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A B S T R A C T 

The correction map method means extended phase-space algorithm with correction map. In our research, we have developed 

a correction map method, specifically the dissipated correction map method with trapezoidal rule, for numerical simulations 
of gravitational waves from spinning compact binary systems. This new correction map method, denoted as CM3, has shown 

remarkable performance in various simulation results, such as phase-space distance, dissipated energy error, and gravitational 
waveform, closely resembling the high-order precision implicit Gaussian algorithm. When compared with the previously used 

mid-point map which is denoted as C 2 , the CM3 consistently exhibits a closer alignment with the highly accurate Gaussian 

algorithm in wa veform ev olution and orbital trajectory analysis. Through detailed comparisons and analyses, it is evident that 
CM3 outperforms other algorithms, including CM2 and C 2 mentioned in this paper, in terms of accuracy and precision in 

simulating spinning compact binary systems. The incorporation of the trapezoidal rule and the optimization with a scale factor 
γ have significantly enhanced the performance of CM3, making it a promising method for future numerical simulations in 

astrophysics. With the groundbreaking detection of gra vitational wa ves by the LIGO/VIRGO collaboration, interest in this 
research domain has soared. Our work contributes valuable insights for the application of matched filtering techniques in the 
analysis of gravitational wave signals, enhancing the precision and reliability of these detection. 

Key words: chaos – gra vitational wa ves – methods: numerical – celestial mechanics – binaries: general – stars: kinematics and 

dynamics. 
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 I N T RO D U C T I O N  

n our recent work, our group has developed correction map for
he extended phase-space method for the compact spinning binary 
ystems. Extended phase-space algorithms are proposed by Pihajoki 
 2015 ), which replicate the origin variables of position and momen-
um to generate corresponding copy variables, thereby expanding 
he phase-space representation. All of these processes are partic- 
larly aimed at enabling the application of second-order explicit 
eapfrog algorithms to inherently inseparable Hamiltonian systems, 
 x emplified by the complex dynamics of spinning compact binary 
ystems modelled through post-Newtonian (PN) approximations as 
etailed in Blanchet & Iyer ( 2003 ), Zotos et al. ( 2019 ), Li et al.
 2020 ), and Tanay, Stein & Galvez Ghersi ( 2021 ). By employing
uch extended phase-space techniques, researchers gain access to 
umerical solutions not only for the original position and momentum 

ut also for the duplicated variables. In an ideal scenario, the original
nd replicated variables should maintain strict equality throughout 
he simulation. Ho we ver, practical computations re veal that temporal 
iscrepancies tend to accumulate between these paired variables 
ue to their inherent interactions within the system. To counteract 
 E-mail: luojj33@mail2.sysu.edu.cn (JL); zhh98@mail.sysu.edu.cn (HHZ); 
inweip5@mail.sysu.edu.cn (WL) 
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rovided the original work is properly cited. 
his unwanted drift, Pihajoki ( 2015 ) proposes the implementation 
f a momentum permutation map, which systematically exchanges 
he values of the original and copied momenta at each time-step,
educing the difference between original variables and copy ones. 
herefore, the design of the mapping matrix has a great impact on
oth the accuracy and stability of the extended phase-space method. 
uilding upon the foundational work laid out in Pihajoki ( 2015 ),
iu et al. ( 2016 ) further refined these developments by devising the
oordinate and momenta sequent permutation maps for a fourth-order 
xtended phase-space explicit algorithm. This advanced algorithm 

as ingeniously crafted using a combination of two Yoshida’s 
riple products derived from the second-order leapfrog algorithm, as 
nitially presented by Yoshida ( 1990 ). The purpose was to enhance
he accuracy in terms of energy error behaviour during simulations. 

Ho we ver, despite these improvements, the algorithm exhibited 
ignificant shortcomings when applied to numerical simulations of 
haotic orbits. Over time, the disparities between the original and 
xtended v ariables gre w due to their mutual interactions, which posed 
 substantial challenge. While these differences were negligible 
or non-chaotic or regular orbits, they could be exacerbated in 
umerically sensitive chaotic systems, leading to a detrimental 
eedback loop. To address this critical issue, Luo et al. ( 2017 )
roposed the mid-point map. This method ef fecti vely ensures that the
riginal and extended variables remain strictly identical throughout 
he simulation process. Moreo v er, it necessitates the use of only a
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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ingle Yoshida’s triple product to construct a fourth-order algorithm,
hereby achieving a twofold increase in computational efficiency
ithout compromising the accuracy of results. Moreo v er, P an, Wu &
iang ( 2021 ) successfully employed the mid-point map in the context
f coherent PN Euler–Lagrange equations, achieving commendable
omputational outcomes. Further underscoring the efficacy of the
id-point map, Hu et al. ( 2019 ) demonstrated its superior per-

ormance relative to various alternative algorithms in their recent
tudy. In order to further impro v e the accurac y of this algorithm, we
esign the correction map. The introduction of manifold correction
echnology into this framework significantly enhances the precision
nd stability of the algorithms used to simulate such celestial
ynamical behaviours. The manifold correction ensures a more
ccurate preservation of the intrinsic geometric structure of physical
ystems during long-term evolution, thus reducing cumulative errors
hat might arise from conventional numerical integration methods
nd maximizes the energy conservation of the conserv ati ve system
Wu et al. 2007 ; Ma, Wu & Zhong 2008 ; Wang, Huang & Wu 2018 ).
nd the correction map mitigates the divergence issues in chaotic
rbits. 
Ho we ver, it is important to acknowledge that in reality compact

pinning binary stars do indeed experience gravitational dissipation.
hen gravitational dissipation is taken into account, these systems

ease to be conserv ati ve and instead continuously emit gravitational
aves as they lose energy over time – a prediction rooted in
instein’s general theory of relativity. This theoretical prediction
as spectacularly confirmed by direct observation in 2016 with the
IGO experiment (Abbott et al. 2016 ), which detected gravitational
aves emitted from the coalescence of compact binaries, thereby
alidating a cornerstone of relativity theory and inaugurating the new
ra of gravitational wave astronomy. It also arouses the enthusiasm
f researchers to study the dynamic evolution of compact celestial
odies. Wu et al. ( 2022 ) presents such integrators tailored to black
ole spacetimes, providing a robust framework for studying the
ynamics of particles in these highly curv ed re gions. Zhou et al.
 2022 ) delve into the specific scenario of charged particles orbiting a
chwarzschild black hole under the influence of an external magnetic
eld. These studies elucidate the intricate interplay between gravity,
harge, and the magnetic field, thereby enriching our understanding
f the two-body problem where a charged particle interacts with
he black hole. Wang et al. ( 2021 ) further extend the scope of
xplicit symplectic integrators to general relativity, focusing on the
amiltonian associated with Schwarzschild space–time geometry.
he resulting integrators demonstrate their efficacy in accurately
imulating the long-term behaviour of N -body Hamiltonian systems,
s well as in unravelling the chaotic motion of charged particles
n the presence of both a black hole and an external magnetic
eld. Wu et al. ( 2021 ) address the more complex case of Kerr
lack holes, constructing explicit symplectic integrators within the
ontext of general relativity. To achieve this, a time transformation
s ingeniously applied to the Hamiltonian of Kerr geometry, yielding
 transformed Hamiltonian composed of five separable components,
ach with analytically tractable solutions expressed in terms of
 new coordinate time. This innov ati ve approach enhances the
fficienc y and accurac y of numerical simulations for Kerr black hole
ystems. Sun et al. ( 2021 ) introduce an explicit symplectic integrator
ailored to the Kerr space–time geometry, aimed at accurately
apturing the non-integrable dynamics of charged particles orbiting
 Kerr black hole under the influence of an external magnetic
eld. 
The orbital motion of these compact objects is more dissipative

