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Nuclear surface diffuseness reflects spectroscopic information near the Fermi level. I pro-
pose a way to decompose the surface diffuseness into single-particle (s.p.) contributions
in a quantitative manner. Systematic behavior of the surface diffuseness of neutron-rich
even—even O, Ca, Ni, Sn, and Pb isotopes is analyzed with a phenomenological mean-field
approach. The role of the s.p. wave functions near the Fermi level is explored: The nodeless
s.p. orbits form a sharp nuclear surface, while the nodal s.p. orbits contribute to diffusing
the nuclear surface.

Subject Index D12, D13

1. Introduction

Studying the structure of short-lived neutron-rich unstable nuclei is one of the most important
subjects in nuclear physics. Various exotic phenomena such as halos [1-3] (see also Ref. [4] and
references therein), neutron skin [5], and deformation [6,7], have been found through system-
atic studies of nuclear radii. Since the nuclear radius is sensitive to the nuclear density profile
around the nuclear surface, these drastic nuclear structure changes near the Fermi level can
be deduced from measurements of the interaction or total reaction cross section. For a deeper
understanding of the structure of unstable nuclei predicted by theoretical models, one needs
to know more details on the density profiles near the nuclear surface, which may include more
information on spectroscopic properties other than the nuclear radius.

To know the whole density distribution, electron scattering has been used to extract the charge
distribution of stable nuclei [8]. Combining known charge or proton density distributions, the
neutron density distribution has been deduced for some stable nuclei by measuring proton elas-
tic scattering cross sections up to large scattering angles [9,10] (see also Ref. [11] and references
therein). The electron scattering [12] and proton elastic scattering [13,14] measurements have
been extended for unstable nuclei. However, it is still hard to determine whole density distribu-
tions as these require cross-section measurement up to large scattering angles. Even if all the
nuclear density distributions cannot be determined, the nuclear surface “diffuseness”, which
quantifies the nuclear surface thickness, is a promising measure of the surface density profile
and can be deduced accurately using nucleus—proton scattering as demonstrated in Ref. [15].
To get the surface diffuseness, one only needs the cross sections at forward angles up to the first
peak position, which is advantageous to study unstable nuclei by the inverse kinematics.

Understanding how the surface diffuseness forms is of particular importance as the next-
order information on the nuclear radius. Evaluating the surface diffuseness as well as the
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neutron skin thickness also impacts on constraining the equation of state of nuclear matter
from finite nuclear systems [16-19]. Thus far, various phenomena have been observed that may
be closely related to the surface diffuseness: kink structures of total reaction or interaction
cross sections in neutron-rich Ne [6] and Mg [7] isotopes due to nuclear deformation [20-25],
and core-swelling phenomena in spherical Ca isotopes [26,27]. The surface diffuseness changes
at the major or subshell were pointed out in Ref. [15]. A systematic and extensive theoretical
study on the surface diffuseness was given in Ref. [28]. Bubble nuclei, which have depleted cen-
tral density due to the lack of occupation of the s-wave orbit, can be identified by measuring
the surface diffuseness [29]. The surface diffuseness is drastically enhanced when the pf mixed
orbits are occupied in the island of inversion in the neutron-rich Ne and Mg isotopes [30].

A density profile near the nuclear surface could mainly be formed by the single-particle (s.p.)
wave functions near the Fermi level. The purpose of this paper is to clarify the role of the s.p.
wave functions in forming the nuclear surface. I propose a practical and convenient way to de-
compose the surface diffuseness into each s.p. contribution. As a first step, for simplicity, I only
consider spherical configurations generated from a phenomenological mean-field potential.

The paper is organized as follows. Section 2 describes the theoretical models used in this pa-
per. Section 2.1 defines the nuclear surface diffuseness based on a familiar two-parameter Fermi
(2pF) density distribution. I derive a relationship between these diffuseness and radius param-
eters by relating the 2pF density to the one-body density generated from a mean-field model,
allowing one to decompose the total surface diffuseness into s.p. contributions. Section 2.2 de-
scribes the phenomenological mean-field model employed in this paper. The validity of this
approach is confirmed by a comparison of the available experimental data related to nuclear
size, i.e., the interaction cross section and charge radius. Section 2.3 shows the total surface
diffuseness obtained from the present approach and gives an overview of its general behavior.
Section 3 is devoted to a detailed analysis and discusses the role of s.p. orbits in the total surface
diffuseness for each isotope. In Sects. 3.1-3.4, results for O, Ca and Ni, Sn, and Pb isotopes are
respectively discussed. Section 3.5 explores a global feature of the s.p. wave functions by taking
examples of neutron dripline nuclei. The role of the s.p. wave functions near the Fermi level is
clarified through an analysis of the radii of the s.p. orbits. Finally, the conclusion is given in
Sect. 4.

