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Abstract
We are concerned with the Sinh-Gordon equation in bounded domains. We construct blow
up solutions with residual mass exhibiting either partial or asymmetric blow up, i.e. where
both the positive and negative part of the solution blow up. This is the first result concerning
residual mass for the Sinh-Gordon equation showing in particular that the concentration-
compactness theory with vanishing residuals of Brezis-Merle can not be extended to this
class of problems.
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1 Introduction

We are concerned with the following Sinh-Gordon equation
⎧
⎪⎨

⎪⎩

�u + ρ+ eu
∫

�
eudx

− ρ− e−u
∫

�
e−udx

= 0 in �

u = 0 on ∂�.

(1.1)

where � ⊂ R
2 is smooth and bounded and ρ+, ρ− are two positive parameters. The latter

problem arises as a mean field equation in the study of the equilibrium turbulence [21, 24].
Moreover, it is also related to constant mean curvature surfaces [20, 29]. Observe that for
ρ− = 0, (1.1) reduces to the standard Liouville equation which has been extensively studied
in the literature. Therefore, many efforts have been done to study existence [3, 12–15] and
blow up phenomena [1, 10, 16, 17, 20, 23, 25, 26, 28] for this class of problems.

In the present paper we further explore the blow up phenomenon of (1.1). Let un be a
sequence of solutions to (1.1) corresponding to ρ± = ρ±

n ≤ C . Define the positive and
negative blow up set as

S± :=
{

x ∈ �̄ : ∃xn → x s.t . ± un(xn) − log
∫

�

e±un dx + log ρ±
n → +∞ as n → ∞

}

.

We have S± ∩ ∂� = ∅ by [1], and S± ⊂ � is finite by the argument of [5]. For p ∈ S± the
local mass is defined by

m±(p) = lim
r→0

lim
n→∞

ρ±
n

∫

Br (p)
e±un dx

∫

�
e±un dx

.

By [16, 20] we know that m±(p) satisfy a quantization property, i.e. m±(p) ∈ 8πN. More-
over, in view of the relation

(m+(p) − m−(p))2 = 8π(m+(p) + m−(p)),

see for example [23], the couple (m+,m−), up to the order, takes the value in the set

� :=
{
8π

(
k(k − 1)

2
,
k(k + 1)

2

)

, k ∈ N \ {0}
}
, (1.2)

see [16, 20]. Finally, by standard analysis [23], one has, for n → +∞,

ρ±
n

e±un
∫

�
e±un dx

⇀
∑

p∈S±
m±(p)δp + r±,

in the sense of measures, where r± ∈ L1(�) are residual terms. From the above conver-
gence, ρ± will be called global masses of the blow up solutions. Observe that both the
local masses and the residual terms affect the global masses. In striking contrast with the
concentration-compactness theory of Brezis-Merle [5], the latter residuals may not be zero
a priori. This fact has important effects in the blow up analysis, variational analysis and
Leray-Schauder degree theory of (1.1). One of the goals of the present paper is to provide
the first explicit example of blow up solutions exhibiting residual terms, thus confirming that
the concentration-compactness theory can not be extended to this class of problems.
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1.1 Partial blow up

We start here with a related problem, that is partial blow up with prescribed global mass.
More precisely, we look for blowing up solutions −un with ρ−

n → 8πk, k ∈ N, such that un
have prescribed global mass ρ+

n = ρ+ ∈ (0, 8π). To this end we introduce

Fk� :=
{

ξ := (ξ1, · · · , ξk) ∈ �k : ξi 
= ξ j for i 
= j

}

(1.3)

and consider the following singular (at ξi ∈ �) mean field equation:
⎧
⎪⎨

⎪⎩

�z(x, ξ) + ρ+ h(x, ξ)ez(x,ξ)

∫

�
h(x, ξ)ez(x,ξ)dx

= 0 in �,

z(x, ξ) = 0 on ∂�

(1.4)

where ξ ∈ Fk� and h(x, ξ) = e−8π
∑k

i=1 G(x,ξi ). Here G(x, y) is the Green function of the
Laplace operator in � with Dirichlet boundary condition and we denote its regular part by
H(x, y). Equation (1.4) is the Euler-Lagrange equation of the functional

Iξ (z) := 1

2

∫

�

|∇z|2dx − ρ+ log

(∫

�

h(x, ξ)ezdx

)

.

To the latter functional and (a combination of) the Green functions we associate the following
map:

�(ξ) := 1

2
Iξ (z(·, ξ)) − 32π2

( k∑

i=1

H(ξi , ξi ) +
∑

j 
=i

G(ξi , ξ j )
)
. (1.5)

It is known by [2] that if � is simply connected and ρ+ ∈ (0, 8π), then for any ξ ∈ Fk�

there exists a unique solution to (1.4) and the solution is non-degenerate, in the sense that
the linearized problem admits only the trivial solution. Then, by making use of the implicit
function theorem it is not difficult to show that the function � is smooth, see for example
[8]. Finally, as in [22], a compact set K ⊂ Fk� of critical points of � is said to be C1-stable
if, fixed a neighborhood U of K, any map � : U → R sufficiently close to � in C1-sense
has a critical point in U .

The first result of this paper is the following.

Theorem 1.1 Let � be simply connected, ρ+ ∈ (0, 8π) and let K ⊂ Fk�, k ∈ N, be a
C1-stable set of critical points of �. Then, there exists λ0 > 0 such that for any λ ∈ (0, λ0)
there exists a solution uλ of (1.1) with ρ± = ρ±

λ such that the following two properties hold:

1. ρ+
λ = ρ+, ρ−

λ → 8kπ as λ → 0.
2. There exist ξ(λ) ∈ Fk� and δi (λ) > 0 such that d(ξ ,K) → 0, δi → 0 and

uλ(x) → z(x, ξ) −
k∑

i=1

(
log

1

(δ2i + |x − ξi |2)2
+ 8πH(x, ξi )

)
in H1

0 (�),

as λ → 0, where z solves (1.4) .

Some comments are in order. The assumptions that � is simply connected and ρ+ ∈
(0, 8π) guarantee the existence of a unique non-degenerate solution to (1.4): in general,
the above result holds true whenever such solution exists. For example, one can drop the
condition on � by assuming ρ+ to be sufficiently small, see for example [8].
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On the other hand, if � is simply connected and ρ+ ∈ (0, 8π) it is not difficult to show
that for k = 1 the minimum of � is a C1-stable set of critical points of �, see for example
[8]. Moreover, for non-simply connected domains the function � always admits a C1-stable
set of critical points [7].

Therefore, the conclusion of Theorem 1.1 holds true if either � is simply connected,
ρ+ ∈ (0, 8π) and k = 1, or � is multiply connected, ρ+ sufficiently small and k ≥ 1.
Finally, the location of the blow up set can be determined by using the following expression,
which can be derived similarly as in [8]:

∂ξ j �(ξ) = 8π
∂z

∂x
(ξ j , ξ) − 32π2

(∂H

∂x
(ξ j , ξ j ) +

∑

i 
= j

∂G

∂x
(ξi , ξ j )

)
. (1.6)

1.2 Asymmetric blow up

We next construct blow up solutions with residual mass exhibiting the asymmetric blow up,
i.e. where both the positive and negative part of the solution blow up. Since the local masses
(m+,m−) belong to the set � defined in (1.2), for k ≥ 2 we look for blowing up solution
un with ρ−

n → 4πk(k + 1) and ρ+
n = ρ+ = 4πk(k − 1) + ρ0, where ρ0 ∈ (0, 8π) is a

fixed residual mass. For simplicity of presentation we assume that k is odd, the case of k even
being similar. We consider here l-symmetric domains � with l ≥ 2 even, i.e. if x ∈ � then
Rl · x ∈ �, where

Rl :=
⎛

⎝
cos 2π

l sin 2π
l

− sin 2π
l cos 2π

l

⎞

⎠ , l ≥ 2 even. (1.7)

Consider then the following singular (at x = 0) mean field equation:
⎧
⎪⎨

⎪⎩

�z(x) + ρ0
ez(x)−8kπG(x,0)

∫

�
ez(x)−8kπG(x,0)dx

= 0 in �,

z(x) = 0 on ∂�.

(1.8)

Again by [2] we know that if � is simply connected and ρ0 ∈ (0, 8π), then there exists a
unique non-degenerate solution to (1.8).

The second result of this paper is the following.

Theorem 1.2 Let � be a simply connected l-symmetric domain according to (1.7) and ρ+ =
4πk(k − 1) + ρ0 with k ∈ N odd, l ≥ 2 even and ρ0 ∈ (0, 8π). Then, there exists λ0 > 0
such that for any λ ∈ (0, λ0), there exists a solution uλ of (1.1) with ρ± = ρ±

λ such that the
following two properties hold:

1. ρ+
λ = ρ+, ρ−

λ → 4πk(k + 1) as λ → 0.
2. There exists δi (λ) → 0 (defined in (4.2)) such that

uλ(x)→ z(x)+
k∑

i=1

(−1)i
(
log

1

(δi (λ)αi + |x |αi )2 +4παi H(x, 0)
)

in H1
0 (�), αi =4i − 2,

as λ → 0, where z solves (1.8) .

Observe that the assumption that � is simply connected and ρ0 ∈ (0, 8π) is used only to
ensure the existence of a non-degenerate solution to (1.8): in general, the above result holds
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true whenever such solution exists. On the other hand, the symmetry condition of the domain
is imposed to rule out the degeneracy of the singular Liouville equation.

The argument follows the strategy introduced in [8, 9] for the Toda system, that is a
system of Liouville-type equations, and it is based on the perturbation method starting from
an approximate solution and studying the invertibility of the linearized problem. The main
difficulty is due to the coupling of the local and global nature of the problem since we
are prescribing both the local and global masses. In particular, blow up solutions of (1.1)
with local masses (4πk(k − 1), 4πk(k + 1)) have been constructed in [11] by superposing
k different bubbles with alternating sign. Gluing the solution of (1.8) to the latter blow
up solutions we are able to construct blow up solutions with residual mass, that is with
ρ+
n = ρ+ = 4πk(k − 1) + ρ0 and ρ−

n → 4πk(k + 1) for any k ≥ 2. In this generality the
latter construction is quite delicate and technically more difficult compared to the one in [9,
11], sincewe havemore sign-changing singular bubbles, and since one need to consider all the
interactions of different bubbles and also the interaction with the global solution z(x) which
makes the linear theory more complicated, see the linear theory in Sect. 4.3. We remark that
the same strategy can be carried out for more general asymmetric Sinh-Gordon equations,
for example for the Tzitzéica equation [18].

The paper is organized as follows. Sect. 2 contains some notation and preliminary results
which will be used in the paper. Sect. 3 is devoted to the proof of Theorem 1.1 while the
proof of Theorem 1.2 is derived in Sect. 4.

2 Preliminaries

In this section we collect some notation and useful information that we will use in this paper.
We shall write

‖u‖ =
( ∫

�

|∇u|2dx
) 1

2
and ‖u‖p =

( ∫

�

u pdx
) 1

p

to denote the norm in H1
0 (�) and in L p(�), respectively, for 1 ≤ p ≤ +∞. For α ≥ 2, let

us define the Hilbert spaces:

Lα(R2) := L2
(
R
2,

|y|α−2

(1 + |y|α)2
dy

)
,

Hα(R2) := {u ∈ W 1,2
loc (R2) ∩ Lα(R2) : ‖∇u‖L2(R2) < ∞},

with ‖u‖Lα and ‖u‖Hα := (‖∇u‖2
L2(R2)

+ ‖u‖2Lα
)
1
2 denoting their norms, respectively.

For simplicity, we will denote L2 and H2 by L and H , respectively. Let us recall that the
embedding Hα(R2) → Lα(R2) is compact [11]. For any p > 1, let i∗p : L p(�) → H1

0 (�)

be the adjoint operator of the embedding i p : H1
0 (�) → L

p
p−1 (�), i.e. for v ∈ L p(�) ,

u = i∗p(v) if and only if in the weak sense

−�u = v in �, u = 0 on ∂�.

Then one has ‖i∗p(v)‖H1
0 (�) ≤ cp‖v‖p for some constant cp > 0 depending only on � and

p > 1.
The symbol Br (p)will stand for the open metric ball of radius r and center p. To simplify

the notation we will write Br for balls which are centered at 0. Throughout the whole paper
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c,C will stand for constants which are allowed to vary among different formulas or even
within the same line.

3 Partial blow up

3.1 Approximate solutions

In order to prove Theorem 1.1 we introduce the associated equation
⎧
⎨

⎩

�u + ρ+ eu
∫

�
eu

− λe−u = 0 in �,

u = 0 on ∂�

(3.1)

where λ > 0 will be suitably chosen small. By the definition of i∗p , problem (3.1) is equivalent
to the following:

u = i∗p(F(u)), u ∈ H1
0 (�) (3.2)

where F(u) = ρ+g(u) − λ f (u) and

g(u) = eu
∫

�
eudx

, f (u) = e−u . (3.3)

First let us introduce the approximate solutions we will use. Recall that solutions of the
following regular Liouville equation [6]:

�w + ew = 0 in R
2,

∫

R2
ewdx < ∞,

are given by

wδ,ξ (x) = log
8δ2

(δ2 + |x − ξ |2)2
for δ > 0, ξ ∈ R

2 and we set

w(x) = log
8

(1 + |x |2)2 .

