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Abstract
Sensitivity of an eigenvalue ); to the perturbation of matrix elements is con-
trolled by the eigenvalue condition number defined as x; = /(L;|L; }{R; |R;),

where (L;| and |R;) are left and right eigenvectors to the eigenvalue );. In
random matrix theory the squared eigenvalue condition number is also known
as the eigenvector self-overlap. In this work we calculate the asymptotics of
the joint probability density function of the real eigenvalue and the square of
the corresponding eigenvalue condition number for the real elliptic ensemble
in the double scaling regime of almost Hermiticity and close to the edge of the
spectrum. As a byproduct, we also calculate the one-parameter deformation of
the Scorer’s function.

Keywords: random matrix theory, large N asymptotics,
non-orthogonal eigenvectors

1. Introduction

Statistical properties of eigenvalues of asymmetric real matrices have been extensively stud-
ied through the lenses of random matrix theory (RMT) over the past 60 years. Starting from
the pioneering work of Ginibre [1], Gaussian ensembles were analyzed [2—4], followed by
the discovery of the Pfaffian structure of eigenvalue densities [5—8]. New solvable ensembles
were found [9-12] and development of new RMT tools allowed for the study of products of
random matrices [13—16]. Due to the universality of their global densities as well as universal
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microscopic correlations, random matrices are widely used in complex systems [17-19] and
quantum chaos [20, 21].

Much less, however, is known about the properties of their eigenvectors. Early studies fol-
lowed the spirit of symmetric RMT and focused mostly on the localization properties [22].
Dropping the symmetry or, in general, normality (a matrix is normal if it commutes with its
transpose), opens a new dimension for eigenvectors, because for each eigenvalue ); there is
not one, but two eigenvectors—Ileft (L; | and right |R; }—satisfying their own eigenproblems:
X|R;) = N\i|R;) and (L; |X = (L; | \;. In contrast to the normal case, right (left) eigenvectors are
not orthogonal to each other, (R;|R;) # 0;; # (L;|L;). Instead, left and right eigenvectors are
normalized to (L; |R;) = ¢;;, forming a biorthogonal set.

Traces of eigenvector non-orthogonality are observed in open quantum chaotic systems
through the decay laws [23], excess noise in open laser resonators [24, 25], resonance width
shifts [26, 27], and in the shape of reflected power profiles [28]. In dynamical systems early-
time transients are driven by the eigenvectors [29]. Transient amplification of noise was pro-
posed as a mechanism behind the formation of Turing patterns [30-32]. In theoretical neuros-
cience transient dynamics was proposed as a mechanism for amplification of weak neuronal
signals [33-35] with some biologically inspired models exhibiting strong eigenvector non-
orthogonality [36, 37]. Furthermore, non-orthogonal eigenvectors play a role in Dysonian
dynamics in non-Hermitian matrices [38—42] and generalizations of fluctuation-dissipation
relations to non-equilibrium systems [43, 44]. Recently, they appeared in the context of local-
ization transition in non-Hermitian systems [45, 46] and the eigenstate thermalization hypo-
thesis [47].

The study of eigenvector non-normality in RMT was initiated by Chalker and Mehlig [48,
49] who introduced the matrix of overlaps O;; = (L; |L;) (R;|R; ), though this matrix was known
before in nuclear physics as the Bell-Steinberger matrix [50]. Its diagonal elements, often
referred to as self-overlaps, are the Petermann factors in random lasing [51] and squares of
the eigenvalue condition numbers [52, 53] in numerical analysis. Since the full distribution of
overlaps is difficult to study, Chalker and Mehlig managed to calculate it only for N =2 and
turned the attention to their mean values by introducing the correlation functions

0:(z) = <]\172 ZOkk5(2) (z— /\k)> )

k=1

N
0, (z,w) = <;, > 0us® (2= M) 6@ (w— /\,)> . (1)

k=1
k£l

These objects are more tractable and became accessible with the use of large N diagrammat-
ics [54-56], supersymmetry [24, 25, 57, 58] and explicit calculations at finite size [59—-66].
Recently, they were also extended to higher-order correlation functions [67].

Recently, Dubach and Bourgade [41] and Fyodorov [68] calculated the joint probability
density function (jpdf) of the eigenvalues and corresponding eigenvector self-overlap in the
complex Ginibre ensemble. Fyodorov obtained also the jpdf

PN(z,t)_<Zc5(t+10kk)5(z>\k)> 2)
k

for the real eigenvalues in the real Ginibre, where the sum is performed over real eigenvalues
and jpdf is normalized to the total number of real eigenvalues. Note that since O;; > 1, itis more
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convenient to consider a shifted overlap t = O;; — 1. Subsequent results were also obtained for
various other ensembles [69—72] and the eigenvector non-orthogonality was approached from
other directions as well [73].

