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Abstract

Heavy flavor hadrons serve as valuable probes of the transport properties of the
quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. In this dis-
sertation, we introduce a comprehensive framework that describes the full-time evo-
lution of heavy flavor in heavy-ion collisions, including its initial production, in-
medium evolution inside the QGP matter, hadronization process from heavy quarks
to their respective mesonic bound states and the subsequent interactions between
heavy mesons and the hadron gas.

The in-medium energy loss of heavy quarks is studied within the framework of
a Langevin equation coupled to hydrodynamic models that simulate the space-time
evolution of the hot and dense QGP matter. We improve the classical Langevin
approach such that, apart from quasi-elastic scatterings between heavy quarks and
the medium background, radiative energy loss is incorporated as well by treating
gluon radiation as a recoil force term. The subsequent hadronization of emitted
heavy quarks is simulated via a hybrid fragmentation plus recombination model.
The propagation of produced heavy mesons in the hadronic phase is described using
the ultra-relativistic quantum molecular dynamics (UrQMD) model. Our calculation
shows that while collisional energy loss dominates the heavy quark motion inside
the QGP in the low transverse momentum (pr) regime, contributions from gluon
radiation are found to be significant at high pr. The recombination mechanism

is important for the heavy flavor meson production at intermediate energies. The
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hadronic final state interactions further enhance the suppression and the collective
flow of heavy mesons we observe. Within our newly developed framework, we present
numerical results for the nuclear modification and the elliptic low of D mesons, which
are consistent with measurements at both the CERN Large Hadron Collider (LHC)
and the BNL Relativistic Heavy-Ion Collider (RHIC); predictions for B mesons are
also provided.

In addition, various transport properties of heavy quarks are investigated within
our numerical framework, such as the thermalization process of heavy quarks inside
the QGP, and how the initial configuration of the QGP as well as its properties
affect the final state spectra and the elliptic flow of heavy mesons and their decay
electrons. The effects of initial state fluctuations in heavy-ion collisions are also
studied and found to enhance the heavy quark energy loss in a (2+1)-dimensional
boost invariant scenario. Furthermore, a new set of observables — heavy-flavor-tagged
angular correlation functions — are explored and found to be potential candidates for

distinguishing different energy loss mechanisms of heavy quarks inside the QGP.
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1

Introduction

Probably ever since the birth of mankind, people have been wondering who we are,
where we are from and what the universe is composed of. It seems that we choose to
believe the world is made of several simple elements despite its complicated outlook.
Around the eighth century B.C., ancient oriental sages believed that the world is
composed of five elements — gold, wood, water, fire and earth. About three hun-
dred years later, the Greek philosophers Leucippus and Democritus proposed a more
refined concept named “atoms” which are solid, homogeneous, indivisible, and un-
changeable fundamental elements making up all the matter.

With the development of the modern science, nowadays it has been accepted
that there exist 25 species of elementary particles: 6 quarks and 6 leptons that act
as bricks of macroscopic matter; 12 bosons — photon, W+, W=, Z% and 8 different bi-
colored gluons — that mediate the electroweak and strong forces between the bricks;
and the most recently confirmed Higgs boson that is responsible for the generation of
masses of all these elementary particles [1, 2, 3]. Meanwhile, the interactions between
these elements are categorized into three fundamental forces: the electromagnetic

force which satisfies U(1) symmetry and is described by Quantum Electromagnetic

1



Dynamics (QED), the weak force which satisfies SU(2) symmetry and can be unified
with QED under U(1) x SU(2) symmetry — its spontaneous breaking plus the Higgs
mechanism produce mass and yield the electroweak theory, and the strong force which
satisfies SU(3) symmetry and is described by Quantum Chromodynamics (QCD).
This is the general picture of the “standard model” of particle physics today. Note
that the strong force has not been successfully unified with the other two and gravity
has not been included at the moment.

While QED has been very well studied and provided predictions that lead to an
extremely precise (a precision of 10™%) measurement of the fine structure constant
Qem based on the anomalous magnetic dipole moment, QCD on the other hand, is
much more complicated and the related calculations still remain largely unknown
especially in the low energy region. In this dissertation, we would like to explore
the properties of a particular type of QCD system that is extremely hot and dense
and may exist in our early universe microseconds after the Big Bang. To investigate
such nuclear matter on earth, we collide beams of ultrarelativistic heavy nuclei and
observe the produced particles. In particular, we will utilize heavy quarks (charm
and bottom quarks) to probe the properties of this QCD system and gain insights
on both the mechanisms of the strong interaction and the evolution history of our

infant universe.

1.1 Nuclear Matter under Extreme Conditions

1.1.1 The QCD Phase Diagram

QCD is an exact theory that governs the interactions between color charges (quarks
and gluons) via the strong force. The two crucial properties of QCD are quark con-
finement and asymptotic freedom. Each quark carries a color, and quark confinement

dictates that only color neutral particles can exist in vacuum, i.e., there is no free
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FIGURE 1.1: Measurements of the strong coupling constant «; as a function of the
energy scale (). This figure is taken from Ref. [4].

quark. As shown by Eq.(1.1), to leading order in perturbative QCD (pQCD),

_g(k)?* A E2\ 1
k) == = TN, /3 (mﬁ) ’ (1.1)

the coupling strength of QCD is large at small scale of momentum transfer but
becomes small with the increase of such momentum scale. This is known as the
asymptotic freedom of QCD [5, 6]. Here, k denotes the momentum scale, Ny is
the number of quark flavors and A is a constant fixed by experiment. Calculations
to higher orders can be found in Refs. [7, &]. In Fig.1.1 we show a summary of
experimental measurements of this «; taken from Ref. [4] in which open symbols
represent the (resummed) next-to-leading order (NLO), and filled symbols next-to-
NLO (NNLO) QCD calculations used in each analysis, compared with the QCD
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predictions (shown by curves) for the combined world average value of as(Mzo) =
0.1189+0.0010 (Mzo = 91.1876+0.0021 GeV), in 4-loop approximation and using 3-
loop threshold matching at the pole masses of heavy quarks chosen as M. =1.5 GeV
and M, = 4.7 GeV. For the calculations in the dissertation, we only keep «ay to
leading order and the details of our parametrization are discussed in Appendix A.
As for all the dynamic systems, the information of QCD is encoded in its La-

grangian:
1 . a
Lqcp = —ZFSVFLQW — Zw{; (iv"0, +my — g7"AL) ng, (1.2)
!

in which

Fi, = 0,4, — 0,A; — gfgchZAf,. (1.3)

Here, AJ, represents a gluon field with color a, and ¥/ represents a quark field with
flavor f and color a. p, v = 0,1, 2,3 denote the Lorentz index. 7*’s are the Dirac
matrices, and ¢ = ¥T4°. Finally, f®¢ is the structure constant of SU(3) Lie algebra,
and my; denotes quark mass. The coupling strength of the strong interaction g is
a function of momentum transfer and can be evaluated perturbatively, such as the
first order approximation given by Eq.(1.1).

With this QCD Lagrangian, the partition function of the strongly interacting

system can be constructed as follows:

) T )
Z(T,V) = / DADy Dibexp [— /V &Pz /0 drLocp (A,zp,w)], (1.4)

where 7 = iz is the imaginary time and is integrated over from zero to the inverse
of the temperature parameter. The calculation of this integral can be carried out on
a lattice via numerical technics, which is known as lattice QCD [9]. With a proper

calculation of the partition function, the thermodynamic quantities of the system
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FIGURE 1.2: Equation of state calculated by Lattice QCD: energy density normal-
ized by T* vs. T on N, = 6,8 and 10 lattices. The arrow represents the Stefan-
Boltzmann limit esp = 3pgp. This figure is taken from Ref. [9].

can be obtained. For instance, we have energy density and pressure as follows:

T? (0InZ olnZ
- s

In Fig.1.2 we show the energy density normalized by T as a function of temper-

ature obtained from a lattice QCD calculation [9]. The comparison between N; = 6,
8 and 10 verifies the convergence of the numerical integral of Eq.(1.4) on the lattice
with a discretization of 6 points in the temperature direction. The spatial part of
Eq.(1.4) is discretized with at least 18 x 18 x 18 lattice points. In Fig.1.2 one ob-
serves a rapid increase of the energy density of matter around a critical temperature
of T, =160 MeV. Meanwhile, if we were to model QCD matter as a non-interacting
ultra-relativistic boson gas, thermodynamic calculation yields an equation of state as
€ = gporm>T*/30. This is known as the Stefan-Boltzmann formula, in which gpor de-
notes the degree of freedom of the constituent particles. Therefore, the lattice result

5
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shown in Fig.1.2 implies a quick rise of the intrinsic degrees of freedom of the QCD
system around 7. which corresponds to a fast cross-over from one state of matter to
another. In fact, the lattice result is in good agreement with the Stefan-Boltzmann
approximation if one assumes a hadron resonance gas for the nuclear matter below
T. and a quark-gluon gas above T.. Thus the critical temperature 7, corresponds to
a boundary between a hadron gas and a color-deconfined state of quarks and gluons
which is termed as a quark-gluon plasma (QGP) [10].

In Fig.1.3, we show an illustration of the QCD phase diagram labeled with energy
regimes explored by different experiments. There are three major states for the
QCD system. At low baryon chemical potential © and low temperature 7', the QCD

matter exists in the form of hadron gas in which the quarks and gluons are confined
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inside hadrons. With an increase of temperature and density, the nuclear matter will
transition into a color-deconfined quark-gluon plasma state. Note that there exists
a critical point in the phase diagram, above which the transition from the hadronic
state to the QGP state is an ordinary first order phase transition, but below that
it is a fast cross-over without classical critical behavior. Details of the difference
between cross-over and rigorous phase transition are reflected by the behavior of the
order parameters like the Polyakov loop and the effective quark mass as discussed
in [11]. Note that the search for the location of the critical point is one of the
most important tasks of the beam energy scan experiment at RHIC and exciting
results are expected in the next few years. Apart from the hadronic state and the
quark-gluon plasma state, another interesting state of a QCD system is that of a
color superconductor which resides in the large chemical potential region at low
temperature. In this regime, color charges, like quarks and gluons, can form cooper
pairs and stop from being scattered by the lattice, just as normal electric charges
do to form a normal superconductor. However, unlike the repulsive Coulomb force
between electrons in a metal, the strong interaction between color charges is already
attractive, and therefore, phonons — due to the charge-lattice interaction — are not
necessary for the formation of cooper pairs inside a QCD system. This in fact makes
superconductivity in QCD more “robust” than that in metals in the sense that
(1) for extremely dense QCD matter where perturbative approach is applicable one
may derive the gap parameter and other properties of color superconducting quark
matter rigorously and (2) the ratio of the gap parameter to the Fermi energy in a
strongly interacting QCD matter could be much larger than that in conventional
BCS superconducting metals [12]. However, the temperature of this state should be
low enough so that the bound state of color charge pairs are not destroyed by thermal
fluctuations. This color-superconducting state is beyond the current capabilities of

experimental observation in laboratories and might be studied via neutron stars.
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FIGURE 1.4: Cartoon of different stages of nuclear matter in heavy-ion collisions.
The credit of this figure belongs to Steffen Bass.

In this dissertation, we will concentrate on the relatively low u region of the phase

diagram that is explored by LHC experiments and high energy RHIC experiments.
1.1.2  Exploring Hot and Dense Matter with Heavy-ion Collisions

To investigate the QGP state of the QCD phase diagram in the lab, the only cur-
rently known way is to collide beams of ultrarelativistic heavy-ions to create this
extremely hot (a temperature in excess of 102 K) and dense (an energy density
above 1 GeV/fm®) nuclear matter. The two experimental facilities in operation at
which we can probe the QGP are the Relativistic Heavy-Ion Collider (RHIC) at the
Brookhaven National Laboratory (BNL) and the Large Hadron Collider (LHC) at
the European Organization for Nuclear Research (CERN). At RHIC, Gold (Au),
Copper (Cu) or Uranium (U) nuclei can be accelerated to a center of mass energy of
Vs = 200 GeV per nucleon pair to produce the QGP matter, and at LHC Lead
(Pb) nuclei are accelerated to even higher energy — currently /sy = 2.76 TeV. It is
now generally accepted that a strongly interacting QGP matter is created in these
energetic nuclear collisions.

In heavy-ion collisions, the hot and compressed nuclear matter evolves through

several stages as demonstrated in Fig.1.4 with a time scale estimated for Au-Au
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collisions with /sy = 200 GeV at RHIC.

To start with, two Lorentz contracted nuclei approach each other with almost
the speed of light. During the collision, the overlapping region between the colliding
nuclei is highly compressed and new particles, some of which carry large transverse
momenta, are produced. It takes a short but finite time (the pre-equilibrium stage)
for these particles to interact with each other and drive the system to local thermal
equilibrium to form a QGP matter. The microscopic details of the dynamical evolu-
tion of the pre-equilibrium stage and its thermalization process still remain largely
unknown but various models have been constructed to provide the initial condi-
tion of the subsequent QGP evolution. In this dissertation, the two most widely
adopted models — the Glauber model [13, 14, 15] and the Kharzeev-Levin-Nardi
(KLN) parametrization of the Color Glass Condensate (CGC) model [16, 17] — will
be used and compared. In the Glauber model, the collision between two nuclei is
viewed in terms of the individual interactions between mutually independent con-
stituent nucleons; while in the KLN-CGC model, the unintegrated gluon distributions
inside the two colliding nuclei are used to determine the production and distribution
of the initial gluons.

For the current energy scale reached at RHIC and LHC, the QGP matter is
expected to be a strongly coupled system. One may estimate the initial density
of the created QGP matter as follows. The radius R of “7Au nucleus is about
6.4 fm, which yields an area S = 7R? around 128 fm? in the transverse plane for a
head-on collision. Since it takes approximately 0.6 fm/c for the system to approach
local equilibrium after the collision, the length L of the system in the longitudinal
direction (along the beam axis) is around 1.2 fm when the QGP evolution commences.
This leads to a volume V' = SL around 150 fm? that contains a total number (N)
of 394 nucleons from the two colliding nuclei. Let us estimate that each nucleon
contributes 30 to 40 partons. Then we obtain a number density around n = 35N/V =

9



90 fm™>. The average distance between two partons can then be evaluated as d =
1/3/n = 0.22 fm, which corresponds to a momentum scale around @ = hc/d =
0.88 GeV. According to Fig.1.1, ay is greater than 0.5 for such a dense system.
This strongly interacting QGP matter displays properties similar to that of an ideal
fluid and therefore its bulk evolution has been successfully described by relativistic
hydrodynamics [18, 19, 20, 21, 22, 23, 24, 25] with a value of the shear-viscosity-over-
entropy-density ratio (n/s) [26] close to the lower boundary for universal quantum
systems (1/47) proposed in Ref. [27] based on the strong coupling limit. For central
Au-Au collisions, the duration of the hydrodynamical expansion of the QGP is around
10-15 fm/c.

When the local temperature of a fluid cell drops below T, during the hydrodynam-
ical expansion, it hadronizes. Generally, one applies the Cooper-Frye formula [28] to
calculate the spectra produced by the hadronizing QGP for hadrons with transverse
momenta below 2 GeV. In the intermediate pr regime (2-5 GeV), the recombination
mechanism [29, 30, 31, 32] has been shown necessary for hadron production. Above
5 GeV, on the other hand, hadrons are being produced mostly via fragmentation
[33, 34, 35] of high energy jets created in initial hard scatterings other than from the
QGP matter itself.

After the hadronization, the hadrons continue to scatter off each other until the
hadron gas is so dilute that all interactions cease. This is known as the hadronic
phase and its dynamics can be studied with transport models of hadrons such as
the UrQMD [36]. Finally, the hadrons are captured by detectors and their various
spectra provide us hints of the properties of the hot and dense nuclear matter present
in the earlier stages. In the following sections, we will briefly review how the spectra
of both soft hadrons and hard probe particles are utilized to investigate the QGP

martter.
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1.2 QGP Bulk Evolution and Hydrodynamics

1.2.1 Hydrodynamic Equations

As mentioned earlier, as a strongly coupled system, the QGP displays properties
similar to a perfect fluid and hence has been successfully described by hydrodynamics.
In this subsection, we follow Ref. [37] to provide an overview on hydrodynamic
equations that provide a model of the QGP background for our study of heavy flavor
transport in this dissertation.

Hydrodynamics is an effective theory that describes the evolution of a fluid sys-
tem. Instead of tracking the motions of all microscopic particles in the system, it
divides the system into small fluid cells and treats each of them as a thermal sub-
system close to local equilibrium. The size of each cell should be chosen such that
the cell can be viewed as a good macroscopic representation of particles within it
and meanwhile also a microscopic constituent of the whole system. In other words,
the size of each cell should be simultaneously much larger than the mean free path
Amfp Of the particles that make up the fluid and much smaller than the length scale
L of the fluid system. Therefore, the validity of hydrodynamics can be determined
by a Knudsen number defined as K = A\5/L. Hydrodynamics is valid for small K
but breaks down for large K. In contrast, the validity of a microscopic transport
model based on the Boltzmann equation requires a sufficiently large Ayg. Never-
theless, there exists an overlap between the validity regions of hydrodynamics and
microscopic transport — large Ang and even larger L — in which we are allowed to
derive the hydrodynamic equations from the microscopic transport model and then
apply them to a wider regime as long as K remains small.

With the relaxation time approximation for the collision kernel, the Boltzmann
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equation can be written as:

P, = Ce) =21 g (P ] a0

in which u* = (v, ~v) is the four velocity, f(x,p) represents the phase space distribu-
tion of a particular type of constituent particle of the fluid system, and f., denotes

the distribution of local thermal equilibrium

p - ufx) g
fOQ< T(z) ) - ep~u<x>]/DTO<§> +1 (1.7)

with T'(x) as the local temperature and =+ sign for Fermi-Dirac/Bose-Einstein statis-
tics. Here the chemical potential p(z) has been ignored which will not affect our
discussions below. Meanwhile, one may define the local current density j*(x) and

the energy-momentum tensor 7" (z) as

@) = [ Py, (1.8)
17 (0) = [ aPyy 1), (1.9)

in which we have denoted
dP = % (1.10)

for short.

For the simplest case, we start with an ideal fluid in which the interaction strength
is infinite and therefore f(x,p) keeps the same as fo,. Consequently, the right hand
side of Eq.(1.6) gives 0. Furthermore, by using Eqgs.(1.6), (1.8) and (1.9), we obtain

the conservation equations for the current density and the energy-momentum tensor:

o, j"(z) =0, 0,T" (x) = 0. (1.11)
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Meanwhile, since the only vector we have for constructing j* is p* (or u*), we
may decompose it as

7" (x) = n(x)u*(z), (1.12)

in which n(z) is the scalar part. Similarly, we may decompose T with u*u” and
gt as
T (z) = e(z)utu” — P(x)AM, (1.13)

v

where we have defined A" = g" — v u”. The physical meaning of such a decom-

position becomes apparent in the local rest frame of the fluid cell where u* = (1, 6)
In this case, u#u” acts as a temporal projector — the (00) part of g" — and A" acts

as the spatial projector. With these projectors, one may further extract the scalar

parts of Eqgs.(1.12) and (1.13) as follows:
1
n(r) =u,g”, e(x)=u,T"u,, and P(x)= ~3 Ny, T, (1.14)

in which we have applied u,u* = 1, u, A" = 0 and A, A" = 3. One may substitute
Egs.(1.8) and (1.9) into Eq.(1.14) to calculate these scalars explicitly. And since these
scalars are Lorentz invariant, we may evaluate them in the local rest frame so that

their physical meanings are easy to observe:

1 _

n(z) = 2n)? /d?’pfeq(E/T) = particle density in the Lr.f, (1.15)
1 _ _

e(z) = 2y /d?’ﬁEqu(E/T) = energy density in the L.r.f, (1.16)
1 P, -

P(x) = Gn)? /d?’p B—Efeq(E/T) = pressure in the Lr.f. (1.17)

Here, the symbol “bar” denotes the variable to be in the local rest frame and we
have applied p-u = E.

Before writing out the final “equations of motion” for ideal hydrodynamics, we
define three more notations. (1) Expansion rate § = d,u* of the fluid cell; (2) full
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derivative with respect to the proper time 7:

o  oFr9  d d (118

D=ud =~2 1,279 4
W =Y T Vo = Yo T

and we denote Df = f; and (3) the spatial gradient in the local rest frame Vy =

A0 as will appear in
O = g0 = uu, 0" + 1,0 = uy D+ 7, (1.19)

With the above setups, we may obtain the equations of motion as follows.
0= 0uj3" = u'Oyn + noyu" = n + nb; (1.20)
0=20,1" = 0,[(e + P)u"u” — Pg"]
= u'u0,(e+ P) + (e + P)u"0,u" + (e + P)u'd,u” — ¢"0, P
=u'D(e+ P)+ (e+ P)u"0 + (e+ P)i” — (u"D + ") P

=u’é+ (e+ P)u"0 + (e + P)u” — 7" P. (1.21)

From Eq.(1.20), we have
f = —nb), (1.22)

indicating the dilution of the fluid system while it expands. And by multiplying

Eq.(1.21) with u,, we would obtain
¢ =—(e+ P)o, (1.23)

which describes the change of the energy density due to the expansion of the system.

Here we have applied u, Du” = D(u,u”)/2 = 0 and u, /¥ = 0. Note that the relative

change of e is faster than that of n as given by Eq.(1.22) because of the work done by

the pressure. In the end we may substitute Eq.(1.23) back into Eq.(1.21) and obtain
v'P

Y = . 1.24
! e+ P (1.24)
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This is nothing but the Newton’s second law for the fluid cell where @” is its accel-
eration, 7” P is the pressure gradient that acts as the driving force for the hydrody-
namical expansion and e 4+ P is the inertial of the fluid.

Equations (1.22), (1.23) and (1.24) are the equations of motion (EOM) of ideal
hydrodynamics. All together they provide 5 independent equations. Meanwhile,
we have 6 unknowns: n,e, P and 3 independent components of u*. To close the
algebraic system, we need an additional equation — the equation of state (EOS)
that relates thermodynamic quantities e and P. This EOS can be either calculated
using a thermodynamic model or be more rigorously obtained from lattice QCD as
discussed in Sec.1.1. As an illustrative example, we take P = c2e, where c, is the
speed of sound inside the fluid system as defined in ¢? = 9P/de. Then Eq.(1.24) can
be reduced to

;. Ve

Vo= . 1.25
“ 1+ e ( )

S

The physical interpretation of ¢, becomes apparent with Eq.(1.25). It character-
izes the “stiffness” of the EOS of the fluid system. With a fixed gradient of energy
density, a larger ¢, — a stiffer system — yields a faster acceleration of the hydrody-
namical expansion and a softer ¢, leads to a slower acceleration. Note that around
T., cs is expected to approach a minimum in both the thermodynamic model and
in the lattice QCD calculation because in the mixed phase, density perturbations
cause the conversion from the QGP matter to the hadron gas instead of propagating
themselves.

We may repeat the above derivations for the equations of motion of a viscous
fluid. In a viscous fluid, the coupling strength is finite and therefore the distribution

function of constituent particles f(z,p) is not able to instantaneously return to the
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equilibrium limit while the system is expanding. Thus we should decompose it as

o) = o (2D ). (126

The decomposition is non-trivial. To make it unique, one needs to find optimal pa-
rameters for the local equilibrium quantities T'(x), p(x),u*(z) so that fo, reproduces
certain key macroscopic observables associated with the non-equilibrated distribu-
tion function f. This can be achieved by the “Landau matching procedure”. By
requiring

on = u,05" =0, (1.27)
we may fix u/T', and by requiring
de = u, 0T u,, =0, (1.28)

we may further fix 7. In the end we may use the “Landau frame” to determine the

local rest frame of the fluid cell:
T u, = eu, (1.29)

which is equivalent to u,0T"" = 0 with de = 0, indicating that there is no momentum
flow in the local rest frame. Note that u* is the time-like eigenvector of TH".
With §f # 0, j# and T" can now be decomposed as
7 (x) = n(x)u(z) + V*(z)

T (z) = e(x)utu” — [P(x) + I(z)] A" 471, (1.30)

with n(z), e(z) and P(x) the same as those calculated with f., for ideal hydrody-
namics due to the above Landau matching conditions, and V# = A#j, being the
net charge flow in the local rest frame, II = —1/3 A, T — P being the bulk viscous

pressure, and " = AZET“B being the shear stress tensor. Here we define

174 v v 1 4
AL =< (AL AL+ A AY) — 3 AAVAVPS (1.31)

N | —
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so that 7 is a traceless tensor without time component in the local rest frame
(mh = 0 and u,m"u, = 0). In the case of zero chemical potential ;1 = 0, there
exists no net charge (baryon free and strangeness free system), and we have V* = 0.
And although 6 f # 0 leads to non-zero collision kernel C' in Eq.(1.6), its integrals
[dPC and [ dPptC are still zero so that the conservation of particle number and
energy-momentum Eq.(1.11) still holds. However, at this moment, we have the same
number of independent equations as for ideal hydrodynamics, but 6 more unknowns
— II and 5 independent components of 7#”. There are various approaches in the
literature for finding the missing equations. One may refer to Ref. [37, 11] for a

summary about this and a detailed derivation of the closed set of EOM for viscous

hydrodynamics. Here we only cite two more useful definitions:
1= -0, ™ =2t (" = NGV u? ), (1.32)

in which ¢ is known as the bulk viscosity and 7 shear viscosity.

In the literature, there exist various numerical realizations of hydrodynamic equa-
tions. For instance, since the QGP medium expands with almost speed of light in the
longitudinal direction (£ — direction in which the colliding beams travel), it is difficult
to accurately describe both the small system at early time and the much larger sys-
tem at later times with (¢, z,y, z) coordinates if the grid size is fixed. However, this
problem can be solved with (7, x, 1, 7n,) coordinates where 7 = v/t2 — 22 is the proper
time and 7, = 2 In[(t 4+ z)/(t — 2)] is the space-time rapidity. This coordinate frame
has been adopted by many hydrodynamic codes. In order to simplify the calculation,
one may assume longitudinal boost invariance for the solutions, i.e., the fluid profile
only depends on (7,x,y) but not n, — for example T(7,z,y,ns1) = T(7,2,y,ns2)-
This is known as a (2+1)-dimensional hydrodynamic model. Other calculations as-
sume that the distributions of particle number, energy density, etc., are homogeneous

in the transverse plane and only concentrates on the expansion in the longitudinal
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FIGURE 1.5: Development of the momentum space elliptic flow from the position
space anisotropy.

direction. This is known as a (1+41)-dimensional model. Of course, there is also
(0+1)-dimensional model where both the transverse homogeneity and longitudinal
boost invariance are assumed. In fact, an analytical solution (the Bjorken solution)

exists for this special case and one may also refer to Ref. [37] for related details.
1.2.2  Anisotropic Flows of Soft Hadrons

Hydrodynamics has successfully described and predicted the anisotropic flows of low
momentum — so called “soft” — hadrons produced in relativistic heavy-ion collisions,
which is considered an important evidence of the existence of strongly coupled QGP
matter.!

As demonstrated in Fig.1.5, the rapid collision between the two nuclei forms an
almond shaped zone of highly compressed QCD matter in their overlap. Here we
define the concept of “reaction plane” as the plane spanned by the beam axis (z) and
the impact parameter (x). Because of the geometric anisotropy of the compressed
QCD matter, its pressure gradient in the x axis is greater than that in the y axis,

and therefore it accelerates and expands faster in x than in y [see Eq.(1.24)]. In the

I The discussions about how to convert the hydrodynamic medium into observed hadrons will be
postponed to Sec.6.1.1.
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FIGURE 1.6: Decomposition of a fluctuating initial condition of hydrodynamical
evolution into its first 4 harmonic deformations. This figure is taken from Ref. [38].

end, the geometric asymmetry is transformed into an anisotropy in momentum space,
which can be measured via the momentum distribution of observed hadrons. We may
define the elliptic flow coefficient as the average of the ratio between the difference and
sum of hadron momentum squares in x and y directions: vy = ((p2 — p2)/(p2 + p2))-

In Fig.1.5, we assume that the two colliding nuclei are smoothly distributed round
disks. However, in reality, both the nucleon positions and color charges inside nuclei
fluctuate from event to event [39]. This leads to many interesting consequences, such
as (1) the existence of finite elliptic flow even in the ultra-central collisions (at almost
zero impact parameter); (2) the minor axis of the elliptic initial profile of the created
nuclear matter no longer residing in the reaction plane as defined above; and (3)
the existence of odd-order harmonics in the collision geometry and flow [40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. In Fig.1.6, we illustrate the decomposition
of a fluctuating initial profile of QGP into its first 4 harmonic components. One
observes that with fluctuating nuclear structures, the colliding region between the
two nuclei is no longer an ellipse symmetric about the y axis. Instead, it contains
triangular, quadrangular, pentagonal, etc., geometric components as well. And each
harmonic component has its own optimal coordinate as denoted by ®, in Fig.1.6.
In the literature, one defines these planes — rotated from the reaction plane by &,
about the z axis — as the “participant planes” of the respective harmonic components.

