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Abstract

This first part of this thesis examines the impact of changes to gravity on the for-
mation of dark matter haloes and galaxies. We use two N-body simulations, one
assuming general relativity (GR) and the other the Hu-Sawicki form of f(R) grav-
ity, to investigate the concentration-formation time relation of dark matter haloes.
At fixed mass, haloes in modified gravity are more concentrated than those in GR,
especially at low masses and redshifts. We find a clear difference between halo con-
centrations and assembly histories in modified gravity and GR. We incorporate these
changes to the properties of dark matter haloes, along with halo merger histories
from a N-body simulation of f(R) gravity to build, for the first time, a partial
modified gravity version of GALFORM. We concentrate on a model prediction that
should, in principle, show a clear trace of modified gravity, the halo occupancy of
emission line galaxies. In the second part of the thesis we present the first appli-
cation of a variance-based sensitivity analysis (SA) to a galaxy formation model.
We perform a multi-parameter exploration of GALFORM to compute how sensitive
the present-day K-band luminosity function is to varying different model parame-
ters. We first demonstrate the usefulness of the SA approach by varying just two
model parameters, one which controls supernova feedback and the other the heat-
ing of gas by AGN. The SA analysis matches our physical intuition regarding how
these parameters affect the predictions for different parts of the galaxy luminosity
function. Our study marks a much needed step away from the traditional “one-at-
a-time” parameter variation, often used in this area, and improves the transparency

of semi-analytical models.
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Chapter 1

Introduction

Science advances on the fundamental assumption that the Universe is knowable and
understandable by a human mind, and cosmology in particular has done more to
justify this belief than any other area of research. Cosmology is the study of the
Universe as a whole, attempting to explain its origin and evolution. As such, its
roots can be traced to the earliest human mythologies, which makes it all the more
fascinating that it became a quantitative discipline only a little over one hundred
years ago, with Einstein’s theory of gravity.

In the same way that the focus of biological sciences was transformed from clas-
sifying organisms to explaining their origins by Charles Darwin, the astrophysical
sciences were elevated from a catalogue of celestial objects to building mathematical
models of entire universes by Albert Einstein’s General Relativity (GR) theory of
gravity (Einstein ef all M916). Einstein’s equations were solved independently by
Friedman (1922) and Lemaitrd (I927), with the solution being an expanding uni-
verse which started from an initial singularity, an infinitely small and dense point
at t = 0. In the meantime, Sliphey (T915) observed that spectral lines of the ex-
tragalactc objects are redshifted, and subsequently Hubbld (I929) proposed a law
that the redshift increases in proportion to the distance of the galaxy away from us,
which provided evidence in favour of the expanding universe theory.

The century that followed saw rapid developments in cosmology, in both obser-
vations and theory. Zwicky (I933) estimated the velocity dispersion of galaxies in

clusters, and argued that the clusters did not contain enough luminous matter to

13



1.1. ACDM 14

hold them together. He postulated the existence of the “dark matter” to explain this
discrepancy.

His claims were supported on a smaller scale by the work of Rubhin & W Kentf
(I970) on the rotation curves of the galaxies — independent measurements that both
suggested the presence of matter that could not be observed directly, through its ef-
fects on the dynamics of matter that could be seen. Rubin showed that the rotation
curves of spiral galaxies are flat, which implies that the mass in a galaxy increases in
proportion to the distance from the centre, whereas the light in the galaxy is concen-
trated towards the centre. Moreover, the measurements of the type Ia supernovae
in distant galaxies (Riess ef all, T998; Perlmuffer ef all, 1999) have shown that the
rate of the expansion is accelerating. This inspired the postulate of “dark energy”,
another unknown component of the Universe, which can overcome the gravitational

attraction over large scales in space and time.

1.1 ACDM

To identify the components of the Universe, we start by formulating GR in terms of

Einstein-Hilbert action:

S:/L;TG(R—QA)JFE,” V—g d'z, (1.1)

where g is the metric, G is Newton’s gravitational constant, R is the Ricci curvature
scalar, A is a constant and L,, is a term describing matter field. The actin can be
minimised with respect to metric g to obtain the Einstein Field Equations (EFE):

1 8w
R,uzx - §g,uz/R + Ag,ul/ = 7Tuua (12)

where R, is the Ricci curvature tensor, R is the Ricci curvature scalar, g, is the
metric tensor, A is the cosmological constant, G is Newton’s gravitational constant,
c is the speed of light in vacuum, and 7},, is the stress — energy tensor.

EFE contain terms for time (1 dimension) and space (3 dimensions), but since
all tensors are symmetric, the equation above denotes only 10, not 16 independent
relations. Moreover, we can invoke the cosmological principle to simplify it even

further. The cosmological principle states that the distribution of energy in the
July 19, 2020



1.1. ACDM 15

Universe is homogeneous and isotropic on large scales. Formally, this is expressed
by requiring the EFE to remain symmetric under rotations and translations. This
requirement was used by [Friedman (I922); Lemaifrd (I'927) to derive a solution,
known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

2

r
1 —kr?

ds? = —c2dt? + a2 (t) +r2d* + r?sin?(0)d¢? | | (1.3)

where a is expansion factor, size of the Universe normalised to 1 at present time,
and k is the space-time curvature.
The FLRW metric can be inserted to EFE. On-diagonal terms of Ricci and

stress-energy tensors give the Friedman equations:

N 2
a 8tG ked A
2y =, 2 1.4
(a) 3 P T 3 (1.4)
a ArG 3p Ac?
= - —. 1.
a 3 <pjL C2> * 3 (1.5)

For convenience, the Hubble parameter can be defined as H2(t) = (a/a)’. p can
also be split into matter (p,,) and radiation (p,) parts (since they scale differently
with expanding / contracting space-time). Then, p; components can be normalised
by the curvature term to €2; = p;/p., where

_ 3HA(t)

_ 22\ 1.
pe= g (1.6)

is the critical density of the Universe at a given time t. Finally, the 2; terms can be
normalised by their present-day values €2; . Putting all the steps together, we can

re-write the first Friedman equation as

Qm,O Qr

Q0
a’d +

azio +QA’O+Q,_2’) R (17)

H2:H§<

where €, 0 2,0 Qa0 0 are the energy densities of matter, radiation, cosmological
constant and curvature at the present time.

ACDM has so far been extremely successful in making cosmological predictions,
passing observational tests on large scales and over a wide range of timescales such as
the fluctuations in the Cosmic Microwave Background (CMB) radiation, galaxy clus-
ter abundances, and hierarchical structure formation (Springel et all, 2005; Hinshaw

ef all, PO13; Planck Collaborafion ef all, 2016a). The small scale predictions, on the
July 19, 2020



1.1. ACDM 16

other hand, remain controversial (Weinberg et al], 2015; Bullock & Boylan-Kolchin,
2017) — in particular the observed shape of the innermost regions of dark matter
haloes and the number and properties of the satellite galaxies of the Milky Way. It
has, however, been pointed out that criticism might be unfounded on statistical and
numerical grounds (Genina ef all, 2017), or that it might point to stronger impact
of baryonic effects (such as a more efficient supernova feedback) or complex physics
in the dark sector.

The concordance model emerging from the most recent observations is the Uni-
verse which is composed of a~ 4% visible matter (later referred to as “baryons”),
~ 26% dark matter and &~ 70% dark energy. In this model, the dark energy is the
energy of the vacuum, called cosmological constant A. The most likely candidate for
the dark matter are relatively heavy, with a rest mass at the order of GeV, weakly

interacting particles called WIMPs (Peebled, [987).

1.1.1 Cosmological Constant

Adding a cosmological constant or A term to the EFE offers one explanation for the
accelerating cosmic expansion, but this comes at the price of introducing theoretical
problems.

The Fine-Tuning Problem arises when we compare the value of the vacuum en-
ergy density, as predicted from quantum field theory, to the observationally inferred
value of A. The quantum field theory prediction is at least 10%° times larger than
the observed A, and so if these two values are indeed the same physical quantity,
reconciling them would require adding some mechanism to the Standard Model of
particle physics which could fine-tune the vacuum energy density to the correct level.

The Coincidence Problem comes from an observation that at the present day,
the contributions of the A and matter energy components to the energy budget of
the Universe are comparable. Eq (IZ7) predicts that the history of the Universe has
distinct epochs, each dominated by different component, and that at the present
day, the (a = 1) A and matter terms are comparable. For low values of a, after the
epoch of radiation domination, the matter density dominates over A, while for large
values of a it is the other way round. The question the Coincidence Problem asks is

July 19, 2020



1.1. ACDM 17

how likely is it that our existence coincides with this special time in the history of
the Universe, when both of these terms are within one order of magnitude?

Many modified gravity theories cite the Fine-Tuning Problem as their motivation,
and they often provide a physical mechanism justifying the values of A (and some-
times evolution of €, in relation to €2,,) as natural by modifying Einstein-Hilbert

action, or adding another term to it.

1.1.2 Cold Dark Matter

There is circumstantial evidence in favour of the dark matter hypothesis which goes
beyond the rotation curves of the galaxies. Galactic clusters observations using
both X-ray images of the hot gas, and gravitational lensing of matter have shown
that the missing matter outweighs the luminous matter by a factor of five (Allen
ef_all, 20TT). Both observations (Markevitch ef all, P004; Massey et all, 2015) and
simulations (Roberfson ef all, PII6) of galaxy cluster collisions, such as 1E 0657-558
(also known as the Bullet Cluster), have also provided what is largely considered
the most direct evidence of dark matter. Further studies of the CMB anisotropies,
Supernovae Type la distance measurements, baryon acoustic oscillations (BAO),
redshift-space distortions and gravitational lensing maps (Refregier, 2003) are all
overwhelmingly in favour of the missing matter hypothesis.

Much of the evidence cited in the previous paragraph points at another property
of the dark matter — its temperature. To match observations, dark matter needs to
be cold, with a low thermal velocity dispersion to preserve density fluctuations on
small scales. Possible cold dark matter candidates include axions (Peccei & Quinmn,
1977) and WIMPs (Peebled, T982), but despite extensive searches by observational
astronomers and particle physicists, there has not yet been a conclusive detection.

Nonetheless, theoretical research has found more indirect evidence in favour of
the ACDM cosmology. In ACDM , structure grows hierarchically (bottom-up), with
small objects collapsing first, and merging to form larger and more massive objects.
The predictions of the cold dark matter model are in better agreement with large-
scale structure observations than other mainstream alternatives (Springel et all, 2005,
De Tucia & Blaizofl, 2007).

July 19, 2020



1.2. Computational Cosmology 18

1.2 Computational Cosmology

Over the past few decades, many areas of science have seen their two modes of
research, observations and theory, supplemented by the third one — computation.
Nowadays, numerical modelling is one of the main methods in which cosmologists can
test their ideas regarding structure formation. Crucially, advancements in computing
have allowed solving increasingly complex equations, and on an increasingly vast

range of scales.

1.2.1 Initial Conditions

Modern cosmology posits that the large-scale structure formed from nearly-uniform
random fluctuations in the primordial hot matter distribution. The linear perturba-
tion power spectrum can be computed using a Boltzmann solver code such as CLASS
(Blas“ef_all, 2011). This is then used to generate the initial Gaussian density field
for the simulation, using a code such as PANPHASIA (Uenkind, 2013). The particles
are then displaced from their initial distribution as prescribed by a second-order La-
grangian Perturbation Theory algorithm (Jenkind, PUI0), so that their distribution

matches the input matter power spectrum.

1.2.2 Numerical Gravity Solvers

If we assume that these random over- and under-densities in the primordial matter
distribution were the seeds of structure formation, we can construct a numerical
simulation of the Universe by starting with a taking volume of space, populating
it with N gravitationally interacting point particles, and solving the Newtonian
equations of motion until we arrive at the present day (z = 0) state.

For simplicity, the N-body simulations used in this thesis follow only collisionless
particles. This ignores collisional, radiative and pressure-driven exchanges of energy
and momentum, and only models the gravitational interactions. We make use of the
results of many gravity solvers: ECOSMOG (Litef all, P0T2) based on RAMSES
(Leyssier, 2002), AREPO (Springel, 2010) and GADGET (Springel, 2003).

July 19, 2020



1.2. Computational Cosmology 19

1.2.3 Dark Matter Structures

Instead of operating on the entire phase space of billions of particles, it is usually
sufficient to describe large-scale structure of the simulation using bulk properties.
Therefore, results of the dark matter-only simulations are used to produce halo and
subhalo catalogues.

Dark matter haloes are locally overdense regions of dark matter (Davis ef all,
1985). As explained in (Mo ef"all, 20I0, Chapters 5 and 7), the gravitational col-
lapse of collisionless dark matter approximately follows the spherical collapse model
(Gunn & Goffl, 1972; Peebles, 1980), in which a spherical top-hat function of dark
matter particles is evolved using Newtonian equations of motion. The linear collapse
model predicts that after the overdensities collapse, they have an average equilib-
rium density of approximately 178 times greater than the critical density. Therefore,
for simplicity, dark matter haloes are conventionally identified as isolated regions of
space with mean enclosed density 200 larger than the critical one.

The algorithm commonly used to identify such objects is a percolation algorithm
called Friends-of-Friends (Davis et all, T985, FoF'), which connects particles located
within a linking length b of each other. The linking is done recursively until it
forms a closed group, within which distances between particles are less than b, and
hence the effective density is above some density threshold. Usually, FoF haloes only
take positions into account, which means that gravitationally unbound particles can
belong to a FoF halo.

Dark matter subhaloes are locally overdense regions within haloes, which can be
used to identify remnants of previous mergers and build halo histories by tracing
particles which belong to the same structures at different snapshots.

As subhaloes are typically required to be gravitationally bound their definition
is more restrictive, and the subhalo finding algorithms are usually correspondingly
more complex. There exist many subhalo finders, and in this thesis we use two
algorithms, (Springel et all, 2001, hereafter SUBFIND) and (Han et all, 2012, PUIR,
Hierarchical Bound-Tracing, hereafter HBT+). Regardless of the algorithm used, the
subhaloes we use are always composed of gravitationally bound particles only.

Merger trees are structures used to record the formation histories of haloes. It
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records how much they grow in mass and size from snapshot to snapshot, as well as
which haloes from the preceding snapshot had merged into the halo in the current
one. Since structure identification for halo and subhalo finders typically takes place
at individual snapshots in an isolated manner, an additional step is required to link
these structures across the time of the simulation.

HBT+ (Han_ef all, 2017, POIR) is exceptional in this regard, as it constructs
the merger trees and identifies substructures at the same time. It starts from the
earliest snapshots and builds the tree up as it progresses towards z = 0. On the
contrary, SUBFIND is run independently, and does not trace the evolution of structure
or how dark matter particle membership changes from halo to halo across snapshots.
Merger trees are then obtained using the algorithm developed by Jiang et all (2014,
DHALO). DHALO works by tracking particles between snapshots to determine the

descendant of each subhalo, and linking these descendants together to produce a

merger tree.

July 19, 2020



Chapter 2

Theory

This chapter outlines the theoretical background of modified gravity, introduces the

f(R) modified gravity theory, and describes semi-analytic model GALFORM in detail.

2.1 Modified Gravity

Arguably the first modification to GR was made by Albert Einstein himself when he
inserted the cosmological constant, A, into Eq (IZ0). While his original motivation
did not stand the test of time?, the A term turned out to be a crucial component in
modern cosmological theory and opened the door to further changes to the original
theory.

Most modern modified gravity theories, such as f(R) (Carroll’ef all, 2004) which
this thesis focuses on, cite the fine-tuning problem as the motivation behind their
modifications. However, for many theories, once they fit Solar system observational
constraints, the original appeal often disappears as the modification is no longer
sufficient to explain the original A discrepancy. Nevertheless, the upcoming EUCLID
(Laureijs et all, 2001) and DESI (Levi_ef-all, 2O13) surveys will attempt to extend
the constraints on the theory of gravity from the local astrophysical tests to larger,
cosmological scales, building on the work of galaxy surveys like 2dFGRS, SDSS,
BOSS & eBOSS.

!Einstein was famously unhappy about the expanding Universe, believing that it ought to be

constant in size
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Of particular interest are phenomena which are not predicted by the A term in ,
such as the time-dependence of the dark energy component or the corrections to the
gravitational interactions (usually called “the fifth force”). Observing either of these
effects would be the “smoking gun” of the modified gravity effects, and will pose a
great challenge to the ACDM cosmology. Such potential discovery will change our
understanding of gravity and cosmology, and it is therefore of great importance that
we do not miss it.

There is an additional benefit to modified gravity research, namely the decoupling
of the astrophysical and cosmological models from the paradigm of the dominant
gravitational theory. For instance, when publishing gravitational lensing data, the
light deflection measurement is independent from the gravity theory, but the pro-
jected matter distribution is not. Therefore, tests of GR can only be made using data
sets that have been processed using self-consistent assumptions. In this way, the very
existence of modified gravity research keeps the astrophysical measurements account-
able, by preventing assumptions originating in currently dominant model, ACDM |,
from being incorporated into the early stages of experiment design or data analysis.

Unlike the theories like MOND, modified gravity theories such as f(R) attempt
to address the dark energy problem, not the dark matter problem. As such, they
do not attempt to account for the invisible dark matter, but instead aim to provide
a theoretical explanation for the observed accelerated expansion of the Universe
(Buchdahl, 1970).

The class of theories we focus on in this work are called f(R) theories. This
class of theories introduces an arbitrary function of the Ricci curvature scalar that

is added to the Einstein-Hilbert action:

S :/ [ﬁ (R+ f(R) —2A) + L, | v/—g d*x. (2.1)

The f(R) term, after which the theory takes its name, causes an increase in the
strength of the gravitational force compared to GR. In order to satisfy astrophysical
constraints on the strength of gravity (Lombriser, 2014; Cataneo ef-all, 2015; Nunes
ef“all, 2017), the theory contains a chameleon screening mechanism (Khoury &
Weltmanl, 2004). This ensures that the gravitational attraction is restored to GR

level in dense environments.
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From Eq () we can derive the Poisson equation for modified gravity

S (o= ) + 5 (RU) — ). 2:2)

1 —
— V32 =
a? ¢ 3

where fr = df/dR and bars on top of variables signify background values. The
equation remains valid for |f(R)| < |R| and |fg| < 1, both of which hold for
the model we are investigating. Evidently, the only difference with respect to the
Newton-Poisson equation depends solely on fg, the derivative of f with respect to
R. The magnitude of fg relative to the classical Newtonian potential, ¢, splits the

equation into two regimes:

1. |fr| < |@|: gravity is to a good approximation described by GR, with no

increased strength; these regions are called “screened”.

2. |fr] > |¢|: the Poisson equation is enhanced by a factor of 1/3; in these regions

screening is ineffective.

Hence, in f(R) models the strength of gravity is always between 1 and 4/3 times
the GR value. The f(R) function does not determine the gravity enhancement, but
instead controls the transition between the screened and the unscreened regions. On
the other hand, the effectiveness of the screening mechanism is determined by the
magnitude of its derivative |fg]|.

When |R| > M?, fr simplifies to

B c1 M2 n+1

and | fg (2)| evolves with redshift as given by

B[l ()]

Hence, the choice of n, ¢; and ¢ is sufficient to uniquely determine the value and

evolution of the fifth force: n controls the gradient of the evolution of the screening
mechanism, and the ratio ¢;/c3 determines its effectiveness.

