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Exploring the thermodynamics of disordered materials

with quantum computing
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Alloys, solid solutions, and doped systems are essential in technologies such as energy generation and catalysis,
but predicting their properties remains challenging because of compositional disorder. As the concentration of
components changes in a binary solid solution A ,_,,B,, the number of possible configurations becomes compu-
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tationally intractable. Algorithms used in classical optimization methods cannot avoid assessing high-energy
states where, for example, simulated annealing is designed to initially spend computational effort. We introduce
a scalable, practical, and accurate approach using quantum annealing to efficiently sample low-energy configura-
tions of disordered materials, avoiding the need for excessive high-energy calculations. Our method includes tem-
perature and simulates large unit cells, producing a Boltzmann-like distribution to identify thermodynamically
relevant structures. We demonstrate this by predicting bandgap bowing in Al,_,Ga,N and bulk modulus varia-
tions in Ta,_, W,, with results in excellent agreement with experiments.

INTRODUCTION

A widely used strategy in materials design is to explore multicompo-
nent disordered materials and to achieve optimal physical and chem-
ical properties by modifying their composition. The compositional
variation may result in amorphous structures, interstitial substitu-
tion, phase transitions, and the formation of defects. Often, crystal-
linity is maintained, and systems such as alloys, solid solutions, and
heavily doped materials consist of crystalline materials in which one
or more types of atoms, ions, or vacancies are incorporated into
the crystal lattice of another substance without altering the overall
crystal structure. These materials have many technological applica-
tions, including catalysis (I), energy storage (2-4), optoelectronics
(5), nuclear fusion reactors (6), and lightweight materials (7).

The bulk phases of ordered crystalline phases can be uniquely
defined by a unit cell with periodic boundary conditions, atom
types, and their positions. Using this periodic model, a wide range
of properties—including elastic constants, static and high-frequency
dielectric constants, and phonon and electronic band structures—
are routinely screened using computational chemistry and materials
science techniques. Although the use of periodic models is ideal for
ordered systems, it presents challenges in modeling disorder. In the
study of disordered materials, we can consider random occupancy
using analytical statistical approaches such as the virtual crystal ap-
proximation (VCA) (8, 9) or coherent potential approximation
(CPA) (10). Cluster expansion (CE) methods (11-13) include fur-
ther refinement by explicitly modeling correlation effects. All these
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approaches are applicable to systems where species of the same oxi-
dation state are mixed.

An alternative commonly used approach that accounts for long-
range interactions, is not constrained to the same oxidation states,
and is adopted in our work is to use a statistical ensemble approach
and continue to use periodic boundary conditions applied to a unit
cell to simulate an infinite number of atoms in the material. How-
ever, the limited number of atoms within the unit cell also restricts
the total number of possible configurations that may be simulated
and therefore may not capture the correct physics of the system. In
such an approach, the unit cell should be increased to check that the
physics is not dependent on the chosen simulation box size. Super-
cells are typically constructed from the primitive cell(s) of the end
members and with the atom type of each site to be determined un-
der the constraint of a chosen composition. The number of possible
configurations depends on the ratio of the end members of the com-
position (e.g., a simple binary mix, Xﬁ‘xﬁ_x), has a maximum when
x = 0.5) and grows factorially with respect to the number of sites in
the cell and the number of different atom types. The chosen size of
the supercell is restricted to what is manageable with the available
computer resources, and the model works under the assumption
that any key pattern can be represented or built from the patterns
that are possible to model within the chosen supercell.

The main goal of the statistical analysis of disordered materials is
to determine the configuration-energy relationship. In this ap-
proach, the effect of temperature can be explored as well as other
external physical parameters. Thus, the aim is to consider as many of
the thermodynamically accessible states as necessary to gain a suf-
ficient representation of the system, or material of interest, as op-
posed to just targeting the ground state. The challenge here is to be
able to generate and evaluate a manageable finite set of configura-
tions that correctly represent the system, i.e., both qualitatively for
the required physics and quantitatively for the required accuracy.
With limited computer resources, there is tension between the level
of theory used to evaluate each configuration and the number of
configurations that can be evaluated. In practice, fewer states are
sampled (because of the chosen size of the supercell), and a lower
level of theory is used, for example, switching from an electronic
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structure approach to interatomic potential (IP) or machine-learned
(ML) potential techniques. Energy functions that are cheaper to
evaluate, such as model Hamiltonians, MLs, or IPs, can be parame-
terized or trained using a higher-level theory, which is pursued here.
Choosing a smaller supercell may allow an exhaustive evaluation at
a higher level of theory of the reduced sample space, particularly if
symmetry is taken advantage of (14-16). When working with a larg-
er supercell, for which an exhaustive search might not be possible
due to the size of the configuration space, global optimization tech-
niques such as Monte Carlo, simulated annealing, and genetic algo-
rithms (17-20) can be used to identify low-energy configurations
(which dominate the physics).

With the advance in quantum computation, a new family of op-
timization techniques are emerging where the search and evaluation
of the potential energy landscape is conducted by a quantum com-
puter. There are two relevant examples of combining approximated
energy methods and classical, quantum-inspired, and quantum-
optimization techniques that have proved successful in the configu-
ration analysis of disordered materials. Choubisa et al. (21) used the
CE method and a Fujitsu digital annealer (DA) to successfully per-
form the configuration analysis of quaternary Cu-Ni-Ag-Pd materi-
als in a face-centered cubic (fcc) lattice. Furthermore, Gusev et al.
(22) combined quantum annealing and continuous optimization to
perform crystal structure prediction of ionic materials.

A key advantage of quantum annealing is that, under ideal condi-
tions, it provides a guarantee of finding the global minimum of the
objective function. Classical approaches—including Monte Carlo,
simulated annealing, genetic algorithms, and machine learning-
based methods—do not offer such guarantees and can become
trapped inlocal minima, particularly in complex or high-dimensional
energy landscapes. Although ML IPs and pattern-based optimizers
can accelerate sampling, they typically require large training datasets
and careful hyperparameter tuning.

In this work, we consider a system small enough (nitrogen-doped
graphene) to demonstrate that quantum annealing can reliably re-
cover low-energy configurations across a range of compositions. Al-
though no quantum advantage is expected at this scale, the results
serve as a proof of concept. As quantum hardware continues to im-
prove in size, coherence, and connectivity, the ability to guarantee
globally optimal solutions may become a significant advantage for
materials discovery and design.

