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P H Y S I C A L  S C I E N C E S

Exploring the thermodynamics of disordered materials 
with quantum computing
Bruno Camino1*, John Buckeridge2, Nicholas Chancellor3, C. Richard A. Catlow1,4,5,  
Anna Maria Ferrari6, Paul A. Warburton7,8, Alexey A. Sokol1, Scott M. Woodley1*

Alloys, solid solutions, and doped systems are essential in technologies such as energy generation and catalysis, 
but predicting their properties remains challenging because of compositional disorder. As the concentration of 
components changes in a binary solid solution A(1−x)Bx

 , the number of possible configurations becomes compu-
tationally intractable. Algorithms used in classical optimization methods cannot avoid assessing high-energy 
states where, for example, simulated annealing is designed to initially spend computational effort. We introduce 
a scalable, practical, and accurate approach using quantum annealing to efficiently sample low-energy configura-
tions of disordered materials, avoiding the need for excessive high-energy calculations. Our method includes tem-
perature and simulates large unit cells, producing a Boltzmann-like distribution to identify thermodynamically 
relevant structures. We demonstrate this by predicting bandgap bowing in Al

1−xGaxN and bulk modulus varia-
tions in Ta

1−xWx
 , with results in excellent agreement with experiments.

INTRODUCTION
A widely used strategy in materials design is to explore multicompo-
nent disordered materials and to achieve optimal physical and chem-
ical properties by modifying their composition. The compositional 
variation may result in amorphous structures, interstitial substitu-
tion, phase transitions, and the formation of defects. Often, crystal-
linity is maintained, and systems such as alloys, solid solutions, and 
heavily doped materials consist of crystalline materials in which one 
or more types of atoms, ions, or vacancies are incorporated into 
the crystal lattice of another substance without altering the overall 
crystal structure. These materials have many technological applica-
tions, including catalysis (1), energy storage (2–4), optoelectronics 
(5), nuclear fusion reactors (6), and lightweight materials (7).

The bulk phases of ordered crystalline phases can be uniquely 
defined by a unit cell with periodic boundary conditions, atom 
types, and their positions. Using this periodic model, a wide range 
of properties—including elastic constants, static and high-frequency 
dielectric constants, and phonon and electronic band structures—
are routinely screened using computational chemistry and materials 
science techniques. Although the use of periodic models is ideal for 
ordered systems, it presents challenges in modeling disorder. In the 
study of disordered materials, we can consider random occupancy 
using analytical statistical approaches such as the virtual crystal ap-
proximation (VCA) (8,  9) or coherent potential approximation 
(CPA) (10). Cluster expansion (CE) methods (11–13) include fur-
ther refinement by explicitly modeling correlation effects. All these 

approaches are applicable to systems where species of the same oxi-
dation state are mixed.

An alternative commonly used approach that accounts for long-
range interactions, is not constrained to the same oxidation states, 
and is adopted in our work is to use a statistical ensemble approach 
and continue to use periodic boundary conditions applied to a unit 
cell to simulate an infinite number of atoms in the material. How-
ever, the limited number of atoms within the unit cell also restricts 
the total number of possible configurations that may be simulated 
and therefore may not capture the correct physics of the system. In 
such an approach, the unit cell should be increased to check that the 
physics is not dependent on the chosen simulation box size. Super-
cells are typically constructed from the primitive cell(s) of the end 
members and with the atom type of each site to be determined un-
der the constraint of a chosen composition. The number of possible 
configurations depends on the ratio of the end members of the com-
position (e.g., a simple binary mix, χA

x
χB
(1−x)

 , has a maximum when 
x = 0.5) and grows factorially with respect to the number of sites in 
the cell and the number of different atom types. The chosen size of 
the supercell is restricted to what is manageable with the available 
computer resources, and the model works under the assumption 
that any key pattern can be represented or built from the patterns 
that are possible to model within the chosen supercell.

The main goal of the statistical analysis of disordered materials is 
to determine the configuration-energy relationship. In this ap-
proach, the effect of temperature can be explored as well as other 
external physical parameters. Thus, the aim is to consider as many of 
the thermodynamically accessible states as necessary to gain a suf-
ficient representation of the system, or material of interest, as op-
posed to just targeting the ground state. The challenge here is to be 
able to generate and evaluate a manageable finite set of configura-
tions that correctly represent the system, i.e., both qualitatively for 
the required physics and quantitatively for the required accuracy. 
With limited computer resources, there is tension between the level 
of theory used to evaluate each configuration and the number of 
configurations that can be evaluated. In practice, fewer states are 
sampled (because of the chosen size of the supercell), and a lower 
level of theory is used, for example, switching from an electronic 
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structure approach to interatomic potential (IP) or machine-learned 
(ML) potential techniques. Energy functions that are cheaper to 
evaluate, such as model Hamiltonians, MLs, or IPs, can be parame-
terized or trained using a higher-level theory, which is pursued here. 
Choosing a smaller supercell may allow an exhaustive evaluation at 
a higher level of theory of the reduced sample space, particularly if 
symmetry is taken advantage of (14–16). When working with a larg-
er supercell, for which an exhaustive search might not be possible 
due to the size of the configuration space, global optimization tech-
niques such as Monte Carlo, simulated annealing, and genetic algo-
rithms (17–20) can be used to identify low-energy configurations 
(which dominate the physics).

With the advance in quantum computation, a new family of op-
timization techniques are emerging where the search and evaluation 
of the potential energy landscape is conducted by a quantum com-
puter. There are two relevant examples of combining approximated 
energy methods and classical, quantum-inspired, and quantum-
optimization techniques that have proved successful in the configu-
ration analysis of disordered materials. Choubisa et al. (21) used the 
CE method and a Fujitsu digital annealer (DA) to successfully per-
form the configuration analysis of quaternary Cu-Ni-Ag-Pd materi-
als in a face-centered cubic (fcc) lattice. Furthermore, Gusev et al. 
(22) combined quantum annealing and continuous optimization to 
perform crystal structure prediction of ionic materials.

A key advantage of quantum annealing is that, under ideal condi-
tions, it provides a guarantee of finding the global minimum of the 
objective function. Classical approaches—including Monte Carlo, 
simulated annealing, genetic algorithms, and machine learning–
based methods—do not offer such guarantees and can become 
trapped in local minima, particularly in complex or high-dimensional 
energy landscapes. Although ML IPs and pattern-based optimizers 
can accelerate sampling, they typically require large training datasets 
and careful hyperparameter tuning.

