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Abstract

This first part of this thesis examines the impact of changes to gravity on the for-

mation of dark matter haloes and galaxies. We use two N -body simulations, one

assuming general relativity (GR) and the other the Hu-Sawicki form of f(R) grav-

ity, to investigate the concentration-formation time relation of dark matter haloes.

At fixed mass, haloes in modified gravity are more concentrated than those in GR,

especially at low masses and redshifts. We find a clear difference between halo con-

centrations and assembly histories in modified gravity and GR. We incorporate these

changes to the properties of dark matter haloes, along with halo merger histories

from a N -body simulation of f(R) gravity to build, for the first time, a partial

modified gravity version of galform . We concentrate on a model prediction that

should, in principle, show a clear trace of modified gravity, the halo occupancy of

emission line galaxies. In the second part of the thesis we present the first appli-

cation of a variance-based sensitivity analysis (SA) to a galaxy formation model.

We perform a multi-parameter exploration of galform to compute how sensitive

the present-day K-band luminosity function is to varying different model parame-

ters. We first demonstrate the usefulness of the SA approach by varying just two

model parameters, one which controls supernova feedback and the other the heat-

ing of gas by AGN. The SA analysis matches our physical intuition regarding how

these parameters affect the predictions for different parts of the galaxy luminosity

function. Our study marks a much needed step away from the traditional “one-at-

a-time” parameter variation, often used in this area, and improves the transparency

of semi-analytical models.
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Chapter 1

Introduction

Science advances on the fundamental assumption that the Universe is knowable and

understandable by a human mind, and cosmology in particular has done more to

justify this belief than any other area of research. Cosmology is the study of the

Universe as a whole, attempting to explain its origin and evolution. As such, its

roots can be traced to the earliest human mythologies, which makes it all the more

fascinating that it became a quantitative discipline only a little over one hundred

years ago, with Einstein’s theory of gravity.

In the same way that the focus of biological sciences was transformed from clas-

sifying organisms to explaining their origins by Charles Darwin, the astrophysical

sciences were elevated from a catalogue of celestial objects to building mathematical

models of entire universes by Albert Einstein’s General Relativity (GR) theory of

gravity (Einstein et al., 1916). Einstein’s equations were solved independently by

Friedman (1922) and Lemâıtre (1927), with the solution being an expanding uni-

verse which started from an initial singularity, an infinitely small and dense point

at t = 0. In the meantime, Slipher (1915) observed that spectral lines of the ex-

tragalactc objects are redshifted, and subsequently Hubble (1929) proposed a law

that the redshift increases in proportion to the distance of the galaxy away from us,

which provided evidence in favour of the expanding universe theory.

The century that followed saw rapid developments in cosmology, in both obser-

vations and theory. Zwicky (1933) estimated the velocity dispersion of galaxies in

clusters, and argued that the clusters did not contain enough luminous matter to

13



1.1. ΛCDM 14

hold them together. He postulated the existence of the “dark matter” to explain this

discrepancy.

His claims were supported on a smaller scale by the work of Rubin & W. Kent

(1970) on the rotation curves of the galaxies – independent measurements that both

suggested the presence of matter that could not be observed directly, through its ef-

fects on the dynamics of matter that could be seen. Rubin showed that the rotation

curves of spiral galaxies are flat, which implies that the mass in a galaxy increases in

proportion to the distance from the centre, whereas the light in the galaxy is concen-

trated towards the centre. Moreover, the measurements of the type Ia supernovae

in distant galaxies (Riess et al., 1998; Perlmutter et al., 1999) have shown that the

rate of the expansion is accelerating. This inspired the postulate of “dark energy”,

another unknown component of the Universe, which can overcome the gravitational

attraction over large scales in space and time.

1.1 ΛCDM

To identify the components of the Universe, we start by formulating GR in terms of

Einstein-Hilbert action:

S =

∫ [
1

16πG
(R− 2Λ) + Lm

]√
−g d4x, (1.1)

where g is the metric, G is Newton’s gravitational constant, R is the Ricci curvature

scalar, Λ is a constant and Lm is a term describing matter field. The actin can be

minimised with respect to metric g to obtain the Einstein Field Equations (EFE):

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν , (1.2)

where Rµν is the Ricci curvature tensor, R is the Ricci curvature scalar, gµν is the

metric tensor, Λ is the cosmological constant, G is Newton’s gravitational constant,

c is the speed of light in vacuum, and Tµν is the stress – energy tensor.

EFE contain terms for time (1 dimension) and space (3 dimensions), but since

all tensors are symmetric, the equation above denotes only 10, not 16 independent

relations. Moreover, we can invoke the cosmological principle to simplify it even

further. The cosmological principle states that the distribution of energy in the
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1.1. ΛCDM 15

Universe is homogeneous and isotropic on large scales. Formally, this is expressed

by requiring the EFE to remain symmetric under rotations and translations. This

requirement was used by Friedman (1922); Lemâıtre (1927) to derive a solution,

known as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = −c2dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2(θ)dϕ2

]
, (1.3)

where a is expansion factor, size of the Universe normalised to 1 at present time,

and k is the space-time curvature.

The FLRW metric can be inserted to EFE. On-diagonal terms of Ricci and

stress-energy tensors give the Friedman equations:(
ȧ

a

)2

=
8πG

3
ρ+

kc3

a2
+

Λ

3
(1.4)

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3
. (1.5)

For convenience, the Hubble parameter can be defined as H2(t) = (ȧ/a)2. ρ can

also be split into matter (ρm) and radiation (ρr) parts (since they scale differently

with expanding / contracting space-time). Then, ρi components can be normalised

by the curvature term to Ωi = ρi/ρc, where

ρc =
3H2(t)

8πG
, (1.6)

is the critical density of the Universe at a given time t. Finally, the Ωi terms can be

normalised by their present-day values Ωi,0. Putting all the steps together, we can

re-write the first Friedman equation as

H2 = H2
0

(
Ωm,0

a3
+

Ωr,0

a4
+ ΩΛ,0 +

Ωk,0

a2

)
, (1.7)

where Ωm,0 Ωr,0 ΩΛ,0 Ωk,0 are the energy densities of matter, radiation, cosmological

constant and curvature at the present time.

ΛCDM has so far been extremely successful in making cosmological predictions,

passing observational tests on large scales and over a wide range of timescales such as

the fluctuations in the Cosmic Microwave Background (CMB) radiation, galaxy clus-

ter abundances, and hierarchical structure formation (Springel et al., 2005; Hinshaw

et al., 2013; Planck Collaboration et al., 2016a). The small scale predictions, on the
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1.1. ΛCDM 16

other hand, remain controversial (Weinberg et al., 2015; Bullock & Boylan-Kolchin,

2017) – in particular the observed shape of the innermost regions of dark matter

haloes and the number and properties of the satellite galaxies of the Milky Way. It

has, however, been pointed out that criticism might be unfounded on statistical and

numerical grounds (Genina et al., 2017), or that it might point to stronger impact

of baryonic effects (such as a more efficient supernova feedback) or complex physics

in the dark sector.

The concordance model emerging from the most recent observations is the Uni-

verse which is composed of ≈ 4% visible matter (later referred to as “baryons”),

≈ 26% dark matter and ≈ 70% dark energy. In this model, the dark energy is the

energy of the vacuum, called cosmological constant Λ. The most likely candidate for

the dark matter are relatively heavy, with a rest mass at the order of GeV, weakly

interacting particles called WIMPs (Peebles, 1982).

1.1.1 Cosmological Constant

Adding a cosmological constant or Λ term to the EFE offers one explanation for the

accelerating cosmic expansion, but this comes at the price of introducing theoretical

problems.

The Fine-Tuning Problem arises when we compare the value of the vacuum en-

ergy density, as predicted from quantum field theory, to the observationally inferred

value of Λ. The quantum field theory prediction is at least 1060 times larger than

the observed Λ, and so if these two values are indeed the same physical quantity,

reconciling them would require adding some mechanism to the Standard Model of

particle physics which could fine-tune the vacuum energy density to the correct level.

The Coincidence Problem comes from an observation that at the present day,

the contributions of the Λ and matter energy components to the energy budget of

the Universe are comparable. Eq (1.7) predicts that the history of the Universe has

distinct epochs, each dominated by different component, and that at the present

day, the (a = 1) Λ and matter terms are comparable. For low values of a, after the

epoch of radiation domination, the matter density dominates over Λ, while for large

values of a it is the other way round. The question the Coincidence Problem asks is
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how likely is it that our existence coincides with this special time in the history of

the Universe, when both of these terms are within one order of magnitude?

Many modified gravity theories cite the Fine-Tuning Problem as their motivation,

and they often provide a physical mechanism justifying the values of Λ (and some-

times evolution of ΩΛ in relation to Ωm) as natural by modifying Einstein-Hilbert

action, or adding another term to it.

1.1.2 Cold Dark Matter

There is circumstantial evidence in favour of the dark matter hypothesis which goes

beyond the rotation curves of the galaxies. Galactic clusters observations using

both X-ray images of the hot gas, and gravitational lensing of matter have shown

that the missing matter outweighs the luminous matter by a factor of five (Allen

et al., 2011). Both observations (Markevitch et al., 2004; Massey et al., 2015) and

simulations (Robertson et al., 2016) of galaxy cluster collisions, such as 1E 0657-558

(also known as the Bullet Cluster), have also provided what is largely considered

the most direct evidence of dark matter. Further studies of the CMB anisotropies,

Supernovae Type Ia distance measurements, baryon acoustic oscillations (BAO),

redshift-space distortions and gravitational lensing maps (Refregier, 2003) are all

overwhelmingly in favour of the missing matter hypothesis.

Much of the evidence cited in the previous paragraph points at another property

of the dark matter – its temperature. To match observations, dark matter needs to

be cold, with a low thermal velocity dispersion to preserve density fluctuations on

small scales. Possible cold dark matter candidates include axions (Peccei & Quinn,

1977) and WIMPs (Peebles, 1982), but despite extensive searches by observational

astronomers and particle physicists, there has not yet been a conclusive detection.

Nonetheless, theoretical research has found more indirect evidence in favour of

the ΛCDM cosmology. In ΛCDM , structure grows hierarchically (bottom-up), with

small objects collapsing first, and merging to form larger and more massive objects.

The predictions of the cold dark matter model are in better agreement with large-

scale structure observations than other mainstream alternatives (Springel et al., 2005;

De Lucia & Blaizot, 2007).
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1.2 Computational Cosmology

Over the past few decades, many areas of science have seen their two modes of

research, observations and theory, supplemented by the third one – computation.

Nowadays, numerical modelling is one of the main methods in which cosmologists can

test their ideas regarding structure formation. Crucially, advancements in computing

have allowed solving increasingly complex equations, and on an increasingly vast

range of scales.

1.2.1 Initial Conditions

Modern cosmology posits that the large-scale structure formed from nearly-uniform

random fluctuations in the primordial hot matter distribution. The linear perturba-

tion power spectrum can be computed using a Boltzmann solver code such as class

(Blas et al., 2011). This is then used to generate the initial Gaussian density field

for the simulation, using a code such as panphasia (Jenkins, 2013). The particles

are then displaced from their initial distribution as prescribed by a second-order La-

grangian Perturbation Theory algorithm (Jenkins, 2010), so that their distribution

matches the input matter power spectrum.

1.2.2 Numerical Gravity Solvers

If we assume that these random over- and under-densities in the primordial matter

distribution were the seeds of structure formation, we can construct a numerical

simulation of the Universe by starting with a taking volume of space, populating

it with N gravitationally interacting point particles, and solving the Newtonian

equations of motion until we arrive at the present day (z = 0) state.

For simplicity, the N -body simulations used in this thesis follow only collisionless

particles. This ignores collisional, radiative and pressure-driven exchanges of energy

and momentum, and only models the gravitational interactions. We make use of the

results of many gravity solvers: ECOSMOG (Li et al., 2012) based on RAMSES

(Teyssier, 2002), AREPO (Springel, 2010) and GADGET (Springel, 2005).
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1.2.3 Dark Matter Structures

Instead of operating on the entire phase space of billions of particles, it is usually

sufficient to describe large-scale structure of the simulation using bulk properties.

Therefore, results of the dark matter-only simulations are used to produce halo and

subhalo catalogues.

Dark matter haloes are locally overdense regions of dark matter (Davis et al.,

1985). As explained in (Mo et al., 2010, Chapters 5 and 7), the gravitational col-

lapse of collisionless dark matter approximately follows the spherical collapse model

(Gunn & Gott, 1972; Peebles, 1980), in which a spherical top-hat function of dark

matter particles is evolved using Newtonian equations of motion. The linear collapse

model predicts that after the overdensities collapse, they have an average equilib-

rium density of approximately 178 times greater than the critical density. Therefore,

for simplicity, dark matter haloes are conventionally identified as isolated regions of

space with mean enclosed density 200 larger than the critical one.

The algorithm commonly used to identify such objects is a percolation algorithm

called Friends-of-Friends (Davis et al., 1985, FoF), which connects particles located

within a linking length b of each other. The linking is done recursively until it

forms a closed group, within which distances between particles are less than b, and

hence the effective density is above some density threshold. Usually, FoF haloes only

take positions into account, which means that gravitationally unbound particles can

belong to a FoF halo.

Dark matter subhaloes are locally overdense regions within haloes, which can be

used to identify remnants of previous mergers and build halo histories by tracing

particles which belong to the same structures at different snapshots.

As subhaloes are typically required to be gravitationally bound their definition

is more restrictive, and the subhalo finding algorithms are usually correspondingly

more complex. There exist many subhalo finders, and in this thesis we use two

algorithms, (Springel et al., 2001, hereafter subfind) and (Han et al., 2012, 2018,

Hierarchical Bound-Tracing, hereafter hbt+). Regardless of the algorithm used, the

subhaloes we use are always composed of gravitationally bound particles only.

Merger trees are structures used to record the formation histories of haloes. It
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records how much they grow in mass and size from snapshot to snapshot, as well as

which haloes from the preceding snapshot had merged into the halo in the current

one. Since structure identification for halo and subhalo finders typically takes place

at individual snapshots in an isolated manner, an additional step is required to link

these structures across the time of the simulation.

hbt+ (Han et al., 2012, 2018) is exceptional in this regard, as it constructs

the merger trees and identifies substructures at the same time. It starts from the

earliest snapshots and builds the tree up as it progresses towards z = 0. On the

contrary, subfind is run independently, and does not trace the evolution of structure

or how dark matter particle membership changes from halo to halo across snapshots.

Merger trees are then obtained using the algorithm developed by Jiang et al. (2014,

Dhalo). Dhalo works by tracking particles between snapshots to determine the

descendant of each subhalo, and linking these descendants together to produce a

merger tree.
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Chapter 2

Theory

This chapter outlines the theoretical background of modified gravity, introduces the

f(R) modified gravity theory, and describes semi-analytic model galform in detail.

2.1 Modified Gravity

Arguably the first modification to GR was made by Albert Einstein himself when he

inserted the cosmological constant, Λ, into Eq (1.1). While his original motivation

did not stand the test of time1, the Λ term turned out to be a crucial component in

modern cosmological theory and opened the door to further changes to the original

theory.

Most modern modified gravity theories, such as f(R) (Carroll et al., 2004) which

this thesis focuses on, cite the fine-tuning problem as the motivation behind their

modifications. However, for many theories, once they fit Solar system observational

constraints, the original appeal often disappears as the modification is no longer

sufficient to explain the original Λ discrepancy. Nevertheless, the upcoming EUCLID

(Laureijs et al., 2011) and DESI (Levi et al., 2013) surveys will attempt to extend

the constraints on the theory of gravity from the local astrophysical tests to larger,

cosmological scales, building on the work of galaxy surveys like 2dFGRS, SDSS,

BOSS & eBOSS.

1Einstein was famously unhappy about the expanding Universe, believing that it ought to be

constant in size
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Of particular interest are phenomena which are not predicted by the Λ term in ,

such as the time-dependence of the dark energy component or the corrections to the

gravitational interactions (usually called “the fifth force”). Observing either of these

effects would be the “smoking gun” of the modified gravity effects, and will pose a

great challenge to the ΛCDM cosmology. Such potential discovery will change our

understanding of gravity and cosmology, and it is therefore of great importance that

we do not miss it.

There is an additional benefit to modified gravity research, namely the decoupling

of the astrophysical and cosmological models from the paradigm of the dominant

gravitational theory. For instance, when publishing gravitational lensing data, the

light deflection measurement is independent from the gravity theory, but the pro-

jected matter distribution is not. Therefore, tests of GR can only be made using data

sets that have been processed using self-consistent assumptions. In this way, the very

existence of modified gravity research keeps the astrophysical measurements account-

able, by preventing assumptions originating in currently dominant model, ΛCDM ,

from being incorporated into the early stages of experiment design or data analysis.

Unlike the theories like MOND, modified gravity theories such as f(R) attempt

to address the dark energy problem, not the dark matter problem. As such, they

do not attempt to account for the invisible dark matter, but instead aim to provide

a theoretical explanation for the observed accelerated expansion of the Universe

(Buchdahl, 1970).

The class of theories we focus on in this work are called f(R) theories. This

class of theories introduces an arbitrary function of the Ricci curvature scalar that

is added to the Einstein-Hilbert action:

S =

∫ [
1

16πG
(R + f(R)− 2Λ) + Lm

]√
−g d4x. (2.1)

The f(R) term, after which the theory takes its name, causes an increase in the

strength of the gravitational force compared to GR. In order to satisfy astrophysical

constraints on the strength of gravity (Lombriser, 2014; Cataneo et al., 2015; Nunes

et al., 2017), the theory contains a chameleon screening mechanism (Khoury &

Weltman, 2004). This ensures that the gravitational attraction is restored to GR

level in dense environments.
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From Eq (2.1) we can derive the Poisson equation for modified gravity

1

a2
∇⃗2ϕ =

16πG

3
(ρm − ρ̄m) +

1

6

(
R (fR)− R̄

)
, (2.2)

where fR = df/dR and bars on top of variables signify background values. The

equation remains valid for |f(R) | ≪ |R̄| and |fR| ≪ 1, both of which hold for

the model we are investigating. Evidently, the only difference with respect to the

Newton-Poisson equation depends solely on fR, the derivative of f with respect to

R. The magnitude of fR relative to the classical Newtonian potential, ϕ, splits the

equation into two regimes:

1. |fR| ≪ |ϕ|: gravity is to a good approximation described by GR, with no

increased strength; these regions are called “screened”.

2. |fR| ≥ |ϕ|: the Poisson equation is enhanced by a factor of 1/3; in these regions

screening is ineffective.

Hence, in f(R) models the strength of gravity is always between 1 and 4/3 times

the GR value. The f(R) function does not determine the gravity enhancement, but

instead controls the transition between the screened and the unscreened regions. On

the other hand, the effectiveness of the screening mechanism is determined by the

magnitude of its derivative |fR|.

When |R̄| ≫M2, fR simplifies to

f̄R ≈ −nc1
c22

(
M2

−R

)n+1

, (2.3)

and |f̄R (z)| evolves with redshift as given by

|f̄R (z)|
|f̄R0|

=

[(
1 + 4

ΩΛ

ΩM

)
/

(
(z + 1)3 + 4

ΩΛ

ΩM

)]n+1

. (2.4)

Hence, the choice of n, c1 and c2 is sufficient to uniquely determine the value and

evolution of the fifth force: n controls the gradient of the evolution of the screening

mechanism, and the ratio c1/c
2
2 determines its effectiveness.

Even though f is an arbitrary function of the Ricci curvature scalar, there are

physical considerations which we can use to postulate its form. Specifically, since

f(R) theory sets out to find a mechanism behind the accelerated expansion, f should
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Figure 2.1: Evolution of the relative effectiveness of screening as a function of redshift

(Eq (2.4)) for 3 different versions of the Hu & Sawicki (2007) f(R) model with

different values of n.
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increase with decreasing R (in the low curvature regime). Hu & Sawicki (2007, HS)

propose an empirical form:

f(R) = −M2 c1 (−R/M2)
n

c2 (−R/M2)n + 1
, (2.5)

where c1 and c2 are dimensionless constants which control the screening threshold,

and M = H2
0/Ωm is determined by the cosmology through its dependence on the

Hubble constant, H0, and the matter density parameter, Ωm.

