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Abstract: The decays of the B meson into vector mesons, observed during the LHCb experiment,

provide an ideal laboratory to investigate particle physics phenomena with quantum information

theory methods. In this article, we focus on the decays yielding a pair of φ mesons to investigate

the presence of entanglement in the spin correlations of the system and quantify the amount of

Bell inequality violation it entails. Our results show that the present LHCb data allow access to

entanglement and to the Bell inequality violation with a significance exceeding the 5σ threshold

in both the cases. This demonstrates that the strong and electroweak interactions responsible for

the B meson decay act as a source of entanglement and the quantum mechanics nature of high-

energy phenomena. Particular attention is paid to the assessment of loopholes: deficiencies in the

experimental setup which could invalidate the results of the Bell test.

Keywords: LHCb; entanglement; spin; Bell inequality violation

1. Introduction

One of the most fascinating aspects of quantum mechanics (QM) is the possible pres-
ence of entanglement in composite systems [1–4], a phenomenon that has no counterpart in
classical or fully deterministic theories. The latter, in particular, are built on the assumption
of local realism, which endows physical systems with intrinsic properties that exist whether
or not we perform a measurement (realism). The concept of locality is understood here in
the sense that a physical system can only be influenced by its local surroundings and is
causally connected to other systems only through interactions that do not propagate faster
than the speed of light.

The amazing property of entangled systems is that entanglement keeps linking the
composing subsystems even if these are separated at an arbitrary distance. This connection
maintains the overall quantum system as a whole, demonstrating the true non-local nature
of quantum phenomena. For instance, if we consider a system formed by two entangled
particles and perform a measurement on one of these, the other one—no matter how
far away—will collapse instantaneously into a new state selected by the outcome of the
measurement performed on the first particle. In other words, once quantum systems are
entangled, the state describing the composite system cannot be reconstructed from the states
describing the subsystems in isolation. Mathematically, the idea that entangled systems are
more than the sum of their parts is reflected in the fact that the corresponding state cannot
be written as the tensor product of the quantum states describing the separate subsystems.
Clearly, the contrary holds within theories based on local realism as all the properties of the
system and of its subsystems are predetermined and exist prior to any measurement.

In 1935, Einstein, Podolsky, and Rosen suggested a gedanken experiment [5], which
showed that the description of reality based on the wave function of QM is incomplete if
local realism is assumed. This suggested the idea that the incompleteness of QM could
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be resolved in the framework of local hidden variables (LHV) theories, which explain the
apparent probabilistic nature of quantum phenomena by introducing additional (perhaps
experimentally inaccessible) variables—we refer the Reader to Ref. [6] for a recent review
on the topic.

The diatribe between QM and LHV theories entered a new phase in 1969, when
John Bell devised a test able to actually discriminate between the two frameworks. The
idea is based on correlated measurements performed independently on the spins of two
spatially separated parts of an entangled system [7,8]. Assuming that these measurements
do not affect each other and are mutually independent yields an upper bound on the set of
expectation values of correlated measurements, encoded in the so-called Bell inequality [7,8]
(Different forms of the inequality tailored to systems with different dimensionalities have
been proposed in Refs. [9–12]). In the test, the intrinsic non-local nature of QM shows in
correlations which are stronger than the ones expected within any deterministic or LHV
theory. As a consequence, QM can violate the bound posed by the Bell inequality and
experimental measurements of these correlation can then rule out competing interpretations
based on local realism [8,13].

The possible violation of the Bell inequality was investigated in experiments with
entangled photons, running at energies of the order of few eV [2]. In these tests, a system
composed of two photons is prepared into a singlet spin state and the spin of each photon
is subsequently measured along different directions. This allows the experimental recon-
struction of the correlations used in the Bell test, giving access to entanglement and to the
violation of the Bell inequality that it may entail. The violation has been verified for the
first time in optical experiments [14,15] and a large effort was devoted to close—almost
all—potential loopholes in low-energy tests with photons [16,17] and with atoms [18].