In this work, we consider a system small enough (nitrogen-doped 
graphene) to demonstrate that quantum annealing can reliably re-
cover low-energy configurations across a range of compositions. Al-
though no quantum advantage is expected at this scale, the results 
serve as a proof of concept. As quantum hardware continues to im-
prove in size, coherence, and connectivity, the ability to guarantee 
globally optimal solutions may become a significant advantage for 
materials discovery and design.

In general, at present, classical methods such as Monte Carlo, 
simulated annealing, and genetic algorithms outperform quantum 
approaches for configurational sampling, particularly in terms of 
scalability and solution quality. This is expected as both the algo-
rithms and the supporting hardware for classical methods have been 
developed and optimized over several decades. By contrast, quantum 
annealing is a relatively recent technology. Nevertheless, when oper-
ated in the quantum coherent regime, quantum annealers (QAs) can 
outperform classical heuristic solvers (at least when quantified by 
certain performance metrics) in the simulation of the dynamical be-
havior of magnetic spin-glass materials at a scale of a few hundred 
spins (23). Although current quantum hardware does not yet offer a 
practical advantage for arbitrary very-large-scale materials problems, 
it is important to develop and test quantum-compatible algorithms 
now, in preparation for the point at which quantum devices reach the 
required level of maturity.

In the proof of concept presented in this paper, we show how to 
take advantage of D-Wave QAs (24) to explore the thermodynamics 

of disordered materials and crucially how we minimized the con-
straints to develop a model that works well on currently available 
annealers and scales much better than previously developed ap-
proaches, making complex systems accessible to our method. The 
technique we discuss provides notable improvements over recently 
developed classical and quantum methods for the study of disor-
dered materials, enabling grand canonical simulations of large con-
figurational spaces.

RESULTS AND DISCUSSION
Quantum annealing–assisted thermodynamic analysis of 
disordered materials
We present an approach that uses quantum annealing to explore the 
thermodynamics of disordered materials with a scalable model, ad-
vancing current methods. Quantum annealing is an optimization 
process designed to find the global minimum of a given objective 
function. It is particularly well suited to solving discrete combinato-
rial problems and has found applications across fields ranging from 
logistics to materials science. Quantum annealing belongs to the 
broader class of adiabatic quantum computing methods. The prin-
ciple behind it is to encode the solution to a problem into the ground 
state of a quantum system, and then guide the system into this state 
by evolving its Hamiltonian slowly enough that it remains in or near 
the ground state throughout the process.

The physical implementation used in this work is based on D-
Wave QAs (24), which use superconducting flux qubits arranged in 
a programmable network. Each qubit behaves like a quantum two-
level system, realized using superconducting loops interrupted by 
Josephson junctions. The system is cooled below 20 mK to minimize 
thermal excitations and environmental noise. At the start of the an-
nealing process, the qubits are placed in a transverse field that puts 
them into a quantum superposition of all possible states. As the 
transverse field is gradually reduced and the problem Hamiltonian 
is turned on, quantum fluctuations allow the system to tunnel 
through energy barriers, ideally ending in the ground state of the 
target Hamiltonian (where the problem of interest has been mapped 
to). In practice, imperfections and coupling to the environment may 
cause the system to evolve to a low-lying excited state. In this work, 
however, we show how the resulting Boltzmann-like distribution 
can be used to extract physically meaningful thermodynamic in-
formation.

A key constraint in superconducting flux-qubit quantum anneal-
ing is that only binary quadratic models can be directly mapped to 
the hardware. These include Ising spin models and Quadratic Un-
constrained Binary Optimization (QUBO) problems, which are 
mathematically equivalent under a simple transformation. In the 
QUBO formalism, the system is described using binary variables 
xi ∈ {0, 1} , and the objective function is expressed as

where the problem is encoded into the square matrix Q . The linear 
terms in the first summation originate from the binary nature of the 
xi variables, so x2

i
= xi because 02 = 0 and 12 = 1. In our work, the 

QUBO coefficients are derived from a physical model representing 
the chemical system of interest. The quadratic form captures pair-
wise interactions among sites in the supercell and can be viewed as 

E(x)=xTQx=
∑

i

Qiixi+
∑

i

∑

j>i

Qijxixj xi ∈{0, 1} (1)
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a second-order expansion of the system energy around a binary 
configuration space. Although higher-order interactions exist in 
real materials, the QUBO model offers a tractable and hardware-
compatible approximation that enables efficient sampling and op-
timization.

The workflow used in this work, summarized in Fig. 1, starts from 
the definition of the crystal structure within the unit cell of an end 
member that is expanded to create a supercell that enables the explo-
ration of mixed configurations. Each configuration is represented as 
a binary vector, and its energy is mapped to a QUBO model. The 
QUBO parameters are trained to reproduce results obtained from a 

small number of density functional theory (DFT) calculations on 
randomly generated configurations. By introducing a chemical po-
tential, we can tune the composition of the resulting configurations 
to represent any stoichiometry of interest. As discussed below, by us-
ing the chemical potential rather than enforcing a fixed stoichiome-
try, our approach is better suited for currently available QAs, like 
those developed by D-Wave, which are characterized by limited 
qubit-qubit connectivity. A scaling factor in the QUBO model is used 
as a temperature parameter in our configurational analysis. In this 
setup, the QA works as a thermal sampler. By completing a series of 
quantum annealing runs, we obtain a Boltzmann-like distribution of 
QUBO energies. We demonstrate that these Boltzmann-like distri-
butions closely represent those obtained from an exhaustive search. 
This is similar to previous quantum simulation works (25, 26), but it 
extends these approaches to thermal sampling of solid solutions, an 
important topic in materials science.

To ensure that the analysis is carried forward on structures repre-
senting unique configurations, a symmetry analysis can be per-
formed on the structures returned by the QA to obtain the subset 
of symmetry-independent configurations (SICs). The energy of the 
SICs can be determined at a more advanced level, such as DFT or 
through IPs. By repeating steps B to G in  Fig.  1, we can train the 
model with low-energy structures instead of random ones, thus bias-
ing it to explore low-energy regions of the configuration landscape. 
The structures obtained in step F can then be used to calculate the 
thermodynamic properties of the solid solutions in step H. For ex-
ample, using the distribution of energies and structures taken from 
step F and the target property (structural parameters, elastic and di-
electric response, phonons, electronic band structures, etc.) calcu-
lated as part of step G. An important advantage of the Boltzmann-like 
distribution returned by the QA is that it provides two complemen-
tary types of information. First, it identifies low-energy configura-
tions that can serve as input for more accurate calculations. Second, 
it provides approximate Boltzmann weights that can be used to com-
pute thermodynamic averages over configurations near a given com-
position, enabling direct comparison with experimentally measurable 
properties. The ability of the annealer to return accurate Boltzmann 
samples has been systematically quantified by Nelson et al. (27).