Even though f is an arbitrary function of the Ricci curvature scalar, there are
physical considerations which we can use to postulate its form. Specifically, since

f(R) theory sets out to find a mechanism behind the accelerated expansion, f should
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Figure 2.1: Evolution of the relative effectiveness of screening as a function of redshift

(Eq (22)) for 3 different versions of the Hu & Sawicki (2007) f(R) model with

different values of n.
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increase with decreasing R (in the low curvature regime). Hu & Sawicki (2007, HS)
propose an empirical form:
o c1(=R/M?)"

F(R)=—-M TR AT (2.5)

where ¢; and ¢, are dimensionless constants which control the screening threshold,
and M = HZ/Q, is determined by the cosmology through its dependence on the
Hubble constant, Hy, and the matter density parameter, €),,.

Since the effectiveness of the screening mechanism can be characterised by | x|
only, we can denote theories with a shorter notation, e.g., F6 will mean a theory
with |fz| = 1079 Astrophysical constraints limit the choices of the present day
background value of |fr|. Supernovae (Upadhye & Steffen], 2013), X-ray (lerukina
ef-all, P014) and Solar System (Berry & Gaix, 2011; Lombriser_ef all 2014) obser-
vations already rule out models with |fz| > 107° (F5, F4, etc.). On the contrary,
cosmologies with |fz| < 1077 show negligible differences to GR in terms of structure

formation.

2.2 Model of Galaxy Formation and Evolution

In most models, dark matter behaves different to baryons. Dark matter in simula-
tions follows relatively simple physics, as it is typically assumed to be collisionless,
pressureless, and interacts only gravitationally. Baryonic calculations, on the other
hand, are considerably more complex. Nonetheless, since galaxies are thought to
form in dark matter haloes, it is imperative that we develop a framework for mod-
elling the growth of baryonic structures.

The simplest mechanisms for providing verifiable constraints for observational
astronomy avoid modelling underlying baryonic processes in favour of developing a
rule-based mapping between dark matter haloes and galaxies. Two examples of such
an approach are halo occupation distribution (HOD) modelling (Berlind ef all, PO03;
Zheng et all, 2005) and subhalo abundance matching (SHAM) (Vale & Osfriken,
2004, 2006) models.

Naturally, such approaches are over-simplified, and can only answer the most

basic questions regarding the distribution of galaxies in the Universe. Modelling
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galaxy formation in a cosmological setting presents a far greater challenge, both
from the physics perspective — there are many distinct physical processes involved,
some of which are poorly understood — and from the computational one — the physical
processes take place over a wide range of length and time scales, which make them
difficult to simulate.

A common approach to this problem are large-scale hydrodynamic solvers which
delegate small-scale physics to simplified sub-grid models (Vogelsberger et all, 2014,
Schaye et all, 20014). Such hydrodynamic simulation of baryons is significantly more
computationally expensive than the simulation of a dark matter only universe of a
similar size and resolution, since it involves solving the hydro- and thermo-dynamic
equations simultaneously with the Newton-Poisson equation. Subject to the limita-
tions of the computer memory (and hence resolution), the hydrodynamic simulations
have recently been very successful in reproducing many of the observed properties
of the galaxies. However, they come at a very high computing cost, which restricts
their size and resolution, and these calculations still rely on sub-grid models of super-
massive black hole (SMBH) growth, supernovae (SNe) feedback, and star formation.

Semi-Analytic Modelling (SAM) builds galaxy catalogues by solving approxi-
mate, physically-motivated equations that describe individual baryonic processes,
set in the context of the “scaffolding” of the dark matter merger trees (Cole ef all,
2000; Baughl, 2006; Bensonl, 2010; Lacey et all, 2016). Since the results of the SAM
do not change the underlying merger tree, it is not possible to use SAMs to predict
the effect that the presence of baryons has on dark matter haloes. Moreover, SAM
galaxies depend only on the properties of the host haloes, which sacrifices accuracy of
the properties of individual galaxies (since some effects of the local environment may
not be included). With this in mind, SAM offers an alternative trade-off between the
speed of execution and the accuracy of predictions that presented by hydrodynamic
simulations. SAMs can be used not only to generate galaxy catalogues for very large
cosmological volumes (Merson ef all, 2019), but also to explore the parameter space
of the galaxy formation model. Since SAM parameters are physically motivated,
when comparing results obtained from SAM with the ones from the observational

data, it is straightforward to assess whether the model is qualitatively reproducing
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the system, or if it needs additional physical process. Similarly, any other analysis
carried out using SAM, such as the one in Chapter 5, can be easily interpreted in
physical terms.

In this work we focus on GALFORM, a semi-analytic model developed mostly in
Durham. It includes prescriptions for the following galaxy formation and evolution

processes:
1. merger histories of dark matter haloes
2. heating and cooling of gas inside dark matter haloes
3. quiescent star formation
4. bursts of star formation
5. feedback driven by supernovae
6. heating by an active galactic nucleus (AGN),
7. galaxy mergers,
8. disc instabilities,
9. stellar evolution,
10. dust extinction,

which are discussed in detail in the following subsections.

2.2.1 Merger Histories of Dark Matter Haloes

Fundamentally, GALFORM starts with the assembly histories, density profiles and
angular momenta of the dark matter haloes, solving analytic prescriptions which
describe how galaxies form inside them, and computing various galaxy properties.
Here, we focus on the dark matter halo catalogue extracted from an N-body simu-
lation; many earlier studies focused on merger trees generated using a based on the

Extended Press-Schechter theory, using a Monte Carlo method to accurately build
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the complete merger histories of dark matter haloes (Cale et all, 2O00; Parkinson
ef_all, 2007).

There exist analytical models which can fit dark matter halo density profiles using
a small number of free parameters, most notably the the Einasto profile (Einastd,
1965) and the NFW profile (Navarro_ef all, T996). The description that follows
adopts the NFW prescription, but GALFORM models can be configured and cali-
brated to use either profile.

The NFW halo density profile is formulated as

p(r) _ de (2.6)

Perit (T/T—Z) (1 + 7“/7”_2)27

where r_ is the characteristic scale radius (the radius at which the slope of logarith-
mic density profile, dIn (p) /d1In (7) |,_2 = —2), and J. is a characteristic overdensity.
At fixed mass My, d. is given by

200 3

56:?1n(1—|—c)—c/(1+c)’

(2.7)

where ¢ is a dimensionless concentration parameter, defined as the ratio of 799
over the scale radius of a halo: ¢ = 7990/r_2. Halo concentration changes when
that halo changes mass, for instance during a halo merger or after accreting more
mass. In GALFORM, following Press & Schechten (I974); Navarro ef all (1997); Colé
ef_all (2000), the halo formation time is defined as the snapshot at which a halo has
exceeded the mass from the previous formation time by a factor 2 in mass. (The
factor of 2 is a parameter choice.) At this snapshot, the density profile, the velocity
profile and the angular momentum values are updated. Therefore, even though
halo size can change between each snapshot, halo concentration, circular velocity
and spin remain constant until the mass threshold is exceeded. Note that the halo
spin is drawn from a distribution rather than using the value measured from the
simulation. Beff et all (2007) showed that a large number of particles is needed to
get a robust measurement of the halo spin, and most galaxies reside in haloes below

the threshold for direct spin measurements.
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2.2.2 Heating and Cooling of Gas

In order to form a galaxy, the dark matter halo must gravitationally attract hot gas,
which then cools, collapses, and starts the process of star formation. In GALFORM,
host haloes are assigned three separate gas reservoirs: hot gas (M), gas ejected
from the halo by SNe and AGN feedback processes (M), and cold gas (Meowq)-
Cold gas can be either accreted by a SMBH, used for star formation, or ejected by
a feedback process. Ejected gas can be returned to the hot gas reservoir, after some
specified timescale. Then, the hot gas can be accreted by the SMBH, or cool down
(and move to the cold gas reservoir). The stars in a galaxy belong to the fourth
reservoir, M,.

The mass of these reservoirs evolves according to the following system of equa-

tions:

res

Mhot = _Macc + Qiret

Tdyn,halo
Mcold - Macc - (1 - R+ B)dj (2 8)
M, =(1—R)y
: Mres
Mres = ﬁ¢ — Olyet
Tdyn,halo

where Macc is the accretion rate, Taynhalo = Rvir/Viir is the halo dynamic timescale,
¥ is the star formation rate (SFR), § and a,e are free parameters, and R is the
returned mass fraction which is derived from the initial mass function (IMF).

The IMF ®(m) gives the distribution of the masses of stars at the time of for-
mation of a stellar population, normalised to unity between lower (my) and upper

(my) mass bounds:
my
/ m®(m)dlnm = 1. (2.9)
mr,
In the simplest case, we assume that ®(m) follows a power-law, such that
dN
d(m) = xm (2.10)

dlnm

where z is the slope parameter (for instance, Salpeter (T955) take x = 1.35).
The returned fraction R is defined as the mass returned to the interstellar

medium after a generation of stars is formed. We adopt an instantaneous recycling
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approximation, as the mass return is dominated by short-lived Type II supernovae.
The returned fraction can be expressed as
my
R= / (m — Myem(m)) ®(m)dInm, (2.11)
mp,

where mrem(m) is the remnant mass of a star of mass m.

2.2.3 Star formation

Stars in galaxies M, are assumed to only form directly from the mass in the cold
gas reservoir. Each galaxy has two components that contain stars: the disc and
spheroid. When the host halo accretes gas, it is assigned to the disc by default,
and only moved to the spheroid through galaxy mergers and disc instabilities. Stars
form differently in discs than they do in spheroids.

In discs, stars are being formed in a quiescent mode based on the Blifz &
Rosolowskyl (2006) model, originally implemented in (Lagos et all, 2001). Star for-

mation surface density is defined as

2SFR,diso = Vsf X fmol X Egam (212>

where vgp is the inverse of the star formation time-scale, f,, is the ratio of the
surface densities of the molecular and total gas masses, Xy01/Xgas, and g is the
surface density of gas. vgp is the inverse of the star formation time-scale and a
free parameter of the model, allowed to vary within 1o, or 0.24 dex, from the best-
fit value of 0.43 Gyr~!, based on measurements of local galaxies from Bigiel et al
(2O1T).

In spheroids, f,o is assumed to be 1, but the star formation time-scale is calcu-

lated in terms of bulge size ryige,

Tbulge
sburst — n ; 2.13
Teburst fdy V;:(Tbulge) ( )

but it has a minimum value T.pupst,min it does not drop below. This minimum value

and f4yn are both free parameters.
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2.2.4 Supernova feedback

The first feedback mechanism in GALFORM, which regulates star formation and
suppresses the luminosity function at the low-mass end of the halo mass function, is
driven by the supernovae (Whife & Reed, T978). It is modelled as a process which

ejects cold gas from a galaxy to a reservoir of mass m.s, at a rate of

mout - B¢7 (214)

where 1 is the star formation rate and § is a mass loading factor defined as

‘/c —7SN
B = (vm) . (2.15)

Here Vio¢ and ysny are model parameters and V, is the effective circular velocity of

the disc or bulge (for starbursts) at the half mass radius. Note that these equations
are applied to quiescent and burst star formation. Different values can be adopted
for the Vit parameters for the disc and burst contributions to star formation.

Gas is returned from this reservoir to the hot gas halo at the rate of

mret = Qpet X (216)

Tdyn ’
which is controlled by the free parameter cuet; Tayn = Tvie/Vair is the dynamical time
of the halo, where r;, is the virial radius of the halo and V,;, is the effective circular

velocity at this radius.

2.2.5 AGN feedback

Another feedback mechanism, regulating star formation at the high galaxy mass
end, is the AGN feedback (Bower ef"all, 2006). An SMBH in the centre of the
galaxy releases energy through accretion of gas, which produces the observational
signature of an AGN. This energy can balance the cooling flow in massive haloes,
shutting down gas cooling and hence star formation. SMBHs in GALFORM grow in
three modes: through accretion of gas during burst star formation, through hot gas
accretion, and through black hole mergers.

Supermassive black holes (SMBHs) grow in the centres of galaxies, and inject
energy into the gas reservoir of a halo following accretion, which disrupts the cool-

ing process (see (Fanidakis ef all, 2011; Griffin_ef"all, 2019) for descriptions of the
July 19, 2020



2.2. Model of Galaxy Formation and Evolution 32

treatment of SMBHs in GALFORM ). In GALFORM AGN heating occurs when two
conditions are met: (i) the hot gas halo is in quasi-hydrostatic equilibrium, defined

in terms of the ratio of the cooling time, 7., to the free-fall time, 74:

Tcool (Tcool) 1
T (Tcool> Kool ’

(2.17)

where o1 18 a parameter, and (ii) the AGN power required to balance the radiative
cooling luminosity Lo is below a fraction fggqq of the Eddington luminosity Lggq

of the SMBH of mass Mpy:

Leoot < fraaLraa (MBH) . (2-18>

2.2.6 Galaxy Mergers

Galaxy mergers are one of the processes which regulate the movement of cold gas
from the disc to bulge, burst star formation in the spheroid, and contribute to the
SMBH growth rate.

Similar to how dark matter haloes can be subdivided into subhaloes, the central
galaxies of host haloes have satellite galaxies associated with them. The central
galaxy is chosen during each dark matter halo merger event, as recorded in the
merger tree. The galaxy associated with the most massive halo becomes the central
galaxy, while the other galaxies become the satellites. Subsequently, the central
galaxy grows in size through the accretion of cooling gas and mergers with the

satellite galaxies.

2.2.7 Disc instabilities

Galaxies can also undergo morphological transformations and starbursts as a result
of disc instabilities. Galaxy discs which are dominated by rotational motions are
unstable to bar formation when they are sufficiently self-gravitating. In particular,

we can relate the rotational and the self-gravitating energies as

(% (Tdisc)

\/1 -68GMdisc/rdisc 7

where My is the total disc mass (ie stars plus cold gas), rgis is the disc half-mass

(2.19)

disc —

radius, and the factor 1.68 relates this to the exponential scale length of the disc.
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The quantity Fyi. measures the contribution of disc self-gravity to its circular
velocity, with larger values corresponding to less self-gravity and greater disc sta-
bility. Efstathion et all (1T982) found a stability threshold Fi.p ~ 1.1 for a family
of exponential stellar disc models. Note that a completely self-gravitating stellar
disc would have Fjy;,. = 0.61, which is therefore the minimum value allowed for this
parameter. If Fyi. drops below Fii..,, disc becomes unstable, forms a bar and then
a spheroid. The instability then triggers a burst of star formation which consumes

all cold gas from the (former) disc component.

2.2.8 Stellar Evolution & Dust Extinction

GALFORM tracks the chemical evolution of the hot gas, cold gas and stellar compo-
nents, using a similar set of equations to those above for the mass transfer (Eq (E3R)).
The yield of metals produced by star formation depends on the form of the IMF. The
cold gas metallicity is used to compute the cooling rate and the stellar metallicity
is used to build the composite stellar population of each galaxy.

For each galaxy, the model calculates a complete star formation and metallicity
history. This is combined with a stellar population synthesis (SPS) model based on
stellar evolution models to calculate the luminosity and spectral energy distribution
(SED) of the stellar population. For historical reasons, GALFORM tracks the galaxy
luminsity in filters that are specified prior to run time, rather than computing the
full SED.

Some of the light emitted by stars in galaxies is absorbed by dust, and re-emitted
at IR and sub-mm wavelengths. In GALFORM, we assume that the dust is in thermal
equilibrium — the energy the dust emits is equal to the energy it absorbs from
starlight.

The mass of dust in each galaxy is calculated from the mass of the cold gas as

M, dust
M, cold

ZCO
—6.7x 1073 (0—01;) , (2.20)

where Z.,q is the metallicity of the cold gas component, and 0.02 is metallicity
normalisation (Silva_ef all, T998; Cole_ef all, 2000).
The dust is assumed to reside in two components, dust clouds and diffuse medium.
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The dust medium has the same half-mass radius as the disc if the galaxy forms stars
in a quiescent mode, and the same half-mass radius as the stellar bulge if the stars

are formed in bursts. Both components emit a modified blackbody radiation:
L o¢ Mausek(A)Br(N, Thust ), (2.21)

where My, is dust mass, () is dust opacity, By(A, Taust) is Planck’s function,
and Ty, is dust temperature. The emission from the two components is integrated
separately and summed to obtain the full spectrum for a given galaxy.

Dust opacity is modelled as a broken power law:

A2 A<y
K (\) = (2.22)

AP N>\,
where [y, and \, are free parameters, fit to match the local observations.
This model makes a few simplifying approximations, but it performs well at far-
IR and sub-mm wavelengths (Lacey et all, 2016). For a more accurate prediction a

more sophisticated model, such as GRASIL, can be used.
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Chapter 3

Haloes in ACDM and f(R)

We compare the concentration—formation time relation of dark matter haloes in
two high resolution N-body simulations, one assuming general relativity and the
other the Hu-Sawicki form of f(R) gravity with |fz| = 1075, We assign haloes
to logarithmically spaced mass bins, and fit median density profiles and extract
median formation times in each bin. At fixed mass, haloes in modified gravity are
more concentrated than those in GR, especially at low masses and at low redshift,
and do not follow the concentration—formation time relation seen in GR. We assess
the sensitivity of the relation to how concentration and formation time are defined,
as well as to the segregation of the halo population by the amount of gravitational
screening. We find a clear difference between halo concentrations and assembly
histories displayed in modified gravity and those in GR, and conclude that existing
models for the mass—concentration—redshift relation that have gained success in cold

and warm dark matter models require revision in f(R) gravity.

3.1 Introduction

N-body simulations have driven astounding progress in improving our understand-
ing of gravitational collapse and its role in the formation of cosmic structure and
galaxy evolution. For example, simulations have demonstrated that the mass dis-
tribution inside dark matter haloes follows an approximately universal form that

can be specified by only two parameters (Navarro ef all, 1996, 1997, hereafter NE'W
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collectively):

p(r) _ de

Peric  (1)r_s) (1 +71/1_5)"
where r_5 is a scale radius (at which the logarithmic slope of the density profile is

(3.1)

equal to —2), and d. is a characteristic overdensity. It is common to recast these
into other forms, such as halo virial” mass, My, and concentration, ¢ = ron9/7_2

(the ratio of the virial and scale radii). At fixed Mag, J. is given by

200 <

50:?1n(1+c)—c/(1+c)’

(3.2)

such that higher concentration implies higher characteristic density.

Simulations of structure growth in the cold dark matter model (CDM) have also
revealed a well-defined, redshift-dependent correlation between these parameters:
at fixed redshift concentrations decrease with increasing mass, and at fixed mass
decrease with increasing redshift (see, e.g., Bullock et all, 2001; Gao ef all, PUOR).
These trends betray an simpler relation between the characteristic density of a halo
and its formation time, z: haloes that form early have, on average, higher ¢, than
late-forming ones, reflecting the higher background density at that time (e.g., Nefd
efall, 2007; Cudlow ef-all, POT3). This fact has been used to construct a number of
empirical models for the concentration-mass-redshift relation (hereafter ¢(M, z), for
short) that appeal to various definitions of formation time to predict characteristic
densities, and hence concentrations (e.g., NEFW; Bullock ef all, 2001; Wechsler ef all,
2002; Zhao ef-all, 2003; Maccio ef-all, R200R; Zhao ef all, 2009; Ludlow ef all, 20143
Correa ef all, 2015; Endlow ef all, ROTA).