In general, at present, classical methods such as Monte Carlo,
simulated annealing, and genetic algorithms outperform quantum
approaches for configurational sampling, particularly in terms of
scalability and solution quality. This is expected as both the algo-
rithms and the supporting hardware for classical methods have been
developed and optimized over several decades. By contrast, quantum
annealing is a relatively recent technology. Nevertheless, when oper-
ated in the quantum coherent regime, quantum annealers (QAs) can
outperform classical heuristic solvers (at least when quantified by
certain performance metrics) in the simulation of the dynamical be-
havior of magnetic spin-glass materials at a scale of a few hundred
spins (23). Although current quantum hardware does not yet offer a
practical advantage for arbitrary very-large-scale materials problems,
it is important to develop and test quantum-compatible algorithms
now, in preparation for the point at which quantum devices reach the
required level of maturity.

In the proof of concept presented in this paper, we show how to
take advantage of D-Wave QAs (24) to explore the thermodynamics
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of disordered materials and crucially how we minimized the con-
straints to develop a model that works well on currently available
annealers and scales much better than previously developed ap-
proaches, making complex systems accessible to our method. The
technique we discuss provides notable improvements over recently
developed classical and quantum methods for the study of disor-
dered materials, enabling grand canonical simulations of large con-
figurational spaces.

RESULTS AND DISCUSSION

Quantum annealing-assisted thermodynamic analysis of
disordered materials

We present an approach that uses quantum annealing to explore the
thermodynamics of disordered materials with a scalable model, ad-
vancing current methods. Quantum annealing is an optimization
process designed to find the global minimum of a given objective
function. It is particularly well suited to solving discrete combinato-
rial problems and has found applications across fields ranging from
logistics to materials science. Quantum annealing belongs to the
broader class of adiabatic quantum computing methods. The prin-
ciple behind it is to encode the solution to a problem into the ground
state of a quantum system, and then guide the system into this state
by evolving its Hamiltonian slowly enough that it remains in or near
the ground state throughout the process.

The physical implementation used in this work is based on D-
Wave QAs (24), which use superconducting flux qubits arranged in
a programmable network. Each qubit behaves like a quantum two-
level system, realized using superconducting loops interrupted by
Josephson junctions. The system is cooled below 20 mK to minimize
thermal excitations and environmental noise. At the start of the an-
nealing process, the qubits are placed in a transverse field that puts
them into a quantum superposition of all possible states. As the
transverse field is gradually reduced and the problem Hamiltonian
is turned on, quantum fluctuations allow the system to tunnel
through energy barriers, ideally ending in the ground state of the
target Hamiltonian (where the problem of interest has been mapped
to). In practice, imperfections and coupling to the environment may
cause the system to evolve to a low-lying excited state. In this work,
however, we show how the resulting Boltzmann-like distribution
can be used to extract physically meaningful thermodynamic in-
formation.

A key constraint in superconducting flux-qubit quantum anneal-
ing is that only binary quadratic models can be directly mapped to
the hardware. These include Ising spin models and Quadratic Un-
constrained Binary Optimization (QUBO) problems, which are
mathematically equivalent under a simple transformation. In the
QUBO formalism, the system is described using binary variables
x; € {0,1}, and the objective function is expressed as

E(x)=x"Qx= ZQiixi+ Z ZQijxixj

ij>i

x;€{0,1} (1)

where the problem is encoded into the square matrix Q. The linear
terms in the first summation originate from the binary nature of the
x; variables, so x? = x; because 0% = 0 and 1> = 1. In our work, the
QUBO coeflicients are derived from a physical model representing
the chemical system of interest. The quadratic form captures pair-
wise interactions among sites in the supercell and can be viewed as
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a second-order expansion of the system energy around a binary
configuration space. Although higher-order interactions exist in
real materials, the QUBO model offers a tractable and hardware-
compatible approximation that enables efficient sampling and op-
timization.

The workflow used in this work, summarized in Fig. 1, starts from
the definition of the crystal structure within the unit cell of an end
member that is expanded to create a supercell that enables the explo-
ration of mixed configurations. Each configuration is represented as
a binary vector, and its energy is mapped to a QUBO model. The
QUBO parameters are trained to reproduce results obtained from a
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Fig. 1. Workflow for the thermodynamic sampling of solid solutions using
quantum annealing. Starting from the top: (A) Build a supercell from the unit cell
of an end member. (B) Train the QUBO model using DFT data, for example, for a
subset of configurations. A chemical potential Ay, included in the QUBO model,
is used to tune the composition. (C) Repeat use of D-Wave QAs to generate
(D) Boltzmann-like probability distributions for structures within a range of com-
positions. (E) Perform the symmetry analysis of the structures returned by the QA
to (F) find the unique configurations. (G) Check the quality of results by using a
higher level of theory, such as DFT, on selected configurations from those identi-
fied (F) and, if necessary, return to step (B) using the structures (F) to train the QUBO
model. (H) Use results from (G) to calculate thermodynamic properties.
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small number of density functional theory (DFT) calculations on
randomly generated configurations. By introducing a chemical po-
tential, we can tune the composition of the resulting configurations
to represent any stoichiometry of interest. As discussed below, by us-
ing the chemical potential rather than enforcing a fixed stoichiome-
try, our approach is better suited for currently available QAs, like
those developed by D-Wave, which are characterized by limited
qubit-qubit connectivity. A scaling factor in the QUBO model is used
as a temperature parameter in our configurational analysis. In this
setup, the QA works as a thermal sampler. By completing a series of
quantum annealing runs, we obtain a Boltzmann-like distribution of
QUBO energies. We demonstrate that these Boltzmann-like distri-
butions closely represent those obtained from an exhaustive search.
This is similar to previous quantum simulation works (25, 26), but it
extends these approaches to thermal sampling of solid solutions, an
important topic in materials science.

To ensure that the analysis is carried forward on structures repre-
senting unique configurations, a symmetry analysis can be per-
formed on the structures returned by the QA to obtain the subset
of symmetry-independent configurations (SICs). The energy of the
SICs can be determined at a more advanced level, such as DFT or
through IPs. By repeating steps B to G in Fig. 1, we can train the
model with low-energy structures instead of random ones, thus bias-
ing it to explore low-energy regions of the configuration landscape.
The structures obtained in step F can then be used to calculate the
thermodynamic properties of the solid solutions in step H. For ex-
ample, using the distribution of energies and structures taken from
step F and the target property (structural parameters, elastic and di-
electric response, phonons, electronic band structures, etc.) calcu-
lated as part of step G. An important advantage of the Boltzmann-like
distribution returned by the QA is that it provides two complemen-
tary types of information. First, it identifies low-energy configura-
tions that can serve as input for more accurate calculations. Second,
it provides approximate Boltzmann weights that can be used to com-
pute thermodynamic averages over configurations near a given com-
position, enabling direct comparison with experimentally measurable
properties. The ability of the annealer to return accurate Boltzmann
samples has been systematically quantified by Nelson et al. (27).

