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Abstract
We study the question of the integrability of Einstein
deformations and relate it to the question of the desin-
gularization of Einstein metrics. Our main application
is a negative answer to the long-standing question of
whether or not every Einstein 4-orbifold (which is an
Einstein metric space in a synthetic sense) is limit of
smooth Einstein 4-manifolds. Wemore precisely show that
spherical and hyperbolic 4-orbifolds with the simplest sin-
gularities cannot be Gromov-Hausdorff limits of smooth
Einstein 4-metrics without relying on previous integra-
bility assumptions. For this, we analyze the integrability
of deformations of Ricci-flat ALE metrics through vari-
ations of Schoen’s Pohozaev identity. Inspired by Taub’s
conserved quantity in General Relativity, we also introduce
conserved integral quantities based on the symmetries of
Einstein metrics. These quantities are obstructions to the
integrability of infinitesimal Einstein deformations “clos-
ing up” inside a hypersurface – even with change of
topology.We show thatmany previously identified obstruc-
tions to the desingularization of Einstein 4-metrics are
equivalent to these quantities on Ricci-flat cones. In partic-
ular, all of the obstructions to desingularizations bubbling
off Eguchi-Hanson metrics are recovered. This lets us fur-
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ther interpret the obstructions to the desingularization of
Einstein metrics as a defect of integrability.
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1 INTRODUCTION

An Einstein metric 𝒈 satisfies, for some real number Λ, the equation

Ric(𝒈) = Λ𝒈. (1)

In dimension 4, these metrics are considered optimal due to the homogeneity of their Ricci
curvature but also as critical points of the Einstein-Hilbert functional with fixed volume, 𝑔 ↦

∫
𝑀
R𝑔 𝑑𝑣𝑔, and more importantly as minimizers of the 𝐿2-norm of the Riemann curvature tensor,

𝑔 ↦ ∫
𝑀
|Rm𝑔 |2𝑑𝑣𝑔 often interpreted as an energy.

From dimension 4, even under natural assumptions of bounded diameter (compactness) and
lower bound on the volume (non-collapsing) Einstein metrics can develop singularities. This first
issue means that the set of unit-volume Einstein metrics is not complete for the usual Gromov-
Hausdorff distance. Moreover, it has been proven that some infinitesimal Einstein deformations
may not integrate into curves of actual Einstein metrics in dimension higher than 4. This second
issue shows that the moduli space of Einstein metrics itself might have singularities.
In this article, we exhibit links between the two seemingly unrelated above issues and apply

the resulting analogy to the question of the desingularization of Einstein 4-manifolds.

Completion of the moduli space of Einstein 4-manifolds

Onemajor goal for 4-dimensional geometry is to understand the structure of the compactification
of the moduli space of Einstein metrics on a differentiable manifold𝑀4 which is defined as

𝑬(𝑀4) ∶=
{
(𝑀4, 𝒈) | ∃Λ ∈ ℝ, Ric(𝒈) = Λ𝒈, Vol(𝑀4, 𝒈) = 1

}
∕(𝑀4), (2)

where (𝑀4) is the group of diffeomorphisms of 𝑀4 acting on metrics by pull-back. This space
is classically equipped with the Gromov-Hausdorff distance, 𝑑𝐺𝐻 . The metric spaces which are
limits of Einstein 4-manifolds with uniformly controlled diameter and volume, as well as the asso-
ciated singularity models, have been understood for a long time in the Gromov-Hausdorff sense
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 179

[1, 8]: they are respectively Einstein orbifolds and Ricci-flat ALE orbifolds. The metric completion
of (𝑬(𝑀4), 𝑑𝐺𝐻) is

𝑬(𝑀4) ∪ 𝜕𝑜𝑬(𝑀
4), (3)

where 𝜕𝑜𝑬(𝑀
4) is the set of 𝑑𝐺𝐻-limits with bounded diameter (i.e., at finite 𝑑𝐺𝐻-distance) of

Einstein metrics on𝑀4.
The elements of 𝜕𝑜𝑬(𝑀4) are Einstein orbifolds and a question which we answer here is the

converse. Quoting Anderson [4]: “It has long been an open question whether Einstein orbifold
metrics can be resolved to smooth Einstein metrics close to them in the Gromov-Hausdorff topol-
ogy.” We will prove that this resolution is not possible for some of the simplest Einstein orbifolds:
the spherical an hyperbolic ones. These orbifolds should therefore not really be considered as sin-
gular Einstein metrics. In order to prove this, we use the analogy between such a resolution and
an Einstein deformation of a flat cone, and we study the potential nonintegrability of Ricci-flat
ALE deformations.

Conserved quantities and integrability

Let 𝒈 be an Einsteinmanifold on an open subset of a manifold. We say that ℎ is an infinitesimal
Einstein deformation of 𝒈 on if the perturbation 𝑡 ↦ 𝒈 + 𝑡ℎ satisfies (1) at the infinitesimal level
as 𝑡 → 0. We say that ℎ is an integrable Einstein deformation if on any compact in , there exists
a smooth curve 𝑡 ∈ [0, 1] ↦ 𝒈𝑡 such that

∙ 𝒈0 = 𝒈,
∙ 𝜕𝑡𝒈𝑡 |𝑡=0 = ℎ, and
∙ for any 𝑡, 𝒈𝑡 satisfies (1) with constant Λ(𝑡) ∈ ℝ.

It is clear that an integrable Einstein deformation is an infinitesimal Einstein deformation, but
the converse is a very delicate question and is not always true. Counter-examples were found in
[31] in dimension strictly higher than 4.
The question of integrability of Einstein deformations is crucial in understanding the structure

of the moduli space of Einstein metrics, and a major question is whether or not such a moduli
space can be really singular, see [9, 12.10]. It is also crucial for the behavior of Ricci flow near
Einstein metrics: in the compact situation, having integrable deformations ensures optimal rates
of convergence or divergence, see for instance [26, 27]. In the noncompact situation, thismoreover
seems to be a necessary condition for the dynamical stability of Ricci-flat ALEmetrics, see [18, 19,
29].
In the Lorentzian context of General Relativity, it has been proven that the question of

integrability of Einstein deformations was completely ruled by the presence of symmetries.
Let us denoteE(2)

𝒈 (ℎ, ℎ) the quadratic terms terms in the development of theEinstein tensorℎ ↦

E(𝒈 + ℎ) ∶= Ric(𝒈 + ℎ) −
R(𝒈+ℎ)

2
(𝒈 + ℎ). For any Killing vector field 𝑋, a hypersurface Σ with a

unit normal 𝑛Σ and any infinitesimal Einstein deformation ℎ, we define Taub’s conserved quantity
(sometimes called second Taub’s number):

 Σ
𝑋 (ℎ, ℎ) ∶= ∫

Σ

(
E
(2)
𝒈 (ℎ, ℎ)

)
(𝑋, 𝑛Σ)𝑑𝑣Σ. (4)
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180 OZUCH

The link with the integrability of ℎ is that if ℎ is an integrable Ricci-flat deformation, then
 Σ
𝑋 (ℎ, ℎ) has to vanish. In this sense, Taub’s conserved quantities for all Killing vector fields 𝑋
are obstructions to the integrability of ℎ.
A remarkable and beautiful result is that in the Lorentzian context, the above obstructions are

the only obstructions to the integrability of ℎ, see [5, 23]. Namely, if they vanish, then, under mild
assumptions, one can construct a smooth curve of Ricci-flat metrics starting at 𝒈 whose first jet
is ℎ. The hyperbolic nature of the Einstein equations in the Lorentzian context is an important
aspect of the proof.

Einstein deformations of Ricci-flat cones

Let (𝐶(𝑆), 𝒈𝐶(𝑆)) = (ℝ+ × 𝑆, 𝑑𝑟2 + 𝑟2𝒈𝑆) be a 𝑑-dimensional Ricci-flat cone with link (𝑆, 𝒈𝑆) sat-
isfying Ric(𝒈𝑆) = (𝑑 − 2)𝒈𝑆 . Such cones model the asymptotics of singular or complete Einstein
metrics at given points or at infinity. We will mostly focus on the usual Euclidean cone (ℝ𝑑, 𝒆) =

(𝐶(𝕊𝑑−1), 𝒈𝐶(𝕊𝑑−1)) and its quotients.
We extend the obstructions given by Taub’s conserved quantities on the hypersurface Σ = 𝑆 to

general Einstein deformations (not necessarily Ricci-flat this time). The condition rewrites: for
any Killing vector field 𝑋 of (𝑆, 𝒈𝑆), if ℎ is integrable, then one has

 𝑆
𝑋 (ℎ, ℎ) = ∫

𝑆

(
̊Ric

(2)

𝒈𝐶(𝑆)
(ℎ, ℎ)

)
(𝑋, 𝜕𝑟)𝑑𝑣𝑆 = 0, (5)

where ̊Ric is the traceless part of Ric and ̊Ric
(2)
its second order variation.

We moreover introduce a similar quantity based on the conformal Killing vector field 𝑟𝜕𝑟 on
the cone 𝐶(𝑆).

Theorem 1.1 (Informal, Proposition 3.3). Let ℎ be an infinitesimal Einstein deformation of the
Ricci-flat cone (𝐶(𝑆), 𝒈𝐶(𝑆)). Assume that ℎ is either defined and bounded on the interior of 𝑆 or on
its exterior and decaying at infinity. Then, we have the following identity:

∫
𝑆

(
̊Ric

(2)

𝒈𝐶(𝑆)
(ℎ, ℎ)

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝑆 + other terms = 0. (6)

In all of our situations of interest, we are able to find convenient gauges for ℎ in which these other
terms vanish thanks to some variations of Schoen’s Pohozaev formula from [41].

Remark 1.2. In the above case, we do not need to assume that ℎ is integrable. This should rather
be thought of as an obstruction to the existence of an Einstein metric which closes up inside 𝑆,
that is the existence of an Einstein deformation on a compact domain whose only boundary is 𝑆.

As is well-known, a difficulty when considering deformations of cones is verifying that the
resulting curve ofmetric is complete, see [10] where this is discussed for hyperkähler deformations
of cones. The main issue is that such deformations typically require changes of topology. When
allowing a change of topology, just as in the desingularization of Einstein 4-manifolds, one needs
to consider deformations ofℝ4∕Γwith topology𝑁 = (ℝ4∕Γ)∖{0} ∪ Σ for some lower dimensional
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 181

manifold Σ. The prototypical example is that of the Eguchi-Hanson metric which can be seen as
an Einstein deformation ofℝ4∕ℤ2 on 𝑇∗𝕊2 = (ℝ4∕ℤ2)∖{0} ∪ 𝕊2. Here, we may see the Euclidean
metric 𝒆 on ℝ4∕ℤ2 as living on 𝑇∗𝕊2 while being degenerate on 𝕊2, that is the restriction of 𝒆 to
the submanifold 𝕊2 vanishes.
In Section 3.3, we discuss the situation of an Einstein metric coming out ofℝ4∕ℤ2 and closing-

up inside with topology 𝑇∗𝕊2. Assume that there exists a smooth curve of nondegenerate Einstein
metrics 𝑡 ∈ [0, 1] ↦ 𝒈𝑡 on (𝐵𝒆(0, 1)∖{0}) ∪ 𝕊2 ⊂ 𝑇∗𝕊2 with 𝒈0 = 𝒆 and 𝜕𝑡 |𝑡=0𝒈𝑡 = ℎ outside 𝕊2 in
well-chosen coordinates. Then we have the obstructions:

∫
𝕊3∕ℤ2

(
̊Ric

(2)

𝒆 (ℎ, ℎ)

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊3∕ℤ2

= 0, (7)

and the similar ones from Killing vector fields. In that situation, an Eguchi-Hanson metric
bubbles-out of the coneℝ4∕ℤ2 and the link with the question of desingularization becomes clear.
For some related results about hyperkähler metrics on manifolds with boundaries, see [13, 22].
A natural question would be whether one could find similar obstructions on typical cones of

dimension higher than 4 with codimension 4 singularities.

Question 1.3. Can we find similar obstructions for Einstein deformations of cones on singular
Einstein orbifolds likeℝ𝑘 × (ℝ4∕ℤ2) for 𝑘 ⩾ 1?

Vanishing of the obstructions in dimension 4

We then test the conditions (5) and (6) considering simple Einstein deformations coming from
two situations: the rescaling of Einstein metrics at a given point, and the rescaling of Ricci-flat
ALE metrics at infinity, and show that they vanish for arbitrary deformations.
The vanishing of the obstructions is not surprising in the case of Einsteinmetrics around a given

point: it has been shown that for any curvature satisfying the Einstein condition at the given point,
there exists a germ of Einstein metric with the corresponding curvature in [24]. It implies that the
obstructions (5) and (7) in this situation actually vanish in any dimension.
These results in Section 4 and the Appendix A can also be seen as consequences of [3]. Their

proofs have the merit to introduce natural systems of coordinates in which the computations of
the quadratic terms of Ricci curvature are convenient (and where the other terms of (7) are van-
ishing), we note that the ALE coordinates considered are based on [14]. These coordinates are
crucial for the next case of the desingularization of an Einstein orbifold, where the obstructions
do not vanish.

Obstruction to the desingularization of Einstein 4-manifolds

We finally study the degeneration of Einstein 4-manifolds, that is the 𝑑𝐺𝐻-convergence of met-
rics in 𝑬(𝑀) to the boundary 𝜕𝑜𝑬(𝑀), and its reverse operation: the desingularization. Given an
element in 𝜕𝑜𝑬(𝑀), the desingularization consists in finding a 𝑑𝐺𝐻-approximating sequence of
metrics in 𝑬(𝑀).
Any smooth Einstein 4-manifold close to a compact Einstein orbifold in a mere Gromov-

Hausdorff sense has been recently been produced by a gluing-perturbation procedure [36, 37].
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182 OZUCH

Here, this lets us understand the obstructions to the 𝑑𝐺𝐻-desingularization of an Einstein orbifold
through obstructions similar to (5) and (7).

Theorem 1.4 (Theorem 5.6). Assume that there exists a sequence of Einstein metrics (𝑀, 𝒈𝑛)𝑛 con-
verging in the Gromov-Hausdorff sense to an Einstein orbifold (𝑀𝑜, 𝒈𝑜)with a singularityℝ4∕Γ at 𝑝
and satisfying Ric(𝒈𝑜) = Λ𝒈𝑜 . Assume that there exist numbers 𝑡𝑛 > 0 such that at 𝑝, (𝑀, 𝒈𝑛∕𝑡𝑛)𝑛
converges to a Ricci-flat ALE manifold (𝑁, 𝒈𝑏) asymptotic to ℝ4∕Γ with integrable infinitesimal
deformations. Consider the following asymptotics inwell-chosen gauges (in a so-called volume gauge
for 𝒈𝑏):

𝒈𝑜 = 𝒆 + 𝐻2 + (𝑟3) and 𝒈𝑏 = 𝒆 + 𝐻4 + (𝑟−5),

for |𝐻2|𝒆 ∼ 𝑟2 and |𝐻4|𝒆 ∼ 𝑟−4.
Then, the following obstructions analogous to (5) and (7) hold: for any 𝑌 Killing vector field of

ℝ4∕Γ:

∫
𝕊3∕Γ

(
̊Ric

(2)

𝒆 (𝐻4,𝐻2)

)
(𝑌, 𝜕𝑟)𝑑𝑣𝕊3∕Γ = 0, (8)

and

∫
𝕊3∕Γ

(
̊Ric

(2)

𝒆 (𝐻4,𝐻2)

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊3∕Γ = 0. (9)

Comparing (5) to (8) and (7) to (9), we therefore interpret the obstructions to the desingulariza-
tion of an Einstein orbifold as a defect of integrability of the infinitesimal Einstein deformation
ℎ = 𝐻2 + 𝐻4 of ℝ4∕ℤ2. The proof of these different obstructions actually relies on the control of
the same integration by parts as Theorem 1.1 once one notices that in so-called volume gauge, the
vector field 𝑟𝜕𝑟 is 𝒈𝑏-harmonic at an order higher than expected.

Remark 1.5. Denote (𝒈𝑏) < 0 the reduced volume of (𝑁, 𝒈𝑏) introduced in [14], as well as 𝑊±
𝒈𝑜

the Weyl curvatures of 𝒈𝑜 at 𝑝 and 𝑊±
𝒈𝑏
the asymptotic Weyl curvatures (the part decaying like

𝑟−6) of 𝒈𝑏. Then, it is shown in the proof of Theorem 5.6 that (9) may rewrite as:

Λ(𝒈𝑏) + 𝑄
(
𝑊+

𝒈𝑏
,𝑊−

𝒈𝑜

)
+ 𝑄

(
𝑊−

𝒈𝑏
,𝑊+

𝒈𝑜

)
= 0 (10)

for some explicit quadratic form 𝑄. A similar rewriting of (8) yields 𝑄′(𝑊+
𝒈𝑏
,𝑊−

𝒈𝑜
) +

𝑄′(𝑊−
𝒈𝑏
,𝑊+

𝒈𝑜
) = 0 for some other explicit quadratic form 𝑄′.

Remark 1.6. For 𝒈𝑜 either spherical of hyperbolic, one has Λ ≠ 0 and 𝑊±
𝒈𝑜

= 0. The obstruction
(10) is therefore never satisfied. We also recover that the obstruction vanishes for the gluing of a
hyperkähler ALE to a hyperkähler orbifold since Λ = 0,𝑊+

𝒈𝑜
= 0 and𝑊+

𝒈𝑏
= 0.

We recover all of the obstructions to the desingularization by Eguchi-Hanson metrics iden-
tified in [11], see Corollary 5.10 and an extension to higher dimension yields the obstruction
of [33] as well, see Corollary 5.17. In these articles, the obstructions were purely analytical as
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 183

projections on the cokernel of the linearized operator. Theorem 1.4 gives a new maybe more
geometric interpretation of them.

Remark 1.7. There are higher order obstructions to the existence of Einstein deformations with
asymptotic developments 𝒈𝑡 = 𝒈 + 𝑡ℎ1 + 𝑡2ℎ2 +⋯ for small 𝑡 which are very similar to the
obstructions (9) and (8).

Question 1.8. Can these higher order obstructions recover the higher order obstructions of [39]? Can
they help compute even higher order obstructions?

Desingularization of spherical and hyperbolic orbifolds

We next get to the main application of this article. We answer negatively the classical ques-
tion of whether or not all Einstein 4-orbifolds can be 𝑑𝐺𝐻-desingularized by smooth Einstein
4-manifolds.

Theorem 1.9. A spherical or hyperbolic 4-orbifold with at least one singularity ℝ4∕ℤ2 cannot be
limit of smooth Einstein metrics in the Gromov-Hausdorff sense.

Example 1.10. Consider 𝕊4 ⊂ ℝ5 and the quotient by ℤ2 given by (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) ∼

(𝑥1, −𝑥2, −𝑥3, −𝑥4, −𝑥5). We will denote this space 𝕊4∕ℤ2 which is an Einstein orbifold with two
ℝ4∕ℤ2 singularities. It is often called the American football metric. It is a synthetic Einstein space
in the sense of [34] for instance. By the above Theorem 1.9, it cannot be a Gromov-Hausdorff limit
of smooth Einstein metrics.

Theorem 1.9 was conjectured in the author’s PhD thesis [38] where it was proven under a tech-
nical assumption of integrability for the Ricci-flat ALE spaces. The main remaining difficulty
here is thus to deal with the potential non integrability of these deformations. We more precisely
prove that Theorem 1.4 holds without the integrability assumption on the Ricci-flat ALE spaces.
Remark 1.6 then lets us conclude.

Remark 1.11. It is often conjectured that the only Ricci-flat ALE metrics are Kähler, hence inte-
grable. However, the motivation of this conjecture formulated in [8] for instance, seems to be the
analogous conjecture for the selfduality of Yang-Mills connections on 𝑆𝑈(2) bundles over𝕊4. This
analogous conjecture was disproved the same year in [42].