2. Theoretical models

2.1  Single-particle decomposition of nuclear surface diffuseness

To define the nuclear surface diffuseness or thickness parameter, I employ a two-parameter

Fermi (2pF) function as an anzatz of the density distribution of a nucleus:
P0 ' 1)

1 +exp[(r— R)/a]

For given radius parameter R and diffuseness parameter a, po can be determined uniquely

by the normalization condition 47 [~ drr?pypr(r) = A with A4 being the mass number of a

nucleus. Expanding the above distribution at R and taking the first-order term, I get

dpzp}: 1 r— R
= - — . 2
dr |,_g P\2 4a @

Figure 1 illustrates the geometry of a typical 2pF distribution for °®Pb with the standard
parameters po = 0.17 fm=3, R = 1.2 x 2083 fm, and a = 0.54 fm [31]. This clearly shows
that the diffuseness parameter a corresponds to the slope of the 2pF distribution at the radius

P2pF (r)=

p2pF(R) + (r — R)
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Fig. 1. Geometry of a 2pF density distribution for 2%Pb with pg = 0.17 fm~3, R = 1.2 x 208" fm, and
a = 0.54 fm [31]. The dashed line indicates the slope of the 2pF distribution at the half density (0¢/2)
radius R, which is indicated by the dotted lines.

parameter R, where the 2pF distribution becomes approximately half of the central density
p2pr(0) ~ po. This 2pF-type density well approximates typical density distributions [15]. Be-
cause of its simplicity, this first-order approximation, which corresponds to a trapezoidal dis-
tribution with a surface thickness of 4a, was applied to correct the sharp nuclear surface of the
black-sphere model for high-energy proton—nucleus scattering [32]. I remark that the 2pF dis-
tribution may not describe a weakly bound neutron tail. The limitations of this sort of density
distribution, especially for halo nuclei, are discussed in Ref. [33].

Decomposition of the nuclear density distribution can be made by assuming that the total
density is composed of a sum of single-particle (s.p.) density distributions p; as

A
p(r)=>" pi(r). 3)
i=1

Given the relationships of Egs. (1) and (2), it is straightforward to decompose the surface dif-
fuseness parameter into each s.p. contribution. Differentiating this density of Eq. (3) atr = R,
I get a relation by assuming p(r) = p2pr(r):

dp a 00
— =y Di=—— 4
dr|,_g ; 4a @
with
dpi
D, = — . 5
dr |,_g )

Finally, the surface diffuseness is expressed by
o (< o
0 Z
a = ——4 (i_l Dl) . (6)
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The diffuseness parameter « is inversely proportional to the sum of D;. To evaluate D;, the
R value should be defined for general density distributions. As shown later, the a value can
reasonably be obtained with a proper choice of R. I will investigate these D; values for each s.p.
density distribution and quantify the s.p. contribution to the total surface diffuseness a.

2.2 Density distributions of O, Ca, Ni, Sn, and Pb isotopes
In this paper, I generate the s.p. density distributions p; from a phenomenological mean-field
model [31] for the sake of simplicity. The mean-field potential is parameterized as
ld 1
V0) = o)+ A9 T 4 V()31 — ) )
with the Woods—Saxon form factor, f(r) = {1 + exp[(r — Rws)/aws]} ", and
N—-Z N-Z
T3 )

73, V1 =22-14

in units of MeV, with N and Z being the neutron and proton numbers, respectively, and 73 =
=+1 corresponding to + (—) for the neutron (proton). The radius and diffuseness parameters of
the potential are given respectively by Rws = 1.274'3 fm and aws = 0.67 fm. The Coulomb
potential term V¢ is taken as a uniform charge distribution with radius Rws. I calculate all s.p.
bound states and obtain their radial s.p. wave functions v,;;(r) with n, [, j being radial, orbital,
and angular momentum quantum numbers, respectively. By averaging over magnetic quantum
numbers and integrating over the spin coordinate, the density distributions are expressed by
a sum of squared radial s.p. wave functions, in which the outermost s.p. level is averaged and
filled equally as

Vo=-51+33

p(r) =D Qj+ D) + Ny, () )

n,l, jeocc.
with 47 [ dr |y, (r)|* = 1 and 47 [ drr?p(r) = A, where N, is the number of the outer-
most nucleon with the quantum numbers #,, /,, and j,. Note that p; in Eq. (3) is nothing but
|wn1j|2. The root-mean-square (rms) radius of each s.p. orbit can be evaluated by