Since we are considering Dirichlet boundary condition, let us introduce the projection:

�Pu = �u in �, Pu = 0 on ∂�.

By the maximum principle,

Pwδ,ξ (x) = wδ,ξ (x) − log 8δ2 + 8πH(x, ξ) + O(δ2) in C1-sense, (3.4)

where H(x, y) is the regular part of the Green’s function of the Dirichlet Laplacian in �,
G(x, y) = 1

2π log 1
|x−y| + H(x, y), see [11] for the derivation of (3.4)

Let k ≥ 1, fix ξ ∈ Fk� and consider z(x, ξ) which is the unique solution to (1.4). The
approximate solutions we will use are given by

W = z(x, ξ) −
k∑

i=1

Pwi (x), wi (x) = wδi ,ξi (x), (3.5)
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where the parameters δi are suitably chosen such that

8δ2i = λdi (ξ), di (ξ) = exp
[
8π(H(ξi , ξi ) +

∑

j 
=i

G(ξi , ξ j )) − z(ξi , ξ)
]
. (3.6)

Our aim is to find a solution u to (3.1) of the form u = W + φ where φ is small in some
sense. Before we go further, let us first collect some useful well-known facts.

As it is shown in [4], any solution ψ ∈ H of

�ψ + ewδ,ξ ψ = 0 in R
2,

can be expressed as a linear combination of

Z0
δ,ξ (x) = δ2 − |x − ξ |2

δ2 + |x − ξ |2 , Zi
δ,ξ (x) = xi − ξi

δ2 + |x − ξ |2 , i = 1, 2.

Moreover, the projections of Zi
δ,ξ have the following expansion:

PZ0
δ,ξ (x) = Z0

δ,ξ (x) + 1 + O(δ2),

PZi
δ,ξ (x) = Zi

δ,ξ (x) + O(1), i = 1, 2 in C1-sense. (3.7)

Finally, by straightforward computations and taking into account the choice of λ in (3.6) the
following estimates hold true [8]:

Lemma 3.1 For any C ⊂ Fk� compact and ξ ∈ C, one has

‖Pwi‖ = O(| log λ| 12 ), ‖∇ξ Pwi‖ = O(λ− 1
2 ),

‖W‖ = O(| log λ| 12 ), ‖∇ξW‖ = O(λ− 1
2 ),

and there exists some a > 0 such that for any i = 1, · · · , k and j = 1, 2, it holds that

‖PZ j
i ‖ = aλ− 1

2 (1 + o(1)), ‖∇ξ PZ j
i ‖ = O

(
1

λ

)

, (3.8)

and

〈PZ j
i , PZk

l 〉 = o

(
1

λ

)

if i 
= l or j 
= k, (3.9)

where Z j
i = Z j

δi ,ξi
and 〈u, v〉 = ∫

�
∇u · ∇v dx.

In the section, we set

K = Span{PZ j
i , i = 1, · · · , k j = 1, 2} (3.10)

and

K⊥ = {φ ∈ H1
0 (�),

∫

�

∇φ · ∇PZ j
i dx = 0, i = 1, · · · , k, j = 1, 2}. (3.11)

Denote by

� : H1
0 (�) → K , �⊥ : H1

0 (�) → K⊥

be the corresponding projections. To solve (3.1), it is equivalent to solve the following system:

�(u − i∗p(F(u))) = 0, �⊥(u − i∗p(F(u))) = 0. (3.12)
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3.2 Estimate of the error

We next estimate the error of the approximate solution:

R = �W + ρ+ eW
∫

�
eW

− λe−W and R = i∗p(R).

Lemma 3.2 For any p ≥ 1 we have, for ξ ∈ C ⊂ Fk�, C compact,

‖R‖p = O(λ
2−p
2p ), ‖∂ξ R‖p = O(λ

1−p
p ).

Moreover, ‖R‖ ≤ cp‖R‖p for some cp > 0 depending on p,�.

Proof By the definition of W ,

R = �W + ρ+ eW
∫

�
eW

− λe−W

= �(z(x, ξ) −
∑

i

Pwi ) + ρ+ ez(x,ξ)−∑
i Pwi

∫

�
ez(x,ξ)−∑

i Pwi
− λe

∑
i Pwi−z(x,ξ)

=
(∑

i

ewi − λe
∑

i Pwi−z(x,ξ)
)

+
(
�z(x, ξ) + ρ+ ez(x,ξ)−∑

i Pwi

∫

�
ez(x,ξ)−∑

i Pwi

)

:= E1(x) + E2(x).

Estimate of E1 =
(∑

i e
wi − λe

∑
i Pwi−z(x,ξ)

)
. Take η > 0 such that |ξi − ξ j | ≥ 2η and

d(ξi , ∂�) ≥ 2η. First, using (3.4), we have

W = z(x, ξ) −
∑

i

Pwi = z(x, ξ) −
∑

i

[
log

1

(δ2i + |x − ξi |2)2
+ 8πH(x, ξi )

]
+ O(λ).

Hence, on Bη(ξi ), writing x = ξi + δi y, one has

e−W (x) = e

∑k
i=1

[
log 1

(δ2i +|x−ξi |2)2
+8πH(x,ξi )

]
−z(x,ξ)

(1 + O(λ))

= ew(y) · exp
(
8πH(ξi , ξi ) +

∑

j 
=i

8πG(ξi , ξ j )

− 4 log δi − log 8 − z(ξi , ξ)
)
(1 + O(λ) + O(δi |y|))

= di (ξ)

8δ4i
ew(y)(1 + O(λ) + O(δi |y|)).

Thus

ewi − λe−W (x) = 8

δ2i (1 + |y|2)2
[

1 − λ

8δ2i
di (ξ) + O(λ) + O(δi |y|)

]

= O

(
1

(1 + |y|2)2
)

+ O

(
|y|

λ
1
2 (1 + |y|2)2

)

.

(3.13)

It follows that

‖ewi − λe−W (x)‖L p(B(ξi ,η)) = O(λ
2−p
2p ) for any p ≥ 1.
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Moreover,

‖ew j ‖L∞(B(ξi ,η)) = O(λ) for j 
= i and ‖ewi − λe−W (x)‖L∞(�\∪i B(ξi ,η)) = O(λ).

Combining the above estimates,

‖E1‖p = O(λ
2−p
2p ) for p ≥ 1. (3.14)

Estimate of E2 =
(
�z(x, ξ) + ρ+ ez(x,ξ)−∑

i Pwi
∫

� ez(x,ξ)−∑
i Pwi

)
. First of all,

W = z(x, ξ) −
∑

i

Pwi

= z(x, ξ) + 2
∑

i

log(δ2i + |x − ξi |2) − 8π
∑

i

H(x, ξi ) + O(λ)

= log h(x, ξ) + z(x, ξ) + 2
∑

i

log
δ2i + |x − ξi |2

|x − ξi |2 + O(λ),

(3.15)

where

h(x, ξ) =
k∏

i=1

|x − ξi |4 exp[−8πH(x, ξi )] =
k∏

i=1

exp
(

− 8πG(x, ξi )
)
.

So

eW = h(x, ξ)ez(x,ξ) + O(λ). (3.16)

One has

E2 = �z(x, ξ) + ρ+ eW
∫

�
eW

= �z(x, ξ) + ρ+ h(x, ξ)ez(x,ξ)

∫

�
h(x, ξ)ez(x,ξ)

+ O(λ) = O(λ),

since z(x, ξ) is a solution of (1.4). Thus

‖E2‖∞ = O(λ). (3.17)

Estimate of ∂ξ E1. Next we consider the derivatives. By straightforward computations we
get

∂
ξ
j
i
E1 =

∑

�

ew�∂
ξ
j
i
w� + λe−W ∂

ξ
j
i
W

= λe−W ∂
ξ
j
i
z(x, ξ) +

(
∑

i

ewi − λe−W

)
k∑

�=1

∂
ξ
j
i
Pw�

−
∑

�

ew�∂
ξ
j
i
(Pw� − w�) −

∑

�
=i

ewi
∂
ξ
j
i
Pw�

:= I1 + I2 + I3 + I4.
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It is then not difficult to show that

‖I1‖p ≤ ‖E1‖p +
∑

i

‖ewi ‖p = O(λ
1−p
p ),

‖I2‖p ≤ ‖E1‖p‖∂ξ Pw j‖∞ = O(λ
1−p
p ),

‖I3‖p ≤ ‖ewi ‖p‖∂ξ (Pw j − w j )‖∞ = O(λ
1−p
p ),

‖I4‖p = 0.

Combining all the above estimates,

‖∂ξ E1‖p = O(λ
1−p
p ). (3.18)

Estimate of ∂ξ E2. The estimate of the derivative of E2 is analogous. Using the equation
satisfied by z(x, ξ) in (1.4) and (3.15),

1

ρ+ ∂
ξ
j
i
E2 = −

(∂
ξ
j
i
z(x, ξ)h + ∂

ξ
j
i
h)ez(x,ξ)

∫

�
hez(x,ξ)dx

+
hez(x,ξ)

∫

�
(∂

ξ
j
i
z(x, ξ)h + ∂

ξ
j
i
h)ez(x,ξ)

(
∫

�
hez(x,ξ)dx)2

+
eW ∂

ξ
j
i
W

∫

�
eW

−
eW

∫

�
eW ∂

ξ
j
i
Wdx

(
∫

�
eW )2

= O(λ).

Thus we have

‖∂ξ E2‖∞ = O(λ). (3.19)

Finally, combining the estimates for E1 and E2, we have

‖R‖p = O(λ
2−p
2p ), ‖∂ξ R‖p = O(λ

1−p
p ).

Once we get the estimate for R, the estimate for R follows directly. ��

3.3 The linear operator

In this subsection, we consider the following problem: given h ∈ H1
0 (�) we look for a

function φ ∈ H1
0 (�) and ci j such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�φ + ρ+
(

eWφ
∫

�
eWdx

− eW
∫

�
eWφdx

(
∫

�
eWdx)2

)

+ ∑k
i=1 e

wi φ = �h + ∑
i, j ci j e

wi Z j
i ,

∫

�
∇φ∇PZ j

i dx = 0, j = 1, 2, i = 1, · · · , k.

(3.20)

It is equivalent to

φ − i∗p(M(W )[φ]) = h −
∑

i j

ci j P Z j
i , φ ∈ K⊥ (3.21)

where

M(W )[φ] = ρ+
(

eWφ
∫

�
eWdx

− eW
∫

�
eWφdx

(
∫

�
eWdx)2

)

+
k∑

i=1

ewi φ.
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Let L : K⊥ → K⊥ be the linear operator defined by

L(φ) = φ − �⊥(i∗p(M(W )[φ])),
then the problem is equivalent to first solving φ for

L(φ) = �⊥(h) (3.22)

and then finding ci j for

�(i∗p(M(W )[φ])) = �(h) −
∑

i j

ci j P Z j
i . (3.23)

First we have the following apriori estimate:

Lemma 3.3 Let C ⊂ Fk� be a fixed compact set. Then, there exist λ0 > 0 and C > 0 such
that for any λ ∈ (0, λ0), ξ ∈ C and h ∈ H1

0 (�), any solution φ ∈ H1
0 (�) of

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�φ + ρ+
(

eWφ
∫

�
eWdx

− eW
∫

�
eWφdx

(
∫

�
eWdx)2

)

+ ∑k
i=1 e

wi φ = �h,

∫

�
∇φ · ∇PZ j

i dx = 0, j = 1, 2, i = 1, · · · , k,

(3.24)

satisfies

‖φ‖ ≤ C | log λ|‖h‖.
Proof We prove it by contradiction. Assume there exist λn → 0, ξn → ξ∗ ∈ Fk�, hn ∈
H1
0 (�) and φn ∈ H1

0 (�) which solves (3.24) with

‖φn‖ = 1, | log λn |‖hn‖ → 0 as n → ∞.

For i = 1, · · · , k, define φ̃i (y) as

φ̃i (y) =
{

φi (δi y + ξi ), y ∈ �̃i = �−ξi
δi

,

0, y ∈ R
2 \ �̃i .

In the following, we omit the index n for simplicity.
Step 1. We claim that

φ̃i (y) → γi
1 − |y|2
1 + |y|2 weakly in H(R2) and strongly in L(R2), (3.25)

and

φ → 0 weakly in H1
0 (�) and strongly in Lq(�) for q ≥ 2. (3.26)

Let ψ ∈ C∞
0 (� \ {ξ∗

1 , · · · , ξ∗
k }), multiply equation (3.24) by ψ and integrate, then

−
∫

�

∇ψ · ∇φ +
k∑

i=1

∫

�

ewi φψdx + ρ+
(∫

�
eWφψdx

∫

�
eWdx

−
∫

�
eWφdx

∫

�
eWψdx

(
∫

�
eWdx)2

)

=
∫

�

�hψdx .
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By the assumption on φ, using the fact that in � \ {ξ∗
1 , · · · , ξ∗

k }, ewi = O(λ) and eW =
h(x, ξ)ez(x,ξ) + O(λ), one has

φ → φ∗ weakly in H1
0 (�) and strongly in Lq(�) for q ≥ 2,

which gives

−
∫

�

∇φ∗ · ∇ψdx + ρ+
(∫

�
hezφ∗ψdx
∫

�
hezdx

−
∫

�
hezψdx

∫

�
hezφ∗dx

(
∫

�
hezdx)2

)

= 0.

