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Abstract

Heavy flavor hadrons serve as valuable probes of the transport properties of the

quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. In this dis-

sertation, we introduce a comprehensive framework that describes the full-time evo-

lution of heavy flavor in heavy-ion collisions, including its initial production, in-

medium evolution inside the QGP matter, hadronization process from heavy quarks

to their respective mesonic bound states and the subsequent interactions between

heavy mesons and the hadron gas.

The in-medium energy loss of heavy quarks is studied within the framework of

a Langevin equation coupled to hydrodynamic models that simulate the space-time

evolution of the hot and dense QGP matter. We improve the classical Langevin

approach such that, apart from quasi-elastic scatterings between heavy quarks and

the medium background, radiative energy loss is incorporated as well by treating

gluon radiation as a recoil force term. The subsequent hadronization of emitted

heavy quarks is simulated via a hybrid fragmentation plus recombination model.

The propagation of produced heavy mesons in the hadronic phase is described using

the ultra-relativistic quantum molecular dynamics (UrQMD) model. Our calculation

shows that while collisional energy loss dominates the heavy quark motion inside

the QGP in the low transverse momentum (pT) regime, contributions from gluon

radiation are found to be significant at high pT. The recombination mechanism

is important for the heavy flavor meson production at intermediate energies. The

iv



hadronic final state interactions further enhance the suppression and the collective

flow of heavy mesons we observe. Within our newly developed framework, we present

numerical results for the nuclear modification and the elliptic flow ofD mesons, which

are consistent with measurements at both the CERN Large Hadron Collider (LHC)

and the BNL Relativistic Heavy-Ion Collider (RHIC); predictions for B mesons are

also provided.

In addition, various transport properties of heavy quarks are investigated within

our numerical framework, such as the thermalization process of heavy quarks inside

the QGP, and how the initial configuration of the QGP as well as its properties

affect the final state spectra and the elliptic flow of heavy mesons and their decay

electrons. The effects of initial state fluctuations in heavy-ion collisions are also

studied and found to enhance the heavy quark energy loss in a (2+1)-dimensional

boost invariant scenario. Furthermore, a new set of observables – heavy-flavor-tagged

angular correlation functions – are explored and found to be potential candidates for

distinguishing different energy loss mechanisms of heavy quarks inside the QGP.
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1

Introduction

Probably ever since the birth of mankind, people have been wondering who we are,

where we are from and what the universe is composed of. It seems that we choose to

believe the world is made of several simple elements despite its complicated outlook.

Around the eighth century B.C., ancient oriental sages believed that the world is

composed of five elements – gold, wood, water, fire and earth. About three hun-

dred years later, the Greek philosophers Leucippus and Democritus proposed a more

refined concept named “atoms” which are solid, homogeneous, indivisible, and un-

changeable fundamental elements making up all the matter.

With the development of the modern science, nowadays it has been accepted

that there exist 25 species of elementary particles: 6 quarks and 6 leptons that act

as bricks of macroscopic matter; 12 bosons – photon, W+,W−, Z0 and 8 different bi-

colored gluons – that mediate the electroweak and strong forces between the bricks;

and the most recently confirmed Higgs boson that is responsible for the generation of

masses of all these elementary particles [1, 2, 3]. Meanwhile, the interactions between

these elements are categorized into three fundamental forces: the electromagnetic

force which satisfies U(1) symmetry and is described by Quantum Electromagnetic
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Dynamics (QED), the weak force which satisfies SU(2) symmetry and can be unified

with QED under U(1)×SU(2) symmetry – its spontaneous breaking plus the Higgs

mechanism produce mass and yield the electroweak theory, and the strong force which

satisfies SU(3) symmetry and is described by Quantum Chromodynamics (QCD).

This is the general picture of the “standard model” of particle physics today. Note

that the strong force has not been successfully unified with the other two and gravity

has not been included at the moment.

While QED has been very well studied and provided predictions that lead to an

extremely precise (a precision of 10−8) measurement of the fine structure constant

αem based on the anomalous magnetic dipole moment, QCD on the other hand, is

much more complicated and the related calculations still remain largely unknown

especially in the low energy region. In this dissertation, we would like to explore

the properties of a particular type of QCD system that is extremely hot and dense

and may exist in our early universe microseconds after the Big Bang. To investigate

such nuclear matter on earth, we collide beams of ultrarelativistic heavy nuclei and

observe the produced particles. In particular, we will utilize heavy quarks (charm

and bottom quarks) to probe the properties of this QCD system and gain insights

on both the mechanisms of the strong interaction and the evolution history of our

infant universe.

1.1 Nuclear Matter under Extreme Conditions

1.1.1 The QCD Phase Diagram

QCD is an exact theory that governs the interactions between color charges (quarks

and gluons) via the strong force. The two crucial properties of QCD are quark con-

finement and asymptotic freedom. Each quark carries a color, and quark confinement

dictates that only color neutral particles can exist in vacuum, i.e., there is no free

2



Figure 1.1: Measurements of the strong coupling constant αs as a function of the
energy scale Q. This figure is taken from Ref. [4].

quark. As shown by Eq.(1.1), to leading order in perturbative QCD (pQCD),

αs(k) ≡
g(k)2

4π
=

4π

11− 2Nf/3

(

ln
k2

Λ2

)−1

, (1.1)

the coupling strength of QCD is large at small scale of momentum transfer but

becomes small with the increase of such momentum scale. This is known as the

asymptotic freedom of QCD [5, 6]. Here, k denotes the momentum scale, Nf is

the number of quark flavors and Λ is a constant fixed by experiment. Calculations

to higher orders can be found in Refs. [7, 8]. In Fig.1.1 we show a summary of

experimental measurements of this αs taken from Ref. [4] in which open symbols

represent the (resummed) next-to-leading order (NLO), and filled symbols next-to-

NLO (NNLO) QCD calculations used in each analysis, compared with the QCD
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predictions (shown by curves) for the combined world average value of αs(MZ0) =

0.1189±0.0010 (MZ0 = 91.1876±0.0021 GeV), in 4-loop approximation and using 3-

loop threshold matching at the pole masses of heavy quarks chosen as Mc =1.5 GeV

and Mb = 4.7 GeV. For the calculations in the dissertation, we only keep αs to

leading order and the details of our parametrization are discussed in Appendix A.

As for all the dynamic systems, the information of QCD is encoded in its La-

grangian:

LQCD = −1

4
F a
µνF

µν
a −

∑

f

ψ̄f
α (iγ

µ∂µ +mf − gγµAµ)
αβ ψf

β , (1.2)

in which

F a
µν = ∂µA

a
ν − ∂νA

a
µ − gfa

bcA
b
µA

c
ν . (1.3)

Here, Aa
µ represents a gluon field with color a, and ψf

α represents a quark field with

flavor f and color α. µ, ν = 0, 1, 2, 3 denote the Lorentz index. γµ’s are the Dirac

matrices, and ψ̄ ≡ ψ†γ0. Finally, fabc is the structure constant of SU(3) Lie algebra,

and mf denotes quark mass. The coupling strength of the strong interaction g is

a function of momentum transfer and can be evaluated perturbatively, such as the

first order approximation given by Eq.(1.1).

With this QCD Lagrangian, the partition function of the strongly interacting

system can be constructed as follows:

Z (T, V ) =

∫

DADψDψ̄exp

[

−
∫

V

d3x

∫ 1/T

0

dτLQCD

(

A,ψ, ψ̄
)

]

, (1.4)

where τ ≡ ix0 is the imaginary time and is integrated over from zero to the inverse

of the temperature parameter. The calculation of this integral can be carried out on

a lattice via numerical technics, which is known as lattice QCD [9]. With a proper

calculation of the partition function, the thermodynamic quantities of the system

4



Figure 1.2: Equation of state calculated by Lattice QCD: energy density normal-
ized by T 4 vs. T on Nt = 6, 8 and 10 lattices. The arrow represents the Stefan-
Boltzmann limit ǫSB = 3pSB. This figure is taken from Ref. [9].

can be obtained. For instance, we have energy density and pressure as follows:

ǫ =
T 2

V

(

∂lnZ

∂T

)

V

, P = T

(

∂lnZ

∂V

)

T

. (1.5)

In Fig.1.2 we show the energy density normalized by T 4 as a function of temper-

ature obtained from a lattice QCD calculation [9]. The comparison between Nt = 6,

8 and 10 verifies the convergence of the numerical integral of Eq.(1.4) on the lattice

with a discretization of 6 points in the temperature direction. The spatial part of

Eq.(1.4) is discretized with at least 18 × 18 × 18 lattice points. In Fig.1.2 one ob-

serves a rapid increase of the energy density of matter around a critical temperature

of Tc =160 MeV. Meanwhile, if we were to model QCD matter as a non-interacting

ultra-relativistic boson gas, thermodynamic calculation yields an equation of state as

ǫ = gDOFπ
2T 4/30. This is known as the Stefan-Boltzmann formula, in which gDOF de-

notes the degree of freedom of the constituent particles. Therefore, the lattice result

5



Figure 1.3: Illustration of the QCD phase diagram. The credit of this figure belongs
to the USQCD website and 2007 NSAC report.

shown in Fig.1.2 implies a quick rise of the intrinsic degrees of freedom of the QCD

system around Tc which corresponds to a fast cross-over from one state of matter to

another. In fact, the lattice result is in good agreement with the Stefan-Boltzmann

approximation if one assumes a hadron resonance gas for the nuclear matter below

Tc and a quark-gluon gas above Tc. Thus the critical temperature Tc corresponds to

a boundary between a hadron gas and a color-deconfined state of quarks and gluons

which is termed as a quark-gluon plasma (QGP) [10].

In Fig.1.3, we show an illustration of the QCD phase diagram labeled with energy

regimes explored by different experiments. There are three major states for the

QCD system. At low baryon chemical potential µ and low temperature T , the QCD

matter exists in the form of hadron gas in which the quarks and gluons are confined

6



inside hadrons. With an increase of temperature and density, the nuclear matter will

transition into a color-deconfined quark-gluon plasma state. Note that there exists

a critical point in the phase diagram, above which the transition from the hadronic

state to the QGP state is an ordinary first order phase transition, but below that

it is a fast cross-over without classical critical behavior. Details of the difference

between cross-over and rigorous phase transition are reflected by the behavior of the

order parameters like the Polyakov loop and the effective quark mass as discussed

in [11]. Note that the search for the location of the critical point is one of the

most important tasks of the beam energy scan experiment at RHIC and exciting

results are expected in the next few years. Apart from the hadronic state and the

quark-gluon plasma state, another interesting state of a QCD system is that of a

color superconductor which resides in the large chemical potential region at low

temperature. In this regime, color charges, like quarks and gluons, can form cooper

pairs and stop from being scattered by the lattice, just as normal electric charges

do to form a normal superconductor. However, unlike the repulsive Coulomb force

between electrons in a metal, the strong interaction between color charges is already

attractive, and therefore, phonons – due to the charge-lattice interaction – are not

necessary for the formation of cooper pairs inside a QCD system. This in fact makes

superconductivity in QCD more “robust” than that in metals in the sense that

(1) for extremely dense QCD matter where perturbative approach is applicable one

may derive the gap parameter and other properties of color superconducting quark

matter rigorously and (2) the ratio of the gap parameter to the Fermi energy in a

strongly interacting QCD matter could be much larger than that in conventional

BCS superconducting metals [12]. However, the temperature of this state should be

low enough so that the bound state of color charge pairs are not destroyed by thermal

fluctuations. This color-superconducting state is beyond the current capabilities of

experimental observation in laboratories and might be studied via neutron stars.
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Figure 1.4: Cartoon of different stages of nuclear matter in heavy-ion collisions.
The credit of this figure belongs to Steffen Bass.

In this dissertation, we will concentrate on the relatively low µ region of the phase

diagram that is explored by LHC experiments and high energy RHIC experiments.

1.1.2 Exploring Hot and Dense Matter with Heavy-ion Collisions

To investigate the QGP state of the QCD phase diagram in the lab, the only cur-

rently known way is to collide beams of ultrarelativistic heavy-ions to create this

extremely hot (a temperature in excess of 1012 K) and dense (an energy density

above 1 GeV/fm3) nuclear matter. The two experimental facilities in operation at

which we can probe the QGP are the Relativistic Heavy-Ion Collider (RHIC) at the

Brookhaven National Laboratory (BNL) and the Large Hadron Collider (LHC) at

the European Organization for Nuclear Research (CERN). At RHIC, Gold (Au),

Copper (Cu) or Uranium (U) nuclei can be accelerated to a center of mass energy of

√
sNN = 200 GeV per nucleon pair to produce the QGP matter, and at LHC Lead

(Pb) nuclei are accelerated to even higher energy – currently
√
sNN = 2.76 TeV. It is

now generally accepted that a strongly interacting QGP matter is created in these

energetic nuclear collisions.

In heavy-ion collisions, the hot and compressed nuclear matter evolves through

several stages as demonstrated in Fig.1.4 with a time scale estimated for Au-Au
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collisions with
√
sNN = 200 GeV at RHIC.

To start with, two Lorentz contracted nuclei approach each other with almost

the speed of light. During the collision, the overlapping region between the colliding

nuclei is highly compressed and new particles, some of which carry large transverse

momenta, are produced. It takes a short but finite time (the pre-equilibrium stage)

for these particles to interact with each other and drive the system to local thermal

equilibrium to form a QGP matter. The microscopic details of the dynamical evolu-

tion of the pre-equilibrium stage and its thermalization process still remain largely

unknown but various models have been constructed to provide the initial condi-

tion of the subsequent QGP evolution. In this dissertation, the two most widely

adopted models – the Glauber model [13, 14, 15] and the Kharzeev-Levin-Nardi

(KLN) parametrization of the Color Glass Condensate (CGC) model [16, 17] – will

be used and compared. In the Glauber model, the collision between two nuclei is

viewed in terms of the individual interactions between mutually independent con-

stituent nucleons; while in the KLN-CGCmodel, the unintegrated gluon distributions

inside the two colliding nuclei are used to determine the production and distribution

of the initial gluons.

For the current energy scale reached at RHIC and LHC, the QGP matter is

expected to be a strongly coupled system. One may estimate the initial density

of the created QGP matter as follows. The radius R of 197Au nucleus is about

6.4 fm, which yields an area S = πR2 around 128 fm2 in the transverse plane for a

head-on collision. Since it takes approximately 0.6 fm/c for the system to approach

local equilibrium after the collision, the length L of the system in the longitudinal

direction (along the beam axis) is around 1.2 fm when the QGP evolution commences.

This leads to a volume V = SL around 150 fm3 that contains a total number (N)

of 394 nucleons from the two colliding nuclei. Let us estimate that each nucleon

contributes 30 to 40 partons. Then we obtain a number density around n = 35N/V =

9



90 fm−3. The average distance between two partons can then be evaluated as d =

1/ 3
√
n = 0.22 fm, which corresponds to a momentum scale around Q = ~c/d =

0.88 GeV. According to Fig.1.1, αs is greater than 0.5 for such a dense system.

This strongly interacting QGP matter displays properties similar to that of an ideal

fluid and therefore its bulk evolution has been successfully described by relativistic

hydrodynamics [18, 19, 20, 21, 22, 23, 24, 25] with a value of the shear-viscosity-over-

entropy-density ratio (η/s) [26] close to the lower boundary for universal quantum

systems (1/4π) proposed in Ref. [27] based on the strong coupling limit. For central

Au-Au collisions, the duration of the hydrodynamical expansion of the QGP is around

10-15 fm/c.

When the local temperature of a fluid cell drops below Tc during the hydrodynam-

ical expansion, it hadronizes. Generally, one applies the Cooper-Frye formula [28] to

calculate the spectra produced by the hadronizing QGP for hadrons with transverse

momenta below 2 GeV. In the intermediate pT regime (2-5 GeV), the recombination

mechanism [29, 30, 31, 32] has been shown necessary for hadron production. Above

5 GeV, on the other hand, hadrons are being produced mostly via fragmentation

[33, 34, 35] of high energy jets created in initial hard scatterings other than from the

QGP matter itself.

After the hadronization, the hadrons continue to scatter off each other until the

hadron gas is so dilute that all interactions cease. This is known as the hadronic

phase and its dynamics can be studied with transport models of hadrons such as

the UrQMD [36]. Finally, the hadrons are captured by detectors and their various

spectra provide us hints of the properties of the hot and dense nuclear matter present

in the earlier stages. In the following sections, we will briefly review how the spectra

of both soft hadrons and hard probe particles are utilized to investigate the QGP

matter.

10



1.2 QGP Bulk Evolution and Hydrodynamics

1.2.1 Hydrodynamic Equations

As mentioned earlier, as a strongly coupled system, the QGP displays properties

similar to a perfect fluid and hence has been successfully described by hydrodynamics.

In this subsection, we follow Ref. [37] to provide an overview on hydrodynamic

equations that provide a model of the QGP background for our study of heavy flavor

transport in this dissertation.

Hydrodynamics is an effective theory that describes the evolution of a fluid sys-

tem. Instead of tracking the motions of all microscopic particles in the system, it

divides the system into small fluid cells and treats each of them as a thermal sub-

system close to local equilibrium. The size of each cell should be chosen such that

the cell can be viewed as a good macroscopic representation of particles within it

and meanwhile also a microscopic constituent of the whole system. In other words,

the size of each cell should be simultaneously much larger than the mean free path

λmfp of the particles that make up the fluid and much smaller than the length scale

L of the fluid system. Therefore, the validity of hydrodynamics can be determined

by a Knudsen number defined as K ≡ λmfp/L. Hydrodynamics is valid for small K

but breaks down for large K. In contrast, the validity of a microscopic transport

model based on the Boltzmann equation requires a sufficiently large λmfp. Never-

theless, there exists an overlap between the validity regions of hydrodynamics and

microscopic transport – large λmfp and even larger L – in which we are allowed to

derive the hydrodynamic equations from the microscopic transport model and then

apply them to a wider regime as long as K remains small.

With the relaxation time approximation for the collision kernel, the Boltzmann
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equation can be written as:

pµ∂µf(x, p) = C(x, p) =
p · u(x)
τrel

[

feq

(

p · u(x)
T (x)

)

− f(x, p)

]

, (1.6)

in which uµ ≡ (γ, γ~v) is the four velocity, f(x, p) represents the phase space distribu-

tion of a particular type of constituent particle of the fluid system, and feq denotes

the distribution of local thermal equilibrium

feq

(

p · u(x)
T (x)

)

=
gDOF

ep·u(x)/T (x) ± 1
(1.7)

with T (x) as the local temperature and ± sign for Fermi-Dirac/Bose-Einstein statis-

tics. Here the chemical potential µ(x) has been ignored which will not affect our

discussions below. Meanwhile, one may define the local current density jµ(x) and

the energy-momentum tensor T µν(x) as

jµ(x) =

∫

dPpµf(x, p), (1.8)

T µν(x) =

∫

dPpµpνf(x, p), (1.9)

in which we have denoted

dP ≡ d3p

(2π)3E
(1.10)

for short.

For the simplest case, we start with an ideal fluid in which the interaction strength

is infinite and therefore f(x, p) keeps the same as feq. Consequently, the right hand

side of Eq.(1.6) gives 0. Furthermore, by using Eqs.(1.6), (1.8) and (1.9), we obtain

the conservation equations for the current density and the energy-momentum tensor:

∂µj
µ(x) = 0, ∂µT

µν(x) = 0. (1.11)
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Meanwhile, since the only vector we have for constructing jµ is pµ (or uµ), we

may decompose it as

jµ(x) = n(x)uµ(x), (1.12)

in which n(x) is the scalar part. Similarly, we may decompose T µν with uµuν and

gµν as

T µν(x) = e(x)uµuν − P (x)△µν , (1.13)

where we have defined △µν ≡ gµν − uµuν . The physical meaning of such a decom-

position becomes apparent in the local rest frame of the fluid cell where uµ = (1,~0).

In this case, uµuν acts as a temporal projector – the (00) part of gµν – and △µν acts

as the spatial projector. With these projectors, one may further extract the scalar

parts of Eqs.(1.12) and (1.13) as follows:

n(x) = uµj
µ, e(x) = uµT

µνuν , and P (x) = −1

3
△µν T

µν , (1.14)

in which we have applied uµu
µ = 1, uµ△µν = 0 and△µν△µν = 3. One may substitute

Eqs.(1.8) and (1.9) into Eq.(1.14) to calculate these scalars explicitly. And since these

scalars are Lorentz invariant, we may evaluate them in the local rest frame so that

their physical meanings are easy to observe:

n(x) =
1

(2π)3

∫

d3p̄ feq(Ē/T ) = particle density in the l.r.f, (1.15)

e(x) =
1

(2π)3

∫

d3p̄ Ēfeq(Ē/T ) = energy density in the l.r.f, (1.16)

P (x) =
1

(2π)3

∫

d3p̄
~̄p2

3Ē
feq(Ē/T ) = pressure in the l.r.f. (1.17)

Here, the symbol “bar” denotes the variable to be in the local rest frame and we

have applied p̄ · ū = Ē.

Before writing out the final “equations of motion” for ideal hydrodynamics, we

define three more notations. (1) Expansion rate θ ≡ ∂µu
µ of the fluid cell; (2) full
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derivative with respect to the proper time τ :

D ≡ uµ∂
µ = γ

∂

∂t
+ γ

∂~r

∂t

∂

∂~r
= γ

d

dt
=

d

dτ
, (1.18)

and we denote Df ≡ ḟ ; and (3) the spatial gradient in the local rest frame ▽µ ≡

△µν∂
ν as will appear in

∂µ = gµν∂
ν = uµuν∂

ν +△µν∂
ν ≡ uµD +▽µ. (1.19)

With the above setups, we may obtain the equations of motion as follows.

0 = ∂µj
µ = uµ∂µn+ n∂µu

µ = ṅ+ nθ; (1.20)

0 = ∂µT
µν = ∂µ [(e + P )uµuν − Pgµν]

= uµuν∂µ(e+ P ) + (e+ P )uν∂µu
µ + (e + P )uµ∂µu

ν − gµν∂µP

= uνD(e+ P ) + (e+ P )uνθ + (e+ P )u̇ν − (uνD +▽ν)P

= uν ė+ (e+ P )uνθ + (e+ P )u̇ν −▽νP. (1.21)

From Eq.(1.20), we have

ṅ = −nθ, (1.22)

indicating the dilution of the fluid system while it expands. And by multiplying

Eq.(1.21) with uν , we would obtain

ė = −(e + P )θ, (1.23)

which describes the change of the energy density due to the expansion of the system.

Here we have applied uνDu
ν = D(uνu

ν)/2 = 0 and uν▽ν = 0. Note that the relative

change of e is faster than that of n as given by Eq.(1.22) because of the work done by

the pressure. In the end we may substitute Eq.(1.23) back into Eq.(1.21) and obtain

u̇ν =
▽νP

e + P
. (1.24)
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This is nothing but the Newton’s second law for the fluid cell where u̇ν is its accel-

eration, ▽νP is the pressure gradient that acts as the driving force for the hydrody-

namical expansion and e+ P is the inertial of the fluid.

Equations (1.22), (1.23) and (1.24) are the equations of motion (EOM) of ideal

hydrodynamics. All together they provide 5 independent equations. Meanwhile,

we have 6 unknowns: n, e, P and 3 independent components of uµ. To close the

algebraic system, we need an additional equation – the equation of state (EOS)

that relates thermodynamic quantities e and P . This EOS can be either calculated

using a thermodynamic model or be more rigorously obtained from lattice QCD as

discussed in Sec.1.1. As an illustrative example, we take P = c2se, where cs is the

speed of sound inside the fluid system as defined in c2s ≡ ∂P/∂e. Then Eq.(1.24) can

be reduced to

u̇ν =
c2s

1 + c2s

▽νe

e
. (1.25)

The physical interpretation of cs becomes apparent with Eq.(1.25). It character-

izes the “stiffness” of the EOS of the fluid system. With a fixed gradient of energy

density, a larger cs – a stiffer system – yields a faster acceleration of the hydrody-

namical expansion and a softer cs leads to a slower acceleration. Note that around

Tc, cs is expected to approach a minimum in both the thermodynamic model and

in the lattice QCD calculation because in the mixed phase, density perturbations

cause the conversion from the QGP matter to the hadron gas instead of propagating

themselves.

We may repeat the above derivations for the equations of motion of a viscous

fluid. In a viscous fluid, the coupling strength is finite and therefore the distribution

function of constituent particles f(x, p) is not able to instantaneously return to the
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equilibrium limit while the system is expanding. Thus we should decompose it as

f(x, p) = feq

(

p · u(x)− µ(x)

T (x)

)

+ δf(x, p). (1.26)

The decomposition is non-trivial. To make it unique, one needs to find optimal pa-

rameters for the local equilibrium quantities T (x), µ(x),uµ(x) so that feq reproduces

certain key macroscopic observables associated with the non-equilibrated distribu-

tion function f . This can be achieved by the “Landau matching procedure”. By

requiring

δn = uµδj
µ = 0, (1.27)

we may fix µ/T , and by requiring

δe = uµδT
µνuν = 0, (1.28)

we may further fix T . In the end we may use the “Landau frame” to determine the

local rest frame of the fluid cell:

T µνuν = euµ, (1.29)

which is equivalent to uνδT
µν = 0 with δe = 0, indicating that there is no momentum

flow in the local rest frame. Note that uµ is the time-like eigenvector of T µν .

With δf 6= 0, jµ and T µν can now be decomposed as

jµ(x) = n(x)uµ(x) + V µ(x)

T µν(x) = e(x)uµuν − [P (x) + Π(x)]△µν +πµν , (1.30)

with n(x), e(x) and P (x) the same as those calculated with feq for ideal hydrody-

namics due to the above Landau matching conditions, and V µ = △µνjν being the

net charge flow in the local rest frame, Π = −1/3△µν T
µν−P being the bulk viscous

pressure, and πµν = △µν
αβT

αβ being the shear stress tensor. Here we define

△µν
αβ ≡ 1

2

(

△µ
α △ν

β +△µ
β △ν

α

)

− 1

3
△µν △αβ, (1.31)
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so that πµν is a traceless tensor without time component in the local rest frame

(πµ
µ = 0 and uµπ

µνuν = 0). In the case of zero chemical potential µ = 0, there

exists no net charge (baryon free and strangeness free system), and we have V µ = 0.

And although δf 6= 0 leads to non-zero collision kernel C in Eq.(1.6), its integrals
∫

dPC and
∫

dPpµC are still zero so that the conservation of particle number and

energy-momentum Eq.(1.11) still holds. However, at this moment, we have the same

number of independent equations as for ideal hydrodynamics, but 6 more unknowns

– Π and 5 independent components of πµν . There are various approaches in the

literature for finding the missing equations. One may refer to Ref. [37, 11] for a

summary about this and a detailed derivation of the closed set of EOM for viscous

hydrodynamics. Here we only cite two more useful definitions:

Π ≡ −ζθ, πµν ≡ 2ησµν ( σµν ≡ △µν
αβ ▽α uβ ), (1.32)

in which ζ is known as the bulk viscosity and η shear viscosity.

In the literature, there exist various numerical realizations of hydrodynamic equa-

tions. For instance, since the QGP medium expands with almost speed of light in the

longitudinal direction (ẑ – direction in which the colliding beams travel), it is difficult

to accurately describe both the small system at early time and the much larger sys-

tem at later times with (t, x, y, z) coordinates if the grid size is fixed. However, this

problem can be solved with (τ, x, y, ηs) coordinates where τ ≡
√
t2 − z2 is the proper

time and ηs =
1
2
ln[(t+ z)/(t− z)] is the space-time rapidity. This coordinate frame

has been adopted by many hydrodynamic codes. In order to simplify the calculation,

one may assume longitudinal boost invariance for the solutions, i.e., the fluid profile

only depends on (τ, x, y) but not ηs – for example T (τ, x, y, ηs1) = T (τ, x, y, ηs2).

This is known as a (2+1)-dimensional hydrodynamic model. Other calculations as-

sume that the distributions of particle number, energy density, etc., are homogeneous

in the transverse plane and only concentrates on the expansion in the longitudinal
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Figure 1.5: Development of the momentum space elliptic flow from the position
space anisotropy.

direction. This is known as a (1+1)-dimensional model. Of course, there is also

(0+1)-dimensional model where both the transverse homogeneity and longitudinal

boost invariance are assumed. In fact, an analytical solution (the Bjorken solution)

exists for this special case and one may also refer to Ref. [37] for related details.

1.2.2 Anisotropic Flows of Soft Hadrons

Hydrodynamics has successfully described and predicted the anisotropic flows of low

momentum – so called “soft” – hadrons produced in relativistic heavy-ion collisions,

which is considered an important evidence of the existence of strongly coupled QGP

matter.1

As demonstrated in Fig.1.5, the rapid collision between the two nuclei forms an

almond shaped zone of highly compressed QCD matter in their overlap. Here we

define the concept of “reaction plane” as the plane spanned by the beam axis (z) and

the impact parameter (x). Because of the geometric anisotropy of the compressed

QCD matter, its pressure gradient in the x axis is greater than that in the y axis,

and therefore it accelerates and expands faster in x than in y [see Eq.(1.24)]. In the

1 The discussions about how to convert the hydrodynamic medium into observed hadrons will be
postponed to Sec.6.1.1.
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Figure 1.6: Decomposition of a fluctuating initial condition of hydrodynamical
evolution into its first 4 harmonic deformations. This figure is taken from Ref. [38].

end, the geometric asymmetry is transformed into an anisotropy in momentum space,

which can be measured via the momentum distribution of observed hadrons. We may

define the elliptic flow coefficient as the average of the ratio between the difference and

sum of hadron momentum squares in x and y directions: v2 ≡
〈

(p2x − p2y)/(p
2
x + p2y)

〉

.

In Fig.1.5, we assume that the two colliding nuclei are smoothly distributed round

disks. However, in reality, both the nucleon positions and color charges inside nuclei

fluctuate from event to event [39]. This leads to many interesting consequences, such

as (1) the existence of finite elliptic flow even in the ultra-central collisions (at almost

zero impact parameter); (2) the minor axis of the elliptic initial profile of the created

nuclear matter no longer residing in the reaction plane as defined above; and (3)

the existence of odd-order harmonics in the collision geometry and flow [40, 41, 42,

43, 44, 45, 46, 47, 48, 49, 50, 51, 52]. In Fig.1.6, we illustrate the decomposition

of a fluctuating initial profile of QGP into its first 4 harmonic components. One

observes that with fluctuating nuclear structures, the colliding region between the

two nuclei is no longer an ellipse symmetric about the y axis. Instead, it contains

triangular, quadrangular, pentagonal, etc., geometric components as well. And each

harmonic component has its own optimal coordinate as denoted by Φn in Fig.1.6.

In the literature, one defines these planes – rotated from the reaction plane by Φn

about the z axis – as the “participant planes” of the respective harmonic components.