To show the versatility of the method, we apply our approach to 
three different types of materials, which have interesting technologi-
cal applications: nitrogen-doped graphene (28, 29) in catalysis and 
energy materials, Al1−xGaxN (30, 31) in optoelectronics, and Ta1−xWx 
alloys (32, 33) used as structural components in nuclear and rocket 
systems due to their high temperature strength, high melting point, 
and good corrosion resistance. The supercells used to simulate these 
materials are depicted in the Materials and Methods section.

Mapping the problem to a QUBO model
To solve a problem using quantum annealing, it must first be encoded 
into a form compatible with the constraints of the hardware. As dis-
cussed above, this means formulating the problem as a QUBO model, 
where the objective is to minimize a binary quadratic function.

In the context of configurational sampling in disordered materi-
als, the unknown atomic pattern within the material of interest is 
defined on a lattice for which the site occupancies are to be deter-
mined. We map the supercell structure onto a binary vector x , where 
each element xi ∈ {0, 1} represents the occupancy of site i. We focus 
on binary solid solutions, in which each site is occupied either by 
species χA or χB . In the case of Al1−xGaxN , for example, only the 

Fig. 1. Workflow for the thermodynamic sampling of solid solutions using 
quantum annealing. Starting from the top: (A) Build a supercell from the unit cell 
of an end member. (B) Train the QUBO model using DFT data, for example, for a 
subset of configurations. A chemical potential Δμ , included in the QUBO model, 
is used to tune the composition. (C) Repeat use of D-Wave QAs to generate 
(D) Boltzmann-like probability distributions for structures within a range of com-
positions. (E) Perform the symmetry analysis of the structures returned by the QA 
to (F) find the unique configurations. (G) Check the quality of results by using a 
higher level of theory, such as DFT, on selected configurations from those identi-
fied (F) and, if necessary, return to step (B) using the structures (F) to train the QUBO 
model. (H) Use results from (G) to calculate thermodynamic properties.
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cation sublattice exhibits configurational disorder, and therefore 
only the cationic sites are treated as active degrees of freedom in the 
optimization.

In our mapping for the three selected systems, χA represents C in 
nitrogen-doped graphene, Al in Al1−xGaxN , and Ta in Ta1−xWx , 
whereas χB represents N, Ga, and Ta, respectively. If xi = 0, χA is as-
signed to the lattice point i, and if xi = 1, it becomes χB . The QUBO 
model is constructed to yield an energy of 0 for pure graphene, AlN, 
and Ta (i.e., when all elements of the x vector are 0). Substituting χA 
atoms with χB atoms should result in an increase in energy. There-
fore, a penalty is added for the presence of χB in Qii and another 
energy term, Qij , accounts for the interaction of χB with other neigh-
boring sites, depending on which species occupies them. The task of 
the QA is to identify the binary vector x , obtained with such map-
ping, that minimizes the energy function, as defined in Eq. 1.

The QUBO model parameters Qii and Qij for the three targeted 
solid solutions are obtained using the linear regression of the DFT 
formation energies, of NSIC

train
 SICs with compositions in the range of 

stoichiometry of interest. The formation energy per active site 
(treated statistically) for the configuration k in the canonical ensem-
ble is calculated as

where Nas is the number of active sites; Ek is the total relaxed DFT 
energy per simulation cell of configuration k; Nχi

k
 is the number of 

sites occupied by species χi in configuration k; and Eχi is the energy 
of species i in its reference state. The reference states used in this 
work are pure graphene, molecular N2, AlN, GaN, Ta, and W. Each 
chosen configuration k is fully relaxed, that is, the training set only 
contains local minima. Further details of the DFT calculations and 
the optimization algorithm as implemented in the CRYSTAL23 
code (34) and VASP (35) are provided in the Materials and Methods 
section. Although the QUBO model is defined on a set of lattice sites, 
the effects of the relaxation of atoms occupying these sites are 
implicitly included. Our QUBO model contains coupling constants, 
Qij , up to and including the next-nearest neighbors.

Using the chemical potential to tune the composition
Consider using the basic QUBO model described above. As the QA 
is inherently an optimization machine, the configurations that are 
generated will typically be the trivial pure ground-state solution. 
The lowest QUBO energy structure, by construction, contains only 
χA atoms, that is, all the elements of the composition vector x are 
zero. However, here our interest is in mixed systems having a com-
position that is intermediate between the two end members. To 
model such compositions, one possible route is to impose a con-
straint on the number of χB atoms in the solution. Although this 
technique proved effective in crystal structure prediction (22), it 
results in a computationally expensive “all-to-all” fully connected 
QUBO model (as discussed in Materials and Methods). Because of 
the limited connectivity of current QAs, choosing fully connected 
QUBO models will result in long qubit chains and drastically limit 
the size of the problem that can be treated [see Appendix B of (36) 
for details]. By introducing the chemical potential, we can instead 
bias the solutions toward a specific concentration. The benefit of this 

technique is that it only adds diagonal elements to the QUBO model 
and therefore does not increase the connectivity (Materials 
and Methods).

In the chemical potential approach, we work within the grand 
canonical ensemble representation of the system. Consider a mate-
rial in equilibrium with a reservoir containing its constituent spe-
cies. Both the material and the reservoir are in equilibrium with a 
thermal bath. As the chemical potential of a particular species in-
creases, there will be an increasing energy gain as an atom moves 
from the reservoir into the material. The relative energy of state 
k becomes

where μχi is the chemical potential of species χi and ΔẼf

k
 is taken from 

Eq. 2. If we consider only Nas sites that are occupied by either χA or 
χB , then our energy term reduces to ΔẼf (n)

k
+ μχA +

NχB

Nas

(

μχB −μχA
)

 . 
The second term, μχA , is constant for all configurations and can thus 
be ignored (or set to zero). The concentration of χB atoms predicted 
by the QA can therefore be controlled by adjusting the difference in 
the chemical potential, Δμ = μχB − μχA . The effect of Δμ on the 
QUBO energy levels is discussed in the Supplementary Materials 
and the “Selecting the desired composition” section of the Materials 
and Methods.