Since the effectiveness of the screening mechanism can be characterised by |f̄R|

only, we can denote theories with a shorter notation, e.g., F6 will mean a theory

with |f̄R| = 10−6. Astrophysical constraints limit the choices of the present day

background value of |f̄R|. Supernovae (Upadhye & Steffen, 2013), X-ray (Terukina

et al., 2014) and Solar System (Berry & Gair, 2011; Lombriser et al., 2014) obser-

vations already rule out models with |f̄R| > 10−5 (F5, F4, etc.). On the contrary,

cosmologies with |f̄R| ≤ 10−7 show negligible differences to GR in terms of structure

formation.

2.2 Model of Galaxy Formation and Evolution

In most models, dark matter behaves different to baryons. Dark matter in simula-

tions follows relatively simple physics, as it is typically assumed to be collisionless,

pressureless, and interacts only gravitationally. Baryonic calculations, on the other

hand, are considerably more complex. Nonetheless, since galaxies are thought to

form in dark matter haloes, it is imperative that we develop a framework for mod-

elling the growth of baryonic structures.

The simplest mechanisms for providing verifiable constraints for observational

astronomy avoid modelling underlying baryonic processes in favour of developing a

rule-based mapping between dark matter haloes and galaxies. Two examples of such

an approach are halo occupation distribution (HOD) modelling (Berlind et al., 2003;

Zheng et al., 2005) and subhalo abundance matching (SHAM) (Vale & Ostriker,

2004, 2006) models.

Naturally, such approaches are over-simplified, and can only answer the most

basic questions regarding the distribution of galaxies in the Universe. Modelling
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galaxy formation in a cosmological setting presents a far greater challenge, both

from the physics perspective – there are many distinct physical processes involved,

some of which are poorly understood – and from the computational one – the physical

processes take place over a wide range of length and time scales, which make them

difficult to simulate.

A common approach to this problem are large-scale hydrodynamic solvers which

delegate small-scale physics to simplified sub-grid models (Vogelsberger et al., 2014;

Schaye et al., 2014). Such hydrodynamic simulation of baryons is significantly more

computationally expensive than the simulation of a dark matter only universe of a

similar size and resolution, since it involves solving the hydro- and thermo-dynamic

equations simultaneously with the Newton-Poisson equation. Subject to the limita-

tions of the computer memory (and hence resolution), the hydrodynamic simulations

have recently been very successful in reproducing many of the observed properties

of the galaxies. However, they come at a very high computing cost, which restricts

their size and resolution, and these calculations still rely on sub-grid models of super-

massive black hole (SMBH) growth, supernovae (SNe) feedback, and star formation.

Semi-Analytic Modelling (SAM) builds galaxy catalogues by solving approxi-

mate, physically-motivated equations that describe individual baryonic processes,

set in the context of the “scaffolding” of the dark matter merger trees (Cole et al.,

2000; Baugh, 2006; Benson, 2010; Lacey et al., 2016). Since the results of the SAM

do not change the underlying merger tree, it is not possible to use SAMs to predict

the effect that the presence of baryons has on dark matter haloes. Moreover, SAM

galaxies depend only on the properties of the host haloes, which sacrifices accuracy of

the properties of individual galaxies (since some effects of the local environment may

not be included). With this in mind, SAM offers an alternative trade-off between the

speed of execution and the accuracy of predictions that presented by hydrodynamic

simulations. SAMs can be used not only to generate galaxy catalogues for very large

cosmological volumes (Merson et al., 2019), but also to explore the parameter space

of the galaxy formation model. Since SAM parameters are physically motivated,

when comparing results obtained from SAM with the ones from the observational

data, it is straightforward to assess whether the model is qualitatively reproducing
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the system, or if it needs additional physical process. Similarly, any other analysis

carried out using SAM, such as the one in Chapter 5, can be easily interpreted in

physical terms.

In this work we focus on galform , a semi-analytic model developed mostly in

Durham. It includes prescriptions for the following galaxy formation and evolution

processes:

1. merger histories of dark matter haloes

2. heating and cooling of gas inside dark matter haloes

3. quiescent star formation

4. bursts of star formation

5. feedback driven by supernovae

6. heating by an active galactic nucleus (AGN),

7. galaxy mergers,

8. disc instabilities,

9. stellar evolution,

10. dust extinction,

which are discussed in detail in the following subsections.

2.2.1 Merger Histories of Dark Matter Haloes

Fundamentally, galform starts with the assembly histories, density profiles and

angular momenta of the dark matter haloes, solving analytic prescriptions which

describe how galaxies form inside them, and computing various galaxy properties.

Here, we focus on the dark matter halo catalogue extracted from an N -body simu-

lation; many earlier studies focused on merger trees generated using a based on the

Extended Press-Schechter theory, using a Monte Carlo method to accurately build
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the complete merger histories of dark matter haloes (Cole et al., 2000; Parkinson

et al., 2007).

There exist analytical models which can fit dark matter halo density profiles using

a small number of free parameters, most notably the the Einasto profile (Einasto,

1965) and the NFW profile (Navarro et al., 1996). The description that follows

adopts the NFW prescription, but galform models can be configured and cali-

brated to use either profile.

The NFW halo density profile is formulated as

ρ (r)

ρcrit
=

δc

(r/r−2) (1 + r/r−2)
2 , (2.6)

where r−2 is the characteristic scale radius (the radius at which the slope of logarith-

mic density profile, d ln (ρ) /d ln (r) |r−2 = −2), and δc is a characteristic overdensity.

At fixed mass M200, δc is given by

δc =
200

3

c3

ln (1 + c)− c/ (1 + c)
, (2.7)

where c is a dimensionless concentration parameter, defined as the ratio of r200

over the scale radius of a halo: c = r200/r−2. Halo concentration changes when

that halo changes mass, for instance during a halo merger or after accreting more

mass. In galform , following Press & Schechter (1974); Navarro et al. (1997); Cole

et al. (2000), the halo formation time is defined as the snapshot at which a halo has

exceeded the mass from the previous formation time by a factor 2 in mass. (The

factor of 2 is a parameter choice.) At this snapshot, the density profile, the velocity

profile and the angular momentum values are updated. Therefore, even though

halo size can change between each snapshot, halo concentration, circular velocity

and spin remain constant until the mass threshold is exceeded. Note that the halo

spin is drawn from a distribution rather than using the value measured from the

simulation. Bett et al. (2007) showed that a large number of particles is needed to

get a robust measurement of the halo spin, and most galaxies reside in haloes below

the threshold for direct spin measurements.
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2.2.2 Heating and Cooling of Gas

In order to form a galaxy, the dark matter halo must gravitationally attract hot gas,

which then cools, collapses, and starts the process of star formation. In galform ,

host haloes are assigned three separate gas reservoirs: hot gas (Mhot), gas ejected

from the halo by SNe and AGN feedback processes (Mres), and cold gas (Mcold).

Cold gas can be either accreted by a SMBH, used for star formation, or ejected by

a feedback process. Ejected gas can be returned to the hot gas reservoir, after some

specified timescale. Then, the hot gas can be accreted by the SMBH, or cool down

(and move to the cold gas reservoir). The stars in a galaxy belong to the fourth

reservoir, M∗.

The mass of these reservoirs evolves according to the following system of equa-

tions:

Ṁhot = −Ṁacc + αret
Mres

τdyn,halo

Ṁcold = Ṁacc − (1−R + β)ψ

Ṁ∗ = (1−R)ψ

Ṁres = βψ − αret
Mres

τdyn,halo

(2.8)

where Ṁacc is the accretion rate, τdyn,halo = Rvir/Vvir is the halo dynamic timescale,

ψ is the star formation rate (SFR), β and αret are free parameters, and R is the

returned mass fraction which is derived from the initial mass function (IMF).

The IMF Φ(m) gives the distribution of the masses of stars at the time of for-

mation of a stellar population, normalised to unity between lower (mL) and upper

(mU) mass bounds: ∫ mU

mL

mΦ(m)d lnm = 1. (2.9)

In the simplest case, we assume that Φ(m) follows a power-law, such that

Φ(m) =
dN

d lnm
∝ m−x, (2.10)

where x is the slope parameter (for instance, Salpeter (1955) take x = 1.35).

The returned fraction R is defined as the mass returned to the interstellar

medium after a generation of stars is formed. We adopt an instantaneous recycling
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approximation, as the mass return is dominated by short-lived Type II supernovae.

The returned fraction can be expressed as

R =

∫ mU

mL

(m−mrem(m)) Φ(m)d lnm, (2.11)

where mrem(m) is the remnant mass of a star of mass m.

2.2.3 Star formation

Stars in galaxies M∗ are assumed to only form directly from the mass in the cold

gas reservoir. Each galaxy has two components that contain stars: the disc and

spheroid. When the host halo accretes gas, it is assigned to the disc by default,

and only moved to the spheroid through galaxy mergers and disc instabilities. Stars

form differently in discs than they do in spheroids.

In discs, stars are being formed in a quiescent mode based on the Blitz &

Rosolowsky (2006) model, originally implemented in (Lagos et al., 2011). Star for-

mation surface density is defined as

ΣSFR,disc = νSF × fmol × Σgas, (2.12)

where νSF is the inverse of the star formation time-scale, fmol is the ratio of the

surface densities of the molecular and total gas masses, Σmol/Σgas, and Σgas is the

surface density of gas. νSF is the inverse of the star formation time-scale and a

free parameter of the model, allowed to vary within 1σ, or 0.24 dex, from the best-

fit value of 0.43Gyr−1, based on measurements of local galaxies from Bigiel et al.

(2011).

In spheroids, fmol is assumed to be 1, but the star formation time-scale is calcu-

lated in terms of bulge size rbulge,

τ∗burst = fdyn
rbulge

Vc(rbulge)
, (2.13)

but it has a minimum value τ∗burst,min it does not drop below. This minimum value

and fdyn are both free parameters.
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2.2.4 Supernova feedback

The first feedback mechanism in galform , which regulates star formation and

suppresses the luminosity function at the low-mass end of the halo mass function, is

driven by the supernovae (White & Rees, 1978). It is modelled as a process which

ejects cold gas from a galaxy to a reservoir of mass mres, at a rate of

ṁout = βψ, (2.14)

where ψ is the star formation rate and β is a mass loading factor defined as

β =

(
Vc
Vhot

)−γSN

. (2.15)

Here Vhot and γSN are model parameters and Vc is the effective circular velocity of

the disc or bulge (for starbursts) at the half mass radius. Note that these equations

are applied to quiescent and burst star formation. Different values can be adopted

for the Vhot parameters for the disc and burst contributions to star formation.

Gas is returned from this reservoir to the hot gas halo at the rate of

ṁret = αret ×
mres

τdyn
, (2.16)

which is controlled by the free parameter αret; τdyn = rvir/Vvir is the dynamical time

of the halo, where rvir is the virial radius of the halo and Vvir is the effective circular

velocity at this radius.

2.2.5 AGN feedback

Another feedback mechanism, regulating star formation at the high galaxy mass

end, is the AGN feedback (Bower et al., 2006). An SMBH in the centre of the

galaxy releases energy through accretion of gas, which produces the observational

signature of an AGN. This energy can balance the cooling flow in massive haloes,

shutting down gas cooling and hence star formation. SMBHs in galform grow in

three modes: through accretion of gas during burst star formation, through hot gas

accretion, and through black hole mergers.

Supermassive black holes (SMBHs) grow in the centres of galaxies, and inject

energy into the gas reservoir of a halo following accretion, which disrupts the cool-

ing process (see (Fanidakis et al., 2011; Griffin et al., 2019) for descriptions of the
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treatment of SMBHs in galform ). In galform AGN heating occurs when two

conditions are met: (i) the hot gas halo is in quasi-hydrostatic equilibrium, defined

in terms of the ratio of the cooling time, τcool, to the free-fall time, τff :

τcool(rcool)

τff(rcool)
>

1

αcool

, (2.17)

where αcool is a parameter, and (ii) the AGN power required to balance the radiative

cooling luminosity Lcool is below a fraction fEdd of the Eddington luminosity LEdd

of the SMBH of mass MBH:

Lcool < fEddLEdd (MBH) . (2.18)

2.2.6 Galaxy Mergers

Galaxy mergers are one of the processes which regulate the movement of cold gas

from the disc to bulge, burst star formation in the spheroid, and contribute to the

SMBH growth rate.

Similar to how dark matter haloes can be subdivided into subhaloes, the central

galaxies of host haloes have satellite galaxies associated with them. The central

galaxy is chosen during each dark matter halo merger event, as recorded in the

merger tree. The galaxy associated with the most massive halo becomes the central

galaxy, while the other galaxies become the satellites. Subsequently, the central

galaxy grows in size through the accretion of cooling gas and mergers with the

satellite galaxies.

2.2.7 Disc instabilities

Galaxies can also undergo morphological transformations and starbursts as a result

of disc instabilities. Galaxy discs which are dominated by rotational motions are

unstable to bar formation when they are sufficiently self-gravitating. In particular,

we can relate the rotational and the self-gravitating energies as

Fdisc =
vc(rdisc)√

1.68GMdisc/rdisc
, (2.19)

where Mdisc is the total disc mass (ie stars plus cold gas), rdisc is the disc half-mass

radius, and the factor 1.68 relates this to the exponential scale length of the disc.
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The quantity Fdisc measures the contribution of disc self-gravity to its circular

velocity, with larger values corresponding to less self-gravity and greater disc sta-

bility. Efstathiou et al. (1982) found a stability threshold Fstab ≈ 1.1 for a family

of exponential stellar disc models. Note that a completely self-gravitating stellar

disc would have Fdisc = 0.61, which is therefore the minimum value allowed for this

parameter. If Fdisc drops below Fstab, disc becomes unstable, forms a bar and then

a spheroid. The instability then triggers a burst of star formation which consumes

all cold gas from the (former) disc component.

2.2.8 Stellar Evolution & Dust Extinction

galform tracks the chemical evolution of the hot gas, cold gas and stellar compo-

nents, using a similar set of equations to those above for the mass transfer (Eq (2.8)).

The yield of metals produced by star formation depends on the form of the IMF. The

cold gas metallicity is used to compute the cooling rate and the stellar metallicity

is used to build the composite stellar population of each galaxy.

For each galaxy, the model calculates a complete star formation and metallicity

history. This is combined with a stellar population synthesis (SPS) model based on

stellar evolution models to calculate the luminosity and spectral energy distribution

(SED) of the stellar population. For historical reasons, galform tracks the galaxy

luminsity in filters that are specified prior to run time, rather than computing the

full SED.

Some of the light emitted by stars in galaxies is absorbed by dust, and re-emitted

at IR and sub-mm wavelengths. In galform , we assume that the dust is in thermal

equilibrium – the energy the dust emits is equal to the energy it absorbs from

starlight.

The mass of dust in each galaxy is calculated from the mass of the cold gas as

Mdust

Mcold

= 6.7× 10−3

(
Zcold

0.02

)
, (2.20)

where Zcold is the metallicity of the cold gas component, and 0.02 is metallicity

normalisation (Silva et al., 1998; Cole et al., 2000).

The dust is assumed to reside in two components, dust clouds and diffuse medium.
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The dust medium has the same half-mass radius as the disc if the galaxy forms stars

in a quiescent mode, and the same half-mass radius as the stellar bulge if the stars

are formed in bursts. Both components emit a modified blackbody radiation:

Ldust
λ ∝Mdustκ(λ)Bλ(λ, Tdust), (2.21)

where Mdust is dust mass, κ(λ) is dust opacity, Bλ(λ, Tdust) is Planck’s function,

and Tdust is dust temperature. The emission from the two components is integrated

separately and summed to obtain the full spectrum for a given galaxy.

Dust opacity is modelled as a broken power law:

κ (λ) =

λ
−2, λ < λb

λ−βb , λ > λb,

(2.22)

where βb and λb are free parameters, fit to match the local observations.

This model makes a few simplifying approximations, but it performs well at far-

IR and sub-mm wavelengths (Lacey et al., 2016). For a more accurate prediction a

more sophisticated model, such as grasil, can be used.
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Chapter 3

Haloes in ΛCDM and f (R)

We compare the concentration–formation time relation of dark matter haloes in

two high resolution N-body simulations, one assuming general relativity and the

other the Hu-Sawicki form of f(R) gravity with |f̄R| = 10−6. We assign haloes

to logarithmically spaced mass bins, and fit median density profiles and extract

median formation times in each bin. At fixed mass, haloes in modified gravity are

more concentrated than those in GR, especially at low masses and at low redshift,

and do not follow the concentration–formation time relation seen in GR. We assess

the sensitivity of the relation to how concentration and formation time are defined,

as well as to the segregation of the halo population by the amount of gravitational

screening. We find a clear difference between halo concentrations and assembly

histories displayed in modified gravity and those in GR, and conclude that existing

models for the mass–concentration–redshift relation that have gained success in cold

and warm dark matter models require revision in f(R) gravity.

3.1 Introduction

N -body simulations have driven astounding progress in improving our understand-

ing of gravitational collapse and its role in the formation of cosmic structure and

galaxy evolution. For example, simulations have demonstrated that the mass dis-

tribution inside dark matter haloes follows an approximately universal form that

can be specified by only two parameters (Navarro et al., 1996, 1997, hereafter NFW
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collectively):
ρ (r)

ρcrit
=

δc

(r/r−2) (1 + r/r−2)
2 , (3.1)

where r−2 is a scale radius (at which the logarithmic slope of the density profile is

equal to −2), and δc is a characteristic overdensity. It is common to recast these

into other forms, such as halo virial1 mass, M200, and concentration, c = r200/r−2

(the ratio of the virial and scale radii). At fixed M200, δc is given by

δc =
200

3

c3

ln (1 + c)− c/ (1 + c)
, (3.2)

such that higher concentration implies higher characteristic density.

Simulations of structure growth in the cold dark matter model (CDM) have also

revealed a well-defined, redshift-dependent correlation between these parameters:

at fixed redshift concentrations decrease with increasing mass, and at fixed mass

decrease with increasing redshift (see, e.g., Bullock et al., 2001; Gao et al., 2008).

These trends betray an simpler relation between the characteristic density of a halo

and its formation time, zf : haloes that form early have, on average, higher δc than

late-forming ones, reflecting the higher background density at that time (e.g., Neto

et al., 2007; Ludlow et al., 2013). This fact has been used to construct a number of

empirical models for the concentration-mass-redshift relation (hereafter c(M, z), for

short) that appeal to various definitions of formation time to predict characteristic

densities, and hence concentrations (e.g., NFW; Bullock et al., 2001; Wechsler et al.,

2002; Zhao et al., 2003; Macciò et al., 2008; Zhao et al., 2009; Ludlow et al., 2014a;

Correa et al., 2015; Ludlow et al., 2016).

Various models have met with varied success, plausibly due to diverse definitions

of collapse time (see, e.g., Neto et al., 2007; Gao et al., 2008; Ludlow et al., 2016,

for details). Several studies define the formation time of a halo as the point at

which some fraction F of its final virial mass had first assembled, either into one

main progenitor or accumulated over many small progenitors. However, as first

discussed in Ludlow et al. (2013), better agreement with simulation results can be

1We define the virial mass, M200 = (800/3)π r3200 ρcrit, and corresponding virial radius, r200, as

that of a sphere (centred on the particle with the minimum potential energy) whose mean density

is equal to 200 times the critical density, 200× ρcrit.
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obtained by defining zf in terms of the halo’s characteristic mass, M−2 =M(< r−2),

rather than M200. This is because mass assembly histories and mass profiles of

dark matter haloes are self-similar, and can both be modelled by the NFW (or

Einasto) profiles; moreover, best-fit parameters of both profiles have a strong linear

dependence. The origin of this relation is currently unknown, but we elaborate

on this point in Section 3.2.2. This has inspired a number of empirical models that

successfully reproduce the c(M, z) relation in both cold (Ludlow et al., 2014a; Correa

et al., 2015) and warm dark matter cosmologies (Ludlow et al., 2016)

As a result, there exists an increasingly well-described relation between halo

mass and concentration (Duffy et al., 2008; Prada et al., 2012; Angel et al., 2016;

Klypin et al., 2016; Diemer & Kravtsov, 2015; Diemer & Joyce, 2019) – the two

parameters that are needed to specify the density profile of a relaxed dark matter

halo–and how they evolve with time. Further, both analytic and empirical models

have been shown to describe reasonably well the c(M, z) relation for a variety of

cosmological parameters and power spectra. Our objective here is to investigate

whether the relation between concentration and formation time–upon which many of

these models are based–is sensitive to the gravitational force law, as stark differences

could be used to probe departures from general relativity.