For symmetric (in general normal) matrices the overlap matrix reduces to the identity mat-
rix. It is therefore tempting to study eigenvector non-orthogonality at the transition between
symmetric and asymmetric matrices. A natural model for such an analysis is the real elliptic
ensemble. Elements of such matrices are Gaussian and distributed according to the measure

P(X)dX = Cy'exp (— Tr (XX" — sz)) dXx, 3)

20-7)

where dX = Hg']:l dx;; is the flat Lebesgue measure over its elements. The normalization con-
stant reads Cy = (2m)V'/2(1 + 7)¥/2(1 — 72)NW=1/4 The parameter 7 € [0, 1] controls the
correlation between elements on the opposite sides of the diagonal and provides continu-
ous interpolation between the real Ginibre ensemble for 7 =0 and the Gaussian orthogonal
ensemble (GOE) for 7 = 1. In the limit N — oo for any fixed 0 < 7 < 1 the eigenvalue stat-
istics fall into the bulk universality class of non-symmetric matrices. However, after tuning
the rate of approaching symmetry so that the product N(1 — 7) is kept fixed one finds a new
regime interpolating between GOE sine-kernel universality and non-Hermitian bulk univer-
sality. This regime was first studied for the complex elliptic ensemble and was dubbed weak
non-Hermiticity [74-76] (see [9] for the results in the real case).

Recently, an analogous regime was found at the level of jpdf (2) for the real eigenvalues
of the real elliptic ensemble. The self-overlap transitions from O; =1 at r=1 to O;; ~ N for
fixed 7 < 1. At the transition regime, called weak non-normality, the overlap is of order 1
with a non-trivial heavy-tailed density. The heavy-tailedness was found to be the most robust
feature of self-overlap distribution, as it appears also for finite N [48] and rank-1 perturbations
of Hermitian matrices [28].

The jpdf for the elliptic ensemble can be written in terms of the joint density P%(z,q) of an
eigenvalue z and rescaled and shifted overlap ¢ = (1 — 7)(O; — 1). The jpdf (2) is recovered
via Py(z,1) = (1 = 7)~'Pf(z, =) and Py, reads [72, theorem 2.1]

Py _ 1 e_miﬂ(lJrliq)( q >§1
N(z,Q)*z(HT)\/E Jaa+ 1)

QN (Za q, T) ) (4)

g+1+7
where
On(2..7) = (1 +7— 222) Py_1 (Z)l—:ZqRNl (z) + TzRN—2 (2)
2Py 1(z) T2(14+7)*NPy_s(2)
(1+49)° (1+7+q)°
(1+7)(1-7)8v-2(z)  7(1+7)zRv2(2) 5
I+7+q (I+q)(1+7+4)
and
N—1
Py(@) =3 1 (- D ()~ kit @i 1 (2) ©
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Here py(z) = 7/*Hey (\—E) = (%)k/2 Hy (ﬁ) are the Hermite polynomials with the leading

term zk.

Remark 1.1. The presented form slightly differs from the one in [72], hence we used tilded
variables to distinguish from the original (non-tilded) notation. They are related as follows

PN(Z):NII)N+](Z), 2RN(Z):N!RN+1 (Z), NPN_l(Z)*TN_l(Z):(N*l)!S'N(Z).

2. Statement and discussion of the main results

The elliptic ensemble renders yet another weak non-Hermiticity regime. At 7 =1 near the
edge of the spectrum eigenvalue statistics are described by the Airy kernel, while at strong
non-Hermiticity the kernel falls into the error function universality class. The interpolation
between those two was found much later after the bulk weak non-Hermiticity [77-79]. The
edge behavior is particularly interesting, since the rightmost (i.e. the one with the largest real
part) eigenvalue plays an essential role in the stability of linear systems. It is therefore natural to
ask how stable the eigenvalues are at the edge of the spectrum. An insight into this problem can
be obtained by analyzing the edge behavior of jpdf (2). Recent work [72] studied the limiting
distribution of (4) at strong non-normality. The main result of this work is complementing that
calculation with the double scaling regime in which the spectral edge is probed on the scale
N~'/¢ and departure from symmetry on the scale N~!/3.