The number of qubits needed to implement both the fully con-
nected and our QUBO models as a function of the problem size for 
graphene is displayed in  Fig.  2. The optimal mapping is obtained 
heuristically using the minorminer library distributed as part of the 
D-Wave Ocean API (37). The blue data points show the number of 
qubits required to map the problem using the QUBO model defined 
in Eq. 4, which only has first and second nearest neighbor interac-
tions (see Eq. 18). The orange data points show the number of qubits 
required to map the problem using a fully connected QUBO model 
to solve the same problem where the composition of the returned 
structures has been enforced by a penalty function [for more infor-
mation on how to introduce the penalty function into the model, see 
ref. (36)]. When using the latter approach, the number of qubits 
quickly increases beyond the capacity of current QAs. The last or-
ange data point corresponds to a 9 × 10 supercell containing 180 atoms. 
Mapping the next size (10 × 10 supercell) would require more qubits 
that are currently available on the Advantage QPU (quantum pro-
cessing unit). On the other hand, using the former approach, we 
are able to map solid solutions based on a supercell containing up to 
760 atoms. The images on the right side of the “mapping to hard-
ware” panel show the physical qubits on the QPU needed to repre-
sent the 50-atom graphene problem by using the constraint and 
chemical potential approaches.

An aspect to consider in extending this approach to larger sys-
tems is the scaling behavior of the QUBO model and the limitations 
imposed by hardware connectivity. The current method scales lin-
early with the number of atomic sites in the supercell under the 
ideal condition where each site can be directly mapped to a single 
physical qubit. However, this scaling is not universal and depends 
on several factors. First, the effective connectivity of the model is 
that determined during its construction, particularly through the 
choice of how many neighbor shells are included in the QUBO 
model (as controlled by the parameter n in Akn

ij
 in  Eq.  18). The 

ΔẼ
f

k
=

1

Nas

(

Ek−
∑

χi

N
χi

k
Eχi

)

(2)

ΔE
f

k
= ΔẼ

f

k
+

1

Nas

∑

χi

N
χi

k
μχi (3)
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number of interactions per site depends on the symmetry of the ma-
terial and the local coordination environment. Systems with higher 
coordination numbers require more pairwise terms, increasing the 
qubit connectivity requirements. Second, scalability is constrained 
by the physical topology of the quantum annealing hardware. The 
present results were obtained using D-Wave’s Advantage topology, 
where each qubit is connected to up to 15 others. As future genera-
tions of QAs offer improved connectivity, the scaling of the chemical 
potential approach is expected to improve (i.e., the slope of the or-
ange curve in Fig. 2 will become less steep).

An important advantage of the chemical potential approach over 
methods requiring all-to-all connectivity is that it offers flexibility: 
The model can be tuned to match the available hardware. For small-
er systems or systems with simpler topologies, a greater number of 
neighbors (that is, n in Akn

ij
 in Eq. 18) can be used to capture more of 

the local environment. For larger supercells or systems with dense 
local bonding, n can be reduced to ensure that the QUBO model 
remains compatible with hardware constraints. In such cases, it is 
essential to validate the truncated model by assessing its accuracy 
on a test set, for instance, calculating the RMSE of the test set (as 
discussed in the Supplementary Materials).

To introduce the chemical potential into our QUBO model, we 
can fit the Qii and Qij terms using the canonical formation energies 
as defined in Eq. 2 and then add the Δμ term to the Qii terms so that 
the lattice sums in Eq. 1 become

We treat the chemical potential as an adjustable parameter to 
tune the concentration of χB atoms in the structures returned by 
quantum annealing, but in a real experimental situation where a 
material is grown from constituent elements, constraints are placed 
on the allowed values of the chemical potential consistent with the 
formation of that material with respect to competing phases (38). In 
principle, we could relate Δμ to a realistic value with reference to our 

energy model of choice. However, doing so is not the focus of our 
current work as here we aim to demonstrate the applicability of the 
quantum annealing procedure to the analysis of disordered systems. 
A comprehensive analysis of the energetics of competing phases is 
beyond the scope of this study.

We first illustrate the use of our chemical potential approach on 
nitrogen-doped graphene using D-Wave QAs. In Fig. 3A, we plot the 
average nitrogen concentration obtained for a range of Δμ values. For 
Δμ > −0.04 eV (noting that Qii = 0.08 eV), only pristine graphene 
structures are observed. For values of Δμ < −0.04 eV, structures 
containing nitrogen atoms are found. In Fig. 3B, we plot the nitrogen 
concentration distribution for five different values of Δμ . When 
Δμ = −0.032 eV, 90% of the structures found by the annealer are 
pristine graphene and 10% of the structures contain one nitrogen 
dopant. As the magnitude of Δμ increases, the likelihood of struc-
tures with a higher number of nitrogen atoms also increases, causing 
the peak of the distribution to shift toward higher concentrations.

Introducing the temperature into the model
Temperature has been incorporated into our simulations. It is im-
portant to note that this temperature should not be mistaken for the 
hardware temperature, which, in the case of the D-Wave Advantage 
QPUs, remains below 20 mK. First, we consider what happens in the 
D-Wave experiments. If the annealer were operated at 0 K without 
nonadiabatic transitions, it would yield only the lowest energy state 
configuration. Operating at a finite temperature introduces the pos-
sibility of occupying excited states, resulting in a configuration that 
maximizes the system entropy, which means that the final-state dis-
tribution will follow a Boltzmann-like distribution (39–42).

One approach to thermally sample is simply to change the physi-
cal temperature of the annealer. This approach has been used in sem-
inal D-Wave experiments (43), but it is neither practical nor available 
through the device API and, therefore, a different approach is re-
quired to incorporate temperature into our simulations. We achieve 
this by changing the energy scale of the problem by introducing a 

E(x,Δμ) =
∑

i

(

Qii+Δμ
)

xi +
∑

i

∑

j> i

Qijxixj xi ∈ {0, 1} (4)

Fig. 2. Mapping the problem to hardware. In the “mapping to hardware” panel, we plot the number of qubits required to map the QUBO problem for graphene to 
hardware when the chemical potential approach (blue line) and constraints (orange line) are used. The values were obtained by using the find_embedding function part 
of the minorminer library distributed via the D-Wave Ocean API. The images on the right show the physical qubits that the 50-atom graphene problem is assigned to on 
the QPU. These visuals were created with the dwave.inspector tool, which is included in the D-Wave API.
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parameter that we define as α, which is inversely proportional to the 
temperature and has a range of values between 0 and 1 (40, 41, 44). 
Before running the quantum annealing, the D-Wave API scales the 
terms of the QUBO model to use the full energy range allowed by the 
annealer. From a Boltzmann distribution point of view, this corre-
sponds to sampling at the lowest temperature permitted by the an-
nealer. In this scenario, the global minimum (or minima) is more 
likely to be returned. However, in the context of solid solutions, we 
might be interested in a thermal sample at different temperatures, 
where the multiplicity of the states plays a role. To achieve this, the 
automated scaling option can be disabled and the Qii and Qij terms 
can be manually scaled using the parameter α.