So ‖φ∗‖H1
0 (�) ≤ 1 and it solves

�φ∗ + ρ+
(

hezφ∗
∫

�
hezdx

− hez
∫

�
hezφ∗dx

(
∫

�
hezdx)2

)

= 0.

By the non-degeneracy of z(x, ξ), we can get that φ∗ = 0. Thus (3.26) is proved.
Now let us prove (3.25). Multiplying (3.24) again by φ and integrating,

∫

�

|∇φ|2dx −
k∑

i=1

∫

�

ewi φ2dx − ρ+
(∫

�
eWφ2dx

∫

�
eWdx

− (
∫

�
eWφdx)2

(
∫

�
eWdx)2

)

=
∫

�

∇h · ∇φdx .

From the above equation, one can get that
∫

�̃i

ewφ̃2
i dx =

∫

�

ewi φ2dx

≤
∫

�

|∇φ|2dx − ρ+
(∫

�
eWφ2dx

∫

�
eWdx

− (
∫

�
eWφdx)2

(
∫

�
eWdx)2

)

−
∫

�

∇h · ∇φdx

≤ 1 + o(1) + ‖h‖ = O(1)

where we used (3.26). So we get that φ̃i is bounded in H(R2). There exists φ̃0 such that

φ̃i → φ̃0 weakly in H(R2) and strongly in L(R2).

Let ψ̃ ∈ C∞
0 (R2) and define ψi = ψ̃(

x−ξi
δi

). Multiplying (3.24) by ψi and integrating over
�,

∫

�
∇φ · ∇ψi dx − ∑

j

∫

�
ew j φψi dx − ρ+

(∫

�
eWφψi dx
∫

�
eWdx

−
∫

�
eWφdx

∫

�
eWψi dx

(
∫

�
eWdx)2

)

= ∫

�
∇h · ∇ψi dx .

(3.27)

Since ψi (x) = 0 if |x − ξi | ≥ Rδi for some R > 0, we have
∫

�

ew j φψi dx = O(δ2j ) for j 
= i .

Passing to the limit in (3.27), we have
∫

R2
∇φ̃0 · ∇ψ̃dx −

∫

R2
ewφ̃0ψ̃dx = 0.

Moreover, by the orthogonality condition in (3.24), we have
∫

R2
φ̃0e

w y j
1 + |y|2 dy = 0, j = 1, 2.
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So we deduce that

φ̃0 = γi
1 − |y|2
1 + |y|2 .

Step 2. We claim that γi = 0 for i = 1, · · · , k. Multiplying equation (3.24) by PZ0
i and

integrate over �,

∫

�

∇φ · ∇PZ0
i dx−

∑

j

∫

�

ew j φPZ0
i dx−ρ+

(∫

�
eWφPZ0

i dx∫

�
eWdx

−
∫

�
eWφdx

∫

�
eW PZ0

i dx

(
∫
eWdx)2

)

=
∫

�

∇h · ∇PZ0
i dx .

(3.28)

Since
∫

�

∇φ · ∇PZ0
i dx =

∫

�

ewi φZ0
i dx =

∫

�̃i

ewZ0φ̃i dy

where Z0 = 1−|y|2
1+|y|2 and by (3.7),

∑

j

∫

�

ew j φPZ0
i dx =

∫

�

ewi φPZ0
i dx +

∑

j 
=i

∫

�

ew j φPZ0
i dx

=
∫

�̃i

ewφ̃i (1 + Z0(y) + O(δ2i ))dy +
∑

j 
=i

∫

�

ew j φPZ0
i dx

=
∫

�̃i

ewφ̃i (1 + Z0(y))dy + O(λ
1
p ),

for some p > 1, by Hölder inequality. Moreover, by (3.26), (3.7) and (3.15), one has

ρ+
(∫

�
eWφPZ0

i dx∫

�
eWdx

−
∫

�
eWφdx

∫

�
eW PZ0

i dx

(
∫

�
eWdx)2

)

= O(λ).

From (3.28) and the above estimates, one has

lim
λ→0

| log λ|
∫

�̃i

ewφ̃i dy = 0. (3.29)

Next we multiply equation (3.24) by Pwi and integrate over �,

∫

�

∇φ · ∇Pwi dx −
∑

j

∫

�

ew j φPwi dx − ρ+
(∫

�
eWφPwi dx
∫

�
eWdx

−
∫

�
eWφdx

∫

�
eW Pwi dx

(
∫

�
eWdx)2

)

=
∫

�

∇h · ∇Pwi dx .

Now we estimate the above equation term by term.
∫

�

∇φ · ∇Pwi dx =
∫

�

ewi φdx =
∫

�̃i

ewφ̃i dy = o(1)

by (3.25) and the fact that
∫

R2
ew 1 − |y|2

1 + |y|2 dy = 0.
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By the expansion of Pwi ,

∑

j

∫

�

ew j φPwi dx =
∫

�

ewi φPwi dx +
∑

j 
=i

∫

�

ew j φPwi dx

=
∫

�̃i

ewφ̃i

(
− 4 log δi − 2 log(1 + |y|2) + 8πH(ξi , ξi ) + O(δi |y| + δ2i )

)
dy

+
∑

j 
=i

∫

�̃ j

ewφ̃ j (8πG(ξi , ξ j ) + O(δ j |y| + δ2j ))dy

= γi

∫

R2
ew 1 − |y|2

1 + |y|2 [−2 log(1 + |y|2)]dy + o(1).

Moreover,

ρ+
(∫

�
eWφPwi dx
∫

�
eWdx

−
∫

�
eWφdx

∫

�
eW Pwi dx

(
∫

�
eWdx)2

)

= o(1)

and
∫

�

∇h · ∇Pwi dx = O(‖h‖p‖Pwi‖) = O(log λ)
1
2 ‖h‖ = o(1).

Combining all the above estimates, we have

γi

∫

R2
ew 1 − |y|2

1 + |y|2 [−2 log(1 + |y|2)]dy = 0,

which implies that γi = 0 since
∫

R2
ew 1 − |y|2

1 + |y|2 [−2 log(1 + |y|2)]dy 
= 0.

Step 3. Finally, we derive a contradiction.
Multiply equation (3.24 ) by φ and integrate:

∫

�

|∇φ|2dx −
∑

i

∫

�

ewi φ2dx − ρ+
(∫

�
eWφ2dx

∫

�
eWdx

− (
∫

�
eWφdx)2

(
∫

�
eWdx)2

)

=
∫

�

∇h · ∇φdx .

From the estimates in step 1-2 and the assumptions on φ and h, it is not difficult to show that
the left hand side of the above equation tends to 1, while the right hand side has limit 0. This
is a contradiction which concludes the proof. ��

Now we can derive a priori estimates for problem (3.20).

Proposition 3.4 Let C ⊂ Fk� be a compact set. Then, there exist λ0 > 0 and C > 0 such
that for any λ ∈ (0, λ0), ξ ∈ C and h ∈ H1

0 (�), if (φ, ci j ) is a solution of (3.20), we have

‖φ‖ ≤ C | log λ|‖h‖.
Proof By Lemma 3.3 and (3.8) , we know that

‖φ‖ ≤ C | log λ|
⎛

⎝‖h‖ +
∑

i j

|ci j |‖PZ j
i ‖

⎞

⎠ ≤ C | log λ|
⎛

⎝‖h‖ +
∑

i j

1√
λ

|ci j |
⎞

⎠ .
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In order to estimate ci j , multiply the equation (3.20) by PZ j
i and integrating over �,

∫

�

φewi (PZ j
i − Z j

i )dx +
∑

�
=i

∫

�

ew�φPZ j
i dx + O

(∫

�

|φ||PZ j
i |dx +

∫

�

|φ|
∫

�

|PZ j
i |dx

)

=
∫

�

∇h · ∇PZ j
i + ci j

∫

�

ewi Z j
i P Z j

i dx +
∑

k 
=i,�
= j

o

( |ck�|
λ

)

,

where in the last line we use (3.9). Since for any q ≥ 1,

∫

�

φewi (PZ j
i −Z j

i )dx +
∑

�
=i

∫

�

ew�φPZ j
i dx=O(‖φ‖(‖ewi ‖q+‖ew� PZ j

i ‖q ))=O

(

λ
1−q
q ‖φ‖

)

,

O

(∫

�

|φ||PZ j
i | +

∫

�

|φ|
∫

�

|PZ j
i |
)

= O(‖PZ j
i ‖2‖φ‖) = O

(
| log λ| 12 ‖φ‖

)
,

∫

�

∇h · ∇PZ j
i = O(‖h‖‖PZ j

i ‖) = O

(
1√
λ

‖h‖
)

,

we have

|ci j | + o

⎛

⎝
∑

k 
= j,�
=i

|ck,�|
⎞

⎠ = O
(
λ

1
q ‖φ‖ + λ| log λ| 12 ‖φ‖ + λ

1
2 ‖h‖

)
.

Summing all |ci j | up and choosing suitable q ∈ (1, 2), we can get that

‖φ‖ ≤ C | log λ|‖h‖.
��

From the above a priori estimate and the Fredholm alternative it is then standard to derive
the following existence result.

Proposition 3.5 Let C ⊂ Fk� be a compact set. Then, there exist λ0 > 0 and C > 0 such
that for any λ ∈ (0, λ0), ξ ∈ C and h ∈ H1

0 (�), there exists a unique solution (φ, ci j ) of
(3.20), which satisfies

‖φ‖ ≤ C | log λ|‖h‖.

Proof For the first equation (3.22), since φ → �⊥(i∗p(M(W )[φ])) is the compact operator

in K⊥, the existence and uniqueness of φ follows from the Fredholm alternative and the
above a priori estimate, and then ci j are determined by (3.23). Once existence of (φ, ci j ) is
obtained, the estimate follows from Proposition 3.4. ��

3.4 Nonlinear problem

The aim of this subsection is to find (φ, {ci j }) such that u = Wξ + φξ solves

⎧
⎪⎪⎨

⎪⎪⎩

�u + ρ+ eu
∫

�
eudx

− λe−u = ∑
i j ci j e

wi Z j
i ,

∫

�
∇φ∇PZ j

i dx = 0, j = 1, 2, i = 1, · · · , k.
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For this purpose, we shall find a solution φ of
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�φ + ρ+
( eWφ
∫

�
eWdx

− eW
∫

�
eWφdx

(
∫

�
eWdx)2

)
+ ∑k

i=1 e
wi φ = −

(
R + S(φ) + N (φ)

)

+∑
i j ci j e

wi Z j
i ,

∫

�
∇φ · ∇PZ j

i dx = 0, j = 1, 2, i = 1, · · · , k.

(3.30)

where R is the error term defined in Sect. 3.2,

N (φ) = −λ
(
f (W + φ) − f (W ) − f ′(W )φ

)
+ ρ+(g(W + φ) − g(W ) − g′(W )φ

)
,

S(φ) = −
(

k∑

i=1

ewi + λ f ′(W )

)

φ,

f (W ) = e−W , g(W ) = eW
∫

�
eWdx

.

From the above linear theory, the existence of a solution to the nonlinear problem (3.30)
follows a standard strategy using contraction mapping.

Proposition 3.6 Let C ⊂ Fk� be compact set. For any ε > 0 sufficiently small, there exist
λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0) and ξ ∈ C, there exists a unique (φ, ci j )
solution of (3.30) satisfying the estimates:

‖φ‖ ≤ Cλ
1
2−ε, ‖∂

ξ
j
i
φ‖ ≤ Cλ−ε, |ci j | ≤ Cλ. (3.31)

Proof Denote the solution to (3.20) by φ := T (h). Then (3.30) is equivalent to

φ = T (i∗p(R + N (φ) + S(φ))) =: T (φ).

The solution φ can be obtained through contraction mapping. Define

B = {φ ∈ K⊥, ‖φ‖ ≤ �| log λ|λ 2−p
2p }

for � large and λ small and p close to 1.
From Proposition 3.5 and the error estimate for R, for φ, φ1, φ2 ∈ B, similarly to the

estimate in Proposition 4.10 in [8], one has

‖T φ‖ ≤ Cp| log λ|‖i∗p(R + N (φ) + S(φ))‖
≤ Cp| log λ|(‖R‖p + ‖N (φ)‖p + ‖S(φ)‖p)

≤ �| log λ|λ 2−p
2p ,

and

‖T (φ1) − T (φ2)‖ ≤ Cp(‖N (φ1) − N (φ2)‖p + ‖S(φ1) − S(φ2)‖p)

≤ 1

2
‖φ1 − φ2‖.

