilbert

series of M™% is given by the following Molien integral

(t Mmes) 1 j{ le dZQ ng dZ4 dZ5
GE s — — — — —
' 271)° Jism1 21 Jispjm1 22 Sism1 23 Jpsgm1 21 Jig=1 %
1
X —1 —1 —1_-1
(1 —2z5t1)(1 — 2125 t2)(1 — 2225 t3)(1 — 21 25 25t4)
1
X 11 111
(1 — z325t5) (1 — zate) (1 — 25 24 tr)(1 — 2 23 25 tg)
1
X 11
(1 — 29 2y tg)(l — 21Z22324t10)
_ P(t;)
(1 — titatsty)(1 — tgtgtitﬁlo)(l — totstatstety) (1 — titatsts)
1
X
(1 — t2t4t5t7t8t10)(1 — t2t%t6t7t8)(1 - tltgtﬁtg)(l — t3t4t6t7t9t10)
1
X )
(1 — tatstlinte) (1 — tatstotio) (1 — tatrtstotsy) (1 — tstelrtstotio)

(5.3.150)
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where the numerator is

2 2 2 2 2,2 2.2,2, 2.2 2,2, .3.32 2, .2
P(t;) =1 — tytotatatotetrts — t1totstatstotrte — titatatotgtrtato + titotatatotgtrtato + t1tatatatatatatate — t1tatatytstrtstio

—t5tat2tItet2tgtio + titatatatatetatstio + t1tatatatetetatatio — t1tatatatetrtotio — tatatatstatztotio

it tStstititotio — Bt1tatatatstetrtatotio + totatatatstotrtatotio — 2tatatatatatatatotio + Stitatatatatatotatotio
—tTth st 2t t2tgtot10 + tatatatatatotgtotio — titatatatatatatgtotio — titatatetrtatotio + titatatatatetrtatotio
+3t1t2tatatotit2titot o — totatatatotat2titat g — t1tatatatatatatatotio + t1tatatatstatotatio — t1tatstatrtgtatio
Ft2tototatstitrtatatio 4+ Btitatatatotatitgtatio — titatatatatatotgtatio — t1tatatatatatotgtatio + totatatitatrtatatio
— 312t 2 a2t trtatatio + titatatotatatatatio — titatatatatatatatatio — titatatatstatotatatio — tatatatstatatatatatio

2 2 2 2 2 2,2.3 2 2 2,2,3.,2.,2.3 2 3,3,4.,2.,2.3 2
—titatstitrtstot]y — 2tatatytstatatatotyy + 3t1tatatststetatatoty + 2tatatatatatotstoty — 2t1tstat tatatatstatiy

2 2 2,2 2 2 2 2 2.2 2 2 2,2 2,2 2 2,3,2,3,2 2,2 2

—titotatstrtgtotto + t3tatatststrtatoty — tatatatetstatotso + Stitatatytatetatatatiy — t1tatatstatetstatots
2 2,3,2,3,2 2 3,2,3,3,2,3,2 2 2 3 2.3 2 2,3 2,3 2.3 2 3 2,4,2,3,3 2
F2totatytatototatotiy — Stitytstatatatatatotsy + titatatototatatotiy — titotatstatetatatotyy — 2t1tatatytatatatatotsy

2,2 2, 2.2 2.2 2.2, ,2.2 2,2, 2.2, 2.2 2,2,3.3, 2.2, 2.2
—titatatetrtatgti + titatststetrtataty — tatatstgtatatoto + Stitatstatstatatgtatsy — titatatatstatotstats,

F2tatattatatotgtats, — Btitatatatatatotatatsy + titatatatstotrtatatiy — tatatatatstetrtatatsy + bt1tatatatatatatatats,
—5t2421242 424242421243 + et e21202424242 ) + totatatotatotatatsy — 6titatatatotatotatats, — tatatatatgtatatata,
Fot2 ettt tatatatatatsy — tatatatatatatotatatsy + thtatatatotototatatsy — titatatatatatotatatsy + titatattatatatatats
FTtat eSS 12T + t1tatatstototgttsy — tatatatatstatotatatsy — 2t1tatatstatatotgtatsy — tatatatatitat2tatats,

R L L B e R L e L R D e L T L LA e L LT
ST Attt ta T + tatatotatotatatatotsy + t1tatatatstatatotsy + tatattatetotatotsy — t1tatatytattotatotsy
—t1t5tato 31612131915 + t1tatatitattatatsy + tatatotstatotgtatsy — titatatytstatotgtaty + Bt1tatat tstetitatats,

— 2202ttt 2t a0  Dtotatatotitotitats ) — Btitatatatatatotataty — tatatatototatatats ) + totatatototatatatats,

—tS Rt tatgto RS + trtatst e tato ot + titatatitotatatats, — tatatatatatotatatatsy — 3titatatatotatotatats,

13t tatat s tatatatataty + titatatstotatotatatsy — titotatatotatotatatsy + tatatatatatatatatatsy — titatytststatotstotsy
Ftitatatstatitatotsy — titatatatstatatatatsy — 3t1tatatatatatotatatsy + 3tatatat totatatatatsy + t1tatytatatatotatotsy
—t2ea eSSt a St 2303 ) — 1 totatat tititatots ) 4+ totatatatatatatatoty — titatatattatotatats + ttatatatatatotatats,
oA R, - AR, + ndBRREdd, - stdddidR e, + Aaddddd,
AR, - AdAaSddd, + Aadaddddd, + AAGAddddd, - dddddnddid,
—t2eS 550D eR 0t — t1tatat tatatatatatty — tatat totatatatat o + titatatatatatatatatsy — titatatatitototatatsy

B D e B T DT G DU e e T L D i GO G s T
+trtategeSedeDegeety — 20550500052t T, — trtatitSestieSe2edet, — t2e2ed e ese2eSe2ed ety + 12 eSeqe5 203022 e3e],
Sttt Gt ta ety 4 bttt St totat T, — 2t1tatatItatatotatatty + ottt tatatotatotty + 6t1tatatatatatatatatty

B e L e T L R e L e L TR D Ty
ARy + 52 A, — 2, + 0B EAddd, - sdddd e,
PR e - Sy + AEAGERS dedy 1 2332, + n i,
— #3555 Gt o + BTETOT LR HgUT It — 20TEIEEALTGUTIILG g + L1 eSETIE GRS LG HYg — BE] 5 U5t
PSRRI, — LRSS R, + AdEE RS, + 233, 2Bt e,
s, 2t dRiddd, ¢ 2ddde i, + naddaadddd, + daddaddddd,
R D R e R D R A L L R s U

R D e R e L R L O e L O L e R e e D L Y
PR R, + 0 dARE A, - AR Adand, - nddddnd, + Addlddtddd,
FRRARRE AT, - AdAddAdadd, + n AR, - sddddddditd, + 2lddndddddd,
B D O D e O o T A D R L L e S T
ARG, - AR, + A E A, 1 A E, - AdadREdd,