Various models have met with varied success, plausibly due to diverse definitions
of collapse time (see, e.g., Nefo ef all, 2007, Gao et all, P00R; Lodlow ef all, PUIG,
for details). Several studies define the formation time of a halo as the point at
which some fraction F' of its final virial mass had first assembled, either into one

main progenitor or accumulated over many small progenitors. However, as first

discussed in Cudlow et all (2013), better agreement with simulation results can be

'We define the virial mass, Magg = (800/3) 7 1350 perit, and corresponding virial radius, rogo, as
that of a sphere (centred on the particle with the minimum potential energy) whose mean density
is equal to 200 times the critical density, 200 X pcrit-
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obtained by defining z¢ in terms of the halo’s characteristic mass, M_o = M(< r_3),
rather than Msyy. This is because mass assembly histories and mass profiles of
dark matter haloes are self-similar, and can both be modelled by the NFW (or
Einasto) profiles; moreover, best-fit parameters of both profiles have a strong linear
dependence. The origin of this relation is currently unknown, but we elaborate
on this point in Section B222. This has inspired a number of empirical models that
successfully reproduce the ¢(M, z) relation in both cold (Ludlow ef all, 20T43; Correa
ef_all, POTH) and warm dark matter cosmologies (Ludlow ef all, PUIG)

As a result, there exists an increasingly well-described relation between halo
mass and concentration (Duffy et all, 2008; Prada ef all, POT2; Angel et all, POIG;
Klypin et all, 2016, Diemer & Kravisov, PU1H; Diemer & Joycd, 2009) — the two
parameters that are needed to specify the density profile of a relaxed dark matter
halo-and how they evolve with time. Further, both analytic and empirical models
have been shown to describe reasonably well the ¢(M, z) relation for a variety of
cosmological parameters and power spectra. Our objective here is to investigate
whether the relation between concentration and formation time-upon which many of
these models are based-is sensitive to the gravitational force law, as stark differences
could be used to probe departures from general relativity.

Proposals for modifications to general relativity (GR) were originally motivated
by trying to solve one of the biggest remaining problems with the concordance
ACDM: the origin of the accelerated cosmic expansion. ACDM achieves this by in-
voking a cosmological constant, A, but the required value is difficult to justify from
a theoretical viewpoint (Carroll et all, 2004). Many alternatives have been proposed
to the standard ACDM model: the accelerated expansion could be driven by as-of-
yet unknown physics in the dark sector (Zuntz ef all, POT0) or by a modification to
GR itself (Koyama, 2016). Among the alternatives to GR, one of the most widely
studied is f(R) gravity — an umbrella term referring to modified gravity models
which change the Ricci scalar in Einstein-Hilbert action (Buchdahl, 1970; Cliffon
et_all, 2012; Joyce et all, 20IH). Current versions of the theory are fine-tuned to
match the expansion history in ACDM, which removes some of the model’s original

appeal. Nevertheless, f(R) gravity remains a workable alternative to GR with inter-
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esting phenomenology. While the parameter space of f(R) models is already tightly
constrained by observations (Lombriser, 2014), there still exists a range of models
which may display measurable differences from GR (see, for example, Heef all, PUTS;
Hernandez-Aguayo et all, POIR).

Our study uses the merger histories of dark matter haloes traced back to pro-
genitors that are two orders of magnitude less massive than the final halo mass.
Hence, high resolution simulations are necessary (see Table B). We therefore use
the LIMINALITY simulations of Shi‘ef all (2017), a suite of very high resolution dark-
matter-only runs including examples of the Hu & Sawicki (2007, HS) parametrisa-
tion of f(R) gravity. Two simulations are compared: one of GR and another f(R)
modified gravity model that is compatible with current observational constraints.

This Chapter is structured as follows. The theoretical background is given in
Section B2: the details of the N-body simulation are presented in Section BZZ, a
description of the ¢(M, z) model of Lndlow ef all (2016) in Section B22; the meth-
ods for building halo catalogues and merger trees are described in Section B=2-3 and
Section BZZ4, respectively. Our results are presented in Section BZ3. Halo selection
is outlined in Section BZ3, and the processing (fitting density profiles and estimat-
ing formation times) is covered in Sections BZ32 and B=34. The concentration —
formation time relation obtained from the processed simulation data is presented
in Section BZ3H. We explore the sensitivity of the model predictions to the param-
eter choices that specify the model in Section B=38, and to the segregation of the
halo population by the effectiveness of the screening of the gravity fifth force in
Section BZ370. Finally, in Section B4, we present our conclusions. Results obtained
by fitting Einastd (T965) (rather than NFW) profiles to determine halo structural

parameters are discussed in Section BZ33.

3.2 Theory

3.2.1 N-body Simulation

As the equations describing the modifications to standard gravity are non-linear,

modified gravity simulations are more demanding of computational resources than
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Table 3.1: Relevant parameters of the LIMINALITY N-body simulations from Shi

efall (2015).
Q,  (matter density) 0.281
Qy  (dark energy density) 0.719
2  (baryon density) 0.046
o (power spectrum amplitude) 0.820
N (spectral index) 0.971
h (Ho/[100 km s~ Mpc~1]) 0.697
L (box side) 64h~'"Mpc
M,  (particle mass) 1.523 x 108h~1M,
N,  (particle number) 5123
Zinal  (final redshift) 0.0
20 (initial redshift) 49.0
Nowt  (number of outputs) 122

their standard gravity counterparts of the same size and resolution. However, signif-
icant progress has been made recently in numerical techniques designed specifically
for this class of theories (Lief all, POT2; Bose et all, 2015). We focus our analysis on
the LIMINALITY simulation (Shi_ef all, 2015), a high-resolution, N-body simulation
of HS F6 modified gravity. For comparison, a GR simulation with otherwise identi-
cal cosmology is also studied. The cosmological parameters of both runs (Table B)
have been tuned to match the cold dark matter, WMAP-9 cosmology (Hinshaw
ef_all, P013). This is in contrast to the simulations in Ludlow efall (2018), who used
WMAP-1, WMAP-7 and Planck cosmologies, for both warm and cold dark matter
versions. However, as demonstrated in ?Ludlow ef_all (2016), cosmology differences
are not significant, and should not have a significant effect; moreover, simulation re-
sults we used are state-of-the-art in terms of resolution, which is critical in observing

modified gravity effects in individual haloes.
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3.2.2 Mass-Concentration-Redshift relation

The ¢(M, z) model tested here, first described in Ludlow ef all (2016), uses the ex-
tended Press-Schechter (EPS) formalism to approximate the gravitational collapse
of collisionless DM haloes (Bond et all, T991; Mo et all, 2010). In EPS, the collapsed
mass history (hereafter CMH), M(z), of a dark matter halo (i.e. the sum of progen-

itor masses at redshift z exceeding f x Map(z0)) identified at redshift z; is given

by
% = erfc 95e(2) = dsel20) . 3.3
M, <\/2(02(f x Mp) —02(M0))> (3:3)

Here My = Mosg(2p) is mass at the identification redshift, 02 (m) is the variance of the

density field smoothed with a standard choice of a window function, a spherical top-
hat window containing mass m, and ds.(2) ~ 1.686/D(z) is the redshift-dependent
spherical collapse threshold, with D(z) the linear growth factor.

One difference between the EPS theory and the Lndlow ef all (2016) scheme is
the definition of halo formation time: in EPS, a common definition of a formation
redshift, z¢, is the one at which the sum of progenitor masses more massive than
f X Mg first exceeds a fraction F' x My, where typically f = 0.01,F = 0.5
(e.g. Lacey & Colé, 1993; Navarro_ef_all, [996). In Ludlow ef all (2016), F is
not a parameter, but varies between the haloes and can be calculated from their

concentration:
B M_, B In(2) —1/2
My In(l+c¢)—c/(1+c)

where the right-most equation is strictly valid for an NFW profile. For each halo,

F (3.4)

zs therefore corresponds to the redshift at which a fraction M_5/Msg of the halo’s
final mass had first assembled into progenitors more massive than f x Myy (where

= 0.02). Ladlow ef-all (2016) referred to this redshift as z_,, to annotate its
explicit dependence on the characteristic mass, M_,.

The CMH is scale invariant in both CDM and warm dark matter (WDM) models,
and can be used to estimate z_5 and the corresponding critical density, peit(z_2).
The ¢(M, z) model advocated by Ludlow ef"all (2016) exploits the strong, linear
correlation between peit(2_2) and (p_s), the mean density within r_,. Empirically,

they found (p_2) = A X peie(2_2), with A &~ 400. Once the CMH is known, this

July 19, 2020



3.2. Theory 41

expression can be used to compute (p_»), and hence infer the halo mass profile.

The model accurately reproduces the concentrations of dark matter haloes in
both CDM and WDM cosmologies. This may appear surprising at first as dark mat-
ter haloes in WDM simulations have been found to display different concentrations
and formation times than in CDM (Maccio ef all, 2013; Bose ef all, 201T6). However,
these changes act to preserve the (p_s) — peit(2—2) relation seen in CDM.

It has been shown that haloes in f(R) cosmologies follow NFW density profiles
(Combriser, 2014) like their GR counterparts, but with systematically higher con-
centrations. Their assembly histories also differ, but only slightly (Shi_ef all, 2015).
Hence, it might be expected that the relation discovered by [Ludlow ef all (2016)
for CDM and WDM haloes in standard gravity might hold for f(R) haloes only
under certain conditions: (i) for small values of |fgro|, and (ii) for all haloes except
low-mass objects at low redshifts, due to screening. It is therefore plausible that the
above concentration — formation time relation will not be applicable to the full pop-
ulation of haloes in f(R) gravity, and this is the hypothesis that we test here. This
breakdown could potentially be circumvented by either re-parametrising the model

or segregating haloes to reflect the influence of the fifth force, which we explore later.

3.2.3 Halo identification

The gravitational collapse of collisionless CDM can be approximated by the spherical
In this model, overdensities collapse to form dark matter haloes, which are defined
as isolated regions with an average matter density larger than a threshold A.; ~
178 (=~ 200) times the critical density (Mo ef all, 2010, Ch. 5).

Because we are primarily concerned with the GR / f(R) comparison, we have
elected to use rogg to define halo virial radii and Msgg for the corresponding masses.
This convention follows that of Ludlow et all (2016) and is based on the fact that,
while 1999 remains well-defined and is independent of the gravity model, the virial
parameters vary systematically with the strength of gravity (Schmidf ef all, 2009).
The virial mass and radius therefore define a sphere (centred on the particle with
the minimum potential energy) that encloses a mean density equal to 200 times the
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critical density, puit (2), and are thus labelled with the subscript 200.

Subhaloes are locally overdense regions within haloes, and are the surviving
remnants of past mergers. Haloes are initially identified using a friends-of-friends
(FoF) algorithm (Dawvisef all, T985). The halo catalogue is then processed using an
upgraded version of HBT (Han ef all, 2012, Hierarchical Bound-Tracing algorithm),
HBT+ (Han'ef all, 201R), which identifies subhaloes and builds their merger trees.

HBT+ is a publicly available? merger tree code, which identifies subhaloes and
follows them between simulation outputs, from the earliest snapshot at which they
can be identified until the final one, building a merger tree from the catalogue on-
the-fly. A list of gravitationally bound particles is created for each halo; these are
used to identify a descendant (a halo at a lower redshift, sharing subhaloes), and
are passed to the successive snapshot. Each halo can have one or more progenitors
(haloes at a higher redshift, sharing subhaloes). If a halo has multiple progenitors,
the most massive one is selected, and it becomes the "main” (i.e. most massive)
subhalo. Other progenitors are mapped to the subhaloes which belong to the host
halo. The host halo of a subhalo is the FoF halo containing its most bound particle.

3.2.4 Merger trees

The merger tree of a halo, visualised in Fig. B, can be obtained from the HBT+
output by following the progenitors of a given halo, recording their host haloes, and
repeating this process recursively until the earliest progenitors are reached in each

branch. However, the trees produced by this procedure have two common defects®:

1. Re-mergers, such as the right-most halo in the second row in Fig. B, happen
when one of the subhaloes temporarily becomes gravitationally unbound and
is identified as a separate halo for one or more snapshots; in a later snapshot
it merges back into the original host halo, creating a “loop”. The halo in

the “loop” is retained as a progenitor halo and so re-mergers do not alter

2https ://github.com/Kambrian/HBTplus
3Technically, these are not trees as they contain loops, and some nodes might have more than

one parent node.

July 19, 2020


https://github.com/Kambrian/HBTplus

3.2. Theory 43

11y

Figure 3.1: A schematic representation of a merger tree with two defects: a re-
merger (halo in the second row down, on the right) and a fly-by (halo in the third
row down on the left). Grey rectangles represent haloes, and dots subhaloes; every
halo has one main subhalo, marked with a red dot; subhaloes are matched between
snapshots (black lines) by following the most bound particles. The blue arrows
indicate the relationships relevant in building merger trees, and represent (left to
right): (i) halo descendant, (ii) halo progenitor, (iii) host of a subhalo, (iv) host of
subhaloes’ progenitor, (v) descendant of a subhalo. This plot can be compared with

similar diagrams included in Thomas et all (2015); Han et all (2018).
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the collapsed mass history (which sums over the masses of progenitors at any
given snapshot, and as such is not affected by the order or the sequence of the
mergers). This is similar to the scheme used to build merger trees by Jiang

ef all (2014).

2. Fly-bys (e.g. the branch merging into, and then leaving, the left-most halo in
the fourth row down in Fig. Bl) happen when a subhalo is identified as a part
of a FoF halo for one or more snapshots due to a temporary spatial overlap,
but later becomes an isolated halo again. The presence of fly-bys pollutes the

CMH, artificially inflating the mass at snapshots with extra subhaloes.

Both defects can be avoided by only keeping those haloes in the tree which merge
as the main subhaloes of the host in the preceding snapshot (which would remove
both example defects shown in Fig. B). This is not equivalent to keeping only the
main branch of the halo mass history — the full CMH is still used, but it is calculated

from a pruned merger tree.

3.3 Results

Our goal is to determine the relation between halo concentration (or more specifically
(p_2)) and the critical density at the formation time z_5 (namely peit(2_2)) for haloes
of different masses at different redshifts. For each mass bin we construct the median
density profile and CMH, which are used to estimate median concentration and
formation time. This approach has the benefit of producing smoother profiles, and
in turn a smoother density-density relation, as is evident from comparing Fig. 3
from Cudlow ef”all (2013) and Fig. 7 from Ludlow ef all (2016).

This section outlines the details of each step of our analysis. The source code

used for the analysis is publicly available?.

“https://doi.org/10.5281/zenodo. 2593623
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3.3.1 Filtering & binning

Our halo catalogues are obtained by filtering the HBT+ output and retaining ob-
jects with a minimum of 20 particles. Since we are interested in resolving the merger
history of haloes down to progenitors with f = 0.02 times their final mass, this places
a lower limit of nygo = 10 on the number of particles a halo must contain in order
to be included in our analysis.

Haloes are divided into bins that are equally-spaced in log;o(Mag/[h ™1 M]),
with Alog,o(Mag/[h~ ' My]) = 0.162. To identify potentially unrelaxed systems we
use the centre-of-mass offset parameter,

dog = Fr Tl (3.5)
7200
where 1, is the centre of potential, and rcy the centre-of-mass (TThomas et all, 2001
Maccio et all, 2007; Neto et all, 2007). Only haloes with dyg < 0.07 are retained for
analysis.

The fitting of mass profiles (Section BZ32) and calculation of formation times

(Section BZ34) is performed on the median mass profiles and CMHs; respectively, for

each mass bin.

3.3.2 Fitting mass profiles

The cumulative mass profile is defined using all particles within rygg, and not only
those deemed bound to the main halo or its subhaloes. These particles are assigned to
logarithmically spaced radial bins, within which enclosed masses are computed. The
mass profiles of haloes in each mass bin are assigned in this way, and their median
is calculated. Finally, the median mass profile is normalised by the total median
enclosed mass, Mgy = M (r < reg0). The best-fitting value of the concentration, c,
is obtained by minimising
20
X = Z log,g (M;) —log, (M (r < 73,¢)))%, (3.6)
=0
where M; is the mass measured within r;, M (< r,¢) is the mass enclosed within
radius r for an NFW profile with a concentration ¢ (Eq (Bdl)); quantities with

subscript i refer to the i bin in log,, radius from the halo centre.
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Figure 3.2: Radial enclosed mass profiles for haloes in the mass range 11.5 <
logg (Mago/[h~'Mg]) < 11.7 at 29 = 0. GR and f(R) runs are shown using red
and blue curves, respectively, as indicated in the legend; residuals from GR are
shown in the lower panel. The faint shading shows the envelope of the individual
mass profiles; dashed lines show median mass profiles; solid lines show the best fit-
ting NF'W profiles to the median mass profiles, for radii between ryim < 7 < Tpax;
vertical dotted lines show the characteristic scale r_,. Residuals are taken from the

median mass profile of GR haloes, mgr.
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We have used both NF'W and Einasto profiles in our analysis. Results for NF'W
profiles are provided in Figs. B2 and B3, and for Einasto profiles in the next sub-
section, in Figs. B33 and B4. In particular, Table B2 shows that the quality of fit
does not improve sufficiently to warrant using the Einasto profile (which has an ex-
tra parameter) over NFW. We emphasise that the choice of analytic density profile
does not change our results or conclusions.

Our fits to Eq (BM) are minimised over the radial range 7y, < r; < rmax, where
Tmin 1S @ minimum fit radius, and 7., is set to 0.8 X rygy to exclude the unrelaxed

outer edges of haloes (Ludlow et all, 2010). We consider two definitions of ryy,:

1. half of the mean particle separation within ryg (Moore et all, T99R),

1 47 1/3
T'min = 5 < > 7200, (3-7)

31200

where nggo is the number of particles enclosed within 749, and

2. the radius at which the two-body relaxation time is equal to the age of the uni-
verse, to (Power ef all, 2003; Ludlow ef all, 2019), which can be approximated
by the solution to

trelax (T) 200 n(< ri <<p<< r»)—m.

to T8 In(n(< ) Perit

(3.8)

Here n (< r) is the number of particles enclosed by radius r and (p (< r)) is

the mean enclosed density, (p (< 1)) = 3m (< r) /4mr3.

Although we have considered both options, results are shown for the Moore et all
(I99R) definition as it is typically more conservative than the alternative. Henceforth,
all ryin values are calculated using Eq (B72).

Once c is found, M_5 can be calculated from Eq (84); the characteristic density
of the halo is then given by (p_s) =3 M /47 r?,.

3.3.3 Einasto profile

The Einasto density profile (Einastd, T965) can be expressed as

()R
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where r_5 is a scale radius (at which where the logarithmic slope of the density
profile is equal to —2), and « is a "shape” parameter. Einasto function is commonly
used for modelling dark matter halo density profiles, and in many cases it has been
shown to perform at least as well as the NF'W profiles, even with one parameter
fixed at o = 0.17 (Merritf et all, 2006; Ludlow & Anguld, 2016).

Fits using both NFW and FEinasto density profiles have been performed for com-
parison. We have computed and compared model selection criteria, called Akaike
Information Criterion (AIC) and Bayesian information Criterion (BIC), as an objec-
tive way to determine if the additional parameter in the Einasto profile is justified in
terms of improved fits to the simulation results (Akaike, 1974; Schwarz, T978). The
AIC and BIC measures take into account the x? value of the fit and the number of
free parameters. The fit with the smallest value of AIC or BIC is deemed to be the
most appropriate one to use®.

The Einasto density profiles for an illustrative mass bin at zy = 0 are shown in
Fig. B33; the CMHs for the same mass bin at zg = 0, for values of F' calculated from
Einasto concentrations, are shown in Fig. B4. Table B2 shows values the values of
the AIC and BIC statistics for the NFW fits from Section BZ32 and the Einasto fits
from this section. Despite the fact that the Einasto profile produces a better fit, it
has an extra free parameter, which yields higher values of the information criteria.
Moreover, despite producing a higher quality fit, z; values for GR and f(R) haloes
calculated from the Einatsto profile (see Fig. B) are still indistinguishable, like the
ones calculated from the NFW profile (see Fig. B3H). This indicates that the NFW

profile is the more justified choice.