So T maps B into itself and it is a contraction mapping. For ε small, we can choose p

sufficiently close to 1, such that B ⊂ {φ, ‖φ‖ ≤ Cλ
1
2−ε}}. Since T is a contraction mapping

in B, we can also get that the fixed point in B is unique, i.e. the solution φ is unique in B.
The estimate for φ follows from the above estimates. The estimates for ∂ξi φ are obtained
similarly to Proposition 4.10 in [8] and the estimate for ci j follows from Proposition 3.4. ��
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3.5 The reduced problem

We introduce here the finite-dimensional reduction. In the previous subsection we have found
a solution u = W + φ to the problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u + ρ+ eu
∫

�
eudx

− λe−u = ∑
i j ci j e

wi Z j
i

∫

�
∇φ · ∇PZ j

i dx = 0, j = 1, 2, i = 1, · · · , k.

Consider now the associated energy functional:

J (u) = 1

2

∫

�

|∇u|2dx − ρ+ log
∫

�

eudx − λ

∫

�

e−udx (3.32)

and let J̃ (ξ) = J (Wξ + φξ ).

Lemma 3.7 Let ξ ∈ Fk� be a critical point of J̃ , then for λ small, u = Wξ +φξ is a solution
of (3.1).

Proof If ξ is a critical point of J̃ (ξ), then one has

〈J ′(u), ∂ξ (Wξ + φξ )〉 = 0,

which is equivalent to

〈
∑

i j

ci j e
wi Z j

i , ∂ξ s�
(Wξ + φξ )〉 = 0 for � = 1, · · · , k, s = 1, 2. (3.33)

Let us fix q > 1. Since

‖ewi Z j
i ‖q = O(λ

2−3q
2q ), (3.34)

combining the estimate (3.31), one has
∫

�

ewi Z j
i ∂ξ s�

φξdx = O(‖ewi Z j
i ‖q‖∂ξφ‖) = O

(

λ
2−3q
2q −ε

)

= o

(
1

λ

)

, (3.35)

∫

�

ewi Z j
i ∂ξ s�

Wξdx = −
∫

�

PZs
�e

wi Z j
i dx + O

(
1√
λ

)

= a

λ
δi�δ js + o

(
1

λ

)

,

(3.36)

Combining the estimates (3.35) and (3.36), we conclude that

ci j + o(1)
∑

�
=i,s 
= j

c�s = 0,

which implies that all ci j are zero. So the corresponding u is a solution of (3.1) as desired. ��
Recall the definition of � in (1.5). We next consider the expansion of the energy.

Proposition 3.8 It holds

J (W ) = �(ξ) − 8πk log λ − (16π − 24π log 2)k + o(1),

C1 uniformly in ξ in compact sets of �.
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Proof By the definition of J (W ) and W , one has

J (W ) = 1

2

∫

�

⎛

⎝|∇z|2 +
k∑

i=1

|∇Pwi |2 − 2
k∑

i=1

∇Pwi · ∇z + 2
∑

i 
= j

∇Pwi · ∇Pw j

⎞

⎠ dx

− ρ+ log
∫

�

eWdx − λ

∫

�

e−Wdx .

Using (3.16),

1

2

∫

�

|∇z|2dx − ρ+ log
∫

�

eWdx = 1

2

∫

�

|∇z|2dx − ρ+ log
∫

�

h(x, ξ)ez(x,ξ)dx + O(λ).

While using (3.13) and the estimate for E1,

λ

∫

�
e−Wdx =

k∑

i=1

∫

�
ewi dx + o(1) = 8kπ + o(1),

∫

�
∇Pwi · ∇zdx =

∫

�
ewi z(x, ξ)dx =

∫

�̃i

8

(1 + |y|2)2 z(δi y + ξi , ξ)dy = 8π z(ξi , ξ) + o(1),

where �̃i = (� − ξi )/δi . Moreover, using the expansion (3.4)
∫

�

|∇Pwi |2dx =
∫

�

ewi Pwi dx

=
∫

�

ewi
(
log

1

(δ2i + |x − ξi |2)2
+ 8πH(x, ξi ) + O(λ)

)
dx

= 64π2H(ξi , ξi ) − 2
∫

�̃i

ewi (log δ2i + log(1 + |y|2))dy + o(1)

= 64π2H(ξi , ξi ) − 16π log δ2i − 16π + o(1)

= 64π2H(ξi , ξi ) − 16π log
λdi (ξ)

8
− 16π + o(1)

= −64π2H(ξi , ξi ) − 128π2
∑

j 
=i

G(ξi , ξ j ) + 16π z(ξi , ξ)

− 16π log λ − 16π + 48π log 2 + o(1),

and for i 
= j ,
∫

�

∇Pwi · ∇Pw j dx =
∫

�

ewi
(
log

1

(δ2j + |x − ξ j |2)2
+ 8πH(x, ξ j ) + O(λ)

)
dx

= 64π2G(ξi , ξ j ) + o(1).

Combining all the above estimates, we have

J (W ) = 1

2

∫

�

|∇z|2dx − ρ+ log
∫

�

h(x, ξ)ez(x,ξ)dx − 8πk log λ

− 32π2
k∑

i=1

⎛

⎝H(ξi , ξi ) +
∑

j 
=i

G(ξi , ξ j )

⎞

⎠ − (16π − 24π log 2)k + o(1)

= �(ξ) − 8πk log λ − (16π − 24π log 2)k + o(1).
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Next, we consider the derivative of J (W ).

∂
ξ
j
i
J (W ) =

∫

�

(

−�W − ρ+ eW
∫

� eW dx
+ λe−W

)

∂
ξ
j
i
Wdx = −

∫

�
(E1(x) + E2(x))∂ξ

j
i
Wdx

= 4
∫

�
E1(z)Z

j
i dx + o(1) = 4

∫

�

⎛

⎝
∑

�

ew� − λe−W

⎞

⎠ Z j
i dx,

where E1, E2 were introduced in Lemma 3.2 and where we used

∂
ξ
j
i
W = −4PZ j

i + O(1).

Using the definition of wi and Z j
i , for � 
= i

∫

�

ew� Z j
i dx =

∫

�

8δ2�
(δ2� + |x − ξ�|2)2

x j − ξ
j
i

δ2i + |x − ξi |2
dx = 8π

ξ
j
� − ξ

j
i

|ξ� − ξi |2 + o(1).

Moreover, taking η > 0 such that |ξi − ξ j | ≥ 2η and d(ξi , ∂�) ≥ 2η, we have

∫

B(ξ�,η)

λe−W Z j
i dx = λ

∫

B(ξ�,η)

exp
[
8π

∑

i

H(x, ξi )

− z(x, ξ) + O(λ)
] x j − ξ

j
i

δ2i + |x − ξi |2
k∏

i=1

1

(δ2i + |x − ξi |2)2
dx

= λ

δ2�

∫

�̃�

exp
[
8πH(ξ�, ξ�)

+ 8π
∑

j 
=�

G(ξ�, ξ j ) − z(ξ�, ξ)
] 1

(1 + |y|2)2
ξ
j
� − ξ

j
i

|ξ� − ξi |2 dx + o(1)

= 8π
ξ
j
� − ξ

j
i

|ξ� − ξi |2 + o(1).

Let

γ (x, ξ) = 8πH(x, ξi ) + 8π
∑

j 
=i

G(x, ξ j ) − z(x, ξ).
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Then,

∫

B(ξi ,η)

λe−W Z j
i dx = λ

∫

B(ξi ,η)

exp
[
8π

∑

i

H(x, ξi ) − z(x, ξ) + O(λ)
]

x j − ξ
j
i

δ2i + |x − ξi |2
k∏

i=1

1

(δ2i + |x − ξi |2)2
dx

= λ

δ3i

∫

�̃i

1

(1 + |y|2)2
y j

1 + |y|2
exp

[
8πH(ξi + δi y, ξi ) + 8π

∑

j 
=i

G(ξi + δi y, ξ j )

− z(ξi + δi y, ξ)
]
dy + o(1)

= 8

δi

∫

B(0, η
δi

)

y j
(1 + |y|2)3 exp[γ (ξi + δi y, ξ) − γ (ξi , ξ)]dy + o(1)

= 8

δi

∫

R2

y j
(1 + |y|2)3

∂γ

∂x
(ξi , ξ) · δi y dy + o(1)

= 2π
∂γ

∂x
(ξi , ξ) + o(1).

Finally,

|
∫

�\⋃i B(ξi ,η)

λe−W Z j
i dx | ≤ Cλ

∫

�\⋃i B(ξi ,η)

e
∑

� Pw� |Z j
i |dx ≤ Cλ = o(1).

Combining the above estimates, we have

∂
ξ
j
i
J (W ) = −8π

∂γ

∂x
(ξi , ξ) + o(1) = ∂

ξ
j
i
�(ξ) + o(1),

as desired, where we used (1.6). ��

Finally, we have the following expansion of the reduced energy.

Proposition 3.9 It holds

J̃ (ξ) := J (Wξ + φξ ) = J (Wξ ) + o(1),

C1 uniformly in ξ in compact sets of Fk�.
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Proof To simplify the notation, we shall drop the sub-index ξ in the proof. It is not difficult
to show that

J (W + φ) − J (W ) = 1

2

∫

�

|∇φ|2dx +
∫

�

∇W · ∇φdx + λ

∫

�

e−W (1 − e−φ)dx

+ ρ+( log
∫

�

eWdx − log
∫

�

eW+φ
)
dx

= −
∫

�

�z(x, ξ)φdx − ρ+
∫

�

h(x, ξ)ez(x,ξ)φ
∫

�
h(x, ξ)ez(x,ξ)dx

dx

+
∫

�

∑

i

ewi φdx − λ

∫

�

e−Wφdx

+ ρ+( log
∫

�

eWdx − log
∫

�

eW+φdx

+
∫

�

h(x, ξ)ez(x,ξ)φ
∫

�
h(x, ξ)ez(x,ξ)dx

dx
)

+ λ

∫

�

e−W (1 − e−φ + φ)dx + ‖φ‖2 = o(1).

Next we consider the derivatives.

∂
ξ
j
i
[J (W + φ) − J (W )] = −

∫

�

(

�(W + φ) + ρ+ eW+φ

∫

�
eW+φdx

− λe−(W+φ)

)

∂
ξ
j
i
φdx

−
∫

�

[

�φ + ρ+
(

eW+φ

∫

�
eW+φdx

− eW
∫

�
eWdx

)

−λ(e−(W+φ) − e−W )
]
∂
ξ
j
i
Wdx

=
∑

i, j

∫

�

ci j e
wi Z j

i ∂ξ
j
i
φdx−

∫

�

�φ∂
ξ
j
i
Wdx−

∫

�

λe−Wφ∂
ξ
j
i
Wdx

+
∫

�

λ(e−(W+φ) − e−W + e−Wφ)∂
ξ
j
i
Wdx

+ ρ+
∫

�

(
eW+φ

∫
eW+φ

− eW
∫
eW

)

∂
ξ
j
i
Wdx .

Using the estimate for ci j in Proposition 3.6 and (3.34), we have

∑

i, j

∫

�

ci j e
wi Z j

i ∂ξ
j
i
φdx = O

⎛

⎝
∑

i, j

|ci j |‖∂ξ
j
i
φ‖ · ‖ewi Z j

i ‖q
⎞

⎠ = O(λ
2−3q
2q +1−ε

) = o(1),

provided q is sufficiently close to 1. Recalling the definitions of f , g in (3.3) we exploit now
the estimates in [8, Lemma 4.7]. For some θ ∈ (0, 1) and p sufficiently close to 1 we have

∫

�

λ(e−(W+φ) − e−W + e−Wφ)∂
ξ
j
i
Wdx =

∫

�

λ f ′′(W + θφ)φ2∂
ξ
j
i
Wdx

= O(‖λ f ′′(W + θφ)φ2‖p‖∂ξ
j
i
W‖q)

= O(λ
1−pq
pq − 1

2+1−2ε
) = o(1).
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Moreover, for some θ̃ ∈ (0, 1) and suitable p, q

ρ+
∫

�

(
eW+φ

∫
eW+φ

− eW
∫
eW

)

∂
ξ
j
i
W dx = ρ+

∫

�

g′(W + θ̃φ)φ∂
ξ
j
i
W dx

= O(‖g′(W + θ̃φ)φ‖p‖∂ξ
j
i
W‖q)

= O(λ
1
2−ε) = o(1).

Recall that

λe−W =
k∑

i=1

ewi + O(λ) and ∂
ξ
j
i
W = −4PZ j

i + O(1),

for ξ in compact sets of Fk�. Then

λ

∫

�

e−Wφ∂
ξ
j
i
Wdx = −4

k∑

�=1

∫

�

ew�φPZ j
i dx + o(1)

= −4
∫

�

ewi Z j
i φdx − 4

∑

�
=i

∫

�

ew�φZ j
i dx + o(1)

= −4
∫

�

∇φ · ∇PZ j
i dx + o(1) = o(1)

by the orthogonality condition satisfied by φ. Moreover, again by the orthogonality condition
we have

∫

�

�φ∂
ξ
j
i
Wdx = −

∫

�

∇φ · ∇∂
ξ
j
i
Wdx = −4

∫

�

∇φ · (∇PZ j
i + O(1))dx

= O(1)
∫

�

|∇φ|dx = o(1).