han that of other small objects and the gravitational waves are easier
NRAS 533, 3987–3998 (2024) 
o detect and identify. When the gravitational dissipation term is
onsidered, in this thesis we readjust the scheme of the correction
ap to better serve the numerical simulation of gravitational wave-

orms. As a comparison, we will introduce an implicit algorithm,
here are many kinds of implicit algorithms, e.g. Suzuki ( 1990 )’s
ourth-order composition in this context is realized as a composite
f five individual second-order integrators. Expanding upon this
ork, Zhong et al. ( 2010 ) incorporated conjugate canonical spin
ariables (as presented by Wu & Xie 2010 ) to develop fourth-
rder canonical explicit–implicit mixed-symplectic methods. In
hese methods, separable Hamiltonians are handled using the second-
rder explicit leapfrog algorithm, while non-separable Hamiltonians
re computed using the second-order implicit mid-point method.
ubsequent elaborations and applications of this construction were
urther explored in Wu & Zhong ( 2011 ) and Mei, Wu & Liu ( 2013a ).
eyrich ( 2013 ) contributed to the field by proposing Gauss Runge–
utta implicit canonical symplectic schemes, which inherently
reserve the underlying structure of the system being modelled. In
ddition, Tsang et al. ( 2015 ) advanced the development of implicit
limplectic integrators, tailored for the integration of general non-
onserv ati ve systems, such as a Newtonian two-body problem subject
o 2.5PN gravitational radiation reaction terms. These integrators
emonstrate the continued evolution and refinement of numer-
cal techniques for accurately simulating complex astrophysical
henomena. 
We include the four-stage Gauss Runge–Kutta implicit canonical

ymplectic algorithm (Seyrich 2013 ) as a numerical simulation
lgorithm tool, whose high-accuracy numerical solutions can be
reated as true solutions. Implicit algorithms are alternative solutions
or computing binary star gravitational waves because they do not
ave the restriction of the use of separable or inseparable Hamilto-
ian. Nevertheless, implicit algorithms have multiple iterations that
onsume computational resources heavily, as well as convergence
roblems of the iterations leading to unavailability of numerical
olutions. 

The manuscript is structured as follows. In Section 2 , we present
he Hamiltonian formulation for spinning compact binary stars, con-
idering the 2.5PN dissipative term, and present the corresponding
ra vitational wa ve equations for the two polarization states. Then
he dissipated correction map algorithm with the trapezoidal rule
ill be introduced, detailing its implementation and underlying
rinciples. In Section 3 , initial values for various parameters are
pecified, and the numerical solutions for spinning compact binary
tars are computed using the dissipated correction map algorithm.
he accuracy of this approach is assessed via phase-space distance,
issipated energy error, and gra vitational wa veform comparison, uti-
izing the numerical solutions from the four-stage implicit Gaussian
lgorithm as the reference truth. Finally, conclusions are drawn based
n the results and analyses presented throughout the paper in the 
ection 4 . 

 SPI NNI NG  C O M PAC T  BI NARY  A N D  

R A  V I TAT I O NA L  WA  V E  

.1 The Hamiltonian of spinning compact binary 

efore introducing the algorithm, we wish to provide a concise
escription of the Hamiltonian for a spin-aligned compact binary
ystem composed of two objects such as black hole or neutron
tar, along with the associated formula for gravitational dissipation
erm. We assume that the individual masses of the two bodies are
enoted by m 1 and m 2 , with their total mass given by M = m 1 + m 2 ,
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he reduced mass defined as μ = 

m 1 m 2 
M 

, the mass ratio β = 

m 1 
m 2 

,

nd the symmetric mass ratio η = 

m 1 m 2 
M 

2 = 

β

(1 + β) 2 
. The dimension- 

ess coordinate r is expressed in units of M , the momentum p 

s measured in units of the reduced mass, and t is denoted as
ime. 

We define the vector r to represent the relative separation between 
he two bodies, with its magnitude representing the distance. The 
nit vector pointing along r is then given by n = 

r 
| r | . The provided

quations describe the Hamiltonian H of a binary system, composed 
f two interacting bodies, taking into account various PN correc- 
ions and spin–orbit and spin–spin interactions. The Hamiltonian is 
xpressed as a sum of several sub-Hamiltonians: 

 = H N + H 1 PN + H 2 PN + H S OS S . (1) 

Each of these components represents a distinct aspect of the 
ystem’s dynamics and is respectively written as 

 N = T ( p ) + V ( r ) = 

p 2 

2 
− 1 

r 
, (2) 

 1 PN = 

1 

8 
(3 η − 1) p 4 − 1 

2 
[(3 + η) p 2 

+ η( n · p ) 2 ] 
1 

r 
+ 

1 

2 r 2 
, (3) 

 2 PN = 

1 

16 

(
1 − 5 η + 5 η2 

)
p 6 + 

1 

8 

[
(5 − 20 η − 3 η2 ) p 4 

− 2 η2 ( n · p ) 2 p 2 − 3 η2 ( n · p ) 4 
] 1 

r 

+ 

1 

2 

[
(5 + 8 η) p 2 + 3 η( n · p ) 2 

] 1 

r 2 

− 1 

4 
(1 + 3 η) 

1 

r 3 
. (4) 

H S OS S = H 1 . 5 SO 

+ H 2 SS denotes spin–orbit and spin–spin inter- 
ctions. This term captures the influence of the bodies’ intrinsic spins
n their orbital motion. It is composed of two parts: 

 1 . 5 SO 

= 

1 

r 3 
S · ( r × p ) , (5) 

 2 SS = 

1 

2 r 3 

[
3 

r 2 
( S 0 · r ) 2 − S 

2 
0 

]
, (6) 

here S is given by 

 = 

[
2 + 

3 

2 β

]
S 1 + 

[
2 + 

3 β

2 

]
S 2 , (7) 

nd S 0 assumes the form 

 0 = 

(
1 + 

1 

β

)
S 1 + ( 1 + β) S 2 . (8) 

he positional vector r and its associated momentum p obey 
he Hamiltonian canonical equations, which go v ern their temporal 
volution as follows: 

 = 

∂ H 

∂ p 
, (9) 

˙
 = −∂ H 

∂ r 
. (10) 