Before we present the result, let us define the deformed Airy function, which has appeared
in the study of weak non-Hermiticity at the edge [79, 80], as

. 1 LY. 2 b
Ay (€)= = [ 5 F Ty = S A (<+). ©
2mi 4
The integration contour denoted schematically as <* starts at coe~"™/3 and ends at coe™™/3,

which is a standard choice for the Airy function of a complex argument. The second equality
in (9) is obtained by shifting the integration variable u — u — b* /2. For b= 0 the function Ai,
reduces to the Airy function.

Theorem 2.1. Let Py(z,t) be defined as in (2), where the ensemble average (...) is taken with
respect to the real elliptic ensemble given by (3). Let P¥-¢((,t) be the limit OfN_l/GPN(Z =
VN(1+7) 4 C¢N-Y® 1) when N — 0o and T — 1 such that (1 —7)N'/3 = b? remains fixed.
The limit reads

5 5 4 6 2 6 6
pre = [To<<>+ PTIO PO b z;(@} exp (btc _p b) (10)

where

T3(¢) = /< " (A2 () — Ay (9) Ail ()] dp an
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Q=5+ [ AR p)d (12)
¢
1O = ~CTat AR O +0 [ AR () (13)
¢
T0(Q) = ~Ts+ 3PPAR O — ;A OAG (O —¢ [ ARGIp. (14)
¢

In analogy to Py(z,t) taking a simpler form when ¢ is rescaled by the departure from nor-
mality, rescaling t — /b? slightly simplifies (10). The jpdf (2) is a 2-point probability density
function, which after integrating out the overlap component yields the edge density at weak
non-Hermiticity [78, 80].

Corollary 2.2. Let P"¢ be defined as in theorem 2.1. The following property holds
o) » oo ) 1 . e )
@)= [P o= [T Ao+ o (1- [Tanpiw). a9
0 ¢ ¢

It is clearly visible from (10) that limj_,o P"*-¢({,t) = 0 for any 7> 0, however P"-¢ is
singular at 7=0. Corollary 2.2 shows that this singularity is integrable, and thus P"¢((,1)
tends to po(€)d(z) as b — 0, in agreement with the eigenvector orthogonality in the symmetric
limit.

The first step in the proof of corollary 2.2 is the change of integration variable u = ? This
results in a non-trivial integral, which can be considered as one-parameter deformation of the
Scorer’s function [81] (see also [82, chapter 2.3]). The evaluation of this integral is a result
that deserves its own interest.

Lemma 2.3. Let b € R and define Hi(¢) := n~! fooo exp (Cu — %b2u2 — %ug) du. The follow-
ing result holds
¢

Hi, (¢) = Biy (¢) / Al (1) dt — Aig (€) / Bi (1), (16)

— 00 — 00

¢

b2 6
where Bi,({) := et Bi (C + %) and Bi is the second solution of the Airy equation.

Interestingly, the scaling in theorem 2.1 does not involve the variable ¢. This means that the
self-overlap fluctuates around 1 on the scale O(1). Exactly the same scale is found at weak
non-normality in the bulk [72]. This stays in contrast with the strong non-normality, where
the self-overlap in the bulk grows linearly with the matrix size [41, 48, 68], while at the edge
its growth is slower (~ ﬁ/) [59, 68, 72]. However, the two regimes of weak non-normality
are achieved at different symmetry-breaking scales. Weak non-normality in the bulk requires
parameterization 1 — 7 = a?/2N, while at the edge the departure from symmetry is larger,
i.e. 1 —7 =b*N~'/3, The transition between these two regimes can be probed by letting the
parameter b tend to 0 at the speed N~'/3. More precisely, we parameterize b = ﬁﬁ At the

same time, ¢ which probed the scale of N~!/® needs to be rescaled to probe the macroscopic
scale N'/2. This is achieved by parameterizing ¢ = —1/%w.
Corollary 2.4. Let P"° be defined as in theorem 2.1, let b = l/f/i and denote A = a*w for

simplicity. The following limit holds

lim v~ !p"e (—Vzw,t) = A\/We_%

V—00 - 27‘('t2

2 1 A 1 2 ! As?
—_ = T2 1 _ = — - . 1
( t)e +(+t )/Oe 2ds] a7
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Figure 1. (a) Density of overlaps conditioned (see (18)) at various values of the corres-
ponding eigenvalue with 5 =0.6. As ¢ moves deeper into the bulk, the density maxima
move to the larger values, as well as the right tail of the distribution lifts up, a sign of
increasing eigenvector non-orthogonality. (b) Conditional density of the overlap trans-
itioning from edge to bulk weak non-normality, corresponding to scaling ¢ = —% and
b=1/v, as in corollary 2.4, where we set a = v/2 and w= 1. The limiting (v = co)
curve is plotted with the use of jpdf at bulk weak non-normality (17) and eigenvalue
density obtained after integrating out the ¢ variable.

