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The Ethernet Readout of the DUNE DAQ System

Roland Sipos for the DUNE Collaboration

Abstract—In 2023, the deep underground neutrino experiment
(DUNE) data acquisition (DAQ) system transitioned to a new
Ethernet-based readout. This required an extension to the mod-
ular readout subsystem: in particular, a new I/O device library
was implemented, interfacing with the detector electronics; a
firmware block was provided by the DAQ team to the electronics
experts for the implementation of the data formatting and trans-
mission; and the trigger primitive generation (TPG) software in
the readout system was adapted to the modified data format. The
I/O device library for controlling, configuring, and operating the
network interface controllers (NICs) is built upon the data plane
development kit (DPDK), supporting routing capabilities based
on configurable rules. This feature allows the readout to split the
data arriving on each 100-Gb/s link into individual data streams
(each with a throughput of ~2 Gb/s), which are passed down to
their corresponding processing pipelines for TPG and buffering.
Extensive monitoring capabilities are also provided by the library,
which monitors errors related to data consistency and integrity,
and also aids the performance optimization work of the software
stack. In this contribution, we describe the new high-throughput
Ethernet-based readout integrated into the DUNE DAQ system,
and the first performance results obtained at the ProtoDUNE
hardware apparatus at the Neutrino Platform at CERN.

Index Terms—Data acquisition (DAQ), data plane develop-
ment kit (DPDK), Ethernet, high throughput, high performance
computing (HPC), online computing.

I. INTRODUCTION

HE deep underground neutrino experiment (DUNE) [1]

represents a significant endeavor in particle physics,
aiming to unravel the mysteries of neutrinos and their role
in the universe’s evolution. Central to the experiment is its
data acquisition (DAQ) [2] system, designed to capture and
process vast amounts of data generated by the experiment’s
detectors. In a pivotal move toward the use of commercial
off-the-shelf (COTS) hardware and standard communication
protocols, which reduces the construction effort and cost and
increases maintainability, the DUNE DAQ has transitioned to
a fully Ethernet-based readout system.

This change was endorsed at the Final Design Review [3]
in 2023, acknowledging that the overall system design could
accommodate this modification without substantial impact on
the rest of the DAQ system. Even at the level of the readout
subsystem, most of the design [4] could be preserved, with the
exception of the data reception block. Instead of custom mes-
sage exchange and aggregator I/O devices, the user datagram
protocol (UDP) over Ethernet was introduced, thus allowing
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domains and subcomponents. This contribution focuses on the data transmis-
sion and processing domain that receives data from the front-end electronics
based on the Ethernet protocol. The implementation of the buffering and data
request response domain can be maintained without sizeable modifications,
simply by introducing a modified data format.

the use of fully COTS hardware solutions and third-party,
open-source, software components. The data flow diagram
with the readout system’s components and functionalities is
shown in Fig. 1.

In addition to data reception, the readout is processing all
incoming data to carry out hit finding and generate trigger
primitives (TPs), and is buffering data in DRAM while the
trigger takes its decision, and upon command persists up to
100 s of all raw data in high-performance nonvolatile memory
express (NVMe) drives. The recording duration is driven by
the supernova burst (SNB) trigger requirements.

II. FRONT-END DOMAIN

The detector electronics transmit data over 10-Gb/s links.
Those are aggregated into 100-Gb/s links via network switches
and are fed to the readout unit servers. The overall aggregated
data throughput for each of the four DUNE far detector
modules is ~15 Tb/s. There are different detector types with
variable throughput. In this contribution, the results refer to the
time projection chamber (TPC) electronics of the horizontal
drift and vertical drift far detector modules.

The DAQ Team provides a firmware block developed at the
Rutherford Appleton Laboratory (RAL) Technical Division [5]
that may be integrated into the front-end electronics field-
programmable gate array (FPGA) boards. This transmitter
(TX) block is responsible for sending Ethernet frames fol-
lowing the UDP, where the carried payloads are the front-end
electronics data frames. It follows the architecture shown in
Fig. 2.