Similar as the development of the elliptic flow v2, these higher order deformations
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of the geometric profile will also be transformed into their corresponding collective

flows in the momentum space through hydrodynamical evolution. The v2 coefficient

can be generalized to the following nth order harmonic coefficient according to the

Fourier decomposition of the hadron spectra:

dN i

dypTdpTdφp

=
1

2π

dN i

dypTdpT

[

1 + 2
∞
∑

n=1

vin(y, pT) cos
(

n
[

φp −Ψ(i)
n (y, pT)

]

)

]

, (1.33)

in which i represents the selected species of observed hadrons, pT and φp denote the

magnitude and angle of momentum in the transverse plane, and y is the rapidity

defined as y ≡ 1
2
ln [(E + pz)/(E − pz)]. Here, vin(y, pT) is the differential coefficient

of the nth order flow with respect to y and pT, and one may integrate Eq.(1.33)

over a particular momentum regime to obtain the corresponding integrated flow

coefficients. Note that just as Φn for the geometric anisotropy above, different orders

of momentum space asymmetry also have their own optimal axes denoted by Ψn. A

proper choice of Ψn maximizes the vn for a given collisional event and this Ψn helps

define the nth order “event plane” in the same way as the previous “participant

plane”. Due to the non-linear behavior of hydrodynamics, the participant plane of

the initial geometric space and the event plane of the final momentum space do not

necessarily coincide with each other, although they will be the same after we average

over a sufficiently large number of collision events. With the above definitions, it

is easy to prove that one convenient scheme to simultaneously obtain vn and Ψn is

as follows: we start with any transverse coordinate – using the reaction plane for

example – and calculate φp with respect to it, then extract the real and imaginary

parts of the average exp(inφp) of the selected hadrons as

Ai(y, pT) + iBi(y, pT) ≡
∫

dφpe
inφp dN i

dypTdpTdφp
∫

dφp
dN i

dypTdpTdφp

, (1.34)

and in the end the flow coefficient vn and the event plane angle Ψn with respect
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Figure 1.7: Comparison of hadron vn between hydrodynamic calculation and ex-
perimental data. This figure is taken from Ref. [53].

to the chosen coordinate are directly given by the module and the direction of this

complex number:

vn =
√
A2 +B2, tan(nΨn) = B/A. (1.35)

In Fig.1.7, we show one example of a comparison of hadron vn between a hy-

drodynamic calculation [53] and experimental data [52]. In Ref. [53], a classical

Yang-Mills description is applied for the early time evolution of the gluon field be-

fore the start of a (3+1)-dimensional hydrodynamic expansion of the QGP fireball.

In Fig.1.7, both a constant and a temperature dependent η/s parametrization [54]

are utilized for the hydrodynamic model, and they both provide a good description

of the observed hadron collective flows up to the 5th order harmonic component.

Because of the success of hydrodynamics in describing the dynamical evolution of

the strongly interacting system, it has been widely applied to investigate the initial

state fluctuations in heavy-ion collisions which still remain largely unknown. We will

come back to this topic in Sec.4.3.
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1.3 Exploring QGP Properties with Jet Quenching

In the previous section, we have made the case that the study of soft hadrons pro-

duced in heavy-ion collisions reveals valuable information on the QGP such as its

η/s coefficient and the quantum fluctuations in its initial state. However, since these

low energy hadrons cannot exist inside a deconfined medium and are only produced

on the freeze-out hypersurface of the QGP, it is hard to probe the microscopic QCD

structure inside the QGP with them alone. Apart from looking at the thermal radia-

tion emitted from a hot and dense QCD medium, an alternative approach to test its

properties is to shoot probe particles through it and study their interactions within

the medium. In the following sections, we will briefly review the dynamics of high

momentum “hard probe” particles inside the QGP. Note that other probes such as

direct photons and di-leptons can also be used but are beyond the discussions of this

dissertation. One may find a broader overview of different probe particles in Ref.

[11].

“Hard probes” [55] refer to high energy particles created directly from partonic

scatterings with large momentum transfer Q2. Thus their cross sections can be

theoretically predicted with pQCD calculations. Their formation times τf ≈ 1/pT <

0.1 fm are shorter than the duration of the pre-equilibrium stage before the QGP

formation, which allows them to propagate through and observe the whole evolution

history of the QGP matter.

One good example of a hard probe is a “jet”. As illustrated in Fig.1.8, hard

scattering between two partons can create two or more partons with large virtuali-

ties. These outgoing partons may reduce their virtualities by either radiating gluons

or splitting into quark-antiquark pairs until the remaining virtualities are down to

much smaller values than 1 GeV. Such a parton branching evolution is base on the

QCD radiation probabilities and can be described by the Dokshitzer-Gribov-Lipatov-
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Figure 1.8: Cartoon of jet productions in proton-proton and nucleus-nucleus col-
lisions. This figure is taken from the website of Prof. Andre Mischke at Utrecht
University.

Altarelli-Parisi (DGLAP) equations [56, 57, 58, 59]. In the end, the produced par-

tons fragment non-perturbatively into a bunch of almost collinear final-state hadrons

which are called a “jet”. What particles are included in the jet depends on how the

jet is defined, e.g. via the selected size of the jet cone around the leading (most

energetic) hadron.

The calculation of the jet spectra is based on the following factorization:

dσhard
AB→h = fa/A(x1, Q

2)⊗ fb/B(x2, Q
2)⊗ dσhard

ab→c(x1, x2, Q
2)⊗Dc→h(z, Q

2), (1.36)

in which fa/A(x1, Q
2) is the parton distribution function of nucleon/nucleus A – the

probability of finding parton a with fractional momentum x1 in A (x1 ≡ pa/pA) – and

fb/B(x2, Q
2) of nucleon/nucleus B; dσhard

ab→c(x1, x2, Q
2) is the inclusive differential cross

section for producing parton c via the hard process ab→ c at the partonic level; and

Dc→h(z, Q
2) is the fragmentation function that describes the probability for parton c

to fragment into the observed hadron h with fractional momentum z. Among these

three parts, dσhard
ab→c can be calculated with pQCD method while the other two –
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parton distribution function and fragmentation function – are non-perturbative and

should be determined by experimental observations.

As shown in Fig.1.8, jets can be produced in both proton-proton and nucleus-

nucleus collisions. However, in the latter process, a hot and dense QCD medium can

be created in which a parton may lose significant amount of energy before fragmenting

into the observed hadrons. Consequently, the spectra of produced jets will shift

towards lower pT regime in nucleus-nucleus collision with respect to proton-proton

collision and hence appear suppressed at large pT. This is known as the medium

modification to jets or jet quenching and is one of the first proposed “smoking guns”

for the existence of the QGP [60]. To quantify the medium effect on jet production,

we may define the nuclear modification factor as

RAA(pT, y; b) ≡
d2N i

AA/dydpT
Ncoll(b)× d2N i

pp/dydpT
, (1.37)

in which the numerator represents the observed hadron spectra for species i in

nucleus-nucleus collision, and the denominator the corresponding spectra produced

in proton-proton collision scaled with the number of binary collisions. This num-

ber Ncoll denotes how many hard collisions between nucleon pairs happen in each

nucleus-nucleus collision and depends on its impact parameter b. If there is no

medium modification, i.e., the nucleus-nucleus collision is merely a superposition of

Ncoll proton-proton collisions, RAA should be exactly 1. In contrast, parton energy

loss in a dense medium would lead to RAA < 1 at high pT.

In Fig.1.9, we show the nuclear modification factors of different particle species

observed at
√
sNN = 2.76 TeV Pb-Pb collisions together with several theoretical

predictions based on pQCD models of parton energy loss [62, 63, 64, 65, 66]. We note

that color-neutral particles such as the photon and the Z0 boson hardly interact with

the color deconfined hot and dense medium and therefore their RAA’s are consistent
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Figure 1.9: Nuclear modification factor RAA as a function of pT for various particle
species, compared between theoretical predictions and experimental data. This figure
is taken from Ref. [61].

with 1. On the other hand, charged hadrons that are fragmented from partons are

significantly suppressed in Pb-Pb collisions in the high pT regime.

Parton energy loss inside the QGP is thought to originate from a combination

of collisional [67, 68] and radiative [69, 70] processes that jets experience when they

travel through the medium. The former mechanism comes from the quasi-elastic

scatterings between the probe parton and the medium constituents, and the latter

comes from gluon radiation induced by the inelastic scatterings of the probe parton

within the medium. The competition between these two energy loss mechanisms will

be one of the major topics studied in the dissertation later. Various phenomenological

approaches have been established to relate the QCD energy loss calculation of parton

with the hadron spectra observed in experiments. In the literature, there are four ma-

jor formalisms of parton energy loss inside the QGP [11]: the path-integral approach

to the opacity expansion (BDMPS-LCPI/ASW) [71, 72, 73, 74, 75, 76, 77, 78, 79],
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the reaction operator approach to the opacity expansion (DGLV) [80, 81, 82, 83],

the higher twist (HT) approach [84, 85, 86, 87, 88, 89], and the finite temperature

field theory approach (AMY) [90, 91, 92, 93]. All these formalisms are based on

QCD factorization (Eq.1.36) and introduce the effect of in-medium parton energy

loss by modifying the parton fragmentation function: Dvac
c→h(z) → Dmed

c→h(z
′, q̂) where

q̂ is called the gluon transport coefficient characterizing the interaction strength be-

tween the parton and the QGP and z′ < z encodes the information on the parton

energy loss. The final hadronization process from hard partons to observed hadrons

is always assumed to take place in the vacuum after the partons traverse the QGP

medium. The differences between these approaches lie in their respective assump-

tions regarding the properties of the probe particles and the medium, such as the

relation between different scales: parton energy E and virtuality Q2, the Debye mass

mD of the medium characterizing the minimum momentum exchange between the

hard parton and the medium, and the length scale of the medium L. Systematic

comparisons between these different energy loss formalisms can be found in Ref.

[11, 94, 95].

Apart from the single inclusive hadron suppression (RAA), sophisticated calcu-

lations have also been implemented for di-hadron [96, 97, 87] and photon-hadron

correlations [98, 99, 100]. One of the goals of these studies is the qualitative ex-

traction of jet transport coefficients in the strongly interacting QGP medium by

comparing the calculations with the measured jet modification data. The most com-

monly used transport coefficient for jet energy loss is the above mentioned gluon

transport coefficient q̂ defined as

q̂ ≡ ρ

∫

d2k⊥k
2
⊥

dσ

d2k⊥
, (1.38)

in which ρ is the density of scattering centers (mainly gluons) in the medium, k⊥

is the transverse momentum of the radiated gluon and dσ is the differential cross
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section for the parton-medium interaction. From Eq.(1.38), one may understand q̂

as the average momentum broadening in the transverse plane of a hard parton while

it propagates through the medium, and therefore reveals crucial information of the

QGP fireball such as its local density and temperature.

1.4 Overview of Heavy Flavor Dynamics in Heavy-ion Collisions

1.4.1 Dynamics of Open Heavy Flavor in Heavy-ion Collisions

Apart from jet, another hard probe of the QGP matter is heavy quark. Heavy

quarks (Q), including charm (c) and bottom (b) quarks, may exist either as bare

quarks inside the QGP, or as bound states of QQ̄ when the medium temperature

is still above Tc but not too high. We call the former state as “open” heavy quark

and the latter as heavy quarkonium – charmonium for cc̄ and bottomonium for bb̄.

Note that the mesonic bound states of heavy and light quark pairs (Qq̄ or Q̄q) that

form below Tc such as D and B mesons are also named as open heavy mesons. In

this dissertation, we mainly concentrate on the dynamics of open heavy flavor in

heavy-ion collisions. Nevertheless, study of heavy quarkonium is also important and

will be briefly discussed in the next subsection.

The most important property of heavy quarks is their large masses – Mc ≈

1.5 GeV for the charm quark andMb ≈ 4.7 GeV for the bottom quark which are much

larger than ΛQCD ≈ 200 MeV and the medium temperature T ≈ 300 ∼ 400 MeV.

Because they are so heavy, their thermal production from the QGP medium is signif-

icantly suppressed and heavy quarks are instead primarily produced at the very early

stage of heavy-ion collisions via hard scatterings and then propagate through and

interact with the QGP matter with their flavor conserved. They thus provide a valu-

able tool to probe the space-time profile and transport properties of the QGP fireball.

Since they are so heavy, the thermal correction to their masses can be considered

small and therefore they serve as stable probe particles. Previous studies have shown
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Figure 1.10: D meson RAA and v2 measured by the ALICE collaboration, compared
with those of light hadrons. These two figures are taken from Ref. [108] and Ref.
[109] .

that low-pT heavy quarks provide a direct measure of the thermal properties of the

medium, while at large pT heavy quarks may provide a reference to investigate the

medium modification of high-energy jets [101, 102]. At intermediate pT, heavy quarks

and mesons may provide rich information for our understanding of fragmentation-

versus-coalescence mechanisms for hadron formation [103, 104, 105, 106, 107].

Over the past decade, experimental observations at both RHIC and LHC have

revealed a lot of interesting data on heavy flavor hadrons and their decay electrons

[110, 111, 112, 113, 108, 114, 109], among which the most surprising results are the

small value of their nuclear modification factor RAA and the large value of their

elliptic flow coefficient v2, which are almost comparable to those of light hadrons as

shown in Fig.1.10. This is contradictory to earlier expectations of the mass hierarchy

of parton energy loss – ∆Eg > ∆Eu,d > ∆Ec > ∆Eb – and is called the “heavy flavor

puzzle”. This puzzle requires a more detailed understanding of heavy flavor dynamics

in heavy-ion collisions, including not only the in-medium energy loss of bare heavy

quarks but also their evolution before and after the QGP phase.

Since energy loss grows with increases of medium temperature and density, heavy
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quarks are expected to lose energy mostly in the QGP phase. And as discussed

earlier, there exist two energy loss mechanisms for probe particles inside the QGP:

medium-induced gluon radiation and quasi-elastic scattering with background medium

partons [69, 67]. For light flavor partons, medium-induced gluon radiation has been

shown to be more important than collisional energy loss, e.g., in the suppression of

single or triggered hadron production at high transverse momenta [68, 115, 116, 117,

100]. For heavy quarks, on the other hand, collisional energy loss is usually con-

sidered to be the dominant mechanism especially at low energies [118, 119], due to

the so called “dead cone effect” [120, 121]. The dead cone effect suggests that gluon

bremsstrahlung off a heavy quark differs from that off a massless parton because of

the kinematics constraints introduced by the mass. The distribution of soft gluons

radiated by a heavy quark can be written as [120]

dPHQ =
αsCF

π

dω

ω

k2⊥dk
2
⊥

(k2⊥ + ω2θ20)
2
≈ dP0 ·

(

1 +
θ20
θ2

)−2

, θ0 ≡
M

E
=

1

γ
, (1.39)

in which dPHQ and dP0 denote the gluon distribution radiated from massive and

massless quarks respectively, CF = 4/3 is the color factor, ω is the gluon energy,

k⊥ is its transverse momentum, θ = k⊥/ω corresponds to the radiation angle, and

M and E are the mass and energy of the heavy quark. Equation (1.39) implies

that compared with gluon bremsstrahlung off a light parton, the radiation power of

heavy quark is greatly suppressed in the forward cone θ0 whose size increases with

the mass-energy ratio. In other words, unless in an ultrarelativistic scenario, the

phase space open for gluon radiation is restricted by the mass of the heavy quark.

Note that the power of −2 in Eq.(1.39) is obtained under the idealized assumption

of an infinitely energetic heavy quark and a static and uniform QGP medium [11].

This power may change with a more realistic treatment of the QGP matter – for

instance, it becomes −4 in the higher-twist formalism [122] which will be adopted in
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this dissertation. Because of the dead cone effect, the other energy loss mechanism

– quasi-elastic scattering – is considered dominant especially for describing heavy

flavor phenomenology observed at RHIC.

In the limit of multiple scatterings where the momentum transfer in each inter-

action is small, the motion of heavy quarks inside a thermalized medium can be

treated as Brownian motion which is typically described by the Langevin equation

[123, 118, 124, 125, 106, 126, 127, 128]. Such a framework has provided a reasonable

description of the suppression and the elliptic flow of heavy flavor decay products such

as the non-photonic electrons measured by RHIC experiments at relatively low pT.

However, when extending to higher pT regions such as those reached by the LHC ex-

periments, even heavy quarks become ultra-relativistic and thus they are expected to

behave similar to light partons. In this relativistic limit, collisional energy loss alone

may no longer be sufficient for simulating the in-medium evolution of heavy quarks,

and radiative energy loss corrections may become significant [129, 107, 130]. The

incorporation of radiative energy loss into the calculation of heavy quark evolution

has been implemented in other transport frameworks such as linearized Boltzmann

approach [131, 132] and the Boltzmann-based parton cascade model BAMPS [133],

but had not been explored in the Langevin approach prior to our studies [134, 107].

In this dissertation, we study heavy quark evolution and energy loss in a hot

and dense QGP medium within the framework of a Langevin equation. In addition

to the drag and thermal forces for quasi-elastic scattering in the classical Langevin

equation, a recoil term is introduced to describe the force exerted on heavy quarks

due to gluon radiation. This recoil force is then related to the medium-induced

gluon radiation spectrum, which is taken from a higher-twist energy loss calculation

[84, 135, 122, 136]. Within this improved approach, the evolution of heavy quarks

inside QGP fireballs is studied, and the significance of the medium-induced gluon

radiation is observed, especially for heavy quarks with large transverse momenta.
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To compare with experimental data, one needs to convert bare quarks into

hadronic bound states. This conversion process may result in a qualitative difference

between the spectra of bare quarks and their mesonic bound states especially at lower

to intermediate pT and therefore is also crucial for understanding heavy flavor phe-

nomenology. The hadronization of heavy quark is governed by two mechanisms: high

momentum heavy quarks tend to fragment directly into heavy hadrons, whereas low

momentum ones coalesce with thermal light quarks from the medium to form new

hadrons. In this dissertation, we construct a hybrid fragmentation plus recombina-

tion model to describe the hadronization process of heavy quarks when they reach the

freeze-out hypersurface of the QGP medium. The fragmentation process is simulated

with the Monte-Carlo event generator PYTHIA 6.4 [137], and the heavy-light quark

recombination process is calculated with an “instantaneous coalescence” approach

based on Ref. [105]. This approach was first developed for light hadron production

from the QGP [138, 31, 139, 140], and then applied to heavy quark hadronization

[103, 104, 105] and recently to partonic jet hadronization [141] as well. This coales-

cence model does not require the thermalization of the recombining partons and it

is straightforward to include mesons and baryons simultaneously, thus it is conve-

nient for the normalization over all possible hadronization channels. Note that other

approaches, such as the resonance recombination model [101, 142, 106], have also

been applied to the study of heavy flavor dynamics. With our hybrid hadronization

model, we will show that while the fragmentation mechanism dominates D meson

spectra at high pT, the coalescence mechanism brings low pT heavy quarks to medium

pT hadrons and significantly enhances D meson production in the latter regime for

nucleus-nucleus collisions. This will impact the patterns of the D meson RAA and v2

that we observe.

After the decay of the QGP, interactions still exist between heavy mesons and

the hadron gas although they are expected to be weaker than those inside the QGP
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matter. We incorporate these hadronic interactions into our framework by using

the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model developed in

Ref. [36] which simulates many body interactions between hadrons. The scattering

cross sections between D meson and π and ρ mesons are introduced based on the

calculations in Ref. [143]. We will show that these hadronic interactions further

suppress the D meson RAA at high pT and enhance its v2 due to the additional

energy loss of D mesons inside the hadron gas.

Within our newly developed framework, we are able to simulate the full evolu-

tion history of heavy flavor in heavy-ion collisions: initial production of heavy quarks,

energy loss in the QGP, hadronization to heavy mesons and in the end rescattering

inside the hadron gas. Our calculations provide good descriptions of the D meson

suppression and flow that are observed at both RHIC and LHC experiments. Mean-

while, we also provide various predictions for future measurements, such as the B

meson suppression and flow coefficients, dependence of the D meson RAA on the

participant number, and the non-photonic electron RAA and v2 observed at rela-

tively low energy (62.4 GeV) Au-Au collisions. Furthermore, we extend our study

from the single inclusive spectra of heavy flavor hadrons and non-photonic electrons

to correlation functions of heavy flavor pairs and find that the investigation of the

heavy-flavor-tagged angular correlation may help us better distinguish between dif-

ferent energy loss mechanisms of heavy quark inside the QGP. Our study provides

an important step forward in the quantitative understanding of the heavy flavor dy-

namics in heavy-ion collisions and helps make it a more controllable tool to probe

QGP properties.

1.4.2 Heavy Quarkonium in the QGP

In addition to open heavy quarks and mesons, heavy quarkonium is the other im-

portant branch of heavy flavor probes of QGP properties. Quarkonia are a special
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species of hadrons. Among the vector (spin-one) charmonium states, the lightest

(ground state) is the famous J/ψ; the excited states are the χc and the ψ′. For the

bottom quark, the lightest quarkonium is the Υ, while the excited states include

the χb, Υ
′, χ′

b and the Υ′′. The stability of the cc̄/bb̄ quarkonium states implies

that their masses satisfy Mcc̄ < 2MD and Mbb̄ < 2MB. One of the most important

features of quarkonia is their small size or large binding energy. Compared with the

typical hadron radius 1 fm (or the typical hadronic scale ΛQCD ∼ 0.2 GeV), the radii

of J/ψ and Υ ground states are around 0.1 and 0.2 fm respectively (with binding

energies around 0.6 and 1.2 GeV) [11]. This indicates that they can still survive

in a QGP within a certain range of temperatures above Tc. However, the higher

excited states of quarkonia are less tightly bounded and have larger sizes although

being still more stable than usual light hadrons. As a result, with an increase of

the QGP temperature, the different quarkonium states will dissociate sequentially –

loosely bounded states melt first. Therefore, by observing the surviving quarkonium

states, we are able to extract temperature information of the QGP. In this way, the

sequential melting of different heavy quarkonia states serves as a QGP thermometer

[144, 145].

In Fig.1.11, we show an example of sequential Υ melting measured by the CMS

collaboration, comparing between spectra obtained from proton-proton collisions and

Pb-Pb collisions [147, 146]. The existence of the Υ ground and excited states can

be seen in the resonant peaks of the invariant mass spectra of their µ+µ− decay

products. We see that there are three distinct peaks in the left figure for the proton-

proton collision, representing Υ(1S), Υ(2S) and Υ(3S) states. However, in the

right figure for the Pb-Pb collision, while the Υ(1S) state still apparently exists,

the peak for the Υ(2S) state is significantly suppressed and the Υ(3S) state entirely

disappears. This can be viewed as a “smoking gun” that a hot and dense nuclear

matter is created in the ultrarelativistic Pb-Pb collision whose maximum temperature
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Figure 1.11: Sequential melting of Υ states: left for spectra obtained in proton-
proton collision as a baseline reference, and right for spectra obtained in

√
sNN =

2.76 TeV Pb-Pb collision. These two figures are taken from Ref. [146].

is between the dissociation temperatures of Υ(2S) and Υ(1S). From theory, one

may obtain the binding energy ǫ(T ), the average size 〈r〉(T ) and the dissociation

temperature Td of each quarkonium state by either solving the Schrödinger equation

with proper assumptions for the QQ̄ potential [11, 148, 149] or by directly calculating

the quarkonium spectra on the lattice [150, 151, 152, 153, 154, 155, 156].

Similar to open heavy flavor, one can calculate the nuclear modification factor

RAA and the elliptic flow coefficient v2 of heavy quarkonium. However, a quantita-

tive description of these suppression and flow patterns [157, 158, 159, 160] involves

a number of extra ingredients: apart from the aforementioned quarkonium dissoci-

ation which is microscopically caused by either scattering or gluon absorption, the

reverse process – regeneration of quarkonium from open heavy quarks – should be

taken into account as well, and furthermore one also needs to consider the feed down

contribution to lower mass resonant states from their higher excited states. In par-

ticular, the regeneration process of quarkonium bound states from the uncorrelated

open heavy quarks produced in the initial hard scatterings has been recently found
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Figure 1.12: An overview of our theoretical framework of heavy flavor dynamics
in heavy-ion collisions.

to be extremely important for the quarkonium phenomenology, especially for the

LHC experiments in which abundant open heavy quarks can be produced in each

collision event and therefore the regeneration probability is significantly increased

[161, 162, 163, 164, 165, 166].

1.5 Outline of the Dissertation

In this dissertation, we will establish a comprehensive framework that describes the

full time evolution of heavy flavor, which can be utilized to probe the transport

properties of the QGP created in relativistic heavy-ion collisions. The structure

of our numerical framework, and the outline of this dissertation as well, can be

summarized by Fig.1.12. We use either the Glauber or the KLN model to prepare

the initial conditions for the hydrodynamical expansion of the QGP. At the same

time, the initial heavy quark production is calculated using the Glauber model in
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position space and a pQCD method in momentum space. During the QGP evolution,

the bulk matter evolves according to hydrodynamics and the heavy quark dynamics

is described by our modified Langevin equation that incorporates both collisional and

radiative energy loss of heavy quarks in a QGP. At the critical temperature Tc, both

the bulk matter and heavy quark hadronize: while light hadrons are sampled from

the QGP medium according to the Cooper-Frye formula, heavy quarks are converted

into their mesonic bound states with our hybrid fragmentation plus recombination

model. In the end, all the produced hadrons are placed into the UrQMD model for

the simulation of their subsequent hadronic interactions until the kinetic freeze-out.

Note that this framework is designed such that any of the above mentioned pieces can

be easily substituted by other models – e.g. a different hydrodynamic background,

a different heavy quark transport model, or a different hadronization approach – so

that a systematic comparison between different studies of heavy flavor dynamics can

be implemented conveniently in the future.

In Chapter 2, we will discuss how the MC-Glauber model is utilized in our study

to initialize the position space distribution of the heavy quark production and how

a leading-order pQCD calculation is implemented for its initial pT spectra. The

pQCD calculation is at the partonic level. We use the parton distribution function

CTEQ5 for nucleon-nucleon collision. For nucleus-nucleus collision we modify the

parton distribution function with the EPS parametrizations to take into account

the nuclear shadowing effect in the initial state. We will show that this nuclear

shadowing effect significantly suppresses the production rate of charm quarks at low

pT but slightly enhances it at larger pT at both RHIC and LHC energies in nucleus-

nucleus collisions with respect to proton-proton collisions. The impact is weaker for

bottom quarks but is still non-negligible.

In the following two chapters we will study the heavy quark evolution inside a

QGP medium within the framework of the Langevin equation coupled to a hydro-
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dynamic background. In Chapter 3, we will concentrate on the collisional energy

loss and in Chapter 4 the radiative energy loss will be introduced. We will start

with a detailed review of different transport equations for heavy quarks in Chapter

3 and show that in the limit of small momentum change in each interaction the

Boltzmann equation for heavy quark can be reduced to the Fokker-Plank equation

and furthermore be stochastically realized with the Langevin equation. After that

we will discuss how the Langevin equation is applied to heavy quark transport in

a dynamic QGP medium and use it to investigate (1) the thermalization process

of charm quarks inside the QGP, and (2) how the collisional energy loss of heavy

quark depends on different transport coefficients and various properties of the QGP

fireball such as its geometric anisotropy and collective flow behavior. In Chapter 4

we will modify the classical Langevin equation so that gluon radiation can be incor-

porated as well. With this improved equation, we will show that while the collisional

energy loss dominates the observed heavy flavor spectra at low pT, gluon radiation

dominates the high pT regime – the crossing points are around 6 GeV for charm

quarks and 16 GeV for bottom quarks. As a result, even though the collisional en-

ergy loss mechanism alone may work well to describe the early RHIC data at low pT,

it becomes insufficient to describe the LHC observations. As an application of this

improved Langevin equation, we will explore the impact of initial state fluctuations

in heavy-ion collisions on heavy quark energy loss. Our calculation will demonstrate

that although the total energy loss of heavy quarks is not very sensitive to the size

of local fluctuations in a 2-dimensional system, it increases significantly with the

number of hot spots. Our simulation in a realistic QGP medium will show that fluc-

tuating initial conditions may bring about 10% more suppression for inclusive charm

quark production at high pT in central Pb-Pb collisions, implying that jet modifica-

tion might be utilized to probe the initial fluctuations in heavy-ion collisions such as

the degree of inhomogeneity or the number of hot spots.
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In Chapter 5, we will develop a hybrid fragmentation plus recombination model

to describe the hadronization process of heavy quarks to their hadronic bound

states. After briefly reviewing the fragmentation functions selected for heavy quarks

in PYTHIA, we will discuss in detail how the instantaneous coalescence model is

constructed and how the hybrid model of the two hadronization mechanisms is es-

tablished. Within our hybrid model, we will show that while the fragmentation

mechanism dominates the heavy meson formation at large pT, the coalescence mech-

anism significantly enhances its production at intermediate pT. By attaching this

hadronization process to our model of heavy quark transport, our calculations will

be able to provide a good description of the D meson suppression and flow observed

at both RHIC and LHC. In addition, we will also provide our predictions for B

mesons and several other upcoming measurements of heavy flavor.

To complete the description of the full evolution history of heavy flavor, in Chap-

ter 6, we will study the scatterings between heavy mesons and the hadron gas in

the hadronic phase and investigate how these interactions further affect the observed

heavy meson spectra. We will first review how soft hadrons are emitted from the

QGP medium on the transition hypersurface according to the Cooper-Frye formula.

After that, we will discuss how the many body interactions between hadrons are sim-

ulated in the UrQMD model and how the scattering cross sections for charm mesons

are introduced. Our calculations will show that these hadronic interactions further

suppress the D meson RAA at large pT and enhance its v2. As a final example, we

will apply this complete framework to an exploration of new heavy flavor observ-

ables. We will introduce heavy-flavor-tagged angular correlation functions and show

that while inclusive spectra are insufficient to help us distinguish between different

energy loss mechanisms of heavy quarks inside the QGP, the correlation functions

may provide us with better insights.

In Chapter 7, we will summarize this dissertation and provide an outlook for
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our future work including several directions for further improvement of the current

framework of heavy flavor dynamics and possible additional fields of study that can

be explored with our numerical framework.
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2

Initial Production of Heavy Quarks

Because of their large mass threshold, the majority of heavy quarks are produced

via hard scatterings at the early stage of relativistic heavy-ion collisions. Contribu-

tions from other processes such as the “intrinsic heavy quark process” (liberation of

QQ̄ fluctuations from the projectile wavefuntion due to its scatterings inside the tar-

get) [167, 168], pre-thermal and thermal production [169, 170, 171], and in-medium

jet conversion [172, 171] have been studied and shown to be small. In this work,

we use a Monte-Carlo (MC) Glauber model [15] to sample the spatial distribution

of the production vertices of heavy quarks in nucleus-nucleus collisions. For the

momentum space, we calculate the initial heavy quark distributions using a leading-

order perturbative QCD approach [173] with the incorporation of gg → QQ̄ and

qq̄ → QQ̄ processes. For the calculation of partonic cross sections, we utilize the

CTEQ parametrization for the parton distribution functions [174] and include the

nuclear shadowing effect in nucleus-nucleus collisions using the EPS parametrization

[175, 176].

In this chapter, we will first review the Glauber model in high energy nucleus-

nuclues collisions. After that, we will discuss the pQCD method we adopt for the
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initialization of heavy quark momentum space. Finally, we will show the pT spectra

we obtain for both charm and bottom quarks.