Fnlj = \/471/ dr |y, ;(r)|? (10)
0
and the rms matter radius is given by
4 [}
R, = \/_”f dr i p(r). (11)
A Jo

I calculate such density distributions for proton magic nuclei for O, Ca, Ni, Sn, and Pb
isotopes. Since the parameter set of Ref. [31] was determined to reproduce the properties of
medium- to heavy-mass nuclei, this parameter set may not be appropriate to describe light nu-
clei such O isotopes [34,35]. In fact, the neutron dripline of O isotopes is predicted at 220, which
contradicts the measurements [36-38]. Therefore, I modify the potential parameter for O iso-
topes as Rws = 1.204'3 fm and aws = 0.60 fm to reproduce the neutron dripline >*O. For the
other isotopes, I use the original parameter sets as they are. Finally, I find even—even isotopes,
14-240, 34-60Cq, 30-86N]j, 96-164Qn and !78-206Pb. | remark that some exotic nuclear structure was
predicted in the neutron-rich Ca isotopes for N > 40 that must be reflected in the surface dif-
fuseness [39-42]; however, this parameter set does not produce a bound 0gg, orbit for N > 40.
A detailed study along the isotopic chain beyond N = 40 using a more realistic structure model
is quite interesting and will be reported elsewhere.
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Table 1. Calculated rms matter radii and comparison of calculated total reaction and experimental in-
teraction cross sections of O and Ca isotopes on a carbon target. The cross sections are computed at
1000 and 300 MeV/nucleon for the O and Ca isotopes, respectively. Experimental data are taken from
Refs. [26,51,52].

Ry, (fm) o g (mb) o ((Expt.) (mb)
160 2.55 980 982 + 6
80 2.69 1060 1032 + 26
200 2.83 1140 1078 £+ 10
20 2.95 1210 1172 £ 22
20 3.22 1370 1318 + 52
2Ca 3.40 1430 1463+ 13+ 6
4“Ca 3.46 1460 1503+ 1246
46Ca 3.51 1500 1505+9+6
BCa 3.57 1540 1498 £ 17+ 6
NCa 3.65 1600 1615+424+7

To evaluate the validity of the calculated density distributions, the nuclear radii are useful ob-
servables as they properly reflect the density profile near the nuclear surface. First, I calculate
the total reaction cross section at high incident energy, which directly reflects the matter den-
sity profile. The nucleon-target profile functions [43] in the Glauber model [44] are employed,
allowing us to get reliable total reaction cross sections of high-energy nucleus—nucleus colli-
sions. Inputs of the model are the density distributions of the projectile and target nuclei, and
the so-called profile function, which describes nucleon—nucleon scattering. The parameter of
the profile function is taken from Ref. [45]. This model nicely describes the total reaction cross
sections at high incident energies. See Refs. [23,25,46-50] for various applications.

Table 1 compares the calculated total reaction and experimental interaction cross-section
data on a carbon target at high incident energies, 1000 MeV/nucleon for O isotopes and 300
MeV/nucleon for Ca isotopes. Good agreement for all listed O and Ca isotopes including the
recent cross-section data for neutron-rich Ca isotopes [26]is attained. The calculated rms matter
radii are also consistent with those obtained in Refs. [26,51,52]. In addition to the cross-section
data, I also compare in Fig. 2 the rms point-proton radii of O, Ca, Ni, Sn, and Pb isotopes
evaluated by R, = 47” 0°° drr*p,(r), where p,(r) is the proton density. The “experimental”
point-proton radii are extracted from experimental charge radii [53,54]. Overall agreement with
the theory and experimental data is obtained, and thus the density distributions employed in
this paper reasonably describe the density profile near the nuclear surface.

2.3 Evaluation of surface diffuseness from single-particle densities

I have confirmed that the calculated density distributions reasonably reproduce the existing
experimental data related to the nuclear size. In this subsection, I extract the diffuseness pa-
rameter a from those density distributions by using the relation of Eq. (6) with the reference
radius parameter R. As was demonstrated in Ref. [15], the nuclear density distribution p is
well approximated by the 2pF distribution p,,r with the nuclear radius R and diffuseness a
parameters being fixed by minimizing

| o) = o (12)

517

Z20z Asenuer ¢z uo Jesn yayjoljqiqenusz-AS3a Aq ¥8€/2+9/L0AEZL/ZL/1Z20Z/810e/de)d/woo dno-olwepede//:sdiy wolj papeojumoq