Every data frame also carries a unified and versioned DAQ
header that contains geographic and physical location infor-
mation about the source of the data stream. It also contains
the timestamp from the timing system of the detector and a
sequence identifier for data integrity and continuity checks.
Following the header, the frame itself contains data from
64 channels’ 64 time slices, resulting in 7200-B-long payloads.
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Fig. 2. Architecture of the TX block provided for the front-end electronics.
The physical coding sublayer/physical medium attachment (PCS/PMA) area
contains modified Xilinx IP [6] components, and the Tx path is a custom
firmware block developed by engineers at the RAL Technical Division. The
overall block is responsible for equipping the detector data frames with IPv4
and UDP headers following the communication protocol.

TABLE I
PAYLOAD CHARACTERISTICS OF DETECTOR ELEMENTS

Detector component Links and Payload size Total throughput
for charge readout Data Streams and arrival rate (incl. protocol headers)
Anode Plane Assembly 10 links 7200 Bytes @ 30.5 kHz ~70.1 Gbits
(APA) 40 streams x 40 streams
Charge Readout Plane 12 links 7200 Bytes @ 30.5 kHz ~84.8 Gbits

(CRP) 48 streams x 48 streams

With the extra protocol headers, 7243-B-long JUMBO UDP
frames are transmitted over a switched network to the readout
units.

Table I describes the characteristics and the numbers of the
data streams from these detector components.

III. DATA PLANE DEVELOPMENT KIT

During the initial integration of the firmware block (called
Hermes), packet reception and processing tests were carried
out with simple applications using posix sockets. Nevertheless,
when scaling up the number of data streams, data losses
were observed due to performance bottlenecks in the receiving
software. Therefore, an alternative and more efficient data
reception software was developed. The new software stack for
the I/O device control, configuration, monitoring, and readout
of the network interface controllers (NICs) in the readout units
is built upon the data plane development kit (DPDK) [7].
It enables more efficient packet processing than the standard
interrupt processing available in the Linux kernel.

A key element of DPDK is the poll mode drivers
(PMDs) [8], which consist of application programming inter-
faces (APIs) through device drivers running in user space,
allowing to configure the devices and their hardware queues.
In addition, the PMDs have direct access to receiver (RX) and
TX descriptors without any interrupts and extra copies in the
kernel space. The run-to-completion model was chosen for our
workflow: a specific interface’s RX descriptor ring is polled
for a burst of packets, which are copied to the user application
space for further processing.

Many modern hardware architectures (including x86) now
provide direct memory access (DMA) and interrupt remapping
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facilities in order to ensure I/O devices are isolated within their
allocated resource boundaries. The virtual function I/O (VFIO)
driver is an input—output memory management unit (IOMMU)
and device agnostic framework for exposing direct access to
devices in the userspace. The IOMMU-protected environment
allows running a safe, nonprivileged, userspace driver that can
be used in virtualized DAQ environments. The vfio-pci [9]
poll-mode capable, fully DPDK-compatible driver was cho-
sen to interface the DAQ software applications. The readout
units’ system configuration is IOMMU enabled, automated to
allocate huge pages of memory on nonuniform memory access
(NUMA) locations where the NICs are connected, such that
the interfaces can be bound with the PMD driver.

DPDK has a wide set of core libraries and features,
including lock-less multiproducer multiconsumer queues, and
the capability of executing callback functions asynchronously
on assigned packet processing cores. As the generic readout
system has the buffering and data processing functionalities
already implemented and specialized for different front ends,
only a bare minimum set of libraries from DPDK is used, for
moving data from the NIC DMA buffers to DAQ userspace
applications and streaming them to specific data handler
modules. This minimal set of libraries is the following.

1) Environment Abstraction Layer (EAL): It provides the
main entry point for configuring and controlling the
interfaces. It is responsible for gaining access to low-level
NIC resources such as RX and TX queues and descrip-
tors. It also provides access to resources on the system
like allowed CPU cores for packet processing and
NUMA-aware DMA buffers. Based on the provided
configuration parameters, its main initialization routine
allocates these resources and is capable of launching the
application-specific processing threads.

