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gularities cannot be Gromov-Hausdorff limits of smooth
Einstein 4-metrics without relying on previous integra-
bility assumptions. For this, we analyze the integrability
of deformations of Ricci-flat ALE metrics through vari-
ations of Schoen’s Pohozaev identity. Inspired by Taub’s
conserved quantity in General Relativity, we also introduce
conserved integral quantities based on the symmetries of
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ing up” inside a hypersurface - even with change of
topology. We show that many previously identified obstruc-
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equivalent to these quantities on Ricci-flat cones. In partic-
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ther interpret the obstructions to the desingularization of
Einstein metrics as a defect of integrability.
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1 | INTRODUCTION
An Einstein metric g satisfies, for some real number A, the equation
Ric(g) = Ag. )

In dimension 4, these metrics are considered optimal due to the homogeneity of their Ricci
curvature but also as critical points of the Einstein-Hilbert functional with fixed volume, g —
fM R, dvg, and more importantly as minimizers of the L?-norm of the Riemann curvature tensor,
g fM | Rm, |2dvg often interpreted as an energy.

From dimension 4, even under natural assumptions of bounded diameter (compactness) and
lower bound on the volume (non-collapsing) Einstein metrics can develop singularities. This first
issue means that the set of unit-volume Einstein metrics is not complete for the usual Gromov-
Hausdorff distance. Moreover, it has been proven that some infinitesimal Einstein deformations
may not integrate into curves of actual Einstein metrics in dimension higher than 4. This second
issue shows that the moduli space of Einstein metrics itself might have singularities.

In this article, we exhibit links between the two seemingly unrelated above issues and apply
the resulting analogy to the question of the desingularization of Einstein 4-manifolds.

Completion of the moduli space of Einstein 4-manifolds

One major goal for 4-dimensional geometry is to understand the structure of the compactification
of the moduli space of Einstein metrics on a differentiable manifold M* which is defined as

EM*) :={(M* g) | 3IA € R, Ric(g) = Ag, Vol(M*,g) =1}/D(M*), )

where D(M*) is the group of diffeomorphisms of M* acting on metrics by pull-back. This space
is classically equipped with the Gromov-Hausdorff distance, dgf. The metric spaces which are
limits of Einstein 4-manifolds with uniformly controlled diameter and volume, as well as the asso-
ciated singularity models, have been understood for a long time in the Gromov-Hausdorff sense
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[1, 8]: they are respectively Einstein orbifolds and Ricci-flat ALE orbifolds. The metric completion
of (E(M4), dGH) is

E(M*) U d,E(M*), )

where 3,E(M?) is the set of dgp-limits with bounded diameter (i.e., at finite dg-distance) of
Einstein metrics on M*.

The elements of 6,E(M*) are Einstein orbifolds and a question which we answer here is the
converse. Quoting Anderson [4]: “It has long been an open question whether Einstein orbifold
metrics can be resolved to smooth Einstein metrics close to them in the Gromov-Hausdorff topol-
ogy.” We will prove that this resolution is not possible for some of the simplest Einstein orbifolds:
the spherical an hyperbolic ones. These orbifolds should therefore not really be considered as sin-
gular Einstein metrics. In order to prove this, we use the analogy between such a resolution and
an Finstein deformation of a flat cone, and we study the potential nonintegrability of Ricci-flat
ALE deformations.

Conserved quantities and integrability

Let g be an Einstein manifold on an open subset U" of a manifold. We say that & is an infinitesimal
Einstein deformation of g on U if the perturbation t — g + th satisfies (1) at the infinitesimal level
as t — 0. We say that h is an integrable Einstein deformation if on any compact in V", there exists
a smooth curve t € [0,1] — g, such that

*9 =9,
. 6tgt|t:O = h,and
« for any t, g, satisfies (1) with constant A(t) € R.

It is clear that an integrable Einstein deformation is an infinitesimal Einstein deformation, but
the converse is a very delicate question and is not always true. Counter-examples were found in
[31] in dimension strictly higher than 4.

The question of integrability of Einstein deformations is crucial in understanding the structure
of the moduli space of Einstein metrics, and a major question is whether or not such a moduli
space can be really singular, see [9, 12.10]. It is also crucial for the behavior of Ricci flow near
Einstein metrics: in the compact situation, having integrable deformations ensures optimal rates
of convergence or divergence, see for instance [26, 27]. In the noncompact situation, this moreover
seems to be a necessary condition for the dynamical stability of Ricci-flat ALE metrics, see [18, 19,
29].

In the Lorentzian context of General Relativity, it has been proven that the question of
integrability of Einstein deformations was completely ruled by the presence of symmetries.

Letusdenote E;Z)(h, h) the quadratic terms terms in the development of the Einstein tensor /& +—

E(g + h) := Ric(g + h) — @
unit normal ny and any infinitesimal Einstein deformation h, we define Taub’s conserved quantity

(sometimes called second Taub’s number):

(g + h). For any Killing vector field X, a hypersurface X with a

TE(hh) := / (EQ(h, 1 )%, np)dvy. @)

z
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The link with the integrability of h is that if h is an integrable Ricci-flat deformation, then
TXZ(h, h) has to vanish. In this sense, Taub’s conserved quantities for all Killing vector fields X
are obstructions to the integrability of h.

A remarkable and beautiful result is that in the Lorentzian context, the above obstructions are
the only obstructions to the integrability of h, see [5, 23]. Namely, if they vanish, then, under mild
assumptions, one can construct a smooth curve of Ricci-flat metrics starting at g whose first jet
is h. The hyperbolic nature of the Einstein equations in the Lorentzian context is an important
aspect of the proof.

Einstein deformations of Ricci-flat cones

Let (C(S), gc(s)) = (R* xS, dr? + r’gg) be a d-dimensional Ricci-flat cone with link (S, g) sat-
istying Ric(gs) = (d — 2)gs. Such cones model the asymptotics of singular or complete Einstein
metrics at given points or at infinity. We will mostly focus on the usual Euclidean cone (R¢, e) =
(C(S ), gc(sd-1)) and its quotients.

We extend the obstructions given by Taub’s conserved quantities on the hypersurface £ = S to
general Einstein deformations (not necessarily Ricci-flat this time). The condition rewrites: for
any Killing vector field X of (S, g5), if & is integrable, then one has

TS(hh) = /S <R°ic;2C)(S)(h, h))(X, 3,)dvs =0, 5)

o . . o (2, .
where Ric is the traceless part of Ric and Ric ~ its second order variation.
‘We moreover introduce a similar quantity based on the conformal Killing vector field rd, on
the cone C(S).

Theorem 1.1 (Informal, Proposition 3.3). Let h be an infinitesimal Einstein deformation of the
Ricci-flat cone (C(S), gc(s)). Assume that h is either defined and bounded on the interior of S or on
its exterior and decaying at infinity. Then, we have the following identity:

-/s <R°ic§,2C)<S)(h, h))(rar, d,)dvg + other terms = 0. (6)

In all of our situations of interest, we are able to find convenient gauges for h in which these other
terms vanish thanks to some variations of Schoen’s Pohozaev formula from [41].

Remark 1.2. In the above case, we do not need to assume that & is integrable. This should rather
be thought of as an obstruction to the existence of an Einstein metric which closes up inside S,
that is the existence of an Einstein deformation on a compact domain whose only boundary is S.

As is well-known, a difficulty when considering deformations of cones is verifying that the
resulting curve of metric is complete, see [10] where this is discussed for hyperkdhler deformations
of cones. The main issue is that such deformations typically require changes of topology. When
allowing a change of topology, just as in the desingularization of Einstein 4-manifolds, one needs
to consider deformations of R* /T’ with topology N = (R*/T")\{0} U = for some lower dimensional
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manifold X. The prototypical example is that of the Eguchi-Hanson metric which can be seen as
an Einstein deformation of R*/Z, on T*S? = (R*/Z,)\{0} U S?. Here, we may see the Euclidean
metric e on R*/Z, as living on T*S? while being degenerate on S?, that is the restriction of e to
the submanifold S? vanishes.

In Section 3.3, we discuss the situation of an Einstein metric coming out of R*/Z, and closing-
up inside with topology T*S?. Assume that there exists a smooth curve of nondegenerate Einstein
metrics ¢ € [0,1] = g; on (B.(0,1)\{0}) U S? C T*S? with g, = e and O1)=09: = h outside S?in
well-chosen coordinates. Then we have the obstructions:

. (2
/ <Ric§ )(h,h)>(rar,8,)dv§3 12, =0, )
$3/2,

and the similar ones from Killing vector fields. In that situation, an Eguchi-Hanson metric
bubbles-out of the cone R*/Z, and the link with the question of desingularization becomes clear.
For some related results about hyperkidhler metrics on manifolds with boundaries, see [13, 22].

A natural question would be whether one could find similar obstructions on typical cones of
dimension higher than 4 with codimension 4 singularities.

Question 1.3. Can we find similar obstructions for Einstein deformations of cones on singular
Einstein orbifolds like R* x (R*/Z,) fork > 1?

Vanishing of the obstructions in dimension 4

We then test the conditions (5) and (6) considering simple Einstein deformations coming from
two situations: the rescaling of Einstein metrics at a given point, and the rescaling of Ricci-flat
ALE metrics at infinity, and show that they vanish for arbitrary deformations.

The vanishing of the obstructions is not surprising in the case of Einstein metrics around a given
point: it has been shown that for any curvature satisfying the Einstein condition at the given point,
there exists a germ of Einstein metric with the corresponding curvature in [24]. It implies that the
obstructions (5) and (7) in this situation actually vanish in any dimension.

These results in Section 4 and the Appendix A can also be seen as consequences of [3]. Their
proofs have the merit to introduce natural systems of coordinates in which the computations of
the quadratic terms of Ricci curvature are convenient (and where the other terms of (7) are van-
ishing), we note that the ALE coordinates considered are based on [14]. These coordinates are
crucial for the next case of the desingularization of an Einstein orbifold, where the obstructions
do not vanish.

Obstruction to the desingularization of Einstein 4-manifolds

We finally study the degeneration of Einstein 4-manifolds, that is the dgy-convergence of met-
rics in E(M) to the boundary d,E(M), and its reverse operation: the desingularization. Given an
element in 6,E(M), the desingularization consists in finding a dgy-approximating sequence of
metrics in E(M).

Any smooth Einstein 4-manifold close to a compact Einstein orbifold in a mere Gromov-
Hausdorff sense has been recently been produced by a gluing-perturbation procedure [36, 37].
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Here, this lets us understand the obstructions to the d;-desingularization of an Einstein orbifold
through obstructions similar to (5) and (7).

Theorem 1.4 (Theorem 5.6). Assume that there exists a sequence of Einstein metrics (M, g,,),, con-
verging in the Gromov-Hausdorff sense to an Einstein orbifold (M,,, g,) with a singularity R* /T at p
and satisfying Ric(g,) = Ag,. Assume that there exist numbers t,, > 0 such that at p, (M, g,,/t;)n
converges to a Ricci-flat ALE manifold (N, g;,) asymptotic to R*/T with integrable infinitesimal
deformations. Consider the following asymptotics in well-chosen gauges (in a so-called volume gauge

Jor gy):
g, =e+H,+ 03 and g, =e+ H* +O0™),
for |Hy|, ~ r*> and |H*|, ~r™*.

Then, the following obstructions analogous to (5) and (7) hold: for any Y Killing vector field of
R*/T:

/ <R"icf’(H4,H2)>(Y, 8,)dvss - = 0, ®)
S
and
o @, .,
Ric, (H*, H,) |(rd,,0,)dvss - = 0. )
S3/T

Comparing (5) to (8) and (7) to (9), we therefore interpret the obstructions to the desingulariza-
tion of an Einstein orbifold as a defect of integrability of the infinitesimal Einstein deformation
h = H, + H* of R*/Z,. The proof of these different obstructions actually relies on the control of
the same integration by parts as Theorem 1.1 once one notices that in so-called volume gauge, the
vector field rd, is gp-harmonic at an order higher than expected.