Simply put, loopholes are deficiencies in the experimental apparatus that can be
exploited to bypass the consequences of Bell’s theorem, thereby invalidating the conclusions
of the corresponding test. The most common loophole affecting the setups relevant to
our study is locality, which exploits the possible time-like separation among the two
observers involved in the test to claim an exchange of information and the consequent
loss of independence in the performed measurements. Indeed, the effect of a genuine
non-locality can be mimicked by local interactions if the choice of setting at a measurement
site is influenced by the result obtained by the other observer. Other loopholes relevant
in this context are those of detection [19], coincidence [20], freedom of choice [21], and super
determinism [22]. We refer the reader to Ref. [23] for more details.

In the context of particle physics, entanglement has been probed using low-energy
protons [24], and possible tests at high energy colliders were first proposed in [25–27].
Other entanglement and Bell inequality tests have been also suggested in the framework
of positronium [28,29], and charmonium decays [30–32], as well as with neutrino oscilla-
tions [33] and neutral meson [34–37], although in the latter case only an indirect test of the
Bell inequality violation could be probed.

The interest in the high-energy phenomenology of entanglement was recently revived
after it was shown that entanglement could be observed with the spin correlations of
top-quark pairs produced at the LHC [38] and that the Bell inequality violation can also be
accessible through the same system [39]. More works on these topic followed, studying
in particular top-quark production [40–44], hyperons [45,46], tau-pairs [47,48], and gauge
bosons production from Higgs boson decay [49–52] and in vector boson scattering [53].
These studies collectively show that entanglement and the Bell inequality violation are
accessible in several systems produced at high energy collider experiments and that the re-
lated phenomenology can be used to probe physics beyond the standard model [48,54–59].

The possibility of detecting entanglement was recently verified by the ATLAS [60]
and CMS [61] collaborations at CERN, which observed its presence with a significance of
more than 5σ in the spin correlations of top-quark pairs produced near threshold at the
LHC. The violation of the Bell inequality at high energy was instead verified for the first
time by analyzing the data pertaining to the B meson decays into two spin-1 mesons [62]
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gathered by the LHCb collaboration [63]. The result firmly establishes the presence of this
quantum mechanical hallmark with a significance exceeding the 5σ level for a bipartite
system formed by two qutrits (three-level systems), at energies of the order of 5 GeV–a
billion times larger than those utilized in optical experiment [14–16]—and in the presence
of strong and weak interactions. In regard to this, the B0

d → J/ψ K∗(892)0 decay used in
the study is vulnerable to the locality loophole, brought about in this case by the difference
between the lifetimes of the J/ψ and K∗(892)0 mesons. The loophole uses the fact that
the measurements of the spin of each subsystem—identified here with the decay of the
particles, which reveals the orientation of the decaying particle spin vector—are time-like
separated. Since potential information transfer among the two subsystems is then possible,
the hypothesis of independent measurements underlying the Bell test may be argued to be
consequently not respected.

In this article we then review the Bell inequality violation in the B meson decays
focusing on a similar process, the B0

s → φφ decay, where the locality loophole can be kept
under control. As we will see, although the significance of the violation is lower than for
the B0

d → J/ψ K∗(892)0 decay, the presence of identical particles in the final state makes
communication between the two parties impossible in a large majority of the recorded
events. In fact, by performing 105 pseudo-experiments that mimic the decay process of
interest, we find that almost 95% of the φ pair decays take place at space-like separations.
This ensures that the large majority of the samples analyzed in actual experiments can
be safely used to perform a Bell test as every form of local communication between the
decaying particles is automatically prevented.

2. Quantum Observables

We start by summarizing the main results pertaining to the measurement of spin
correlations in the bipartite qutrit systems created in the decays of a spin-0 particle. For
the Bell test, we use a specific inequality tailored to this system. To quantify the amount of
entanglement in the spin correlation, instead, we rely on the entropy of entanglement [2] as
the vanishing spin of the decaying particle forces the resulting bipartite system to be in a
pure state [46]. Central to the analysis is the helicity density matrix, ρ, which we introduce
in the next section.