3.3.4 Calculating halo formation times

The mass growth history of a dark matter halo, m (z), can be defined in different

ways. The mass assembly history (MAH) is the mass history of a halo obtained using

SThere is a subtle difference between the AIC and BIC statistics. BIC introduces a higher
penalty for more complicated models; however, this is only important if the criteria give conflicting

results, which is not the case here
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Figure 3.3: Like Fig. B2, but fit to the Einasto density profile.

Table 3.2: Goodness-of-fit comparison between the NFW and Einasto density pro-
files for haloes with masses in the range 11.5 < log,, (Mago/[h ' Mg]) < 11.7 at
zp = 0 for the GR run.

NFW Einasto

number of parameters 1 2
AIC 2.002 2.399
BIC 4.002 4.797
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Figure 3.4: Like Fig. B4, but for the values of F' calculated from Einasto concentra-

tions from Fig. B33.
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Figure 3.5: Median collapsed mass histories (CMHs) for haloes in the mass range
11.5 < logyy (Moo /[P My]) < 11.7 at zp = 0. As with Fig. B2, GR and f(R)
runs are shown using red and blue lines, respectively. Solid lines show the median
collapsed mass histories; two dotted vertical lines indicate the formation times, z_o,
at which the CMHs drop below a fraction F' = M_5/Myy of the virial mass at z,
plotted as two horizontal dashed lines. Note that despite the difference in F', derived
from concentrations shown in Fig. B2, z_5 values are indistinguishable. The purple
dashed-dot line shows the EPS prediction from Eq (833) for M, equal to median

mass in this bin.
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a “greedy” algorithm, by following the most massive (or main) progenitor through all
snapshots and storing its Msgy. As discussed previously, the collapsed mass history
(CMH) is defined as the sum of the masses Mg ; of every progenitor ¢ whose virial
mass exceeds f x My, where f is a model parameter (we use 0.02 as our default
value, but consider alternatives as well), and M is Mygg of the root halo. The CMH
therefore takes into account all branches of the merger tree at a given snapshot.

The CMH can be obtained by gathering all progenitors of a halo from the merger
tree, and summing over the masses of the progenitors at each snapshot. However,
for performance reasons, the step of building a tree can be skipped in favour of
searching for all progenitors of a root halo at each preceding snapshot. In other
words, since the halo masses are summed over, it is not the structure of the merger
tree that matters but its members.

Once the median CMH is calculated for each mass bin, it is normalised by the
final mass M, at redshift zy. For each mass bin, a formation time z_, can then be
calculated. This is defined as the time at which the CMH first exceeds a fraction
F = M_5/Mj (calculated for a given mass bin from Eq (84)) of the final mass, Mjy:

M(z) _
M (20)

Z9=253 (3.10)

The formation time may be ill-defined for non-monotonic assembly histories. The
monotonic behaviour of the CMH, while difficult to guarantee for individual haloes,
is in practice obtained by considering the median CMH of all haloes in each mass
bin (as opposed to calculating formation times of individual haloes, binning the
haloes and then taking the median in each mass bin). As simulations have a finite
number of outputs, and hence finite time resolution, the value of the formation time
is obtained using linear interpolation between the snapshots which are immediately
before and after the crossing of the formation threshold fraction.

Examples of the median CMHs for z = 0 haloes in a narrow bin of My are
shown in Fig. B3. Solid red curves correspond to our GR simulation, and blue to
f(R). An analytic prediction from Eq (B=3), as discussed in Ludlow efall (2018),
is plotted in a purple dashed-dot line; the result agrees quite well with the CMHs

obtained from both simulations. For example, the formation times, z_o (vertical
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dotted lines of corresponding color), agree with one another to ~ 5%. Neverthe-
less, despite similarities in CMHs, these haloes do not have similar concentrations.
The horizontal dashed lines correspond to M_s/Mag, which show clear differences;

indeed, concentration is 30% larger in f(R) than in GR.

3.3.5 The density—density relation

The above analysis was carried out at zp = 0, 0.5, 1, 2 and 3. At each snapshot,
haloes were filtered as described in Section BZ31, and binned into 20 logarithmically
spaced mass bins spanning the range log,,(My/[h""*My]) = 11.18 to 14.42. Median
mass profiles and CMHs of haloes, normalised by M,, were used to calculate the
concentration, ¢, and formation time, z_s, for each My and zy,. These were then
converted to their equivalent values in “density space”: ¢ expressed in terms of the
characteristic density (p_s) (following Eq (B)), and z_5 in terms of the critical
density, perit (2_2); both are then normalised by perit (20)-

As shown in Figs. B8 and BZ, the (p_5) — peit(2—2) relation for F6 haloes is
similar to that in GR for most densities, but displays a steepening at high formation
redshifts where (p_5) increases more rapidly than peic(z_2). This effect is most
apparent at lower redshifts (Fig. Bf) and for lower masses (Fig. B7). For instance,
only f(R) halo mass bins with log;(Mago/[h"*My]) < 11.9 at 29 = 0.5, and with
logyo(Moago/[h " Ms]) < 12.2 at zg = 0 have logq (p_2/pait (20)) > 4.25, as shown
by Figs. B8 and B7. This is consistent with the results found by Shi“ef all (2015)
for the concentration-mass and formation time-mass relations: while the formation
times show small systematic differences between GR and F6, the biggest discrepancy
between the two is in the form of the concentration-mass relation at low halo masses.

The concentrations recovered in the F6 model are higher for lower mass haloes
than in GR, as demonstrated by Fig. B2; this change is in the opposite sense to that
seen on changing CDM for WDM. In both WDM and F6, however, low mass haloes
systematically form later than their GR counterparts. In F6 gravity, although there
is a systematic delay in formation histories for low-mass haloes, it is not captured
by the formation time defined as in Eq (B10).

It follows that, while in WDM the formation time-concentration relation is the
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Figure 3.6: Mean enclosed density (p_o) within the characteristic radius, r_, versus
the critical density at the formation redshift, peit(z_2), at which a fraction F' =
M_5 /My of the root halo mass M, was first contained in progenitors more massive
than f x My. Each point corresponds to median value in a logarithmically-spaced
mass bin at the identification redshift zo. All densities are normalised by peis (20),
the critical density at zy. Point types indicate the results from different gravities,
as labelled. Colours indicate the identification redshift, as shown by the colour bar.
Also plotted are two lines: a dashed black one which shows the Ludlow ef all (2016)
scaling relation (p_s) = 400 X puit(z_2), and a solid black one for the best-fitting
GR relation (p_3) = 525 X peit(2_2)-
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Figure 3.7: Same as Fig. B8, but colour-coded to indicate different halo mass ranges.
The halo population has been split into two samples: one above and ones below the
characteristic mass, M* (2y), defined as 04 (20) /o (M* (20)) = 1 (Maef all, 2010, Eq.
7.48). The mass bin containing haloes from Figs. B2 and B3 at 2 is highlighted in

green.
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same as it is in CDM (when zg, is appropriately defined), this is not the case
in f(R) gravity. Even a model with an effective screening mechanism, such as F6,
affects the low mass haloes identified at late times; these objects have slightly delayed
formation times and notably higher concentrations, which leads to the differences
between F6 and GR shown in Figs. B8 and B7.

Finally, we note that the (p_2) — perit(2—2) relation found in the GR simulation is
very similar to the one reported by Ludlow ef all (2016), but with a higher intercept,
~ 525, as shown by the solid line in Fig. BB. The origin of this value, which is
the only free parameter of their model, is not known. It is analogous to the free
parameter of the Lndlow ef all (2014a) and Correa ef all (2015) models, who also
report different values. The intercept may be determined by a number of physical
process and a detailed investigation of what determines its value, while worthwhile,

is beyond the scope of this work.

3.3.6 Sensitivity to variation of model parameters

The parameters used to construct the CMHs (and hence to estimate z_5) and to
define halo characteristic densities can be varied to assess their impact the form
of the (p_2) — perit(2_2) relation, and to potentially improve our understanding of
the origin of the difference between F6 and GR. A few such variations have been
performed: first, we modify the radius defining halo characteristic densities (using
0.3 X 7_5 and 2.0 X r_g), and second, the mass threshold f of progenitors included
in the CMH (which is varied from 0.01 to 0.1).

The results, presented in Figs. B8 and B9, confirm our intuition: increasing the
progenitor mass used to construct the CMHs (by increasing f) brings the forma-
tion time closer to the identification time, zy (the difference is more pronounced at
lower redshifts, due to the normalisation used), while increasing the radius within
characteristic densities are defined decreases the mean enclosed density and brings
the formation time closer to the identification redshift. While the parameters can
be tweaked to decrease the scatter and remove the time dependence of the relation
(see, e.g., Figures Bl and B2 of Ludlow efall (2006)) the f(R) haloes still exhibit
a strong upwards trend in their concentrations—as well as a larger scatter than their
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Figure 3.8: Like Fig. B8, but with different panels showing different collapsed mass
history parameter f, as labelled above each. The solid black line shows the best-
fitting GR relation, (p_s) = 525 X peit, and is included for comparison.

GR counterparts—for all parameter combinations. This is driven by the changes to
both the ¢(M, z) relation, and also to changes in the mass—formation time relations,
which cannot be accounted for by varying the parameters mentioned above. In f(R)
gravity, however, the halo growth and structure are also determined by the local
environment. It is therefore important to attempt to account for local effects using

an environmental proxy.

3.3.7 Separation of haloes by screening

As discussed in Section P, f(R) gravity only affects haloes which are outside
screened regions, while the screened ones grow in a manner that is largely indis-
tinguishable from GR. It is clear from Fig. B8 that low mass haloes are typically
the ones displaying the most prominent differences between the two simulations, im-
plicating the fifth force as the root cause. However, it is natural that each mass bin

contains both screened and unscreened objects.
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Figure 3.9: Like Fig. B8, but with different panels showing mean density at different
fractions of a characteristic radius r_5. The solid black line shows, for comparison,

the best-fitting GR relation, (p_s) = 525 X perit-

The effectiveness of the screening mechanism (not including self-screening) is
directly related to the environment in which the halo is found. Following
ef—all (2011); Haas ef"all (201%), we use a conditional nearest neighbour distance,
Dy s, as an environmental proxy. We use the proxy in an attempt to separate haloes
inside each mass bin into two populations, quantifying how strong the environmental
screening effect should be.

Dy s for a halo of mass Moo is defined as the distance d (normalised to 7a0p) to
its N*" nearest neighbouring whose mass, Moo, is equal to or larger than f x Mag.
If Dy, cannot be calculated (for instance, for the largest halo in a snapshot) it is
assumed to be equal to oco.

Other environment proxies, such as “experienced gravity” &, (Lief all, POT1)
and local spherical or shell overdensity (Shi_ef all, 20T7) have also been proposed
as methods of assessing environmental impact on formation histories. Here we use
Dy with N = 1, f = 1.0 since it correlates strongly with other proxies, which
predict similar local enhancements to the gravitational potential (Shi“ef all, 2017).
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Figure 3.10: Environmental proxy Dy ¢ (N =1, f = 1) versus halo mass, M, for
haloes in an example mass bin, 11.70 < log;, (Mag /[ My]) < 11.83, at redshift
z = 0. Distributions of log;, (Mago/[h~*Mg]) and log,, (Dy ) are shown at the top-
and right-hand panels, respectively. The two red lines on the log,, (Dy,f) histogram
on the right indicate the 25" and 75" percentiles.
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Figure 3.11: Like Fig. B@, but split into two populations by the environmental
proxy Dy ¢. The left panel shows the relation for bins including haloes below the
25 percentile; the right panel shows the same relation for bins including haloes
above the 75" percentile. Colours and symbols distinguish between gravity models:
red circles represent GR and blue crosses F6. Both panels include the best fitting
GR relation (p_o) = 525 X pe (solid black line) for reference (note that the fit is

performed over the full population, regardless of the environmental proxy).
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Figure 3.12: 3D visualisation of halo catalogue obtained from the f(R) simulation
at redshift zy = 0, consisting of over 4000 haloes. The sizes of the points reflect
logro (Magp), and the colours indicate the environmental proxy log,, (Dy,f) used to
approximate the screening and the strength of the fifth force. Note how the larger
values of Dy s (indicating lower environmental impact on formation & evolution) are
reserved for objects which are either more massive, or isolated & small, while smaller
values of Dy ¢ are obtained for objects which are in the vicinity of the similar-mass

neighbours.
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The Dy s values have been calculated for each halo at each redshift. Here we
consider the distribution of Dy ¢ in bins of halo mass focusing on the extremes of
the distribution which we expect will show the biggest contrast in the efficiency
of screening. The halo population at each redshift is split into two sub-groups:
those below the 25 and above the 75" percentiles. The most massive object, with
D;; = o0, is excluded. The (p_3) — pait(2—2) relations were then recalculated for
each mass bin for the two sub-groups separately, and are presented in Fig. BT

It is to be expected that the haloes with the lowest values of Dy f, which are
the ones that are closest to objects of comparable masses and hence in the highest
density environments, will follow a concentration-formation relation closest to that
displayed by GR haloes, since they are screened from the enhanced gravity. Haloes
with high-Dy ; may display a different power-law, as seen in Fig. B8. However, as
clearly demonstrated in Fig. B0, while selecting haloes by their Dy ¢ value has
little to no effect on the GR relation, it also has little impact on the F6 haloes. This
means that the difference cannot be easily accounted for by a local environmental

proxy alone.

3.4 Conclusions

We have compared two high resolution dark matter only simulations, one using
GR and the other F6 gravity. We constructed collapsed mass histories of haloes
using their merger trees obtained from HBT+ (Han ef all, 201R). We then binned
the haloes by mass and calculated median enclosed mass profiles M (r) and CMHs,
to obtain median concentrations, ¢, and formation times, z_,, which we used to
construct the (p_o) — penit(2—2) relation. This relation is linear in GR—and hence
may be used to predict concentrations when CMHs are known—but not in F6. The
differences are primarily due to a relative enhancement of concentration for low-mass
objects in F'6 which have slightly delayed formation times times relative to GR.

We have made several attempts to recover a linear relation from the results of
the F6 simulation. For example, we varied the free parameters of the model (i.e. the

fraction f of the final halo mass that a progenitor must exceed to be included in the
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CMH, and fraction of the characteristic radius r_s used to define the characteristic
densities) to find a region in the parameter space which produces the most promising
relation. While there are values of parameters which improve upon the conventional
choice for GR (f = 0.02, 1.0 x ry), there are trade-offs with regards to scatter
and gradient of the line. Furthermore, to account for the mixing of the screened
and unscreened haloes in each mass bin, we split the halo catalogue into two sub-
populations using an environmental proxy Dy, which also had little effect.

Since neither approach alone has been successful, we propose that either (1)
information about haloes’ sizes as well as environment is required, or (2) a better
proxy, capable of separating haloes not only by present environment, but also by
their growth histories, is required, or (3) the density-density relation in f(R) is not
separable into the power law and a correction.

Our overall conclusion is that the form of the concentration—formation time re-
lation is particular to the gravitational force in the adopted cosmological model and
its origin remains unknown. The key difficulty seems to lie in the question of why
haloes with very similar formation redshifts can nevertheless have very different con-
centrations. One possibility is that the definition of formation time (z_5) or assembly
history (CMH)-which function well for GR models for ¢(M, z)-require amendments
for f(R).

Since the relation is sensitive to model parameter variation, but not to environment—
based splitting, it would be interesting to further test the relation for a dependence
on self-screening. This could be tested by splitting halo populations using a self-
screening proxy, as well as running the analysis on other cosmologies, such as F5,
F4 and enhanced (4/3 the conventional strength) gravity simulations. We believe
that looking into the changes in the concentration — formation relation in different
gravity regimes is a promising avenue of research into the nature and origin of the

correlation between halo concentrations and formation times.
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Chapter 4

Modified Semi-Analytic GGalaxy

Formation Model

We run the semi-analytic model (SAM) GALFORM on dark matter halo merger trees
calculated from four high resolution N-body simulations, one of ACDM and three
variants of the Hu-Sawicki form of the f(R) gravity, to investigate the effects of
modified gravity on galaxy properties. We explore the use of the halo-occupation
distribution (HOD) for Ha emitters, as an possible discriminant between the modi-
fied gravity theories. We generate HODs for all four cosmologies at a redshift range
from 0.3 to 2.2, which matches the EUCLID & WFIRST observation ranges. We
observe only small differences in the predicted HODs.

4.1 Introduction

The DE theories will be constrained in the near future with observational tests by
huge surveys, such as EUCLID (Laureijs et all, 2011; [Amendola_ef"all, POT3) and
WFIRST (Green ef all, P01%2), which will probe the expansion history of the Universe
in unprecendented detail. However, because galaxies are biased tracers of the large
scale structure in the dark matter (Kaised, T984; Mo & White, 1996; Kauffmann ef all,
1997), these tests depend on our understanding of galaxy formation and evolution.
The new surveys will allow clustering measurements which, for the first time, will

be limited by systematic errors rather than sample variance. Accurate theoretical
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predictions are therefore essential to meet the scientific goals of these surveys.

In the MG theory studied here, f(R), the screening mechanism depends on the
mass of objects as well as their environments. We investigate three versions of
the Hu & Sawicki (2007, HS) model, varying in the effectiveness of the screening
mechanism. In all three cases (F6, F5 and F4 hereafter), gravity is enhanced by
a factor of 1/3 compared to GR, the so-called fifth force, but the models differ
with regards to the effectiveness of the screening. Nonetheless, in all three models
screening is most effective at high redshift, and for the most massive haloes. Based
on N-body simulations, it is expected that low mass haloes at low redshift will exhibit
the biggest differences (Shi_ef all, 2015, POT7; Mitchell ef all, POTY).

Previous theoretical and numerical studies of f(R) modified gravity suggest that
the concentrations and formation times of dark matter haloes (Shief all, 2OTH, 2O17;
Oleskiewicz ef_all, P0TY), virial scaling relation (Fonfanof ef all, POTR), as well as
brightness of stars (Davis ef all, P2017) are expected to exhibit a small but systematic
deviation from their GR counterparts.

While previous studies looked for changes in the predicted galaxy properties
in statistics that cover a wide range of halo masses (e.g. the galaxy luminosity
function or the global star formation rate density), we focus instead on a quantity
that isolates galaxies in a narrow range of halo mass that are expected to be sensitive
to the modifications to gravity. In many MG theories, including f(R), the existence
of the screening mechanism means that the halo population is mixed, containing
both screened haloes, which feel a gravity strength equivalent to classical GR, and
unscreened ones, with experience gravity that is stronger by a factor of 1/3. It is
therefore imperative to look for observables which could help us separate these two
classes of haloes.

One such statistic is the Halo Occupation Distribution (HOD). The HOD quan-
tifies the bias between galaxies and dark matter, and describes how the number
of galaxies per halo changes with halo mass, galaxy property, and redshift (Zheng
ef_all, 2003; Smithef all, 2017, Confreras_ef all, 201Y; Merson_efall, 2019). The
HOD for the Ha emitters likely to be seen in upcoming surveys peaks around a

halo mass of m ~ 10'2 A~' My, (Merson ef_all, 2019). The fact that this feature in
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the HOD coincides with the prominent change in the concentration-mass relation in
f(R) (Shi_et-all, 2015; Mitchell"efall, 2019) suggests that HODs might provide a
robust observable probe of modified gravity as a viable ACDM alternative.