Remark 1.5. Denote V(g}) < 0 the reduced volume of (N, g;,) introduced in [14], as well as W;,—*O
the Weyl curvatures of g, at p and ij the asymptotic Weyl curvatures (the part decaying like
r~%) of g;. Then, it is shown in the proof of Theorem 5.6 that (9) may rewrite as:

AV(gy) +Q(Wy,, Wg,) +Q(Wg,, Wg,) =0 (10)
for some explicit quadratic form Q. A similar rewriting of (8) yields Q’ (W;b, Wg_o) +
Q'(Wy,, W;U) = 0 for some other explicit quadratic form Q’.

Remark 1.6. For g, either spherical of hyperbolic, one has A # 0 and W;O = 0. The obstruction
(10) is therefore never satisfied. We also recover that the obstruction vanishes for the gluing of a
hyperkihler ALE to a hyperkihler orbifold since A = 0, W =0and W,, = 0.

We recover all of the obstructions to the desingularization by Eguchi-Hanson metrics iden-
tified in [11], see Corollary 5.10 and an extension to higher dimension yields the obstruction
of [33] as well, see Corollary 5.17. In these articles, the obstructions were purely analytical as

FSUBD|T SUOWIWOD dAIIEa1D 3|qedl|dde ay Aq pausenob ae sapile YO '3sn Jo sajnl oy Afeiqi auluQ 43I\ UO (SUONIPUOD-PUR-SWLLBIWOD" A3 1M Ae.d 1 BU I UO//STNY ) SUoIIpUOD pue S | 3Y) 39S *[£202/TT/60] U0 ARldiauluQ AB|IM ‘Auew e aueiyoo) A 6212z edo/200T 0T/I0p/Wod A3 1m ARIdipul|uo//sdny wouy pepeojumod ‘T ‘¥20Z ‘ZTE0L60T



INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS | 183

projections on the cokernel of the linearized operator. Theorem 1.4 gives a new maybe more
geometric interpretation of them.

Remark 1.7. There are higher order obstructions to the existence of Einstein deformations with
asymptotic developments g, = g + th; + t?h, + --- for small ¢t which are very similar to the
obstructions (9) and (8).

Question 1.8. Can these higher order obstructions recover the higher order obstructions of [39]? Can
they help compute even higher order obstructions?

Desingularization of spherical and hyperbolic orbifolds

We next get to the main application of this article. We answer negatively the classical ques-
tion of whether or not all Einstein 4-orbifolds can be d;p-desingularized by smooth Einstein
4-manifolds.

Theorem 1.9. A spherical or hyperbolic 4-orbifold with at least one singularity R*/Z, cannot be
limit of smooth Einstein metrics in the Gromov-Hausdor{f sense.

Example 1.10. Consider S* Cc R and the quotient by Z, given by (x;,X,, X3, X4, Xs5) ~
(x1, =X, —X3, —X4, —X5). We will denote this space S*/Z, which is an Einstein orbifold with two
R*/Z, singularities. It is often called the American football metric. It is a synthetic Einstein space
in the sense of [34] for instance. By the above Theorem 1.9, it cannot be a Gromov-Hausdorff limit
of smooth Einstein metrics.

Theorem 1.9 was conjectured in the author’s PhD thesis [38] where it was proven under a tech-
nical assumption of integrability for the Ricci-flat ALE spaces. The main remaining difficulty
here is thus to deal with the potential non integrability of these deformations. We more precisely
prove that Theorem 1.4 holds without the integrability assumption on the Ricci-flat ALE spaces.
Remark 1.6 then lets us conclude.

Remark 1.11. It is often conjectured that the only Ricci-flat ALE metrics are Kdhler, hence inte-
grable. However, the motivation of this conjecture formulated in [8] for instance, seems to be the
analogous conjecture for the selfduality of Yang-Mills connections on SU(2) bundles over S*. This
analogous conjecture was disproved the same year in [42].

Let us present the main step of the proof of Theorem 1.9 which is of independent interest. Let
(N, gp) be a Ricci-flat ALE orbifold asymptotic to R*/T for ' C SO(4). Its space of L?-infinitesimal
deformations which are traceless and in divergence-free gauge is denoted O(g;). There are par-
ticular elements in O(g;,) coming from the symmetries of the asymptotic cone R*/T. According
to [38]:

* there exists X a harmonic vector field on (N, g;) asymptotic to the conformal Killing vector field
rd,,and (Lxg,)° € O(gp), where (h)° denotes the traceless part of a symmetric 2-tensor h,

« for any Killing vector field Y there exists Y’ a harmonic vector field on (N, g;,) asymptotic to Y,
and Ly gy, € 0(gy).
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The main step in the proof of Theorem 1.9 is to show that the obstructions to the integrability
of an infinitesimal deformation of g; are negligible in the direction of the above deforma-
tions (Lxgp)° and Ly g,. More precisely, for v € O(g}), let us consider g, the unique solution
to:

Dy, (8v) = E(8y) + 85,64,80 € O(g) an

satisfying g, — (gp + V) Li2(g,) O(gp). We call Einstein modulo obstructions metrics such defor-
mations which have been constructed in [37] (see also [32] in the smooth compact case, where a
different vocabulary is used). We study the leading order of the obstruction along curves s = gg,
fors e (—1,1)ats = 0.

Proposition 1.12. Let (N, g,) be a Ricci-flat ALE metric which has nonintegrable Ricci-flat ALE
deformations. Then, for any v € O(gy), there exists | > 2 such that 55('8:061)% (gw) =0forallk <
l—1and 6;'8:0(1)% (gs) # 0. The leading order obstruction ai,ls:OCI)gb (gs) is L?(gp)-orthogonal to
the vector subspace of O(g;) spanned by the above elements (Lxgy)° and Ly gp.

The proof relies on careful integrations by parts similar to that of the proof of Theorem 1.1.

2 | SYMMETRIES OF EINSTEIN METRICS AND INTEGRABILITY

In this section, we recall well-known properties of the two first derivatives of the Einstein oper-
ator and apply them to define the so-called Taub’s conserved quantity as introduced in [43]. It
is a central quantity in the study of the integrability of Einstein deformations in the Lorentzian
context.

Note 2.1. All along the article, we will denote by Fém) the m-linear terms of the development of
a functional h — F(g + h) at 0, we more precisely have (at least formally) for any small enough
2-tensor h:

1
Fg+h) = Y —F" (h...h).

meN .
m times

2.1 | Gauge and reparametrization properties

Let us start by recalling various consequences of the Bianchi identity: for any Riemannian metric
g, one has

By(Ric(g)) = 0, 12)

where for any 2-tensor h, we define the Bianchi operator Bgh = §4(h — itr(”l)g) =6gh + %dtr(h),
where 5g is the divergence with the convention that in coordinates, for a 1-form w, 5ga) =
—g"V jw; and for a symmetric 2-tensor h, (§gh) := —g"V ;. Denoting the Einstein tensor
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E(g) := Ric(g) — % g, the Equation (12) rewrites

84(E(g)) = 0. (13)

Proposition 2.2 [23]. Let us assume that g is a Ricci-flat metric on some open domain U" of a
Riemannian manifold M, and let h be a symmetric 2-tensor on U'. We have the following gauge
properties:

* without assumption, one has
By (Ric () = 0, and &,(E’w)) =0, (14)
. ifRiC(gl)(h) = Ag for A € R or equivalently E;l)(h) + g = 0for A € R, then one has
By (Ricg(h, 1)) = 0, and 85 (B (h, 1)) = 0. (15)
Let us continue with some identities when g is perturbed in the direction of a Lie derivative.

These come from differentiation of the following identity: for any diffeomorphism ¢ : M — M
and any metric g on M

Ric(¢"g) = ¢*(Ric(g)) and E(¢*g) = ¢*(E(g)). (16)

Proposition 2.3 [23]. Let us assume that g is a Riemannian metric on some bounded open domain
U of a Riemannian manifold M, let h be a symmetric 2-tensor on U" and X be a vector field on U'.
We have the following reparametrization properties for the derivatives of Ric: without assumption,
one has

Ric(Lxg) = Lx(Ric(g)) and B (Lxg) = Lx(E(@)), (17)
Ric?(h, £xg) + Rict(Lxh) = Ly (Ricé”(h)) , (18)

and
B (h, £x9) + By (Lxh) = Lx (B () (19)

2.2 | Taub’s conserved quantities and obstructions

Let us start by stating the following classical integrations by parts which are at the core of our
proofs.
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Lemma 2.4. Let g be a metric on an open set U', T be a divergence-free symmetric 2-tensor, and let
X be avector field on U'. Then for any smooth compact subset Q C U" with boundary, we have:

* 1
/ T(X,n)dvg,, = / (T,65X) dvg = 5 / (T, Lxg),dvg, (20)
Elo) Q Q
where n is the outward unit normal to 9Q, and §;X := %L‘,Xg is the formal adjoint of the divergence
8,
g

We also have the following identity close to Schoen’s Pohozaev equality [41]. Denote hor (h)° the
traceless part of a symmetric 2-tensor h. If T is divergence-free, then we have:

, 1, Lx(trg T)
/aQT(X,n)dvglm:/Q<5<T,£Xg>g—Tg>dvg
Lx(tr, T)
= /Q (%(T,(z:xg)ﬂg—%)dvg, (21)

Remark 2.5. We will often abusively apply our operators to vector fields or 1-forms indifferently,
the identification will always be done thanks to the metric involved in the operator. More precisely,
a vector field X is identified with the 1-form g(X,.).

Proof. The key to this formula is the classical identity:
1
65(T(X)) = 6o(TNX) = (T, 8 X)g = 8 (T)X) — 5(T, Lx8)g (22)

which may be proven in coordinates using the symmetry of T. From the identity (22), using
the fact that T is divergence-free and the divergence theorem, we find the result by the
divergence theorem.

The second equality (21) then follows by noting that

tr, T 1
/%(g,EXg>gdvg = —a/(trg T)é4,(X)dvg = —2/ Ly (trg T)dvg+/ (trg T)g(X, n).
Q Q Q Elo)

(]

Let g be an Einstein metric on an open subset V. For a vector field X, a closed orientable
hypersurface £ C U" and symmetric 2-tensors 4 and k on U” we define the following quantity:

Bi(h) := / (Egl)(h))(x, ns)dvs, (23)
z

where ny is the normal to 2. We also define the so-called Taub’s conserved quantity introduced in
[43]:

TE(h, k) = / (Efj’(h, k))(x, ng)dvs. (24)
Z
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Together with the gauge properties of Proposition 2.2, we use Lemma 2.4 to prove the following
properties for 7 and 5.

Proposition 2.6. Let g be an Einstein metric on an open subset U", X be a Killing vector field, h a
2-tensoron U, and T and ¥’ two closed hypersurfaces in U" bounding an open subset Q C V. Then,
we have the following properties:

(1) without additional assumption,

Bx(h) =0, (25)

(2) ifEy’(h) = 0, then one has: T¥ (h, h) = T7(h, h) and
3) ifE(gD(h) = 0, and for any vector field Y on U, we have T>(h + Lyg,h + Lyg) = T (h, h).

Proof. Consider y a cut-off function vanishing in the neighborhood of ¥’ and equal to 1 on a

neighborhood of =. We can therefore apply (20) on Q bounded by T and ¥’ to the Killing vector
field X and T = E(l)( xh) which is divergence-free by (14) to find:

B (h) = /{3 (B )t mdvgg =o.

See [23] for the other equalities. O

2.3 | Integrability of Einstein deformations

In the Lorentzian context, it is a remarkable result that the quantities TEX (h, h) for the different

Killing vector fields X of g and h satisfying E_E]l)(h) = 0 completely characterize the integrability
of the infinitesimal Einstein deformation 4.