2) mbuf Library: This library provides the ability to allocate
and free memory buffers (mbufs) that may be used by
the application to store network packets. The underlying
header structures are kept as small as possible and cur-
rently use just two cache lines, with the most frequently
used fields being on either of these. The packet buffer
was designed to embed metadata within a single mbuf
followed by a fixed-size area for the packet data.

3) Mempool Library: This library implements a memory
pool that is an allocator of a fixed-sized object. It is
identified by name and uses a handler to store and free
objects. The implementation also offers optional features
such as per-core object caching and alignment helpers for
efficient padding to spread them equally on all DRAM
channels.

4) Flow API: It provides a generic means to configure the
interfaces to match specific traffic and alter its route
according to any number of user-defined rules. Matching
can be performed on packet data and properties. We use
this feature in order to divert packets to specific RX
queues based on the source fields in the IPv4 headers,
essentially load balancing the traffic on available hard-
ware RX rings and descriptors.

5) Xstats API: This API allows the PMD to expose all statis-
tics that are available to it, including statistics that are
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Fig. 3. Overview of the DAQ modules within a readout application, with
the buffering and processing components. The used configuration parameters
(arrows) of these elements are also highlighted with the operational monitoring
metrics (dashed lines). Data can be exchanged across DAQ modules either
via queues (as shown in the top-right part of the diagram) or via a callback
mechanism (as shown in the bottom right).

unique to the device. As calculating statistics of millions
of data packets’ integrity and validity in software would
result in substantial processing overhead, we use this
API as an interface to the DAQ’s operational monitoring
infrastructure.

A dpdklibs [10] repository was developed within the
DUNE-DAQ software project that includes C++ wrappers,
helper functions, and classes to interface test applications and
DAQ modules with the features and APIs described above.
The currently used DPDK version is 22.11 that matches the
one provided by the used operating system (Alma Linux 9)
application stream repository.

IV. SOFTWARE IMPLEMENTATION

Several simple applications were implemented to exercise
different APIs and test the individual features necessary in the
DAQ. The DPDK-based RX implementation consists of a new
dynamically loadable module implemented within the DUNE
DAQ application framework. The module implements the stan-
dard DAQ module interfaces for configuring, controlling, and
monitoring the underlying resources, in this case, the network
interfaces. The main purpose of this DAQ module is to process
the aggregated stream of UDP frames and demultiplex the
payloads to their destination modules for further processing
and buffering in the generic readout modules. The data flow
diagram and different components are shown in Fig. 3. The
main functional steps are described in Sections IV-A-IV-E.

A. Initialization

The overall connection topology between the front end and
the readout modules is established through a detector readout
map. This map describes the multiplexing topology between
the NIC reader module and a number of data stream handler
modules. The application framework supports intraprocess
message passing of the data between modules within the same
application process via the IOManager component. It cre-
ates communication channels with buffering queues between
sender and RX modules. To eliminate this extra buffering
and copy stage, the readout libraries introduced an optional
path for data exchange using a static data move callback
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registry. Using this registry, the stream handler modules can
advertize a payload move function during their initialization.
This function can be invoked from other modules within the
same application with the right connection identifier inferred
from the readout map.

B. Configuration

A single NIC reader module is capable of handling multiple
interfaces, and it is configured with a set of Interface Wrapper
configurations. Through EAL selected interfaces are initialized
and configured with the provided parameters for the wrapper.
The necessary steps to ensure that the interface is configured
properly are given as follows.

1) A hardware resource map is established based on the ini-
tialized topology to identify the total number of expected
IP sources and their corresponding destination streams.

2) Pools of mbufs are allocated with the total number of
expected RX/TX queues for the interface.

3) The requested interface is acquired based on the config-
ured peripheral component interconnect express (PCle)
and media access control (MAC) addresses, followed by
a check for its availability to ensure that it is not occupied
by other processes.

4) A reset is carried out on the interface to bring it to an
initial and stopped state without any TX and RX queues
setup.

5) Upon request, the interface is configured with multiqueue
receive-side scaling (RSS) and corresponding offloading.

6) The interface configuration is issued with requesting a
number of RX and TX queues. The total number of
RX queues are the expected number of IP sources.
A single TX queue is requested to provide a transmission
channel for gratuitous address resolution protocol (ARP)
messages.