Proposals for modifications to general relativity (GR) were originally motivated

by trying to solve one of the biggest remaining problems with the concordance

ΛCDM: the origin of the accelerated cosmic expansion. ΛCDM achieves this by in-

voking a cosmological constant, Λ, but the required value is difficult to justify from

a theoretical viewpoint (Carroll et al., 2004). Many alternatives have been proposed

to the standard ΛCDM model: the accelerated expansion could be driven by as-of-

yet unknown physics in the dark sector (Zuntz et al., 2010) or by a modification to

GR itself (Koyama, 2016). Among the alternatives to GR, one of the most widely

studied is f(R) gravity – an umbrella term referring to modified gravity models

which change the Ricci scalar in Einstein-Hilbert action (Buchdahl, 1970; Clifton

et al., 2012; Joyce et al., 2015). Current versions of the theory are fine-tuned to

match the expansion history in ΛCDM, which removes some of the model’s original

appeal. Nevertheless, f(R) gravity remains a workable alternative to GR with inter-
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esting phenomenology. While the parameter space of f(R) models is already tightly

constrained by observations (Lombriser, 2014), there still exists a range of models

which may display measurable differences from GR (see, for example, He et al., 2018;

Hernández-Aguayo et al., 2018).

Our study uses the merger histories of dark matter haloes traced back to pro-

genitors that are two orders of magnitude less massive than the final halo mass.

Hence, high resolution simulations are necessary (see Table 3.1). We therefore use

the Liminality simulations of Shi et al. (2015), a suite of very high resolution dark-

matter-only runs including examples of the Hu & Sawicki (2007, HS) parametrisa-

tion of f(R) gravity. Two simulations are compared: one of GR and another f(R)

modified gravity model that is compatible with current observational constraints.

This Chapter is structured as follows. The theoretical background is given in

Section 3.2: the details of the N-body simulation are presented in Section 3.2.1, a

description of the c(M, z) model of Ludlow et al. (2016) in Section 3.2.2; the meth-

ods for building halo catalogues and merger trees are described in Section 3.2.3 and

Section 3.2.4, respectively. Our results are presented in Section 3.3. Halo selection

is outlined in Section 3.3.1, and the processing (fitting density profiles and estimat-

ing formation times) is covered in Sections 3.3.2 and 3.3.4. The concentration –

formation time relation obtained from the processed simulation data is presented

in Section 3.3.5. We explore the sensitivity of the model predictions to the param-

eter choices that specify the model in Section 3.3.6, and to the segregation of the

halo population by the effectiveness of the screening of the gravity fifth force in

Section 3.3.7. Finally, in Section 3.4, we present our conclusions. Results obtained

by fitting Einasto (1965) (rather than NFW) profiles to determine halo structural

parameters are discussed in Section 3.3.3.

3.2 Theory

3.2.1 N-body Simulation

As the equations describing the modifications to standard gravity are non-linear,

modified gravity simulations are more demanding of computational resources than
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Table 3.1: Relevant parameters of the Liminality N-body simulations from Shi

et al. (2015).

Ωm (matter density) 0.281

ΩΛ (dark energy density) 0.719

Ωb (baryon density) 0.046

σ8 (power spectrum amplitude) 0.820

ns (spectral index) 0.971

h (H0/[100 km s−1Mpc−1]) 0.697

L (box side) 64h−1Mpc

Mp (particle mass) 1.523× 108h−1M⊙

Np (particle number) 5123

zfinal (final redshift) 0.0

z0 (initial redshift) 49.0

Nout (number of outputs) 122

their standard gravity counterparts of the same size and resolution. However, signif-

icant progress has been made recently in numerical techniques designed specifically

for this class of theories (Li et al., 2012; Bose et al., 2015). We focus our analysis on

the Liminality simulation (Shi et al., 2015), a high-resolution, N-body simulation

of HS F6 modified gravity. For comparison, a GR simulation with otherwise identi-

cal cosmology is also studied. The cosmological parameters of both runs (Table 3.1)

have been tuned to match the cold dark matter, WMAP-9 cosmology (Hinshaw

et al., 2013). This is in contrast to the simulations in Ludlow et al. (2016), who used

WMAP-1, WMAP-7 and Planck cosmologies, for both warm and cold dark matter

versions. However, as demonstrated in ?Ludlow et al. (2016), cosmology differences

are not significant, and should not have a significant effect; moreover, simulation re-

sults we used are state-of-the-art in terms of resolution, which is critical in observing

modified gravity effects in individual haloes.
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3.2.2 Mass-Concentration-Redshift relation

The c(M, z) model tested here, first described in Ludlow et al. (2016), uses the ex-

tended Press-Schechter (EPS) formalism to approximate the gravitational collapse

of collisionless DM haloes (Bond et al., 1991; Mo et al., 2010). In EPS, the collapsed

mass history (hereafter CMH), M(z), of a dark matter halo (i.e. the sum of progen-

itor masses at redshift z exceeding f ×M200(z0)) identified at redshift z0 is given

by

M(z)

M0

= erfc

(
δsc(z)− δsc(z0)√

2(σ2(f ×M0)− σ2(M0))

)
. (3.3)

HereM0 =M200(z0) is mass at the identification redshift, σ2(m) is the variance of the

density field smoothed with a standard choice of a window function, a spherical top-

hat window containing mass m, and δsc(z) ≈ 1.686/D(z) is the redshift-dependent

spherical collapse threshold, with D(z) the linear growth factor.

One difference between the EPS theory and the Ludlow et al. (2016) scheme is

the definition of halo formation time: in EPS, a common definition of a formation

redshift, zf , is the one at which the sum of progenitor masses more massive than

f × M200 first exceeds a fraction F × M200, where typically f = 0.01, F = 0.5

(e.g. Lacey & Cole, 1993; Navarro et al., 1996). In Ludlow et al. (2016), F is

not a parameter, but varies between the haloes and can be calculated from their

concentration:

F =
M−2

M200

=
ln(2)− 1/2

ln(1 + c)− c/(1 + c)
, (3.4)

where the right-most equation is strictly valid for an NFW profile. For each halo,

zf therefore corresponds to the redshift at which a fraction M−2/M200 of the halo’s

final mass had first assembled into progenitors more massive than f ×M200 (where

f = 0.02). Ludlow et al. (2016) referred to this redshift as z−2, to annotate its

explicit dependence on the characteristic mass, M−2.

The CMH is scale invariant in both CDM and warm dark matter (WDM) models,

and can be used to estimate z−2 and the corresponding critical density, ρcrit(z−2).

The c(M, z) model advocated by Ludlow et al. (2016) exploits the strong, linear

correlation between ρcrit(z−2) and ⟨ρ−2⟩, the mean density within r−2. Empirically,

they found ⟨ρ−2⟩ = A × ρcrit(z−2), with A ≈ 400. Once the CMH is known, this
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expression can be used to compute ⟨ρ−2⟩, and hence infer the halo mass profile.

The model accurately reproduces the concentrations of dark matter haloes in

both CDM and WDM cosmologies. This may appear surprising at first as dark mat-

ter haloes in WDM simulations have been found to display different concentrations

and formation times than in CDM (Macciò et al., 2013; Bose et al., 2016). However,

these changes act to preserve the ⟨ρ−2⟩ − ρcrit(z−2) relation seen in CDM.

It has been shown that haloes in f(R) cosmologies follow NFW density profiles

(Lombriser, 2014) like their GR counterparts, but with systematically higher con-

centrations. Their assembly histories also differ, but only slightly (Shi et al., 2015).

Hence, it might be expected that the relation discovered by Ludlow et al. (2016)

for CDM and WDM haloes in standard gravity might hold for f(R) haloes only

under certain conditions: (i) for small values of |fR0|, and (ii) for all haloes except

low-mass objects at low redshifts, due to screening. It is therefore plausible that the

above concentration – formation time relation will not be applicable to the full pop-

ulation of haloes in f(R) gravity, and this is the hypothesis that we test here. This

breakdown could potentially be circumvented by either re-parametrising the model

or segregating haloes to reflect the influence of the fifth force, which we explore later.

3.2.3 Halo identification

The gravitational collapse of collisionless CDM can be approximated by the spherical

collapse model (Gunn & Gott (1972); Peebles (1980); but see Ludlow et al. (2014b)).

In this model, overdensities collapse to form dark matter haloes, which are defined

as isolated regions with an average matter density larger than a threshold ∆vir ≈

178 (≈ 200) times the critical density (Mo et al., 2010, Ch. 5).

Because we are primarily concerned with the GR / f(R) comparison, we have

elected to use r200 to define halo virial radii and M200 for the corresponding masses.

This convention follows that of Ludlow et al. (2016) and is based on the fact that,

while r200 remains well-defined and is independent of the gravity model, the virial

parameters vary systematically with the strength of gravity (Schmidt et al., 2009).

The virial mass and radius therefore define a sphere (centred on the particle with

the minimum potential energy) that encloses a mean density equal to 200 times the
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critical density, ρcrit (z), and are thus labelled with the subscript 200.

Subhaloes are locally overdense regions within haloes, and are the surviving

remnants of past mergers. Haloes are initially identified using a friends-of-friends

(FoF) algorithm (Davis et al., 1985). The halo catalogue is then processed using an

upgraded version of HBT (Han et al., 2012, Hierarchical Bound-Tracing algorithm),

HBT+ (Han et al., 2018), which identifies subhaloes and builds their merger trees.

HBT+ is a publicly available2 merger tree code, which identifies subhaloes and

follows them between simulation outputs, from the earliest snapshot at which they

can be identified until the final one, building a merger tree from the catalogue on-

the-fly. A list of gravitationally bound particles is created for each halo; these are

used to identify a descendant (a halo at a lower redshift, sharing subhaloes), and

are passed to the successive snapshot. Each halo can have one or more progenitors

(haloes at a higher redshift, sharing subhaloes). If a halo has multiple progenitors,

the most massive one is selected, and it becomes the ”main” (i.e. most massive)

subhalo. Other progenitors are mapped to the subhaloes which belong to the host

halo. The host halo of a subhalo is the FoF halo containing its most bound particle.

3.2.4 Merger trees

The merger tree of a halo, visualised in Fig. 3.1, can be obtained from the HBT+

output by following the progenitors of a given halo, recording their host haloes, and

repeating this process recursively until the earliest progenitors are reached in each

branch. However, the trees produced by this procedure have two common defects3:

1. Re-mergers, such as the right-most halo in the second row in Fig. 3.1, happen

when one of the subhaloes temporarily becomes gravitationally unbound and

is identified as a separate halo for one or more snapshots; in a later snapshot

it merges back into the original host halo, creating a “loop”. The halo in

the “loop” is retained as a progenitor halo and so re-mergers do not alter

2https://github.com/Kambrian/HBTplus
3Technically, these are not trees as they contain loops, and some nodes might have more than

one parent node.

July 19, 2020

https://github.com/Kambrian/HBTplus


3.2. Theory 43

Figure 3.1: A schematic representation of a merger tree with two defects: a re-

merger (halo in the second row down, on the right) and a fly-by (halo in the third

row down on the left). Grey rectangles represent haloes, and dots subhaloes; every

halo has one main subhalo, marked with a red dot; subhaloes are matched between

snapshots (black lines) by following the most bound particles. The blue arrows

indicate the relationships relevant in building merger trees, and represent (left to

right): (i) halo descendant, (ii) halo progenitor, (iii) host of a subhalo, (iv) host of

subhaloes’ progenitor, (v) descendant of a subhalo. This plot can be compared with

similar diagrams included in Thomas et al. (2015); Han et al. (2018).
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the collapsed mass history (which sums over the masses of progenitors at any

given snapshot, and as such is not affected by the order or the sequence of the

mergers). This is similar to the scheme used to build merger trees by Jiang

et al. (2014).

2. Fly-bys (e.g. the branch merging into, and then leaving, the left-most halo in

the fourth row down in Fig. 3.1) happen when a subhalo is identified as a part

of a FoF halo for one or more snapshots due to a temporary spatial overlap,

but later becomes an isolated halo again. The presence of fly-bys pollutes the

CMH, artificially inflating the mass at snapshots with extra subhaloes.

Both defects can be avoided by only keeping those haloes in the tree which merge

as the main subhaloes of the host in the preceding snapshot (which would remove

both example defects shown in Fig. 3.1). This is not equivalent to keeping only the

main branch of the halo mass history – the full CMH is still used, but it is calculated

from a pruned merger tree.

3.3 Results

Our goal is to determine the relation between halo concentration (or more specifically

⟨ρ−2⟩) and the critical density at the formation time z−2 (namely ρcrit(z−2)) for haloes

of different masses at different redshifts. For each mass bin we construct the median

density profile and CMH, which are used to estimate median concentration and

formation time. This approach has the benefit of producing smoother profiles, and

in turn a smoother density-density relation, as is evident from comparing Fig. 3

from Ludlow et al. (2013) and Fig. 7 from Ludlow et al. (2016).

This section outlines the details of each step of our analysis. The source code

used for the analysis is publicly available4.

4https://doi.org/10.5281/zenodo.2593623
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3.3.1 Filtering & binning

Our halo catalogues are obtained by filtering the HBT+ output and retaining ob-

jects with a minimum of 20 particles. Since we are interested in resolving the merger

history of haloes down to progenitors with f = 0.02 times their final mass, this places

a lower limit of n200 = 103 on the number of particles a halo must contain in order

to be included in our analysis.

Haloes are divided into bins that are equally-spaced in log10(M200/[h
−1M⊙]),

with ∆ log10(M200/[h
−1M⊙]) = 0.162. To identify potentially unrelaxed systems we

use the centre-of-mass offset parameter,

doff =
|rp − rCM|

r200
, (3.5)

where rp is the centre of potential, and rCM the centre-of-mass (Thomas et al., 2001;

Maccio et al., 2007; Neto et al., 2007). Only haloes with doff < 0.07 are retained for

analysis.

The fitting of mass profiles (Section 3.3.2) and calculation of formation times

(Section 3.3.4) is performed on the median mass profiles and CMHs, respectively, for

each mass bin.

3.3.2 Fitting mass profiles

The cumulative mass profile is defined using all particles within r200, and not only

those deemed bound to the main halo or its subhaloes. These particles are assigned to

logarithmically spaced radial bins, within which enclosed masses are computed. The

mass profiles of haloes in each mass bin are assigned in this way, and their median

is calculated. Finally, the median mass profile is normalised by the total median

enclosed mass, M200 = M (r < r200). The best-fitting value of the concentration, c,

is obtained by minimising

χ2 =
20∑
i=0

[log10 (Mi)− log10 (M (r < ri, c))]
2 , (3.6)

where Mi is the mass measured within ri, M(< r, c) is the mass enclosed within

radius r for an NFW profile with a concentration c (Eq (3.1)); quantities with

subscript i refer to the ith bin in log10 radius from the halo centre.
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Figure 3.2: Radial enclosed mass profiles for haloes in the mass range 11.5 <

log10 (M200/[h
−1M⊙]) < 11.7 at z0 = 0. GR and f(R) runs are shown using red

and blue curves, respectively, as indicated in the legend; residuals from GR are

shown in the lower panel. The faint shading shows the envelope of the individual

mass profiles; dashed lines show median mass profiles; solid lines show the best fit-

ting NFW profiles to the median mass profiles, for radii between rmin < r < rmax;

vertical dotted lines show the characteristic scale r−2. Residuals are taken from the

median mass profile of GR haloes, m̃GR.
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We have used both NFW and Einasto profiles in our analysis. Results for NFW

profiles are provided in Figs. 3.2 and 3.5, and for Einasto profiles in the next sub-

section, in Figs. 3.3 and 3.4. In particular, Table 3.2 shows that the quality of fit

does not improve sufficiently to warrant using the Einasto profile (which has an ex-

tra parameter) over NFW. We emphasise that the choice of analytic density profile

does not change our results or conclusions.

Our fits to Eq (3.6) are minimised over the radial range rmin < ri < rmax, where

rmin is a minimum fit radius, and rmax is set to 0.8 × r200 to exclude the unrelaxed

outer edges of haloes (Ludlow et al., 2010). We consider two definitions of rmin:

1. half of the mean particle separation within r200 (Moore et al., 1998),

rmin =
1

2

(
4π

3n200

)1/3

r200, (3.7)

where n200 is the number of particles enclosed within r200, and

2. the radius at which the two-body relaxation time is equal to the age of the uni-

verse, t0 (Power et al., 2003; Ludlow et al., 2019), which can be approximated

by the solution to

trelax (r)

t0
=

√
200

8

n (< r)

ln (n (< r))

(
⟨ρ (< r)⟩
ρcrit

)−1/2

. (3.8)

Here n (< r) is the number of particles enclosed by radius r and ⟨ρ (< r)⟩ is

the mean enclosed density, ⟨ρ (< r)⟩ = 3m (< r) /4πr3.

Although we have considered both options, results are shown for the Moore et al.

(1998) definition as it is typically more conservative than the alternative. Henceforth,

all rmin values are calculated using Eq (3.7).

Once c is found, M−2 can be calculated from Eq (3.4); the characteristic density

of the halo is then given by ⟨ρ−2⟩ = 3M−2/4 π r
3
−2.

3.3.3 Einasto profile

The Einasto density profile (Einasto, 1965) can be expressed as

ln

(
ρ

ρ−2

)
= − 2

α

[(
r

r−2

)α

− 1

]
, (3.9)
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where r−2 is a scale radius (at which where the logarithmic slope of the density

profile is equal to −2), and α is a ”shape” parameter. Einasto function is commonly

used for modelling dark matter halo density profiles, and in many cases it has been

shown to perform at least as well as the NFW profiles, even with one parameter

fixed at α = 0.17 (Merritt et al., 2006; Ludlow & Angulo, 2016).

Fits using both NFW and Einasto density profiles have been performed for com-

parison. We have computed and compared model selection criteria, called Akaike

Information Criterion (AIC) and Bayesian information Criterion (BIC), as an objec-

tive way to determine if the additional parameter in the Einasto profile is justified in

terms of improved fits to the simulation results (Akaike, 1974; Schwarz, 1978). The

AIC and BIC measures take into account the χ2 value of the fit and the number of

free parameters. The fit with the smallest value of AIC or BIC is deemed to be the

most appropriate one to use5.

The Einasto density profiles for an illustrative mass bin at z0 = 0 are shown in

Fig. 3.3; the CMHs for the same mass bin at z0 = 0, for values of F calculated from

Einasto concentrations, are shown in Fig. 3.4. Table 3.2 shows values the values of

the AIC and BIC statistics for the NFW fits from Section 3.3.2 and the Einasto fits

from this section. Despite the fact that the Einasto profile produces a better fit, it

has an extra free parameter, which yields higher values of the information criteria.

Moreover, despite producing a higher quality fit, zf values for GR and f(R) haloes

calculated from the Einatsto profile (see Fig. 3.4) are still indistinguishable, like the

ones calculated from the NFW profile (see Fig. 3.5). This indicates that the NFW

profile is the more justified choice.

3.3.4 Calculating halo formation times

The mass growth history of a dark matter halo, m (z), can be defined in different

ways. The mass assembly history (MAH) is the mass history of a halo obtained using

5There is a subtle difference between the AIC and BIC statistics. BIC introduces a higher

penalty for more complicated models; however, this is only important if the criteria give conflicting

results, which is not the case here
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Figure 3.3: Like Fig. 3.2, but fit to the Einasto density profile.

Table 3.2: Goodness-of-fit comparison between the NFW and Einasto density pro-

files for haloes with masses in the range 11.5 < log10 (M200/[h
−1M⊙]) < 11.7 at

z0 = 0 for the GR run.