5,4,4,6,4,4,6 2,4,4,6,4,4,6,4.4.6 2,4,3,5,5,4,6,5,4,6 2,3,4.5 5,6,4.5

5 4 5 5
—trt3e3edeaedtdgtatly + teatatGtatategtgts, + T aeheRedtgtSgegel, + 13ttt ededegegely — ele5e5eqededel

5 5.5,6
1tatztatstetrigtgtio
(5.3.151)

The mesonic moduli space is a non-complete intersection. The unrefined Hilbert series

1S
. mes (1 _'t2)3 2 4 6 8 10 12
g1 (t; M™9) A ) (1+3t2 4+ 6t* + 14¢% + 2765 + 32610 + 31¢
+3261 4 27416 1 14418 1 6120 + 3122 4 1) (5.3.152)

It is a 5-dimensional Calabi-Yau space. The plethystic logarithm of the refined Hilbert
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series is

PL[g1 (ti; M™%)] = (t1totsty + titatsts + t1tstety + titstotio) + (tatstatstety + tot2tetats
+tststitoty + tatstitrtio + tatatstrtstio + tatatetrtotio + tstetrtstotio + tatrtstotsy)
—(t1t3tatatitetaty + titattatstatote + titatstititrtsty + titatstatstotstio
Ftitotititetrtotio + Stitatstatstetrtstotio + titatitetrtatotio + titststatststatio
+titotstatrtstotsy + titatatstrtatotsy + titstatetatstatsy) — (tatstatitetatstio
Htotititstatatotio + 2tatstatitytatstotio + 2tatstitstetatstotsy + tatatitetatatots
Ftatatstat2tstats)) + ... . (5.3.153)

We can read from the plethystic logarithm the lowest order generators of the mesonic

moduli space and are

generator | perfect matchings

Ay P1P2p3p4
A P1D2P5Ps
As P1P3P6P9
Ay P1P8PIP10
By D2D3P4P5P6PT
By P2PEPEDTDS
Bs P3P5PEPTPY
By D2P4P5P7P8P10
Bs D3P4P6PTPIP10
Bs P5D6P7PSPIP10
By P4PTPSPTPYG

The generators form the following first order relations amongst them which correspond
to the presented negative terms in the expansion of the plethystic logarithm in (5.3.153)),

{Be¢B7 — B5Bs, ByB7 — B3Bs, BaBr — B1Bs, B3Bs — BaBs, A4Bs — A3Bs,
By4Bs — BeBg, B3Bs — B1Bs, BoBs — B1Bg, A4Bs — A3Br, A2Bs — A1 Bs,
AyBy — AaBg, A3By— A2Bg, BaBs — B1By, A4Bs — AsBr, A3B3 — A1 Bs,
AyBy — A1Bg, A3Ba — A1Bg, AaBo — A1By, AyBy — A1B7, A3By — A1 Bs,
A9By — A1Bs} . (5.3.154)

The global symmetry is U(1)* x U(1)g and has no enhancement. The toric diagram
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of the Calabi-Yau 5-fold is given by

b1 p2 P3 p4 Ps P66 P7 P8 P9 P10
11 0 0 1 0 O 1 0 O
G, = 10 1 0 0 1 O 0 1 O (5.3.155)
-10 0 1 0 0 1 0 0 1
-10 0 0o 1 1 1 0 0 O
11 1 1 0 0 O O O O

Model 8.4h: NC3

1 2 3 4 bt 6 7 8
Xy Xip X3 Xip Xy X5 Xy Xy

Figure 5.40: The Model 8.4h brane tiling on a ¢ = 2 Riemann surface with 2 gauge
groups, 8 fields and 4 superpotential terms.

Q>0

Figure 5.41: The quiver diagram for Model 8.4h, a brane tiling on a g = 2 Riemann
surface with 2 gauge groups, 8 fields and 4 superpotential terms.

For Model 8.4h, the brane tiling and corresponding quiver is shown in Figure [5.40
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and Figure respectively. The quartic superpotential is

W =+ X5 X1, X5 X1y + X}, X3 X1, X5, — Xo X X5 XTh — X[, X5, X15 X3,
(5.3.156)

The quiver incidence matrix is
1 1 2 2 3 3 4 4
X21 X12 X21 X12 X12 X21 X12 X21

d= 1 -1 1 -1 -1 1 -1 1 |. (5.3.157)
-1 1 -1 1 1 -1 1 -1

The brane tiling has ¢ = 8 perfect matchings. The perfect matchings are encoded in

the matrix
ar as by by ¢ ca di dy
XL,10 0 0 0 1 0 0 1
X510 0 0 0 01 1 0
X510 0 0 0 1 0 1 0
P=|X4L/0 0 0 0 0 1 0 1 (5.3.158)
X411 0 0 1 0 0 0 O
X210 1 1.0 0 0 0 O
X311 0 1.0 0 0 0 O
X410 1.0 1 0 0 0 O
The brane tiling has the zig-zag paths,
m= (X211’X1127X§17X§27X2217X1227X§17X%2) )
2 = (X3, Xio, X531, Xio, X351, X1, X1, Xis) - (5.3.159)

The F-term constraints can be expressed as charges carried by the perfect matchings.

The charges are given by

ap a bl b2 C1 C9 d1 dg
Qrp= 1 1 0 0 0 0 -1 —1|. (5.3.160)
O 0 -1 -1 1 1 O 0

The D-term charges are encoded in the quiver incidence matrix d and are

by b di d
QD:(% az 01 2 €1 C2 a1 2>' (5.3.161)

11 -1 -1 0 0 O O
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When reduced, the total charge matrix

ar as by by ¢ ca di  do
1 1 0 0 0 0 -1 -1
= . 5.3.162
r 00 1 1 0 0 —1 —1 ( )

o 0 0 0 1 1 -1 -1

is identical to the total charge matrix of Model 8.2b in section §5.3.5] The mesonic

moduli space of Model 8.4h which can be expressed as a symplectic quotient,
MM =C¥//Qy (5.3.163)

is the same as Model 8.2b. It is a toric Calabi-Yau 5-fold and is a non-complete inter-

section.

5.4 Conclusions and Future Directions

We have discovered a new set of field theories with the classification of the first few
brane tilings on a ¢ = 2 Riemann surface. The classification identifies 16 of what we
call restricted g = 2 brane tilings with up to 8 fields and 4 superpotential terms. Their
mesonic moduli spaces are specified by calculating the refined Hilbert series and are
shown to be toric Calabi-Yau 5-folds.

A feature that has not been highlighted so far is that although the g = 2 brane tilings
in the classification have no self-intersecting zig-zag paths and no multi-bonded edges,
some of them have multiple perfect matchings associated to extremal points in the toric
diagram. This is one of a series of new observations which requires further studies in

the near future. In summary, the new observations are as follows:

e For the following g = 2 brane tilings in the classification, more than one perfect

matching is assigned to extremal toric points:
6.2a , 7.2, 8.4d.