7) Each requested queue gets configured by binding the
previously allocated memory pools for them.

8) Flow steering and extended statistics are configured.

The flow steering configuration consists of pattern-matching

rules based on the source IP addresses in the IPv4 headers. The
rules are defined to route every frame with the same source 1P
to a dedicated RX ring, resulting in load balancing of available
NIC hardware resources. With a successful configuration of
the interface, packet processing functions can be launched to
do work using the configured RX and TX queues. Also in the
configuration, a CPU identifier set defines which virtual cores
will spawn the processing threads. The enabled RX queues
are assigned to a CPU set in a round-robin fashion, resulting
in each requested CPU responsible for processing a number
of assigned RX queues. In the final step of the configuration,
communication channels are established toward the destination
modules either via [OManager or acquiring the callbacks of
the downstream modules using the data move registry.

C. Packet Processing

Worker threads are spawned on each CPU from the set
defined in the configuration. They are polling the assigned
descriptors for acquiring a burst of network packets, which
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Algorithm 1 Packet Processor Function
iface < conflfaceld > Configured parameters
coreid < confCpuCore
mbsize < conf MaxBurstSize
queues < rxCoreMap(coreid]
mbuf's > Assigned buffers available in scope
while !stopSignal.load() do
for g : queues do > Loop and RX burst queues
gMbufx < mbufs[q.1d]
nbRx < rxBurst(iface,q.1d,qMbuf, mbize)
if nbRx! = 0 then
for buf : gMbuf do > Loop on burst results
if isValidFrame(buf) then
payload < getUdpPayload(buf)
handle Payload(payload)
end if
end for
end if
rxFreeBulk(gMbuf, nbRx)
end for
if noFull Burst then
nanosleep(conf SleepUs)
end if
end while

> Free processed

> Opportunistic sleep

are reinterpreted and copied out from the DMA buffers. This
is where the main polling of the RX rings is implemented and
opportunistic sleep is also added for being able to control the
polling frequency in relation to the configured maximum burst
size and RX queue depths. A burst call to an RX descriptor
through the PMD retrieves a maximum number of input
packets from a single RX queue of an interface. These packets
are stored in the mbufs allocated in the memory pools of the
RX queues. As the processing cores are handling multiple RX
queues, the function has a nested loop over assigned queue
burst calls and the processing of received packets one by one.

The pseudo-code of the processing function is shown in
Algorithm 1.

In the pseudo-code, the rxBurst function initiates the DMA
transfer between the NIC and the target mbufs provided in the
parameters list. This function returns the number of received
packets, which are now available in the mbufs for processing.
The isValidFrame represents a short sequence of data frame
integrity checks for expected packet sizes and protocol headers
(e.g., the packet is a UDP frame with the correct size). The
getUdpPayload function returns the memory location of the
actual user payload in the Ethernet frame without the IPv4
and UDP headers. The handlePayload function is where the
interpretation of the data happens, and the uniform DAQ
header is inspected. Based on the found stream identifier,
the pointer to the buffer is routed to a function that carries
out the copy into a target readout typed structure. The last
step is sending the readout object to its destination stream
handler DAQ module, either using the application framework
or invoking the callback on the module. The rxFreeBulk
function is releasing the processed packet buffers for reuse.
The opportunistic sleep feature monitors the frequency of full
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burst occurrences and allows a fine-grain control on CPU core
polling and therefore its utilization.

D. Other Notable Functionalities

If the processing of packets is taking too long, data might be
overwritten in the hardware rings. In the DPDK nomenclature,
this is referred to as missed packets, and extended statistics on
possible errors and back-pressure are periodically polled out
from the NIC in a dedicated thread, and sent to the operational
monitoring infrastructure through the appropriate DAQ module
interfaces.

The other notable functionality is the gratuitous ARP sender
thread. The NIC reader modules periodically send ARP mes-
sages per configured interface in order to keep the ARP table
updated in the network switches.