Similar as the development of the elliptic flow vy, these higher order deformations
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of the geometric profile will also be transformed into their corresponding collective
flows in the momentum space through hydrodynamical evolution. The vy coefficient
can be generalized to the following n'® order harmonic coefficient according to the
Fourier decomposition of the hadron spectra:

dN* 1 dN
dyppoTd¢p 21 dyprdpr

1+2Z (y, pr COS( [6p — ¥ (y, pr)] )] , (1.33)

in which ¢ represents the selected species of observed hadrons, pr and ¢, denote the
magnitude and angle of momentum in the transverse plane, and y is the rapidity
defined as y = L In[(E + p.)/(E — p.)]. Here, vi(y,pr) is the differential coefficient
of the n' order flow with respect to y and pr, and one may integrate Eq.(1.33)
over a particular momentum regime to obtain the corresponding integrated flow
coefficients. Note that just as ®,, for the geometric anisotropy above, different orders
of momentum space asymmetry also have their own optimal axes denoted by ¥,. A
proper choice of ¥,, maximizes the v, for a given collisional event and this ¥,, helps
define the n'" order “event plane” in the same way as the previous “participant
plane”. Due to the non-linear behavior of hydrodynamics, the participant plane of
the initial geometric space and the event plane of the final momentum space do not
necessarily coincide with each other, although they will be the same after we average
over a sufficiently large number of collision events. With the above definitions, it
is easy to prove that one convenient scheme to simultaneously obtain v, and W¥,, is
as follows: we start with any transverse coordinate — using the reaction plane for
example — and calculate ¢, with respect to it, then extract the real and imaginary

parts of the average exp(ing,) of the selected hadrons as

ingp ___ dN'
f doye dyprdprde, (134)

A'(y,pr) +iB'(y, pr) = Tag,—iv ,
P dyprdprddy,

and in the end the flow coefficient v, and the event plane angle ¥, with respect
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F1GURE 1.7: Comparison of hadron v, between hydrodynamic calculation and ex-
perimental data. This figure is taken from Ref. [53].

to the chosen coordinate are directly given by the module and the direction of this

complex number:

v, = VA2 + B2, tan(n¥,,) = B/A. (1.35)

In Fig.1.7, we show one example of a comparison of hadron v, between a hy-
drodynamic calculation [53] and experimental data [52]. In Ref. [53], a classical
Yang-Mills description is applied for the early time evolution of the gluon field be-
fore the start of a (3+1)-dimensional hydrodynamic expansion of the QGP fireball.
In Fig.1.7, both a constant and a temperature dependent 1/s parametrization [54]
are utilized for the hydrodynamic model, and they both provide a good description
of the observed hadron collective flows up to the 5" order harmonic component.

Because of the success of hydrodynamics in describing the dynamical evolution of
the strongly interacting system, it has been widely applied to investigate the initial
state fluctuations in heavy-ion collisions which still remain largely unknown. We will

come back to this topic in Sec.4.3.
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1.3  Exploring QGP Properties with Jet Quenching

In the previous section, we have made the case that the study of soft hadrons pro-
duced in heavy-ion collisions reveals valuable information on the QGP such as its
n/s coefficient and the quantum fluctuations in its initial state. However, since these
low energy hadrons cannot exist inside a deconfined medium and are only produced
on the freeze-out hypersurface of the QGP, it is hard to probe the microscopic QCD
structure inside the QGP with them alone. Apart from looking at the thermal radia-
tion emitted from a hot and dense QCD medium, an alternative approach to test its
properties is to shoot probe particles through it and study their interactions within
the medium. In the following sections, we will briefly review the dynamics of high
momentum “hard probe” particles inside the QGP. Note that other probes such as
direct photons and di-leptons can also be used but are beyond the discussions of this
dissertation. One may find a broader overview of different probe particles in Ref.
[11].

“Hard probes” [55] refer to high energy particles created directly from partonic
scatterings with large momentum transfer Q2. Thus their cross sections can be
theoretically predicted with pQCD calculations. Their formation times 7 ~ 1/pr <
0.1 fm are shorter than the duration of the pre-equilibrium stage before the QGP
formation, which allows them to propagate through and observe the whole evolution
history of the QGP matter.

One good example of a hard probe is a “jet”. As illustrated in Fig.1.8, hard
scattering between two partons can create two or more partons with large virtuali-
ties. These outgoing partons may reduce their virtualities by either radiating gluons
or splitting into quark-antiquark pairs until the remaining virtualities are down to
much smaller values than 1 GeV. Such a parton branching evolution is base on the

QCD radiation probabilities and can be described by the Dokshitzer-Gribov-Lipatov-
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F1GURE 1.8: Cartoon of jet productions in proton-proton and nucleus-nucleus col-
lisions. This figure is taken from the website of Prof. Andre Mischke at Utrecht
University.

Altarelli-Parisi (DGLAP) equations [56, 57, 58, 59]. In the end, the produced par-
tons fragment non-perturbatively into a bunch of almost collinear final-state hadrons
which are called a “jet”. What particles are included in the jet depends on how the
jet is defined, e.g. via the selected size of the jet cone around the leading (most
energetic) hadron.

The calculation of the jet spectra is based on the following factorization:

dafﬁgih = fa/A(xla Q2) ® fb/B(x% Q2> @ daﬁ‘?fc(fcl, T2, Q2) ® Dc—>h(27 Q2>7 (1-36>

in which fo/4(21, Q%) is the parton distribution function of nucleon/nucleus A — the

probability of finding parton a with fractional momentum z; in A (x; = p,/pa) — and

hard

hard (71, T, Q?) is the inclusive differential cross

fo8(22, Q?) of nucleon/nucleus B; do,
section for producing parton c via the hard process ab — ¢ at the partonic level; and
D._n(z,Q?) is the fragmentation function that describes the probability for parton ¢

to fragment into the observed hadron A with fractional momentum z. Among these

three parts, do™¢ can be calculated with pQCD method while the other two —

ab—c
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parton distribution function and fragmentation function — are non-perturbative and
should be determined by experimental observations.

As shown in Fig.1.8, jets can be produced in both proton-proton and nucleus-
nucleus collisions. However, in the latter process, a hot and dense QCD medium can
be created in which a parton may lose significant amount of energy before fragmenting
into the observed hadrons. Consequently, the spectra of produced jets will shift
towards lower pr regime in nucleus-nucleus collision with respect to proton-proton
collision and hence appear suppressed at large pp. This is known as the medium
modification to jets or jet quenching and is one of the first proposed “smoking guns”
for the existence of the QGP [60]. To quantify the medium effect on jet production,
we may define the nuclear modification factor as

d*Nj»/dydpr
Ncou(b) X dzNép/dyde’

Raa(pr,y;b) = (1.37)

in which the numerator represents the observed hadron spectra for species ¢ in
nucleus-nucleus collision, and the denominator the corresponding spectra produced
in proton-proton collision scaled with the number of binary collisions. This num-
ber N, denotes how many hard collisions between nucleon pairs happen in each
nucleus-nucleus collision and depends on its impact parameter b. If there is no
medium modification, i.e., the nucleus-nucleus collision is merely a superposition of
Neon proton-proton collisions, Raa should be exactly 1. In contrast, parton energy
loss in a dense medium would lead to Raa < 1 at high pr.

In Fig.1.9, we show the nuclear modification factors of different particle species
observed at /syn = 2.76 TeV Pb-Pb collisions together with several theoretical
predictions based on pQCD models of parton energy loss [62, 63, 64, 65, 66]. We note
that color-neutral particles such as the photon and the Z° boson hardly interact with

the color deconfined hot and dense medium and therefore their Raa’s are consistent
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F1GURE 1.9: Nuclear modification factor Raa as a function of pr for various particle
species, compared between theoretical predictions and experimental data. This figure
is taken from Ref. [61].

with 1. On the other hand, charged hadrons that are fragmented from partons are
significantly suppressed in Pb-Pb collisions in the high pr regime.

Parton energy loss inside the QGP is thought to originate from a combination
of collisional [67, 68] and radiative [69, 70] processes that jets experience when they
travel through the medium. The former mechanism comes from the quasi-elastic
scatterings between the probe parton and the medium constituents, and the latter
comes from gluon radiation induced by the inelastic scatterings of the probe parton
within the medium. The competition between these two energy loss mechanisms will
be one of the major topics studied in the dissertation later. Various phenomenological
approaches have been established to relate the QCD energy loss calculation of parton
with the hadron spectra observed in experiments. In the literature, there are four ma-
jor formalisms of parton energy loss inside the QGP [11]: the path-integral approach
to the opacity expansion (BDMPS-LCPI/ASW) [71, 72, 73, 74, 75, 76, 77, 78, 79],
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the reaction operator approach to the opacity expansion (DGLV) [80, 81, 82, 83],
the higher twist (HT) approach [84, 85, 86, 87, 88, 89], and the finite temperature
field theory approach (AMY) [90, 91, 92, 93]. All these formalisms are based on
QCD factorization (Eq.1.36) and introduce the effect of in-medium parton energy
loss by modifying the parton fragmentation function: DY, (2) — D™ (2/, §) where
q is called the gluon transport coefficient characterizing the interaction strength be-
tween the parton and the QGP and 2’ < z encodes the information on the parton
energy loss. The final hadronization process from hard partons to observed hadrons
is always assumed to take place in the vacuum after the partons traverse the QGP
medium. The differences between these approaches lie in their respective assump-
tions regarding the properties of the probe particles and the medium, such as the
relation between different scales: parton energy E and virtuality @2, the Debye mass
mp of the medium characterizing the minimum momentum exchange between the
hard parton and the medium, and the length scale of the medium L. Systematic
comparisons between these different energy loss formalisms can be found in Ref.
[11, 94, 95].

Apart from the single inclusive hadron suppression (Raa), sophisticated calcu-
lations have also been implemented for di-hadron [96, 97, 87] and photon-hadron
correlations [98, 99, 100]. One of the goals of these studies is the qualitative ex-
traction of jet transport coefficients in the strongly interacting QGP medium by
comparing the calculations with the measured jet modification data. The most com-
monly used transport coefficient for jet energy loss is the above mentioned gluon

transport coefficient ¢ defined as

. do
i= p/dzlﬁki%, (1.38)

in which p is the density of scattering centers (mainly gluons) in the medium, &

is the transverse momentum of the radiated gluon and do is the differential cross

26



section for the parton-medium interaction. From Eq.(1.38), one may understand ¢
as the average momentum broadening in the transverse plane of a hard parton while
it propagates through the medium, and therefore reveals crucial information of the

QGP fireball such as its local density and temperature.

1.4  Overview of Heavy Flavor Dynamics in Heavy-ion Collisions

1.4.1 Dynamics of Open Heavy Flavor in Heavy-ion Collisions

Apart from jet, another hard probe of the QGP matter is heavy quark. Heavy
quarks (@), including charm (c¢) and bottom (b) quarks, may exist either as bare
quarks inside the QGP, or as bound states of Q@ when the medium temperature
is still above T. but not too high. We call the former state as “open” heavy quark
and the latter as heavy quarkonium — charmonium for ¢¢ and bottomonium for bb.
Note that the mesonic bound states of heavy and light quark pairs (Qq or Qq) that
form below T, such as D and B mesons are also named as open heavy mesons. In
this dissertation, we mainly concentrate on the dynamics of open heavy flavor in
heavy-ion collisions. Nevertheless, study of heavy quarkonium is also important and
will be briefly discussed in the next subsection.

The most important property of heavy quarks is their large masses — M, =~
1.5 GeV for the charm quark and M, ~ 4.7 GeV for the bottom quark which are much
larger than Agep ~ 200 MeV and the medium temperature 7' ~ 300 ~ 400 MeV.
Because they are so heavy, their thermal production from the QGP medium is signif-
icantly suppressed and heavy quarks are instead primarily produced at the very early
stage of heavy-ion collisions via hard scatterings and then propagate through and
interact with the QGP matter with their flavor conserved. They thus provide a valu-
able tool to probe the space-time profile and transport properties of the QGP fireball.
Since they are so heavy, the thermal correction to their masses can be considered

small and therefore they serve as stable probe particles. Previous studies have shown
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FIGURE 1.10: D meson R and v, measured by the ALICE collaboration, compared
with those of light hadrons. These two figures are taken from Ref. [108] and Ref.
[109] .

that low-pr heavy quarks provide a direct measure of the thermal properties of the
medium, while at large pr heavy quarks may provide a reference to investigate the
medium modification of high-energy jets [101, 102]. At intermediate pr, heavy quarks
and mesons may provide rich information for our understanding of fragmentation-
versus-coalescence mechanisms for hadron formation [103, 104, 105, 106, 107].

Over the past decade, experimental observations at both RHIC and LHC have
revealed a lot of interesting data on heavy flavor hadrons and their decay electrons
[110, 111, 112, 113, 108, 114, 109], among which the most surprising results are the
small value of their nuclear modification factor Rxa and the large value of their
elliptic flow coefficient vy, which are almost comparable to those of light hadrons as
shown in Fig.1.10. This is contradictory to earlier expectations of the mass hierarchy
of parton energy loss - AE, > AE, > AE, > AE, — and is called the “heavy flavor
puzzle”. This puzzle requires a more detailed understanding of heavy flavor dynamics
in heavy-ion collisions, including not only the in-medium energy loss of bare heavy
quarks but also their evolution before and after the QGP phase.

Since energy loss grows with increases of medium temperature and density, heavy
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quarks are expected to lose energy mostly in the QGP phase. And as discussed
earlier, there exist two energy loss mechanisms for probe particles inside the QGP:
medium-induced gluon radiation and quasi-elastic scattering with background medium
partons [69, 67]. For light flavor partons, medium-induced gluon radiation has been
shown to be more important than collisional energy loss, e.g., in the suppression of
single or triggered hadron production at high transverse momenta [68, 115, 116, 117,
100]. For heavy quarks, on the other hand, collisional energy loss is usually con-
sidered to be the dominant mechanism especially at low energies [118, 119], due to
the so called “dead cone effect” [120, 121]. The dead cone effect suggests that gluon
bremsstrahlung off a heavy quark differs from that off a massless parton because of
the kinematics constraints introduced by the mass. The distribution of soft gluons

radiated by a heavy quark can be written as [120]

0,Crdo  K2dR2
T w (k2 +w})

AN M 1
2zdP0-(1+—0), QOEEZ—, (1.39)

dPuq = >

in which dPuq and dF, denote the gluon distribution radiated from massive and
massless quarks respectively, Cr = 4/3 is the color factor, w is the gluon energy,
k) is its transverse momentum, = k, /w corresponds to the radiation angle, and
M and E are the mass and energy of the heavy quark. Equation (1.39) implies
that compared with gluon bremsstrahlung off a light parton, the radiation power of
heavy quark is greatly suppressed in the forward cone 6, whose size increases with
the mass-energy ratio. In other words, unless in an ultrarelativistic scenario, the
phase space open for gluon radiation is restricted by the mass of the heavy quark.
Note that the power of —2 in Eq.(1.39) is obtained under the idealized assumption
of an infinitely energetic heavy quark and a static and uniform QGP medium [11].
This power may change with a more realistic treatment of the QGP matter — for

instance, it becomes —4 in the higher-twist formalism [122] which will be adopted in
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this dissertation. Because of the dead cone effect, the other energy loss mechanism
— quasi-elastic scattering — is considered dominant especially for describing heavy
flavor phenomenology observed at RHIC.

In the limit of multiple scatterings where the momentum transfer in each inter-
action is small, the motion of heavy quarks inside a thermalized medium can be
treated as Brownian motion which is typically described by the Langevin equation
[123, 118, 124, 125, 106, 126, 127, 128]. Such a framework has provided a reasonable
description of the suppression and the elliptic flow of heavy flavor decay products such
as the non-photonic electrons measured by RHIC experiments at relatively low pr.
However, when extending to higher pr regions such as those reached by the LHC ex-
periments, even heavy quarks become ultra-relativistic and thus they are expected to
behave similar to light partons. In this relativistic limit, collisional energy loss alone
may no longer be sufficient for simulating the in-medium evolution of heavy quarks,
and radiative energy loss corrections may become significant [129, 107, 130]. The
incorporation of radiative energy loss into the calculation of heavy quark evolution
has been implemented in other transport frameworks such as linearized Boltzmann
approach [131, 132] and the Boltzmann-based parton cascade model BAMPS [133],
but had not been explored in the Langevin approach prior to our studies [134, 107].

In this dissertation, we study heavy quark evolution and energy loss in a hot
and dense QGP medium within the framework of a Langevin equation. In addition
to the drag and thermal forces for quasi-elastic scattering in the classical Langevin
equation, a recoil term is introduced to describe the force exerted on heavy quarks
due to gluon radiation. This recoil force is then related to the medium-induced
gluon radiation spectrum, which is taken from a higher-twist energy loss calculation
[84, 135, 122, 136]. Within this improved approach, the evolution of heavy quarks
inside QGP fireballs is studied, and the significance of the medium-induced gluon
radiation is observed, especially for heavy quarks with large transverse momenta.
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To compare with experimental data, one needs to convert bare quarks into
hadronic bound states. This conversion process may result in a qualitative difference
between the spectra of bare quarks and their mesonic bound states especially at lower
to intermediate pr and therefore is also crucial for understanding heavy flavor phe-
nomenology. The hadronization of heavy quark is governed by two mechanisms: high
momentum heavy quarks tend to fragment directly into heavy hadrons, whereas low
momentum ones coalesce with thermal light quarks from the medium to form new
hadrons. In this dissertation, we construct a hybrid fragmentation plus recombina-
tion model to describe the hadronization process of heavy quarks when they reach the
freeze-out hypersurface of the QGP medium. The fragmentation process is simulated
with the Monte-Carlo event generator PYTHIA 6.4 [137], and the heavy-light quark
recombination process is calculated with an “instantaneous coalescence” approach
based on Ref. [105]. This approach was first developed for light hadron production
from the QGP [138, 31, 139, 140], and then applied to heavy quark hadronization
[103, 104, 105] and recently to partonic jet hadronization [141] as well. This coales-
cence model does not require the thermalization of the recombining partons and it
is straightforward to include mesons and baryons simultaneously, thus it is conve-
nient for the normalization over all possible hadronization channels. Note that other
approaches, such as the resonance recombination model [101, 142, 106], have also
been applied to the study of heavy flavor dynamics. With our hybrid hadronization
model, we will show that while the fragmentation mechanism dominates D meson
spectra at high pr, the coalescence mechanism brings low pr heavy quarks to medium
pr hadrons and significantly enhances D meson production in the latter regime for
nucleus-nucleus collisions. This will impact the patterns of the D meson Raa and v
that we observe.

After the decay of the QGP, interactions still exist between heavy mesons and
the hadron gas although they are expected to be weaker than those inside the QGP
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matter. We incorporate these hadronic interactions into our framework by using
the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model developed in
Ref. [36] which simulates many body interactions between hadrons. The scattering
cross sections between D meson and 7w and p mesons are introduced based on the
calculations in Ref. [143]. We will show that these hadronic interactions further
suppress the D meson Raa at high pr and enhance its v, due to the additional
energy loss of D mesons inside the hadron gas.

Within our newly developed framework, we are able to simulate the full evolu-
tion history of heavy flavor in heavy-ion collisions: initial production of heavy quarks,
energy loss in the QGP, hadronization to heavy mesons and in the end rescattering
inside the hadron gas. Our calculations provide good descriptions of the D meson
suppression and flow that are observed at both RHIC and LHC experiments. Mean-
while, we also provide various predictions for future measurements, such as the B
meson suppression and flow coefficients, dependence of the D meson Raa on the
participant number, and the non-photonic electron Rxa and v, observed at rela-
tively low energy (62.4 GeV) Au-Au collisions. Furthermore, we extend our study
from the single inclusive spectra of heavy flavor hadrons and non-photonic electrons
to correlation functions of heavy flavor pairs and find that the investigation of the
heavy-flavor-tagged angular correlation may help us better distinguish between dif-
ferent energy loss mechanisms of heavy quark inside the QGP. Our study provides
an important step forward in the quantitative understanding of the heavy flavor dy-
namics in heavy-ion collisions and helps make it a more controllable tool to probe

QGP properties.
1.4.2  Heavy Quarkonium in the QGP

In addition to open heavy quarks and mesons, heavy quarkonium is the other im-

portant branch of heavy flavor probes of QGP properties. Quarkonia are a special
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species of hadrons. Among the vector (spin-one) charmonium states, the lightest
(ground state) is the famous J/1; the excited states are the x. and the ¢'. For the
bottom quark, the lightest quarkonium is the T, while the excited states include
the xs, Y, x, and the Y”. The stability of the c¢/bb quarkonium states implies
that their masses satisfy M. < 2Mp and M; < 2Mpg. One of the most important
features of quarkonia is their small size or large binding energy. Compared with the
typical hadron radius 1 fm (or the typical hadronic scale Aqcp ~ 0.2 GeV), the radii
of J/¢ and T ground states are around 0.1 and 0.2 fm respectively (with binding
energies around 0.6 and 1.2 GeV) [11]. This indicates that they can still survive
in a QGP within a certain range of temperatures above T,. However, the higher
excited states of quarkonia are less tightly bounded and have larger sizes although
being still more stable than usual light hadrons. As a result, with an increase of
the QGP temperature, the different quarkonium states will dissociate sequentially —
loosely bounded states melt first. Therefore, by observing the surviving quarkonium
states, we are able to extract temperature information of the QGP. In this way, the
sequential melting of different heavy quarkonia states serves as a QGP thermometer
[144, 145].

In Fig.1.11, we show an example of sequential T melting measured by the CMS
collaboration, comparing between spectra obtained from proton-proton collisions and
Pb-Pb collisions [147, 146]. The existence of the T ground and excited states can
be seen in the resonant peaks of the invariant mass spectra of their putu~ decay
products. We see that there are three distinct peaks in the left figure for the proton-
proton collision, representing YT (15), YT(2S) and Y(3S) states. However, in the
right figure for the Pb-Pb collision, while the T(1S5) state still apparently exists,
the peak for the T(2S5) state is significantly suppressed and the Y(3S) state entirely
disappears. This can be viewed as a “smoking gun” that a hot and dense nuclear
matter is created in the ultrarelativistic Pb-Pb collision whose maximum temperature
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FiGURE 1.11: Sequential melting of T states: left for spectra obtained in proton-
proton collision as a baseline reference, and right for spectra obtained in /syy =
2.76 TeV Pb-Pb collision. These two figures are taken from Ref. [146].

is between the dissociation temperatures of T(2S) and Y(1S). From theory, one
may obtain the binding energy €(T"), the average size (r)(T") and the dissociation
temperature Ty of each quarkonium state by either solving the Schrodinger equation
with proper assumptions for the QQ potential [11, 148, 149] or by directly calculating
the quarkonium spectra on the lattice [150, 151, 152, 153, 154, 155, 156].

Similar to open heavy flavor, one can calculate the nuclear modification factor
Raa and the elliptic flow coefficient vy of heavy quarkonium. However, a quantita-
tive description of these suppression and flow patterns [157, 158, 159, 160] involves
a number of extra ingredients: apart from the aforementioned quarkonium dissoci-
ation which is microscopically caused by either scattering or gluon absorption, the
reverse process — regeneration of quarkonium from open heavy quarks — should be
taken into account as well, and furthermore one also needs to consider the feed down
contribution to lower mass resonant states from their higher excited states. In par-
ticular, the regeneration process of quarkonium bound states from the uncorrelated

open heavy quarks produced in the initial hard scatterings has been recently found
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FIGURE 1.12: An overview of our theoretical framework of heavy flavor dynamics
in heavy-ion collisions.

to be extremely important for the quarkonium phenomenology, especially for the
LHC experiments in which abundant open heavy quarks can be produced in each
collision event and therefore the regeneration probability is significantly increased

[161, 162, 163, 164, 165, 166].
1.5 Outline of the Dissertation

In this dissertation, we will establish a comprehensive framework that describes the
full time evolution of heavy flavor, which can be utilized to probe the transport
properties of the QGP created in relativistic heavy-ion collisions. The structure
of our numerical framework, and the outline of this dissertation as well, can be
summarized by Fig.1.12. We use either the Glauber or the KLN model to prepare
the initial conditions for the hydrodynamical expansion of the QGP. At the same

time, the initial heavy quark production is calculated using the Glauber model in
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position space and a pQCD method in momentum space. During the QGP evolution,
the bulk matter evolves according to hydrodynamics and the heavy quark dynamics
is described by our modified Langevin equation that incorporates both collisional and
radiative energy loss of heavy quarks in a QGP. At the critical temperature T,, both
the bulk matter and heavy quark hadronize: while light hadrons are sampled from
the QGP medium according to the Cooper-Frye formula, heavy quarks are converted
into their mesonic bound states with our hybrid fragmentation plus recombination
model. In the end, all the produced hadrons are placed into the UrQMD model for
the simulation of their subsequent hadronic interactions until the kinetic freeze-out.
Note that this framework is designed such that any of the above mentioned pieces can
be easily substituted by other models — e.g. a different hydrodynamic background,
a different heavy quark transport model, or a different hadronization approach — so
that a systematic comparison between different studies of heavy flavor dynamics can
be implemented conveniently in the future.

In Chapter 2, we will discuss how the MC-Glauber model is utilized in our study
to initialize the position space distribution of the heavy quark production and how
a leading-order pQCD calculation is implemented for its initial pt spectra. The
pQCD calculation is at the partonic level. We use the parton distribution function
CTEQS5 for nucleon-nucleon collision. For nucleus-nucleus collision we modify the
parton distribution function with the EPS parametrizations to take into account
the nuclear shadowing effect in the initial state. We will show that this nuclear
shadowing effect significantly suppresses the production rate of charm quarks at low
pr but slightly enhances it at larger pr at both RHIC and LHC energies in nucleus-
nucleus collisions with respect to proton-proton collisions. The impact is weaker for
bottom quarks but is still non-negligible.

In the following two chapters we will study the heavy quark evolution inside a
QGP medium within the framework of the Langevin equation coupled to a hydro-
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dynamic background. In Chapter 3, we will concentrate on the collisional energy
loss and in Chapter 4 the radiative energy loss will be introduced. We will start
with a detailed review of different transport equations for heavy quarks in Chapter
3 and show that in the limit of small momentum change in each interaction the
Boltzmann equation for heavy quark can be reduced to the Fokker-Plank equation
and furthermore be stochastically realized with the Langevin equation. After that
we will discuss how the Langevin equation is applied to heavy quark transport in
a dynamic QGP medium and use it to investigate (1) the thermalization process
of charm quarks inside the QGP, and (2) how the collisional energy loss of heavy
quark depends on different transport coefficients and various properties of the QGP
fireball such as its geometric anisotropy and collective flow behavior. In Chapter 4
we will modify the classical Langevin equation so that gluon radiation can be incor-
porated as well. With this improved equation, we will show that while the collisional
energy loss dominates the observed heavy flavor spectra at low pr, gluon radiation
dominates the high pr regime — the crossing points are around 6 GeV for charm
quarks and 16 GeV for bottom quarks. As a result, even though the collisional en-
ergy loss mechanism alone may work well to describe the early RHIC data at low pr,
it becomes insufficient to describe the LHC observations. As an application of this
improved Langevin equation, we will explore the impact of initial state fluctuations
in heavy-ion collisions on heavy quark energy loss. Our calculation will demonstrate
that although the total energy loss of heavy quarks is not very sensitive to the size
of local fluctuations in a 2-dimensional system, it increases significantly with the
number of hot spots. Our simulation in a realistic QGP medium will show that fluc-
tuating initial conditions may bring about 10% more suppression for inclusive charm
quark production at high pr in central Pb-Pb collisions, implying that jet modifica-
tion might be utilized to probe the initial fluctuations in heavy-ion collisions such as
the degree of inhomogeneity or the number of hot spots.
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In Chapter 5, we will develop a hybrid fragmentation plus recombination model
to describe the hadronization process of heavy quarks to their hadronic bound
states. After briefly reviewing the fragmentation functions selected for heavy quarks
in PYTHIA, we will discuss in detail how the instantaneous coalescence model is
constructed and how the hybrid model of the two hadronization mechanisms is es-
tablished. Within our hybrid model, we will show that while the fragmentation
mechanism dominates the heavy meson formation at large pr, the coalescence mech-
anism significantly enhances its production at intermediate pp. By attaching this
hadronization process to our model of heavy quark transport, our calculations will
be able to provide a good description of the D meson suppression and flow observed
at both RHIC and LHC. In addition, we will also provide our predictions for B
mesons and several other upcoming measurements of heavy flavor.

To complete the description of the full evolution history of heavy flavor, in Chap-
ter 6, we will study the scatterings between heavy mesons and the hadron gas in
the hadronic phase and investigate how these interactions further affect the observed
heavy meson spectra. We will first review how soft hadrons are emitted from the
QGP medium on the transition hypersurface according to the Cooper-Frye formula.
After that, we will discuss how the many body interactions between hadrons are sim-
ulated in the UrQMD model and how the scattering cross sections for charm mesons
are introduced. Our calculations will show that these hadronic interactions further
suppress the D meson Raa at large pr and enhance its v5. As a final example, we
will apply this complete framework to an exploration of new heavy flavor observ-
ables. We will introduce heavy-flavor-tagged angular correlation functions and show
that while inclusive spectra are insufficient to help us distinguish between different
energy loss mechanisms of heavy quarks inside the QGP, the correlation functions
may provide us with better insights.