Combining the above estimates, we have

∂
ξ
j
i
J̃ (ξ) = ∂

ξ
j
i
J (W ) + o(1), (3.37)

as desired. ��

Proof of Theorem 1.1 Let K ⊂ Fk� be a C1-stable set of critical points of �. Then, by
Propositions 3.8-3.9, for λ > 0 small, there exists ξλ critical point of J̃ and d(ξλ,K) → 0
as λ → 0. By Lemma 3.7, uλ = Wξλ + φξλ is a solution of (3.1). It follows that uλ solves
the original problem (1.1) with ρ+

λ = ρ+ and

ρ−
λ = λ

∫

�

e−uλdx = λ

∫

�

e−Wξλ dx + o(1) = 8kπ + o(1).

Moreover, from the definition of uλ, and using (3.4), (3.5) and (3.31), we can derive the
second property in Theorem 1.1. ��

123



Blow up solutions for Sinh-Gordon equation… Page 23 of 46   209 

4 Asymmetric blow up

4.1 Approximate solutions

In this section we will derive the proof of Theorem 1.2. To this end we will always assume
that � is l−symmetric for l ≥ 2 even according to (4.1) below. Therefore, we will consider
symmetric functions such that

u(x) = u(Rl · x), (4.1)

recall (1.7), and define

Hl := {
u ∈ H1

0 (�), u satisfies (4.1)
}
.

Consider problem (3.1) and let k ≥ 2 be an odd integer. In order to construct blow up
solutions with local masses (4πk(k − 1), 4πk(k + 1)), we need to consider the following
singular Liouville equation. Let α ≥ 2. It is known [27] that

wα
δ (x) = log

2α2δα

(δα + |x |α)2
, δ > 0,

solves the problem

�w + |x |α−2ew = 0 in R
2,

∫

R2
|x |α−2ewdx < ∞,

and
∫

R2
|x |α−2ewdx = 4πα.

Similarly to the previous section, let Pu be the projection of the function u into H1
0 (�). We

look here for a sign changing solution of the form

u = W + φ(x), W (x) = z(x) +
k∑

i=1

(−1)i Pwi (x),

where φ is a small error term, z(x) is the unique solution of (1.8) and Pwi = Pw
αi
δi

with

αi = 4i − 2, δi = diλ
k−i+1
4i−2 , di > 0, i = 1, · · · , k. (4.2)

The latter parameters are chosen such that the interaction of different bubbles is small. More
precisely, the following functions will play an important role in the interaction estimate:

�i (y) = Pwi (δi y) − wi (δi y) − (αi − 2) log |δi y|
+
∑

j 
=i

(−1) j−i Pw j − z(δi y) + log λ, i odd, (4.3)

Ti (y) = Pwi (δi y) − wi (δi y) − (αi − 2) log |δi y|
+
∑

j 
=i

(−1) j−i Pw j + z(δi y) − log Q, i even, (4.4)

where

Q = ρ−1
0

∫

�

ez−8kπG(x,0)dx . (4.5)
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As we will see in the sequel, in order to make these two functions small, we will need to
choose δi and αi such that

(αi − 2) +
∑

j<i

(−1) j−i2α j = 0, i = 1, · · · , k, (4.6)

and

−αi log δi − log(2α2
i ) − 2

∑

j>i

(−1) j−iα j log δ j − z(0)

+
k∑

j=1

(−1) j−i h j (0) + log λ = 0, i odd, (4.7)

−αi log δi − log(2α2
i ) − 2

∑

j>i

(−1) j−iα j log δ j + z(0)

+
k∑

j=1

(−1) j−i h j (0) − log Q = 0, i even, (4.8)

where hi (x) = 4παi H(x, 0). From (4.6) we deduce that α1 = 2 and αi = αi−1 + 4 for
i ≥ 2 which implies the choice of αi in (4.2). On the other hand, from (4.7) and (4.8) one
easily deduces that

δ
αk
k = λe

∑
j (−1) j−kh j (0)−z(0)−log(2α2

k ) = λe8kπH(0,0)−z(0)−log(2α2
k ),

and

δ
αi−1
i−1 = δ

αi
i

4α2
i α

2
i−1Q

λ.

From the above identities, one can get that

δi = diλ
k−i+1
4i−2 ,

for some di > 0, which implies (4.2).
We estimate now �i and Ti . First, using the maximum principle it is not difficult to see

that

Pwi (x) = wi (x) − log(2α2
i δ

αi
i ) + hi (x) + O(δ

αi
i )

= −2 log(δαi
i + |x |αi ) + hi (x) + O(δ

αi
i )

(4.9)

and for i, j = 1, · · · , k,

Pwi (δ j y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2αi log(δ j |y|) + hi (0) + O
(

1
|y|αi

(
δi
δ j

)αi
)

+O(δ j |y|) + O(δ
αi
i ) if i < j

−2αi log δi − 2 log(1 + |y|αi ) + hi (0)

+O(δi (y)) + O(δ
αi
i ) if i = j

−2αi log δi + hi (0) + O
(
|y|αi

(
δ j
δi

)αi
)

+O(δ j |y|) + O(δ
αi
i ) if i > j .

(4.10)
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where hi (x) = 4παi H(x, 0).

Remark 4.1 From the above expansion, one can get that for |x | ≥ δ0 for δ0 > 0 small, the
following expansion holds:

k∑

i=1

(−1)i Pwi (x) = 4π
∑

i

(−1)iαi H(x, 0) − 2
∑

i

(−1)iαi log |x | + O(δ
αk
k )

From the definition of αi we have
∑k

i=1(−1)iαi = (−1)k2k and hence, for k odd it holds

k∑

i=1

(−1)i Pwi (x) = −8kG(x, 0) + O(λ).

We next introduce the following shrinking annulus

A j = {
x ∈ �,

√
δ j−1δ j ≤ |x | ≤ √

δ jδ j+1
}
, j = 1, · · · , k, (4.11)

where δ0 := 0 and δk+1 := +∞.

Lemma 4.2 For any y ∈ Ai
δi
, the following estimates hold:

�i (y) = O(δi |y| + λ), i odd, (4.12)

Ti (y) = O(δi |y| + λ), i even. (4.13)

In particular,

sup
y∈ Ai

δi

|�i (y)| + sup
y∈ Ai

δi

|Ti (y)| = O(1). (4.14)

Proof Consider y ∈ Ai
δi
. From (4.10), and using (4.6) and (4.7), for i odd,

�i (y) = −αi log δi − log(2α2
i ) + hi (0) − (αi − 2) log |δi y| + O(δi |y| + δ

αi
i )

+
∑

j<i

(−1)i− j
[

− 2α j log(δi |y|) + h j (0) + O
( 1

|y|α j

( δ j

δi

)α j
)

+ O(δi |y| + δ
α j
j )

]

+
∑

j>i

(−1) j−i
[

− 2α j log δ j + h j (0) + O
(
|y|α j

( δi

δ j

)α j
)

+ O(δi |y| + δ
α j
j )

]

− z(0) + log λ + O(δi |y|)

=
[ k∑

j=1

(−1) j−i h j (0) − αi log δi − log(2α2
i ) − 2

∑

j>i

(−1) j−iα j log δ j − z(0) + log λ
]

(= 0 because of (4.7))

− log |δi |y||
[
(αi − 2) +

∑

j<i

(−1)i− j2α j

]

(= 0 because of (4.6))

+ O(δi |y|) +
∑

j

δ
α j
j +

∑

j>i

O
(
|y|α j

( δi

δ j

)α j
)

+
∑

j<i

O
( 1

|y|α j

( δ j

δi

)α j
)

= O(δi |y|) +
∑

j

δ
α j
j +

∑

j>i

O
(
|y|α j

( δi

δ j

)α j
)

+
∑

j<i

O
( 1

|y|α j

( δ j

δi

)α j
)

= O(δi |y| + λ).
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Similarly, for i even,

Ti (y) =
[ k∑

j=1

(−1) j−i h j (0) − αi log δi − log(2α2
i ) − 2

∑

j>i

(−1) j−iα j log δ j + z(0) − log Q
]

(= 0 because of (4.8))

− log |δi |y||
[
(αi − 2) +

∑

j<i

(−1)i− j2α j

]

(= 0 because of (4.6))

+ O(δi |y|) +
∑

j

δ
α j
j +

∑

j>i

O
(
|y|α j

( δi

δ j

)α j
)

+
∑

j<i

O
( 1

|y|α j

( δ j

δi

)α j
)

= O(δi |y|) +
∑

j

δ
α j
j +

∑

j>i

O
(
|y|α j

( δi

δ j

)α j
)

+
∑

j<i

O
( 1

|y|α j

( δ j

δi

)α j
)

= O(δi |y| + λ).

Finally, (4.14) follows from the above two estimates since δi |y| = O(1) when y ∈ Ai
δi
. ��

Finally, we will need the following non-degeneracy result for entire singular Liouville
equations which was derived in [11, Theorem 6.1] for l = 2 and which can be extended to
any l ≥ 2 even.

Proposition 4.3 Assume φ : R2 → R satisfying (4.1) is a solutions of

�φ + 2α2 |y|α−2

(1 + |y|α)2
φ = 0 in R

2,

∫

R2
|∇φ|2dy < ∞,

with α ≥ 2 and α
2 odd. Then,

φ(y) = γ
1 − |y|α
1 + |y|α , for some γ ∈ R.

4.2 Estimate of the error term

In this subsection we estimate the error of the approximate solution. To this end, set

E1 = ρ+ eW
∫

�
eWdx

−
∑

i even

|x |αi−2ewi − ρ0
ez−8kπG(x,0)

∫

�
ez−8kπG(x,0)dx

,

E2 = λe−W −
∑

i odd

|x |αi−2ewi .

Lemma 4.4 For any q ≥ 1 sufficiently close to 1, the following holds:

‖E1‖q = O
(
λ

2−q
2q(2k−1)

)
, ‖E2‖q = O

(
λ

2−q
2q(2k−1)

)
.

Proof First we consider E2. Recall the definition of the annulus Ai in (4.11).

∫

�

Eq
2 dx =

k∑

i=1

∫

Ai

Eq
2 dx =

∑

i odd

∫

Ai

Eq
2 dx +

∑

i even

∫

Ai

Eq
2 dx = I1 + I2.
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One has

I1 =
∑

i odd

∫

Ai

Eq
2 dx =

∑

i odd

∫

Ai

|λe
∑

l odd Pwl−∑
l even Pwl−z −

∑

j odd

|x |α j−2ew j |qdx

≤ C
∑

i odd

∫

Ai

||x |αi−2ewi − λe
∑

l odd Pwl−∑
l even Pwl−z |qdx

+ C
∑

i, j odd, i 
= j

∫

Ai

||x |α j−2ew j |qdx

= I11 + I12.

Let us estimate I11. For fixed i odd,

∫

Ai

||x |αi−2ewi − λe
∑

l odd Pwl−∑
l even Pwl−z |qdx

=
∫

Ai

|x |q(αi−2)eqwi |1 − ePwi−wi−(αi−2) log |x |+∑
j 
=i odd Pw j−∑

l even Pwl−z+log λ|qdx

= Cδ
2−2q
i

∫

Ai
δi

|y|q(αi−2)

(1 + |y|αi )2q |1 − e�i (y)|qdy = Cδ
2−2q
i

∫

Ai
δi

|y|q(αi−2)

(1 + |y|αi )2q |�i (y)|qdy

( using (4.12))

= O
(
δ
2−2q
i

∫

Ai
δi

|y|q(αi−2)

(1 + |y|αi )2q |δi |y|+λ|qdy
)
=O(δ

2−2q
i λq+δ

2−q
i )=O(δ

2−2q
1 λq + δ

2−q
k )

= O(λq+k(1−q) + λ
2−q

2(2k−1) ) = O(λ
2−q

2(2k−1) ),

provided that q is close to 1. Therefore, we get I11 = O(λ
2−q

2(2k−1) ).

For I12, fix j 
= i odd,

∫

Ai

||x |α j−2ew j |qdx = C
∫

Ai

( |x |α j−2δ
α j
j

(δ
α j
j + |x |α j )2

)q

dx

= Cδ
2−2q
j

∫

√
δi−1δi
δ j

≤|y|≤
√

δi δi+1
δ j

|y|q(α j−2)

(1 + |y|α j )2q
dy

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O

(

δ
2−2q
j

(√
δi δi+1
δ j

)(α j−2)q+2
)

for j > i

O

(

δ
2−2q
j

(√
δi δi−1
δ j

)−(α j+2)q+2
)

for j < i

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O
(
δ
2−2q
3 (

δk−1
δk

)(αk−2)q+2
)

= O

(

λ
(k−2)(1−q)

5 + (2k+1)(2(k−1)q+1)
4(k−1)2−1

)

O
(
δ
2−2q
1 (

δk−2
δk−1

)q(2+αk−2)−2
)

= O

(

λ
k(1−q)+ (2k+1)(2(k−2)q−1)

4(k−2)2−1

)

= O
(
λ

2−q
2(2k−1)

)
.