E. Trigger Primitive Generation

In the DUNE far detectors, all data are processed online, for
the selection of the interesting events to be stored long term.
The readout subsystem is carrying out the first stage of the
processing, by analyzing the waveforms of each individual
electronics channel and identifying activity not compatible
with electronic noise: this is the so-called trigger primitive
generation (TPG) [11] since the information about each activ-
ity is formatted into a TP data structure, which is forwarded
to the software-based data selection subsystem. The TPG is
highly parallelized and relies on single instructions multiple
data (SiMD) principles using the advanced vector extensions
(AVX) to the x86 instruction set. These algorithms are
executed in the postprocessing component (see Fig. 1) that
is processing the frames in the latency buffers. It is the
most computing-intensive and data-locality-sensitive part of
the readout system. The TPG implementation was adapted
to the new Ethernet-based data format and fully integrated
into the system.

V. PERFORMANCE EVALUATION AND OPTIMIZATION

This section describes the performance evaluation and opti-
mization that were carried out on the individual components of
the readout first and on the overall integrated system afterward.

A. Key Performance Indicators

The overall readout system comes with specialized require-
ments for the readout units’ hardware specification due to
its high-throughput needs. It combines several processing and
I/0O intensive components. Table II summarizes these elements
and highlights criteria for the target servers to be capable of
supporting the readout components requirements.

Readout applications consist of several hardware elements
and software workloads running in parallel, which are both
memory and CPU intensive. The key performance indicator
(KPI) for a single readout unit is the achievable maximum
total throughput handled without errors. This translates to the
number of 100-Gb/s input aggregated data streams handled
with all necessary readout components operating in parallel.
The underground facility where the readout servers will be
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TABLE I

OVERVIEW OF READOUT COMPONENTS’ HARDWARE RESOURCES
WITH THEIR UTILIZATION SENSITIVITY

Devi Persi
Component ' evices and CPU Memory ersistent
interconnects storage
. NICs and . ..
Data reception sensitive sensitive
PClIe lanes
M d . .. .
Latency buffer . emory an marginal  sensitive marginal
its channels
. CPU and . ..
Data processing . sensitive  sensitive
cache lines
Supernova Burst Persistent . . .
marginal  sensitive sensitive
Data Store storage
TABLE III

SPECIFICATIONS OF THE INTEL INTEGRATION SERVER

Component Specification
Baseboard Intel® Server Board M50CYP2SBSTD
Intel® Xeon® Gold 6346 @ 3.10 GHz (3.60 GHz turbo),
16-core 2S (dual socket) Code name: Ice Lake
CPU 1.5MiB L1d, 1 MiB L1i
40MiB L2
72MiB L3
DRAM DDR4 512 GB, 3200 MT/s
NIC Intel E810-CQDA2
OS, DPDK  Alma Linux 9.3, Linux kernel 5.4, DPDK 22.11

TABLE IV
SPECIFICATIONS OF THE AMD INTEGRATION SERVER

Component Specification
Baseboard  GIGABYTE® MZ92-FS0-A00
AMD® EPYC® 7313 @ 3.00 GHz (3.70 GHz turbo),
16-core 2S (dual socket) Code name: Zen3 Milan
CPU 1MiB L1d, 1MiB Lli
16 MiB L2
256 MiB L3
DRAM DDR4 512 GB, 3200 MT/s
NIC Intel E810-CQDA2
OS, DPDK  Alma Linux 9.3, Linux kernel 5.4, DPDK 22.11

located has a strict power budget; hence, over-dimensioning
the server specifications is not a feasible solution. Along the
scaling-up KPI, we also aim to identify the bare minimum
resource requirements of the functionalities.

B. Integration Readout Unit Specification

We integrated and tested the readout data reception block
on a pair of x86-architecture-based mid-range performance
servers including Intel and advanced micro devices (AMD)
processors. The configurations of these servers are shown in
Tables III and IV.
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For the tests and results presented, a baseline resource
allocation strategy is used, where a single CPU socket and its
interconnects handle all the readout requirements for a single
100-Gb/s input data stream. This is also called a symmetric
topology. Asymmetric topology is referred to when different
sockets are responsible for certain functionalities: a single
socket for data reception and buffering, another socket for
data processing, and the continuous persistence of data on
high-speed storage. Certain architectures (e.g., AMD Zen3) are
latency optimized for dedicated I/O performance of devices
on a single PCle root complex, for which the asymmetric
topology is expected to be a more efficient configuration. The
baseline topology suits other CPU architectures with features
like direct cache access (DCA) [12] that enables the NIC to
load and store data directly on the processor’s last level cache
(LLC), as conventional DMA may result in latency bottlenecks
between the NIC and CPU. One commercial implementation
of DCA is Intel’s data direct I/O [13], which showed clear and
substantial benefits for the analyzed workflow.