The star formation rate (SFR) is driving emission in many lines, among them
Omr and Ha  — conversely, these lines can be used to trace SFR in the galaxy pop-
ulation. Gonzalez-Perez et all (2018) predicted a peak in the HOD of O11 emitters
for GR, at a mass at which the screening is expected to become less effective. We
expect to see a similar peak in the HODs of the Ha emitters, since they are similarly
affected by the SFR (Uansen ef all, 2001), and we hope that this effect will be easy
to observe in modified gravity. We compare the results that the modified gravity has
to what we can achieve by modifying SFR properties directly in a GALFORM model,
which should result in a similar peak in an HOD. We also examine the Tully-Fisher
relation and K-band luminosity function, which can be used as a probe into halo
masses, virial velocities and stellar masses.

We expand on previous work — we feed the merger trees constructed from a
set of high resolution N-body simulations into a semi-analytic galaxy formation
model, which has been modified in two critical areas: the concentration-mass-redshift
relation and virial velocity relation. However, we do not change the calculations of
the hydrostatic equilibrium, as well as that of the disc and bulge sizes and stellar
populations.

This Chapter is structured as follows. The theoretical background is given in
Section B2: the N-body simulation, halo catalogue and merger tree builder are
described in Section BEZ271; the original GALFORM model and the modifications we
included for an f(R) version are described in Section BE=22; Section B=2Z3 outlines
how we construct HODs. Our results, presented in Section B3, are always compared
to the control run of a standard GALFORM model on GR merger trees, and can be di-
vided in separate stages: first, in Section EZ31 we run the original GALFORM model
on modified gravity merger trees; then, in Section B=32, we run a modified GAL-

FORM model, with augmented c(m,z) and virial relations, on f(R) merger trees;

finally, in Sections B=373 and B=34, we include two reference runs on GR merger

trees: in Section B33 we use unchanged c(m, z) relation, but update it continu-
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Table 4.1: Parameters of the N-body simulations used.

Q. matter density 0.3089

Qp dark energy density 0.6911

),  baryon density 0.0460

og  power spectrum amplitude 0.8159

h  Hy [100kms™ Mpc™] 0.6774

L box side [h~! Mpc] 62

m, particle mass [h"*Mg)] 1.523 x 10®
N, number of particles 5123

ously (instead of just at formation times), and in Section BZ34 we increase the vy
parameters to emulate increased gravitational potential of the f(R) gravity.

In Section B4 we discuss our findings regarding luminosity function in K-band
and Tully-Fisher relation (Section E), and halo occupancy distribution (Sec-

tion B472). Finally, we present our conclusions in Section BZ4.

4.2 Theory

4.2.1 N-body Simulation & Merger Trees

Since the equations of MG are non-linear, f(R) simulations are more computation-
ally expensive than comparable ACDM ones. However, significant progress has been
made recently in designing numerical techniques specifically for this class of theo-
ries, such as MG-GADGET, ECOSMOG and AREPO (Li efall, PUI2; Puchwein ef all, PUT3;
Bose ef_all, P015H; Arnold ef all, 20T9H). In this Chapter we use N-body runs from
the SHYBONE (Simulating HYdrodynamics BeyONd Einstein) simulation suite
(Arnold_ef all, P0T9a), consisting of 4 high-resolution boxes: one for ACDM and
three for variations of f(R) (labelled F6, F5 and F4). All runs use Planck cos-
mology (see Table B, (Planck Collaborafion_ef all, POT6H)), which was selected to
match the calibration of the f(R) correction from Mifchell ef all (2019).

Dark matter haloes were identified using the friends-of-friends (FoF') algorithm
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(Davis_ef_all, T987), and subhaloes using the SUBFIND algorithm (Springel et all,
2007). The minimum size of subhaloes retained using SUBFIND is 20 particles.
The merger trees were then constructed from the halo catalogue using the DHalo
algorithm (Jiang et all, 2014), by identifying the unique descendant of each subhalo
at the subsequent snapshot. The descendant of a subhalo is defined as the subhalo

at the next snapshot which contains the greatest number of particles from the given

subhalo.

4.2.2 GALFORM

GALFORM is a semi-analytic model (SAM) of galaxy formation and evolution (Colé
efall, 2000; Bower ef all, 2006; Lacey et all, P2016; Baugh et all, 2019). It is capable of
reproducing many astrophysical observables, such as the luminosity function, stellar
mass function and the Tully-Fisher relation, starting from dark matter halo merger
trees. GALFORM populates the merger trees with galaxies by numerically solving
equations that describe the bulk flow of gas, gas heating & cooling, star formation
processes, as well as feedback processes such as supernovae (SNe) driven winds and
heating by active galactic nuclei (AGN).

GALFORM is built up of multiple modules which implement different models
of astrophysical processes. These modules can require parameters to be speci-
fied which regulate the physical process (for a detailed description of the GAL-
FORM parameters see Lacey et all (2016)), and all these parameters taken together
define the “GALFORM model”. Here we use the recalibration of the [Lacey et all (2016)
model for the P-Millennium N-body simulation introduced by Baugh et al] (2019).
This choice was made because both the P-Millennium and SHYBONE N-body sim-
ulations use the same Planck cosmology (Planck Collaborafion ef all, ROT6H).

The halo merger history alone is expected to be similar between the gravity
theories tested (Shi_ef all, PUTH), and so should not have a significant impact on the
galaxy properties. Halo properties such as concentration and circular velocities, on
the other hand, are expected to display significant changes between gravity models
(Shief all, POTA; Mitchell ef all, 2019). Therefore, we have implemented modifications
to the dark matter halo models in GALFORM to model the effects of the modified
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gravity: correcting the concentration-mass-redshift and virial relations.

We elect to modify the relations and distributions used for haloes in GALFORM rather
than adopting the values measured directly from the N-body as these quantities are
subject to noise (Beff_ef all, 2007). This is a better match for our use case of mod-
elling f(R) effects on baryonic processes than relying on the data measured from
particle data by the halo finder, since the use of analytical models guarantees that
even haloes down to the resolution limit of 20 particles have consistent values for
their concentrations and velocities.

To isolate the causes of any changes in the model predictions, we have used
this step-by-step approach and kept our modifications minimal and self-consistent.
To understand why we have chosen to change these particular components of GAL-
FORM (but not any others), one must remember that concentration-mass-redshift
relation controls any calculation which depends on the sizes of the haloes, and simi-
larly the velocity dispersion controls many physical processes; the virial relation has
a direct impact on supernovae feedback (as described in Section -Z3), which in turn
has a direct effect on the stellar mass function for lower mass galaxies (Cole_ef all,
2000; Bower ef all, P00A). Moreover, other parts of the semi-analytic calculation
(such as the AGN feedback) are typically relevant in the regime in which modified
gravity effects are screened, and we can therefore safely assume that for these models,

the equations used in the GR version of GALFORM are still a good approximation.

Concentration-redshift-mass relation

The concentration-mass-redshift relation of the dark matter haloes in GALFORM was
amended to model the change in halo concentrations reported from N-body f(R)

simulations by Shief all (2015). In particular, we have implemented the Mifchell
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Figure 4.1: The concentration-mass-redshift relation for the dark matter haloes
in the four gravity models, GR, F6, F5 and F4 (distinguished with line styles as
described in the legend) at five different redshifts (colour-coded as described in the
legend). Haloes are binned into 20 logarithmically spaced mass (Mag) bins, and
the median values have been calculated in each bin. The concentrations values were

computed by GALFORM using an NF'W prescription, and corrected using the model
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et al. (2019) model that describes these changes:

oa(c/ecr) = 5+ (o) [Lrait (95)] +9)-

(1 — tanh (w; [x + &])) (4.1)
o' = (z = &)/ws (4.2)
ps = 1.503log,, (JTL) +21.64 (4.3)
x = logyo(Ms00/107), (4.4)

where cqr is the base concentration value, ¢ is a normal distribution, erf is the error
function, p, is a gravity-dependent measure of the amount of screening of a halo, fx
is the mean background value of Eq (Z3), and (A = 0.458, & = —0.324, wy = 1.49,
a=—6.17, v = —0.038, w; = 0.82, £0.01) are free parameters”.

GALFORM has no information about the local environment of the haloes, other
than the implicit differences in clustering, driven by halo assembly bias. For this
reason, the concentrations it calculates are essentially median values for haloes of a
given mass. Likewise, only the median concentration corrections are applied, without
splitting haloes into screened and unscreened sub-catalogues. For each halo we
calculate Mj5qo, which is defined as the mass enclosed inside a radius within which
the mean density is 500 times critical density of the universe; then, we calculate a
dimensionless = from Eq (4), and concentration correction from Eq (E=T).

In order to implement the new concentration mass relation, it was necessary
to alter the way in which GALFORM updates halo concentrations. In its present
form, GALFORM does not technically compute the ¢ = (m, z) value, but rather cal-
culates ¢ = ¢(m, zy) instead — halo concentrations and velocities are only updated
at formation times of the haloes. This has two effects on the ¢ — m relation out-
put by GALFORM: firstly, all values are systematically lower than they would be if
concentrations were measured from the N-body simulation; and secondly, the rela-

tion exhibits a large scatter, caused by the fact that while halo concentrations are

Hor further details on fitting of this relation and the associated uncertainties see Mitchell ef al’

(POTg)
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set deterministically from their masses, each mass bins contains haloes with vastly
different formation times.

Therefore, we have made one significant change to the algorithm used in GAL-
FORM to update halo concentrations. Previous models only update the concentra-
tion, circular velocity and spin of the haloes at their formation times, and then
propagate these values “up” the merger tree. In our updated model, halo concen-
trations are recalculated at each snapshot, and therefore do not propagate up the
merger tree. This is close to the cooling model developed by Hou et all (2017), and

ensures that the ¢(m, z) relation is correct at each redshift.

Virial relation for dark matter haloes

Another modification required to the GALFORM model is to change the relation be-
tween halo mass and velocity dispersion in modified gravity. In GR the circular
velocity of a halo is proportional to the square root of halo mass, vs09 o v/Mago.
Since concentration-mass relation for the GR case follows a power law, as shown by
Gao et all (P00R), and the concentration parameter is known to be modified in f(R)
as given by Eq (B), vag can be scaled as /cagp-

In practice, the values calculated from this method closely resemble the approach
of Fonfanof ef all (2013). In their model the halo catalogue is split into screened

and unscreened sub-populations, depending on their velocity dispersion: &ogg ~

v/ (1/2) 2| fr (2)|; the velocities of haloes which are considered unscreened are then
increased by \/4/3 — 1 ~ 0.1547. This value comes from the fact that in f(R)
the gravity enhancement is never larger that 4/3 — the only difference between the
different versions of the f(R) model is the effectiveness of the screening mechanism.

The model of Fonfanof et all (2013) is equivalent to multiplying all velocities
(and concentrations, if implemented using the relation from Section BZ27) by a
predefined number if they fall into the unscreened category. While this agrees well
with the increased concentrations shown in Shi_ef all (2015, Fig. 4), it falls short
of correctly reproducing the concentration-mass-redshift dynamics across multiple
redshifts and multiple theories. As shown by Mifchell"ef"all (2019), dark matter

halo concentrations are not simply increased above a certain threshold mass value —
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Figure 4.2: The virial scaling relation between Msy and o99g for dark matter haloes

in ACDM.
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instead, they have a complex non-linear response which depends on both mass and
redshift.
Therefore, our velocity dispersion transition is modelled just like the concentra-

tions, with velocities multiplied by a square root of the correction factor.

Supernovae feedback parameter variation

in GALFORM supernovae (SNe) feedback is modelled as a process which ejects cold

gas from the galaxy to a reservoir of mass M., at the rate of
mdisc = ﬁdisc X SFRdisea (45)

where SFR is the total star formation rate, and

Ve —CQhot
ﬁdisc ~ ( > 5 (46)

Uhot,disc

with parameters oy, specifying the dependence of  on circular velocity (v.), and
Upot Normalising the circular velocity. Note that the subscript “disc” refers to the disc
component, and that there is a separate gas reservoir (“burst”), with the identical
feedback equations, controlling burst mode of the star formation process. These
reservoirs are responsible for quenching star formation in quiescent and starburst
modes respectively.

From Eq (£8) it is evident that changes in the circular velocity driven by changes
in the gravity model can be compensated for by modifying the v, parameters.
Therefore, two additional runs of GALFORM have been performed: one with in-
creased value of v, and the other with a decreased value. As discussed in this
section, these parameters directly scale the impact which changes in halo velocity
dispersion have on baryonic processes, and are likely to be the largest first-order
effects caused by the virial and ¢(m, z) relations. In essence, this is an attempt to
understand whether it is possible to emulate the f(R) fifth force by manipulating
the model parameters directly.

With this question in mind, two additional runs were performed, with v,y in-
creased and decreased by 15%. The modified gravity interpretation of these runs is

a cosmology in which the screening mechanism for the SNe feedback is turned off
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for all haloes at all snapshots, whereas in the actual model these effects are both

mass and redshift dependent.

4.2.3 HOD

As explained in Section EZZ2, GALFORM uses the merger history of dark matter
haloes to track the evolution of baryons, with the end-product being a prediction
for the number of galaxies inside a dark matter halo along with properties for these
galaxies. This allows GALFORM to predict how galaxies trace the underlying dark
matter distribution. The halo occupation distribution (HOD) quantifies this in terms
of the probability that a halo of mass M contains N galaxies which satisfy some
constraint on a galactic property, P, which could be the broad-band magnitude of
the galaxy in some filter or the luminosity of an emission line. For instance, the
mean number of galaxies brighter than luminosity L measured in the Ha emission
line in a halo of mass M is (N (> Ly, |M)) (Zheng et all, 2005; Smith_ef all, 2OI7).

While HODs can be parametrised and tuned using the observed abundance and
clustering of galaxies (Zehavi ef all, PUIT), here we use the galaxy catalogue com-
puted by the GALFORM model, which makes a direct prediction of the form of the
HOD. This important as any differences introduced by changing gravity are hard to
anticipate and model using a parametric form, and indeed, may not be described
by the same parametrization that worked in the case of GR. We use GALFORM to
calculate a range of luminosity-dependent HODs across luminosities and redshifts.

The HODs were computed for the redshift range 0.3 < z < 2.2. This includes
the ranges of the EUCLID (1 < z < 2) and WFIRST (0.9 < z < 1.8) Ha surveys,
as well as even lower redshifts since that is where the most prominent differences
between f(R) and ACDM are expected.

The Ha  line luminosity is computed from the number of Lyman continuum
photons, which is calculated by GALFORM for each galaxy given its star formation
history and the metallicity with which stars are being produced, and a model for
HII regions (Stasinska, 1990). We have applied attenuation due to dust extinction
as calculated by GALFORM for the continuum stellar emission at the wavelength of
the Ha line, 6563 (see Gonzalez-Perez ef all (2014) and [Lacey et al] (2016) for a
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description of the calculation of the dust attenuation).

At each snapshot the galaxy catalogue is split into 20 cumulative luminosity-
limited samples, with the Ly, limits spaced evenly in log-space from 10%® h™2 ergs~!
to 102 h ?ergs~!. The HOD is constructed for each luminosity-limited sample by
computing the mean number of galaxies per halo, binned by halo mass Myy, into 20
evenly spaced bins in log-mass from 10" 2~ Mg to 10" A~ M. Mo is defined as

the mass within an over-density with an average density corresponding to 200 times

the mean density of the universe.

4.3 Results

As discussed in Section B2, the modifications to GALFORM are implemented in
steps to isolate the drivers of any changes in the model predictions. In this section
we take one control run (using ACDM cosmology) calibrated for implementation in
the P-Millennium N-body simulation, and compare it to the three f(R) simulations
at each stage: first (Section B=3) by only using the merger histories from the
f(R) simulations; then (Section BZ34) by applying the ¢(m, z) and virial relation
corrections on the modified merger trees. Moreover, we present two reference runs:
in Section B=33, of GALFORM ran on GR merger trees, but with continuous ¢(m, z)
calculation, in order to check the effects of the continuous updates to concentration;
and in Section B34, of GALFORM on GR merger trees with vy,,; parameters increased
by 15%, to emulate a global increase in a gravitational potential.

For each of these runs, we look at the model predictions for three observables: the
K-band luminosity function (hereafter LF), the Tully-Fisher (hereafter TF) relation
i.e. the relation between circular velocity and luminosity for disc-dominated galaxies,
and the HOD (Section EZ23).

For a modified gravity cosmology to pass the local astrophysical constraints,
it must give a good fit to the observed K-band galaxy LF at z = 0. We have
picked this band as it most closely traces the galaxy stellar mass function, with a
weak dependence on the age and metallicity of stellar populations. We compare

the GALFORM calculation with the observed LF directly, instead of relying on the
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Figure 4.3: Same as Fig. B3, but the red line represents unmodified GAL-

FORM model ran on F6 merger trees.

SED fitting (see e.g. Mifchell'ef all (2013)). While there is ongoing research on the
stellar dynamics and evolution in the modified gravity theories (IDavis ef all, POTZ;
Sakstein, 2018R), the effects of the modified gravity on the IMF and stellar evolution
are unknown. We have therefore retained the IMF and stellar population synthesis
models used in GR and have applied these in the modified gravity implementations
of GALFORM .

The TF relation at z = 0 is plotted in terms of the /-band magnitudes and
circular velocities of spiral galaxies measured at the half mass radius of the model
galaxy. The I-band magnitudes were calculated in the rest frame using the face-
on values, and with attenuation by dust included. The circular velocities were
calculated at the half-mass radius of the disc by integrating the mass included in
the NFW profile (Cole_efall, 2000). GALFORM galaxies are selected to have a B-
band bulge-to-total ratio (B/T)p < 0.2 (including dust attenuation), gas fractions

Meora/Mstar > 0.1, to replicate the observational sample selection.
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Figure 4.4: Same as Fig. B14, but the dashed lines correspond to HODs calculated

from unchanged GALFORM model running on F6 merger trees.
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Figure 4.5: Same as Fig. B3, but the red line represents unmodified GAL-

FORM model ran on F5 merger trees.

4.3.1 GALFORM on f(R) Merger Trees

In the first stage, the only change to the GALFORM model is to use the dark matter
halo merger trees from each simulation rather than the trees from the GR simula-
tion. In this part, we do not observe significant changes in the GALFORM model
predictions, since the differences between the ACDM and the f(R) merger trees are
small (Shi“ef all, 20175).

4.3.2 Concentration-mass-redshift & virial relation correc-
tions

In the second stage, the GALFORM model used the halo merger trees from the modi-
fied gravity simulations, and corrections were applied to the halo concentrations and
virial velocities according to Eq (E), as described in Section EZ22. Since the cor-
rection depends on the present redshift, ant not formation redshift (Section B—=27),
we further modify GALFORM, to recalculate halo concentration at every timestep,
instead of only at formation times (as is done in standard GALFORM ).

Both corrections were applied simultaneously since concentration and velocity
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Figure 4.6: Same as Fig. B4, but the dashed lines correspond to HODs calculated

from unchanged GALFORM model running on F5 merger trees.
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Figure 4.7: Same as Fig. B3, but the red line represents unmodified GAL-

FORM model ran on F4 merger trees.

are inter-dependent, and modifying one without another would be inconsistent.

4.3.3 Continuous c¢(m, z) Calculation

In this reference run, we modify GALFORM to recalculate halo concentration at every
timestep, instead of only at formation times (as is done in standard GALFORM ). Our
aim is to verify to what extent are the effects observed in the previous subsection

caused by continuous concentration recalculation, versus by the modified gravity

correction.