2.1 The Glauber Model

The Glauber model is base on the assumption that the collision of two nuclei can be

viewed as superposition of independent interactions of nucleon pairs. At sufficiently

high energies, these nucleons will move in straight lines instead of being deflected

when interacting with each other. These simplifications will lead to concise analytical

results for the nucleus-nucleus cross section, binary collision number, and participant

number in the Optical Glauber Model (Sec.2.1.2), and a straightforward numerical

simulation – the MC Glauber Model (Sec.2.1.3). This section is mostly based on

Ref. [15].

2.1.1 Input into the Glauber Model

Before discussing the two realizations of the Glauber model, we first briefly review the

two most important inputs of the model – the nucleon density of the nucleus and the

inelastic nucleon-nucleon cross section – which should both be fixed by experiments.

The nuclear density distribution of the nucleus is usually parametrized using the

Woods-Saxon distribution

ρ(r) = ρ0
1 + w(r/R)2

1 + exp( r−R
a
)
, (2.1)

in which ρ0 represents the nucleon density at the center of the nucleus, R is the

nuclear radius, a is called the “skin depth” and w encodes information of the deviation

of the nucleus from the spherical shape. For 197Au and 207Pb nuclei we discuss in

this dissertation, w can be taken as 0. For 197Au, we have ρ0 = 0.1693, R = 6.38 fm,

a = 0.535 fm; for 207Pb, we have ρ0 = 0.1693, R = 6.62 fm, a = 0.546 fm. Note that

here we have normalized the spatial integral of ρ(r) to 1.
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Figure 2.1: Demonstration of the geometry of the Optical Glauber Model: (a) for
the side view and (b) for the beam-line view. This figure is taken from Ref. [15].

Apart from the nuclear density distribution, the other input of the Glauber model

is the inelastic nucleon-nucleon cross section σNN
inel. Since this cross section involves

processes at all momentum transfers, it cannot be directly calculated using pQCD

and therefore should also be determined by measurements. For
√
sNN =2.76 TeV

(the LHC energy), we use σNN
inel =64 mb, and for

√
sNN =200 GeV and 62.4 GeV (the

RHIC energies), we have σNN
inel =42 mb and 36 mb respectively.

2.1.2 The Optical Glauber Model

The geometrical setup of the Optical Glauber Model is shown in Fig.(2.1), where two

nuclei A and B collide with an impact parameter of ~b. One may first focus on the

two tubes located at ~s with respect to the center of A (or ~s−~b from the center of B).

In these two tubes, the probability of finding a nucleon from A per unit transverse

area is defined as

T̂A(~s) =

∫

ρ̂A(~s, zA)dzA, (2.2)
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in which ρ̂A(~s, zA) is the nuclear density distribution discussed in Eq.(2.1). Similarly,

at that colliding point, we have

T̂B(~s−~b) =
∫

ρ̂B(~s−~b, zB)dzB, (2.3)

for nucleus B. And the product T̂A(~s)T̂B(~s −~b) then provides the joint probability

per unit area of finding a nucleon from both A and B in the selected tubes. One

may further integrate this product over the area element and obtain a “thickness

function” as

T̂AB(~b) =

∫

T̂A(~s)T̂B(~s−~b)d2s. (2.4)

This thickness function has the dimension of an inverse area and thus might be

understood as the effective overlap area for which a nucleon from A can interact

with a nucleon from B. A product with the inelastic cross section T̂AB(~b)σ
NN
inel then

provides the probability of this hard scattering.

With this probability for a nucleon-nucleon interaction, it is straightforward to

obtain the probability for an inelastic nucleus-nucleus interaction with an impact

parameter of ~b as

d2σAB
inel

d2b
= 1−

[

1− T̂AB(~b)σ
NN
inel

]AB

, (2.5)

in which we use A and B to denote the number of nucleons in A and B respectively.

After integrating over the transverse plane spanned by the impact parameter, one

obtains the total cross section of nucleus-nucleus inelastic interaction:

σAB
inel =

∞
∫

0

2πbdb

{

1−
[

1− T̂AB(~b)σ
NN
inel

]AB
}

. (2.6)

Meanwhile, we have the total number of nucleon-nucleon collisions (or the binary

collision number) as

Ncoll(~b) = ABT̂AB(~b)σ
NN
inel, (2.7)
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considering that there exist AB possible nucleon pairs with the probability of binary

collision between each of them as T̂AB(~b)σ
NN
inel. This binary collision number is directly

related to the production rate of heavy quarks – the number of heavy quarks produced

in the initial hard scatterings of each nucleus-nucleus collision can be evaluated as

NHQ = Ncoll
σNN→HQ

σNN
inel

. (2.8)

While the production of hard particles is dominated by this binary collision num-

ber, there exists another important quantity – the participant number – which is

responsible for the production of the QGP medium and therefore the soft particles.

The “participant number” is defined as the number of nucleons which participate in

the binary collisions. Analogous to the above discussion, the probability for a nu-

cleon in A to interact with nucleus B (i.e., at least one nucleon in B) can be written

as
∫

T̂A(~s)

{

1−
[

1− T̂B(~s−~b)σNN
inel

]B
}

d2s. (2.9)

And therefore, the participant number reads

Npart(~b) = A

∫

T̂A(~s)

{

1−
[

1− T̂B(~s−~b)σNN
inel

]B
}

d2s

+ B

∫

T̂B(~s−~b)
{

1−
[

1− T̂A(~s)σ
NN
inel

]A
}

d2s, (2.10)

More discussions can be found in Refs. [14, 177].

2.1.3 The Monte-Carlo Glauber Model

Apart from the above analytical evaluation of the binary collision number and par-

ticipant number in nucleus-nucleus collision, one may also numerically simulate the

scattering process with a Monte-Carlo method.
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To begin with, with a chosen impact parameter b, we sample the initial positions

of A nucleons for nucleus A and B nucleons for B according to their density distri-

bution functions Eq.(2.1). Then nuclei A and B are assumed to move towards each

other along a straight line. At the time of overlap, one loops each nucleon in A over

each one in B. If the distance between a nucleon-nucleon pair satisfies the criterion

d ≤
√

σNN
inel/π, (2.11)

a hard scattering is considered to take place. The positions where binary collisions

take place are recorded and utilized as the production vertices for heavy quarks.

Meanwhile, one may count the number of binary collisions and participant nucleons

for each nucleus-nucleus collision event directly with this MC Glauber method. The

MC model provides initial conditions for the hydrodynamical evolution of the QGP

medium as well. However, unlike heavy quarks, not only the binary collision number

density, but also the participant number density should be taken into account for

the initial energy/entropy density of the bulk matter, as will be shown in the next

subsection.

Unlike the optical form of the Glauber model that is based on continuous nucleon

density functions, the MC Glauber model locates nucleons at specific positions for

each event which vary from event to event. This captures the feature of quantum

fluctuation in the initial state of nucleus-nucleus collision. As discussed in Ref.

[15], the two realizations of the Glauber model provide similar nucleus-nucleus cross

sections when
√

σNN
inel is small, but will slightly deviate as

√

σNN
inel increases – the MC

simulation may introduce a “shadowing” correction that reduces the cross section

compared to the optical model.

45



Figure 2.2: A cartoon demonstration of how to relate the final state observables
(Nch) to quantities provided by the Glauber Model (b, Npart). This figure is taken
from Ref. [15].

2.1.4 Relating the Glauber Model to Experimental Data

In the experiment, we are not able to determine the impact parameter, participant

number or binary collision number of the collision event. One way to construct a

bridge between the Glauber model and experimental observations is through the

concept of “centrality” as illustrated in Fig.2.2.

In experiments, one may measure the charged particle multiplicity distribution

(dNvet/dNch) as a function of the number of charged particles observed in the final

state (Nch). This leads to the horse-back-shaped curve in Fig.2.2. The limit with

0 multiplicity of charged particles corresponds to the most peripheral collision (i.e.,

large impact parameter or small participant number). This leads to large dNvet/dNch
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(or dσ/dNch) value since the probability for such event to take place is large. On

the other hand, the events with the largest final Nch corresponds to the head-on

collision (b = 0), which has zero probability due to geometry. With this curve, one

may then divide Nch into “centrality regions” from right to left according to the

fractional integrated area under the curve. For instance, 0-5% centrality corresponds

to the region starting from the right that takes 5% of the integrated area under the

dNvet/dNch curve, and is also referred to as the “central collision region”. On the

other hand, a centrality over 50% corresponds to the “peripheral collision region”.

On the theory side, one may start with an ansatz that the number of charged

particles in the final state is proportional to the following linear combination of binary

collision number and participant number (i.e., hard processes and soft processes)

[178, 43]:

NAA
ch (b,∆η) =

[

αNcoll(b) +
1− α

2
Npart(b)

]

NNN
ch (b,∆η), (2.12)

In which NAA
ch (b,∆η) and NNN

ch (b,∆η) are the number of charged particles produced

in a nucleus-nucleus collision and a nucleon-nucleon collision respectively. With this

ansatz, we may calculate dNAA
vet /dNch vs. N

AA
ch (Fig.2.2) with Ncoll and Npart obtained

from the MC Glauber model. By comparison to the experimental data, we can fix

the parameter α in Eq.(2.12) and then relate different centrality bins to regions of

either impact parameter or participant number.

2.2 Initialization of the Momentum Space

2.2.1 A Leading-order pQCD Calculation

A variety of different approaches can be applied to the initialization of heavy quarks

in momentum space. In our earlier work, we used either a parton cascade model

(see Sec.3.2) or a simple parametrization (see Sec.3.3) to initialize heavy quarks. For

most of our later calculations in this thesis, the initial momentum space distribution
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is described by a leading-order pQCD calculation. Of course, while this method is

sufficient for the description of heavy flavor single particle spectra (e.g., suppression

and flow observables), it may not be a good choice for the study of correlation

functions, since it does not include the process of gluon splitting. For this specific

purpose, we will utilize a Monte-Carlo next-to-leading-order (MCNLO) calculation

for the momentum space initialization in Sec.6.3.

For most of our calculations, we utilize the leading-order processes qq̄ → QQ̄ and

gg → QQ̄ for the heavy quark production. The related matrix elements for these are

adopted from Ref. [173]:

Σ
∣

∣Mqq̄→QQ̄

∣

∣

2
=

64

9
π2α2

s(MT)
(M2 − t)2 + (M2 − u)2 + 2M2s

s2
, (2.13)

Σ
∣

∣Mgg→QQ̄

∣

∣

2
= π2α2

s(MT)

[

12

s2
(M2 − t)(M2 − u)

+
8

3

(M2 − t)(M2 − u)− 2M2(M2 + t)

(M2 − t)2

+
8

3

(M2 − t)(M2 − u)− 2M2(M2 + u)

(M2 − u)2

− 2

3

M2(s− 4M2)

(M2 − t)(M2 − u)

− 6
(M2 − t)(M2 − u) +M2(u− t)

s(M2 − t)

− 6
(M2 − t)(M2 − u) +M2(t− u))

s(M2 − u)

]

, (2.14)

where the squares of the matrix elements have been summed over color and spin de-

grees of freedom of the final states and averaged over the initial states. In Eqs.(2.13)

and (2.14), αs is the strong coupling constant, M is the mass of heavy quark, MT is

the transverse mass defined as
√

M2 + p2T and s, t, u are the Mandelstam variables.

The above two matrix elements are utilized to calculate the initial momenta of heavy
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quarks.

Apart from these two processes, which are termed as the “flavor creation” pro-

cesses, one may also include “flavor excitation” processes – qQ→ qQ and gQ→ gQ

– in which a heavy quark from the sea is excited by a hard scattering with a parton.

The corresponding matrix elements can also be found in Ref.[173]:

Σ |MqQ→qQ|2 =
64

9
π2α2

s(MT)
(M2 − u)2 + (s−M2)2 + 2M2t

t2
, (2.15)

Σ |MgQ→gQ|2 = π2α2
s(MT)

[

32

t2
(s−M2)(M2 − u)

+
64

9

(s−M2)(M2 − u) + 2M2(s+M2)

(s−M2)2

+
64

9

(s−M2)(M2 − u) + 2M2(M2 + u)

(M2 − u)2

+
16

9

M2(4M2 − t)

(s−M2)(M2 − u)

+ 16
(s−M2)(M2 − u) +M2(s− u)

t(s−M2)

− 16
(s−M2)(M2 − u)−M2(s− u))

t(M2 − u)

]

, (2.16)

These flavor excitation processes will be incorporated in a future project and are

beyond the discussion in this dissertation.

2.2.2 Parton Distribution Function and Nuclear Shadowing Effect

In the previous subsection, we have summarized the heavy quark production via

hard scatterings between partons in leading-order pQCD. To obtain the spectra of

heavy quark produced in nucleon-nucleon collision or nucleus-nucleus collision, one

requires in addition the information on the momentum distribution of partons in a

nucleon, i.e, the parton distribution function (PDF).
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Figure 2.3: Demonstration of the parton distribution functions of gluon, valence
quarks and sea quarks. This figure is taken from Ref. [179].

As illustrated by Fig.2.3, the PDFs fi(x,Q
2) provides the probability of finding

a parton (valence/sea quark or gluon) in a nucleon with a fractional momentum x

(the ratio between the momentum of the parton and that of the nucleon). Here, Q

is the energy scale of the hard interaction. Then the cross sections of all processes

in a nucleon-nucleon collision can be calculated by convoluting the cross sections at

parton level with these PDFs. Note that QCD itself does not predict these PDFs

and they needs to be determined by a fit to data from experimental observations

[mainly the deep inelastic scattering (DIS)] [179]. In this work, we shall adopt the

CTEQ parton distributions [174] in our calculation.

While the above mentioned CTEC PDFs can be directly applied to nucleon-

nucleon collisions, for nuclear interactions, one also needs to consider the modification

to these nucleon PDFs due to the nucleons being bound in a nucleus. Such mod-

ifications are usually termed as “nuclear shadowing effect” or “cold nuclear matter
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Figure 2.4: Demonstration of the nuclear shadowing effect. This figure is taken
from Ref. [176].

effect” in the literature.

In Fig.2.4, we show a graph that helps illustrating the nuclear shadowing effect

[176]. The function RA
i (x,Q

2) is defined in

fA
i (x,Q

2) ≡ RA
i (x,Q

2)fCTEQ
i (x,Q2), (2.17)

and signifies the modification to the free proton PDF fCTEQ
i in a nucleus (A). This

functions may be parametrized as follows:

RA
i (x) =







a0 + (a1 + a2x)[exp(−x)− exp(−xa)], x ≤ xa,
b0 + b1x+ b2x

2 + b3x
3, xa ≤ x ≤ xe,

c0 + (c1 − c2x)(1− x)−β, xe ≤ x ≤ 1,
(2.18)

in which the parameters ai, bi, ci, β, xa and xe depend on different nuclei species (A).

By requiring that RA
i (x,Q

2) is continuous and its first order derivative vanishes at

the matching points xa and xe, 6 parameters out of the original 13 can be eliminated.

The remaining 7 will be expressed in terms of the following 6 parameters together

51



with their intuitive interpretations:

y0, Height to which shadowing levels as x→ 0,
xa, ya, Position and height of the antishadowing maximum,
xe, ye, Position and height of the EMC minimum,
β, Slope factor in the Fermi-motion part.

Note that c0 is fixed as c0 = 2ye.

In the small x region, the probability for a probe particle to “see” the partons

in the second nucleon in a nucleus might be reduced after its interaction with the

previous one. In other words, the probing of the structure of a nucleon can be

shielded by its neighbors in the nucleus. This is known as the “shadowing” region of

RA
i (x,Q

2). On the other hand, because of the conservation of energy and momentum

of the target nucleon, if the probe particle “sees” less partons in the small x region,

there must exist an enhancement of the parton distribution in the larger x region,

which is called the “anti-shadowing effect”. In the regime around 0.2 < x < 0.7, a

scaling violation of the nuclear structure function has been observed by the European

Muon Collaboration – FA
2 (x,Q

2) < AFN
2 (x,Q

2) [180, 181], which is termed as the

“EMC effect”. There is no universally accepted theoretical interpretation of this

EMC effect at this moment and this topic is beyond the discussion of this dissertation.

In the end, in the large x regime, due to the two-nucleon interaction in a nucleus

which can be viewed as a fermi gas [182, 183], another rise of RA
i (x,Q

2) is expected.

Such effect can be even extended to the regime of x > 1 where three or more nucleon

interactions are taken into account. This does not exist for partons in a free nucleon.

The parameters in Eq.(2.18) are fixed according to proton/deuteron-nucleus and

lepton-nucleus deep inelastic scatterings. We use the EPS parametrization for the

nuclear shadowing effect in this dissertation. Some of our earlier results were calcu-

lated with the EPS08 version [175] of the parametrization, and later we switched to

an updated EPS09 version [176].
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Figure 2.5: Initial heavy flavor spectra from the leading-order pQCD calculation
with and without the nuclear shadowing effect, (a) for LHC and (b) for RHIC.

2.2.3 Initial Spectra of Heavy Quarks

In Fig. 2.5 (taken from our published work [107]), we convolute the parton cross

section (Sec.2.2.1) and the parton distribution function modified with the nuclear

shadowing effect in nucleus-nucleus collisions (Sec.2.2.2), and show the transverse

momentum distributions of initial heavy quarks in both proton-proton and binary

collision number scaled nucleus-nucleus collisions at LHC and RHIC energies. One

can observe from the figure the influence of the nuclear shadowing on the initial heavy

quark spectra: it greatly reduces the production rate of charm quark in the low pT

region; the effect is stronger at the LHC than at RHIC. For the production of low pT

bottom quarks, this shadowing effect reduces the yield at the LHC energy but slightly

enhances it at RHIC. This behavior will result in significant effects on the nuclear

modification factor RAA of heavy flavor hadrons as we will show in Sec.5.4. Note

that the distributions in Fig.(2.5) are calculated with the EPS08 parametrization.

In EPS09, the strength of the shadowing effect is reduced due to a tuning to more

recent experimental data, but is still significant.

The above differential cross sections are evaluated at zero rapidity (y = 0). One

may assume that the initial heavy quarks are uniformly distributed with respect to
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the central rapidity region (−1 < y < 1) and we thus sample the initial transverse

momentum pT of heavy quarks in this region with a Monte-Carlo method according

to the spectra provided in Fig.2.5 for either the proton-proton baseline or the nucleus-

nucleus collision.
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3

Heavy Quark Diffusion inside the QGP

In the limit of multiple scatterings where the momentum transfer in each interaction

is small, the dynamical evolution of heavy quarks inside a thermalized QGP medium

can be treated as Brownian motion which is typically described by the Langevin

equation. We shall couple this Langevin equation to a hydrodynamic medium to

study the quasi-elastic scattering of heavy quarks with light partons inside the QGP.

In this section, we will first summarize the transport theory of heavy quarks

in a thermal medium and then develop a numerical framework where the Langevin

evolution of heavy quarks is coupled to an expanding hydrodynamic medium. Within

this Langevin framework, we present two of our studies: (1) the thermalization

process of heavy quarks in a QGP medium (published in Ref. [184]), and (2) how

the initial configuration of the QGP as well as its properties affect the suppression and

the collective flow of the observed heavy mesons and their decay electrons (published

in Ref. [185]).
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3.1 Transport Equations of Heavy Quarks

In this subsection, we follow Ref. [123] and [102] to summarize the three frequently

utilized transport equations for heavy quarks – the Boltzmann equation, the Fokker-

Planck equation and the Langevin equation – and demonstrate the equivalence be-

tween them under certain conditions. We will show that the Fokker-Planck equation

is the small-momentum-transfer limit of the Boltzmann equation, while the Langevin

equation is a stochastic realization of the Fokker-Planck equation. After that, we will

develop a numerical framework of the Langevin equation, in which it can be coupled

to a hydrodynamic medium to describe the heavy quark evolution in a QGP.

3.1.1 The Boltzmann Equation

The evolution of the phase space distribution of heavy quarks fQ(t, ~x, ~p) can be

described by the Boltzmann equation as follows:

d

dt
fQ(t, ~x, ~p) =

[

∂

∂t
+
pi
E~p

∂

∂xi
+ Fi

∂

∂pi

]

fQ(t, ~x, ~p) = C [fQ] , (3.1)

where E~p =
√

m2
Q + ~p2 is the energy of heavy quark with three momentum ~p, ~F is the

mean field force, and C[fQ] denotes the collision integral. Usually, two simplifications

are applied – (a) the drift term, i.e., the mean field force ~F is neglected, and (b) the

position space is integrated over first – and one obtains the following equation for

the momentum distribution:

∂

∂t
fQ(t, ~p) = C [fQ] , (3.2)

where

fQ(t, ~p) ≡
∫

d3xfQ(t, ~x, ~p). (3.3)
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The collision integral is defined as

C [fQ] ≡
∫

d3k
[

w(~p+ ~k,~k)fQ(~p+ ~k)− w(~p,~k)fQ(~p)
]

, (3.4)

where w(~p,~k) denotes the transition rate for heavy quarks from momentum state ~p

to ~p − ~k due to their scatterings with the medium background. The first term on

the right hand side of Eq.(3.4) represents the gain term of heavy quark from ~p + ~k

state to ~p state, while the second represents the loss term of heavy quark out of the

~p state.

The transition rate w can be further expressed in terms of the cross section of

elastic scatterings between heavy quark and thermal partons (light quark or gluon)

with momentum ~q inside QGP:

w(~p,~k) = γq,g

∫

d3q

(2π)3
fq,g(~q)vreldσ(~p, ~q → ~p− ~k, ~q + ~k), (3.5)

where fq,g are the momentum distribution of thermal partons, γq = 6 and γg = 16

are the spin-color degeneracy of quark and gluon, and vrel is the relative velocity

defined as:

vrel ≡
∣

∣

∣

∣

~p

E~p
− ~q

E~q

∣

∣

∣

∣

=

√

(p · q)2 − (mQmq)2

E~pE~q
. (3.6)

After summing the matrix element over the spin-color degeneracy of the final states

and averaging over the initial states, the scattering cross section can be expressed

as:

vreldσ(~p, ~q → ~p′, ~q′) =

1

2E~p2E~q

d3p′

(2π)32E~p′

d3q′

(2π)32E~q′

1

γQγq,g

∑

|M|2(2π)4δ(4)(p+ q − p′ − q′). (3.7)
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By substituting Eq.(3.5) and (3.7) into Eq.(3.4), we have

C [fQ] =
1

2E~p

∫

d3q

(2π)32E~q

∫

d3p′

(2π)32E~p′

∫

d3q′

(2π)32E~p′

1

γQ

∑

|M|2

× (2π)4δ(4)(p+ q − p′ − q′) [fQ(~p
′)fq,g(~q

′)− fQ(~p)fq,g(~q)] , (3.8)

where we have let ~p′ = ~p−~k and ~q′ = ~q+~k. Therefore, in principle, with the knowledge

of the matrix element M, the time evolution of the heavy quark distribution fQ(t, ~p)

is determined by Eq.(3.2).

3.1.2 From the Boltzmann Equation to the Fokker-Planck Equation

In this subsection, we demonstrate that in the limit of small momentum transfers,

the Boltzmann equation is reduced to the Fokker-Planck equation.

With the assumption that the momentum change of heavy quarks during each

of their interactions with light partons is small, i.e., |~k| ≪ |~p|, one may expand the

right hand side of Eq.(3.4) with respect to ~k up to the second order:

w(~p+ ~k,~k)fQ(~p+ ~k) ≈ w(~p,~k)fQ(~p)

+ ki
∂

∂pi

[

w(~p,~k)fQ(~p)
]

+
1

2
kikj

∂2

∂pi∂pj

[

w(~p,~k)fQ(~p)
]

. (3.9)

The collision integral is then simplified to

C [fQ] ≈
∫

d3k

(

ki
∂

∂pi
+

1

2
kikj

∂2

∂pi∂pj

)

w(~p,~k)fQ(~p), (3.10)

and thus the Boltzmann equation is reduced to the Fokker-Planck equation

∂

∂t
fQ(t, ~p) =

∂

∂pi

{

Ai(~p)fQ(t, ~p) +
∂

∂pj
[Bij(~p)fQ(t, ~p)]

}

, (3.11)

with the following definition of the drag and diffusion coefficients:

Ai(~p) =

∫

d3kw(~p,~k)ki,

Bij(~p) =
1

2

∫

d3kw(~p,~k)kikj .

(3.12)
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If one defines

〈X(~p′)〉 ≡ 1

2E~p

∫

d3q

(2π)32E~q

∫

d3p′

(2π)32E~p′

∫

d3q′

(2π)32E~q′

1

γQ

∑

|M|2

× (2π)4δ(4)(p+ q − p′ − q′)fq,gX(~p′), (3.13)

then Eq.(3.12) leads to

Ai(~p) = 〈(p− p′)i〉 ,

Bij(~p) =
1

2
〈(p− p′)i(p− p′)j〉 ,

(3.14)

where ki is substituted by (p− p′)i.

With the assumption that the medium background is in local equilibrium, rota-

tional symmetry exists in the local rest frame of the heat bath, and therefore the

directions of Ai and Bij only depends on ~p. This enables the following decomposition:

Ai(~p) = A(~p)pi,

Bij(~p) = B0(~p)P
‖
ij(~p) +B1(~p)P

⊥
ij (~p),

(3.15)

with the projection operators on the longitudinal and transverse directions of ~p de-

fined as

P
‖
ij(~p) ≡

pipj
~p2

, P⊥
ij (~p) ≡ δij −

pipj
~p2

. (3.16)

Consequently, the transport coefficients can be solved as follows:

A(~p) = piA(~p)
i/~p2 =

〈

1− ~p · ~p′
~p2

〉

,

B0(~p) = P
‖
ijB

ij =
1

2

〈

(~p · ~p′)2
~p2

− 2~p · ~p′ + ~p2
〉

,

B1(~p) =
1

2
P⊥
ijB

ij =
1

4

〈

~p′2 − (~p · ~p′)2
~p2

〉

,

(3.17)
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where the following identities have been applied:

P
‖
ijP

ij
‖ = 1, P⊥

ij P
ij
⊥ = 2, P

‖
ijP

ij
⊥ = 0. (3.18)

For a “minimal model”, one may assume the transport coefficient of heavy quark

in the longitudinal direction equals to that in the transverse direction, i.e., B(~p) ≡

B0(~p) = B1(~p), although they may not be exactly the same from the microscopic

calculation. This results in Bij(~p) = B(~p)δij. In addition, the transport coefficients

A(~p) and B(~p) should only depend on the magnitude of the momentum (or energy),

and therefore can be written as A(E) and B(E). (We denote E~p as E for short if

unambiguous.) The Fokker-Planck equation (3.11) then simplifies to

∂

∂t
fQ(t, ~p) =

∂

∂pi
[A(E)pifQ(t, ~p)] +

∂2

∂pi∂pi
[B(E)fQ(t, ~p)] . (3.19)

With the physical requirement that the heavy quarks should approach thermal equi-

librium with the medium background in the infinite time limit, we may plug in the

stable solution fQ(~p, t → ∞) ∼ e−E/T into Eq.(3.19), where T is the temperature

of the medium. With a zero on the left hand side, Eq.(3.19) leads to the following

constraints between the drag and the diffusion coefficients:

A(E)ET − B(E) + TB′(E) = 0, (3.20)

where the derivative on B(E) is with respect to E. This is known as the “fluctuation-

dissipation relation”, or the “Einstein relation”. Note that this relation originates

from the requirement of the thermal limit, and may not be guaranteed for Eq.(3.12)

when the transport coefficients are directly calculated from the matrix elements.

3.1.3 The Langevin Equation: a Stochastic Realization of the Fokker-Planck Equa-

tion

In this subsection, we will show the equivalence between the Langevin equation and

the Fokker-Planck equation. We will start from the Langevin equation that describes
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the Brownian motion of a single particle and demonstrate that it is nothing but a

stochastic realization of the Fokker-Planck equation that describes the phase space

evolution of a particle ensemble. An alternative method to show the equivalence

between these two equations can be found in Ref. [186] where the Fokker-Planck

equation is recognized as an Euclidean Schrödinger equation whose Hamiltonian can

be constructed using the transition probability from the Langevin equation.

The classical Langevin equation for a single particle reads:

dxi =
pi
E~p
dt,

dpi = −Γpi +
√
dtCikρ

k,

(3.21)

where in general, the drag coefficient Γ and the strength of the thermal noise Cik

are functions of (t, ~x, ~p), and ~ρ is the Gaussian-normal distributed random variable

signifying the stochastic process:

P (~ρ) =

(

1

2π

)3

exp

(

−~ρ
2

2

)

. (3.22)

This leads to:

〈ρi〉ρ = 0, 〈ρiρj〉ρ = δij, (3.23)

where 〈· · · 〉ρ here denotes the stochastic average. One may refer to Appendix B for

the related properties of the Gaussian integrals. Thus the thermal random force,

which is defined as

F thermal
i =

1√
dt
Cikρ

k, (3.24)

satisfies the correlation function

〈

F thermal
i (t)F thermal

j (t′)
〉

=
1

dt

〈

Cikρ
kCjlρ

l
〉

ρ
=

1

dt
CikCjlδ

klδtt′

= CikC
k
j δ(t− t′) ≡ κijδ(t− t′), (3.25)
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where κij ≡ CikC
k
j is called the momentum space diffusion coefficient of heavy quarks.

Note that here we assume a Gaussian white noise for the thermal force, i.e., there

exists no correlation between forces at different times.

Up till now, the stochastic process has not been uniquely defined, but depends

on how the momentum argument is chosen for Cik [187]. To be more specific, one

may define

Cik → Cik(t, ~x, ~p+ ξd~p), (3.26)

and ξ = 0, 1/2, 1 correspond to the three different discretization schemes that are usu-

ally adopted – pre-point Ito, mid-point Stratonovic-Fisk, and post-point Ito schemes.

These different means may lead to different processes, though equivalence can be

shown after proper transformation from one to another [118]. This is an essential

difference between stochastic differential equations and ordinary differential equa-

tions – solutions of the latter do not depend on the discretization scheme when the

continuum limit (dt→ 0) is taken. To be general, we shall keep the form of Eq.(3.26)

for the rest discussion of this subsection.