In Chapter 7, we will summarize this dissertation and provide an outlook for
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our future work including several directions for further improvement of the current
framework of heavy flavor dynamics and possible additional fields of study that can

be explored with our numerical framework.
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2

Initial Production of Heavy Quarks

Because of their large mass threshold, the majority of heavy quarks are produced
via hard scatterings at the early stage of relativistic heavy-ion collisions. Contribu-

¢

tions from other processes such as the “intrinsic heavy quark process” (liberation of
QQ fluctuations from the projectile wavefuntion due to its scatterings inside the tar-
get) [167, 168], pre-thermal and thermal production [169, 170, 171], and in-medium
jet conversion [172, 171] have been studied and shown to be small. In this work,
we use a Monte-Carlo (MC) Glauber model [15] to sample the spatial distribution
of the production vertices of heavy quarks in nucleus-nucleus collisions. For the
momentum space, we calculate the initial heavy quark distributions using a leading-
order perturbative QCD approach [173] with the incorporation of gg — QQ and
qG@ — QQ processes. For the calculation of partonic cross sections, we utilize the
CTEQ parametrization for the parton distribution functions [174] and include the
nuclear shadowing effect in nucleus-nucleus collisions using the EPS parametrization
175, 176].

In this chapter, we will first review the Glauber model in high energy nucleus-

nuclues collisions. After that, we will discuss the pQCD method we adopt for the
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initialization of heavy quark momentum space. Finally, we will show the pt spectra

we obtain for both charm and bottom quarks.
2.1 The Glauber Model

The Glauber model is base on the assumption that the collision of two nuclei can be
viewed as superposition of independent interactions of nucleon pairs. At sufficiently
high energies, these nucleons will move in straight lines instead of being deflected
when interacting with each other. These simplifications will lead to concise analytical
results for the nucleus-nucleus cross section, binary collision number, and participant
number in the Optical Glauber Model (Sec.2.1.2), and a straightforward numerical
simulation — the MC Glauber Model (Sec.2.1.3). This section is mostly based on
Ref. [15].

2.1.1 Input into the Glauber Model

Before discussing the two realizations of the Glauber model, we first briefly review the
two most important inputs of the model — the nucleon density of the nucleus and the
inelastic nucleon-nucleon cross section — which should both be fixed by experiments.

The nuclear density distribution of the nucleus is usually parametrized using the
Woods-Saxon distribution

o) = 1+ w(r/R)

_ , 2.1
o1+ exp(=E) (2.1)

in which py represents the nucleon density at the center of the nucleus, R is the
nuclear radius, a is called the “skin depth” and w encodes information of the deviation
of the nucleus from the spherical shape. For "Au and 2°"Pb nuclei we discuss in
this dissertation, w can be taken as 0. For %7 Au, we have py = 0.1693, R = 6.38 fm,
a = 0.535 fm; for 2°"Pb, we have py = 0.1693, R = 6.62 fm, a = 0.546 fm. Note that
here we have normalized the spatial integral of p(r) to 1.
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FIGURE 2.1: Demonstration of the geometry of the Optical Glauber Model: (a) for
the side view and (b) for the beam-line view. This figure is taken from Ref. [15].

Apart from the nuclear density distribution, the other input of the Glauber model
is the inelastic nucleon-nucleon cross section ohy. Since this cross section involves
processes at all momentum transfers, it cannot be directly calculated using pQCD
and therefore should also be determined by measurements. For ,/syn =2.76 TeV

(the LHC energy), we use ohy =64 mb, and for \/sxy =200 GeV and 62.4 GeV (the

inel —

NN

RHIC energies), we have o,

=42 mb and 36 mb respectively.
2.1.2 The Optical Glauber Model

The geometrical setup of the Optical Glauber Model is shown in Fig.(2.1), where two
nuclei A and B collide with an impact parameter of b. One may first focus on the
two tubes located at § with respect to the center of A (or §—b from the center of B).
In these two tubes, the probability of finding a nucleon from A per unit transverse

area is defined as

TA(gj :/ﬁA(g,ZA)dZA, (22)
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in which pa (S, za) is the nuclear density distribution discussed in Eq.(2.1). Similarly,

at that colliding point, we have

Th(5—b) = / ps(5— b, 25)dzp, (2.3)
for nucleus B. And the product Tx(5)T;(5 — b) then provides the joint probability
per unit area of finding a nucleon from both A and B in the selected tubes. One
may further integrate this product over the area element and obtain a “thickness

function” as

~ -

Tap(b) = / Ta(3)Ts(5 —

-,

)d?*s. (2.4)

This thickness function has the dimension of an inverse area and thus might be
understood as the effective overlap area for which a nucleon from A can interact
with a nucleon from B. A product with the inelastic cross section TAB(E)a}fleNl then
provides the probability of this hard scattering.

With this probability for a nucleon-nucleon interaction, it is straightforward to

obtain the probability for an inelastic nucleus-nucleus interaction with an impact

parameter of b as

d?oAB - AB
dTbl:l_ 1 —Tap(b)alN| (2.5)

in which we use A and B to denote the number of nucleons in A and B respectively.
After integrating over the transverse plane spanned by the impact parameter, one

obtains the total cross section of nucleus-nucleus inelastic interaction:
N v L AB
oiB = /27rbdb {1 - [1 - TAB(b)U}ieNl} } (2.6)
0

Meanwhile, we have the total number of nucleon-nucleon collisions (or the binary

collision number) as

Neon(b) = ABT g (b)o™N (2.7)

inel»
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considering that there exist AB possible nucleon pairs with the probability of binary

collision between each of them as TAAB(I;)a}fleNI. This binary collision number is directly
related to the production rate of heavy quarks —the number of heavy quarks produced

in the initial hard scatterings of each nucleus-nucleus collision can be evaluated as

o NN—HQ

NHQ = Ncoll (28)

NN
inel

While the production of hard particles is dominated by this binary collision num-
ber, there exists another important quantity — the participant number — which is
responsible for the production of the QGP medium and therefore the soft particles.
The “participant number” is defined as the number of nucleons which participate in
the binary collisions. Analogous to the above discussion, the probability for a nu-
cleon in A to interact with nucleus B (i.e., at least one nucleon in B) can be written

as
. . - B
/TA(g’) {1 - [1 —Tp(5— b)o—ilfj;] }d%. (2.9)
And therefore, the participant number reads

-

. . . B
Npart(b) = A/TA(E) {1 - |:1 - TB(§_ )O-lljleNl} }d28
. - . A
+ B/TB(§— ){1 . [1 —TA(E’)JES} }dzs, (2.10)
More discussions can be found in Refs. [14, 177].

2.1.3 The Monte-Carlo Glauber Model

Apart from the above analytical evaluation of the binary collision number and par-
ticipant number in nucleus-nucleus collision, one may also numerically simulate the

scattering process with a Monte-Carlo method.
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To begin with, with a chosen impact parameter b, we sample the initial positions
of A nucleons for nucleus A and B nucleons for B according to their density distri-
bution functions Eq.(2.1). Then nuclei A and B are assumed to move towards each
other along a straight line. At the time of overlap, one loops each nucleon in A over

each one in B. If the distance between a nucleon-nucleon pair satisfies the criterion

d < /ol /m, (2.11)

a hard scattering is considered to take place. The positions where binary collisions
take place are recorded and utilized as the production vertices for heavy quarks.
Meanwhile, one may count the number of binary collisions and participant nucleons
for each nucleus-nucleus collision event directly with this MC Glauber method. The
MC model provides initial conditions for the hydrodynamical evolution of the QGP
medium as well. However, unlike heavy quarks, not only the binary collision number
density, but also the participant number density should be taken into account for
the initial energy/entropy density of the bulk matter, as will be shown in the next
subsection.

Unlike the optical form of the Glauber model that is based on continuous nucleon
density functions, the MC Glauber model locates nucleons at specific positions for
each event which vary from event to event. This captures the feature of quantum
fluctuation in the initial state of nucleus-nucleus collision. As discussed in Ref.
[15], the two realizations of the Glauber model provide similar nucleus-nucleus cross
sections when \/ﬂ is small, but will slightly deviate as \/ﬂ increases — the MC
simulation may introduce a “shadowing” correction that reduces the cross section

compared to the optical model.
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FIGURE 2.2: A cartoon demonstration of how to relate the final state observables
(Nen) to quantities provided by the Glauber Model (b, Npat). This figure is taken
from Ref. [15].

ch

2.1.4 Relating the Glauber Model to Experimental Data

In the experiment, we are not able to determine the impact parameter, participant
number or binary collision number of the collision event. One way to construct a
bridge between the Glauber model and experimental observations is through the
concept of “centrality” as illustrated in Fig.2.2.

In experiments, one may measure the charged particle multiplicity distribution
(dNyet/dNe,) as a function of the number of charged particles observed in the final
state (Ne,). This leads to the horse-back-shaped curve in Fig.2.2. The limit with
0 multiplicity of charged particles corresponds to the most peripheral collision (i.e.,

large impact parameter or small participant number). This leads to large dNye; /dNey
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(or do/dNg,) value since the probability for such event to take place is large. On
the other hand, the events with the largest final N, corresponds to the head-on
collision (b = 0), which has zero probability due to geometry. With this curve, one
may then divide Ny, into “centrality regions” from right to left according to the
fractional integrated area under the curve. For instance, 0-5% centrality corresponds
to the region starting from the right that takes 5% of the integrated area under the
dNyet/dNg, curve, and is also referred to as the “central collision region”. On the
other hand, a centrality over 50% corresponds to the “peripheral collision region”.
On the theory side, one may start with an ansatz that the number of charged
particles in the final state is proportional to the following linear combination of binary
collision number and participant number (i.e., hard processes and soft processes)
[178, 43]:
NAAG, An) = [aNeon(8) + -2 Npun8)| MYV, A0), (212)
In which N4A(b, An) and NJN(b, An) are the number of charged particles produced
in a nucleus-nucleus collision and a nucleon-nucleon collision respectively. With this
ansatz, we may calculate dNA® /d Ny, vs. NA* (Fig.2.2) with N and Nyt obtained
from the MC Glauber model. By comparison to the experimental data, we can fix
the parameter « in Eq.(2.12) and then relate different centrality bins to regions of

either impact parameter or participant number.

2.2 Initialization of the Momentum Space

2.2.1 A Leading-order pQCD Calculation

A variety of different approaches can be applied to the initialization of heavy quarks
in momentum space. In our earlier work, we used either a parton cascade model
(see Sec.3.2) or a simple parametrization (see Sec.3.3) to initialize heavy quarks. For

most of our later calculations in this thesis, the initial momentum space distribution
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is described by a leading-order pQCD calculation. Of course, while this method is
sufficient for the description of heavy flavor single particle spectra (e.g., suppression
and flow observables), it may not be a good choice for the study of correlation
functions, since it does not include the process of gluon splitting. For this specific
purpose, we will utilize a Monte-Carlo next-to-leading-order (MCNLO) calculation
for the momentum space initialization in Sec.6.3.

For most of our calculations, we utilize the leading-order processes ¢g — Q@ and
gg — QQ for the heavy quark production. The related matrix elements for these are

adopted from Ref. [173]:

2 ‘Mqti—%?@ﬁ = 69—47T2CME(MT) M)+ (]\fz —u +2M 8, (2.13)
2 2 2 12 2 2
5 | Mygsoo| = m2aZ(Mr) E(M —1)(M?* — u)
8 (M? —t)(M? —u) — 2M?*(M? + t)
t3 (% — 1)
N 8 (M2 — t)(M? — u) — 2M>(M? + u)
3 (M? — u)?
2 M?(s—4M?)
3 (M —t)(M? —u)
B 6(M2 — ) (M? —u) + M?(u —t)
s(M? —t)
_6(M2—t)(M2—u)+M2(t—u)) (2.14)

s(M? —u) ’

where the squares of the matrix elements have been summed over color and spin de-
grees of freedom of the final states and averaged over the initial states. In Eqs.(2.13)
and (2.14), a, is the strong coupling constant, M is the mass of heavy quark, Mr is
the transverse mass defined as \/m and s, t, u are the Mandelstam variables.

The above two matrix elements are utilized to calculate the initial momenta of heavy
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quarks.

Apart from these two processes, which are termed as the “flavor creation” pro-
cesses, one may also include “favor excitation” processes — q@QQ — ¢@) and g@QQ — g@Q)
— in which a heavy quark from the sea is excited by a hard scattering with a parton.

The corresponding matrix elements can also be found in Ref.[173]:

5 Mgl = 69—47r2a§(MT)(M2 —u)? + (st2— M2)? 2M2t’ (2.15)
2 Myggal’ = w0 (M) | 5 (5 — MH(M? — u)
N 64 (s — M?)(M? — u) +2M?*(s + M?)
9 (s — M?)?
64 (s — M?)(M? — u) + 2M?(M? + u)
9 (M? — u)?
16 MM 1)
9 (s M) (M2 —u)
(s — M?)(M? —u) + M?(s — u)
+16 1
el MO — ) = M (s — w)) .10

t(M? — u) ’

These flavor excitation processes will be incorporated in a future project and are

beyond the discussion in this dissertation.
2.2.2  Parton Distribution Function and Nuclear Shadowing Effect

In the previous subsection, we have summarized the heavy quark production via
hard scatterings between partons in leading-order pQCD. To obtain the spectra of
heavy quark produced in nucleon-nucleon collision or nucleus-nucleus collision, one
requires in addition the information on the momentum distribution of partons in a
nucleon, i.e, the parton distribution function (PDF).
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FIGURE 2.3: Demonstration of the parton distribution functions of gluon, valence
quarks and sea quarks. This figure is taken from Ref. [179].

As illustrated by Fig.2.3, the PDFs fi(x, Q?) provides the probability of finding
a parton (valence/sea quark or gluon) in a nucleon with a fractional momentum x
(the ratio between the momentum of the parton and that of the nucleon). Here, @
is the energy scale of the hard interaction. Then the cross sections of all processes
in a nucleon-nucleon collision can be calculated by convoluting the cross sections at
parton level with these PDFs. Note that QCD itself does not predict these PDFs
and they needs to be determined by a fit to data from experimental observations
[mainly the deep inelastic scattering (DIS)] [179]. In this work, we shall adopt the
CTEQ parton distributions [174] in our calculation.

While the above mentioned CTEC PDFs can be directly applied to nucleon-
nucleon collisions, for nuclear interactions, one also needs to consider the modification
to these nucleon PDFs due to the nucleons being bound in a nucleus. Such mod-

ifications are usually termed as “nuclear shadowing effect” or “cold nuclear matter
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FIGURE 2.4: Demonstration of the nuclear shadowing effect. This figure is taken
from Ref. [176].

effect” in the literature.
In Fig.2.4, we show a graph that helps illustrating the nuclear shadowing effect
[176]. The function R (z, Q?) is defined in

fMz, Q%) = RMz, QN 72, @), (2.17)

and signifies the modification to the free proton PDF f& @

p in a nucleus (A). This

functions may be parametrized as follows:
ap + (a1 + agx)[exp(—z) —exp(—x,)], = < g,
RXx) = { by + by + byw? + bya®, . <z <z, (2.18)
co+ (c1 — ca)(1 — 2) 7P, re <z <1,
in which the parameters a;, b;, ¢;, 3, ¥, and z. depend on different nuclei species (A).
By requiring that R*(z, Q%) is continuous and its first order derivative vanishes at
the matching points z, and z., 6 parameters out of the original 13 can be eliminated.

The remaining 7 will be expressed in terms of the following 6 parameters together
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with their intuitive interpretations:

Yo, Height to which shadowing levels as x — 0,

Ta, Ya, Position and height of the antishadowing maximum,
Ze, Ye, Position and height of the EMC minimum,

B, Slope factor in the Fermi-motion part.

Note that ¢ is fixed as ¢y = 2y..

In the small = region, the probability for a probe particle to “see” the partons
in the second nucleon in a nucleus might be reduced after its interaction with the
previous one. In other words, the probing of the structure of a nucleon can be
shielded by its neighbors in the nucleus. This is known as the “shadowing” region of
R*(x,Q?). On the other hand, because of the conservation of energy and momentum
of the target nucleon, if the probe particle “sees” less partons in the small x region,
there must exist an enhancement of the parton distribution in the larger = region,
which is called the “anti-shadowing effect”. In the regime around 0.2 < x < 0.7, a
scaling violation of the nuclear structure function has been observed by the European
Muon Collaboration — Fj*(z, Q%) < AFN(x,Q?) [180, 181], which is termed as the
“EMC effect”. There is no universally accepted theoretical interpretation of this
EMC effect at this moment and this topic is beyond the discussion of this dissertation.
In the end, in the large = regime, due to the two-nucleon interaction in a nucleus
which can be viewed as a fermi gas [182, 183], another rise of R*(x, Q?) is expected.
Such effect can be even extended to the regime of z > 1 where three or more nucleon
interactions are taken into account. This does not exist for partons in a free nucleon.

The parameters in Eq.(2.18) are fixed according to proton/deuteron-nucleus and
lepton-nucleus deep inelastic scatterings. We use the EPS parametrization for the
nuclear shadowing effect in this dissertation. Some of our earlier results were calcu-
lated with the EPS08 version [175] of the parametrization, and later we switched to

an updated EPS09 version [176].
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FIGURE 2.5: Initial heavy flavor spectra from the leading-order pQCD calculation
with and without the nuclear shadowing effect, (a) for LHC and (b) for RHIC.

2.2.3  Initial Spectra of Heavy Quarks

In Fig. 2.5 (taken from our published work [107]), we convolute the parton cross
section (Sec.2.2.1) and the parton distribution function modified with the nuclear
shadowing effect in nucleus-nucleus collisions (Sec.2.2.2), and show the transverse
momentum distributions of initial heavy quarks in both proton-proton and binary
collision number scaled nucleus-nucleus collisions at LHC and RHIC energies. One
can observe from the figure the influence of the nuclear shadowing on the initial heavy
quark spectra: it greatly reduces the production rate of charm quark in the low pr
region; the effect is stronger at the LHC than at RHIC. For the production of low pr
bottom quarks, this shadowing effect reduces the yield at the LHC energy but slightly
enhances it at RHIC. This behavior will result in significant effects on the nuclear
modification factor Raa of heavy flavor hadrons as we will show in Sec.5.4. Note
that the distributions in Fig.(2.5) are calculated with the EPS08 parametrization.
In EPS09, the strength of the shadowing effect is reduced due to a tuning to more
recent experimental data, but is still significant.

The above differential cross sections are evaluated at zero rapidity (y = 0). One

may assume that the initial heavy quarks are uniformly distributed with respect to
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the central rapidity region (—1 < y < 1) and we thus sample the initial transverse
momentum pr of heavy quarks in this region with a Monte-Carlo method according
to the spectra provided in Fig.2.5 for either the proton-proton baseline or the nucleus-

nucleus collision.
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3

Heavy Quark Diffusion inside the QGP

In the limit of multiple scatterings where the momentum transfer in each interaction
is small, the dynamical evolution of heavy quarks inside a thermalized QGP medium
can be treated as Brownian motion which is typically described by the Langevin
equation. We shall couple this Langevin equation to a hydrodynamic medium to
study the quasi-elastic scattering of heavy quarks with light partons inside the QGP.

In this section, we will first summarize the transport theory of heavy quarks
in a thermal medium and then develop a numerical framework where the Langevin
evolution of heavy quarks is coupled to an expanding hydrodynamic medium. Within
this Langevin framework, we present two of our studies: (1) the thermalization
process of heavy quarks in a QGP medium (published in Ref. [184]), and (2) how
the initial configuration of the QGP as well as its properties affect the suppression and
the collective flow of the observed heavy mesons and their decay electrons (published

in Ref. [185]).

55



3.1 Transport Equations of Heavy Quarks

In this subsection, we follow Ref. [123] and [102] to summarize the three frequently
utilized transport equations for heavy quarks — the Boltzmann equation, the Fokker-
Planck equation and the Langevin equation — and demonstrate the equivalence be-
tween them under certain conditions. We will show that the Fokker-Planck equation
is the small-momentum-transfer limit of the Boltzmann equation, while the Langevin
equation is a stochastic realization of the Fokker-Planck equation. After that, we will
develop a numerical framework of the Langevin equation, in which it can be coupled

to a hydrodynamic medium to describe the heavy quark evolution in a QGP.
3.1.1 The Boltzmann Equation

The evolution of the phase space distribution of heavy quarks fq(¢,Z,p) can be

described by the Boltzmann equation as follows:

pi 0 9 = —
5 " Byt Dgp | fet B =Cld (B

d 0
Solt. i) = |

where By = /mg2 + p? is the energy of heavy quark with three momentum p), F is the

mean field force, and C|fg| denotes the collision integral. Usually, two simplifications

are applied — (a) the drift term, i.e., the mean field force Fis neglected, and (b) the
position space is integrated over first — and one obtains the following equation for

the momentum distribution:

o Ja(t.9) = Clfd], 32

where
folt P) = / B2 fo(t, 7, p). (3.3)

96



The collision integral is defined as

Clta)= [ &[0+ FR)folr+B) - w(FF) o] (3.4

-,

where w(p, k) denotes the transition rate for heavy quarks from momentum state p’
to p— k due to their scatterings with the medium background. The first term on
the right hand side of Eq.(3.4) represents the gain term of heavy quark from p’'+ k
state to p state, while the second represents the loss term of heavy quark out of the
P state.

The transition rate w can be further expressed in terms of the cross section of
elastic scatterings between heavy quark and thermal partons (light quark or gluon)
with momentum ¢ inside QGP:

_ - d’q L L o7
W B) =0 [ (o oD 7.7 7= Fo 7+ ) (35
where f, , are the momentum distribution of thermal partons, v, = 6 and v, = 16

are the spin-color degeneracy of quark and gluon, and v, is the relative velocity

defined as:

_ V(P 9)* = (mgm,)?
= @ﬂbQ . (3.6)

_

E

ol

Urel =

)

After summing the matrix element over the spin-color degeneracy of the final states
and averaging over the initial states, the scattering cross section can be expressed

as:

Urelda( _; (j_) ﬁa q_’) =
1 dgp/ d3q/ 1
2E:2E; (2m)*2Ey (21)*2E7 7QYq

M) 8D (p+q—p —d).  (3.7)
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By substituting Eq.(3.5) and (3.7) into Eq.(3.4), we have

1 d3q d3 / d3 / )
Cliel = 2B / (27m)32E; / 27)32Ey / 271)32E VQZW'

x 2m) 6D (p+q -1 — ) [fo() f10(@) — fa(D) f0,0(D)] (3-8)

—

where we have let 7' = f—k and § = g-+k. Therefore, in principle, with the knowledge
of the matrix element M, the time evolution of the heavy quark distribution fg (¢, p)
is determined by Eq.(3.2).

3.1.2  From the Boltzmann Equation to the Fokker-Planck Equation

In this subsection, we demonstrate that in the limit of small momentum transfers,
the Boltzmann equation is reduced to the Fokker-Planck equation.
With the assumption that the momentum change of heavy quarks during each

of their interactions with light partons is small, i.e., |k| < |p], one may expand the

right hand side of Eq.(3.4) with respect to k up to the second order:
w(p+ k k) fo 5+ k) = w(i. k) fo(P)
i [0 B o] + 3k [0 Be]. (39)
The collision integral is then simplified to
Clia~ [ @k (hige+ gzl Jum R, (310)
op; 2 Op;Op,

and thus the Boltzmann equation is reduced to the Fokker-Planck equation

2 falt.p) = { (Dot )+ mw@mmm}, (3.11)

with the following definition of the drag and diffusion coefficients:

AR = [ s Pk

1 -

o8

(3.12)



If one defines

P =5k, | Grp®2E, | (2r52E, 27r 32E[7 o

x (20)%0D (p+q—p' — ¢) f1.. X (D), (3.13)

then Eq.(3.12) leads to

(3.14)

where k; is substituted by (p — p');.
With the assumption that the medium background is in local equilibrium, rota-
tional symmetry exists in the local rest frame of the heat bath, and therefore the

directions of A; and B;; only depends on . This enables the following decomposition:

Ai(p) = AP)pi,

(3.15)
By;(5) = Bo(p)Pi(9) + B1(F) P (P),

with the projection operators on the longitudinal and transverse directions of p de-

fined as

pipj pipj
Pi(p) = pTJ’ P (p) = by — ]32]- (3.16)

Consequently, the transport coefficients can be solved as follows:

M@=MM@W%=@—E§§

P
- 1 = \2 .
5ul) = Ph5 = 3 (0L a2, (3.17
(PN (7 7)°
B = _PrBY =~ (5% —
1(@ 9" ij 4<p 132 )
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where the following identities have been applied:

Plpi =1, PiP’=2 PPV =0 (3.18)

ij= ||

For a “minimal model”, one may assume the transport coefficient of heavy quark
in the longitudinal direction equals to that in the transverse direction, i.e., B(p) =
By(p) = Bi(p), although they may not be exactly the same from the microscopic
calculation. This results in B;;(p) = B(p)d;;. In addition, the transport coefficients
A(p) and B(p) should only depend on the magnitude of the momentum (or energy),
and therefore can be written as A(F) and B(E). (We denote E; as E for short if

unambiguous.) The Fokker-Planck equation (3.11) then simplifies to

a 0 T BBt (.19

With the physical requirement that the heavy quarks should approach thermal equi-
librium with the medium background in the infinite time limit, we may plug in the
stable solution fq(p,t — 00) ~ e B/ into Eq.(3.19), where T is the temperature
of the medium. With a zero on the left hand side, Eq.(3.19) leads to the following

constraints between the drag and the diffusion coefficients:
A(E)ET — B(E)+ TB'(E) =0, (3.20)

where the derivative on B(F) is with respect to E. This is known as the “fluctuation-
dissipation relation”, or the “Einstein relation”. Note that this relation originates
from the requirement of the thermal limit, and may not be guaranteed for Eq.(3.12)

when the transport coefficients are directly calculated from the matrix elements.

3.1.83 The Langevin FEquation: a Stochastic Realization of the Fokker-Planck Equa-
tion
In this subsection, we will show the equivalence between the Langevin equation and

the Fokker-Planck equation. We will start from the Langevin equation that describes
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the Brownian motion of a single particle and demonstrate that it is nothing but a
stochastic realization of the Fokker-Planck equation that describes the phase space
evolution of a particle ensemble. An alternative method to show the equivalence
between these two equations can be found in Ref. [186] where the Fokker-Planck
equation is recognized as an FEuclidean Schrodinger equation whose Hamiltonian can
be constructed using the transition probability from the Langevin equation.
The classical Langevin equation for a single particle reads:
da; = Ly,

E-
b (3.21)

dp; = —T'p; + VdtCipp",

where in general, the drag coefficient I" and the strength of the thermal noise Cjy
are functions of (¢,Z,p), and p' is the Gaussian-normal distributed random variable

signifying the stochastic process:

= (1) e (). o

This leads to:
<Pi>p =0, (Pipj>,, = 04, (3.23)
where (---)  here denotes the stochastic average. One may refer to Appendix B for

the related properties of the Gaussian integrals. Thus the thermal random force,

which is defined as

ol = % s (3.24)
satisfies the correlation function
( [rthermal (1) thhermal () = % CupCy pl>p _ % CinCudM 6,
= CipCro(t —t') = ryo(t — 1), (3.25)
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where k;; = C’ikC’]'? is called the momentum space diffusion coefficient of heavy quarks.
Note that here we assume a Gaussian white noise for the thermal force, i.e., there
exists no correlation between forces at different times.

Up till now, the stochastic process has not been uniquely defined, but depends
on how the momentum argument is chosen for Cj, [187]. To be more specific, one
may define

Cir = Cu(t, 2, P+ £dp), (3.26)

and £ = 0,1/2, 1 correspond to the three different discretization schemes that are usu-
ally adopted — pre-point Ito, mid-point Stratonovic-Fisk, and post-point Ito schemes.
These different means may lead to different processes, though equivalence can be
shown after proper transformation from one to another [118]. This is an essential
difference between stochastic differential equations and ordinary differential equa-
tions — solutions of the latter do not depend on the discretization scheme when the
continuum limit (dt — 0) is taken. To be general, we shall keep the form of Eq.(3.26)
for the rest discussion of this subsection.