Definition 2.7 (Integrable 2-tensor). Let g be an Einstein metric on /. A 2-tensor h is integrable
if on any compact K C U, there exists a smooth curve of Einstein metrics t € [0,1] — g, on K
satisfying 6[gt|t:0 = h.

The link between the integral quantity TZX (h,h) and the integrability of h is given by the
following proposition.

Proposition 2.8 [23, Proposition 1.7]. Assume that g is a Ricci-flat metric on an open subset U", that
h is an integrable 2-tensor which is the first jet of a curve of Ricci-flat metrics and X is a Killing vector
field. Then, for any compact hypersurface ¥ C U, one has

T2 (h,h) = 0. (26)

Proof. Let K be a compact subset of U" and t € [0, 1] — g; a smooth curve of Einstein metrics on
K with g, = g satisfying a,g,ltzo = hwith E(g,) = Oforall¢ € [0,1]. We have 0 = J,(E(g;))|i=0 =
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Eg)(h), and if we denote k : = 6tzzgt|[:0, then we have
1 2
0 = 6%,(E(g))ji=0 = EY (k) + ES (. h).

In particular, we have: 7,.7(h, h) = —B% (k) = 0 by (25). O

We add an extension to Einstein but not necessarily Ricci-flat deformation of a Ricci-flat metric.
This time we need to assume that the Killing vector field is tangent to our hypersurface. This will
always be satisfied in our applications.
Proposition 2.9. Assume that g is a Ricci-flat metric on an open subset U’, that h is a 2-tensor which

is the first jet of a smooth curve of Einstein metrics starting at g and X is a Killing vector field for g.
Then, for any compact hypersurface £ C U for which X is tangent to X once restricted to Z, one has

/ <R°ic;2)(h, h))(X, ng)duy = 0. @)
z

Proof. Let K C U be acompactand ¢t € [0,1] — g, a smooth curve of Einstein metrics on K with
9o = g satistying 9,9,,_, = h with E(g,) + A(t)g, = 0for asmooth functiont € [0,1]» At eR
forall t € [0, 1]. We have

0 = 6,(E(g) + A(1)g1) =0 = Ey () + ' (0)g,
and if we denote k := 3”9, ,_,, then we find
0 = 82 (E(g,) + )90 = Ey (k) + ES (h, h) + A" (0)g + 22 (O)h.

trg E(g)

In particular, since for any metric g, one has Ric(g) = E(g) — -2 in dimension d, we find:

. (2) 1 2
Ricy (h,h) = Eg (h, 1) — < ((rB) (0, 1) ) g — = trg BV (W)

=B ) = 2 (@B (1) )g + 22/ O)h. 28)

.o (2
We consequently have: /E(Ric;)(h, h)(X, ny)dvs = — fE(ES)(k))(X ,ny)dvs = 0 because
g(X, ny) = 0 by assumption and thanks to (25). O

Question 2.10. Can we recover the obstructions to integrability of [31] (or new ones) thanks to the
above criterion?

3 | CONSERVED QUANTITIES ON RICCI-FLAT CONES AND
INTEGRABILITY

We introduce another quantity similar to Taub’s adapted to perturbations of Ricci-flat cones
(C(2),dr* + r’gy). We will mostly work with the Euclidean case = = S,
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3.1 | A conserved quantity on R¢ and other Ricci-flat cones

Let us now introduce a functional similar to Taub’s conserved quantity dealing this time with
conformal Killing vector fields with constant conformal factor. The main example for us will be
the vector field rd, on the Euclidean space (R%, e), where r : = d,(0,.).

Proposition 3.1. Let h be a symmetric 2-tensor on an open subset U" C R containing S¢~1. Then,
we have the following identity:

/ d (Egl)(h))(ra,,ar) + %(—@h — dtr, h)(3,)dvsa1 = 0. (29)
sd-1

Moreover, assume that we have Ril)(h) = 0 and that h together with its first two derivatives are
bounded on B,(1 + €). Then we have:

/S N <E(el)(h)>(r5,, 3,) = 0. (30)

Remark 3.2. One recognizes (up to a constant) the integrand of the ADM mass in the term
/Sd_l(—deh —d tr, h)(0,)dvsa-1. This is not surprising from the proof and can be seen as a first
order version of the proof of the equality between the mass and the so-called Ricci version of the
mass given in [28].

Proof. As in the proof of the first point in Proposition 2.6, without changing the value of the
integral on S9!, we replace h by another 2-tensor equal to & in a neighborhood of S¢~! and
vanishing in a neighborhood of the sphere (1 — €)S*~! ¢ U for € > 0 small enough. We denote Q
the open subset bounded by S¢~! and (1 — ¢)S¢~.

From the identity (14) and Lemma 2.4, we can use the divergence theorem and the equality
8,(rd,) = e to find the identity:

Ll (52°00)80vsse = [ . E0dve @3

Q

Now, one recognizes that tr, Egl)(h) = % Rf}) (h) by definition of the scalar curvature R, =
tr, Ric, and since E, = 0. From the first variation of the scalar curvature at a Euclidean metric:

RV(R) = 8,(8,(h) + d tro(h)),

using the divergence theorem, we find the stated formula.
Finally, if & is defined on B,(1 + ¢) for some € > 0 and satisfies Rgl)(h) = 0 then, by (31), one
has /,,_, (B8 (W)(rd,,6,)dvsi1 = 0. O

One finds an obstruction similar to that of Proposition 2.8 for the second order variation of the
metric direction.
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Proposition 3.3. Let h be a symmetric 2-tensor on an open subset U" C R¢ containing S*! and
B.(1) satisfying Egl)(h) = 0. Then, we have the following identity:

/S (EP0m)weno + 2-d (6 +aw )

— (Bh+dtr, h)o<h - <% tr, h)e)] 6,)dvsas =0,  (32)

where h — (tr, h/2)e is seen as a (1,1) tensor while h is considered as a symmetric 2-tensor elsewhere.

The same result is true if h is defined on an open subset U C R? containing S~! and R4\B,(1)
d-2

and if it additionally satisfies the decay assumption: rk|V'§h|e =0O@ 2 )fork €{0,1,2}

Remark 3.4. For h and k symmetric 2-tensors, we have
1) _ 1 1
[(68m)) (0] 3) = =8(h x K)@,) - SK(d tre b, 0,) + 3¢k, Vs, e

where h X k is the 2-tensor obtained from the composition of the endomorphisms associated to h
and k and

[(d tri”(h))(k)] 8,) = —d((h, k))@,),

see [17] for instance. We will try not to use these formulas whenever possible and focus on
situations for which this additional boundary term vanishes.

Remark 3.5. The two situations of Proposition 3.3 model Einstein manifolds or orbifolds at a given
point or Einstein metrics asymptotic to a quotient of R? at infinity. The decay condition on h

is not strong as any h decaying at any rate at infinity and in divergence-free gauge (or Bianchi
d—2

gauge) which satisfies Egl)(h) = 0 automatically satisfies rk|V’§h|e =0 M) =0(r"2)
by [15].

Proof. Let us assume that Egl)(h) = 0 on an open set containing B,(1). Using the formula (20)
with T = Egz)(h, h) and Q = B,(1), we find the equality:

Ldl (Egz)(h, h))(rar, ar)dvgd—l = /g; tI‘e Eiz)(h, h)dve (33)

where we used 6, (rd,) = e and the fact that there is only one nonvanishing boundary term at
sd-1,

There remains to understand the term /Q tr, Ef)(h, h)dv, as a boundary term. Since Egl)(h) =
0, then, tr, E(ez)(h, h) = ? R(ez)(h, h) where we recall that the formula for R is given by
Rg)(v) = 64(84v + d trg v) — (v, Ric(g)) for a general metric g and a deformation v. This implies
that one generally has:

/ R (0)dv, = — / (80 + d trg v)(3,)dvsg — / (v, Ric(g))du,. (34)
Q aQ

Q
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By differentiating (34) with Q = B,(1) at g = e in the direction & and for v satisfying ES)(U) =
Ricgl)(v) = (0 we obtain:

/ Rgz)(h, v)dv,
Be(1)

= _ / [((5 +d tr)?(h))(v) + trgh(aeu +dtr,v) — (8,0 + d tr, v)oh [ (3,)dvsa-1,(35)
Sd-1

where the last & is seen as a (1,1) tensor. Using (35) with v = h yields the result.
d-2

The proof is exactly the same when Q = R%\B,(1) if we assume that ¥ |V’e‘h| e=o0@ 2 )for
k < 2 as this condition ensures that the boundary terms vanish at infinity. Indeed, the integrand
of boundary term is of the form h % Vh = o(r~¢*!) for * denoting various contraction of tensors,
once compared to the volume of the spheres of radius r growing like ©@(r?~1), we see that the
boundary term vanishes. As previously, one then simply has to deal with the boundary S?-!, and
the proof is the argument is the same as for B,(1). 1

Remark 3.6. Just as in Proposition 2.6, the left-hand side of (32) has invariance properties on the
hypersurface or action by diffeomorphism. The invariance by hypersurface is again a consequence

of the divergence theorem, and the invariance by Lie derivative comes from Proposition 2.3.

Remark 3.7. The conformal Killing vector field rd, is present for any Ricci-flat cone. One can
therefore define a similar integral quantity which has to vanish with the exact same proof.

3.2 | Deformations with constant scalar curvature

In our situations of interest, as we will see later, we will consider Einstein deformations for which
the second variation of the scalar curvature is constant. In this case, the obstruction becomes

much simpler as we may drop the additional boundary term.

Proposition 3.8. Let h and k be infinitesimal Einstein deformations of e on B,(1 + €) or R4\ B, (1 —
€) satisfying

(D) Soh=6.k=0

) EP(h) + de = 0 and EV(k) + pe = 0,

3) and szz)(h, k) is constant.

Then, we have the obstruction:
o (2)
/ (RlCe (h, k))(rar, 0,)dvga-1 =0 (36)
Sd-1

and for any Killing vector field Y

/ <R°icf)(h, k))(Y, 8,)dvgi-1 =0 (37)
Sd-1
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where Ric is the traceless part of the Ricci curvature.
Remark 3.9. The first assumption is a gauge-fixing condition which we will always be able to
assume up to acting by a diffeomorphism. Moreover it will always be satisfied if & = k is an

integrable Einstein deformation which is not Ricci-flat. Indeed, differentiating E(g,) + A(¢)g; = 0
starting at g, = e with d,,—g; = h, and alet:og, = ' twice yields

EVW) + EP(h, h) + 17 (0)e + 24'(0)h = 0
where every term but maybe 21’(0)h = 21h is divergence-free by Lemma 2.2.
Remark 3.10. The second assumption just means that we consider infinitesimal Einstein defor-
mations. We will see how to ensure that the third assumption is satisfied in dimension 4 in the

next sections.

Proof. For this situation, we use Schoen’s Pohozaev identity (21) applied to the 2-tensor Egz)(h, k)
which is divergence-free because /1 and k are infinitesimal Einstein deformations, see Lemma 2.2:

o 1
/ (Eff)(h,k)) (rOr, Mg, = =52 / Ly tre <E§2>(h, k))dve. (38)
0Q Q

o (2
Let us now express both (E2(h, k))° and tr,(E2(h, k)) in terms of Ric - (, k) and RZ (i, k). For
this, we first note that since tr, E; = ? R, for any g, we have:

tr, (E?(h, k)) - # RO (k) — Atr k — ptr, h, (39)

and then, by (28), we find:
< ) ° o, (2) o °
E?(n, k)) = Ric (h, k) — Ak — ph. (40)

Finally, since by assumption 8.4 = 8.k = 0, we can again use (21):

/ h(r6,,n)dv, :_% / L,5 (tre h)dv, and / k(ré,.n)dve
oQ Q 0Q

1
=5 ). L5, (tr, k)du,. (41)

Putting (38), (39), (40) and (41), we find

/ Ric(h, k)(rd,, n)dve ,, = —% / Lrs, (RO ) do,
aQ Q

and since Riz)(h, k) is assumed to be constant, we find the stated equality. The easier case of a
Killing vector field Y is treated similarly. [l
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3.3 | Einstein metrics closing-up inside a hypersurface

Let us consider a topology N = (R*/T")\{0} U = for X a lower dimensional submanifold “closing
up” N where {0} should be. This should be the topology of a general Ricci-flat ALE, see [2]. We see
that (R*/T, e) is isometric to a degenerate metric on N which we still denote e for which e5 = 0
(meaning the induced metric on Z, not the restriction of e at ¥), the vector field rd, also extends
to N and vanishes on X.