The sample at the desired temperature can be obtained by trial and 
error by using several values of α until the desired temperature is ob-
tained and the corresponding temperature obtained by postprocessing 
(40, 41). Once two points are determined, any temperature between 
these points can be interpolated or points outside extrapolated.

Previous studies have demonstrated the utility of this approach 
for information theory tasks, which require a distribution that maxi-
mizes entropy under certain conditions (39) and for neural networks 
such as Boltzmann and Helmholtz machines (45–51). In this work, 
we focus on sampling distributions that span from low temperature 

regimes, where the ground state is more likely to be observed, to high 
temperatures, where state degeneracy becomes increasingly relevant.

We tested the effect of changing the values of α for the nitrogen-
doped graphene system. In Fig. 3C, we show the average concentra-
tion of nitrogen atoms in the 50-atom graphene supercell as a 
function of α. For values of α > 0.6, most of the structures returned 
by the QA are pure graphene. This is the behavior that we expect at 
low temperatures, where only the ground state is observed. For val-
ues of α  <  0.6, structures containing nitrogen dopants are found. 
In Fig. 3D, we plot the distribution of the nitrogen concentration of 
the structures for four values of α. As the temperature increases (α 
decreases), the distributions become flatter and shift toward a higher 
nitrogen concentration, as predicted by the Boltzmann distribution.

Temperature and chemical potential regimes
In this section, we investigate the probability distributions generated 
by QAs as a function of both chemical potential and temperature. 
These are benchmarked against the complete set of configurations for 
the same supercell. Our goal is to establish the reliability of our quan-
tum annealing approach, which can then be applied to larger and 
more complex systems. The chosen test system is nitrogen-doped gra-
phene using the 50-site supercell depicted in the “Materials” section of 

Fig. 3. Analysis of the nitrogen concentration in a 50-atom graphene cell for a range of chemical potential and temperature values. The results displayed were 
obtained by postprocessing D-Wave quantum annealing data resulting from solving Eq. 4, where the QUBO model was trained from DFT data (Materials and Methods). 
The quantum annealing was run 1000 times. “Chemical potential” section: The plot in (A) displays the average nitrogen concentration as a function of the chemical poten-
tial. In (B), we plot the distribution of nitrogen concentration for five values of Δμ . The value of α = 1 was used to generate these plots. “Temperature” section: The plot in 
(C) displays the average nitrogen concentration as a function of the temperature introduced in the model through the α parameter. In (D), we plot the distribution of ni-
trogen concentration for five values of α. The value of Δμ = 0 was used to generate these plots.
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the Materials and Methods. The exhaustive search, or complete set 
approach is manageable for investigating molar concentration of ni-
trogen atoms that is less than 15%. For 14% doping, there are more 
than 1.18 × 108 configurations. Of these, there are a more manageable 
397,227 SIC configurations, which we obtained using the configura-
tional analysis tools implemented in the CRYSTAL23 (34) code.

In Fig. 4, we present the probability distributions collected using 
D-Wave QAs (depicted in orange) and those obtained classically 
from the exhaustive set of configurations (blue). To enable a visual 
comparison of probabilities across different sampling methods, such 
that the same structures always appear at the same energies in the 
graphs, the energies associated with each configuration i are plotted 
with respect to their relative formation energies ΔẼf

i
 , rather than the 

full grand canonical energies ΔEf

i
 (these quantities are defined 

in Eqs. 2 and 3). This scaling effectively removes the contribution of 
the chemical potentials μχi , ensuring that the ordering of the con-
figurations is preserved. This is important because, although the 
Boltzmann probabilities are computed using ΔẼf

i
 , which includes 

μχi , plotting the grand canonical energies would shift the positions 
of configurations depending on the choice of Δμ , making direct 

visual comparison across data obtained at different values of chemi-
cal potential difficult.

In the low chemical potential and low temperature regime, shown 
in Fig. 4G ( Δμ = 0.0, α = 1.0), the ground state configuration domi-
nates, that is, only the pristine graphene structure is observed, as 
discussed earlier when considering Fig. 3. As the magnitude of Δμ in-
creases, the likelihood of observing structures with higher concentra-
tions of nitrogen also increases. For example, in Fig. 4I ( Δμ = −0.068 eV, 
α = 1.0), configurations containing 6% nitrogen dopants have the 
highest probability, followed by concentrations of 4 and 8%. Because 
these are in the low temperature regime, the lowest energy configura-
tion for each of these compositions has the highest probability. This 
is an important aspect of these results because it shows that quantum 
annealing is able to find the ground-state energy configuration of 
nontrivial solid solution. For higher temperatures, the multiplicity of 
a state becomes a deciding factor on the probability of observing 
such a state, and even in the absence of chemical potential (Fig. 4, A 
and D), nitrogen-doped structures are possible. For high tempera-
ture and high chemical potentials, additional high-energy configura-
tions are observed, which are not present in the low temperature and 

Fig. 4. Probability distribution of nitrogen-doped graphene configurations within a 50-site supercell for representative values of chemical potential and tem-
perature. (A to I) The orange and blue data points represent the data obtained from quantum annealing and from a complete set of possible configurations within the 
supercell, respectively. The gray-shaded areas indicate the nitrogen concentration in the configurations. Only configurations whose probability is higher than 1 × 10−4 are 
included. The temperature is reported in kelvin for the complete set, whereas α, which has a value between 0 (high temperature limit) and 1 (low temperature limit), is 
used in the quantum annealing runs. The Δμ value is given in units of eV.
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high chemical potential regime. For example, comparing Fig. 4 (C 
and I), within each concentration range, the probability of observing 
higher energy structures increases.

Predicting the properties of real materials
In this section, we use the workflow outlined in Fig. 1 to predict the 
bandgap deviation from linearity for Al1−xGaxN , also known as 
the bandgap bowing and the bulk modulus for Ta1−xWx structures. 
The QUBO model for both materials was generated using randomly 
generated structures across the entire range of composition (see Ma-
terials and Methods). These QUBO models produce a mean abso-
lute error in the formation energy of 3.93 × 10−4 and 3.84 × 10−6 eV/
unit formula for Al1−xGaxN and Ta1−xWx , respectively.