These equations embody the fundamental dynamics of the non- 
pin components of the system. Simultaneously, the spin vectors S j 

xperience time evolution according to 

˙
 j = 

∂ H 

∂ S j 

× S j , (11) 
herein the cross-product × encapsulates the intrinsic rotational 
haracter of the spin dynamics. Collectively, these expressions 
efine the comprehensive time-dependent behaviour of the system 

s prescribed by the Hamiltonian H . 
Observing equation ( 11 ), it becomes evident that neither of the

pin variables exhibits the canonical conjugacy property. To rectify 
his, Wu & Xie ( 2010 ) capitalized on the conserved nature of the
ndividual spin magnitudes and introduced a no v el set of generalized
oordinates θj and the corresponding generalized momenta ξj . This 
ransformation allows for the unit spin vectors to be recast in the
ollowing form: 

ˆ 
 j = 

⎛ ⎝ 

ρj cos θj 

ρj sin θj 

ξj /S j 

⎞ ⎠ . (12) 

The Hamiltonian, as expressed by equation ( 1 ), now manifests
 structure with 10 distinct, canonically conjugate phase-space 
ariables, constituted by the tuple ( r , θ1 , θ2 ; p , ξ1 , ξ2 ). This reconfig-
ration ensures that each coordinate variable is paired with its proper
omentum counterpart, thereby restoring the fundamental sym- 

lectic structure inherent in Hamiltonian mechanics. Consequently, 
nder this newfound parametrization, the Hamiltonian assumes the 
ppellation of 

 ( r , θj ; p , ξj ) = H ( r , p , S j ) . (13) 

Before considering gravitational dissipation, the constants of 
otion mentioned in this systems include the total energy E = H ,

otal angular moment vector J = S 1 + S 2 + r × p , and the spin
engths S 

2 
j = S 2 j . 

These constants of motion play crucial roles in constraining the 
ehaviour of the binary system and serve as essential diagnostics 
hen numerically integrating the equations of motion derived from 

he Hamiltonian ( 1 ). The aforementioned sophisticated symplectic 
ntegration schemes, such as those developed by Lubich, Walther & 

ruegmann ( 2010 ), Zhong et al. ( 2010 ), Seyrich ( 2013 ), and Tsang
t al. ( 2015 ), are designed to efficiently and accurately simulate
he dynamics of such systems while preserving these fundamental 
onservation laws. 

.2 Gravitational radiation reaction 

efore discussing the gravitational dissipation of binary stars, we 
rite down the second-order PN approximation Lagrangian corre- 

ponding to the Hamiltonian ( 1 ): 

 ( r , ̇r , S 1 , S 2 ) = L N + L 1 PN + L 2 PN + L S OS S , (14) 

here 

 N = 

ṙ 2 

2 
+ 

1 

r 
, (15) 

 1 PN = 

1 

8 
(1 − 3 η) ̇r 4 + 

1 

2 

[ 
(3 + η) ̇r 2 

+ η( n · ṙ ) 2 
] 1 
r 

− 1 

2 r 2 
, (16) 

 2 PN = 

1 

16 

(
1 − 7 η + 13 η2 

)
ṙ 6 + 

1 

8 

[ (
7 − 12 η − 9 η2 

)
ṙ 4 

+ (4 − 10 η) η( n · ṙ ) 2 ṙ 2 + 3 η2 ( n · ṙ ) 4 
] 1 
r 

+ 

1 

2 

[(
4 − 2 η + η2 

)
ṙ 2 + 3 η(1 + η)( n · ṙ ) 2 

] 1 

r 2 

+ 

1 

4 
(1 + 3 η) 

1 

r 3 
, (17) 
MNRAS 533, 3987–3998 (2024) 
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he terms L S OS S consisted by L 1 . 5 SO 

and L 2 SS are provided in Hartl &
uonanno ( 2005 ), 

 1 . 5 SO 

= − 1 

r 3 
S · ( r × ṙ ) , (18) 

 2 SS = − 1 

2 r 3 

[
3 

r 2 
( S 0 · r ) 2 − S 

2 
0 

]
, (19) 

he Lagrangian ( 14 ) and Hamiltonian ( 1 ) can be transformed into
ach other by Legendre transformation: 

 = p · ṙ − L, (20) 

 = ∂ L/ ∂ ̇r . (21) 

The Hamiltonian ( 1 ) that go v erns a binary system is con-
erv ed, unless dissipativ e effects from gravitational radiation at
he 2.5PN order are taken into account, which render the system
on-conserv ati v e. Conv entionally, such dissipativ e terms are not
irectly integrated into the Lagrangian expression of the equation
 14 ); instead, they should be appended to the equations of mo-
ion directly. With doubling the degrees of freedom, r → ( r , r ),
sang et al. ( 2015 ) introduce the dissipative terms in Lagrangian

orm: 

 ( r , r , ̇r , ̇r , S 1 , S 2 ) = L ( r , ̇r , S 1 , S 2 ) − L ( r , ̇r , S 1 , S 2 ) 

+ L RR ( r , r , ̇r , ̇r ) . (22) 

ere r + 

= ( r + r ) / 2 and r − = r − r . Within the adopted unit system,
he description of the radiative reaction force, as presented in the
orks of Galley & Tiglio ( 2009 ) and Galley & Leibovich ( 2012 ), is
iven by 

 RR = η

[
16 

5 

( ̇r + 

· r −) 

| r + 

| 4 − 48 

5 

| ̇r + 

| 2 ( ̇r + 

· r −) 

| r + 

| 3 

+ 24 
( ̇r + 

· r + 

) 2 ( ̇r + 

· r −) 

| r + 

| 5 

+ 

16 

15 

( ̇r + 

· r + 

) 2 ( r + 

· r −) 

| r + 

| 6 

+ 

144 

5 

| ̇r + 

| 2 ( ̇r + 

· r + 

) 2 ( r + 

· r −) 

| r + 

| 5 

− 40 
( ̇r + 

· r + 

) 3 ( r + 

· r −) 

| r + 

| 7 
]
. (23) 

nalogous to the conventional Lagrangian L , which yields the con-
erv ati ve Euler–Lagrange equations of motion, the non-conserv ati ve
agrangian 	 gives rise to a set of non-conserv ati ve Euler–Lagrange
quations go v erning the system’s dynamics: [

d 

d t 

∂ 	 

∂ ̇r −
− ∂ 	 

∂ r −

]
PL 

= 0 . (24) 

The abbreviation ‘PL’ denotes the physical limit, a condition in
hich the two variables r and r are required to be identical (i.e.
 = r and ṙ = ̇r , or equi v alently r + 

= r , r − = 0, and ṙ + 

= ̇r ) after
he necessary deri v ati v es hav e been computed in equation ( 24 ). It is
rucial to note that enforcing the PL in equation ( 22 ) would render
t devoid of practical utility. When the PL is taken into account, the
xtended coordinate r and its time deri v ati ve ̇r cease to feature in the
quations. 