Let us present the main step of the proof of Theorem 1.9 which is of independent interest. Let
(𝑁, 𝒈𝑏) be a Ricci-flat ALE orbifold asymptotic toℝ4∕Γ for Γ ⊂ 𝑆𝑂(4). Its space of 𝐿2-infinitesimal
deformations which are traceless and in divergence-free gauge is denoted 𝑶(𝒈𝑏). There are par-
ticular elements in 𝑶(𝒈𝑏) coming from the symmetries of the asymptotic cone ℝ4∕Γ. According
to [38]:

∙ there exists𝑋 a harmonic vector field on (𝑁, 𝒈𝑏) asymptotic to the conformal Killing vector field
𝑟𝜕𝑟, and (𝑋𝒈𝑏)

◦ ∈ 𝑶(𝒈𝑏), where (ℎ)◦ denotes the traceless part of a symmetric 2-tensor ℎ,
∙ for any Killing vector field 𝑌 there exists 𝑌′ a harmonic vector field on (𝑁, 𝒈𝑏) asymptotic to 𝑌,
and 𝑌′𝒈𝑏 ∈ 𝑶(𝒈𝑏).
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184 OZUCH

The main step in the proof of Theorem 1.9 is to show that the obstructions to the integrability
of an infinitesimal deformation of 𝒈𝑏 are negligible in the direction of the above deforma-
tions (𝑋𝒈𝑏)

◦ and 𝑌′𝒈𝑏. More precisely, for 𝑣 ∈ 𝑶(𝒈𝑏), let us consider 𝑔𝑣 the unique solution
to:

Φ𝒈𝑏
(𝑔𝑣) = E(𝑔𝑣) + 𝛿∗𝒈𝑏𝛿𝒈𝑏𝑔𝑣 ∈ 𝑶(𝒈𝑏) (11)

satisfying 𝑔𝑣 − (𝒈𝑏 + 𝑣) ⟂𝐿2(𝒈𝑏)
𝑶(𝒈𝑏). We call Einstein modulo obstructions metrics such defor-

mations which have been constructed in [37] (see also [32] in the smooth compact case, where a
different vocabulary is used). We study the leading order of the obstruction along curves 𝑠 ↦ 𝑔𝑠𝑣
for 𝑠 ∈ (−1, 1) at 𝑠 = 0.

Proposition 1.12. Let (𝑁, 𝒈𝑏) be a Ricci-flat ALE metric which has nonintegrable Ricci-flat ALE
deformations. Then, for any 𝑣 ∈ 𝑶(𝒈𝑏), there exists 𝑙 ⩾ 2 such that 𝜕𝑘

𝑠𝑘|𝑠=0
Φ𝒈𝑏

(𝑔𝑠𝑣) = 0 for all 𝑘 ⩽

𝑙 − 1 and 𝜕𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) ≠ 0. The leading order obstruction 𝜕𝑙

𝑠𝑙|𝑠=0
Φ𝒈𝑏

(𝑔𝑠𝑣) is 𝐿2(𝒈𝑏)-orthogonal to
the vector subspace of 𝑶(𝒈𝑏) spanned by the above elements (𝑋𝒈𝑏)

◦ and 𝑌′𝒈𝑏.

The proof relies on careful integrations by parts similar to that of the proof of Theorem 1.1.

2 SYMMETRIES OF EINSTEINMETRICS AND INTEGRABILITY

In this section, we recall well-known properties of the two first derivatives of the Einstein oper-
ator and apply them to define the so-called Taub’s conserved quantity as introduced in [43]. It
is a central quantity in the study of the integrability of Einstein deformations in the Lorentzian
context.

Note 2.1. All along the article, we will denote by 𝐹
(𝑚)
𝑔 the 𝑚-linear terms of the development of

a functional ℎ ↦ 𝐹(𝑔 + ℎ) at 0, we more precisely have (at least formally) for any small enough
2-tensor ℎ:

𝐹(𝑔 + ℎ) =
∑
𝑚∈ℕ

1

𝑚!
𝐹
(𝑚)
𝑔 (ℎ, … , ℎ)

⏟⎴⏟⎴⏟
𝑚 times

.

2.1 Gauge and reparametrization properties

Let us start by recalling various consequences of the Bianchi identity: for any Riemannian metric
𝑔, one has

𝐵𝑔(Ric(𝑔)) = 0, (12)

where for any 2-tensor ℎ, we define the Bianchi operator 𝐵𝑔ℎ = 𝛿𝑔(ℎ −
1

2
tr(ℎ)𝑔) = 𝛿𝑔ℎ +

1

2
𝑑tr(ℎ),

where 𝛿𝑔 is the divergence with the convention that in coordinates, for a 1-form 𝜔, 𝛿𝑔𝜔 ∶=

−𝑔𝑖𝑗∇𝑗𝜔𝑖 and for a symmetric 2-tensor ℎ, (𝛿𝑔ℎ)𝑘 ∶= −𝑔𝑖𝑗∇𝑗ℎ𝑖𝑘. Denoting the Einstein tensor
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 185

E(𝑔) ∶= Ric(𝑔) −
R𝑔

2
𝑔, the Equation (12) rewrites

𝛿𝑔(E(𝑔)) = 0. (13)

Proposition 2.2 [23]. Let us assume that 𝒈 is a Ricci-flat metric on some open domain  of a
Riemannian manifold 𝑀, and let ℎ be a symmetric 2-tensor on  . We have the following gauge
properties:

∙ without assumption, one has

𝐵𝒈

(
Ric

(1)
𝒈 (ℎ)

)
= 0, and 𝛿𝒈

(
E
(1)
𝒈 (ℎ)

)
= 0, (14)

∙ if Ric(1)𝒈 (ℎ) = Λ𝑔 for Λ ∈ ℝ or equivalently E(1)
𝒈 (ℎ) + 𝜆𝑔 = 0 for 𝜆 ∈ ℝ, then one has

𝐵𝒈

(
Ric

(2)
𝒈 (ℎ, ℎ)

)
= 0, and 𝛿𝒈

(
E
(2)
𝒈 (ℎ, ℎ)

)
= 0. (15)

Let us continue with some identities when 𝑔 is perturbed in the direction of a Lie derivative.
These come from differentiation of the following identity: for any diffeomorphism 𝜙 ∶ 𝑀 → 𝑀

and any metric 𝑔 on M

Ric(𝜙∗𝑔) = 𝜙∗(Ric(𝑔)) and E(𝜙∗𝑔) = 𝜙∗(E(𝑔)). (16)

Proposition 2.3 [23]. Let us assume that 𝑔 is a Riemannian metric on some bounded open domain
 of a Riemannian manifold𝑀, let ℎ be a symmetric 2-tensor on and 𝑋 be a vector field on .
We have the following reparametrization properties for the derivatives of Ric: without assumption,
one has

Ric
(1)
𝑔 (𝑋𝑔) = 𝑋(Ric(𝑔)) and E

(1)
𝑔 (𝑋𝑔) = 𝑋(E(𝑔)), (17)

Ric
(2)
𝑔 (ℎ,𝑋𝑔) + Ric

(1)
𝑔 (𝑋ℎ) = 𝑋

(
Ric

(1)
𝑔 (ℎ)

)
, (18)

and

E
(2)
𝑔 (ℎ,𝑋𝑔) + E

(1)
𝑔 (𝑋ℎ) = 𝑋

(
E
(1)
𝑔 (ℎ)

)
(19)

2.2 Taub’s conserved quantities and obstructions

Let us start by stating the following classical integrations by parts which are at the core of our
proofs.
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186 OZUCH

Lemma 2.4. Let 𝑔 be a metric on an open set , 𝑇 be a divergence-free symmetric 2-tensor, and let
𝑋 be a vector field on . Then for any smooth compact subsetΩ ⊂  with boundary, we have:

∫
𝜕Ω

𝑇(𝑋, 𝑛)𝑑𝑣𝑔|𝜕Ω = ∫
Ω

⟨
𝑇, 𝛿∗𝑔𝑋

⟩
𝑔
𝑑𝑣𝑔 =

1

2 ∫
Ω

⟨𝑇,𝑋𝑔⟩𝑔𝑑𝑣𝑔, (20)

where 𝑛 is the outward unit normal to 𝜕Ω, and 𝛿∗𝑔𝑋 ∶=
1

2
𝑋𝑔 is the formal adjoint of the divergence

𝛿𝑔.
We also have the following identity close to Schoen’s Pohozaev equality [41]. Denote ℎ̊ or (ℎ)◦ the

traceless part of a symmetric 2-tensor ℎ. If 𝑇 is divergence-free, then we have:

∫
𝜕Ω

𝑇̊(𝑋, 𝑛)𝑑𝑣𝑔|𝜕Ω = ∫
Ω

(
1

2

⟨
𝑇̊,𝑋𝑔

⟩
𝑔
−

𝑋(tr𝑔 𝑇)

𝑑

)
𝑑𝑣𝑔

= ∫
Ω

(
1

2
⟨𝑇, (𝑋𝑔)

◦⟩𝑔 − 𝑋(tr𝑔 𝑇)

𝑑

)
𝑑𝑣𝑔, (21)

Remark 2.5. We will often abusively apply our operators to vector fields or 1-forms indifferently,
the identificationwill always be done thanks to themetric involved in the operator.More precisely,
a vector field 𝑋 is identified with the 1-form 𝑔(𝑋, .).

Proof. The key to this formula is the classical identity:

𝛿𝑔(𝑇(𝑋)) = 𝛿𝑔(𝑇)(𝑋) − ⟨𝑇, 𝛿∗𝑔𝑋⟩𝑔 = 𝛿𝑔(𝑇)(𝑋) −
1

2
⟨𝑇,𝑋𝑔⟩𝑔 (22)

which may be proven in coordinates using the symmetry of 𝑇. From the identity (22), using
the fact that 𝑇 is divergence-free and the divergence theorem, we find the result by the
divergence theorem.
The second equality (21) then follows by noting that

∫
Ω

tr𝑔 𝑇

𝑑
⟨𝑔,𝑋𝑔⟩𝑔𝑑𝑣𝑔 = −

1

𝑑 ∫
Ω

(tr𝑔 𝑇)𝛿𝑔(𝑋)𝑑𝑣𝑔 = −2∫
Ω

𝑋(tr𝑔 𝑇)𝑑𝑣𝑔 + ∫
𝜕Ω

(tr𝑔 𝑇)𝑔(𝑋, 𝑛).

□

Let 𝒈 be an Einstein metric on an open subset  . For a vector field 𝑋, a closed orientable
hypersurface Σ ⊂  and symmetric 2-tensors ℎ and 𝑘 on we define the following quantity:

Σ
𝑋(ℎ) ∶= ∫

Σ

(
E
(1)
𝒈 (ℎ)

)
(𝑋, 𝑛Σ)𝑑𝑣Σ, (23)

where 𝑛Σ is the normal to Σ. We also define the so-called Taub’s conserved quantity introduced in
[43]:

 Σ
𝑋 (ℎ, 𝑘) ∶= ∫

Σ

(
E
(2)
𝒈 (ℎ, 𝑘)

)
(𝑋, 𝑛Σ)𝑑𝑣Σ. (24)
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 187

Together with the gauge properties of Proposition 2.2, we use Lemma 2.4 to prove the following
properties for  and .
Proposition 2.6. Let 𝒈 be an Einstein metric on an open subset  , 𝑋 be a Killing vector field, ℎ a
2-tensor on , and Σ and Σ′ two closed hypersurfaces in bounding an open subsetΩ ⊂  . Then,
we have the following properties:

(1) without additional assumption,

Σ
𝑋(ℎ) = 0, (25)

(2) if E(1)
𝒈 (ℎ) = 0, then one has:  Σ′

𝑋 (ℎ, ℎ) =  Σ
𝑋 (ℎ, ℎ) and

(3) if E(1)
𝒈 (ℎ) = 0, and for any vector field 𝑌 on , we have  Σ

𝑋 (ℎ + 𝑌𝒈, ℎ + 𝑌𝒈) =  Σ
𝑋 (ℎ, ℎ).

Proof. Consider 𝜒 a cut-off function vanishing in the neighborhood of Σ′ and equal to 1 on a
neighborhood of Σ. We can therefore apply (20) on Ω bounded by Σ and Σ′ to the Killing vector
field 𝑋 and 𝑇 = E(1)(𝜒ℎ) which is divergence-free by (14) to find:

Σ
𝑋(ℎ) = ∫

𝜕Ω

(
E(1)(𝜒ℎ)

)
(𝑋, 𝑛)𝑑𝑣𝜕Ω = 0.

See [23] for the other equalities. □

2.3 Integrability of Einstein deformations

In the Lorentzian context, it is a remarkable result that the quantities  𝑋
Σ
(ℎ, ℎ) for the different

Killing vector fields 𝑋 of 𝒈 and ℎ satisfying E
(1)
𝒈 (ℎ) = 0 completely characterize the integrability

of the infinitesimal Einstein deformation ℎ.

Definition 2.7 (Integrable 2-tensor). Let 𝒈 be an Einstein metric on . A 2-tensor ℎ is integrable
if on any compact 𝐾 ⊂  , there exists a smooth curve of Einstein metrics 𝑡 ∈ [0, 1] ↦ 𝒈𝑡 on 𝐾

satisfying 𝜕𝑡𝒈𝑡 |𝑡=0 = ℎ.

The link between the integral quantity  𝑋
Σ
(ℎ, ℎ) and the integrability of ℎ is given by the

following proposition.

Proposition 2.8 [23, Proposition 1.7].Assume that 𝒈 is a Ricci-flat metric on an open subset , that
ℎ is an integrable 2-tensor which is the first jet of a curve of Ricci-flat metrics and𝑋 is a Killing vector
field. Then, for any compact hypersurface Σ ⊂  , one has

 Σ
𝑋 (ℎ, ℎ) = 0. (26)

Proof. Let 𝐾 be a compact subset of and 𝑡 ∈ [0, 1] ↦ 𝒈𝑡 a smooth curve of Einstein metrics on
𝐾 with 𝒈0 = 𝒈 satisfying 𝜕𝑡𝒈𝑡 |𝑡=0 = ℎwith E(𝒈𝑡) = 0 for all 𝑡 ∈ [0, 1]. We have 0 = 𝜕𝑡(E(𝒈𝑡))|𝑡=0 =
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188 OZUCH

E
(1)
𝒈 (ℎ), and if we denote 𝑘 ∶= 𝜕2

𝑡2
𝒈𝑡 |𝑡=0, then we have

0 = 𝜕2
𝑡2
(E(𝒈𝑡))|𝑡=0 = E

(1)
𝒈 (𝑘) + E

(2)
𝒈 (ℎ, ℎ).

In particular, we have:  Σ
𝑋 (ℎ, ℎ) = −Σ

𝑋(𝑘) = 0 by (25). □

We add an extension to Einstein but not necessarily Ricci-flat deformation of a Ricci-flatmetric.
This time we need to assume that the Killing vector field is tangent to our hypersurface. This will
always be satisfied in our applications.

Proposition 2.9. Assume that𝒈 is a Ricci-flatmetric on an open subset , that ℎ is a 2-tensor which
is the first jet of a smooth curve of Einstein metrics starting at 𝒈 and 𝑋 is a Killing vector field for 𝒈.
Then, for any compact hypersurface Σ ⊂  for which 𝑋 is tangent to Σ once restricted to Σ, one has

∫
Σ

(
̊Ric

(2)

𝒈 (ℎ, ℎ)

)
(𝑋, 𝑛Σ)𝑑𝑣Σ = 0. (27)

Proof. Let 𝐾 ⊂  be a compact and 𝑡 ∈ [0, 1] ↦ 𝒈𝑡 a smooth curve of Einstein metrics on 𝐾 with
𝒈0 = 𝒈 satisfying 𝜕𝑡𝒈𝑡 |𝑡=0 = ℎwithE(𝒈𝑡) + 𝜆(𝑡)𝒈𝑡 = 0 for a smooth function 𝑡 ∈ [0, 1] ↦ 𝜆(𝑡) ∈ ℝ

for all 𝑡 ∈ [0, 1]. We have

0 = 𝜕𝑡(E(𝒈𝑡) + 𝜆(𝑡)𝒈𝑡)|𝑡=0 = E
(1)
𝒈 (ℎ) + 𝜆′(0)𝒈,

and if we denote 𝑘 ∶= 𝜕2
𝑡2
𝒈𝑡 |𝑡=0, then we find

0 = 𝜕2
𝑡2
(E(𝒈𝑡) + 𝜆(𝑡)𝒈𝑡)|𝑡=0 = E

(1)
𝒈 (𝑘) + E

(2)
𝒈 (ℎ, ℎ) + 𝜆′′(0)𝒈 + 2𝜆′(0)ℎ.

In particular, since for any metric 𝑔, one has ̊Ric(𝑔) = E(𝑔) −
tr𝑔 E(𝑔)

𝑑
𝑔 in dimension 𝑑, we find:

̊Ric
(2)

𝒈 (ℎ, ℎ) = E
(2)
𝒈 (ℎ, ℎ) −

1

𝑑

(
(tr E)

(2)
𝒈 (ℎ, ℎ)

)
𝒈 −

2

𝑑
tr𝒈 E

(1)
𝒈 (ℎ)ℎ

= E
(2)
𝒈 (ℎ, ℎ) −

1

𝑑

(
(tr E)

(2)
𝒈 (ℎ, ℎ)

)
𝒈 + 2𝜆′(0)ℎ. (28)

We consequently have: ∫
Σ
( ̊Ric

(2)

𝒈 (ℎ, ℎ))(𝑋, 𝑛Σ)𝑑𝑣Σ = − ∫
Σ
(E

(1)
𝒈 (𝑘))(𝑋, 𝑛Σ)𝑑𝑣Σ = 0 because

𝒈(𝑋, 𝑛Σ) = 0 by assumption and thanks to (25). □

Question 2.10. Can we recover the obstructions to integrability of [31] (or new ones) thanks to the
above criterion?

3 CONSERVED QUANTITIES ON RICCI-FLAT CONES AND
INTEGRABILITY

We introduce another quantity similar to Taub’s adapted to perturbations of Ricci-flat cones
(𝐶(Σ), 𝑑𝑟2 + 𝑟2𝑔Σ). We will mostly work with the Euclidean case Σ = 𝕊𝑑−1.
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 189

3.1 A conserved quantity on ℝ𝒅 and other Ricci-flat cones

Let us now introduce a functional similar to Taub’s conserved quantity dealing this time with
conformal Killing vector fields with constant conformal factor. The main example for us will be
the vector field 𝑟𝜕𝑟 on the Euclidean space (ℝ𝑑, 𝒆), where 𝑟 ∶= 𝑑𝒆(0, .).

Proposition 3.1. Let ℎ be a symmetric 2-tensor on an open subset ⊂ ℝ𝑑 containing 𝕊𝑑−1. Then,
we have the following identity:

∫
𝕊𝑑−1

(
E
(1)
𝒆 (ℎ)

)
(𝑟𝜕𝑟, 𝜕𝑟) +

𝑑 − 2

2
(−𝛿𝒆ℎ − 𝑑 tr𝒆 ℎ)(𝜕𝑟)𝑑𝑣𝕊𝑑−1 = 0. (29)

Moreover, assume that we have R
(1)
𝒆 (ℎ) = 0 and that ℎ together with its first two derivatives are

bounded on 𝐵𝒆(1 + 𝜖). Then we have:

∫
𝕊𝑑−1

(
E
(1)
𝒆 (ℎ)

)
(𝑟𝜕𝑟, 𝜕𝑟) = 0. (30)

Remark 3.2. One recognizes (up to a constant) the integrand of the ADM mass in the term
∫
𝕊𝑑−1(−𝛿𝒆ℎ − 𝑑 tr𝒆 ℎ)(𝜕𝑟)𝑑𝑣𝕊𝑑−1 . This is not surprising from the proof and can be seen as a first
order version of the proof of the equality between the mass and the so-called Ricci version of the
mass given in [28].