2.1. Density Operator, Polarization, and Spin Correlations

A quantum system whose state |ψ⟩ is known exactly is said to be in a pure state. The
description of mixed systems, on the contrary, uses an ensemble {(pi, |ψi⟩)} of pure states
|ψi⟩ and associated probabilities pi that encode our incomplete knowledge of the system.
From this, we built an operator

ρ = ∑
i

pi|ψi⟩⟨ψi| , ∑
i

pi = 1 , (1)

which qualifies as a density operator if and only if

(i) tr(ρ) = 1;
(ii) ρ ≥ 0, which implies ρ = ρ†.

The density operator of a pure state is simply given by ρ = |ψ⟩⟨ψ|, as we know exactly
which of the states {|ψi⟩} actually describes the system. It then follows that for pure states

ρ2 = ρ , (2)

as the density operator coincides with the |ψ⟩ subspace projector. Notice that in general
tr
(

ρ2
)

≤ 1, with the equality holding only for pure states.
In the following, we aim to describe the polarization state of two spin-1 particles

of arbitrary non vanishing masses. Admitting three degenerate spin—or, equivalently,
helicity—states, these particles are prototypal examples of the qutrits of quantum informa-
tion theory. A state |ψi⟩, describing one of these qutrits will then be a coherent superposition



Symmetry 2024, 16, 1036 4 of 13

of the three basis vectors representing the (orthogonal) possible polarizations λ = +1, 0, −1
of the system. The density operator describing the polarization state of a massive spin one
particle is that of a qutrit and, as such, can be represented with a 3 × 3 matrix depending
on eight parameters. This can be decomposed as

ρλ1,λ′
1
=

1
3
13 +

8

∑
a=1

vaTa , with λ1, λ′
1 = +1, 0, −1 , (3)

on the basis formed by the Gell-Mann matrices Ta, with a = 1, . . . , 8, and by the 3 × 3 unit
matrix 13. The coefficients va are necessarily real. Similarly, once explicitly written in matrix
representation, the density operator describing the joint state of two qutrits is a 9× 9 matrix
with indices λ1 ⊗ λ2, λ′

1 ⊗ λ′
2 (We indicate with a tensor product of helicity labels the label

of the basis vector given by the tensor product of the corresponding helicity states. These
products map to Kronecker products of the basis vectors used in the chosen representation
of the helicity states as |ψ⟩ ⊗ |φ⟩ = (ψ1|φ⟩, ψ2|φ⟩, . . . ψn|φ⟩)T = (ψ1φ1, ψ1φ2 . . . ψnφn)T for
two helicity states |ψ⟩ and |φ⟩ with components ψi and φi, respectively). As such, it can be
written as a sum of tensor products involving the Gell–Mann matrices, Ta with a = 1, . . . , 8
and the 3 × 3 unit matrix 13:

ρλ1⊗λ2,λ′
1⊗λ′

2
=

[

13 ⊗ 13

9
+

8

∑
a=1

fa(T
a ⊗ 13) +

8

∑
a=1

ga(13 ⊗ Ta) +
8

∑
a,b=1

hab(T
a ⊗ Tb)

]

λ1⊗λ2,λ′
1⊗λ′

2

. (4)

The coefficients fa and ga, a = 1, . . . , 8, as well as the 64 elements of the symmetric matrix
hab, generally depend on the kinematics of the process yielding the production of the
two qutrits and can be computed analytically from the related transition amplitudes. The
corresponding averages can be experimentally reconstructed typically from the angular
distributions of the decay products of the same qutrits, which indicate the orientation of the
spin vectors of the latter. Complete quantum tomography is achieved once these averages
are known and the full density matrix describing the sample of qutrit pairs under scrutiny
is thus determined.

These coefficients can be obtained by projecting ρ on the desired subspace basis via
the traces

fa =
1
6

tr[ρ(Ta ⊗ 13)] , ga =
1
6

tr[ρ(13 ⊗ Ta)] , hab =
1
4

tr
[

ρ
(

Ta ⊗ Tb
)]

.