These are however restricted brane tilings with no self-intersecting zig-zag paths
and no multi-bonded edges. We expect that the brane tilings on a g = 2 Riemann
surface feature graphical properties beyond zig-zag paths and multi-bonded edges

that indicate the assignment of multiple GLSM fields to extremal toric points.

e Zig-zag paths that play a pivotal role in relating geometry and field theory for
torus brane tilings appear to play a lesser role in ¢ = 2 brane tilings. In fact, for

all models in the classification, we observe that the number of zig-zag paths is less
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than the number of facets of the corresponding 4-dimensional toric diagram. The

only exception is Model 5.2 where the numbers are equal.

e For torus brane tilings with Calabi-Yau 3-fold mesonic moduli spaces, the area of

the toric diagram corresponds to the number of gauge groups in the corresponding

quiver gauge theory. The analogue of the area for the Calabi-Yau 5-fold mesonic

moduli spaces for g = 2 brane tilings is the 4-dimensional volume of the toric

diagram. For the brane tilings in our classification, the volumes of their toric

diagrams are as follows:

’ # ‘Volume Gauge Groups H # ‘Volume Gauge Groups

5.2
6.2a
6.2b
6.2¢

7.2

7.4
8.2a
8.2b

1

O = W N W W =

8.4a
8.4b
8.4c
8.4d
8.4e
8.4f
8.4g
8.4h

=~ R =W N NN

6

= W NN

NN NN DN DN DN DN

We observe that only Models 5.2, 8.2a, 8.4b and 8.4c¢ have matching values for the

number of gauge groups and toric diagram volumes. It is an interesting question

to investigate when and why these two values match for g = 2 brane tilings.

On the field theory side, we observe another array of open questions from our clas-

sification of ¢ = 2 brane tilings.

As noted in the introduction, we have a limited

understanding of the IR behaviour of these brane tilings.

answers by doing the following in future studies:

We hope to obtain more

e The ranks of the gauge groups can be varied, and one needs to study the IR

behaviour for non-Abelian theories as well as their vacuum moduli spaces.

e Boundaries, which represent flavor groups, can be added to a brane tiling. The IR

behaviour of these theories with their vacuum moduli spaces needs to be studied.

As a final note of our work, we would like to point out that the mesonic moduli spaces

of brane tilings on any Riemann surface are always odd dimensional toric Calabi-Yau.

The natural question given this property is to ask whether even dimensional toric Calabi-

Yau spaces can be related to brane tilings on Riemann surfaces via a modification of

the bipartite graphs.

As seen in the studies on Chern-Simons theories and brane tilings [63] 64, 194, 137,

166], one can assign integer weights to edges in the tiling such that they add up to
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Chern-Simons levels on gauge groups. This brane tiling modification helps to represent
field theories with Calabi-Yau 4-fold mesonic moduli spaces. It is clear that solving the
classical moduli space for 3d Chern-Simons theories introduces a symplectic quotient
by a further U(1) action, increasing the complex dimension by 1. Therefore it appears
that integer weights to edges of a brane tiling on a genus g Riemann surface with a
2¢g + 1 dimensional mesonic moduli space lead to a modified brane tiling with a 2(g+1)

dimensional mesonic moduli space.

o'R,

§ proq e
*d o T 1 e,
z.-sll\1 2 1}6'05.
0 2 7
2 2 5, 3
ﬁs §K /#1 3, +1 -1
o ! ! 5——22
>

{/2 5 o :}‘3 1 2 3 4 5 6
P ‘ \<r2 Xl Xn X X5 XD X5
‘bil,/ 2\; 4} +1 0 0 0 0 0

5o’ ‘osesd 00

Figure 5.42: The Model 6.2b brane tiling with level assignment on the quiver and bi-
fundamental fields.

Let us consider as a quick example Model 6.2b in section with the mesonic
moduli space being a non-complete intersection Calabi-Yau 5-fold. This model is a
generalised conifold and we can assign levels £1 to the two gauge groups of the theory
as illustrated in Figure This for instance can be achieved by assigning the level +1
to the bifundamental X{, and by assigning level 0 to all other bifundamental fields. By
adopting the forward algorithm for Chern-Simons brane tilings [63], (64, [194], 137, 166]E]7

the level matrix C then is

C= 1 1 : (5.4.164)

3¢f. forward algorithm for 4d quiver gauge theories in section 3
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and

d=Q-P', Qr =ker(P), Qp = ker(C)-Q,
Qi = (Qr Qp) — Gt = ker(Qy) . (5.4.165)

Accordingly, with the above level assignment C', the g = 2 brane tiling of Model 6.2b

gives the charge matrices

- 1 1 1 -1 -1 -1
Or=0.0 , Qp=0, 5.4.166
g <—1 -1 -1 1 1 1 ) P ( )

and hence the toric diagram

100000
010000
G| 00000 (5.4.167)
000100
000010
000001

This is the toric diagram for C%, the unit 5-simplex. We see here the precise analogue of
obtaining the C* mesonic moduli space by assigning Chern-Simons levels to the conifold
theory.

With our classification of the first few g = 2 brane tilings we have paved the path for
new exciting problems. Most importantly, we have obtained a new class of quiver gauge
theories which exhibit interesting moduli spaces. We plan to report on more progress

in the near future.
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6 Overall Discussion and Future

Directions

There is a plethora of problems that relate to brane tilings, and the selection of topics
which are presented in this work can only be thought of as the tip of the iceberg.
During the short excursion on the landscape of problems related to brane tilings, we
have encountered new challenges that require ongoing investigation. Let us summarise
in this final section the open problems and future challenges related to brane tilings

that have been mentioned in the chapters above.

e Counting Orbifolds beyond CP/T'. The counting of distinct Abelian orbifolds in
chapter §2|is restricted to the case of C? and more generally to C”. In the case for
toric Calabi-Yau 3-folds where the orbifolds directly correspond to brane tilings,
it is of great interest to consider and to count distinct Abelian orbifolds of vari-
ous other toric Calabi-Yau 3-folds. A counting for the case of Abelian orbifolds
of the conifold and SPP has been proposed in [I126], and an unpublished work
[146] in collaboration with Amihay Hanany aims to describe a parameterisation
of such Abelian orbifolds that can be directly translated for the construction of
the corresponding brane tilings. Additionally, a yet not fully investigated prob-
lem regards the finite group that needs to be used in conjunction with Polya’s
Enumeration Theorem in order to count distinct Abelian orbifolds of any toric
Calabi-Yau 3-fold.