PTEP 2021, 123D01 W. Horiuchi

55 Pbwr

45 |- SN

E .
= \W/NI
o 35 Wca N

25+ —+——Q0 -

2 | L L T R R R
10 100

Neutron number

Fig. 2. The rms point-proton radii of even—even O, Ca, Ni, Sn, and Pb isotopes as a function of neutron
number. The experimental point-proton radii, which are indicated by plus symbols, are extracted from
the experimental charge radii [53,54].
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Fig. 3. Diffuseness parameters of even—even O, Ca, Ni, Sn, and Pb isotopes evaluated from Eq. (6) as a
function of neutron number. Closed symbols denote those obtained with the minimization of Eq. (12).
Thin lines connecting symbols are a guide to the eye. Note that the neutron number is given in logarithmic
scale and some magic and semi-magic numbers are indicated by thin vertical lines.

With this prescription, the 2pF distribution nicely reproduces the density profile near the nu-
clear surface obtained from realistic mean-field calculations including nuclear pairing and de-
formation [15]. One can obtain the total diffuseness a of Eq. (6) by taking the differentiation
of p; at R. I note that the radius parameter R in the 2pF distribution of Eq. (1) is in general
different from the rms matter radius R,, defined in Eq. (11). An approximate relationship up
to the second order of (a/R)* is given as [31]
2
R;~§R2[1+§n2(%> +] (13)
Apparently, R, = \/%R holds if @ = 0 (sharp-cut radius) and the nuclear diffuseness param-
eter a works to enhance the nuclear radius R, from the reference radius of the 2pF density R.
Figure 3 compares those a values obtained using Egs. (6) and (12). It should be noted that
the relation of Eq. (6) is exact if the density distribution is the 2pF function but in general it
deviates from that. Nevertheless, the a values obtained from Eq. (6) are found to be close to the
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Fig. 4. (a) Neutron single-particle (s.p.) energies and (b) derivative of the s.p. density at the radius pa-
rameter R for O isotopes. Thick black lines indicate the Fermi level, where the outermost neutrons are
occupied. Plus and cross symbols indicate the Os;, and 15y, orbits, respectively. Squares and circles indi-
cate the p and d orbits, respectively. Open and closed symbols distinguish the j-upper (j. =/ + 1/2) and
Jj-lower (j. =/ — 1/2) orbits, respectively. Thin dotted lines are a guide to the eye.

values obtained with Eq. (12): The deviation is at most 0.03 fm and the square root of the rms
deviation between these diffuseness parametersis 0.014 fm for all isotopes adopted in this paper.
This means that the surface regions of those density distributions are well approximated by the
2pF distribution, and thus it makes sense to decompose the diffuseness parameters into the s.p.
contributions using the relation of Eq. (6). In the following section, I discuss the contribution
of the s.p. orbit on the surface diffuseness in detail.

The averaged a value is found to be 0.54 fm, which is consistent with the empirical one [31,55].
Even though the phenomenological Woods—Saxon parameter assumes a constant aws value, a
variety of a values for the density distributions are obtained: some kink structures at the magic
and semi-magic numbers, reflecting their s.p. density compositions. Detailed discussions will be
given in the next section. This paper aims to clarify the role of the s.p. wave function in the total
surface diffuseness. I note, however, that for more realistic cases the pairing interaction gives
a smooth transition of the diffuseness parameter across the magic numbers [15,19,33]. Some
kink structures disappear owing to the mixing of the s.p. levels near the Fermi level. A detailed
study with the pairing interaction would be interesting and is worth studying in future as an
extension of this study.

3. Results and discussion
3.1 O isotopes
Figure 4(a) displays the neutron s.p. energies of =240 as a function of neutron number. For a
guide to the eye, a thick black line indicates the Fermi level, where the outermost neutrons are
occupied. As seen in Fig. 3, 1°0O has the smallest diffuseness parameter among all the isotopes
due to well bound p orbits. By filling neutrons in the Ods/, orbit near the Fermi level for N > §,
the surface diffuseness gradually increases to N = 14. Finally, a sudden increase of the surface
diffuseness is obtained due to the occupation of the 15y, orbit at N = 16.

This behavior can be quantified and properly reflected in the derivative of the s.p. orbit at
the radius parameter R, i.e., D; of Eq. (5). For the sake of convenience, hereafter the label of
nucleon i is denoted by the quantum numbers of the s.p. wave function nlj, e.g., D; as D(nlj).
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Fig. 5. (a) Neutron single-particle densities and (b) their derivative of >*O multiplied by the occupation
number (2 + 1). Vertical lines indicate the radius parameter R = 2.56 fm of >*O and the horizontal line
indicates zero.