To derive the Fokker-Planck equation from the Langevin equation, we first dis-

cretize Eq.(3.21) with the definition of Cik in Eq.(3.26):

xi(t+ ǫ) = xi(t) + ǫ
pi(t)

E~p(t)
, (3.27)

pi(t + ǫ) = pi(t)− ǫΓ [~p(t) + ξd~p] pi(t) +
√
ǫCik [~p(t) + ξd~p] ρk. (3.28)

We may further substitute dpi = −ǫΓ [~p(t)] pi(t) +
√
ǫCik [~p(t)] ρ

k into Eq.(3.28), and

keep to the order of ǫ. This yields:

pi(t+ǫ) = pi(t)− ǫΓ [~p(t)] pi(t) +
√
ǫCik [~p(t)] ρ

k +
√
ǫρk

∂Cik [~p(t)]

∂pj

√
ǫξCjl [~p(t)] ρ

l

= pi(t)− ǫΓ [~p(t)] pi(t) +
√
ǫCik [~p(t)] ρ

k + ǫ
∂Cik [~p(t)]

∂pj
ξCjl [~p(t)] ρ

kρl. (3.29)
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The phase space distribution function of heavy quarks at (t + ǫ, ~x, ~p) can be

expressed as an integral over the distribution function at (t, ~x′, ~p′), with the constraint

that the heavy quarks at (~x′, ~p′) should propagate to (~x, ~p) within the time interval

ǫ. Mathematically, we have

fQ(~x,~p, t+ ǫ) =

∫

d3x′d3p′fQ(~x
′, ~p′, t)δ(3)

(

xi − x′i − ǫ
p′i
E~p′

)

×
〈

δ(3)
[

pi − p′i + ǫΓ(~p′)p′i −
√
ǫCik(~p

′)ρk − ǫξCjl(~p
′)
∂Cik(~p

′)

∂p′j
ρkρl

]〉

ρ

. (3.30)

One may expand the two δ-functions with respect to ~x and ~p respectively and keep

to the order of ǫ:

δ(3)
(

xi − x′i − ǫ
p′i
E~p′

)

= δ(3)(xi − x′i)− ǫ
p′m
E~p′

∂

∂xm
δ(3)(xi − x′i), (3.31)

〈

δ(3)
[

pi − p′i + ǫΓ(~p′)p′i −
√
ǫCik(~p

′)ρk − ǫξCjl(~p
′)
∂Cik(~p

′)

∂p′j
ρkρl

]〉

ρ

= δ(3)(pi − p′i) +

〈

ǫΓ(~p′)p′m
∂

∂pm
δ(3)(pi − p′i)

〉

ρ

−
〈√

ǫCmk(~p
′)ρk

∂

∂pm
δ(3)(pi − p′i)

〉

ρ

−
〈

ǫξCjl(~p
′)
∂Cmk(~p

′)

∂p′j
ρkρl

∂

∂pm
δ(3)(pi − p′i)

〉

ρ

+
1

2

〈

(
√
ǫ)2Cmk(~p

′)ρkCnl(~p
′)ρl

∂2

∂pm∂pn
δ(3)(pi − p′i)

〉

ρ

. (3.32)

With the identities Eq.(3.23), Eq.(3.32) can be simplified to

〈

δ(3)
[

pi − p′i + ǫΓ(~p′)p′i −
√
ǫCik(~p

′)ρk − ǫξCjl(~p
′)
∂Cik(~p

′)

∂p′j
ρkρl

]〉

ρ

= δ(3)(pi − p′i) + ǫ

[

Γ(~p′)p′m − ξCk
j (~p

′)
∂Cmk(~p

′)

∂p′j

]

∂

∂pm
δ(3)(pi − p′i)

+
1

2
ǫCmk(~p

′)Ck
n(~p

′)
∂2

∂pm∂pn
δ(3)(pi − p′i). (3.33)
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By substituting Eq.(3.31) and (3.33) into Eq.(3.30), we obtain

fQ(~x,~p, t+ ǫ) =

∫

d3x′d3p′fQ(~x
′, ~p′, t)

(

1− ǫ
p′m
E~p′

∂

∂xm

)

δ(3)(xi − x′i)

{

1 + ǫ

[

Γ(~p′)p′m

− ξCk
j (~p

′)
∂Cmk(~p

′)

∂p′j

]

∂

∂pm
+

1

2
ǫCmk(~p

′)Ck
n(~p

′)
∂2

∂pm∂pn

}

δ(3)(pi − p′i). (3.34)

One may take the derivatives with respect to xi and pi out of the integral first and

perform integrations over d3x′d3p′ with the two δ-functions which merely substitute

~x′ and ~p′ by ~x and ~p respectively. Again, by keeping terms up to the order of ǫ, we

have

fQ(~x, ~p, t+ ǫ) = fQ(~x, ~p, t)− ǫ
pm
E~p

∂

∂xm
fQ(~x, ~p, t) + ǫ

∂

∂pm

{[

Γ(~p)pm

− ξCk
j (~p)

∂Cmk(~p)

∂pj

]

fQ(~x, ~p, t)

}

+
1

2
ǫ

∂2

∂pm∂pn

[

Cmk(~p)C
k
n(~p)fQ(~x, ~p, t)

]

, (3.35)

which is equivalent to
(

∂

∂t
+
pm
E~p

∂

∂xm

)

fQ(~x, ~p, t) =
∂

∂pm

{[

Γ(~p)pm − ξCk
j (~p)

∂Cmk(~p)

∂pj

]

fQ(~x, ~p, t)

+
1

2

∂

∂pn

[

Cmk(~p)C
k
n(~p)fQ(~x, ~p, t)

]}

. (3.36)

If one sets

Am(~p) = Γ(~p)pm − ξCk
j (~p)

∂Cmk(~p)

∂pj
,

Bmn(~p) =
1

2
Cmk(~p)C

k
n(~p),

(3.37)

we obtain the previous Fokker-Planck equation (3.11) except that the position (~x)

space is also included here. Furthermore, by combining Eq.(3.15) and Eq.(3.37), we

have

Γ(~p) = A(~p) +
1

pi
ξCk

j (~p)
∂Cik(~p)

∂pj
, (3.38)

Cik(~p) =
√

2B0P
‖
ik +

√

2B1P
⊥
ik . (3.39)
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As discussed in the previous subsection, one may assume B0(~p) = B1(~p) = B(~p),

which simplifies Eq.(3.39) to

Cik(~p) =
√

2B(~p)δik. (3.40)

Thus, we have the momentum space diffusion coefficient

κij(~p) = Cik(~p)C
k
j (~p) = 2B(~p)δij ≡ κ(~p)δij, (3.41)

with the definition κ(~p) ≡ 2B(~p). Moreover, by substituting Eq.(3.40) and (3.41)

back into Eq.(3.38), we have

Γ(~p) = A(~p) +
1

pi
ξ
√

κ(E)
∂
√

κ(E)

∂E

∂E

∂pj
δkj δik

= A(~p) +
1

2
ξ
1

E

∂κ(E)

∂E
. (3.42)

In the end, we combine Eq.(3.20) and Eq.(3.42) and obtain the fluctuation-dissipation

relation for the Langevin equation (3.21):

2Γ(E)ET − κ(E) + (1− ξ)Tκ′(E) = 0. (3.43)

For the case of ξ = 1, i.e., the post-point Ito scheme, or κ independent of E, we have

a simplified form of the Einstein relation Γ = κ/2TE, which will be utilized in our

Langevin framework for the rest of this dissertation.

3.1.4 Langevin Evolution of Heavy Quark inside a QGP Medium

Due to their large mass, the momentum change of heavy quarks during each of their

scatterings with thermal partons is considered to be small. Therefore, in the limit of

multiple interactions where the Gaussian distribution of the thermal noise Eq.(3.22)

can be reasonably applied, the heavy quark motion inside a QGP can be treated as

a Brownian motion and be described by the Langevin equation (3.21). In this work,
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we start with a “minimal model” where the momentum space diffusion coefficient

κij is assumed isotropic – the same in the longitudinal and the transverse directions

– and independent of the momentum of the heavy quark. Thus, according to the

analysis in the previous subsection, Eq.(3.21) is reduced to

dxi =
pi
E~p
dt,

dpi = −Γ(~p)pi +
√
dt
√
κρi,

(3.44)

in which the drag term and the thermal term are related by the fluctuation-dissipation

theorem Γ = κ/2TE. In the literature, the spatial diffusion coefficient D is usually

quoted for heavy quark calculations, which is related to κ via

D =
T

MΓ(0)
=

2T 2

κ
. (3.45)

More discussion about this diffusion coefficient can be found in Appendix C. This

will be the main parameter in our Langevin framework for the rest of our study. For

the numerical calculation, we adopt the pre-point Ito discretization and re-write the

Langevin equation as

xi(t +∆t) = xi(t) +
pi(t)

E~p(t)
∆t, (3.46)

pi(t+∆t) = pi(t)− Γ [~p(t)] pi(t)∆t+ F thermal
i (t)∆t, (3.47)

where the thermal force satisfies

〈

F thermal
i (t)F thermal

j (t+ n∆t)
〉

ρ
=

κ

∆t
δijδ0n, (3.48)

and can be generated using the Monte-Carlo method with a Gaussian distribution

whose width is
√

κ/∆t.

For the study of heavy quark motion in a static medium, the only information re-

quired for the medium is the temperature, which remains fixed throughout the time
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evolution of the heavy quarks. On the other hand, to study the heavy quark transport

inside the highly excited medium produced in heavy-ion collisions, we need to simu-

late the QGP matter with hydrodynamic models. Either a fully (3+1)-dimensional

ideal relativistic hydrodynamic model developed in Ref .[21] or a (2+1)-dimensional

viscous relativistic hydrodynamic model developed in Ref. [22, 188, 24] can be em-

bedded into our Langevin framework. In our work, two different initial condition

models, a Glauber [13, 15] as well as a KLN-CGC [16] model, are utilized to describe

the initial entropy density distribution of the medium before its hydrodynamical

evolution. Both initial conditions are tuned to provide the hadronic data in the soft

sector, such as hadron yields, spectra, and rapidity-distributions as well as radial and

elliptic flow. These hydrodynamic models provide us with the time evolution of the

spatial distribution of the temperature and the flow velocity of the QGP medium.

In such a dynamic medium, heavy quark evolution is treated as follows: for every

Langevin time step we boost each heavy quark to the local rest frame of the fluid

cell in which it is located; the Langevin approach Eq.(3.47) is then applied to obtain

the momentum change of the heavy quark due to the surrounding QGP medium.

After that we boost the heavy quark back to the global computation frame where it

propagates to the space-time point for the next scattering according to Eq.(3.46).

One of the key assumptions for the hydrodynamic calculation is that the QCD

medium experiences a sudden thermalization (to form a QGP) at an initial time

τ0 (chosen as 0.6 fm/c here) at which the hydrodynamical evolution commences.

And up till now, little knowledge has been attained regarding the pre-equilibrium

evolution and thermalization of the system. On the heavy quark side, we treat their

motion prior to the QGP formation as free-streaming. Such treatment should be a

good approximation as the time of the pre-equilibrium stage is short compared to

the total life time of the QGP (about 10 fm/c).
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3.2 Thermalization of Charm Quarks in the QGP Medium

In this section, we use our Langevin framework constructed above to conduct an

investigation into heavy quark thermalization in an infinite medium at fixed tem-

perature and then compare our findings to a dynamic scenario in which the heavy

quarks propagate through an expanding and cooling QGP medium, modeled with

a (3+1)-dimensional ideal relativistic hydrodynamic approach [21]. The purpose of

this study is to answer the question whether general features seen in the data, such

as the presence of elliptic flow and a small value of the nuclear modification factor

of heavy flavor observables, can be used to conclude that heavy quarks actually have

thermalized in the QGP medium created in ultra-relativistic heavy-ion collisions, or

whether the heavy quarks remain off-equilibrium during their entire evolution, de-

spite exhibiting a strong response to the surrounding QGP. The contents presented

in this section has been originally published in Ref. [184].

3.2.1 Thermalization Criterion

Before exploring the thermalization process of heavy quarks, one needs to define

the thermalization criterion. Our criterion is based on the heavy quark energy and

momentum spectra.

In a medium at fixed temperature without any inherent collective flow, one may

apply the canonical ensemble to thermalized heavy quarks:

f(~p)dpxdpydpz =
V

Z e
−βEdpxdpydpz, (3.49)

where V is the volume in position space and Z is the partition function. Alternatively,

we may write

dN

d3p
∝ e−E/T . (3.50)
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Note that d3p = p2dpdΩ = pEdEdΩ, we have

dN

pEdE
= Ce−E/T . (3.51)

This allows for a straightforward extraction of the “temperature” of the heavy quark

ensemble via an exponential fit. While this particular form for the energy distribution

provides a convenient representation for the extraction of the temperature parameter,

later we will show that it is insufficient to actually indicate thermalization, since we

still need to verify isotropy of particle momenta.

To obtain the momentum spectrum in a specific direction (take ẑ as an example),

we start from Eq.(3.49) again and integrate over px and py. This yields

f(pz) =
V

Z

∫

dpxdpye
−β
√

p2x+p2y+p2z+m2

=
V

Z

∫ 2π

0

dθ

∫ ∞

0

pTdpTe
−β
√

p2
T
+p2z+m2

= CT (
√

p2z +m2 + T )e−
√

p2z+m2/T . (3.52)

Note that if we initialize our heavy quark ensemble with a finite momentum along a

given coordinate axis, its momentum distribution along that axis will be blue-shifted

– this can be taken into account by shifting the distribution along that axis using a

parameter p̃i; e.g. for the z axis this would give 1:

f(pz) = CT (
√

(pz − p̃z)2 +m2 + T )e−
√

(pz−p̃z)2+m2/T . (3.53)

For an expanding and cooling QGP medium, establishing thermalization requires

the following procedure: for a given time step we select all cells in our hydrodynamic

1 Rigorously, pz should be boosted via γpz + γβE. However, it is found that in our study, for β
not too large (below 0.8), the much more convenient Eq.(3.53) already fits the spectrum well (with
an error less than 5% for T ).
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Figure 3.1: The time evolution of the energy spectrum. (a) shows the results
between 2 fm/c and 8 fm/c, where no linear relation is observed; and (b) shows the
results between 10 fm/c and 30 fm/c, where the linear relation is apparent.

medium within a temperature band of T ±∆T . We then boost all charm quarks lo-

calized in those cells into the respective local rest frames of the cells they are residing

in and calculate the resulting heavy quark energy and momentum distributions. If

both the energy [Eq.(3.51)] and the momentum [Eq.(3.53)] distributions of the heavy

quark ensemble yield thermal distributions with a temperature that lies within our

selected temperature band, we can conclude that the selected heavy quark ensemble

has thermalized in the medium at the given temperature and selected time step.

This procedure can then be repeated for other temperature bands and time steps.

3.2.2 Equilibration in a Static Medium

We start our investigation by simulating the diffusion of charm quarks in an infinite

medium with a static temperature of 300 MeV. The initial momentum of the charm

quarks is chosen to be 5 GeV in the ẑ direction and the diffusion coefficient is set

as D = 6/(2πT ) which will be shown later to provide the best agreement to data

on the elliptic flow and the nuclear modification factor of heavy mesons observed at

RHIC and LHC.

Figure 3.1 shows the energy spectrum dN/pEdE vs. E for different diffusion
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times. We see that a linear relation between ln(dN/pEdE) and E does not occur

for diffusion times shorter than approx. 10 fm/c. The distribution appears thermal

for longer diffusion times. However, the slope continues to increase as a function

of diffusion time and does not converge to the temperature of the medium until

a diffusion time of around 30 fm/c. Therefore, despite the shape of the energy

distribution, our ensemble of charm quarks is not fully equilibrated for diffusion

times between 10 fm/c and 30 fm/c.

Figure 3.2 shows the momentum distributions in the three directions for the

same diffusion times as displayed in Fig.3.1. Since the initial momentum of the

charm quarks is in the ẑ direction, the px and py spectra are symmetric with respect

to 0 and are virtually identical to each other. To the contrary, the center of the pz

spectrum, which initially is a δ-function at pz = 5 GeV due to our initial condition,

shifts towards 0 as a function of increasing diffusion time, signifying the influence of

the drag term of the Langevin equation on the dominant direction of propagation.

The widths of the momentum distributions along all three coordinate axes start to
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agree with each other for diffusion times later than 25 fm/c, hinting at a common

“temperature”. At that time, full isotropy of the momenta is obtained.

We can obtain the “temperature” evolution of the charm quark ensemble by fit-

ting the momentum distributions with Eq.(3.53), and compare the respective values

of the temperature parameter with those obtained from the slope of the energy dis-

tribution. The results are shown in Fig.3.3 as a function of diffusion time, which

helps to summarize our main observations from the previous figures as follows:

• for diffusion times less than 10 fm/c, the pz spectrum is distinctly separated

from the px and py spectra. The temperature parameters extracted from the

widths of the distributions initially rise and are significantly above the actual

temperature of the medium. They are of different values for the transverse mo-

mentum distributions vs. the longitudinal momentum distribution (as defined

by the z axis). No temperature can be obtained from the energy distribution

since no linear relation is observed at those short diffusion times.

• for diffusion times between 10 fm/c and 20 fm/c, all momentum distributions

as well as the energy distribution exhibit a thermal shape, even though the

extracted temperature parameters strongly differ among each other and from

the temperature of the medium. Interestingly, the temperature parameter ex-

tracted from the longitudinal momentum distribution seems to track that from

the energy distribution during this time interval. However, both are signifi-

cantly higher than the temperature parameter extracted from the transverse

momentum distributions.

• at a diffusion time of roughly 25 fm/c, all temperature parameters agree well

with each other and have converged to the temperature of the medium, signal-

ing full equilibration of our charm quark ensemble.
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Based on our observations, we define a “quasi-equilibrium” stage to be a near equilib-

rium state where the linear relation of the ln(dN/pEdE) vs. E distribution appears

and the temperature parameters extracted from energy and pz spectra are of approx-

imately the same value. During this stage, our ensemble of charm quarks exhibits

thermal properties, even though it has not yet fully equilibrated with the surrounding

medium. In contrast, a “full equilibrium” is obtained when the temperature param-

eters extracted from different ways agree with each other and reach the temperature

of the medium.

To further understand the nature of the quasi-equilibrium state and why the

“temperature” of the charm quarks is still higher than that of the medium in this

stage of the evolution, despite the linear relation between ln(dN/pEdE) and E, we

may have to take into account a “blue shift” caused by the center of mass motion

of the charm quarks: for our analysis, all charm quarks were initialized to carry

a momentum of 5 GeV in the ẑ direction. This initial momentum can be seen as

a center of mass motion – it contributes to the total energy of the particle, but

is non-thermal in origin. As the charm quark diffuses through the medium, this

initial kinetic energy will dissipate through the drag term of the Langevin equation.

During this dissipation dominated phase of the charm quark evolution, the center of

mass motion will contribute to an additional part of energy and therefore a higher

“temperature”. In this sense, the quasi-equilibrium state can be understood as a

stage when the thermal part of heavy quark motion is already close to equilibrium

but the center of mass motion has not entirely dissipated.

This blue shift can be verified by fitting Eq.(3.53) with a momentum distribution

that includes a momentum shift p̃z. We will see that the blue shift is suppressed if the

initial momentum of the heavy quarks is small enough that it becomes comparable

to its thermal motion. This in fact helps prove that the blue shift is the reason for

a higher heavy quark “temperature” in the quasi-equilibrium state.
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With the above definitions of thermalization process of heavy quarks, we may

explore how such process depends on the properties of the medium as well as heavy

quarks themselves. As above, we initialize charm quarks with 5 GeV momentum

along the ẑ direction. The spatial diffusion coefficient is set to be D = 6/(2πT ).

Here, we vary the temperature of the static medium and examine its corresponding

influence on the thermalization process. The results are shown in Fig.3.4 and Fig.3.5.

In Fig.3.4, we compare the thermalization of charm quarks in a 300 MeV tem-

perature medium to that in a medium at 160 MeV. For charm quarks with an initial

momentum of 5 GeV, their “temperature” extracted from the dN/dpz distribution

increases first, and then decreases until it approaches the medium temperature at

which time the full equilibrium is reached. It is observed that the turning point

between the rise and fall of the “temperature” is close to the onset of the quasi-

equilibrium stage. A similar trend can be observed via the dN/dpx,y distribution

(not shown here), but the range of variation in the extracted “temperature” is not

as large as that from the dN/dpz distribution. The above observation can also be

obtained from media with other temperatures indicated in Fig.3.5 (not shown here).

We can understand the “turning point” behavior as follows. Since the charm
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quarks are all sampled with 5 GeV initial momentum in the ẑ direction here, they

are initially at zero temperature with respect to their center of mass frame. During

the diffusion process, the momenta of the charm quarks are randomized and thus their

“temperature” increases. When the random motion approaches equilibrium, i.e., the

entrance of the quasi-equilibrium state, the charm quarks’ “temperature” might be

higher than the medium temperature if the initial center of mass momentum of the

ensemble has not entirely been dissipated. After that, this temperature parameter

gradually decreases towards the medium temperature with the dissipation of the

center of mass momentum. Such a rise in the temperature parameter before reaching

the quasi-equilibrium results from this particular initialization of charm quarks, and

will not occur for more realistic scenarios where charm quarks are initialized in more

realistic ways.2

As the temperature of the medium decreases, both the time needed to reach

quasi-equilibrium and the time to obtain full equilibrium increase. The time to enter

the quasi-equilibrium stage can vary from 8 fm/c (for 350 MeV medium) to 35 fm/c

(for 160 MeV medium), and the time to approach the full equilibrium can vary from

20 fm/c (for 350 MeV medium) to 70 fm/c (for 160 MeV medium). This variation

is clearly shown in Fig.3.5.

In Fig.3.6 we investigate how the thermalization speed is affected by the initial

momentum of charm quarks. We utilize a static medium with 160 MeV temperature

and show our analysis for charm quarks with initial momenta of 1 GeV and 3 GeV

in the ẑ direction (results for an randomized initialization in the x-y plane can be

found in our original work [184]).

We observe that the results of 3 GeV initial momentum are similar to those

2 The temperature parameter before quasi-equilibrium is approached provides some insight into the
dynamics of thermalization, namely the interplay of momentum broadening vs. energy dissipation
through collisional energy loss. However, the values of the “temperature” obtained in this domain
are not indicative of thermal behavior but just a measure of the broadening of the charm quark
momentum distribution, since Eq.(3.53) is only strictly valid near equilibrium.
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of the 5 GeV case shown in Fig.3.4: the “temperature” obtained from the dN/dpz

distribution first increases and then decreases until the full equilibrium is approached,

and the turning point corresponds to the entrance of the quasi-equilibrium stage.

However, the results of the 1 GeV initial momentum case are different. There is no

overshoot in the “temperature” for this case. Instead, the “temperature” obtained

from the dN/dpz distribution keeps increasing gradually towards the temperature of

the medium until the full equilibrium is reached. In other words, unlike in the higher

initial momentum cases, the “temperature” of the charm quarks with 1 GeV initial

momentum is always below that of the medium until reaching full equilibrium. We

attribute this difference to the suppression of the blue shift for the center of mass

motion of the charm quarks, which is too small in this case to contribute significantly

to the energy of the charm quark.

For the low initial momentum situation, the onset of the quasi-equilibrium stage

can no longer be determined via the “turning” point, but only by the appearance

of the linear relation in the ln(dN/pEdE) vs. E distribution. In our simulation,

for heavy quarks with 1 GeV initial momentum, this linear relation does not appear

until 10 fm/c for the 160 MeV medium.
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Additionally, a comparison between Fig.3.4 and Fig.3.6 suggests that with a

decrease of the magnitude of the initial momentum, the thermalization occurs faster.

For instance, the times needed for 5 GeV charm quarks to reach quasi-equilibrium and

full equilibrium are 35 fm/c and 70 fm/c respectively, while the respective times for

1 GeV charm quarks are 10 fm/c and 20 fm/c. This decrease can also be understood

with the concept of the blue shift: it takes less time for a smaller initial momentum

to dissipate.

In Fig.3.7, we examine the influence of the diffusion coefficient on the process of

heavy quark thermalization. We set the medium temperature to 300 MeV, initialize

charm quarks with a momentum of 5 GeV in the ẑ direction, and vary the diffusion

coefficient to investigate its effect on the thermalization time. The results indicate

that as the diffusion coefficient decreases, i.e., the drag coefficient increases, the

thermalization process speeds up. The times needed to enter the quasi-equilibrium

state and the full equilibrium state can be respectively reduced from 70fm/c and

150fm/c for D = 12/(2πT ) to 10 fm/c and 25 fm/c for D = 1.5/(2πT ).

3.2.3 Charm Quark Thermalization in a QGP Medium

After a detailed investigation of the heavy quark thermalization process inside a

static medium, we extend our study to a realistic expanding QGPmedium. The QGP

medium is generated by a (3+1)-dimensional ideal hydrodynamic calculation with

MC-Glauber initial conditions that have been adjusted to reproduce bulk properties

of the QCD medium created in central Au+Au collisions at RHIC [21]. The initial

distribution of charm quarks here is generated by the VNI/BMS parton cascade

model [189, 190]. The parameters chosen for both the hydrodynamical evolution

and the heavy quark initialization here are consistent with the experimental setup

of
√
s = 200 GeV Au-Au collisions with an impact parameter of 2.4 fm. Although

at about 8 fm/c the medium temperature drops below Tc (160 MeV), we extend our
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Figure 3.8: Thermalization of charm quarks in a realistic QGP medium. (a) shows
the results with a diffusion coefficient of D = 6/(2πT ); and (b) shows the results
with a diffusion coefficient of D = 1.5/(2πT ).

study of charm quarks to the time of kinetic freeze-out (around 20 fm/c), assuming

that D mesons interact with the medium in a similar way as the charm quarks do

with the QGP. Details about the heavy flavor hadronization and the subsequent

hadronic interactions will be discussed later in this dissertation.

We show our results in Fig.3.8. As shown in Fig.3.8(a), using a diffusion coefficient

of D = 6/(2πT ), the “temperature” of the charm quarks never manages to catch up

with that of the medium until freeze-out. A closer observation indicates that the

charm quarks remain far off equilibrium during the entire lifetime of the QGP phase,

i.e., when the medium temperature is above Tc. However, Fig.3.8(b) suggests that

if the diffusion coefficient is reduced to D = 1.5/(2πT ), the thermalization process

accelerates significantly and the “temperature” of the charm quarks is able to catch

up with that of the medium during its QGP phase, i.e., above Tc. This result

does not imply a small value as D = 1.5/(2πT ) for the diffusion coefficient, but

only indicates that with a currently favored value of D = 6/(2πT ), which describes

experimental results well, charm quarks remain off-equilibrium during their entire

evolution although they exhibit a strong response to the surrounding QGP.

To summarize for this section, we have studied the dynamics of heavy quark
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thermalization in the framework of the Langevin equation. Simulations have been

carried out in both static and dynamic QGP media, and our methodology allows

for the extraction of the “temperature” of the heavy quarks by fitting either the

heavy quark energy or its momentum spectrum. Using an idealized static medium,

it is found that charm quark thermalization occurs in two distinct steps: first a

quasi-equilibrium is obtained in which the charm quark energy distribution matches

that of a thermal medium, but the momentum distribution remains non-isotropic;

subsequently the charm quark momenta isotropize and the charm quarks are in

full equilibrium with the surrounding medium. The occurrence of this two step

process might be explained by a blue shift effect due to the center of mass motion

of the heavy quarks. We define full equilibrium to imply that the “temperature”

extracted from both methods, fitting the energy and the momentum distributions,

matches that of the medium. Our simulations in the static medium indicate that

as the medium temperature decreases, it takes a longer time for the charm quarks

to thermalize. Additionally, the thermalization time is extremely sensitive to the

diffusion coefficient of the medium: as the diffusion coefficient decreases, or the drag

coefficient increases, the thermalization process can be significantly accelerated. A

decrease in the magnitude of the initial momentum leads to a suppression of the blue

shift effect and therefore results in a faster thermalization process, due to the initial

charm quark momenta being closer to the thermal momentum scale of the system.

For a realistic expanding QGP medium, we find that for a reasonable choice of

the diffusion coefficient, quasi-elastic scatterings between heavy quarks and thermal

partons do not infer the thermalization of heavy quarks within the QGP lifetime.

Therefore, the manifestation of collective behavior, such as a significant elliptic flow,

or the presence of a strongly interacting system (via the nuclear modification factor)

is insufficient to conclude that charm quarks have actually thermalized in the medium

even though their properties are strongly affected by the surrounding medium.
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3.3 Model and Parameter Dependence of Heavy Quark Energy Loss

In this section, using the Langevin framework developed in Sec.3.1, we investigate

how heavy quark spectra in relativistic heavy-ion collisions are affected by various

parameters of the calculation of heavy quark energy loss, such as the initial pro-

duction of heavy quarks, the geometry and the flow properties of the hydrodynamic

medium, and the coupling strength between heavy quarks and medium. This will

provide us with important quantitative understanding of the interaction dynamics of

heavy quarks in a hot and dense medium before we move on to make a direct com-

parison between our calculations and experimental data. The contents presented in

this section has been originally published in Ref. [185].

3.3.1 Calculation Setup and Final State Observables

As discussed in the previous subsection, we continue to utilize the fully (3+1)-

dimensional ideal relativistic hydrodynamic model [21] to describe the spacetime

evolution of the QGP medium. Two different initial condition models, the Glauber

and the KLN-CGC model, are utilized to describe the initial energy distribution of

the medium before the hydrodynamical evolution commences. These two initial state

models provide energy/entropy density profiles with different spatial anisotropies in

the transverse plane, a larger eccentricity for the KLN-CGC model than the Glauber

model. The comparison between the two will allow for a study of the sensitivity of

heavy-quark observables to the initial spatial make-up of the system. We will focus on

mid-central Au-Au collisions at RHIC with a center-of-mass energy
√
sNN=200 GeV

per nucleon pair and use an impact parameter of b = 6.5 fm throughout the calcula-

tion.

Since the production of heavy quarks is dominated by processes with large trans-

verse momentum transfer, perturbative QCD is applied to calculate the initial mo-
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mentum distribution of heavy quarks prior to their propagation through the QGP

medium. We fit a leading-order perturbative QCD calculation with a power-law

distribution [118], and sample the initial transverse momentum of heavy quarks ac-

cording to the following parametrization:

dN

d2pT
∝ 1

(p2T + Λ2)α
, (3.54)

where α = 3.9 and Λ = 2.1 are taken for charm quarks, and α = 4.9 and Λ = 7.5 for

bottom quarks. In this work, we focus on the energy loss of heavy quarks at mid-

rapidity and therefore assign no initial longitudinal momentum to heavy quarks. We

have verified that the introduction of initial longitudinal momenta that are uniform

around the mid-rapidity region (−1 < y < 1) does not affect our final transverse

momentum spectra and does not affect the systematics we are about to explore. The

relative normalization (ratio) of charm and bottom quarks is not fixed, but rather

serves as a free parameter in our simulation. Later we will investigate the effect

of this normalization on the quenching and the elliptic flow of heavy flavor decay

electrons.

The initial spatial distribution of heavy quarks in the transverse plane is sampled

according to the distribution of binary collisions as calculated from a Monte-Carlo

Glauber model. With a given spatial and momentum initialization of heavy quarks,

we are able to simulate their time evolution inside the QGP in the framework of

Langevin equation as described in Sec.3.1.4. After passing through the medium, their

fragmentation into heavy flavor mesons and the subsequent decay into electrons are

simulated via PYTHIA 6.4 [137]. By default, the fragmentation process is calculated

with the Lund symmetric fragmentation function that is modified by the Bowler

spacetime picture of string evolution [191] for heavy quarks. The hadronic and the

subsequent semi-leptonic processes are combined for the decay of charm/bottom

hadrons in which all possible channels are taken into account. Details regarding the
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implementation can be found in the PYTHIA manual above and will be summarized

in Sec.5.1. Note that apart from fragmentation, the other hadronization mechanism

– heavy-light quark coalescence – is also important but has not been included in this

particular analysis. A unified hadronization framework of the fragmentation plus

coalescence model for heavy quarks will be developed later in Chapter 5.