The averages ⟨ f a⟩ and ⟨ga⟩ determine the linear and tensor polarizations of the qutrit pair
sample created in the experiment (These quantities coincide with the linear and tensor
polarizations of the two qutrit sample if the density matrix in Equation (4) is expanded
on the basis formed by the tensor product of irreducible tensor operators formed with

the spin-1 3 × 3 matrices); the matrix
〈

hab
〉

contains instead the spin correlations that may

contain entanglement and lead to the violation of the Bell inequality.
If we now define M(λ1, λ2) as the matrix element for the transition amplitude yielding

two spin-one particles with helicities λ1 and λ2, the helicity density operator describing the
spin state of the resulting bipartite system can be computed as

ρ(λ1, λ′
1, λ2, λ′

2) =
M(λ1, λ2)M†(λ′

1, λ′
2)

|M|2 , (5)

where, as usual, |M|2 stands for the unpolarized square amplitude obtained by summing
over the polarizations. A sum over possible internal degrees of freedom of initial state
particles, including the spin, is also understood in both the numerator and the denominator.
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2.2. Connection with the Helicity Amplitude Spin Formalism

The helicity amplitudes are the matrix elements of the S matrix taken between initial and
final helicity states. The latter are usually defined in the center-of-mass frame where the
scattering angle also indicates the quantization axis used to define the helicity states |λi⟩ of
the final state particles, which recover the usual spin states once boosted to a frame where
the i-th particle is at rest. To understand how the spin formalism of helicity amplitudes
is particularly suitable for the computation of the helicity density matrix, consider the
matrix element M(λ1, λ2, χ1, χ2) for a 2 → 2 reaction. The symbols χ1 and χ2 indicate the
helicities of the initial state particles and, as before, λ1 and λ2 those of the final state ones.
By decomposing the S matrix as S = 1 + iT, we can write

δ(4)(p1 + p2 − k1 − k2)M(λ1, λ2) ∝ ⟨Ω(θ, φ), λ1 λ2|T|Ω(0, 0), χ1 χ2⟩ , (6)

where k1 and k2 are the initial state particle momenta that we take along the z = Ω(θ = 0,
φ = 0) direction, with θ and φ being the polar and azimuthal angles. The transition
amplitude can then be expanded into partial-wave amplitudes to give

⟨Ω(θ, φ), λ1 λ2|T|Ω(0, 0), χ1 χ2⟩ =
1

4π ∑
J

(2J + 1)⟨λ1λ2|T J |χ1χ2⟩D J∗
χλ(φ, θ, 0) , (7)

where D J
χ,λ are the Wigner D-matrix elements of the spin-J representation of the rotation

group, χ = χ1 − χ2 and λ = λ1 − λ2. The helicity density matrix can then be determined as

ρλ1⊗λ2,λ′
1⊗λ′

2
=

1

|M|2 ∑
J

wJ
λ1λ2

w∗J
λ′

1λ′
2

J

∑
k=−J

D J∗
k,λ1−λ2

(0, θ, 0)D J
k,λ′

1−λ′
2
(0, θ, 0) (8)

where a sum over the helicities of the initial state is understood and wJ
λ1λ2

∝ ⟨λ1λ2|T J |χ1χ2⟩.
The overall factor is set by the condition tr(ρ) = 1 and the dependence on the azimuthal
angle φ drops out as required by the cylindrical symmetry enjoyed by the process. A similar
result holds for 1 → 2 processes, where J is identified with the spin of the decaying particle.

For the considered case of a (pseudo)scalar decaying into two massive spin-1 particles,
as in the B → φφ process, the calculation of Equation (8) simplifies considerably. The fact
that the B0

s meson has spin 0 removes any dependence on the scattering angle θ from the
density matrix. In fact, the non-vanishing D-matrix elements are forced to unit and we
are left only with three non-vanishing helicity amplitudes (as also required by angular
momentum conservation):

wλλ′ ∝
〈

λλ′∣
∣H

∣

∣B
〉

∝ ⟨V1(s1 = λ)V2(s2 = −λ′)|H|B⟩ (9)

with λ = λ′ = +1, 0, or −1.
In the above formula, we indicated the interaction Hamiltonian responsible for the

transition with H and the spin of the particle Viwith si , as measured in the corresponding
rest frame and taking as quantization axis the direction of motion of one of the two particles
in the B0

s rest frame.
Helicity conservation unequivocally determines the quantum state describing the

spin of the two massive spin-1 particles, which is then pure for any values of the involved
helicity amplitudes [52,56] and can be written as

|Ψ⟩ =
1

√

|M|2
[

w++ |++⟩+ w00 |00⟩+ w−− |−−⟩
]