o A classification beyond reflexive polygons. Reflexive polygons are convex lattice
polygons with a single interior lattice point. One can now define a convex polygon
with precisely [ interior points. Not only is it a problem to identify how many
such distinct polygons exist for a given I, but also how many brane tilings there
are which have them as toric diagrams. This is a natural generalisation of the
problem solved for reflexive polygons in chapter Such a general classification
of brane tilings would enable us to generate via specular duality brane tilings on

genus g = I Riemann surfaces.

o Specular duality and the master space for non-Abelian brane tilings. In chapter
g4 specular duality has only been studied by computing the master spaces of

brane tilings with only U(1) gauge groups. By computing the master spaces of
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Figure 6.1: Mass deformation. The deformation of the brane tiling of Model 5 (PdPy;)
to Model 6a (PdPy4,). The corresponding quiver diagrams differ by a pair
of bi-directional arrows corresponding to bifundamental fields between two
gauge groups.

brane tilings with non-Abelian gauge groups, we hope to obtain more knowledge
about this new correspondence between brane tilings. In particular, the aim is
to compute the Hilbert series for non-Abelian brane tilings which correspond to

reflexive polygons.

o Open questions regarding brane tilings on Riemann surfaces. The brane tilings
on g = 2 Riemann surfaces that are identified in chapter §5 have been studied as
supersymmetric field theories with U(1) gauge groups. It is of great importance to
study the field theory properties of the new brane tilings on higher genus Riemann
surfaces, and furthermore to understand the underlying brane construction of
these brane tilings. Interesting preliminary work has been done in [200] and it is

of great interest to investigate this problem further in the near future.

This work has also omitted a range of the author’s published and yet unpublished
ongoing research on brane tilings. The following selection of topics gives a taste of the

problems that are currently investigated:

e Mass deformations of brane tilings. On a closer inspection of the classification

of brane tilings related to reflexive polygons in chapter §3| one notices a set of
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brane tilings whose quiver diagrams contain bi-directional arrows between two
vertices of the quiver. When these two bifundamental fields are removed from the
quiver diagram, one obtains a new quiver diagram which intriguingly corresponds
to another brane tiling with a reflexive toric diagram. In a collaboration with
Massimo Bianchi, Stefano Cremonesi, Amihay Hanany, Francisco Morales and
Daniel Ricci Pacifici, this new type of deformation — a mass deformation of brane
tilings — is investigated [201] and will lead soon to a new publication. Figure
shows an example of a mass deformation of the brane tiling of Model 5 (PdPyy,)
to Model 6a (PdPy,).

boundary
/ external face global symmetry group

;
&% @5!63 ©

internal face
gauge group

Figure 6.2: A section of a bipartite graph and its corresponding quiver. On the gauge
theory side, internal and external faces correspond to global and gauge sym-
metry groups, respectively.

e Brane tilings on Riemann surfaces with boundaries. In chapter we have classi-
fied brane tilings on ¢ = 2 Riemann surfaces. In [198] as well as in a collaboration
with Sebastian Franco and Daniele Galloni [§], brane tilings on Riemann surfaces
with boundaries are proposed. With white and black nodes ending on the bound-
aries, we introduce a distinction between a face that is adjacent to a boundary and
a face which is adjacent to only faces. These so called external and internal faces
are interpreted in the bipartite graph respectively as global and gauge groups of
the corresponding quiver theory as shown in Figure [6.2 By using the extended
dictionary for these brane tilings, one generates a new class of interesting field
theories which have been named bipartite field theories in [198] [§]. Their mesonic
moduli spaces have been studied extensively in [§] and it is of great interest to
analyse the corresponding Hilbert series in future studies. Moreover, a brane pic-
ture for these bipartite graphs on Riemann surfaces with boundaries is still under

review and work in progress. We hope to report on new results in the near future.
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The above list of problems and future research directions is a small selection of the
new ideas generated by studying brane tilings. The interaction between physics and
mathematics is a fruitful enterprise and brane tilings are at a pivotal junction for ex-
change of ideas between these two vast areas of research. It is of great interest to study

the above problems and new results will be reported in future publications.
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Appendix

A.1 C? Orbifold Index

This section is an extract from [I] which was written in collaboration with John Davey
and Amihay Hanany.

In the toric diagram triangles, lattice points on the edges of the triangle are colored
yellow and lattice points enclosed by the triangle boundary are colored green (Tables
8-14). The column multiplicty indicates the number of Hermite Normal Forms corre-

sponding to the particular toric diagram.

# ‘ N ‘ Orbifold ‘ Orbifold Action ‘ Toric Diagram Multiplicity

(11) |1 C3/7,

7N
—_~
o O

L L
==
==
~
—

2.1) |2 C3/Z,

~
—_—
S L
o=
=
RN
~
w

Table A.1: Orbifold Actions and corresponding Toric Diagrams for C3/T"y orbifolds with
order N =1...10 (Part 1/6).
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# | N [ Orbifold | Orbifold Action | Toric Diagram Multiplicity

(3.1) |3 C*/23 < 28353 > & ’
(32) |3 C?/Z3 < E(lJ(l)(l); > j 1
(y |4 |CYz, (o)) ;& 3
42) |4 | CYZ ( Eéég; ) i ; 3
@9 |+ |emez | () E; |

(5.1) |5 C¥/zs ( 28(1)3; ) ’

Table A.2: Orbifold Actions and corresponding Toric Diagrams for C3/T"y orbifolds with
order N =1...10 (Part 2/6).
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# | N [ Orbifold | Orbifold Action | Toric Diagram Multiplicity

52 |5 | c3zs < Eéég; > ' 3
61) |6 |3z ( 28(1)3; ) Eh 3
(62) |6 C3/Zg ( Eééé; > 3
63) |6 | C3/zq ( E;gg; ) ! : 6
1) |7 | 3z ( Egég; > % 3
72) |7 |z ( Eéég; ) 3

Table A.3: Orbifold Actions and corresponding Toric Diagrams for C3 /I" orbifolds with
order N =1...10 (Part 3/6).
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# ‘ N ‘ Orbifold ‘ Orbifold Action ‘ Toric Diagrarn Multiplicity
(73) |7 | C¥z; < Eéi‘é; > / ?
(8.1) |8 C3/2Zs ( 28(1,8 ) % s
82) |8 |C3/zs ( 25383 > ' ’
83) |8 | C3/zs ( 2(1133; ) ’
(84) |8 | C/zZs ( Eégéi ) !

