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Processes of transformation of two particles into
three or four particles in the high energy region are
examined in the pole approximation. In the energy
range in which the total elastic scattering cross
section is independent of energy, the cross section
for the transformation of two particles into three
does not decrease with increasing energy. The cross
section for the transformation of two particles into
four exhibits a logarithmic growth with energy.
This result indicates that at very high energies the
elastic scattering cross section tends to zero.

1. Data available at present on the collision of
high energy particles make plausible the assumption
that with growing energy the total effective cross
section approaches a constant limit. This limit
(which is of the order of 1/u?, where 1/ is the n-meson
Compton wave length) is reached at energies of the
order of several BeV. Along with the total cross
section the elastic diffraction scattering cross section
also approaches a constant limit. As far as various
inelastic processes are concerned (production of
showers with a given number of particles) it seems
natural to assume that the cross section for each of
them should approach zero with growing energy
since the possible number of produced particles
should increase infinitely with increasing energy, and
the constant total cross section should be divided
among an ever-growing number of competing pro-
Ccesses.

It may be, however, that this simple picture is not
correct. We shall give some approximate calculations
of the effective cross sections for inelastic processes.
These calculations lead to a very different asymptotic
behavior of the inelastic cross sections. The approxi-
mations we make cannot be motivated rigorously

and hence the results may not be fully convincing.
Nevertheless, they show that at high energies a much
more complex situation may exist.

2. Consider the transformation of two particles
into three, p,+q,>p,+q,+K, for example, the
formation of a m-meson in the collision between a
meson and nucleon or nucleon and nucleon. The
amplitude for this process, 4, can be written in the
following form

_ 1 ,
A= g“(Pz)Vs“(Pi)mA1 +4 (D

(t=(p;—p2)°)

Here the first term is a pole term corresponding to the
diagram in Fig. 1, 4’ is the remaining part of the
amplitude, g is the nucleon—n-meson coupling
constant, and A, is the scattering amplitude of the
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Fig. 1 Feynman diagram for single meson production.
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n-meson by particle ¢, (or by a z-meson or nucleon).
We shall calculate the cross section for the process
under consideration in the case of small momentum
transfers (of the order of u) and retain only the pole
term 1,

It seems natural to assume that since A’ is deter-
mined by the singularities at #>4u® the neglected
terms cannot fully compensate for the contribution
of the pole term to the cross section. Thus at small
values of ¢ the contribution of the pole term should
yield a correct order of magnitude of the cross section.
A more strict approach to this problem could consist
in investigating the amplitude of the process at large
values of the orbital angular momentum />p/u
(where p is the momentum of the incident particles
in the c.m.s.). In such cases the dominating inter-
action would seem to be associated with the exchange
of one meson (which corresponds to the pole term).
In other words partial cross sections with large values
of / will be determined only by the pole diagram con-
sidered by us ?. It should be stressed that the partial
cross sections thus obtained can be expressed in terms
of the real elastic scattering cross sections determined
by amplitude A,, and are essentially positive quanti-
ties. If one takes the sum of the partial cross sections
from /~p/u to [—>oo, one finds that the part of the
cross section thus obtained is of the same order of
magnitude as that obtained by calculating the cross
section only with the aid of the pole term of the
amplitude, and integrating over ¢ up to ~ —p?.
It may be noted that our analysis is not identical with
the Chew and Low “pole” approach . The pole
analysis literally yields a negative value for the cross
section and is connected with extrapolation of the
cross section to the non-physical region = u’.
We, on the other hand, do not leave the physical
region t <0. However, since we depart from the mass
shell of the virtual meson by <2u? and the mass
singularities in the meson Green’s functions are located
at values exceeding 942, it appears that the neglected
terms will not affect the order of magnitude of the
effect.

Retaining only the first term in (1), we arrive at the
following expression for the differential cross section

_fz 2M? [s7—2(m*+ pP)s, +(m* — )]

@ s*—2AM? + m?)s+(M? —m?)? 0y(sy)ds,

T p?

)

where
g2 M 2
S=(P1+Q1)2,S1 =(‘12+k2)2, f2=E(5A—4> =008

M is the nucleon mass, u the n-meson mass and o
the cross section for elastic scattering of the meson
on particle q,(q} = m?).