Figure 4(b) plots the calculated D(n/j) values of each neutron s.p. orbit. The values are negative
for deeply bound 0sy/2, 0p3/, and Opyj» orbits, forming a sharper nuclear surface of 0 (N =
8), a = 0.460 fm, compared to the standard value 0.54 fm [31]. The D(nlj) values for the 0ds/,
orbit are almost zero. This means that this s.p. orbit does not explicitly contribute to changing
the diffuseness parameter for 187220 (N = 10-14), even though the Ods;, orbit has the largest
orbital angular momentum in O isotopes. For >*O (N = 16), since the 15/, orbit has a positive
D(nlj) value, the last two neutrons play a role in enhancing the surface diffuseness.

To understand the behavior of D(nlj) intuitively, Figs. 5(a) and (b) respectively show the neu-
tron s.p. densities p(n/ j) and their derivatives d5(nl j)/dr = p'(nl j) of >*O. Each s.p. density is
multiplied by the number of occupied neutrons. The radius parameter R of >*O is indicated as
a vertical line in the plot. For the deeply bound orbits with Os;/,, Op3/, and Opy», the radius R is
located beyond these peak positions as illustrated in Fig. 5(a). These D(nlj) values are negative,
which can be seen quantitatively in Fig. 5(b). For Ods,, orbits, the R value is located around the
peak position and thus the D(nlj) value is almost zero. A striking difference among the other
orbits is found in the 15y, orbit. Because the 15, orbit has a node and is further extended than
the other orbits, the R position is located uphill towards the second peak of the s.p. density,
leading to a positive D(nlj) value.

The global behavior of the s.p. contribution can also be understood from Figs. 5(a) and (b).
As seen in Fig. 4(b), the absolute value of D(n/j) for the deeply bound states gradually increases
because the radius parameter R grows with increasing N. Even though the “valence” 0ds/, orbit
does not explicitly contribute to changing the surface diffuseness, a moderate increase in the
surface diffuseness is found in N = 10-14. This is mainly due to the change in the nuclear
surface defined by the radius parameter R. Since the nuclear surface becomes further from the
surface of the “core” with increasing N, in general, as expected from Fig. 4(b), the s.p. orbits in
the core, i.e., 0s1/2, Op3/2, and Opyp, orbits, contribute to enhancing the diffuseness parameter a.
The properties of the valence neutron orbits are essential to explain the evolution of the surface
diffuseness. Since the 151/, orbit is extended and enhances the nuclear matter radius drastically
by 0.27 fm from 220, which is about twice the enhancement in N = 10-14, the diffuseness
and the radius parameter R are changed significantly at N = 16, producing kinks in the D(n/j)
values for the other s.p. orbits.
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Fig. 6. Same as Fig. 4 but for Ca isotopes. Only s.p. energies near the Fermi level are shown. Triangles
indicate the f orbit.
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Fig. 7. Same as Figs. 4 and 6 but for Ni isotopes. Only s.p. energies near the Fermi level are shown.
Inverted triangles and star symbols indicate the g and 2s, orbits, respectively.

3.2  Caand Niisotopes

Figures 6 and 7 display the neutron s.p. energies and D(nl/j) values of Ca and Ni isotopes as a
function of the neutron number. Compared to the O isotopes, which mainly consist of the nu-
clear surface, the absolute value of each D(n/j) becomes smaller and the N dependence becomes
weaker. Since the surface diffuseness consists of the sum of each s.p. contribution, the weight of
each s.p. contribution to the total surface diffuseness becomes smaller for medium-mass nuclei
compared to light nuclei. The isotope dependence of the surface diffuseness can easily be un-
derstood by considering the role of the “core” and “valence” neutrons. For Ca and Ni isotopes,
the core orbits, i.¢., all the s.p. orbits below N = 20 and 28, respectively, give similar D(n/j) values
due to deep binding and contribute to gradually enhancing the surface diffuseness as overall
behavior!, while the valence neutron orbits determine the evolution of the surface diffuseness,
depending on their quantum numbers.

At a closer look, like the case of 0ds, of 2*O in Fig. 5, the D(nlj) value of the 15y, orbit in Ca isotopes
is almost zero, where the nuclear radius R is located around the second peak of the s.p. density. For Ni
isotopes, since the 15y, orbit is deeply bound and the radius parameter R is larger than that of the Ca
isotopes, the R value becomes located beyond the second peak of the s.p. density.
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Fig. 8. Same as Fig. 5 but for ¥Ca and °“*Ni. Single-particle states near the Fermi levels are selected.
Vertical lines indicate the radius parameters, R(Ca) = 3.92 fm for >Ca and R(Ni) = 4.27 fm for **Ni.