Note here that the Jacobian brings a factor of 12, the absorption of which requires rescaling
by v=3 ~ N~!. This is a consequence of the normalization of jpdf to the total number of real
eigenvalues and the fact that in the weak non-Hermiticity regime almost all eigenvalues are
real. The above result can also be obtained from [72, remark 2.7] by edge parameterization
7=2—-w.

Despite the fact that the self-overlap stays O(1) in both regimes of edge and bulk weak
non-normality, the eigenvector non-orthogonality increases as one moves deeper into the bulk.
Figure 1 shows that if b is kept constant and ¢ is moved to the bulk, the peak of the overlap
distribution moves to the right as well as the right tail gets heavier. To account for the fact
that P(z, ) encodes also the density of eigenvalues, which changes with ¢, we focused on the
density of the overlap, conditioned on the eigenvalue, i.e.

P (¢, 1)
i (C)

where p;,({) is given by (15). Despite the fact that the matrix is very close to normal, eigen-
vectors are unlikely to be orthogonal. As shown in figure 1, the conditional probability density
is almost zero for small values of z. More precisely, it is exponentially suppressed by the factor
exp(—b%/1).

With the increasing non-normality, the distribution of the overlap moves towards larger
values of ¢ (see figure 2), up to the strong non-normality regime. This is obtained from (4) by
parameterizing z = v/N(1 +7) +6v1 — 72 and t = o/N(1 +7) /(1 — 7) [72]. The limiting
function can be recovered from theorem 2.1 by letting b — oo. The appropriate rescaling of ¢
and o can be deduced from the fact that in order to achieve 1 — 7 = O(1), the parameter b has
to be of order N/ 6 which leads to the parameterization { = \/§b§ and r = \/§b3 o.

po (1]C) = ; (18)

Corollary 2.5. Let P"* be defined as in theorem 2.1. It admits the following limit

g

1 1 Ty
Jlim 2P (\fzba, \/Eb%) = 4m2e§w%z e < —25) / Edp|. (19
25
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Figure 2. Transition from weak to strong non-normality. (a) Density of overlaps con-
ditioned at ¢ = —0.5 for various values of b, showing the evolution of the density as
non-normality increases. Inset presents the same densities on the logarithmic y axis. (b)
Conditional density of the overlap with the increasing non-normality in the rescaled vari-
ables ¢ = v/2b8 (where we set § = —0.5) and ¢ = /2bc, corresponding to the corol-
lary 2.5. The density was multiplied by v/2b° to account for the Jacobian. The limiting
(b = 00) curve was plotted with the use of jpdf at strong non-normality (19) and eigen-
value density obtained after integrating out the 7 variable.

This formula stays in full agreement with known results [68, 72]. The prefactor 2b* is the
Jacobian of the reparameterization.

Remark 2.6. The transition from symmetry to strong non-normality can be interpreted as a
diffusion-like process. The deformed Airy function obeys diffusion equation in which 7 =
b? /2 plays the role of time. More precisely, the function ¢(¢,n) = exp(¢n + %7]3)Ai(§ +1?)
satisfies 0,0 = O¢¢ . This also explains the appearance of Gaussians in corollary 2.5.

The remaining part of the paper is devoted to the proofs of the main results and is organized
as follows. Section 3.1 introduces integral representation useful for the asymptotic analysis
of (4). The proof of theorem 2.1, which essentially relies on the saddle point analysis of (5) is
presented in section 3.2. Proofs of corollaries 2.4 and 2.5 are presented in sections 3.3 and 3.4,
respectively, while section 3.5 is devoted to the proof of corollary 2.2 and lemma 2.3.

3. Proofs of the results

3.1. Integral representations

Lemma 3.1. The functions Py, Ry and Sy defined in equations (6)—(8) admit the integral rep-
resentations

. 12 s 7—8 S\N 62?2
Py(z)=— g/2/F dsyf dws_w< - w) (;) 7 +wz (20)
S5

= 71/2 )2 1 SANHL =2 2

Ru(z dsh d W (7) e 2 O Y|
v(2) = 277 3/2/ s?é Ws—w( T2 +T W) w ¢ @D

~ 172 z—S SA\N =922

Sn(z / ds5£ dw—— <—w) (7) R (22)
@)= 277 (2m)*? (s—w T w
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where the integration contours are parameterized as U5 := {is+ 6 : s € R} and C. = {ce"
0 €10,2m)} with § > ¢, see figure 3(a).