Small momentum transfer |t]<u® is possible at
high colliding particle energies (s>M?) if s, lies
in the interval

2
U
M2<S1<SW. (3)

Indeed, r can be expressed through s, s, and the
angle 0 between p, and p, in the c.m. system :

t:m2+sl—2 -1—s+l(sl—Mz)-i"l—(Sl—MZ)2 i X
4 2 4s

1 1 1 +
xLZS—*_E(MZ_M2)+Z;(mZ_MZ)Z:| +2cosf x

1 1 o | o |
X|=s—=(s;+M )+4—(s1—M) X
s

4 2
X _—l‘s—l(Mz+ml)+i(M2—mz)2 ' 4)
4 2 4s

For s>M? the condition of smallness of ¢
(Itl<pu?) can be fulfilled only for s,<s. If,
moreover, §;>M? the foregoing expression for ¢
assumes, after expansion into a series, the following
form

s¢ 1

= —MZ'S— — 2502 (5)

from which (3) can be obtained. Formula (3) defines
the region in which our pole approximation can be
assumed valid.

If s, M? the differential cross section (2) can
be written in the form

fr2M? sqds
do == 701(s) T (6)

Assuming o, constant and integrating over the region
defined by inequality (3) we obtain the cross section
of the process under consideration
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fZ ,LLZ
U=;W”1 . (7

A similar result was obtained by Chew and Low
but their coefficient was larger than that in (5) by
a factor (M?/u?)®. This is due to the fact that they
integrated over s, to values ~s which corresponds
to momentum transfers |f/~M?>. In our opinion
this extension of the region is in need of additional
support since the rejected (non-polar) terms in the
amplitude may play a big role.

We thus see that although numerically the cross
section for shower production is not large, it does
not diminish with growth of the energy and comprises
a finite fraction of the elastic scattering cross section.

3. We shall now consider the energy spectrum of
the produced 7n-meson and its angular distribution.
To do this we note that the process n+n—>n+n+n
has been reduced by us to elastic n-meson-nucleon
scattering. A characteristic feature of elastic scatter-
ing at high energies of the n-N system is that most
of the elastic scattering events involve small scattering
angles to which there correspond momentum transfers

= (¢, —¢,)* of the order or smaller than p?:

11 =g —g)I* <1
On the other hand when Eq. (2) is integrated over s,
large values of s, are especially important.

We shall now ascertain the consequences to which
the conditions
(g, —92)°1S1%5 51 = (g2 + Ky)*>m? (8)
lead. In the laboratory system in which p; = 0 we
have

t'=2m*—=2q,q, = 2m*—2EE,—q, q,) &

1712
=,

—E
EE, )=

3EE, 9)

In deducing this relation the angle 0,, between g,
and q, was considered small, since otherwise the
condition of smallness of " would be violated.

From (8) and (9) it follows that

m*(E; —E,)’
02,E,E, S 12 (B Fa) <. (10)
E\E,

Due to the smallness of the recoil nucleon energy
(|t|~u?), E,—E, is practically equal to the energy
of the produced n-meson (w,).

The second inequality in (10) therefore goes over to
the following

2.2

m-w

——— < (11

E\(E;—w,)

In effect this means that w, is restricted by the

following upper limit :

u
U)Z < ""El
m

(this result is also apparent from (3) ).

Let us now consider the second condition in (8),

sy = mP+ P +2q,K, = m* + p? + 2(E,0, — q,Ky) >m?
(12)

In view of the inequality || = |(p,—p,)*|Su’ one
finds that in the laboratory system |p*|<u (since

(P1o— pzo) <<2N> <u, ). This is the momentum

of the intermediate meson. Thus the transverse
momentum of the “incident” intermediate meson
is of the order or less than u. By virtue of the
properties of elastic scattering the transverse momen-
tum of the “scattered,” that is, the produced meson,
K, should be of the same order of magnitude (for
details see below). Thus the K, meson practically
moves in the direction of ¢, if its energy is great
compared with p. Taking this into account we get

sy & p+m? +2|:E2cu2 ~VE:—mWwi-

1 , E
X <1 —50,2(2‘12)] ~m+ ,uzv—1+ Ezwz()f(m .

,

Here O,,, is the angle between K, and g,. Intro-
ducing the two-dimensional angles 0,,, and 0,

9.9, = l‘h”‘]zl(l—%ofz); K,q, = |K2|‘|‘I1|(1_%912<2q1)

we see that due to the first inequality in (10)

0,5 -M—zi , Whereas 0, , |K,|, being the trans-
JEE, E,
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verse momentum of the produced meson, satisfies
the condition |K,|0y,,, <. The angle 6, can be
determined through angles in the usual fashion

Qquz = QK2q1+_0.12 .