Filling of the lower-/ or nodal orbit near the Fermi level produces larger surface diffuseness
owing to a smaller centrifugal barrier. In fact, as seen in Fig. 3 for Ca isotopes, the diffuseness
parameter at N = 20-28 shows constant behavior with relatively small diffuseness ~0.5 fm
because of the filling of the 0f7, orbit. A sudden increase in the surface diffuseness occurs at
N > 28 due to the occupation of the 1p orbits, which is consistent with the implication from
the recent interaction cross-section measurement [26] and theoretical interpretation [27]. The
surface diffuseness stops growing due to the occupation of the 0fs, orbit at 34 < N < 40.

For Ni isotopes, in contrast to the case of the Ca isotopes, no drastic increase in the surface
diffuseness is found at N > 28. In 28 < N < 40, three sorts of s.p. orbits are filled in the order
of 1psp, 0fspn, and 1py. This change in the filling orbit corresponds to the kinks at N = 32 and
38. For the same N, the surface diffuseness is smaller than the Ca isotopes. The reason for this
can be seen in Fig. 7, which draws the neutron s.p. energies and D(n/j) of Niisotopes. The D(nlj)
values of the 1p orbits are smaller than those of the Ca isotopes. This is partly because the 1p
orbits are shrunken due to deeper binding of the s.p. orbits in Ni isotopes and partly because
the radius parameter R with the same N is larger than that of Ca. Figure 8 plots the s.p. neutron
densities and their derivatives near the Fermi levels, i.e., 0f7 and 1p3, of >Ca and °*Ni. The
s.p. wave functions are shrunken, especially for the 1ps/; orbit of ®*Ni compared to that of 3>Ca.
The rms radius of the 0f5,, and 1ps, orbits of *>Ca (°*Ni) are 4.33 (4.26) and 4.76 (4.35) fm,
respectively. In addition to the shrinkage of the s.p. wave function, the radius parameter R is
also larger for ®*Ni. Consequently, the nuclear surface of ®*Ni becomes sharper than *>Ca. As
seen in Figs. 6(b) and 7(b), the nodal 1p orbit always gives a positive D(n/j) value for Ni and
Ca isotopes because the radius parameter R is always located before the second peak of the s.p.
density as displayed in Fig. 8.

I remark that similar enhancement of the surface diffuseness has been found in neutron-
rich Ne and Mg isotopes [30]. Interestingly, this occurs earlier than N = 28 but N > 18 in the
so-called island of inversion, where strong nuclear deformation is found. Nuclear deforma-
tion allows the occupation of the intruder orbit, which induces configuration mixing of the
spherical 0f7,, and 1p orbits. Since the mixing includes the low-/ 1p orbits, the surface diffuse-
ness is drastically enhanced, while the 0f7, mixing forms a sharper surface diffuseness. This
exemplifies that the discussion given in this paper remains general for such deformed nuclei.
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Fig. 9. Same as Fig. 8 but for ®Ni. Vertical lines indicate the radius parameter R = 4.74 fm.

Nuclear deformation in general induces fractional occupation numbers near the Fermi level,
which may include lower-/ orbits, leading to larger surface diffuseness [56].

A sudden increase in the surface diffuseness occurs at N > 50 after “sharp” Ogy,, orbits are
fully occupied for Ni isotopes due to the occupation of the lower-/ orbits, 251, and 1ds/,. For
86Ni, as seen in Fig. 7(b), the nuclear surface is diffused mostly by the filling of the 1ds, orbits.
Figure 9 plots these s.p. densities and their derivatives for ®Ni. The radius parameter R is
located inside the second and third peaks for 1ds, and 2s;), orbits, respectively, giving positive
D(nlj) values, while the nodeless Ogg», orbit gives a negative derivative of the s.p. density at the
radius parameter R because the R value is located just after the peak of the s.p. density. Note
that in Fig. 7(b) the D(nlj) value of the 2s;/, orbit is smaller than that of the 1ds;, orbit, which
has higher angular momentum. This is partly because the s wave has no centrifugal barrier and
thus a smaller derivative of the s.p. density in the nuclear surface region is in general obtained
compared to 1dsp, orbit, and partly because the R value is accidentally located in the second dip
of the s.p. density. For this 3*Ni case, although the 25/, orbit does not contribute to changing
the diffuseness parameter, it plays a role in forming a halo tail as the s.p. energy is small, —0.888
MeV, resulting in the rms s.p. radius 7.60 fm, which is much larger than the matter radius of
86Ni, 4.56 fm.