Proof. As in the proof of the first point in Proposition 2.6, without changing the value of the
integral on 𝕊𝑑−1, we replace ℎ by another 2-tensor equal to ℎ in a neighborhood of 𝕊𝑑−1 and
vanishing in a neighborhood of the sphere (1 − 𝜖)𝕊𝑑−1 ⊂  for 𝜖 > 0 small enough. We denoteΩ
the open subset bounded by 𝕊𝑑−1 and (1 − 𝜖)𝕊𝑑−1.
From the identity (14) and Lemma 2.4, we can use the divergence theorem and the equality

𝛿∗𝒆 (𝑟𝜕𝑟) = 𝒆 to find the identity:

∫
𝕊𝑑−1

(
E
(1)
𝒆 (ℎ)

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊𝑑−1 = ∫

Ω

tr𝒆 E
(1)
𝒆 (ℎ)𝑑𝑣𝒆. (31)

Now, one recognizes that tr𝒆 E
(1)
𝒆 (ℎ) =

2−𝑑

2
R
(1)
𝒆 (ℎ) by definition of the scalar curvature R𝑔 =

tr𝑔 Ric𝑔 and since E𝒆 = 0. From the first variation of the scalar curvature at a Euclidean metric:

R
(1)
𝒆 (ℎ) = 𝛿𝒆(𝛿𝒆(ℎ) + 𝑑 tr𝒆(ℎ)),

using the divergence theorem, we find the stated formula.
Finally, if ℎ is defined on 𝐵𝒆(1 + 𝜖) for some 𝜖 > 0 and satisfies R(1)

𝒆 (ℎ) = 0 then, by (31), one
has ∫

𝕊𝑑−1(E
(1)
𝒆 (ℎ))(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊𝑑−1 = 0. □

One finds an obstruction similar to that of Proposition 2.8 for the second order variation of the
metric direction.
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190 OZUCH

Proposition 3.3. Let ℎ be a symmetric 2-tensor on an open subset  ⊂ ℝ𝑑 containing 𝕊𝑑−1 and
𝐵𝒆(1) satisfying E

(1)
𝒆 (ℎ) = 0. Then, we have the following identity:

∫
𝕊𝑑−1

(
E
(2)
𝒆 (ℎ, ℎ)

)
(𝑟𝜕𝑟, 𝜕𝑟) +

2 − 𝑑

2

[(
(𝛿 + 𝑑 tr)

(1)
𝒆 (ℎ)

)
(ℎ)

− (𝛿𝒆ℎ + 𝑑 tr𝒆 ℎ)◦

(
ℎ −

(
1

2
tr𝒆 ℎ

)
𝒆

)]
(𝜕𝑟)𝑑𝑣𝕊𝑑−1 = 0, (32)

where ℎ − (tr𝒆 ℎ∕2)𝒆 is seen as a (1,1) tensor while ℎ is considered as a symmetric 2-tensor elsewhere.
The same result is true if ℎ is defined on an open subset ⊂ ℝ𝑑 containing 𝕊𝑑−1 and ℝ𝑑∖𝐵𝒆(1)

and if it additionally satisfies the decay assumption: 𝑟𝑘|∇𝑘
𝒆ℎ|𝒆 = (𝑟

−
𝑑−2

2 ) for 𝑘 ∈ {0, 1, 2}.

Remark 3.4. For ℎ and 𝑘 symmetric 2-tensors, we have[(
𝛿
(1)
𝒆 (ℎ)

)
(𝑘)
]
(𝜕𝑟) = −𝛿𝒆(ℎ × 𝑘)(𝜕𝑟) −

1

2
𝑘(𝑑 tr𝒆 ℎ, 𝜕𝑟) +

1

2
⟨𝑘,∇𝜕𝑟

ℎ⟩𝒆
where ℎ × 𝑘 is the 2-tensor obtained from the composition of the endomorphisms associated to h
and 𝑘 and [(

𝑑 tr
(1)
𝒆 (ℎ)

)
(𝑘)
]
(𝜕𝑟) = −𝑑(⟨ℎ, 𝑘⟩𝒆)(𝜕𝑟),

see [17] for instance. We will try not to use these formulas whenever possible and focus on
situations for which this additional boundary term vanishes.

Remark 3.5. The two situations of Proposition 3.3 model Einsteinmanifolds or orbifolds at a given
point or Einstein metrics asymptotic to a quotient of ℝ𝑑 at infinity. The decay condition on ℎ

is not strong as any ℎ decaying at any rate at infinity and in divergence-free gauge (or Bianchi

gauge) which satisfies E
(1)
𝒆 (ℎ) = 0 automatically satisfies 𝑟𝑘|∇𝑘

𝒆ℎ|𝒆 = (𝑟−𝑑+1) = 𝑜(𝑟
−

𝑑−2

2 )

by [15].

Proof. Let us assume that E(1)
𝒆 (ℎ) = 0 on an open set containing 𝐵𝒆(1). Using the formula (20)

with 𝑇 = E
(2)
𝒆 (ℎ, ℎ) and Ω = 𝐵𝒆(1), we find the equality:

∫
𝕊𝑑−1

(
E
(2)
𝒆 (ℎ, ℎ)

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊𝑑−1 = ∫

Ω

tr𝒆 E
(2)
𝒆 (ℎ, ℎ)𝑑𝑣𝒆 (33)

where we used 𝛿∗𝒆 (𝑟𝜕𝑟) = 𝒆 and the fact that there is only one nonvanishing boundary term at
𝕊𝑑−1.
There remains to understand the term ∫

Ω
tr𝒆 E

(2)
𝒆 (ℎ, ℎ)𝑑𝑣𝒆 as a boundary term. Since E

(1)
𝒆 (ℎ) =

0, then, tr𝒆 E
(2)
𝒆 (ℎ, ℎ) =

2−𝑑

2
R
(2)
𝒆 (ℎ, ℎ) where we recall that the formula for R(1) is given by

R
(1)
𝑔 (𝑣) = 𝛿𝑔(𝛿𝑔𝑣 + 𝑑 tr𝑔 𝑣) − ⟨𝑣, Ric(𝑔)⟩ for a general metric 𝑔 and a deformation 𝑣. This implies

that one generally has:

∫
Ω

R
(1)
𝑔 (𝑣)𝑑𝑣𝑔 = −∫

𝜕Ω

(
𝛿𝑔𝑣 + 𝑑 tr𝑔 𝑣

)
(𝜕𝑟)𝑑𝑣𝜕Ω − ∫

Ω

⟨𝑣, Ric(𝑔)⟩𝑑𝑣𝑔. (34)
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 191

By differentiating (34) with Ω = 𝐵𝒆(1) at 𝑔 = 𝒆 in the direction ℎ and for 𝑣 satisfying E
(1)
𝒆 (𝑣) =

Ric
(1)
𝒆 (𝑣) = 0 we obtain:

∫
𝐵𝒆(1)

R
(2)
𝒆 (ℎ, 𝑣)𝑑𝑣𝒆

= −∫
𝕊𝑑−1

[(
(𝛿 + 𝑑 tr)

(1)
𝒆 (ℎ)

)
(𝑣) +

tr𝒆 ℎ

2
(𝛿𝒆𝑣 + 𝑑 tr𝒆 𝑣) − (𝛿𝒆𝑣 + 𝑑 tr𝒆 𝑣)◦ℎ

]
(𝜕𝑟)𝑑𝑣𝕊𝑑−1 ,(35)

where the last ℎ is seen as a (1,1) tensor. Using (35) with 𝑣 = ℎ yields the result.

The proof is exactly the same when Ω = ℝ𝑑∖𝐵𝒆(1) if we assume that 𝑟𝑘|∇𝑘
𝒆ℎ|𝒆 = 𝑜(𝑟

−
𝑑−2

2 ) for
𝑘 ⩽ 2 as this condition ensures that the boundary terms vanish at infinity. Indeed, the integrand
of boundary term is of the form ℎ ∗ ∇ℎ = 𝑜(𝑟−𝑑+1) for ∗ denoting various contraction of tensors,
once compared to the volume of the spheres of radius 𝑟 growing like (𝑟𝑑−1), we see that the
boundary term vanishes. As previously, one then simply has to deal with the boundary 𝕊𝑑−1, and
the proof is the argument is the same as for 𝐵𝒆(1). □

Remark 3.6. Just as in Proposition 2.6, the left-hand side of (32) has invariance properties on the
hypersurface or action by diffeomorphism. The invariance by hypersurface is again a consequence
of the divergence theorem, and the invariance by Lie derivative comes from Proposition 2.3.

Remark 3.7. The conformal Killing vector field 𝑟𝜕𝑟 is present for any Ricci-flat cone. One can
therefore define a similar integral quantity which has to vanish with the exact same proof.

3.2 Deformations with constant scalar curvature

In our situations of interest, as we will see later, we will consider Einstein deformations for which
the second variation of the scalar curvature is constant. In this case, the obstruction becomes
much simpler as we may drop the additional boundary term.

Proposition 3.8. Let ℎ and 𝑘 be infinitesimal Einstein deformations of 𝒆 on𝐵𝒆(1 + 𝜖) orℝ𝑑∖𝐵𝒆(1 −

𝜖) satisfying

(1) 𝛿𝒆ℎ = 𝛿𝒆𝑘 = 0

(2) E
(1)
𝒆 (ℎ) + 𝜆𝒆 = 0 and E

(1)
𝒆 (𝑘) + 𝜇𝒆 = 0,

(3) and R
(2)
𝒆 (ℎ, 𝑘) is constant.

Then, we have the obstruction:

∫
𝕊𝑑−1

(
̊Ric

(2)

𝒆 (ℎ, 𝑘)

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊𝑑−1 = 0 (36)

and for any Killing vector field 𝑌

∫
𝕊𝑑−1

(
̊Ric

(2)

𝒆 (ℎ, 𝑘)

)
(𝑌, 𝜕𝑟)𝑑𝑣𝕊𝑑−1 = 0 (37)
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192 OZUCH

where ̊Ric is the traceless part of the Ricci curvature.

Remark 3.9. The first assumption is a gauge-fixing condition which we will always be able to
assume up to acting by a diffeomorphism. Moreover it will always be satisfied if ℎ = 𝑘 is an
integrable Einstein deformation which is not Ricci-flat. Indeed, differentiating E(𝑔𝑡) + 𝜆(𝑡)𝑔𝑡 = 0

starting at 𝑔0 = 𝒆 with 𝜕𝑡|𝑡=0𝑔𝑡 = ℎ, and 𝜕2
𝑡2|𝑡=0

𝑔𝑡 = ℎ′ twice yields

E
(1)
𝒆 (ℎ′) + E

(2)
𝒆 (ℎ, ℎ) + 𝜆′′(0)𝒆 + 2𝜆′(0)ℎ = 0

where every term but maybe 2𝜆′(0)ℎ = 2𝜆ℎ is divergence-free by Lemma 2.2.

Remark 3.10. The second assumption just means that we consider infinitesimal Einstein defor-
mations. We will see how to ensure that the third assumption is satisfied in dimension 4 in the
next sections.

Proof. For this situation, we use Schoen’s Pohozaev identity (21) applied to the 2-tensor E(2)
𝒆 (ℎ, 𝑘)

which is divergence-free because ℎ and 𝑘 are infinitesimal Einstein deformations, see Lemma 2.2:

∫
𝜕Ω

(
E
(2)
𝒆 (ℎ, 𝑘)

)◦
(𝑟𝜕𝑟, 𝑛)𝑑𝑣𝒆|𝜕Ω = −

1

2𝑑 ∫
Ω

𝑟𝜕𝑟
tr𝒆

(
E
(2)
𝒆 (ℎ, 𝑘)

)
𝑑𝑣𝒆. (38)

Let us now express both (E
(2)
𝒆 (ℎ, 𝑘))◦ and tr𝒆(E

(2)
𝒆 (ℎ, 𝑘)) in terms of ̊Ric

(2)
(ℎ, 𝑘) and R

(2)
𝒆 (ℎ, 𝑘). For

this, we first note that since tr𝑔 E𝑔 =
2−𝑑

2
R𝑔 for any 𝑔, we have:

tr𝒆

(
E
(2)
𝒆 (ℎ, 𝑘)

)
=

2 − 𝑑

2
R
(2)
𝒆 (ℎ, 𝑘) − 𝜆 tr𝒆 𝑘 − 𝜇 tr𝒆 ℎ, (39)

and then, by (28), we find: (
E
(2)
𝒆 (ℎ, 𝑘)

)◦
= ̊Ric

(2)
(ℎ, 𝑘) − 𝜆𝑘̊ − 𝜇ℎ̊. (40)

Finally, since by assumption 𝛿𝒆ℎ = 𝛿𝒆𝑘 = 0, we can again use (21):

∫
𝜕Ω

ℎ̊(𝑟𝜕𝑟, 𝑛)𝑑𝑣𝒆|𝜕Ω = −
1

2𝑑 ∫
Ω

𝑟𝜕𝑟
(tr𝒆 ℎ)𝑑𝑣𝒆 and ∫

𝜕Ω

𝑘̊(𝑟𝜕𝑟, 𝑛)𝑑𝑣𝒆|𝜕Ω
= −

1

2𝑑 ∫
Ω

𝑟𝜕𝑟
(tr𝒆 𝑘)𝑑𝑣𝒆. (41)

Putting (38), (39), (40) and (41), we find

∫
𝜕Ω

̊Ric
(2)
(ℎ, 𝑘)(𝑟𝜕𝑟, 𝑛)𝑑𝑣𝒆|𝜕Ω = −

2 − 𝑑

4𝑑 ∫
Ω

𝑟𝜕𝑟

(
R
(2)
𝒆 (ℎ, 𝑘)

)
𝑑𝑣𝒆,

and since R
(2)
𝒆 (ℎ, 𝑘) is assumed to be constant, we find the stated equality. The easier case of a

Killing vector field 𝑌 is treated similarly. □
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 193

3.3 Einstein metrics closing-up inside a hypersurface

Let us consider a topology 𝑁 = (ℝ4∕Γ)∖{0} ∪ Σ for Σ a lower dimensional submanifold “closing
up”𝑁 where {0} should be. This should be the topology of a general Ricci-flat ALE, see [2]. We see
that (ℝ4∕Γ, 𝒆) is isometric to a degenerate metric on 𝑁 which we still denote 𝒆 for which 𝒆|Σ = 0

(meaning the induced metric on Σ, not the restriction of 𝒆 at Σ), the vector field 𝑟𝜕𝑟 also extends
to 𝑁 and vanishes on Σ.
The typical situation is that of aminimal resolution ofℂ2∕Γ for Γ ⊂ 𝑆𝑈(2), for instance:𝑇∗𝕊2 =

(ℝ4∕ℤ2)∖{0} ∪ 𝕊2 is the topology of the Eguchi-Hanson metric:

𝒆𝒉 ∶=

√
𝑟4

1 + 𝑟4

(
𝑑𝑟2 + 𝑟2𝛼2

1

)
+
√
1 + 𝑟4

(
𝛼2
2
+ 𝛼2

3

)
. (42)

with metric 𝛼2
2
+ 𝛼2

3
on 𝕊2. Let us restrict ourselves to this situation and keep our discussion at a

somewhat informal level as the last section of the article will prove these obstructions rigorously.
Assume that there exists a smooth curve of Einstein metrics 𝑡 ∈ [0, 1] ↦ 𝒈𝑡 on𝑁 = 𝑇∗𝕊2 with 𝒈𝑡

nondegenerate for 𝑡 > 0 and with 𝒈0 = 𝒆. This implies by [1, 8, 35] that up to a subsequence, some
rescaling of 𝒈𝑡 converges to the Eguchi-Hanson metric (42) where, schematically, one has in the
coordinates of (42):

𝒆𝒉 = 𝒆 + 𝐻4 +⋯

with |𝐻4|𝒆 ∼ 𝑟−4, while another rescaling of 𝒈𝑡 converges to an Einstein orbifold metric with
E(𝒈𝑜) + 𝜆𝒈𝑜 = 0 for 𝜆 ∈ ℝ and

𝒈𝑜 = 𝒆 + 𝐻2 +⋯

with |𝐻2|𝒆 ∼ 𝑟2, and with singularity ℝ4∕ℤ2. Up to some gauge conditions, we are therefore in
the situation of Theorem 5.6 but wemay use the integration by parts of Proposition 3.8 to interpret
this as an obstruction to the existence of an Einstein metric “closing-up” inside the hypersurface
𝕊3∕ℤ2.
By [39], up to rescaling and reparametrizing the curve 𝑡 ↦ 𝒈𝑡 in well-chosen coordinates, we

have a development𝒈𝑡 = 𝒆 + 𝐻2 + 𝑡2𝐻4 + 𝑡2𝐻4
2
+⋯with𝐻4

2
= (𝑟−2)with remaining termneg-

ligible in a region where
√
𝑡 ≪ 𝑟 ≪ 1, hence in particular for 𝑟 close to 𝑡1∕4 for small 𝑡. We again

consider the integration by parts

∫
{𝑟=𝑡1∕4}

(
E(1) (𝐻4

2

)
+ E

(2)
𝒆

(
𝐻2,𝐻

4
)
+ 𝜆𝐻4

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝑡1∕4𝕊3∕ℤ2

= ∫
{𝑟<𝑡1∕4}

tr𝒆

(
E(1) (𝐻4

2

)
+ E

(2)
𝒆

(
𝐻2,𝐻

4
)
+ 𝜆𝐻4

)
𝑑𝑣𝒆. (43)

It was proven in [39] that in the coordinates of (42), one actually has𝐻4
2
= 0. This yields:

∫
{𝑟=𝑡1∕4}

(
̊Ric

(2)

𝒆

(
𝐻2,𝐻

4
))

(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝑡1∕4𝕊3∕ℤ2
=

2 − 𝑑

2 ∫
{𝑟<𝑡1∕4}

R
(2)
𝒆

(
𝐻2,𝐻

4
)
𝑑𝑣𝒆.

 10970312, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22129 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [09/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



194 OZUCH

Now, by Corollary 4.7 proven below, one has R(2)
𝒆 (𝐻2,𝐻

4) = 0 because𝐻4 is anti-selfdual, and we
recover the obstruction (36) in this situation. The other obstructions with Killing vector fields are
recovered in the same way.

Remark 3.11. The coordinates of (42) correspond to the volume gauge of Definition 4.12 below and
one of their properties is that the vector field 𝑟𝜕𝑟 is harmonic, hence 𝑟𝜕𝑟

𝒆𝒉 is an infinitesimal
Einstein deformation – up to a trace term.

4 THE 4-DIMENSIONAL SITUATION

Let us now specialize our discussion to the dimension 𝑑 = 4 where most of our applications are.
In this section, we will test the obstruction to the integrability of infinitesimal Einstein deforma-
tions on the development of Einstein 4-manifolds at the infinity of a Ricci-flat ALE metric. See
Appendix A for the case of a neighborhood of a given point of an Einstein manifold or orbifold.
We will see that the obstructions always vanish and do not add any restriction.
In order to show this, we will prove the existence of good gauges in which the quadratic term of

ℎ ↦ Ric(𝒆 + ℎ) are easily computable. This is an important step towards the next Section 5 where
obstructions to the desingularization of some Einstein metrics are found.