O
(8.5) |8 C3/Zs % Ly ( 5(1)(1)?; > 7 ’

O

O

Table A.4: Orbifold Actions and corresponding Toric Diagrams for C3 /Iy orbifolds with

order N =1...10 (Part 4/6).
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# | N [ Orbifold | Orbifold Action | Toric Diagram Multiplicity

91) |9 | C¥zy < 28 (IJ?J; > 3
o2 [0 |em | (Ga)) 3
93) |9 | C¥/z ( Eégg; > 6

(9.4) 9 (CB/Zg X Zg < E?’é:;; )

(10.1) | 10 C3/Z10

RS
——
S e
S =

==}
= =
N——

(102) | 10 | C*/Zyo <E(1J(1J8)>

Table A.5: Orbifold Actions and corresponding Toric Diagrams for C3 /Iy orbifolds with
order N =1...10 (Part 5/6).
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# ‘ N ‘ Orbifold ‘ Orbifold Action Toric Diagram Multiplicity

(10.3) | 10| C3/Zyo ( 2(1)38 ) ‘ '

(10.4) | 10 | C3/Zy ( %,4,5) )

Table A.6: Orbifold Actions and corresponding Toric Diagrams for C3 /Ty orbifolds with
order N =1...10 (Part 6/6).
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A.2 C* Orbifold Index

This section is an extract from [I] which was written in collaboration with John Davey
and Amihay Hanany.

In the toric diagram tetrahedra, internal lattice points (I3) are colored red, lattice
points on the faces are colored green (I3) and lattice points on edges are colored yellow
(I1) (Tables 15-24). The column multiplicty indicates the number of Hermite Normal

Forms corresponding to the particular toric diagram.

# ‘ N ‘ Orbifold ‘ Orbifold Action Toric Diagram Multiplicity
(0,0,0,0)

(11) |1 (VA (0,0,0,0) 1
(0,0,0,0)
0,0,1,1)

(2.1) |2 C*/Z (0,0,0,0) q 6
(0,0,0,0)
(L1,1,1)

(22) |2 C*/Z, (0,0,0,0) 1
(0,0,0,0)
(0,0,1,2)

31) |3 C*/Z3 (0,0,0,0) 6
(0,0,0,0) ¢

Table A.7: Orbifold Actions and corresponding Toric Diagrams for C*/T" orbifolds with
order N=1...6 (Part 1/6).
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# ‘ N ‘ Orbifold ‘ Orbifold Action ‘ Toric Diagram Multiplicity
Ii\
(0,1,1,1)
(32) |3 CY/Z3 (0,0,0,0) l 4
(0,0,0,0)
(1,1,2,2)
33) |3 C*/Z3 ( (0,0,0,0) ) 3
(0,0,0,0)
(0,0,1,3) \\
(41) |4 ci/z, ( (0,0,0,0) d 6
(0,0,0,0) ‘
]
|
|
(0,1,1,2) I
(42) |4 C1/Z4 ( (0,0,0,0) ) | 12
(0,0,0,0) &
(1,1,3,3)
(43) |4 C*/Z4 (0,0,0,0) 3
(0,0,0,0)

Table A.8: Orbifold Actions and corresponding Toric Diagrams for C*/T'y orbifolds with

order N =1...6 (Part 2/6).

333



# ‘ N ‘ Orbifold Orbifold Action Toric Diagram Multiplicity
(1,2,2,3)

(4.4) |4 C*/Z4 ( (0,0,0,0) ) 6
(0,0,0,0)
1,1,1,1) //

(45) |4 C*/Z4 ( (0,0,0,0) ) 1
(0,0,0,0) 4
(0,1,0,1)

(4.6) |4 C*)Za x Ty (0,0,1,1) 4
(0,0,0,0)
(0,0,1,1)

4.7 |4 C*/Za x Ty (1,1,1,1) p 3
(0,0,0,0) h
(0,0,1,4) \

(6.1) |5 C*/Zs ( (0,0,0,0) ) | 6
(0,0,0,0) ‘

Table A.9: Orbifold Actions and corresponding Toric Diagrams for C* /T orbifolds with

order N =1...6 (Part 3/6).
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# ‘ N ‘ Orbifold ‘ Orbifold Action ‘ Toric Diagram Multiplicity
¢
(0,1,1,3)
(52) |5 Cc*)zs (0,0,0,0) | 12
(0,0,0,0)
I
(1,1,4,4)
(5:3) |5 C4/zZs ( (0,0,0,0) ) 3
(0,0,0,0)
(1,2,3,4) /
(5.4) |5 C/zs (0,0,0,0) / 6
(0,0,0,0)
1
(1,1,1,2)
(5.5) |5 Cc*/)zs ( (0,0,0,0) ) 4
(0,0,0,0) /
(0,0,1,5) \
6.1) |6 C*/Z¢ (0,0,0,0) 6
(0,0,0,0) \

Table A.10: Orbifold Actions and corresponding Toric Diagrams for C*/T'y orbifolds

with order N =1...6 (Part 4/6).
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# ‘ N ‘ Orbifold ‘ Orbifold Action ‘ Toric Diagram Multiplicity
ﬁ
(0,1,1,4) q
(62) |6 C*/Z¢ (0,0,0,0) | 12
(0,0,0,0) l]
[
i
(0,1,2,3) l,i '
(6.3) |6 C*/Zs (0,0,0,0) ” 24
(0,0,0,0) / l
9
( (1,1,5,5) )
(6.4) |6 C*/Z (0,0,0,0) 3
(0,0,0,0)
( (1,1,2,2) ) //
(6.5) |6 CY/Z¢ (0,0,0,0) / 12
(0,0,0,0) /
(1,3,3,5) /
(6.6) |6 CY/Z¢ (0,0,0,0) 6
(0,0,0,0) /

Table A.11: Orbifold Actions and corresponding Toric Diagrams for C*/T'y orbifolds
with order N =1...6 (Part 5/6).
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# ‘ N ‘ Orbifold ‘ Orbifold Action Toric Diagram Multiplicity
(1,3,4,4)
6.7) |6 CY/Zg (0,0,0,0) 12
(0,0,0,0)
/
/
(1,1,1,3) /
6.8) |6 C4/Zs ( (0,0,0,0) ) 4
(0,0,0,0)
i
( (1,2,4,5) ) //
6.9 |6 C4/Z (0,0,0,0) 6
(0,0,0,0) /
(2,3,3,4)
(6.10) | 6 C*/Z¢ (0,0,0,0) 6
(0,0,0,0)

Table A.12: Orbifold Actions and corresponding Toric Diagrams for C*/T'y orbifolds
with order N =1...6 (Part 6/6).
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A.3 Examples of Identifying Symmetries using

Barycentric Coordinates

This section is an extract from [2] written under collaboration with Amihay Hanany.

A.3.1 Example: Lattice Triangles corresponding to Abelian Orbifolds
of C3

Consider the orbifold of the form C3/Z; with the orbifold actions
1,1,5 1,2,4
A = (1,1, , Ay = (1,2,4) . (A.3.1)
(0,0,0) (0,0,0)

The scaled Toric Diagram. The corresponding toric 2-simplices are shown in Fig-

~—

ure with each having |I2| = 3 internal lattice points colored green in the diagram.