The typical situation is that of a minimal resolution of C? /T for T’ C SU(2), for instance: T*S? =
(R*/Z,)\{0} U $? is the topology of the Eguchi-Hanson metric:

4
eh = 1:-1’4 (drr +r?ad) + V1+rt (a5 +a3). (42)

with metric oc§ + oc§ on $2. Let us restrict ourselves to this situation and keep our discussion at a
somewhat informal level as the last section of the article will prove these obstructions rigorously.
Assume that there exists a smooth curve of Einstein metrics ¢ € [0,1] = g, on N = T*S? with g,
nondegenerate for t > 0 and with g, = e. This implies by [1, 8, 35] that up to a subsequence, some
rescaling of g, converges to the Eguchi-Hanson metric (42) where, schematically, one has in the
coordinates of (42):

eh=e+H*+ -

with |H*|, ~ r=*, while another rescaling of g, converges to an Einstein orbifold metric with
E(g,) + 1g, = 0 for 1 € R and

go=e+H,+ -

with |H,|, ~ r?, and with singularity R*/Z,. Up to some gauge conditions, we are therefore in
the situation of Theorem 5.6 but we may use the integration by parts of Proposition 3.8 to interpret
this as an obstruction to the existence of an Einstein metric “closing-up” inside the hypersurface
S3/7,.

By [39], up to rescaling and reparametrizing the curve ¢ — g, in well-chosen coordinates, we
have a development g, = e + H, + t?H* + *H}} + --- with H} = O(r~%) with remaining term neg-
ligible in a region where \/? < r < 1, hence in particular for r close to ¢'/* for small t. We again
consider the integration by parts

1 @)
'/{;:[1/4}<E( ) (Hg) + Ee (H29H4) +AH4>(}’5,, ar)dU[1/4§3/Zz
= @) (g4 ) 4 4
= tre (E (Hy) + E,” (Hy, H*) + AH* )dv,. (43)
{r<t1/4}
It was proven in [39] that in the coordinates of (42), one actually has H; = 0. This yields:

. @ 2-d
/ <R10e (H2,H4)>(rar,6,)dvt1/4§3 )2, = 5 / RS (H,, HY) du,.
{r=t1/4} {r<tl/4}
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Now, by Corollary 4.7 proven below, one has Rgz)(H ,, H*) = 0 because H* is anti-selfdual, and we
recover the obstruction (36) in this situation. The other obstructions with Killing vector fields are
recovered in the same way.

Remark 3.11. The coordinates of (42) correspond to the volume gauge of Definition 4.12 below and
one of their properties is that the vector field rd, is harmonic, hence L, ; eh is an infinitesimal
Einstein deformation — up to a trace term.

4 | THE 4-DIMENSIONAL SITUATION

Let us now specialize our discussion to the dimension d = 4 where most of our applications are.
In this section, we will test the obstruction to the integrability of infinitesimal Einstein deforma-
tions on the development of Einstein 4-manifolds at the infinity of a Ricci-flat ALE metric. See
Appendix A for the case of a neighborhood of a given point of an Einstein manifold or orbifold.
We will see that the obstructions always vanish and do not add any restriction.

In order to show this, we will prove the existence of good gauges in which the quadratic term of
h — Ric(e + h) are easily computable. This is an important step towards the next Section 5 where
obstructions to the desingularization of some Einstein metrics are found.

4.1 | Notations

In dimension 4, the space of 2-forms decomposes into selfdual and anti-selfdual 2-forms which

are elements of the eigenspaces of Hodge star operator * (which satisfies *?>= Id) respectively

associated to the eigenvalues 1 and —1. We denote Q* and Q™ the associated eigenspaces.
Denote (x;, X,, X3, X,) coordinates in an orthonormal basis of R*. We define the 2-forms

wp 1=dx! Adx? £dx3 Adx?

and similarly cozi and co3i by cyclic permutations of the indices {2, 3, 4}. The coi+ form an orthogonal

basis of the space of selfdual 2-forms, Q*, and the w;” form an orthogonal basis of the space of

anti-selfdual 2-forms, Q.
Thanks to them, we define the following basis of the Killing vector fields preserving 0 on R*:

YF 1= @l (rd,). (44)
The other Killing vector fields of R* are given by constant vector fields representing translations.
Note that those will not be I'-invariant for any I' C SO(4) with T # {Id}.

In each orientation, the frame (rd,, Y}, Y5, Y3) is dual to the coframe (dr /r, ai, a5, a3 ) where
we define o := w>(dr/r). We also define the following 2-forms which also form bases of the
spaces of selfdual or anti-selfdual 2-forms:

F oo _ + .2+ +
61 ._rdr/\oc1+r a, Aag,

and similarly 65 and 67 by cyclic permutations.
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Remark 4.1. The notation 61.+ meant something else in [39].

For the above 2-forms, we have the following formula: for x = (X1, x,, X3, X4)

B 3 xT(coiioco;_')x B (YEYT) _
F _ F_ _ F
6/ (x) = 21 e w; = oIt (45)
j:

where col.“—“ocoj is the symmetric traceless matrix given by the (commuting) product of the anti-
symmetric matrices associated to col.i and co]?, and where x” is the transpose of x. We also have
the following equalities: )" = rdr A af + r’a; A a3 and similar equalities for " for i € {2,3} by
cyclic permutations.

411 | Orbifolds and ALE spaces

We will be interested in two types of geometries: Einstein orbifolds and Ricci-flat ALE metrics.
They respectively correspond to the singular limits and the singularity models of the degeneration
of Einstein 4-manifolds.

Definition 4.2 (Orbifold [with isolated singularities]). We will say that a metric space (M,, g,)
is an orbifold of dimension d > 2 if there exists €, > 0 and a finite number of points (py ), of M,
called singular such that we have the following properties:

(1) the space (M, \{pr}r,&,) is @ manifold of dimension d,

(2) foreach singular point p, of M, there exists a neighborhood of p;, U, C M,, a finite subgroup
acting freely on S?~1, T}, € SO(n), and a diffeomorphism @, : B,(0,¢,) € R¢/T}, — U, C M,
for which, the pull-back of @;go on the covering R¢ is smooth.

Remark 4.3. Note that smooth Einstein metrics are Einstein orbifolds. Einstein orbifold metrics
are smooth up to taking a finite local cover at the singular point as seen in [8].

Definition 4.4 (ALE orbifold [with isolated singularities]). An ALE orbifold of dimension d > 4,
(N, gp) is a metric space for which there exists ¢, > 0, singular points (p; ), and a compactK C N
for which we have:

(1) (N, gp) is an orbifold of dimension d,

(2) there exists a diffeomorphism W, : (R%/T'y,)\B,(0, eal) — N\K such that we have
rIVi(Pig, — e)le < Cr .

Note 4.5. We will often identify R?/T" and its cover R when writing ALE of orbifold spaces
in coordinates.

FSUBD|T SUOWIWOD dAIIEa1D 3|qedl|dde ay Aq pausenob ae sapile YO '3sn Jo sajnl oy Afeiqi auluQ 43I\ UO (SUONIPUOD-PUR-SWLLBIWOD" A3 1M Ae.d 1 BU I UO//STNY ) SUoIIpUOD pue S | 3Y) 39S *[£202/TT/60] U0 ARldiauluQ AB|IM ‘Auew e aueiyoo) A 6212z edo/200T 0T/I0p/Wod A3 1m ARIdipul|uo//sdny wouy pepeojumod ‘T ‘¥20Z ‘ZTE0L60T



196 | OZUCH

4.1.2 | Curvature of Einstein 4-manifolds

Thanks to the direct sum of selfdual and anti-selfdual 2-forms, the symmetric endomorphism on
2-forms, R given by the Riemannian curvature decomposes into blocks,

_ . [R* Ric
~"|Ric R|’

where the Ric is the traceless part of the Ricci curvature, and where R* are the selfdual and anti-
selfdual parts of the curvature.

Let us do a quick recap on the curvature of Einstein perturbations of the Euclidean space (R*, e).
The starting point is the identification of the set of traceless symmetric 2-tensors Sym(z)TM with
Q1 ® Q thanks to the map:

PR eQTRO — whow™ =w owt € SymgTM
where wtow™ is the 2-tensor associated to the composition of the anti-symmetric endomorphisms

of TM associated to o™ and w™ by the metric. Therefore, any 2-tensor h on (R*, e) has unique
decompositions:

h=2e+ Zd)i_oco;" = e+ Zgb;“oco;
i J

for a scalar function A, and the ¢lf—' with values in QF. According to [12], the Bianchi gauge
condition for & rewrites:

3 3
i+ Y # (wf AGdgD)) =dA+ Y <ij Ne dqb;)) —0. (46)
i=1 =1

Extending the computations of [12], we prove the following result.

Proposition 4.6. Let h be a symmetric 2-tensor on R* decomposed as:

h=2e+ ) ¢ ow =de+ ) ¢Tow;
i J

and satisfying the condition (46).
Then, defining a}*M(h) = Y, *d¢7 @ w' and a; V(h) = I dgb;r ® w; the infinitesimal
variations of connections, see [12, 21], we have:

. R:’(D(h) = —d+a:’(1)(h) =—=2,d; * d¢; ® col.+ where d_. is the exterior differential composed
with the projection on Q,

. R;’(D(h) = —d_ae_’(l)(h) =—2,d_=* d¢l.+ ® w;” where d_ is the exterior differential composed
with the projection on Q~, and
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. Roicil)(h) = d_a+’(1)(h) = d+ae_’(1)(h) and in particular, h is an infinitesimal Einstein deforma-
tionifandonlyifforalli € {1,2,3}, d_ * d¢; = 0 orequivalently ifand only if forall j € {1,2, 3},
dy * d<}5;.r =0.

Moreover, if h is an infinitesimal Einstein deformation, then we have:

+ RSk = —2[a; D), ol Dl

* Ry h) = —3[ag V(). ag V()] and

* defininglinearmaps ¢~ : Qf - Q~ and ¢t : Q~ — Q* by foranyiand jin{1,2,3}, ¢~ (o) =
¢; and ¢*(w]) = ¢}L, we have

Ric(h, )

e O arOm)| + ¥ o (REOm@)) @ of

N =

[a;’(l)(h), a;,(l)(h)L + 2 o+ < R;(l)(h)(co;)) ®w;.
j

Proof. The only points that are not proven in [12] are the values of Rf’(z)(h, h). For this, we recall
that R* is the opposite of the selfdual part of the curvature da* + é[aﬁ a't]of the bundle Q*. The
origin of the term —%[a: ’(1)(h), a: ’(1)(}1)]Jr is therefore clear. There is another source of variation

of R* which are the variations of Q* and Q™ at e in the direction h = le + Y, gzbi_oco;r =le+
Zj ¢]Tocoj‘. According to [12], by blocks given by the direct sum Q @ Q,, the variation of the

bases (co;—')i as bases of QF rewrites:

+Woy_ | A 7|+
wi,e (h) - [_¢+ /1 ] wi B (47)
and therefore, the conjugation by 1d + [_C}ﬁ _fff] + (9(|h|§) of the first order curvature variation
RV 0 . 0 =R V() oh Vi
[ 0 V0 leaves at second order term: [ S+ RO(h)) ) ] , which yields the result. []

4.1.3 | An application to the variation of scalar curvature
Leth = e+ Y. ¢; ow and k = ue + ¥, 9. ow." for A and u scalar functions and ¢, € Q_.
Corollary 4.7. Assume that h and k are infinitesimal Einstein deformations satisfying (46) and

assume moreover that h is anti-selfdual in the sense that a: ’(1)(h) =0.
Then, we have: R:’(z)(h, k) = 0, and moreover:

Rice (h,k) = X ¢ (REV00@)) @ @ (48)
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4.2 | Asymptotic curvature of 4-dimensional Ricci-flat ALE metrics

Let us now study the infinity of Ricci-flat ALE metrics of dimension 4.