(4.15)
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provided that q is close to 1. Therefore, ‖I1‖q = O
(
λ

2−q
2q(2k−1)

)
.

Next, let us estimate I2. For l even fixed,

∫

Al
Eq
2 dx ≤ C

∫

Al
|λe−W |qdx + C

∑

i odd

∫

Al
||x |αi−2ewi |qdx = I21 + I22.

We have,

I21 = C
∫

Al
|λe−Pwl−∑

j 
=l even Pw j−z+∑
i odd Pwi |qdx

= Cλqδ2l

∫

Al
δl

|e−wl (δl y)−(αl−2) log |δl y|−Tl (y)−log Q |qdy

( using (4.13))

= O
(
δ
2+2q
l λq

∫
√

δl−1
δl

≤|y|≤
√

δl+1
δl

(1 + |y|αl )2q
|y|(αl−2)q

(1 + δl |y| + λ)qdy
)

= O
(
δ
2+2q
l λq

[(δl+1

δl

) (αl+2)q
2 +1 +

( δl

δl−1

) (αl−2)q
2 −1])

= O
(
δ
2+2q
2 λq

[(δ3

δ2

) (α2+2)q
2 +1 +

(δ2

δ1

) (α2−2)q
2 −1])

= O
(
λq+ (k−1)(1+q)

3 − (2k+1)(2q−1)
6

)
= O

(
λ

2−q
2(2k−1)

)
,

(4.16)

if q is close to 1. Moreover, similarly to the estimate of I12, one can also get that I22 =
O
(
λ

2−q
2(2k−1)

)
.

Combining all the above estimates, one has

∫

�

Eq
2 dx = O(λ

2−q
2(2k−1) ). (4.17)

Next we consider E1. First we need to estimate
∫

�
eWdx . For i even fixed,

∫

Ai

eWdx =
∫

Ai

ePwi−wi+z+∑
j 
=i (−1) j−i Pw j−(αi−2) log |x ||x |αi−2ewi dx

=
∫

Ai
δi

eTi (y)+log Q |δi y|αi−2ewi (δi y)δ2i dy

=
∫

Ai
δi

elog Q+O(δi |y|+λ)|δi y|αi−2ewi (δi y)δ2i dy = 4παi Q + O(λ
1

2(2k−1) ),
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where we have used Lemma 4.2 for the estimate of Ti (y) and the fact that

∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 dy = 4παi .

For i < k odd and fixed, reasoning as in (4.16) with q = 1, one has

∫

Ai

eWdx =
∫

Ai

e−Pwi−∑
j 
=i (−1) j−i Pw j+zdx = O(λ

2k−5
6 ).

Finally for i = k which is odd, using Remark 4.1,

∫

Ak

eWdx =
∫

Ak

eze−Pwk−∑
j 
=k (−1) j−k Pw j dx

=
∫

|x |>√
δk−1δk

ez−8kπG(x,0)dx + O(δ
αk
k ) + O(λ

1
2(2k−1) )

=
∫

�

ez−8kπG(x,0)dx + O(λ
1

2(2k−1) ).

In conclusion, one has

∫

�

eWdx =
∫

�

ez−8kπG(x,0)dx +
∑

i even

4παi Q + O(λ
1

2(2k−1) )

= ρ+

ρ0

∫

�

ez−8kπG(x,0)dx + O(λ
1

2(2k−1) ),

(4.18)

where we used the definition of Q in (4.5) and the fact that

∑

i even

4παi Q = ρ+ − ρ0

ρ0

∫

�

ez−8kπG(x,0)dx,

since
∑

i even 4παi = 4πk(k − 1) = ρ+ − ρ0.
With the estimate for

∫

�
eWdx in hand, we now consider E1.

∫

�

Eq
1 dx =

∑

i even

∫

Ai

Eq
1 dx +

∑

l odd

∫

Al
Eq
1 dx = J1 + J2.
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First for i even fixed,

∫

Ai

Eq
1 dx =

∫

Ai

|ρ+ eW
∫

�
eW ex

− ρ0
ez−8kπG(x,0)

∫

�
ez−8kπG(x,0)dx

− |x |αi−2ewi −
∑

j 
=i even

|x |α j−2ew j |qdx

≤ C
∫

Ai

|ρ+ eW
∫

�
eW ex

− |x |αi−2ewi |qdx + C
∫

Ai

|ρ0 ez−8kπG(x,0)
∫

�
ez−8kπG(x,0)dx

|qdx

+ C
∑

j 
=i even

∫

Ai

||x |α j−2ew j |qdx

= C
∫

Ai

|ρ+ eW
∫

�
eWdx

− |x |αi−2ewi |qdx + O(λ
2−q

2(2k−1) ) + O(δ
4kq+2
i+1 )

= Cδ
2−2q
i

∫

Ai
δi

|y|(αi−2)q

(1 + |y|αi )2q
∣
∣
∣
∣
∣
1 − e

Pwi (δi y)−wi (δi y)−(αi−2) log |δi y|+∑
j 
=i (−1) j−i Pw j+z+log ρ+

∫

� eW dx

∣
∣
∣
∣
∣

q

dx

( by (4.13))

= Cδ
2−2q
i

∫

Ai
δi

|y|(αi−2)q

(1 + |y|αi )2q
∣
∣
∣
∣
∣
1 − e

Ti (y)+log Q+log ρ0∫

� ez−8kπG(x,0)dx
+O(λ

1
2(2k−1) )

∣
∣
∣
∣
∣

q

dx

= Cδ
2−2q
i

∫

Ai
δi

|y|(αi−2)q

(1 + |y|αi )2q |δi |y| + O(λ
1

2(2k−1) )|qdy = O(λ
2−q

2(2k−1) ).

So we have

J1 = O
(
λ

2−q
2(2k−1)

)
. (4.19)

Next, consider J2. For l < k odd and fixed, similarly to the estimates in (4.16), (4.15) and
using (4.18)

∫

Al
|E1|qdx = O(1)

( ∫

Al
|e−Pwl−∑

j 
=l (−1) j−l Pw j+z |qdx +
∫

Al

∣
∣
∣
∣
∣

ez−8kπG(x,0)
∫

�
ez−8kπG(x,0)dx

∣
∣
∣
∣
∣

q

dx

+
∑

j even

∫

Al
||x |α j−2ew j |qdx

)
= O(λ

2−q
2(2k−1) ).

Finally, we consider the case l = k which is odd: using (4.18) and (4.15)
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∫

Ak

Eq
1 dx ≤ C

∫

Ak

∣
∣
∣
∣
∣
ρ+ ez+

∑
i (−1)i Pwi

∫

�
eWdx

− ρ0
ez−8kπG(x,0)

∫

�
ez−8kπG(x,0)dx

∣
∣
∣
∣
∣

q

dx

+ C
∑

i even

∫

Ak

|x |(αi−2)qeqwi dx

= C
∫

Ak

∣
∣
∣
∣
∣
ρ0

ez+
∑

i (−1)i Pwi

∫

�
ez−8kπG(x,0)dx

− ρ0
ez−8kπG(x,0)

∫

�
ez−8kπG(x,0)dx

∣
∣
∣
∣
∣

q

dx + O(λ
2−q

2(2k−1) )

= O(δ
2q
k ) + O(λ

2−q
2(2k−1) ) = O(λ

2−q
2(2k−1) ).

In conclusion, one has

‖E1‖q = O
(
λ

2−q
2q(2k−1)

)
.

��

4.3 The linear theory

In this subsection, we consider the linear problem: given h ∈ Hl , we look for φ ∈ Hl such
that

�φ + ρ+
(

eWφ
∫

�
eWdx

− eW
∫

�
eWφdx

(
∫

�
eWdx)2

)

+ λe−Wφ = �h in �. (4.20)

First we have the following apriori estimate:

Lemma 4.5 There exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), h ∈ Hl and φ ∈ Hl

solution of (4.20) we have

‖φ‖ ≤ C | log λ|‖h‖.

We start by listing some straightforward integrals which will be useful in the proof of
Lemma 4.5.

Lemma 4.6 The following hold:

∫

R2

|y|αi−2

(1 + |y|αi )2
1 − |y|αi
1 + |y|αi dy = 0, (4.21)

∫

R2
2α2

i
|y|αi−2

(1 + |y|αi )2
1 − |y|αi
1 + |y|αi log(1 + |y|αi )2dy = −4παi , (4.22)

∫

R2
2α2

i
|y|αi−2

(1 + |y|αi )2
1 − |y|αi
1 + |y|αi log |y|dy = −4π. (4.23)

Proof of Lemma 4.5 We prove it by contradiction. Assume there exist λn → 0, hn ∈ Hl and
φn ∈ Hl which solves (4.20) such that
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‖φn‖ = 1, | log λn |‖hn‖ → 0 as n → ∞.

In the following, we omit the index n for simplicity. For i = 1, · · · , k, define φ̃i (y) as

φ̃i (y) =
{

φi (δi y), y ∈ �̃i = �
δi

,

0, y ∈ R
2 \ �̃i .

Step 1. We claim that

φ → 0 weakly in H1
0 (�) and strongly in Lq(�) for q ≥ 2. (4.24)

and

φ̃i is bounded in Hαi (R
2)

Letting ψ ∈ C∞
0 (� \ {0}) and multiplying equation (4.20) by ψ and integrating, one has

−
∫

�

∇ψ · ∇φdx +
∫

�

λe−Wφψdx

+ ρ+
(∫

�
eWφψdx

∫

�
eWdx

−
∫

�
eWφdx

∫

�
eWψdx

(
∫

�
eWdx)2

)

=
∫

�

�hψdx .
(4.25)

By the assumption on φ, using the fact that in compact sets of � \ {0},

eW = ez(x)−8kπG(x,0) + O(λ) and λe−W = O(λ),

one has

φ → φ∗ weakly in H1
0 (�) and strongly in Lq(�) for q ≥ 2

where

−
∫

�

∇φ∗ · ∇ψdx + ρ+
∫

�
ez−8kπG(x,0)φ∗ψdx
∫

�
ez−8kπG(x,0)

− ρ+
∫

�
ez−8kπG(x,0)ψdx

∫

�
ez−8kπG(x,0)φ∗dx

(
∫

�
ez−8kπG(x,0)dx)2

= 0.

So ‖φ∗‖H1
0 (�) ≤ 1 and it solves

�φ∗ + ρ+
(

ez−8kπG(x,0)φ∗
∫

�
ez−8kπG(x,0)dx

− ez−8kπG(x,0)
∫

�
ez−8kπG(x,0)φ∗dx

(
∫

�
ez−8kπG(x,0)dx)2

)

= 0.

By the non-degeneracy of z(x) we get φ∗ = 0. Thus (4.24) is proved.
Now we prove that φ̃i is bounded in Hαi (R

2). First it is easy to check that

∫

R2
|∇φ̃i |2dy =

∫

�

|∇φi |2dx ≤ 1 for i = 1, · · · , k. (4.26)
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We multiply (4.20) again by φ and integrate,
∫

�

|∇φ|2dx −
∫

�

λe−Wφ2dx

−ρ+(
∫

�
eWφ2dx

∫

�
eWdx

− (
∫

�
eWφdx)2

(
∫

�
eWdx)2

)
=

∫

�

∇h · ∇φdx . (4.27)

From the above equation, one can get that,
∫

�

λe−Wφ2
i dx ≤

∫

�

|∇φ|2dx − ρ+(
∫

�
eWφ2dx

∫

�
eWdx

− (
∫

�
eWφdx)2

(
∫

�
eWdx)2

)
−

∫

�

∇h · ∇φdx

≤ 1 + o(1) + ‖h‖ = O(1)

where we used (4.24). Let i be odd. Lemma 4.4 gives
∫

�

|x |αi−2ewi φ2dx ≤ C,

or equivalently
∫

R2

|y|αi−2

(1 + |y|αi )2 φ̃2
i dy ≤ C .

Combined with (4.26), we deduce that φ̃i is bounded in Hαi (R
2) when i is odd.

We consider now the case for i even. From (4.18), eW = ez−8kπG(x,0) + O(λ) uniformly
on compact sets of � \ {0} and recalling (4.24), we get that

∫

�

eWφdx = O(1). (4.28)

Moreover, by (4.27) one can get that

ρ+
(∫

�
eWφ2dx

∫

�
eWdx

− (
∫

�
eWφdx)2

(
∫

�
eWdx)2

)

= O(1). (4.29)

Combining (4.28) and (4.29), we have
∫

�

eWφ2dx = O(1). (4.30)

By Lemma 4.4, (4.24) and (4.30),
∫

�
|x |αi−2ewi φ2dx = O(1) for i even, which implies that

∫

R2

|y|αi−2

(1 + |y|αi )2 φ̃2
i dy = O(1).

So we get that also for i even, φ̃i is bounded in Hαi (R
2).