To derive the Fokker-Planck equation from the Langevin equation, we first dis-

cretize Eq.(3.21) with the definition of Cj, in Eq.(3.26):

zi(t+€) = x;(t) + Egi(tt))’ (3.27)
pi(t+e€) = pilt) — €T [p(t) + Edp] pi(t) + V/eCli [p(2) + Edp] p°. (3.28)

We may further substitute dp; = —el [5(t)] pi(t) + v/€Cir [p(t)] p* into Eq.(3.28), and

keep to the order of e. This yields:

p(0) = ilt) = O] i0) + VECo [0+ Ve S P ey )
OCu [7(0)

Op; ECu[P)] o' (3.29)

= pilt) — €0 [B(t)] pi(t) + VeCux [B(2)] p* + €
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The phase space distribution function of heavy quarks at (t + €, 7, p) can be
expressed as an integral over the distribution function at (¢, 2, p’), with the constraint
that the heavy quarks at (2’,p") should propagate to (7, p) within the time interval

€. Mathematically, we have

/
fold@it ) = [ @ 1,00 (- ol - L1 )

< (89 = s L = VRO — cCul?) PNt ) - 330

/.
J p

One may expand the two d-functions with respect to & and p respectively and keep

to the order of e:

@ (50— ) 5O (g —ay — PO 5@
J (:cZ x EEﬁ) (x; — ;) eEﬁ 8xm5 (x; — ), (3.31)
—y —y 80@ )
(59 o= s+ 0@~ VECu@F — ) )
J P
/ 4\ 7 d / » 0 ,
= 0¥ (p —p) + <6F(p Pz =0 (pi = pi)> - <\@ka(p i pi)>
Drm ) P )
ICoi(P') 4, O
— 5 6@ (p, — !
+ 2 (P Cm@)p (@) A 8 (pi — 1) ) - (3.32)
2 OPmOpn “/,
With the identities Eq.(3.23), Eq.(3.32) can be simplified to
/ AW — — aCZ )
<5(‘°” [pi — P+ L), — VeCu(P)p" — e€C(P) a’f )p’“plb
j

p

5@ (Pi - p;)

8ka(ﬁ’)} 0

— 5B (p, — 7\ — ECH(F
0 (pi pl)+e{F(p)pm £C5 () o0, | Opm

53 (pi — ). (3.33)




By substituting Eq.(3.31) and (3.33) into Eq.(3.30), we obtain

fQ(:E,ﬁ,t—l—e):/ds:c’d?’p’f (@, )(1—%@ af )5<3>(x ){1+e[r( )0,

0C,(p)] 0 0
— gof(ﬁ) k(P )} 1

o, |opm T2 €Crm (p)C"(p)apmapn}5 (i —ph).  (3.34)

One may take the derivatives with respect to x; and p; out of the integral first and
perform integrations over d3z'd®p’ with the two é-functions which merely substitute
7 and p’ by ¥ and p respectively. Again, by keeping terms up to the order of €, we

have

0
Jold 1+ = o(&. ) ~ 22 0oz ) + e { | v

OCk (D)
Op;

) }W,m}ﬁ OB @5 0], (3:35)

2 OpmOpn

which is equivalent to

* 3 [CuPCk D@0} (330)
If one sets

Au() = TP — ECH P

(3.37)
Bua() = 5 Cok (O (D),

we obtain the previous Fokker-Planck equation (3.11) except that the position ()

space is also included here. Furthermore, by combining Eq.(3.15) and Eq.(3.37), we

have
1 aC,
D) = A + €0k 2D, (3.39)
Di P
Cix(P) = \/2BoP). + /2B, P (3.39)
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As discussed in the previous subsection, one may assume By(p) = Bi(p) = B(p),
which simplifies Eq.(3.39) to

Cir(D) = V/2B(P)dik- (3.40)

Thus, we have the momentum space diffusion coefficient

Kij(p) = Czk(ﬁ)cjk(ﬁ) = 2B(p)dy; = K(P)dsj, (3.41)

with the definition x(p) = 2B(p). Moreover, by substituting Eq.(3.40) and (3.41)
back into Eq.(3.38), we have

L) = AR+ 5\/ BV AE) O i

8E8

-+ fey

(3.42)

In the end, we combine Eq.(3.20) and Eq.(3.42) and obtain the fluctuation-dissipation

relation for the Langevin equation (3.21):
OT(E)ET — k(E) + (1 — )T (E) = 0. (3.43)

For the case of £ = 1, i.e., the post-point [to scheme, or s independent of E, we have
a simplified form of the Einstein relation I' = x/2TE, which will be utilized in our

Langevin framework for the rest of this dissertation.
3.1.4 Langevin Fvolution of Heavy Quark inside a QGP Medium

Due to their large mass, the momentum change of heavy quarks during each of their
scatterings with thermal partons is considered to be small. Therefore, in the limit of
multiple interactions where the Gaussian distribution of the thermal noise Eq.(3.22)
can be reasonably applied, the heavy quark motion inside a QGP can be treated as

a Brownian motion and be described by the Langevin equation (3.21). In this work,
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we start with a “minimal model” where the momentum space diffusion coefficient
ki; is assumed isotropic — the same in the longitudinal and the transverse directions
— and independent of the momentum of the heavy quark. Thus, according to the

analysis in the previous subsection, Eq.(3.21) is reduced to

d@:%m,
P (3.44)

dp; = =L(p)pi + \/%\/Epia

in which the drag term and the thermal term are related by the fluctuation-dissipation
theorem I' = k/2T'E. In the literature, the spatial diffusion coefficient D is usually

quoted for heavy quark calculations, which is related to x via

D= TORR (3.45)

More discussion about this diffusion coefficient can be found in Appendix C. This
will be the main parameter in our Langevin framework for the rest of our study. For
the numerical calculation, we adopt the pre-point Ito discretization and re-write the

Langevin equation as

xi(t + At) = x;(t) + At, (3.46)

pilt + At) = pi(t) — T [p(t)] pi(t) At + FP™ () A, (3.47)

where the thermal force satisfies

K

<Fithormal(t>};;:hermal (t 4 nAt)>p = A

5ij50n7 (348)

and can be generated using the Monte-Carlo method with a Gaussian distribution

whose width is y/k/At.

For the study of heavy quark motion in a static medium, the only information re-
quired for the medium is the temperature, which remains fixed throughout the time
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evolution of the heavy quarks. On the other hand, to study the heavy quark transport
inside the highly excited medium produced in heavy-ion collisions, we need to simu-
late the QGP matter with hydrodynamic models. Either a fully (341)-dimensional
ideal relativistic hydrodynamic model developed in Ref .[21] or a (2+1)-dimensional
viscous relativistic hydrodynamic model developed in Ref. [22] 188, 24] can be em-
bedded into our Langevin framework. In our work, two different initial condition
models, a Glauber [13, 15] as well as a KLN-CGC [16] model, are utilized to describe
the initial entropy density distribution of the medium before its hydrodynamical
evolution. Both initial conditions are tuned to provide the hadronic data in the soft
sector, such as hadron yields, spectra, and rapidity-distributions as well as radial and
elliptic flow. These hydrodynamic models provide us with the time evolution of the
spatial distribution of the temperature and the flow velocity of the QGP medium.
In such a dynamic medium, heavy quark evolution is treated as follows: for every
Langevin time step we boost each heavy quark to the local rest frame of the fluid
cell in which it is located; the Langevin approach Eq.(3.47) is then applied to obtain
the momentum change of the heavy quark due to the surrounding QGP medium.
After that we boost the heavy quark back to the global computation frame where it
propagates to the space-time point for the next scattering according to Eq.(3.46).
One of the key assumptions for the hydrodynamic calculation is that the QCD
medium experiences a sudden thermalization (to form a QGP) at an initial time
To (chosen as 0.6 fm/c here) at which the hydrodynamical evolution commences.
And up till now, little knowledge has been attained regarding the pre-equilibrium
evolution and thermalization of the system. On the heavy quark side, we treat their
motion prior to the QGP formation as free-streaming. Such treatment should be a
good approximation as the time of the pre-equilibrium stage is short compared to

the total life time of the QGP (about 10 fm/c).
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3.2 Thermalization of Charm Quarks in the QGP Medium

In this section, we use our Langevin framework constructed above to conduct an
investigation into heavy quark thermalization in an infinite medium at fixed tem-
perature and then compare our findings to a dynamic scenario in which the heavy
quarks propagate through an expanding and cooling QGP medium, modeled with
a (3+1)-dimensional ideal relativistic hydrodynamic approach [21]. The purpose of
this study is to answer the question whether general features seen in the data, such
as the presence of elliptic flow and a small value of the nuclear modification factor
of heavy flavor observables, can be used to conclude that heavy quarks actually have
thermalized in the QGP medium created in ultra-relativistic heavy-ion collisions, or
whether the heavy quarks remain off-equilibrium during their entire evolution, de-
spite exhibiting a strong response to the surrounding QGP. The contents presented

in this section has been originally published in Ref. [184].
3.2.1 Thermalization Criterion

Before exploring the thermalization process of heavy quarks, one needs to define
the thermalization criterion. Our criterion is based on the heavy quark energy and
momentum spectra.

In a medium at fixed temperature without any inherent collective flow, one may

apply the canonical ensemble to thermalized heavy quarks:

Vo
F(B)dpadpydp. = Z e " dpudpydp., (3.49)

where V' is the volume in position space and Z is the partition function. Alternatively,

we may write

(3.50)
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Note that d®p = p?dpdQ = pEdEdS), we have

N = Ce BIT,
pEdE

(3.51)

This allows for a straightforward extraction of the “temperature” of the heavy quark
ensemble via an exponential fit. While this particular form for the energy distribution
provides a convenient representation for the extraction of the temperature parameter,
later we will show that it is insufficient to actually indicate thermalization, since we
still need to verify isotropy of particle momenta.

To obtain the momentum spectrum in a specific direction (take Z as an example),

we start from Eq.(3.49) again and integrate over p, and p,. This yields

f(pz) _ —/dpmdpy +p§+p2+m2

2m 00
- %/ v / prdpre VP
0 0

= CT(\/P?+m? + T)e VPEm/T, (3.52)

Note that if we initialize our heavy quark ensemble with a finite momentum along a
given coordinate axis, its momentum distribution along that axis will be blue-shifted
— this can be taken into account by shifting the distribution along that axis using a

parameter p;; e.g. for the z axis this would give *

F(p2) = CT(V(ps — p)? + m?2 4 T)e™Vp=p)+m?/T. (3.53)

For an expanding and cooling QGP medium, establishing thermalization requires

the following procedure: for a given time step we select all cells in our hydrodynamic

1 Rigorously, p. should be boosted via vp, +v8E. However, it is found that in our study, for /3
not too large (below 0.8), the much more convenient Eq.(3.53) already fits the spectrum well (with
an error less than 5% for T').
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FIGURE 3.1: The time evolution of the energy spectrum. (a) shows the results
between 2 fm/c and 8 fm/c, where no linear relation is observed; and (b) shows the
results between 10 fm/c and 30 fm/c, where the linear relation is apparent.

medium within a temperature band of 7'+ AT. We then boost all charm quarks lo-
calized in those cells into the respective local rest frames of the cells they are residing
in and calculate the resulting heavy quark energy and momentum distributions. If
both the energy [Eq.(3.51)] and the momentum [Eq.(3.53)] distributions of the heavy
quark ensemble yield thermal distributions with a temperature that lies within our
selected temperature band, we can conclude that the selected heavy quark ensemble
has thermalized in the medium at the given temperature and selected time step.

This procedure can then be repeated for other temperature bands and time steps.
3.2.2  Equilibration in a Static Medium

We start our investigation by simulating the diffusion of charm quarks in an infinite
medium with a static temperature of 300 MeV. The initial momentum of the charm
quarks is chosen to be 5 GeV in the Z direction and the diffusion coefficient is set
as D = 6/(2nT) which will be shown later to provide the best agreement to data
on the elliptic flow and the nuclear modification factor of heavy mesons observed at
RHIC and LHC.

Figure 3.1 shows the energy spectrum dN/pEdE vs. E for different diffusion
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times. We see that a linear relation between In(dN/pEdFE) and E does not occur
for diffusion times shorter than approx. 10 fm/c. The distribution appears thermal
for longer diffusion times. However, the slope continues to increase as a function
of diffusion time and does not converge to the temperature of the medium until
a diffusion time of around 30 fm/c. Therefore, despite the shape of the energy
distribution, our ensemble of charm quarks is not fully equilibrated for diffusion
times between 10 fm/c and 30 fm/c.

Figure 3.2 shows the momentum distributions in the three directions for the
same diffusion times as displayed in Fig.3.1. Since the initial momentum of the
charm quarks is in the 2 direction, the p, and p, spectra are symmetric with respect
to 0 and are virtually identical to each other. To the contrary, the center of the p,
spectrum, which initially is a d-function at p, = 5 GeV due to our initial condition,
shifts towards 0 as a function of increasing diffusion time, signifying the influence of
the drag term of the Langevin equation on the dominant direction of propagation.

The widths of the momentum distributions along all three coordinate axes start to
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agree with each other for diffusion times later than 25 fm/c, hinting at a common
“temperature”. At that time, full isotropy of the momenta is obtained.

We can obtain the “temperature” evolution of the charm quark ensemble by fit-
ting the momentum distributions with Eq.(3.53), and compare the respective values
of the temperature parameter with those obtained from the slope of the energy dis-
tribution. The results are shown in Fig.3.3 as a function of diffusion time, which

helps to summarize our main observations from the previous figures as follows:

e for diffusion times less than 10 fm/c, the p, spectrum is distinctly separated
from the p, and p, spectra. The temperature parameters extracted from the
widths of the distributions initially rise and are significantly above the actual
temperature of the medium. They are of different values for the transverse mo-
mentum distributions vs. the longitudinal momentum distribution (as defined
by the z axis). No temperature can be obtained from the energy distribution

since no linear relation is observed at those short diffusion times.

e for diffusion times between 10 fm/c and 20 fm/c, all momentum distributions
as well as the energy distribution exhibit a thermal shape, even though the
extracted temperature parameters strongly differ among each other and from
the temperature of the medium. Interestingly, the temperature parameter ex-
tracted from the longitudinal momentum distribution seems to track that from
the energy distribution during this time interval. However, both are signifi-
cantly higher than the temperature parameter extracted from the transverse

momentum distributions.

e at a diffusion time of roughly 25 fm/c, all temperature parameters agree well
with each other and have converged to the temperature of the medium, signal-

ing full equilibration of our charm quark ensemble.

72



Based on our observations, we define a “quasi-equilibrium” stage to be a near equilib-
rium state where the linear relation of the In(dN/pEdFE) vs. E distribution appears
and the temperature parameters extracted from energy and p, spectra are of approx-
imately the same value. During this stage, our ensemble of charm quarks exhibits
thermal properties, even though it has not yet fully equilibrated with the surrounding
medium. In contrast, a “full equilibrium” is obtained when the temperature param-
eters extracted from different ways agree with each other and reach the temperature
of the medium.

To further understand the nature of the quasi-equilibrium state and why the
“temperature” of the charm quarks is still higher than that of the medium in this
stage of the evolution, despite the linear relation between In(dN/pEdE) and E, we
may have to take into account a “blue shift” caused by the center of mass motion
of the charm quarks: for our analysis, all charm quarks were initialized to carry
a momentum of 5 GeV in the Z direction. This initial momentum can be seen as
a center of mass motion — it contributes to the total energy of the particle, but
is non-thermal in origin. As the charm quark diffuses through the medium, this
initial kinetic energy will dissipate through the drag term of the Langevin equation.
During this dissipation dominated phase of the charm quark evolution, the center of
mass motion will contribute to an additional part of energy and therefore a higher
“temperature”. In this sense, the quasi-equilibrium state can be understood as a
stage when the thermal part of heavy quark motion is already close to equilibrium
but the center of mass motion has not entirely dissipated.

This blue shift can be verified by fitting Eq.(3.53) with a momentum distribution
that includes a momentum shift p,. We will see that the blue shift is suppressed if the
initial momentum of the heavy quarks is small enough that it becomes comparable
to its thermal motion. This in fact helps prove that the blue shift is the reason for
a higher heavy quark “temperature” in the quasi-equilibrium state.
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FIGURE 3.4: A comparison of the charm
quark thermalization processes with dif-
ferent medium temperatures.

FIGURE 3.5: The variation of critical
times of thermalization with respect to
the medium temperature.

With the above definitions of thermalization process of heavy quarks, we may
explore how such process depends on the properties of the medium as well as heavy
quarks themselves. As above, we initialize charm quarks with 5 GeV momentum
along the Z direction. The spatial diffusion coefficient is set to be D = 6/(27T).
Here, we vary the temperature of the static medium and examine its corresponding
influence on the thermalization process. The results are shown in Fig.3.4 and Fig.3.5.

In Fig.3.4, we compare the thermalization of charm quarks in a 300 MeV tem-
perature medium to that in a medium at 160 MeV. For charm quarks with an initial
momentum of 5 GeV, their “temperature” extracted from the dN/dp, distribution
increases first, and then decreases until it approaches the medium temperature at
which time the full equilibrium is reached. It is observed that the turning point
between the rise and fall of the “temperature” is close to the onset of the quasi-
equilibrium stage. A similar trend can be observed via the dN/dp,, distribution
(not shown here), but the range of variation in the extracted “temperature” is not
as large as that from the dN/dp, distribution. The above observation can also be
obtained from media with other temperatures indicated in Fig.3.5 (not shown here).

We can understand the “turning point” behavior as follows. Since the charm
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quarks are all sampled with 5 GeV initial momentum in the Z direction here, they
are initially at zero temperature with respect to their center of mass frame. During
the diffusion process, the momenta of the charm quarks are randomized and thus their
“temperature” increases. When the random motion approaches equilibrium, i.e., the
entrance of the quasi-equilibrium state, the charm quarks’ “temperature” might be
higher than the medium temperature if the initial center of mass momentum of the
ensemble has not entirely been dissipated. After that, this temperature parameter
gradually decreases towards the medium temperature with the dissipation of the
center of mass momentum. Such a rise in the temperature parameter before reaching
the quasi-equilibrium results from this particular initialization of charm quarks, and
will not occur for more realistic scenarios where charm quarks are initialized in more
realistic ways.?

As the temperature of the medium decreases, both the time needed to reach
quasi-equilibrium and the time to obtain full equilibrium increase. The time to enter
the quasi-equilibrium stage can vary from 8 fm/c (for 350 MeV medium) to 35 fm/c
(for 160 MeV medium), and the time to approach the full equilibrium can vary from
20 fm/c (for 350 MeV medium) to 70 fm/c (for 160 MeV medium). This variation
is clearly shown in Fig.3.5.

In Fig.3.6 we investigate how the thermalization speed is affected by the initial
momentum of charm quarks. We utilize a static medium with 160 MeV temperature
and show our analysis for charm quarks with initial momenta of 1 GeV and 3 GeV
in the Z direction (results for an randomized initialization in the z-y plane can be
found in our original work [184]).

We observe that the results of 3 GeV initial momentum are similar to those

2 The temperature parameter before quasi-equilibrium is approached provides some insight into the
dynamics of thermalization, namely the interplay of momentum broadening vs. energy dissipation
through collisional energy loss. However, the values of the “temperature” obtained in this domain
are not indicative of thermal behavior but just a measure of the broadening of the charm quark
momentum distribution, since Eq.(3.53) is only strictly valid near equilibrium.

75



T T T T T T T T T T 200 T T T T T T T T
350} X &——a P,=3GeV: from the p, spectrum . A— —4 Timeto reach quasi-equilibrium
T(medium)=160MeV |5 _g p,=3GeV: from the energy spectrum F e—e Timeto reach full equilibrium
[ A - . Ap=1GeV: fromthe p, spectrum i
300F @ — @ p=1GeV: from the energy spectrum |~ 150 T(medium)=160MeV 1
%\ 250 >
s T E 100f i
+ 200 =
150 50 1
100F 4 e
. 1 . 1 1 1 1 . : | . ] \ ] \ ]
0 10 20 30 0 50 60 % 3 5 9 12
t (fm/c) D(2mT)

FIGURE 3.6: A comparison of the ther- Figure 3.7: The variation of critical
malization processes of charm quarks times of thermalization with respect to
with different initial momenta. the diffusion coefficient of the medium.

of the 5 GeV case shown in Fig.3.4: the “temperature” obtained from the dN/dp,
distribution first increases and then decreases until the full equilibrium is approached,
and the turning point corresponds to the entrance of the quasi-equilibrium stage.
However, the results of the 1 GeV initial momentum case are different. There is no
overshoot in the “temperature” for this case. Instead, the “temperature” obtained
from the dN/dp, distribution keeps increasing gradually towards the temperature of
the medium until the full equilibrium is reached. In other words, unlike in the higher
initial momentum cases, the “temperature” of the charm quarks with 1 GeV initial
momentum is always below that of the medium until reaching full equilibrium. We
attribute this difference to the suppression of the blue shift for the center of mass
motion of the charm quarks, which is too small in this case to contribute significantly
to the energy of the charm quark.

For the low initial momentum situation, the onset of the quasi-equilibrium stage
can no longer be determined via the “turning” point, but only by the appearance
of the linear relation in the In(dN/pEdFE) vs. E distribution. In our simulation,
for heavy quarks with 1 GeV initial momentum, this linear relation does not appear

until 10 fm/c for the 160 MeV medium.
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Additionally, a comparison between Fig.3.4 and Fig.3.6 suggests that with a
decrease of the magnitude of the initial momentum, the thermalization occurs faster.
For instance, the times needed for 5 GeV charm quarks to reach quasi-equilibrium and
full equilibrium are 35 fm/c and 70 fm/c respectively, while the respective times for
1 GeV charm quarks are 10 fm/c and 20 fm/c. This decrease can also be understood
with the concept of the blue shift: it takes less time for a smaller initial momentum
to dissipate.

In Fig.3.7, we examine the influence of the diffusion coefficient on the process of
heavy quark thermalization. We set the medium temperature to 300 MeV, initialize
charm quarks with a momentum of 5 GeV in the Z direction, and vary the diffusion
coefficient to investigate its effect on the thermalization time. The results indicate
that as the diffusion coefficient decreases, i.e., the drag coefficient increases, the
thermalization process speeds up. The times needed to enter the quasi-equilibrium

state and the full equilibrium state can be respectively reduced from 70fm/c and

150fm/c for D = 12/(27T) to 10 fm/c and 25 fm/c for D = 1.5/(27T).
3.2.3  Charm Quark Thermalization in a QGP Medium

After a detailed investigation of the heavy quark thermalization process inside a
static medium, we extend our study to a realistic expanding QGP medium. The QGP
medium is generated by a (3+1)-dimensional ideal hydrodynamic calculation with
MC-Glauber initial conditions that have been adjusted to reproduce bulk properties
of the QCD medium created in central Au+Au collisions at RHIC [21]. The initial
distribution of charm quarks here is generated by the VNI/BMS parton cascade
model [189, 190]. The parameters chosen for both the hydrodynamical evolution
and the heavy quark initialization here are consistent with the experimental setup
of /s = 200 GeV Au-Au collisions with an impact parameter of 2.4 fm. Although

at about 8 fm/c the medium temperature drops below Tt (160 MeV), we extend our
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FIGURE 3.8: Thermalization of charm quarks in a realistic QGP medium. (a) shows
the results with a diffusion coefficient of D = 6/(277'); and (b) shows the results
with a diffusion coefficient of D = 1.5/(27T).

study of charm quarks to the time of kinetic freeze-out (around 20 fm/c), assuming
that D mesons interact with the medium in a similar way as the charm quarks do
with the QGP. Details about the heavy flavor hadronization and the subsequent
hadronic interactions will be discussed later in this dissertation.

We show our results in Fig.3.8. As shown in Fig.3.8(a), using a diffusion coefficient
of D =6/(2nT), the “temperature” of the charm quarks never manages to catch up
with that of the medium until freeze-out. A closer observation indicates that the
charm quarks remain far off equilibrium during the entire lifetime of the QGP phase,
i.e., when the medium temperature is above T,. However, Fig.3.8(b) suggests that
if the diffusion coefficient is reduced to D = 1.5/(2xT"), the thermalization process
accelerates significantly and the “temperature” of the charm quarks is able to catch
up with that of the medium during its QGP phase, i.e., above T,. This result
does not imply a small value as D = 1.5/(27T") for the diffusion coefficient, but
only indicates that with a currently favored value of D = 6/(27T'), which describes
experimental results well, charm quarks remain off-equilibrium during their entire
evolution although they exhibit a strong response to the surrounding QGP.

To summarize for this section, we have studied the dynamics of heavy quark
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thermalization in the framework of the Langevin equation. Simulations have been
carried out in both static and dynamic QGP media, and our methodology allows
for the extraction of the “temperature” of the heavy quarks by fitting either the
heavy quark energy or its momentum spectrum. Using an idealized static medium,
it is found that charm quark thermalization occurs in two distinct steps: first a
quasi-equilibrium is obtained in which the charm quark energy distribution matches
that of a thermal medium, but the momentum distribution remains non-isotropic;
subsequently the charm quark momenta isotropize and the charm quarks are in
full equilibrium with the surrounding medium. The occurrence of this two step
process might be explained by a blue shift effect due to the center of mass motion
of the heavy quarks. We define full equilibrium to imply that the “temperature”
extracted from both methods, fitting the energy and the momentum distributions,
matches that of the medium. Our simulations in the static medium indicate that
as the medium temperature decreases, it takes a longer time for the charm quarks
to thermalize. Additionally, the thermalization time is extremely sensitive to the
diffusion coefficient of the medium: as the diffusion coefficient decreases, or the drag
coefficient increases, the thermalization process can be significantly accelerated. A
decrease in the magnitude of the initial momentum leads to a suppression of the blue
shift effect and therefore results in a faster thermalization process, due to the initial
charm quark momenta being closer to the thermal momentum scale of the system.
For a realistic expanding QGP medium, we find that for a reasonable choice of
the diffusion coefficient, quasi-elastic scatterings between heavy quarks and thermal
partons do not infer the thermalization of heavy quarks within the QGP lifetime.
Therefore, the manifestation of collective behavior, such as a significant elliptic flow,
or the presence of a strongly interacting system (via the nuclear modification factor)
is insufficient to conclude that charm quarks have actually thermalized in the medium
even though their properties are strongly affected by the surrounding medium.
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3.3 Model and Parameter Dependence of Heavy Quark Energy Loss

In this section, using the Langevin framework developed in Sec.3.1, we investigate
how heavy quark spectra in relativistic heavy-ion collisions are affected by various
parameters of the calculation of heavy quark energy loss, such as the initial pro-
duction of heavy quarks, the geometry and the flow properties of the hydrodynamic
medium, and the coupling strength between heavy quarks and medium. This will
provide us with important quantitative understanding of the interaction dynamics of
heavy quarks in a hot and dense medium before we move on to make a direct com-
parison between our calculations and experimental data. The contents presented in

this section has been originally published in Ref. [185].
3.3.1 Calculation Setup and Final State Observables

As discussed in the previous subsection, we continue to utilize the fully (3+1)-
dimensional ideal relativistic hydrodynamic model [21] to describe the spacetime
evolution of the QGP medium. Two different initial condition models, the Glauber
and the KLN-CGC model, are utilized to describe the initial energy distribution of
the medium before the hydrodynamical evolution commences. These two initial state
models provide energy/entropy density profiles with different spatial anisotropies in
the transverse plane, a larger eccentricity for the KLN-CGC model than the Glauber
model. The comparison between the two will allow for a study of the sensitivity of
heavy-quark observables to the initial spatial make-up of the system. We will focus on
mid-central Au-Au collisions at RHIC with a center-of-mass energy /sxn=200 GeV
per nucleon pair and use an impact parameter of b = 6.5 fm throughout the calcula-
tion.

Since the production of heavy quarks is dominated by processes with large trans-

verse momentum transfer, perturbative QCD is applied to calculate the initial mo-
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mentum distribution of heavy quarks prior to their propagation through the QGP
medium. We fit a leading-order perturbative QCD calculation with a power-law
distribution [118], and sample the initial transverse momentum of heavy quarks ac-

cording to the following parametrization:

dN 1
X s
dsz (p2T + A2)a

(3.54)

where a = 3.9 and A = 2.1 are taken for charm quarks, and o = 4.9 and A = 7.5 for
bottom quarks. In this work, we focus on the energy loss of heavy quarks at mid-
rapidity and therefore assign no initial longitudinal momentum to heavy quarks. We
have verified that the introduction of initial longitudinal momenta that are uniform
around the mid-rapidity region (=1 < y < 1) does not affect our final transverse
momentum spectra and does not affect the systematics we are about to explore. The
relative normalization (ratio) of charm and bottom quarks is not fixed, but rather
serves as a free parameter in our simulation. Later we will investigate the effect
of this normalization on the quenching and the elliptic flow of heavy flavor decay
electrons.

The initial spatial distribution of heavy quarks in the transverse plane is sampled
according to the distribution of binary collisions as calculated from a Monte-Carlo
Glauber model. With a given spatial and momentum initialization of heavy quarks,
we are able to simulate their time evolution inside the QGP in the framework of
Langevin equation as described in Sec.3.1.4. After passing through the medium, their
fragmentation into heavy flavor mesons and the subsequent decay into electrons are
simulated via PYTHIA 6.4 [137]. By default, the fragmentation process is calculated
with the Lund symmetric fragmentation function that is modified by the Bowler
spacetime picture of string evolution [191] for heavy quarks. The hadronic and the
subsequent semi-leptonic processes are combined for the decay of charm/bottom

hadrons in which all possible channels are taken into account. Details regarding the
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implementation can be found in the PYTHIA manual above and will be summarized
in Sec.5.1. Note that apart from fragmentation, the other hadronization mechanism
— heavy-light quark coalescence — is also important but has not been included in this
particular analysis. A unified hadronization framework of the fragmentation plus
coalescence model for heavy quarks will be developed later in Chapter 5.