NFW Einasto

number of parameters 1 2

AIC 2.002 2.399

BIC 4.002 4.797
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Figure 3.4: Like Fig. 3.5, but for the values of F calculated from Einasto concentra-

tions from Fig. 3.3.
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Figure 3.5: Median collapsed mass histories (CMHs) for haloes in the mass range

11.5 < log10 (M200/[h
−1M⊙]) < 11.7 at z0 = 0. As with Fig. 3.2, GR and f(R)

runs are shown using red and blue lines, respectively. Solid lines show the median

collapsed mass histories; two dotted vertical lines indicate the formation times, z−2,

at which the CMHs drop below a fraction F = M−2/M200 of the virial mass at z0,

plotted as two horizontal dashed lines. Note that despite the difference in F , derived

from concentrations shown in Fig. 3.2, z−2 values are indistinguishable. The purple

dashed-dot line shows the EPS prediction from Eq (3.3) for M0 equal to median

mass in this bin.
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a“greedy”algorithm, by following the most massive (or main) progenitor through all

snapshots and storing its M200. As discussed previously, the collapsed mass history

(CMH) is defined as the sum of the masses M200,i of every progenitor i whose virial

mass exceeds f ×M0, where f is a model parameter (we use 0.02 as our default

value, but consider alternatives as well), andM0 isM200 of the root halo. The CMH

therefore takes into account all branches of the merger tree at a given snapshot.

The CMH can be obtained by gathering all progenitors of a halo from the merger

tree, and summing over the masses of the progenitors at each snapshot. However,

for performance reasons, the step of building a tree can be skipped in favour of

searching for all progenitors of a root halo at each preceding snapshot. In other

words, since the halo masses are summed over, it is not the structure of the merger

tree that matters but its members.

Once the median CMH is calculated for each mass bin, it is normalised by the

final mass M0 at redshift z0. For each mass bin, a formation time z−2 can then be

calculated. This is defined as the time at which the CMH first exceeds a fraction

F =M−2/M0 (calculated for a given mass bin from Eq (3.4)) of the final mass, M0:

z−2 = z ∋ M (z)

M (z0)
= F. (3.10)

The formation time may be ill-defined for non-monotonic assembly histories. The

monotonic behaviour of the CMH, while difficult to guarantee for individual haloes,

is in practice obtained by considering the median CMH of all haloes in each mass

bin (as opposed to calculating formation times of individual haloes, binning the

haloes and then taking the median in each mass bin). As simulations have a finite

number of outputs, and hence finite time resolution, the value of the formation time

is obtained using linear interpolation between the snapshots which are immediately

before and after the crossing of the formation threshold fraction.

Examples of the median CMHs for z = 0 haloes in a narrow bin of M200 are

shown in Fig. 3.5. Solid red curves correspond to our GR simulation, and blue to

f(R). An analytic prediction from Eq (3.3), as discussed in Ludlow et al. (2016),

is plotted in a purple dashed-dot line; the result agrees quite well with the CMHs

obtained from both simulations. For example, the formation times, z−2 (vertical
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dotted lines of corresponding color), agree with one another to ≈ 5%. Neverthe-

less, despite similarities in CMHs, these haloes do not have similar concentrations.

The horizontal dashed lines correspond to M−2/M200, which show clear differences;

indeed, concentration is 30% larger in f(R) than in GR.

3.3.5 The density–density relation

The above analysis was carried out at z0 = 0, 0.5, 1, 2 and 3. At each snapshot,

haloes were filtered as described in Section 3.3.1, and binned into 20 logarithmically

spaced mass bins spanning the range log10(M0/[h
−1M⊙]) = 11.18 to 14.42. Median

mass profiles and CMHs of haloes, normalised by M0, were used to calculate the

concentration, c, and formation time, z−2, for each M0 and z0. These were then

converted to their equivalent values in “density space”: c expressed in terms of the

characteristic density ⟨ρ−2⟩ (following Eq (3.1)), and z−2 in terms of the critical

density, ρcrit (z−2); both are then normalised by ρcrit (z0).

As shown in Figs. 3.6 and 3.7, the ⟨ρ−2⟩ − ρcrit(z−2) relation for F6 haloes is

similar to that in GR for most densities, but displays a steepening at high formation

redshifts where ⟨ρ−2⟩ increases more rapidly than ρcrit(z−2). This effect is most

apparent at lower redshifts (Fig. 3.6) and for lower masses (Fig. 3.7). For instance,

only f(R) halo mass bins with log10(M200/[h
−1M⊙]) ≲ 11.9 at z0 = 0.5, and with

log10(M200/[h
−1M⊙]) ≲ 12.2 at z0 = 0 have log10 (ρ−2/ρcrit (z0)) > 4.25, as shown

by Figs. 3.6 and 3.7. This is consistent with the results found by Shi et al. (2015)

for the concentration-mass and formation time-mass relations: while the formation

times show small systematic differences between GR and F6, the biggest discrepancy

between the two is in the form of the concentration-mass relation at low halo masses.

The concentrations recovered in the F6 model are higher for lower mass haloes

than in GR, as demonstrated by Fig. 3.2; this change is in the opposite sense to that

seen on changing CDM for WDM. In both WDM and F6, however, low mass haloes

systematically form later than their GR counterparts. In F6 gravity, although there

is a systematic delay in formation histories for low-mass haloes, it is not captured

by the formation time defined as in Eq (3.10).

It follows that, while in WDM the formation time-concentration relation is the
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Figure 3.6: Mean enclosed density ⟨ρ−2⟩ within the characteristic radius, r−2, versus

the critical density at the formation redshift, ρcrit(z−2), at which a fraction F =

M−2/M0 of the root halo mass M0 was first contained in progenitors more massive

than f ×M0. Each point corresponds to median value in a logarithmically-spaced

mass bin at the identification redshift z0. All densities are normalised by ρcrit (z0),

the critical density at z0. Point types indicate the results from different gravities,

as labelled. Colours indicate the identification redshift, as shown by the colour bar.

Also plotted are two lines: a dashed black one which shows the Ludlow et al. (2016)

scaling relation ⟨ρ−2⟩ = 400 × ρcrit(z−2), and a solid black one for the best-fitting

GR relation ⟨ρ−2⟩ = 525× ρcrit(z−2).
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Figure 3.7: Same as Fig. 3.6, but colour–coded to indicate different halo mass ranges.

The halo population has been split into two samples: one above and ones below the

characteristic mass,M∗ (z0), defined as δsc (z0) /σ (M
∗ (z0)) = 1 (Mo et al., 2010, Eq.

7.48). The mass bin containing haloes from Figs. 3.2 and 3.5 at z0 is highlighted in

green.
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same as it is in CDM (when zform is appropriately defined), this is not the case

in f(R) gravity. Even a model with an effective screening mechanism, such as F6,

affects the low mass haloes identified at late times; these objects have slightly delayed

formation times and notably higher concentrations, which leads to the differences

between F6 and GR shown in Figs. 3.6 and 3.7.

Finally, we note that the ⟨ρ−2⟩−ρcrit(z−2) relation found in the GR simulation is

very similar to the one reported by Ludlow et al. (2016), but with a higher intercept,

≈ 525, as shown by the solid line in Fig. 3.6. The origin of this value, which is

the only free parameter of their model, is not known. It is analogous to the free

parameter of the Ludlow et al. (2014a) and Correa et al. (2015) models, who also

report different values. The intercept may be determined by a number of physical

process and a detailed investigation of what determines its value, while worthwhile,

is beyond the scope of this work.

3.3.6 Sensitivity to variation of model parameters

The parameters used to construct the CMHs (and hence to estimate z−2) and to

define halo characteristic densities can be varied to assess their impact the form

of the ⟨ρ−2⟩ − ρcrit(z−2) relation, and to potentially improve our understanding of

the origin of the difference between F6 and GR. A few such variations have been

performed: first, we modify the radius defining halo characteristic densities (using

0.3× r−2 and 2.0× r−2), and second, the mass threshold f of progenitors included

in the CMH (which is varied from 0.01 to 0.1).

The results, presented in Figs. 3.8 and 3.9, confirm our intuition: increasing the

progenitor mass used to construct the CMHs (by increasing f) brings the forma-

tion time closer to the identification time, z0 (the difference is more pronounced at

lower redshifts, due to the normalisation used), while increasing the radius within

characteristic densities are defined decreases the mean enclosed density and brings

the formation time closer to the identification redshift. While the parameters can

be tweaked to decrease the scatter and remove the time dependence of the relation

(see, e.g., Figures B1 and B2 of Ludlow et al. (2016)) the f(R) haloes still exhibit

a strong upwards trend in their concentrations–as well as a larger scatter than their
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Figure 3.8: Like Fig. 3.6, but with different panels showing different collapsed mass

history parameter f , as labelled above each. The solid black line shows the best-

fitting GR relation, ⟨ρ−2⟩ = 525× ρcrit, and is included for comparison.

GR counterparts–for all parameter combinations. This is driven by the changes to

both the c(M, z) relation, and also to changes in the mass–formation time relations,

which cannot be accounted for by varying the parameters mentioned above. In f(R)

gravity, however, the halo growth and structure are also determined by the local

environment. It is therefore important to attempt to account for local effects using

an environmental proxy.

3.3.7 Separation of haloes by screening

As discussed in Section 2.1, f(R) gravity only affects haloes which are outside

screened regions, while the screened ones grow in a manner that is largely indis-

tinguishable from GR. It is clear from Fig. 3.6 that low mass haloes are typically

the ones displaying the most prominent differences between the two simulations, im-

plicating the fifth force as the root cause. However, it is natural that each mass bin

contains both screened and unscreened objects.
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Figure 3.9: Like Fig. 3.6, but with different panels showing mean density at different

fractions of a characteristic radius r−2. The solid black line shows, for comparison,

the best-fitting GR relation, ⟨ρ−2⟩ = 525× ρcrit.

The effectiveness of the screening mechanism (not including self-screening) is

directly related to the environment in which the halo is found. Following Zhao

et al. (2011); Haas et al. (2012), we use a conditional nearest neighbour distance,

DN,f , as an environmental proxy. We use the proxy in an attempt to separate haloes

inside each mass bin into two populations, quantifying how strong the environmental

screening effect should be.

DN,f for a halo of mass M̄200 is defined as the distance d (normalised to r̄200) to

its N th nearest neighbouring whose mass, M200, is equal to or larger than f × M̄200.

If DN,f cannot be calculated (for instance, for the largest halo in a snapshot) it is

assumed to be equal to ∞.

Other environment proxies, such as “experienced gravity” Φ∗ (Li et al., 2011)

and local spherical or shell overdensity (Shi et al., 2017) have also been proposed

as methods of assessing environmental impact on formation histories. Here we use

DN,f with N = 1, f = 1.0 since it correlates strongly with other proxies, which

predict similar local enhancements to the gravitational potential (Shi et al., 2017).
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Figure 3.10: Environmental proxy DN,f (N = 1, f = 1) versus halo mass, M200, for

haloes in an example mass bin, 11.70 < log10 (M200/[h
−1M⊙]) < 11.83, at redshift

z = 0. Distributions of log10 (M200/[h
−1M⊙]) and log10 (DN,f ) are shown at the top-

and right-hand panels, respectively. The two red lines on the log10 (DN,f ) histogram

on the right indicate the 25th and 75th percentiles.
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Figure 3.11: Like Fig. 3.6, but split into two populations by the environmental

proxy DN,f . The left panel shows the relation for bins including haloes below the

25th percentile; the right panel shows the same relation for bins including haloes

above the 75th percentile. Colours and symbols distinguish between gravity models:

red circles represent GR and blue crosses F6. Both panels include the best fitting

GR relation ⟨ρ−2⟩ = 525 × ρcrit (solid black line) for reference (note that the fit is

performed over the full population, regardless of the environmental proxy).
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Figure 3.12: 3D visualisation of halo catalogue obtained from the f(R) simulation

at redshift z0 = 0, consisting of over 4000 haloes. The sizes of the points reflect

log10 (M200), and the colours indicate the environmental proxy log10 (DN,f ) used to

approximate the screening and the strength of the fifth force. Note how the larger

values of DN,f (indicating lower environmental impact on formation & evolution) are

reserved for objects which are either more massive, or isolated & small, while smaller

values of DN,f are obtained for objects which are in the vicinity of the similar-mass

neighbours.
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The DN,f values have been calculated for each halo at each redshift. Here we

consider the distribution of DN,f in bins of halo mass focusing on the extremes of

the distribution which we expect will show the biggest contrast in the efficiency

of screening. The halo population at each redshift is split into two sub-groups:

those below the 25th and above the 75th percentiles. The most massive object, with

D1,1 = ∞, is excluded. The ⟨ρ−2⟩ − ρcrit(z−2) relations were then recalculated for

each mass bin for the two sub-groups separately, and are presented in Fig. 3.11.

It is to be expected that the haloes with the lowest values of DN,f , which are

the ones that are closest to objects of comparable masses and hence in the highest

density environments, will follow a concentration-formation relation closest to that

displayed by GR haloes, since they are screened from the enhanced gravity. Haloes

with high-DN,f may display a different power-law, as seen in Fig. 3.6. However, as

clearly demonstrated in Fig. 3.11, while selecting haloes by their DN,f value has

little to no effect on the GR relation, it also has little impact on the F6 haloes. This

means that the difference cannot be easily accounted for by a local environmental

proxy alone.

3.4 Conclusions

We have compared two high resolution dark matter only simulations, one using

GR and the other F6 gravity. We constructed collapsed mass histories of haloes

using their merger trees obtained from HBT+ (Han et al., 2018). We then binned

the haloes by mass and calculated median enclosed mass profiles M(r) and CMHs,

to obtain median concentrations, c, and formation times, z−2, which we used to

construct the ⟨ρ−2⟩ − ρcrit(z−2) relation. This relation is linear in GR–and hence

may be used to predict concentrations when CMHs are known–but not in F6. The

differences are primarily due to a relative enhancement of concentration for low-mass

objects in F6 which have slightly delayed formation times times relative to GR.

We have made several attempts to recover a linear relation from the results of

the F6 simulation. For example, we varied the free parameters of the model (i.e. the

fraction f of the final halo mass that a progenitor must exceed to be included in the
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CMH, and fraction of the characteristic radius r−2 used to define the characteristic

densities) to find a region in the parameter space which produces the most promising

relation. While there are values of parameters which improve upon the conventional

choice for GR (f = 0.02, 1.0 × rs), there are trade-offs with regards to scatter

and gradient of the line. Furthermore, to account for the mixing of the screened

and unscreened haloes in each mass bin, we split the halo catalogue into two sub-

populations using an environmental proxy DN,f , which also had little effect.

Since neither approach alone has been successful, we propose that either (1)

information about haloes’ sizes as well as environment is required, or (2) a better

proxy, capable of separating haloes not only by present environment, but also by

their growth histories, is required, or (3) the density-density relation in f(R) is not

separable into the power law and a correction.

Our overall conclusion is that the form of the concentration–formation time re-

lation is particular to the gravitational force in the adopted cosmological model and

its origin remains unknown. The key difficulty seems to lie in the question of why

haloes with very similar formation redshifts can nevertheless have very different con-

centrations. One possibility is that the definition of formation time (z−2) or assembly

history (CMH)–which function well for GR models for c(M, z)–require amendments

for f(R).

Since the relation is sensitive to model parameter variation, but not to environment–

based splitting, it would be interesting to further test the relation for a dependence

on self-screening. This could be tested by splitting halo populations using a self-

screening proxy, as well as running the analysis on other cosmologies, such as F5,

F4 and enhanced (4/3 the conventional strength) gravity simulations. We believe

that looking into the changes in the concentration – formation relation in different

gravity regimes is a promising avenue of research into the nature and origin of the

correlation between halo concentrations and formation times.
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Chapter 4

Modified Semi-Analytic Galaxy

Formation Model

We run the semi-analytic model (SAM) galform on dark matter halo merger trees

calculated from four high resolution N-body simulations, one of ΛCDM and three

variants of the Hu-Sawicki form of the f(R) gravity, to investigate the effects of

modified gravity on galaxy properties. We explore the use of the halo-occupation

distribution (HOD) for Hα emitters, as an possible discriminant between the modi-

fied gravity theories. We generate HODs for all four cosmologies at a redshift range

from 0.3 to 2.2, which matches the EUCLID & WFIRST observation ranges. We

observe only small differences in the predicted HODs.

4.1 Introduction

The DE theories will be constrained in the near future with observational tests by

huge surveys, such as EUCLID (Laureijs et al., 2011; Amendola et al., 2013) and

WFIRST (Green et al., 2012), which will probe the expansion history of the Universe

in unprecendented detail. However, because galaxies are biased tracers of the large

scale structure in the dark matter (Kaiser, 1984; Mo &White, 1996; Kauffmann et al.,

1997), these tests depend on our understanding of galaxy formation and evolution.

The new surveys will allow clustering measurements which, for the first time, will

be limited by systematic errors rather than sample variance. Accurate theoretical
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predictions are therefore essential to meet the scientific goals of these surveys.

In the MG theory studied here, f(R), the screening mechanism depends on the

mass of objects as well as their environments. We investigate three versions of

the Hu & Sawicki (2007, HS) model, varying in the effectiveness of the screening

mechanism. In all three cases (F6, F5 and F4 hereafter), gravity is enhanced by

a factor of 1/3 compared to GR, the so-called fifth force, but the models differ

with regards to the effectiveness of the screening. Nonetheless, in all three models

screening is most effective at high redshift, and for the most massive haloes. Based

on N-body simulations, it is expected that low mass haloes at low redshift will exhibit

the biggest differences (Shi et al., 2015, 2017; Mitchell et al., 2019).

Previous theoretical and numerical studies of f(R) modified gravity suggest that

the concentrations and formation times of dark matter haloes (Shi et al., 2015, 2017;

Oleśkiewicz et al., 2019), virial scaling relation (Fontanot et al., 2013), as well as

brightness of stars (Davis et al., 2012) are expected to exhibit a small but systematic

deviation from their GR counterparts.

While previous studies looked for changes in the predicted galaxy properties

in statistics that cover a wide range of halo masses (e.g. the galaxy luminosity

function or the global star formation rate density), we focus instead on a quantity

that isolates galaxies in a narrow range of halo mass that are expected to be sensitive

to the modifications to gravity. In many MG theories, including f(R), the existence

of the screening mechanism means that the halo population is mixed, containing

both screened haloes, which feel a gravity strength equivalent to classical GR, and

unscreened ones, with experience gravity that is stronger by a factor of 1/3. It is

therefore imperative to look for observables which could help us separate these two

classes of haloes.

One such statistic is the Halo Occupation Distribution (HOD). The HOD quan-

tifies the bias between galaxies and dark matter, and describes how the number

of galaxies per halo changes with halo mass, galaxy property, and redshift (Zheng

et al., 2005; Smith et al., 2017; Contreras et al., 2019; Merson et al., 2019). The

HOD for the Hα emitters likely to be seen in upcoming surveys peaks around a

halo mass of m ≈ 1012 h−1M⊙ (Merson et al., 2019). The fact that this feature in
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the HOD coincides with the prominent change in the concentration-mass relation in

f(R) (Shi et al., 2015; Mitchell et al., 2019) suggests that HODs might provide a

robust observable probe of modified gravity as a viable ΛCDM alternative.

The star formation rate (SFR) is driving emission in many lines, among them

Oii and Hα – conversely, these lines can be used to trace SFR in the galaxy pop-

ulation. Gonzalez-Perez et al. (2018) predicted a peak in the HOD of Oii emitters

for GR, at a mass at which the screening is expected to become less effective. We

expect to see a similar peak in the HODs of the Hα emitters, since they are similarly

affected by the SFR (Jansen et al., 2001), and we hope that this effect will be easy

to observe in modified gravity. We compare the results that the modified gravity has

to what we can achieve by modifying SFR properties directly in a galform model,

which should result in a similar peak in an HOD. We also examine the Tully-Fisher

relation and K-band luminosity function, which can be used as a probe into halo

masses, virial velocities and stellar masses.