Proof. We first notice that %pk(x) = kpy—1(x), which allows to represent Py, Ry and Sy as
derivatives of simpler objects as follows

Py (z) = lim (9= ) U (x.y), (23)
Ry(2) = lim (95 =07) Uns1 (x,5), (24)
Sn(z) = xl;rgz (Ox — 0y) Vi (x,y). (25)

The axuliary objects are defined as

N-1 Nl g
Z Epkﬂ ), Vn (x,y) = Z o P () pi (v) - (26)
k=0 =0

We use two standard integral representations of the Hermite polynomials

)" [ iy k! dw 2o
Hi (x) = = O He(y) = -— gﬁ vy @27
k(%) NG Rs e s, k() 2ri P e (27)

In the first representation the change of variables s — —is rotates the contour by 7 counter-
clockwise. Since the integrand is analytic, the contour can be further shifted to I's. The choice

& > ¢ ensures that the contours do not intersect. The use of pi(x) = (3 )k/2 Hi ( r) leads us
to

k! dw _z2. ..

pi(x) = \/77'1 . sher 6= ds, Pk(y):%¢ e He (28)
5
Therefore, Uy can be represented as
N—1

_1 (X*»")z Tw2 Sk+]
UN(x,y)zi/ dsﬁlg dwe 2 e~ 2 W (29)

(27r)3/2ﬁ r, . ;wkﬁ

The sum is evaluated to

s\N
s(;) 1,
S—Ww

for this part Performlng analogous computation for Vy, one encounters

=

- skt Ns (A)N—l
N—k = 22w :
( )Wk+1 Wis—‘rs (S_W>2

(30)

»
Il
<

Similarly, only the term (szw)z (%)N gives non-zero contribution after integration over w.
Application of formulas (23)—(25) completes the proof. O
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Figure 3. (a) Integration contours C. and I'5 in lemma 3.1. (b) Contours C. and I's are
deformed to collect the contribution to the integral from the vicinity of the saddle point at

+1. Shaded area represents the region where the real part of f(z) = f(z) + 3/2 is positive.
This means that the integrand in the red contour is exponentially suppressed everywhere
except the vicinity of the stationary point. Analogously, in the unshaded region Re f < 0
and the integrand over green contour is exponentially suppressed. (c) With the para-
meterization s =1 4+uN""> and w=1+wN""3 we probe the direct vicinity of the
stationary point, where contours are approximated by two incoming rays with slopes
e 27/3 and ¢ ~™/3, and two outgoing rays extending to infinity with slopes ¢**/3 and
/3, Throughout the text the contours are denoted as "y and <.

3.2. Saddle point analysis

Let us recall the relation Py(z,7) = (1 —7) "' PJ(z,q = =), which means that it is sufficient

to study the asymptotics of Pf(z,q), where g = N;)/;t.

Proposition 3.2. Let z=+/N(1+7)+ (N~ 7=1-0’N"1/3, g= Nb—/f with b € R and
On(z,q,7) be given by formula (5). Then

2 2 2 4 6
ﬁﬁNWf@@m%ﬂ:%v%(%@+biw+bg@+bﬁw>’6”
where

T3(¢) = /< " [AIZ () = Aip () AL ()] d. (32)

1) =pT+ [ A (p)a, 33)
¢
ﬂ@%>«n+%Mﬁo+#/ Aij (p) dp, (34)
¢
T0(Q) = ~Ts+ 3PPAR (O — ;A OAG (O —¢ [ ARGID. G9)
¢

Proof. To make the integral representation in lemma 3.1 amenable for the saddle point ana-
lysis, we rescale the integration variables (s,w) — v/N(s,w). Then, the dominant term in the
integrand reads exp(N(f(s) — f(w)), with f(s) = % — 25+ Ins. The function f has one (doubly
degenerate) stationary point at s* = 1. At the stationary point f'/(s*) =0 and f''/(s*) =2,
thus f should be expanded up to the 3rd order in Taylor expansion and the stationary point
should be probed on the scale N~!/3. Close to the saddle point, we parameterize the integrals
ass =1 +uN"'/3 and w =1+ vN~'/3, which leads to f(s) = f(s*) +u?/3 + b*u* /2 — uC.