After freeze-out, the final state particles in the mid-rapidity region (—1 <y < 1)
are selected and their momentum distributions are utilized to calculate the nuclear

modification factor Raa and the elliptic flow coefficient vy as follows:

1 dNAA/de
Ncoll dep/de ’

Raa(pr) = (3.55)

oa(pr) = {cos(26)) = <p~’2‘f ‘p5> . (3.56)

A

Note that when heavy quarks are directly analyzed, the denominator and the numer-
ator of Raa are the initial heavy quark distribution and the final state distribution
of suffering energy loss and passing through the medium. When analyzing heavy fla-
vor mesons or electrons, the denominator represents the spectra of the corresponding
particles fragmented/decayed directly from the initial heavy quarks, while the numer-
ator represents those produced from the heavy quarks after propagating through the
QGP medium. (---) in Eq.(3.56) represents the average over all analyzed particles

in a selected pr bin.
3.3.2  Charm Quark Energy Loss and Flow

The energy loss of heavy quarks and the development of the elliptic flow crucially
depend on the geometrical shape and the dynamical evolution of the thermalized
QGP medium that the heavy quarks traverse. The total energy loss of heavy quarks is
mostly controlled by the overall magnitude of the energy density of the medium, while

the elliptic flow is more sensitive to the geometry of the medium as it characterizes
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the anisotropy of the final transverse momentum spectra. In typical non-central
nucleus-nucleus collisions, the overlap region of the two nuclei is anisotropic in the
transverse plane, thus resulting in an anisotropy of the produced hot and dense
medium. Due to the different pressure gradients in different directions, anisotropic
flow is built up during the hydrodynamical evolution of the thermalized QGP.

In such an anisotropic dynamical medium, there exist two factors affecting the
anisotropy of heavy quark energy loss: the different path lengths through the medium
and the different flow profiles experienced by the heavy quarks traveling in different
directions. Longer paths will be traversed by heavy quarks moving in the out-of-
plane (y) direction than in the in-plane (z) direction, where the reaction plane is
defined to be spanned by the impact parameter and the beam axis directions. Thus
in absence of collective flow from the medium, heavy quarks, after passing through
such an anisotropic medium, would have larger momentum in the x direction than
in the y direction, (p2) > (pi), resulting in a positive elliptic flow. In addition, the
collective flow of the medium also contributes positively to heavy quark elliptic flow
since the push of the radial flow is more prominent in the x direction. Therefore,
the total elliptic flow developed during the propagation of heavy quarks in such an
anisotropic hydrodynamic medium is due to a combination of these two factors.

We can separate these two effects in the simulation by switching on or off the
coupling of the collective flow of the thermalized medium to the evolving heavy
quarks. The decoupling from the collective flow can be accomplished by not boosting
the heavy quarks into the respective rest frame of the fluid cell for the Langevin
evolution. The comparison between the heavy quark evolution with and without
coupling to the collective flow is shown in Fig.3.9, where the left plot shows the
nuclear modification factor Raa and the right plot shows the elliptic flow vy of the
charm quarks as a function of the transverse momentum. We show results for two
different values of diffusion coefficient D = 1.5/(27T") and D = 6/(27T).
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FIGURE 3.9: A comparison between the influence of QGP media with and without
collective flow on Rap (left panel) and vy (right panel) of charm quarks. Both media
are generated with the Glauber initial condition.

The effect of the collective flow of the medium on the heavy quark energy loss can
be clearly seen from the plot of the nuclear modification factor Raa in Fig.3.9. It is
negligible at high pt, and becomes observable at intermediate pr regime. Due to the
push by the radial flow, heavy quarks are less suppressed, i.e. have a larger Rax, at
larger transverse momenta, since the radial flow effectively transports low momentum
heavy quarks to larger transverse momenta. Similar effects stemming from the elliptic
flow of the medium are observed for the heavy quark elliptic flow coefficient v,. At low
pr, the collective flow of the medium presents a significant influence on the charm
quark vs. At high pr, the collective flow effect is small, thus the development of
charm vy is dominated by the geometric anisotropy of the medium. The dominance
of the medium collective flow at low pr for v, might indicate that low pr charm
quarks are more likely to lose a significant amount of their momenta and therefore
thermalize in the medium, and thus flow more like the thermalized medium.

A closer observation suggests that with a decrease of the diffusion coefficient,
i.e., an increase of the coupling strength, the influence of the geometric asymmetry

becomes more dominant. For instance, Fig.3.9 reveals that for D = 6/(27T"), the geo-
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FIGURE 3.10: Effects of different QGP profiles (Glauber vs. KLN-CGC initial

conditions) on the charm quark Raa (left panel) and v (right panel).

5

metric asymmetry of the medium contributes to only approximately half of the charm
quark vy at the peak value (around pr = 1.5 GeV). However, for D = 1.5/(27T'), such
contribution increases to more than 80% at the corresponding peak value (around
pr = 3 GeV). Note that such increase of the geometric contribution is not unlimited.
With further reduction of the diffusion coefficient (D < 1.5/(27T)), i.e., a larger
coupling between heavy quarks and the medium, the energy loss of charm quarks
will be so intense that all of them will be captured by the medium. In that limit,
charm quarks thermalize with the medium during the QGP lifetime (see Sec.3.2),
and therefore, their vy will entirely follow the collective flow of the medium. In our
simulation, the choice of D ~ 1.5/(27T") provides the largest elliptic flow for the final
heavy quarks.

We may further investigate the effect of the spatial medium distribution on the
heavy quark energy loss and the development of heavy quark elliptic flow by utilizing
different initial conditions for the hydrodynamic simulation of the QGP. Two different
initial condition models are widely used for the initialization of the energy density
distribution prior to the hydrodynamic evolution: the Glauber model and the KLN-

CGC model. These two models provide initial energy density profiles with different
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anisotropies in the transverse plane. In particular, the KLN-CGC model exhibits
a larger eccentricity e, = (y* — 2%)/(y* + 2?) than the Glauber model, which will
manifest itself in larger elliptic flow coefficients for the heavy quarks.

The comparison between these two initial condition models is shown in Fig.3.10,
where the left frame of the figure shows the nuclear modification factor Raa and
right shows the elliptic flow v,. As expected, a significantly larger elliptic flow is
observed for the charm quarks traveling through the hydrodynamic medium with
the KLN-CGC initial condition than those with the Glauber initial condition. As
indicated by Fig.3.10, the difference can be as large as 20% for D = 6/(27T") and
40% for D = 1.5/(27T). We also observe that while vy is sensitive to the choice of
the initial condition, the nuclear modification factor R is not significantly affected
by the choice of these two initial conditions. This is due to Raa being controlled
by the overall normalization of the density profile in the hydrodynamical evolution
which has been tuned to describe the properties of bulk matter, such as the 7 and

K spectra.
3.3.83 D Mesons and Heavy Decay Electrons

In the above discussion, we have focused on the effects of initial conditions and
medium parameters on heavy quark energy loss and the development of heavy quark
elliptic flow. Now we investigate the corresponding sensitivities of heavy flavor
mesons and their decay electrons. Since the KLN-CGC initial condition provides
a larger eccentricity for the initial energy density profile and thus produces a larger
elliptic flow of heavy quarks during their medium evolution, we use it for the remain-
der of our analysis. This is merely to obtain the largest possible values of the final
elliptic flow, since most of the previous calculations seem to under-predict the elliptic
flow data of non-photonic electrons once the model parameters have been tuned to

describe the measured nuclear modification factor.
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FIGURE 3.12: Raa (left panel) and vy (right panel) of electrons decayed from charm
quarks. The QGP medium is generated with the KLN-CGC initial condition.

Figures 3.11 and 3.12 display the numerical results of the nuclear modification
factor Raa and the elliptic flow vy for D mesons and D-decay electrons. Three
different values of diffusion coefficients are used for comparison D = 1.5/(27T), D =
3/(27T), and D = 6/(27T). We observe that the transverse momentum dependence
of Raa and v, are similar to that for charm quarks as shown in the previous figures.

For the heavy flavor decay electron spectra, another important factor is the rel-

ative contributions from charm vs. bottom quarks. Since charm and bottom quarks
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FIGURE 3.13: A comparison of Raa (left panel) and vy (right panel) of non-photonic
electrons between different initial charm/bottom ratios. Set D = 6/(27T") and the
QGP medium is generated with the KLN-CGC initial condition.

have different masses, they are produced with different initial transverse momen-
tum distributions, and experience different energy loss and coupling to the collective
flow in medium. This manifests itself in different Raa and vy systematics for D
and B mesons respectively and subsequently translates into different behavior for
their respective decay electrons. The electrons at lower pr are dominated by the
charm quark decay, while in the high pr regime the bottom quark dominates as the
source of these electrons. Since there are multiple uncertainties affecting the rela-
tive normalization of the charm and the bottom quark production, for example the
scale dependence in pQCD calculation of initial heavy quark production [192], we
treat the ratio of charm and bottom quarks as a free parameter for our calculation,
and investigate how the variation of this ratio affects the final non-photonic electron
distributions.

The results are shown in Fig.3.13 and Fig.3.14 for two different values of diffusion
coefficients, D = 1.5/(27T") and D = 6/(27T'), respectively. We compare four differ-
ent initializations here — pure charm, pure bottom, and two mixtures of charm and

bottom quarks: 99.2% charm quarks with 0.8% bottom quarks, and 98.5% charm

88



2 T T T T T T T T 0.1 T T T T T T T T
A—A 100% charm
—l 99.2% charm + 0.8% bottom| 1
@—@ 98.5% charm + 1.5% bottom
100% bottom 0.08[ .
1.5 5
3 \ D@rT)=15 0.061
ot 1 ] X
0.04F
0.5
0.02f
C L 1 " 1 " 1 " 1 " 0 e, 1 " 1 " 1 1 =
0 1 2 3 4 5 1 3 4 5
p; (GeV) p; (Gev)

FIGURE 3.14: A comparison of Rax (left panel) and vy (right panel) of non-photonic
electrons between different initial charm/bottom ratios. Set D = 1.5/(27T") and the
QGP medium is generated with the KLN-CGC initial condition.

quarks with 1.5% bottom quarks. As shown in [192], the bottom quark contribu-
tion to the electron spectra may start dominating over the charm quark contribution
at transverse momentum as low as 3 GeV or as high as 9 GeV. Our two hybrid
mixtures of charm and bottom quarks have about a factor of 2 difference in their
ratio, representing an estimate of the uncertainties due to our limited control of the
proton-proton baseline.

One observes from these two figures that the nuclear modification factor Raa
and the elliptic flow vy of heavy flavor decay electrons are very different for the pure
charm vs. pure bottom scenario. Bottom quarks are less suppressed than charm
quarks at high transverse momenta, thus less enhancement is observed at low trans-
verse momenta in the Rpa. The magnitude of the elliptic flow coefficient vy is much
smaller for electrons from the bottom decay than from the charm decay, again due
to the reduced energy loss experienced by the bottom quarks. In addition, we ob-
serve a difference in the transverse momentum dependence: while the elliptic flow
coefficient v, of electrons from charm decays has a peak value at intermediate trans-

verse momentum, that for bottom decays increases monotonically with increasing
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transverse momentum (below 5 GeV). This results from charm quarks contributing
mostly to the production of low transverse momentum electrons while bottom quarks
contributing mostly to high transverse momentum electrons because of their different
masses.

Due to the different behavior of charm vs. bottom decay electrons, the electrons
from a mixture of charm and bottom decays exhibit a very rich structure. Both
Raa and vy trend similar to the pure charm initialization at low transverse momenta
and converge to the values of the pure bottom quark scenario at high transverse
momenta. In the intermediate pr region where the transition from charm dominance
to bottom dominance in the origin of the decay electrons takes place, a non-monotonic
transverse momentum dependence of Rxs and vy is observed: a dip-peak structure
for Raa and a peak-dip structure for v,. Such a non-monotonic behavior is more
prominent for the smaller value of the diffusion coefficient D = 1.5/(27T") (Fig.3.14),
since a smaller value of the diffusion coefficient increases the interaction with the
medium and thus the energy loss of charm quarks and their elliptic flow, while such
an enhancement is far less for bottom quarks due to their larger mass. Current
experimental results seem not able to resolve whether such a peak-dip structure is
present or not in the non-photonic electron elliptic flow v, due to large experimental
error bars. Further improvement of the measurement of the detailed pr dependence
of non-photonic electrons would be helpful for the determination of the diffusion
coefficient and therefore the coupling strength between heavy quarks and the QGP.

Another important effect seen in Fig.3.13 and Fig.3.14 is the significant sensitivity
of heavy flavor decay electron vy to the initial charm-to-bottom quark ratio. For
instance, a 0.7% difference in the mixing ratio between charm and bottom quarks
in our simulation leads to a variation of approximately 25% in v, for a diffusion
coefficient of D = 6/(27T) and over 30% for D = 1.5/(27T"). As has been discussed
earlier, significant uncertainties regarding the initial heavy quark spectra are still
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present in our current phenomenological calculations, and thus provide a sizable
uncertainty for the prediction of the quenching and the elliptic flow of non-photonic
electrons.

To summarize this section, we have studied the model and parameter dependence
of heavy quark energy loss within the Langevin approach developed in Sec.3.1.4. Nu-
merical results are presented for both the nuclear modification factor and the elliptic
flow of heavy quarks, heavy flavor mesons and their corresponding non-photonic de-
cay electrons. We have investigated in detail how the Rap and vy are affected by
various components of the model, such as the geometry and the collective flow of the
hydrodynamic medium, the initial production ratio of charm to bottom quarks and
the coupling strength between the heavy quarks and the medium.

We have focused on two particular properties of the medium that affect the
heavy quark energy loss — its geometric anisotropy and its collective flow. It is
found that the geometric anisotropy dominates the final heavy quark distributions
in the high pr region, while the collective flow of the medium dominates the low
pr region. The impact of the initial QGP geometry on the heavy quark energy loss
has been explored by comparing the Glauber and the KLN-CGC initialization of the
hydrodynamic medium. We found that while a similar nuclear modification factor
R x is observed for both initial condition models, a significantly higher heavy quark
elliptic flow vy is found for the KLN-CGC model. We have further investigated
the sensitivity of the spectra and the elliptic flow of non-photonic electrons to the
relative contributions from charm and bottom quarks. It is found that a less than 1%
difference in the initial charm-to-bottom ratio can lead to more than 30% variation
of the non-photonic electron spectra. Therefore, narrowing down these uncertainties

is essential for a better understanding of the interaction dynamics between heavy

quarks and the QGP.
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4

Medium-induced Gluon Radiation of Heavy Quarks
inside the QGP

In the study of parton evolution and energy loss in a dense QCD matter, two im-
portant mechanisms are usually considered: quasi-elastic scattering with medium
partons and medium-induced gluon radiation [69, 67]. In the previous chapter, we
constructed a Langevin framework for the former mechanism. This should be suffi-
cient for the description of heavy quark motion at low transverse momentum regime
because the phase space for the latter process — gluon radiation — is restricted by
their large mass. This is known as the “dead cone effect” [120]. However, as we ex-
tend our investigation to higher pr regions, heavy quarks become as ultra-relativistic
as light partons, and therefore it is no longer reasonable to neglect radiative energy
loss. In this chapter, we will modify the classical Langevin equation so that it can
also incorporate the medium-induced gluon radiation of heavy quarks by treating
gluon emission as a recoil force term.

We will first demonstrate how gluon radiation is introduced into the classical

Langevin framework in Sec.4.1. Subsequently, within this new framework, we will
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compare the contribution from collisional and radiative energy loss to the in-medium
evolution of heavy quark in Sec.4.2, and show that while quasi-elastic scattering
dominates heavy quark motion at low momenta, gluon radiation dominates at high
momenta. In Sec.4.3, we apply our modified Langevin approach to an investigation of
how the energy loss of heavy quarks is affected by initial state fluctuations in heavy-
ion collisions. The contents of Sec.4.1 and Sec.4.2 have been originally published in

Ref. [134, 107] and Sec.4.3 has been published in Ref. [193].

4.1 The Modified Langevin Equation

As illustrated in the previous chapter, in the limit of small momentum transfer, the
multiple scattering of heavy quarks off thermal partons inside a QGP medium can be
treated as Brownian motion and thus is typically described using the Langevin equa-
tion. However, in addition to the collisional energy loss resulting from such quasi-
elastic scatterings, heavy quarks may also lose energy through medium-induced gluon
radiation. To incorporate both collisional and radiative energy loss experienced by
heavy quarks propagating through the dense QGP, we modify the classical Langevin
equation Eq.(3.44) as follows:
da; = iy,

B (4.1)

dp; = =T (P)ps + Vdtv/rp; + FE""dt,

The first two terms on the right-hand side of the second line are the drag force and
the thermal random force from the original Langevin equation, and the third term
F glion = —@Pgiuon /dt is introduced to describe the recoil force exerted on heavy quarks
due to gluon radiation, where pPyruon denotes the momentum of radiated gluons.

Similar to Eq.(3.46) and Eq.(3.47), we discretize this modified Langevin equation
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as follows:

xi(t+ At) = x;(t) + At, (4.2)

pi(t + At) = pi(t) — T [B(t)] ps () At + FPermal(p) At — Ap(t), (4.3)

in which the thermal force satisfies the following correlation function

K

A7 9ii00n (4.4)

<Fvithermal (t)thhermal(t + nAt)>p —

as before and thus each spatial component of Fh™™al during a At can still be in-
dependently sampled with a Gaussian distribution whose width is \/m in our
numerical simulations.

In Eq.(4.3), APgiuon is the momentum of gluons radiated during the time interval
At. We determine the probability of this gluon radiation during each inteval At

according to the average number of gluons in this time interval:

2 dN, gluon

—~eluon 4.
T dzdk? dt (4:5)

Praa(t, At) = (Ngon(t, At)) = At/d:)sdk

We choose sufficiently small time steps At to ensure that the average radiated gluon
number is smaller than 1 in At¢. In this work, we utilize the results of the higher-twist

calculation for the medium-induced gluon spectra [84, 135, 122]:

N s 2 4
dNgluon _ QOzSP(x)qsm2 t—t, k3 | (4.6)
dxdk? dt mk} 274 k3 + a2 M?

where k, is the transverse momentum of the radiated gluon, and z is the frac-
tional energy carried by radiated gluons from the heavy quark. In addition, as
is the strong coupling constant, P(x) is the splitting function of the gluon and
¢ is the gluon transport coefficient. The gluon formation time 7; is defined as

1 = 2Bx(1 — z)/(k? + 22 M?), with E and M being the energy and mass of the
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heavy quark. Note that the quartic term at the end of Eq.(4.6) characterizes the
“dead-cone” effect, i.e., the suppression of gluon radiation due to the finite mass of
heavy quarks. In this work, we shall use a leading-order running coupling constant
a, and the related details can be found in Appendix A.

At a given time step, Eq.(4.5) is used to determine the probability of radiating
a gluon. If a gluon is formed, its energy and momentum will be generated using a
Monte-Carlo method according to the gluon radiation spectrum in Eq.(4.6). After a
gluon is emitted from the heavy quark, the initial time ¢; in the equation is reset to
zero so that the probability of radiating the next gluon starts to accumulate again
with time. Note that the framework we describe here does not necessarily require
the higher-twist formalism — other energy loss formalisms can be used as well, as
long as they provide the distributions for both energy and transverse momentum of
the radiated gluons.

For the classical Langevin equation without the contribution from gluon radiation,
we have the fluctuation-dissipation relation I' = /2T E. We assume this still holds
for the thermal drag term and the noise term in our modified Langevin equation.
However, the detailed balance between gluon radiation and absorption has not been
rigorously included into our current framework due to the lack of the latter process.
To mimic this balance in the simulation of radiative energy loss, we impose a lower
cutoff wg = «T for the gluon energy. Below such a cutoff, the gluon emission is
disabled and the evolution of heavy quarks with low energies is completely controlled
by quasi-elastic multiple scattering for which the detailed balance is well defined.
Such a treatment for medium-induced gluon radiation ensures that heavy quarks
achieve thermal equilibrium after sufficiently long evolution times. Meanwhile, we
use § = 2kC'4/CF to relate the gluon transport coefficient (signifying the momentum
broadening of gluon in the transverse direction) and the momentum space diffusion
coefficient of heavy quark, where Cr = N, = 3 and Cy = (N? —1)/(2N.) = 4/3
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FIGURE 4.1: Thermalization process of charm quarks in a static medium, compared
between different lower cutoffs of gluon energy.

are the color factors for quarks and gluons. With such a setup, we only have one
free parameter in the Langevin framework as described above. To be consistent with
the previous chapter and other literature as well, we convert both ¢ and k into the
spatial diffusion coefficient of heavy quark defined in Eq.(3.45) and set D = 6/(277)
throughout the calculations in this chapter, which corresponds to a gluon transport
coefficient ¢ around 3 GeV?/fm at a temperature of T' = 400 MeV.

In Fig. 4.1 we provide a numerical check of the thermalization process of charm
quarks according to the modified Langevin equation. The charm quarks are all
initialized with an energy of 10 GeV and then evolve inside an infinite and static
medium with a constant temperature of 300 MeV. The temperature parameter of the
charm quark ensemble is extracted from their energy spectrum utilizing the method
as described in Sec.3.2. As is shown, if there is only collisional energy loss, the
temperature parameter of the charm quarks evolves to the medium temperature as
expected. We also examine such thermalization behavior when the gluon radiation is
introduced. If the energy cutoff for the gluon radiation is large enough, e.g., 277" in
the plot, the heavy quarks will eventually equilibrate with the medium temperature.

For the choice of 77", an equilibrium can still be achieved, with the only difference that
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the equilibrium temperature is shifted by a small amount, approximately 20 MeV
below the medium temperature.

In this work, the lower cutoff for radiative gluon energy is taken to be n7T", which
is the typical energy of the gluons in the thermalized QGP medium. Such choice
introduces 5-10% uncertainty in the equilibrium temperature, but should not sub-
stantially influence the description of heavy flavor observables presented later. Ad-
ditionally, if one considers all sources of experimental and theoretical uncertainties,
such as those in hydrodynamic initial conditions and the nuclear shadowing effect,
it might not be necessary to artificially increase the energy cut for gluon radiation
merely for the exact preservation of the detailed balance. A more rigorous treatment
would incorporate the absorption process as well in the above simulation of gluon
radiation. Such an effort has already been explored in the context of light parton
radiative energy loss [194] and will be pursued in a future study.

With the modified Langevin framework described above, we may now couple it to
a hydrodynamic medium to simulate the heavy quark evolution inside hot and dense
QCD matter created in relativistic heavy-ion collisions as described in Sec.3.1.4.
Starting with this chapter, the space-time evolution profiles of the QGP fireballs at
LHC and RHIC will be generated with a (241)-dimensional viscous hydrodynamic
model, which was developed by Song et al [22, 188] and has recently been modified by
Qiu and Shen for increased numerical stability [24]. We employ the code version and
parameter tunings that were previously used in Ref. [24]. In the following calculation,
a MC-Glauber model is adopted to generate the positions of participant nucleons and
binary collisions, providing both the initial conditions of hydrodynamics and the
spatial distribution of initial heavy quarks if not otherwise specified. As described
in Chapter 2, a leading-order perturbative QCD calculation will be adopted for the
momentum space initialization of heavy quarks, in which the nuclear shadowing effect
in nucleus-nucleus collision is taken into account by using the EPS08 parametrization
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FIGURE 4.2: A comparison of the evolution of the charm quark energy distribution
in a static medium between collisional, radiative and total energy loss.

[175] of the parton distribution function. As mentioned in Sec.3.1.4, the evolution
of heavy quarks in the pre-equilibrium state before the onset of the hydrodynamical
evolution (79 = 0.6 fm/c) is treated as free-streaming. Additionally, in this chapter
heavy quarks are also assumed to stream freely after they leave the QGP, i.e., when
the local temperature of the medium drops below T, (165 MeV for the hydrodynamic
model used here). The subsequent hadronization process and the interaction between

heavy mesons and the hadron gas will be discussed in later chapters.
4.2 Collisional vs. Radiative Energy Loss

Before moving on to utilize our updated Langevin framework to explore heavy flavor
observables, we first compare the contribution from each energy loss mechanism to

heavy quark evolution in this section.
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FIGURE 4.3: Comparison of radiative and collisional energy losses for charm (a) and
for bottom (b) quarks.

As shown in Fig.4.2, we start with the evolution of the charm quark energy
distribution due to the different energy loss mechanisms. Here, the charm quarks
are all initialized with 15 GeV energy before traveling through an infinite medium
with a fixed temperature of 300 MeV. From Fig.4.2, we observe that the energy
distributions start from a J-function at 15 GeV and then evolve with respect to time.
Before 2 fm/c, collisional energy loss dominates the charm quark evolution. However,
after 2 fm/c, gluon radiation starts to dominate. Moreover, the collisional energy loss
leads to a Gaussian smearing of the energy distribution, which should be a natural
result of multiple soft scatterings according to the “central limit theorem”. To the
contrary, gluon radiation generates a “long tail structure” of the energy distribution.

In Fig.4.3, we compare the total energy loss of heavy quarks after they traverse
a realistic QGP medium produced in 0-7.5% centrality Pb-Pb collisions at 2.76 TeV.
The z-axis represents the initial energy of heavy quarks and y represents the total
energy loss. As is shown, quasi-elastic scatterings dominate the heavy quark energy
loss in the low energy regime, while medium-induced gluon radiation dominates at
high energies. The crossing points are around 6 GeV for charm quarks and 16 GeV

for bottom quarks. These results indicate that collisional energy loss alone may
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provide good descriptions for the heavy flavor measurements at low pt but will
become insufficient when we extend to a higher pr regime, such as that measured by
the LHC experiments. Similar competition between the collisional and the radiative
energy loss will be observed in the heavy meson suppression and flow as will be shown

in the next chapter when hadronization is included.

4.3 Influence of Initial State Fluctuations on Heavy Quark Energy
Loss

As the first application of our modified Langevin framework, we explore the effects
of initial state fluctuations in heavy-ion collisions on heavy quark energy loss.

Fluctuations help reveal essential information on physical systems. For example,
the temperature inhomogeneity in the Cosmic Microwave Background that evolved
from the initial fluctuations after the Big Bang provides valuable knowledge on the
cosmological expansion. Similarly, there has been significant effort in studying initial
state fluctuations in our “little bang” system, such as the fluctuations of nucleon po-
sitions and color charges inside the colliding nuclei [39]. Some of the most interesting
consequences of initial state fluctuations include nonzero anisotropy in ultra-central
collisions and the presence of odd-order harmonics in initial geometry and collective
flow [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. Elliptic, triangular and other higher-order
harmonic flows have been measured at RHIC and LHC [50, 51, 52]. These measure-
ments have triggered great interest in studying the origin of initial state fluctuations,
and how they affect the dynamical evolution of the fireball and manifest themselves
in final state particle flow and correlations [41, 43, 46, 47, 195, 196, 197, 53]. One
of the purposes of these studies is to obtain a quantitative extraction of transport
properties such as the shear viscosity of the QGP matter produced in high energy
nucleus-nucleus collisions.

Initial conditions, especially the geometry of the heavy-ion collisions, still remain
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one of the major uncertainties in the extraction of a precise value for QGP shear
viscosity [23, 198, 26]. Various types of fluctuations, such as that of initial transverse
flow and longitudinal fluctuations [25, 197], as well as the medium response to jet
energy loss [199] may introduce more uncertainties in our understanding of the initial
states. The purpose of this section is to investigate the effect of fluctuating initial
conditions on the dynamics of heavy quark in medium and whether it is possible to
infer information on the initial state fluctuations in heavy-ion collisions from heavy
flavor observables.

In most of the literature that studies heavy quark evolution, smooth initial con-
ditions are utilized for hydrodynamic models to simulate the hot and dense medium
through which heavy quarks propagate. The influence of initial state fluctuations on
heavy quarks has not been studied prior to our work. There have been similar studies
on the effect of initial state fluctuations in the context of high pr light flavor jets
200, 201, 202], but no unified conclusion has been reached so far. For instance, Ref.
[200] used a (1+1)-dimensional Bjorken hydrodynamic background and found that
the fluctuation in the spatial distribution of the initial hard scatterings significantly
reduces the suppression of jet production. In Ref. [202] it was found that with the
inclusion of the transverse expansion of the medium, i.e., using a (2+1)-dimensional
hydrodynamic model, jet energy loss will be enhanced when the initial state fluctu-
ation is incorporated. However, using a (2+41)-dimensional medium for peripheral
collisions, Ref. [201] showed a decrease of quenching when initial state fluctuations
are included.