C. Hardware Locality and Tuning

Based on the previous experience with high-speed 1/0O
devices, the servers are configured in performance-oriented
mode. For basic input/output system (BIOS) settings, recom-
mendations based on the DPDK performance benchmarks [14]
and vendor-specific tuning guides are used. System-wide
power and performance profiles are set to performance mode
but deep and standard sleep states (P/C-states) are operating-
system-driven instead of BIOS-specified control. Simultaneous
multithreading features (e.g., hyper-threading) are enabled as
some readout workloads may benefit from this feature for CPU
pipeline utilization and reduced context-switching.

In the operating system, low-latency networking tuning
profiles for the data request and response low throughput paths
are enabled. Power-gated sleep states are disabled, and perfor-
mance governor and bias are set to the lowest latency mode
on the CPU cores executing readout functionalities. Kernel
command line parameters ensure to reduce scheduling-clock
interrupts and read-copy-update (RCU) callbacks on the data
reception sensitive cores. Kernel isolation techniques are also
in place to eliminate any possible kernel interrupts from
critical resources. Although the DAQ is not using a real-time
operating system, acceptable and deterministic latency can be
achieved with careful resource access and allocation policies
for the readout subsystem’s quasi-real-time elements.

The high-speed NICs and NVMe drives are connected to
dedicated PCle root complexes without sharing bus resources
with other devices. These are also mapped to the closest
NUMA node and LLC domains, identifying a set of CPU cores
to be assigned to certain functionalities.

D. Monitoring and Profiling Tools

Standard Linux observability tools are used to gather a
high-level overview on the resource utilization of certain
components. On top of these, also in-depth processor (e.g.,
instructions/s and cache misses) and memory (e.g., chan-
nel utilization) counters are collected with vendor-specific
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monitoring tools like the Intel performance counter monitor
(PCM) [15]. These are interfaced with the DAQ’s operational
monitoring infrastructure and host-specific metrics are stored,
can be visualized on monitoring dashboards, and can be
extracted to produce performance reports. The data reception
module also publishes the NIC hardware counters provided by
the DPDK extended statistics API. Application hotspots and
microarchitecture pipeline utilization are profiled with the Intel
VTune [16] and AMD uProf [17] tools to carry out analysis,
finding problematic parts in the code, and to devise mitigation
strategies.

E. Application Optimizations

EAL’s runtime environment has strict requirements on hard-
ware locality and requested resources on the system. Memory
huge pages are allocated on the used NIC’s NUMA node
and the closest CPU cores to process the DMA buffers
are assigned. The latency buffer implementation supports
multiple memory allocation policies, and for fixed size and
rate payloads, we use the numactl library provided NUMA
aware cache aligned allocator. This makes it possible to
have control on buffer placement on desired nodes and take
advantage of sub-NUMA clustering on L3 domain features
of certain server configurations. Every readout process has
command line arguments with their name and its data recep-
tion and the processing pipeline threads have unique identifiers
assigned. After launching the readout process, the parent and
internal threads are visible for a custom interrupt balance
modifier that modifies the CPU affinity of each proportional—
integral-differential (PID) based on pinning configuration.
This approach makes runtime tuning and relocation of threads
and also the possibility to introduce kernel-controlled resource
mapping via control groups (CGroups) [18].

Using callbacks for data exchange between DAQ modules,
the payloads are directly written into the latency buffers.
Based on the results from standalone test applications, the
observed improvement is substantial in terms of reduced
memory copies and CPU processing compared to the use
of intermediate buffering. The callback feature excludes the
RX threads that come with CPU cycles spent in polling the
buffers and copying every frame one more time. This leads
to nonnegligible freed-up resources on previous-generation
readout servers. On a dual-socket Intel' Xeon' Gold 5118
(Skylake) readout unit using callback mode freed up 12 virtual
cores, each at ~60% utilization. Memory bandwidth utilization
is also decreased with ~10 GB/s due to the eliminated extra
data copies. This feature became the default communication
model between the data RX and handler modules and made
it possible to use servers with limited resources for detector
readout.