Quantum annealing was carried out over an interval of chemical 
potentials ranging from 0 to −0.12 eV for Al1−xGaxN and from 0 to 
−0.033 eV for Ta1−xWx . The information we extract from the an-
nealing is twofold. First, we select the low-energy structures obtained 
at the end of the annealing to perform more expensive ab initio cal-
culations. Subsequently, we use the probability of observing specific 
configurations as an approximation of the Boltzmann weights to 
compute thermodynamic averages. To describe the materials more 
accurately, we simulate the property of interest for a range of configu-
rations whose energy is below the thermal energy at room tempera-
ture (0.025 eV). We calculated the bandgap for 257 Al1−xGaxN 
structures using the CRYSTAL23 (34) code and the elastic tensor ele-
ments for 128 Ta1−xWx structures using VASP (35). Therefore, we 

can calculate the average composition as a function of the chemical 
potential as follows

where ⟨x⟩ is the average composition and wx is the fractional contri-
bution of structures with composition x, both observed at potential 
Δμ . This grand canonical representation of the system allows for a 
more realistic description of the material in an experimental setting 
where the observed composition corresponds to the average of re-
gions having varying compositions. The value of ⟨x⟩ relative to Δμ is 
represented by the dark blue data points in Fig. 5 (A and C). The 
lighter blue points represent the distribution of compositions ob-
tained by the annealer around the average value.

We now focus on the calculation of the bandgap deviation from 
linearity for Al1−xGaxN , also known as the bandgap bowing, which 
breaks Vegard’s law. The light blue points in  Fig.  5 represent the 
bandgap bowing calculated for the 257 structures selected from the 
low-energy configurations returned by the annealer. We then calcu-
late the same property within the grand canonical ensemble repre-
sentation of the system by using the same approach as in Eq. 5

⟨x⟩ =

1
�

x=0

wxx (5)

Eg =

1
∑

x=0

wxE
x
g

(6)

Fig. 5. Quantum annealing–assisted prediction of real materials properties. (A and C) Average composition x in Al1−xGaxN and Ta1−xWx
 as a function of the chemical 

potential Δμ (dark blue data points). The light blue points represent the interval of compositions returned by the QA. (B) Al1−xGaxN bandgap bowing as a function of the 
gallium content. The light blue points depict the values calculated for the low-energy configurations at each composition from Al54N54 cell to the Ga54N54 cell. The orange 
line depicts the bandgap bowing within the grand canonical ensemble calculated using Eq. 6. (D) Bulk modulus as a function of the tungsten ratio in Ta1−xWx

 . The blue data 
points represent the values obtained within the grand canonical ensemble calculated using Eq. 7. The orange data points are the experimental values obtained from (64).
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where Eg is the calculated bandgap, wx is the fractional contribution 
of structure Al1−xGaxN , and Ex

g
 is the average bandgap for the lowest 

energy configurations having composition x, both observed at po-
tential Δμ . The solid orange line in Fig. 5 depicts the average value of 
the bandgap bowing calculated using Eq. 6. The hatched area dis-
plays the bandgap Ex

g
 region used in Eq. 6.

Assuming a parabolic dependence of the bandgap on composition, 
the bowing parameter b can be formulated using the equation: 
Eg (x) = f (x) − bx(1−x) , where f (x) = (1−x)Eg (0) + xEg (1) is the 
linear dependence of the bandgap on composition. Here, Eg (0) and 
xEg (1) are the bandgap values of the end components. From the orange 
line in Fig. 5B, we calculate the bowing coefficient b = 0.67, which falls 
within the range of values b = 0.62 (± 0.45) (52) obtained experimentally.

The QUBO model constructed from DFT-derived formation en-
ergies has positive Qij interaction terms. This coupling energetically 
favors configurations in which neighboring sites are occupied by 
different atom types (i.e., Al-Ga pairs), thereby promoting local dis-
order in the resulting solid solutions. This preference for disorder is 
consistent with the well-established explanation for the bandgap 
bowing observed in Al1−xGaxN solid solutions. The difference in 
electronegativity and atomic potentials between Al and Ga atoms 
leads to fluctuations of the electronic potential landscape. These 
fluctuations introduce a nonlinear perturbation to the band struc-
ture, particularly at the band edges, which manifests itself as a 
downward bowing of the bandgap as a function of composition 
(53). Random alloys, which maximize such disorder, exhibit stron-
ger bowing than ordered configurations (54).

The same approach was used to calculate the bulk modulus (K) 
of Ta1−xWx , with the findings presented in Fig. 5D. The bulk modu-
lus determined using the grand canonical approach is given by

where Kg is the calculated bulk modulus, wx is the fractional contri-
bution of structure Ta1−xWx , and Kx

g
 is the average bulk modulus for 

the lowest energy configurations having composition x. Despite a 
minor overestimation of the bulk modulus, also observed for pure 
Ta ( ΔKexp−DFT = 4.21 × 10−2 Mbar) and W ( ΔKexp−DFT = 5.99 × 10−2 
Mbar), the trend of the bulk modulus with respect to the W ratio 
calculated using the grand canonical method aligns closely with the 
experimentally observed data, thus further validating this method.

The workflow we developed can be applied to the study of any 
material with substitutional disorder, regardless of the energy method 
used to build the QUBO model. It is tailored to current D-Wave QAs, 
which have limited connectivity, by creating a QUBO model that 
only includes interactions with the nearest and next-nearest neigh-
bor sites in the lattice and introduces the chemical potential to tune 
the composition of the material. This model requires fewer qubits to 
run on QAs than a QUBO model with penalty terms, making it suit-
able for large supercells. Furthermore, we illustrated that this method 
offers significantly improved scaling compared to the commonly 
used constrained QUBO model approach. We demonstrated how the 
result of running the quantum annealing multiple times can be inter-
preted as a Boltzmann distribution within the grand canonical ensem-
ble, and the QUBO terms can be scaled to explore the configurational 
space at different temperature regimes. The method we presented 
offers substantial advantages over previously developed classical and 

quantum approaches in the study of disordered materials allowing 
for the grand canonical simulations of configurational spaces whose 
size is too large to be tackled by classical computers.

MATERIALS AND METHODS
Materials
To show the versatility of the method presented in the main text, 
we have applied our approach to nitrogen-doped graphene (28, 29), 
Al1−xGaxN (30, 31), and Ta1−xWx (32, 33). The size of the super-
cells we used is limited by the available computer resources re-
quired to run the DFT training configurations, and here we used 
repeat cells containing 50 carbon atoms, 54 cations, and 64 metal 
sites, respectively, which are depicted in  Fig.  6. With rapidly in-
creasing computer resources, we anticipate that larger system sizes 
will be routinely explored using this efficient approach in the 
near future.