, (10)

with
|M|2 = |w00|2 + |w++|2 + |w−−|2 . (11)
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The relative weight of the transverse components |++⟩ and |−−⟩ with respect to the
longitudinal one, |00⟩, is controlled by the conservation of angular momentum. The helicity
density matrix ρ = |Ψ⟩⟨Ψ| for the pure state |Ψ⟩ in Equation (10), is expressed in terms of
the helicity amplitudes as

ρ =
1

|M|2































0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 w++ w∗

++ 0 w++ w∗
00 0 w++ w∗

−− 0 0
0 0 0 0 0 0 0 0 0
0 0 w00 w∗

++ 0 w00 w∗
00 0 w00 w∗

−− 0 0
0 0 0 0 0 0 0 0 0
0 0 w−− w∗

++ 0 w−− w∗
00 0 w−− w∗

−− 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0































. (12)

Our choice for the representation of the nine-dimension polarization basis of the two-
particle system is as follows:

|+−⟩ =















1
0
0
...
0















, |+0⟩ =















0
1
0
...
0















, |++⟩ =















0
0
1
...
0















, . . . , |−+⟩ =















0
0
0
...
1















. (13)

2.3. Entanglement

Quantifying the amount of entanglement in a quantum system is generally quite a
challenging task. The complexity of the problem increases with the dimensionality of the
system and, often, partial answers are all that is available when dealing with systems more
complicated than qubits. We refer the Reader to Refs. [2,23] for more details pertaining to
entanglement monotones and measures.

On general grounds, the state of a bipartite system is called entangled if it isnot
separable, that is if it cannot be written in the form

ρsep = ∑
i

pi ρi
A ⊗ ρi

B , with ∑
i

pi = 1 , (14)

where ρi
A and ρi

B are the density operators describing, with probability pi, the subsystems
of the bipartite system. This implies that a pure state |ψ⟩ is entangled if it is not a product
state, i.e., if it cannot be written as |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ with |ψ1⟩ and |ψ2⟩ being the pure
states of the composing subsystems.

If the bipartite system is in pure state, as of that in Equation (12), it is possible to
quantify its entanglement by computing the entropy of entanglement

E = − tr(ρA log ρA) = − tr(ρB log ρB) , (15)

which is given by the von Neumann entropy [2] of either of the two subsystems with
reduced density operators ρA and ρB. The latter are obtained from the density operator
of the whole bipartite system by taking the partial trace over the subsystem B and A,
respectively. This is formally defined so that

tr(ρB M) = tr((1A ⊗ M)ρ) . (16)

The von Neumann entropy of the reduced density operator is a true entanglement
measure satisfying the property

0 ≤ E ≤ log d , (17)
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where d is the dimensionality of the subsystem: d = 3 for a two-qutrit system. The first
equality holds if and only if the bipartite state is separable, the second inequality saturates
if the bipartite state is maximally entangled.

In the following, we employ the entropy of entanglement to quantify the amount
of entanglement present in the spin correlations of the φ meson pairs produced by the
decaying B0

s mesons.

2.4. Bell Inequality Violation

Local deterministic theories satisfy an inequality, known as the Bell inequality [9–12],
pertaining to correlated measurements performed by two independent observers on the
subsystems A and B of the bipartite system. Crucially, the inequality may be violated by the
statistical predictions of quantum mechanics due to the non-local character of entanglement
and experimental tests of the inequality may then be used to discriminate between the two
competing descriptions.