F. NIC Configuration Optimizations

Purely using system tuning and adding the callback fea-
ture still resulted in packets occasionally being missed and
dropped. During the investigation of the underlying issue,
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Fig. 4. With the optimized NIC hardware and packet processing loop
configuration, the occurrences of receive bursts resulting with maximum
packet counts are reduced. The plot shows the number of packets in each
burst call from four interfaces’ 40 RX queues. The lack of occurrences of
configured maximum bursts (2048 packets) indicates that the combination
of previously described host, NIC, and application optimizations results in
deterministic data reception performance.

the parameters for NIC’s hardware resources and the DMA
processor function’s configuration were modified. Monitoring
metrics of the data RX module indicated that the interface
polling function’s rxBurst method (Section I'V-C) results with
the maximum configured number of packets per burst at high
frequency. Due to our traffic characteristics, the main goal is
to poll as many packets as we can in one burst, but without
saturating the used resources. We optimized the following
configuration parameters.

1) RX Burst Size: We increased the maximum number of
packets and descriptors to poll for DMA from a previ-
ously set couple hundred to a couple thousand.

2) Opportunistic Sleep: We decreased the sleep duration
to 10 s that increases the polling frequency with the
tradeoff of higher CPU utilization in the case of rare
occurrences of empty bursts.

3) DMA Buffer: Increased the number of DPDK buffer
segments (mbuf) to be allocated that essentially made the
DMA buffer depth deeper.

4) RX Descriptors: The number of used hardware descrip-
tors was changed to available hardware limits.

The packet processing (Section IV-C) loop’s polling behav-
ior can be fine-tuned via these parameters in order to avoid
packet loss (dropped and missed packets). The optimized con-
figuration increases the number of used hardware descriptors,
allocates more DMA buffer segments, and raises the burst’s
maximum size. As shown in Fig. 4, the burst calls are more
efficient with the new configuration.

VI. RESULTS

The combination of hardware configuration and optimiza-
tions described in Section V allowed for the elimination of the
occurrences of missed and dropped packets. The operational
monitoring apparatus shows the accumulated error statistics
during data taking of the ProtoDUNE (four APAs) detector at
CERN. Several hours of error-less running indicate that there
are no performance issues and that the optimization and tuning
stages are beneficial. In this section, the resource utilization of
the readout systems components is described, using different
types of readout servers.
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TABLE V
CHARACTERISTICS OF THE SCALE-UP DEMONSTRATOR SERVER

Component Specification
Baseboard  Supermicro® X13DEM
Intel® Xeon® Gold 6448H @ 2.40 GHz (4.10 GHz turbo),
32-core 2S (dual socket) Code name: Sapphire Rapid
CPU 3MiB L1d, 2MiB L1i
128 MiB L2
120MiB L3
DRAM DDRS5 1.0 TB, 4300 MT/s
NIC 2 x Intel E810-CQDA2 (1 per socket)
Drives 6 x 7.68 TB U.3 NVMe drives
Samsung 980 Pro (3 per socket)
OS, DPDK  Alma Linux 9.3, Linux kernel 5.4, DPDK 22.11

TABLE VI

OVERVIEW OF COMPONENTS AND THEIR RESOURCE
NEEDS FOR TwWo CRPs
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A. Integration Results

For handling 100-Gb input with a single application, its
processing threads and buffers are assigned to certain CPU
groups and NUMA nodes. During the integration of these
components, the utilization of certain system resources was
measured and their assignments were fine-tuned for each
server.

1) Data Reception Resources: The data reception has
~10-GB/s memory throughput with two—four physical cores
needed to process the DMA buffers. CPU utilization varies
based on the number of cores, frequency, and LLC size. The
DMA buffer size in memory huge pages is 10 GB.