/

Figure A.1: Toric triangles of C3/Z7 with scaling so = 1 corresponding to orbifold ac-
tions A; = ((1,1,5),(0,0,0)) and Ay = ((1,2,4),(0,0,0)) respectively. In-
ternal toric points wy € I2 are colored green.

There are no lattice points on the edges of the toric diagrams in Figure || = 0.
To make them ‘visible’ for the purpose of obtaining the topological character of the
toric diagram, we increase the scaling to s; = 2. This results in the toric diagrams in
Figure Accordingly, the overall scaling coefficient required for the computation of

the topological character is s = max (s1, s2) = max (2,1) = 2.

The Topological Character. Let us call the toric triangles corresponding to the
orbifold actions A; and A as 07 and o3 respectively. The respective topological char-
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Figure A.2: Toric triangles of C3/Z; with scaling s; = 2 corresponding to orbifold ac-
tions A; = ((1,1,5),(0,0,0)) and A2 = ((1,2,4),(0,0,0)) respectively. Lat-

tice points on edges are colored yellow (I7) and internal toric points (I2)
are colored green.

acters 71 and 1y are

T = { (0,0,1),(0,1,0),(1,0,0),

Io

11 1 1 11
<Oa272> ) <2707 2) ’ (2727());

I

154y (45 1) (13 9) (9 3 1) (3 15) (51 3
14714’ 7)°\ 7714714 )7\ 7714714 ) °\14714°7)°\14° 14’7 )’ ’

714’ 14

Iz
151y 232\ (313y/1 6 1) (3 433 (5 25
)\ r) N\ T 14’7714 )°\14°7°14 )\ 14’ 7’ 14 ’

Iz

(A.3.2)
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and

T2 = { (0,0,1),(0,1,0),(1,0,0),
Io

o L 1) (L1} (L1
)272 9 27 ’2 ) 2727 )

Iy

129 (29 1) (9 1 2) (1 11y (111 1111
1477714 )°\7714714)°\14714°7)°\147 14’7 )7\ 714" 14 ) °\14° 7714 )’

Iz

Td2y (a2 1) 214y (3 5 3) (53 3) (33 5
vorr)\rrn)\rrr)\ww )\ i) \7 ) [

I

(A.3.3)

The elements of the characters above are barycentric coordinates of the topologically

important points in Iy, I; and I with an overall scaling s = 2.

The Symmetries. The orbifold dimension is D = 3. Accordingly, we consider cycles

of 53 corresponding to C(l)(2)(3)a C(l 2 3)) C(l 32)s 0(2 3)(1)s C(l 3)(2) and C(l 2)(3)-

Figure A.3: Toric triangles of C3/Z; with scaling sy = 1 corresponding to orbifold ac-
tions A; = ((1,1,5),(0,0,0)) and Ay = ((1,2,4),(0,0,0)) respectively. For
the diagram of A; on the left, the sub-triangles with areas proportional to

the barycentric coordinates of the internal point (2,1,2) € Iy(fs,=1(07))

are colored magenta ( %), cyan ( %) and orange (%) For the diagram of As,
the sub-triangles with areas proportional to the barycentric coordinates of
the internal point (%, %, %) € Iy(fs,—1(03)) are colored magenta (%), cyan

(2) and orange (3).

Picking the transformation C(; 3)(2), we observe its action on the barycentric coor-

dinates (%, %, %) € Iy(fs,=1(0%)) of an internal point from the first toric simplex o
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and the barycentric coordinates (2, 2,1) € Io(fs,=1(03)) of an internal point from the

T
second toric simplex 0%. As shown in Figure the chosen internal points divide
the toric triangles into three sub-triangles each corresponding to one component of the

barycentric coordinates.

The transformation C(; 3y2) swaps the barycentric coordinates axes 01 and 93 such

that Cy g) ¢ (7:7:2) = (3:7:7) and Cu gy ¢ (3:7,7) = (7,7, 7). This transfor-
mation corresponds to swapping the cyan and orange colored sub-triangles in Figure[A.3]

C( 3)(2) leaves the internal point (%, %, %) of 02 invariant. In comparison, C(1 3)(2) maps

the internal point (%, %, %) to a different point (%, %, %
of the original topological character of o3 in 1) Accordingly, C(; 3)(2) is not a

symmetry of 03 and the corresponding orbifold with action As. In contrast, it turns

) which is in fact not an element

out that 73 is invariant under C; 3)(9). Accordingly, C(1 3)(2) is a symmetry of o2,

A.3.2 Example: Lattice Tetrahedra corresponding to Abelian
Orbifolds of C*

Let us proceed with the abelian orbifold of the form C*/Zg and orbifold action

(0,1,1,4)
A = | (0,000 | . (A.3.4)
(0,0,0,0)

The scaled Toric Diagram. The corresponding toric tetrahedron o2 for is
shown in Figure With unit scaling s; = sy = 1 there is |I;| = 1 lattice point on
an edge and |Iz| = 2 lattice points on the faces of the toric tetrahedron. For internal
lattice points, we need to scale the tetrahedron with s3 = 2 such that |I3] = 2. Ac-

cordingly, the optimal scaling coefficient for o2 is s = max (s1, 52, §3) = max (1,1,2) = 2.
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Figure A.4: Toric tetrahedra 0® = f1(03) and f2(03) of C*/Zg corresponding to orbifold
action A = ((0,1,1,4),(0,0,0,0),(0,0,0,0)) with optimal scaling s; = so =
1 for edge I1(03) and face Iy(0®) points, and optimal scaling s3 = 2 for
internal points I3(f2(c?)). Internal lattice points are colored red, while
edge and face points are colored yellow and green respectively.

The Topological Character. The topological character of o is

(o) = { (0,0,0,1),(0,0,1,0),(0,1,0,0), (1,0,0,0),

Iy

I3 5y (oL Ly (LLily i1l 11
6'12°127 )0\ 12712 ))\6'6°6°2)\3 127122 (-

Iy I3

(A.3.5)

The Symmetries. Let us pick the lattice point on a face with barycentric coordinates
(%, é, %, 0) € I as shown in Figure The face point divides the tetrahedron into

four sub-tetrahedra with volumes corresponding to (%, %, %,O). One sub-tetrahedron
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has zero volume, the other three have normalized volumes %, % and % colored magenta,

cyan and orange respectively in Figure

Figure A.5: Toric tetrahedra of C?* /Z¢ corresponding to orbifold action As =
((0,1,1,5),(0,0,0,0),(0,0,0,0)) with optimal scaling s, = 1. The face
point with barycentric coordinates (%, %, %, 0) divides the tetrahedron into
four sub-tetrahedra with one having a nil volume. The other three sub-
tetrahedra have volumes 2 (magenta), & (cyan) and % (orange).