In the following, we investigate the influence of initial state fluctuations on heavy
quark evolution inside the QGP matter. We simulate the dynamical evolution of
heavy quarks using our modified Langevin equation developed in Sec.4.1 that in-
cludes both collisional and radiative energy losses. The QGP medium is simulated

with a (2+1)-dimensional viscous hydrodynamic model which has been tuned to

101



12 T T T T T T T
L o } -+« col.only 04
10 Cylindrical Medium (2D) — — rad. only
200 MeV at R=5fm — col. +rad.
~—~ 8._ .
>
8 t T ~-_ :
& eF el 7
a | e
VoL e
a- ; 7
R Ad 24
2 i 7
1 " 1 " 1 " 1 " 1
1 2 4 5

R(?m)
FIGURE 4.4: Energy loss of charm quark as a function of the size of the hot tube.

describe bulk matter observables. We do not aim for a direct comparison with ex-
perimental data in this analysis, but focus on exploring how heavy quark evolution
and energy loss are affected by the the presence of initial state fluctuations. Finally,
we will discuss the prospect of utilizing heavy quarks to probe the granularity of

local fluctuations inside the QGP and to improve our knowledge of the initial state

of the QGP fireball.
4.3.1 Effects of Fluctuations on Heavy Quarks in a Static Medium

Before exploring the effects of initial state fluctuations of a realistic QGP medium
on heavy quark energy loss, we first investigate the influence of local temperature
fluctuations (or hot spots) on heavy quark energy loss in a static medium. We will
look at two different aspects of density fluctuations: the size and the number of local
fluctuations. To mimic the effect of the realistic (2+1)-dimensional boost invariant
hydrodynamic medium which we will use in the next subsection, the static medium
is chosen to be two dimensional, i.e., the hot spots are in fact hot tubes in this case.

For the first scenario, we generate one cylindrical medium (hot tube) with a
constant temperature. As demonstrated by the cartoon inside Fig.4.4, we vary its

size and study how the energy loss of charm quarks is affected. When varying the
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size, the total energy contained inside the tube is kept fixed. The temperature of the
medium is set as 200 MeV when the tube radius is R = 5 fm and will increase as
the radius decreases. Each charm quark is initialized with 50 GeV and placed at the
center of the cylinder. We calculate the average energy loss of charm quarks as they
exit the hot tube medium, and the results are shown in Fig.4.4. We also compare
the results using different energy loss mechanisms of heavy quarks: collisional energy
loss only, radiative only and the combined loss. In the figure we multiply the results
from quasi-elastic scatterings by a factor of 4 for a better resolution. From the figure,
we observe that the energy loss of charm quarks is not very sensitive to the size of
the hot tube (with the total deposited energy unchanged).

To study the effect of the number of local density fluctuations on the heavy quark
energy loss, we generate N hot tubes with the same radius R = 0.5 fm. As displayed
by the cartoon inside Fig.4.5, they are lined up along charm quarks’ initial direction
of propagation. The initial charm quark energy is set as 50 GeV (placed at the edge
of the first hot tube) and the temperature of the medium is set as 500 MeV when
there is only one hot tube. Again, when changing the number of hot tubes, the total

energy deposited in the medium (sum of the N hot tubes) is fixed. The result for
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such scenario is shown in Fig.4.5. We see that the energy loss of charm quarks is
quite sensitive to the number of hot tubes.

The above results can be easily understood with the following argument. One
may assume the power law dependence for heavy quark energy loss on the medium

length and temperature as follows:
AE o (NR)*TP, exT* V o NRY, (4.7)

where NN is the number of hot tubes, R is the radius of each hot tube probed by heavy
quarks, and V' is the total volume of the d-dimensional medium. 7' is the temperature,
and € is the medium energy density. The parameters a and [ denote power law
dependence of heavy quarks on the path length and the medium temperature. Since
we fix the total amount of energy contained in the medium, i.e., eV = Const., one

may obtain the dependence on the size and the number of hot tubes as:
AE oc No~P/Aga=Bd/4 (4.8)

In our energy loss model, @« = 1 and 8 = 2 are good approximations for collisional
energy loss, and one may roughly use 1 < a < 2 (e.g. taking a = 3/2 in the following
analysis) and = 3 for radiative energy loss.

When there is only one hot tube N = 1 (the first scenario), Eq.(4.8) is reduced
to AE o« R*A%*  Thus for a 2-dimensional system, this indicates that the total
energy loss of heavy quark is not very sensitive to the size R of the hot tubes. This is
consistent with Fig. 4.4. We have also checked that for a 1-dimensional system, the
total energy loss of heavy quarks decreases when confining the same amount energy
in a smaller region, but the energy loss increases for a 3-dimensional system.

Similarly, one may fix the the size R of hot tubes in Eq.(4.8) to isolate the influ-
ence of the number of hot tubes: AE oc N®™#/4. One can see that the total energy
loss does not depend on the dimension of the system, but increases significantly
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FIGURE 4.6: Effects of the strength of medium fluctuation (number of hot tubes N)
on charm quark energy loss.

with the number of hot tubes for both collisional and radiative energy loss. This is
consistent with the finding shown in Fig.4.5.

One may combine the above two scenarios, i.e., changing the size and the number
of hot spots/tubes simultaneously. This is very similar to the change from a large and
smooth medium to fluctuating medium consisting of several hot (and cold) regions
as demonstrated by the cartoon inside Fig.4.6. The total energy contained in these
two different media are the same. To simplify the study, we split a large smooth tube
medium into N hot tubes with smaller sizes, which are lined up adjacent to each other
along the direction of the initial momentum of our charm quarks (Fi,; = 50 GeV).
Another N cold tubes (vacuum here) are also placed between every two hot tubes to
mimic the realistic distribution of local density fluctuations. The sizes of the smaller
tubes are chosen such that the total length 4N R traversed by heavy quarks is fixed as
the diameter of the original smooth medium with a radius of 5 fm and temperature of
200 MeV. The results for a 2-dimensional system are shown in Fig.4.6. One observes
that the energy loss of charm quarks increases when the original smooth medium is
splitted into more hot and cold tubes, i.e., the more fluctuations the medium has,

the stronger energy loss the charm quarks experience.
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To summarize this subsection, we find that the energy loss of charm quarks in
a 2-dimensional system does not have much dependence on the size of the local
fluctuations, but is quite sensitive to the number of local fluctuations in the medium.
Heavy quarks tend to lose more energy in a fluctuating medium than in a smooth
one when the total energy contained in the medium is the same. Although the above
results are obtained using a static medium, it provides some guidance to explain the
results for a realistic hydrodynamic medium presented in the next section. We also
note that our finding is based on the path length and temperature dependence of

heavy quark energy loss in our model, i.e., the values of o and /3 in Eq.(4.8).
4.3.2  Heavy Quarks in Event-by-FEvent Hydrodynamic Medium

In the previous subsection, we studied the response of heavy quark energy loss to the
temperature fluctuations in a static QGP medium. In this subsection, we perform
the investigation for a realistic expanding medium in which both temperature fluc-
tuations and flow (fluctuations) are present. Here, we utilize a (2+41)-dimensional
viscous hydrodynamic model to simulate the dynamical evolution of a hot QGP
produced in Pb-Pb collisions at the LHC energy. The initial conditions for the hy-
drodynamical evolution are obtained from the Monte-Carlo Glauber model.

In Fig.4.7, we compare the initial entropy density distribution in the transverse
plane from a typical event [Fig.4.7(a)] with one after averaging over 100,000 events
for 0-7.5% Pb-Pb collisions at 2.76 TeV at the LHC [Fig. 4.7(b)]. We note that
in Fig. 4.7(b), the initial profiles of all the events have been rotated to the same
second-order participant plane before performing the event average of the entropy
density. One can clearly see the presence of hot and cold regions in the QGP fireball
for fluctuating initial conditions.

In Fig.4.8, we show the nuclear modification factor Raa of charm quarks after

their traversal of the QGP medium created in 2.76 TeV Pb-Pb collisions. We com-
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FIGURE 4.7: Comparison between (a) fluctuating and (b) smooth initial entropy
density profiles of hydrodynamical evolution of 2.76 TeV central Pb-Pb collisions.

pare the results from smooth initial conditions with those from an event-by-event
calculation for four different centralities. One can see from Fig.4.8(a) - 4.8(d) that
the event-by-event calculations give larger suppression for heavy quarks at high pr,
i.e., the initial state fluctuations lead to larger energy loss for heavy quarks. This is
consistent with the finding for the static medium case in the previous subsection. As
a consequence, a slightly smaller suppression is observed for low pr charm quarks.

As has been mentioned, there exist temperature fluctuations and flow (fluctua-
tions) in a realistic medium. To remove and investigate the effect of the medium
flow on heavy quark evolution, one may solve the Langevin equation Eq.(4.1) in
the global center-of-mass frame instead of the local rest frame of the fluid cell (see
Sec.3.3.2). In this way, the evolution of heavy quarks is solely affected by the tem-
perature distribution and fluctuations of the medium. One can see that the effect of
the medium flow is to boost low pr charm quarks into the medium pr regime and
form the bump structure for the nuclear modification factor Rxa. This bump feature
disappears when flow is switched off in the calculation.

The above observation can be seen more clearly in the subfigures inside Fig.
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FIGURE 4.8: Comparison of charm quark Raa between calculations with smooth
and fluctuating initial conditions of hydrodynamical evolution.

4.8(a) - 4.8(d) where we show the ratios between the final state pr spectra of charm

quarks from the event-by-event calculations and those from the smooth cases. For

the central collisions [Fig. 4.8(a)], we obtain about 12% more quenching at high

pr for the fluctuating initial condition as compared to the smooth initial condition.

This could result in a 10%-15% difference in the extraction of the gluon transport

coefficient ¢ inside QGP. For more peripheral collisions, the effect of initial state

fluctuations on heavy quark energy loss is less; the quenching increases about 7%

when switching from the smooth to the fluctuating initial condition in 40%-50%

Pb-Pb collisions [Fig. 4.8(d)].

To summarize this section, we have studied the impact of initial state fluctua-
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tions on heavy quark evolution and energy loss in relativistic heavy-ion collisions.
The in-medium evolution of heavy quarks is described using our modified Langevin
equation that simultaneously incorporates collisional and radiative energy loss com-
ponents. We have investigated the effect of local fluctuations for both static and
realistic expanding QGP media. In static media, we have studied the effects of tem-
perature fluctuations on heavy quark energy loss in terms of the size and the number
of local fluctuations (hot spots), and found that the total energy loss of heavy quarks
is not particularly sensitive to the size of local fluctuations in a 2-dimensional sys-
tem, but the energy loss increases significantly with the increasing number of hot
spots. Our simulation in a realistic QGP medium has demonstrated that fluctuating
initial conditions may yield about 10% more suppression for inclusive charm quark
production at high pr in relativistic nucleus-nucleus collisions. The effect of initial
state fluctuations on heavy quark energy loss tends to diminish for more peripheral
collisions.

Our study constitutes an important contribution to the quantitative understand-
ing of heavy quark dynamics in relativistic heavy-ion collisions with initial state
fluctuations. Although we utilize heavy quarks in our study to probe the effects of
the fluctuations, many of our results should apply to light flavor partons as well. Our
results suggest that jet modification might be utilized to probe the fluctuations of the
QGP medium, such as the degree of inhomogeneity or the number of hot spots. We
further note that the sensitivity of heavy quark energy loss to hot spot number might
be enhanced when one uses correlation measurements or triggered observables; we
leave such study to a future effort. The study along this direction may potentially
provide more constraints on modeling initial states, thus helping our quantitative
understanding of the transport properties of the hot and dense QGP produced in

high energy heavy-ion collisions.
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5

Hadronization of Heavy Quarks

In Chapter 3 and Chapter 4, we have developed an improved Langevin framework to
describe the heavy quark evolution in a QGP matter, simultaneously incorporating
collisional and radiative energy loss. After these heavy quarks exit the color decon-
fined region of the medium (i.e., when the local temperature falls below the critical
temperature T¢), they are forced to hadronize into their hadronic bound states. In
this chapter, we will construct a model to describe this hadronization process.

High pr heavy quarks tend to fragment into lower energy partons among which
the hadronic bound state of heavy flavor can be formed. This process is termed as
“fragmentation”. On the other hand, it is more probable for a lower pr heavy quark
to combine with thermal partons from the QGP medium to form new hadrons. This
mechanism is known as heavy-light “coalescence” or “recombination”. We will de-
velop a hybrid fragmentation plus recombination model in this chapter to simulate
the hadronization process of heavy quarks at all momentum scales. In this appli-
cation, we adopt a “sudden recombination” approach for heavy quark coalescence
with light quarks from the QGP medium. This approach was first developed for

light hadrons formed from bulk matter [138, 31, 139, 140], and then applied to heavy

110



flavors [103, 104, 105] and recently to partonic jet hadronization [141]. This coales-
cence model does not require the thermalization of the recombining partons and it is
straightforward to simultaneously include mesons and baryons, which is convenient
for the normalization over all possible hadronization channels. Note that an alter-
native approach, based on the resonance recombination [101, 142, 106], may also be
applied to the study of heavy flavor dynamics. For the fragmentation mechanism,
we utilize PYTHIA 6.4 [137] to simulate the conversion from heavy quark to heavy
flavor hadrons.

This chapter will be organized as follows. In Sec.5.1, we will summarize how the
fragmentation process is simulated in PYTHIA. In Sec.5.2, we will introduce the
coalescence model we utilize for calculating the heavy-light recombination process.
We will then construct our hybrid model in Sec.5.3 for heavy quark hadronization
incorporating both mechanisms, and compare the contributions from each process
to the spectra of the produced heavy mesons. Finally, in Sec.5.4, we will apply
our hadronization model to the heavy quarks emerging from the Langevin evolution
through the QGP, calculate the heavy flavor Rxs and v, and compare them with
the existing data from both RHIC and LHC experiments; predictions of future mea-
surements will also be provided. Major results in this chapter have been originally

published in Ref. [107].
5.1 Heavy Quark Fragmentation

In this work, we utilize PYTHIA 6.4 [137] to implement the fragmentation of heavy
quarks into heavy flavor hadrons. By default, the Lund symmetric fragmentation
function [203] is selected:

F(2) o Lz (1 — Z)% exp (—b’zi) : (5.1)

z z

111



where m ) is the transverse momentum defined as m3 = E?—p?, and z is the fraction
of E+p, taken by the fragmented hadron out of the parent quark. In Eq.(5.1), aq, ag
and b are the parameters which need to be fixed according to experimental data, in
which a corresponds to the “old” flavor and [ corresponds to the “new” flavor in the
fragmentation process. While Eq.(5.1) works well for light quark fragmentation, its
predictions for heavy meson spectra deviate from experimental data. In PYTHIA,
for the simulation of heavy quark fragmentation, Eq.(5.1) is modified according to
the Bowler space-time picture of string evolution [191]:

F(2) o e <1 - Z>aﬁ exp (—bmi) . (5.2)

SlHrbmd P P

In our work, we use the default parametrization as a, = ag = 0.5 GeV™2 b =
0.9 GeV~? and rg = 1.
In the literature, an alternative fragmentation function — the Peterson fragmen-

tation function [204] — is widely adopted for heavy quark fragmentation:

(5.3)

with eg = —0.05 for the charm quark and -0.005 for the bottom quark. This option
has also been incorporated into PYTHIA and we have verified that it provides very
similar heavy meson spectra compared to those given by Eq.(5.2).

In the numerical implementation, an iterative method is used to simulate the
fragmentation process. For instance, one may start with a single quark ¢g. Then
a new ¢1¢; pair may be produced, such that ¢og; forms a new meson whose energy
and momentum is given by a proper fragmentation function as shown above, and
q1 is left for the next fragmentation process until the leftover quark is not energetic
enough to further fragment. The choice of the flavor of ¢¢ is determined with the
probability due to mass, by default, u@ : dd : s5 = 1 : 1 : v, where 7, is set
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to 0.3, and no heavy quark pair is produced in the current fragmentation process.
Once the flavor is chosen, the spin of the valence quark S and the internal orbital
angular momentum L is assigned according to parameterized relative probabilities.
For baryon formation, a diquark ¢q might be picked instead of a single ¢ by qq.
This is known as the “diquark picture” in PYTHIA. Meanwhile, alternative ways to
form baryons also exist, such as the “simple popcorn” and the “advanced popcorn”

frameworks. One may refer to the above mentioned manual [137] for more details.
5.2 Heavy-light Quark Coalescence

In this section, we introduce a Wigner function that describes the probability for
two partons to combine into a meson. Although we utilize a two particle system as
an example here, this Wigner formalism can be easily generalized to a three body

system for baryon formation, as will be shown in the next section.
5.2.1 The Coalescence Probability: the Wigner Function

The probability for two partons to combine into a meson can be expressed in terms of
the overlap between the wavefunctions of the initial two partons and the final meson
- \<M|El,f’1; /;2,772>\2, where /%,Fl and l%,f’z are the momenta and positions of the
two initial free partons and M represents the formed meson.

In a fixed volume V', the wavefuctions of the partons and the combined meson

can be written as:

> 1 —iky T

<7‘1‘]{;1> — We k1 1’

(Polfo) = e (5.4)
VV ’

1 —iK-R
(rIM) = W(bM(F)e )

in which ¢, (7) is the wavefunction of the mesonic bound state in its rest frame and
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we have defined the total momentum, relative momentum, center-of-mass position

and relative position as

[? - El + EQ’
[ maki— ik
a -
e (5.5)
7= Ml mars
my + mg
=7 —Ts.
Note that with the transformations in Eq.(5.5), we have
K-Rtk-i'=ki7i+hk i, (5.6)
(R, ) OR/oF, OR/o
= =—L 5.7
T\ a0, ) orjor,  OFor (5.7)

With these relations, we may calculate the overlap between the wavefunctions as

follows

. - 1 -] | o=
(M1, 715 ko, 7o) = / ry [ drazmem T e g (P

ww
- f o f el

_’17 _»2>
/ df”rﬁe-z (7). (5.8)

1 N = B
v3/2ezKR F)¢ (—)zKR

And thus we have the coalescence probability as below:

R‘i
%]
PT‘i
!

‘<M|E17F17 E27T2

/d3 /d3 O () (e T (5.9)

One may further simplify this probability with the following Wigner transformation:

Q= ( +7), S=7F—17, (5.10)
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whose Jacobian is also -1 as above. Thus, Eq.(5.9) can be re-written as

(M|E1,F1;E2,F2>‘2 _ /dsQ/dsgéquw(Q’jL 5/2) b (Q — 72)6-275.;

3 —,
:/d_‘;”fﬂvg(ﬁ P, (5.11)

where we have substituted @ by 7 in the second line considering that the above
probability decreases exponentially when 7 is away from 77, and defined the Wigner

function as
V(7 k) = /d3s¢’,§4(F+ 5/2) b (7 — 5/2)e 5. (5.12)

This Wigner function represents the probability for two partons with relative position
7 and relative momentum k to combine into a meson. One may verify that the integral

of the Wigner function over the whole phase space gives the total volume:
/ d’r / Sk fy (7 k) = / &’k / d’r / &9, (7 + 3/2) (7 — 3/2)e
= / d3r / s (7 + 5/2)par (7 — 5/2)V 6B (5)

=V [ o3y (on()

V. (5.13)

In an infinite medium, this normalizes to (27)? instead with the identity [ d3ke=* =
(2m)*01)(3).

With the knowledge of the meson wavefunction ¢, (), the Wigner function
Eq.(5.12) is determined. We will use the model of a simple quantum mechanic
harmonic oscillator to approximate this wavefunction:

o (F) = (”w>3/4 T2’ (5.14)

™
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where © = myms/(my + ms) is the reduced mass and w is the angular frequency of
the harmonic oscillator which will be discussed later. By substituting Eq.(5.14) into
Eq.(5.12), we have

i (7 k) = /dgse_“;'g (@)3/2 o= 3 H(F+5/2)% = S uw(7—5/2)?
T

! ° 3/2 ,
= 27T/ d(cos 9)/ s2ds (%) o Hwr? o —pws® 4 ,—iks cos 0
- 0

1 ™

3/2 o 1 ) ,
=27 (&) erer? / s2dse s 1t (e7* — ™) (5.15)
0 —iks

™

wH 3/2 21 1,2 [ 1 (el 20 )2 1 2i )2
=27 (M_) e e ' dss [6 o (s—i5k) _ e 4W(8+”Lk)]
T i 0

One may change the variables of the two parts of integral in the last line with

E=s— j—ik and £ = s+ j—ik respectively. The integral is then re-written as

/ dé (é + 3k) e Ak _ / d¢ (f - 3k) e~ amet?
— 2k Hw 2ip pw

pw

:/“ dgge—%uw@ +_Z]€/ dge—%uwﬁ
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2% [4
= 04 k) (5.16)
pw \ pw

where the symmetry of exp(—uwé?/4) about ¢ = 0 is applied. By inserting Eq.(5.16)
into Eq.(5.15), we obtain

i (7 k) = Be et = ge /ot g (5.17)
in which we define 0 = y/1/(pw). In the end, we may add a degeneracy factor gy;:
(7 ) = 8gare ™7 e 5.18

M

which takes into account the spin-color degrees of freedom. For instance, gps is
1/(2x3x2x3)=1/36 for the D meson ground state, and 3/(2x3x2x3) =1/12

for the first excited state of D meson.
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5.2.2 The w Parameter in the Wigner Function

In principle, the o parameter in Eq.(5.18) can be determined by the size (radius) of
the formed meson. In the non-relativistic limit, the charge radius of a two particle

system (with the same sign of charges) can be defined as

Q1(7" — R)? + Qo7 — R)?
(ry) = < 0T 0 > : (5.19)

From Eq.(5.5), we have

Mo=R+ —2
my + Mo
=R 7 (5.20)
mi + Mo
By substituting Eq.(5.25) into Eq.(5.19), we have
Q1mj + Qam3
(rie) = ? L (r?). (5.21)

(@1 + Q2)(my 4+ my)

Meanwhile, we may evaluate the average distance square (r?) from the Wigner

function:

30 312 (= 3.2
(r2) — [ &rdkr fMET,q_') _ 12n%0? §a2. (5.22)
[ &Brdk fa (7, ) (2m)3 2

Therefore we have,

<TM> _9 1 lez + C927711

5 01 + Qo) (s + ) (5.23)

For instance, one may take 0.184 fm? for D*(cu) and 0.378 fm? for B*(bd) as the
charge radii square predicted by the light-front quark model [205]. In this work,
we take thermal masses of 300 MeV for u and d quarks and 475 MeV for s quarks.
On the other hand, heavy quarks are not required to be thermal in this coalescence

model and their masses are taken as 1.27 GeV for ¢ and 4.19 GeV for b quarks. These

117



yield w & 0.32 GeV for both D™ and B*. However, as discussed in Ref.[105], in order
to convert as many heavy quarks at small pp into heavy hadrons via coalescence as
possible, smaller oscillator frequencies are needed. We use the parameters tuned in
that reference — w. = 0.106 GeV for ¢ quark and w, = 0.059 GeV for b quark — for our
calculation. These smaller oscillator frequencies may partly result from larger radii
of mesons in a de-confined QGP matter than in vacuum. Note that in principle, the
oscillator frequency could depend on the type of hadrons. However, for a “minimal
model”, we only use one overall tuned parameter for charm hadrons and one for

bottom hadrons as shown above.
5.2.8 A Relativistic Correction

The above Wigner function is constructed in a classical framework, when applying it
to the heavy-light quark coalescence in relativistic heavy-ion collisions, we implement
a correction to the transformation Eq.(5.5) as follows. We first define the velocity of
the center-of-mass frame of the heavy-light quark system as
kit ke

5_E1+E2‘

(5.24)

Then, we boost both the 4-space and 4-momentum vector into this center-of-mass

frame and re-define Eq.(5.5) as

K=F +k,
B - B,
E, +E)
(5.25)
5 _ B+ By
B+ Ey
— ~ —

Note that all the variables with “prime” in Eq.(5.25) are defined in the center-of-
mass frame of the heavy-light quark system, i.e., the meson system. With these
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definitions, the construction of the Wigner function is the same as that in Sec.5.2.1.
This Wigner function method can be easily generalized to a three parton system for
baryon formation, which will also be incorporated in our implementation as described

in the following section.
5.3 A Hybrid Fragmentation plus Coalescence Model
5.8.1  Fragmentation vs. Coalescence Probability

In the “instantaneous coalescence” model introduced above, the momentum distri-

butions of produced mesons and baryons can be determined by the following expres-

sions,
Fpry /d p1d Pzdg—pldg—me (P1, P2)6 (P — P1 — D), (5.26)
dNp dN; dNy dNs e Ny L
= | PpidPpod®ps—————— 1 ) —p1 — D2 —p3). (D27
Bpg / D1a "p2a-p3 Bpy Py d3p3f B (D1, D2, P3)0(Pv — pr — P2 — P3)- ( )

dN;/d?p; represents the momentum distribution of the i-th valence parton in the
recombined meson or baryon. The distribution of heavy quarks can be directly
obtained after their Langevin evolution through the thermalized medium. For light
quarks and anti-quarks from the QGP medium, we take the Fermi-Dirac distribution

in the local cell frame !:

dN, 94V
d3p /PP Em2 T, + 1’

where a uniform distribution in the position space is assumed inside a volume V'

(5.28)

and g, = 6 denotes the degrees of freedom for each quark flavor. f" is the Wigner

function constructed in the previous section. For a two particle system, we have

V(7 k) =8Ngye /7" e (5.29)

L To be rigorous, viscous corrections should be introduced for the momentum distribution of
thermal partons if one uses a viscous hydrodynamic medium. However, it has been verified that
non-negligible effects on the final state spectra only appear for light partons with energy greater
than 2 GeV, which is beyond the dominant regime of our coalescence model.

119



Note that compared with Eq.(5.18), an overall normalization factor N has been

added, which will be discussed later. The relative position 7 and momentum k are

defined as before [Eq.(5.25)]:

FEII_{ - 7:57
) (5.30)

k m(Eéﬂ — Eipy),

in which the variables on the right-hand side are defined in the center of mass frame
of the two-particle system, i.e., the meson frame. With the assumption that thermal
partons have a uniform spatial distribution in the cell frame of the medium, one may
average over the position space of Eq.(5.29) and obtain the following momentum

space Wigner function:

R0 = [ iRy = N B e (531

From Eq.(5.31) and the definition of & in Eq.(5.30), we note that in this instantaneous
coalescence model, quarks with similar velocities are most probable to combine to
form new hadrons.

The Wigner function can be straightforwardly generalized to a three particle
system for baryon production by recombining two particles first and then using their

center of mass to recombine with the third one. This yields:

2 6 3
(k2 k2 = NgB( ﬁ)v(flg?) e kioi—kiof (5.32)

where the relative momenta are defined in the center of mass frame of the produced

baryon as
- 1
ki = m(Eéﬂ — E3ph),
- 1
ks ) + 1) — (Ey + E3)ps) s (5.33)

=__ - _[FE
m+&+@[ﬂ
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and the width parameters o;’s are given by o; = 1/,/m;w with

mime (ml + mg)mg
- = : 5.34
f my + Mo He my + Mo + M3 ( )

This is known as the “three quark model” for baryon formation. An alternative way
— the “diquark model” — has also been discussed in Ref. [105] and may result in
slightly different spectra of heavy flavor hadrons at low pr.

As discussed in Sec.5.2.2, the oscillator frequency w can in principle be calculated
with the charge radius and is different for each hadron. Here, for a minimal model,
we adopt the average values of 0.106 GeV for charm hadrons and 0.059 GeV for
bottom hadrons as tuned in Ref. [105].

We use the Wigner functions Eqgs.(5.31) and (5.32) to calculate the probability for
a heavy quark after its in-medium evolution to produce a hadron through coalescence
with light quarks from the QGP medium at 7. The overall normalization factor N is
determined by requiring the recombination probability to be 1 for a zero-momentum
heavy quark to all possible heavy flavor meson and baryon channels (we include
both ground states and first excited states of D/B, Ag, Yo, E¢ and g). The
value of the normalization factor is obtained using a static medium with an effective
temperature of T,g = 175 MeV. This effective temperature is chosen to take into
account the effect of radial flow (around 0.6¢ at T;) developed in the hydrodynamic

model, and obtained according to the following equation,

Z / eE/Teﬂ‘ _|_1 Z / epu/TC _|_1 (535)

flavors flavors

With the choice of T,y = 175 MeV and T. = 165 MeV, both sides of Eq.(5.35) lead
to the same parton density: a number density around 0.24 fm™ for u and d, and
0.13 fm™® for s quark. More discussions about this effective temperature can be
found in Refs. [105, 206].
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FIGURE 5.1: The coalescence probabilities for heavy-light quarks as a functions of
the heavy quark momentum.