Although in the PL, r and r are equated, it is important to
mphasize that r is distinct from the extended coordinate ̃  r which
NRAS 533, 3987–3998 (2024) 
ill be introduced in following section and used in the construction
f extended phase-space algorithms. Similarly, while r and ̃  r are set
qual at ev ery inte gration step, the y do not share the same conceptual
asis as r and r in the PL. 
Employing the Le gendre transformation, Galle y ( 2013 ) derived

 new Hamiltonian from the newly formulated non-conservative
agrangian: 


( r , r , p , p , S 1 , S 2 ) = p · ṙ − p · ṙ − 	 ( r , r , ̇r , ̇r , S 1 , S 2 ) 

= H ( r , θj ; p , ξj ) − H ( r , θj ; p , ξj ) 

− L RR ( r , r , p , p ) . (25) 

t is worth mentioning that the momenta p and p are the standard
onjugate momenta associated with the conserv ati ve scenario dis-
ussed earlier. Furthermore, the term L RR appearing in equation ( 25 )
s derived by substituting p and p for ̇r and ̇r , respectively, in equation
 23 ). 

The Hamiltonian’s canonical equations go v erning the dynamics
f this non-conserv ati ve system 
 can be expressed as 

˙
 = 

∂ H 

∂ p 
−

[
∂ L RR 

∂ p −

]
PL 

= Q ( r , θ1 , θ2 ; p , ξ1 , ξ2 ) , (26) 

1̇ = 

∂ H 

∂ ξ1 
= � 1 ( r , θ1 , θ2 ; p , ξ1 , ξ2 ) , (27) 

2̇ = 

∂ H 

∂ ξ2 
= � 2 ( r , θ1 , θ2 ; p , ξ1 , ξ2 ); (28) 

˙
 = −∂ H 

∂ q 
+ 

[
∂ L RR 

∂ q −

]
PL 

= P ( r , θ1 , θ2 ; p , ξ1 , ξ2 ) , (29) 

˙1 = −∂ H 

∂ θ1 
= � 1 ( r , θ1 , θ2 ; p , ξ1 , ξ2 ) , (30) 

˙2 = −∂ H 

∂ θ2 
= � 2 ( r , θ1 , θ2 ; p , ξ1 , ξ2 ) . (31) 

ndeed, the dissipative terms are conspicuously absent in equation
 26 ), given that L RR in equation ( 25 ) is explicitly independent of the
omentum component p −. Analogously to the conserv ati ve scenario,

he dissipative effects manifest solely in the acceleration equation
 29 ). 

Upon the emission of gravitational radiation, the total time
eri v ati ve of the Hamiltonian H fails to vanish, instead assuming
he form 

d H 

d t 
= ̇r ·

[
∂ L RR 

∂ r −

]
PL 

. (32) 

Knowing the Hamiltonian canonical equations under the effect
f gravitational dissipation, we can obtain numerical solutions
or the evolution of binary orbits o v er time, and these numeri-
al solutions will become the variables used in the calculation
f gra vitational wa ves, of course, the actual observ ed wav eform
epends on the direction of the wave source and the observer.
ssuming an observer located in the xoz plane, let ̂ p denote the
irection along the intersection line of the orbital plane with the
orizon. Define ̂ q = 

̂ N × ̂ p , where ̂ N represents the orientation of
he observer. The two polarization states of a gra vitational wa ve are 
iven by 

h + 

= 

1 
2 

(̂ p i ̂  p j − ̂ q i ̂  q j 
) ̂ h 

ij , (33) 

h × = 

1 
2 

(̂ p i ̂  q j + 

̂ p j ̂  q i 
) ̂ h 

ij . (34) 
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he indices i, j = 1 , 2 , 3 correspond to the x, y, and z components,
espectively, with repeated indices denoting Einstein’s summation 
onvention. The 2PN approximation of the waveform h ij (Will & 

iseman 1996 ) expands as 

 

ij = 

2 ηM 

D 

[ ˜ Q 

ij + P 

0 . 5 Q 

ij + P Q 

ij + P Q 

ij 

SO 

+ P 

1 . 5 Q 

ij + P 

1 . 5 Q 

ij 

SO + P 

2 Q 

ij 

+ P 

2 Q 

ij 

SO + P 

2 Q 

ij 

SS 

] 
TT 

. (35) 

ere, D represents the distance between the observer and the wave 
ource. The superscripts, such as P 

1 . 5 , indicate the ef fecti ve PN order,
hile the subscripts specify the nature of each term. The sub-terms
f h 

ij are given by 

˜ Q 

ij = 2 

(
v i v j − M 

r 
n i n j 

)
, 

P 

0 . 5 Q 

ij = 

δm 

M 

{ 3( ̂  N · n ) 
M 

r 
[2 n ( i v j ) − Ṙ n i n j ] 

+ ( ̂  N · v ) 
[

M 

r 
n i n j − 2 v i v j 

]
} , (36) 

P Q 

ij = 

1 

3 
{ (1 − 3 η) 

[ 
( ̂  N · n ) 2 

M 

r 
[(3 v 2 − 15 ̇R 

2 + 7 
M 

r 
) n i n j 

+ 30 ̇R n ( i v j ) − 14 v i v j ] + ( ̂  N · n )( ̂  N · v ) 
M 

r 
[12 ̇R n i n j 

− 32 n ( i v j ) ] + ( ̂  N · v ) 2 [6 v i v j − 2 
M 

r 
n i n j ]] + [3(1 − 3 η) v 2 

− 2(2 − 3 η) 
M 

r 
] v i v j + 4 

M 

r 
Ṙ (5 + 3 η) n ( i v j ) 

+ 

M 

r 
[3(1 − 3 η) ̇R 

2 − (10 + 3 η) v 2 + 29 
M 

r 
] n i n j } , (37) 

P 

1 . 5 Q 

ij = 

δm 

M 

(1 − 2 η) { ( ̂  N · n ) 3 
M 

r 
[ 
5 

4 
(3 v 2 − 7 ̇R 

2 + 6 
M 

r 
) ̇R 

2 n i n j 

− 17 

2 
Ṙ v i v j − 1 

6 
(21 v 2 − 105 ̇R 

2 + 44 
M 

r 
) n ( i v j ) ] 

+ 

1 

4 
( ̂  N · n ) 2 ( ̂  N · v ) 

M 

r 
[58 v i v j + (45 ̇R 

2 − 9 v 2 

− 28 
M 

r 
) n i n j − 108 ̇r n ( i v j ) ] + 

3 

2 
( ̂  N · n )( ̂  N · v ) 2 

M 

r 
[10 n ( i v j ) − 3 ̇R n i n j ] + 

1 

2 
( ̂  N · v ) 3 ( 

M 

r 
n i n j 

− 4 v i v j ) } + 

1 

12 

δm 

M 

( ̂  N · n ) 
M 

r 
{ 2 n 

( i v j ) [ ̇R 

2 (63 

+ 54 η) − M 

r 
(128 − 36 η) + v 2 (33 − 18 η)] 

+ n i n j Ṙ ( ̇R 

2 (15 − 90 η) − v 2 (63 − 54 η) 

+ 

M 

r 
(242 − 24 η)) − Ṙ v i v j (186 + 24 η) } 

+ 

δm 

M 

( ̂  N · v ) { 1 
2 
v i v j [ 

M 

r 
(3 − 8 η) − 2 v 2 (1 − 5 η)] 