Let us pick the .Sy transformation C(; 3 4 9) which acts on the barycentric coordinates
axes {01,02,03,04} as C(1 34 9) : [01,02,03,04] +> [03,01,04,72]. The transformation
corresponds to a cyclic permutation of the sub-tetrahedra in Figure Ca 3492
transforms the face point (%, %, %,0) into (%, %,O, %) which is not an element of the
topological character 7(c?) in . Accordingly, the lattice simplex o3 and its cor-
responding orbifold action A are not symmetric under C3 | 3 4)-

Another transformation is C 3y(1)(4)- It leaves the barycentric coordinates of the face
2 11
376767
under C(g 3)(1y(4)- Accordingly, C(3 3)(1)(1) is a symmetry of the lattice simplex 0% and

point ( O) invariant. In fact, the entire topological character 7(o3) is invariant

its corresponding orbifold action A.
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A.4 The theory for C3/Z, x Z4 (1,0,3)(0,1,3)

This section is an extract from [5] written under collaboration with Amihay Hanany.

Figure A.6: The quiver, toric diagram, and brane tiling of the abelian orbifold of the
form C3/Z4 x Z4 with orbifold action (1,0,3)(0,1,3).

The quiver, toric diagram and brane tiling of C3/Z4 x Z4 (1,0, 3)(0,1,3) theory are
shown in Figure with the superpotentia]lﬂ having the form

W = +X78Xg2Xo7+ X129 Xo7 X712+ Xi314 X1a12 X1213+ X23 X313 X132
+Xs5 X53 Xzs+ Xo10 X108 Xgo+ X1a15 X159 Xo14 + X34 Xg14 X143
+X56 X6 4 Xas5+ X1011 X115 X510 + X15 16 X16 10 X10 15 + X4 1 X115 X154
+X67 X71 X164+ X1112 X126 Xe 11 + X613 X13 11 X11 16 + X1 2 X216 X161
—X78 Xg9 Xo7— X129 Xo14 X1412 — X1314 X143 X313 — Xo3 X35 Xg2
—Xs85 X510 X108 — X910 X1015 X159 — X14 15 X154 X414 — X34 Xa5 X533
—X56 X611 X115 — X10 11 X11 16 X16 10 — X15 16 X161 X115 — Xa1 X16 X6 4
—X67 X712 X126 — X11 12 X12 13 X13 11 — X613 X132 X216 — X1 2 Xo7 X711 .

(A.4.6)

A.5 Hilbert series of I'"7” for Models 13 and 15b

This section is an extract from [5] written under collaboration with Amihay Hanany.

The refined Hilbert series of the master space of Model 15b, and by specular duality

!Note: The superpotential features an overall trace which is not explicitly written down in the following
discussion.
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of the master space of Model 13, is of the form

P(tzaysl)
(1 - 7517523/53)(1 - t2t3y53)(1 - t1t4ys3)(1 - t2t4y83)
1
I —t151Ys, ) (1 = tas19s, ) (1 — t1ysy sy ) (1 — t2ysyYsy)
1
1- t3ys1yss)(1 - t4y81 y85)(1 - t3y32ys5)(1 - t4y52y55)
(A.5.7)

91(ti, ys;3 " Fisy)

T

T

where the numerator is

P(t;,s;) =
2
1 —tatotatays, — t1t2t3Ys) Ysg¥sy — t1t28aYs) Ysg¥sy — t11283YsyYsg¥Usy — t11284YsgYsg¥sy
+t2totat 2 + t1titat 2 + t2totat 2 + tititat 2 —tyt 2
1t2t3t4Ysy Ys, Ysy 1t2t314Ysy Ys, Usy 1t2t3t4Ysy Ys, Ysy 1t21384Ysy Y5, Ysy 1t2Ysy YUsy Us,
2 2 2 2 2 2 2 2 3 2 2
FT1t2t3Ys) YsgYsg Us, T 111513Ys1 Uso¥sg¥s, T 11t2taYsy Ysp YsgUs, T 1110taYs  Ysg¥Usg Vs, — U1t2t3taYs) Ysy Vs Vs,
2.2 2 2 3 2 2
—tt3t3t4Ys  Ysp Vs Us, — t1t2t3taYsy Ysg Usy Us, — t113taYsy Ysg¥sy — t21384Ysy Ysg¥sy — t113taYsyUsg¥sy
2 2 2 2 2 2 2 2
—tot3taysy YsgYss + t1t2t3talys) Ys Ysy + 11821380 Ys) Ys, Usy + t1t2t5layso Y5, Yss + 1128385 YsoYs o Ysy
2
—t1t3Ys  YsgUsyYss — 1213Ys  Ysg¥UsyYss — L1talsy Usg¥UsyYss — 12talsy Usg¥UsyYss + t1t2l3tays, Ysg¥syVsy
2 2 2
1t2l3Ys s s3Ys 4 Ys 113t4Ys1YsgYs3zYsy Ys 1t20304Ysq1 YsgYsz Ysy Ys 2l3l4Ysy YsoYUsglYUsy YUs
Fl1t2t3Ys) YsgUsgYsyUsy + 11t384Ys YsgUsgYsyYsy + OL112t3LaYs) Yso YszYsy Yss T 15131aYs| Yso Ysz Ysy Yssy
2 2 2, .2 2 2,2 2
Ft1totyys) YsgYsg Ysy ¥ss + L1t2t3aY5, Ysg Ysy Ysy — 11128384 Ys) Yso Ysa YsyYss — L11515384Ys 1 Yso Ysy Ysy Ysy
2 2 2 2, .2 2 2,2,2,2 2 3 2,2,2.2 3
—Ut2t3thYs) Ysp Vs YUsyYss — L112314Ys) Ysp Vs UsyYss — L1tot3tays, Ysa Usy¥sy — 110851 4Ys ) Ysg Ysy Ysy Uss
2,2,2,2 2 3 2 2 2 2 2 2
Ut t3tYS, Usa Usy Uss T L1t2t3Y5 Yso U5, Ysy T t1t2tays, Ysy Uy, Yss + t1t2t3Ysy Y5, Y5, Ysy
2 2 2 2 2 2 2 2 2 2 2
1t2taYs Y5, Ys, Ysy — t11283t4Y5. YsoYsg Ys, Ysy — t115t3taY5. YsgYsg¥s, Ysy — t1t2t30aYsy Ys, Ysz¥s, YUs
tlitotays) Ys,Ys, Yss — t1t2138aY5 YsoUsg Vs, Yss — t131384Y5, Ysa YUsg Vs, Yss — t1t21384Ysy Ys, Ysg Vs, Yss
2 2 2 2,22, 2 2 2 2,2, 2 2 2 2 2,2.2 2 2 2
_t1t2t3t4yslys2y53ys4y55 - t1t2t3t4ysly52y53ys4y55 - t1t2t3t4ysly52y53ys4y55 - t1t2t3t4ysl y52953954955
2.2, .2 2 2 2 3,2,2,2 2 3 2 2,3,2,2 2 3 2 3,2,2,2 2 3 2
TR 8 Ys ) Ysy Usg Usy Yss T E1E21314Y5) Yso Usy sy Yss T E1121314Ys ) Yso Usg sy Yss T 1121584 Ys 1 Usy Ysg Ysy Yss
2.,3,2,2 2 3 2 2,22 2 2 3 2,2 2 2 3 2,22 2 2 3
FEIRt3t4Ysq Yy Ysg Usy Yss — 111213Ys) Ysy Ysg Vs  Yss — 11121304Y5 ) Yisy Ysg Vs, Yss — 11121 4Y5 ) Vs, Ysg Vs, Yss
32,2, 2 2 2 3 23,2, 2 2 2 3 3.2, 22 2 2 3 2.3, .22 2 2 3
FEIRT3AYS ) Yy Ysg sy Yss T 11121304Y5 ) Uy Ysg Vs y Yss T E11218E4Y5 ) Yy Ysg Vs, Yss + 1112138 4Y5 Ysy Yy Vs, Yss
3,3,2,2 2 2 3 3 2 2 2 2 2
_t1t2t3t4y51ys2ys3ys4y55 - t3t4ysl ys2ys5 + t1t3t4ysly52ysgys5 +t2t3t4y51 ys2y53y55
2 2 2 2 3 2 2 2,2 2 2
+t1t3t4y31 YsgYsg ySS + t2t3t4y51 y52y53y55 - t1t2t3t4y51 y52y53y55 - t1t2t3t4y31 Ysg y53 ySS
3 2 2 2 2 2 2 2 2
—t1t2t3t4Ysy Ysp Vsy Ysy T 11t384Y5, YsoYsy sy T 121384Y5, Ysp Usy Ysy + 11t384Ys Y5, Ysy Vsy
2 2 2, 2 2 2 2 2 2 2 2
ttal3tays) Ys, Ysy Ysg — t1t2tzlays, YsgYsaYsyYsy — t1t2t3t4Ys, YsgYsg¥Usy Ysy — L1128384Ys 1 Ys, YsgYsy Ysy
2 2 2 2, 2,2 2 2 2 2,2,2 2 2 2 2, ,2,2 2 2 2
—titatatyysy Yso¥szV¥sg¥Ysg — t1t2t3t4y51y52 ys3 YsgYsy — t1t2t3t4y51y32 953 YsgYsy — titatztyysy YsoYszYsaYsy
2,2,2 2 2 2 2,2,3,2 2 3 2 2,2,2,3 2 3 2 2,2,3,2 2 3 2
—t1tot3taYs) Ysy Ysg Usy Ysy T t1E21384 Y5 Yso Usa Ysy Vsy T 111213845 Uso YsgYsy Vg T 11128304 Ys) Uiy Ysg sy Uiy
2,2.2,3 2 3 2 3 2 2 2 2 2 2 3 2 2
HUItot5tYs) Ysy Vsg Usy Ysy — P1t2304Y5, Ysp Vs, Usy — trtatatayy Yo, Us, Vsy — t1t2t3tals Y5, Us, Ysy