421 | Development of Ricci-flat ALE metrics

Let us start by understanding the asymptotic terms of Ricci-flat ALE metrics.

Let (N, g;,) be a 4-dimensional Ricci-flat ALE orbifold asymptotic to (R*/T, e) for T' C SO(4),
and let (), for some s, > 0 be a CMC (Constant Mean Curvature) foliation of (N, g;) in a
neighborhood of infinity as in [14, 16] where the mean curvature of Z; is equal to g (like a sphere

of radius s in (R*/T, e)).

Definition 4.8 (CMC gauge). Then, by [14] there exist a compact K C N, s, >0 and a
diffeomorphism: ® : (R*\B,(0, sy))/T — N\K with:

» forall s > 59, D(S.(5)) =2

« d*g, —e = H* + O(r~>) at infinity for |[H*|, ~ r™*,

¢ §,H*=0,tr, H* = 0, H*(3,,d,) = 0 and

* one can even arrange ® so that H* is more precisely of the form:

+a— o+
X 6 0w + Xy hygby ooy

H* =
}’4

with ¥, h;lT =0and Y, h, = 0.Up to choosing a different basis of (anti)-selfdual
We call these coordinates a CMC gauge.

Remark 4.9. Instead of that last point, in [14], a slightly different decomposition is used in so-called
reduced Kronheimer’s terms which are projections of the terms efoco;—' on their part without dr.

Our description is actually equivalent to theirs up to gauge terms of the form L, for V = iL(x)
for a matrix L as used in [14, (2.14)] to simplify (using a pull-back by a diffeomorphism) a usual

+

6%o
Kronheimer’s term — ] like ours into their reduced Kronheimer’s term. This difference makes
the computations of curvatures somewhat simpler here and is more natural for the following
volume gauge.

Denote Qg the interior of the hypersurface X;. The limit:
V(N,gp) := Slim Volg, Qg — Vol (B,(s)/T') < 0 (49)

exists and is called the renormalized volume of (N, g;,) in [14]. It is vanishing if and only if (N, g},)
is flat.

Remark 4.10. An interesting remark of Hans-Joachim Hein is the following. There are examples
of Kronheimer’s instantons of [30] described in Remark 5.8 below for which one has H* = 0 in
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CMC gauge. It is a way to see that the notion of reduced volume is not an asymptotic quantity. It
essentially does not tell anything about the asymptotics of Ricci-flat ALE metric at infinity which
at this point could vanish at any order. It is a global and subtle quantity. This reduced volume is
the core quantity of the obstruction (54) proven later.

We will also need a particular gauge very close to one introduced by Biquard and Hein
in some unpublished notes which led to [14]. This is a so-called volume gauge in which
the volume form of the ALE metric is asymptotically equal to that of the asymptotic flat
cone.

Example 4.11. The volume form of the Eguchi-Hanson metric in its usual form (42) is equal to
that of the asymptotic cone R*/Z, with its flat metric dr? + r*(a? + a3 + a3).

Precomposing the above local diffeomorphism @ of Definition 4.8 with the flow of r =39, for an
adapted amount of time t = C(I')V(N, g;,) for C(T') > 0, one may choose another diffeomorphism
¥ between neighborhoods of infinities with the following properties.

Definition 4.12 (Volume gauge). There exist a compact K’ C N, r/, > 0 and a diffeomorphism:
¥ : (R*/T)\B,(0, 7)) = N\K’ with:

« ¥*g, —e = H*+ O(r~>) at infinity for |[H*|, ~ r™*,
* Denoting Q! the interior of ¥*(sS3/T),

lim Volg, Qg — Vol,(B,(s)/T) = 0,
S—00

* §,H* =0, tr, H* = 0,r*H*(9,,9,) = c(T)V(N, g;) for ¢(T") > 0.

* more precisely,

X hi6rcwl + Xy hbowy

H* = ijoi J kl™k

’/-4
with 3. b + ¥, by, = c(D)V(N, g;,) < 0 as in the previous point.

This last point comes from the last point of Definition 4.8 together with the fact that we followed
_2) _ 3dri—rlggs
r4 ’

Indeed, one only sees the variation of the r~* terms at this level of precision and they come from
a direct integration of the change of the Euclidean metric induced by following the vector field
r=39,.

As in Proposition A.1 in the Appendix for development of Einstein metrics at a given point,
we see the term H* in this volume gauge as only determined by the curvature at infinity and the
reduced volume.

the flow of r =39, for a time proportional to V(N, g;,) since —2L,-35€ = % Hess,(r

Proposition 4.13. Let (N, g;,) be a non flat Ricci-flat ALE orbifold asymptotic to R* /T forT' C SO(4)
with reduced volume V(N, g;) < 0.
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Then, in volume gauge as in Definition 4.12, up to changing the bases (w); and () )i to
diagonalize the curvature, one has the asymptotic g, = e + H* + O(r=>) with

Z hi6 ow + ¥, hi, 6} owk—

il

4

and Zl. h; + Zk h, = —c(D)V(N, gy) > 0 and the induced asymptotic curvature in the basis (Gf)i
satisfies

+ + +
_ 3 2h3; — by, = h33 0 0
R:’(l)(H“) =5 0 —h, +2h3, — hi; 0
0 0 —hi, —h3, +2h3,

Remark 4.14. It is possible that the curvature of (N, g,) is decaying faster than r~°. In this case,
the H* term is purely a gauge term of the form:

1 . 4 3dr? —rggs_l 2
= zl: 0 o = Z 6o =—% =3 Hess,(r—=).

See Remark 5.8 below for an example.

Proof. We first check that HY := — Y ht L% only induces anti-selfdual curvature at the first
r4

order. The linearization at e of the induced connection on Q% is actually zero since d(r%‘) =0
and therefore the induced selfdual curvature vanishes as well. This also shows that the term is in
Bianchi gauge.

In order to compute the induced curvature, one uses Kronheimer’s examples. In par-

. . . . . 6 o) .
ticular the curvature of the Eguchi-Hanson metric which with H* = —1—:01 induces the
curvature
4 2 0 0
R;VEYH =10 -1 0
"lo 0o -1
by [20]. By linearity, one attains any H* as above, and the result follows. O

In the CMC gauge of Definition 4.8, we find a simpler expression.

Corollary 4.15. Let (N, g;,) be a Ricci-flat ALE orbifold asymptotic to R*/T for T C SO(4). Then,
in CMC gauge as in Definition 4.8, up to changing the bases (co;“)i and (w, )i to diagonalize the
curvature, one has g, = e + H* + O(r=>) with

ht0Tow’ + 3, i 6 owik—
H4 :_zl ii r4zk kk k l (51)
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with ¥, h;—; = 0 and the induced asymptotic curvature satisfies in the basis (Sii)l-

ht 0 0
- 24|11
RIVEHY =1 0 By, 0

0 0 3i3

4.2.2 | (Anti-)Selfdual Einstein deformations

Proposition 4.16. If H* the r *-asymptotic term of a Ricci-flat ALE metric only
induces an anti-selfdual (or selfdual) curvature, then it satisfies the obstructions (26) and

(32).

Proof. By [14] or Proposition 4.13, up to a gauge term, we can assume that H* is a linear
8- ow’

combination of - - terms.
r

. 6-wr .
Thanks to Kronheimer’s examples, we can reach any term of the form — Y. h l—z)‘ with b >
r
0. This condition h; > 0 can always be arranged up to adding a gauge term as in Remark 4.14.
Since gauge terms do not matter in satisfying the obstructions (26) and (32) by Proposition 2.6, we

obtain the result. O

423 | General deformations

Proposition 4.17. Let (N, g;,) be a Ricci-flat ALE metric whose asymptotic term in CMC gauge is:
H} + H* where

; s 6 0w
and H> .=—thkr—4.
k

B ow
4 . _ +7i
HY == Y ki

13

Then, the obstructions (27) and (32) are satisfied.

id 4 . _ h+9i_ow?' d H* = h- 6;060; o Wt =
Proof. Let us consider H} :=—3}, i~ and HZ := =2 = satisfying 3 hf =
2k h,, = 0. Recall that these terms only induce a nonvanishing connection respectively in the
anti-selfdual and selfdual orientation and the formula

6 = D (@ (6w (@)
k

From the formula (48) and Corollary 4.15, we therefore find:

o (2) (@, (8,), ] (8,))6; 06
Ric, (H*, H*) = 24Z;h;hkk k ;10 Lk
L
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Now, using the fact that 61.’_’(8,) = cof(a,), we see that the obstruction of Proposition 3.8 is
proportional to

X hitg, | @0 @ idvs
ik $3

Since both ¥, hf = 0and ¥, h;, = 0, the obstruction (37) is satisfied. The proof is similar for the
other obstructions (36). O

5 | OBSTRUCTION TO THE DESINGULARIZATION OF EINSTEIN
METRICS

We finally recover the obstructions of [11] to the desingularization of Einstein metrics and many
of the additional obstructions of [37] (but not the higher order obstructions of [39]). We con-
clude this section by proving that some Einstein orbifolds cannot be desingularized by smooth
Einstein manifolds.

5.1 | Infinitesimal Einstein deformations of Ricci-flat ALE metrics

On (R*/T, e), the vector field rd, is a conformal Killing vector field. It is moreover half of the gradi-
ent of the function u := r? which is a solution to —V}V,u = 8, and we have éﬁveue = Hess,u =
2e. On a Ricci-flat ALE orbifold we can extend this situation on the whole space as follows.

Proposition 5.1 [14, 37]. Let (N, g,) be a Ricci-flat ALE orbifold asymptotic to R*/T. Then, there
exists a unique vector field X on (N, g;,) such that ®*X = rd, + o(r), and Vg, V4 X = 0. We actually
have X = %ngu, where u is the unique solution of—V;b Vg, u=38, such that u = r?> + o(1). More-
over, (Lxgp)° = Lxgy, — 29y, the traceless part of L gy, is an infinitesimal Ricci-flat deformation of
gp, which is trace-free and divergence-free.

Proposition 5.2 [14, Section 4]. Let (N, g;,) be a Ricci-flat ALE orbifold asymptotic to R*/T. Then
for any Killing vector field Y on R* /T, there exists a unique harmonic vector field Y’ on (N, g;,) such
thatY' =Y + o(r). Moreover the infinitesimal deformation Ly gy, is divergence-free and trace-free.
It vanishes if and only if Y’ is a Killing vector field of gy,.

Remark 5.3. All of the infinitesimal Einstein deformations of the Eguchi-Hanson metric (42) are
of the above types.

5.2 | Obstructions to the desingularization

Let us now show that we recover the obstructions of [11, 37] and find another expression for them.

This new expression will further highlight the link between these obstructions and the lack of
integrability of Einstein desingularizations of [38, Chapter 4].
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Lemma5.4. Let (N, g;) be a Ricci-flat ALE metric in volume gauge as in Definition 4.12, and choose
a basis of (w;“)i and (w, )y to so that H 4 atinfinity is of the form (50). And consider its development at
infinity in this gauge: g, = e + H* 4+ o(r™*). Then, for (Lxg},)° € O(g}) defined in Proposition 5.1,
we have:

(Lxgp)° = —4H* + o(r ).