We expand on previous work – we feed the merger trees constructed from a

set of high resolution N -body simulations into a semi-analytic galaxy formation

model, which has been modified in two critical areas: the concentration-mass-redshift

relation and virial velocity relation. However, we do not change the calculations of

the hydrostatic equilibrium, as well as that of the disc and bulge sizes and stellar

populations.

This Chapter is structured as follows. The theoretical background is given in

Section 4.2: the N -body simulation, halo catalogue and merger tree builder are

described in Section 4.2.1; the original galform model and the modifications we

included for an f(R) version are described in Section 4.2.2; Section 4.2.3 outlines

how we construct HODs. Our results, presented in Section 4.3, are always compared

to the control run of a standard galform model on GR merger trees, and can be di-

vided in separate stages: first, in Section 4.3.1 we run the original galform model

on modified gravity merger trees; then, in Section 4.3.2, we run a modified gal-

form model, with augmented c(m, z) and virial relations, on f(R) merger trees;

finally, in Sections 4.3.3 and 4.3.4, we include two reference runs on GR merger

trees: in Section 4.3.3 we use unchanged c(m, z) relation, but update it continu-
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Table 4.1: Parameters of the N-body simulations used.

Ωm matter density 0.3089

ΩΛ dark energy density 0.6911

Ωb baryon density 0.0460

σ8 power spectrum amplitude 0.8159

h H0 [100 km s−1Mpc−1] 0.6774

L box side [h−1Mpc] 62

mp particle mass [h−1M⊙] 1.523× 108

Np number of particles 5123

ously (instead of just at formation times), and in Section 4.3.4 we increase the vhot

parameters to emulate increased gravitational potential of the f(R) gravity.

In Section 4.4 we discuss our findings regarding luminosity function in K-band

and Tully-Fisher relation (Section 4.4.1), and halo occupancy distribution (Sec-

tion 4.4.2). Finally, we present our conclusions in Section 4.5.

4.2 Theory

4.2.1 N-body Simulation & Merger Trees

Since the equations of MG are non-linear, f(R) simulations are more computation-

ally expensive than comparable ΛCDM ones. However, significant progress has been

made recently in designing numerical techniques specifically for this class of theo-

ries, such as MG-GADGET, ECOSMOG and AREPO (Li et al., 2012; Puchwein et al., 2013;

Bose et al., 2015; Arnold et al., 2019b). In this Chapter we use N -body runs from

the SHYBONE (Simulating HYdrodynamics BeyONd Einstein) simulation suite

(Arnold et al., 2019a), consisting of 4 high-resolution boxes: one for ΛCDM and

three for variations of f(R) (labelled F6, F5 and F4). All runs use Planck cos-

mology (see Table 4.1, (Planck Collaboration et al., 2016b)), which was selected to

match the calibration of the f(R) correction from Mitchell et al. (2019).

Dark matter haloes were identified using the friends-of-friends (FoF) algorithm
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(Davis et al., 1985), and subhaloes using the SUBFIND algorithm (Springel et al.,

2001). The minimum size of subhaloes retained using SUBFIND is 20 particles.

The merger trees were then constructed from the halo catalogue using the DHalo

algorithm (Jiang et al., 2014), by identifying the unique descendant of each subhalo

at the subsequent snapshot. The descendant of a subhalo is defined as the subhalo

at the next snapshot which contains the greatest number of particles from the given

subhalo.

4.2.2 GALFORM

galform is a semi-analytic model (SAM) of galaxy formation and evolution (Cole

et al., 2000; Bower et al., 2006; Lacey et al., 2016; Baugh et al., 2019). It is capable of

reproducing many astrophysical observables, such as the luminosity function, stellar

mass function and the Tully-Fisher relation, starting from dark matter halo merger

trees. galform populates the merger trees with galaxies by numerically solving

equations that describe the bulk flow of gas, gas heating & cooling, star formation

processes, as well as feedback processes such as supernovae (SNe) driven winds and

heating by active galactic nuclei (AGN).

galform is built up of multiple modules which implement different models

of astrophysical processes. These modules can require parameters to be speci-

fied which regulate the physical process (for a detailed description of the gal-

form parameters see Lacey et al. (2016)), and all these parameters taken together

define the“galform model”. Here we use the recalibration of the Lacey et al. (2016)

model for the P-Millennium N -body simulation introduced by Baugh et al. (2019).

This choice was made because both the P-Millennium and SHYBONE N -body sim-

ulations use the same Planck cosmology (Planck Collaboration et al., 2016b).

The halo merger history alone is expected to be similar between the gravity

theories tested (Shi et al., 2015), and so should not have a significant impact on the

galaxy properties. Halo properties such as concentration and circular velocities, on

the other hand, are expected to display significant changes between gravity models

(Shi et al., 2015; Mitchell et al., 2019). Therefore, we have implemented modifications

to the dark matter halo models in galform to model the effects of the modified
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gravity: correcting the concentration-mass-redshift and virial relations.

We elect to modify the relations and distributions used for haloes in galform rather

than adopting the values measured directly from the N -body as these quantities are

subject to noise (Bett et al., 2007). This is a better match for our use case of mod-

elling f(R) effects on baryonic processes than relying on the data measured from

particle data by the halo finder, since the use of analytical models guarantees that

even haloes down to the resolution limit of 20 particles have consistent values for

their concentrations and velocities.

To isolate the causes of any changes in the model predictions, we have used

this step-by-step approach and kept our modifications minimal and self-consistent.

To understand why we have chosen to change these particular components of gal-

form (but not any others), one must remember that concentration-mass-redshift

relation controls any calculation which depends on the sizes of the haloes, and simi-

larly the velocity dispersion controls many physical processes; the virial relation has

a direct impact on supernovae feedback (as described in Section 4.2.2), which in turn

has a direct effect on the stellar mass function for lower mass galaxies (Cole et al.,

2000; Bower et al., 2006). Moreover, other parts of the semi-analytic calculation

(such as the AGN feedback) are typically relevant in the regime in which modified

gravity effects are screened, and we can therefore safely assume that for these models,

the equations used in the GR version of galform are still a good approximation.

Concentration-redshift-mass relation

The concentration-mass-redshift relation of the dark matter haloes in galform was

amended to model the change in halo concentrations reported from N -body f(R)

simulations by Shi et al. (2015). In particular, we have implemented the Mitchell
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Figure 4.1: The concentration-mass-redshift relation for the dark matter haloes

in the four gravity models, GR, F6, F5 and F4 (distinguished with line styles as

described in the legend) at five different redshifts (colour-coded as described in the

legend). Haloes are binned into 20 logarithmically spaced mass (M200) bins, and

the median values have been calculated in each bin. The concentrations values were

computed by galform using an NFW prescription, and corrected using the model

of Mitchell et al. (2019), as shown in Eq (4.1).
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et al. (2019) model that describes these changes:

log10(c/cGR) =
1

2
·
(
λ

ωs

ϕ(x′)

[
1 + erf

(
αx′√
2

)]
+ γ

)
·

· (1− tanh (ωt [x+ ξt])) (4.1)

x′ = (x− ξs)/ωs (4.2)

p2 = 1.503 log10

(
|f̄R|
1 + z

)
+ 21.64 (4.3)

x = log10(M500/10
p2), (4.4)

where cGR is the base concentration value, ϕ is a normal distribution, erf is the error

function, p2 is a gravity-dependent measure of the amount of screening of a halo, f̄R

is the mean background value of Eq (2.3), and (λ = 0.458, ξs = −0.324, ωs = 1.49,

α = −6.17, γ = −0.038, ωt = 0.82, ξt0.01) are free parameters1.

galform has no information about the local environment of the haloes, other

than the implicit differences in clustering, driven by halo assembly bias. For this

reason, the concentrations it calculates are essentially median values for haloes of a

given mass. Likewise, only the median concentration corrections are applied, without

splitting haloes into screened and unscreened sub-catalogues. For each halo we

calculate M500, which is defined as the mass enclosed inside a radius within which

the mean density is 500 times critical density of the universe; then, we calculate a

dimensionless x from Eq (4.4), and concentration correction from Eq (4.1).

In order to implement the new concentration mass relation, it was necessary

to alter the way in which galform updates halo concentrations. In its present

form, galform does not technically compute the c = (m, z) value, but rather cal-

culates c = c(m, zf ) instead – halo concentrations and velocities are only updated

at formation times of the haloes. This has two effects on the c − m relation out-

put by galform : firstly, all values are systematically lower than they would be if

concentrations were measured from the N -body simulation; and secondly, the rela-

tion exhibits a large scatter, caused by the fact that while halo concentrations are

1for further details on fitting of this relation and the associated uncertainties see Mitchell et al.

(2019)
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set deterministically from their masses, each mass bins contains haloes with vastly

different formation times.

Therefore, we have made one significant change to the algorithm used in gal-

form to update halo concentrations. Previous models only update the concentra-

tion, circular velocity and spin of the haloes at their formation times, and then

propagate these values “up” the merger tree. In our updated model, halo concen-

trations are recalculated at each snapshot, and therefore do not propagate up the

merger tree. This is close to the cooling model developed by Hou et al. (2017), and

ensures that the c(m, z) relation is correct at each redshift.

Virial relation for dark matter haloes

Another modification required to the galform model is to change the relation be-

tween halo mass and velocity dispersion in modified gravity. In GR the circular

velocity of a halo is proportional to the square root of halo mass, v200 ∝
√
M200.

Since concentration-mass relation for the GR case follows a power law, as shown by

Gao et al. (2008), and the concentration parameter is known to be modified in f(R)

as given by Eq (4.1), v200 can be scaled as
√
c200.

In practice, the values calculated from this method closely resemble the approach

of Fontanot et al. (2013). In their model the halo catalogue is split into screened

and unscreened sub-populations, depending on their velocity dispersion: σ̃200 ≈√
(1/2) c2|f̄R (z)|; the velocities of haloes which are considered unscreened are then

increased by
√

4/3 − 1 ≈ 0.1547. This value comes from the fact that in f(R)

the gravity enhancement is never larger that 4/3 – the only difference between the

different versions of the f(R) model is the effectiveness of the screening mechanism.

The model of Fontanot et al. (2013) is equivalent to multiplying all velocities

(and concentrations, if implemented using the relation from Section 4.2.2) by a

predefined number if they fall into the unscreened category. While this agrees well

with the increased concentrations shown in Shi et al. (2015, Fig. 4), it falls short

of correctly reproducing the concentration-mass-redshift dynamics across multiple

redshifts and multiple theories. As shown by Mitchell et al. (2019), dark matter

halo concentrations are not simply increased above a certain threshold mass value –

July 19, 2020



4.2. Theory 73

10 11 12 13 14
log10(M=M¯)

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

lo
g
10
(¾
20
0
)

Figure 4.2: The virial scaling relation between M200 and σ200 for dark matter haloes

in ΛCDM.
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instead, they have a complex non-linear response which depends on both mass and

redshift.

Therefore, our velocity dispersion transition is modelled just like the concentra-

tions, with velocities multiplied by a square root of the correction factor.

Supernovae feedback parameter variation

in galform supernovae (SNe) feedback is modelled as a process which ejects cold

gas from the galaxy to a reservoir of mass Mres, at the rate of

ṁdisc = βdisc × SFRdisc, (4.5)

where SFR is the total star formation rate, and

βdisc ∼
(

vc
vhot,disc

)−αhot

, (4.6)

with parameters αhot specifying the dependence of β on circular velocity (vc), and

vhot normalising the circular velocity. Note that the subscript“disc” refers to the disc

component, and that there is a separate gas reservoir (“burst”), with the identical

feedback equations, controlling burst mode of the star formation process. These

reservoirs are responsible for quenching star formation in quiescent and starburst

modes respectively.

From Eq (4.6) it is evident that changes in the circular velocity driven by changes

in the gravity model can be compensated for by modifying the vhot parameters.

Therefore, two additional runs of galform have been performed: one with in-

creased value of vhot and the other with a decreased value. As discussed in this

section, these parameters directly scale the impact which changes in halo velocity

dispersion have on baryonic processes, and are likely to be the largest first-order

effects caused by the virial and c(m, z) relations. In essence, this is an attempt to

understand whether it is possible to emulate the f(R) fifth force by manipulating

the model parameters directly.

With this question in mind, two additional runs were performed, with vhot in-

creased and decreased by 15%. The modified gravity interpretation of these runs is

a cosmology in which the screening mechanism for the SNe feedback is turned off
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for all haloes at all snapshots, whereas in the actual model these effects are both

mass and redshift dependent.

4.2.3 HOD

As explained in Section 4.2.2, galform uses the merger history of dark matter

haloes to track the evolution of baryons, with the end-product being a prediction

for the number of galaxies inside a dark matter halo along with properties for these

galaxies. This allows galform to predict how galaxies trace the underlying dark

matter distribution. The halo occupation distribution (HOD) quantifies this in terms

of the probability that a halo of mass M contains N galaxies which satisfy some

constraint on a galactic property, P , which could be the broad-band magnitude of

the galaxy in some filter or the luminosity of an emission line. For instance, the

mean number of galaxies brighter than luminosity L measured in the Hα emission

line in a halo of mass M is ⟨N (> LHα |M)⟩ (Zheng et al., 2005; Smith et al., 2017).

While HODs can be parametrised and tuned using the observed abundance and

clustering of galaxies (Zehavi et al., 2011), here we use the galaxy catalogue com-

puted by the galform model, which makes a direct prediction of the form of the

HOD. This important as any differences introduced by changing gravity are hard to

anticipate and model using a parametric form, and indeed, may not be described

by the same parametrization that worked in the case of GR. We use galform to

calculate a range of luminosity-dependent HODs across luminosities and redshifts.

The HODs were computed for the redshift range 0.3 ≲ z ≲ 2.2. This includes

the ranges of the EUCLID (1 ≲ z ≲ 2) and WFIRST (0.9 ≲ z ≲ 1.8) Hα surveys,

as well as even lower redshifts since that is where the most prominent differences

between f(R) and ΛCDM are expected.

The Hα line luminosity is computed from the number of Lyman continuum

photons, which is calculated by galform for each galaxy given its star formation

history and the metallicity with which stars are being produced, and a model for

HII regions (Stasinska, 1990). We have applied attenuation due to dust extinction

as calculated by galform for the continuum stellar emission at the wavelength of

the Hα line, 6563 (see Gonzalez-Perez et al. (2014) and Lacey et al. (2016) for a
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description of the calculation of the dust attenuation).

At each snapshot the galaxy catalogue is split into 20 cumulative luminosity-

limited samples, with the LHα limits spaced evenly in log-space from 1038 h−2 erg s−1

to 1042 h−2 erg s−1. The HOD is constructed for each luminosity-limited sample by

computing the mean number of galaxies per halo, binned by halo mass M200 into 20

evenly spaced bins in log-mass from 1011 h−1M⊙ to 1014 h−1M⊙. M200 is defined as

the mass within an over-density with an average density corresponding to 200 times

the mean density of the universe.

4.3 Results

As discussed in Section 4.2.2, the modifications to galform are implemented in

steps to isolate the drivers of any changes in the model predictions. In this section

we take one control run (using ΛCDM cosmology) calibrated for implementation in

the P-Millennium N-body simulation, and compare it to the three f(R) simulations

at each stage: first (Section 4.3.1) by only using the merger histories from the

f(R) simulations; then (Section 4.3.2) by applying the c(m, z) and virial relation

corrections on the modified merger trees. Moreover, we present two reference runs:

in Section 4.3.3, of galform ran on GR merger trees, but with continuous c(m, z)

calculation, in order to check the effects of the continuous updates to concentration;

and in Section 4.3.4, of galform on GR merger trees with vhot parameters increased

by 15%, to emulate a global increase in a gravitational potential.

For each of these runs, we look at the model predictions for three observables: the

K-band luminosity function (hereafter LF), the Tully-Fisher (hereafter TF) relation

i.e. the relation between circular velocity and luminosity for disc-dominated galaxies,

and the HOD (Section 4.2.3).

For a modified gravity cosmology to pass the local astrophysical constraints,

it must give a good fit to the observed K-band galaxy LF at z = 0. We have

picked this band as it most closely traces the galaxy stellar mass function, with a

weak dependence on the age and metallicity of stellar populations. We compare

the galform calculation with the observed LF directly, instead of relying on the
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Figure 4.3: Same as Fig. 4.15, but the red line represents unmodified gal-

form model ran on F6 merger trees.

SED fitting (see e.g. Mitchell et al. (2013)). While there is ongoing research on the

stellar dynamics and evolution in the modified gravity theories (Davis et al., 2012;

Sakstein, 2015), the effects of the modified gravity on the IMF and stellar evolution

are unknown. We have therefore retained the IMF and stellar population synthesis

models used in GR and have applied these in the modified gravity implementations

of galform .

The TF relation at z = 0 is plotted in terms of the I-band magnitudes and

circular velocities of spiral galaxies measured at the half mass radius of the model

galaxy. The I-band magnitudes were calculated in the rest frame using the face-

on values, and with attenuation by dust included. The circular velocities were

calculated at the half-mass radius of the disc by integrating the mass included in

the NFW profile (Cole et al., 2000). galform galaxies are selected to have a B-

band bulge-to-total ratio (B/T )B < 0.2 (including dust attenuation), gas fractions

Mcold/Mstar > 0.1, to replicate the observational sample selection.
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Figure 4.4: Same as Fig. 4.16, but the dashed lines correspond to HODs calculated

from unchanged galform model running on F6 merger trees.
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Figure 4.5: Same as Fig. 4.15, but the red line represents unmodified gal-

form model ran on F5 merger trees.

4.3.1 GALFORM on f(R) Merger Trees

In the first stage, the only change to the galform model is to use the dark matter

halo merger trees from each simulation rather than the trees from the GR simula-

tion. In this part, we do not observe significant changes in the galform model

predictions, since the differences between the ΛCDM and the f(R) merger trees are

small (Shi et al., 2015).

4.3.2 Concentration-mass-redshift & virial relation correc-

tions

In the second stage, the galform model used the halo merger trees from the modi-

fied gravity simulations, and corrections were applied to the halo concentrations and

virial velocities according to Eq (4.1), as described in Section 4.2.2. Since the cor-

rection depends on the present redshift, ant not formation redshift (Section 4.2.2),

we further modify galform , to recalculate halo concentration at every timestep,

instead of only at formation times (as is done in standard galform).

Both corrections were applied simultaneously since concentration and velocity
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Figure 4.6: Same as Fig. 4.16, but the dashed lines correspond to HODs calculated

from unchanged galform model running on F5 merger trees.
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Figure 4.7: Same as Fig. 4.15, but the red line represents unmodified gal-

form model ran on F4 merger trees.

are inter-dependent, and modifying one without another would be inconsistent.

4.3.3 Continuous c(m, z) Calculation

In this reference run, we modify galform to recalculate halo concentration at every

timestep, instead of only at formation times (as is done in standard galform). Our

aim is to verify to what extent are the effects observed in the previous subsection

caused by continuous concentration recalculation, versus by the modified gravity

correction.

4.3.4 vhot Parameter Variation

In this reference run, the galform model uses the modified gravity merger trees

without changing the halo concentrations and virial relations. In this case we

make a change to the galform parameters controlling SNe feedback, increasing

vhot,disc and vhot,burst parameters by 15%. As described in Section 4.2.2, since gal-

form calculates SNe feedback from Eq (4.6), we can approximate the effect that

modified gravity has on the circular velocity by increasing the parameter by which
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Figure 4.8: Same as Fig. 4.16, but the dashed lines correspond to HODs calculated

from unchanged galform model running on F4 merger trees.
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Figure 4.9: Same as Fig. 4.15, but the red line represents galform model with

modified c(m, z) and virial relations (see Section 4.2.2), ran on F6 merger trees.

the velocity is normalised. This is equivalent to modelling SNe feedback as being

unscreened for all f(R) models.

4.4 Discussion

4.4.1 The K-band luminosity function and Tully-Fisher re-

lation

As expected, the first stage (only changing the underlying merger histories of the

dark matter haloes) does not have a perceptible impact on the LF or the TF relation.