To show the versatility of the method, we apply our approach to
three different types of materials, which have interesting technologi-
cal applications: nitrogen-doped graphene (28, 29) in catalysis and
energy materials, Al,_ Ga, N (30, 31) in optoelectronics,and Ta;,_ W,
alloys (32, 33) used as structural components in nuclear and rocket
systems due to their high temperature strength, high melting point,
and good corrosion resistance. The supercells used to simulate these
materials are depicted in the Materials and Methods section.

Mapping the problem to a QUBO model

To solve a problem using quantum annealing, it must first be encoded
into a form compatible with the constraints of the hardware. As dis-
cussed above, this means formulating the problem as a QUBO model,
where the objective is to minimize a binary quadratic function.

In the context of configurational sampling in disordered materi-
als, the unknown atomic pattern within the material of interest is
defined on a lattice for which the site occupancies are to be deter-
mined. We map the supercell structure onto a binary vector x, where
each element x; € {0, 1 }represents the occupancy of site i. We focus
on binary solid solutions, in which each site is occupied either by
species x4 or yB. In the case of Al,_, Ga N, for example, only the
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cation sublattice exhibits configurational disorder, and therefore
only the cationic sites are treated as active degrees of freedom in the
optimization.

In our mapping for the three selected systems, x* represents C in
nitrogen-doped graphene, Al in Al,_ Ga,N, and Ta in Ta,_ W,
whereas y? represents N, Ga, and Ta, respectively. If x; = 0, x* is as-
signed to the lattice point 7, and if x; = 1, it becomes y2. The QUBO
model is constructed to yield an energy of 0 for pure graphene, AIN,
and Ta (i.e., when all elements of the x vector are 0). Substituting y*
atoms with % atoms should result in an increase in energy. There-
fore, a penalty is added for the presence of %% in Q;; and another
energy term, Q;;, accounts for the interaction of 8 with other neigh-
boring sites, depending on which species occupies them. The task of
the QA is to identify the binary vector x, obtained with such map-
ping, that minimizes the energy function, as defined in Eq. 1.

The QUBO model parameters Q;; and Q;; for the three targeted
solid solutions are obtained using the linear regression of the DFT
formation energies, of N3¢ SICs with compositions in the range of
stoichiometry of interest. The formation energy per active site
(treated statistically) for the configuration k in the canonical ensem-
ble is calculated as

2

=f 1 y
AE, = N—(Ek— D N! EX>
as Xi

where N, is the number of active sites; E, is the total relaxed DFT
energy per simulation cell of configuration k; N, Ifx is the number of
sites occupied by species x' in configuration k; and E,; is the energy
of species i in its reference state. The reference states used in this
work are pure graphene, molecular N,, AIN, GaN, Ta, and W. Each
chosen configuration k is fully relaxed, that is, the training set only
contains local minima. Further details of the DFT calculations and
the optimization algorithm as implemented in the CRYSTAL23
code (34) and VASP (35) are provided in the Materials and Methods
section. Although the QUBO model is defined on a set of lattice sites,
the effects of the relaxation of atoms occupying these sites are
implicitly included. Our QUBO model contains coupling constants,
Qyj> up to and including the next-nearest neighbors.

Using the chemical potential to tune the composition

Consider using the basic QUBO model described above. As the QA
is inherently an optimization machine, the configurations that are
generated will typically be the trivial pure ground-state solution.
The lowest QUBO energy structure, by construction, contains only
x* atoms, that is, all the elements of the composition vector x are
zero. However, here our interest is in mixed systems having a com-
position that is intermediate between the two end members. To
model such compositions, one possible route is to impose a con-
straint on the number of y® atoms in the solution. Although this
technique proved effective in crystal structure prediction (22), it
results in a computationally expensive “all-to-all” fully connected
QUBO model (as discussed in Materials and Methods). Because of
the limited connectivity of current QAs, choosing fully connected
QUBO models will result in long qubit chains and drastically limit
the size of the problem that can be treated [see Appendix B of (36)
for details]. By introducing the chemical potential, we can instead
bias the solutions toward a specific concentration. The benefit of this
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technique is that it only adds diagonal elements to the QUBO model
and therefore does not increase the connectivity (Materials
and Methods).

In the chemical potential approach, we work within the grand
canonical ensemble representation of the system. Consider a mate-
rial in equilibrium with a reservoir containing its constituent spe-
cies. Both the material and the reservoir are in equilibrium with a
thermal bath. As the chemical potential of a particular species in-
creases, there will be an increasing energy gain as an atom moves
from the reservoir into the material. The relative energy of state
k becomes

~ 1 i

as XA

where ju,, is the chemical potential of species y' and AEJ; is taken from
Eq. 2. If we consider only N, sites that are occupied by either y* or

x5, then our energy term reduces to AEICM) + Py + % (pxs — P )
The second term, .4, is constant for all configurations and can thus
be ignored (or set to zero). The concentration of x® atoms predicted
by the QA can therefore be controlled by adjusting the difference in
the chemical potential, Ap = p,5 — p,s. The effect of Ap on the
QUBO energy levels is discussed in the Supplementary Materials
and the “Selecting the desired composition” section of the Materials
and Methods.

The number of qubits needed to implement both the fully con-
nected and our QUBO models as a function of the problem size for
graphene is displayed in Fig. 2. The optimal mapping is obtained
heuristically using the minorminer library distributed as part of the
D-Wave Ocean API (37). The blue data points show the number of
qubits required to map the problem using the QUBO model defined
in Eq. 4, which only has first and second nearest neighbor interac-
tions (see Eq. 18). The orange data points show the number of qubits
required to map the problem using a fully connected QUBO model
to solve the same problem where the composition of the returned
structures has been enforced by a penalty function [for more infor-
mation on how to introduce the penalty function into the model, see
ref. (36)]. When using the latter approach, the number of qubits
quickly increases beyond the capacity of current QAs. The last or-
ange data point corresponds to a 9 X 10 supercell containing 180 atoms.
Mapping the next size (10 X 10 supercell) would require more qubits
that are currently available on the Advantage QPU (quantum pro-
cessing unit). On the other hand, using the former approach, we
are able to map solid solutions based on a supercell containing up to
760 atoms. The images on the right side of the “mapping to hard-
ware” panel show the physical qubits on the QPU needed to repre-
sent the 50-atom graphene problem by using the constraint and
chemical potential approaches.