Now we may calculate the coalescence probability as a function of the heavy
quark momentum as shown in Fig. 5.1. The recombination probabilities for a charm
or bottom quark to all heavy flavor hadron channels and to only D or B meson are
shown for comparison. One observes that for the same pr, bottom quarks have larger
recombination probability than charm quarks to produce heavy flavor hadrons due
to their larger masses. The curves in the figure separate the hadronization of a charm
or bottom quark into three possibilities: recombination to D or B meson, recombina-
tion to other hadron channels and fragmentation. In the numerical implementation,
a random number between 0 and 1 is generated. If it is greater than the probability
of “¢) — any hadron”, the heavy quark will not hadronize via coalescence, instead,
it fragments through PYTHIA as discussed in Sec.5.1, where the relative ratios be-
tween different hadronization channels have been properly calculated and normalized.
However, if this random number is smaller than the probability of “Q — D/B”, then
a D or B meson is formed via the heavy-light quark coalescence. In that case, a u or
d quark is generated according to Eq.(5.28) in the cell frame of the medium and then
boosted back into the lab frame to combine with the given heavy quark according to

the probability governed by Eq.(5.31) — if they do not combine, another light quark
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FIGURE 5.2: The relative contributions from different hadronization mechanisms to
(a) D and (b) B meson production from heavy quarks (normalized to one heavy
quark).

will be generated until the meson is formed. In the end, if the random number resides
in the range in between, this heavy quark will hadronize through coalescence, but to
other hadrons than D or B meson. In this work, we concentrate on the ground states
and the first excited states of D°, D+, B°, BT and their anti-particles. A detailed

analysis of heavy flavor strange mesons and baryons will be left for a future effort.
5.3.2  Heavy Meson Spectra

With the hybrid model developed in the previous subsection, we may calculate the
spectra of heavy mesons formed from heavy quarks after their in-medium evolution.
The initialization of heavy quarks and the QGP, the hydrodynamical evolution of
the medium and the Langevin evolution of heavy quarks inside QGP will all be cal-
culated as discussed in Chapter 4. Figure 5.2 illustrates the relative contributions
from recombination and fragmentation mechanisms to the production of heavy flavor
mesons from charm and bottom quarks created in 2.76 TeV central Pb-Pb collisions.
One can see that while the fragmentation dominates the D/B meson production at
high pr, the inclusion of the recombination mechanism greatly increases their yield

at intermediate pr. As the recombination mechanism adds a thermal parton to a
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heavy quark, the momentum distribution of D/B mesons through recombination is
shifted to the right (higher momenta) compared to charm/bottom quark distribu-
tion. Consequently, its contribution to D/B meson production at low pr is not as
significant as at intermediate pr. Furthermore, due to the larger mass of b-quarks,
the contribution from the recombination mechanism to the B meson production is
more prominent than to the D meson over a wider pr range. These effects will signif-
icantly influence heavy meson suppression and flow as will be shown in the following

section.
5.4 Heavy Flavor Suppression and Flow at RHIC and LHC

In this section, we combine our models of heavy flavor initial production, in-medium
evolution and fragmentation plus coalescence hadronization from Chapter 2 through
Chapter 5 and calculate the heavy flavor suppression and elliptic flow. The nuclear
modification factor Raa and the elliptic flow v, will be analyzed according to defi-
nitions in Eqgs.(3.55) and (3.56). We will first compare our numerical results for the
D meson suppression and flow with existing data from RHIC and LHC experiments.
After that, we will also display some of our predictions for the future measurements,
or measurements that are still in progress at this moment. If not otherwise speci-
fied, we analyze our results in the mid-rapidity region as —0.5 < y < 0.5 for LHC

experiments and —1 < y < 1 for RHIC experiments.
5.4.1 D Meson Suppression and Flow

In this subsection, we show our numerical results of the D meson suppression and
flow, and compare them with experimental data from both RHIC and LHC.

In Fig.5.3, we display our calculation of the D meson Raa for central Pb-Pb
collisions at LHC. Contributions from different energy loss mechanisms are shown.

One observes that while the collisional energy loss dominates the low pr regime, gluon
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radiation dominates at high pr. This is consistent with our findings in Sec.4.2. Our
combination of the two mechanisms provides a good description of the experimental
data from the ALICE collaboration.

In Fig. 5.4 we show a closer investigation of the D meson nuclear modification
factor. The impact of the nuclear shadowing in the initial production of the heavy
quark and the contribution from the coalescence mechanism on the D meson Raa
can be clearly seen in our result. With the inclusion of the shadowing effect, we
obtain a factor of four decrease in the D meson R at low pr, while a mild increase
is observed at high pr. This is due to the fact that the charm quark production
is significantly suppressed at low pr and slightly enhanced at high pr in Pb-Pb
collisions relative to binary collision number scaled proton-proton collisions, as shown
in Fig. 2.5(a) 2. Meanwhile, we also observe that the fragmentation mechanism
alone is sufficient to describe heavy quark hadronization above 8 GeV. In the low and
intermediate pr region, however, the recombination of heavy quarks and light thermal

partons becomes important, due to the coalescence mechanism converting low pr

2 Note that this suppression at low pr resulting from the nuclear shadowing effect might be
reduced by half if one adopts a newer tuning of the parametrization of the parton distribution
function (EPS09). However, the effect still remains significant.
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FIGURE 5.5: The elliptic flow vy of D mesons at the LHC: (a) compares between
different hadronization mechanisms and (b) compares between different initial con-
ditions of the hydrodynamic medium.

heavy quarks into medium pr hadrons by combining with a thermal parton from
the QGP, and therefore decreasing the D meson Raa near zero pr but significantly
increasing it in the intermediate regime (2-5 GeV).

In Fig. 5.5, we show our calculation of the D meson elliptic flow vy. Contribu-
tions from different hadronization mechanisms are presented for comparison in Fig.
5.5(a). For the pure fragmentation scenario, we set the Wigner function f" to be
0 to remove hadronization through coalescence, while f% is taken as 1 for the pure
recombination scenario. One sees that the recombination mechanism results in a
much larger D meson v, than fragmentation due to the fact that the recombination
process brings the anisotropic flow of light quarks from the hydrodynamic medium
into the formation of heavy flavor hadrons. Note that in our result, we do not ob-
serve a significant increase of the D meson v, when combining fragmentation and
recombination mechanisms. This may be due to a combinational effect of the initial
parton spectra, the momentum dependence of the Wigner function, and the radial
flow developed in the QGP medium.

While our calculation seems to underestimate the data of the D meson elliptic

flow v, many uncertainties still exist. For instance, as discussed in Sec.3.3, if we
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FIGURE 5.6: The D meson Ras (a) and vy (b) at RHIC.

adopt the KLN initial condition for the hydrodynamical evolution, we would obtain
a larger eccentricity of the QGP profile and therefore a larger vy for D meson as
well. In Fig. 5.5(b), we find an increase of the D meson flow by 25% when switching
from the Glauber to the KLN initial condition of the hydrodynamic background.
Note that changing initial conditions with a larger eccentricity does not affect the
overall suppression of D mesons in the central collision region. In addition, in this
calculation, the heavy flavor evolution ceases after the QQGP hadronizes and heavy
mesons are formed; the subsequent hadronic interactions between D mesons and the
hadron gas have not been included yet. This process will be discussed in the next
chapter.

In Fig. 5.6 we present our results of the D meson Ras and vy at RHIC (Au-Au
collisions at /syn = 200 GeV) in comparison with the data measured by the STAR
collaboration. We observe that the influence of the nuclear shadowing at RHIC is not
as significant as at LHC. The coalescence mechanism, on the other hand, is found
to be more important in the low pr regime measured at RHIC; one observes the
“bump” structure of the D meson suppression after the incorporation of recombi-
nation mechanism in the hadronization process. Our result is consistent with data

from the STAR Collaboration. The results of the D meson vy at RHIC are shown in
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FIGURE 5.7: Predictions of the B meson Raa (a) and vy (b) for 2.76 TeV Pb-Pb

collisions.

Fig. 5.6(b), where the the Glauber and the KLN hydrodynamic initial conditions are
compared. Overall, our model provides descriptions of the D meson nuclear modifi-
cation and elliptic flow that are consistent with the RHIC observations after we take
into account the nuclear shadowing effect in the initial heavy quark production, in-
corporate gluon radiation and elastic collisions for heavy quark evolution and energy
loss inside the QGP, and utilize a hybrid model of fragmentation and recombination

for the heavy quark hadronization process.
5.4.2  Predictions for the Future Observations

In Fig. 5.7 and Fig. 5.8, we provide predictions for the nuclear modification factor
and the elliptic flow of B mesons at LHC and RHIC energies. In these two figures,
we have included both fragmentation and coalescence mechanisms for bottom quark
hadronization. The effects of the nuclear shadowing and different hydrodynamic
initial conditions on the final B meson Rxa and v, are shown for comparison. Due
to the larger mass of the bottom quark than that of the charm quark, the coalescence
mechanism plays a more crucial role in its hadronization process. This can be clearly
seen in Fig. 5.1 and Fig. 5.2: bottom quarks have much larger recombination

probability over a wider pr range than charm quarks. As a result, we observe a
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collisions.

“bump” structure of the B meson R, for both LHC and RHIC. The slight “dips”
in the B meson vy around 5 GeV in Fig. 5.7(b) and Fig. 5.8(b) result from the
transition from the regime where collisional energy loss dominates the heavy quark
motion to the regime where radiative energy loss takes over. For more details about
the relative contributions from different energy loss mechanisms to vy, one may refer
to our previous calculation in Ref. [134].

In Fig.5.9, we show our predictions of the D meson Raa for 30-50% Pb-Pb col-
lisions at the LHC energy, in which the in-plane and the out-of-plane results are
compared. Here, “in-plane” is defined as the region within +7/4 from the event
plane, while ”out-of-plane” is the remaining region. We observe that because of a
longer path length traversed by heavy quarks in the out-of-plane region, D mesons
display a larger suppression, i.e., a smaller Rx than those in the in-plane region.

Finally, we also provide predictions for Raa and vy of non-photonic electrons
emitted in heavy meson decays for 62.4 GeV Au-Au collisions at RHIC. As dis-
cussed in Sec.3.3.3, large uncertainties remaining in the ratio between the initial
production rates of charm and bottom quarks may lead to significant uncertainties

in the final state spectra of their decay electrons. Here, we show results both for the
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combined electrons and separately for c-decay and b-decay electrons. When mix-
ing electrons from the two sources, we use the production ratio between charm and
bottom quarks directly given by the leading-order pQCD calculation as described in
Chapter 2, which is b/c = 0.004 at 62.4 GeV. As shown by Fig.5.10(a), at this rela-
tively low energy of Au-Au collisions, no suppression of b-decay electrons is observed

below 5 GeV. Instead, an enhancement due to the initial cold nuclear matter effect
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may exist. Although charm quarks are still suppressed, no significant suppression
would be observed for the mixed electrons if the production rate above is correct.
On the other hand, in Fig.5.10(b), we see that the collective flow of non-photonic
electrons still exists at this collisional energy. These calculations were performed one
year ago and have recently been confirmed by experimental results of the PHENIX
collaboration [113].

To conclude this section, we have combined our models of the heavy flavor initial
production, the in-medium scattering and gluon radiation, and the hybrid fragmen-
tation plus coalescence hadronization. Within this numerical framework, we have
studied the evolution of heavy flavor produced in relativistic heavy-ion collisions and
have calculated their suppression and flow that are observed at RHIC and LHC.
Our calculations indicate that medium-induced gluon radiation contributes signifi-
cantly to heavy quark energy loss especially at high energies. The nuclear shadowing
has been shown to suppress the D meson Raa at low pr and enhance it at high
pr. The heavy-light quark coalescence is found to increase both Ras and vs of D
mesons at intermediate pr. The effect of different choices of hydrodynamic initial
conditions on the final D and B meson elliptic low has also been investigated. Utiliz-
ing our improved Langevin approach together with a hybrid model for heavy quark
hadronization, we have presented the nuclear modification and the elliptic flow of
D mesons, which are consistent with the experimental measurements at both LHC
and RHIC. Predictions for the future measurements have also been provided, such
as the B meson suppression and flow at both RHIC and LHC energies, the D me-
son Ra for the in-plane and the out-of-plane regions for 30-50% Pb-Pb collisions at
Vsnny = 2.76 TeV, and the medium modification of non-photonic electrons produced
at 62.4 GeV Au-Au collisions.
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6

Hadronic Interaction of Heavy Mesons inside the
Hadron Gas

At this moment, with the combination of the Cold Nuclear Matter Effect in the
initial production of heavy quarks, collisional plus radiative energy loss during their
transport inside the QGP matter, and a hybrid fragmentation plus coalescence model
to describe their hadronization process, we are already able to provide good descrip-
tions of D meson suppression and collective flow observed in relativistic heavy-ion
collisions at both RHIC and LHC. Nevertheless, in a realistic scenario, the strong
interactions do not cease immediately when the temperature of the system drops
below T.. Instead, the hadrons that are regenerated from the color-deconfined state
of quarks and gluons will continue scattering off each other for approximately an-
otherl0 fm/c until this hadron gas is so dilute that no more interactions occur.
In this chapter, in order to complete our understanding of the full time evolution
of heavy flavor dynamics in heavy-ion collisions, the hadronic interactions between
open heavy flavor mesons formed from heavy quarks and soft hadrons produced by
the QGP matter will be studied in the framework of the Ultra-relativistic Quantum

Molecular Dynamics (UrQMD) model. We will demonstrate that such interactions in
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the afterburner phase further suppress D meson Raa in the high transverse momen-
tum regime and enhances its v,. With the incorporation of this additional process
into our numerical framework, we refit our theoretical calculations to the experi-
mental data and extract the gluon transport coefficient ¢ of the QGP matter with a
value of around 2.6 GeV?/fm at the LHC energy. This is consistent with the values
constrained by a recent work [95] that uses a systematic comparison between various
energy loss formalisms of light partons.

This chapter is organized as follows. In Sec.6.1, we will discuss about how we
apply the UrQMD model to study heavy meson interaction with the hadron gas
after the QGP freezes out — including the formation of the hadron gas based on the
Cooper-Frye formula, a brief review of the UrQMD model and how the charm meson
scattering cross sections are introduced into the UrQMD model. In Sec.6.2, we will
present our numerical results of D meson suppression and flow after the inclusion of
the UrQMD model into our framework and investigate how the hadronic interaction
in the afterburner stage further affects the heavy meson spectra one observes. Finally
in Sec.6.3, we go beyond the current widely used heavy flavor observables (Ras and
v9) and apply our updated framework of heavy flavor dynamics to explore a new set
of quantities — heavy-flavor-tagged angular correlation functions — and find them to
be potential candidates for distinguishing different energy loss mechanisms of heavy

quarks inside a QGP.

6.1 D Meson Transport in a Hadron Gas

6.1.1 Formation of the Hadron Gas — The Cooper-Frye Formula

In order to describe the interactions between heavy mesons with the soft hadron gas in
the following subsections, it is first necessary to understand how the hadron gas forms
from the QGP matter. One general approach to obtain the hadron distributions

is applying the Cooper-Frye formula [28, 207] at the hypersurface of the chemical
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freeze-out, i.e., at T,.

To determine the total number of particles of species i (IV;) produced by the decay-
ing QGP, we need to define a 3-dimensional hypersurface ¥(x) in the 4-dimensional
space-time along which the QGP decays. For instance, one may take a picture of
the system at time ¢ and count /NN; in the frozen 3-dimensional space we obtain.
However, a real detector does not perform in the way. An ideal detector would be a
closed 2-dimensional surface (e.g. a sphere) that covers the regions of our heavy-ion
collisions. In this case, different final-state hadrons reach the detector at different
times based on their production space-time and velocity, and one may perform the
counting from ¢ = —oo to oo and collect the information of all produced hadrons.
Note that in this scenario we have defined the hypersurface as a 2-dimensional space
that extends over all possible time — still 3-dimensional. Therefore, we see that it is
possible to choose different hypersurfaces for the counting as long as they entirely
separate the collision point from the future light cone.

Let us first define the number current density of hadron ¢ as
d®p
M) = | ———pHf 1

in which f;(z,p) represents the phase space distribution of hadron i. Then, we can
calculate the total particle number by integrating the normal component of this

current over a chosen hypersurface 3(x):

Ni= [ dou(2) i) = | dou@) | ms [ S flzp)|. (62
I ot |G [ 7 60

Here, d®c,,(x) is an infinitesimal element of ¥(x) with its direction perpendicular to
the hypersurface. If we have two different hypersurfaces ¥; and >y with their sum

Y1 — Y closing a certain region of the 4-dimensional space-time, then according to

134



the Gauss theorem and the conservation of current d,j!'(z) = 0, we have

/E . d’oy(w) jf (v) = /V d'2d,j! (x) = 0. (6.3)

Note that in this specific case, the relative minus sign between ¥; and X5 results
from the positive direction of a hypersurface being defined as pointing outward from
the region containing the collision point and V' represents the 4-dimensional region
closed by the two hypersurfaces. And Eq.(6.3) indicates that le o, (z) gt (z) =
Js,, @0, (2) ji'(x), ie., the number of hadrons is independent of the choice of the
hypersurface as long as the multiplicity of various particle species is conserved during
the evolution. However, since hydrodynamics is not a good approximation of the
system below T, where the mean free path is no longer small enough, we calculate the
process of hadron production at the hypersurface of chemical freeze-out ¥, and then
apply the UrQMD model (discussed below) for the subsequent hadronic evolution.
The differential form of Eq.(6.2) reads

dN;  dN; dN, 1
d*p  dyprdprdp, dymrdmrde, (27)3

/E Pdou(z) fiz.p).  (64)

This is known as the Cooper-Frye formula. The following definitions and relative

relations between different variables have been used in Eq.(6.4):

1. E+p, :
mTE\/]m, yE§lnEti’ E =mrcoshy, p.,=mrsinhy. (6.5)

Three pieces of information are required for the evaluation of this Cooper-Frye inte-
gral: (1) the freeze-out hypersurface >, (2) the phase distribution of hadron f;(z, p),
and (3) how to evaluate the scalar product of p*do,(z).

To obtain the freeze-out hypersurface 3¢, one follows the hydrodynamical evolu-

tion of the medium background and records the proper time 7(= v/t? — z2) of each

135



fluid cell when its local temperature drops below Ti.. Thus we obtain 7: = 7¢(z, y, 7s)
in which the space-time rapidity 7, is defined as ny = LIn[(t + 2)/(t — z)] (simi-
lar to Eq.(6.5), we have the inverse transformations ¢ = 7 coshns and z = 7sinh 7,
here). This reduces the 4-dimensional space-time to the 3-dimensional hypersur-
face ¢ we seek. Note that in principle, apart from these hadrons emitted from the
freeze-out hypersurface, there also exist “colder” hadrons produced directly from
the pre-equilibrium stage of the heavy-ion collisions without experiencing the QGP
evolution. These hadrons mainly form from the “corona” regime of the overlapping
region of the two colliding nuclei and their contribution to the total multiplicity of
the final state can be considered small especially in the mid-rapidity region. More
discussions about these corona hadrons can be found in Ref. [37].

In general, for a particle residing in a thermal reservoir, the phase space distri-

bution can be written in terms of:

fz(zap) :fz,eq+5fz(x>p) (66)

Here, f;oq represents the distribution function for a set of particles in local thermal

equilibrium
, _ 9i — N n+l ,—n[p-u(z)—pi(z)]/T(x)
fiea(®:P) = i meme £ = 9 E_l:(qc) € ) (6.7)

in which g; denotes the degeneracy of spin, color, flavor, etc., u; is the chemical po-
tential of hadron ¢, T'(x) and u*(x) represent the local temperature and the 4-velocity
of the fluid cell, and #1 in the denominator accounts for the proper quantum statis-
tics — upper (lower) sign for fermions (bosons). In a non-perfect fluid, i.e., a viscous
hydrodynamic medium, the coupling strength is not infinitely large and a finite re-
laxation time is required for the system to go back to local thermal equilibrium

during its expansion. This leads to a deviation d f;(z, p) from the equilibrium limit
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in the hadron distribution function as shown in Eq.(6.6). The exact relation between
viscosity and 0 f requires an approximate solution of the Boltzmann equation. There
are two forms of §f for the case where the bulk viscosity does not contribute and
only the shear stress tensor (7*”) is non-zero (a more general solution is an open
topic of research itself at this moment) [37]. One of them reads

(w0) = fualop) 2 fuli ) 5T () (o)

in which p* = p#/p, with p = \/—p,A*p, (A" = g" — u'u”) being the magnitude

of the spatial momentum in the local rest frame of the fluid cell. And

()= () nsesa 59

with the power a depending on the details of the collision term and the ansatz used

for solving the Boltzmann equation. The other form of §f reads [208]

. 1 Wuy(z)pupu
2 B (T)T () (p - u)

0f(2,p) = feq(,p) [1 £ feq(,p)] [1+ 0], (6.10)

in which (7)) is a thermodynamic integral that can be reduced to 8, = (e + p)/s
for massless particles. Note that at large p, Eq.(6.10) is linear with respect to p.

In the end, the only piece left in calculating the Cooper-Frye integral Eq.(6.4) is
the evaluation of the infinitesimal element p#do,(x). In general, any 3-dimensional
space can be parametrized using three locally orthogonal variables w, v, w and then
the points on the surface () can be represented by 3#(u, v, w). With this setup, the
normal vector on the curved manifold of ¥(z) can be calculated with the following

formula known from the theory of general relativity:

do¥ da* Do’
3 _ B A1
d’o,(u,v,w) Y W dudvdw, (6.11)
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where €,,,, is the completely antisymmetric Levi-Civita tensor in a 4-dimensional

0123 — —€p13 = 1. As discussed earlier, the (7,x,%,n,) coordinate

space with €
is adopted for the hydrodynamical evolution and we choose (z,y,n;) as the three
orthogonal components to represent the freeze-out hypersurface. (¢, z,y, z) in the

Minkowski space is then represented as X(7(z,y,ns) coshng, z,y, 7(x, y,ns) coshn).
With the help of Eq.(6.11), we find

1 1
dgau(FT, Ns) = (cosh Ns + ;;;; sinh 7, —?, —%, —sinhn, — ;57;—8 coshns)
X 7(7r, ns)dnsd®rr (6.12)

in which we have represented the transverse components (x,y) with rr. Recall that
with p* = (mr coshy, p,, p,, mrsinhy), we have

or cosh y sinh n, — @ — @
Yy Ns — Pz O Dy ay

p”d?’au = (mT cosh y cosh ng + e
T Ons

or

— mr sinh y sinh 7y — mr sinh y cosh 775) X 7(7p, ms)dnsd*ry
T

s

mr OT . - .
= [ cosh(y =) = ZE 5 sinb(y ) = - rr ()

X 7 (71, ns)dnsd?rr. (6.13)

If we assume the hydrodynamic medium is boost-invariant in the longitudinal direc-
tion, i.e., the longitudinal proper time 7 is independent of the space-time rapidity

ns, Eq.(6.13) can be simplified to
P do,(Fr) = [mecosh(y = 1) = fr - 77 (Fr) | 7(Fr)dnedr. (6.14)

With the above evaluations of the freeze out hypersurface ¥¢(z), the phase
space distribution of formed hadrons f;(z,p) and the infinitesimal integral element
ptdo,(x), one is able to calculate the hadron spectra produced from the QGP mat-
ter according to the Cooper-Frye formula Eq.(6.4). This process is incorporated in
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almost all of the current computational codes of hydrodynamics. In our calculation,
we use the numerical tool “iSS” — developed by the Ohio State University Group
together with their hydrodynamic model [38] — to sample the hadron distribution at
QGP freeze-out.

6.1.2 Application of the UrQMD Model to Hadronic Scatterings

In Chapter 5, we discussed the formation of open heavy mesons from heavy quarks,
and in the previous subsection, the production of soft hadrons from a decaying QGP
was illustrated. Now we feed all these hadrons together into the UrQMD model to
simulate the subsequent processes of hadronic re-scattering.

The Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model [36] is a
microscopic model that simulates many body interactions in heavy-ion reactions on
an event by event basis. It may either start the simulation from the two colliding
nuclei or import the phase space distributions of a list of hadrons as an initial condi-
tion and simulate the subsequent interactions. We utilize the latter process for our
purpose of studying D meson evolution inside a hadron gas.

Various baryons species (including nucleon, delta and hyperon resonances with
masses up to 2.25 GeV) and meson species (including strange meson resonances) and
their corresponding anti-particles are included in the collision term of the UrQMD
model. New states can be produced during interactions via string decays, s-channel
collisions or resonance decays. The required cross sections are parametrized or tab-
ulated either according to existing experimental data or available theoretical calcu-
lations. We will discuss the scattering cross sections of charm mesons separately in
the next subsection, and detailed information about light hadron interactions can be
found in the original literature [36].

In UrQMD, the collisions between hadrons are performed with a stochastic method.

At the beginning of each time step, the relative distance di,.,s between each pair of
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particles is calculated. This relative distance di,.,s is defined as the closest distance
the selected pair of particles approach each other (in the local rest frame of the two
particles) if they stream freely. If this closest distance satisfies the semi-classical cri-
terion dipans < do = \/m, then a scattering may happen. Here, oy is the total
scattering cross section which depends on the species and the center of mass energy
/s of the two colliding particles. UrQMD scans all possible two-particle scatterings
and orders the qualified pairs according to the collision times. Then the scattering
between the first pair (with the shortest colliding time At) is selected to take place
while all the other particles stream freely during this At. For the chosen scattering,
the species of the daughter particles are determined according the relative branching
ratio of the scattering process. UrQMD then samples the scattering angles of the
final states either (for most elastic scatterings) according to an analytical expres-
sion [209, 210] or (for inelastic processes like annihilations and decays) by empirical
interpolation between forward peaked, isotropic scattering and other parametriza-
tions. This scheme is repeated for subsequent scatterings until the hadron gas is so
dilute that none of the particle pairs satisfies the scattering criterion di;..s < dp and

therefore all interactions cease — this is known as the “kinetic freeze-out”.
6.1.3 Scattering Cross Sections of Charm Mesons in a Hadron Gas

One of the most important ingredients of the UrQQMD model are the hadronic scat-
tering cross sections. To simulate the interactions of D mesons with the hadron
gas, we introduce the scattering cross sections of charm mesons with pions and rho
mesons calculated in Ref. [143] into UrQMD. In this reference paper, to describe a
hadronic system composed of 4 quark flavors (u,d, s, c), the author starts with the

following free Lagrangian for pseudoscalar and vector mesons

Lo = Tr (0,P10"P) — %Tr (Ff,F™), (6.15)
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FIGURE 6.1: Diagrams for charm meson scatterings with 7 and p mesons: the num-
bers represents different scattering processes while the Roman letters distinguishes
between different amplitudes in a given process. This figure is taken from Ref. [143].

141



60 T T T T 60

No FF

——— A=2GeV
T _._ A=1Gev TiD*

4 20

Vs (GeV)

FIGURE 6.2: Total cross sections of charm meson scatterings with 7 and p mesons,
compared between different form factors. This figure is taken from Ref. [143].

in which F,, =9,V, —9,V,, and P and V are the 4 x 4 matrices for pseudoscalar
and vector mesons in SU(4) respectively. With the introduction of the standard

minimum substitution
8,P — D,P = 9,P — % V.., P, (6.16)

g

Fn—0,V, =0,V — 5

Vi Vil (6.17)

one obtains the Lagrangian for interacting hadrons as follows:

2
L ="Lo+igTx (9"P[P,V,]) — gZTr (1P, V)
2
+igTe 9"V [V, V,]) + %Tr AZRE (6.18)

This Lagrangian implies 8 processes of charm meson scatterings with 7 and p mesons
- 1D < pD*, 7D — 7D, nD* — wD*, wD* < pD, pD — pD, pD* — pD* —
which can be represented by diagrams in Fig.6.1.
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FIGURE 6.3: Effect of hadronic interaction on the D meson suppression in central
Pb-Pb collisions.

One may refer to the original work [143] for details regarding the calculation
of these diagrams. Here in Fig.6.2 we directly cite the corresponding numerical
results for the total cross sections of charm meson scattering with 7 and p mesons
as functions of the center of mass energy /s. Note that in Fig.6.2, different choices
of the cutoff parameter A in the form factor for the hadron structure are compared,
which significantly affect the scattering cross sections of charm mesons. This will be

treated as a systematic uncertainty in our later UrQMD simulation.
6.2 Effects of Hadronic Scattering on D Meson Suppression and Flow

In this section, we apply the above mentioned UrQMD model to simulate the hadronic
interactions between D mesons and the hadron gas and explore how these scatterings
may further affect the D meson spectra that we observe at LHC and RHIC.

In Fig.6.3, we investigate how the hadronic interactions further affect the D me-
son Ras. We observe that due to additional energy loss that the D meson suffers

inside the hadron gas, its Raa is further decreased at large pr. Consequently, due
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FIGURE 6.4: Effect of hadronic interaction on the collective flow of D mesons ob-
served at LHC.

to the conservation of the number of charmed hadrons, the D meson Ray is slightly
enhanced at low pr after the UrQMD evolution. As discussed in Sec.6.1.3, we show
an error band in Fig.6.3 for our theoretical calculation which signifies the uncertainty
in the choice of the cutoff parameter A of the hadron form factor. Note that starting
from this point, our calculations adopt a new version of the EPS parametrizations of
the nuclear shadowing effect in the initial state (EPS09), which reduces the amount
of “shadowing” at low pr: this yields less suppression of Raa compared to our earlier
results presented in Sec.5.4. With our comprehensive framework that incorporates
heavy flavor evolution in both QGP and hadronic phases, we provide good descrip-
tion of the D meson suppression as observed in Pb-Pb central collisions at LHC. By
comparing with experimental data, we find the final spatial diffusion coefficient of
heavy quarks in the QGP extracted from our model to be around 7/(277"), which
corresponds to a gluon transport coefficient ¢ of around 2.6 GeV?/fm. This is consis-
tent with the constraints suggested in a recent work [95] by systematically comparing
various energy loss formalisms of light partons.

Apart from Rax, another important observable for heavy mesons is its the collec-
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FIGURE 6.5: Comparison of the D meson Raa (a) and v, (b) with RHIC data.

tive flow coefficient v5. As displayed in Fig.6.4, additional scatterings of D mesons
in an anisotropic hadron gas further enhance the v, value by over 30%. As already
discussed in Sec.5.4, we also present here the difference between two hydrodynamic
initial conditions. Since the KLN model provides a larger eccentricity of the initial
entropy density profiles than the Glauber model, this may cause another 30% dif-
ference in the collective flow of heavy mesons after their evolutions inside the QGP
and the hadron gas. However, after taking all effects into account, our calculation
still underestimates the D meson v compared to the latest ALICE data.