4.1 Notations

In dimension 4, the space of 2-forms decomposes into selfdual and anti-selfdual 2-forms which
are elements of the eigenspaces of Hodge star operator ∗ (which satisfies ∗2= Id) respectively
associated to the eigenvalues 1 and −1. We denote Ω+ and Ω− the associated eigenspaces.
Denote (𝑥1, 𝑥2, 𝑥3, 𝑥4) coordinates in an orthonormal basis of ℝ4. We define the 2-forms

𝜔±
1
∶= 𝑑𝑥1 ∧ 𝑑𝑥2 ± 𝑑𝑥3 ∧ 𝑑𝑥4

and similarly𝜔±
2
and𝜔±

3
by cyclic permutations of the indices {2, 3, 4}. The𝜔+

𝑖
form an orthogonal

basis of the space of selfdual 2-forms, Ω+, and the 𝜔−
𝑖
form an orthogonal basis of the space of

anti-selfdual 2-forms, Ω−.
Thanks to them, we define the following basis of the Killing vector fields preserving 0 on ℝ4:

𝑌±
𝑖
∶= 𝜔±

𝑖
(𝑟𝜕𝑟). (44)

The other Killing vector fields ofℝ4 are given by constant vector fields representing translations.
Note that those will not be Γ-invariant for any Γ ⊂ 𝑆𝑂(4) with Γ ≠ {Id}.
In each orientation, the frame (𝑟𝜕𝑟, 𝑌±

1
, 𝑌±

2
, 𝑌±

3
) is dual to the coframe (𝑑𝑟∕𝑟, 𝛼±

1
, 𝛼±

2
, 𝛼±

3
)where

we define 𝛼±
𝑖
∶= 𝜔±

𝑖
(𝑑𝑟∕𝑟). We also define the following 2-forms which also form bases of the

spaces of selfdual or anti-selfdual 2-forms:

𝜃∓
1
∶= 𝑟𝑑𝑟 ∧ 𝛼±

1
∓ 𝑟2𝛼±

2
∧ 𝛼±

3
,

and similarly 𝜃∓
2
and 𝜃∓

3
by cyclic permutations.
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 195

Remark 4.1. The notation 𝜃+
𝑖
meant something else in [39].

For the above 2-forms, we have the following formula: for 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝜃∓
𝑖
(𝑥) =

3∑
𝑗=1

𝑥𝑇(𝜔±
𝑖
◦𝜔∓

𝑗
)𝑥|𝑥|2 𝜔∓

𝑗
= −

⟨𝑌±
𝑖
, 𝑌∓

𝑗
⟩

𝑟2
𝜔∓
𝑗
, (45)

where 𝜔±
𝑖
◦𝜔∓

𝑗
is the symmetric traceless matrix given by the (commuting) product of the anti-

symmetric matrices associated to 𝜔±
𝑖
and 𝜔∓

𝑗
, and where 𝑥𝑇 is the transpose of 𝑥. We also have

the following equalities: 𝜔±
1
= 𝑟𝑑𝑟 ∧ 𝛼±

1
± 𝑟2𝛼±

2
∧ 𝛼±

3
and similar equalities for 𝜔±

𝑖
for 𝑖 ∈ {2, 3} by

cyclic permutations.

4.1.1 Orbifolds and ALE spaces

We will be interested in two types of geometries: Einstein orbifolds and Ricci-flat ALE metrics.
They respectively correspond to the singular limits and the singularitymodels of the degeneration
of Einstein 4-manifolds.

Definition 4.2 (Orbifold [with isolated singularities]). We will say that a metric space (𝑀𝑜, 𝑔𝑜)

is an orbifold of dimension 𝑑 ⩾ 2 if there exists 𝜖0 > 0 and a finite number of points (𝑝𝑘)𝑘 of𝑀𝑜

called singular such that we have the following properties:

(1) the space (𝑀𝑜∖{𝑝𝑘}𝑘, 𝑔𝑜) is a manifold of dimension 𝑑,
(2) for each singular point𝑝𝑘 of𝑀𝑜, there exists a neighborhood of𝑝𝑘,𝑈𝑘 ⊂ 𝑀𝑜, a finite subgroup

acting freely on𝕊𝑑−1,Γ𝑘 ⊂ 𝑆𝑂(𝑛), and a diffeomorphismΦ𝑘 ∶ 𝐵𝒆(0, 𝜖0) ⊂ ℝ𝑑∕Γ𝑘 → 𝑈𝑘 ⊂ 𝑀𝑜

for which, the pull-back of Φ∗
𝑘
𝑔𝑜 on the covering ℝ𝑑 is smooth.

Remark 4.3. Note that smooth Einstein metrics are Einstein orbifolds. Einstein orbifold metrics
are smooth up to taking a finite local cover at the singular point as seen in [8].

Definition 4.4 (ALE orbifold [with isolated singularities]). An ALE orbifold of dimension 𝑑 ⩾ 4,
(𝑁, 𝑔𝑏) is a metric space for which there exists 𝜖0 > 0, singular points (𝑝𝑘)𝑘 and a compact 𝐾 ⊂ 𝑁

for which we have:

(1) (𝑁, 𝑔𝑏) is an orbifold of dimension 𝑑,
(2) there exists a diffeomorphism Ψ∞ ∶ (ℝ𝑑∕Γ∞)∖𝐵𝒆(0, 𝜖

−1
0

) → 𝑁∖𝐾 such that we have
𝑟𝑙|∇𝑙(Ψ∗

∞𝑔𝑏 − 𝒆)|𝒆 ⩽ 𝐶𝑙𝑟
−𝑑.

Note 4.5. We will often identify ℝ𝑑∕Γ and its cover ℝ𝑑 when writing ALE of orbifold spaces
in coordinates.
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196 OZUCH

4.1.2 Curvature of Einstein 4-manifolds

Thanks to the direct sum of selfdual and anti-selfdual 2-forms, the symmetric endomorphism on
2-forms, 𝑹 given by the Riemannian curvature decomposes into blocks,

𝑹 =∶

[
𝑹+ ̊Ric
̊Ric 𝑹−

]
,

where the ̊Ric is the traceless part of the Ricci curvature, and where 𝑹± are the selfdual and anti-
selfdual parts of the curvature.
Let us do a quick recap on the curvature of Einstein perturbations of theEuclidean space (ℝ4, 𝒆).

The starting point is the identification of the set of traceless symmetric 2-tensors Sym2
0𝑇𝑀 with

Ω+ ⊗Ω− thanks to the map:

𝜔+ ⊗ 𝜔− ∈ Ω+ ⊗Ω− ↦ 𝜔+◦𝜔− = 𝜔−◦𝜔+ ∈ Sym2
0𝑇𝑀

where𝜔+◦𝜔− is the 2-tensor associated to the composition of the anti-symmetric endomorphisms
of 𝑇𝑀 associated to 𝜔+ and 𝜔− by the metric. Therefore, any 2-tensor ℎ on (ℝ4, 𝒆) has unique
decompositions:

ℎ = 𝜆𝒆 +
∑
𝑖

𝜙−
𝑖
◦𝜔+

𝑖
= 𝜆𝒆 +

∑
𝑗

𝜙+
𝑗
◦𝜔−

𝑗

for a scalar function 𝜆, and the 𝜙±
𝑖
with values in Ω±. According to [12], the Bianchi gauge

condition for ℎ rewrites:

𝑑𝜆 +

3∑
𝑖=1

∗
(
𝜔+
𝑖
∧ (∗ 𝑑𝜙−

𝑖
)
)
= 𝑑𝜆 +

3∑
𝑗=1

∗
(
𝜔−
𝑗
∧ (∗ 𝑑𝜙+

𝑗
)
)
= 0. (46)

Extending the computations of [12], we prove the following result.

Proposition 4.6. Let ℎ be a symmetric 2-tensor onℝ4 decomposed as:

ℎ = 𝜆𝒆 +
∑
𝑖

𝜙−
𝑖
◦𝜔+

𝑖
= 𝜆𝒆 +

∑
𝑗

𝜙+
𝑗
◦𝜔−

𝑗

and satisfying the condition (46).
Then, defining 𝑎

+,(1)
𝒆 (ℎ) =

∑
𝑖
∗ 𝑑𝜙−

𝑖
⊗ 𝜔+

𝑖
and 𝑎

−,(1)
𝒆 (ℎ) =

∑
𝑗
∗ 𝑑𝜙+

𝑗
⊗ 𝜔−

𝑗
the infinitesimal

variations of connections, see [12, 21], we have:

∙ 𝑹
+,(1)
𝒆 (ℎ) = −𝑑+𝑎

+,(1)
𝒆 (ℎ) = −

∑
𝑖
𝑑+ ∗ 𝑑𝜙−

𝑖
⊗ 𝜔+

𝑖
where 𝑑+ is the exterior differential composed

with the projection onΩ+,
∙ 𝑹

−,(1)
𝒆 (ℎ) = −𝑑−𝑎

−,(1)
𝒆 (ℎ) = −

∑
𝑖
𝑑− ∗ 𝑑𝜙+

𝑖
⊗ 𝜔−

𝑖
where 𝑑− is the exterior differential composed

with the projection onΩ−, and
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 197

∙ ̊Ric
(1)

𝒆 (ℎ) = 𝑑−𝑎
+,(1)
𝒆 (ℎ) = 𝑑+𝑎

−,(1)
𝒆 (ℎ) and in particular, ℎ is an infinitesimal Einstein deforma-

tion if and only if for all 𝑖 ∈ {1, 2, 3}, 𝑑− ∗ 𝑑𝜙−
𝑖
= 0 or equivalently if and only if for all 𝑗 ∈ {1, 2, 3},

𝑑+ ∗ 𝑑𝜙+
𝑗
= 0.

Moreover, if ℎ is an infinitesimal Einstein deformation, then we have:

∙ 𝑹
+,(2)
𝒆 (ℎ, ℎ) = −

1

2
[𝑎

+,(1)
𝒆 (ℎ), 𝑎

+,(1)
𝒆 (ℎ)]+,

∙ 𝑹
−,(2)
𝒆 (ℎ, ℎ) = −

1

2
[𝑎

−,(1)
𝒆 (ℎ), 𝑎

−,(1)
𝒆 (ℎ)]− and

∙ defining linearmaps 𝜙− ∶ Ω+ → Ω− and 𝜙+ ∶ Ω− → Ω+ by for any 𝑖 and 𝑗 in {1, 2, 3}, 𝜙−(𝜔+
𝑖
) =

𝜙−
𝑖
and 𝜙+(𝜔−

𝑗
) = 𝜙+

𝑗
, we have

̊Ric
(2)

𝒆 (ℎ, ℎ) =
1

2

[
𝑎
+,(1)
𝒆 (ℎ), 𝑎

+,(1)
𝒆 (ℎ)

]
−
+
∑
𝑖

𝜙−
(
𝑹
+,(1)
𝒆 (ℎ)(𝜔+

𝑖
)
)
⊗𝜔+

𝑖

=
1

2

[
𝑎
−,(1)
𝒆 (ℎ), 𝑎

−,(1)
𝒆 (ℎ)

]
+
+
∑
𝑗

𝜙+
(
𝑹
−,(1)
𝒆 (ℎ)(𝜔−

𝑗
)
)
⊗𝜔−

𝑗
.

Proof. The only points that are not proven in [12] are the values of 𝑹±,(2)
𝒆 (ℎ, ℎ). For this, we recall

that𝑹+ is the opposite of the selfdual part of the curvature 𝑑𝑎+ +
1

2
[𝑎+, 𝑎+] of the bundleΩ+. The

origin of the term −
1

2
[𝑎

+,(1)
𝒆 (ℎ), 𝑎

+,(1)
𝒆 (ℎ)]+ is therefore clear. There is another source of variation

of 𝑹+ which are the variations of Ω+ and Ω− at 𝒆 in the direction ℎ = 𝜆𝒆 +
∑

𝑖
𝜙−
𝑖
◦𝜔+

𝑖
= 𝜆𝒆 +∑

𝑗
𝜙+
𝑗
◦𝜔−

𝑗
. According to [12], by blocks given by the direct sum Ω+

𝒆 ⊕ Ω−
𝒆 , the variation of the

bases (𝜔±
𝑖
)𝑖 as bases of Ω± rewrites:

𝜔
±,(1)
𝑖,𝒆

(ℎ) =

[
𝜆 −𝜙−

−𝜙+ 𝜆

]
𝜔+
𝑖
, (47)

and therefore, the conjugation by Id +
[

𝜆 −𝜙−

−𝜙+ 𝜆

]
+ (|ℎ|2𝒆) of the first order curvature variation[

𝑹
+,(1)
𝒆 (ℎ) 0

0 𝑹
−,(1)
𝒆 (ℎ)

]
leaves at second order term:

[
0 𝜙−(𝑹

+,(1)
𝒆 (ℎ))

𝜙+(𝑹
−,(1)
𝒆 (ℎ)) 0

]
, which yields the result. □

4.1.3 An application to the variation of scalar curvature

Let ℎ = 𝜆𝒆 +
∑

𝑖
𝜙−
𝑖
◦𝜔+

𝑖
and 𝑘 = 𝜇𝒆 +

∑
𝑖
𝜓−
𝑖
◦𝜔+

𝑖
for 𝜆 and 𝜇 scalar functions and 𝜙−

𝑖
, 𝜓−

𝑖
∈ Ω−.

Corollary 4.7. Assume that ℎ and 𝑘 are infinitesimal Einstein deformations satisfying (46) and
assume moreover that ℎ is anti-selfdual in the sense that 𝑎+,(1)

𝒆 (ℎ) = 0.
Then, we have: 𝑹+,(2)

𝒆 (ℎ, 𝑘) = 0, and moreover:

̊Ric
(2)

𝒆 (ℎ, 𝑘) =
∑
𝑖

𝜙−
𝑖

(
𝑹
+,(1)
𝒆 (𝑘)(𝜔+

𝑖
)
)
⊗𝜔+

𝑖
. (48)
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198 OZUCH

4.2 Asymptotic curvature of 4-dimensional Ricci-flat ALEmetrics

Let us now study the infinity of Ricci-flat ALE metrics of dimension 4.

4.2.1 Development of Ricci-flat ALE metrics

Let us start by understanding the asymptotic terms of Ricci-flat ALE metrics.
Let (𝑁, 𝒈𝑏) be a 4-dimensional Ricci-flat ALE orbifold asymptotic to (ℝ4∕Γ, 𝒆) for Γ ⊂ 𝑆𝑂(4),

and let (Σ𝑠)𝑠>𝑠0 for some 𝑠0 > 0 be a CMC (Constant Mean Curvature) foliation of (𝑁, 𝒈𝑏) in a
neighborhood of infinity as in [14, 16] where the mean curvature of Σ𝑠 is equal to

3

𝑠
(like a sphere

of radius 𝑠 in (ℝ4∕Γ, 𝒆)).

Definition 4.8 (CMC gauge). Then, by [14] there exist a compact 𝐾 ⊂ 𝑁, 𝑠0 > 0 and a
diffeomorphism: Φ ∶ (ℝ4∖𝐵𝒆(0, 𝑠0))∕Γ ↦ 𝑁∖𝐾 with:

∙ for all 𝑠 > 𝑠0, Φ(𝑆𝒆(𝑠)) = Σ𝑠,
∙ Φ∗𝒈𝑏 − 𝒆 = 𝐻4 + (𝑟−5) at infinity for |𝐻4|𝒆 ∼ 𝑟−4,
∙ 𝛿𝒆𝐻

4 = 0, tr𝒆 𝐻4 = 0,𝐻4(𝜕𝑟, 𝜕𝑟) = 0 and
∙ one can even arrange Φ so that𝐻4 is more precisely of the form:

𝐻4 =

∑
𝑖𝑗
ℎ+
𝑖𝑗
𝜃−
𝑖
◦𝜔+

𝑗
+
∑

𝑘𝑙
ℎ−
𝑘𝑙
𝜃+
𝑘
◦𝜔−

𝑙

𝑟4

with
∑

𝑖
ℎ+
𝑖𝑖
= 0 and

∑
𝑘
ℎ−
𝑘𝑘

= 0. Up to choosing a different basis of (anti)-selfdual

We call these coordinates a CMC gauge.

Remark 4.9. Instead of that last point, in [14], a slightly different decomposition is used in so-called
reduced Kronheimer’s terms which are projections of the terms 𝜃∓

𝑖
◦𝜔±

𝑗
on their part without 𝑑𝑟.

Our description is actually equivalent to theirs up to gauge terms of the form 𝑉 for 𝑉 =
1

𝑟4
𝐿(𝑥)

for a matrix 𝐿 as used in [14, (2.14)] to simplify (using a pull-back by a diffeomorphism) a usual

Kronheimer’s term
𝜃∓
𝑖
◦𝜔±

𝑗

𝑟4
like ours into their reduced Kronheimer’s term. This difference makes

the computations of curvatures somewhat simpler here and is more natural for the following
volume gauge.

Denote Ω𝑠 the interior of the hypersurface Σ𝑠. The limit:

(𝑁, 𝒈𝑏) ∶= lim
𝑠→∞

Vol𝒈𝑏 Ω𝑠 − Vol𝒆(𝐵𝒆(𝑠)∕Γ) ⩽ 0 (49)

exists and is called the renormalized volume of (𝑁, 𝒈𝑏) in [14]. It is vanishing if and only if (𝑁, 𝒈𝑏)

is flat.

Remark 4.10. An interesting remark of Hans-Joachim Hein is the following. There are examples
of Kronheimer’s instantons of [30] described in Remark 5.8 below for which one has 𝐻4 = 0 in
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 199

CMC gauge. It is a way to see that the notion of reduced volume is not an asymptotic quantity. It
essentially does not tell anything about the asymptotics of Ricci-flat ALE metric at infinity which
at this point could vanish at any order. It is a global and subtle quantity. This reduced volume is
the core quantity of the obstruction (54) proven later.

We will also need a particular gauge very close to one introduced by Biquard and Hein
in some unpublished notes which led to [14]. This is a so-called volume gauge in which
the volume form of the ALE metric is asymptotically equal to that of the asymptotic flat
cone.

Example 4.11. The volume form of the Eguchi-Hanson metric in its usual form (42) is equal to
that of the asymptotic cone ℝ4∕ℤ2 with its flat metric 𝑑𝑟2 + 𝑟2(𝛼2

1
+ 𝛼2

2
+ 𝛼2

3
).

Precomposing the above local diffeomorphism Φ of Definition 4.8 with the flow of 𝑟−3𝜕𝑟 for an
adapted amount of time 𝑡 = 𝐶(Γ)(𝑁, 𝒈𝑏) for 𝐶(Γ) > 0, one may choose another diffeomorphism
Ψ between neighborhoods of infinities with the following properties.

Definition 4.12 (Volume gauge). There exist a compact 𝐾′ ⊂ 𝑁, 𝑟′
0
> 0 and a diffeomorphism:

Ψ ∶ (ℝ4∕Γ)∖𝐵𝒆(0, 𝑟
′
0
) ↦ 𝑁∖𝐾′ with:

∙ Ψ∗𝒈𝑏 − 𝒆 = 𝐻4 + (𝑟−5) at infinity for |𝐻4|𝒆 ∼ 𝑟−4,
∙ Denoting Ω′

𝑠 the interior of Ψ∗(𝑠𝕊3∕Γ),

lim
𝑠→∞

Vol𝒈𝑏 Ω
′
𝑠 − Vol𝒆(𝐵𝒆(𝑠)∕Γ) = 0,

∙ 𝛿𝒆𝐻
4 = 0, tr𝒆 𝐻4 = 0, 𝑟4𝐻4(𝜕𝑟, 𝜕𝑟) = 𝑐(Γ)(𝑁, 𝒈𝑏) for 𝑐(Γ) > 0.

∙ more precisely,

𝐻4 =

∑
𝑖𝑗
ℎ+
𝑖𝑗
𝜃−
𝑖
◦𝜔+

𝑗
+
∑

𝑘𝑙
ℎ−
𝑘𝑙
𝜃+
𝑘
◦𝜔−

𝑙

𝑟4

with
∑

𝑖
ℎ+
𝑖𝑖
+
∑

𝑘
ℎ−
𝑘𝑘

= 𝑐(Γ)(𝑁, 𝒈𝑏) ⩽ 0 as in the previous point.