After freeze-out, the final state particles in the mid-rapidity region (−1 < y < 1)

are selected and their momentum distributions are utilized to calculate the nuclear

modification factor RAA and the elliptic flow coefficient v2 as follows:

RAA(pT) ≡
1

Ncoll

dNAA/dpT
dNpp/dpT

, (3.55)

v2(pT) ≡ 〈cos(2φ)〉 =
〈

p2x − p2y
p2x + p2y

〉

. (3.56)

Note that when heavy quarks are directly analyzed, the denominator and the numer-

ator of RAA are the initial heavy quark distribution and the final state distribution

of suffering energy loss and passing through the medium. When analyzing heavy fla-

vor mesons or electrons, the denominator represents the spectra of the corresponding

particles fragmented/decayed directly from the initial heavy quarks, while the numer-

ator represents those produced from the heavy quarks after propagating through the

QGP medium. 〈· · · 〉 in Eq.(3.56) represents the average over all analyzed particles

in a selected pT bin.

3.3.2 Charm Quark Energy Loss and Flow

The energy loss of heavy quarks and the development of the elliptic flow crucially

depend on the geometrical shape and the dynamical evolution of the thermalized

QGPmedium that the heavy quarks traverse. The total energy loss of heavy quarks is

mostly controlled by the overall magnitude of the energy density of the medium, while

the elliptic flow is more sensitive to the geometry of the medium as it characterizes
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the anisotropy of the final transverse momentum spectra. In typical non-central

nucleus-nucleus collisions, the overlap region of the two nuclei is anisotropic in the

transverse plane, thus resulting in an anisotropy of the produced hot and dense

medium. Due to the different pressure gradients in different directions, anisotropic

flow is built up during the hydrodynamical evolution of the thermalized QGP.

In such an anisotropic dynamical medium, there exist two factors affecting the

anisotropy of heavy quark energy loss: the different path lengths through the medium

and the different flow profiles experienced by the heavy quarks traveling in different

directions. Longer paths will be traversed by heavy quarks moving in the out-of-

plane (y) direction than in the in-plane (x) direction, where the reaction plane is

defined to be spanned by the impact parameter and the beam axis directions. Thus

in absence of collective flow from the medium, heavy quarks, after passing through

such an anisotropic medium, would have larger momentum in the x direction than

in the y direction, 〈p2x〉 > 〈p2y〉, resulting in a positive elliptic flow. In addition, the

collective flow of the medium also contributes positively to heavy quark elliptic flow

since the push of the radial flow is more prominent in the x direction. Therefore,

the total elliptic flow developed during the propagation of heavy quarks in such an

anisotropic hydrodynamic medium is due to a combination of these two factors.

We can separate these two effects in the simulation by switching on or off the

coupling of the collective flow of the thermalized medium to the evolving heavy

quarks. The decoupling from the collective flow can be accomplished by not boosting

the heavy quarks into the respective rest frame of the fluid cell for the Langevin

evolution. The comparison between the heavy quark evolution with and without

coupling to the collective flow is shown in Fig.3.9, where the left plot shows the

nuclear modification factor RAA and the right plot shows the elliptic flow v2 of the

charm quarks as a function of the transverse momentum. We show results for two

different values of diffusion coefficient D = 1.5/(2πT ) and D = 6/(2πT ).
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Figure 3.9: A comparison between the influence of QGP media with and without
collective flow on RAA (left panel) and v2 (right panel) of charm quarks. Both media
are generated with the Glauber initial condition.

The effect of the collective flow of the medium on the heavy quark energy loss can

be clearly seen from the plot of the nuclear modification factor RAA in Fig.3.9. It is

negligible at high pT, and becomes observable at intermediate pT regime. Due to the

push by the radial flow, heavy quarks are less suppressed, i.e. have a larger RAA, at

larger transverse momenta, since the radial flow effectively transports low momentum

heavy quarks to larger transverse momenta. Similar effects stemming from the elliptic

flow of the medium are observed for the heavy quark elliptic flow coefficient v2. At low

pT, the collective flow of the medium presents a significant influence on the charm

quark v2. At high pT, the collective flow effect is small, thus the development of

charm v2 is dominated by the geometric anisotropy of the medium. The dominance

of the medium collective flow at low pT for v2 might indicate that low pT charm

quarks are more likely to lose a significant amount of their momenta and therefore

thermalize in the medium, and thus flow more like the thermalized medium.

A closer observation suggests that with a decrease of the diffusion coefficient,

i.e., an increase of the coupling strength, the influence of the geometric asymmetry

becomes more dominant. For instance, Fig.3.9 reveals that forD = 6/(2πT ), the geo-
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metric asymmetry of the medium contributes to only approximately half of the charm

quark v2 at the peak value (around pT = 1.5 GeV). However, forD = 1.5/(2πT ), such

contribution increases to more than 80% at the corresponding peak value (around

pT = 3 GeV). Note that such increase of the geometric contribution is not unlimited.

With further reduction of the diffusion coefficient (D < 1.5/(2πT )), i.e., a larger

coupling between heavy quarks and the medium, the energy loss of charm quarks

will be so intense that all of them will be captured by the medium. In that limit,

charm quarks thermalize with the medium during the QGP lifetime (see Sec.3.2),

and therefore, their v2 will entirely follow the collective flow of the medium. In our

simulation, the choice of D ∼ 1.5/(2πT ) provides the largest elliptic flow for the final

heavy quarks.

We may further investigate the effect of the spatial medium distribution on the

heavy quark energy loss and the development of heavy quark elliptic flow by utilizing

different initial conditions for the hydrodynamic simulation of the QGP. Two different

initial condition models are widely used for the initialization of the energy density

distribution prior to the hydrodynamic evolution: the Glauber model and the KLN-

CGC model. These two models provide initial energy density profiles with different
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anisotropies in the transverse plane. In particular, the KLN-CGC model exhibits

a larger eccentricity ǫ2 = 〈y2 − x2〉/〈y2 + x2〉 than the Glauber model, which will

manifest itself in larger elliptic flow coefficients for the heavy quarks.

The comparison between these two initial condition models is shown in Fig.3.10,

where the left frame of the figure shows the nuclear modification factor RAA and

right shows the elliptic flow v2. As expected, a significantly larger elliptic flow is

observed for the charm quarks traveling through the hydrodynamic medium with

the KLN-CGC initial condition than those with the Glauber initial condition. As

indicated by Fig.3.10, the difference can be as large as 20% for D = 6/(2πT ) and

40% for D = 1.5/(2πT ). We also observe that while v2 is sensitive to the choice of

the initial condition, the nuclear modification factor RAA is not significantly affected

by the choice of these two initial conditions. This is due to RAA being controlled

by the overall normalization of the density profile in the hydrodynamical evolution

which has been tuned to describe the properties of bulk matter, such as the π and

K spectra.

3.3.3 D Mesons and Heavy Decay Electrons

In the above discussion, we have focused on the effects of initial conditions and

medium parameters on heavy quark energy loss and the development of heavy quark

elliptic flow. Now we investigate the corresponding sensitivities of heavy flavor

mesons and their decay electrons. Since the KLN-CGC initial condition provides

a larger eccentricity for the initial energy density profile and thus produces a larger

elliptic flow of heavy quarks during their medium evolution, we use it for the remain-

der of our analysis. This is merely to obtain the largest possible values of the final

elliptic flow, since most of the previous calculations seem to under-predict the elliptic

flow data of non-photonic electrons once the model parameters have been tuned to

describe the measured nuclear modification factor.
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Figure 3.11: RAA (left panel) and v2 (right panel) ofD0 mesons. The QGP medium
is generated with the KLN-CGC initial condition.
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Figure 3.12: RAA (left panel) and v2 (right panel) of electrons decayed from charm
quarks. The QGP medium is generated with the KLN-CGC initial condition.

Figures 3.11 and 3.12 display the numerical results of the nuclear modification

factor RAA and the elliptic flow v2 for D mesons and D-decay electrons. Three

different values of diffusion coefficients are used for comparison D = 1.5/(2πT ), D =

3/(2πT ), and D = 6/(2πT ). We observe that the transverse momentum dependence

of RAA and v2 are similar to that for charm quarks as shown in the previous figures.

For the heavy flavor decay electron spectra, another important factor is the rel-

ative contributions from charm vs. bottom quarks. Since charm and bottom quarks
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electrons between different initial charm/bottom ratios. Set D = 6/(2πT ) and the
QGP medium is generated with the KLN-CGC initial condition.

have different masses, they are produced with different initial transverse momen-

tum distributions, and experience different energy loss and coupling to the collective

flow in medium. This manifests itself in different RAA and v2 systematics for D

and B mesons respectively and subsequently translates into different behavior for

their respective decay electrons. The electrons at lower pT are dominated by the

charm quark decay, while in the high pT regime the bottom quark dominates as the

source of these electrons. Since there are multiple uncertainties affecting the rela-

tive normalization of the charm and the bottom quark production, for example the

scale dependence in pQCD calculation of initial heavy quark production [192], we

treat the ratio of charm and bottom quarks as a free parameter for our calculation,

and investigate how the variation of this ratio affects the final non-photonic electron

distributions.

The results are shown in Fig.3.13 and Fig.3.14 for two different values of diffusion

coefficients, D = 1.5/(2πT ) and D = 6/(2πT ), respectively. We compare four differ-

ent initializations here – pure charm, pure bottom, and two mixtures of charm and

bottom quarks: 99.2% charm quarks with 0.8% bottom quarks, and 98.5% charm
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electrons between different initial charm/bottom ratios. Set D = 1.5/(2πT ) and the
QGP medium is generated with the KLN-CGC initial condition.

quarks with 1.5% bottom quarks. As shown in [192], the bottom quark contribu-

tion to the electron spectra may start dominating over the charm quark contribution

at transverse momentum as low as 3 GeV or as high as 9 GeV. Our two hybrid

mixtures of charm and bottom quarks have about a factor of 2 difference in their

ratio, representing an estimate of the uncertainties due to our limited control of the

proton-proton baseline.

One observes from these two figures that the nuclear modification factor RAA

and the elliptic flow v2 of heavy flavor decay electrons are very different for the pure

charm vs. pure bottom scenario. Bottom quarks are less suppressed than charm

quarks at high transverse momenta, thus less enhancement is observed at low trans-

verse momenta in the RAA. The magnitude of the elliptic flow coefficient v2 is much

smaller for electrons from the bottom decay than from the charm decay, again due

to the reduced energy loss experienced by the bottom quarks. In addition, we ob-

serve a difference in the transverse momentum dependence: while the elliptic flow

coefficient v2 of electrons from charm decays has a peak value at intermediate trans-

verse momentum, that for bottom decays increases monotonically with increasing
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transverse momentum (below 5 GeV). This results from charm quarks contributing

mostly to the production of low transverse momentum electrons while bottom quarks

contributing mostly to high transverse momentum electrons because of their different

masses.

Due to the different behavior of charm vs. bottom decay electrons, the electrons

from a mixture of charm and bottom decays exhibit a very rich structure. Both

RAA and v2 trend similar to the pure charm initialization at low transverse momenta

and converge to the values of the pure bottom quark scenario at high transverse

momenta. In the intermediate pT region where the transition from charm dominance

to bottom dominance in the origin of the decay electrons takes place, a non-monotonic

transverse momentum dependence of RAA and v2 is observed: a dip-peak structure

for RAA and a peak-dip structure for v2. Such a non-monotonic behavior is more

prominent for the smaller value of the diffusion coefficient D = 1.5/(2πT ) (Fig.3.14),

since a smaller value of the diffusion coefficient increases the interaction with the

medium and thus the energy loss of charm quarks and their elliptic flow, while such

an enhancement is far less for bottom quarks due to their larger mass. Current

experimental results seem not able to resolve whether such a peak-dip structure is

present or not in the non-photonic electron elliptic flow v2 due to large experimental

error bars. Further improvement of the measurement of the detailed pT dependence

of non-photonic electrons would be helpful for the determination of the diffusion

coefficient and therefore the coupling strength between heavy quarks and the QGP.

Another important effect seen in Fig.3.13 and Fig.3.14 is the significant sensitivity

of heavy flavor decay electron v2 to the initial charm-to-bottom quark ratio. For

instance, a 0.7% difference in the mixing ratio between charm and bottom quarks

in our simulation leads to a variation of approximately 25% in v2 for a diffusion

coefficient of D = 6/(2πT ) and over 30% for D = 1.5/(2πT ). As has been discussed

earlier, significant uncertainties regarding the initial heavy quark spectra are still
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present in our current phenomenological calculations, and thus provide a sizable

uncertainty for the prediction of the quenching and the elliptic flow of non-photonic

electrons.

To summarize this section, we have studied the model and parameter dependence

of heavy quark energy loss within the Langevin approach developed in Sec.3.1.4. Nu-

merical results are presented for both the nuclear modification factor and the elliptic

flow of heavy quarks, heavy flavor mesons and their corresponding non-photonic de-

cay electrons. We have investigated in detail how the RAA and v2 are affected by

various components of the model, such as the geometry and the collective flow of the

hydrodynamic medium, the initial production ratio of charm to bottom quarks and

the coupling strength between the heavy quarks and the medium.

We have focused on two particular properties of the medium that affect the

heavy quark energy loss – its geometric anisotropy and its collective flow. It is

found that the geometric anisotropy dominates the final heavy quark distributions

in the high pT region, while the collective flow of the medium dominates the low

pT region. The impact of the initial QGP geometry on the heavy quark energy loss

has been explored by comparing the Glauber and the KLN-CGC initialization of the

hydrodynamic medium. We found that while a similar nuclear modification factor

RAA is observed for both initial condition models, a significantly higher heavy quark

elliptic flow v2 is found for the KLN-CGC model. We have further investigated

the sensitivity of the spectra and the elliptic flow of non-photonic electrons to the

relative contributions from charm and bottom quarks. It is found that a less than 1%

difference in the initial charm-to-bottom ratio can lead to more than 30% variation

of the non-photonic electron spectra. Therefore, narrowing down these uncertainties

is essential for a better understanding of the interaction dynamics between heavy

quarks and the QGP.
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4

Medium-induced Gluon Radiation of Heavy Quarks

inside the QGP

In the study of parton evolution and energy loss in a dense QCD matter, two im-

portant mechanisms are usually considered: quasi-elastic scattering with medium

partons and medium-induced gluon radiation [69, 67]. In the previous chapter, we

constructed a Langevin framework for the former mechanism. This should be suffi-

cient for the description of heavy quark motion at low transverse momentum regime

because the phase space for the latter process – gluon radiation – is restricted by

their large mass. This is known as the “dead cone effect” [120]. However, as we ex-

tend our investigation to higher pT regions, heavy quarks become as ultra-relativistic

as light partons, and therefore it is no longer reasonable to neglect radiative energy

loss. In this chapter, we will modify the classical Langevin equation so that it can

also incorporate the medium-induced gluon radiation of heavy quarks by treating

gluon emission as a recoil force term.

We will first demonstrate how gluon radiation is introduced into the classical

Langevin framework in Sec.4.1. Subsequently, within this new framework, we will
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compare the contribution from collisional and radiative energy loss to the in-medium

evolution of heavy quark in Sec.4.2, and show that while quasi-elastic scattering

dominates heavy quark motion at low momenta, gluon radiation dominates at high

momenta. In Sec.4.3, we apply our modified Langevin approach to an investigation of

how the energy loss of heavy quarks is affected by initial state fluctuations in heavy-

ion collisions. The contents of Sec.4.1 and Sec.4.2 have been originally published in

Ref. [134, 107] and Sec.4.3 has been published in Ref. [193].

4.1 The Modified Langevin Equation

As illustrated in the previous chapter, in the limit of small momentum transfer, the

multiple scattering of heavy quarks off thermal partons inside a QGP medium can be

treated as Brownian motion and thus is typically described using the Langevin equa-

tion. However, in addition to the collisional energy loss resulting from such quasi-

elastic scatterings, heavy quarks may also lose energy through medium-induced gluon

radiation. To incorporate both collisional and radiative energy loss experienced by

heavy quarks propagating through the dense QGP, we modify the classical Langevin

equation Eq.(3.44) as follows:

dxi =
pi
E~p

dt,

dpi = −Γ(~p)pi +
√
dt
√
κρi + F gluon

i dt,

(4.1)

The first two terms on the right-hand side of the second line are the drag force and

the thermal random force from the original Langevin equation, and the third term

~Fgluon = −d~pgluon/dt is introduced to describe the recoil force exerted on heavy quarks

due to gluon radiation, where ~pgluon denotes the momentum of radiated gluons.

Similar to Eq.(3.46) and Eq.(3.47), we discretize this modified Langevin equation
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as follows:

xi(t+∆t) = xi(t) +
pi(t)

E~p(t)
∆t, (4.2)

pi(t+∆t) = pi(t)− Γ [~p(t)] pi(t)∆t+ F thermal
i (t)∆t−∆pgluoni (t), (4.3)

in which the thermal force satisfies the following correlation function

〈

F thermal
i (t)F thermal

j (t + n∆t)
〉

ρ
=

κ

∆t
δijδ0n (4.4)

as before and thus each spatial component of F thermal
i during a ∆t can still be in-

dependently sampled with a Gaussian distribution whose width is
√

κ/∆t in our

numerical simulations.

In Eq.(4.3), ∆~pgluon is the momentum of gluons radiated during the time interval

∆t. We determine the probability of this gluon radiation during each inteval ∆t

according to the average number of gluons in this time interval:

Prad(t,∆t) = 〈Ngluon(t,∆t)〉 = ∆t

∫

dxdk2⊥
dNgluon

dxdk2⊥dt
. (4.5)

We choose sufficiently small time steps ∆t to ensure that the average radiated gluon

number is smaller than 1 in ∆t. In this work, we utilize the results of the higher-twist

calculation for the medium-induced gluon spectra [84, 135, 122]:

dNgluon

dxdk2⊥dt
=

2αsP (x)q̂

πk4⊥
sin2

(

t− ti
2τf

)(

k2⊥
k2⊥ + x2M2

)4

, (4.6)

where k⊥ is the transverse momentum of the radiated gluon, and x is the frac-

tional energy carried by radiated gluons from the heavy quark. In addition, αs

is the strong coupling constant, P (x) is the splitting function of the gluon and

q̂ is the gluon transport coefficient. The gluon formation time τf is defined as

τf = 2Ex(1 − x)/(k2⊥ + x2M2), with E and M being the energy and mass of the
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heavy quark. Note that the quartic term at the end of Eq.(4.6) characterizes the

“dead-cone” effect, i.e., the suppression of gluon radiation due to the finite mass of

heavy quarks. In this work, we shall use a leading-order running coupling constant

αs, and the related details can be found in Appendix A.

At a given time step, Eq.(4.5) is used to determine the probability of radiating

a gluon. If a gluon is formed, its energy and momentum will be generated using a

Monte-Carlo method according to the gluon radiation spectrum in Eq.(4.6). After a

gluon is emitted from the heavy quark, the initial time ti in the equation is reset to

zero so that the probability of radiating the next gluon starts to accumulate again

with time. Note that the framework we describe here does not necessarily require

the higher-twist formalism – other energy loss formalisms can be used as well, as

long as they provide the distributions for both energy and transverse momentum of

the radiated gluons.

For the classical Langevin equation without the contribution from gluon radiation,

we have the fluctuation-dissipation relation Γ = κ/2TE. We assume this still holds

for the thermal drag term and the noise term in our modified Langevin equation.

However, the detailed balance between gluon radiation and absorption has not been

rigorously included into our current framework due to the lack of the latter process.

To mimic this balance in the simulation of radiative energy loss, we impose a lower

cutoff ω0 = πT for the gluon energy. Below such a cutoff, the gluon emission is

disabled and the evolution of heavy quarks with low energies is completely controlled

by quasi-elastic multiple scattering for which the detailed balance is well defined.

Such a treatment for medium-induced gluon radiation ensures that heavy quarks

achieve thermal equilibrium after sufficiently long evolution times. Meanwhile, we

use q̂ = 2κCA/CF to relate the gluon transport coefficient (signifying the momentum

broadening of gluon in the transverse direction) and the momentum space diffusion

coefficient of heavy quark, where CF = Nc = 3 and CA = (N2
c − 1)/(2Nc) = 4/3
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Figure 4.1: Thermalization process of charm quarks in a static medium, compared
between different lower cutoffs of gluon energy.

are the color factors for quarks and gluons. With such a setup, we only have one

free parameter in the Langevin framework as described above. To be consistent with

the previous chapter and other literature as well, we convert both q̂ and κ into the

spatial diffusion coefficient of heavy quark defined in Eq.(3.45) and set D = 6/(2πT )

throughout the calculations in this chapter, which corresponds to a gluon transport

coefficient q̂ around 3 GeV2/fm at a temperature of T = 400 MeV.

In Fig. 4.1 we provide a numerical check of the thermalization process of charm

quarks according to the modified Langevin equation. The charm quarks are all

initialized with an energy of 10 GeV and then evolve inside an infinite and static

medium with a constant temperature of 300 MeV. The temperature parameter of the

charm quark ensemble is extracted from their energy spectrum utilizing the method

as described in Sec.3.2. As is shown, if there is only collisional energy loss, the

temperature parameter of the charm quarks evolves to the medium temperature as

expected. We also examine such thermalization behavior when the gluon radiation is

introduced. If the energy cutoff for the gluon radiation is large enough, e.g., 2πT in

the plot, the heavy quarks will eventually equilibrate with the medium temperature.

For the choice of πT , an equilibrium can still be achieved, with the only difference that

96



the equilibrium temperature is shifted by a small amount, approximately 20 MeV

below the medium temperature.

In this work, the lower cutoff for radiative gluon energy is taken to be πT , which

is the typical energy of the gluons in the thermalized QGP medium. Such choice

introduces 5-10% uncertainty in the equilibrium temperature, but should not sub-

stantially influence the description of heavy flavor observables presented later. Ad-

ditionally, if one considers all sources of experimental and theoretical uncertainties,

such as those in hydrodynamic initial conditions and the nuclear shadowing effect,

it might not be necessary to artificially increase the energy cut for gluon radiation

merely for the exact preservation of the detailed balance. A more rigorous treatment

would incorporate the absorption process as well in the above simulation of gluon

radiation. Such an effort has already been explored in the context of light parton

radiative energy loss [194] and will be pursued in a future study.

With the modified Langevin framework described above, we may now couple it to

a hydrodynamic medium to simulate the heavy quark evolution inside hot and dense

QCD matter created in relativistic heavy-ion collisions as described in Sec.3.1.4.

Starting with this chapter, the space-time evolution profiles of the QGP fireballs at

LHC and RHIC will be generated with a (2+1)-dimensional viscous hydrodynamic

model, which was developed by Song et al [22, 188] and has recently been modified by

Qiu and Shen for increased numerical stability [24]. We employ the code version and

parameter tunings that were previously used in Ref. [24]. In the following calculation,

a MC-Glauber model is adopted to generate the positions of participant nucleons and

binary collisions, providing both the initial conditions of hydrodynamics and the

spatial distribution of initial heavy quarks if not otherwise specified. As described

in Chapter 2, a leading-order perturbative QCD calculation will be adopted for the

momentum space initialization of heavy quarks, in which the nuclear shadowing effect

in nucleus-nucleus collision is taken into account by using the EPS08 parametrization
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Figure 4.2: A comparison of the evolution of the charm quark energy distribution
in a static medium between collisional, radiative and total energy loss.

[175] of the parton distribution function. As mentioned in Sec.3.1.4, the evolution

of heavy quarks in the pre-equilibrium state before the onset of the hydrodynamical

evolution (τ0 = 0.6 fm/c) is treated as free-streaming. Additionally, in this chapter

heavy quarks are also assumed to stream freely after they leave the QGP, i.e., when

the local temperature of the medium drops below Tc (165 MeV for the hydrodynamic

model used here). The subsequent hadronization process and the interaction between

heavy mesons and the hadron gas will be discussed in later chapters.

4.2 Collisional vs. Radiative Energy Loss

Before moving on to utilize our updated Langevin framework to explore heavy flavor

observables, we first compare the contribution from each energy loss mechanism to

heavy quark evolution in this section.
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Figure 4.3: Comparison of radiative and collisional energy losses for charm (a) and
for bottom (b) quarks.

As shown in Fig.4.2, we start with the evolution of the charm quark energy

distribution due to the different energy loss mechanisms. Here, the charm quarks

are all initialized with 15 GeV energy before traveling through an infinite medium

with a fixed temperature of 300 MeV. From Fig.4.2, we observe that the energy

distributions start from a δ-function at 15 GeV and then evolve with respect to time.

Before 2 fm/c, collisional energy loss dominates the charm quark evolution. However,

after 2 fm/c, gluon radiation starts to dominate. Moreover, the collisional energy loss

leads to a Gaussian smearing of the energy distribution, which should be a natural

result of multiple soft scatterings according to the “central limit theorem”. To the

contrary, gluon radiation generates a “long tail structure” of the energy distribution.

In Fig.4.3, we compare the total energy loss of heavy quarks after they traverse

a realistic QGP medium produced in 0-7.5% centrality Pb-Pb collisions at 2.76 TeV.

The x-axis represents the initial energy of heavy quarks and y represents the total

energy loss. As is shown, quasi-elastic scatterings dominate the heavy quark energy

loss in the low energy regime, while medium-induced gluon radiation dominates at

high energies. The crossing points are around 6 GeV for charm quarks and 16 GeV

for bottom quarks. These results indicate that collisional energy loss alone may
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provide good descriptions for the heavy flavor measurements at low pT but will

become insufficient when we extend to a higher pT regime, such as that measured by

the LHC experiments. Similar competition between the collisional and the radiative

energy loss will be observed in the heavy meson suppression and flow as will be shown

in the next chapter when hadronization is included.

4.3 Influence of Initial State Fluctuations on Heavy Quark Energy
Loss

As the first application of our modified Langevin framework, we explore the effects

of initial state fluctuations in heavy-ion collisions on heavy quark energy loss.

Fluctuations help reveal essential information on physical systems. For example,

the temperature inhomogeneity in the Cosmic Microwave Background that evolved

from the initial fluctuations after the Big Bang provides valuable knowledge on the

cosmological expansion. Similarly, there has been significant effort in studying initial

state fluctuations in our “little bang” system, such as the fluctuations of nucleon po-

sitions and color charges inside the colliding nuclei [39]. Some of the most interesting

consequences of initial state fluctuations include nonzero anisotropy in ultra-central

collisions and the presence of odd-order harmonics in initial geometry and collective

flow [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. Elliptic, triangular and other higher-order

harmonic flows have been measured at RHIC and LHC [50, 51, 52]. These measure-

ments have triggered great interest in studying the origin of initial state fluctuations,

and how they affect the dynamical evolution of the fireball and manifest themselves

in final state particle flow and correlations [41, 43, 46, 47, 195, 196, 197, 53]. One

of the purposes of these studies is to obtain a quantitative extraction of transport

properties such as the shear viscosity of the QGP matter produced in high energy

nucleus-nucleus collisions.

Initial conditions, especially the geometry of the heavy-ion collisions, still remain
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one of the major uncertainties in the extraction of a precise value for QGP shear

viscosity [23, 198, 26]. Various types of fluctuations, such as that of initial transverse

flow and longitudinal fluctuations [25, 197], as well as the medium response to jet

energy loss [199] may introduce more uncertainties in our understanding of the initial

states. The purpose of this section is to investigate the effect of fluctuating initial

conditions on the dynamics of heavy quark in medium and whether it is possible to

infer information on the initial state fluctuations in heavy-ion collisions from heavy

flavor observables.

In most of the literature that studies heavy quark evolution, smooth initial con-

ditions are utilized for hydrodynamic models to simulate the hot and dense medium

through which heavy quarks propagate. The influence of initial state fluctuations on

heavy quarks has not been studied prior to our work. There have been similar studies

on the effect of initial state fluctuations in the context of high pT light flavor jets

[200, 201, 202], but no unified conclusion has been reached so far. For instance, Ref.

[200] used a (1+1)-dimensional Bjorken hydrodynamic background and found that

the fluctuation in the spatial distribution of the initial hard scatterings significantly

reduces the suppression of jet production. In Ref. [202] it was found that with the

inclusion of the transverse expansion of the medium, i.e., using a (2+1)-dimensional

hydrodynamic model, jet energy loss will be enhanced when the initial state fluctu-

ation is incorporated. However, using a (2+1)-dimensional medium for peripheral

collisions, Ref. [201] showed a decrease of quenching when initial state fluctuations

are included.

In the following, we investigate the influence of initial state fluctuations on heavy

quark evolution inside the QGP matter. We simulate the dynamical evolution of

heavy quarks using our modified Langevin equation developed in Sec.4.1 that in-

cludes both collisional and radiative energy losses. The QGP medium is simulated

with a (2+1)-dimensional viscous hydrodynamic model which has been tuned to
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Figure 4.4: Energy loss of charm quark as a function of the size of the hot tube.

describe bulk matter observables. We do not aim for a direct comparison with ex-

perimental data in this analysis, but focus on exploring how heavy quark evolution

and energy loss are affected by the the presence of initial state fluctuations. Finally,

we will discuss the prospect of utilizing heavy quarks to probe the granularity of

local fluctuations inside the QGP and to improve our knowledge of the initial state

of the QGP fireball.

4.3.1 Effects of Fluctuations on Heavy Quarks in a Static Medium

Before exploring the effects of initial state fluctuations of a realistic QGP medium

on heavy quark energy loss, we first investigate the influence of local temperature

fluctuations (or hot spots) on heavy quark energy loss in a static medium. We will

look at two different aspects of density fluctuations: the size and the number of local

fluctuations. To mimic the effect of the realistic (2+1)-dimensional boost invariant

hydrodynamic medium which we will use in the next subsection, the static medium

is chosen to be two dimensional, i.e., the hot spots are in fact hot tubes in this case.

For the first scenario, we generate one cylindrical medium (hot tube) with a

constant temperature. As demonstrated by the cartoon inside Fig.4.4, we vary its

size and study how the energy loss of charm quarks is affected. When varying the
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size, the total energy contained inside the tube is kept fixed. The temperature of the

medium is set as 200 MeV when the tube radius is R = 5 fm and will increase as

the radius decreases. Each charm quark is initialized with 50 GeV and placed at the

center of the cylinder. We calculate the average energy loss of charm quarks as they

exit the hot tube medium, and the results are shown in Fig.4.4. We also compare

the results using different energy loss mechanisms of heavy quarks: collisional energy

loss only, radiative only and the combined loss. In the figure we multiply the results

from quasi-elastic scatterings by a factor of 4 for a better resolution. From the figure,

we observe that the energy loss of charm quarks is not very sensitive to the size of

the hot tube (with the total deposited energy unchanged).

To study the effect of the number of local density fluctuations on the heavy quark

energy loss, we generate N hot tubes with the same radius R = 0.5 fm. As displayed

by the cartoon inside Fig.4.5, they are lined up along charm quarks’ initial direction

of propagation. The initial charm quark energy is set as 50 GeV (placed at the edge

of the first hot tube) and the temperature of the medium is set as 500 MeV when

there is only one hot tube. Again, when changing the number of hot tubes, the total

energy deposited in the medium (sum of the N hot tubes) is fixed. The result for
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such scenario is shown in Fig.4.5. We see that the energy loss of charm quarks is

quite sensitive to the number of hot tubes.