DFT calculation details
The graphene and Al1−xGaxN DFT calculations were performed 
using the CRYSTAL23 code (34), which builds crystalline orbitals 
from a localized Gaussian basis function. The calculations used the 
B3LYP functional along with the revised pob-TZVP basis set (55), 
incorporating polarization, for all the elements. In the CRYSTAL23 
code, the truncation criteria of the Coulomb and exchange infinite 
lattice series are controlled by five thresholds, which were set to 9 
(T1 to T4) and 18 (T5). The SCF convergence threshold for the 
energy was set at 10−8 Hartree for the SCF convergence and 10−6 
Hartree for structural relaxation. The reciprocal space sampling is 
based on a regular Pack-Monkhorst sublattice grid centered at the 
Γ point, with shrinking factors 12 and 24 for graphene calculations 
and 8 and 16 for Al1−xGaxN . The CRYSTALpytools (56) Python 
library was used to interact with the CRYSTAL23 input and output 
files and transform them into pymatgen objects for further post-
processing.

The VASP code was used for the TaW calculations. Using plane-
wave basis functions, this software is better suited for the simulation of 
metals and metal alloys. We have used plane-wave DFT as implemented 
in VASP (35, 57–59), using the Perdew-Burke-Ernzerhof (PBE) GGA 
functional (60), for electron exchange and correlation with the projec-
tor augmented wave method (61) to model the interaction between 
core and valence electrons (including five and six valence electrons for 
Ta and W, respectively). The total energy of the 64-atom fcc supercell 
was calculated using a 350-eV plane wave cut off and a 4  ×  4  ×  4 
Γ-centered Monkhorst-Pack (62) k-point mesh, which provided con-
vergence in total energy up to 2 × 10−3 eV (a 500-eV cutoff was used 
for relaxations of bulk structures). The elastic constants C11, C12, and 
C44 were computed using the finite displacement approach available in 
VASP, from which the bulk modulus was derived.

The use of symmetry to train the QUBO model
Because DFT calculations can be computationally expensive, we 
aim to train the QUBO model from as few calculations as possible. 
To achieve this, we used the concept of SICs. In a supercell contain-
ing Nsites fully occupied by NχA and NχB atoms, the number of possi-
ble configurations is

Kg =

1
∑

x=0

wxK
x
g (7)

Nconfig =
Nsites !

NχA !NχB !
(8)
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depending on the symmetry of the material and size of the supercell, 
the Nconfig configurations can be grouped into classes of symmetry 
equivalent configurations (SECs), where class i contains NSEC

i
 struc-

tures. By selecting one representative per class, we obtain the set of 
NSIC structures that represent all possible configurations within the 
supercell approximation. Several tools exist to calculate the SIC of a 
supercell, such as those reported by Grau-Crespo (14), D’Arco (63), 
and Mustapha et al. (15). The latter, implemented in CRYSTAL23 (34) 
via the CONFCOUNT keyword, is a linear-scaling method. However, 
the current implementation of CONFCOUNT is limited to supercells 
containing a maximum of 62 sites. Therefore, this approach was used 
in the nitrogen-doped graphene to obtain the full set of configura-
tions up to a nitrogen atom concentration of 14%. The QUBO energy 
of these structures was used to calculate the Boltzmann distribution 
from an exhaustive search. This is compared with the probability dis-
tribution resulting from the quantum annealing run in different 
chemical potential temperature regimes reported in Fig. 4.

To train the QUBO model for Al1−xGaxN and Ta1−xWx , we gen-
erate the structures randomly, ensuring that they are symmetry in-
dependent. Then, we select only a subset of SICs comprising NSIC

train
 

structures. For each SIC, we calculate its DFT energy upon geome-
try relaxation at constant pressure and assign it to all the NSEC

i
 struc-

tures in the same symmetry class. The set of all SECs, containing 
NSEC

train
 structures, is used to train the QUBO model. The same proce-

dure is repeated for the structures used to test the model.
Using this symmetry-enhanced approach, we obtain a relatively 

large training set from a very limited number of DFT calculations. 
The size of these subsets is reported in table S1. The Ntrain and Ntest 
structures used to train and test the model cover the range of com-
positions of interest for the different materials ( C49N1 to C40N10 , 
Al53Ga1N54 to Al1Ga53N54 , and Ta1W63 to Ta63W1).

Selecting the desired composition
The QUBO model is an unconstrained optimization technique. 
Constraints, such as the composition of structures, can be imposed 
through penalty functions. In our previous work [Section F in (36)], 

we demonstrated the use of penalty functions to enforce the desired 
number of vacancies in graphene. Imposing a constraint on the 
composition of the returned structures results in a fully connected 
QUBO model, which scales poorly on current QAs, as depicted 
in Fig. 2. On the other hand, the biases Qii are already present in the 
model and changing their values will not affect the mapping of 
the problem to the hardware. In this section, we discuss how, using 
the concept of chemical potential, we can tune the composition of the 
configurations returned by the QA by modifying the diagonal terms 
of the QUBO model only.

In the main text, we presented a simple way of obtaining Δμ in 
the case of a two-component material. Here, we discussed a more 
general derivation based on thermodynamic considerations. In gen-
eral, the chemical potential of species χA in phase i is defined as

where G is the Gibbs free energy, and ni
χA

 is the number of particles 
(or moles) of species χA in phase i. The chemical potential represents 
the energy gain/loss when one particle (atom, formula unit, or mole) 
of species χA moves from one phase to another. The reservoir in our 
grand canonical ensemble contains both the χA and the χB species.

The partition function in the grand canonical ensemble is

where ΔEf

i
 and Mi are the formation energy (Eq. 3) and the multi-

plicity of configuration i, and Nχj
 and μχj are the number of atoms χj 

and its chemical potential in the reservoir. The probability of ob-
serving the system in state i is defined as

μi
χA

=

(

�G

�ni
χA

)

T ,P

(9)

Ξ =

Nn
∑

i=0

Miexp

− ΔẼ
f

i
+

∑

χj

Nχj
μχj

kBT
=

Nn
∑

i=0

Miexp
− ΔE

f

i

kBT
(10)

pi =
1

Ξ
Miexp

− ΔE
f

i

kBT (11)

Fig. 6. Graphene, AlN, and Ta supercells used in this work. The supercells contain 50, 108, and 64 atoms, respectively. For Al1−xGaxN , only the cation sublattice was 
required in the QUBO model. The cif files for these structures can be found in (65).
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The material and the reservoir form a closed system, indicating 
that the total number of atoms χi remains constant

where Nχi is the total number of χi atoms, Nχi

m is the number of χi 
atoms in the material, and Nχi

r  is the number of χi atoms in the res-
ervoir. In a binary material, each site in the structure is occupied by 
either an atom χA or χB

where Nm is the total number of sites in the material, and NχA

m  and 
N

χB

m  are the number of χA and χB atoms in the material, respectively. 
The energy of a χA atom in the material is denoted by εχA , whereas 
the energy of a χB atom is represented by εχB.