3.3 Snisotopes

As shown in Fig. 3 for Sn isotopes, no strong enhancement of the surface diffuseness occurs in
50 < N < 56. This can be understood by the same reason found in the comparison of Ca and Ni
isotopesin 28 < N < 40. At N =50-70, the 1ds/, 0g72, 1d3/2, and 251, orbits, which belong to the
principal quantum number ¢ = 2n 4 [/ = 4, are contributed and change the surface diffuseness:
The nodal s.p. orbit diffuses the nuclear surface, while the nodeless s.p. orbit sharpens it. At
N = 70-82, the reduction of the surface diffuseness is due to the occupation of the 0/, orbit
(g =79).

Figure 10 plots the s.p. energies and D(n/j) values for N > 80. A sudden increase in the surface
diffuseness N > 82 is due to the occupation of the nodal 1f7, orbit (¢ = 5). Level inversions of
the low-/2p3,> and sharp Ohgy, orbits occur, producing the wiggles at N ~ 94-100. It is again
noted that, in reality, these kink structures disappear because those s.p. orbits are mixed by the
pairing correlation [15], which induces fractional occupation of the orbits near the Fermi level.
At N > 100, strong enhancement of the surface diffuseness is found. Regarding '>°Sn as a core
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Fig. 11. Same as Fig. 8 but for 192Sn. Vertical lines indicate the radius parameter R = 6.08 fm.

nucleus, all the nodal valence orbits with 1f7/2, 2p35, 2p1/2, and 1f5,, have positive D(nlj) values
and contribute to increasing the surface diffuseness. Figure 11 displays the s.p. densities and
their derivatives of '92Sn. While the outermost core orbit 04, gives a negative D(nlj) value, all
these nodal s.p. orbits show positive D(n/j) values that form the diffused nuclear surface. The
higher the / value, the larger the magnitude of the D(nl/j) value becomes because the variation
of the s.p. density near the nuclear surface becomes large for the high-/ state.

3.4 Pbisotopes

Finally, I discuss Pb isotopes. As seen in Fig. 3, I find apparent kink behavior at the neutron
magic numbers, where the nuclear major or subshell is fully occupied. However, N = 126 is
one exception in that no prominent kink behavior is found even though the major shell is fully
occupied. I remark that a similar result has already been shown in Ref. [15]. Figure 12 plots the
neutron s.p. energies and D(n/j) values of Pb isotopes. At 114 < N < 126 the surface diffuseness
grows by filling neutrons in 2p and 1f5/, orbits (¢ = 5). For N > 126, the major shell is changed
to ¢ = 6; however, the nodal 1gy, orbit, which has a positive D(nl/j) value, leads to a further
increase in the surface diffuseness and thus the kink structure disappears.
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Fig. 13. Same as Fig. 8 but for 2°Pb. Vertical lines indicate the radius parameter R = 7.43 fm. Note that
the values r < 4 are not shown in panel (b) for the sake of visibility.

After the 1gg, orbit is fully occupied, the surface diffuseness decreases at 136 < N < 164
because neutrons occupy the nodeless 0i1/, and 0jy5, orbits, which have a fast drop-off of the
wave function at the radius parameter R. At N > 164, the diffuseness parameter is again en-
hanced by the filling of the nodal s.p. orbits 2ds,, 3512, 1272, and 2ds, up to N = 184. Figure 13
plots the neutron s.p. densities and their derivatives of 2°Pb. The occupation of the outermost
core (>4°Pb) orbit, 0j;5», forms a sharp nuclear surface but the other 20 nucleons in these 2ds)»,
3512, 1g7/, 2d3), orbits produce diffused nuclear surface beyond N = 164. The / dependence of
these nodal s.p. orbits is small. Their individuality is almost lost for such a heavy nucleus.

3.5 Characteristics of s.p. densities

Finally, I discuss why the nodal or lower-/s.p. orbits near the Fermi level are important to form
a diffused nuclear surface. It is known that the rms radius of the harmonic oscillator (HO) s.p.
wave function depends only on the principal quantum number (¢ = 2n + /). The difference
appears when a more realistic mean-field potential is considered. The potential in general in-
cludes diffused central and surface-type spin-orbit potentials, resulting in the enhancement of
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the amplitude of the s.p. wave functions near the nuclear surface, especially for the s.p. states
near the Fermi level.