This last point comes from the last point of Definition 4.8 togetherwith the fact thatwe followed
the flow of 𝑟−3𝜕𝑟 for a time proportional to (𝑁, 𝒈𝑏) since−2𝑟−3𝜕𝑟

𝒆 =
1

2
Hess𝒆(𝑟

−2) =
3𝑑𝑟2−𝑟2𝑔𝕊3

𝑟4
.

Indeed, one only sees the variation of the 𝑟−4 terms at this level of precision and they come from
a direct integration of the change of the Euclidean metric induced by following the vector field
𝑟−3𝜕𝑟.
As in Proposition A.1 in the Appendix for development of Einstein metrics at a given point,

we see the term 𝐻4 in this volume gauge as only determined by the curvature at infinity and the
reduced volume.

Proposition4.13. Let (𝑁, 𝒈𝑏) be anon flat Ricci-flat ALEorbifold asymptotic toℝ4∕Γ forΓ ⊂ 𝑆𝑂(4)

with reduced volume (𝑁, 𝒈𝑏) < 0.
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200 OZUCH

Then, in volume gauge as in Definition 4.12, up to changing the bases (𝜔+
𝑖
)𝑖 and (𝜔−

𝑘
)𝑘 to

diagonalize the curvature, one has the asymptotic 𝒈𝑏 = 𝒆 + 𝐻4 + (𝑟−5) with

𝐻4 = −

∑
𝑖
ℎ+
𝑖𝑖
𝜃−
𝑖
◦𝜔+

𝑖
+
∑

𝑘
ℎ−
𝑘𝑘
𝜃+
𝑘
◦𝜔𝑙𝑘−

𝑟4
(50)

and
∑

𝑖
ℎ+
𝑖𝑖
+
∑

𝑘
ℎ−
𝑘𝑘

= −𝑐(Γ)(𝑁, 𝒈𝑏) > 0 and the induced asymptotic curvature in the basis (𝜃±
𝑖
)𝑖

satisfies

𝑹
∓,(1)
𝒆 (𝐻4) =

8

𝑟6

⎡⎢⎢⎢⎣
2ℎ±

11
− ℎ±

22
− ℎ±

33
0 0

0 −ℎ±
11

+ 2ℎ±
22

− ℎ±
33

0

0 0 −ℎ±
11

− ℎ±
22

+ 2ℎ±
33

⎤⎥⎥⎥⎦ .
Remark 4.14. It is possible that the curvature of (𝑁, 𝒈𝑏) is decaying faster than 𝑟−6. In this case,
the𝐻4 term is purely a gauge term of the form:

1

𝑟4

∑
𝑖

𝜃−
𝑖
◦𝜔+

𝑖
=

1

𝑟4

∑
𝑘

𝜃+
𝑘
◦𝜔−

𝑘
=

3𝑑𝑟2 − 𝑟2𝑔𝕊3

𝑟4
=

1

2
Hess𝒆(𝑟

−2).

See Remark 5.8 below for an example.

Proof. We first check that 𝐻4
+ ∶= −

∑
𝑖
ℎ+
𝑖𝑖

𝜃−
𝑖
◦𝜔+

𝑖

𝑟4
only induces anti-selfdual curvature at the first

order. The linearization at 𝒆 of the induced connection on Ω+ is actually zero since 𝑑(
𝜃+
𝑖

𝑟4
) = 0

and therefore the induced selfdual curvature vanishes as well. This also shows that the term is in
Bianchi gauge.
In order to compute the induced curvature, one uses Kronheimer’s examples. In par-

ticular the curvature of the Eguchi-Hanson metric which with 𝐻4 = −
𝜃−
1
◦𝜔+

1

2𝑟4
induces the

curvature

𝑹
∓,(1)
𝒆 (𝐻4) =

4

𝑟6

⎡⎢⎢⎣
2 0 0

0 −1 0

0 0 −1

⎤⎥⎥⎦ .
by [20]. By linearity, one attains any𝐻4 as above, and the result follows. □

In the CMC gauge of Definition 4.8, we find a simpler expression.

Corollary 4.15. Let (𝑁, 𝒈𝑏) be a Ricci-flat ALE orbifold asymptotic to ℝ4∕Γ for Γ ⊂ 𝑆𝑂(4). Then,
in CMC gauge as in Definition 4.8, up to changing the bases (𝜔+

𝑖
)𝑖 and (𝜔−

𝑘
)𝑘 to diagonalize the

curvature, one has 𝒈𝑏 = 𝒆 + 𝐻4 + (𝑟−5) with

𝐻4 = −

∑
𝑖
ℎ+
𝑖𝑖
𝜃−
𝑖
◦𝜔+

𝑖
+
∑

𝑘
ℎ−
𝑘𝑘
𝜃+
𝑘
◦𝜔𝑙𝑘−

𝑟4
(51)
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 201

with
∑

𝑖
ℎ±
𝑖𝑖
= 0 and the induced asymptotic curvature satisfies in the basis (𝜃±

𝑖
)𝑖

𝑹
∓,(1)
𝒆 (𝐻4) =

24

𝑟6

⎡⎢⎢⎣
ℎ±
11

0 0

0 ℎ±
22

0

0 0 ℎ±
33

⎤⎥⎥⎦ .

4.2.2 (Anti-)Selfdual Einstein deformations

Proposition 4.16. If 𝐻4, the 𝑟−4-asymptotic term of a Ricci-flat ALE metric only
induces an anti-selfdual (or selfdual) curvature, then it satisfies the obstructions (26) and
(32).

Proof. By [14] or Proposition 4.13, up to a gauge term, we can assume that 𝐻4 is a linear
combination of

𝜃−
𝑖
◦𝜔+

𝑖

𝑟4
terms.

Thanks to Kronheimer’s examples, we can reach any term of the form−
∑

𝑖
ℎ+
𝑖𝑖

𝜃−
𝑖
𝜔+
𝑖

𝑟4
with ℎ+

𝑖𝑖
⩾

0. This condition ℎ+
𝑖𝑖
⩾ 0 can always be arranged up to adding a gauge term as in Remark 4.14.

Since gauge terms do not matter in satisfying the obstructions (26) and (32) by Proposition 2.6, we
obtain the result. □

4.2.3 General deformations

Proposition 4.17. Let (𝑁, 𝒈𝑏) be a Ricci-flat ALE metric whose asymptotic term in CMC gauge is:
𝐻4

+ + 𝐻4
− where

𝐻4
+ ∶= −

∑
𝑖

ℎ+
𝑖𝑖

𝜃−
𝑖
◦𝜔+

𝑖

𝑟4
and 𝐻4

− ∶= −
∑
𝑘

ℎ−
𝑘𝑘

𝜃+
𝑘
◦𝜔−

𝑘

𝑟4
.

Then, the obstructions (27) and (32) are satisfied.

Proof. Let us consider 𝐻4
+ ∶= −

∑
𝑖
ℎ+
𝑖𝑖

𝜃−
𝑖
◦𝜔+

𝑖

𝑟4
and 𝐻4

− ∶= −
∑

𝑘
ℎ−
𝑘𝑘

𝜃+
𝑘
◦𝜔−

𝑘

𝑟4
satisfying

∑
𝑖
ℎ+
𝑖𝑖
=∑

𝑘
ℎ−
𝑘𝑘

= 0. Recall that these terms only induce a nonvanishing connection respectively in the
anti-selfdual and selfdual orientation and the formula

𝜃±
𝑖
=
∑
𝑘

⟨𝜔∓
𝑖
(𝜕𝑟), 𝜔

±
𝑙
(𝜕𝑟)⟩𝜔±

𝑙
.

From the formula (48) and Corollary 4.15, we therefore find:

̊Ric
(2)

𝒆 (𝐻4
+,𝐻

4
−) = 24

∑
𝑖

∑
𝑘

ℎ+
𝑖𝑖
ℎ−
𝑘𝑘

⟨𝜔−
𝑘
(𝜕𝑟), 𝜔

+
𝑖
(𝜕𝑟)⟩𝜃−𝑖 ◦𝜃+𝑘

𝑟10
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202 OZUCH

Now, using the fact that 𝜃∓
𝑖
(𝜕𝑟) = 𝜔∓

𝑖
(𝜕𝑟), we see that the obstruction of Proposition 3.8 is

proportional to

∑
𝑖,𝑘

ℎ+
𝑖𝑖
ℎ−
𝑘𝑘 ∫

𝕊3

⟨𝜔−
𝑘
(𝜕𝑟), 𝜔

+
𝑖
(𝜕𝑟)⟩2𝒆𝑑𝑣𝕊3 .

Since both
∑

𝑖
ℎ+
𝑖𝑖
= 0 and

∑
𝑘
ℎ−
𝑘𝑘

= 0, the obstruction (37) is satisfied. The proof is similar for the
other obstructions (36). □

5 OBSTRUCTION TO THE DESINGULARIZATION OF EINSTEIN
METRICS

We finally recover the obstructions of [11] to the desingularization of Einstein metrics and many
of the additional obstructions of [37] (but not the higher order obstructions of [39]). We con-
clude this section by proving that some Einstein orbifolds cannot be desingularized by smooth
Einstein manifolds.

5.1 Infinitesimal Einstein deformations of Ricci-flat ALEmetrics

On (ℝ4∕Γ, 𝒆), the vector field 𝑟𝜕𝑟 is a conformal Killing vector field. It ismoreover half of the gradi-
ent of the function 𝑢 ∶= 𝑟2 which is a solution to −∇∗

𝒆∇𝒆𝑢 = 8, and we have 1

2
∇𝒆𝑢

𝒆 = Hess𝒆𝑢 =

2𝒆. On a Ricci-flat ALE orbifold we can extend this situation on the whole space as follows.

Proposition 5.1 [14, 37]. Let (𝑁, 𝒈𝑏) be a Ricci-flat ALE orbifold asymptotic to ℝ4∕Γ. Then, there
exists a unique vector field𝑋 on (𝑁, 𝒈𝑏) such thatΦ∗𝑋 = 𝑟𝜕𝑟 + 𝑜(𝑟), and∇∗

𝒈𝑏
∇𝒈𝑏

𝑋 = 0. We actually
have 𝑋 =

1

2
∇𝒈𝑏

𝑢, where 𝑢 is the unique solution of −∇∗
𝒈𝑏
∇𝒈𝑏

𝑢 = 8, such that 𝑢 = 𝑟2 + 𝑜(1). More-
over, (𝑋𝒈𝑏)

◦ = 𝑋𝒈𝑏 − 2𝒈𝑏, the traceless part of𝑋𝒈𝑏 is an infinitesimal Ricci-flat deformation of
𝒈𝑏 which is trace-free and divergence-free.

Proposition 5.2 [14, Section 4]. Let (𝑁, 𝒈𝑏) be a Ricci-flat ALE orbifold asymptotic to ℝ4∕Γ. Then
for any Killing vector field𝑌 onℝ4∕Γ, there exists a unique harmonic vector field𝑌′ on (𝑁, 𝒈𝑏) such
that 𝑌′ = 𝑌 + 𝑜(𝑟). Moreover the infinitesimal deformation 𝑌′𝒈𝑏 is divergence-free and trace-free.
It vanishes if and only if 𝑌′ is a Killing vector field of 𝒈𝑏.

Remark 5.3. All of the infinitesimal Einstein deformations of the Eguchi-Hanson metric (42) are
of the above types.

5.2 Obstructions to the desingularization

Let us now show that we recover the obstructions of [11, 37] and find another expression for them.
This new expression will further highlight the link between these obstructions and the lack of
integrability of Einstein desingularizations of [38, Chapter 4].
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 203

Lemma 5.4. Let (𝑁, 𝒈𝑏) be a Ricci-flat ALEmetric in volume gauge as inDefinition 4.12, and choose
a basis of (𝜔+

𝑖
)𝑖 and (𝜔−

𝑘
)𝑘 to so that𝐻4 at infinity is of the form (50). And consider its development at

infinity in this gauge: 𝒈𝑏 = 𝒆 + 𝐻4 + 𝑜(𝑟−4). Then, for (𝑋𝒈𝑏)
◦ ∈ 𝑶(𝒈𝑏) defined in Proposition 5.1,

we have:

(𝑋𝒈𝑏)
◦ = −4𝐻4 + 𝑜(𝑟−4).

Proof. Let us denote Ω′
𝑠 the open interior of the hypersurface Ψ(𝑠𝕊3∕Γ) for the volume gauge

diffeomorphismΨ ∶ (ℝ4∕Γ)∖𝐵𝒆(𝑠0) ↦ 𝑁 ofDefinition 4.12 for 𝑠0 large enough.All along the proof
we will abusively omit the diffeomorphism Ψ when pulling back tensors on the infinity of 𝑁 to
ℝ4∕Γ. By Definition 4.12, we have as 𝑠 → ∞

Vol𝒆(𝐵𝒆(𝑠)∕Γ) = Vol𝒈𝑏 Ω
′
𝑠 + 𝑜(1). (52)

The first step in order to find the asymptotic of (𝑋𝒈𝑏)
◦ is to recall that 𝑋 =

1

2
∇𝒈𝑏

𝑢 where 𝑢

satisfies Δ𝒈𝑏
𝑢 = 8 with 𝑢 = 𝑟2 +

𝑏

𝑟2
+ 𝑜(𝑟−2) for some 𝑏 ∈ ℝ similarly to [14]. We determine 𝑏 by

integrating by parts Δ𝒈𝑏
𝑢 = 8 as in [14]:

8Vol𝒆(𝐵𝒆(𝑠)∕Γ) = 8Vol𝒈𝑏 Ω
′
𝑠 + 𝑜(1)

= ∫
Ω′
𝑠

Δ𝒈𝑏
𝑢𝑑𝑣𝒈𝑏 + 𝑜(1)

= 8Vol𝒆(𝐵𝒆(𝑠)∕Γ) − 2𝑏|𝕊3∕Γ| − 2𝑟−4|𝕊3∕Γ|𝐻4(𝜕𝑟, 𝜕𝑟) + 𝑜(1).

which gives us 𝑏 = −𝑟4𝐻4(𝜕𝑟, 𝜕𝑟) again mimicking computations of [14] in our slightly different
coordinates.

Remark 5.5. This is consistent with 𝒆𝒉 for which 𝑋 = 𝑟𝜕𝑟 =
1

2
∇𝒆𝒉

√
1 + 𝑟4 where 𝑢 =

√
1 + 𝑟4

satisfies Δ𝒆𝒉𝑢 = 8, and
√
1 + 𝑟4 = 𝑟2 +

1

2𝑟2
+ 𝑜(𝑟−2). We moreover have Hess𝒆𝒉

√
1 + 𝑟4 = 2𝒆𝒉 +

(𝑋𝒆𝒉)
◦ according to [11, Proof of Proposition 2.1].

As in the case of 𝒆𝒉 in (42), where ∇𝒆𝒉

√
1 + 𝑟4 = 2𝑟𝜕𝑟, we find ∇𝒈𝑏

𝑢 = 2𝑟𝜕𝑟 + 𝑜(𝑟−3). Indeed,
one first has for any vector field 𝑣,

0 = 𝑑𝑢(𝑣) − 𝑑𝑢(𝑣) = 𝒈𝑏(∇𝒈𝑏
𝑢, 𝑣) − 𝒆(∇𝒆𝑢, 𝑣)

= 2𝐻4(𝑟𝜕𝑟, 𝑣) + 𝒆(∇
(1)
𝒆 (𝐻4)(𝑢), 𝑣) + 𝑜(𝑟−3)

where ∇(1)
𝒆 (𝐻4) is the first variation of the gradient operator ℎ ↦ ∇𝒆+ℎ at ℎ = 0 in the direction

𝐻4. This directly gives:

∇𝒈𝑏
𝑢 = ∇𝒆𝑢 + ∇

(1)
𝒆 (𝐻4)(𝑢) + 𝑜(𝑟−3)

= 2𝑟𝜕𝑟 − 2
𝑏

𝑟3
𝜕𝑟 + 𝑜(𝑟−3) − 2𝐻4(𝑟𝜕𝑟) + 𝑜(𝑟−3)

= 2𝑟𝜕𝑟 + 𝑜(𝑟−3)
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204 OZUCH

where we used ∇
(1)
𝒆 (𝐻4)(𝑢) = −2𝐻4(𝑟𝜕𝑟) = −2𝑟𝐻4(𝜕𝑟, 𝜕𝑟)𝜕𝑟 + 𝑜(𝑟−3) because 𝐻4 has a diagonal

formby assumption, and 𝑏 = −𝑟4𝐻4(𝜕𝑟, 𝜕𝑟) (the identification between (1,1) tensor and symmetric
2-tensor is made with respect to 𝒆 or 𝒈𝑏 indifferently at this level of precision).
We can then develop:

1

2
∇𝒈𝑏

𝑢𝒈𝑏 = (𝑟𝜕𝑟+𝑜(𝑟−3))

(
𝒆 + 𝐻4 + 𝑜(𝑟−4)

)
= 2𝒆 − 2𝐻4 + 𝑜(𝑟−4) = 2𝒈𝑏 − 4𝐻4 + 𝑜(𝑟−4).

Finally, considering the traceless part with respect to 𝒈𝑏, we find the stated result:

(𝑋𝒈𝑏)
◦ = −4𝐻4 + 𝑜(𝑟−4).

□

This lets us state the following obstruction result.

Theorem5.6. Let (𝑀𝑜, 𝒈𝑜) be anEinstein orbifoldwith a singularityℝ4∕Γand let (𝑁, 𝒈𝑏) be aRicci-
flat ALE manifold with integrable Ricci-flat ALE deformations asymptotic to ℝ4∕Γ. Let us denote
𝐻4 the asymptotic term of 𝒈𝑏 in volume gauge as in Definition 4.12 and in a diagonal form (50):
𝒈𝑏 = 𝒆 + 𝐻4 + (𝑟−5), and let 𝐻2 be the quadratic terms of 𝒈𝑜 = 𝒆 + 𝐻2 + (𝑟3) in a coordinate
system in which 𝐵𝒆(𝐻2) = 0.
Assume that there exists a sequence of Einstein metrics, (𝑀, 𝒈𝑛)𝑛, 𝑑𝐺𝐻-converging to (𝑀𝑜, 𝒈𝑜) and

such that there exists a sequence (𝑡𝑛)𝑛∈ℕ with 𝑡𝑛 > 0 satisfying: (𝑀,
𝒈𝑛

𝑡𝑛
) ���→

𝐺𝐻
(𝑁, 𝒈𝑏). Then, we have

the following obstructions:

∙ for any Killing vector field 𝑌±
𝑖
,

∫
𝕊3

(
̊Ric

(2)

𝒆 (𝐻2,𝐻
4)

)
(𝑌±

𝑖
, 𝜕𝑟)𝑑𝑣𝕊3 = 0, (53)

∙ for the conformal Killing vector field 𝑟𝜕𝑟, we have

∫
𝕊3

(
̊Ric

(2)

𝒆 (𝐻2,𝐻
4)

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊3 = 0. (54)

Remark 5.7. As we will see in Corollary 5.11 proven later, the obstruction (54) is never trivial if
(𝑁, 𝒈𝑏) is not flat. That is, if (𝑁, 𝒈𝑏) is not flat, then there are some 𝐻2 as above for which (54) is
not satisfied.

Remark 5.8. By [7], the asymptotic terms of Kronheimer’s instantons in volume gauge are

generally of the form: 𝐻4 = −
∑

𝑖,𝑗
⟨𝜁𝑖, 𝜁𝑗⟩ 𝜃−𝑖 ◦𝜔+

𝑗

2𝑟4
for 𝜁1, 𝜁2, 𝜁3 ∈ ℝ𝑘 for some 𝑘 arbitrarily large

depending on the group at infinity (𝑘 = 1 for the Eguchi-Hanson metric). For 𝑘 ⩾ 3 we can
construct 𝜁1, 𝜁2, 𝜁3 ∈ ℝ𝑘 with ⟨𝜁𝑖, 𝜁𝑗⟩ = 𝛿𝑖𝑗 and we check that the obstructions (53) vanishes for
any𝐻2.
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 205

Proof. Let us come back to the origin of the obstructions of [37, 38]. They are the obstructions to
solving:

⎧⎪⎨⎪⎩
̊Ric

(1)

𝒈𝑏
(ℎ2) = 0.