Proof. Let us denote Q the open interior of the hypersurface W(sS?/T) for the volume gauge
diffeomorphism ¥ : (R*/I")\B,(sy) — N of Definition 4.12 for s, large enough. All along the proof
we will abusively omit the diffeomorphism ¥ when pulling back tensors on the infinity of N to
R*/T. By Definition 4.12, we have as s — oo

Vol (B(s)/T) = Volg, Qf + o(1). (52)

The first step in order to find the asymptotic of (£Lxg;)° is to recall that X = %ngu where u

satisfies Ag, u = 8 with u = r? + % + o(r~2) for some b € R similarly to [14]. We determine b by
14
integrating by parts Ag, u = 8 as in [14]:

8 Vol (B,(s)/T) = 8 Volg, Qf + o(1)

= /Q/ Ag, udvg, +o(1)

S

= 8Vol,(B,(s)/T) — 2b|S*/T| — 2r=4|S3/T|H*(3,,3,) + o(1).

which gives us b = —r*H*(3,, d,) again mimicking computations of [14] in our slightly different
coordinates.

Remark 5.5. This is consistent with eh for which X =rd, = %Veh V1+r4 where u = \/1+r4

satisfies Apu = 8,and V1 +r4 =r? + 2% + o(r~%). We moreover have Hess,;, \/1 + r* = 2eh +
T

(Lxeh)° according to [11, Proof of Proposition 2.1].

As in the case of eh in (42), where Vg, /1 +r* = 2r0,, we find Vg, u = 2rd, + o(r~3). Indeed,
one first has for any vector field v,

0 = du(v) — du(v) = gp(Vg,u,v) — e(Veu,v)

= 2H*(rd,,v) + e(VO (HYW), v) + 0(—3)

where Vgl)(H %) is the first variation of the gradient operator h — V,,;, at h = 0 in the direction
H*. This directly gives:

Vgt = Veu + VOO HHW) +0(r?)
=2rd, — 2’%6, +0(r=3) = 2H*(rd,) + o(r~3)

=2rd, +o(r 3)
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where we used VSV(H*)(u) = —2H*(rd,) = —2rH*(3,,0,)d, + o(r—>) because H* has a diagonal
form by assumption, and b = —r*H*(3,, 3,) (the identification between (1,1) tensor and symmetric
2-tensor is made with respect to e or g, indifferently at this level of precision).

‘We can then develop:

1 -
Eﬁvybugb = E(r6r+o(r—3)) (e +H* + o(r 4))
=2e —2H* + o(r™*) = 29, — 4H* + o(r ).
Finally, considering the traceless part with respect to g;, we find the stated result:

(Lxgp)® = —4H* + o(r ).

This lets us state the following obstruction result.

Theorem 5.6. Let (M,,, g,) be an Einstein orbifold with a singularity R* /T and let (N, g},) be a Ricci-
flat ALE manifold with integrable Ricci-flat ALE deformations asymptotic to R*/T. Let us denote
H* the asymptotic term of g, in volume gauge as in Definition 4.12 and in a diagonal form (50):
gy, = e+ H*+ O(r™), and let H, be the quadratic terms of g, = e + H, + O(r?) in a coordinate
system in which B,(H,) = 0.

Assume that there exists a sequence of Einstein metrics, (M, g,,),,, dgr-converging to (M, g,) and
such that there exists a sequence (t,,),en With t,, > 0 satisfying: (M, %) e (N, gp). Then, we have

the following obstructions:

.77 . =+
* forany Killing vector field Y-,

e
/ (Rici )(H2,H4)>(Y;—',6r)dv§3 =0, (53)
3
* for the conformal Killing vector field rd,, we have

/ <R°ic§2)(H2,H4)>(rar,a,)du§3 — 0. (54)
s3

Remark 5.7. As we will see in Corollary 5.11 proven later, the obstruction (54) is never trivial if
(N, gp) is not flat. That is, if (N, g;,) is not flat, then there are some H, as above for which (54) is
not satisfied.

Remark 5.8. By [7], the asymptotic terms of Kronheimer’s instantons in volume gauge are
B o™
generally of the form: H* = — 2 j(g” ¢ j)# for ¢1,¢5,¢5 € RK for some k arbitrarily large
. 7
depending on the group at infinity (k = 1 for the Eguchi-Hanson metric). For k > 3 we can

construct ¢,¢5,¢5 € RF with (¢, ¢ j) = &;j and we check that the obstructions (53) vanishes for
any H,.
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Proof. Let us come back to the origin of the obstructions of [37, 38]. They are the obstructions to
solving:

Ric (hy) = 0
9p 720 : (55)
hy = Hy + Hy + O(r—3*)

where |Hj |, ~ r™2, see [39].

Let us consider the harmonic vector field X =rd, + O(r3) and the harmonic vector
fields Yi’ =Y+ O(r~3) defined in Section 5.1. Following the computation of [11, 37], noting
that in volume gauge, we have (Lxgp)° = —4H* + o(r™*) by Lemma 5.4 and we moreover
have:

0=1 hm/ <Rlc (hy), (Exgb)°> dv
2 R—>+o0 {r<R} 9b b 9

=4 / 3(H,,H*) + H*(B,H,,8,)dvs: (56)
S3/r

which is manifestly linear in H*. Similarly, for any Killing vector field Y; and its harmonic
extension Yl.’ , we find the obstructions:

/ 3(H,, Ly H*) + Ly, H*(B,H,,8,)dvs: r = 0. (57)
3T

Now, the interpretation of [11, 12] of the obstruction tells us that for some C = C(T') # 0, for any
k,1e{1,2,3}

orF oco—
/ H, 2t Ydves = C(REVEH)@P), o ). (s8)
S3/T r

By linearity, this lets us compute the obstruction for any H* coming from a volume gauge.

On the other hand, let us use the formalism of [12] and compute the second variation

R°10£ )(H 5, H*) when B,(H,) = 0. For the quadratic terms H, of the orbifold, we decompose

Ry V() = Y Riof @ ! (59)

iji
ij

e +
and we will consider another term of the form H* = L:Jk Using the formula (48) for the second
r

variation of the traceless part of the Ricci curvature denoted Ric applied to the hyperkéhler flat
metric e in the direction H* + H,, we find

+
- @ + 01%%
Ric, (H* H,) = ZRkjr—4. (60)
J
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Now, this lets us compute the obstruction (53). For any i € {1, 2,3}, define (il) € {1,2,3} by
co oco( y= +w . We find the following value for (53) with Killing vector field Y( ~ (J;l)(rar):

0= ZR / (67 (81, @} (@, (r3,))edvss

= R, / (Y],Y])eduss. (61)

We therefore see that if (57) is satisfied with Y+
Similarly, from the obstruction (54), we find:

i1y then, one has (53) satisfied thanks to (58).

0= DK, [ (67 @003 v
J

= ZR;]. / 3<Y+,Y;.’)edv§3
j S
—R*/XYtY>A%a (62)

and we consequently see that the condition (54) is the same as (56) thanks to (58). O

Remark5.9. It might seem like the proof of Theorem 5.6 is completely disjoint from the obstruction
of Theorem 3.8 or those of Section 3.3. We illustrate below that they actually build on estimates
of the exact same quantity but rely on different integrations by parts. Indeed, as noticed along the
proof of Lemma 5.4 a special feature of the volume gauge is that Vg, u ~ rd, at an order higher
than expected.

Let us illustrate this with the Eguchi-Hanson metric eh which was already discussed in Sec-

tion 3.3. Coming back to the integral quantity in (56) and integrating by parts in the other direction
thanks to (20), we find:

. o (1)
0= lim (Rlceh(h2)>(rar’ar)dvehHr:R}
{r=R}

R—+c0
o (1)
=3 Rl_lgl Ricep(hy) |, Lr5,eh ) dvep
© Jir<ry eh
o (1) o
= 2 R1—1>I}—l Ricep(hy) |, (Erdr eh) dvep (63)
 Jir<r} eh

The right-hand side term of (63) has the following limit as R — +oo:

0= / (ES>(H§) + EX W4 Hy) + /1H4>(r6,,ar)dv§3 /2,
$3/7,

- / (E§1>(Hg))(ra,,a,)du§3/zz+ / <Rlce (H*, H2)>(ra,,a )dvss /7,
§3/Zz §3/ZZ
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which is exactly the quantity obtained in (43). As in Section 3.3, we may use H ‘2‘ =0.
We recover all of the obstructions of [11].

Corollary 5.10. With the assumptions of Theorem 5.6 with (N, g;,) = (T*S?, eh) defined in (42)
6" o’
with H* = — 12:1 and any H, satisfying B,(H,) = 0, the following propositions are equivalent:

e

@ ROt =
) /§3/ZZ(R°iC£2)(H4, H,))(rd,,08,)dvss, 7, = 0, and for any i € {2,3} for the Killing vector field Y,

2 @, " _
/§3/ZZ(RICE (H 7H2))(Yl' ’ar)dU§3/Zz - 0;
(3) thereis a solution h, to the Equation (55),
™ e /ZZ<H2,H4)dv§3 jz, =0, andi €{2,3}: [, /ZZ(HZ,EY;H4)dv§3 /7, =0.

5.3 | Spherical and hyperbolic orbifolds

Using the above new interpretation of the obstruction to the desingularization of Einstein 4-
manifolds as well as the integration by parts (20), we prove one of the main conjectures of [37,
38] and answer the long-standing question of whether or not Einstein orbifolds can always be
dgp-desingularized by smooth Einstein metrics.

The starting point is that the obstruction (54) never vanishes when the orbifold is spherical or
hyperbolic.

Corollary 5.11. If the obstruction (54) vanishes, then, the orbifold (M,,g,) is not spherical
or hyperbolic.

+ 6+O -
Proof. Let us consider H* = i Zk h;k"r—:o". From (60), by linearity, we have the

4
following expression:

. (2 - k
Ric, (H* H,) = thlkjm i +thk o r4 (64)

where Rl.ii follow the notation of (59). Hence, the obstruction (54) rewrites:
+p+
Z hiiRu + Z hkk Kk — (65)
L

Denoting A =Y, Rl =Y, R " ;—;)U the traceless part of (R )U, and h— the traceless
part of (h )l Jjeti2,3 (note that the h— are proportional to the asymptotic curvature of g,

by Proposmon 4.13) and recall that Zl hi+Y, h, = c(DV(N,gy) < 0. We therefore write
(65) as

0= Ac(T)V(N, g) + 2 REWE + Y g W, (66)
k
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In the case of a spherical or hyperbolic orbifold, we have W* = 0 and A # 0, therefore, since
c(T)V(N, gp) < 0, the obstruction (66) is not satisfied. O

5.3.1 | Cokernel of the linearization of E at a Ricci-flat ALE metric

This technical section contains the main innovation from [36, 37] towards getting rid of an
integrability assumption for the Ricci-flat ALE metric gj: the proof of Proposition 1.12.
Let us consider a Ricci-flat ALE orbifold (N, g;,), the operator

g~ P4,(8) 1= E(@) +6,,84,8
and O(g,) the L?(g})-kernel of d>yb , the linearization of @4, at g,. Note that the elements of O(g},)

are traceless and divergence-free, see [37] for instance. According to [37, 38], for any small enough
v € 0(gy), there exists a unique metric g, which satisfies both

Dy, (8v) = E(gy) + 84,64,80 € O(gp) and g, —(gp + ) L12g,) O(gp).
We will use the following Lemma in order to prove Proposition 1.12.
Lemma 5.12. Assume that forallk <1—1, akkls 0 @y, (&50) = 0. Then, we have:

(D forallk < 1—1, we have: 6k — E(gs,) =0, and for all k < I, we have 8 6 5= _o8w = 0,

(1)
(2) 8g,(3L_ g, (8) — (as,,s_0
(3) foranyl, there exist multilinear functions Qg)(hl, o hy) = zm>2 Zh izl Vghj * hj, *

.....

h; ,where x denotes various contractions of the tensors. Integrating over an open domain Q with
smooth boundary, we have:

1)
/£;<gb’a.ills=0¢gb(gsv) (D (all|s Ogsv)>gbdvgb = /aQ Q(l)<as|s=0gsu,-. all lls OgSU>

Proof. Let us show these three properties in order.

gsv)) =0, and

(1) Notice that for any k, o i Dy, (8s0) = kl o E(g,,) + 5 (a
g, P(gs) = 0 because ®(gg,) € O(gp), then one has:

5= 0gsu). Therefore, since

3, (afkl JE@) + 85,84, (afkls:ogsv)) —0.