In the second stage, when changing concentrations and virial velocities in addi-

tion to the merger histories, the TF relation in f(R) exhibits a predictable deviation

from ΛCDM – the circular velocities are systematically higher. The change is within

the 10%−90% percentile range, which makes both GR and F6 models good fits to the

fainter end of the TF relation. The K-band LF is also changed by the modifications

to the concentration and virial relations, even in F6 which has the most effective

screening mechanism and is therefore the most similar cosmology to ΛCDM . The
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Figure 4.10: Same as Fig. 4.16, but the dashed lines correspond to HODs calculated

from galform model with modified c(m, z) and virial relations (see Section 4.2.2),

ran on F6 merger trees.
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Figure 4.11: Same as Fig. 4.15, but the red line represents galform model with

modified c(m, z) and virial relations (see Section 4.2.2), ran on F5 merger trees.

K-band LF is systematically higher in f(R) than in the GR counterpart, with the

most profound increase at L∗. Nonetheless, both observables exhibit similar system-

atic effects, which indicates that the impact of f(R) on some observables can be

accounted for using only a simple change to the parameter values of a model. Inter-

estingly, LF and TF in f(R) run after applying modified gravity c(m, z) correction

are closer to the GR version for F4 gravity than they are for F5 and F6. This is

not surprising, as it can be easily explained by comparing the concentrations from

Fig. 4.1 – the curves for F4 and GR and actually closer than, for instance, the curves

for F6 and GR.

In order to isolate the modified gravity impact on the observables, we also include

the reference run on GR merger trees, with unmodified concentration being updated

at every timestep. By comparing Fig. 4.9 and Fig. 4.15, we can conclude that the

modified gravity has an impact on both LF and TF relation which is distinct from

merely changing the manner in which concentrations are calculated. However, for

a more robust comparison, we recommend further study comparing two runs of

galform calibrated for continuous concentration updates: one without the c(m, z)

correction, and one with.
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Figure 4.12: Same as Fig. 4.16, but the dashed lines correspond to HODs calculated

from galform model with modified c(m, z) and virial relations (see Section 4.2.2),

ran on F5 merger trees.
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Figure 4.13: Same as Fig. 4.15, but the red line represents galform model with

modified c(m, z) and virial relations (see Section 4.2.2), ran on F4 merger trees.

Finally, when we increase the vhot,disc and vhot,burst parameters by 15%, the TF

relation is shifted higher on the plot, which is to be expected. Interestingly, the

K-band LF is affected in the opposite way it was in the second stage – the LF is

mildly suppressed at the faint end, and strongly suppressed at the bright end.

4.4.2 HODs in f(R) cosmologies

Similar to the results from the previous section, there is little difference between the

control run and the first stage.

In the second stage the HODs exhibit differences at low redshift for low mass

haloes, and at the highest Hα luminosity cut. This coincides with the objects for

which the f(R) screening switches off. The HODs peaks for f(R) typically coincide

with the GR peaks, but the number of galaxies is systematically lower. As expected,

at higher redshifts the HODs of GR and F6 have no perceptible differences, which

serves as a control check that the model predictions are indeed driven by the modified

gravity phenomenology.

This can be explained by either the fact that fewer haloes successfully formed

galaxies, or that the galaxies in f(R) have lower Hα luminosities as their SNe
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Figure 4.14: Same as Fig. 4.16, but the dashed lines correspond to HODs calculated

from galform model with modified c(m, z) and virial relations (see Section 4.2.2),

ran on F4 merger trees.
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Figure 4.15: Predictions of the rest-frame K-band LF with dust extinction and

TF relation, both at z = 0. The results from the simulation are compared to the

observational data from Driver et al. (2012) (for the K-band LF), and to the data

from Mathewson et al. (1992) (for the TF relation). The blue line represents the

reference GR run, and the red one the GR run with galform modified such that

concentrations are updated continuously (see Section 4.2.2).
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Figure 4.16: Predictions of the HODs for GR at four redshifts as labelled in each

panel. The colours of the lines represent the Hα luminosity limits, as displayed by

the colourbar on top; the styles of the lines correspond to standard galform (solid

line) and galform with continuously updated c(m, z) relation (dashed line; also

see Section 4.2.2), as labelled in the legend in the top-left panel.
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Figure 4.17: Same as Fig. 4.15, but the red line represents galform model with

vhot, burst and vhot, disc parameters increased by 15%.

feedback is more effective. If the latter conclusion is correct, it provides an interesting

counterpoint to Davis et al. (2012), which argues that stars and galaxies in a f(R)

universe should be brighter than those in a ΛCDM one. A more complete model,

with stellar population synthesis models with take into account modifications to

gravity, would be necessary to assess the relative importance of these two opposing

effects.

When the circular velocities are changed for all haloes at all redshifts, as they

were in the third stage, the HODs are all impacted similarly – the number of galaxies

per halo mass bins, for a given Hα luminosity cut, are lower. Therefore, it proves

that the impact of f(R) gravity on some observables cannot be modelled using only

a simple changes to the model parameters.

4.5 Conclusions

We have implemented the galform SAM on merger trees obtained from N -body

simulations of modified gravity cosmologies and compared the predicted K-band

luminosity function, Tully-Fisher relation, and Halo Occupancy Distributions. To
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Figure 4.18: Same as Fig. 4.16, but the dashed lines correspond to HODs calculated

from galform model with vhot parameters increased by 15%.
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model the effects of f(R) gravity we have modified the SAM in a number of ways

– by running an unchanged version on different merger trees, applying an empirical

correction to the c(m, z) and virial relations, and increasing the vhot parameters by

15%. Each of these stages was run separately, to carefully distinguish the effect of

the modification on the results, and evaluate its relative importance.

Semi-analytic modelling of the effects of the modified gravity on the galaxy forma-

tion and evolution is still a nascent area of research, and our results are preliminary.

The difficulty lies in the combinations of complexity of the galaxy formation SAMs,

which contain many non-linear sub-models and implicit Newtonian assumptions, as

well as the multitude of modified gravity theories and the sheer strangeness they

bring to the otherwise well understood gravitational equations.

Changing the merger trees of the underlying dark matter haloes on its own has

very little impact on the galform outputs, as most of the phenomenology is driven

by the baryonic processes. However, after also modifying the c(m, z) and virial rela-

tions in galform , we find small but systematic changes in K-band LF, TF relation

and HODs. While f(R) effects are non-linear, their impact on LF and TF relations

are systematic and relatively easy to explain. Similarly, characteristic “peaks” of

the LHα -limited abundances in the HODs shift predictably, moving with decreased

screening efficiency, decreasing redshift, decreasing mass and increasing luminosity.

Each of the observables individually are straight-forward to model analytically, but

the difficulty lies in designing a physically-motivated model which will produce those

outputs from first principles.

Specifically, finding an observable which could serve as a modified gravity “smok-

ing gun” on a galactic scale (and timescale), and predicting it with a SAM would be

a big step forwards in the modified gravity research.

A common criticism of modified gravity theories is that they are finely tuned to

evade observational evidence rather than provide falsifiable predictions or fit their

models. While it is important that gravity theories are bound by observational

constraints, there is another role of modified gravity modelling. Currently, due to

unprecedented success of GR, SAMs are tightly coupled to the Newtonian gravity

equations. This leads to a situation in which it becomes difficult to test gravity the-
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ories with predictions from SAMs, and in which all SAM predictions are dependent

on one dominant theory. It will therefore benefit SAMs if gravity assumptions they

make could be made explicit, and modular, in the same way in which dark matter

halo density profiles are.

Finally, we would like to point at two more difficulties in carrying out modified

gravity research on SAMs – selecting model outputs and measuring relative impor-

tance of SAM components and modified gravity corrections. Even observables whose

response to modified gravity models is qualitatively well-understood, such as HODs,

are difficult to discretise to a form in which we can directly compare different models.

On the other hand, there is a well-established technique for measuring relative im-

portance of model parameters on model outputs, called Sensitivity Analysis, which

is discussed in more detail in Chapter 5.
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Chapter 5

Sensitivity Analysis of Galaxy

Formation Models

We perform a multi-parameter exploration of the galform semi-analytic galaxy for-

mation model, to compute how sensitive the present-dayK-band luminosity function

is to independently varying different model parameters using variance-based sensi-

tivity analysis (SA). We demonstrate the usefulness of the SA approach by varying

just two model parameters, one which controls supernova feedback and the other the

heating of gas by AGN, which matches our physical intuition regarding how these

parameters affect the predictions for different parts of the galaxy luminosity func-

tion. Subsequently, we use SA to compute Sobol’ sensitivity indices varying seven

model parameters simultaneously, connecting the variance in the model output to

the variance in the input parameters. We discover that the SA correctly identifies

the least and most important parameters, and that it is able to capture the com-

bined responses of varying multiple parameters at the same time. Our study marks a

much needed step away from a traditional, “one-at-a-time”parameter variation, and

improves the transparency of multi-parameter models. It is also the first application

of a variance-based SA to a model that aims to predict the evolution and properties

of the whole galaxy population.
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5.1 Introduction

Galaxy formation is a complex process which we are only now just starting to under-

stand through a combination of observations, numerical simulations and analytical

modelling. Two main theoretical techniques are used to model the formation and

evolution of galaxies: semi-analytical modelling (SAM) and hydrodynamic simula-

tions (for a review see Somerville & Davé (2015)). SAMs use physically motivated,

simplified mathematical relations to describe the evolution of baryons in growing

dark matter haloes (Baugh, 2006; Benson, 2010). Hydrodynamic simulations, on

the other hand, tend to make fewer assumptions and approximations than SAMs

and solve the fluid equations governing the dynamics of baryons. Nevertheless, in

hydrodynamic simulations many processes, such as star formation, remain“sub-grid”

due to the finite numerical resolution of the simulation and our inability to write

down the precise equations describing some processes (Crain et al., 2015; Ludlow

et al., 2019). In the absence of a complete mathematical description, physical pro-

cesses are described in both SAMs and hydrodynamic simulations by approximate

equations that contain parameters. Values have to be chosen for these parameters

to specify a model. Here, we present a new application of an established statistical

method to assess the impact of changes in model parameters on the output of a

model.

The past few years have seen tremendous breakthroughs in the hydrodynamic

simulation of galaxy formation for significant galaxy populations in cosmological

volumes (Vogelsberger et al., 2014; Schaye et al., 2014; Pillepich et al., 2018). Nev-

ertheless, SAMs remain an attractive and valuable complement to hydrodynamical

simulations due to their flexibility and speed. These properties of SAMs mean that

they can be used to build intuition about physical processes, by running thorough

investigations of the impact of varying model parameters (e.g. see the comprehen-

sive exploration of perturbations around the fiducial model presented by Lacey et al.

(2016)). Also, SAMs remain the method of choice to populate large volume N-body

simulations using a physical galaxy formation model: the fiducial simulation vol-

umes used in SAMs are around 100 times bigger than those used in the current

state-of-the-art hydrodynamical simulations. The predictions of SAMs have reached
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an impressive level of maturity through careful comparisons between the predictions

of different groups and techniques (e.g. Contreras et al. (2013); Knebe et al. (2015);

Guo et al. (2016); Mitchell et al. (2018)).

Nevertheless, some scepticism remains regarding SAMs, much of which can be

traced to the way in which the model parameters are set. Traditionally models have

been calibrated by developing physical intuition about how the model responds to

changes in selected parameter values, such as those which control the mass loading of

winds driven by supernovae, and then varying one parameter at a time to hone in on

a best-fitting model. Often the quality of the model reproduction of the calibration

data is judged by eye and compromises are made in order to match multiple datasets;

these steps are hard to quantify and therefore difficult to reproduce. The “best-

fitting”model is reported as a single choice of parameter set that defines the model.

The primary motivation for producing a single model is the desire to build mock

catalogues for galaxy surveys (Baugh, 2013). However, users often want to know the

uncertainty on the model predictions and how the predictions respond to changes

in the input parameters.

The range of processes modelled by SAMs lends them the flexibility to predict

varied observation but at the cost of having to specify a number of parameters

which complicate model optimisation or calibration. A number of techniques have

been devised to reduce the complexity or dimensionality of the parameter space and

to perform efficient searchs of the parameter space: principal component analysis

(Benson & Bower, 2010, hereafter PCA), Bayesian emulators (Bower et al., 2010;

Gómez et al., 2012), particle swarm optimiser (Ruiz et al., 2015, hereafter PSO),

Markov Chain Monte Carlo (Henriques et al., 2009; Lu et al., 2011, 2012; ?; Mutch

et al., 2013; Martindale et al., 2017), and Latin-hypercube sampling (Bower et al.,

2010; Rodrigues et al., 2017).

Here we apply sensitivity analysis to quantify the dependence of the model out-

put on the variation in the values of the model input parameters. The analysis

of Gómez et al. (2014) using the ChemTreeN SAM of Tumlinson (2009) is similar

in scope to our work. They use an analysis of variance technique for variance de-

composition instead of sensitivity indices, and Gaussian processes for model fitting.
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Here we use the galform SAM effectively as a black-box model, and evaluate the

sensitivity of the model outputs to the variation of the input parameters. A SAM

is an ideal candidate for sensitivity analysis, as the interactions between parame-

ters are complex enough to develop a black-box-like behaviour (“becomes easier to

experiment with than to understand”, Golovin et al. (2017)); however, many param-

eters have a natural physical interpretation, and hence it will be straightforward to

develop intuition about how sensitive the model outputs should be to changing the

inputs. Many parameters also have either physically motivated bounds, or at least

a plausible range of possible values.

A criticism often aimed at SAMs is that they contain too many free parameters.

This is usually rebuffed with the insistence that the parameters are physical, not

statistical. Model fitting alone is therefore insufficient for interpreting how well a

SAM is performing. A different research question, one this study tries to address,

is how sensitive the model is to the parameter variation – in other words, how well

do we understand the impact of the physical processes and their interactions on the

model predictions?

Sensitivity analysis (SA) (Fisher, 1918; Sobol’, 1993, 2001; Saltelli et al., 2010)

is an area of statistical modelling which analyses how the variance of the output of a

model is affected by variance in the model inputs. It is closely related to uncertainty

analysis and model optimisation, and can be used to test the robustness of the

model predictions to uncertainty in the input parameters, quantify dependence of

the outputs of a model on different parameters, identify model non-linearities, and

guide subsequent model optimisation. This addresses a common criticism of black-

box models, namely that after adding sufficiently many free parameters they can be

fine tuned to match any observations, and provide a single set of predictions. While

model optimisation can be used to compute confidence intervals, SA is uniquely

positioned to quantify model responses and the relative importance of the inputs.

This addresses the complaint about SAMs listed above, that providing a spread of

model predictions is preferable to fitting to the observations. Using SA, we will be

able to not only tell how much model predictions vary for individual outputs, but

also quantify how much of this variance can be attributed to individual model inputs
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(or their combinations).

There are several SA techniques, not all of which are suitable for analysing non-

linear models with a high-dimensional parameter space. With a few exceptions1, SA

is done in 3 stages:

1. sampling of the parameter space

2. model evaluation in the parameter space

3. computation of sensitivity indices

Here, we use a variance-based SA which adopts the improvement of introduced

by Saltelli et al. (2019) over the Sobol’ indices. Variance-based methods aim to

decompose the variance of the model output into the contributions from individual

parameter variances, as well as the combined variances of the interactions of multi-

ple combinations of parameters changing at once. In order to avoid a computational

penalty for evaluating all possible parameter combinations, input parameters are

treated as probability distributions, and the sensitivity of the model output is es-

timated approximately. Moreover, a number of numerical optimisations have been

introduced into the sampling and index calculation techniques, to improve the con-

vergence of the indices and average over the values which are too difficult to compute

efficiently.

This work diverges from previous studies in two important ways: firstly, we nar-

row the scope of this investigation to computing only sensitivity indices, and we do

not attempt to provide the best-fitting values for a galaxy formation model. We

believe that SA is not the best tool for this task, as it investigates model responses

at the extreme values of input parameters, and often for unusual combinations of

inputs, where the model no longer reproduces the observable values. Secondly, we

do not limit ourselves to measuring responses of the model to individual parame-

ters and their linear combinations. Instead, we use sensitivity indices to capture

both individual and combined impacts of parameters. Lastly, this study focuses

1Some methods, such as Gaussian processes, use parameter exploration to simultaneously mea-

sure model sensitivity and maximise goodness-of-fit for model output(s).
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exclusively on one observable, the K-band luminosity function, calculated using the

galform SAM, and probes how this specific model reacts to changes in the input

parameters. Our scope is narrower, but also deeper than any previous study in this

area.

The layout of this Chapter is as follows. In Section 5.2 we set out the the-

oretical background, introducing the galform model and, for completeness, giv-

ing the equations for the processes that we vary (Section 5.2.1). We then discuss

variance based sensitivity analysis (Section 5.2.2), the concept of low-discrepancy

sampling (Section 5.2.3), the exploration of parameter space using Saltelli sampling

(Section 5.2.4), define the sensitivity indices (Section 5.2.5) and illustrate these ideas

with a toy model (Section 5.2.6). Our results using galform are presented in Sec-

tion 5.3 and our conclusions are given in Section 5.4.

5.2 Theoretical background

Here we set out the theoretical ideas used in this Chapter. Section 5.2.1 gives

a brief overview of the galform semi-analytical model, introducing the processes

that are varied in the sensitivity analysis. Section 5.2.2 introduces variance based

sensitivity analysis, Section 5.2.3 discusses the sampling of a model parameter space

and Section 5.2.4 covers Saltelli sampling. Section 5.2.5 defines the sensitivity indices

and Section 5.2.6 illustrates their use with a toy model. Section 5.2.7 discusses the

use of galform output in the sensitivity analysis.

5.2.1 GALFORM

As explained in Section 2.2, galform is a SAM which aims to predict the proper-

ties of galaxies starting from dark matter halo merger histories that are typically ex-

tracted from an N-body simulation (Cole et al., 2000; Baugh, 2006; Bower et al., 2006;

Lacey et al., 2016). galform models the processes which shape the galaxy popu-

lation using a set of physically motivated, non-linear differential equations which

track the exchange of mass, energy and angular momentum between the different

components of a galaxy.
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Table 5.1: Planck Collaboration et al. (2014) cosmology used in the P-Millennium

simulation; the last two rows give the simulation box length and the number of

particles used.

parameter value

ΩΛ 0.693

ΩM 0.307

Ωbaryon 0.04825

h 0.6777

σ8 0.8288

n 0.967

L[h−1Mpc] 542.16

NP 50403

All the processes are modelled by equations that contain parameters, and a gal-

form model corresponds to a set of parameters whose values have been chosen so

that the model reproduces a particular set of observations. Some of these parame-

ters govern different choices for processes in the model, such as the radial density

profile assumed for the hot gas within a halo or the stellar initial mass function

(IMF) which describes the number of stars of different masses produced in episodes

of star formation. For example, the Gonzalez-Perez et al. (2014) model assumes a

universal, solar neighbourhood IMF whereas the Lacey et al. (2016) model invokes

a top-heavy IMF in bursts of star formation and a solar neighbourhood IMF in qui-

escent star formation. Even though these two models are implemented in the same

N-body simulation, the choices made regarding the IMF and the slightly different

emphasis on which observations the model should reproduce most closely means

that there are several differences in the values of the parameters which define these

galaxy formation models.

Here we use the recalibration of the Gonzalez-Perez et al. (2014) model intro-

duced by Baugh et al. (2019) for the Planck Millennium N -body simulation, which

we refer to as GP14.PMILL. The Planck Millennium N-body simulation (hereafter

the PMILL simulation) adopts the Planck cosmology (Planck Collaboration et al.
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Table 5.2: The galform parameter ranges used in this work. The parameter ranges

have been taken from previous analyses (Bower et al., 2010; Rodrigues et al., 2017).

process parameter min max

star formation νSF [Gyr−1] 0.2 1.2

supernova feedback γSN 1.0 4.0

αret 0.2 1.2

Vhot,disc [km/ sec] 100 550

Vhot,burst [km/ sec] 100 550

AGN feedback αcool 0.2 1.2

disc instabilities fstab 0.61 1.1

(2014); see Table 5.1) and has superior mass resolution and halo merger histories

that are better sampled in time compared with earlier N-body simulations into which

galform was implemented (see Table 5.1). Below we review the processes that we

vary in the sensitivity analysis. A more complete description of galform can be

found in Section 2.2 and Lacey et al. (2016).