ℎ2 = 𝐻2 + 𝐻4
2
+ (𝑟−3+𝜖)

, (55)

where |𝐻4
2
|𝒆 ∼ 𝑟−2, see [39].

Let us consider the harmonic vector field 𝑋 = 𝑟𝜕𝑟 + (𝑟−3) and the harmonic vector
fields 𝑌′

𝑖
= 𝑌𝑖 + (𝑟−3) defined in Section 5.1. Following the computation of [11, 37], noting

that in volume gauge, we have (𝑋𝒈𝑏)
◦ = −4𝐻4 + 𝑜(𝑟−4) by Lemma 5.4 and we moreover

have:

0 =
1

2
lim

𝑅→+∞∫
{𝑟⩽𝑅}

⟨
̊Ric

(1)

𝒈𝑏
(ℎ2) , (𝑋𝒈𝑏)

◦

⟩
𝒈𝑏

𝑑𝑣𝒈𝑏

= 4∫
𝕊3∕Γ

3
⟨
𝐻2,𝐻

4
⟩
+𝐻4(𝐵𝒆𝐻2, 𝜕𝑟)𝑑𝑣𝕊3∕Γ (56)

which is manifestly linear in 𝐻4. Similarly, for any Killing vector field 𝑌𝑖 and its harmonic
extension 𝑌′

𝑖
, we find the obstructions:

∫
𝕊3∕Γ

3
⟨
𝐻2,𝑌𝑖

𝐻4
⟩
+ 𝑌𝑖

𝐻4(𝐵𝒆𝐻2, 𝜕𝑟)𝑑𝑣𝕊3∕Γ = 0. (57)

Now, the interpretation of [11, 12] of the obstruction tells us that for some 𝐶 = 𝐶(Γ) ≠ 0, for any
𝑘, 𝑙 ∈ {1, 2, 3}

∫
𝕊3∕Γ

⟨
𝐻2,

𝜃∓
𝑘
◦𝜔±

𝑙

𝑟4

⟩
𝑑𝑣𝕊3∕Γ = 𝐶

⟨
𝑹
±,(1)
𝒆 (𝐻2)(𝜔

±
𝑘
), 𝜔±

𝑙

⟩
. (58)

By linearity, this lets us compute the obstruction for any𝐻4 coming from a volume gauge.
On the other hand, let us use the formalism of [12] and compute the second variation
̊Ric

(2)

𝒆 (𝐻2,𝐻
4) when 𝐵𝒆(𝐻2) = 0. For the quadratic terms𝐻2 of the orbifold, we decompose

𝑹
+,(1)
𝒆 (𝐻2) =

∑
𝑖𝑗

𝑅+
𝑖𝑗
𝜔+
𝑖
⊗ 𝜔+

𝑗
, (59)

and we will consider another term of the form𝐻4 =
𝜃−
𝑙
◦𝜔+

𝑘

𝑟4
. Using the formula (48) for the second

variation of the traceless part of the Ricci curvature denoted ̊Ric applied to the hyperkähler flat
metric 𝒆 in the direction𝐻4 + 𝐻2, we find

̊Ric
(2)

𝒆 (𝐻4,𝐻2) =
∑
𝑗

𝑅+
𝑘𝑗

𝜃−
𝑙
◦𝜔+

𝑗

𝑟4
. (60)
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206 OZUCH

Now, this lets us compute the obstruction (53). For any 𝑖 ∈ {1, 2, 3}, define (𝑖𝑙) ∈ {1, 2, 3} by
𝜔+
𝑖
◦𝜔+

(𝑖𝑙)
= ±𝜔+

𝑙
. We find the following value for (53) with Killing vector field 𝑌+

(𝑖𝑙)
= 𝜔+

(𝑖𝑙)
(𝑟𝜕𝑟):

0 =
∑
𝑗

𝑅+
𝑘𝑗 ∫

𝕊3

⟨𝜃−
𝑙
(𝜕𝑟), 𝜔

+
𝑗
(𝜔+

(𝑖𝑙)
(𝑟𝜕𝑟))⟩𝒆𝑑𝑣𝕊3

= ±𝑅+
𝑘𝑖 ∫

𝕊3

⟨𝑌−
𝑙
, 𝑌−

𝑙
⟩𝒆𝑑𝑣𝕊3 . (61)

We therefore see that if (57) is satisfied with 𝑌+
(𝑖𝑙)
, then, one has (53) satisfied thanks to (58).

Similarly, from the obstruction (54), we find:

0 =
∑
𝑗

𝑅+
𝑘𝑗 ∫

𝕊3

⟨𝜃−
𝑙
(𝜕𝑟), 𝜔

+
𝑗
(𝑟𝜕𝑟)⟩𝒆𝑑𝑣𝕊3

=
∑
𝑗

𝑅+
𝑘𝑗 ∫

𝕊3

⟨𝑌+
𝑙
, 𝑌+

𝑗
⟩𝒆𝑑𝑣𝕊3

= 𝑅+
𝑘𝑙 ∫

𝕊3

⟨𝑌+
𝑙
, 𝑌+

𝑙
⟩𝒆𝑑𝑣𝕊3 , (62)

and we consequently see that the condition (54) is the same as (56) thanks to (58). □

Remark 5.9. Itmight seem like the proof of Theorem5.6 is completely disjoint from the obstruction
of Theorem 3.8 or those of Section 3.3. We illustrate below that they actually build on estimates
of the exact same quantity but rely on different integrations by parts. Indeed, as noticed along the
proof of Lemma 5.4 a special feature of the volume gauge is that ∇𝒈𝑏

𝑢 ∼ 𝑟𝜕𝑟 at an order higher
than expected.

Let us illustrate this with the Eguchi-Hanson metric 𝒆𝒉 which was already discussed in Sec-
tion 3.3. Coming back to the integral quantity in (56) and integrating by parts in the other direction
thanks to (20), we find:

0 = lim
𝑅→+∞∫

{𝑟=𝑅}

(
̊Ric

(1)

𝒆𝒉 (ℎ2)

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝒆𝒉|{𝑟=𝑅}

=
1

2
lim

𝑅→+∞∫
{𝑟⩽𝑅}

⟨(
̊Ric

(1)

𝒆𝒉 (ℎ2)

)
,𝑟𝜕𝑟

𝒆𝒉

⟩
𝒆𝒉

𝑑𝑣𝒆𝒉

=
1

2
lim

𝑅→+∞∫
{𝑟⩽𝑅}

⟨(
̊Ric

(1)

𝒆𝒉 (ℎ2)

)
, (𝑟𝜕𝑟

𝒆𝒉)◦
⟩

𝒆𝒉

𝑑𝑣𝒆𝒉 (63)

The right-hand side term of (63) has the following limit as 𝑅 → +∞:

0 = ∫
𝕊3∕ℤ2

(
E
(1)
𝒆 (𝐻4

2
) + E

(2)
𝒆 (𝐻4,𝐻2) + 𝜆𝐻4

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊3∕ℤ2

= ∫
𝕊3∕ℤ2

(
E
(1)
𝒆 (𝐻4

2
)
)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊3∕ℤ2

+ ∫
𝕊3∕ℤ2

(
̊Ric

(2)

𝒆 (𝐻4,𝐻2)

)
(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊3∕ℤ2

.
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 207

which is exactly the quantity obtained in (43). As in Section 3.3, we may use𝐻4
2
= 0.

We recover all of the obstructions of [11].

Corollary 5.10. With the assumptions of Theorem 5.6 with (𝑁, 𝒈𝑏) = (𝑇∗𝕊2, 𝒆𝒉) defined in (42)
with𝐻4 = −

𝜃−
1
◦𝜔+

1

2𝑟4𝒆
and any𝐻2 satisfying 𝐵𝒆(𝐻2) = 0, the following propositions are equivalent:

(1) 𝑹
+,(1)
𝒆 (𝐻2)𝜔

+
1
= 0,

(2) ∫
𝕊3∕ℤ2

( ̊Ric
(2)

𝒆 (𝐻4,𝐻2))(𝑟𝜕𝑟, 𝜕𝑟)𝑑𝑣𝕊3∕ℤ2
= 0, and for any 𝑖 ∈ {2, 3} for the Killing vector field𝑌+

𝑖
,

∫
𝕊3∕ℤ2

( ̊Ric
(2)

𝒆 (𝐻4,𝐻2))(𝑌
+
𝑖
, 𝜕𝑟)𝑑𝑣𝕊3∕ℤ2

= 0,
(3) there is a solution ℎ2 to the Equation (55),
(4) ∫

𝕊3∕ℤ2
⟨𝐻2,𝐻

4⟩𝑑𝑣𝕊3∕ℤ2
= 0, and 𝑖 ∈ {2, 3}: ∫

𝕊3∕ℤ2
⟨𝐻2,𝑌+

𝑖
𝐻4⟩𝑑𝑣𝕊3∕ℤ2

= 0.

5.3 Spherical and hyperbolic orbifolds

Using the above new interpretation of the obstruction to the desingularization of Einstein 4-
manifolds as well as the integration by parts (20), we prove one of the main conjectures of [37,
38] and answer the long-standing question of whether or not Einstein orbifolds can always be
𝑑𝐺𝐻-desingularized by smooth Einstein metrics.
The starting point is that the obstruction (54) never vanishes when the orbifold is spherical or

hyperbolic.

Corollary 5.11. If the obstruction (54) vanishes, then, the orbifold (𝑀𝑜, 𝒈𝑜) is not spherical
or hyperbolic.

Proof. Let us consider 𝐻4 =
∑

𝑖
ℎ+
𝑖𝑖

𝜃−
𝑖
◦𝜔+

𝑖

𝑟4
+
∑

𝑘
ℎ−
𝑘𝑘

𝜃+
𝑘
◦𝜔−

𝑘

𝑟4
. From (60), by linearity, we have the

following expression:

̊Ric
(2)

𝒆 (𝐻4,𝐻2) =
∑
𝑖𝑚

ℎ+
𝑖𝑖
𝑅+
𝑖𝑚

𝜃−
𝑖
◦𝜔+

𝑚

𝑟4
+
∑
𝑘𝑛

ℎ−
𝑘𝑘
𝑅−
𝑘𝑛

𝜃+
𝑘
◦𝜔−

𝑘

𝑟4
, (64)

where 𝑅±
𝑖𝑖
follow the notation of (59). Hence, the obstruction (54) rewrites:∑

𝑖

ℎ+
𝑖𝑖
𝑅+
𝑖𝑖
+
∑
𝑘

ℎ−
𝑘𝑘
𝑅−
𝑘𝑘

= 0. (65)

Denoting Λ =
∑

𝑖
𝑅+
𝑖𝑖
=
∑

𝑘
𝑅−
𝑘𝑘
, (𝑊±

𝑖𝑗
)𝑖𝑗 the traceless part of (𝑅±

𝑖𝑗
)𝑖𝑗 , and ℎ̊±

𝑖𝑗
the traceless

part of (ℎ±
𝑖𝑗
)𝑖,𝑗∈{1,2,3} (note that the ℎ̊±

𝑖𝑗
are proportional to the asymptotic curvature of 𝒈𝑏

by Proposition 4.13) and recall that
∑

𝑖
ℎ+
𝑖𝑖
+
∑

𝑘
ℎ−
𝑘𝑘

= 𝑐(Γ)(𝑁, 𝒈𝑏) < 0. We therefore write
(65) as

0 = Λ𝑐(Γ)(𝑁, 𝒈𝑏) +
∑
𝑖

ℎ̊+
𝑖𝑖
𝑊+

𝑖𝑖
+
∑
𝑘

ℎ̊−
𝑘𝑘
𝑊−

𝑘𝑘
. (66)
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208 OZUCH

In the case of a spherical or hyperbolic orbifold, we have 𝑊± = 0 and Λ ≠ 0, therefore, since
𝑐(Γ)(𝑁, 𝒈𝑏) < 0, the obstruction (66) is not satisfied. □

5.3.1 Cokernel of the linearization of E at a Ricci-flat ALE metric

This technical section contains the main innovation from [36, 37] towards getting rid of an
integrability assumption for the Ricci-flat ALE metric 𝒈𝑏: the proof of Proposition 1.12.
Let us consider a Ricci-flat ALE orbifold (𝑁, 𝒈𝑏), the operator

𝑔 ↦ Φ𝒈𝑏
(𝑔) ∶= E(𝑔) + 𝛿∗𝒈𝑏𝛿𝒈𝑏𝑔,

and𝑶(𝒈𝑏) the 𝐿2(𝒈𝑏)-kernel ofΦ
(1)
𝒈𝑏
, the linearization ofΦ𝒈𝑏

at 𝒈𝑏. Note that the elements of𝑶(𝒈𝑏)

are traceless and divergence-free, see [37] for instance. According to [37, 38], for any small enough
𝑣 ∈ 𝑶(𝒈𝑏), there exists a unique metric 𝑔𝑣 which satisfies both

Φ𝒈𝑏
(𝑔𝑣) = E(𝑔𝑣) + 𝛿∗𝒈𝑏𝛿𝒈𝑏𝑔𝑣 ∈ 𝑶(𝒈𝑏) and 𝑔𝑣 − (𝒈𝑏 + 𝑣) ⟂𝐿2(𝒈𝑏)

𝑶(𝒈𝑏).

We will use the following Lemma in order to prove Proposition 1.12.

Lemma 5.12. Assume that for all 𝑘 ⩽ 𝑙 − 1, 𝜕𝑘
𝑠𝑘|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) = 0. Then, we have:

(1) for all 𝑘 ⩽ 𝑙 − 1, we have: 𝜕𝑘
𝑠𝑘|𝑠=0

E(𝑔𝑠𝑣) = 0, and for all 𝑘 ⩽ 𝑙, we have 𝛿𝒈𝑏𝜕
𝑘
𝑠𝑘|𝑠=0

𝑔𝑠𝑣 = 0,

(2) 𝛿𝒈𝑏 (𝜕
𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) − Φ

(1)
𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣)) = 0, and

(3) for any 𝑙, there exist multilinear functions 𝑄(𝑙)
𝑔 (ℎ1, … , ℎ𝑙) =

∑
𝑚⩾2

∑𝑙

𝑗1,…,𝑗𝑚⩾1
∇𝑔ℎ𝑗1

∗ ℎ𝑗2
∗ … ∗

ℎ𝑗𝑚
, where ∗ denotes various contractions of the tensors. Integrating over an open domainΩwith

smooth boundary, we have:

∫
Ω

⟨
𝒈𝑏, 𝜕

𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) − Φ

(1)
𝒈𝑏

(
𝜕𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣

)⟩
𝒈𝑏

𝑑𝑣𝒈𝑏 = ∫
𝜕Ω

𝑄(𝑙)
(
𝜕𝑠|𝑠=0𝑔𝑠𝑣, … , 𝜕𝑙−1

𝑠𝑙−1|𝑠=0
𝑔𝑠𝑣

)
.

Proof. Let us show these three properties in order.

(1) Notice that for any 𝑘, 𝜕𝑘
𝑠𝑘
Φ𝒈𝑏

(𝑔𝑠𝑣) = 𝜕𝑘
𝑠𝑘|𝑠=0

E(𝑔𝑠𝑣) + 𝛿∗𝒈𝑏𝛿𝒈𝑏 (𝜕
𝑘
𝑠𝑘|𝑠=0

𝑔𝑠𝑣). Therefore, since
𝛿𝒈𝑏Φ(𝑔𝑠𝑣) = 0 because Φ(𝑔𝑠𝑣) ∈ 𝑶(𝒈𝑏), then one has:

𝛿𝒈𝑏

(
𝜕𝑘
𝑠𝑘|𝑠=0

E(𝑔𝑠𝑣) + 𝛿∗𝒈𝑏𝛿𝒈𝑏

(
𝜕𝑘
𝑠𝑘|𝑠=0

𝑔𝑠𝑣

))
= 0.

If we moreover assume 𝜕
𝑗

𝑠𝑗
E(𝑔𝑠𝑣) = 0 for all 𝑗 ⩽ 𝑘 − 1, we find 𝛿𝒈𝑏𝛿

∗
𝒈𝑏
𝛿𝒈𝑏 (𝜕

𝑘
𝑠𝑘|𝑠=0

𝑔𝑠𝑣) = 0

since 0 = 𝜕𝑘
𝑠𝑘|𝑠=0

(𝛿𝑔𝑠𝑣 E(𝑔𝑠𝑣)) = 𝛿𝒈𝑏𝜕
𝑘
𝑠𝑘|𝑠=0

E(𝑔𝑠𝑣). Since 𝛿𝒈𝑏𝛿
∗
𝒈𝑏

is invertible on vector fields
(or 1-forms) decaying at infinity by [11, 37], we find 𝛿𝒈𝑏 (𝜕

𝑘
𝑠𝑘|𝑠=0

𝑔𝑠𝑣) = 0, but that means
that 𝜕𝑘

𝑠𝑘|𝑠=0
E(𝑔𝑠𝑣) = 𝜕𝑘

𝑠𝑘|𝑠=0
Φ𝒈𝑏

(𝑔𝑠𝑣) − 𝛿∗𝒈𝑏𝛿𝒈𝑏 (𝜕
𝑘
𝑠𝑘|𝑠=0

𝑔𝑠𝑣) = 0. We can iterate this up to 𝑘 =
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 209

𝑙 − 1 since by assumption 𝜕𝑘
𝑠𝑘|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) = 0 for all 𝑘 ⩽ 𝑙 − 1. This lets us also find

𝛿𝒈𝑏 (𝜕
𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣) = 0.

(2) For the equality 𝛿𝒈𝑏 (𝜕
𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) − Φ

(1)
𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣)) = 0, we first see that

𝜕𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) − Φ

(1)
𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣) = 𝜕𝑙

𝑠𝑙|𝑠=0
E(𝑔𝑠𝑣) − E

(1)
𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣)

because Φ = E+𝛿∗𝒈𝑏𝛿𝒈𝑏 . We conclude by noticing as above that

𝛿𝒈𝑏𝜕
𝑙
𝑠𝑙|𝑠=0

E(𝑔𝑠𝑣) = 𝜕𝑙
𝑠𝑙|𝑠=0

(
𝛿𝑔𝑠𝑣 E(𝑔𝑠𝑣)

)
= 0

because 𝜕𝑘
𝑠𝑘|𝑠=0

E(𝑔𝑠𝑣) = 0 for all 𝑘 ⩽ 𝑙 − 1 and 𝛿𝒈𝑏 E
(1)
𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣) = 0 by Proposition 2.2.