The above results can be easily understood with the following argument. One

may assume the power law dependence for heavy quark energy loss on the medium

length and temperature as follows:

∆E ∝ (NR)αT β, ǫ ∝ T 4, V ∝ NRd, (4.7)

where N is the number of hot tubes, R is the radius of each hot tube probed by heavy

quarks, and V is the total volume of the d-dimensional medium. T is the temperature,

and ǫ is the medium energy density. The parameters α and β denote power law

dependence of heavy quarks on the path length and the medium temperature. Since

we fix the total amount of energy contained in the medium, i.e., ǫV = Const., one

may obtain the dependence on the size and the number of hot tubes as:

∆E ∝ Nα−β/4Rα−βd/4. (4.8)

In our energy loss model, α = 1 and β = 2 are good approximations for collisional

energy loss, and one may roughly use 1 < α < 2 (e.g. taking α = 3/2 in the following

analysis) and β = 3 for radiative energy loss.

When there is only one hot tube N = 1 (the first scenario), Eq.(4.8) is reduced

to ∆E ∝ Rα−βd/4. Thus for a 2-dimensional system, this indicates that the total

energy loss of heavy quark is not very sensitive to the size R of the hot tubes. This is

consistent with Fig. 4.4. We have also checked that for a 1-dimensional system, the

total energy loss of heavy quarks decreases when confining the same amount energy

in a smaller region, but the energy loss increases for a 3-dimensional system.

Similarly, one may fix the the size R of hot tubes in Eq.(4.8) to isolate the influ-

ence of the number of hot tubes: ∆E ∝ Nα−β/4. One can see that the total energy

loss does not depend on the dimension of the system, but increases significantly
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Figure 4.6: Effects of the strength of medium fluctuation (number of hot tubes N)
on charm quark energy loss.

with the number of hot tubes for both collisional and radiative energy loss. This is

consistent with the finding shown in Fig.4.5.

One may combine the above two scenarios, i.e., changing the size and the number

of hot spots/tubes simultaneously. This is very similar to the change from a large and

smooth medium to fluctuating medium consisting of several hot (and cold) regions

as demonstrated by the cartoon inside Fig.4.6. The total energy contained in these

two different media are the same. To simplify the study, we split a large smooth tube

medium into N hot tubes with smaller sizes, which are lined up adjacent to each other

along the direction of the initial momentum of our charm quarks (Einit = 50 GeV).

Another N cold tubes (vacuum here) are also placed between every two hot tubes to

mimic the realistic distribution of local density fluctuations. The sizes of the smaller

tubes are chosen such that the total length 4NR traversed by heavy quarks is fixed as

the diameter of the original smooth medium with a radius of 5 fm and temperature of

200 MeV. The results for a 2-dimensional system are shown in Fig.4.6. One observes

that the energy loss of charm quarks increases when the original smooth medium is

splitted into more hot and cold tubes, i.e., the more fluctuations the medium has,

the stronger energy loss the charm quarks experience.
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To summarize this subsection, we find that the energy loss of charm quarks in

a 2-dimensional system does not have much dependence on the size of the local

fluctuations, but is quite sensitive to the number of local fluctuations in the medium.

Heavy quarks tend to lose more energy in a fluctuating medium than in a smooth

one when the total energy contained in the medium is the same. Although the above

results are obtained using a static medium, it provides some guidance to explain the

results for a realistic hydrodynamic medium presented in the next section. We also

note that our finding is based on the path length and temperature dependence of

heavy quark energy loss in our model, i.e., the values of α and β in Eq.(4.8).

4.3.2 Heavy Quarks in Event-by-Event Hydrodynamic Medium

In the previous subsection, we studied the response of heavy quark energy loss to the

temperature fluctuations in a static QGP medium. In this subsection, we perform

the investigation for a realistic expanding medium in which both temperature fluc-

tuations and flow (fluctuations) are present. Here, we utilize a (2+1)-dimensional

viscous hydrodynamic model to simulate the dynamical evolution of a hot QGP

produced in Pb-Pb collisions at the LHC energy. The initial conditions for the hy-

drodynamical evolution are obtained from the Monte-Carlo Glauber model.

In Fig.4.7, we compare the initial entropy density distribution in the transverse

plane from a typical event [Fig.4.7(a)] with one after averaging over 100,000 events

for 0-7.5% Pb-Pb collisions at 2.76 TeV at the LHC [Fig. 4.7(b)]. We note that

in Fig. 4.7(b), the initial profiles of all the events have been rotated to the same

second-order participant plane before performing the event average of the entropy

density. One can clearly see the presence of hot and cold regions in the QGP fireball

for fluctuating initial conditions.

In Fig.4.8, we show the nuclear modification factor RAA of charm quarks after

their traversal of the QGP medium created in 2.76 TeV Pb-Pb collisions. We com-
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Figure 4.7: Comparison between (a) fluctuating and (b) smooth initial entropy
density profiles of hydrodynamical evolution of 2.76 TeV central Pb-Pb collisions.

pare the results from smooth initial conditions with those from an event-by-event

calculation for four different centralities. One can see from Fig.4.8(a) - 4.8(d) that

the event-by-event calculations give larger suppression for heavy quarks at high pT,

i.e., the initial state fluctuations lead to larger energy loss for heavy quarks. This is

consistent with the finding for the static medium case in the previous subsection. As

a consequence, a slightly smaller suppression is observed for low pT charm quarks.

As has been mentioned, there exist temperature fluctuations and flow (fluctua-

tions) in a realistic medium. To remove and investigate the effect of the medium

flow on heavy quark evolution, one may solve the Langevin equation Eq.(4.1) in

the global center-of-mass frame instead of the local rest frame of the fluid cell (see

Sec.3.3.2). In this way, the evolution of heavy quarks is solely affected by the tem-

perature distribution and fluctuations of the medium. One can see that the effect of

the medium flow is to boost low pT charm quarks into the medium pT regime and

form the bump structure for the nuclear modification factor RAA. This bump feature

disappears when flow is switched off in the calculation.

The above observation can be seen more clearly in the subfigures inside Fig.
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Figure 4.8: Comparison of charm quark RAA between calculations with smooth
and fluctuating initial conditions of hydrodynamical evolution.

4.8(a) - 4.8(d) where we show the ratios between the final state pT spectra of charm

quarks from the event-by-event calculations and those from the smooth cases. For

the central collisions [Fig. 4.8(a)], we obtain about 12% more quenching at high

pT for the fluctuating initial condition as compared to the smooth initial condition.

This could result in a 10%-15% difference in the extraction of the gluon transport

coefficient q̂ inside QGP. For more peripheral collisions, the effect of initial state

fluctuations on heavy quark energy loss is less; the quenching increases about 7%

when switching from the smooth to the fluctuating initial condition in 40%-50%

Pb-Pb collisions [Fig. 4.8(d)].

To summarize this section, we have studied the impact of initial state fluctua-
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tions on heavy quark evolution and energy loss in relativistic heavy-ion collisions.

The in-medium evolution of heavy quarks is described using our modified Langevin

equation that simultaneously incorporates collisional and radiative energy loss com-

ponents. We have investigated the effect of local fluctuations for both static and

realistic expanding QGP media. In static media, we have studied the effects of tem-

perature fluctuations on heavy quark energy loss in terms of the size and the number

of local fluctuations (hot spots), and found that the total energy loss of heavy quarks

is not particularly sensitive to the size of local fluctuations in a 2-dimensional sys-

tem, but the energy loss increases significantly with the increasing number of hot

spots. Our simulation in a realistic QGP medium has demonstrated that fluctuating

initial conditions may yield about 10% more suppression for inclusive charm quark

production at high pT in relativistic nucleus-nucleus collisions. The effect of initial

state fluctuations on heavy quark energy loss tends to diminish for more peripheral

collisions.

Our study constitutes an important contribution to the quantitative understand-

ing of heavy quark dynamics in relativistic heavy-ion collisions with initial state

fluctuations. Although we utilize heavy quarks in our study to probe the effects of

the fluctuations, many of our results should apply to light flavor partons as well. Our

results suggest that jet modification might be utilized to probe the fluctuations of the

QGP medium, such as the degree of inhomogeneity or the number of hot spots. We

further note that the sensitivity of heavy quark energy loss to hot spot number might

be enhanced when one uses correlation measurements or triggered observables; we

leave such study to a future effort. The study along this direction may potentially

provide more constraints on modeling initial states, thus helping our quantitative

understanding of the transport properties of the hot and dense QGP produced in

high energy heavy-ion collisions.
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5

Hadronization of Heavy Quarks

In Chapter 3 and Chapter 4, we have developed an improved Langevin framework to

describe the heavy quark evolution in a QGP matter, simultaneously incorporating

collisional and radiative energy loss. After these heavy quarks exit the color decon-

fined region of the medium (i.e., when the local temperature falls below the critical

temperature Tc), they are forced to hadronize into their hadronic bound states. In

this chapter, we will construct a model to describe this hadronization process.

High pT heavy quarks tend to fragment into lower energy partons among which

the hadronic bound state of heavy flavor can be formed. This process is termed as

“fragmentation”. On the other hand, it is more probable for a lower pT heavy quark

to combine with thermal partons from the QGP medium to form new hadrons. This

mechanism is known as heavy-light “coalescence” or “recombination”. We will de-

velop a hybrid fragmentation plus recombination model in this chapter to simulate

the hadronization process of heavy quarks at all momentum scales. In this appli-

cation, we adopt a “sudden recombination” approach for heavy quark coalescence

with light quarks from the QGP medium. This approach was first developed for

light hadrons formed from bulk matter [138, 31, 139, 140], and then applied to heavy
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flavors [103, 104, 105] and recently to partonic jet hadronization [141]. This coales-

cence model does not require the thermalization of the recombining partons and it is

straightforward to simultaneously include mesons and baryons, which is convenient

for the normalization over all possible hadronization channels. Note that an alter-

native approach, based on the resonance recombination [101, 142, 106], may also be

applied to the study of heavy flavor dynamics. For the fragmentation mechanism,

we utilize PYTHIA 6.4 [137] to simulate the conversion from heavy quark to heavy

flavor hadrons.

This chapter will be organized as follows. In Sec.5.1, we will summarize how the

fragmentation process is simulated in PYTHIA. In Sec.5.2, we will introduce the

coalescence model we utilize for calculating the heavy-light recombination process.

We will then construct our hybrid model in Sec.5.3 for heavy quark hadronization

incorporating both mechanisms, and compare the contributions from each process

to the spectra of the produced heavy mesons. Finally, in Sec.5.4, we will apply

our hadronization model to the heavy quarks emerging from the Langevin evolution

through the QGP, calculate the heavy flavor RAA and v2 and compare them with

the existing data from both RHIC and LHC experiments; predictions of future mea-

surements will also be provided. Major results in this chapter have been originally

published in Ref. [107].

5.1 Heavy Quark Fragmentation

In this work, we utilize PYTHIA 6.4 [137] to implement the fragmentation of heavy

quarks into heavy flavor hadrons. By default, the Lund symmetric fragmentation

function [203] is selected:

f(z) ∝ 1

z
zaα
(

1− z

z

)aβ

exp

(

−bm
2
⊥

z

)

, (5.1)
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where m⊥ is the transverse momentum defined asm2
⊥ = E2−p2z , and z is the fraction

of E+pz taken by the fragmented hadron out of the parent quark. In Eq.(5.1), aα, aβ

and b are the parameters which need to be fixed according to experimental data, in

which α corresponds to the “old” flavor and β corresponds to the “new” flavor in the

fragmentation process. While Eq.(5.1) works well for light quark fragmentation, its

predictions for heavy meson spectra deviate from experimental data. In PYTHIA,

for the simulation of heavy quark fragmentation, Eq.(5.1) is modified according to

the Bowler space-time picture of string evolution [191]:

f(z) ∝ 1

z1+rQbm2

Q

zaα
(

1− z

z

)aβ

exp

(

−bm
2
⊥

z

)

. (5.2)

In our work, we use the default parametrization as aα = aβ = 0.5 GeV−2, b =

0.9 GeV−2 and rQ = 1.

In the literature, an alternative fragmentation function – the Peterson fragmen-

tation function [204] – is widely adopted for heavy quark fragmentation:

f(z) ∝ 1

z
(

1− 1
z
− ǫQ

1−z

)2 , (5.3)

with ǫQ = −0.05 for the charm quark and -0.005 for the bottom quark. This option

has also been incorporated into PYTHIA and we have verified that it provides very

similar heavy meson spectra compared to those given by Eq.(5.2).

In the numerical implementation, an iterative method is used to simulate the

fragmentation process. For instance, one may start with a single quark q0. Then

a new q1q̄1 pair may be produced, such that q0q̄1 forms a new meson whose energy

and momentum is given by a proper fragmentation function as shown above, and

q1 is left for the next fragmentation process until the leftover quark is not energetic

enough to further fragment. The choice of the flavor of qq̄ is determined with the

probability due to mass, by default, uū : dd̄ : ss̄ = 1 : 1 : γs where γs is set
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to 0.3, and no heavy quark pair is produced in the current fragmentation process.

Once the flavor is chosen, the spin of the valence quark S and the internal orbital

angular momentum L is assigned according to parameterized relative probabilities.

For baryon formation, a diquark q̄q might be picked instead of a single q by q0.

This is known as the “diquark picture” in PYTHIA. Meanwhile, alternative ways to

form baryons also exist, such as the “simple popcorn” and the “advanced popcorn”

frameworks. One may refer to the above mentioned manual [137] for more details.

5.2 Heavy-light Quark Coalescence

In this section, we introduce a Wigner function that describes the probability for

two partons to combine into a meson. Although we utilize a two particle system as

an example here, this Wigner formalism can be easily generalized to a three body

system for baryon formation, as will be shown in the next section.

5.2.1 The Coalescence Probability: the Wigner Function

The probability for two partons to combine into a meson can be expressed in terms of

the overlap between the wavefunctions of the initial two partons and the final meson

– |〈M |~k1, ~r1;~k2, ~r2〉|2, where ~k1, ~r1 and ~k2, ~r2 are the momenta and positions of the

two initial free partons and M represents the formed meson.

In a fixed volume V , the wavefuctions of the partons and the combined meson

can be written as:

〈~r1|~k1〉 =
1√
V
e−i~k1·~r1,

〈~r2|~k2〉 =
1√
V
e−i~k2·~r2,

〈~r|M〉 = 1√
V
φM(~r)e−i ~K·~R,

(5.4)

in which φM(~r) is the wavefunction of the mesonic bound state in its rest frame and
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we have defined the total momentum, relative momentum, center-of-mass position

and relative position as

~K = ~k1 + ~k2,

~k =
m2
~k1 −m1

~k2
m1 +m2

,

~R =
m1~r1 +m2~r2
m1 +m2

,

~r = ~r1 − ~r2.

(5.5)

Note that with the transformations in Eq.(5.5), we have

~K · ~R + ~k · ~r = ~k1 · ~r1 + ~k2 · ~r2, (5.6)

J
[

∂(~R,~r)

∂(~r1, ~r2)

]

=

∣

∣

∣

∣

∂ ~R/∂~r1 ∂ ~R/∂~r2
∂~r/∂~r1 ∂~r/∂~r2

∣

∣

∣

∣

= −1. (5.7)

With these relations, we may calculate the overlap between the wavefunctions as

follows

〈M |~k1, ~r1;~k2, ~r2〉 =
∫

d3r1

∫

d3r2
1√
V
e−i~k1·~r1

1√
V
e−i~k2·~r2

1√
V
φ∗
M(~r)ei

~K·~R

=

∫

d3R

∫

d3r

∣

∣

∣

∣

∣

J
[

∂(~r1, ~r2)

∂(~R,~r)

]
∣

∣

∣

∣

∣

1

V 3/2
e−i( ~K·~R+~k·~r)φ∗

M(~r)ei
~K·~R

=

∫

d3r
1√
V
e−i~k·~rφ∗

M(~r). (5.8)

And thus we have the coalescence probability as below:

∣

∣

∣
〈M |~k1, ~r1;~k2, ~r2〉

∣

∣

∣

2

=

∫

d3r

∫

d3r′
1

V
φ∗
M(~r)φM(~r′)e−i~k·~rei

~k·~r′. (5.9)

One may further simplify this probability with the following Wigner transformation:

~Q =
1

2
(~r + ~r′), ~s = ~r − ~r′, (5.10)
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whose Jacobian is also -1 as above. Thus, Eq.(5.9) can be re-written as

∣

∣

∣
〈M |~k1, ~r1;~k2, ~r2〉

∣

∣

∣

2

=

∫

d3Q

∫

d3s
1

V
φ∗
M( ~Q+ ~s/2)φM( ~Q− ~s/2)e−i~k·~s

=

∫

d3r

V
fW
M (~r,~k), (5.11)

where we have substituted ~Q by ~r in the second line considering that the above

probability decreases exponentially when ~r is away from ~r′, and defined the Wigner

function as

fW
M (~r,~k) ≡

∫

d3sφ∗
M(~r + ~s/2)φM(~r − ~s/2)e−i~k·~s. (5.12)

This Wigner function represents the probability for two partons with relative position

~r and relative momentum ~k to combine into a meson. One may verify that the integral

of the Wigner function over the whole phase space gives the total volume:

∫

d3r

∫

d3kfW
M (~r,~k) =

∫

d3k

∫

d3r

∫

d3sφ∗
M(~r + ~s/2)φM(~r − ~s/2)e−i~k·~s

=

∫

d3r

∫

d3sφ∗
M(~r + ~s/2)φM(~r − ~s/2)V δ(3)(~s)

= V

∫

d3rφ∗
M(~r)φM(~r)

= V. (5.13)

In an infinite medium, this normalizes to (2π)3 instead with the identity
∫

d3ke−i~k·~s =

(2π)3δ(3)(~s).

With the knowledge of the meson wavefunction φM(~r), the Wigner function

Eq.(5.12) is determined. We will use the model of a simple quantum mechanic

harmonic oscillator to approximate this wavefunction:

φM(~r) =
(µω

π

)3/4

e−
1

2
µωr2 , (5.14)
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where µ = m1m2/(m1 +m2) is the reduced mass and ω is the angular frequency of

the harmonic oscillator which will be discussed later. By substituting Eq.(5.14) into

Eq.(5.12), we have

fW
M (~r,~k) =

∫

d3se−i~k·~s
(µω

π

)3/2

e−
1

2
µω(~r+~s/2)2− 1

2
µω(~r−~s/2)2

= 2π

∫ 1

−1

d(cos θ)

∫ ∞

0

s2ds
(µω

π

)3/2

e−µωr2e−µωs2/4e−iks cos θ

= 2π
(µω

π

)3/2

e−µωr2
∫ ∞

0

s2dse−µωs2/4 1

−iks
(

e−iks − eiks
)

(5.15)

= 2π
(µω

π

)3/2

e−µωr2 1

ik
e−

1

µω
k2
∫ ∞

0

dss
[

e−
1

4
µω(s− 2i

µω
k)

2

− e−
1

4
µω(s+ 2i

µω
k)

2
]

One may change the variables of the two parts of integral in the last line with

ξ = s− 2i
µω
k and ξ = s+ 2i

µω
k respectively. The integral is then re-written as

∫ ∞

− 2i
µω

k

dξ

(

ξ +
2i

µω
k

)

e−
1

4
µωξ2 −

∫ ∞

2i
µω

k

dξ

(

ξ − 2i

µω
k

)

e−
1

4
µωξ2

=

∫ 2i
µω

k

− 2i
µω

k

dξξe−
1

4
µωξ2 +

2i

µω
k

∫ ∞

−∞

dξe−
1

4
µωξ2

= 0 +
2i

µω
k

√

4π

µω
, (5.16)

where the symmetry of exp(−µωξ2/4) about ξ = 0 is applied. By inserting Eq.(5.16)

into Eq.(5.15), we obtain

fW
M (~r,~k) = 8e−µωr2e−

1

µω
k2 = 8e−r2/σ2

e−σ2k2, (5.17)

in which we define σ ≡
√

1/(µω). In the end, we may add a degeneracy factor gM :

fW
M (~r,~k) = 8gMe

−r2/σ2

e−σ2k2, (5.18)

which takes into account the spin-color degrees of freedom. For instance, gM is

1/(2× 3× 2× 3) = 1/36 for the D meson ground state, and 3/(2× 3× 2× 3) = 1/12

for the first excited state of D meson.
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5.2.2 The ω Parameter in the Wigner Function

In principle, the σ parameter in Eq.(5.18) can be determined by the size (radius) of

the formed meson. In the non-relativistic limit, the charge radius of a two particle

system (with the same sign of charges) can be defined as

〈

r2M
〉

=

〈

Q1(~r1 − ~R)2 +Q2(~r2 − ~R)2

Q1 +Q2

〉

. (5.19)

From Eq.(5.5), we have

~r1 = ~R +
m2

m1 +m2
~r,

~r2 = ~R− m1

m1 +m2
~r. (5.20)

By substituting Eq.(5.25) into Eq.(5.19), we have

〈

r2M
〉

=
Q1m

2
2 +Q2m

2
1

(Q1 +Q2)(m1 +m2)2
〈

r2
〉

. (5.21)

Meanwhile, we may evaluate the average distance square 〈r2〉 from the Wigner

function:

〈

r2
〉

=

∫

d3rd3kr2fM (~r, ~q)
∫

d3rd3kfM (~r, ~q)
=

12π3σ2

(2π)3
=

3

2
σ2. (5.22)

Therefore we have,

〈

r2M
〉

=
3

2

1

µω

Q1m
2
2 +Q2m

2
1

(Q1 +Q2)(m1 +m2)2
. (5.23)

For instance, one may take 0.184 fm2 for D+(cū) and 0.378 fm2 for B+(b̄d) as the

charge radii square predicted by the light-front quark model [205]. In this work,

we take thermal masses of 300 MeV for u and d quarks and 475 MeV for s quarks.

On the other hand, heavy quarks are not required to be thermal in this coalescence

model and their masses are taken as 1.27 GeV for c and 4.19 GeV for b quarks. These
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yield ω ≈ 0.32 GeV for both D+ and B+. However, as discussed in Ref.[105], in order

to convert as many heavy quarks at small pT into heavy hadrons via coalescence as

possible, smaller oscillator frequencies are needed. We use the parameters tuned in

that reference – ωc = 0.106 GeV for c quark and ωb = 0.059 GeV for b quark – for our

calculation. These smaller oscillator frequencies may partly result from larger radii

of mesons in a de-confined QGP matter than in vacuum. Note that in principle, the

oscillator frequency could depend on the type of hadrons. However, for a “minimal

model”, we only use one overall tuned parameter for charm hadrons and one for

bottom hadrons as shown above.

5.2.3 A Relativistic Correction

The above Wigner function is constructed in a classical framework, when applying it

to the heavy-light quark coalescence in relativistic heavy-ion collisions, we implement

a correction to the transformation Eq.(5.5) as follows. We first define the velocity of

the center-of-mass frame of the heavy-light quark system as

β =
~k1 + ~k2
E1 + E2

. (5.24)

Then, we boost both the 4-space and 4-momentum vector into this center-of-mass

frame and re-define Eq.(5.5) as

~K = ~k′1 +
~k′2,

~k =
E ′

2
~k′1 −E ′

1
~k′2

E ′
1 + E ′

2

,

~R =
E ′

1~r
′
1 + E ′

2~r
′
2

E ′
1 + E ′

2

,

~r = ~r′1 − ~r′2.

(5.25)

Note that all the variables with “prime” in Eq.(5.25) are defined in the center-of-

mass frame of the heavy-light quark system, i.e., the meson system. With these
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definitions, the construction of the Wigner function is the same as that in Sec.5.2.1.

This Wigner function method can be easily generalized to a three parton system for

baryon formation, which will also be incorporated in our implementation as described

in the following section.

5.3 A Hybrid Fragmentation plus Coalescence Model

5.3.1 Fragmentation vs. Coalescence Probability

In the “instantaneous coalescence” model introduced above, the momentum distri-

butions of produced mesons and baryons can be determined by the following expres-

sions,

dNM

d3pM
=

∫

d3p1d
3p2

dN1

d3p1

dN2

d3p2
fW
M (~p1, ~p2)δ(~pM − ~p1 − ~p2), (5.26)

dNB

d3pB
=

∫

d3p1d
3p2d

3p3
dN1

d3p1

dN2

d3p2

dN3

d3p3
fW
B (~p1, ~p2, ~p3)δ(~pM − ~p1 − ~p2 − ~p3). (5.27)

dNi/d
3pi represents the momentum distribution of the i-th valence parton in the

recombined meson or baryon. The distribution of heavy quarks can be directly

obtained after their Langevin evolution through the thermalized medium. For light

quarks and anti-quarks from the QGP medium, we take the Fermi-Dirac distribution

in the local cell frame 1:

dNq

d3p
=

gqV

e
√

p2+m2/Tc + 1
, (5.28)

where a uniform distribution in the position space is assumed inside a volume V

and gq = 6 denotes the degrees of freedom for each quark flavor. fW is the Wigner

function constructed in the previous section. For a two particle system, we have

fW
M (~r,~k) = 8NgMe

−r2/σ2

e−σ2k2. (5.29)

1 To be rigorous, viscous corrections should be introduced for the momentum distribution of
thermal partons if one uses a viscous hydrodynamic medium. However, it has been verified that
non-negligible effects on the final state spectra only appear for light partons with energy greater
than 2 GeV, which is beyond the dominant regime of our coalescence model.
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Note that compared with Eq.(5.18), an overall normalization factor N has been

added, which will be discussed later. The relative position ~r and momentum ~k are

defined as before [Eq.(5.25)]:

~r ≡~r′1 − ~r′2,

~k ≡ 1

E ′
1 + E ′

2

(E ′
2~p

′
1 − E ′

1~p
′
2),

(5.30)

in which the variables on the right-hand side are defined in the center of mass frame

of the two-particle system, i.e., the meson frame. With the assumption that thermal

partons have a uniform spatial distribution in the cell frame of the medium, one may

average over the position space of Eq.(5.29) and obtain the following momentum

space Wigner function:

fW
M (k2) =

1

V

∫

d3rfW
M (~r,~k) = NgM

(2
√
πσ)3

V
e−k2σ2

. (5.31)

From Eq.(5.31) and the definition of ~k in Eq.(5.30), we note that in this instantaneous

coalescence model, quarks with similar velocities are most probable to combine to

form new hadrons.

The Wigner function can be straightforwardly generalized to a three particle

system for baryon production by recombining two particles first and then using their

center of mass to recombine with the third one. This yields:

fW
B (k21, k

2
2) = NgB

(2
√
π)6(σ1σ2)

3

V 2
e−k2

1
σ2
1
−k2

2
σ2
2 , (5.32)

where the relative momenta are defined in the center of mass frame of the produced

baryon as

~k1 ≡
1

E ′
1 + E ′

2

(E ′
2~p

′
1 − E ′

2~p
′
2),

~k2 ≡
1

E ′
1 + E ′

2 + E ′
3

[E ′
3(~p

′
1 + ~p′2)− (E ′

1 + E ′
2)~p

′
3] ; (5.33)
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and the width parameters σi’s are given by σi = 1/
√
µiω with

µ1 =
m1m2

m1 +m2
, µ2 =

(m1 +m2)m3

m1 +m2 +m3
. (5.34)

This is known as the “three quark model” for baryon formation. An alternative way

– the “diquark model” – has also been discussed in Ref. [105] and may result in

slightly different spectra of heavy flavor hadrons at low pT.

As discussed in Sec.5.2.2, the oscillator frequency ω can in principle be calculated

with the charge radius and is different for each hadron. Here, for a minimal model,

we adopt the average values of 0.106 GeV for charm hadrons and 0.059 GeV for

bottom hadrons as tuned in Ref. [105].

We use the Wigner functions Eqs.(5.31) and (5.32) to calculate the probability for

a heavy quark after its in-medium evolution to produce a hadron through coalescence

with light quarks from the QGP medium at Tc. The overall normalization factor N is

determined by requiring the recombination probability to be 1 for a zero-momentum

heavy quark to all possible heavy flavor meson and baryon channels (we include

both ground states and first excited states of D/B, ΛQ, ΣQ, ΞQ and ΩQ). The

value of the normalization factor is obtained using a static medium with an effective

temperature of Teff = 175 MeV. This effective temperature is chosen to take into

account the effect of radial flow (around 0.6c at Tc) developed in the hydrodynamic

model, and obtained according to the following equation,

∑

flavors

∫

d3p
gqV

eE/Teff + 1
=
∑

flavors

∫

d3p
gqV

ep·u/Tc + 1
. (5.35)

With the choice of Teff = 175 MeV and Tc = 165 MeV, both sides of Eq.(5.35) lead

to the same parton density: a number density around 0.24 fm−3 for u and d, and

0.13 fm−3 for s quark. More discussions about this effective temperature can be

found in Refs. [105, 206].
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Figure 5.1: The coalescence probabilities for heavy-light quarks as a functions of
the heavy quark momentum.

Now we may calculate the coalescence probability as a function of the heavy

quark momentum as shown in Fig. 5.1. The recombination probabilities for a charm

or bottom quark to all heavy flavor hadron channels and to only D or B meson are

shown for comparison. One observes that for the same pT, bottom quarks have larger

recombination probability than charm quarks to produce heavy flavor hadrons due

to their larger masses. The curves in the figure separate the hadronization of a charm

or bottom quark into three possibilities: recombination to D or B meson, recombina-

tion to other hadron channels and fragmentation. In the numerical implementation,

a random number between 0 and 1 is generated. If it is greater than the probability

of “Q → any hadron”, the heavy quark will not hadronize via coalescence, instead,

it fragments through PYTHIA as discussed in Sec.5.1, where the relative ratios be-

tween different hadronization channels have been properly calculated and normalized.

However, if this random number is smaller than the probability of “Q→ D/B”, then

a D or B meson is formed via the heavy-light quark coalescence. In that case, a u or

d quark is generated according to Eq.(5.28) in the cell frame of the medium and then

boosted back into the lab frame to combine with the given heavy quark according to

the probability governed by Eq.(5.31) – if they do not combine, another light quark
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Figure 5.2: The relative contributions from different hadronization mechanisms to
(a) D and (b) B meson production from heavy quarks (normalized to one heavy
quark).

will be generated until the meson is formed. In the end, if the random number resides

in the range in between, this heavy quark will hadronize through coalescence, but to

other hadrons than D or B meson. In this work, we concentrate on the ground states

and the first excited states of D0, D+, B0, B+ and their anti-particles. A detailed

analysis of heavy flavor strange mesons and baryons will be left for a future effort.

5.3.2 Heavy Meson Spectra

With the hybrid model developed in the previous subsection, we may calculate the

spectra of heavy mesons formed from heavy quarks after their in-medium evolution.

The initialization of heavy quarks and the QGP, the hydrodynamical evolution of

the medium and the Langevin evolution of heavy quarks inside QGP will all be cal-

culated as discussed in Chapter 4. Figure 5.2 illustrates the relative contributions

from recombination and fragmentation mechanisms to the production of heavy flavor

mesons from charm and bottom quarks created in 2.76 TeV central Pb-Pb collisions.

One can see that while the fragmentation dominates the D/B meson production at

high pT, the inclusion of the recombination mechanism greatly increases their yield

at intermediate pT. As the recombination mechanism adds a thermal parton to a
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heavy quark, the momentum distribution of D/B mesons through recombination is

shifted to the right (higher momenta) compared to charm/bottom quark distribu-

tion. Consequently, its contribution to D/B meson production at low pT is not as

significant as at intermediate pT. Furthermore, due to the larger mass of b-quarks,

the contribution from the recombination mechanism to the B meson production is

more prominent than to the D meson over a wider pT range. These effects will signif-

icantly influence heavy meson suppression and flow as will be shown in the following

section.