− n ( i v j ) M 

r 
Ṙ (7 + 4 η) − n i n j 

M 

r 
[ 
3 

4 
(1 − 2 η) ̇R 

2 

+ 

1 

3 
(26 − 3 η) 

M 

r 
− 1 

4 
(7 − 2 η)] } , (38) 
P 2 Q 

ij = 

1 

60 
(1 − 5 η + 5 η2 ) { 24( ̂  N · v ) 4 

(
5 v i v j − M 

r 
n i n j 

)

+ 

M 

r 
( ̂  N · n ) 4 

[
2 

(
175 

M 

r 
− 465 ̇R 

2 + 93 v 2 
)

v i v j + 30 ̇R 

(
63 ̇R 

2 

− 50 
M 

r 
− 27 v 2 

)
n ( i v j ) + 

(
1155 

M 

r 
Ṙ 

2 − 172 

(
M 

r 

)2 

− 945 ̇R 

4 

− 159 
M 

r 
v 2 + 630 ̇R 

2 v 2 − 45 v 4 
)

n i n j 
]

+ 24 
M 

r 
( ̂  N · n ) 3 ( ̂  N · v ) 

[
87 ̇R v i v j + 5 ̇R 

(
14 ̇R 

2 − 15 
M 

r 
− 6 v 2 

)
n i n j 

+ 16(5 
M 

r 
− 10 ̇R 

2 + 2 v 2 ) n ( i v j ) 

]
+ 288 

M 

r 
( ̂  N · n )( ̂  N · v ) 3 

[ ̇R n i n j − 4 n ( i v j ) ] + 24 
M 

r 
( ̂  N · n ) 2 ( ̂  N · v ) 2 

[(
35 

M 

r 
− 45 ̇R 

2 + 

9 v 2 
)

n i n j − 76 v i v j + 126 ̇R n ( i v j ) 

]
} + 

1 

15 
( ̂  N · v ) 2 { [5(25 −

78 η + 12 η2 ) 
M 

r 
− (18 − 65 η + 45 η2 ) v 2 + 9(1 − 5 η + 5 η2 ) ̇R 

2 ] 
M 

r 
n i n j 

+ 3[5(1 − 9 η + 21 η2 ) v 2 − 2(4 − 25 η + 45 η2 ) 
M 

r 
] v i v j + 

18(6 − 15 η − 10 η2 ) 
M 

r 
Ṙ n ( i v j ) } + 

1 

15 
( ̂  N · n )( ̂  N · v ) 

M 

r 

{ [3(36 − 145 η + 150 η2 ) v 2 − 5(127 − 392 η + 36 η2 ) 
M 

r 

− 15(2 − 15 η + 30 η2 ) ̇R 

2 ] ̇R n i n j + 6(98 − 295 η + 30 η2 ) ̇R v i v j 

+ 2[5(66 − 221 η + 96 η2 ) 
M 

r 
− 9(18 − 45 η + 40 η2 ) ̇R 

2 − (66 − 265 η

+ 360 η2 ) v 2 ] n ( i v j ) } + 

1 

60 
( ̂  N · n ) 2 

M 

r 
{ [3(33 − 130 η + 150 η2 ) v 4 

+ 105(1 − 10 η + 30 η2 ) ̇R 

4 + 15(181 − 572 η + 84 η2 ) 
M 

r 
Ṙ 

2 

− (131 − 770 η + 930 η2 ) 
M 

r 
v 2 − 60(9 − 40 η + 60 η2 ) v 2 Ṙ 

2 

− 8(131 − 390 η + 30 η2 ) 

(
M 

r 

)2 

] n i n j + 4[(12 + 5 η − 315 η2 ) v 2 

− 9(39 − 115 η − 35 η2 ) ̇R 

2 + 5(29 − 104 η + 84 η2 ) 
M 

r 
] v i v j 

+ 4[15(18 − 40 η − 75 η2 ) ̇R 

2 − 5(197 − 640 η + 180 η2 ) 
M 

r 

+ 3(21 − 130 η + 375 η2 ) v 2 ] ̇R n ( i v j ) } + 

1 

60 
{ [(467 + 780 η − 120 η2 ) 

M 

r 
v 2 − 15(61 − 96 η + 48 η2 ) 

M 

r 
Ṙ 

2 

− (144 − 265 η − 135 η2 ) v 4 + 6(24 − 95 η + 75 η2 ) v 2 Ṙ 

2 

− 2(642 + 545 η) 

(
M 

r 

)2 

− 45(1 − 5 η + 5 η2 ) ̇R 

4 ] 
M 

r 
n i n j 

+ [4(69 + 10 η − 135 η2 ) 
M 

r 
v 2 − 12(3 + 60 η + 25 η2 ) 

M 

r 
Ṙ 

2 

+ 45(1 − 7 η + 13 η2 ) v 4 − 10(56 + 165 η − 12 η2 ) 

(
M 

r 

)2 

] v i v j 

+ 4[2(36 − 5 η − 75 η2 ) v 2 − 6(7 − 15 η − 15 η2 ) ̇R 

2 

+ 5(35 + 45 η + 36 η2 ) 
M 

r 
] 
M 

r 
Ṙ n ( i v j ) } , (39)

 Q 

ij 

SO = 2 

(
M 

r 

)2 {̂ N ×
[(

δm 

M 

)
χs + χa 

]}( i 

n j ) , (40) 

P 1 . 5 Q 

ij 

SO = 4 

(
M 

r 

)2 

{ 3( n × v ) ·
[(

δm 

M 

)
χa + χs 

]
n i n j [

v ×
[

(2 + η) χs + 2 

(
δm 

M 

)
χa 

]]( i 

n j ) + 

3 ̇R 

[
n ×

[
χs + 

(
δm 

M 

)
χa 

]]( i 

n j ) − 2 η( n × χs ) 
( i v j ) + 

+ η[( ̂  N · n ) v + 2( ̂  N · v ) n − 3 ̇R ( ̂  N · n ) n ] ( i ( ̂  N × χs ) 
j ) } , (41) 
MNRAS 533, 3987–3998 (2024) 
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P 

2 Q 

ij 
SS = −6 

(
M 

r 

)3 

η
{ [ 

| χs | 2 − | χa | 2 − 5 ( n · χs ) 
2 + 5 ( n · χa ) 

2 
] 
n i n j 

+ 2 [ χs ( n · χs ) − χa ( n · χa ) ] 
( i n j ) 

} 

, (42)

here δm = m 1 − m 2 , χs = 

1 
2 

(
S 1 
m 

2 
1 

+ 

S 2 
m 

2 
2 

)
, χa =

1 
2 

(
S 1 
m 

2 
1 

− S 2 
m 

2 
2 

)
, v = ( v 1 , v 2 , v 3 ) = 

(
1 + 

1 
2 (3 η − 1) p 

2 − (3 + η) 
r 

)
p −

( n · p ) n 
r 
, and Ṙ = n · v . Once obtained numerical solutions for

he time-evolution of q and p of a spinning compact binary system
hrough numerical methods, we can construct the corresponding
ra vitational wa veforms. In the subsequent chapter, we will devise
n optimized correction map in extended phase-space algorithm for
his system. 