Parameter selection

We consider the relative importance of the processes described in Section 5.2.1 by

performing a SA on the parameters that describe these phenomena. The parameters

and the ranges over which they are varied are listed in Table 5.2. In some instances,

the parameter range is reasonably well defined, such as fstab, as discussed in Sec-

tion 2.2.7. In other cases, the choice of range of parameter values is less well defined.

For example, using simple conservation arguments, γSN could take on values of 1 and

2 in the momentum and energy conserving phases of the wind evolution (Ostriker

& McKee, 1988; Lagos et al., 2013). Numerical simulations of winds have suggested

different values of γSN. The other parameters defining the galform model beyond

those listed in Table 5.2are held fixed.
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Model output

After the formation and evolution of galaxies is calculated over the merger history of

the dark matter haloes in the PMILL simulation, galaxy luminosities can be obtained

from the predicted star formation rate and metallicity of the stars produced using a

stellar population synthesis model. Dust extinction is calculated in post-processing,

based on the size and gas metallicity of each galaxy (Gonzalez-Perez et al., 2014;

Lacey et al., 2016). The model output that we focus on here is theK-band luminosity

function at z = 0.

5.2.2 Variance-based sensitivity analysis

The SA method we use here closely follows those used by Sobol’ (2001) and Saltelli

et al. (2019), which are designed to decompose variance in the model output into

the variances of the input parameters and their interactions using as few model

evaluations as possible.

Many SA approaches suffer from a number of shortcomings which make them

unsuitable for analysing non-linear models. By non-linear models we mean here

ones that are characterised by interactions between the inputs2 and which therefore

cannot be analysed effectively using regression or one-at-a-time (OAT) parameter

variation techniques (Morris, 1991).

Unlike other methods, variance-based SA allows a full exploration of the input

space, and therefore accounts for the interactions between parameters and non-linear

responses of the model. It follows that variance-based methods are able to evaluate

the total effect indices (see below) and rank the parameters in order of their influence

on the output (Chan et al., 1997; Sobol’, 2001; Saltelli et al., 2010).

Finally, we note that all SA methods assume that the model inputs are indepen-

dent, which might not hold in general for complex models. For instance, correlations

between inputs, or unphysical combinations of their values, cannot be recognised by

2Interactions between inputs occur, for example, when varying two or more input parameters

produces a significantly different response from the model than would be expected from summing

the change produced by varying the parameters independently.
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Figure 5.1: The K-band LF at z = 0 in the AB magnitude system. Gray lines

represent 10 galform model realisations randomly chosen from the 1600-model run

series. The black line represents the observational data from Driver et al. (2012).

The black vertical line is drawn at L = L∗, and separates the bright and the faint

ends of the LF.
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SA techniques. Similarly, variance-based SA currently assumes that the model out-

put is a scalar. This means that the model outputs are independent of one another;

for example in the case of the luminosity function, the model prediction in a lu-

minosity bin is considered to be independent of the results in other bins and from

other outputs, e.g. other galaxy statistics. Even if the output of the model is multi-

dimensional, and even if it is correlated across one or more dimensions3, each of the

outputs must be analysed in isolation from the others. Unfortunately, at the time

of writing there are no well-established techniques which quantify or alleviate these

two shortcomings. However, these limitations do not apply to galform : the input

parameters can all be varied independently and freely across the entire parameter

space, and our outputs will be quantised and analysed independently.

5.2.3 Sampling parameter space

Sampling the high-dimensional parameter space of a complex model requires a trade-

off between the accuracy of the sampling and computational expense. The accuracy

of the sampling describes how well the space is probed – have any potentially inter-

esting regions of the parameter space been overlooked because too few points have

been sampled or because the method used has left gaps in the space?

The accuracy of a sampling scheme can be assessed formally in terms of its

“discrepancy”. The lowest discrepancy sampling possible is a regular grid. However,

this is subject to “aliasing” or a lack of resolution due to the fixed gaps in the

parameter space between the model evaluations; interesting model behaviour could

be hidden in the unsampled parts of the parameter space. The convergence of the

exploration of the parameter space is slow with a regular grid. The aliasing can be

reduced and the convergence rate sped up by using a random sequence to sample

the parameter space, which leads to a higher density of sampling in some parts of

parameter space compared to a regular grid. The drawback in this case is that some

3We know that this is the case in galaxy formation models because if the luminosity function

changes in a given bin this will lead, for example, to a change in the luminosity - circular velocity

relation. Benson (2014) argued that correlations between bins in the observed luminosity function

are important in setting model parameters.
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Figure 5.2: Comparison of selected parameter space sampling strategies. Each panel

contains 400 points sampled between [0, 1] in the X0 and X1 dimensions using dif-

ferent methods, as labelled in each panel.
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regions of the parameter space will be more sparsely sampled than they were using

a regular grid. A random sequence is formally described as the highest discrepancy

sampling. Ideally, for a fixed number of sampling points, we want to strike a balance

between avoiding the regular sampling achieved using a grid and leaving big gaps

unsampled in the parameter space, as happens with random sampling.

Several quasi-random techniques have been proposed to generate sequences that

approach this ideal of “low discrepancy” sampling, and which also ensure fast con-

vergence of the uncertainties in the sensitivity indices. A quasi-random sequence is

one designed to generate points in d-dimensions which appear random, but which

are generated deterministically to have certain desired properties. Unlike pseudo-

and truly-random sequences, successive points in a quasi-random sequence fill the

gaps left by the previous points in the parameter space. The “random” part of the

name is technically a misnomer, as the sequence is fully deterministic, but yields a

uniform distribution when projected onto any dimension of the parameter space.

A quasi-random sequence can be designed to minimise its discrepancy. For a

low-discrepancy sequence, all of its subsequences also have low discrepancy. If a

given sequence is uniform, its discrepancy tends to zero as its length increases. For

these reasons, quasi-random low-discrepancy sequences are used to maintain a bal-

ance between rapid convergence of numerical algorithms, a thorough coverage of the

parameter space, and a high uniformity of a resulting sample along all dimensions of

the parameter space (Press et al., 2007, §7.8). Quasi-random sequences are therefore

an attractive replacement for pseudo-random sequences in many applications which

require a high quality sampling.

Sampling based on low discrepancy sequences, such as the recurrent additive se-

quence (Ulam, 1960), Halton sequence (Halton, 1964), Latin hypercube (Stein, 1987)

or Sobol’ sequence (Sobol’, 1967; Levitan et al., 1988) can be used in numerical inte-

gration and model optimisation and have been shown to outperform schemes based

on truly random, or pseudo-random number generators, while achieving significantly

faster convergence rates (Sobol’, 1993). The advantage of these sequences over truly

random and pseudeo-random sequences can be attributed to the fact that the low

discrepancy property guarantees gap-less sampling over the entire parameter space.
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The low discrepancy quasi-random sequence typically used in SA is the Sobol’

sequence (Sobol’, 1967). It can be efficiently calculated, and produces a sample which

quickly converges to the correct set of sensitivity indices, as verified by checking

against analytically calculated values for test models. Even though it is impossible

to estimate the required number of model evaluations prior to running the SA, there

exists a natural convergence criterion – the sum of the first-order indices, defined in

Eq (5.4), has to add up to unity. Moreover, even if the SA did not converge after

the initial run, additional evaluations can be easily added (see the example in the

next subsection).

5.2.4 Saltelli sequence sampling

The Sobol’ sequence was originally proposed as a method of improving the conver-

gence of numerical integration (Sobol’, 1967). Antonov & Saleev (1979) developed an

efficient computational method to implement Sobol’ sampling. Saltelli et al. (2010)

combined multiple Sobol’ sequences to further reduce the number of points required

for the estimation of the sensitivity indices, improving the convergence rate.

Hereafter we refer to the Sobol’ sequence as an N by d matrix, where N is the

number of points of a d dimensional parameter space.

The Saltelli sequence is obtained as follows: first we generate an N by 2d Sobol’

sequence, (as demonstrated for the case of N = 4, d = 3 in the first line of Eq (5.1)).

Let the first d columns be called submatrix A (blue), and the last d submatrix B

(red). The values in the matrices indicate the locations in parameter space at which

the model is to be evaluated, for parameters which can take on values over the range

0 to 1. We next construct a number d of N by d matrices A
(i)
B , for i ∈ {1, 2, ..., d},

such that for each A
(i)
B the ith column is taken from matrix B, while the remaining

columns come from matrix A . The matrices A, B and A
(i)
B specify all the points

of the parameter space at which the model is to be evaluated (one point per row),

giving a total of N × (2 + d) evaluations which are required to calculate the first

order sensitivity indices.
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Sobol(4, 3) =


0.500 0.500 0.500 0.500 0.500 0.500

0.250 0.750 0.250 0.750 0.250 0.750

0.750 0.250 0.750 0.250 0.750 0.250

0.125 0.625 0.875 0.875 0.625 0.125

 (5.1)

A
(1)
B =


0.500 0.500 0.500

0.750 0.750 0.250

0.250 0.250 0.750

0.875 0.625 0.875



A
(2)
B =


0.500 0.500 0.500

0.250 0.250 0.250

0.750 0.750 0.750

0.125 0.625 0.875



A
(3)
B =


0.500 0.500 0.500

0.250 0.750 0.750

0.750 0.250 0.250

0.125 0.625 0.125


A visual impression of the different sampling approaches is given by Fig. 5.2

which shows five commonly used types of sampling: OAT, uniform pseudo-random

number generator, uniform grid sampling, a two-dimensional Sobol’ sequence and

Saltelli sampling. The OAT approach is often used with far fewer evaluations than

shown here, which makes it computationally cheaper than the other approaches. The

drawback of this method is clear from the vast areas of the parameter space that are

left unexplored. This problem is only exacerbated on increasing the dimensionality

of the parameter space. The pseudo-random number generation suffers from poor

convergence, as randomness often results in over and under sampling of many regions.

The Sobol’ and Saltelli sequences uniformly sample the parameter space and achieve

the low discrepancy target at a reasonable computational cost.
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5.2.5 Sensitivity indices

Given a scalar model Y with independent inputs, we can define the first order effect

of the variance in the input Xi as:

Ei = EX∼i
(Y |Xi) =

∫
Y (Xi)pdf(Xi)

d∏
i ̸=j

dXi (5.2)

Vi = VarXi
(Ei) =

∫
(Ei − E(Y ))2 pdf(Xi)dXi, (5.3)

where Xi is i
th model input, Vi is the variance integrated in Xi space over dimension

i, and Ei is the mean Y value, integrated over the d-dimensional X space in all

dimensions except i. Variance is used in the conventional sense, as the expected

value of the squared deviation from the mean; sensitivity of the model is understood

as variance of the mean of each model parameter, normalised by the total variance.

Since Vi can only take values between 0 and Var(Y ), the total variance in the model

output, we define first-order sensitivity index Si as

Si =
Vi

Var (Y )
, (5.4)

which measures the effect that varying the input Xi has on the output, averaged

over variations of all other inputs (Var(Y ) is defined in Eq (5.6)). Si is the isolated,

normalised variance of model output, averaged over all input parameters except

parameter i. If Si = 1, all variance in Y comes from the variance in Xi, whereas if

Si = 0, none of it does, and Y is independent of Xi.

In order to measure the interactions between model parameters, we can define

higher order indices. For second order interactions, the combined variance is

Vij = VarXij

(
EX∼ij

(Y |Xi, Xj)
)
− Vi − Vj, (5.5)

from which Si,j can be calculated analogously to Si.

It should now be obvious from the definition of the model variance why the

OAT methods are inappropriate for complex models – they do not consider the full

contribution to the model variance given by Eq (5.2) (which averages over all values

of the other inputs, instead of being measured only at a designated slice, as shown

in the relevant panel of Fig. 5.2), nor does OAT treat the combined variance of two

(Eq (5.5)) or more variables correctly.
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For a deterministic model, the only source of variance in the output is the vari-

ances of the inputs. Therefore, from variance decomposition it follows that

d∑
i=1

Vi +
d∑

i<j

Vij + ...+ V12...d = Var(Y ), (5.6)

which we normalise to obtain the sensitivity indices of all orders

d∑
i=1

Si +
d∑

i<j

Sij + ...+ S12...d = 1. (5.7)

A direct consequence is that, in order to analytically decompose the total variance

of the model, one needs to compute variances of 2d − 1 variables, which can be

computationally expensive for complex models. However, if we assume that the

indices decrease as their order increases (which is correct for the model of interest

here), we might be less interested in the precise values of higher-order contributions,

and focus instead on the total higher-order response of a given variable. In this case

it is convenient to combine the higher-order terms into a total-order index

STi =
EX∼i

(VarXi
(Y |X∼i))

Var(Y )
= 1− VarX∼i

(EXi
(Y |X∼i))

Var(Y )
, (5.8)

containing all terms of the decomposed output variance which include Xi. Unlike

the first-order indices, the STi do not have to add up to 1, as they include all the

input interactions4.

Higher order effects can also be calculated in simpler analyses, such as Analysis of

Variance (Fisher, 1918, ANOVA), High Dimensional Model Representations (Sobol’,

1993, HDMR) or derivative-based methods. However, the total indices are a unique

feature of the variance-based SA, and are a major advantage of this methodology, as

they allow for a direct comparison of the linear and non-linear impacts of the input

parameters.

Since model evaluations produce a discrete data set, we use the numerical ap-

proximations in order to evaluate Eqs. (5.4) and (5.8). The appoximate expressions

4In this case, the whole is literally more than the sum of the parts.
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are based on the sampling matrices (A,B, and A
(i)
B ),

VarXi
(EX∼i

(Y |Xi)) ≈
1

N

N∑
j=1

f (B)j

(
f
(
A

(i)
B

)
j
− f (A)j

)
(5.9)

EX∼i
(VarXi

(Y |X∼i)) ≈
1

2N

N∑
j=1

(
f (A)j − f

(
A

(i)
B

)
j

)2

, (5.10)

where f (X) is the model f evaluated at point X (Jansen, 1999; Sobol’, 2001; Saltelli

et al., 2010).

5.2.6 Illustrative sensitivity analysis of a toy model

The performance of the sensitivity analysis estimator can be demonstrated using a

toy model. The Ishigami function is an example of such a model, and is commonly

used to test the predictions of sensitivity analysis because it contains non-linear

interacting terms. Nevertheless, the sensitivity indices can be calculated analytically

and compared to the estimated values.

The Ishigami function is defined by Eq. 14 of Ishigami & Homma (1991) as

Y (X1, X2, X3) = sin (X1) + a sin2 (X2) + bX4
3 sin (X1) , (5.11)

where the Xi are random variables uniformly distributed between −π and π, such

that pdf(Xi) = U(−π, π), and a, b are numerical constants, here chosen to be 7 and

0.1 respectively.

The SA was carried out by running the model on inputs generated by a 3-

dimensional Sobol’ sequence for 500 realisations, which resulted in 4000 = 500 ×

(2 + 2 × 3) values of Xi (as explained in Section 5.2.4). Next, Eq (5.11) was evalu-

ated at each Xi point, giving a vector Y of length 4000. Finally, the vector Y was

analysed using the SALib Python package (Herman & Usher, 2017).

The evaluations of Eq (5.11) are shown in Fig. 5.3, and the first- and total-

order sensitivity indices of the three input parameters are shown in Fig. 5.4. It is

interesting to draw some qualitative observations from Fig. 5.3:

• varying X1 and X2 in isolation results in large changes in Y ; this is reflected

by large values for S1 and S2.
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Figure 5.3: The 4000 evaluations of the Ishigami function (Eq (5.11). On-diagonal

histograms show distribution of the Xi parameters. Off-diagonal scatter plots show

pairs of parameters and are colour-coded to show the value of output Y .
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Figure 5.4: First-order (red) and total (blue) sensitivity indices of the three input

parameters of the Ishigami function, with 1σ confidence bars (black).
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• varying X1 and X2 together has a large effect on Y ; this is reflected by large

values for ST1 and ST2.

• varying X3 for mid-range values produces little effect, but varying other pa-

rameters at extreme X3 values produces a large change in Y ; correspondingly,

S3 is nearly zero, but ST3, which captures the global response of Y to X3, is

larger

• S1 is negative, despite being defined in terms of non-zero variance (Eq (5.4));

this is the result of using a numerical approximation instead of an analytical

formula to estimate S1; however, note that the confidence interval includes the

origin, and so the value of S1 is consistent with zero.

A more complete SA would involve computing second order indices, and compar-

ing sensitivity indices for different versions of the Ishigami function, such as with

different a, b parameters, or over different Xi ranges. However, this more complete

analysis is beyond the scope of this section, as it is only meant for demonstration

purposes. The source code used to reproduce this analysis has been made public:

https://github.com/oleskiewicz/sensitivity/releases/tag/v1.0.

5.2.7 GALFORM output used in the sensitivity analysis

When applying SA to a model with a multi-dimensional output, it is necessary to

select the most interesting outputs manually. The Sobol’ index method assumes, and

can only be calculated for, separate one-dimensional output vectors Y. From the

formal standpoint this is problematic as the sensitivity indices contain no information

about any correlations between various model outputs. However, in practice one

could perform model runs which follow the Saltelli sampling and then carry out

separate sensitivity analyses for any desired number of model outputs, since running

the model is more time consuming than calculating the Sobol’ indices.

Here we focus on the prediction of galform for the K-band luminosity function

(LF) at z = 0, calculated as described in Section 5.2.1. We have chosen to consider

this statistic due to the well-understood influence of the model parameters on the

form of the luminosity function (see the extensive discussion in Lacey et al. (2016)).
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Figure 5.5: Sensitivity indices for the first series of runs, when varying two param-

eters in galform : αcool and γSN, for the K-band luminosity function measured in

two coarse luminosity bins. The colours of the bars indicate different indices, first

(blue) (Eq (5.4)) and total (red) (Eq (5.8)) order for a given variable. The left panel

shows indices for L < L∗, and the left for L > L∗ (see Eq (5.12)). The black bars

show the 1σ confidence interval for the sensitivity indices.

Varying the parameters around the values used in the fiducial model shows that the

bright and faint ends of the luminosity function are regulated by different physical

processes. Therefore, the sensitivity indices could be easily verified for errors, and

we will be able to quantify our intuition regarding the relative importance of the

different feedback modes on the abundance of galaxies at different luminosities.

We have elected to perform the analysis on the model output values normalised

by the observational data (see Eq (5.13)) instead of on the model output itself. This

way, the values we focused on were close to the ones typically used for model opti-

misation, and had a reduced dynamic range, being effectively normalised by the ob-

servational values. Analysing a SAM independently of the observational constraints,

while interesting in its own merit, is outside the scope of this work.
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Figure 5.6: Convergence of the first- and total-order sensitivity indices for the first

series of runs, when varying two parameters of galform , αcool and γSN, as a function

of a number of samples. The sensitivity indices in this case are computed in each

of two broad luminosity bins, covering, respectively, the faint and bright ends of the

luminosity function. Individual subplots show the results for the faint and bright

end of the K-band LF (columns, labelled on the top), and the α parameters (rows,

labelled on the right). Solid lines correspond to the values of the indices, and the

shaded regions to the 1σ confidence band of the values, both colour-coded by the

order of the indices as labelled in the legend.
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Figure 5.7: First- and total-order sensitivity indices (Eq (5.4)) for the first series

of runs, when varying two parameters in galform : αcool and γSN. Bottom panel:

K-band luminosity function at z = 0 like in Fig. 5.1; gray lines correspond to 10

randomly chosen runs; black line is the observational data from Driver et al. (2012);

dashed vertical line corresponds to L∗. Top panels: first- and total-order (as labelled

on the right) sensitivity indices of two variables (y axis) for 18 individual magnitude

bins (x axis), colour-coded by value between 0 (not sensitive) and 1 (most sensitive)

as labelled by the colourbar at the top.
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Figure 5.8: The parameter space of the second galform experiment in which 7

parameters are varied over 1600 realisations of the model. On-diagonal histograms

show the nearly-uniform distribution of the individual parameters, as expected for

Saltelli sampling. Off-diagonal scatter plots show the parameter space for pairs of

parameters, colour-coded by the goodness-of-fit χ2 (Eq (5.14)) of the model predic-

tion for the K-band luminosity function using 18 luminosity bins (Fig. 5.1), to the

observational estimate from Driver et al. (2012); blue points correspond to runs with

low values of χ2, as labelled by the colourbar.
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5.3 Results

5.3.1 Sensitivity analysis experiments

We have carried out two separate sensitivity analyses using galform : (1) 600

galform model runs varying two parameters (αcool and γSN), and (2) 1600 model

galform runs varying seven parameters (see Table 5.2).