4.3.4 v, Parameter Variation

In this reference run, the GALFORM model uses the modified gravity merger trees
without changing the halo concentrations and virial relations. In this case we
make a change to the GALFORM parameters controlling SNe feedback, increasing
Uhot disc ANd Upot burst Parameters by 15%. As described in Section B2, since GAL-
FORM calculates SNe feedback from Eq (E8), we can approximate the effect that

modified gravity has on the circular velocity by increasing the parameter by which
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Figure 4.8: Same as Fig. B14, but the dashed lines correspond to HODs calculated

from unchanged GALFORM model running on F4 merger trees.
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Figure 4.9: Same as Fig. B-T3, but the red line represents GALFORM model with

modified ¢(m, z) and virial relations (see Section B=22), ran on F6 merger trees.

the velocity is normalised. This is equivalent to modelling SNe feedback as being

unscreened for all f(R) models.

4.4 Discussion

4.4.1 The K-band luminosity function and Tully-Fisher re-
lation

As expected, the first stage (only changing the underlying merger histories of the
dark matter haloes) does not have a perceptible impact on the LF or the TF relation.

In the second stage, when changing concentrations and virial velocities in addi-
tion to the merger histories, the TF relation in f(R) exhibits a predictable deviation
from ACDM - the circular velocities are systematically higher. The change is within
the 10%—90% percentile range, which makes both GR and F6 models good fits to the
fainter end of the TF relation. The K-band LF is also changed by the modifications
to the concentration and virial relations, even in F6 which has the most effective

screening mechanism and is therefore the most similar cosmology to ACDM . The
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Figure 4.10: Same as Fig. B8, but the dashed lines correspond to HODs calculated
from GALFORM model with modified ¢(m, z) and virial relations (see Section E=22),

ran on F6 merger trees.
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Figure 4.11: Same as Fig. B2T3, but the red line represents GALFORM model with

modified ¢(m, z) and virial relations (see Section B=22), ran on F5 merger trees.

K-band LF is systematically higher in f(R) than in the GR counterpart, with the
most profound increase at L*. Nonetheless, both observables exhibit similar system-
atic effects, which indicates that the impact of f(R) on some observables can be
accounted for using only a simple change to the parameter values of a model. Inter-
estingly, LF and TF in f(R) run after applying modified gravity c¢(m, z) correction
are closer to the GR version for F4 gravity than they are for F'5 and F6. This is
not surprising, as it can be easily explained by comparing the concentrations from
Fig. B0 — the curves for F4 and GR and actually closer than, for instance, the curves
for F6 and GR.

In order to isolate the modified gravity impact on the observables, we also include
the reference run on GR merger trees, with unmodified concentration being updated
at every timestep. By comparing Fig. B9 and Fig. I-T3, we can conclude that the
modified gravity has an impact on both LF and TF relation which is distinct from
merely changing the manner in which concentrations are calculated. However, for
a more robust comparison, we recommend further study comparing two runs of
GALFORM calibrated for continuous concentration updates: one without the ¢(m, z)

correction, and one with.
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Figure 4.12: Same as Fig. B18, but the dashed lines correspond to HODs calculated
from GALFORM model with modified ¢(m, z) and virial relations (see Section E=22),

ran on FH merger trees.
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Figure 4.13: Same as Fig. B-T3, but the red line represents GALFORM model with

modified ¢(m, z) and virial relations (see Section B=22), ran on F4 merger trees.

Finally, when we increase the vpet disc a0d Vot burst Parameters by 15%, the TF
relation is shifted higher on the plot, which is to be expected. Interestingly, the
K-band LF is affected in the opposite way it was in the second stage — the LF is
mildly suppressed at the faint end, and strongly suppressed at the bright end.

4.4.2 HODs in f(R) cosmologies

Similar to the results from the previous section, there is little difference between the
control run and the first stage.

In the second stage the HODs exhibit differences at low redshift for low mass
haloes, and at the highest Ha luminosity cut. This coincides with the objects for
which the f(R) screening switches off. The HODs peaks for f(R) typically coincide
with the GR peaks, but the number of galaxies is systematically lower. As expected,
at higher redshifts the HODs of GR and F6 have no perceptible differences, which
serves as a control check that the model predictions are indeed driven by the modified
gravity phenomenology.

This can be explained by either the fact that fewer haloes successfully formed
galaxies, or that the galaxies in f(R) have lower Ha luminosities as their SNe
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Figure 4.14: Same as Fig. B18, but the dashed lines correspond to HODs calculated
from GALFORM model with modified ¢(m, z) and virial relations (see Section E=22),

ran on F'4 merger trees.
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Figure 4.15: Predictions of the rest-frame K-band LF with dust extinction and
TF relation, both at z = 0. The results from the simulation are compared to the
observational data from Driver_ef all (2012) (for the K-band LF), and to the data
from Mathewson ef"all (T992) (for the TF relation). The blue line represents the

reference GR run, and the red one the GR run with GALFORM modified such that

concentrations are updated continuously (see Section E=22).
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Figure 4.16: Predictions of the HODs for GR at four redshifts as labelled in each
panel. The colours of the lines represent the Ha luminosity limits, as displayed by
the colourbar on top; the styles of the lines correspond to standard GALFORM (solid
line) and GALFORM with continuously updated ¢(m, z) relation (dashed line; also

see Section B27), as labelled in the legend in the top-left panel.
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Figure 4.17: Same as Fig. B-T3, but the red line represents GALFORM model with

vhot, burst and vhot, disc parameters increased by 15%.

feedback is more effective. If the latter conclusion is correct, it provides an interesting
counterpoint to Davis_ef all (2017), which argues that stars and galaxies in a f(R)
universe should be brighter than those in a ACDM one. A more complete model,
with stellar population synthesis models with take into account modifications to
gravity, would be necessary to assess the relative importance of these two opposing
effects.

When the circular velocities are changed for all haloes at all redshifts, as they
were in the third stage, the HODs are all impacted similarly — the number of galaxies
per halo mass bins, for a given Ha luminosity cut, are lower. Therefore, it proves
that the impact of f(R) gravity on some observables cannot be modelled using only

a simple changes to the model parameters.

4.5 Conclusions

We have implemented the GALFORM SAM on merger trees obtained from N-body
simulations of modified gravity cosmologies and compared the predicted K-band

luminosity function, Tully-Fisher relation, and Halo Occupancy Distributions. To
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Figure 4.18: Same as Fig. 718, but the dashed lines correspond to HODs calculated

from GALFORM model with vy, parameters increased by 15%.
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model the effects of f(R) gravity we have modified the SAM in a number of ways
— by running an unchanged version on different merger trees, applying an empirical
correction to the c¢(m, z) and virial relations, and increasing the vy, parameters by
15%. Each of these stages was run separately, to carefully distinguish the effect of
the modification on the results, and evaluate its relative importance.

Semi-analytic modelling of the effects of the modified gravity on the galaxy forma-
tion and evolution is still a nascent area of research, and our results are preliminary.
The difficulty lies in the combinations of complexity of the galaxy formation SAMs,
which contain many non-linear sub-models and implicit Newtonian assumptions, as
well as the multitude of modified gravity theories and the sheer strangeness they
bring to the otherwise well understood gravitational equations.

Changing the merger trees of the underlying dark matter haloes on its own has
very little impact on the GALFORM outputs, as most of the phenomenology is driven
by the baryonic processes. However, after also modifying the ¢(m, z) and virial rela-
tions in GALFORM, we find small but systematic changes in K-band LF, TF relation
and HODs. While f(R) effects are non-linear, their impact on LF and TF relations
are systematic and relatively easy to explain. Similarly, characteristic “peaks” of
the Ly, -limited abundances in the HODs shift predictably, moving with decreased
screening efficiency, decreasing redshift, decreasing mass and increasing luminosity.
Each of the observables individually are straight-forward to model analytically, but
the difficulty lies in designing a physically-motivated model which will produce those
outputs from first principles.

Specifically, finding an observable which could serve as a modified gravity “smok-
ing gun” on a galactic scale (and timescale), and predicting it with a SAM would be
a big step forwards in the modified gravity research.

A common criticism of modified gravity theories is that they are finely tuned to
evade observational evidence rather than provide falsifiable predictions or fit their
models. While it is important that gravity theories are bound by observational
constraints, there is another role of modified gravity modelling. Currently, due to
unprecedented success of GR, SAMs are tightly coupled to the Newtonian gravity

equations. This leads to a situation in which it becomes difficult to test gravity the-
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ories with predictions from SAMs, and in which all SAM predictions are dependent
on one dominant theory. It will therefore benefit SAMs if gravity assumptions they
make could be made explicit, and modular, in the same way in which dark matter
halo density profiles are.

Finally, we would like to point at two more difficulties in carrying out modified
gravity research on SAMs — selecting model outputs and measuring relative impor-
tance of SAM components and modified gravity corrections. Even observables whose
response to modified gravity models is qualitatively well-understood, such as HODs,
are difficult to discretise to a form in which we can directly compare different models.
On the other hand, there is a well-established technique for measuring relative im-
portance of model parameters on model outputs, called Sensitivity Analysis, which

is discussed in more detail in Chapter 5.
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Chapter 5

Sensitivity Analysis of (Galaxy

Formation Models

We perform a multi-parameter exploration of the GALFORM semi-analytic galaxy for-
mation model, to compute how sensitive the present-day K-band luminosity function
is to independently varying different model parameters using variance-based sensi-
tivity analysis (SA). We demonstrate the usefulness of the SA approach by varying
just two model parameters, one which controls supernova feedback and the other the
heating of gas by AGN, which matches our physical intuition regarding how these
parameters affect the predictions for different parts of the galaxy luminosity func-
tion. Subsequently, we use SA to compute Sobol’ sensitivity indices varying seven
model parameters simultaneously, connecting the variance in the model output to
the variance in the input parameters. We discover that the SA correctly identifies
the least and most important parameters, and that it is able to capture the com-
bined responses of varying multiple parameters at the same time. Our study marks a
much needed step away from a traditional, “one-at-a-time” parameter variation, and
improves the transparency of multi-parameter models. It is also the first application
of a variance-based SA to a model that aims to predict the evolution and properties

of the whole galaxy population.
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5.1 Introduction

Galaxy formation is a complex process which we are only now just starting to under-
stand through a combination of observations, numerical simulations and analytical
modelling. Two main theoretical techniques are used to model the formation and
evolution of galaxies: semi-analytical modelling (SAM) and hydrodynamic simula-
tions (for a review see Somerville & Davé (2015)). SAMs use physically motivated,
simplified mathematical relations to describe the evolution of baryons in growing
dark matter haloes (Baugh, 2006; Benson, 2010). Hydrodynamic simulations, on
the other hand, tend to make fewer assumptions and approximations than SAMs
and solve the fluid equations governing the dynamics of baryons. Nevertheless, in
hydrodynamic simulations many processes, such as star formation, remain “sub-grid”
due to the finite numerical resolution of the simulation and our inability to write
down the precise equations describing some processes (Crain_ef all, P0T5; Ludlow
ef-all, 2019). In the absence of a complete mathematical description, physical pro-
cesses are described in both SAMs and hydrodynamic simulations by approximate
equations that contain parameters. Values have to be chosen for these parameters
to specify a model. Here, we present a new application of an established statistical
method to assess the impact of changes in model parameters on the output of a
model.

The past few years have seen tremendous breakthroughs in the hydrodynamic
simulation of galaxy formation for significant galaxy populations in cosmological
volumes ([Vogelsberger et all, 2014; Schaye et all, 2014; Pillepich et al], 201IR). Nev-
ertheless, SAMs remain an attractive and valuable complement to hydrodynamical
simulations due to their flexibility and speed. These properties of SAMs mean that
they can be used to build intuition about physical processes, by running thorough
investigations of the impact of varying model parameters (e.g. see the comprehen-
sive exploration of perturbations around the fiducial model presented by [Lacey et al!
(2016)). Also, SAMs remain the method of choice to populate large volume N-body
simulations using a physical galaxy formation model: the fiducial simulation vol-
umes used in SAMs are around 100 times bigger than those used in the current

state-of-the-art hydrodynamical simulations. The predictions of SAMs have reached
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an impressive level of maturity through careful comparisons between the predictions
of different groups and techniques (e.g. Confreras ef all (2013); Knebe ef all (2015);
Guo_ef all (2016); Mifchell"ef all (201R)).

Nevertheless, some scepticism remains regarding SAMs, much of which can be
traced to the way in which the model parameters are set. Traditionally models have
been calibrated by developing physical intuition about how the model responds to
changes in selected parameter values, such as those which control the mass loading of
winds driven by supernovae, and then varying one parameter at a time to hone in on
a best-fitting model. Often the quality of the model reproduction of the calibration
data is judged by eye and compromises are made in order to match multiple datasets;
these steps are hard to quantify and therefore difficult to reproduce. The “best-
fitting” model is reported as a single choice of parameter set that defines the model.
The primary motivation for producing a single model is the desire to build mock
catalogues for galaxy surveys (Baughl, 2013). However, users often want to know the
uncertainty on the model predictions and how the predictions respond to changes
in the input parameters.

The range of processes modelled by SAMs lends them the flexibility to predict
varied observation but at the cost of having to specify a number of parameters
which complicate model optimisation or calibration. A number of techniques have
been devised to reduce the complexity or dimensionality of the parameter space and
to perform efficient searchs of the parameter space: principal component analysis
(Benson & Bower, P0I0, hereafter PCA), Bayesian emulators (Bower ef all, 2010;
Gomez efall, 2017), particle swarm optimiser (Ruiz_efall, POIH, hereafter PSO),
Markov Chain Monte Carlo (Henriques et all, 2009; Lu_ef all, POTT, POT2; ?7; Mufch
ef-all, 2013; Marfindale et all, P017), and Latin-hypercube sampling (Bower ef all,
2010; Rodrigues et all, 2017).

Here we apply sensitivity analysis to quantify the dependence of the model out-
put on the variation in the values of the model input parameters. The analysis
of Gomez et all (2014) using the ChemTreeN SAM of Mumlinson (2009) is similar
in scope to our work. They use an analysis of variance technique for variance de-

composition instead of sensitivity indices, and Gaussian processes for model fitting.
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Here we use the GALFORM SAM effectively as a black-box model, and evaluate the
sensitivity of the model outputs to the variation of the input parameters. A SAM
is an ideal candidate for sensitivity analysis, as the interactions between parame-
ters are complex enough to develop a black-box-like behaviour (“becomes easier to
experiment with than to understand”, Golovin_ef all (2017)); however, many param-
eters have a natural physical interpretation, and hence it will be straightforward to
develop intuition about how sensitive the model outputs should be to changing the
inputs. Many parameters also have either physically motivated bounds, or at least
a plausible range of possible values.

A criticism often aimed at SAMs is that they contain too many free parameters.
This is usually rebuffed with the insistence that the parameters are physical, not
statistical. Model fitting alone is therefore insufficient for interpreting how well a
SAM is performing. A different research question, one this study tries to address,
is how sensitive the model is to the parameter variation — in other words, how well
do we understand the impact of the physical processes and their interactions on the
model predictions?

Sensitivity analysis (SA) (Fisher, T9I8; Soboll, 1993, PO0T; Saltelli ef all, POT0)
is an area of statistical modelling which analyses how the variance of the output of a
model is affected by variance in the model inputs. It is closely related to uncertainty
analysis and model optimisation, and can be used to test the robustness of the
model predictions to uncertainty in the input parameters, quantify dependence of
the outputs of a model on different parameters, identify model non-linearities, and
guide subsequent model optimisation. This addresses a common criticism of black-
box models, namely that after adding sufficiently many free parameters they can be
fine tuned to match any observations, and provide a single set of predictions. While
model optimisation can be used to compute confidence intervals, SA is uniquely
positioned to quantify model responses and the relative importance of the inputs.
This addresses the complaint about SAMs listed above, that providing a spread of
model predictions is preferable to fitting to the observations. Using SA, we will be
able to not only tell how much model predictions vary for individual outputs, but

also quantify how much of this variance can be attributed to individual model inputs
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(or their combinations).
There are several SA techniques, not all of which are suitable for analysing non-
linear models with a high-dimensional parameter space. With a few exceptions?, SA

is done in 3 stages:
1. sampling of the parameter space
2. model evaluation in the parameter space
3. computation of sensitivity indices

Here, we use a variance-based SA which adopts the improvement of introduced
by Salfelli_et"all (2019) over the Sobol’ indices. Variance-based methods aim to
decompose the variance of the model output into the contributions from individual
parameter variances, as well as the combined variances of the interactions of multi-
ple combinations of parameters changing at once. In order to avoid a computational
penalty for evaluating all possible parameter combinations, input parameters are
treated as probability distributions, and the sensitivity of the model output is es-
timated approximately. Moreover, a number of numerical optimisations have been
introduced into the sampling and index calculation techniques, to improve the con-
vergence of the indices and average over the values which are too difficult to compute
efficiently.

This work diverges from previous studies in two important ways: firstly, we nar-
row the scope of this investigation to computing only sensitivity indices, and we do
not attempt to provide the best-fitting values for a galaxy formation model. We
believe that SA is not the best tool for this task, as it investigates model responses
at the extreme values of input parameters, and often for unusual combinations of
inputs, where the model no longer reproduces the observable values. Secondly, we
do not limit ourselves to measuring responses of the model to individual parame-
ters and their linear combinations. Instead, we use sensitivity indices to capture

both individual and combined impacts of parameters. Lastly, this study focuses

!Some methods, such as Gaussian processes, use parameter exploration to simultaneously mea-

sure model sensitivity and maximise goodness-of-fit for model output(s).
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exclusively on one observable, the K-band luminosity function, calculated using the
GALFORM SAM, and probes how this specific model reacts to changes in the input
parameters. Our scope is narrower, but also deeper than any previous study in this
area.

The layout of this Chapter is as follows. In Section b2 we set out the the-
oretical background, introducing the GALFORM model and, for completeness, giv-
ing the equations for the processes that we vary (Section b21). We then discuss
variance based sensitivity analysis (Section b232), the concept of low-discrepancy
sampling (Section B-23), the exploration of parameter space using Saltelli sampling
(Section B4, define the sensitivity indices (Section B2H) and illustrate these ideas
with a toy model (Section bZ8). Our results using GALFORM are presented in Sec-

tion b23 and our conclusions are given in Section b4.

5.2 Theoretical background

Here we set out the theoretical ideas used in this Chapter. Section B2l gives
a brief overview of the GALFORM semi-analytical model, introducing the processes
that are varied in the sensitivity analysis. Section BZ22 introduces variance based
sensitivity analysis, Section b2 discusses the sampling of a model parameter space
and Section =24 covers Saltelli sampling. Section b=21 defines the sensitivity indices
and Section BZZA illustrates their use with a toy model. Section b2 discusses the

use of GALFORM output in the sensitivity analysis.

5.2.1 GALFORM

As explained in Section P22, GALFORM is a SAM which aims to predict the proper-
ties of galaxies starting from dark matter halo merger histories that are typically ex-
tracted from an N-body simulation (Coleefall, 2000; Baugh, 2006; Bower ef all, PO06;
Lacey et all, 2016). GALFORM models the processes which shape the galaxy popu-
lation using a set of physically motivated, non-linear differential equations which
track the exchange of mass, energy and angular momentum between the different

components of a galaxy.
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Table 5.1: [Planck Collaborafion ef all (2014) cosmology used in the P-Millennium
simulation; the last two rows give the simulation box length and the number of

particles used.

parameter value
Qp 0.693
Qur 0.307
Qbaryon 0.04825
h 0.6777
oF 0.8288
n 0.967
Lh *Mpc]  542.16
Np 50403

All the processes are modelled by equations that contain parameters, and a GAL-
FORM model corresponds to a set of parameters whose values have been chosen so
that the model reproduces a particular set of observations. Some of these parame-
ters govern different choices for processes in the model, such as the radial density
profile assumed for the hot gas within a halo or the stellar initial mass function
(IMF) which describes the number of stars of different masses produced in episodes
of star formation. For example, the Gonzalez-Perez et all (2014) model assumes a
universal, solar neighbourhood IMF whereas the Lacey et all (2016) model invokes
a top-heavy IMF in bursts of star formation and a solar neighbourhood IMF in qui-
escent star formation. Even though these two models are implemented in the same
N-body simulation, the choices made regarding the IMF and the slightly different
emphasis on which observations the model should reproduce most closely means
that there are several differences in the values of the parameters which define these
galaxy formation models.