In order to collect the dominant contribution to the integral from the stationary point, the
contours C. and I's are deformed as presented in figure 3(b). The stationary point is approached

9
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by the deformed contour I's at an angle —% and is departed at an angle +%. Upon deforming
C. the stationary point is approached at an angle —=- and departed at an angle +2” The
contours do not touch the stationary point and hence do not intersect. Since the dommant con-
tribution to the integrals comes from vicinity of the stationary point (remaining contributions
are exponentially suppressed at large N), the incoming and departing parts of the contours can
be extended by straight lines going to infinity at prescribed angles, see figure 3(c). We denote
the contours schematically as ¢ and .

Before going into the saddle point calculations, let us first argue that the integrands are expo-
nentially suppressed on the full length of the deformed contours except close to the stationary
point. With the use of a simple inequality

| / exp(—Nf(w))dw] < [ lexp (-7 dlw] = [ exp (~NRef(w)) (36)

it remains to show that along the contour Ref(w) >0 and Ref(s) < 0. In fact, the dom—
inant term is V) ~/)) hence it is convenient to consider a shifted function f f—3
Figure 3(b), presents the region where Ref( ) > 0 and the w-integral is exponentially sup-
pressed. Analogously, the s-integration contour passes through the complement of that region,
hence the dominant contribution of the double integral indeed comes from the vicinity of the
stationary point.

Let us now first apply the saddle point calculation for the asymptotics of Py. After neglect-
ing the contribution far away from the stationary point and extending the rays to infinity, we
obtain

T By (2) = -V dv/due%*” eI Lo (M) @)
(2ri)?

We observe that the exponents differ by a sign in the cubic terms. Therefore, it is convenient
to change v — —v in the integral to symmetrize them. This transformation maps the contour
™ into ¢, which is the same as {, but with opposite orientation. The orientation can be easily
changed, absorbing the minus sign resulting from the change of variables. This leads to

e*l”’TszN() —N/0 L ”27r dv/du S U

271'1

+ O (Nl/z) (38)

It is now easy to see that the integrand is antisymmetric after exchanging u <+ v, while the
contours are the same, thus the integral evaluates to 0. Therefore, since PN, and analogously
Ry with Sy, vanish in the leading order, a more careful saddle point analysis is required that
goes into next orders in asymptotic expansion, see e.g. [83].

To this end, we use the integrals representations in lemma 3.1. Following the reparameteriz-
ations around the saddle point, s = v/N +N'"/%u, w = /N — N/, z = \/N(1 4+ 1) +(N~'/®,
7 =1—b>N""/3, the exponent is transformed into

2
Z2 (S _ Z) TW2 u3 b2M2 V3 bZ 2

)
e N1 (*):7 — A (brew
1+r ' 27 y TWeE NI D) =3t mu g o

(39)
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where the residual terms are subleading in N and read

4 _ 4 2b4 2_4b2 1 5 5 b62 22
Bpey = 1 “ VW P e PC C
4N1/3 N2/3 5 2
4v — 48 + 12b8u* — 24b°u¢ +9b*¢? 1
24N N4/3
7 7 blO 2 7b
x (V J;" + =5 b C+16C>+(9(N5/3). (40)

As it turns out later, we needed to expand @, up to the order N —4/ 3_since first three orders of

the expansion around saddle point vanish and the first non-vanishing contribution involves the
terms of order N~*/3. The term ¢ is systematically expanded into a Taylor series, together
with the preexponential terms, where we also reparameterize ¢ = N'/ 3t/b?. The exact tedious
calculations are systematically performed in Mathematica, while here we outline the technique
and key computational steps. The next terms in the expansion for Qy reads

lJrTQN(Z q,T
N5/62b \/27r/ /due?+b7u 7u(e§+¢7v§2+b2(u7\/)27M2V*”V2+”3+V3
(2mi u+v
+(9(N‘/2). 41)

The representation a~! = fooo e~ dp for Re(a) > 0 together with (9) allow us to rewrite

Ll l( V3 2\"2 k l >
/dv/du +52 —ug 5+ fvcﬂ:(—l)’“’l/ A (p+ ) A (p+ ) dp,
(2mi) u+v 0

(42)

where Ai,gk) denotes the kth derivative. The integral in (41) is then evaluated into

2 [e’e)
N5/6@ / (AR 0+ 0) +0%Ais (p+ ) Aif (p+0) — Aib (p+ Q) ALY (p+0)
0
—b?Ai (p+C) +Aiy (p+ Q) Al (p+¢)dp). (43)

Higher order derivatives can be expressed by the lower order ones with the use of the relation

AP+ =AY+ O+ p+ QALY D+ O+ k=2 AV p+0), @)

which is derived from the second order equation Ai;,’(p) = b*Ai,,(p) + pAi,(p). After system-
atic application of (44), the expression in (43) is evaluated to 0. With the similar reasoning
applied, all terms of order N'/2 can be shown to cancel out as well.