(3) The first remark is that

𝜕𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) =

(
𝜕𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) − Φ

(1)
𝒈𝑏

(
𝜕𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣

))
+ E

(1)
𝒈𝑏

(
𝜕𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣

)
+ 𝛿∗𝒈𝑏𝛿𝒈𝑏𝜕

𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣,

and we will treat separately each of these terms.
We then show, using (34), that the integral of the trace ofE(1)

𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣) is a boundary term:

2

2 − 𝑑 ∫
Ω

⟨
𝒈𝑏, E

(1)
𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣)

⟩
𝒈𝑏

𝑑𝑣𝒈𝑏

= −∫
𝜕Ω

(
𝛿𝒈𝑏𝜕

𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣 + 𝑑 tr𝒈𝑏 𝜕
𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣

)
(𝑛𝜕Ω)𝑑𝑣𝒈𝑏 |𝜕Ω . (67)

Let us now turn to the remaining linear term 𝛿∗𝒈𝑏𝛿𝒈𝑏𝜕
𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣 in the expression of

Φ
(1)
𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣). By integration by parts, denoting 𝑉 = 𝛿𝒈𝑏𝜕

𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣, we get:

∫
Ω

⟨
𝒈𝑏, 𝛿

∗
𝒈𝑏
𝑉
⟩
𝒈𝑏
𝑑𝑣𝒈𝑏 = −2∫

Ω

𝛿𝒈𝑏𝑉𝑑𝑣𝒈𝑏 = 2∫
𝜕Ω

⟨𝑉, 𝑛⟩𝒈𝑏𝑑𝑣𝒈𝑏|𝜕Ω,
which is again a boundary term.
Noticing that

𝜕𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) − Φ

(1)
𝒈𝑏

(
𝜕𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣

)
= 𝜕𝑙

𝑠𝑙|𝑠=0
E(𝑔𝑠𝑣) − E

(1)
𝒈𝑏

(
𝜕𝑙
𝑠𝑙|𝑠=0

𝑔𝑠𝑣

)
,

we can therefore focus on showing that the integral of 𝜕𝑙
𝑠𝑙|𝑠=0

E𝒈𝑏
(𝑔𝑠𝑣) against 𝒈𝑏 is equal to a

boundary term. Since the 𝑙 − 1 first derivatives vanish, we have:

2

2 − 𝑑 ∫
Ω

⟨
𝒈𝑏, 𝜕

𝑙
𝑠𝑙|𝑠=0

E(𝑔𝑠𝑣)
⟩
𝒈𝑏

𝑑𝑣𝒈𝑏 =
𝑑𝑙

𝑑𝑠𝑙 |𝑠=0 ∫Ω

R(𝑔𝑠𝑣)𝑑𝑣𝑔𝑠𝑣
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210 OZUCH

= −
𝑑𝑙−1

𝑑𝑠𝑙−1 |𝑠=0 ∫Ω

⟨E(𝑔𝑠𝑣), 𝜕𝑠𝑔𝑠𝑣⟩𝑔𝑠𝑣𝑑𝑣𝑔𝑠𝑣
−

𝑑𝑙−1

𝑑𝑠𝑙−1 |𝑠=0 ∫𝜕Ω

(
𝛿𝑔𝑠𝑣 (𝜕𝑠𝑔𝑠𝑣) + 𝑑 tr𝑔𝑠𝑣 (𝜕𝑠𝑔𝑠𝑣)

)
(𝑛𝜕Ω)𝑑𝑣𝑔𝑠𝑣 |𝜕Ω ,(68)

where the first term vanishes because 𝜕𝑘
𝑠𝑘|𝑠=0

E(𝑔𝑠𝑣) = 0 for all 𝑘 ⩽ 𝑙 − 1 by the first point.
Together with (67), this proves the result. □

The point of Lemma 5.12 is that if the different 𝜕𝑘
𝑠𝑘|𝑠=0

𝑔𝑠𝑣 decay faster than 𝑟−2+𝜖 at infinity for
some small 𝜖 > 0 in dimension 4, then, the boundary term

lim
𝑟→∞∫

𝑟𝕊3∕Γ

𝑄(𝑙)
(
𝜕𝑠|𝑠=0𝑔𝑠𝑣, … , 𝜕𝑙−1

𝑠𝑙−1|𝑠=0
𝑔𝑠𝑣

)
which will appear in the following proof will always vanish.

Proof of Proposition 1.12. Using the results of Appendix B.2 (very close to the proof of [32]),
we know that for any 𝑣 ∈ 𝑶(𝒈𝑏) small enough, the map 𝑠 ∈ (−1, 1) ↦ 𝑔𝑠𝑣 is real-analytic in
the so-called 𝐶

2,𝛼

𝛽
(𝒈𝑏)-topology defined in Appendix B.1 for 0 < 𝛽 < 2 close to 2, say 𝛽 = 1.9.

We mainly use the following consequence. We have a 𝐶
2,𝛼

𝛽
(𝒈𝑏)-converging development 𝑔𝑠𝑣 =

𝒈𝑏 + 𝑠𝑣 +
∑

𝑘⩾2
𝑠𝑘𝑤𝑘 around 𝑠 = 0where for any 𝑘, there exists𝐶 = 𝐶(𝑘) > 0with for 𝑙 ∈ {0, 1, 2}:

𝑟1.9+𝑙|∇𝑙
𝒈𝑏
𝑤𝑘|𝒈𝑏 ⩽ 𝐶. (69)

This induces a 𝐶𝛼
𝛽+2

-converging development (see again Appendix B):

Φ𝒈𝑏
(𝑔𝑠𝑣) = 𝑠2

(
Φ
(1)
𝒈𝑏
(𝑤2) + Φ

(2)
𝒈𝑏
(𝑣, 𝑣)

)
∈ 𝑶(𝒈𝑏)

+𝑠3
(
Φ
(1)
𝒈𝑏
(𝑤3) +

(
2Φ

(2)
𝒈𝑏
(𝑤2, 𝑣) + Φ

(2)
𝒈𝑏
(𝑣, 𝑣, 𝑣)

)
∈ 𝑶(𝒈𝑏)

+⋯ ∈ 𝑶(𝒈𝑏)

+
𝑠𝑙

𝑙!
𝜕𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) ∈ 𝑶(𝒈𝑏)

+⋯ ∈ 𝑶(𝒈𝑏)

Now, by the analysis of the Fredholm properties of Φ𝒈𝑏
in [37], we know that the Φ

(1)
𝒈𝑏
(𝑤𝑙) =

1

𝑙!
Φ
(1)
𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣) are 𝐿2(𝒈𝑏)-orthogonal to𝑶(𝒈𝑏), hence we need to study the 𝐿2(𝒈𝑏)-projection of

𝜕𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) − Φ

(1)
𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣) on 𝑶(𝒈𝑏).

IfΦ𝒈𝑏
(𝑔𝑠𝑣) is identically vanishing, thenwe are done. If not, assume that 𝜕𝑘𝑠𝑘|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) = 0 for

all 𝑘 ⩽ 𝑙 − 1, but 𝜕𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) =∶ 𝒐𝑣 ≠ 0. We want to show that 𝒐𝑣 ⟂ (𝑋𝒈𝑏)

◦ and 𝒐𝑣 ⟂ 𝑌′𝒈𝑏

for 𝑌′ harmonic vector field asymptotic to a Killing vector field.
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 211

Let us now apply our integration by parts formula (20) to the divergence-free 2-tensor 𝑆(𝑙)(𝑣) ∶=
𝜕𝑙
𝑠𝑙|𝑠=0

Φ𝒈𝑏
(𝑔𝑠𝑣) − Φ

(1)
𝒈𝑏
(𝜕𝑙

𝑠𝑙|𝑠=0
𝑔𝑠𝑣), this gives

0 = lim
𝑟→∞∫

𝑟𝕊3∕Γ

𝑆(𝑙)(𝑣)(𝑋, 𝜕𝑟)𝑑𝑣𝑟𝕊3∕Γ

=
1

2 ∫
𝑁

⟨
𝑆(𝑙)(𝑣), (𝑋𝒈𝑏)

◦
⟩
𝒈𝑏
𝑑𝑣𝒈𝑏

+ ∫
𝑁

tr𝒈𝑏 𝑆
(𝑙)(𝑣)𝑑𝑣𝒈𝑏 ,

where the first boundary term vanishes because it is a finite linear combination of terms of
the form E

(𝑘)
𝒈𝑏

(𝜕
𝑗1

𝑠𝑗1
𝑔𝑠𝑣, … , 𝜕

𝑗𝑘

𝑠𝑗𝑘
𝑔𝑠𝑣) with 𝑘 ⩾ 2 and 𝑗𝑖 ⩾ 1. Indeed, we know from the results of

Section B.2 in the appendix (or (69)) that 𝜕
𝑗

𝑠𝑗
𝑔𝑠𝑣 ∈ 𝐶

2,𝛼
1.9

for every 𝑗 ⩾ 1, which implies that

for any 𝑎 ∈ {0, 1, 2}, 𝑟𝑎+1.9|∇𝑎𝜕
𝑗

𝑠𝑗
𝑔𝑠𝑣| ⩽ 𝐶𝑗 for some 𝐶𝑗 > 0. This gives: E(𝑘)

𝒈𝑏
(𝜕

𝑗1

𝑠𝑗1
𝑔𝑠𝑣, … , 𝜕

𝑗𝑘

𝑠𝑗𝑘
𝑔𝑠𝑣) =

(𝑟−2−𝑘⋅1.9) = 𝑜(𝑟−4). Similarly, the last term ∫
𝑁
tr𝒈𝑏 𝑆

(𝑙)(𝑣)𝑑𝑣𝒈𝑏 is a boundary term of the same
type by Lemma 5.12 and it vanishes for the same reason.
The proof for the different 𝑌′𝒈𝑏 is similar and easier because there is no trace term to deal

with. □

Remark 5.13. Again, the proof is very close to that of Theorem 3.8 because in volume gauge, one
has ∇𝒈𝑏

𝑢 ∼ 𝑟𝜕𝑟 at an order higher than expected.

5.3.2 Obstruction to the desingularization of spherical and hyperbolic
orbifolds

Let us now prove our main result. The main new ingredients from [36, 37] are the new more flex-
ible expression of our obstruction in Theorem 5.6, and more crucially Proposition 1.12 (based on
Lemma 5.12). Indeed, the problem left in [36, 37] was that the Ricci-flat ALE metric 𝒈𝑏 might
not be integrable, and these obstructions to integrability could compensate our obstructions
to desingularizations. Proposition 1.12 however tells us that the obstruction to the integrabil-
ity of the Ricci-flat ALE metric 𝒈𝑏 is negligible against (𝑋𝒈𝑏). The obstruction to integrability
consequently cannot compensate the obstruction to desingularization.

Proof of Theorem 1.9. Let us assume that there exists a sequence of Einstein metrics (𝑀, 𝒈𝑛)𝑛
converging to an Einstein orbifold (𝑀𝑜, 𝒈𝑜) with E(𝒈𝑜) + 𝜆𝒈𝑜 = 0. Then, according to [36,
37, 39], up to taking a subsequence, there exist (𝑡𝑛)𝑛, 𝑡𝑛 > 0, (𝑣𝑛)𝑛, 𝑣𝑛 ∈ 𝑶(𝒈𝑏) such that

(𝑀, 𝒈𝑛∕𝑡𝑛)𝑛 is close to (𝑁, 𝒈𝑏) in the following sense: for all 𝑟 ≪ 𝑡
−

1

2
𝑛 , we have for some

0 < 𝛽 < 1

(1 + 𝑟)𝑘+𝛽
|||||∇𝑘

𝒈𝑏

(
𝒈𝑛

𝑡𝑛
−
(
𝑔𝑣𝑛 + 𝑡𝑛ℎ2

))|||||𝒈𝑏 = 𝑜(𝑡𝑛) (70)
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212 OZUCH

where ℎ2 is a solution to the following equation:

Φ
(1)
𝒈𝑏
(ℎ2) + 𝜆𝒈𝑏 ∈ 𝑶(𝒈𝑏). (71)

It was shown in [37] that the first obstruction against (𝑋𝒈𝑏)
◦ to the desingularization is:

∫
𝑁

⟨
Φ𝒈𝑏

(𝒈𝑛∕𝑡𝑛) + 𝑡𝑛𝜆(𝒈𝑛∕𝑡𝑛), 𝜒𝑡𝑛
(𝑋𝒈𝑏)

◦
⟩
𝒈𝑏
𝑑𝑣𝒈𝑏 = 0. (72)

Or goal is to show that it cannot be satisfied when desingularizing a spherical or hyperbolic
orbifold.
Recall from Proposition 1.12 that one has Φ(𝑔𝑣𝑛) = 𝒐𝑣𝑛 + (‖𝑣𝑛‖𝐿2(𝒈𝑏)‖𝒐𝑣𝑛‖𝐿2(𝒈𝑏)) ∈ 𝑶(𝒈𝑏). If

𝒐𝑣𝑛 = 0, then we are done by [38], so let us now assume that it is not satisfied. The obstruction
against the deformation𝒘𝑣𝑛

∶=
𝒐𝑣𝑛‖𝒐𝑣𝑛‖𝐿2(𝒈𝑏) is

∫
𝑁

⟨
Φ𝒈𝑏

(𝒈𝑛∕𝑡𝑛) + 𝑡𝑛𝜆(𝒈𝑛∕𝑡𝑛), 𝜒𝑡𝑛
𝒘𝑣𝑛

⟩
𝒈𝑏
𝑑𝑣𝒈𝑏 = 0. (73)

Let us now estimate (72). We use the control (70) which tells us that:

Φ𝒈𝑏
(𝒈𝑛∕𝑡𝑛) + 𝑡𝑛𝜆(𝒈𝑛∕𝑡𝑛) = Φ𝒈𝑏

(𝑔𝑣𝑛 ) + 𝑡𝑛Φ
(1)
𝒈𝑏
(ℎ2) + 𝑡𝑛𝜆𝒈𝑏 + 𝑜

(
𝑡𝑛(1 + 𝑟)−2−𝛽

)
. (74)

We will therefore decompose (72) thanks to (74) and estimate each part of the integral.

(1) For the first integral ∫
𝑁
⟨Φ(𝑔𝑣𝑛), 𝜒𝑡𝑛

(𝑋𝒈𝑏)
◦⟩𝒈𝑏𝑑𝑣𝒈𝑏 we use the estimate

∫
𝑁

⟨
Φ(𝑔𝑣𝑛), (𝑋𝒈𝑏)

◦
⟩
𝒈𝑏
𝑑𝑣𝒈𝑏 = (‖𝑣𝑛‖𝐿2‖𝒐𝑣𝑛‖𝐿2)

together with Φ(𝑔𝑣𝑛) = (‖𝒐𝑣𝑛‖𝐿2𝑟−4), which gives

∫
𝑁

⟨
Φ(𝑔𝑣𝑛), (1 − 𝜒𝑡𝑛

)(𝑋𝒈𝑏)
◦
⟩
𝒈𝑏
𝑑𝑣𝒈𝑏 = 

(
∫

∞

𝑡
−
1
4

𝑛

‖𝒐𝑣𝑛‖𝐿2𝑟−6𝑟−4𝑟3𝑑𝑟

)
= (𝑡𝑛‖𝒐𝑣𝑛‖𝐿2).

We finally find

∫
𝑁

⟨
Φ(𝑔𝑣𝑛), 𝜒𝑡𝑛

(𝑋𝒈𝑏)
◦
⟩
𝒈𝑏
𝑑𝑣𝒈𝑏 = ((‖𝑣𝑛‖𝐿2 + 𝑡𝑛)‖𝒐𝑣𝑛‖𝐿2), (75)

(2) let us denote 𝜆1 ∶= ∫
𝑁
⟨Φ(1)

𝒈𝑏
(ℎ2) + 𝜆𝒈𝑏, (𝑋𝒈𝑏)

◦⟩𝒈𝑏𝑑𝑣𝒈𝑏 . We find:
𝑡𝑛 ∫

𝑁

⟨
Φ
(1)
𝒈𝑏
(ℎ2) + 𝜆𝒈𝑏, 𝜒𝑡𝑛

(𝑋𝒈𝑏)
◦
⟩
𝒈𝑏

𝑑𝑣𝒈𝑏 = 𝑡𝑛𝜆1 + 𝑜(𝑡𝑛),
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 213

(3) for the error term, we have 𝑜(𝑡𝑛) ∫𝑁⟨(1 + 𝑟)−2−𝛽, 𝜒𝑡𝑛
(𝑋𝒈𝑏)

◦⟩𝒈𝑏𝑑𝑣𝒈𝑏 = 𝑜(𝑡𝑛).

From (72), we finally find the estimate:

0 = 𝑡𝑛𝜆1 + (‖𝑣𝑛‖𝐿2‖𝒐𝑣𝑛‖𝐿2) + 𝑜(𝑡𝑛). (76)

Similarly, using again (74), we then estimate (73) in three parts:

(1) For the first integral ∫
𝑁
⟨Φ(𝑔𝑣𝑛), 𝜒𝑡𝑛

𝒘𝑣𝑛
⟩𝒈𝑏𝑑𝑣𝒈𝑏 , we use Proposition 1.12 which implies

that

∫
𝑁

⟨
Φ(𝑔𝑣𝑛),𝒘𝑣𝑛

⟩
𝒈𝑏
𝑑𝑣𝒈𝑏 = ‖𝒐𝑣𝑛‖𝐿2(𝒈𝑏) + (‖𝑣𝑛‖𝐿2(𝒈𝑏)‖𝒐𝑣𝑛‖𝐿2(𝒈𝑏)).

Since Φ(𝑔𝑣𝑛) = (‖𝒐𝑣𝑛‖𝐿2𝑟−4), we estimate the difference

∫
𝑁

⟨
Φ(𝑔𝑣𝑛 ), (1 − 𝜒𝑡𝑛

)𝒘𝑣𝑛

⟩
𝒈𝑏
𝑑𝑣𝒈𝑏 = 

(
∫

∞

𝑡
−
1
4

𝑛

‖𝒐𝑣𝑛‖𝐿2𝑟−6𝑟−4𝑟3𝑑𝑟

)
= (𝑡𝑛‖𝒐𝑣𝑛‖𝐿2),

and finally

∫
𝑁

⟨
Φ(𝑔𝑣𝑛), 𝜒𝑡𝑛

𝒘𝑣𝑛

⟩
𝒈𝑏
𝑑𝑣𝒈𝑏 = ‖𝒐𝑣𝑛‖𝐿2 + ((𝑡𝑛 + ‖𝑣𝑛‖𝐿2)‖𝒐𝑣𝑛‖𝐿2), (77)

(2) let us denote 𝜇𝑣𝑛
∶= ∫

𝑁
⟨Φ(1)

𝒈𝑏
(ℎ2) + 𝜆𝒈𝑏,𝒘𝑣𝑛

⟩𝒈𝑏𝑑𝑣𝒈𝑏 . We find:
𝑡𝑛 ∫

𝑁

⟨
Φ
(1)
𝒈𝑏
(ℎ2) + 𝜆𝒈𝑏, 𝜒𝑡𝑛

𝒘𝑣𝑛

⟩
𝒈𝑏

𝑑𝑣𝒈𝑏 = 𝑡𝑛𝜇𝑣𝑛
+ 𝑜(𝑡𝑛),

(3) for the error term, we have 𝑜(𝑡𝑛) ∫𝑁⟨(1 + 𝑟)−2−𝛽, 𝜒𝑡𝑛
𝒘𝑣𝑛

⟩𝒈𝑏𝑑𝑣𝒈𝑏 = 𝑜(𝑡𝑛).

From (73), we finally find the estimate

0 = ‖𝒐𝑣𝑛‖𝐿2(𝒈𝑏) + 𝑡𝑛𝜇𝑣𝑛
+ 𝑜(𝑡𝑛 + ‖𝒐𝑣𝑛‖𝐿2(𝒈𝑏)). (78)

which gives ‖𝒐𝑣𝑛‖𝐿2(𝒈𝑏) = (𝑡𝑛) because 𝜇𝑣𝑛
is bounded since 𝑶(𝒈𝑏) is finite-dimensional.

Finally by plugging ‖𝒐𝑣𝑛‖𝐿2(𝒈𝑏) = (𝑡𝑛) in (76), we find |𝜆1| = (‖𝑣𝑛‖𝐿2). Now, since 𝜆1 is a
constant, and since (𝑡𝑛, 𝑣𝑛) → 0, we obtain 𝜆1 = 0. It is impossible to satisfy if𝐻2 is the quadratic
term of the development of a spherical or hyperbolic orbifold by Corollary 5.11. □

Remark 5.14. The above proof applies indifferently to other Einstein orbifolds and to the other
deformations 𝑌′𝒈𝑏. In particular, it shows that the integrability assumption in Theorem 5.6
is superfluous.
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214 OZUCH

We believe that the result should hold for spherical and hyperbolic orbifolds with more general
singularities thanℝ4∕ℤ2, but this requires dealing with trees of singularities. The main difficulty
is that it is not known whether the projection on the obstruction is a real-analytic map or not in
this degenerate situation.