For both series of runs, a SA was carried out on the K-band LF at z = 0, with

two different binnings of the LF used to compute the sensitivity indices, as explained

below.

In the first instance we performed a simple analysis by splitting the LF into two

broad luminosity bins, one covering a range of luminosities brighter than L∗ and the

other luminosities fainter than L∗ (see Fig. 5.1). For each run, we calculated two

model outputs covering the bright and faint ends of the LF, dfaint and dbright, defined

by summing the normalised differences between the observed and predicted values

of the luminosity function for luminosities brighter and fainter than L∗. e.g.:

dfaint =
∑
L<L∗

log10(ϕ)− log10(ϕ̂)

log10(ϕ)
, (5.12)

with dbright defined analogously for L > L∗. The observed luminosity function ϕ̂

is taken from Driver et al. (2012). Unlike a traditional measure of model fitness,

we do not take the absolute value or square of the distance between the model

prediction and the data. This is because the sign of the output (i.e. the sense of

the discrepancy) is valuable information for the sensitivity indices, as it contains the

direction of the model response.

This coarse analysis is quantitatively identical to measuring the LF using only

two broad luminosity bins. This exercise has two goals: (1) to verify that SA pro-

duces explainable results which can be interpreted in accordance with our physical

intuition about the galaxy formation model, and (2) to check the convergence of

the sensitivity indices and their confidence intervals, which can be estimated as

explained in Section 5.2.2.

After this coarse two-bin analysis, in the second case we calculate sensitivity
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indices for each of the 18 luminosity bins, Li, using the quantity:

di =
log10(ϕi)− log10(ϕ̂i)

log10(ϕi)
. (5.13)

This serves as a fine-grained analysis, which can quantify the relative impact of

different parameters on the individual segments of the LF, as well as uncovering

interactions between model parameters.

5.3.2 Feedback processes and the luminosity function

The first series of runs, which analysed the effects of changing two of the parameters

which specify different feedback processes in galform , αcool and γSN, was carried

out to verify the usefulness of the SA and to evaluate its effectiveness, given our

physical intuition, regarding the expected impact on the LF of varying these model

parameters. Only two parameters were allowed to vary to speed-up the analysis

and allow for an easier interpretation of results: αcool and γSN (see Table 5.2 for the

range of parameter values considered). Recall that γSN controls the mass loading

of SNe driven winds and αcool determines the halo mass above which AGN heating

shuts down the cooling flow.

Fig. 5.5 shows the first- and total-order sensitivity indices calculated from 600

galform model runs for the coarse-bin analysis of luminosity function using two

bins, one fainter and one brighter than L∗, as presscribed by Eq (5.12). The results

are striking, but not unexpected: it is clear that γSN is the dominant parameter

out of the two in shaping the model output for galaxies fainter than L∗ (and hence,

that such galaxies are mainly affected by SNe feedback) and that both parameters

have similar significance for galaxies brighter than L∗ (albeit αcool is slightly more

important), and so bright galaxies are affected by SNe feedback and AGN heating.

Moreover, S1 and ST are comparable in all cases, which means that the model

response to varying these parameters is mostly linear.

Figure 5.6 shows the convergence of the indices from the Fig. 5.5 as a func-

tion of the number of samples N . The indices do not change substantial after 100

galform runs.

Figure 5.7 shows the first- and total-order sensitivity indices for the fine-grained
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Table 5.3: The best-fit galform parameters found in this work, in relation to Driver

et al. (2012).

parameter value

νSF [Gyr−1] 0.46

γSN 3.45

αreheat 0.74

Vhot,disc [km/ sec] 332.69

Vhot,burst [km/ sec] 392.90

αcool 0.58

fstab 0.77

analysis of the LF using multiple luminosity bins, using Eq (5.13) as model output.

We can see that L∗ is close to coinciding with the bin at which AGN heating starts

to become important, which explains the results shown in Fig. 5.5. We also learn

that while SNe feedback does not interact with the AGN heating at the faint end of

the LF, their influence over the bright end is strongly correlated.

We did not consider the best-fit model for this two parameter case, since we

perform a rudimentary estimate of the best-fitting parameter set in the next section,

when varying more galform model parameters at the same time.

5.3.3 Sensitivity analysis over a multi-dimensional parame-

ter space

The design of the second experiment, in which seven galform parameters are var-

ied simultaneously (Table 5.2), is inspired by the work on parameter optimisation

using Bayesian emulators by Bower et al. (2010); Rodrigues et al. (2017). For com-

parison, we use the same parameter ranges adopted in their studies. This exercise

requires significantly more model realisations than the first one, since we sample a

higher dimensional parameter space and aim to observe interactions between more

parameters.

Fig. 5.8 shows the parameter space and its sampling, colour-coded by the goodness-
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Figure 5.9: Sensitivity indices for the second series of 1600 galform runs, varying

7 model parameters (Table 5.2), computed using the coarse two bin description of

the luminosity function. The bar colours indicate the values of different indices, the

first index (Eq (5.4)) (S1, red) and total order index (Eq (5.8)) (ST, blue) for each

parameter. The left panel shows indices for galaxies in the luminosity bin fainter

than L∗, and the right panel for galaxies in the bin brighter than L∗ (Eq (5.12)).

The black bars show the 1σ confidence intervals for the sensitivity indices.

of-fit measure

χ2 =
∑
i

(
log10(ϕi)− log10(ϕ̂i)

)2
log10(ϕi)

, (5.14)

where the sum is carried out over all luminosity bins and low values of χ2 are blue.

While χ2 is not a robust model output for SA, as it does not contain information

about the direction of the model response as explained in Section 5.3, it is still

a useful measure of a global model response or “quality of fit”. The on-diagonal

histograms indicate that the Saltelli sampling produces a nearly uniform sampling

of parameter space, as expected from a low-discrepancy sequence. The off-diagonal

scatter plots give a first indication of some of the first-order index results: the χ2

of the model LFs is sensitive to variation of γSN, is degenerate in the γSN–vhot,disc

plane (which follows directly from Eq (2.15)), and depends only weakly on other

parameters.
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Figure 5.10: First- and total-order sensitivity indices (Eq (5.4)) for the second series

of runs, when varying 7 galform parameters (Table 5.2). Bottom panel: K-band

luminosity function at z = 0 as in Fig. 5.1; grey lines show 10 randomly chosen gal-

form models; the black line connects observational data from Driver et al. (2012);

dashed vertical line corresponds to L∗; the solid red line shows the best-fitting model.

Top panels: first- and total-order (as labelled on the right) sensitivity indices of two

variables (y axis) for individual magnitude bins (x axis), colour-coded by value be-

tween 0 (not sensitive) and 1 (most sensitive) as labelled by the colour-bar at the

top.
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Figure 5.9 shows the first- and total-order sensitivity indices for the coarse-binned

analysis of the LF (Eq (5.12)). Since sensitivity indices are derived from the nor-

malised variance (Eqs. (5.4) and (5.8)), the values should always be between 0 and 1,

which they are (including the confidence interval). Similarly to Fig. 5.5, in Fig. 5.9

we see two different types of behaviour of the galform model: the faint end is

dominated by SNe feedback, while the bright end has a mixed, non-linear response

to many parameters. Interestingly, while AGN feedback (via αcool) has the highest

first-order sensitivity index (S1) for the bright end of the LF, the total-order indices

(ST) of SNe feedback processes dominate. Of particular interest are the fstab and

vhot,burst parameters. These parameters have nearly zero first-order response indices

(which means that their impact cannot be detected by an OAT analysis), but their

combined higher-order responses are significant.

It is instructive to see the origin of the values reported in Fig. 5.9, by inspecting

how the sensitivity changes bin-by-bin (Eq (5.13)) in Fig. 5.10. The results are

consistent with Section 5.3.2, and together provide an interpretation of the behaviour

of the galform model. Moreover, displaying the model output together with model

sensitivity can be of use when manually tweaking the model, allowing for a fine,

manual control over the precise details of the LF (or, indeed, other outputs).

Finally, we note that Fig. 5.10 also shows the LF for the best-fitting model, as

determined by the smallest value of Eq (5.14). This can be considered an additional

benefit of running SA – requiring so many model realisations naturally finds one

which is likely to be close to a global optimum. The best-fitting parameter values are

reported in Table 5.3. Note that the values diverge from those reported in Lacey et al.

(2016), due to different fitting method and the fact that this study only considered

the K-band LF, whereas Lacey et al. (2016) took into account multiple observations

in a manual parameter tuning. Of particular interest is the value of Vhot,disc, which

is over 20% larger than in the previous calibration of this galform model. We

attribute this difference to the fact that, as discussed in Section 5.3.3 and shown

in Fig. 5.9, the combined total-order sensitivity index of Vhot,disc outweighs the first-

order index for both ends of the K-band LF. This suggests that the optimal value

of this parameter could be missed by OAT model fitting. The differences in the
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other parameter values are not as significant as they might seem – the variables

with the highest sensitivity match the previously reported values pretty closely (e.g.

γSN is within 7%), and the variables with low sensitivity that diverge by a significant

margin by definition of the sensitivity indices do not have significant impact on the

K-band LF.

5.4 Conclusions

We have used variance-based sensitivity analysis to analyse the sensitivity of the

K-band luminosity function predicted using the galform semi-analytical model

of galaxy formation to the variation of the model parameters. We have shown

that sensitivity analysis is a useful tool, which goes beyond simple model fitting

and one-at-a-time parameter variation, and we have demonstrated that it can be

applied to a challenging problem in computational astrophysics. Variance-based

sensitivity analysis is perhaps particularly useful for the semi-analytic modelling of

galaxy formation modelling, due to the computational expense of searching a multi-

dimensional parameter space and the non-linearity of the model. These features

have led some to view such models as black boxes. Part of the aim of the sensitivity

analysis presented here is to make the behaviour of the model and how it responds

to parameter changes more transparent.

In its present form sensitivity analysis can only deal with one-dimensional out-

puts of a model, which on the one hand means that it cannot be used to resolve

correlations in model outputs (such as between the predictions in different bins of

the luminosity function or between the luminosity function in different bands; see

Benson (2014)), yet on the other hand this feature gives the scientist performing

the study unlimited flexibility in choosing and parametrising the outputs they find

the most important. Here, we have elected to perform the sensitivity analysis us-

ing the model predictions in luminosity bins cast in terms of the difference between

the computed and measured K-band luminosity function at z = 0. Our motiva-

tion for this was that by choosing an established observable with a well understood

connection to the underlying physical processes and their description in term of
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galform parameters, we could make a convincing case for the usefulness of the

sensitivity analysis.

With this in mind, future work on SA might want to examine the variance of

the outputs of the semi-analytic model alone, independently of the corresponding

measured observable values. There are three main reasons for such an approach:

i) using the full dynamic range of the predictions: normalising the model output

by observations flattens the dynamic range, and while SA works equally well for

small and large values, by only analysing a flat version of the model predictions

we effectively take the regions in which the model gives a flat or steep response

(for instance, the faint and bright end of the LF respectively) and make them look

the same. ii) independence of post-processing: by comparing to data, we had to

make a choice about the norm of the discrepancy between the model output and

observations: do we retain the sense of the discrepancy or square it? A different

SA study could have chosen differently, altering the results. By analysing model

outputs independently of the observations these choices are no longer necessary. iii)

data independence: SA results could change if a different dataset is used with the

same model.

Moreover, the K-band luminosity function is just one possible output and there

are many others which a successful semi-analytic model should reproduce accurately.

Analysing all of these is outside the scope of this study, but we hope to have shown

that SA is a promising avenue of research.

Finally, we note that while correctly estimating model sensitivity can be useful

in guiding model optimisation and improving the physical interpretation of the pa-

rameters of the galaxy formation models, one must remember that even the most

rigorous sensitivity analysis can only provide the answers with regards to the model,

not the underlying physical system itself (Taleb & Douady, 2013). Therefore, the

relationship between the structure of the model and that of the physical system

remains open to discussion.
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Chapter 6

Conclusions & Future Work

6.1 Summary

Cosmology’s rise as a quantitative science in recent decades has coincided with the

emergence of ΛCDM as the concordant cosmological model. Together with GR, it

has passed many observational tests, and provided explanations and predictions for

numerous astronomical observations. However, there remain observational tensions

on small scales, which could be solved by either changing the dark matter paradigm,

or invoking baryonic physics. The cosmological constant remains somewhat unpalat-

able from a theoretical viewpoint, hence the motivation to look at alternatives to

ΛCDM .

In this thesis we have presented a body of work on the cosmologies in the presence

of modified gravitational field, specifically one postulated by the f(R) theory.

In the first part of the thesis we extended the work on the assembly of haloes in

ΛCDM to modified gravity by Ludlow et al. (2013, 2016), in which they argued that

the internal structure of dark matter haloes could be connected to their formation

histories. This is almost the case in modified gravity, though the relation between

different definitions of the formation time is different in f(R) models than it is in

GR. Conversely, this difference could be used as a test of the nature of gravity. The

requirements on the mass faction of the progenitors used to define the formation time

means that, in practice, the halo concentration can only be estimated directly from

the merger histories for very well resolved haloes. In any general galaxy catalogue,
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most galaxies are predicted to be found in haloes that are far below satisfying the

mass condition.

We then incorporated the changes in the properties of dark matter haloes in

modified gravity into the galform model. This represents a first, albeit incomplete

(see next section), attempt to extend galform beyond GR. Previous work on semi-

analytic galaxy formation models in non-standard cosmologies (e.g. Fontanot et al.

(2013)) has looked at the impact of modified gravity on galaxy properties that are

shaped by a wide range of halo masses, such as the galaxy luminosity function.

We decided to focus instead on the halo occupation distribution function of Hα -

emitting galaxies. Previous work with galform in GR (Gonzalez-Perez et al., 2018)

predicted a peak in the HOD of Oii emitters around the mass at which screening

is expected to become ineffective, and at which we might expect to see a clearer

difference between modified gravity and GR. The changes were nevertheless small

and possibly out of the reach of even the next generation of surveys.

Finally, we applied a new technique, sensitivity analysis (SA), to address the

question of which parameters matter most for a particular galaxy formation model

prediction. The idea behind this project came out of a placement with Atom Bank,

the Durham-based first digital-only bank in the UK. The placement was one of the

first carried out through the Centre for Doctoral Training in Data Intensive Science.

The focus of the placement with Atom Bank was to use the SA to address an audit

item on the bank’s model for the pricing of mortgages. Much like galform , this

was a complex, multi-parameter model. The SA analysis of galform was applied

to the K-band luminosity function predicted by galform , allowing us to confirm

our physical intuition about the relative importance of parameters, and how it varies

with luminosity. This study marks moves away from a “one-at-a-time” parameter

variation, improving the transparency of galform results and simplifying interpre-

tation of galform parameters.
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6.2 Future Work

Our investigation into the concentration-formation time relation of haloes in mod-

ified gravity concluded that the origin of the free parameter of the relation shown

in Ludlow et al. (2016) for GR haloes remains unknown, and that the relation in

general is not reproduced for f(R) haloes. Therefore, the question about the origin

of the connection between haloes’ concentrations and formation times remains open.

Future studies of modified gravity simulations present a useful avenue of progress,

since the changes they introduce make the counterpart GR simulations act as null hy-

potheses. In particular, running f(R) comparison studies for the F5 and F4 models,

and comparing how the concentration-formation time relations react to halo popu-

lation splitting and parameter variation would be an interesting next step towards

understanding what causes the relation to be so well defined in GR in the first place.

Furthermore, theoretical studies on defining an environmental proxy able to recover

the relation would surely be of interest not only to research of modified gravity, but

of halo formation research as well. Finally, while Ludlow et al. (2016) improves upon

the original Navarro et al. (1996) formation time definition, the new values are still

degenerate in f(R) for different halo mass histories; a revision of halo formation time

definition would, very much like a revision of halo concentration definition (Mitchell

et al., 2019), be of tremendous value to further modified gravity research.

Here we took the first steps towards a modified gravity version of galform . If

we are to fully exploit the measurements from the next generation of galaxy sur-

veys, it is important that we build the best models we can of galaxy formation in

gravity models beyond GR. Following our incorporation of the halo merger histories,

concentration-mass relation, and the virial velocity-mass relations into galaxy, the

next steps towards a full fledged MG galform would be to (i) recalculate hydro-

static equilibrium, to account for the impact of modified gravity on gas cooling, (ii)

revise the treatment of galaxy sizes, to take into account MG, and (iii) use stel-

lar population synthesis models that take modified gravity into account for stellar

evolution (e.g. Davis et al. (2012); Sakstein (2015)).

We also applied the first sensitivity analysis to a galaxy formation model that

attempts to predict the full galaxy population. Lack of transparency is a charge
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often levelled at the way in which parameters are set in semi-analytical models, and

the SA can partially address it. This study was carried out on a well-studied ob-

servable, since both galform and SA itself were being trialed. However, we have

managed to successfully reproduce and quantify physical intuition regarding many

galform parameters, especially those related to feedback processes. We therefore

find SA in general, and variance-based approach in particular, to be a new and

promising avenue of research for modelling complex astrophysical processes. We

would like to see analyses of models to widen their scope, and to include the sensitiv-

ity indices of model parameters alongside their best-fitting values as valuable metric

of model performance. Current limitations of SA techniques include the fact that

the analysis can only be carried out for one output at a time, e.g. one luminosity bin

in the luminosity function, and does not give any indication of what the best-fitting

model parameters are any better than a grid search method. Moreover, further

research is required to correctly model correlated outputs, as these are currently

assumed to be statistically independent variables. Finally, the required number of

model evaluation grows quickly for a multi-parameter study, which makes alternative

ideas, such as improved sampling or emulation techniques very compelling.
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Klypin A., Yepes G., Gottlöber S., Prada F., Heß S., 2016, Monthly Notices of the

Royal Astronomical Society, 457, 4340

Knebe A., et al., 2015, Monthly Notices of the Royal Astronomical Society, 451,

4029

July 19, 2020

http://dx.doi.org/10.1088/0067-0049/208/2/19
http://dx.doi.org/10.1093/mnras/stx3218
http://dx.doi.org/10.1093/mnras/stx3218
http://dx.doi.org/10.1103/physrevd.76.064004
http://dx.doi.org/10.1109/ISUMA.1990.151285
http://ieeexplore.ieee.org/document/151285/
http://ieeexplore.ieee.org/document/151285/
http://dx.doi.org/10.1016/S0010-4655(98)00154-4
http://dx.doi.org/10.1086/320228
http://dx.doi.org/10.1111/j.1365-2966.2010.16259.x
http://dx.doi.org/10.1093/mnras/stt1154
http://dx.doi.org/10.1093/mnras/stu390
http://dx.doi.org/10.1093/mnras/stu390
http://dx.doi.org/10.1086/184341
http://dx.doi.org/10.1093/mnras/286.4.795
http://dx.doi.org/10.1093/mnras/286.4.795
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1093/mnras/stw248
http://dx.doi.org/10.1093/mnras/stw248
http://dx.doi.org/10.1093/mnras/stv1149


BIBLIOGRAPHY 138

Koyama K., 2016, Reports on Progress in Physics, 79, 046902

Lacey C., Cole S., 1993, Monthly Notices of the Royal Astronomical Society, 262,

627

Lacey C. G., et al., 2016, Monthly Notices of the Royal Astronomical Society, 462,

3854

Lagos C. d. P., Lacey C. G., Baugh C. M., Bower R. G., Benson A. J., 2011, Monthly

Notices of the Royal Astronomical Society, 416, 1566

Lagos C. d. P., Lacey C. G., Baugh C. M., 2013, Monthly Notices of the Royal

Astronomical Society, 436, 1787

Laureijs R., et al., 2011, arXiv:1110.3193 [astro-ph]
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