An aspect to consider in extending this approach to larger sys-
tems is the scaling behavior of the QUBO model and the limitations
imposed by hardware connectivity. The current method scales lin-
early with the number of atomic sites in the supercell under the
ideal condition where each site can be directly mapped to a single
physical qubit. However, this scaling is not universal and depends
on several factors. First, the effective connectivity of the model is
that determined during its construction, particularly through the
choice of how many neighbor shells are included in the QUBO
model (as controlled by the parameter n in Af.‘j” in Eq. 18). The
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Fig. 2. Mapping the problem to hardware. In the “mapping to hardware” panel, we plot the number of qubits required to map the QUBO problem for graphene to
hardware when the chemical potential approach (blue line) and constraints (orange line) are used. The values were obtained by using the find_embedding function part
of the minorminer library distributed via the D-Wave Ocean API. The images on the right show the physical qubits that the 50-atom graphene problem is assigned to on
the QPU. These visuals were created with the dwave.inspector tool, which is included in the D-Wave API.

number of interactions per site depends on the symmetry of the ma-

terial and the local coordination environment. Systems with higher
coordination numbers require more pairwise terms, increasing the
qubit connectivity requirements. Second, scalability is constrained
by the physical topology of the quantum annealing hardware. The
present results were obtained using D-Wave’s Advantage topology,
where each qubit is connected to up to 15 others. As future genera-
tions of QAs offer improved connectivity, the scaling of the chemical
potential approach is expected to improve (i.e., the slope of the or-
ange curve in Fig. 2 will become less steep).

An important advantage of the chemical potential approach over
methods requiring all-to-all connectivity is that it offers flexibility:
The model can be tuned to match the available hardware. For small-
er systems or systems with simpler topologies, a greater number of
neighbors (that is, # in Ai;," in Eq. 18) can be used to capture more of

the local environment. For larger supercells or systems with dense
local bonding, n can be reduced to ensure that the QUBO model
remains compatible with hardware constraints. In such cases, it is
essential to validate the truncated model by assessing its accuracy
on a test set, for instance, calculating the RMSE of the test set (as
discussed in the Supplementary Materials).

To introduce the chemical potential into our QUBO model, we
can fit the Q; and Q;; terms using the canonical formation energies
as defined in Eq. 2 and then add the Ap term to the Q;; terms so that
the lattice sums in Eq. 1 become

E(x,Ap) = Z (Qii"‘A”)xi + Z Z Qi

i i j>i

€ {0,1} 4)

We treat the chemical potential as an adjustable parameter to
tune the concentration of x? atoms in the structures returned by
quantum annealing, but in a real experimental situation where a
material is grown from constituent elements, constraints are placed
on the allowed values of the chemical potential consistent with the
formation of that material with respect to competing phases (38). In
principle, we could relate Ap to a realistic value with reference to our
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energy model of choice. However, doing so is not the focus of our
current work as here we aim to demonstrate the applicability of the
quantum annealing procedure to the analysis of disordered systems.
A comprehensive analysis of the energetics of competing phases is
beyond the scope of this study.

We first illustrate the use of our chemical potential approach on
nitrogen-doped graphene using D-Wave QAs. In Fig. 3A, we plot the
average nitrogen concentration obtained for a range of Ap values. For
Ap > —0.04 eV (noting that Q; = 0.08 V), only pristine graphene
structures are observed. For values of Ap < —0.04 eV, structures
containing nitrogen atoms are found. In Fig. 3B, we plot the nitrogen
concentration distribution for five different values of Ap. When
Ap = —0.032 eV, 90% of the structures found by the annealer are
pristine graphene and 10% of the structures contain one nitrogen
dopant. As the magnitude of Ap increases, the likelihood of struc-
tures with a higher number of nitrogen atoms also increases, causing
the peak of the distribution to shift toward higher concentrations.

Introducing the temperature into the model

Temperature has been incorporated into our simulations. It is im-
portant to note that this temperature should not be mistaken for the
hardware temperature, which, in the case of the D-Wave Advantage
QPUs, remains below 20 mK. First, we consider what happens in the
D-Wave experiments. If the annealer were operated at 0 K without
nonadiabatic transitions, it would yield only the lowest energy state
configuration. Operating at a finite temperature introduces the pos-
sibility of occupying excited states, resulting in a configuration that
maximizes the system entropy, which means that the final-state dis-
tribution will follow a Boltzmann-like distribution (39-42).

One approach to thermally sample is simply to change the physi-
cal temperature of the annealer. This approach has been used in sem-
inal D-Wave experiments (43), but it is neither practical nor available
through the device API and, therefore, a different approach is re-
quired to incorporate temperature into our simulations. We achieve
this by changing the energy scale of the problem by introducing a

50f14

GZ0Z ‘62 aunC Uo BI0"80US 105" MMM/:SANIY WO | PaPe0 JUMO(]



SCIENCE ADVANCES | RESEARCH ARTICLE

Chemical potential

8 A )
2

6 2
R g
~ a
=4

2

oL ) , b : )

-0.012 -0.010 -0.008 -0.006 -0.004 -0.002 0.000
\ Au (eV)
/ Temperature

6,

5] C
;\E 4
=3

2,

1

0 —0— 0

T T T T T 5
02 03 04 05 06 07 08 09 10 1 10
a V(o) 15

Fig. 3. Analysis of the nitrogen concentration in a 50-atom graphene cell for a range of chemical potential and temperature values. The results displayed were
obtained by postprocessing D-Wave quantum annealing data resulting from solving Eq. 4, where the QUBO model was trained from DFT data (Materials and Methods).
The quantum annealing was run 1000 times. “Chemical potential” section: The plot in (A) displays the average nitrogen concentration as a function of the chemical poten-
tial. In (B), we plot the distribution of nitrogen concentration for five values of Ap. The value of « = 1 was used to generate these plots. “Temperature” section: The plot in
(€) displays the average nitrogen concentration as a function of the temperature introduced in the model through the a parameter. In (D), we plot the distribution of ni-
trogen concentration for five values of a. The value of Ap = 0 was used to generate these plots.

parameter that we define as a, which is inversely proportional to the
temperature and has a range of values between 0 and 1 (40, 41, 44).
Before running the quantum annealing, the D-Wave API scales the
terms of the QUBO model to use the full energy range allowed by the
annealer. From a Boltzmann distribution point of view, this corre-
sponds to sampling at the lowest temperature permitted by the an-
nealer. In this scenario, the global minimum (or minima) is more
likely to be returned. However, in the context of solid solutions, we
might be interested in a thermal sample at different temperatures,
where the multiplicity of the states plays a role. To achieve this, the
automated scaling option can be disabled and the Q;; and Q;; terms
can be manually scaled using the parameter a.

The sample at the desired temperature can be obtained by trial and
error by using several values of o until the desired temperature is ob-
tained and the corresponding temperature obtained by postprocessing
(40, 41). Once two points are determined, any temperature between
these points can be interpolated or points outside extrapolated.