Conjecture 5.15. Let (𝑀𝑜, 𝒈𝑜) be a singular spherical or hyperbolic compact orbifold. Then, it is not
limit of smooth Einstein metrics in the Gromov-Hausdorff sense.

5.4 Higher dimensional Einstein orbifolds with isolated singularities

The work of [36, 37] extends almost verbatim to the degeneration of Einstein 𝑑-manifolds (𝑑 ⩾ 5)

satisfying the (non natural) assumption that the 𝐿
𝑑

2 -norm of its curvature is bounded. It shows
that, exactly like in dimension 4, the possible Gromov-Hausdorff limits are Einstein orbifolds
with isolated singularities and the singularity models are Ricci-flat ALE orbifolds. Indeed the
results of [36–38] only use the fact that the dimension is 4 to obtain a bound on the 𝐿2-norm
of the Riemannian curvature from the noncollapsedness assumption.
An obstruction to the desingularization under essentially the same assumptions as [11] was

proven in [33] for higher dimensional desingularizations. Namely, one considers the desingular-
ization by the so-called Calabi metric denoted 𝒈𝑐𝑎𝑙 which is 2-dimensional, Ricci-flat ALE and
asymptotic to ℝ2𝑑∕ℤ𝑑.

Lemma 5.16. The kernel 𝑶(𝒈𝑐𝑎𝑙) is 1-dimensional and spanned by (𝑋𝒈𝑐𝑎𝑙)
◦, where 𝑋 is a

harmonic vector field asymptotic to 𝑟𝜕𝑟.

Proof. The proof that 𝑶(𝒈𝑐𝑎𝑙) is 1-dimensional is found in [33]. We therefore simply have to prove
the existence of 𝑋 and the fact that (𝑋𝒈𝑐𝑎𝑙)

◦ is divergence-free.
Like in [14, 38], we consider the unique function𝑢 = 𝑟2 + (𝑟−2𝑑+2) satisfyingΔ𝒈𝑐𝑎𝑙

𝑢 = 2𝑑. One
then defines 𝑋 =

1

2
∇𝒈𝑐𝑎𝑙

𝑢 = 𝑟𝜕𝑟 + (𝑟−2𝑑+1) which satisfies

𝛿𝒈𝑐𝑎𝑙 (𝑋𝒈𝑐𝑎𝑙)
◦ = 0

by construction.
A last step is to ensure that (𝑋𝒈𝑐𝑎𝑙)

◦ ≠ 0 following [14]. If (𝑋𝒈𝑐𝑎𝑙)
◦ = 0, then since Δ𝒈𝑐𝑎𝑙

𝑢 =

2𝑑, 𝑋 would generate 1-parameter group of homotheties. By considering the maximum of the
curvature tensor, this is impossible for the non flat metric 𝒈𝑐𝑎𝑙. □

This implies that the obstruction found in [33] is of the same type.

Corollary 5.17. Let (𝑀𝑜, 𝒈𝑜) be an Einstein orbifold with a singularity ℝ2𝑑∕ℤ𝑑 at 𝑝𝑜 . The
obstruction to the desingularization of (𝑀𝑜, 𝒈𝑜) at 𝑝𝑜 by 𝒈𝑐𝑎𝑙 found in [33], namely

𝑑 ⋅
⟨
𝑹𝒈𝑜

(𝑝𝑜)𝜔, 𝜔
⟩
+ 2(𝑑 − 2)R𝒈𝑜

(𝑝𝑜) = 0

is equivalent to the obstruction against (𝑋𝒈𝑏)
◦.
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APPENDIX A: DEVELOPMENT OF EINSTEIN 4-METRICS
Let (𝑀𝑜, 𝒈𝑜) be an Einstein orbifold (smooth or singular) and assume that at a point 𝑝, it has a
development: 𝒈𝑜 = 𝒆 + 𝐻2 + (𝑟3). We start by showing that up to a gauge term, the term𝐻2 has
an explicit correspondence with the curvature.

A.1 A local gauge for Einstein metrics

Proposition A.1. Let𝐻2 be a quadratic symmetric 2-tensor satisfying Ric
(1)
𝒆 (𝐻2) = Λ𝒆, for Λ ∈ ℝ

and such that:

𝑹
±,(1)
𝒆 (𝐻2) =

Λ

3

∑
𝑖

𝜔±
𝑖
⊗ 𝜔±

𝑖
+
∑
𝑖𝑗

𝑊±
𝑖𝑗
𝜔±
𝑖
⊗ 𝜔±

𝑗

where we identified Ω+
𝒆 ⊗ Ω+

𝒆 ∼ (Ω+
𝒆 )

∗ ⊗ Ω+
𝒆 ∼ End(Ω+

𝒆 ) and where the𝑊
±
𝑖𝑗
are the coefficients of

the (anti-)selfdual Weyl curvature.
Then, there exists a cubic vector field 𝑉3 such that

𝐻2 = −
Λ

9
𝑟4𝑔𝕊3 +

𝑟2

6

(∑
𝑖𝑗

𝑊+
𝑖𝑗
𝜃−
𝑖
◦𝜔+

𝑗
+
∑
𝑘𝑙

𝑊−
𝑘𝑙
𝜃+
𝑘
◦𝜔−

𝑙

)
+ 𝑉3

𝒆. (A.1)

where 𝑔𝕊3 is the usual round metric on the unit 3-sphere.
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Proof. Let us first show that the infinitesimal curvature induced by

𝐻̃2 ∶= −
Λ

9
𝑟4𝑔𝕊3 +

𝑟2

6

(∑
𝑖𝑗

𝑊+
𝑖𝑗
𝜃−
𝑖
◦𝜔+

𝑗
+
∑
𝑘𝑙

𝑊−
𝑘𝑙
𝜃+
𝑘
◦𝜔−

𝑙

)

is the same as that of 𝐻2. For the spherical metric in geodesic coordinates, 𝑔𝕊4 with Λ = 3, one
has the development:

𝑔𝕊4 = 𝒆 −
1

3
𝑟4𝑔𝕊3 + (𝑟3), (A.2)

and therefore, by linearity of 𝐻2 ↦ 𝑹
±,(1)
𝒆 (𝐻2), we just have to deal with Ricci-flat deformations

and their Weyl curvature. We rely on the formalism of [12] for this computation.
We first note that each term 𝑟2𝜃∓

𝑖
◦𝜔±

𝑗
is traceless and harmonic, hence is in the kernel of ̊Ric

(1)

𝒆 .
We have the following formula 𝑑(𝑟2𝜃−

𝑖
) = 6𝑟𝑑𝑟 ∧ 𝜃−

𝑖
, hence

∗ 𝑑(𝑟2𝜃−
𝑖
) = −6𝑟2𝛼+

𝑖
. (A.3)

From this, we see that the term is in the Bianchi gauge (46) since 𝑊+
𝑖𝑗
= 𝑊+

𝑗𝑖
, and

−
𝑟2

6

∑
𝑖
𝑊+

𝑖𝑖
(−6𝜔+

𝑖
(𝛼+

𝑖
)) = −𝑟

∑
𝑖
𝑊+

𝑖𝑖
𝑑𝑟 = 0 because 𝑟𝜔+

𝑖
(𝛼+

𝑖
) = −𝑑𝑟 and

∑
𝑖
𝑊+

𝑖𝑖
= 0.

From (A.3), we moreover obtain:

−𝑑 ∗ 𝑑(𝑟2𝜃−
𝑖
) = 6𝜔+

𝑖
, (A.4)

and therefore we have the following curvature induced by 𝐻+
2
∶=

𝑟2

6

∑
𝑖𝑗
𝑊+

𝑖𝑗
𝜃−
𝑖
◦𝜔+

𝑗
:

∙ ̊Ric
(1)

𝒆 (𝐻+
2
) = 0,

∙ 𝑹
+,(1)
𝒆 (𝐻+

2
) =

⎡⎢⎢⎣
𝑊+

11
𝑊+

12
𝑊+

13

𝑊+
21

𝑊+
22

𝑊+
23

𝑊+
31

𝑊+
32

𝑊+
33

⎤⎥⎥⎦.
Let us now prove that the induced anti-selfdual curvature 𝑹

−,(1)
𝒆 (𝐻+

2
) vanishes. On the other

hand that seeing, 𝒆 as a hyperkähler metric with the opposite orientation, we have the expression
𝑟2𝜃−

𝑖
=
∑

𝑙
⟨𝜔+

𝑖
(𝑟𝜕𝑟), 𝜔

−
𝑙
(𝑟𝜕𝑟)⟩𝜔−

𝑙
, hence

𝑟2𝜃−
𝑖
◦𝜔+

𝑗
=
∑
𝑙

⟨
𝜔+
𝑖
(𝑟𝜕𝑟), 𝜔

−
𝑙
(𝑟𝜕𝑟)

⟩
𝜔−
𝑙
◦𝜔+

𝑗
,

and we also find

𝑑

(∑
𝑙

⟨
𝜔+
𝑖
(𝑟𝜕𝑟), 𝜔

−
𝑙
(𝑟𝜕𝑟)

⟩
𝜔−
𝑙

)
= −

∑
𝑙

(
𝜔−
𝑙
◦𝜔+

𝑖
(𝑟𝑑𝑟)

)
∧ 𝜔+

𝑗
. (A.5)
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218 OZUCH

Now, recall that for any 1-form 𝛽, ∗ (𝛽 ∧ 𝜔+
𝑗
) = 𝜔+

𝑗
(𝛽), where we identify 𝜔+

𝑗
and the associated

endomorphism by the metric. By (A.5), this gives

∗ 𝑑

(∑
𝑙

⟨
𝜔+
𝑖
(𝑟𝜕𝑟), 𝜔

−
𝑙
(𝑟𝜕𝑟)

⟩
𝜔+
𝑗

)
= −

∑
𝑙

𝜔+
𝑗
◦𝜔+

𝑖
◦𝜔−

𝑙
(𝑟𝑑𝑟).

From the expression of 𝑹−,(1)
𝒆 (𝐻+

2
)(𝜔−

𝑙
) and using that𝑊+

𝑖𝑗
= 𝑊+

𝑗𝑖
, 𝜔+

𝑗
◦𝜔+

𝑖
= −𝜔+

𝑖
◦𝜔+

𝑗
as well as∑

𝑖
𝑊+

𝑖𝑖
= 0, we find:𝑹−,(1)

𝒆 (𝐻+
2
) = 0. The proof is exactly the same for the rest of the tensor coming

from𝑊−.
Let us now show that a quadratic 2-tensor satisfying 𝑹(1)

𝒆 (𝐻′
2
) = 0 is necessarily of gauge type,

that is:𝐻′
2
= 𝑉3

𝒆 for some cubic vector field 𝑉3. According to [11, (28)], there exists 𝑉3 such that
𝐻′′

2
∶= 𝐻′

2
− 𝑉3

𝒆 is radial, that is𝐻′′
2
(𝜕𝑟, .) = 0, and in particular, there exist𝐻𝑖𝑗 with

𝐻′′
2
= 𝑟4

∑
𝑖𝑗

𝐻𝑖𝑗𝛼
+
𝑖
𝛼+
𝑗

(A.6)

and still 𝑹(1)
𝒆 (𝐻′′

2
) = 0. We now need to prove that𝐻′′

2
= 0.

Now according to [11, (38)], from (A.6), one has:

0 = 𝑹
+,(1)
𝒆 (𝐻′′

2
) = −6

∑
𝑖𝑗

𝐻𝑖𝑗𝜔
+
𝑖
⊗ 𝜔+

𝑗
+ (𝐻11 + 𝐻22 + 𝐻33)IdΩ+

𝒆
. (A.7)

We therefore directly find𝐻𝑖𝑗 = 0 when 𝑖 ≠ 𝑗, and taking the trace of (A.7), we get 0 = −6(𝐻11 +

𝐻22 + 𝐻33) + 3(𝐻11 + 𝐻22 + 𝐻33) and consequently 𝐻11 + 𝐻22 + 𝐻33 = 0. Finally, we see that
𝐻′′

2
= 0 and this ends the proof. □

A.2 Vanishing of the obstructions to Einstein deformations

Proposition A.2. For any quadratic 2-tensor 𝐻2 on (ℝ4, 𝒆) with: Ric𝒆(𝐻2) = Λ𝒆 for Λ ∈ ℝ, the
obstructions (26) and (32) vanish.

Remark A.3. The result is true from Propositions 2.8 and 3.3 and by [24]. We however prefer to
give another much simpler way to see that it holds.

Sketch of proof. We only sketch the proof as the result can essentially be found by bilinearity of the
obstructions (32) and (27) and thanks to the curvature of the known examples of Einstein metrics.
Let us use the bilinear nature of our obstructions and decompose any quadratic 2-tensor

as in Proposition A.1, that is as 𝐻2 = 𝐻R + 𝐻𝑊+
+ 𝐻𝑊−

+ 𝐻0 where 𝐻R =
Λ𝑟4

9
𝑔𝕊3 , 𝐻𝑊±

=

𝑟2

6

∑
𝑊±

𝑖𝑗
𝜃∓
𝑖
◦𝜔±

𝑗
and𝐻0 = 𝑉𝒆 for some vector field 𝑉 satisfying |𝑉|𝒆 ∼ 𝑟3.

Note that any term combinedwith a gauge term𝐻0 will make the obstructions vanish by invari-
ance, see Proposition 2.6 and Remark 3.6. There remain several situations which can be settled
thanks to the known examples of Einstein metrics:

∙ the obstructions for (𝐻R,𝐻R) vanish because they do on the sphere,
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INTEGRABILITY OF EINSTEIN DESINGULARIZATIONS 219

∙ the obstructions of the form (𝐻R,𝐻𝑊±
) vanish by bilinearity and because of the examples of

(anti-)selfdual Kähler-Einstein metrics such as the Fubini-Study metric on ℂ𝑃2,
∙ the obstructions of the form (𝐻𝑊±

,𝐻𝑊±
) vanish by bilinearity and because of the examples

of orbifold hyperkähler metrics such as the ones produced in [39], where it is clear that the
(anti-)selfdual curvature can take arbitrary values,

∙ lastly, the obstructions of the form (𝐻𝑊±
,𝐻𝑊∓

) vanish by bilinerarity and because of the exam-
ples of non selfdual Einstein metrics, like the Euclidean Schwarzschild metric or the product
metric 𝕊2 × 𝕊2.

□

RemarkA.4. One can also use the expression of the quadratic terms of the Ricci curvature directly
from (48). The computations are not straightforward but the different terms remarkably cancel
out as expected.

APPENDIX B: FUNCTION SPACES AND ANALYTICITY ON ALE SPACES
In this appendix, we define function spaces from [38] and use it to show the analytic dependence
of Einstein modulo obstructions deformations of Ricci-flat ALE metrics needed in the last sec-
tion of the article. The proofs in the compact situation can be found in [32] and [38, Chapter 1,
Section 3.1].

B.1 Function spaces
For a tensor 𝑠, a point 𝑥, 𝛼 > 0 and a Riemannian manifold (𝑀, 𝑔). The Hölder seminorm is
defined as

[𝑠]𝐶𝛼(𝑔)(𝑥) ∶= sup
{𝑦∈𝑇𝑥𝑀,|𝑦|<inj

𝑔
(𝑥)}

||| 𝑠(𝑥) − 𝑠(exp
𝑔
𝑥(𝑦))|𝑦|𝛼 |||𝑔.

For ALE manifolds, we will consider a norm which is bounded for tensors decaying at infinity.
Denote 𝑟 a smooth positive function equal to the parameter 𝑑𝒆(0, .) in a neighborhood of infinity
where (𝑁, 𝒈𝑏) has ALE coordinates.

Definition B.1 (Weighted Hölder norms on an ALE manifold). Let 𝛽 ∈ ℝ, 𝑘 ∈ ℕ, 0 < 𝛼 < 1 and
(𝑁, 𝑔𝑏) be an ALE manifold. Then, for any tensor 𝑠 on 𝑁, we define

‖𝑠‖
𝐶
𝑘,𝛼
𝛽

∶= sup
𝑁

(1 + 𝑟)𝛽

(
𝑘∑

𝑖=0

(1 + 𝑟)𝑖|∇𝑖
𝑔𝑏
𝑠|𝑔𝑏 + (1 + 𝑟)𝑘+𝛼[∇𝑘

𝑔𝑏
𝑠]𝐶𝛼(𝑔𝑏)

)
.

Lemma B.2 [11, Lemma 2.1],[38]. Let (𝑁, 𝒈𝑏) be an ALE orbifold. Then, for any 𝛽 ∈ (0, 2) ∪ (2, 4)

there exists 𝐶 > 0 such that for any ℎ ∈ 𝐶
2,𝛼

𝛽
, ℎ ⟂ 𝑶(𝒈𝑏), we have

‖ℎ‖
𝐶
2,𝛼
𝛽

⩽ 𝐶‖Φ(1)
𝒈𝑏
ℎ‖𝐶𝛼

𝛽+2
. (B.1)
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220 OZUCH

B.2 Real-analytic dependence of Einstein modulo obstructions metrics
Let us consider 𝛽 ∈ (0, 2) to ensure that the kernel and cokernel of the linearization of Φ𝒈𝑏

is
reduced to 𝑶(𝒈𝑏). The map 𝑔 ∈ 𝐶

2,𝛼

𝛽
↦ Φ𝒈𝑏

(𝑔) ∈ 𝐶𝛼
𝛽+2

is a real-analytic map between Banach
spaces because the “weights” (1 + 𝑟)𝛽 or (1 + 𝑟)2+𝛽 in both the starting and target spaces are larger
than 1. This condition on the weight ensures that multilinear operations are continuous in this
topology, see the theory of [40] for the source of this requirement and [11, Proof of Lemma 8.2] for
a discussion of the weight larger than 1 in the case of weighted Hölder norms.
We can therefore apply the implicit function theorem to the following analytic map:𝚿 ∶ 𝐶

2,𝛼

𝛽
×

𝑶(𝒈𝑏) × 𝑶(𝒈𝑏) ↦ 𝐶𝛼
𝛽+2

× 𝐶
2,𝛼

𝛽
defined by

𝚿(𝑔, 𝒐, 𝑣) ↦
(
Φ𝒈𝑏

(𝑔) + 𝒐, 𝜋𝑶(𝒈𝑏)
(𝑔 − 𝒈𝑏 − 𝑣)

)
,

where 𝜋𝑶(𝒈𝑏)
is the 𝐿2(𝒈𝑏)-projection on 𝑶(𝒈𝑏) which is linear (hence real-analytic).

The map 𝚿 is real-analytic between Banach spaces and it satisfies the assumptions of the
implicit function theorem for real-analyticmaps betweenBanach spaces of [44] about𝒈𝑏. Namely,
it satisfies:

(1) 𝚿(𝒈𝑏, 0, 0) = 0, and
(2) the linearization (𝑔, 𝒐) ↦ 𝚿(𝑔, 𝒐, 0) is a homeomorphism by construction.

We conclude that for any 𝑣 ∈ 𝑶(𝒈𝑏) small enough, there exists a unique (𝑔̄𝑣, 𝒐̄𝑣) ∈ (𝒈𝑏 + 𝐶
2,𝛼

𝛽
) ×

𝑶(𝒈𝑏) satisfying:

𝚿(𝑔̄𝑣, 𝒐̄𝑣, 𝑣) = 0

and that 𝑣 ↦ (𝑔̄𝑣, 𝒐̄𝑣) is real-analytic.
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