A reformulation of the original Bell inequality adapted to the case of a bipartite
system made of two qutrits is the Collins, Gisin, Linden, Massar, and Popescu (CGLMP)
inequality [9–12] (We refer the reader to [2,23] for a general discussion of the formulation
of the Bell inequality for bipartite qubit systems and higher dimensional systems). In
order to write the inequality explicitly, consider again the two qutrits A and B of the
bipartite system. For the qutrit A, select two spin measurement settings, Â1 and Â2,
which correspond to the projective measurement of two spin-1 observables having each
three possible outcomes {0, 1, 2}. Similarly, the measurement settings and corresponding
observables for the qutrit B are B̂1 and B̂2. One can then construct the correlation measure,
I3, given by the combination [11]:

I3 = P(A1 = B1) + P(B1 = A2 + 1) + P(A2 = B2) + P(B2 = A1)

− P(A1 = B1 − 1)− P(A1 = B2)− P(A2 = B2 − 1)− P(B2 = A1 − 1) , (18)

in which P(Ai = Bj + k) denotes the probability that the outcome Ai (for the measurement
of Âi) and Bj (for the measurement of B̂j), with i, j either 1 or 2, differ by k modulo 3. The
correlations computed within deterministic local models inevitably yield I3 ≤ 2, while
the bound can be violated by computing the above correlation measure with the rules of
quantum mechanics.

Within the density matrix formalism, the above quantity can be written as an expecta-
tion value of a suitable Bell operator B [11]

I3 = tr(ρB) , (19)

the explicit form of which will depend on which of the four operators Âi, B̂i, with i = 1 or
2, are utilized in the test. Consequently, for a set density matrix it is possible to enhance
the violation of the Bell inequality through a specific choice of these operators. Regardless
of the choice, the numerical value of the observable is bound to be less than or equal to 4
if quantum mechanics are to hold true. Within the choice of measurements defining the
Bell operator there is furthermore still freedom of modifying the measured observables
through local unitary transformations. Correspondingly, the Bell operator undergoes
the transformation:

B → (U ⊗ V)† · B · (U ⊗ V) , (20)

where U and V are independent 3 × 3 unitary matrices. This procedure effectively corre-
sponds to local changes of the bases used in the two measurements and in the following
we make use of it to maximize the value of I3 obtained with the Bell operator of Ref. [64].
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3. Results

We proceed now with the results pertaining to entanglement and Bell inequality
violation in the process B0

s → φφ. Corresponding results for other relevant B0
d and B0

s

meson decays into two spin-1 mesons will also be mentioned.
In order to compute the helicity density matrix in Equation (12) for the B0

s → φφ

decay process, we use the results of the analysis in Ref. [65] reported in Table 1. These
results provide the measurements of the two complex polarization amplitudes A0 and A⊥,
including the relative phases. The polarization amplitudes are complex mostly because
of the final-state interactions [66], and the remaining amplitude, |A∥|, can be derived by
the condition |A0|2 + |A⊥|2 + |A∥|2 = 1. In our work, we have set δ0 = 0 because there
are only two physical phases entering in the polarizations amplitudes, namely, (δ⊥ − δ0)
and (δ∥ − δ0). The correlations among the amplitude and phase uncertainties, given in the
supplementary material of Ref. [65], are reported in Table 2.

Table 1. Values of the complex polarization amplitudes and relative phases utilized in this work. The
central values and the corresponding statistical and systematic errors are taken from Ref. [65].

Parameter Result

|A0|2 0.384 ± 0.007 ± 0.003
|A⊥|2 0.310 ± 0.006 ± 0.003

δ∥ [rad] 2.463 ± 0.029 ± 0.009
δ⊥ [rad] 2.769 ± 0.105± 0.011

Table 2. Correlation matrix for the measurements utilized in this work, originally presented in the
supplementary material of Ref. [65].

|A0|2 |A⊥|2 δ∥ δ⊥

|A0|2 1 −0.342 −0.007 0.064
|A⊥|2 1 0.140 0.088
δ∥ 1 0.179
δ⊥ 1

The helicity amplitudes are mapped into the polarization amplitudes typically used in
experimental analysis [63,65,67–69] through the relations

w00

|M| = A0 ,
w++

|M| =
A∥ + A⊥√

2
,

w−−
|M| =

A∥ − A⊥√
2

, (21)

which we utilize to reconstruct the density matrix in Equation (12). We then can employ
Equation (15) to quantify the amount of entanglement present in the spin correlations of
the φ mesons produced in B0

s → φφ decays, finding [62]

E = 0.734 ± 0.037 . (22)

This result demonstrates that the presence of quantum entanglement in B0
s → φφ is estab-

lished with a significance exceeding the 5σ threshold (nominally 19.8σ). The computation
of the quoted error was performed by propagating the experimental uncertainties while
taking into account the correlations in Table 2.