2 2 2 2 2 2 2,2 2 2 2 2 2 2.2 2 2 2 2 2.2 2 2 2
—tit2t3tays, Vs, Ysg Vs, Ysy — 11t21304Y5, Uy Usg¥Us, Ysg — P1821314Y5, Yy Vsg¥Us, Ysy — 11t21314Y5, Yy Ysg ¥s, sy

+5t5 RS vepui vl vl + i t5eitayd vl vl v, vis + eatSedyl vl vl ol ol + st eaesedyd vl ol ol vl
+tstiedyl ol vl vl vl + teatiyl vl vl vl vl + e estye vl vl vl vl — RSl vl vi 0l ol
—ee5e3edul vl vl vi, vl — eae3edul vl vl vl vl — eiedul wl ol vl vl + 55y vl veg vl vl
+tthtatiyd v, vegul, vl + 1t5t5tayd vl vegud, vi, + i t5tathyl vl veg vl vl — 0e5e5eRud vl vl vl vl

$2434242,3 2 2 3 2 $3424242,2 3 2 3 2 $2434242,2 3 2 3 2 242422 2 3
Tl1t2t3taYs ) YUsy YsgUsy Ysy — V1021804 Ysy Yso Ysg Ysy Ysy — 112083%4Ys  YsoYUsgVUsyYsy — P118%4Ys YsgYUsgYsaVUsy
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2,2 2 2 3
*tli213t4951952y53y54955
2 2,3 2 2 2 3
+t1t2t3t4ysly52y53y54y55
2,2,2 3 2 2 3
1ttty Ys ) Vsy Ysg Vs, Ysy

2,2,2,3 3 2 2 2 3
—tItat3t Y Yo Ysg Ys,y Ysy

3,3 3

3,3,3, 3.3 3 3
I tot3tYs ) Vs, Ysg Vs Ysy -

2,2,2 2 2 3 2 3,2 2 2 2 3 2,3,2. .2 2 2 3
- t2t3t4951952953954955 + t1t2t3t4y51 YsoYsz YsaYsy + t1t2t3t4yslys2953954955

2,3,3 2

2,2,3 2 2 2 3 2 2 3 3 2 2,2 3 2 2 3
+ t1tat3thys s, YsgYsqYsy — t1t2t3t4y51y52y53y54y55 tt1t2t3tyys, Vs, Ysa Vs, Ysg

2,2,3,2 3

2 2,2 2 3 2 3 2,2,2 2 3 2 3 B 2 2 2 3
+ t1t2t3t4y51y52 YsgYs, Ysg + t1t2t3t4y51ys2 YszYsyYsy — t1t2t3t4y51 Yso¥YszYsy Ysy

2,2,2,3 2 3 2,2,2,2

2,2,32 2 3 2 2 3 2 2 3 3 .3 3 .3
—Utot3taYS | Ysy Ysg Usy Yss — P1t2t304Y5, Ysy Vsg Vs, Ysy — 1112850405, Ysy Ysa Vs, Usy

(A.5.8)

A.6 Summary of restricted g = 2 Brane Tilings

This section is an extract from [9] written under collaboration with Stefano Cremonesi

and Amihay Hanany.
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Table A.13: Restricted g = 2 brane tilings (1/4).
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Table A.14: Restricted g = 2 brane tilings (2/4).
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Table A.15: Restricted g = 2 brane tilings (3/4).
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Table A.16: Restricted g = 2 brane tilings (4/4).

A.7 Unrestricted Brane Tilings from Higgsing

This section is an extract from [J] written under collaboration with Stefano Cremonesi

and Amihay Hanany.
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Table A.17: Unrestricted g = 2 brane tilings from Higgsing (1/3).
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Table A.18: Unrestricted g = 2 brane tilings from Higgsing (2/3).
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Table A.19: Unrestricted g = 2 brane tilings from Higgsing (3/3).
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