If we moreover assume 6;}. E(g,,) =0 for all j < k—1, we find 59b53b59b(6§klszogw) =0
since 0 = dfklszo(égw E(gs)) = égbdé‘kls — E(gs). Since &g, J,, is invertible on vector fields
(or 1-forms) decaying at infinity by [11, 37] we find &, (6 s 0gsv) = 0, but that means

that afkl E(gg,) = — @y, (850) — Iy, (d s _Ogsv) = 0. We can iterate this up to k =
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I —1 since by assumption afklszotbgb(gsv) =0 for all k <I—1. This lets us also find
8g, (0% _o8s0) = 0.

sl|s=0

(2) For the equality &4, (ai l|s:0q)gb (gw) — d);lb)(aéllszogsv)) = 0, we first see that

1 (PP, 1 (PP
asl|s:0q)gb (8sv) — q)gb (asl|s:0gsv) = asl|s:0 E(gs) — Egb (asl|s:0gsv)
because ® = E +6;, §,, . We conclude by noticing as above that

84,0" _ E(gy) = 0!

b7 sl|s=0 s

I|S=0(5gsu E(gsu)) = 0

because 62‘%: o E(gg) =0forallk <I—1anddy, E;lb)

(3) The first remark is that

(aél|s=0gsv) = 0 by Proposition 2.2.

l _ 1 (1) l
8Py, (&) = (9P, (&) — Y (3, _ogw))

@ (41
+ By, (6 ng>

st|s=

+8;,84,0" -

sl|s=

and we will treat separately each of these terms.

We then show, using (34), that the integral of the trace of E(l)

9 (aé . |s:og5“) is aboundary term:

2 )4l
2-d/, <9b,Egb(5s,|3=0gsu)>gbdvgb

_ I I
T /89 (59baslls=0gsv +dtrg, asl|s=0gsv>(naﬂ)dvgbla0- (67)

.. . % 1 . .
Let us now turn to the remaining linear term c3!n)59b<9sl|s=0gsU in the expression of

PPy, : : : I .
Dy, (aslls: 0gsv). By integration by parts, denoting V' = §,, 6SI|S= o8sv» We get:

/ <gb’5;bv>gbdvgb = _2/ 0g,Vdvg, = 2/ (V,n)g,dvg, a0,
Q Q 0Q

which is again a boundary term.
Noticing that

1 @) (51 _ 4l @ (51
asl|s=0q>9b(gsv) - (ng <aSZ|S=0gSU> - asl|S=0 E(gsv) - E.‘]b <aSZ|S=0gSU> )

we can therefore focus on showing that the integral of 6;'8: o Egs (gs) against g, isequal to a
boundary term. Since the [ — 1 first derivatives vanish, we have:

dl

2 I
<gb’asl|S:0 E(gsv)>gbdvgb = Els:OLR(gsv)dUgsv

2—d J,
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= /(E(gsv) asgsv> dv

dl—l
= [ (6,0 + dity Oy ()i, (69
5s=0J3Q

where the first term vanishes because afkls: 0 E(gy,) = 0 for all k < I —1 by the first point.
Together with (67), this proves the result. O

The point of Lemma 5.12 is that if the different 65{ ls=o8sv decay faster than r—2*¢ at infinity for
some small € > 0 in dimension 4, then, the boundary term

: 0) -1
rlg{.lo r3 /T Q <as|s=0gsvr ey as’*1|s=0gsv>

which will appear in the following proof will always vanish.
Proof of Proposition 1.12. Using the results of Appendix B.2 (very close to the proof of [32]),

we know that for any v € O(g;,) small enough, the map s € (—1,1) — g, is real-analytic in
the so-called Cé’“(gb)-topology defined in Appendix B.1 for 0 < 5 < 2 close to 2, say 8 = 1.9.

We mainly use the following consequence. We have a Cé’“(gb)-converging development g, =
gp +sv+ Zk;z s“wy around s = 0 where for any k, there exists C = C(k) > 0 with forl € {0, 1, 2}:

rA VL wilg, < C. (69)

This induces a Cg ,-converging development (see again Appendix B):

Dy, (80) = (B () + B (v,0) ) € 0(g)

53 (Cbgb)(w3) + ( CI)( )(wz, v) + CIJ( )(U v, U)) € 0(gp)

+- € 0(g)
Sl i

+Hasl|s:0¢.gb(gsv) € O(gb)

+e € 0(9»)

Now, by the analysis of the Fredholm properties of @y, in [37], we know that the db(l)(wl) =

(1)( ll|s 0gsv) are L?(g,)-orthogonal to O(g},), hence we need to study the L?(g},)-projection of

1
aél|S:0q)gb(gSU) @, )(alt|s Ogsv) on O(gp).
If @y, (g5,) is identically vanishing, then we are done. If not, assume that af _o%g, (gs) = Ofor
allk <1-1, but déllszotbgb(gsv) =: 0, # 0. We want to show thato, 1 (Lxg,)° and o, L Ly/g,

for Y’ harmonic vector field asymptotic to a Killing vector field.
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Let us now apply our integration by parts formula (20) to the divergence-free 2-tensor SV(v) : =

8150 ®g, () — P, (B!, _ ge), this gives

st|s=0

0= lim SOW)X, 8,)dv,s3 r
r—co rS3/T

- %/j\T(s(l)(v),(Eng)")gdegb

+/Ntrgb S(l)(v)dvgb,

where the first boundary term vanishes because it is a finite linear combination of terms of
the form E( (6] i, s> - 6”‘ . &sv) With k > 2 and j; > 1. Indeed, we know from the results of

Section B.2 in the appendlx (or (69)) that 6J 18sv € C for every j > 1, which implies that
for any a € {0, 1,2}, ro+t- 9|V“rﬂj gsv| < C; for some C; > 0. This gives: E (5J1 Sv,...,asjkgsv) =

O@~>7k19) = o(r=*). Similarly, the last term /N trg, S(l)(v)dvgb isa boundary term of the same
type by Lemma 5.12 and it vanishes for the same reason.

The proof for the different Ly g, is similar and easier because there is no trace term to deal
with. O

Remark 5.13. Again, the proof is very close to that of Theorem 3.8 because in volume gauge, one
has Vg, u ~ rd, at an order higher than expected.

5.3.2 | Obstruction to the desingularization of spherical and hyperbolic
orbifolds

Let us now prove our main result. The main new ingredients from [36, 37] are the new more flex-
ible expression of our obstruction in Theorem 5.6, and more crucially Proposition 1.12 (based on
Lemma 5.12). Indeed, the problem left in [36, 37] was that the Ricci-flat ALE metric g, might
not be integrable, and these obstructions to integrability could compensate our obstructions
to desingularizations. Proposition 1.12 however tells us that the obstruction to the integrabil-
ity of the Ricci-flat ALE metric g, is negligible against (Lxg;). The obstruction to integrability
consequently cannot compensate the obstruction to desingularization.

Proof of Theorem 1.9. Let us assume that there exists a sequence of Einstein metrics (M, g,),

converging to an Einstein orbifold (M,,g,) with E(g,) + Ag, = 0. Then, according to [36,

37, 39], up to taking a subsequence, there exist (¢,),, t, > 0, (Uy)n, U, € O(gp) such that
1

(M, 9, /t), is close to (N,g,) in the following sense: for all r <« t; 2 we have for some
0<f<1

(1 + r)ktF = o(t,) (70)

9b

ng <gn (gvn +t h2)>
Vl

FSUBD|T SUOWIWOD dAIIEa1D 3|qedl|dde ay Aq pausenob ae sapile YO '3sn Jo sajnl oy Afeiqi auluQ 43I\ UO (SUONIPUOD-PUR-SWLLBIWOD" A3 1M Ae.d 1 BU I UO//STNY ) SUoIIpUOD pue S | 3Y) 39S *[£202/TT/60] U0 ARldiauluQ AB|IM ‘Auew e aueiyoo) A 6212z edo/200T 0T/I0p/Wod A3 1m ARIdipul|uo//sdny wouy pepeojumod ‘T ‘¥20Z ‘ZTE0L60T



212 | OZUCH

where h, is a solution to the following equation:
@) (hy) + Agy € O(gy). (7D)

It was shown in [37] that the first obstruction against (£xg})° to the desingularization is:

[ @0/t + 100100, 2,Ex0)"),, dog, =0 ()
N

Or goal is to show that it cannot be satisfied when desingularizing a spherical or hyperbolic
orbifold.

Recall from Proposition 1.12 that one has &(g,, ) = 0,, + O([|[v,llz2(g,) 00, lI12(g,)) € O(gp)- IE
o, = 0, then we are done by [38], so let us now assume that it is not satisfied. The obstruction

against the deformation w, := —2t —
" ”"vn ”Lz(gb)
/N <¢’gb (gn/tn) + tn/l(gn/tn),)(tn Wy, >gbdvgb =0. (73)

Let us now estimate (72). We use the control (70) which tells us that:

g, (gn/tn) + taAGn /1) = g, (80,) + 1x @) (ha) + LaAgy +0 (6,1 +1)27F) . (74)
We will therefore decompose (72) thanks to (74) and estimate each part of the integral.

(1) For the first integral fN(CD(gUH), Xt,(L£x9gp)°)g,dVg, We use the estimate

[ (0. xgi), vy, = ozl 22
N

together with (g, ) = O(llo,, |I;2r~*), which gives

[ (0.0~ 2, XExg0)" ), dvg, = o< | uounanr-ﬁr-“ﬁdr)
N b tp*

n

= O(t, ”ovn llz2)-

We finally find
/ (8., 21, (£xG0)°) , AV, = OV llz2 + ta)lo, 1) (75)
N
(2) letusdenote 4; := /N(QD;Ib)(hz) + A9y, (Lxgp)°) g, dvg, - We find:

b [ (@000 + 290,20, (Lx90)°) dg, = ks + ot
N 9p
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(3) for the error term, we have o(t,,) [, (1 + )7, x, (Lxgp)°)g,dvg, = 0(ty).
From (72), we finally find the estimate:
0 = t,d; + O(llvylizzlloy, lIr2) + o(ty). (76)

Similarly, using again (74), we then estimate (73) in three parts:

(1) For the first integral fN<<1>(gvn), X, Wy, )g,dVg,, We use Proposition 1.12 which implies

that

/ <(D(gvn)a wUn>gbdv9b = ||0Un”L2(gb) + O(”Un”LZ(gb)llovn||L2(gb))-
N

Since ®(g,,) = O(lloy, || 12r~4), we estimate the difference

)
/ <q)(gvy,): (1 - th)wvn>g dvgb =0 /_1 ”00,1 ||L2r_6r_4r3dr
N b o
= O(tplloy, llz2),
and finally
/ <‘I’(gvn), thwvn >gdegb = ||OUn||L2 + (9((tn + ||Un||L2)||ovn”L2)’
N

(€]

g, (12) + Agp, Wy, )g, dvg, . We find:

(2) letusdenote u, := [ (P
tn [ (@0 + 2gs. 1,01, ) dug, = tatt, + olt)
N 9

(3) for the error term, we have o(t,,) fN((l + 1) xp wy, ), dug, = 0(ty).
From (73), we finally find the estimate

0= ”0un ||L2(gb) + typy, + o(t, + ||0u,, ||L2(gb))-

which gives |lo,, |I12g,) = O(t,) because y,, is bounded since O(gy) is finite-dimensional.