In Fig.6.5, we provide our calculations of D meson suppression and flow in Au-
Au collisions at RHIC energy. Similar to the above LHC scenario, the hadronic
interaction simulated with the UrQMD model suppresses D meson Raa at large pr
and enhances its vo. Our numerical results are consistent with the experimental data
measured by the STAR collaboration.

Furthermore, in Fig.6.6 we provide D meson Raa for different centrality regions
as observed at RHIC. And we also calculate the integrated Ran of D meson over
given pr regions as functions of the participant number in Fig.6.7. Due to a smaller
geometric size and a shorter life time of the hot and dense nuclear matter created

in more peripheral collisions, the D meson Raa increases with larger centrality, or
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FIGURE 6.7: Dependence of the D meson Rxs on the participant number in Au-Au
collisions at RHIC.
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decreases with larger number of participant nucleons in nucleus-nucleus collisions.
In Fig.6.6 and Fig.6.7, A = 1 is adopted for the hadron form factor. Our theoretical
calculations are consistent with all the available data from RHIC and a prediction
for the participant number dependence of the D meson Raa is also provided for a
smaller pt region — the value of Rpa is expected to be larger in 0 < pr < 3 GeV
than in 3 < ppr < 8 GeV due to a combined effect of heavy flavor energy loss and the

recombination mechanism in heavy meson formation.
6.3 Exploration of New Observables

We have developed a comprehensive framework to describe the full time evolution
of heavy flavor produced in relativistic heavy-ion collisions, including its initial pro-
duction, evolution in the QGP, hadronization and scattering inside the hadron gas.
This newly developed tool provides heavy meson suppression and flow consistent with
most existing experimental data. However, up till now, all of our study concentrates
on the single particle spectra. On the other hand, exclusive spectra, or correlation
functions may also be interesting and provide us with new insights regarding heavy
flavor dynamics and the QGP properties. In this section, we will apply our updated
model of heavy flavor dynamics to explore such heavy-flavor-tagged correlation func-
tions and show that they are indeed useful new observable that helps us distinguish
between different energy loss mechanisms of heavy quarks inside a QGP medium.

Some of our preliminary results on this subject have been published in [211, 212, 213].
6.3.1 Motivation: Ambiguity of Single Particle Spectrum

As we discussed in Chapter 3 and Chapter 4, there are two major mechanisms for
heavy quarks to lose energy in a hot and dense QCD medium — quasi-elastic scattering
and gluon radiation. Although these two mechanisms possess different properties

such as the length dependence of the amount of energy loss (see Sec.4.3.1), it may
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FIGURE 6.8: Fitting each energy loss mechanism of heavy quark to the observed D
meson Raa by tuning the transport coefficient.

not be easy to distinguish between them by using the single particle spectra alone.
As shown in Fig.6.8, one is able to fit experimental data of D meson Ras with
each energy loss mechanism alone by tuning the coupling strength. Although the
combination of collisional and radiative energy loss provides the best pr dependence
of D meson suppression and leads to the most reasonable extraction of the gluon
transport coefficient ¢ according to Ref. [95], the collisional energy loss alone or gluon
radiation alone may also fit the data within the current experimental uncertainty as
long as one increases the ¢, i.e., reduces the heavy quark diffusion coefficient D. Note
that the microscopic structure of the heavy quark scattering cross section still remains
largely unknown and different approaches — such as pQCD calculations [214], the
heavy-light quark resonant scattering approach [215], AdS/CFT based calculations
[216], lattice QCD calculations [217], etc. — may yield values of D varying from less
than D = 2/(27T') to greater than D = 5/(27T). From this point of view, it is
hard to determine which extraction in Fig.6.8 is correct and therefore which energy

loss mechanism is dominant. The use of single particle spectra alone to study heavy
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quark energy loss is therefore insufficient and this motivates the necessity to explore
new observables that may provide better insight into the heavy flavor dynamics in

heavy-ion collisions.
6.3.2 Angular Correlation Functions between Heavy Quark Pairs

In this subsection, we show that while it is difficult for single particle spectra to
distinguish between different energy loss mechanisms of heavy quarks inside QGP,
angular correlation functions related to heavy flavor pairs may serve as better and
more discriminatory observables.

We start with the simplest scenario in which an leading order pQCD approxi-
mation is applied for the initial production of heavy flavor so that heavy quark @
and anti-heavy-quark @ paris are produced back to back with the same magnitude
of momentum. After they travel through the medium, their momenta will change
and the angle between them will no longer remains 7. One may then measure the
angular distribution and determine how much angular correlation between the QQ
pairs remains after they have traversed the medium.

In Fig.6.9, we examine how this angular de-correlation behavior depends on dif-
ferent energy loss mechanisms. While different energy loss mechanisms may inde-
pendently describe the D meson Raa for different values of the transport coefficients
(Fig.6.8), they lead to significantly different angular correlation functions of the fi-
nal state c¢ pair. As can be observed in Fig.6.9, pure radiative energy loss does
not change the angular correlation function significantly after heavy quarks travel
through the medium — the function still peaks around w. To the contrary, pure
collisional energy loss leads to a peak around 0, indicating that low energy cc pair
tends to move collinearly in the end because of the radial flow effect of the QGP
medium — this is known as the “partonic wind effect” [218] and might be crucial for

the enhancement of J/1 regeneration in a QGP matter. Combining radiative and
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FIGURE 6.9: Comparison of the angular correlation functions of c¢¢ pair between
different heavy quark energy loss mechanisms — back-to-back approximation for the
heavy quark initial production.

collisional energy loss results in a correlation function in between the previous two
situations. The different angular de-correlation behavior observed results from the
qualitatively different momentum broadening mechanisms for heavy quarks caused
by different energy loss mechanisms: medium-induced gluon radiation favors small
angle emission but quasi-elastic scattering yields a fast isotropization of heavy quarks
in the momentum space.

As the next step, we replace the leading order approximation of the initial produc-
tion of heavy quark pairs by adopting an improved initialization method: a Monte-
Carlo next-to-leading order (MCNLO) production of heavy quark pairs plus the Her-
wig vacuum radiation before they enter the QGP medium [132]. In this approach, the
processes of gluon splitting and three particle production are incorporated and the
pr broadening of heavy quarks due to vacuum radiation is also considered. There-
fore, as shown by the black dot-dashed curve in Fig.6.10, instead of the back-to-back
picture, the angular correlation function of initial c¢ pairs is already double peaked

around 0 and 7 in the mid-rapidity region (1 < y < 1). This provides a more realis-
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FIGURE 6.10: Comparison of the angular correlation function of c¢ pair between
different heavy quark energy loss mechanisms — MCNLO + Herwig initialization of
heavy quarks.

tic description of heavy flavor exclusive spectra observed in proton-proton collisions
[219].

We present angular correlation functions of these cc pairs after they travel through
the QGP medium in Fig.6.10. The qualitative conclusions drawn from the previous
ideal scenario (Fig.6.9) still remains valid with the improved initialization scheme:
while the pure radiative energy loss does not change the c¢ angular correlation func-
tion compared with its initial spectrum, pure collisional energy loss isotropizes the
momentum space distribution of heavy quark much faster and leads to a peak around

0 due to the “partonic wind effect”.
6.3.8 D-D Correlation and D-Hadron Correlation

Based on the results of the previous subsection, we find that the angular correlation
function of c¢ pair is sensitive to the energy loss mechanism of heavy quarks inside
the QGP. However, in reality, we are not able to measure bare quarks directly. Even

if we could reconstruct them based on their decay products, it would still not be
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possible for experimentalists to identify which ¢ and which ¢ are correlated due to
their large number in each collisional event (especially for central Pb-Pb collisions at
LHC). In this subsection, we attempt to implement more realistic analysis techniques
for this correlation function and investigate whether its dependence on the energy
loss mechanism found in Fig.6.9 and Fig.6.10 still holds true for D mesons.

In Fig.6.11, we study the D-D correlation in the mid-rapidity region of central
Pb-Pb collisions at LHC. Instead of tracking each heavy flavor pair from their initial
production, we loop each D meson over all D’s within a collisional event and pair
up all of them. Figure 6.11 displays the correlation functions we obtain, once more
compared between different energy loss mechanisms. We find that the shapes of
these functions are similar to those of c¢ in the Fig.6.10 — peaking around = for
pure radiative energy loss but peaking around 0 for collisional energy loss, except
that they are on top of a large background. This background is contributed by all
un-correlated D and D mesons. If the future experiment can measure such angular
correlation function of heavy meson pairs or their decay products, it will provide us

with a better understanding of the heavy quark energy loss mechanism inside QGP.
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While it is relatively easy to calculate D-D correlation functions in heavy-ion
collisions, it appears much harder to measure them due to the limited statistics of
the reconstructed D/D mesons at this moment. However, the measurement of such
a correlation function between heavy flavor decay electrons and all soft hadrons has
already been attempted at the LHC experiment [220]. As a first step, we present our
calculation of D-hadron correlation functions in Fig.6.12. A more direct comparison
with the experimental data of electron-hadron correlation functions requires tracking
all possible decay products of D mesons in our simulation and will be deferred to our
future effort. Note that in Fig.6.12, we analyze the correlation between D meson and
“all” soft hadrons after their hadronic interactions through UrQMD, and the latter
part includes both the daughter soft hadrons produced by charm quark fragmentation
and hadrons directly emitted from the QGP medium according to the Cooper-Frye
formula. We observe the double peak structure around 0 and =7 in the D-hadron
correlation functions and different energy loss mechanisms lead to different strengths

of the peak structure. However, since now we are analyzing all possible hadrons, the
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correlation function in the final state is no longer merely contributed by the heavy
flavor initial production that we aim for in Fig.6.9 - Fig.6.11, but also contributed
by the collective flow behavior of the bulk matter. This introduces an additional
complication to the overall result. Note that the differences between the three energy
loss mechanisms will also depend on different cuts of pr and y regions, which should
be investigated in more details in our future work. If the future data statistics allows,
one may prefer the analysis of correlation functions between heavy flavor particles
themselves such as heavy meson and their decay leptons, since the inclusion of all
soft hadrons may introduce two particle correlations from the medium that mask the
information we are looking for.

To conclude, in this section we have applied our newly developed framework of
heavy flavor evolution that incorporates hadronic interaction in the late reaction
stage to explore heavy-flavor-tagged angular correlation functions. We investigate
the correlation functions between cé pairs, D and D mesons, and D and all possible
soft hadrons, and find them sensitive to the choice of energy loss mechanism of the
heavy quarks inside the QGP: while gluon radiation does not significantly modify the
initial angular correlation function, quasi-elastic scattering results in a much faster
isotropization of heavy quark momenta. These features can not be distinguished
with single particle spectra alone. Thus, if future measurements can provide these
correlation functions, we would obtain deeper insight into heavy flavor dynamics and

therefore the properties of the QGP matter as well.
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7

Conclusions and Outlook

Ultra-relativistic heavy-ion collisions provide the unique opportunity to compress
nuclear matter into an extremely hot and dense state of matter to form a color de-
confined quark-gluon plasma. Investigating this strongly coupled system provides us
with a better understanding of QCD and reveals the state of our universe microsec-
onds after the big bang.

Heavy quarks, including charm and bottom quarks, are dominantly produced in
the every early stage of heavy-ion collisions through hard scatterings. They prop-
agate through and observe the full evolution history of the created hot and dense
nuclear matter and therefore serve as ideal probes of the medium properties. In this
dissertation, we have developed a comprehensive framework that simulates the whole
evolution of heavy flavor in heavy-ion collisions, including its initial production, en-
ergy loss in a QGP, hadronization at the critical temperature 7T, from bare quarks
to hadronic bound states and the subsequent scattering in a hadron gas to kinetic
freeze-out.

We utilize a MC-Glauber model to initialize the position space distribution of

heavy quark production. For the momentum space, a leading-order pQCD calcu-
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lation is adopted. For nucleon-nucleon collisions, the parton distribution function
CTEQS is used, whereas in nucleus-nucleus collisions, this distribution function is
modified with the EPS parametrizations of the shadowing effect of the cold nuclear
matter in the initial state. We show that this nuclear shadowing effect significantly
suppresses the production rate of charm quarks at low pr but slightly enhances it
at larger pr at both RHIC and LHC energies and therefore greatly reduces the D
meson RRxa we observe at low pr but slightly increases it at higher pr. Compared to
charm quarks, the impact of this shadowing effect appears weaker for bottom quarks
but is still non-negligible.

To study the transport of heavy quarks inside a QGP medium, we have sepa-
rated their energy loss processes into two parts: quasi-elastic scattering with light
partons residing in the medium and medium-induced gluon radiation. In general,
the former mechanism can be described using a Boltzmann equation with collision
terms for 2 — 2 processes. We have demonstrated that in the limit of small mo-
mentum change during each interaction — which should be a good approximation
for heavy-light interaction — the Boltzmann equation can be reduced to the Fokker-
Plank equation and therefore be stochastically realized by the Langevin equation. In
order to investigate heavy quark motion inside a dynamic QGP fireball, we couple
the Langevin equation to hydrodynamic models that simulate the space-time evolu-
tion of the QGP by solving the equation in the local rest frame of the fluid cell. In
this framework, we have studied the thermalization process of charm quarks inside
QGP and found that with collisional energy loss alone, heavy quarks may not be
able to approach local thermal equilibrium with the medium background within the
QGP lifetime despite their strong response to the surrounding medium as revealed
by their large suppression and collective flow behavior. Furthermore, we have in-
vestigated the model and parameter dependence of heavy quark energy loss within
this Langevin approach. We have focused on the effects of two particular medium
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properties — geometric anisotropy and its collective flow — and found that while the
geometric anisotropy dominates the final heavy quark distributions in the high pr re-
gion, the collective flow of the medium dominates at low pr. The impact of the QGP
geometry on heavy flavor observables has been further explored by comparing the
Glauber and the KLN initializations of the hydrodynamic medium. We have shown
that while the choice of initial conditions does not significantly affect the overall sup-
pression of heavy quark, the larger geometric eccentricity given by the KLN initial
condition results in a larger heavy flavor v, than that with the Glauber model by
approximately 30%. Last but not least, the observed spectra of heavy flavor decay
electrons are sensitive to the relative contributions from charm and bottom quarks.
It has been found that a less than 1% difference in the initial charm-to-bottom ratio
can lead to more than 30% variation of the non-photonic electron spectra. Therefore,
narrowing down these uncertainties is necessary for a quantitative understanding of
heavy quark dynamics inside QGP.

To incorporate gluon radiation into the heavy quark evolution, we have introduced
a new term into the classical Langevin equation to describe the recoil force experi-
enced by heavy quarks while radiating gluons. This force term is calculated according
to the distribution function of medium-induced gluon taken from the Higher-Twist
energy loss formalism. We have found that while the collisional energy loss dom-
inates the observed heavy flavor spectra at low pr, gluon radiation dominates the
high pr regime. The crossing point is around 6 GeV for charm quarks but 16 GeV
for bottom quarks due to the larger mass of the latter. Thus, although the collisional
energy loss mechanism alone may work well to describe the low pr data of heavy
flavor measured at RHIC, it is insufficient to describe observations at LHC. With this
improved Langevin approach, we have studied the impact of initial state fluctuations
in heavy-ion collisions on the heavy quark in-medium evolution. Our calculations
have shown that although the total energy loss of heavy quarks is not very sensitive

157



to the sizes of local fluctuations in a 2-dimensional system, it increases significantly
with the number of hot spots. Our simulations in a realistic QGP medium have
demonstrated that fluctuating initial conditions may bring about 10% more suppres-
sion for the inclusive charm quark production at high pt in central Pb-Pb collisions
but the effect tends to diminish for more peripheral collisions. These results suggest
that jet modification might be utilized to probe the fluctuations of QGP medium,
such as the degree of inhomogeneity or the number of hot spots.

At the critical temperature 7., both the bulk of the QGP and the heavy quarks
need to hadronize into color neutral bound states. We utilize the Cooper-Frye for-
mula to convert the QGP matter into soft hadrons and our hybrid fragmentation
plus coalescence model to simulate the hadronization process of heavy quarks. We
have demonstrated in detail how the 2-particle and 3-particle Wigner functions are
constructed and how they are applied to the coalescence model for heavy meson and
baryon formation respectively. Our numerical results display a significant enhance-
ment of heavy meson spectra at medium pr (around 2-4 GeV) when the coalescence
model is introduced. Moreover, compared with the pure fragmentation mechanism,
the introduction of heavy-light coalescence increases both Raa and vy of the final
state heavy mesons.

After the QGP freezes out, we collect both soft hadrons produced from the QGP
and heavy mesons formed from heavy quarks, and use the UrQMD model to sim-
ulate the subsequent hadronic interactions among them until the hadron gas is so
dilute that all interactions cease. Our calculations have indicated that the additional
scattering and energy loss experienced by heavy mesons inside the hadron gas fur-
ther suppress their nuclear modification factor Raa at high pr and increase their
collective flow coefficient vy by over 30%.

With a combination of all the above mentioned ingredients, we have developed a

framework for the full time evolution of heavy flavor produced in heavy-ion collisions.

158



Within this newly developed framework, our description of the D meson suppression
and anisotropic flow is in good agreement with most of the existing experimental data
from both RHIC and LHC. Furthermore, we have provided various predictions for
experimental observations in the near further, such as the B meson suppression and
flow, the dependence of the D meson Raa on the participant number, and the non-
photonic electron Raa and vy observed at relatively low energy (62.4 GeV) Au-Au
collisions.

In the end, we have applied our framework to explore new observables — heavy-
flavor-tagged angular correlation functions — and show that while inclusive spectra
may not be able to help us distinguish between different energy loss mechanisms
of heavy quark inside QGP, the correlation functions may provide us with better
insights. Our calculations have illustrated that gluon radiation does not significantly
modify the initial angular correlation function of heavy flavor pairs, but quasi-elastic
scattering results in a much faster isotropization of heavy quark momenta. Thus,
if future experiments measure these correlation functions of heavy flavor pairs or of
their decay products, we will be able to obtain a better understanding of the heavy
flavor dynamics inside the QGP.

Our study has constituted an important step forward in the quantitative under-
standing of the heavy flavor dynamics in heavy-ion collisions. Nevertheless, it can
be further improved in several directions, which we leave for future work. For in-
stance, on the theoretical side, instead of implementing a lower cutoff of radiated
gluon energy in our modified Langevin equation to guarantee heavy quarks can ap-
proach thermal equilibrium limit, a more rigorous treatment of the detailed balance
between gluon radiation and absorption should be incorporated in the gluon distri-
bution function emitted from heavy quarks. In addition, the current calculation of
medium-induced gluon radiation only includes the effect of the momentum broaden-

ing in the transverse directions. Scatterings in the longitudinal direction may also
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affect the gluon radiation pattern and influence final-state observables. On the phe-
nomenology side, recent studies [221] suggest that apart from the production via
initial hard scattering, heavy flavor may also be converted from hard gluons during
or after their transport through the QGP medium. In this case, instead of heavy
quarks, it is gluons that interact with and lose energy inside the hot and dense nu-
clear matter. This may affect the observed spectra of heavy mesons and has not
been included in most transport model calculations of heavy quarks. Furthermore,
our numerical framework can be easily extended from open heavy flavor to the study
of heavy quarkonium. As discussed in Sec 6.3, the radial flow of the QGP back-
ground may significantly change the direction of heavy quark motion and therefore
increases the number of collinear QQ pairs after they travel through the medium.
This would enhance the probability of J/v regeneration and can be straightforwardly
investigated in our framework.

The launch of new heavy flavor detectors at both RHIC and LHC facilities in
the upcoming years will certainly bring this field into a new era. Our understanding
of heavy flavor dynamics has been greatly improved over the past few decades but
many challenges still remain and even more puzzles are expected to emerge. As a
clean hard probe, a better understanding of its interaction with the QGP will not
only help us reveal more valuable information of a hot and dense QCD system, but

also improve our knowledge of the state and evolution history of our early universe.
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Appendix A

The Strong Coupling Constant ag

In this dissertation, we adopt the running coupling constant a; in the calculation of
the spectrum of medium-induced gluon radiation [Eq.(4.6)]. Since this spectrum is
obtained within the leading-order approximation, we keep a; to the leading-order as
well. Discussions about higher-order corrections can be found in Refs. [7, 8].
To the leading-order approximation, the strong coupling constant of QCD can be
expressed as follows,
2\ —1
ay(ky) = 11_42% (m%) (A1)
where k; is the momentum transfer during interaction (transverse momentum of
radiated gluon in our calculation), Ny is the number of flavor involved in the calcula-
tion, and A is a parameter which should be fixed with experimental data. In particle
physics, a, is first measured at high energy scale, such as the mass of Z° [4], and
then extended to lower energy regime. In contrast, for the study of nucleus-nucleus
collisions at relatively low energy region, it is preferred to fix A = 200 MeV with

Ny = 3 which has been tested to give reasonable behavior of m production in proton-
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proton collisions. As we extend to higher energies, N; becomes 4 when £, exceeds
the mass of the charm quark (M, =1.27 GeV) and becomes 5 when k| exceeds the
mass of the bottom quark (M, =4.19 GeV). The parameter A is adjusted in different
regions such that ay is continuous on the boundary of M, and M,. To sum up, we

use the following parametrization of this strong coupling constant:
A =200 MeV, Nf:?), for k, < M,;

AN =173 MeV, Nf =4, for M, <k, < My, (AQ)
A =131 MeV, Ny =5, fork, > M,.
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Appendix B

Properties of Gaussian Integrals

In this appendix, we review some algebraic properties of Gaussian integrals, which
are useful for understanding the correlation functions of the thermal fluctuations in
the Langevin equation [Eq.(3.22)]. One may refer to Ref. [222] for a more detailed

summary of Gaussian integrals.
B.1 Gaussian Integrals

The general form of an n-dimensional Gaussian integral over variables z; (i =

1,...,n) can be written as
Z(A) = /d"a?e_Az(f), (B.1)
with
Ll

in which A (A;;) is a complex symmetric matrix with a non-negative real part and

non-vanishing eigenvalues a;.
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When A is real, an orthonormal matrix O can be constructed to diagonalize it

with the transformation

whose Jacobian is one. Then, we have

~ 1 2 - -\ —1/2
Z(A) = / et Zast T/ i—” = (2m)* (detd) (B.4)
i=1 v

In fact, since both the initial integral and the determinant are analytic functions of
the coefficients (A;;) of A, this identity can also be applied to the complex case.

One may further generalize the Gaussian integral to

Z(AT) = / e AT (B.5)

-,

To evaluate Z(A,b), we first locate the minimum of the exponential part:

which yields

or

= (A—l)ij b + i, (B.9)

and obtain

— Ap(F) + b T = —As (i) + ws(D), (B.10)



in which we define

_ 1 1—1
wa(B) =5 30 (A7) by (B.11)
Thus we have
N B N-12 -
Z(A,b) = et )/d"ye_Az(y) = (2m)"/? <detA> ev2(0), (B.12)

B.2 Gaussian Expectation Values

If x;’s obey the Gaussian distribution, we define the correlation function (or the

expectation value) of parts of the variables as follows:
<xk1xk2 e S(Zkl> = Z_l(zzl, 0) /dnl’$k1$k2 Ce LL’kle_A2(f), (Bl?))

in which the normalization is chosen such that (1) = 1 is satisfied.
To evaluate this expectation value, one may first derive both sides of Eq.(B.5)

with respect to b and obtain:

iZ(fl, b) = /d"xa:ke_Az(ng'f. (B.14)
by,

By comparing Eq.(B.13) and Eq.(B.14), we find that in the limit of b =0, we have

() = 274,002 2(A,5)

o (B.15)

—

b=0

Similarly, if we differentiate Eq.(B.5) repeatedly with respect to components of l;, we

have

<£L’kll’k2...1’kl> :Z_l(A,O) [ 0 9 0 _):|

Z(A
by, Dby, Oby, (4,)

|

—

b=0

(9 (9 (9 wa (g)
= e &
Dby, Oy, " Oy,

, (B.16)
b=0
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in which we have taken Eq.(B.12) into account.

More generally, if F'(Z) is a power series of x;, we have

<F@»=[FQ%)wﬁﬂ

In the end, we apply these properties of Gaussian integrals to our thermal noise

(B.17)

-

b=0

term in the Langevin equation. As described in Eq.(3.22), the thermal fluctuation

obeys the following Gaussian distribution:

P() - (%)36)@ (-%) | (B.18)

By comparing Eq.(B.18) with the standard form of the Gaussian integral Eq.(B.1)-
(B.2), we may set A;; = J;; in this special case. Therefore, it follows from Eq.(B.11)

that

wy(b) = =b°. (B.19)

By substituting Eq.(B.19) into Eq.(B.16), one obtains
=0, (B.20)

0 i
)= (55"")
i b=0
_ (9 9 pp

These are the correlation functions we showed in Eq.(3.23).

b=0
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Appendix C

The Spatial Diffusion Coeflicient of Heavy Quark

C.1 Definition of the Diffusion Coeflicient

The standard form of the diffusion equation reads

WD _ b2 o), (©1)

where p(Z,t) is the density distribution in a d-dimensional space satisfying
/ dap(F,t) = 1, (C.2)

and D is called the spatial diffusion coefficient. One may check that the solution to

Eq.(C.1) with the initial condition Z(t = 0) = 0 reads

. 1 Eis

Furthermore, we may apply Eq.(B.16) to Eq.(C.3) and obtain the expectation

-2 . .
value of |Z|” as a function of time:

(%) = [ delatt otz 0) = 241, (c.4)
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-,

L_6:7, and thus wy(b) = b2Dt as respectively defined in Eq.(B.2)

where we let A;; = 5757

and Eq.(B.11).
C.2 Diffusion Coefficient in the Langevin Equation

To investigate the diffusion behavior of heavy quark in a thermal bath, we focus
on the low momentum region (the classical limit) and re-write the second line of
Eq.(3.44) as

dp;
dt

= —npp; + G(t), (C.5)

where np = I'(0) and is assumed as a good approximation up to the scale of thermal

momentum, and (; = \/kp;/\/t represents the thermal force satisfying

<<i(t)<j(t,)>p = K;;0(t —t'). (C.6)

In the following discussion, all the average value is taken over the thermal fluctuation
and we will drop the subscript p for short. One may directly solve Eq.(C.5) with the

initial condition p;(t = —o0) = 0 as

pi(t) = / t dt' e ¢, (1), (C.7)

In order to extract the diffusion coefficient in the Langevin equation, we utilize

Eq.(C.4) and evaluate <|f|2> as

() = [ dn [ dtagps e (©3)

in which we use the initial condition z;(t = 0) = 0 for the position space.

By using Eq.(C.6) and (C.7), we have

(pi(t)pi(t2)) = /_1 C“//_2 dt" e enn () (¢ () G ()

t t
= / st / 2 dt" e —h=t) s (¢ 4y, (C.9)
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One may first consider the case of t; > t, and set t = s +t”. Then we obtain
to t1—t" .
<pl(t1)p,(t2)> = /{/ dt”/ dsenD(S+2t —tl—tg)é(s)

t2
_ KJ/ dtllenD(Qt"—tl—tz)

—00
K

_ 277_D6—77D(t1—t2)‘ (C.10)

Similarly, for the case of t5 > t1, one should obtain

Kk _ —
(pi(t1)pi(t2)) = 25" pltzh), (C.11)
To sum up, we have
Kk _ _
(pi(t1)pi(t2)) = T iplttzl, (C.12)

Therefore, by substituting Eq.(C.12) back into Eq.(C.8), we have

K t t B B
<$Z(t)xl(t)> = m/o dtl/o dtQ@ ot t2|. (Cl?))

One may let t; = s + t5 and separate the above integral into s > 0 and s < 0 parts,

. 0 t t t—s
z;(0)x; (1)) = ds/ dtoeP? +/ ds/ dt e_"Ds)
tt)i(t)) 2M?np </—t —s ’ 0 0 ’
0 t

K
= dst+se”D5+/dst—se_"Ds)
2M?np (/—t ( ) 0 ( )

t
K

= — ds(t — s)e”"? C.14

M?nD/o =) (C4

and get
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where we have transformed s — —s in the first (s < 0) part. In the end, we obtain

(@(O(t) = 37— (t+ af’m) / "

K 0 1
= t+ — (1— —"Dt]
M277D< (97713) L?D( )

K 1
e - — —npt
E [t o (1—e )} : (C.15)

By summing over the three spatial components and taking the large ¢ limit, we have

I
(|Z7) = M%ﬁ)t. (C.16)

One may extract the spatial diffusion coefficient by comparing Eq.(C.16) and
Eq.(C.4), and obtain

K

20272, (C.17)

Recall that we set np = I'(0) at the beginning and I'(p) and « are related by the
fluctuation-dissipation relation I' = k /2T E [Eq.(3.43)], we have

D= IO (C.18)

This is the only transport coefficient (free parameter) we may tune in our Langevin

framework.
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