It is interesting to see what happens to the entanglement when the strong phases,
sourced by final-state interactions, are neglected. In this case, the corresponding result of
Equation (22) for the entropy of entanglement at vanishing phases, (E0), is

E0 = 0.666 ± 0.0028 , (23)
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and shows a decrease in entanglement. We therefore conclude that the effect of the strong
rescattering of the final state particles increases the entanglement of the dimeson system.
The result is interesting as it allows for the isolation of the effect of these strong processes
on quantum entanglement.

We compute next the correlation measure I3 in Equation (18) and maximize the Bell
inequality by means of the procedure detailed in Equation (20). The maximum value of
Imax

3 obtained is given by [62]

Imax
3 = 2.525 ± 0.064 , (24)

which implies that the CGLMP inequality I3 < 2 is also violated with a significance ex-
ceeding the 5σ level (nominally 8.2σ). The error quoted in Equation (24) was computed
by maintaining the two matrices U and V set to the values indicated by the maximiza-
tion procedure. These are reported below with an accuracy of 1% from the obtained
numerical values:

U =

















− 1
25 − 21i

37 − 8
33 + 59i

89 − 11
43 − i

3

104
207 + 13i

41 0 − 29
36 + i

60

− 9
17 + 5i

24 − 12
17 − i

30 − 7
29 + 11i

32

















, V =





















− 3
35 + 16i

39 − 5
32 + 20i

29
11
21 − 2i

9

− 7
13 − 43i

72 0 3
22 − 15i

26

5
12 − i

24 − 31
44 + 2i

35 − 10
27 − 13i

30





















. (25)

Notice that the value of I3 obtained without optimization is I3 = 0.86 ± 0.043, which
implies no violation of CGLMP inequality. As we can see, the optimization procedure is
crucial here to unveil the violation of the Bell inequality.

We conclude the section by listing, in Table 3, the results obtained for the entropy of
entanglement and the optimized Bell operator using the data of other B-meson decays.

Table 3. Amount of entanglement and optimized expectation value of the Bell operator for other
B-meson decays [62]. An asterisk indicates that the correlations in the uncertainties of the helicity
amplitudes are not given in the corresponding reference and therefore only an upper bound on the
propagated uncertainty can be computed.

Process E Imax
3

B0
d
→ J/ψ K∗(892)0 [63] 0.756 ± 0.009 2.548 ± 0.015

B0
d
→ φ K∗(892)0 [67] 0.707 ± 0.133 ∗ 2.417 ± 0.368 ∗

B0
d
→ ρ K∗(892)0 [68] 0.450 ± 0.077 ∗ 2.208 ± 0.151 ∗

B0
s → J/ψ φ [69] 0.731 ± 0.032 2.462 ± 0.080

4. Discussion

Although the B0
d → J/ψ K∗(892)0 decays result in more evidence for the detection of

the Bell inequality violation—see Table 3—the fact that the J/ψ has a much longer lifetime
than the K∗(892)0 allows for the causal propagation of signals among the two subsystems
prior to the conclusion of the measurement act. If this were to happen, it would invalidate
one of the hypothesis of the Bell test, as well as its conclusions for the related locality
loophole cannot be disregarded.

To understand the issue, notice that particles often act as their own polarimeters, in
that the directions of the decay products reveal the orientation of the progenitor particle
spin vector, allowing for its reconstruction. The locality loophole exploits here the fact that
once the K∗(892)0 decays “measuring”, so to say, its own spin, a causal interaction could
inform the J/ψ particle about the specifics of this measurement, thereby conditioning the
impending decay and second measurement. Within an idealized Bell test, the situation
is analogous to that in which one of the two observers involved, say Alice, informs the
other, Bob, of the selected measurement settings and of the outcomes they obtained. This



Symmetry 2024, 16, 1036 10 of 13

would clearly invalidate the test as Bob could simply fake the presence of correlation by
calibrating their own measurements to the results that Alice obtained. How can we then
trust that Bob’s results are fair? One simple solution is to place Alice and Bob outside
of each other’s light cone, preventing every possible form of causal communication. As
we argue below, this is exactly what happens in case of the B meson decaying into two
φ mesons.