Figure 14 plots the neutron rms s.p. radii divided by the rms matter radius for the neutron
dripline nuclei predicted by the present parameter set, i.e., >*O, ®Ca, 3°Ni, 192Sn, and 2°°Pb,
categorized into the principal quantum number ¢ = 2n + /. The maximum principal quantum
number ¢max is 2, 3,4, 5, and 6-7 for 240, °Ca, 8Ni, 102Sn, and 2°°Pb, respectively. For the sake
of convenience, the results with the same ¢ are arranged from left to right in the order of j. =
[+ 1/2 and j. = [ — 1/2 from low to high /, for example, the order of 1sy/,, 0ds;, and 0d3, for
q = 2; and 1p3p, 1p1p2, 0f72, and Of5p for g = 3.

For deeply bound or “core” orbits ¢ < gmax — 1 (g < 5 for 2°Pb), the rms s.p. radii are roughly
proportional to ¢ = 2n + /; i.e., almost constant behavior of the rms neutron s.p. radii is found
with respect to / and j at the same major shell as expected from the properties of the HO wave
function. Since these deeply bound states have smaller rms radii than the nuclear radius, the
D(nlj) value is negative or has at most a small positive value, which does not cause a sudden
increase in the surface diffuseness but induces a gradual increase in the surface diffuseness
on N. In contrast to this, the rms s.p. radii that belong to the maximum principal quantum
number ¢max exhibit some angular momentum dependence: The lower the /, the larger the rms
s.p. radius becomes. The behavior of the rms neutron radii near the Fermi level can be explained
simply by considering the change in the classical turning point on the effective potential well.
The lower the /, the larger the rms radius becomes because lower-/ orbits have in general more
penetrability at the surface region if the binding s.p. energy is the same. For states near the
Fermi level, the radius of the classical turning point on the effective potential well becomes
larger due to the surface-diffused nuclear potential, leading to a large rms s.p. radius. This also
lowers the centrifugal barrier and further increases the rms s.p. radius. The j_ orbit gives a
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smaller rms radius than that of the j. one because the repulsive spin-orbit interaction near the
nuclear surface acts opposite to the j. state.

This non-trivial increase in the rms s.p. radius near the Fermi level is essential to explain the
evolution of the nuclear surface diffuseness. In Fig. 14, the rms s.p. radii that belong to Ny, max,
i.e., that exceed the rms matter radius, exceed unity. The D(nl/j) value of the nodal s.p. orbits near
the Fermi level can be positive, in which the radius parameter R is located before the last peak
position, while the D(nlj) value is negative for the nodeless high-/s.p. orbit. Deducing the surface
density will be important for detailed study of the nuclear s.p. orbits near the Fermi level. For
example, an interesting modification of the s.p. wave functions due to the spin-orbit interaction
near the Fermi level was suggested in Ref. [57], which could be essential for explaining the puzzle
of the kink structure of the charge radii of Pb isotopes.

4. Conclusion

To extract spectroscopic information from the nuclear surface diffuseness, I have proposed a
practical and convenient way to decompose the surface diffuseness into contributions of each
single-particle (s.p.) orbit. The nuclear surface diffuseness defined in a familiar two-parameter
Fermi density distribution is inversely proportional to the sum of the derivatives of the s.p.
wave functions at the nuclear surface radius. I have quantified its contributions to the surface
diffuseness for spherical neutron-rich O, Ca, Ni, Sn, and Pb isotopes using a phenomenological
mean-field model.

I find that the neutron number dependence of the surface diffuseness can be simply under-
stood by the quantum number of the occupied s.p. orbits near the Fermi level: The occupation
of nodeless s.p. orbits induces a mild change in the surface diffuseness, while the occupation of
nodal s.p. orbits enhances the surface diffuseness because the nodal s.p. orbit near the Fermi
level can have a relatively large s.p. radius that exceeds the matter radius and lowers the or-
bital angular momentum. The enhancement becomes significant when the neutron dripline is
approached where a sudden increase in the s.p. radius near the Fermi level is expected.

The present method can be applied to more realistic nuclear systems that include configura-
tion mixing of spherical s.p. orbits induced by, e.g., nuclear deformation and pairing correla-
tions, if decomposition of their s.p. orbits into spherical s.p. orbits is done. Applying it to these
systems, it may be possible to quantitatively show how the density distribution near the nuclear
surface is composed microscopically, depending on the degree of these correlations. It should
be noted that the surface diffuseness is a robust physical quantity that can be measured by,
e.g., proton elastic scattering [15,29,30]. A systematic measurement of the surface diffuseness
strongly facilitates the understanding of various phenomena near the nuclear surface.
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