5.4 Heavy Flavor Suppression and Flow at RHIC and LHC

In this section, we combine our models of heavy flavor initial production, in-medium

evolution and fragmentation plus coalescence hadronization from Chapter 2 through

Chapter 5 and calculate the heavy flavor suppression and elliptic flow. The nuclear

modification factor RAA and the elliptic flow v2 will be analyzed according to defi-

nitions in Eqs.(3.55) and (3.56). We will first compare our numerical results for the

D meson suppression and flow with existing data from RHIC and LHC experiments.

After that, we will also display some of our predictions for the future measurements,

or measurements that are still in progress at this moment. If not otherwise speci-

fied, we analyze our results in the mid-rapidity region as −0.5 < y < 0.5 for LHC

experiments and −1 < y < 1 for RHIC experiments.

5.4.1 D Meson Suppression and Flow

In this subsection, we show our numerical results of the D meson suppression and

flow, and compare them with experimental data from both RHIC and LHC.

In Fig.5.3, we display our calculation of the D meson RAA for central Pb-Pb

collisions at LHC. Contributions from different energy loss mechanisms are shown.

One observes that while the collisional energy loss dominates the low pT regime, gluon
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Figure 5.3: The nuclear modification
factor RAA ofD mesons in central Pb-Pb
collisions at 2.76 TeV, compared between
different energy loss mechanisms.

0 10 20 30 40
p

T
 (GeV)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
A

A

ALICE D0, D+, D*+
no shadowing, frag. only
no shadowing, frag.+recomb.
with shadowing, frag. only
with shadowing, frag.+recomb.

D meson
0-7.5%

Figure 5.4: The RAA of D mesons
in central Pb-Pb collisions at 2.76 TeV,
compared between different initial pro-
duction and hadronization mechanisms.

radiation dominates at high pT. This is consistent with our findings in Sec.4.2. Our

combination of the two mechanisms provides a good description of the experimental

data from the ALICE collaboration.

In Fig. 5.4 we show a closer investigation of the D meson nuclear modification

factor. The impact of the nuclear shadowing in the initial production of the heavy

quark and the contribution from the coalescence mechanism on the D meson RAA

can be clearly seen in our result. With the inclusion of the shadowing effect, we

obtain a factor of four decrease in the D meson RAA at low pT, while a mild increase

is observed at high pT. This is due to the fact that the charm quark production

is significantly suppressed at low pT and slightly enhanced at high pT in Pb-Pb

collisions relative to binary collision number scaled proton-proton collisions, as shown

in Fig. 2.5(a) 2. Meanwhile, we also observe that the fragmentation mechanism

alone is sufficient to describe heavy quark hadronization above 8 GeV. In the low and

intermediate pT region, however, the recombination of heavy quarks and light thermal

partons becomes important, due to the coalescence mechanism converting low pT

2 Note that this suppression at low pT resulting from the nuclear shadowing effect might be
reduced by half if one adopts a newer tuning of the parametrization of the parton distribution
function (EPS09). However, the effect still remains significant.
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Figure 5.5: The elliptic flow v2 of D mesons at the LHC: (a) compares between
different hadronization mechanisms and (b) compares between different initial con-
ditions of the hydrodynamic medium.

heavy quarks into medium pT hadrons by combining with a thermal parton from

the QGP, and therefore decreasing the D meson RAA near zero pT but significantly

increasing it in the intermediate regime (2-5 GeV).

In Fig. 5.5, we show our calculation of the D meson elliptic flow v2. Contribu-

tions from different hadronization mechanisms are presented for comparison in Fig.

5.5(a). For the pure fragmentation scenario, we set the Wigner function fW to be

0 to remove hadronization through coalescence, while fW is taken as 1 for the pure

recombination scenario. One sees that the recombination mechanism results in a

much larger D meson v2 than fragmentation due to the fact that the recombination

process brings the anisotropic flow of light quarks from the hydrodynamic medium

into the formation of heavy flavor hadrons. Note that in our result, we do not ob-

serve a significant increase of the D meson v2 when combining fragmentation and

recombination mechanisms. This may be due to a combinational effect of the initial

parton spectra, the momentum dependence of the Wigner function, and the radial

flow developed in the QGP medium.

While our calculation seems to underestimate the data of the D meson elliptic

flow v2, many uncertainties still exist. For instance, as discussed in Sec.3.3, if we
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Figure 5.6: The D meson RAA (a) and v2 (b) at RHIC.

adopt the KLN initial condition for the hydrodynamical evolution, we would obtain

a larger eccentricity of the QGP profile and therefore a larger v2 for D meson as

well. In Fig. 5.5(b), we find an increase of the D meson flow by 25% when switching

from the Glauber to the KLN initial condition of the hydrodynamic background.

Note that changing initial conditions with a larger eccentricity does not affect the

overall suppression of D mesons in the central collision region. In addition, in this

calculation, the heavy flavor evolution ceases after the QGP hadronizes and heavy

mesons are formed; the subsequent hadronic interactions between D mesons and the

hadron gas have not been included yet. This process will be discussed in the next

chapter.

In Fig. 5.6 we present our results of the D meson RAA and v2 at RHIC (Au-Au

collisions at
√
sNN = 200 GeV) in comparison with the data measured by the STAR

collaboration. We observe that the influence of the nuclear shadowing at RHIC is not

as significant as at LHC. The coalescence mechanism, on the other hand, is found

to be more important in the low pT regime measured at RHIC; one observes the

“bump” structure of the D meson suppression after the incorporation of recombi-

nation mechanism in the hadronization process. Our result is consistent with data

from the STAR Collaboration. The results of the D meson v2 at RHIC are shown in

127



0 10 20 30 40
p

T
 (GeV)

0.0

0.3

0.6

0.9

1.2

1.5

R
A

A

without shadowing effect
with shadowing effect

B meson for PbPb@2.76TeV

0-7.5% centrality

(a)

0 5 10 15 20
p

T
 (GeV)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

v 2

Glauber for hydro
KLN for hydro

B meson for PbPb@2.76TeV

30-40% centrality

(b)

Figure 5.7: Predictions of the B meson RAA (a) and v2 (b) for 2.76 TeV Pb-Pb
collisions.

Fig. 5.6(b), where the the Glauber and the KLN hydrodynamic initial conditions are

compared. Overall, our model provides descriptions of the D meson nuclear modifi-

cation and elliptic flow that are consistent with the RHIC observations after we take

into account the nuclear shadowing effect in the initial heavy quark production, in-

corporate gluon radiation and elastic collisions for heavy quark evolution and energy

loss inside the QGP, and utilize a hybrid model of fragmentation and recombination

for the heavy quark hadronization process.

5.4.2 Predictions for the Future Observations

In Fig. 5.7 and Fig. 5.8, we provide predictions for the nuclear modification factor

and the elliptic flow of B mesons at LHC and RHIC energies. In these two figures,

we have included both fragmentation and coalescence mechanisms for bottom quark

hadronization. The effects of the nuclear shadowing and different hydrodynamic

initial conditions on the final B meson RAA and v2 are shown for comparison. Due

to the larger mass of the bottom quark than that of the charm quark, the coalescence

mechanism plays a more crucial role in its hadronization process. This can be clearly

seen in Fig. 5.1 and Fig. 5.2: bottom quarks have much larger recombination

probability over a wider pT range than charm quarks. As a result, we observe a
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Figure 5.8: Predictions of the B meson RAA (a) and v2 (b) for 200 GeV Au-Au
collisions.

“bump” structure of the B meson RAA for both LHC and RHIC. The slight “dips”

in the B meson v2 around 5 GeV in Fig. 5.7(b) and Fig. 5.8(b) result from the

transition from the regime where collisional energy loss dominates the heavy quark

motion to the regime where radiative energy loss takes over. For more details about

the relative contributions from different energy loss mechanisms to v2, one may refer

to our previous calculation in Ref. [134].

In Fig.5.9, we show our predictions of the D meson RAA for 30-50% Pb-Pb col-

lisions at the LHC energy, in which the in-plane and the out-of-plane results are

compared. Here, “in-plane” is defined as the region within ±π/4 from the event

plane, while ”out-of-plane” is the remaining region. We observe that because of a

longer path length traversed by heavy quarks in the out-of-plane region, D mesons

display a larger suppression, i.e., a smaller RAA than those in the in-plane region.

Finally, we also provide predictions for RAA and v2 of non-photonic electrons

emitted in heavy meson decays for 62.4 GeV Au-Au collisions at RHIC. As dis-

cussed in Sec.3.3.3, large uncertainties remaining in the ratio between the initial

production rates of charm and bottom quarks may lead to significant uncertainties

in the final state spectra of their decay electrons. Here, we show results both for the
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Figure 5.10: Predictions of RAA (a) and v2 (b) of heavy flavor decay electrons for
62.4 GeV Au-Au collisions at RHIC.

combined electrons and separately for c-decay and b-decay electrons. When mix-

ing electrons from the two sources, we use the production ratio between charm and

bottom quarks directly given by the leading-order pQCD calculation as described in

Chapter 2, which is b/c ≈ 0.004 at 62.4 GeV. As shown by Fig.5.10(a), at this rela-

tively low energy of Au-Au collisions, no suppression of b-decay electrons is observed

below 5 GeV. Instead, an enhancement due to the initial cold nuclear matter effect
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may exist. Although charm quarks are still suppressed, no significant suppression

would be observed for the mixed electrons if the production rate above is correct.

On the other hand, in Fig.5.10(b), we see that the collective flow of non-photonic

electrons still exists at this collisional energy. These calculations were performed one

year ago and have recently been confirmed by experimental results of the PHENIX

collaboration [113].

To conclude this section, we have combined our models of the heavy flavor initial

production, the in-medium scattering and gluon radiation, and the hybrid fragmen-

tation plus coalescence hadronization. Within this numerical framework, we have

studied the evolution of heavy flavor produced in relativistic heavy-ion collisions and

have calculated their suppression and flow that are observed at RHIC and LHC.

Our calculations indicate that medium-induced gluon radiation contributes signifi-

cantly to heavy quark energy loss especially at high energies. The nuclear shadowing

has been shown to suppress the D meson RAA at low pT and enhance it at high

pT. The heavy-light quark coalescence is found to increase both RAA and v2 of D

mesons at intermediate pT. The effect of different choices of hydrodynamic initial

conditions on the final D and B meson elliptic flow has also been investigated. Utiliz-

ing our improved Langevin approach together with a hybrid model for heavy quark

hadronization, we have presented the nuclear modification and the elliptic flow of

D mesons, which are consistent with the experimental measurements at both LHC

and RHIC. Predictions for the future measurements have also been provided, such

as the B meson suppression and flow at both RHIC and LHC energies, the D me-

son RAA for the in-plane and the out-of-plane regions for 30-50% Pb-Pb collisions at

√
sNN = 2.76 TeV, and the medium modification of non-photonic electrons produced

at 62.4 GeV Au-Au collisions.
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6

Hadronic Interaction of Heavy Mesons inside the

Hadron Gas

At this moment, with the combination of the Cold Nuclear Matter Effect in the

initial production of heavy quarks, collisional plus radiative energy loss during their

transport inside the QGP matter, and a hybrid fragmentation plus coalescence model

to describe their hadronization process, we are already able to provide good descrip-

tions of D meson suppression and collective flow observed in relativistic heavy-ion

collisions at both RHIC and LHC. Nevertheless, in a realistic scenario, the strong

interactions do not cease immediately when the temperature of the system drops

below Tc. Instead, the hadrons that are regenerated from the color-deconfined state

of quarks and gluons will continue scattering off each other for approximately an-

other10 fm/c until this hadron gas is so dilute that no more interactions occur.

In this chapter, in order to complete our understanding of the full time evolution

of heavy flavor dynamics in heavy-ion collisions, the hadronic interactions between

open heavy flavor mesons formed from heavy quarks and soft hadrons produced by

the QGP matter will be studied in the framework of the Ultra-relativistic Quantum

Molecular Dynamics (UrQMD) model. We will demonstrate that such interactions in
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the afterburner phase further suppress D meson RAA in the high transverse momen-

tum regime and enhances its v2. With the incorporation of this additional process

into our numerical framework, we refit our theoretical calculations to the experi-

mental data and extract the gluon transport coefficient q̂ of the QGP matter with a

value of around 2.6 GeV2/fm at the LHC energy. This is consistent with the values

constrained by a recent work [95] that uses a systematic comparison between various

energy loss formalisms of light partons.

This chapter is organized as follows. In Sec.6.1, we will discuss about how we

apply the UrQMD model to study heavy meson interaction with the hadron gas

after the QGP freezes out – including the formation of the hadron gas based on the

Cooper-Frye formula, a brief review of the UrQMD model and how the charm meson

scattering cross sections are introduced into the UrQMD model. In Sec.6.2, we will

present our numerical results of D meson suppression and flow after the inclusion of

the UrQMD model into our framework and investigate how the hadronic interaction

in the afterburner stage further affects the heavy meson spectra one observes. Finally

in Sec.6.3, we go beyond the current widely used heavy flavor observables (RAA and

v2) and apply our updated framework of heavy flavor dynamics to explore a new set

of quantities – heavy-flavor-tagged angular correlation functions – and find them to

be potential candidates for distinguishing different energy loss mechanisms of heavy

quarks inside a QGP.

6.1 D Meson Transport in a Hadron Gas

6.1.1 Formation of the Hadron Gas – The Cooper-Frye Formula

In order to describe the interactions between heavy mesons with the soft hadron gas in

the following subsections, it is first necessary to understand how the hadron gas forms

from the QGP matter. One general approach to obtain the hadron distributions

is applying the Cooper-Frye formula [28, 207] at the hypersurface of the chemical
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freeze-out, i.e., at Tc.

To determine the total number of particles of species i (Ni) produced by the decay-

ing QGP, we need to define a 3-dimensional hypersurface Σ(x) in the 4-dimensional

space-time along which the QGP decays. For instance, one may take a picture of

the system at time t and count Ni in the frozen 3-dimensional space we obtain.

However, a real detector does not perform in the way. An ideal detector would be a

closed 2-dimensional surface (e.g. a sphere) that covers the regions of our heavy-ion

collisions. In this case, different final-state hadrons reach the detector at different

times based on their production space-time and velocity, and one may perform the

counting from t = −∞ to ∞ and collect the information of all produced hadrons.

Note that in this scenario we have defined the hypersurface as a 2-dimensional space

that extends over all possible time – still 3-dimensional. Therefore, we see that it is

possible to choose different hypersurfaces for the counting as long as they entirely

separate the collision point from the future light cone.

Let us first define the number current density of hadron i as

jµi (x) =

∫

d3p

(2π)3E
pµfi(x, p), (6.1)

in which fi(x, p) represents the phase space distribution of hadron i. Then, we can

calculate the total particle number by integrating the normal component of this

current over a chosen hypersurface Σ(x):

Ni =

∫

Σ

d3σµ(x) j
µ
i (x) =

∫

Σ

d3σµ(x)

[

1

(2π)3

∫

d3p

E
pµ fi(x, p)

]

. (6.2)

Here, d3σµ(x) is an infinitesimal element of Σ(x) with its direction perpendicular to

the hypersurface. If we have two different hypersurfaces Σ1 and Σ2 with their sum

Σ1 − Σ2 closing a certain region of the 4-dimensional space-time, then according to
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the Gauss theorem and the conservation of current ∂µj
µ
i (x) = 0, we have

∫

Σ1−Σ2

d3σµ(x) j
µ
i (x) =

∫

V

d4x∂µj
µ
i (x) = 0. (6.3)

Note that in this specific case, the relative minus sign between Σ1 and Σ2 results

from the positive direction of a hypersurface being defined as pointing outward from

the region containing the collision point and V represents the 4-dimensional region

closed by the two hypersurfaces. And Eq.(6.3) indicates that
∫

Σ1
d3σµ(x) j

µ
i (x) =

∫

Σ2
d3σµ(x) j

µ
i (x), i.e., the number of hadrons is independent of the choice of the

hypersurface as long as the multiplicity of various particle species is conserved during

the evolution. However, since hydrodynamics is not a good approximation of the

system below Tc where the mean free path is no longer small enough, we calculate the

process of hadron production at the hypersurface of chemical freeze-out Σf , and then

apply the UrQMD model (discussed below) for the subsequent hadronic evolution.

The differential form of Eq.(6.2) reads

E
dNi

d3p
=

dNi

dypTdpTdφp

=
dNi

dymTdmTdφp

=
1

(2π)3

∫

Σf

pµd3σµ(x) fi(x, p). (6.4)

This is known as the Cooper-Frye formula. The following definitions and relative

relations between different variables have been used in Eq.(6.4):

mT ≡
√

p2T +m2, y ≡ 1

2
ln
E + pz
E − pz

, E = mT cosh y, pz = mT sinh y. (6.5)

Three pieces of information are required for the evaluation of this Cooper-Frye inte-

gral: (1) the freeze-out hypersurface Σf , (2) the phase distribution of hadron fi(x, p),

and (3) how to evaluate the scalar product of pµdσµ(x).

To obtain the freeze-out hypersurface Σf , one follows the hydrodynamical evolu-

tion of the medium background and records the proper time τ(≡
√
t2 − z2) of each
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fluid cell when its local temperature drops below Tc. Thus we obtain τf = τf(x, y, ηs)

in which the space-time rapidity ηs is defined as ηs ≡ 1
2
ln[(t + z)/(t − z)] (simi-

lar to Eq.(6.5), we have the inverse transformations t = τ cosh ηs and z = τ sinh ηs

here). This reduces the 4-dimensional space-time to the 3-dimensional hypersur-

face Σf we seek. Note that in principle, apart from these hadrons emitted from the

freeze-out hypersurface, there also exist “colder” hadrons produced directly from

the pre-equilibrium stage of the heavy-ion collisions without experiencing the QGP

evolution. These hadrons mainly form from the “corona” regime of the overlapping

region of the two colliding nuclei and their contribution to the total multiplicity of

the final state can be considered small especially in the mid-rapidity region. More

discussions about these corona hadrons can be found in Ref. [37].

In general, for a particle residing in a thermal reservoir, the phase space distri-

bution can be written in terms of:

fi(x, p) = fi,eq + δfi(x, p). (6.6)

Here, fi,eq represents the distribution function for a set of particles in local thermal

equilibrium

fi,eq(x, p) =
gi

e[p·u(x)−µi(x)]/T (x) ± 1
= gi

∞
∑

n=1

(∓)n+1 e−n[p·u(x)−µi(x)]/T (x), (6.7)

in which gi denotes the degeneracy of spin, color, flavor, etc., µi is the chemical po-

tential of hadron i, T (x) and uµ(x) represent the local temperature and the 4-velocity

of the fluid cell, and ±1 in the denominator accounts for the proper quantum statis-

tics – upper (lower) sign for fermions (bosons). In a non-perfect fluid, i.e., a viscous

hydrodynamic medium, the coupling strength is not infinitely large and a finite re-

laxation time is required for the system to go back to local thermal equilibrium

during its expansion. This leads to a deviation δfi(x, p) from the equilibrium limit
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in the hadron distribution function as shown in Eq.(6.6). The exact relation between

viscosity and δf requires an approximate solution of the Boltzmann equation. There

are two forms of δf for the case where the bulk viscosity does not contribute and

only the shear stress tensor (πµν) is non-zero (a more general solution is an open

topic of research itself at this moment) [37]. One of them reads

δf(x, p) = feq(x, p) [1± feq(x, p)] ·
1

2

πµν(x)p̂µp̂ν
e+ p

χ
( p

T

)

, (6.8)

in which p̂µ = pµ/p, with p =
√

−pµ∆µνpν (∆µν ≡ gµν − uµuν) being the magnitude

of the spatial momentum in the local rest frame of the fluid cell. And

χ
( p

T

)

=
( p

T

)α

, (1 ≤ α ≤ 2), (6.9)

with the power α depending on the details of the collision term and the ansatz used

for solving the Boltzmann equation. The other form of δf reads [208]

δf(x, p) = feq(x, p) [1± feq(x, p)] ·
1

2

πµν(x)pµpν
βπ(T )T (x)(p · u)

[1 +O(πµν)] , (6.10)

in which βπ(T ) is a thermodynamic integral that can be reduced to βπ = (e + p)/s

for massless particles. Note that at large p, Eq.(6.10) is linear with respect to p.

In the end, the only piece left in calculating the Cooper-Frye integral Eq.(6.4) is

the evaluation of the infinitesimal element pµdσµ(x). In general, any 3-dimensional

space can be parametrized using three locally orthogonal variables u, v, w and then

the points on the surface Σ(x) can be represented by Σµ(u, v, w). With this setup, the

normal vector on the curved manifold of Σ(x) can be calculated with the following

formula known from the theory of general relativity:

d3σµ(u, v, w) = −ǫµνλρ
∂σν

∂u

∂σλ

∂v

∂σρ

∂w
dudvdw, (6.11)
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where ǫµνλρ is the completely antisymmetric Levi-Civita tensor in a 4-dimensional

space with ǫ0123 = −ǫ0123 = 1. As discussed earlier, the (τ, x, y, ηs) coordinate

is adopted for the hydrodynamical evolution and we choose (x, y, ηs) as the three

orthogonal components to represent the freeze-out hypersurface. Σ(t, x, y, z) in the

Minkowski space is then represented as Σ(τ(x, y, ηs) cosh ηs, x, y, τ(x, y, ηs) cosh ηs).

With the help of Eq.(6.11), we find

d3σµ(~rT, ηs) =

(

cosh ηs +
1

τ

∂τ

∂ηs
sinh ηs,−

∂τ

∂x
,−∂τ

∂y
,− sinh ηs −

1

τ

∂τ

∂ηs
cosh ηs

)

× τ(~rT, ηs)dηsd
2rT (6.12)

in which we have represented the transverse components (x, y) with rT. Recall that

with pµ = (mT cosh y, px, py, mT sinh y), we have

pµd3σµ =
(

mT cosh y cosh ηs +
mT

τ

∂τ

∂ηs
cosh y sinh ηs − px

∂τ

∂x
− py

∂τ

∂y

−mT sinh y sinh ηs −
mT

τ

∂τ

∂ηs
sinh y cosh ηs

)

× τ(~rT, ηs)dηsd
2rT

=
[

mT cosh(y − ηs)−
mT

τ

∂τ

∂ηs
sinh(y − ηs)− ~pT · ▽Tτ(~rT, ηs)

]

× τ(~rT, ηs)dηsd
2rT. (6.13)

If we assume the hydrodynamic medium is boost-invariant in the longitudinal direc-

tion, i.e., the longitudinal proper time τ is independent of the space-time rapidity

ηs, Eq.(6.13) can be simplified to

pµd3σµ(~rT) =
[

mT cosh(y − ηs)− ~pT · ▽Tτ(~rT)
]

τ(~rT)dηsd
2rT. (6.14)

With the above evaluations of the freeze out hypersurface Σf(x), the phase

space distribution of formed hadrons fi(x, p) and the infinitesimal integral element

pµdσµ(x), one is able to calculate the hadron spectra produced from the QGP mat-

ter according to the Cooper-Frye formula Eq.(6.4). This process is incorporated in
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almost all of the current computational codes of hydrodynamics. In our calculation,

we use the numerical tool “iSS” – developed by the Ohio State University Group

together with their hydrodynamic model [38] – to sample the hadron distribution at

QGP freeze-out.

6.1.2 Application of the UrQMD Model to Hadronic Scatterings

In Chapter 5, we discussed the formation of open heavy mesons from heavy quarks,

and in the previous subsection, the production of soft hadrons from a decaying QGP

was illustrated. Now we feed all these hadrons together into the UrQMD model to

simulate the subsequent processes of hadronic re-scattering.

The Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model [36] is a

microscopic model that simulates many body interactions in heavy-ion reactions on

an event by event basis. It may either start the simulation from the two colliding

nuclei or import the phase space distributions of a list of hadrons as an initial condi-

tion and simulate the subsequent interactions. We utilize the latter process for our

purpose of studying D meson evolution inside a hadron gas.

Various baryons species (including nucleon, delta and hyperon resonances with

masses up to 2.25 GeV) and meson species (including strange meson resonances) and

their corresponding anti-particles are included in the collision term of the UrQMD

model. New states can be produced during interactions via string decays, s-channel

collisions or resonance decays. The required cross sections are parametrized or tab-

ulated either according to existing experimental data or available theoretical calcu-

lations. We will discuss the scattering cross sections of charm mesons separately in

the next subsection, and detailed information about light hadron interactions can be

found in the original literature [36].

In UrQMD, the collisions between hadrons are performed with a stochastic method.

At the beginning of each time step, the relative distance dtrans between each pair of
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particles is calculated. This relative distance dtrans is defined as the closest distance

the selected pair of particles approach each other (in the local rest frame of the two

particles) if they stream freely. If this closest distance satisfies the semi-classical cri-

terion dtrans ≤ d0 ≡
√

σtot/π, then a scattering may happen. Here, σtot is the total

scattering cross section which depends on the species and the center of mass energy
√
s of the two colliding particles. UrQMD scans all possible two-particle scatterings

and orders the qualified pairs according to the collision times. Then the scattering

between the first pair (with the shortest colliding time ∆t) is selected to take place

while all the other particles stream freely during this ∆t. For the chosen scattering,

the species of the daughter particles are determined according the relative branching

ratio of the scattering process. UrQMD then samples the scattering angles of the

final states either (for most elastic scatterings) according to an analytical expres-

sion [209, 210] or (for inelastic processes like annihilations and decays) by empirical

interpolation between forward peaked, isotropic scattering and other parametriza-

tions. This scheme is repeated for subsequent scatterings until the hadron gas is so

dilute that none of the particle pairs satisfies the scattering criterion dtrans ≤ d0 and

therefore all interactions cease – this is known as the “kinetic freeze-out”.

6.1.3 Scattering Cross Sections of Charm Mesons in a Hadron Gas

One of the most important ingredients of the UrQMD model are the hadronic scat-

tering cross sections. To simulate the interactions of D mesons with the hadron

gas, we introduce the scattering cross sections of charm mesons with pions and rho

mesons calculated in Ref. [143] into UrQMD. In this reference paper, to describe a

hadronic system composed of 4 quark flavors (u, d, s, c), the author starts with the

following free Lagrangian for pseudoscalar and vector mesons

L0 = Tr
(

∂µP
†∂µP

)

− 1

2
Tr
(

F †
µνF

µν
)

, (6.15)
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Figure 6.1: Diagrams for charm meson scatterings with π and ρ mesons: the num-
bers represents different scattering processes while the Roman letters distinguishes
between different amplitudes in a given process. This figure is taken from Ref. [143].
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Figure 6.2: Total cross sections of charm meson scatterings with π and ρ mesons,
compared between different form factors. This figure is taken from Ref. [143].

in which Fµν ≡ ∂µVν − ∂νVµ, and P and V are the 4 × 4 matrices for pseudoscalar

and vector mesons in SU(4) respectively. With the introduction of the standard

minimum substitution

∂µP → DµP = ∂µP − ig

2
[Vµ, P ] , (6.16)

Fµν → ∂µVν − ∂νVµ −
ig

2
[Vµ, Vν ] , (6.17)

one obtains the Lagrangian for interacting hadrons as follows:

L =L0 + igTr (∂µP [P, Vµ])−
g2

4
Tr
(

[P, Vµ]
2)

+ igTr (∂µV ν [Vµ, Vν ]) +
g2

8
Tr
(

[Vµ, Vν ]
2) . (6.18)

This Lagrangian implies 8 processes of charm meson scatterings with π and ρ mesons

– πD ↔ ρD∗, πD → πD, πD∗ → πD∗, πD∗ ↔ ρD, ρD → ρD, ρD∗ → ρD∗ –

which can be represented by diagrams in Fig.6.1.
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Figure 6.3: Effect of hadronic interaction on the D meson suppression in central
Pb-Pb collisions.

One may refer to the original work [143] for details regarding the calculation

of these diagrams. Here in Fig.6.2 we directly cite the corresponding numerical

results for the total cross sections of charm meson scattering with π and ρ mesons

as functions of the center of mass energy
√
s. Note that in Fig.6.2, different choices

of the cutoff parameter Λ in the form factor for the hadron structure are compared,

which significantly affect the scattering cross sections of charm mesons. This will be

treated as a systematic uncertainty in our later UrQMD simulation.

6.2 Effects of Hadronic Scattering on D Meson Suppression and Flow

In this section, we apply the above mentioned UrQMDmodel to simulate the hadronic

interactions between D mesons and the hadron gas and explore how these scatterings

may further affect the D meson spectra that we observe at LHC and RHIC.

In Fig.6.3, we investigate how the hadronic interactions further affect the D me-

son RAA. We observe that due to additional energy loss that the D meson suffers

inside the hadron gas, its RAA is further decreased at large pT. Consequently, due
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Figure 6.4: Effect of hadronic interaction on the collective flow of D mesons ob-
served at LHC.

to the conservation of the number of charmed hadrons, the D meson RAA is slightly

enhanced at low pT after the UrQMD evolution. As discussed in Sec.6.1.3, we show

an error band in Fig.6.3 for our theoretical calculation which signifies the uncertainty

in the choice of the cutoff parameter Λ of the hadron form factor. Note that starting

from this point, our calculations adopt a new version of the EPS parametrizations of

the nuclear shadowing effect in the initial state (EPS09), which reduces the amount

of “shadowing” at low pT: this yields less suppression of RAA compared to our earlier

results presented in Sec.5.4. With our comprehensive framework that incorporates

heavy flavor evolution in both QGP and hadronic phases, we provide good descrip-

tion of the D meson suppression as observed in Pb-Pb central collisions at LHC. By

comparing with experimental data, we find the final spatial diffusion coefficient of

heavy quarks in the QGP extracted from our model to be around 7/(2πT ), which

corresponds to a gluon transport coefficient q̂ of around 2.6 GeV2/fm. This is consis-

tent with the constraints suggested in a recent work [95] by systematically comparing

various energy loss formalisms of light partons.

Apart from RAA, another important observable for heavy mesons is its the collec-
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Figure 6.5: Comparison of the D meson RAA (a) and v2 (b) with RHIC data.

tive flow coefficient v2. As displayed in Fig.6.4, additional scatterings of D mesons

in an anisotropic hadron gas further enhance the v2 value by over 30%. As already

discussed in Sec.5.4, we also present here the difference between two hydrodynamic

initial conditions. Since the KLN model provides a larger eccentricity of the initial

entropy density profiles than the Glauber model, this may cause another 30% dif-

ference in the collective flow of heavy mesons after their evolutions inside the QGP

and the hadron gas. However, after taking all effects into account, our calculation

still underestimates the D meson v2 compared to the latest ALICE data.

In Fig.6.5, we provide our calculations of D meson suppression and flow in Au-

Au collisions at RHIC energy. Similar to the above LHC scenario, the hadronic

interaction simulated with the UrQMD model suppresses D meson RAA at large pT

and enhances its v2. Our numerical results are consistent with the experimental data

measured by the STAR collaboration.