.3 Dissipati v e correction map in extended phase-space method

ince the Hamiltonian H cannot be separated into multiple integrable
arts, the symplectic leapfrog method cannot be applied directly to
hese Hamiltonians, unless they are suitably modified to a splitting
orm. An ef fecti v e approach to solving this problem is the e xtended
hase-space method. Pihajoki ( 2015 ) introduced a new pair of
onjugate and canonical variables ( ̃  r , ̃  p ) from the original variables
 r , p ). This doubles the phase-space variables, ( r , p ) → ( r , ̃  r , p , ˜ p )
nd constructs a new Hamiltonian ˜ H ( r , ̃  r , p , ̃  p ) using two identical
amiltonians H 1 and H 2 : 

˜ 
 ( r , ̃  r , p , ̃  p ) = H 1 ( r , ̃  p ) + H 2 ( ̃  r , p ) . (43) 

hen it comes to the Hamiltonian ( 13 ), the formulation ( 43 ) should
e rewritten as 

˜ 
 ( r , θj , ̃  r , ̃  θj ; p , ξj , ̃  p , ̃  ξj ) = H 1 ( r , θj , ̃  p , ̃  ξj ) + H 2 ( ̃  r , ̃  θj , p , ξj ) . (44) 

Observing that both ( r , θj , p , ξj ) and ( ̃  r , ̃  θj , ̃  p , ̃  ξj ) constitute two
airs of conjugate canonical variables, it is immediately apparent that
he newly formed Hamiltonian ˜ H comprises two distinct integrable
omponents. 

Given this property, it is reasonable to anticipate that the second-
rder leapfrog algorithm would be well suited to numerically
hole the Hamiltonian ˜ H . The implementation of such splitting
ethods proceeds as follows: When H 1 and H 2 represent the

perators that facilitate the analytical solution of the individual
amiltonians H 1 and H 2 , respectively, and h denotes the cho-

en time-step, a standard leapfrog algorithm can be expressed
s 

 2 ( h ) = H 2 

(
h 

2 

)
H 1 ( h ) H 2 

(
h 

2 

)
. (45) 

It is noteworthy that, given identical initial conditions, the solution
airs ( r , p ) and ( ̃  r , ̃  p ) are anticipated to coincide at each time-step.
evertheless, their trajectories rapidly deviate in subsequent time-

teps due to the intricate interdependence between the solution ( r , ̃  p )
erived from H 1 and the solution ( ̃  r , p ) associated with H 2 . This
henomenon manifests itself as a compensatory relationship, where
ny increase in the value of H 1 over half of the entire Hamiltonian ˜ H ,
s accompanied by a commensurate decrease in H 2 , and vice versa.

oti v ated by the inherent symmetry between H 1 and H 2 , Luo et al.
 2017 ) devise a mid-point map and ensure the equality between H 1 
NRAS 533, 3987–3998 (2024) 
nd H 2 : 

 1 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 
2 , 

1 
2 , 0 , 0 , 0 , 0 , 0 , 0 

1 
2 , 

1 
2 , 0 , 0 , 0 , 0 , 0 , 0 

0 , 0 , 1 2 , 
1 
2 , 0 , 0 , 0 , 0 

0 , 0 , 1 2 , 
1 
2 , 0 , 0 , 0 , 0 

0 , 0 , 0 , 0 , 1 2 , 
1 
2 , 0 , 0 

0 , 0 , 0 , 0 , 1 2 , 
1 
2 , 0 , 0 

0 , 0 , 0 , 0 , 0 , 0 , 1 2 , 
1 
2 

0 , 0 , 0 , 0 , 0 , 0 , 1 2 , 
1 
2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (46) 

he purpose of Map M 1 is to take the mid-point values between
riginal variables and their corresponding duplicate variables and
eassign these mid-points to both the original and duplicate variables,
.g. r = ̃

 r = ( r + ̃

 r ) / 2. This operation ef fecti vely aligns initially
nequal pairs of original and replica variables, ensuring they become
dentical and thus preventing further divergence during subsequent
volutionary processes. Subsequently, the leapfrog algorithm com-
ined with the mid-point map can be formulated as 

 2 ( h ) = A 2 ( h ) M 1 = H 2 

(
h 

2 

)
H 1 ( h ) H 2 

(
h 

2 

)
M 1 . (47) 

rom the n th time-step to the subsequent ( n + 1) th step, the corre-
ponding numerical solutions can be represented as ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

r ˜ r 
θj ˜ θj 

p ˜ p 
ξj ˜ ξJ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

n + 1 

= C 2 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

r ˜ r 
θj ˜ θj 

p ˜ p 
ξj ˜ ξJ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

n 

. (48) 

When gravitational dissipation is taken into account, the constants
f motion associated with the Hamiltonian are no longer conserved.
onsequently, in e v aluating the absolute energy error for Algorithm
 2 , we cannot employ the conventional approach E − E 0 , where E is

he instantaneous energy and E 0 is the initial energy. Instead, we must
esort to equation ( 32 ), which accounts for the energy dissipation due
o gravitational radiation. To proceed, let us first re-express equation
 32 ) in a suitable form for our purposes: 

 H ( n ) = h 

(
ṙ n ·

[
∂ L RR ( r n , p n ) 

∂ r −

]
PL 

)
. (49) 

Equation ( 49 ) enables us to compute the energy dissipated between
he ( n + 1) th and n th steps. Alternatively, apart from this approach,
e can also estimate the energy dissipated within a single time-step
y subtracting the Hamiltonian at step n from its value at step n + 1,
.e. H n + 1 − H n , utilizing the numerical solutions corresponding to
hese respective steps. Both methods yield an approximation of the
nergy loss due to dissipation within a given time interv al. Ho we ver,
he integral invariant relation such as equation ( 32 ) can be used as
 precision check in numerical integrals because it is more precise
han H n + 1 − H n (Huang & Innanen 1983 ; Mikkola & Innanen 2002 ).
herefore, we can set the absolute energy error of the dissipative
ystem as the following formula: 

 EC = ( H 0 − H t ) −
t 
h 
−1 ∑ 

n = 0 

� H ( n ) . (50) 

ere H 0 is the initial Hamiltonian value, and H t is the Hamiltonian
alue at time t . Given the presence of numerical errors, the absolute



Dissipated correction map method 3993 

e  

i
2  

c

M

w
f

H

M

d
e  

i  

i
A  

t
(

�

T  

a
a  

r

M

H

�

T  

w

 

e
e
i
t  

T
M

C

C

t
t
A  

s
o
t
a

3

O  

o
i  

H
c
t  

v  

i
H  

(
 

c

(

 

t  

w
c
i  

t  

c

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/4/3987/7737674 by D
eutsches Elektronen Synchrotron D