Previous studies have demonstrated the utility of this approach
for information theory tasks, which require a distribution that maxi-
mizes entropy under certain conditions (39) and for neural networks
such as Boltzmann and Helmholtz machines (45-51). In this work,
we focus on sampling distributions that span from low temperature

Camino etal., Sci. Adv. 11, eadt7156 (2025) 6 June 2025

regimes, where the ground state is more likely to be observed, to high
temperatures, where state degeneracy becomes increasingly relevant.
We tested the effect of changing the values of « for the nitrogen-
doped graphene system. In Fig. 3C, we show the average concentra-
tion of nitrogen atoms in the 50-atom graphene supercell as a
function of a. For values of a > 0.6, most of the structures returned
by the QA are pure graphene. This is the behavior that we expect at
low temperatures, where only the ground state is observed. For val-
ues of & < 0.6, structures containing nitrogen dopants are found.
In Fig. 3D, we plot the distribution of the nitrogen concentration of
the structures for four values of a. As the temperature increases (o
decreases), the distributions become flatter and shift toward a higher
nitrogen concentration, as predicted by the Boltzmann distribution.

Temperature and chemical potential regimes

In this section, we investigate the probability distributions generated
by QAs as a function of both chemical potential and temperature.
These are benchmarked against the complete set of configurations for
the same supercell. Our goal is to establish the reliability of our quan-
tum annealing approach, which can then be applied to larger and
more complex systems. The chosen test system is nitrogen-doped gra-
phene using the 50-site supercell depicted in the “Materials” section of
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the Materials and Methods. The exhaustive search, or complete set
approach is manageable for investigating molar concentration of ni-
trogen atoms that is less than 15%. For 14% doping, there are more
than 1.18 x 10° configurations. Of these, there are a more manageable
397,227 SIC configurations, which we obtained using the configura-
tional analysis tools implemented in the CRYSTAL23 (34) code.

In Fig. 4, we present the probability distributions collected using
D-Wave QAs (depicted in orange) and those obtained classically
from the exhaustive set of configurations (blue). To enable a visual
comparison of probabilities across different sampling methods, such
that the same structures always appear at the same energies in the
graphs, the energies associated with each configuration i are plotted
with respect to their relative formatlon energies AE’: rather than the
full grand canonical energies AE (these quantities are defined
in Eqgs. 2 and 3). This scaling effectwely removes the contribution of
the chemical potentials i, ensuring that the ordering of the con-
figurations is preserved. This is important because, although the
Boltzmann probabilities are computed using AE{ , which includes
M, plotting the grand canonical energies would shift the positions
of configurations depending on the choice of Ap, making direct

visual comparison across data obtained at different values of chemi-
cal potential difficult.

In the low chemical potential and low temperature regime, shown
in Fig. 4G (Ap = 0.0, a = 1.0), the ground state configuration domi-
nates, that is, only the pristine graphene structure is observed, as
discussed earlier when considering Fig. 3. As the magnitude of Ap in-
creases, the likelihood of observing structures with higher concentra-
tions of nitrogen also increases. For example, in Fig. 41 (Ap = —0.068 eV,
a = 1.0), configurations containing 6% nitrogen dopants have the
highest probability, followed by concentrations of 4 and 8%. Because
these are in the low temperature regime, the lowest energy configura-
tion for each of these compositions has the highest probability. This
is an important aspect of these results because it shows that quantum
annealing is able to find the ground-state energy configuration of
nontrivial solid solution. For higher temperatures, the multiplicity of
a state becomes a deciding factor on the probability of observing
such a state, and even in the absence of chemical potential (Fig. 4, A
and D), nitrogen-doped structures are possible. For high tempera-
ture and high chemical potentials, additional high-energy configura-
tions are observed, which are not present in the low temperature and

0.40%N 2%N 4%N 6%N ‘S%N‘M

@® ES (Au=0.0,T =310K)

0.125

10%N 2%N  4%N  6%N ‘B%Nﬁm

@ ES(Ap=-0.024,T = 350 K)

D%N 2%N  4%N  6%N ‘S%ij\]\&%\

@® ES (Ap=-0.032,T =370K)

03l A QAap=000=025 Y 0.100{ B QA (Au = -0.024,a = 0.25) 0.041 C QA (A = -0.032,x = 0.25)
° L) | | | ‘
S | 0.075 A ) 0.034
Q02 v } \ 7% *
0.0501 ° | / L 0.02 °
0.1{ o ° \
0.0251 ‘ o/ N ' 0.011 o B
° b lo M % *: 1%
0.0 = . o 5 ' ==t 0.000 2 :  lona oW goole—© & 8.
0.0 0.03 0.06 . 0. 12 5 0.0 0.03 0.06 0.09 0.12 0.15 0.0 0.03 0.06 0.09
12 , '
Q 0%N 2%N 4%N 6%N |[8%N i&t}@v\ 0.410%N 2%N 4%N 6%N | 8%N M 015 0%N 2%N 4%N 6%N (8%N b\k&?h\
— 1.0 ® ES(AL=0.0T=155K) @ ES (Au=-0.048,T = 137K) ) @ ES (Ap=-0.056T = 165K)
3 0.8 e D QA (A = 0.0,0 = 0.5) - E QA (An = -0.048,a = 0.5) F QA (A = -0.056,a = 0.5)
© : * v 0.10 o ¥
Q0.6 ‘
GL) ’ 0.2 ° I\ f | o
0.41 ‘ I i (\
| | .05 ° A
Q v 0.11 \ v 005 ‘:\f
0.2 \ ° i i \ \
E o | * e <] 1 @ (] I |
0.0 Py -~ // 0.0 1PN |4 0.00 = | On 122N R N
Iq_) 0.0 0.03 0.06 0.09 0.12 0.15 0.0 0.03 0.06 0.09 0.12 0.15 0.0 0.03 0.06 0.09 0.12 0.15
1.2 ] T T T
O%N 2%N  4%N 6%N “8%N - 10%N | 0%N 2%N 4%N 6%N | 8%N &&%\ 0%N 2%N 4%N 6%N | 8%N 10%N|
1.01 @ ES(Mu=00T=50K) 0.51 @ ES (Aj=-0.058,7=80K) 0.34 ® ES(Mu=-0.068T=70K)
G QA (A = 0.0,a = 1.0) H QA (A = -0.058,a = 1.0) | QA (A = -0.068,a = 1.0)
0.84 ) 0.4 1 » i
° ® |
oy ] ] 0.24 |
3 0.6 0.3 . | ¥
0.4 0.2 |
® 0.11 ‘
0.2 0.14 ° 5 7 %§
0.0 | 0.0 ©n b-‘ [ 4 0.0-2 o S\ “4%%
0.0 0.03 0.06 0.09 0.12 0.15 0.0 0.03 0.06 0.09 0.12 0.15 0.0 0.03 0.06 0.09 0.12 0.15
AET (eV) AET (eV) AET (eV)

Chemical potential

Fig. 4. Probability distribution of nitrogen-doped graphene configurations within a 50-site supercell for representative values of chemical potential and tem-
perature. (A to I) The orange and blue data points represent the data obtained from quantum annealing and from a complete set of possible configurations within the
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used in the quantum annealing runs. The Ap value is given in units of eV.
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high chemical potential regime. For example, comparing Fig. 4 (C
and I), within each concentration range, the probability of observing
higher energy structures increases.