Furthermore, in Fig.6.6 we provide D meson RAA for different centrality regions

as observed at RHIC. And we also calculate the integrated RAA of D meson over

given pT regions as functions of the participant number in Fig.6.7. Due to a smaller

geometric size and a shorter life time of the hot and dense nuclear matter created

in more peripheral collisions, the D meson RAA increases with larger centrality, or
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decreases with larger number of participant nucleons in nucleus-nucleus collisions.

In Fig.6.6 and Fig.6.7, Λ = 1 is adopted for the hadron form factor. Our theoretical

calculations are consistent with all the available data from RHIC and a prediction

for the participant number dependence of the D meson RAA is also provided for a

smaller pT region – the value of RAA is expected to be larger in 0 < pT < 3 GeV

than in 3 < pT < 8 GeV due to a combined effect of heavy flavor energy loss and the

recombination mechanism in heavy meson formation.

6.3 Exploration of New Observables

We have developed a comprehensive framework to describe the full time evolution

of heavy flavor produced in relativistic heavy-ion collisions, including its initial pro-

duction, evolution in the QGP, hadronization and scattering inside the hadron gas.

This newly developed tool provides heavy meson suppression and flow consistent with

most existing experimental data. However, up till now, all of our study concentrates

on the single particle spectra. On the other hand, exclusive spectra, or correlation

functions may also be interesting and provide us with new insights regarding heavy

flavor dynamics and the QGP properties. In this section, we will apply our updated

model of heavy flavor dynamics to explore such heavy-flavor-tagged correlation func-

tions and show that they are indeed useful new observable that helps us distinguish

between different energy loss mechanisms of heavy quarks inside a QGP medium.

Some of our preliminary results on this subject have been published in [211, 212, 213].

6.3.1 Motivation: Ambiguity of Single Particle Spectrum

As we discussed in Chapter 3 and Chapter 4, there are two major mechanisms for

heavy quarks to lose energy in a hot and dense QCDmedium – quasi-elastic scattering

and gluon radiation. Although these two mechanisms possess different properties

such as the length dependence of the amount of energy loss (see Sec.4.3.1), it may
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Figure 6.8: Fitting each energy loss mechanism of heavy quark to the observed D
meson RAA by tuning the transport coefficient.

not be easy to distinguish between them by using the single particle spectra alone.

As shown in Fig.6.8, one is able to fit experimental data of D meson RAA with

each energy loss mechanism alone by tuning the coupling strength. Although the

combination of collisional and radiative energy loss provides the best pT dependence

of D meson suppression and leads to the most reasonable extraction of the gluon

transport coefficient q̂ according to Ref. [95], the collisional energy loss alone or gluon

radiation alone may also fit the data within the current experimental uncertainty as

long as one increases the q̂, i.e., reduces the heavy quark diffusion coefficient D. Note

that the microscopic structure of the heavy quark scattering cross section still remains

largely unknown and different approaches – such as pQCD calculations [214], the

heavy-light quark resonant scattering approach [215], AdS/CFT based calculations

[216], lattice QCD calculations [217], etc. – may yield values of D varying from less

than D = 2/(2πT ) to greater than D = 5/(2πT ). From this point of view, it is

hard to determine which extraction in Fig.6.8 is correct and therefore which energy

loss mechanism is dominant. The use of single particle spectra alone to study heavy
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quark energy loss is therefore insufficient and this motivates the necessity to explore

new observables that may provide better insight into the heavy flavor dynamics in

heavy-ion collisions.

6.3.2 Angular Correlation Functions between Heavy Quark Pairs

In this subsection, we show that while it is difficult for single particle spectra to

distinguish between different energy loss mechanisms of heavy quarks inside QGP,

angular correlation functions related to heavy flavor pairs may serve as better and

more discriminatory observables.

We start with the simplest scenario in which an leading order pQCD approxi-

mation is applied for the initial production of heavy flavor so that heavy quark Q

and anti-heavy-quark Q̄ paris are produced back to back with the same magnitude

of momentum. After they travel through the medium, their momenta will change

and the angle between them will no longer remains π. One may then measure the

angular distribution and determine how much angular correlation between the QQ̄

pairs remains after they have traversed the medium.

In Fig.6.9, we examine how this angular de-correlation behavior depends on dif-

ferent energy loss mechanisms. While different energy loss mechanisms may inde-

pendently describe the D meson RAA for different values of the transport coefficients

(Fig.6.8), they lead to significantly different angular correlation functions of the fi-

nal state cc̄ pair. As can be observed in Fig.6.9, pure radiative energy loss does

not change the angular correlation function significantly after heavy quarks travel

through the medium – the function still peaks around π. To the contrary, pure

collisional energy loss leads to a peak around 0, indicating that low energy cc̄ pair

tends to move collinearly in the end because of the radial flow effect of the QGP

medium – this is known as the “partonic wind effect” [218] and might be crucial for

the enhancement of J/ψ regeneration in a QGP matter. Combining radiative and
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Figure 6.9: Comparison of the angular correlation functions of cc̄ pair between
different heavy quark energy loss mechanisms – back-to-back approximation for the
heavy quark initial production.

collisional energy loss results in a correlation function in between the previous two

situations. The different angular de-correlation behavior observed results from the

qualitatively different momentum broadening mechanisms for heavy quarks caused

by different energy loss mechanisms: medium-induced gluon radiation favors small

angle emission but quasi-elastic scattering yields a fast isotropization of heavy quarks

in the momentum space.

As the next step, we replace the leading order approximation of the initial produc-

tion of heavy quark pairs by adopting an improved initialization method: a Monte-

Carlo next-to-leading order (MCNLO) production of heavy quark pairs plus the Her-

wig vacuum radiation before they enter the QGP medium [132]. In this approach, the

processes of gluon splitting and three particle production are incorporated and the

pT broadening of heavy quarks due to vacuum radiation is also considered. There-

fore, as shown by the black dot-dashed curve in Fig.6.10, instead of the back-to-back

picture, the angular correlation function of initial cc̄ pairs is already double peaked

around 0 and π in the mid-rapidity region (1 < y < 1). This provides a more realis-
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Figure 6.10: Comparison of the angular correlation function of cc̄ pair between
different heavy quark energy loss mechanisms – MCNLO + Herwig initialization of
heavy quarks.

tic description of heavy flavor exclusive spectra observed in proton-proton collisions

[219].

We present angular correlation functions of these cc̄ pairs after they travel through

the QGP medium in Fig.6.10. The qualitative conclusions drawn from the previous

ideal scenario (Fig.6.9) still remains valid with the improved initialization scheme:

while the pure radiative energy loss does not change the cc̄ angular correlation func-

tion compared with its initial spectrum, pure collisional energy loss isotropizes the

momentum space distribution of heavy quark much faster and leads to a peak around

0 due to the “partonic wind effect”.

6.3.3 D-D̄ Correlation and D-Hadron Correlation

Based on the results of the previous subsection, we find that the angular correlation

function of cc̄ pair is sensitive to the energy loss mechanism of heavy quarks inside

the QGP. However, in reality, we are not able to measure bare quarks directly. Even

if we could reconstruct them based on their decay products, it would still not be
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Figure 6.11: The D-D̄ correlation in Pb-Pb central collisions (−1 < y < 1).

possible for experimentalists to identify which c and which c̄ are correlated due to

their large number in each collisional event (especially for central Pb-Pb collisions at

LHC). In this subsection, we attempt to implement more realistic analysis techniques

for this correlation function and investigate whether its dependence on the energy

loss mechanism found in Fig.6.9 and Fig.6.10 still holds true for D mesons.

In Fig.6.11, we study the D-D̄ correlation in the mid-rapidity region of central

Pb-Pb collisions at LHC. Instead of tracking each heavy flavor pair from their initial

production, we loop each D meson over all D̄’s within a collisional event and pair

up all of them. Figure 6.11 displays the correlation functions we obtain, once more

compared between different energy loss mechanisms. We find that the shapes of

these functions are similar to those of cc̄ in the Fig.6.10 – peaking around π for

pure radiative energy loss but peaking around 0 for collisional energy loss, except

that they are on top of a large background. This background is contributed by all

un-correlated D and D̄ mesons. If the future experiment can measure such angular

correlation function of heavy meson pairs or their decay products, it will provide us

with a better understanding of the heavy quark energy loss mechanism inside QGP.
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Figure 6.12: The D-hadron correlation in Pb-Pb central collisions. The back-
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While it is relatively easy to calculate D-D̄ correlation functions in heavy-ion

collisions, it appears much harder to measure them due to the limited statistics of

the reconstructed D/D̄ mesons at this moment. However, the measurement of such

a correlation function between heavy flavor decay electrons and all soft hadrons has

already been attempted at the LHC experiment [220]. As a first step, we present our

calculation of D-hadron correlation functions in Fig.6.12. A more direct comparison

with the experimental data of electron-hadron correlation functions requires tracking

all possible decay products of D mesons in our simulation and will be deferred to our

future effort. Note that in Fig.6.12, we analyze the correlation between D meson and

“all” soft hadrons after their hadronic interactions through UrQMD, and the latter

part includes both the daughter soft hadrons produced by charm quark fragmentation

and hadrons directly emitted from the QGP medium according to the Cooper-Frye

formula. We observe the double peak structure around 0 and π in the D-hadron

correlation functions and different energy loss mechanisms lead to different strengths

of the peak structure. However, since now we are analyzing all possible hadrons, the
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correlation function in the final state is no longer merely contributed by the heavy

flavor initial production that we aim for in Fig.6.9 - Fig.6.11, but also contributed

by the collective flow behavior of the bulk matter. This introduces an additional

complication to the overall result. Note that the differences between the three energy

loss mechanisms will also depend on different cuts of pT and y regions, which should

be investigated in more details in our future work. If the future data statistics allows,

one may prefer the analysis of correlation functions between heavy flavor particles

themselves such as heavy meson and their decay leptons, since the inclusion of all

soft hadrons may introduce two particle correlations from the medium that mask the

information we are looking for.

To conclude, in this section we have applied our newly developed framework of

heavy flavor evolution that incorporates hadronic interaction in the late reaction

stage to explore heavy-flavor-tagged angular correlation functions. We investigate

the correlation functions between cc̄ pairs, D and D̄ mesons, and D and all possible

soft hadrons, and find them sensitive to the choice of energy loss mechanism of the

heavy quarks inside the QGP: while gluon radiation does not significantly modify the

initial angular correlation function, quasi-elastic scattering results in a much faster

isotropization of heavy quark momenta. These features can not be distinguished

with single particle spectra alone. Thus, if future measurements can provide these

correlation functions, we would obtain deeper insight into heavy flavor dynamics and

therefore the properties of the QGP matter as well.
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7

Conclusions and Outlook

Ultra-relativistic heavy-ion collisions provide the unique opportunity to compress

nuclear matter into an extremely hot and dense state of matter to form a color de-

confined quark-gluon plasma. Investigating this strongly coupled system provides us

with a better understanding of QCD and reveals the state of our universe microsec-

onds after the big bang.

Heavy quarks, including charm and bottom quarks, are dominantly produced in

the every early stage of heavy-ion collisions through hard scatterings. They prop-

agate through and observe the full evolution history of the created hot and dense

nuclear matter and therefore serve as ideal probes of the medium properties. In this

dissertation, we have developed a comprehensive framework that simulates the whole

evolution of heavy flavor in heavy-ion collisions, including its initial production, en-

ergy loss in a QGP, hadronization at the critical temperature Tc from bare quarks

to hadronic bound states and the subsequent scattering in a hadron gas to kinetic

freeze-out.

We utilize a MC-Glauber model to initialize the position space distribution of

heavy quark production. For the momentum space, a leading-order pQCD calcu-
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lation is adopted. For nucleon-nucleon collisions, the parton distribution function

CTEQ5 is used, whereas in nucleus-nucleus collisions, this distribution function is

modified with the EPS parametrizations of the shadowing effect of the cold nuclear

matter in the initial state. We show that this nuclear shadowing effect significantly

suppresses the production rate of charm quarks at low pT but slightly enhances it

at larger pT at both RHIC and LHC energies and therefore greatly reduces the D

meson RAA we observe at low pT but slightly increases it at higher pT. Compared to

charm quarks, the impact of this shadowing effect appears weaker for bottom quarks

but is still non-negligible.

To study the transport of heavy quarks inside a QGP medium, we have sepa-

rated their energy loss processes into two parts: quasi-elastic scattering with light

partons residing in the medium and medium-induced gluon radiation. In general,

the former mechanism can be described using a Boltzmann equation with collision

terms for 2 → 2 processes. We have demonstrated that in the limit of small mo-

mentum change during each interaction – which should be a good approximation

for heavy-light interaction – the Boltzmann equation can be reduced to the Fokker-

Plank equation and therefore be stochastically realized by the Langevin equation. In

order to investigate heavy quark motion inside a dynamic QGP fireball, we couple

the Langevin equation to hydrodynamic models that simulate the space-time evolu-

tion of the QGP by solving the equation in the local rest frame of the fluid cell. In

this framework, we have studied the thermalization process of charm quarks inside

QGP and found that with collisional energy loss alone, heavy quarks may not be

able to approach local thermal equilibrium with the medium background within the

QGP lifetime despite their strong response to the surrounding medium as revealed

by their large suppression and collective flow behavior. Furthermore, we have in-

vestigated the model and parameter dependence of heavy quark energy loss within

this Langevin approach. We have focused on the effects of two particular medium
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properties – geometric anisotropy and its collective flow – and found that while the

geometric anisotropy dominates the final heavy quark distributions in the high pT re-

gion, the collective flow of the medium dominates at low pT. The impact of the QGP

geometry on heavy flavor observables has been further explored by comparing the

Glauber and the KLN initializations of the hydrodynamic medium. We have shown

that while the choice of initial conditions does not significantly affect the overall sup-

pression of heavy quark, the larger geometric eccentricity given by the KLN initial

condition results in a larger heavy flavor v2 than that with the Glauber model by

approximately 30%. Last but not least, the observed spectra of heavy flavor decay

electrons are sensitive to the relative contributions from charm and bottom quarks.

It has been found that a less than 1% difference in the initial charm-to-bottom ratio

can lead to more than 30% variation of the non-photonic electron spectra. Therefore,

narrowing down these uncertainties is necessary for a quantitative understanding of

heavy quark dynamics inside QGP.

To incorporate gluon radiation into the heavy quark evolution, we have introduced

a new term into the classical Langevin equation to describe the recoil force experi-

enced by heavy quarks while radiating gluons. This force term is calculated according

to the distribution function of medium-induced gluon taken from the Higher-Twist

energy loss formalism. We have found that while the collisional energy loss dom-

inates the observed heavy flavor spectra at low pT, gluon radiation dominates the

high pT regime. The crossing point is around 6 GeV for charm quarks but 16 GeV

for bottom quarks due to the larger mass of the latter. Thus, although the collisional

energy loss mechanism alone may work well to describe the low pT data of heavy

flavor measured at RHIC, it is insufficient to describe observations at LHC. With this

improved Langevin approach, we have studied the impact of initial state fluctuations

in heavy-ion collisions on the heavy quark in-medium evolution. Our calculations

have shown that although the total energy loss of heavy quarks is not very sensitive
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to the sizes of local fluctuations in a 2-dimensional system, it increases significantly

with the number of hot spots. Our simulations in a realistic QGP medium have

demonstrated that fluctuating initial conditions may bring about 10% more suppres-

sion for the inclusive charm quark production at high pT in central Pb-Pb collisions

but the effect tends to diminish for more peripheral collisions. These results suggest

that jet modification might be utilized to probe the fluctuations of QGP medium,

such as the degree of inhomogeneity or the number of hot spots.

At the critical temperature Tc, both the bulk of the QGP and the heavy quarks

need to hadronize into color neutral bound states. We utilize the Cooper-Frye for-

mula to convert the QGP matter into soft hadrons and our hybrid fragmentation

plus coalescence model to simulate the hadronization process of heavy quarks. We

have demonstrated in detail how the 2-particle and 3-particle Wigner functions are

constructed and how they are applied to the coalescence model for heavy meson and

baryon formation respectively. Our numerical results display a significant enhance-

ment of heavy meson spectra at medium pT (around 2-4 GeV) when the coalescence

model is introduced. Moreover, compared with the pure fragmentation mechanism,

the introduction of heavy-light coalescence increases both RAA and v2 of the final

state heavy mesons.

After the QGP freezes out, we collect both soft hadrons produced from the QGP

and heavy mesons formed from heavy quarks, and use the UrQMD model to sim-

ulate the subsequent hadronic interactions among them until the hadron gas is so

dilute that all interactions cease. Our calculations have indicated that the additional

scattering and energy loss experienced by heavy mesons inside the hadron gas fur-

ther suppress their nuclear modification factor RAA at high pT and increase their

collective flow coefficient v2 by over 30%.

With a combination of all the above mentioned ingredients, we have developed a

framework for the full time evolution of heavy flavor produced in heavy-ion collisions.
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Within this newly developed framework, our description of the D meson suppression

and anisotropic flow is in good agreement with most of the existing experimental data

from both RHIC and LHC. Furthermore, we have provided various predictions for

experimental observations in the near further, such as the B meson suppression and

flow, the dependence of the D meson RAA on the participant number, and the non-

photonic electron RAA and v2 observed at relatively low energy (62.4 GeV) Au-Au

collisions.

In the end, we have applied our framework to explore new observables – heavy-

flavor-tagged angular correlation functions – and show that while inclusive spectra

may not be able to help us distinguish between different energy loss mechanisms

of heavy quark inside QGP, the correlation functions may provide us with better

insights. Our calculations have illustrated that gluon radiation does not significantly

modify the initial angular correlation function of heavy flavor pairs, but quasi-elastic

scattering results in a much faster isotropization of heavy quark momenta. Thus,

if future experiments measure these correlation functions of heavy flavor pairs or of

their decay products, we will be able to obtain a better understanding of the heavy

flavor dynamics inside the QGP.

Our study has constituted an important step forward in the quantitative under-

standing of the heavy flavor dynamics in heavy-ion collisions. Nevertheless, it can

be further improved in several directions, which we leave for future work. For in-

stance, on the theoretical side, instead of implementing a lower cutoff of radiated

gluon energy in our modified Langevin equation to guarantee heavy quarks can ap-

proach thermal equilibrium limit, a more rigorous treatment of the detailed balance

between gluon radiation and absorption should be incorporated in the gluon distri-

bution function emitted from heavy quarks. In addition, the current calculation of

medium-induced gluon radiation only includes the effect of the momentum broaden-

ing in the transverse directions. Scatterings in the longitudinal direction may also
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affect the gluon radiation pattern and influence final-state observables. On the phe-

nomenology side, recent studies [221] suggest that apart from the production via

initial hard scattering, heavy flavor may also be converted from hard gluons during

or after their transport through the QGP medium. In this case, instead of heavy

quarks, it is gluons that interact with and lose energy inside the hot and dense nu-

clear matter. This may affect the observed spectra of heavy mesons and has not

been included in most transport model calculations of heavy quarks. Furthermore,

our numerical framework can be easily extended from open heavy flavor to the study

of heavy quarkonium. As discussed in Sec 6.3, the radial flow of the QGP back-

ground may significantly change the direction of heavy quark motion and therefore

increases the number of collinear QQ̄ pairs after they travel through the medium.

This would enhance the probability of J/ψ regeneration and can be straightforwardly

investigated in our framework.

The launch of new heavy flavor detectors at both RHIC and LHC facilities in

the upcoming years will certainly bring this field into a new era. Our understanding

of heavy flavor dynamics has been greatly improved over the past few decades but

many challenges still remain and even more puzzles are expected to emerge. As a

clean hard probe, a better understanding of its interaction with the QGP will not

only help us reveal more valuable information of a hot and dense QCD system, but

also improve our knowledge of the state and evolution history of our early universe.
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Appendix A

The Strong Coupling Constant αs

In this dissertation, we adopt the running coupling constant αs in the calculation of

the spectrum of medium-induced gluon radiation [Eq.(4.6)]. Since this spectrum is

obtained within the leading-order approximation, we keep αs to the leading-order as

well. Discussions about higher-order corrections can be found in Refs. [7, 8].

To the leading-order approximation, the strong coupling constant of QCD can be

expressed as follows,

αs(k⊥) =
4π

11− 2Nf/3

(

ln
k2⊥
Λ2

)−1

(A.1)

where k⊥ is the momentum transfer during interaction (transverse momentum of

radiated gluon in our calculation), Nf is the number of flavor involved in the calcula-

tion, and Λ is a parameter which should be fixed with experimental data. In particle

physics, αs is first measured at high energy scale, such as the mass of Z0 [4], and

then extended to lower energy regime. In contrast, for the study of nucleus-nucleus

collisions at relatively low energy region, it is preferred to fix Λ = 200 MeV with

Nf = 3 which has been tested to give reasonable behavior of π production in proton-
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proton collisions. As we extend to higher energies, Nf becomes 4 when k⊥ exceeds

the mass of the charm quark (Mc =1.27 GeV) and becomes 5 when k⊥ exceeds the

mass of the bottom quark (Mb =4.19 GeV). The parameter Λ is adjusted in different

regions such that αs is continuous on the boundary of Mc and Mb. To sum up, we

use the following parametrization of this strong coupling constant:











Λ = 200 MeV, Nf = 3, for k⊥ < Mc;

Λ = 173 MeV, Nf = 4, forMc ≤ k⊥ < Mb;

Λ = 131 MeV, Nf = 5, for k⊥ ≥ Mb.

(A.2)
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Appendix B

Properties of Gaussian Integrals

In this appendix, we review some algebraic properties of Gaussian integrals, which

are useful for understanding the correlation functions of the thermal fluctuations in

the Langevin equation [Eq.(3.22)]. One may refer to Ref. [222] for a more detailed

summary of Gaussian integrals.

B.1 Gaussian Integrals

The general form of an n-dimensional Gaussian integral over variables xi (i =

1, . . . , n) can be written as

Z(Ã) =

∫

dnxe−A2(~x), (B.1)

with

A2(~x) ≡
1

2

n
∑

i,j=1

xiAijxj , (B.2)

in which Ã (Aij) is a complex symmetric matrix with a non-negative real part and

non-vanishing eigenvalues ai.
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When Ã is real, an orthonormal matrix Õ can be constructed to diagonalize it

with the transformation

x′i =
∑

i

Oijxj , (B.3)

whose Jacobian is one. Then, we have

Z(Ã) =

∫

dnxe−
1

2

∑
aix

′2
i =

n
∏

i=1

√

2π

ai
= (2π)n/2

(

detÃ
)−1/2

. (B.4)

In fact, since both the initial integral and the determinant are analytic functions of

the coefficients (Aij) of Ã, this identity can also be applied to the complex case.

One may further generalize the Gaussian integral to

Z(Ã,~b) =

∫

dnxe−A2(~x)+~b·~x. (B.5)

To evaluate Z(Ã,~b), we first locate the minimum of the exponential part:

∂

∂xi

[

−A2(~x) +~b · ~x
]

= 0, (B.6)

which yields
∑

j

Aijxj = bi, (B.7)

or

xi =
∑

j

(

Ã−1
)

ij
bj . (B.8)

Then we change the variables of Eq.(B.5) as

xi =
∑

j

(

Ã−1
)

ij
bj + yi, (B.9)

and obtain

−A2(~x) +~b · ~x = −A2(~y) + w2(~b), (B.10)
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in which we define

w2(~b) ≡
1

2

n
∑

i,j=1

bi

(

Ã−1
)

ij
bj . (B.11)

Thus we have

Z(Ã,~b) = ew2(~b)

∫

dnye−A2(~y) = (2π)n/2
(

detÃ
)−1/2

ew2(~b). (B.12)

B.2 Gaussian Expectation Values

If xi’s obey the Gaussian distribution, we define the correlation function (or the

expectation value) of parts of the variables as follows:

〈xk1xk2 . . . xkl〉 ≡ Z−1(Ã, 0)

∫

dnxxk1xk2 . . . xkle
−A2(~x), (B.13)

in which the normalization is chosen such that 〈1〉 = 1 is satisfied.

To evaluate this expectation value, one may first derive both sides of Eq.(B.5)

with respect to bk and obtain:

∂

∂bk
Z(Ã,~b) =

∫

dnxxke
−A2(~x)+~b·~x. (B.14)

By comparing Eq.(B.13) and Eq.(B.14), we find that in the limit of ~b = 0, we have

〈xk〉 = Z−1(Ã, 0)
∂

∂bk
Z(Ã,~b)

∣

∣

∣

∣

~b=0

. (B.15)

Similarly, if we differentiate Eq.(B.5) repeatedly with respect to components of ~b, we

have

〈xk1xk2 . . . xkl〉 = Z−1(Ã, 0)

[

∂

∂bk1

∂

∂bk2
. . .

∂

∂bkl
Z(Ã,~b)

]
∣

∣

∣

∣

~b=0

=

[

∂

∂bk1

∂

∂bk2
. . .

∂

∂bkl
ew2(~b)

]
∣

∣

∣

∣

~b=0

, (B.16)
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in which we have taken Eq.(B.12) into account.

More generally, if F (~x) is a power series of xi, we have

〈F (~x)〉 =
[

F

(

∂

∂~b

)

ew2(~b)

]
∣

∣

∣

∣

~b=0

. (B.17)

In the end, we apply these properties of Gaussian integrals to our thermal noise

term in the Langevin equation. As described in Eq.(3.22), the thermal fluctuation

obeys the following Gaussian distribution:

P (~ρ) =

(

1

2π

)3

exp

(

−~ρ
2

2

)

. (B.18)

By comparing Eq.(B.18) with the standard form of the Gaussian integral Eq.(B.1)-

(B.2), we may set Aij = δij in this special case. Therefore, it follows from Eq.(B.11)

that

w2(~b) =
1

2
~b2. (B.19)

By substituting Eq.(B.19) into Eq.(B.16), one obtains

〈ρi〉 =
(

∂

∂bi
e
~b2/2

)
∣

∣

∣

∣

~b=0

= 0, (B.20)

〈ρiρj〉 =
(

∂

∂bi

∂

∂bj
e
~b2/2

)
∣

∣

∣

∣

~b=0

= δij. (B.21)

These are the correlation functions we showed in Eq.(3.23).
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Appendix C

The Spatial Diffusion Coefficient of Heavy Quark

C.1 Definition of the Diffusion Coefficient

The standard form of the diffusion equation reads

∂ρ(~x, t)

∂t
= D▽2 ρ(~x, t), (C.1)

where ρ(~x, t) is the density distribution in a d-dimensional space satisfying

∫

ddxρ(~x, t) = 1, (C.2)

and D is called the spatial diffusion coefficient. One may check that the solution to

Eq.(C.1) with the initial condition ~x(t = 0) = 0 reads

ρ(~x, t) =
1

(4πDt)d/2
exp

(

− |~x|2
4Dt

)

. (C.3)

Furthermore, we may apply Eq.(B.16) to Eq.(C.3) and obtain the expectation

value of |~x|2 as a function of time:

〈

|~x|2
〉

=

∫

ddx |~x|2 ρ(~x, t) = 2dDt, (C.4)

167



where we let Aij =
1

2Dt
δij , and thus w2(~b) = ~b2Dt as respectively defined in Eq.(B.2)

and Eq.(B.11).

C.2 Diffusion Coefficient in the Langevin Equation

To investigate the diffusion behavior of heavy quark in a thermal bath, we focus

on the low momentum region (the classical limit) and re-write the second line of

Eq.(3.44) as

dpi
dt

= −ηDpi + ζi(t), (C.5)

where ηD = Γ(0) and is assumed as a good approximation up to the scale of thermal

momentum, and ζi =
√
κρi/

√
t represents the thermal force satisfying

〈ζi(t)ζj(t′)〉ρ = κδijδ(t− t′). (C.6)

In the following discussion, all the average value is taken over the thermal fluctuation

and we will drop the subscript ρ for short. One may directly solve Eq.(C.5) with the

initial condition pi(t = −∞) = 0 as

pi(t) =

∫ t

−∞

dt′eηD(t′−t)ζi(t
′). (C.7)

In order to extract the diffusion coefficient in the Langevin equation, we utilize

Eq.(C.4) and evaluate
〈

|~x|2
〉

as

〈xi(t)xi(t)〉 =
∫ t

0

dt1

∫ t

0

dt2
1

M2
〈pi(t1)pi(t2)〉 , (C.8)

in which we use the initial condition xi(t = 0) = 0 for the position space.

By using Eq.(C.6) and (C.7), we have

〈pi(t1)pi(t2)〉 =
∫ t1

−∞

dt′
∫ t2

−∞

dt′′eηD(t′−t1)eηD(t′′−t2)〈ζi(t′)ζi(t′′)〉

=

∫ t1

−∞

dt′
∫ t2

−∞

dt′′eηD(t′+t′′−t1−t2)κδ(t′ − t′′). (C.9)
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One may first consider the case of t1 > t2 and set t′ = s+ t′′. Then we obtain

〈pi(t1)pi(t2)〉 = κ

∫ t2

−∞

dt′′
∫ t1−t′′

−∞

dseηD(s+2t′′−t1−t2)δ(s)

= κ

∫ t2

−∞

dt′′eηD(2t′′−t1−t2)

=
κ

2ηD
e−ηD(t1−t2). (C.10)

Similarly, for the case of t2 > t1, one should obtain

〈pi(t1)pi(t2)〉 =
κ

2ηD
e−ηD(t2−t1). (C.11)

To sum up, we have

〈pi(t1)pi(t2)〉 =
κ

2ηD
e−ηD |t1−t2|. (C.12)

Therefore, by substituting Eq.(C.12) back into Eq.(C.8), we have

〈xi(t)xi(t)〉 =
κ

2M2ηD

∫ t

0

dt1

∫ t

0

dt2e
−ηD |t1−t2|. (C.13)

One may let t1 = s+ t2 and separate the above integral into s > 0 and s < 0 parts,

and get

〈xi(t)xi(t)〉 =
κ

2M2ηD

(
∫ 0

−t

ds

∫ t

−s

dt2e
ηDs +

∫ t

0

ds

∫ t−s

0

dt2e
−ηDs

)

=
κ

2M2ηD

(
∫ 0

−t

ds(t+ s)eηDs +

∫ t

0

ds(t− s)e−ηDs

)

=
κ

M2ηD

∫ t

0

ds(t− s)e−ηDs, (C.14)
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where we have transformed s→ −s in the first (s < 0) part. In the end, we obtain

〈xi(t)xi(t)〉 =
κ

M2ηD

(

t+
∂

∂ηD

)
∫ t

0

dse−ηDs

=
κ

M2ηD

(

t+
∂

∂ηD

)[

1

ηD

(

1− e−ηDt
)

]

=
κ

M2η2D

[

t− 1

ηD

(

1− e−ηDt
)

]

. (C.15)

By summing over the three spatial components and taking the large t limit, we have

〈

|~x|2
〉

=
3κ

M2η2D
t. (C.16)

One may extract the spatial diffusion coefficient by comparing Eq.(C.16) and

Eq.(C.4), and obtain

D =
κ

2M2η2D
. (C.17)

Recall that we set ηD = Γ(0) at the beginning and Γ(~p) and κ are related by the

fluctuation-dissipation relation Γ = κ/2TE [Eq.(3.43)], we have

D =
T

MΓ(0)
=

2T 2

κ
. (C.18)

This is the only transport coefficient (free parameter) we may tune in our Langevin

framework.
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