ESY user on 22 Septem
ber 2024
nergy error � EC does not equal to zero. Ho we v er, dra wing
nspiration from the principles of manifold correction (Wu et al. 
007 ; Ma et al. 2008 ; Wang et al. 2018 ; Luo, Lin & Yang 2020 ), we
an devise a correction map matrix: 

 2 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

α
2 , 

α
2 , 0 , 0 , 0 , 0 , 0 , 0 

α
2 , 

α
2 , 0 , 0 , 0 , 0 , 0 , 0 

0 , 0 , 1 2 , 
1 
2 , 0 , 0 , 0 , 0 

0 , 0 , 1 2 , 
1 
2 , 0 , 0 , 0 , 0 

0 , 0 , 0 , 0 , α2 , 
α
2 , 0 , 0 

0 , 0 , 0 , 0 , α2 , 
α
2 , 0 , 0 

0 , 0 , 0 , 0 , 0 , 0 , 1 2 , 
1 
2 

0 , 0 , 0 , 0 , 0 , 0 , 1 2 , 
1 
2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, (51) 

here the scaling factor α is obtained through the application of the 
ollowing relation: 

 

( 

α( r + ̃

 r ) 
2 

, 
θi + ̃

 θi 

2 
, 
α( p + ̃

 p ) 
2 

, 
ξi + ̃

 ξi 

2 

) 

= H 0 −
t 
h 
−1 ∑ 

n = 0 

� H ( n ) . 

(52) 

 2 , in addition to ensuring equality between the original and 
uplicate variables, serves a crucial function in nullifying the energy 
rror, such that � EC = 0. Although this does not eliminate the
nherent energy error stemming from the dissipated energy ( 49 )
tself, we can harness the differential structure of the Algorithm 

 2 and incorporate the trapezoidal rule to enhance the accuracy of
he dissipated energy calculation. With this modification, equation 
 49 ) can be rewritten as 

 H ( n ) TR = 

h 

4 
˙̃
 r n ·

[
∂ L RR ( r n , ̃  p n ) 

∂ r −

]
PL 

+ 

h 

2 
ṙ n + 

h 
2 

·
[ 

∂ L RR ( ̃  r h 
2 
, p h 

2 
) 

∂ r −

] 

PL 

+ 

h 

4 
˙̃
 r n + 1 ·

[
∂ L RR ( r n + 1 , ̃  p n + 1 ) 

∂ r −

]
PL 

. (53) 

he variables ˙̃
 r n , r n , ˜ p n , ṙ n + 

h 
2 
, ̃  r h 

2 
, p h 

2 
, ˙̃

 r n + 1 , r n + 1 , and ˜ p n + 1 have
lready been computed during the standard leapfrog Algorithm A 2 

nd need not be recalculated. Incorporating equation ( 53 ), we will
ewrite M 2 , equations ( 50 ) and ( 52 ) as follows: 

 3 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

γ

2 , 
γ

2 , 0 , 0 , 0 , 0 , 0 , 0 
γ

2 , 
γ

2 , 0 , 0 , 0 , 0 , 0 , 0 

0 , 0 , 1 2 , 
1 
2 , 0 , 0 , 0 , 0 

0 , 0 , 1 2 , 
1 
2 , 0 , 0 , 0 , 0 

0 , 0 , 0 , 0 , γ2 , 
γ

2 , 0 , 0 

0 , 0 , 0 , 0 , γ2 , 
γ

2 , 0 , 0 

0 , 0 , 0 , 0 , 0 , 0 , 1 2 , 
1 
2 

0 , 0 , 0 , 0 , 0 , 0 , 1 2 , 
1 
2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (54) 

 

( 

γ ( r + ̃

 r ) 
2 

, 
θi + ̃

 θi 

2 
, 
γ ( p + ̃

 p ) 
2 

, 
ξi + ̃

 ξi 

2 

) 

= H 0 −
t 
h 
−1 ∑ 

n = 0 
� H ( n ) TR , 

(55) 

 EC2 = ( H 0 − H t ) −
t 
h 
−1 ∑ 

n = 0 

� H ( n ) TR . (56) 
he adjustment of M 3 to the original and copied variables can be
ritten ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

r ˜ r 
θj ˜ θj 

p ˜ p 
ξj ˜ ξJ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

γ ( r + ̃

 r ) / 2 
γ ( r + ̃

 r ) / 2 
( θj + 

˜ θJ ) / 2 
( θj + 

˜ θJ ) / 2 
γ ( p + ̃

 p ) / 2 
γ ( p + ̃

 p ) / 2 
( ξj + ̃

 ξj ) / 2 
( ξj + 

˜ ξJ ) / 2 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (57) 

Compared with M 2 , Mapping M 3 is designed such that the new
nergy error formula ( 56 ) consistently equals zero. Additionally, 
mploying the trapezoidal rule for calculating dissipated energy typ- 
cally yields higher accuracy. Furthermore, Mapping M 3 endea v ours 
o optimize the numerical solution by incorporating a scale factor γ .
he extended phase-space algorithms respectively combining with 
apping M 2 and Mapping M 3 can be formulated as follows: 

M2 ( h ) = A 2 ( h ) M 2 = H 2 

(
h 

2 

)
H 1 ( h ) H 2 

(
h 

2 

)
M 2 , (58) 

M3 ( h ) = A 2 ( h ) M 3 = H 2 

(
h 

2 

)
H 1 ( h ) H 2 

(
h 

2 

)
M 3 . (59) 

The newly designed CM3 algorithm will henceforth be referred 
o as dissipated correction map method with trapezoidal rule. In 
he following section, we will conduct a comparative analysis of 
lgorithms C 2 , CM2, and CM3 in the numerical simulations of

pinning compact binary systems. We will utilize numerical solutions 
btained via the four-stage implicit Gaussian method, serving as 
he reference ‘truth solution’, to assess the performance of these 
lgorithms. 

 N U M E R I C A L  SI MULATI ONS  

ur primary focus lies in assessing the performance of the algorithms
utlined in Section 2 when applied to controlling numerical errors 
n PN systems of spinning compact binaries, as modelled by the
amiltonian formulation given in equation ( 1 ). This 10-dimensional 

anonical spin Hamiltonian possesses four integrals of motion: the 
otal energy and the three components of the total angular momentum
ector. Ho we ver, the lack of a fifth integral renders the system non-
ntegrable, potentially giving rise to chaotic behaviour in certain spin 
amiltonians, as demonstrated in Zhong et al. ( 2010 ), Mei et al.

 2013a , b ), and Luo et al. ( 2020 , 2022 ). 
To this end, we consider Orbit 1 with the following initial

onditions: 

 β; r , p ) = (1; 26 , 0 , 0 , 0 , 0 . 21 , 0) , χ1 = χ2 = 1 , 

ˆ S 1 = ( ρ1 cos 
π

4 
, ρ1 sin 

π

4 
, −0 . 983 734) , 

ˆ S 2 = ( ρ2 cos 
π

4 
, ρ2 sin 

π

4 
, −0 . 983 734) , 

ρ1 = ρ2 = 

√ 

1 − ( −0 . 983 734) 2 . 