Predicting the properties of real materials

In this section, we use the workflow outlined in Fig. 1 to predict the
bandgap deviation from linearity for Al,_,Ga N, also known as
the bandgap bowing and the bulk modulus for Ta,_ W, structures.
The QUBO model for both materials was generated using randomly
generated structures across the entire range of composition (see Ma-
terials and Methods). These QUBO models produce a mean abso-
lute error in the formation energy of 3.93 x 10™* and 3.84 x 107 eV/
unit formula for Al,_,Ga,N and Ta,_,W,, respectively.

Quantum annealing was carried out over an interval of chemical
potentials ranging from 0 to —0.12 eV for Al;_,Ga,N and from 0 to
—0.033 eV for Ta,_,W,. The information we extract from the an-
nealing is twofold. First, we select the low-energy structures obtained
at the end of the annealing to perform more expensive ab initio cal-
culations. Subsequently, we use the probability of observing specific
configurations as an approximation of the Boltzmann weights to
compute thermodynamic averages. To describe the materials more
accurately, we simulate the property of interest for a range of configu-
rations whose energy is below the thermal energy at room tempera-
ture (0.025 eV). We calculated the bandgap for 257 Al,_ Ga,N
structures using the CRYSTAL23 (34) code and the elastic tensor ele-
ments for 128 Ta,_ W, structures using VASP (35). Therefore, we

can calculate the average composition as a function of the chemical
potential as follows

1
(x)= Y wex (5)
x=0

where (x) is the average composition and w, is the fractional contri-
bution of structures with composition x, both observed at potential
Ap. This grand canonical representation of the system allows for a
more realistic description of the material in an experimental setting
where the observed composition corresponds to the average of re-
gions having varying compositions. The value of (x) relative to Ap is
represented by the dark blue data points in Fig. 5 (A and C). The
lighter blue points represent the distribution of compositions ob-
tained by the annealer around the average value.

We now focus on the calculation of the bandgap deviation from
linearity for Al,_ Ga,N, also known as the bandgap bowing, which
breaks Vegard’s law. The light blue points in Fig. 5 represent the
bandgap bowing calculated for the 257 structures selected from the
low-energy configurations returned by the annealer. We then calcu-
late the same property within the grand canonical ensemble repre-
sentation of the system by using the same approach as in Eq. 5

1
E, = ZO w,E} (6)
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Fig. 5. Quantum annealing-assisted prediction of real materials properties. (A and C) Average composition x in Al,_,Ga,Nand Ta,_,W, as a function of the chemical
potential Ap (dark blue data points). The light blue points represent the interval of compositions returned by the QA. (B) Al,_, Ga,N bandgap bowing as a function of the
gallium content. The light blue points depict the values calculated for the low-energy configurations at each composition from Alg,Ns, cell to the Gas,Ns, cell. The orange
line depicts the bandgap bowing within the grand canonical ensemble calculated using Eq. 6. (D) Bulk modulus as a function of the tungsten ratio in Ta,_, W,. The blue data
points represent the values obtained within the grand canonical ensemble calculated using Eq. 7. The orange data points are the experimental values obtained from (64).
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where E_ is the calculated bandgap, w, is the fractional contribution

of structure Al,_,Ga,N, and Ejis the average bandgap for the lowest

energy configurations having composition x, both observed at po-
tential Ap. The solid orange line in Fig. 5 depicts the average value of
the bandgap bowing calculated using Eq. 6. The hatched area dis-
plays the bandgap Ej region used in Eq. 6.

Assuming a parabolic dependence of the bandgap on composition,
the bowing parameter b can be formulated using the equation:
E (x) =f(x) — bx(1—x), where f(x)=(1 —X)E,(0) + xE (1) is the
linear dependence of the bandgap on composition. Here, E,(0) and
xEg(1) are the bandgap values of the end components. From the orange
line in Fig. 5B, we calculate the bowing coefficient b = 0.67, which falls
within the range of values b= 0.62 (+ 0.45) (52) obtained experimentally.

The QUBO model constructed from DFT-derived formation en-
ergies has positive Q; interaction terms. This coupling energetically
favors configurations in which neighboring sites are occupied by
different atom types (i.e., Al-Ga pairs), thereby promoting local dis-
order in the resulting solid solutions. This preference for disorder is
consistent with the well-established explanation for the bandgap
bowing observed in Al,_,Ga,N solid solutions. The difference in
electronegativity and atomic potentials between Al and Ga atoms
leads to fluctuations of the electronic potential landscape. These
fluctuations introduce a nonlinear perturbation to the band struc-
ture, particularly at the band edges, which manifests itself as a
downward bowing of the bandgap as a function of composition
(53). Random alloys, which maximize such disorder, exhibit stron-
ger bowing than ordered configurations (54).

The same approach was used to calculate the bulk modulus (K)
of Ta,_,W,, with the findings presented in Fig. 5D. The bulk modu-
lus determined using the grand canonical approach is given by

1
K,= ) w, K ?)
x=0

where K, is the calculated bulk modulus, w, is the fractional contri-

bution of structure Ta, _, W, and K7 is the average bulk modulus for
the lowest energy configurations having composition x. Despite a
minor overestimation of the bulk modulus, also observed for pure
Ta(AK y,_ppr = 4.21 X 107> Mbar)and W (AK,_ppr = 5.99 X 10~
Mbar), the trend of the bulk modulus with respect to the W ratio
calculated using the grand canonical method aligns closely with the
experimentally observed data, thus further validating this method.
The workflow we developed can be applied to the study of any
material with substitutional disorder, regardless of the energy method
used to build the QUBO model. It is tailored to current D-Wave QAs,
which have limited connectivity, by creating a QUBO model that
only includes interactions with the nearest and next-nearest neigh-
bor sites in the lattice and introduces the chemical potential to tune
the composition of the material. This model requires fewer qubits to
run on QAs than a QUBO model with penalty terms, making it suit-
able for large supercells. Furthermore, we illustrated that this method
offers significantly improved scaling compared to the commonly
used constrained QUBO model approach. We demonstrated how the
result of running the quantum annealing multiple times can be inter-
preted as a Boltzmann distribution within the grand canonical ensem-
ble, and the QUBO terms can be scaled to explore the configurational
space at different temperature regimes. The method we presented
offers substantial advantages over previously developed classical and

Camino etal., Sci. Adv. 11, eadt7156 (2025) 6 June 2025

quantum approaches in the study of disordered materials allowing
for the grand canonical simulations of configurational spaces whose
size is too large to be tackled by classical computers.