2) TPG Resources: The most CPU intensive component’s
resource utilization heavily depends on the used algorithm and
produced TP rate. The assigned CPU core count varies based
on the CPU model due to the available AVX engines, clock
frequency, and cache line sizes. Using ten cores (five physical
and their hyper-core pairs) of the integration servers, the
utilization per core is ~60%, running the simpler algorithm.

3) SNB Recording Resources: The recording threads are
assigned to four cores, each at 100% utilization when the
recording is active. It requires only 10-GB/s memory band-
width, which is achieved using direct I/O from the latency
buffers into the NVMe drives.

B. Scale-Up Demonstration

As a subsequent step, the network I/O capacity on a
readout server was doubled, with the aim of running two
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Fig. 5. Overall resource utilization on the scale-up demonstrator server’s two
CPU sockets. The first two plots show the CPU utilization per socket. The
following two plots show the memory bandwidth utilization per socket. Data
are received from the two detector components (~200 Gb/s) and buffered
for 10 s on their corresponding NUMA node. TPG finds the hits in the
data frames, forms, and sends aggregated sets downstream. The peaks in the
plots are highlighting the activation of the SNB recording, which continuously
persists the full data stream to the NVMe drives.

readout applications, one per socket, each handling one charge
readout plane (CRP) detector component. Table V shows the
characteristics of the readout server.

The number of components and their threads with the CPU
mask and resource utilization footprint to handle two CRP
detector elements, is summarized in Table VI.

The last column indicates the maximum CPU utilization
percentage of the assigned CPU cores during the test. The
latency buffers’ capacity is configured to preallocate memory
for ~10 s worth of data, which is ~196 GB in total.

The system-wide resource utilization of CPU and mem-
ory bandwidth are shown in Fig. 5. It shows how the
symmetric topology results in an equal balancing between the
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two sockets: this is expected since each socket has an identical
workload. On each socket, the overall readout workload uses
~19% of CPU resources and ~37-GB/s memory bandwidth.
When the SNB recording is enabled for over 100 s, the
CPU utilization peaks at ~32%, and the memory bandwidth
utilization increases with the expected 10 GB/s, resulting in
~47 GB/s.

C. Future Work

There are several remaining tests and configurations that are
under evaluation in order to establish the optimal readout sub-
system implementation for the DUNE experiment, considering
many factors such as power efficiency, flexibility, modularity
for fault tolerance, and cost.

1) Scale-Up to 400 Gb/s: The tests with the demonstrator
server showed that there is considerable headroom available in
terms of processing capabilities. Therefore, reading out four
detector components with a single readout unit is being consid-
ered. This requires two 200-Gb/s capable network interfaces in
order to demonstrate the data reception and TPG of 400-Gb/s
input data streams with a single server.

2) Bare Minimum Requirements: The readout servers will
be located in a deep underground facility with a strict power
budget; therefore, it is important to find the right balance
between available resources and their power requirements.
Power draw measurements are ongoing in order to find the
optimal CPU and memory requirements and the right concen-
tration strategy for how many detector components will be
read out by a single readout unit.

3) Asymmetric Topology: The integration with an AMD
server highlighted that scaling up the system for this platform
requires allocating readout components differently due to
specific hardware features and constraints. Work is ongoing to
compare the resource utilization behavior of different place-
ment strategies and to decide on the proposed topology.

VII. CONCLUSION

The Ethernet readout is successfully integrated into the
DUNE DAQ system and is used in standard operations for
the ProtoDUNE detector prototypes at the Neutrino Platform
at CERN. The full readout feature set and requirements were
validated and demonstrated using multiple generations of CPU
servers.

The introduction of Ethernet as the detector readout tech-
nology allowed us to focus efforts on software and tuning
of servers and NICs, instead of custom hardware and proto-
cols development and testing. Thanks to the overall readout
subsystem optimization, it was possible to demonstrate that
~5-year-old servers are capable of successfully implementing
the full readout functionality for one detector unit (100 Gb/s)
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and that a more recent server can be used to readout two
detector units (200 Gb/s).

Scalability studies and further performance evaluation with
different hardware components and topologies are ongoing in
order to finalize the readout units’ technical specifications in
order to launch the DAQ procurement for the first far detector
next year.
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