Returning to (10), we rewrite it as follows

E ,
5y R mz+u26—oi+E1w2<9ém, +0?2,4205,,,012)
2

M H H
()KZQIS — ; 0125_ ; (’.)2<'-E1 .
W, E, m

(12a)

The only possibility for s to be large is that w, < E,
since the largest contribution from terms containing

2
E S
the angles ismade by Ew,0%,,, 5’—1———1 , Which in order
W,
of magnitude is the same as the term u*E,/w,. Thus

we have s;~u’E,/w,. From here and also from
formula (4) we obtain the energy distribution of the
produced 7n-mesons in the region of a constant cross
section o,(s;) = const.:

- dw,y ‘
51({§1~'—— (13)
w

3
2
Summing up we arrive at the following conclusions
concerning the part of the process under consideration
n+n—>n+n+mn: -

1. The transverse momenta of all particles at the
end of the process are of the order of y.

2. The energy of the produced n-meson is small
compared with that of the incident particle. The
energy distribution is given by the formula (13).

It is evident that these properties do not depend on
the nature of the incident particle and in equal degree
refer to the processes n--n—>n-+n4n, K+n—>K-+-n-n,
Y4-n—>Y+n+n.

In principle, a possible way for an experimental
investigation of the foregoing processes would consist
in singling out those cases in which the energy and
angular distribution of the produced particles corre-
spond to elastic scattering of the incident particle
by a particle possessing a mass of the order of the
7-meson mass.

4. Consider now the transformation of two par-
ticles into four p,+¢,—p,+K,+g,+K,. Under the
same assumptions as those made above in our analysis

Fig. 2 Feynman diagram for double meson production.

of the transformation of two particles into three,
we can single out a certain part of the cross section
which is determired by the pole term of the amplitude.
There are two types of “pole” processes. First,
there is the “ single-jet ” process depicted in the dia-
gram in Fig. 2. The upper block in this diagram is
determined by the amplitude for inelastic transfor-
mation of two particles into three. Secondly, there
is the “ two-jet ” process represented by the diagram

in Fig. 3. In the pole approximation the amplitude
of the two-jet process has the following form
A A
A=, (14)
t—u

q;

=

K,

Kz |
- p
A

Fig. 3 Feynman diagram for double meson production.



Strong Interactions of Pions and Nucleons (Theoretical) 337

where A, and A4, are amplitudes for the corresponding
elastic scattering processes. If ¢ = (p;—p,—K,)*
is small (]f| <p*), we may consider, as above, that the
cross section is defined by amplitude (14). We thus
obtain the following expression for the differential
cross section of the process

_ [sT—2(m* + ®)s;y +(m* = 1®)*]*
16n° s> —2(M>+m*)s+(M*—m?)?

x [53=2M? + 1%)s, +(M? = 1)* TF x

X 01('51)02(sz)ds1d52J‘ , (15)

dt
(t—p?)?
where s, = (q,-+K)* and s, = (p,+K,)>. As be-
fore, we may extend the integration over ¢ to the region

|t|<p®. In this case the values of s, and s, must
be restricted to the region

sy, <p’s . (16)

Formula (16) can also be easily deduced in the same
way as was (3). To do this it is sufficient when
calculating ¢ to replace p, by p,-+K| ; that is, to replace
M? by s, in formulas (4) and (5). For s, »m, and
s,>M? expression (15) assumes the form

$18,ds,ds,

1 1
do = 1—67—_6-5‘;301(51)02(52)—‘_5'2_ . (17

Consider now the angular and energy distribution
of the produced particles. We shall characterize
our process by the following invariants ;

s = (K +q,)
s, = (K, +py)*

ty =(q;—92)"%;
t,=(p;—p2)*;
= (Q1*(12“K1)2-

Due to the properties of the matrix elements
A4, and A4, we have

lt1l<# Itzl<ﬂ

The condition |t,|<u® yields (in the co-ordinate
system in which p, = 0):

[t,] = 2171172_21\/12 =

(TR MY AR, Il <. (18)

For ¢, we obtain an expression similar to (9) :
z(El —E )2
152

E,—E,)’ o, +w,)'m’ L
(Ei—Ey) m- (@ 2) 5u2;w1+w2<LE1.
E\E, E(E -0, —w,) m

[t~m +EE,0, S’ E\Ey0) S’

(19)

We see that E, is close to E; and therefore (18)
gives for the transverse momentum q,,(q,, is per-
pendicular to gq,) the following estimate

3 REO LS (20)

The pole approximation we are using imposes the
following restriction on ¢

< p’.
Introducing the vector R = K,+g¢,, R*=35, we
obtain
t=(q;—R)* =m*+s5,—2qR = m*+s,—2E,Ry+
+24R = 82~ (VET-m —E{ =)’ -
~[$(E, E)—$(E;, Ro)] 21
where

=\/E%‘—n'12[\/Ré—S1—\/Ré_S1
$(E,,Ro) = N E2—m>Ra—s, —ER, .