Here we use the recalibration of the Gonzalez-Perez ef all (2014) model intro-
duced by Baugh et all (2019) for the Planck Millennium N-body simulation, which
we refer to as GP14.PMILL. The Planck Millennium N-body simulation (hereafter

the PMILL simulation) adopts the Planck cosmology (Planck Collaborafion ef al
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Table 5.2: The GALFORM parameter ranges used in this work. The parameter ranges

have been taken from previous analyses (Bower ef all, 2010; Rodrigues et all, 2017).
process parameter min max
star formation vsr [Gyr™!] 02 1.2
supernova feedback ygn 1.0 4.0
Olret 02 1.2

Vhot dise [km/sec] 100 550
Vot burst [km/sec] 100 550
AGN feedback Ceool 02 1.2
disc instabilities fstab 061 1.1

(2014); see Table Bl) and has superior mass resolution and halo merger histories
that are better sampled in time compared with earlier N-body simulations into which
GALFORM was implemented (see Table b). Below we review the processes that we
vary in the sensitivity analysis. A more complete description of GALFORM can be

found in Section P2 and [Lacey et al] (2018).

Parameter selection

We consider the relative importance of the processes described in Section b2Z1 by
performing a SA on the parameters that describe these phenomena. The parameters
and the ranges over which they are varied are listed in Table b22. In some instances,
the parameter range is reasonably well defined, such as fg.apn, as discussed in Sec-
tion ZZZ70. In other cases, the choice of range of parameter values is less well defined.
For example, using simple conservation arguments, ygx could take on values of 1 and
2 in the momentum and energy conserving phases of the wind evolution (Osfriker
& McKed, T98R; Lagos et all, 2013). Numerical simulations of winds have suggested
different values of ysn. The other parameters defining the GALFORM model beyond
those listed in Table bare held fixed.
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Model output

After the formation and evolution of galaxies is calculated over the merger history of
the dark matter haloes in the PMILL simulation, galaxy luminosities can be obtained
from the predicted star formation rate and metallicity of the stars produced using a
stellar population synthesis model. Dust extinction is calculated in post-processing,
based on the size and gas metallicity of each galaxy (Gonzalez-Perez ef all P14,
Lacey et all, 2016). The model output that we focus on here is the K-band luminosity

function at z = 0.

5.2.2 Variance-based sensitivity analysis

The SA method we use here closely follows those used by Soboll (2001) and Salfelli
ef_all (2019), which are designed to decompose variance in the model output into
the variances of the input parameters and their interactions using as few model
evaluations as possible.

Many SA approaches suffer from a number of shortcomings which make them
unsuitable for analysing non-linear models. By non-linear models we mean here
ones that are characterised by interactions between the inputs? and which therefore
cannot be analysed effectively using regression or one-at-a-time (OAT) parameter
variation techniques (Morrid, T99T).

Unlike other methods, variance-based SA allows a full exploration of the input
space, and therefore accounts for the interactions between parameters and non-linear
responses of the model. It follows that variance-based methods are able to evaluate
the total effect indices (see below) and rank the parameters in order of their influence
on the output (Chan ef all, T997; Soboll, 2001; Salfelli et all, POUI0).

Finally, we note that all SA methods assume that the model inputs are indepen-

dent, which might not hold in general for complex models. For instance, correlations

between inputs, or unphysical combinations of their values, cannot be recognised by

2Interactions between inputs occur, for example, when varying two or more input parameters
produces a significantly different response from the model than would be expected from summing

the change produced by varying the parameters independently.
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Figure 5.1: The K-band LF at z = 0 in the AB magnitude system. Gray lines
represent 10 GALFORM model realisations randomly chosen from the 1600-model run
series. The black line represents the observational data from Driver efall (PI12).
The black vertical line is drawn at L = L*, and separates the bright and the faint
ends of the LF.
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SA techniques. Similarly, variance-based SA currently assumes that the model out-
put is a scalar. This means that the model outputs are independent of one another;
for example in the case of the luminosity function, the model prediction in a lu-
minosity bin is considered to be independent of the results in other bins and from
other outputs, e.g. other galaxy statistics. Even if the output of the model is multi-
dimensional, and even if it is correlated across one or more dimensions®, each of the
outputs must be analysed in isolation from the others. Unfortunately, at the time
of writing there are no well-established techniques which quantify or alleviate these
two shortcomings. However, these limitations do not apply to GALFORM: the input
parameters can all be varied independently and freely across the entire parameter

space, and our outputs will be quantised and analysed independently.

5.2.3 Sampling parameter space

Sampling the high-dimensional parameter space of a complex model requires a trade-
off between the accuracy of the sampling and computational expense. The accuracy
of the sampling describes how well the space is probed — have any potentially inter-
esting regions of the parameter space been overlooked because too few points have
been sampled or because the method used has left gaps in the space?

The accuracy of a sampling scheme can be assessed formally in terms of its
“discrepancy”. The lowest discrepancy sampling possible is a regular grid. However,
this is subject to “aliasing” or a lack of resolution due to the fixed gaps in the
parameter space between the model evaluations; interesting model behaviour could
be hidden in the unsampled parts of the parameter space. The convergence of the
exploration of the parameter space is slow with a regular grid. The aliasing can be
reduced and the convergence rate sped up by using a random sequence to sample
the parameter space, which leads to a higher density of sampling in some parts of

parameter space compared to a regular grid. The drawback in this case is that some

3We know that this is the case in galaxy formation models because if the luminosity function
changes in a given bin this will lead, for example, to a change in the luminosity - circular velocity
relation. Bensonl (2004) argued that correlations between bins in the observed luminosity function
are important in setting model parameters.
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Figure 5.2: Comparison of selected parameter space sampling strategies. Each panel
contains 400 points sampled between [0, 1] in the Xy and X; dimensions using dif-

ferent methods, as labelled in each panel.
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regions of the parameter space will be more sparsely sampled than they were using
a regular grid. A random sequence is formally described as the highest discrepancy
sampling. Ideally, for a fixed number of sampling points, we want to strike a balance
between avoiding the regular sampling achieved using a grid and leaving big gaps
unsampled in the parameter space, as happens with random sampling.

Several quasi-random techniques have been proposed to generate sequences that
approach this ideal of “low discrepancy” sampling, and which also ensure fast con-
vergence of the uncertainties in the sensitivity indices. A quasi-random sequence is
one designed to generate points in d-dimensions which appear random, but which
are generated deterministically to have certain desired properties. Unlike pseudo-
and truly-random sequences, successive points in a quasi-random sequence fill the
gaps left by the previous points in the parameter space. The “random” part of the
name is technically a misnomer, as the sequence is fully deterministic, but yields a
uniform distribution when projected onto any dimension of the parameter space.

A quasi-random sequence can be designed to minimise its discrepancy. For a
low-discrepancy sequence, all of its subsequences also have low discrepancy. If a
given sequence is uniform, its discrepancy tends to zero as its length increases. For
these reasons, quasi-random low-discrepancy sequences are used to maintain a bal-
ance between rapid convergence of numerical algorithms, a thorough coverage of the
parameter space, and a high uniformity of a resulting sample along all dimensions of
the parameter space (Pressef all 2007, §7.8). Quasi-random sequences are therefore
an attractive replacement for pseudo-random sequences in many applications which
require a high quality sampling.

Sampling based on low discrepancy sequences, such as the recurrent additive se-
quence (IUlaml, T960), Halton sequence (Halfon, 1964), Latin hypercube (Stein, T987)
or Sobol’” sequence (Soholl, T967; Levitan ef all, T988) can be used in numerical inte-
gration and model optimisation and have been shown to outperform schemes based
on truly random, or pseudo-random number generators, while achieving significantly
faster convergence rates (Soboll, T993). The advantage of these sequences over truly
random and pseudeo-random sequences can be attributed to the fact that the low

discrepancy property guarantees gap-less sampling over the entire parameter space.
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The low discrepancy quasi-random sequence typically used in SA is the Sobol’
sequence (Soboll, T967). It can be efficiently calculated, and produces a sample which
quickly converges to the correct set of sensitivity indices, as verified by checking
against analytically calculated values for test models. Even though it is impossible
to estimate the required number of model evaluations prior to running the SA, there
exists a natural convergence criterion — the sum of the first-order indices, defined in
Eq (B3), has to add up to unity. Moreover, even if the SA did not converge after
the initial run, additional evaluations can be easily added (see the example in the

next subsection).

5.2.4 Saltelli sequence sampling

The Sobol” sequence was originally proposed as a method of improving the conver-
gence of numerical integration (Soboll, T967). [Anfonov & Saleexi (T979) developed an
efficient computational method to implement Sobol’ sampling. Saltelli"et all (2010)
combined multiple Sobol’ sequences to further reduce the number of points required
for the estimation of the sensitivity indices, improving the convergence rate.

Hereafter we refer to the Sobol” sequence as an N by d matrix, where N is the
number of points of a d dimensional parameter space.

The Saltelli sequence is obtained as follows: first we generate an N by 2d Sobol’
sequence, (as demonstrated for the case of N =4, d = 3 in the first line of Eq (B)).
Let the first d columns be called submatrix A (blue), and the last d submatrix B
(red). The values in the matrices indicate the locations in parameter space at which
the model is to be evaluated, for parameters which can take on values over the range
0 to 1. We next construct a number d of N by d matrices Ag), for i € {1,2,...,d},
such that for each Ag) the i column is taken from matrix B, while the remaining
columns come from matrix A . The matrices A, B and Ag) specify all the points
of the parameter space at which the model is to be evaluated (one point per row),
giving a total of N x (2 4 d) evaluations which are required to calculate the first

order sensitivity indices.
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0.500 0.500 0.500 0.500 0.500 0.500
0.250 0.750 0.250 0.750 0.250 0.750
Sobol(4,3) = (5.1)
0.750 0.250 0.750 0.250 0.750 0.250

0.125 0.625 0.875 0.875 0.625 0.125

_().50() 0.500 0.500_
0.750 0.750 0.250
0.250 0.250 0.750
0.875 0.625 0.875

-0.500 0.500 0.500-
0.250 0.250 0.250
0.750 0.750 0.750
0.125 0.625 0.875

-0.500 0.500 0.500-
0.250 0.750 0.750
0.750 0.250 0.250
_0.125 0.625 0.125_

A visual impression of the different sampling approaches is given by Fig.
which shows five commonly used types of sampling: OAT, uniform pseudo-random
number generator, uniform grid sampling, a two-dimensional Sobol’ sequence and
Saltelli sampling. The OAT approach is often used with far fewer evaluations than
shown here, which makes it computationally cheaper than the other approaches. The
drawback of this method is clear from the vast areas of the parameter space that are
left unexplored. This problem is only exacerbated on increasing the dimensionality
of the parameter space. The pseudo-random number generation suffers from poor
convergence, as randomness often results in over and under sampling of many regions.
The Sobol” and Saltelli sequences uniformly sample the parameter space and achieve

the low discrepancy target at a reasonable computational cost.
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5.2.5 Sensitivity indices

Given a scalar model Y with independent inputs, we can define the first order effect

of the variance in the input X; as:

E; = Ex_, (Y|X;) :/ X,)pdf(X. HdX (5.2)
i#]
V; = Vary, (E;) = / (E; — E(Y))? pdf(X;)dX;, (5.3)

where X; is ™" model input, V; is the variance integrated in X; space over dimension
1, and FE; is the mean Y value, integrated over the d-dimensional X space in all
dimensions except ¢. Variance is used in the conventional sense, as the expected
value of the squared deviation from the mean; sensitivity of the model is understood
as variance of the mean of each model parameter, normalised by the total variance.
Since V; can only take values between 0 and Var(Y), the total variance in the model
output, we define first-order sensitivity index 5; as

Vi
S; = Var (V) (5.4)
which measures the effect that varying the input X; has on the output, averaged
over variations of all other inputs (Var(Y') is defined in Eq (58)). S; is the isolated,
normalised variance of model output, averaged over all input parameters except
parameter ¢. If S; = 1, all variance in Y comes from the variance in X;, whereas if
S; = 0, none of it does, and Y is independent of Xj.

In order to measure the interactions between model parameters, we can define

higher order indices. For second order interactions, the combined variance is
Vij = Vary,, (EXNij (Y]Xi, XJ’)) - Vi—=Vj, (5.5)

from which S; ; can be calculated analogously to S;.

It should now be obvious from the definition of the model variance why the
OAT methods are inappropriate for complex models — they do not consider the full
contribution to the model variance given by Eq (522) (which averages over all values
of the other inputs, instead of being measured only at a designated slice, as shown
in the relevant panel of Fig. B2), nor does OAT treat the combined variance of two

(Eq (B3)) or more variables correctly.
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For a deterministic model, the only source of variance in the output is the vari-

ances of the inputs. Therefore, from variance decomposition it follows that

d d
Vit ) Vij+ ot Viga = Var(Y), (5.6)

i=1 i<j

which we normalise to obtain the sensitivity indices of all orders

d d
=1

i<j

A direct consequence is that, in order to analytically decompose the total variance
of the model, one needs to compute variances of 2¢ — 1 variables, which can be
computationally expensive for complex models. However, if we assume that the
indices decrease as their order increases (which is correct for the model of interest
here), we might be less interested in the precise values of higher-order contributions,
and focus instead on the total higher-order response of a given variable. In this case

it is convenient to combine the higher-order terms into a total-order index

Ex

ST' _ ~i (varXi (Y| XNi)) 1 varXNi (EXZ- (Y| Xwi))

Var(Y) B Var(Y) ’

(5.8)

containing all terms of the decomposed output variance which include X;. Unlike
the first-order indices, the S7; do not have to add up to 1, as they include all the
input interactions?.

Higher order effects can also be calculated in simpler analyses, such as Analysis of
Variance (Fished, 1918, ANOVA), High Dimensional Model Representations (Sobol’,
1993, HDMR) or derivative-based methods. However, the total indices are a unique
feature of the variance-based SA, and are a major advantage of this methodology, as
they allow for a direct comparison of the linear and non-linear impacts of the input
parameters.

Since model evaluations produce a discrete data set, we use the numerical ap-

proximations in order to evaluate Eqgs. (64) and (6). The appoximate expressions

4In this case, the whole is literally more than the sum of the parts.
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are based on the sampling matrices (A, B, and Ag)),

fjf L (r(a8) ~rw)) 69

 (Vary, (Y[X.)) ~ LNZJ_V:( A),— f (Al )J)Q, (5.10)

where f (X) is the model f evaluated at point X (Uansen, T999; Soboll, 2001; Saltelli

Vary, (Ex_, (Y]X;))

2+—~

ef all, POT0).

5.2.6 Illustrative sensitivity analysis of a toy model

The performance of the sensitivity analysis estimator can be demonstrated using a
toy model. The Ishigami function is an example of such a model, and is commonly
used to test the predictions of sensitivity analysis because it contains non-linear
interacting terms. Nevertheless, the sensitivity indices can be calculated analytically
and compared to the estimated values.

The Ishigami function is defined by Eq. 14 of [shigami & Homma (I991) as
Y (X1, X3, X3) = sin (X;) + asin® (X5) + b X3 sin (X;), (5.11)

where the X; are random variables uniformly distributed between —7 and 7, such
that pdf(X;) = U(—m,7), and a, b are numerical constants, here chosen to be 7 and
0.1 respectively.

The SA was carried out by running the model on inputs generated by a 3-
dimensional Sobol” sequence for 500 realisations, which resulted in 4000 = 500 x
(242 x 3) values of X; (as explained in Section b24). Next, Eq (B) was evalu-
ated at each X; point, giving a vector Y of length 4000. Finally, the vector Y was
analysed using the SALib Python package (Herman & Ushex, ROT7).

The evaluations of Eq (Bl) are shown in Fig. B3, and the first- and total-
order sensitivity indices of the three input parameters are shown in Fig. b4. It is

interesting to draw some qualitative observations from Fig. b=3:

e varying X; and X in isolation results in large changes in Y; this is reflected
by large values for S; and Ss.
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Figure 5.3: The 4000 evaluations of the Ishigami function (Eq (6c11). On-diagonal
histograms show distribution of the X; parameters. Off-diagonal scatter plots show

pairs of parameters and are colour-coded to show the value of output Y.
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Figure 5.4: First-order (red) and total (blue) sensitivity indices of the three input

parameters of the Ishigami function, with 1o confidence bars (black).
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e varying X; and X, together has a large effect on Y'; this is reflected by large

values for Sp; and Sps.

e varying X3 for mid-range values produces little effect, but varying other pa-
rameters at extreme X3 values produces a large change in Y'; correspondingly,
S5 is nearly zero, but Sr3, which captures the global response of Y to Xj, is

larger

e S is negative, despite being defined in terms of non-zero variance (Eq (53));
this is the result of using a numerical approximation instead of an analytical
formula to estimate S1; however, note that the confidence interval includes the

origin, and so the value of 5] is consistent with zero.

A more complete SA would involve computing second order indices, and compar-
ing sensitivity indices for different versions of the Ishigami function, such as with
different a, b parameters, or over different X; ranges. However, this more complete
analysis is beyond the scope of this section, as it is only meant for demonstration
purposes. The source code used to reproduce this analysis has been made public:

https://github.com/oleskiewicz/sensitivity/releases/tag/v1.0.

5.2.7 GALFORM output used in the sensitivity analysis

When applying SA to a model with a multi-dimensional output, it is necessary to
select the most interesting outputs manually. The Sobol’ index method assumes, and
can only be calculated for, separate one-dimensional output vectors Y. From the
formal standpoint this is problematic as the sensitivity indices contain no information
about any correlations between various model outputs. However, in practice one
could perform model runs which follow the Saltelli sampling and then carry out
separate sensitivity analyses for any desired number of model outputs, since running
the model is more time consuming than calculating the Sobol” indices.

Here we focus on the prediction of GALFORM for the K-band luminosity function
(LF) at z = 0, calculated as described in Section B271. We have chosen to consider
this statistic due to the well-understood influence of the model parameters on the

form of the luminosity function (see the extensive discussion in [Lacey et all (2016)).
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Figure 5.5: Sensitivity indices for the first series of runs, when varying two param-
eters in GALFORM : (/001 and gy, for the K-band luminosity function measured in
two coarse luminosity bins. The colours of the bars indicate different indices, first
(blue) (Eq (54)) and total (red) (Eq (53)) order for a given variable. The left panel
shows indices for L < L*, and the left for L > L* (see Eq (612)). The black bars

show the 1o confidence interval for the sensitivity indices.

Varying the parameters around the values used in the fiducial model shows that the
bright and faint ends of the luminosity function are regulated by different physical
processes. Therefore, the sensitivity indices could be easily verified for errors, and
we will be able to quantify our intuition regarding the relative importance of the
different feedback modes on the abundance of galaxies at different luminosities.