Because the final states comprise identical particles, it is plausible that configurations
where the decays of the φ mesons take place basically simultaneously could be more
easily achievable. Still, decays are inherently stochastic processes that take place with an
exponential spread and so one must verify that a large majority of these decays do take
place at space-like separations. If so, we could safely argue that the locality loophole cannot
significantly affect the conclusions of our Bell test.

Consider then two particles, A and B, produced together in a decay process. The
particle B may decay within the future cone of the particle A either because of a longer
lifetime or because of the random spread in its decay time. Regardless, the relative velocity
v with which the pair flies apart will be sufficiently large to create a space-like separation
between the forthcoming decays if

|t1 − t2|c
(t1 + t2)v

< 1 , (26)

in which t1 and t2 are the instants at which the corresponding particles decay. This
separation condition prevents a possible communication through local interactions, such
as usual the electromagnetic interaction mediated by photons, and therefore guarantees
that the locality loophole is closed [8]. Experimentally, Equation (26) can be enforced by
imposing a cut on the momenta of the produced particles apt to reject the pairs which
do not separate fast enough. If the amount of available data after the cut remains large
enough to guarantee that a fair sample of events can be collected (thereby addressing
the detection loophole), this procedure would not affect the significance of the Bell test
under consideration.

In the case of B0
s → φφ decay, we can estimate the fraction of events separated by a

space-like interval by performing a simple Monte Carlo simulation in which the decay
times come from the usual exponential distribution regulated by the φ decay width. To
this purpose we model the lifetime of each φ particle in a function ti = F(xi), i = 1 or 2,
depending on the random variable xi that we restrict to the range 0 ≤ xi ≤ 1. The explicit
form of the F(xi) function is

F(xi) = −τφ log(xi)
√

1 − β2
, (27)

where τφ is the φ meson lifetime, β =
√

1 − 4M2
φ/M2

Bs
is the φ velocity in the B meson rest

frame (in units of c), and Mφ and MBs are the φ and B0
s meson mass, respectively.

As anticipated in the introduction, by performing 105 pseudo-experiments (corre-
sponding to 105 extractions of random values for the pair (x1, x2)), we find that almost 95%
of the events are space-like separated and every form of local communication between the
two parties is then automatically prevented. The procedure can be easily generalized to
cases containing two different particles in final state.

Concerning the effects of strong interactions on the φφ bipartite system, we also see
that the decays of the two φ mesons take place well outside of the range of the interactions
ongoing at the time of their production, as well as of that of final-state interactions induced
by virtual mesons exchanges. The former is a pure QCD effect due to gluon exchanges and
is active on distances of about ∼ 3 × 10−5 fm [70]. The range of the latter, instead, is at
most equal to λπ ≃ 1.5 fm if we consider an interaction mediated by one-pion exchange.
When compared to the spatial separation between the two φ mesons decay vertices, which
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is typically of O(100) fm, these numbers indicate that no strong interaction exchange can
happen between the two φ mesons at the time of their decays.

5. Summary

We review the possibility of detecting entanglement and the violation of Bell inequal-
ities that it might entail by using the decays of B mesons into pairs of vector mesons,
specifically focusing on the B0

s decays that yield two φ mesons. Using data from the LHCb
experiment, we show that the reconstructed spin correlations establish the presence of
quantum entanglement in the bipartite system formed by the φ mesons. The analysis also
ascertains the violation of the Bell inequality in these decays, thereby supporting the quan-
tum mechanical nature of the strong and electroweak interactions involved. Additionally,
the paper addresses potential experimental loopholes that could invalidate the results. In
particular, we find that the locality loophole is closed for the considered φφ final state as
the two particles decay separated by a space-like interval.
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