MATERIALS AND METHODS

Materials

To show the versatility of the method presented in the main text,
we have applied our approach to nitrogen-doped graphene (28, 29),
Al,_,Ga,N (30, 31), and Ta,_ W, (32, 33). The size of the super-
cells we used is limited by the available computer resources re-
quired to run the DFT training configurations, and here we used
repeat cells containing 50 carbon atoms, 54 cations, and 64 metal
sites, respectively, which are depicted in Fig. 6. With rapidly in-
creasing computer resources, we anticipate that larger system sizes
will be routinely explored using this efficient approach in the
near future.

DFT calculation details

The graphene and Al,_,Ga,N DFT calculations were performed
using the CRYSTAL23 code (34), which builds crystalline orbitals
from a localized Gaussian basis function. The calculations used the
B3LYP functional along with the revised pob-TZVP basis set (55),
incorporating polarization, for all the elements. In the CRYSTAL23
code, the truncation criteria of the Coulomb and exchange infinite
lattice series are controlled by five thresholds, which were set to 9
(T1 to T4) and 18 (T5). The SCF convergence threshold for the
energy was set at 10~° Hartree for the SCF convergence and 107°
Hartree for structural relaxation. The reciprocal space sampling is
based on a regular Pack-Monkhorst sublattice grid centered at the
I" point, with shrinking factors 12 and 24 for graphene calculations
and 8 and 16 for Al,_,Ga,N. The CRYSTALpytools (56) Python
library was used to interact with the CRYSTAL23 input and output
files and transform them into pymatgen objects for further post-
processing.

The VASP code was used for the TaW calculations. Using plane-
wave basis functions, this software is better suited for the simulation of
metals and metal alloys. We have used plane-wave DFT as implemented
in VASP (35, 57-59), using the Perdew-Burke-Ernzerhof (PBE) GGA
functional (60), for electron exchange and correlation with the projec-
tor augmented wave method (61) to model the interaction between
core and valence electrons (including five and six valence electrons for
Ta and W, respectively). The total energy of the 64-atom fcc supercell
was calculated using a 350-eV plane wave cut off and a 4 X 4 X 4
I'-centered Monkhorst-Pack (62) k-point mesh, which provided con-
vergence in total energy up to 2 X 107> eV (a 500-eV cutoff was used
for relaxations of bulk structures). The elastic constants C;;, C;», and
Cy4 were computed using the finite displacement approach available in
VASP, from which the bulk modulus was derived.

The use of symmetry to train the QUBO model

Because DFT calculations can be computationally expensive, we
aim to train the QUBO model from as few calculations as possible.
To achieve this, we used the concept of SICs. In a supercell contain-

ing N, fully occupied by N, .+ and N, 5 atoms, the number of possi-
ble configurations is
N _ N, sites !
config = N 1IN, ! ®)
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Graphene

TOP

PERSPECTIVE

Fig. 6. Graphene, AIN, and Ta supercells used in this work. The supercells contain 50, 108, and 64 atoms, respectively. For Al,_,Ga,N, only the cation sublattice was

required in the QUBO model. The cif files for these structures can be found in (65).

depending on the symmetry of the material and size of the supercell,
the N4, configurations can be grouped into classes of symmetry
equivalent configurations (SECs), where class i contains NZ,SEC struc-
tures. By selecting one representative per class, we obtain the set of
NSIC structures that represent all possible configurations within the
supercell approximation. Several tools exist to calculate the SIC of a
supercell, such as those reported by Grau-Crespo (14), D’Arco (63),
and Mustapha et al. (15). The latter, implemented in CRYSTAL23 (34)
via the CONFCOUNT keyword, is a linear-scaling method. However,
the current implementation of CONFCOUNT is limited to supercells
containing a maximum of 62 sites. Therefore, this approach was used
in the nitrogen-doped graphene to obtain the full set of configura-
tions up to a nitrogen atom concentration of 14%. The QUBO energy
of these structures was used to calculate the Boltzmann distribution
from an exhaustive search. This is compared with the probability dis-
tribution resulting from the quantum annealing run in different
chemical potential temperature regimes reported in Fig. 4.

To train the QUBO model for Al,_,Ga,Nand Ta, ,W,, we gen-
erate the structures randomly, ensuring that they are symmetry in-
dependent. Then, we select only a subset of SICs comprising N3
structures. For each SIC, we calculate its DFT energy upon geome-
try relaxation at constant pressure and assign it to all the N*© struc-
tures in the same symmetry class. The set of all SECs, containing
Ntsrfg structures, is used to train the QUBO model. The same proce-
dure is repeated for the structures used to test the model.

Using this symmetry-enhanced approach, we obtain a relatively
large training set from a very limited number of DFT calculations.
The size of these subsets is reported in table S1. The N, ,;, and N,
structures used to train and test the model cover the range of com-
positions of interest for the different materials (C,4N; to C,Nj,
Al;;Ga; N, to Al; Gag; N5, and Ta;, W, to Tag; W)).

Selecting the desired composition

The QUBO model is an unconstrained optimization technique.
Constraints, such as the composition of structures, can be imposed
through penalty functions. In our previous work [Section F in (36)],

Camino etal., Sci. Adv. 11, eadt7156 (2025) 6 June 2025

we demonstrated the use of penalty functions to enforce the desired
number of vacancies in graphene. Imposing a constraint on the
composition of the returned structures results in a fully connected
QUBO model, which scales poorly on current QAs, as depicted
in Fig. 2. On the other hand, the biases Q;; are already present in the
model and changing their values will not affect the mapping of
the problem to the hardware. In this section, we discuss how, using
the concept of chemical potential, we can tune the composition of the
configurations returned by the QA by modifying the diagonal terms
of the QUBO model only.