We have elected to perform the analysis on the model output values normalised
by the observational data (see Eq (B13)) instead of on the model output itself. This
way, the values we focused on were close to the ones typically used for model opti-
misation, and had a reduced dynamic range, being effectively normalised by the ob-
servational values. Analysing a SAM independently of the observational constraints,

while interesting in its own merit, is outside the scope of this work.
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Figure 5.6: Convergence of the first- and total-order sensitivity indices for the first

series of runs, when varying two parameters of GALFORM , (re001 and sy, as a function

of a number of samples. The sensitivity indices in this case are computed in each

of two broad luminosity bins, covering, respectively, the faint and bright ends of the

luminosity function. Individual subplots show the results for the faint and bright

end of the K-band LF (columns, labelled on the top), and the a parameters (rows,

labelled on the right). Solid lines correspond to the values of the indices, and the

shaded regions to the 1o confidence band of the values, both colour-coded by the

order of the indices as labelled in the legend.
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Figure 5.7: First- and total-order sensitivity indices (Eq (54)) for the first series
of runs, when varying two parameters in GALFORM: oo and ysn. Bottom panel:
K-band luminosity function at z = 0 like in Fig. b, gray lines correspond to 10
randomly chosen runs; black line is the observational data from Driver ef all (2012);
dashed vertical line corresponds to L*. Top panels: first- and total-order (as labelled
on the right) sensitivity indices of two variables (y axis) for 18 individual magnitude
bins (x axis), colour-coded by value between 0 (not sensitive) and 1 (most sensitive)

as labelled by the colourbar at the top.
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Figure 5.8: The parameter space of the second GALFORM experiment in which 7
parameters are varied over 1600 realisations of the model. On-diagonal histograms
show the nearly-uniform distribution of the individual parameters, as expected for
Saltelli sampling. Off-diagonal scatter plots show the parameter space for pairs of
parameters, colour-coded by the goodness-of-fit x* (Eq (514)) of the model predic-
tion for the K-band luminosity function using 18 luminosity bins (Fig. B), to the
observational estimate from Driver ef all (2012); blue points correspond to runs with

low values of x2, as labelled by the colourbar.
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5.3 Results

5.3.1 Sensitivity analysis experiments

We have carried out two separate sensitivity analyses using GALFORM: (1) 600
GALFORM model runs varying two parameters (oo and ysn), and (2) 1600 model
GALFORM runs varying seven parameters (see Table 52).

For both series of runs, a SA was carried out on the K-band LF at z = 0, with
two different binnings of the LF used to compute the sensitivity indices, as explained
below.

In the first instance we performed a simple analysis by splitting the LF into two
broad luminosity bins, one covering a range of luminosities brighter than L* and the
other luminosities fainter than L* (see Fig. Bl). For each run, we calculated two
model outputs covering the bright and faint ends of the LF, dgaint and diyigns, defined
by summing the normalised differences between the observed and predicted values

of the luminosity function for luminosities brighter and fainter than L*. e.g.:

logyo(9) — IOglo(Qg)
dtaing = , 5.12
f L;* log(¢) (512)

with dpyigne defined analogously for L > L*. The observed luminosity function ngS
is taken from Driver_ef all (20127). Unlike a traditional measure of model fitness,
we do not take the absolute value or square of the distance between the model
prediction and the data. This is because the sign of the output (i.e. the sense of
the discrepancy) is valuable information for the sensitivity indices, as it contains the
direction of the model response.

This coarse analysis is quantitatively identical to measuring the LF using only
two broad luminosity bins. This exercise has two goals: (1) to verify that SA pro-
duces explainable results which can be interpreted in accordance with our physical
intuition about the galaxy formation model, and (2) to check the convergence of
the sensitivity indices and their confidence intervals, which can be estimated as
explained in Section B=Z2.

After this coarse two-bin analysis, in the second case we calculate sensitivity
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indices for each of the 18 luminosity bins, L;, using the quantity:

d — logy(9i) — 108?10((5:')
1 logyo(¢:) .

This serves as a fine-grained analysis, which can quantify the relative impact of

(5.13)

different parameters on the individual segments of the LF, as well as uncovering

interactions between model parameters.

5.3.2 Feedback processes and the luminosity function

The first series of runs, which analysed the effects of changing two of the parameters
which specify different feedback processes in GALFORM, a0 and ysn, was carried
out to verify the usefulness of the SA and to evaluate its effectiveness, given our
physical intuition, regarding the expected impact on the LF of varying these model
parameters. Only two parameters were allowed to vary to speed-up the analysis
and allow for an easier interpretation of results: ac.o and sy (see Table B2 for the
range of parameter values considered). Recall that gy controls the mass loading
of SNe driven winds and a.., determines the halo mass above which AGN heating
shuts down the cooling flow.

Fig. b3 shows the first- and total-order sensitivity indices calculated from 600
GALFORM model runs for the coarse-bin analysis of luminosity function using two
bins, one fainter and one brighter than L*, as presscribed by Eq (512). The results
are striking, but not unexpected: it is clear that ygy is the dominant parameter
out of the two in shaping the model output for galaxies fainter than L* (and hence,
that such galaxies are mainly affected by SNe feedback) and that both parameters
have similar significance for galaxies brighter than L* (albeit aco is slightly more
important), and so bright galaxies are affected by SNe feedback and AGN heating.
Moreover, S; and St are comparable in all cases, which means that the model
response to varying these parameters is mostly linear.

Figure b8 shows the convergence of the indices from the Fig. b3 as a func-
tion of the number of samples N. The indices do not change substantial after 100
GALFORM runs.

Figure b=d shows the first- and total-order sensitivity indices for the fine-grained
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Table 5.3: The best-fit GALFORM parameters found in this work, in relation to [Driver

efall (2012).
parameter value
vsr [Gyr™!] 0.46
TSN 3.45
(lreheat 0.74

Vot dise |[km/sec] — 332.69
Viot burst [km/ sec]  392.90
Qcool 0.58
Jstan 0.77

analysis of the LF using multiple luminosity bins, using Eq (513) as model output.
We can see that L* is close to coinciding with the bin at which AGN heating starts
to become important, which explains the results shown in Fig. bZ3. We also learn
that while SNe feedback does not interact with the AGN heating at the faint end of
the LF, their influence over the bright end is strongly correlated.

We did not consider the best-fit model for this two parameter case, since we
perform a rudimentary estimate of the best-fitting parameter set in the next section,

when varying more GALFORM model parameters at the same time.

5.3.3 Sensitivity analysis over a multi-dimensional parame-

ter space

The design of the second experiment, in which seven GALFORM parameters are var-
ied simultaneously (Table B2), is inspired by the work on parameter optimisation
using Bayesian emulators by Bower ef all (2010); Rodrigues et al] (2017). For com-
parison, we use the same parameter ranges adopted in their studies. This exercise
requires significantly more model realisations than the first one, since we sample a
higher dimensional parameter space and aim to observe interactions between more

parameters.

Fig. b8 shows the parameter space and its sampling, colour-coded by the goodness-
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Figure 5.9: Sensitivity indices for the second series of 1600 GALFORM runs, varying
7 model parameters (Table b2), computed using the coarse two bin description of
the luminosity function. The bar colours indicate the values of different indices, the
first index (Eq (64)) (S1, red) and total order index (Eq (5X)) (ST, blue) for each
parameter. The left panel shows indices for galaxies in the luminosity bin fainter
than L*, and the right panel for galaxies in the bin brighter than L* (Eq (B12)).

The black bars show the 1o confidence intervals for the sensitivity indices.

of-fit measure

) <log10(¢i) - 10g1o(€2§i))2
=2 10g10() | o

%

where the sum is carried out over all luminosity bins and low values of x? are blue.
While x? is not a robust model output for SA, as it does not contain information
about the direction of the model response as explained in Section B3, it is still
a useful measure of a global model response or “quality of fit”. The on-diagonal
histograms indicate that the Saltelli sampling produces a nearly uniform sampling
of parameter space, as expected from a low-discrepancy sequence. The off-diagonal
scatter plots give a first indication of some of the first-order index results: the x?
of the model LFs is sensitive to variation of gy, is degenerate in the YsN—Uhot disc
plane (which follows directly from Eq (21H)), and depends only weakly on other

parameters.
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Figure 5.10: First- and total-order sensitivity indices (Eq (B4)) for the second series
of runs, when varying 7 GALFORM parameters (Table B2). Bottom panel: K-band
luminosity function at z = 0 as in Fig. b; grey lines show 10 randomly chosen GAL-
FORM models; the black line connects observational data from Driver et all (2012);
dashed vertical line corresponds to L*; the solid red line shows the best-fitting model.
Top panels: first- and total-order (as labelled on the right) sensitivity indices of two
variables (y axis) for individual magnitude bins (x axis), colour—codi(lll1 ll;fylxgiluzeolﬁ%—

tween 0 (not sensitive) and 1 (most sensitive) as labelled by the colour-bar at the
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Figure b shows the first- and total-order sensitivity indices for the coarse-binned
analysis of the LF (Eq (B12)). Since sensitivity indices are derived from the nor-
malised variance (Egs. (64) and (53)), the values should always be between 0 and 1,
which they are (including the confidence interval). Similarly to Fig. b3, in Fig. 6B
we see two different types of behaviour of the GALFORM model: the faint end is
dominated by SNe feedback, while the bright end has a mixed, non-linear response
to many parameters. Interestingly, while AGN feedback (via acoo) has the highest
first-order sensitivity index (S1) for the bright end of the LF, the total-order indices
(ST) of SNe feedback processes dominate. Of particular interest are the fy,, and
Unhot,burst Parameters. These parameters have nearly zero first-order response indices
(which means that their impact cannot be detected by an OAT analysis), but their
combined higher-order responses are significant.

It is instructive to see the origin of the values reported in Fig. b9, by inspecting
how the sensitivity changes bin-by-bin (Eq (613)) in Fig. B10. The results are
consistent with Section b=32, and together provide an interpretation of the behaviour
of the GALFORM model. Moreover, displaying the model output together with model
sensitivity can be of use when manually tweaking the model, allowing for a fine,
manual control over the precise details of the LF (or, indeed, other outputs).

Finally, we note that Fig. b0 also shows the LF for the best-fitting model, as
determined by the smallest value of Eq (514). This can be considered an additional
benefit of running SA — requiring so many model realisations naturally finds one
which is likely to be close to a global optimum. The best-fitting parameter values are
reported in Table B23. Note that the values diverge from those reported in [Lacey et al.
(20186), due to different fitting method and the fact that this study only considered
the K-band LF, whereas [Lacey et all (2016) took into account multiple observations
in a manual parameter tuning. Of particular interest is the value of Vit gisc, which
is over 20% larger than in the previous calibration of this GALFORM model. We
attribute this difference to the fact that, as discussed in Section b=373 and shown
in Fig. b, the combined total-order sensitivity index of Vit aise Outweighs the first-
order index for both ends of the K-band LF. This suggests that the optimal value

of this parameter could be missed by OAT model fitting. The differences in the
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other parameter values are not as significant as they might seem — the variables
with the highest sensitivity match the previously reported values pretty closely (e.g.
vsn is within 7%), and the variables with low sensitivity that diverge by a significant

margin by definition of the sensitivity indices do not have significant impact on the

K-band LF.

5.4 Conclusions

We have used variance-based sensitivity analysis to analyse the sensitivity of the
K-band luminosity function predicted using the GALFORM semi-analytical model
of galaxy formation to the variation of the model parameters. We have shown
that sensitivity analysis is a useful tool, which goes beyond simple model fitting
and one-at-a-time parameter variation, and we have demonstrated that it can be
applied to a challenging problem in computational astrophysics. Variance-based
sensitivity analysis is perhaps particularly useful for the semi-analytic modelling of
galaxy formation modelling, due to the computational expense of searching a multi-
dimensional parameter space and the non-linearity of the model. These features
have led some to view such models as black boxes. Part of the aim of the sensitivity
analysis presented here is to make the behaviour of the model and how it responds
to parameter changes more transparent.

In its present form sensitivity analysis can only deal with one-dimensional out-
puts of a model, which on the one hand means that it cannot be used to resolve
correlations in model outputs (such as between the predictions in different bins of
the luminosity function or between the luminosity function in different bands; see
Benson (2014)), yet on the other hand this feature gives the scientist performing
the study unlimited flexibility in choosing and parametrising the outputs they find
the most important. Here, we have elected to perform the sensitivity analysis us-
ing the model predictions in luminosity bins cast in terms of the difference between
the computed and measured K-band luminosity function at z = 0. Our motiva-
tion for this was that by choosing an established observable with a well understood

connection to the underlying physical processes and their description in term of
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GALFORM parameters, we could make a convincing case for the usefulness of the
sensitivity analysis.

With this in mind, future work on SA might want to examine the variance of
the outputs of the semi-analytic model alone, independently of the corresponding
measured observable values. There are three main reasons for such an approach:
i) using the full dynamic range of the predictions: normalising the model output
by observations flattens the dynamic range, and while SA works equally well for
small and large values, by only analysing a flat version of the model predictions
we effectively take the regions in which the model gives a flat or steep response
(for instance, the faint and bright end of the LF respectively) and make them look
the same. ii) independence of post-processing: by comparing to data, we had to
make a choice about the norm of the discrepancy between the model output and
observations: do we retain the sense of the discrepancy or square it? A different
SA study could have chosen differently, altering the results. By analysing model
outputs independently of the observations these choices are no longer necessary. iii)
data independence: SA results could change if a different dataset is used with the
same model.

Moreover, the K-band luminosity function is just one possible output and there
are many others which a successful semi-analytic model should reproduce accurately.
Analysing all of these is outside the scope of this study, but we hope to have shown
that SA is a promising avenue of research.

Finally, we note that while correctly estimating model sensitivity can be useful
in guiding model optimisation and improving the physical interpretation of the pa-
rameters of the galaxy formation models, one must remember that even the most
rigorous sensitivity analysis can only provide the answers with regards to the model,
not the underlying physical system itself ([Taleb & Douadyl, 2013). Therefore, the
relationship between the structure of the model and that of the physical system

remains open to discussion.
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Chapter 6

Conclusions & Future Work

6.1 Summary

Cosmology’s rise as a quantitative science in recent decades has coincided with the
emergence of ACDM as the concordant cosmological model. Together with GR, it
has passed many observational tests, and provided explanations and predictions for
numerous astronomical observations. However, there remain observational tensions
on small scales, which could be solved by either changing the dark matter paradigm,
or invoking baryonic physics. The cosmological constant remains somewhat unpalat-
able from a theoretical viewpoint, hence the motivation to look at alternatives to
ACDM .

In this thesis we have presented a body of work on the cosmologies in the presence
of modified gravitational field, specifically one postulated by the f(R) theory.

In the first part of the thesis we extended the work on the assembly of haloes in
ACDM to modified gravity by Ludlow et all (2013, 2016), in which they argued that
the internal structure of dark matter haloes could be connected to their formation
histories. This is almost the case in modified gravity, though the relation between
different definitions of the formation time is different in f(R) models than it is in
GR. Conversely, this difference could be used as a test of the nature of gravity. The
requirements on the mass faction of the progenitors used to define the formation time
means that, in practice, the halo concentration can only be estimated directly from

the merger histories for very well resolved haloes. In any general galaxy catalogue,
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most galaxies are predicted to be found in haloes that are far below satisfying the
mass condition.

We then incorporated the changes in the properties of dark matter haloes in
modified gravity into the GALFORM model. This represents a first, albeit incomplete
(see next section), attempt to extend GALFORM beyond GR. Previous work on semi-
analytic galaxy formation models in non-standard cosmologies (e.g. Fonfanof ef all
(2013)) has looked at the impact of modified gravity on galaxy properties that are
shaped by a wide range of halo masses, such as the galaxy luminosity function.
We decided to focus instead on the halo occupation distribution function of He -
emitting galaxies. Previous work with GALFORM in GR (Gonzalez-Perez ef all, DUTR)
predicted a peak in the HOD of O11 emitters around the mass at which screening
is expected to become ineffective, and at which we might expect to see a clearer
difference between modified gravity and GR. The changes were nevertheless small
and possibly out of the reach of even the next generation of surveys.

Finally, we applied a new technique, sensitivity analysis (SA), to address the
question of which parameters matter most for a particular galaxy formation model
prediction. The idea behind this project came out of a placement with Atom Bank,
the Durham-based first digital-only bank in the UK. The placement was one of the
first carried out through the Centre for Doctoral Training in Data Intensive Science.
The focus of the placement with Atom Bank was to use the SA to address an audit
item on the bank’s model for the pricing of mortgages. Much like GALFORM, this
was a complex, multi-parameter model. The SA analysis of GALFORM was applied
to the K-band luminosity function predicted by GALFORM, allowing us to confirm
our physical intuition about the relative importance of parameters, and how it varies
with luminosity. This study marks moves away from a “one-at-a-time” parameter
variation, improving the transparency of GALFORM results and simplifying interpre-

tation of GALFORM parameters.
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6.2 Future Work

Our investigation into the concentration-formation time relation of haloes in mod-
ified gravity concluded that the origin of the free parameter of the relation shown
in Cudlow efall (2016) for GR haloes remains unknown, and that the relation in
general is not reproduced for f(R) haloes. Therefore, the question about the origin
of the connection between haloes’ concentrations and formation times remains open.
Future studies of modified gravity simulations present a useful avenue of progress,
since the changes they introduce make the counterpart GR simulations act as null hy-
potheses. In particular, running f(R) comparison studies for the F5 and F4 models,
and comparing how the concentration-formation time relations react to halo popu-
lation splitting and parameter variation would be an interesting next step towards
understanding what causes the relation to be so well defined in GR in the first place.
Furthermore, theoretical studies on defining an environmental proxy able to recover
the relation would surely be of interest not only to research of modified gravity, but
of halo formation research as well. Finally, while Ludlow ef all (2016) improves upon
the original Navarro_ef all (1T996) formation time definition, the new values are still
degenerate in f(R) for different halo mass histories; a revision of halo formation time
definition would, very much like a revision of halo concentration definition (Mitchell
ef all, 2019), be of tremendous value to further modified gravity research.

Here we took the first steps towards a modified gravity version of GALFORM. If
we are to fully exploit the measurements from the next generation of galaxy sur-
veys, it is important that we build the best models we can of galaxy formation in
gravity models beyond GR. Following our incorporation of the halo merger histories,
concentration-mass relation, and the virial velocity-mass relations into galaxy, the
next steps towards a full fledged MG GALFORM would be to (i) recalculate hydro-
static equilibrium, to account for the impact of modified gravity on gas cooling, (ii)
revise the treatment of galaxy sizes, to take into account MG, and (iii) use stel-
lar population synthesis models that take modified gravity into account for stellar
evolution (e.g. Davis_ef all (2012); Sakstein (2015)).

We also applied the first sensitivity analysis to a galaxy formation model that

attempts to predict the full galaxy population. Lack of transparency is a charge
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often levelled at the way in which parameters are set in semi-analytical models, and
the SA can partially address it. This study was carried out on a well-studied ob-
servable, since both GALFORM and SA itself were being trialed. However, we have
managed to successfully reproduce and quantify physical intuition regarding many
GALFORM parameters, especially those related to feedback processes. We therefore
find SA in general, and variance-based approach in particular, to be a new and
promising avenue of research for modelling complex astrophysical processes. We
would like to see analyses of models to widen their scope, and to include the sensitiv-
ity indices of model parameters alongside their best-fitting values as valuable metric
of model performance. Current limitations of SA techniques include the fact that
the analysis can only be carried out for one output at a time, e.g. one luminosity bin
in the luminosity function, and does not give any indication of what the best-fitting
model parameters are any better than a grid search method. Moreover, further
research is required to correctly model correlated outputs, as these are currently
assumed to be statistically independent variables. Finally, the required number of
model evaluation grows quickly for a multi-parameter study, which makes alternative

ideas, such as improved sampling or emulation techniques very compelling.
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