The derivative of ¢ with respect to R, is

R2]>0,

0 3 RO\/Ef —m?

T —E, >0,
aRO \/R(Z)—Sl
since s;>m and R,<E;.
Thus for Ry<E,, ¢(E,,E,) is greater than
¢(E;, Ry). The signs of all three terms in (21) are

therefore the same. From the condition |¢|Su® we
can determine the restriction on 4% and therefore also
on R, :

A gp®; RE<p?; Ky +qp,Su. (22)

Together with (19) this gives

IKI_LINU)GKﬂ“snu . (23)
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The virtual meson K; thus possesses a transverse
momentum of the order of u. Finally, it follows
(on basis of (18) and (22)) that the transverse mo-
mentum of the K, meson is also of the order of u:

Kzl = COZQKZ,“ SIJ . (24)

Formulas (20), (23) and (24) give the effective
angular region in which the particles are emitted.
The transverse momentum of each particle is of the
order of u. All particles (except the recoil nucleon
p,) move at small angles with respect to the incident
particles. The energy distribution of the produced
K, and K, mesons, integrated over their angles, is
determined by s, and s, (6, and o, being constant) :

Sy8,dsds, (25)
The relation between s, and the frequency w, is
52 = (P +Kp)" = M*+ "+ 2E,0, — K, .

Since according to (18) |p,|<u<E,~m, this reduces
to the simple form :

s,~2Mw,

(providing s, M?). In analogy with (12a), s, =
(K,+q,)? can be expressed as
WE, s

sl N e N

w, 2mo,

The condition s,s, <u’s yields w, <.
On basis of (25) we obtain the energy distribution
of the produced mesons :
do,

a)zda)z——T
(T

u
U<w,<w; ; p<w;<—E,
m

(the latter condition is a consequence of (16) ).

In calculating (17) we did not take into account the
exchange (with respect to Fig. 3) diagram in which the
places of meson lines K; and K, are interchanged.
The results obtained above show that one may neglect
the interference terms which are due to the presence
of pole terms corresponding to the diagram in Fig.
3 and the corresponding pole terms in the diagram
where K, and K, are interchanged.

Indeed, the quantities s, and s, (which are of the
order u*E,/w; and 2mw,) enter amplitude A, which
corresponds to the diagram in Fig. 3. Correspond-
ingly s, and s, (which are of the order u’E,/w,
and 2maw,) enter the amplitude A corresponding to
the exchange diagram. At high energies each elastic
scattering matrix element entering A and A is pro-
portional to its parameter s, (the amplitude for elastic
scattering of 7-mesons on nucleons has the form
s, f(t,) and respectively s, f(¢,) in the most important
diffraction region with ¢ = const.). Therefore 4 is
proportional to 5,5, ~®,/w,; and A) is proportional
to §,5,~m,/w,. Since w,#m,, neglection of the

interference terms cannot change the order of magni-

tude of the cross section.

By integrating (17) over region (16), assuming o,
and o, constant, we obtain for the cross section

« s
g = Et—su 0,0, an , (26)

where « and f are coefficients of the order of unity
which appear as a result of uncertainty in the upper
limit of region (16).

Formula (26) illustrates the internal inconsistency
of the conception that at high energies the total and
elastic cross sections are constant. The assumption
of a constant elastic scattering cross section and
constant total cross section has led to a logarithmic
growth of the cross section for production of two
mesons. The conclusions that the assumption re-
garding the constancy of the elastic scattering cross
section is untenable has independently been drawn
by V. N. Gribov * in a different manner.