Step 2. We claim that

φ̃i (y) → γi
1 − |y|2
1 + |y|2 weakly in Hαi (R

2) and strongly in Lαi (R
2), γi ∈ R. (4.31)

FromStep 1, we know that φ̃i → φ̃∗
i weakly in Hαi (R

2) and strongly in Lαi (R
2). Consider

ψ̃ ∈ C∞
0 (R2 \ {0}) and let K be its support. For n large, one has

K ⊂ Ai

δi
=

{

y ∈ �̃i ,

√
δi−1

δi
≤ |y| ≤

√
δi+1

δi

}

.
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Define ψi = ψ̃( x
δi

). Multiplying (4.20) by ψi and integrating over �,

∫

�

∇φ · ∇ψi dx − ρ+
(∫

�
eWφψi dx
∫

�
eWdx

−
∫

�
eWφdx

∫

�
eWψi dx

(
∫

�
eWdx)2

)

−
∫

�

λe−Wφψi dx =
∫

�

∇h · ∇ψi dx .

(4.32)

Consider first i even. According to Lemma 4.4, one has

ρ+
∫

�
eWφdx

∫

�
eWdx

=
∑

j even

∫

�

|x |α j−2ew j φdx + ρ0

∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

+ o(1)

=
∑

j even

∫

R2

2α2
j |y|α j−2φ̃ j

(1 + |y|αi )2 dy + ρ0

∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

+ o(1)

=
∑

j even

∫

R2

2α2
j |y|α j−2φ̃∗

j

(1 + |y|αi )2 dy + o(1)

where in the last line we used (4.24). Similarly, one has

ρ+
∫

�
eWφψi dx
∫

�
eWdx

=
∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 ψ̃φ̃∗
i dy + o(1),

ρ+
∫

�
eWψi dx

∫

�
eWdx

=
∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 ψ̃dy + o(1),

λ

∫

�

e−Wφψi dx =
∑

j odd

∫

�

|x |α j−2ew j φψi dx + o(1) = o(1).

Thus, φ̃∗
i satisfies

∫

R2
∇φ̃∗

i · ∇ψ̃i dy −
∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗
i ψ̃dy

= − 1

ρ+
( ∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 ψ̃dy
)( ∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗
i dy

)
.

From this we deduce that the function

φ̃∗
i − 1

ρ+

∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗
i dy ∈ Hαi (R

2)

is a solution of

�φ + 2α2
i |y|αi−2

(1 + |y|αi )2 φ = 0 in R
2 \ {0}. (4.33)
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Since
∫ |∇φ̃∗

i |2dy ≤ 1, φ̃∗
i is a solution in the whole space R2. By Proposition 4.3, we get

that φ̃∗
i − 1

ρ+
∫

R2
2α2

i |y|αi−2

(1+|y|αi )2 φ̃∗
i dy = γi

1−|y|αi
1+|y|αi for some γi . By(4.21) one has

∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗
i dy = 1

ρ+

∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 dy
∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗
i dy

which implies that
(
4παi

ρ+ − 1

)∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗
i dy = 0.

Since ρ+ 
= 4παi we deduce that

φ̃∗
i = γi

1 − |y|αi
1 + |y|αi .

Hence, (4.31) is proved for i even.
We next turn to i odd. In this case, we consider (4.32) with i odd and estimate each term

separately,
∫

�

eWψi dx = o(1),
∫

�

eWφψi dx = o(1),

and

λ

∫

�

e−Wφψi dx =
∫

�

|x |αi−2ewi φψi dx + o(1) =
∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃i ψ̃dy + o(1).

Hence, φ̃∗
i satisfies

∫

R2
∇φ̃∗

i · ∇ψ̃dy −
∫

R2

2α2
i |y|αi−2

(1 + |y|αi )2 φ̃∗
i ψ̃dy = 0,

namely φ̃∗
i is a solution of

�φ + 2α2
i |y|αi−2

(1 + |y|αi )2 φ = 0 in R
2 \ {0},

and again we conclude by using Proposition 4.3.
Step 3. In this step, we will prove some estimates on the speed of convergence. We set

σi (λ) := | log λ|
∫

R2
2α2

i
|y|αi−2

(1 + |y|αi )2 φ̃i dy. (4.34)

We will show that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σi (λ) = o(1) for i odd

σi (λ) − 4παi

ρ+
(∑

j even σ j (λ) + | log λ|ρ0
∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

)
= o(1) for i even.

Set Z0
i = δ

αi
i −|x |αi

δ
αi
i +|x |αi , we know that Z0

i is a solution of

�Z + |x |αi−2ewi Z = 0 in R
2.
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Let PZ0
i be its the projection onto H1

0 (�), that is

�PZ0
i + |x |αi−2ewi Z0

i = 0 in �, PZ0
i = 0 on ∂�.

By maximum principle one can show

PZ0
i = Zi + 1 + O(δ

αi
i ) = 2δαi

i

δ
αi
i + |x |αi + O(δ

αi
i ), (4.35)

which implies

PZ0
i (δ j y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

O
(

1
|y|αi (

δi
δ j

)αi
)

+ O(δ
αi
i ) for i < j,

2
1+|y|αi + O(δ

αi
i ), for i = j,

2 + O
(
|y|αi ( δ j

δi
)αi

)
+ O(δ

αi
i ) for i > j,

(4.36)

and

‖PZ0
i ‖qq = O(δ2i ), q > 1. (4.37)

First we consider i even. Multiply (4.20) by PZ0
i and integrate over �,

∫

�

∇φ · ∇PZ0
i dx − ρ+

(∫

�
eWφPZ0

i dx∫

�
eWdx

−
∫

�
eWφdx

∫

�
eW PZ0

i dx

(
∫

�
eWdx)2

)

−
∫

�

λe−WφPZ0
i dx = −

∫

�

∇h · ∇PZ0
i dx .

(4.38)

For the first term,

∫

�

∇φ · ∇PZ0
i dx = −

∫

�

φ�PZ0
i dx =

∫

�

|x |αi−2ewi φZ0
i dx . (4.39)

By Lemma 4.4, (4.24), (4.35) and (4.37),

∫

�
eWφPZ0

i dx∫

�
eWdx

=
∑

j even

∫

�

|x |α j−2ew j φPZ0
i dx

+ ρ0

∫

�
ez−8kπG(x,0)PZ0

i φdx∫

�
ez−8kπG(x,0)dx

+ o
( 1

| log λ|
)

=
∫

�

|x |αi−2ewi φdx +
∫

�

|x |αi−2ewi φZ0
i dx

+
∑

j 
=i even

∫

�

|x |α j−2ew j φPZ0
i dx + o

( 1

| log λ|
)

(4.40)
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For j 
= i ,

∫

�

|x |α j−2ew j φPZ0
i dx =

∫

�̃ j

2α2
j |y|α j−2

(1 + |y|α j )2
φ̃ j P Z0

i (δ j y)dy

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

R2
4α2

j |y|α j−2

(1+|y|α j )2
φ̃ j dy + O

( ∫

�̃ j

(
|y|αi ( δ j

δi
)αi + δ

αi
i

) |y|α j−2

(1+|y|α j )2
φ̃ j

)
dy, for i > j,

O
( ∫

�̃ j

(
1

|y|αi (
δi
δ j

)αi + δ
αi
i

) 2α2
j |y|α j−2

(1+|y|α j )2
φ̃ j

)
dy, for i < j,

=

⎧
⎪⎨

⎪⎩

2σ j (λ)

| log λ| + o
( 1

| log λ|
)
, for i > j,

o
( 1

| log λ|
)
, for i < j,

(4.41)

where we used (4.36).
Replace φ by 1 in the estimate of (4.41) , one has for j 
= i ,

∫

�

|x |α j−2ew j P Z0
i dx =

∫

�̃ j

2α2
j |y|α j−2

(1 + |y|α j )2
PZ0

i (δ j y)dy

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

R2
4α2

j |y|α j−2

(1+|y|α j )2
dy + O

( ∫

�̃ j

(
|y|αi ( δ j

δi
)αi + δ

αi
i

) |y|α j−2

(1+|y|α j )2

)
dy, for i > j,

O
( ∫

�̃ j

(
1

|y|αi (
δi
δ j

)αi + δ
αi
i

) 2α2
j |y|α j−2

(1+|y|α j )2

)
dy, for i < j,

=

⎧
⎪⎨

⎪⎩

8πα j + o
( 1

| log λ|
)
, for i > j,

o
( 1

| log λ|
)
, for i < j,

(4.42)

Using Lemma 4.4 , (4.42) and (4.37),

ρ+
∫

�
eW PZ0

i dx∫

�
eWdx

=
∑

j even

∫

�

|x |α j−2ew j P Z0
i dx + ρ0

∫

�
ez−8kπG(x,0)PZ0

i dx∫

�
ez−8kπG(x,0)dx

+ o
( 1

| log λ|
)

=
∫

�

|x |αi−2ewi P Z0
i dx +

∑

j 
=i even

∫

�

|x |α j−2ew j P Z0
i dx + o

( 1

| log λ|
)

=
∫

�

|x |αi−2ewi dx +
∫

�

|x |αi−2ewi Z0
i dx

+
∑

j 
=i even

∫

�

|x |α j−2ew j P Z0
i dx + o

( 1

| log λ|
)

(using (4.21))

= 4παi +
∑

j<i even

8πα j + o
( 1

| log λ|
)
.

(4.43)
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Moreover,

ρ+
∫

�
eWφdx

∫

�
eWdx

=
∑

i even

∫

�

|x |αi−2ewi φdx + ρ0

∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

+ o
( 1

| log λ|
)

(4.44)

and again by Lemma 4.4 and (4.41)

λ

∫

�

e−WφPZ0
i dx =

∑

j odd

∫

�

|x |α j−2ew j φPZ0
i dx + o

( 1

| log λ|
)

=
∑

j<i odd

2σ j (λ)

| log λ| + o
( 1

| log λ|
)
.

(4.45)

Finally, for the last term,
∫

�

∇h · ∇PZ0
i dx = O(‖h‖‖PZ0

i ‖) = o
( 1

| log λ|
)
. (4.46)

Combining (4.38), (4.41), (4.39), (4.40), (4.43), (4.44), (4.45) and (4.46), we deduce that for
i even,

4π(αi + ∑
j<i even 2α j )

ρ+
( ∑

j even

σ j (λ)

| log λ| + ρ0

∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

)

− 1

| log λ| (σi (λ) +
∑

j<i

2σ j (λ)) = o
( 1

| log λ|
)
.

(4.47)

Next we consider (4.38) for i odd. In this case, again we estimate (4.38) term by term.
Similarly to the estimate for i even, first by Lemma 4.4, (4.37) and (4.41), one has

ρ+
∫

�
eWφPZ0

i dx∫

�
eWdx

=
∑

j even

∫

�

|x |α j−2ew j φPZ0
i dx

+ρ0

∫

�
ez−8kπG(x,0)φPZ0

i dx∫

�
ez−8kπG(x,0)dx

+ o
( 1

| log λ|
)

=
∑

j<i even

2σ j (λ)

| log λ| + o
( 1

| log λ|
)
,

ρ+
∫

�
eW PZ0

i dx∫

�
eWdx

=
∑

j even

∫

�

|x |α j−2ew j P Z0
i dx

+ρ0

∫

�
ez−8kπG(x,0)PZ0

i dx∫

�
ez−8kπG(x,0)dx

+ o
( 1

| log λ|
)

=
∑

j<i even

8πα j + o
( 1

| log λ|
)
, (4.48)

ρ+
∫

�
eWφdx

∫

�
eWdx

=
∑

j even

∫

|x |α j−2ew j φdx

+ρ0

∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

+ o
( 1

| log λ|
)
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=
∑

j even

σ j (λ)

| log λ| + ρ0

∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

+ o
( 1

| log λ|
)
,

(4.49)

and

λ

∫

�

e−WφPZ0
i dx =

∑

j odd

∫

�

|x |α j−2ew j φPZ0
i dx + o

( 1

| log λ|
)

=
∫

�

|x |αi−2ewi φZ0
i dx + σi (λ)

| log λ| +
∑

j<i odd

2σ j (λ)

| log λ| + o
( 1

| log λ|
)
.

Combining all these terms, one can get that for i odd,

8π
∑

j<i even 2α j

ρ+
( ∑

j even

σ j (λ)

| log λ| + ρ0

∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

)

− 1

| log λ| (σi (λ) +
∑

j<i

2σ j (λ)) = o
( 1

| log λ|
)
.

(4.50)

By considering the difference of (4.47) and (4.50), one has the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4παi+1
ρ+

( ∑

j even
σ j (λ) + | log λ|ρ0

∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

)
− σi+1 − σi = o(1) for i odd,

4παi
ρ+

( ∑

j even
σ j (λ) + | log λ|ρ0

∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

)
− σi+1 − σi = o(1) for i even.

(4.51)

From (4.50), we first have σ1(λ) = o(1). From (4.51), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σi (λ) = o(1) for i odd

σi (λ) − 4παi
ρ+

(∑
j even σ j (λ) + | log λ|ρ0

∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

)
= o(1) for i even.