We define the total energy of the system (material and reservoir) as

Using Eq. 15, we can determine the change in energy with respect to 
the number of atoms χB in the material

This equation links the change in the concentration of χB atoms in 
the material with its chemical potential. The concentration of χB 
atoms predicted by the QA can therefore be controlled by adjusting 
the difference in the chemical potential, Δμ = μχB − μχA.

The effect of Δμ on the QUBO energy levels is depicted in the 
panel titled “Chemical potential” of Fig. 7. Going from left to right, 
we plot the schematic energy levels corresponding to larger nega-
tive values of Δμ . Using Δμ = 0, the lowest state energy is zero, 
which corresponds to the trivial solution of the structure contain-
ing only χA atoms. As the magnitude of the potential increases, 

Nχi = Nχi

m
+ Nχi

r (12)

Nm = NχA

m
+ NχB

m (13)

ETOT = NχA

m
εχ

A

+ NχB

m
εχ

B

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
material

+ NχA

r
μχ

A

+ NχB

r
μχ

B

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
reservoir

(14)

ETOT=

(

Nm−NχB

m

)

εχ
A

+NχB

m
εχ

B

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
material

+

(

NχA −Nm−NχB

m

)

μχ
A

+NχB

r
μχ

B

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
reservoir

(15)

𝜕ETOT

𝜕N
χB

m

= − εχ
A

+ εχ
B

���������
constant> 0

− μχ
A

+ μχ
B

�����������
Δμ

(16)

Fig. 7. Schematic representation of the effect of the chemical potential ( Δμ ) and temperature on the QUBO energy levels. In the panel titled “Chemical potential,” Δμ 
decreases from left to right. With this decrease in chemical potential, materials that have higher concentrations of χB atoms become more energetically favorable. In the 
panel titled “Temperature,” the term α decreases from left to right, which corresponds to an increase in the temperature of the Boltzmann distribution we are simulating.
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materials that have higher concentrations of χB atoms become 
more energetically favorable.

Introducing the temperature in the QUBO model
The effect of temperature on the probability distribution is intro-
duced in the QUBO model through the scaling factor α, which can 
take values between 0 and 1. Before running on a QA, the D-Wave 
API Ocean transforms the QUBO model into an Ising Hamiltonian

by using si =
(

2xi−1
)

 . In D-Wave annealers, the standard approach 
is to maximize hi and Jij by using their entire possible value range. 
In the D-Wave Advantage QPUs, these are hi ∈ [−4, +4] and 
Jij ∈ [−1, +1] . This procedure increases the energy difference be-
tween the ground state and the excited states. Therefore, it maxi-
mizes the probability of obtaining the ground state at the end of the 
anneal. This corresponds to the low temperature regime, where, ac-
cording to the Boltzmann distribution, ground-energy states are 
predominant. If finding the ground state (the global minimum of 
the configurational energy landscape) is the goal of our simulation, 
this setting can be used. However, if we are interested in exploring 
probability-temperature distributions, we need to introduce a ficti-
tious temperature in our Ising model. This can be achieved by de-
activating the automatic scaling option (auto_scale  =  False) and 
scaling the values in the Ising model so that the effective range for 
hi and Jij decreases. In this regime, the energy difference between 
the ground state and excited states can be tuned. When the param-
eter α is sufficiently small, nonadiabatic transitions are observed. In 
the main text, we discuss how the resulting distribution of configu-
rations can be linked to a Boltzmann-like distribution.

The effect of the temperature on the QUBO energy levels is 
depicted in the “Temperature” panel of Fig. 7. Going from left to 
right, we plot the schematic energy levels corresponding to higher 
temperatures (smaller α). Unlike changes in the chemical poten-
tial, varying the temperature does not change the ranking of the 
configurations in terms of their energy. With an increase in tem-
perature, we observe two effects on the energy levels. First, the 
energy difference between structures with varying concentrations 
of χB atoms becomes smaller. Second, the energy range for differ-
ent configurations of species χA and χB within a fixed composition 
is also reduced.

Building the QUBO model
In the QUBO model used in this study, the Q matrix (Eq. 1) incor-
porates all the interactions that define the energy of a structure as 
a function of the occupancy of its sites. In our previous work (36), 
which focused on the QA-assisted simulation of vacancies in gra-
phene, we built the QUBO matrix based on the knowledge that a 
vacancy will result in broken bonds that will increase the energy of 
the structure. Here, we aim to build a QUBO matrix that can be 
used to calculate the energy of real-world materials. We achieve 
this by training the QUBO model using data obtained from DFT 
calculations and minimizing the following expression

where k labels the configurations used in the training set and we use 
the adjacent matrix with elements Akn

ij
 defined as 1 if i and j are clos-

er than (n+1)-th nearest neighbors and 0 otherwise. The formation 
energy ΔEf

k
 is defined in Eq. 3.

We tested the effect of the number of neighbors, defined by the 
Akn matrix, included in the model on the precision of the energy 
calculated using the QUBO model with respect to the DFT energy 
(see table  S2 in the Supplementary Materials). Including more 
neighbors in the matrix Akn results, in theory, in a more refined en-
ergy model because more interactions are included. However, the 
model also incurs overfitting. Furthermore, including more ele-
ments in the Akn matrix results in a more connected QUBO model. 
For the results reported in the main text, we used Akn (interactions 
up to the next-nearest neighbors) when training the QUBO model, 
which represents a compromise between the accuracy of the model 
and the number of couplings.

Quantum annealing parameters
All quantum annealing calculations were performed using the D-
Wave Advantage QPU through Leap using the associated Ocean 
Python API (37). The mapping of the QUBO (Ising) problem to 
hardware was performed using the minorminer library. We used the 
default values for the annealing time (20 μs) and the chain strength 
calculated using the uniform torque compensation method. For 
each of the results reported in this article, quantum annealing was 
run 1000 times. Therefore, each probability is calculated from a 
sample of 1000 configurations.

Supplementary Materials
This PDF file includes:
Supplementary Text
Tables S1 and S2
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