5. 1In a similar way a rough treatment can be made
of arbitrary multiple production of particles. The
amplitudes of such processes contain pole diagrams
of the type shown in Fig. 4, in which an arbitrary
number of particles are projected from each vertex.
The amplitude

in which 4, and 4, are the amplitudes for inelastic
processes occurring in the collision between the inter-
mediate meson and particles ¢, and p, corresponds
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q,

P

Fig. 4 Feynman diagram for multi-meson production.

to the diagram in Fig. 4. Summing the cross sections
corresponding to various inelastic processes we
obtain the expression

p ‘ , ds,ds,
o(s)~0(s1)a(s3)s,5, 2 7)

where o is the total cross section. The same internal
contradiction as that in (17) is inherent in formula
(27). Integration performed under the assumption
that the cross section is constant leads to proportionality
of the cross section to Ins. It should be noted
however, that formula (27) cannot be regarded as
being as definitely established as (17), since besides
the diagrams in Fig. 4 a large number of exchange
diagrams must be taken into account, and it is difficult
to assess the corresponding interference terms and
calculate the coefficient in formula (27). An analysis
of “ multi-jet ” processes of the type depicted in Fig.
5 lead to similar inconsistencies, o~ (Ins)", where
N is the number of “jets.”

If one rejects the assumption that the cross section
is constant, one can regard (17) and (27) as integral
equations which the cross sections ¢(s) must obey.
They are satisfied if the cross section decreases with
increasing energy. A very slow decrease (only
somewhat faster than (Ins)~!) should be sufficient.
V. N. Gribov arrived at the same conclusion ¥. It
may be mentioned that the showers which arise under

these conditions possess a specific distribution in

s; and s,; most of them have a mass (\/sI or \/5—2)
which is always small and independent of s whereas
the other mass is of the order of s. This type of
distribution is very different from that predicted by the

Fermi-Landau statistical-thermodynamic theory in
which each mass is (on the average) proportional to
1
5.

6. It is not exactly clear just what conclusions
should be drawn from the results presented above.
Possibly they merely signify that the approximation
made by us is not valid, i.e., we have been wrong in
retaining the pole term neglecting the others. How-
ever, at present we do not see any reasons for believing
this to be true. On the other hand if our approxi-
mation is reasonable and it may be considered that
nuclear interactions at distances exceeding 1/u ex-
ponentially decrease at high energies as well, we are
forced to accept the conclusion that the total and
elastic cross sections tend to zero with infinite growth
of the energy.

Experimental data available at present seem to
indicate that the cross sections are constant within
a broad energy interval. This result however does
not contradict the conclusion that the cross sections
decrease asymptotically. The point here is that the
expressions (7) obtained by us contain a small numeri-
cal factor. Therefore it may be possible that the
effects connected with the processes considered above
become noticeable only at ultra-high energies. As
mentioned above we were unable to determine the
coefficient in (27). The authors must admit that they
are surprised at the fact that purely numerical co-
efficients can lead to the appearance of new asymp-
totic regions. In order to understand the physics

>

=
A

P,

Fig. 5 Feynman diagram for multi-meson production.
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of the drop of the cross sections at high energies it
would be extremely desirable to visualize (e.g. by
diagrams) the mechanism responsible for this phenom-
enon, provided, of course, that it exists in reality.

In conclusion we wish to express our appreciation
to V. N. Gribov, L. D. Landau, L. B. Okun and I. M.
Shmushkevich for interesting discussions connected
with this work.
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ON THE ASYMPTOTIC BEHAVIOR OF SCATTERING AMPLITUDES AT
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The asymptotic behavior of scattering amplitudes
is investigated at high energies. It is shown that at
high energies the usual diffraction pattern of scattering
contradicts unitarity conditions and analytic properties
of the scattering amplitude formulated with the help
of Mandelstam’s representations. The most natural
behavior in terms of these conditions is a decrease
of the cross section faster than (In E)™ .

1. INTRODUCTION

Asymptotic behavior of scattering amplitudes
in quantum field theory has been investigated in a
number of works '**, In all cases, however, only
very weak restrictions on possible asymptotic be-
havior have been obtained. At present, mainly
owing to Mandelstam’s work ¥, in studying asymp-
totic behavior it has become possible to make a

more extensive use of the dispersion relations for the
momentum transfer, and of wunitarity conditions.
Since we can, so far, operate only with two-body
states under unitarity conditions, evidently we cannot
expect a complete solution of the problem. Never-
theless, some limited information can be obtained
as will be shown below.

The description of elastic scattering at high energies
is based on the so-called diffraction picture. Accord-
ing to this picture, particles with an impact param-
eter p smaller than a certain R (of the order of 1/u;
uis the meson mass) strongly interact with the scatterer
and are emitted from the elastic channel, while particles
with an essentially larger impact parameter would not
be scattered. This results in a diffractional scattering
which is characterized by two main features : the total
cross-section (or) and the differential cross section
of the elastic scattering in a unit interval of the square
of the momentum transfer do/dt are energy-independent
(—t is the square of the momentum transfer).