(4.52)

Step 4. We claim that γi = 0 for i = 1, · · · , k.
When i is even, multiplying equation (4.20) by Pwi and integrating over �,
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∫

�

∇φ · ∇Pwi dx − ρ+(
∫

�
eWφPwi dx
∫

�
eWdx

−
∫

�
eWφdx

∫

�
eW Pwi dx

(
∫

�
eWdx)2

)

− λ

∫

�

e−WφPwi dx =
∫

�

∇h · ∇Pwi dx .

(4.53)

Now we estimate the above equation term by term. For the first term, we have

∫

�

∇φ · ∇Pwi dx =
∫

�

|x |αi−2ewi φdx =
∫

R2
|y|αi−2ewi (δi y)φ̃i dy = o(1) (4.54)

by (4.31) and (4.21).
To estimate the second term, by Lemma 4.4 and (4.24), we have

ρ+
∫

�
eWφPwi dx
∫

�
eWdx

=
∑

j even

∫

�

|x |α j−2ew j φPwi dx+ρ0

∫

�
ez−8kπG(x,0)φPwi

∫

�
ez−8kπG(x,0)dx

+o
( 1

| log λ|
)

=
∑

j even

∫

�

|x |α j−2ew j φPwi dx + o(1).

(4.55)

By (4.10) and (4.2), we have

∫

�
|x |α j−2ew j φPwi dx =

∫

�̃ j

2α2j |y|α j−2

(1 + |y|α j )2
φ̃ j Pwi (δ j y)dy

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�̃ j

2α2j |y|
α j−2

(1+|y|α j )2
φ̃ j (−2αi log δi + hi (0))dy

+O
( ∫

�̃ j

2α2j |y|
α j−2

(1+|y|α j )2
φ̃ j (|y|α j (

δ j
δi

)αi + δ j |y| + δ
αi
i )dy

)
for j < i

∫

�̃i

2α2i |y|αi−2

(1+|y|αi )2 φ̃i (−2αi log δi − 2 log(1 + |y|αi ) + hi (0))dy

+O
( ∫

�̃i

2α2i |y|αi−2

(1+|y|αi )2 φ̃i (δi |y| + δ
αi
i )dy

)
for j = i

∫

�̃ j

2α2j |y|
α j−2

(1+|y|α j )2
φ̃ j (−2αi log(δ j |y|) + hi (0))dy

+O
( ∫

�̃ j

2α2j |y|
α j−2

(1+|y|α j )2
φ̃ j

(
1

|y|αi (
δi
δ j

)αi + δ j |y| + δ
αi
i

)
dy

)
for j > i

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

�̃ j

2α2j |y|
α j−2

(1+|y|α j )2
φ̃ j [−2αi log di − 2(k − i + 1) log λ + hi (0)]dy + o(1) for j < i

∫

�̃i

2α2i |y|αi−2
(1+|y|αi )2 φ̃i [−2αi log di −2(k−i+1) log λ−2 log(1+|y|αi )+hi (0)]dy+o(1) for j = i

∫

�̃ j

2α2j |y|
α j−2

(1+|y|α j )2
φ̃ j [−2αi log d j −2(k− j+1) 2i−1

2 j−1 log λ−2αi log |y|+hi (0)]dy+o(1) for j > i .

(4.56)
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Based on (4.56), by the definition of σ j (λ) (see (4.34)), Lemma 4.6 and (4.31), we get

∫

�

|x |α j−2ew j φPwi dx

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(k − i + 1)σ j (λ) + o(1) for j < i

2(k − i + 1)σi (λ) + ∫

�̃i

2α2
i |y|αi−2

(1+|y|αi )2 φ̃i [−2 log(1 + |y|αi )]dy + o(1) for j = i

2(k − j + 1) 2i−1
2 j−1σ j (λ) + ∫

�̃ j

2α2
j |y|α j−2

(1+|y|α j )2
φ̃ j [−2αi log |y|]dy + o(1) for j > i

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2(k − i + 1)σ j (λ) + o(1) for j < i

2(k − i + 1)σi (λ) + 4παiγi + o(1) for j = i

2(k − j + 1) 2i−1
2 j−1σ j (λ) + 8παiγ j + o(1) for j > i,

(4.57)

where we used [11, (4.18)-(4.20) ].
Then by (4.57) and (4.55), one has

ρ+
∫

�
eWφPwi dx
∫

�
eWdx

=
∑

j even

∫

�

|x |α j−2ew j φPwi dx + ρ0

∫

�
ez−8kπG(x,0)φPwi

∫

�
ez−8kπG(x,0)dx

+ o
( 1

| log λ|
)

=
∑

j even

∫

�

|x |α j−2ew j φPwi dx + o(1)

= 4παi

(
γi +

∑

j>i even

2γ j

)
+ 2(k − i + 1)

(
σi (λ) +

∑

j<i even

σ j (λ)
)

+
∑

j>i even

2(k − j + 1)
2i − 1

2 j − 1
σ j (λ) + o(1).

(4.58)

Similarly, by replacing φ by 1 in (4.57), one can deduce that

ρ+
∫

�
eW Pwi dx
∫

�
eWdx

= 8π | log λ|
⎛

⎝
∑

j≤i even

(k − i + 1)α j

+
∑

j>i even

(k − j + 1)
2i − 1

2 j − 1
α j

⎞

⎠ + O(1), (4.59)

and the estimate for ρ+
∫

� eWφdx
∫

� eW dx
has been obtained in (4.48).

123



  209 Page 42 of 46 W. Ao et al.

Moreover,

λ

∫

�

e−WφPwi dx =
∑

j odd

∫

�

|x |α j−2ew j φPwi dx + o(1)

= 8παi

∑

j>i odd

γ j +
∑

j<i odd

2(k − i + 1)σ j (λ)

+
∑

j>i odd

2(k − j + 1)
2i − 1

2 j − 1
σ j (λ) + o(1),

(4.60)

and
∫

�

∇h · ∇Pwi dx = O(‖h‖p‖Pwi‖) = O(log λ)
1
2 ‖h‖ = o(1). (4.61)

Putting all the estimates in (4.54), (4.58), (4.59), (4.48), (4.60) and (4.61) into (4.53), we
get that for i even,

4παi (γi +
∑

j>i

2γ j ) +
∑

j≤i

2(k − i + 1)σ j +
∑

j>i

2(k − j + 1)
2i − 1

2 j − 1
σ j

− 8π

ρ+
∑

j≤i even

(k − i + 1)α j

( ∑

l even

σl (λ) + | log λ|ρ0
∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

)

− 8π

ρ+
∑

j>i even

(k − j + 1)
2i − 1

2 j − 1
α j

( ∑

l even

σl (λ) + | log λ|ρ0
∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

)
= o(1).

(4.62)

Next we consider i odd. Similarly to the previous estimates, one has

ρ+
∫

�
eWφPwi dx
∫

�
eWdx

=
∑

j even

∫

�

|x |α j−2ew j φPwi dx + ρ0

∫

�
ez−8kπG(x,0)φPwi

∫

�
ez−8kπG(x,0)dx

+ o

(
1

| log λ|
)

= 8παi

∑

j>i even

γ j +
∑

j<i even

2(k − i + 1)σ j (λ)

+
∑

j>i even

2(k − j + 1)
2i − 1

2 j − 1
σ j (λ) + o(1) (4.63)

ρ+
∫

�
eW Pwi dx
∫

�
eWdx

= 8π | log λ|
( ∑

j<i even

(k − i + 1)α j

+
∑

j>i even

(k − j + 1)
2i − 1

2 j − 1
α j

)
+ O(1), (4.64)

and

λ

∫

�

e−WφPwi dx =
∑

j odd

∫

�

|x |α j−2ew j φPwi dx + o(1)

= 4παiγi + 8παi

∑

j>i odd

γ j +
∑

j≤i odd

2(k − i + 1)σ j (λ)

+
∑

j>i odd

2(k − j + 1)
2i − 1

2 j − 1
σ j (λ) + o(1).

(4.65)

123



Blow up solutions for Sinh-Gordon equation… Page 43 of 46   209 

Putting all the estimates in (4.54), (4.63), (4.64), (4.48), (4.65) and (4.61) into (4.53), we
have for i odd,

4παi (γi +
∑

j>i

2γ j ) +
∑

j≤i

2(k − i + 1)σ j +
∑

j>i

2(k − j + 1)
2i − 1

2 j − 1
σ j

− 8π

ρ+
∑

j<i even

(k − i + 1)α j

( ∑

l even

σl (λ) + | log λ|ρ0
∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

)

− 8π

ρ+
∑

j>i even

(k − j + 1)
2i − 1

2 j − 1
α j

( ∑

l even

σl (λ) + | log λ|ρ0
∫

�
ez−8kπG(x,0)φdx

∫

�
ez−8kπG(x,0)dx

)
= o(1).

(4.66)

Combining (4.52), (4.62) and (4.66), we have

4παi

(
γi +

∑

j>i

2γ j

)
= o(1),

from which we deduce that γi = 0 for i = 1, · · · , k.
Step 5. Finally, we derive a contradiction.

Multiplying equation (4.20) by φ and integrating, we get

∫

�

|∇φ|2dx − λ

∫

�

e−Wφ2dx − ρ+(
∫

�
eWφ2dx

∫

�
eWdx

− (
∫

�
eWφdx)2

(
∫

�
eWdx)2

)
=

∫

�

∇h · ∇φdx .

From (4.24) and the assumptions on φ and h, we have that the left hand side of the above
equation tends to 1 while the right hand side is of order o(1). This yields a contradiction. ��

Using the a priori estimates in Lemma 4.5 and the Fredholm alternative, we have the
following existence result similarly to the proof of Proposition 3.5:

Proposition 4.7 There exist λ0 > 0 and C > 0 such that for any λ ∈ (0, λ0), h ∈ Hl there
exists a unique solution φ ∈ Hl solution of (4.20) satisfying

‖φ‖ ≤ C | log λ|‖h‖.

4.4 Conclusion

By exploiting the linear theory developed in the previous subsection it is then standard to
derive an existence result for the nonlinear problem (4.67) based on the contraction mapping,
similarly to Proposition 3.6. We here give the sketch proof.

Proposition 4.8 For any ε > 0 sufficiently small, there exist λ0 > 0 and C > 0 such that for
any λ ∈ (0, λ0), there exists a unique φ ∈ Hl solution of

�(W + φ) + ρ+ eW+φ

∫

�
eW+φdx

− λe−W−φ = 0 in � (4.67)

satisfying

‖φ‖ ≤ Cλ
1

2(2k−1) −ε
. (4.68)
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Proof The proof is similar to Proposition 3.6 in the last section. The nonlinear problem (4.67)
is equivalent to

�φ + ρ+
(

eWφ
∫

�
eWdx

− eW
∫

�
eWφdx

(
∫

�
eWdx)2

)

+ λe−Wφ = −(Ē + N̄ (φ)) (4.69)

where

Ē = �W + ρ+ eW
∫

�
eWdx

− λe−W ,

N̄ (φ) = ρ+[g(W + φ) − g(W ) − g′(W )φ] − λ[ f (W + φ) − f (W ) − f ′(W )φ],
f (W ) = e−W and g(W ) = eW

∫

�
eWdx

.

Denote the solution to (4.20) by φ := T̄ (h), then (4.69) is equivalent to

φ = T̄ (i∗p(Ē + N̄ (φ))) =: T̄ (φ).

Define

B̄ = {φ ∈ Hl , ‖φ‖ ≤ �| log λ|λ 2−p
2p(2k−1) }

for� large andλ small. If we choose p sufficiently close to 1, one can see that B̄ ⊂ {φ, ‖φ‖ ≤
Cλ

1
2(2k−1) −ε}}.
From Proposition 4.7 and the error estimate for Ē , for φ, φ1, φ2 ∈ B̄, similarly to the

estimate in Proposition 5.4 in [9], one has

‖T̄ φ‖ ≤ Cp| log λ|‖i∗p(Ē + N̄ (φ))‖
≤ Cp| log λ|(‖Ē‖p + ‖N̄ (φ)‖p

≤ �| log λ|λ 2−p
2p(2k−1) ,

and

‖T̄ (φ1) − T̄ (φ2)‖ ≤ Cp‖N̄ (φ1) − N̄ (φ2)‖p

≤ 1

2
‖φ1 − φ2‖.

So T̄ maps B̄ into itself and it is a contraction mapping, we can get that the solution φ is
unique in B̄. The estimate for φ follows from the above estimate. ��
Proof of Theorem 1.2 By Proposition 4.8, uλ = Wλ +φλ is a solution to the original problem
(1.1) with ρ+

λ = ρ+ = 4πk(k − 1) + ρ0 and ρ−
λ = λ

∫

�
e−uλdx . Then by Lemma 4.4 and

(4.68)

ρ−
λ = λ

∫

�

e−uλdx = λ

∫

�

e−Wλdx + o(1) =
∑

i odd

∫

�

|x |αi−2ewi dx + o(1)

=
∑

i odd

4παi + o(1) = 4πk(k + 1) + o(1).

Moreover, from the definition of uλ and properties (3.37), (4.68) and (4.9), the second
property in Theorem 1.2 can be derived easily. ��
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