(77)

(78)

Finally by plugging [lo,, [I12¢g,) = O(t,) in (76), we find |1;| = O(||v,I12). Now, since 4, is a
constant, and since (¢,,,v,)) = 0, we obtain 4, = 0. It is impossible to satisfy if H, is the quadratic

term of the development of a spherical or hyperbolic orbifold by Corollary 5.11.

O

Remark 5.14. The above proof applies indifferently to other Einstein orbifolds and to the other
deformations Lysgp. In particular, it shows that the integrability assumption in Theorem 5.6

is superfluous.
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‘We believe that the result should hold for spherical and hyperbolic orbifolds with more general
singularities than R*/Z,, but this requires dealing with trees of singularities. The main difficulty
is that it is not known whether the projection on the obstruction is a real-analytic map or not in
this degenerate situation.

Conjecture 5.15. Let (M,, g,,) be a singular spherical or hyperbolic compact orbifold. Then, it is not
limit of smooth Einstein metrics in the Gromov-Hausdorff sense.

5.4 | Higher dimensional Einstein orbifolds with isolated singularities

The work of [36, 37] extends almost verbatim to the degeneration of Einstein d-manifolds (d > 5)
d

satisfying the (non natural) assumption that the L2 -norm of its curvature is bounded. It shows
that, exactly like in dimension 4, the possible Gromov-Hausdorff limits are Einstein orbifolds
with isolated singularities and the singularity models are Ricci-flat ALE orbifolds. Indeed the
results of [36-38] only use the fact that the dimension is 4 to obtain a bound on the L?>-norm
of the Riemannian curvature from the noncollapsedness assumption.

An obstruction to the desingularization under essentially the same assumptions as [11] was
proven in [33] for higher dimensional desingularizations. Namely, one considers the desingular-
ization by the so-called Calabi metric denoted g.,; which is 2-dimensional, Ricci-flat ALE and
asymptotic to R?d /7.

Lemma 5.16. The kernel O(g.,) is I-dimensional and spanned by (Lxg.q)°, Where X is a
harmonic vector field asymptotic to r9,.

Proof. The proof that O(g.;) is 1-dimensional is found in [33]. We therefore simply have to prove
the existence of X and the fact that (£xg.,;)° is divergence-free.
Like in [14, 38], we consider the unique function u = r + O(r=2**?) satisfying Ay u = 2d.One

then defines X = énglu = rd, + O(r—24+1) which satisfies

5gm[ (L:chal)0 =0
by construction.
A last step is to ensure that (Lxg.,)° # 0 following [14]. If (£xg.q)° = 0, then since Ay u =

2d, X would generate 1-parameter group of homotheties. By considering the maximum of the
curvature tensor, this is impossible for the non flat metric g.;- O

This implies that the obstruction found in [33] is of the same type.

Corollary 5.17. Let (M,,g,) be an Einstein orbifold with a singularity R*¢/Z; at p,. The
obstruction to the desingularization of (M,, g,,) at p, by 9., found in [33], namely

d - (Ry,(po)o, @) +2(d = 2)Ry, (po) = 0

is equivalent to the obstruction against (Lxgp)°.
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APPENDIX A: DEVELOPMENT OF EINSTEIN 4-METRICS

Let (M,, g,) be an Einstein orbifold (smooth or singular) and assume that at a point p, it has a
development: g, = e + H, + O(r®). We start by showing that up to a gauge term, the term H, has
an explicit correspondence with the curvature.

A.1 | Alocal gauge for Einstein metrics

Proposition A.1. Let H, be a quadratic symmetric 2-tensor satisfying Ricgl)(Hz) =Ae for A€ R
and such that:

A
RV, = 3 Yor@wi+ ) Wik @ w?
i ij

where we identified QF ® QF ~ (Q1)* ® QF ~ End(Q/) and where the W; are the coefficients of
the (anti-)selfdual Weyl curvature.
Then, there exists a cubic vector field V5 such that

A r? _ _ _
Hy = ~5rigs: + = D Wiherowt + ) Wbiew | + Lye. (A1)
ij kl

where gs:s is the usual round metric on the unit 3-sphere.
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Proof. Let us first show that the infinitesimal curvature induced by
- A r
H2 = —§r4g§3 + Z(Z W+Ql OCU + Z Wklak OCO >
ij
is the same as that of H,. For the spherical metric in geodesic coordinates, gs» with A = 3, one
has the development:

1
gt = e— §V4g§3 + O3, (A2)

and therefore, by linearity of H, — Rf’(l)(Hz), we just have to deal with Ricci-flat deformations
and their Weyl curvature. We rely on the formalism of [12] for this computation.

. - . . .. o (1)
We first note that each term rzei”'ocu;—r is traceless and harmonic, hence is in the kernel of Ric, .
We have the following formula d(rzel._) = 6rdr A O], hence

# d(r’6;) = —6r’a;. (A3)

From this, we see that the term is in the Bianchi gauge (46) since W;J'. = WJ*.'i, and

2
—% Y Wi(=6w (a) = —r 3, Wi dr = 0 because rw/ (a) = —drand 3}, W =0
From (A.3), we moreover obtain:

—d * d(r*6;) = 6w}, (A4)
and therefore we have the following curvature induced by H; — Zl] W;; h ocu
@)
* Ric, (H)) =0,

+ + +
. R+’(1)(H+) £+ g}g ﬁf
A WE WE
Wi Wy Wiy

Let us now prove that the induced anti-selfdual curvature Re_’(l)(H ; ) vanishes. On the other
hand that seeing, e as a hyperkdhler metric with the opposite orientation, we have the expression
= Y (] (rd,),w; (rd,))w; , hence

r?6; ow? Z(oﬁ(ra ), @) (r8,) Yy 0w’

and we also find

d(Z (wf(rs,), cuf(ré,))cof) Z Jow! (rd,)) A co . (A.5)
]

l
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Now, recall that for any 1-form 8, = (8 A co;.r) = cu;r (B), where we identify cu;r and the associated
endomorphism by the metric. By (A.5), this gives

* d(Z {(w] (rd,), wl—(rar»w;) == w?ow ow; (rd,).
1 1

From the expression of R, ’(1)(H2Jr )(w;") and using that Wl; = W; coj+oco

Y, W =0,wefind: R,V ) = 0. The proofis exactly the same for the rest of the tensor coming
from W—.

Let us now show that a quadratic 2-tensor satisfying RS)(H ’) = 0 is necessarily of gauge type,
thatis: H ; = Ly, e for some cubic vector field V5. According to [11, (28)], there exists V53 such that
H] := H) — Ly, eis radial, that is H)/(3,,.) = 0, and in particular, there exist H;; with

l.+ = —ca;rocu;r as well as

H) =r* Z Hl-joc;roc;.r (A.6)
ij

and still RS)(HE’ ) = 0. We now need to prove that H) = 0.
Now according to [11, (38)], from (A.6), one has:

0=RVm)) =6 Y Hyjof ® @} + (Hyy + Hyy + Hzp)ldg: (A7)
i

We therefore directly find H;; = 0 when i # j, and taking the trace of (A.7), we get 0 = —6(H;; +
Hy, + H33) + 3(H;; + Hyy + Hzz) and consequently Hy; + H,, + Hs3 = 0. Finally, we see that
H’} = 0 and this ends the proof. O

A.2 | Vanishing of the obstructions to Einstein deformations

Proposition A.2. For any quadratic 2-tensor H, on (R*, e) with: Ric,(H,) = Ae for A € R, the
obstructions (26) and (32) vanish.

Remark A.3. The result is true from Propositions 2.8 and 3.3 and by [24]. We however prefer to
give another much simpler way to see that it holds.

Sketch of proof. We only sketch the proof as the result can essentially be found by bilinearity of the
obstructions (32) and (27) and thanks to the curvature of the known examples of Einstein metrics.
Let us use the bilinear nature of our obstructions and decompose any quadratic 2-tensor

4
as in Proposition A.l, that is as H, = Hg + Hy, + Hy_ + Hy, where Hg = %ggz, Hy, =

2 —
% > Wi“;@;’ocu;? and H, = Ly e for some vector field V satisfying |V|, ~ r>.

Note that any term combined with a gauge term H,, will make the obstructions vanish by invari-
ance, see Proposition 2.6 and Remark 3.6. There remain several situations which can be settled

thanks to the known examples of Einstein metrics:

* the obstructions for (Hy, Hg) vanish because they do on the sphere,
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* the obstructions of the form (Hg, Hy, ) vanish by bilinearity and because of the examples of
(anti-)selfdual Kihler-Einstein metrics such as the Fubini-Study metric on CP?,

* the obstructions of the form (Hy, , Hy ) vanish by bilinearity and because of the examples
of orbifold hyperkihler metrics such as the ones produced in [39], where it is clear that the
(anti-)selfdual curvature can take arbitrary values,

* lastly, the obstructions of the form (Hy, , Hy_) vanish by bilinerarity and because of the exam-
ples of non selfdual Einstein metrics, like the Euclidean Schwarzschild metric or the product
metric S? x S2.

(]

Remark A.4. One can also use the expression of the quadratic terms of the Ricci curvature directly
from (48). The computations are not straightforward but the different terms remarkably cancel
out as expected.

APPENDIX B: FUNCTION SPACES AND ANALYTICITY ON ALE SPACES

In this appendix, we define function spaces from [38] and use it to show the analytic dependence
of Einstein modulo obstructions deformations of Ricci-flat ALE metrics needed in the last sec-
tion of the article. The proofs in the compact situation can be found in [32] and [38, Chapter 1,
Section 3.1].

B.1 | Function spaces
For a tensor s, a point x, « > 0 and a Riemannian manifold (M, g). The Holder seminorm is
defined as

— g
[S]C“(g)(x) = sup s(x) — s(expx(»))

ET. M, ly|<inj ()} ly|* g

For ALE manifolds, we will consider a norm which is bounded for tensors decaying at infinity.
Denote r a smooth positive function equal to the parameter d,(0, .) in a neighborhood of infinity
where (N, g;,) has ALE coordinates.

Definition B.1 (Weighted Holder norms on an ALE manifold). Let 3 € R,k € N,0 < a < 1 and
(N, gp) be an ALE manifold. Then, for any tensor s on N, we define

k
||s||C16<,a 1= sgjp(l + r)5< a+ r)i|Vfgbs|gb +(1+ r)k+“[V]g‘bs]Ca(gb)>.
i=0

1

Lemma B.2 [11, Lemma 2.1],[38]. Let (N, g;) be an ALE orbifold. Then, for any § € (0,2) U (2,4)
there exists C > 0 such that for any h € c>* h L 0(gy), we have

1
Ihllcze < Cli@l, hllcs, . (B.D)
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B.2 | Real-analytic dependence of Einstein modulo obstructions metrics
Let us consider 8 € (0,2) to ensure that the kernel and cokernel of the linearization of &4, is
reduced to O(gy). The map g € Cé’“ = @y, (g) € CE‘ 2 is a real-analytic map between Banach
spaces because the “weights” (1 + r)f or (1 + r)**# in both the starting and target spaces are larger
than 1. This condition on the weight ensures that multilinear operations are continuous in this
topology, see the theory of [40] for the source of this requirement and [11, Proof of Lemma 8.2] for
a discussion of the weight larger than 1 in the case of weighted Holder norms.

‘We can therefore apply the implicit function theorem to the following analytic map: ¥ : C;"x X

0(g,) X 0(g;) = C3,, X Cé"" defined by
where 7g(g,) is the L?(g})-projection on O(g,) which is linear (hence real-analytic).
The map W is real-analytic between Banach spaces and it satisfies the assumptions of the

implicit function theorem for real-analytic maps between Banach spaces of [44] about g;,. Namely,
it satisfies:

(1) ¥(gp,0,0) =0, and
(2) the linearization (g, 0) ~ ¥(g, 0,0) is a homeomorphism by construction.

We conclude that for any v € O(g,) small enough, there exists a unique (g,, 0,) € (g, + Cé’“) X
0(g,) satisfying:

¥(g,,0,,0) =0

and that v - (g,,0,) is real-analytic.
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