At order N'/° the systematic technique needs to be enhanced due to the contribution from
the fourth term in (5) (it was subleading at higher orders). Specifically, the term = )2 in (22)

1
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k1
leads to the terms % which are represented with the use of a2 = fooo pe~“’dp. Combined

with (44), this introduces terms
_ > koa:l2 _ > kA2
Ak—/ pAi, (p+()dp, Bk—/ PAi, (p+¢)dp,
0 0
ck:/ PFALL (p+ €) Aiy (p +¢) dp. (45)
0

The power of p in the integral is systematically reduced with the use of the following recurrence
relations:

2b%Ar = —kAr_y — 2(Bi + (k+ 1) Cy k=1,
By =—Ar_1 —(Bi_1 —b*Cry — (k— 1) Cr_s k>2,
k
Ci= 3B k> 1. (46)

Finally, we use B; = —b*Cy — (By + fooo Aiy(p+¢)Ai, (p+ ¢)dp and shift the integration
variable p — p — (.
O

Proof of theorem 2.1. Having worked out the asymptotics of Qy in proposition 3.2, the
remaining step is to take the limit of the terms in the exponent after the scaling z = v/N(1 +

Y+ (N, 1 =1-N"13, ¢g= %/;t. It reads

2 2 6 6

z q N q ¢ b b s
= (L ) +Zm(—L )= NV @7
2(1+7) (q—i—l )+2n<q+1—|—7> t~+0( ) 47

3.3. From edge to bulk weak non-normality

Proof of corollary 2.4. From the left tail asymptotics of the Airy function Ai(—x) ~

. . - . 1/4 .
ﬁ sm(%x3/2 + 7) and its derivative Ai’(—x) ~ 7% cos(%)@/2 + %), using b* = a*/2v,

we obtain

1 2w 2
Aiy (—I/zw) ~ We_T sin (3 (Vzw)3/2 + Z) , (48)
) VUV e 2 32 T
Alé (_V2W) ~ W@ 4 COS g (V2W) + Z . (49)

To calculate the asymptotics of integrals appearing in expressions (11)—(14), we split the
integral as

00 00 ¢
/ A () dp = / AR (p)dp — / AR (p) dp. (50)
¢ 0 0
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The first integral is O(1), while the second one yields the dominant contribution

¢ 1 ! d 2
—/ Aij (p)dp = y2w/ Aij (—v*wq) dg ~ VW -3 Gin (3 (uzwq)3/2 + 7T) .
0 0 ™ Jo

4
(51

In the first equality we changed variables p = (g, while in the second step we used (48). With
the use of sin’x = % — %cos 2x, we split the integral into a slowly varying part and rapidly
oscillating integrand. In the large v limit the oscillatory part evaluates to O, while in the slowly

varying part we change the integration variable ¢ = s°, obtaining

/ A2 (p)dp ~ 22 / —asw/2 g, (52)
¢

To calculate the asymptotics of T3, we use the differential equation Ai;’(p) = b*Aij(p) +
pAi,(p) and apply a similar reasoning as described above to get

2 3/2 252w
To(¢) ~ 22 / Pe S ds. (53)
0

™

A direct inspection shows that dominant terms in (10) are Ty and b*T, /t, while higher order
terms in b are subleading. Simple calculations lead to

Avyw [! A P

w.e. ) ~ 1 29 2 —As /Zd 34
PG ~ 5 i <+<t )s)e s, (54)
where we used A = a’w. Integration by parts brings the above formula to (17). O

3.4. Strong non-normality limit

Proof of corollary 2.5. From the right tail asymptotics of the Airy function Ai(x) ~

—2,53/2 . . . .
% and its derivative Ai’(x) ~ —3 f exp(ffx3/ 2) followed by the expansion to the

second order

A 6V25 1262 i
(b5ﬁ+4) =g |ttt | to0eT) (55)
we get the following
Aj b(s\ﬁ . 1 _? o) 1 Aj/ bé\fz . 1) _s2 o 1
1”( )*bme E\n) "'( )’*W" U\ )

(56)