In the main text, we presented a simple way of obtaining Ap in
the case of a two-component material. Here, we discussed a more
general derivation based on thermodynamic considerations. In gen-
eral, the chemical potential of species x* in phase i is defined as

W= 0G
x ont
“/Tp

where G is the Gibbs free energy, and n; . is the number of particles

)

(or moles) of species y* in phase i. The chemical potential represents

the energy gain/loss when one particle (atom, formula unit, or mole)

of species x4 moves from one phase to another. The reservoir in our

grand canonical ensemble contains both the y* and the x® species.
The partition function in the grand canonical ensemble is

B
—AE + YN,

N,
X
T = ; M;exp

z

n

= M;exp

AE

_"7i (10)
ks T

1

Il
<)

where AEJ; and M; are the formation energy (Eq. 3) and the multi-
plicity of configuration 7, and ij and Hy, are the number of atoms y;

and its chemical potential in the reservoir. The probability of ob-
serving the system in state i is defined as

—AEif
kT

pi= lMiexp

! =

(11)
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The material and the reservoir form a closed system, indicating
that the total number of atoms ' remains constant

N* =NX + N¥ (12)

where N is the total number of ¥’ atoms, Nﬁﬁ: is the number of ¥’
atoms in the material, and N is the number of ' atoms in the res-
ervoir. In a binary material, each site in the structure is occupied by
either an atom ¥4 or 8
A B
N,, =Nt + NX (13)
A
where N, is the total number of sites in the material, and N and
N¥ are the number of * and %® atoms in the material, respectively.
. . . A
The energy of a y* atom in the material is denoted by €*", whereas

the energy of a y® atom is represented by e".
We define the total energy of the system (material and reservoir) as

TOT A A B B A A B B
E'®" = Nt +N¥et + Nt + N px

ETOT= <Nm -NZ )eX“ +NLet 4 (NX" ~N,,—N' ) w4 N2

reservoir

material

Using Eq. 15, we can determine the change in energy with respect to
the number of atoms ® in the material

aETOBT - _ SXA + SXB _ I,lXA " pXB
aN,)qf1 —— (16)

constant >0 Ap

This equation links the change in the concentration of y® atoms in
the material with its chemical potential. The concentration of y?
atoms predicted by the QA can therefore be controlled by adjusting
the difference in the chemical potential, Ap = p,5 — pa.

The effect of Ap on the QUBO energy levels is depicted in the
panel titled “Chemical potential” of Fig. 7. Going from left to right,
we plot the schematic energy levels corresponding to larger nega-
tive values of Ap. Using Ap = 0, the lowest state energy is zero,

-~ 2NN ~ v (14)  which corresponds to the trivial solution of the structure contain-
material reservoir ing only y* atoms. As the magnitude of the potential increases,
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Fig. 7. Schematic representation of the effect of the chemical potential (A1) and temperature on the QUBO energy levels. In the panel titled “Chemical potential,” Ap
decreases from left to right. With this decrease in chemical potential, materials that have higher concentrations of x# atoms become more energetically favorable. In the
panel titled “Temperature,” the term o decreases from left to right, which corresponds to an increase in the temperature of the Boltzmann distribution we are simulating.
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materials that have higher concentrations of ¥® atoms become
more energetically favorable.

Introducing the temperature in the QUBO model

The effect of temperature on the probability distribution is intro-
duced in the QUBO model through the scaling factor o, which can
take values between 0 and 1. Before running on a QA, the D-Wave
API Ocean transforms the QUBO model into an Ising Hamiltonian

E(s)= Zhi5i+ ZJIjsisj

j>i

s;€{+1, -1} (17)

by usings; = (2xi - 1). In D-Wave annealers, the standard approach
is to maximize h; and J;; by using their entire possible value range.
In the D-Wave Advantage QPUs, these are h; € [—4, +4] and
Jij € [—=1, +1]. This procedure increases the energy difference be-
tween the ground state and the excited states. Therefore, it maxi-
mizes the probability of obtaining the ground state at the end of the
anneal. This corresponds to the low temperature regime, where, ac-
cording to the Boltzmann distribution, ground-energy states are
predominant. If finding the ground state (the global minimum of
the configurational energy landscape) is the goal of our simulation,
this setting can be used. However, if we are interested in exploring
probability-temperature distributions, we need to introduce a ficti-
tious temperature in our Ising model. This can be achieved by de-
activating the automatic scaling option (auto_scale = False) and
scaling the values in the Ising model so that the effective range for
h; and J; decreases. In this regime, the energy difference between
the ground state and excited states can be tuned. When the param-
eter a is sufficiently small, nonadiabatic transitions are observed. In
the main text, we discuss how the resulting distribution of configu-
rations can be linked to a Boltzmann-like distribution.

The effect of the temperature on the QUBO energy levels is
depicted in the “Temperature” panel of Fig. 7. Going from left to
right, we plot the schematic energy levels corresponding to higher
temperatures (smaller o). Unlike changes in the chemical poten-
tial, varying the temperature does not change the ranking of the
configurations in terms of their energy. With an increase in tem-
perature, we observe two effects on the energy levels. First, the
energy difference between structures with varying concentrations
of x? atoms becomes smaller. Second, the energy range for differ-
ent configurations of species y* and %® within a fixed composition
is also reduced.

Building the QUBO model

In the QUBO model used in this study, the Q matrix (Eq. 1) incor-
porates all the interactions that define the energy of a structure as
a function of the occupancy of its sites. In our previous work (36),
which focused on the QA-assisted simulation of vacancies in gra-
phene, we built the QUBO matrix based on the knowledge that a
vacancy will result in broken bonds that will increase the energy of
the structure. Here, we aim to build a QUBO matrix that can be
used to calculate the energy of real-world materials. We achieve
this by training the QUBO model using data obtained from DFT
calculations and minimizing the following expression

2
of k
> (o8- 2 Toay 09
k i
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where k labels the configurations used in the training set and we use
the adjacent matrix with elements Af.” defined as 1 if i and j are clos-
er than (n+ 1)-th nearest neighbors and 0 otherwise. The formation

energy AE{ is defined in Eq. 3.

We tested the effect of the number of neighbors, defined by the
A*" matrix, included in the model on the precision of the energy
calculated using the QUBO model with respect to the DFT energy
(see table S2 in the Supplementary Materials). Including more
neighbors in the matrix AR results, in theory, in a more refined en-
ergy model because more interactions are included. However, the
model also incurs overfitting. Furthermore, including more ele-
ments in the A*" matrix results in a more connected QUBO model.
For the results reported in the main text, we used A*" (interactions
up to the next-nearest neighbors) when training the QUBO model,
which represents a compromise between the accuracy of the model
and the number of couplings.

Quantum annealing parameters

All quantum annealing calculations were performed using the D-
Wave Advantage QPU through Leap using the associated Ocean
Python API (37). The mapping of the QUBO (Ising) problem to
hardware was performed using the minorminer library. We used the
default values for the annealing time (20 ps) and the chain strength
calculated using the uniform torque compensation method. For
each of the results reported in this article, quantum annealing was
run 1000 times. Therefore, each probability is calculated from a
sample of 1000 configurations.

Supplementary Materials
This PDF file includes:
Supplementary Text

Tables S1and S2
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