Alternatively, this asymptotics can be obtained from the integral representation (9) with the
use of the saddle point method. The above result in particular means that T5(b6v/2) = O(b~")
and since

o0 o0 1 oo [}2 1
Ai2(p)d :bﬁ/ AiZ (bpV2) dp = e 7d +o(>, 57
/héﬂ »(p)dp i b(p )p e ) p = (57)

we also have T»(hd+/2) = O(b). The exact asymptotics of T3 and T are not needed, since
these terms are suppressed by #* and #? in the denominator in equation (10). Recall that the
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transition from weak to strong non-normality requires parameterization t = v/2b>c with o =
O(1). In the second equality in (57) we used the asymptotics (56) under the integral, which
can be justified by the dominated convergence theorem. This was followed by rescaling of
the integration variable p — p/2. While formally justifying the assumptions of the dominated
convergence theorem is a rather technical task, the Gaussian asymptotics in (57) provides
hints for the applicability of the theorem. For example, a function g(p) = exp(—|p|) is a good
candidate for the dominating function of f;(p) = 2b*Ai? (bp+/2). Using (57), we calculate the
asymptotics of the remaining terms

b s
_ —p°/2
T (bafz) =57 /25 e ”2dp+0(1), (58)
. I _ 1) )2 l
Ty (b&\@) = —47Te 7 /25 e dp+ O b ) 59)

This result combined with taking remaining straightforward limits completes the proof. [

3.5. Integrating out the self-overlap

We start with two properties satisfied by the deformed Airy functions that are useful in manip-
ulations of the formulas. They are straightforward to show, so we present them without a proof.
Lemma 3.3. Ler  Aiy(¢) =exp(162C + 560 AI(C+2)  and  Biy(C) = exp(Lb7¢ +

ﬁbG)Bi(C + %2), where Ai and Bi are the Airy functions. Let F), and Gj, be any combina-
tion of Ay, and Biy,. They satisfy the relations

4 4
Fo(Q16o(Q) = oGO = Fo (¢ + 5 ) Go (¢ ). (60)
2

, b b b
06O =R+ R (c+ 5 )a(c+F). o

We are now ready to calculate the integral giving rise to the deformed Scorer’s function.

Proof of lemma 2.3. The exact form of the deformed Scorer’s function can be found by the
variation of parameters method, since Hi, satisfies the inhomogeneous second order differen-
tial equation

. . . 1

Hij (€) +b7Hij (¢) — CHip () = —, (62)
which follows from 1 = [ (u* + b*u — ¢) exp(Cu — % — ”—;)du Instead of proving that (16)
matches the asymptotics, we observe that Hi, satisfies the (backward) diffusion equation in
the variable n = % playing the role of time. That is, the function A(¢,n) = 7! fooo exp(Cu —
nu? — ”;)du satisfies equation 0,h = —0¢¢h with the initial condition given by the Scorer’s
function

¢ ¢
1 (C,0) = Bi (¢) / Ai (1) dr— Ai (€) / Bi (1) dr. 63)
—o0 —o0

Trivially, (16) reduces to the above as b — 0. Straightforward verification that (16) satis-
fies 0,h = —0O¢¢h uses lemma 3.3 and the fact that Ai, and Bi, themselves satisfy diffusion
equation, see remark 2.6. O
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Proof of corollary 2.2. To integrate out the ¢ variable in (10), we first change the integration
. 2 . .
variable to u = }’7 and rewrite the resulting integral as

/Ooop“’-e~ (¢,1)dr = /Oooe—é—#*{” {(Lf + b — Cu— 1) T3 () + (u2—|—b2u—C) /ooAilz, (p)dp

<

.. 1.,,. 1. -
+UAR O+ AR () = 340 (€) A (0)] ae (64)
The integrals can be expressed in terms of Hij, and its derivatives. However, we notice that the
first parenthesis in the square bracket integrates out to 0, because it corresponds to the third
order differential equation satisfied by Hi,, which can be obtained by differentiating both sides
of (62). Analogously, the second parenthesis integrates to 1, by the virtue of (62). The fact that

¢
iy (C) Hif (€) + bmAiy (€) Hip (¢) — mAi (¢) Hiy (¢) = / Aiy (1) dr

— 00

can be verified by explicit calculations that involve the exact form of the deformed Scorer’s
function (see lemma 2.3) and simple manipulations using lemma 3.3, followed by the use of
the Wronskian Ai(x)Bi’(x) — Ai’(x)Bi(x) = 7~ !. The final observation

/Oo Aip (1) dt = /OO Ai(r)dr=1 (65)

— 00 — 00

completes the proof. The first equality follows from the fact that Ai, is a solution to the diffu-
sion equation (see remark 2.6) and diffusion preserves probability, while the second equality
is a known result. O
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