Here, the spin vectors S j = S j ̂  S j (for j = 1 , 2) are defined such
hat ˆ S j are unit vectors and the spin magnitudes S j = χj m 

2 
j /m 

2 ,
ith 0 ≤ χj ≤ 1 representing dimensionless spin parameters. Pro- 

eeding according to the phase-space expansion procedure detailed 
n Section 2 , we deri ve the ne w Hamiltonian ˜ H , thereby allowing
he use of the Algorithms C 2 , CM2, and CM3 in the numerical
alculations involving ˜ H . 
MNRAS 533, 3987–3998 (2024) 
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M

Figur e 1. Ener gy error of � EC2 calculated by extended phase-space method 
with all maps. The CM3 algorithm consistently displays the highest levels of 
accuracy and long-term stability among the tested methods. Conversely, the 
energy calculations produced by C 2 exhibit the most pronounced bias. The 
CM2 scheme offers a marginal impro v ement in accurac y compared with C 2 . 

Figure 2. Phase-space distance D ps between Gaus s 4 and other algorithms 
as functions of time-steps. The distances in the ascending order are CM3, 
CM2, and C 2 . The D ps of CM2 starts out the smallest distance but keeps 
growing and eventually becomes the second closest, while CM3 rises to the 
smallest distance. C 2 is the longest distance and ranking last. 
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Figure 3. Dissipative energy error � EC3 = 
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h 
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n = 0 � H ( n ) TR −∑ 
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n = 0 � H ( n ) Gauss represents the difference between the dissipated 

energy 
∑ 

t 
h 
−1 

n = 0 � H ( n ) TR calculated by each algorithm and dissipated energy ∑ 

t 
h 
−1 

n = 0 � H ( n ) Gauss calculated by the higher order algorithm Gaus s 4. The 
evolution law of each algorithm is highly similar to the phase-space distance 
in Fig. 2 . 
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F or comparativ e purposes, a four-stage implicit Gaussian algo-
ithm with eighth-order accuracy, denoted as Gaus s 4, will also be
mployed to solve Hamiltonian ( 1 ), serving as a reference solution. 

In Fig. 1 , we plot the absolute energy errors � EC2 for each
lgorithm with fixed time-step h = 0 . 5, revealing that C 2 exhibits
he poorest error behaviour, with CM2 demonstrating marginally
etter performance. Both algorithms display a slight energy offset,
hich is not uncommon in dissipative systems. On the other hand,
M3 exhibits the highest precision, approaching the limit of double-
recision arithmetic on our computing platform, and has excellent
tability. Given CM3’s inherent characteristic of correction map M3
o minimize � EC2, this superior accuracy is anticipated; ho we ver,
t renders the comparison of energy errors alone insufficient for
mpartially e v aluating the o v erall performance of algorithms. 

To address this, in Fig. 2 , we present the phase-space distances
etween the numerical solutions produced by each algorithm and
he reference solutions obtained using four-stage implicit Gaussian

ethod. Here D ps = 

√ 

[( r , θj ; p , ξj ) Gauss − ( r , θj ; p , ξj )] 2 , the solu-
ions of Gaus s 4 are denoted as ( r , θj ; p , ξj ) Gauss . Initially, CM2
NRAS 533, 3987–3998 (2024) 
isplays the shortest phase-space distance, but it rapidly deteriorates
nd becomes inferior to CM3, which subsequently maintains the
losest proximity to the true solution. Throughout this period, C 2 

onsistently remains the farthest from the reference. This plot,
hile ultimately reaching similar conclusions as Fig. 1 regarding

lgorithmic performance, reveals a little differences in the temporal
volution, particularly highlighting CM2 as initially outperforming
he others. 

Beyond phase-space distance, we further assess algorithmic
erformance by subtracting the dissipation energy calculated
y each algorithm from that computed using the highly
ccurate four-stage implicit Gaussian method, � EC3 =
 

t 
h 
−1 

n = 0 � H ( n ) TR −
∑ 

t 
h 
−1 

n = 0 � H ( n ) Gauss . Since the latter provides the
ost reliable estimate of dissipation energy, this approach offers

n objective basis for comparison. In accordance with this strategy,
e generate Fig. 3 . It can be seen that Fig. 3 demonstrates striking

imilarities in the evolutionary trends with those observed in Fig.
 , with CM2 initially outperforming its counterparts, followed by
 decline in performance and eventual supersession by CM3, while
 2 consistently underperforms throughout. 
Fig. 4 presents gravitational waveform plots generated by various

lgorithms with setting the direction ̂  p = (1 , 0 , 0) and the orientation
f the observer ̂ N = (0 , sin ( π/ 4) , cos ( π/ 4)). Specifically, Fig. 4 a
epicts the waveform for h x , where it is immediately apparent
hat the waveforms produced by C 2 , C M2 , C M3, and Gaus s 4
re virtually indistinguishable to the naked eye due to their near-
omplete o v erlap. Ho we ver, upon closer inspection through local
agnification, discernible differences become evident. Fig. 4 b serves

his purpose, providing an amplified view of the h x waveform
volution. Here, it is clear that CM3 yields the waveform closest in
esemblance to that produced by the high-order Gaus s 4 algorithm,
ollowed by CM2, with C 2 exhibiting the greatest deviation from
aus s 4. 
Fig. 4 c then displays the h y component of the gra vitational wa ves,

enerated by each algorithm. Similarly, at a cursory glance, the
aveforms appear largely similar. To reveal the nuances, Fig. 4 d
ffers a magnified look at the local details of the h y waveforms,
gain revealing that CM3 maintains the closest alignment with the
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Figure 4. The gra vitational wa veform h x and h + in Orbit 1. (a) The global 
evolution diagram of h x drawn by C 2 , CM2, CM3, and Gauss4, they are 
almost the same. (b) h x local magnification diagram, it can be seen that the 
result of CM3 is closest to Gauss4, followed by CM2, and finally C 2 . (c) The 
global evolution graph of h + , with almost no difference among all algorithms. 
(d) h + locally enlarged figure shows that the rankings of evolution closest to 
Gaus s 4 are CM3, CM2, and C 2 . 

Figure 5. The projection of Orbit 1 on to x − y − z space plot by Gaus s 4. 

Figure 6. The extended phase-space method, incorporating all maps, was 
utilized to compute the energy error of � EC2. In particular, the CM3 
algorithm consistently demonstrated the highest degrees of precision and 
long-term stability among the methods tested. On the other hand, the energy 
calculations generated by C 2 exhibited the most significant deviation. The 
CM2 scheme offered a slight enhancement in accuracy compared with C 2 . 
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ighly accurate Gaus s 4 waveform, while the other algorithms follow 

n decreasing proximity. 
Lastly, Fig. 5 presents a graphical rendering of the binary star’s

rbital trajectory in configuration space as calculated by Gaus s 4.
his visual representation serves to provide readers with a more 

ntuitive understanding of the underlying physical dynamics, com- 
lementing the waveform analysis and offering a comprehensive 
erspective on the system’s behaviour as modelled by the highest 
recision algorithm under consideration. 
To delve deeper into the comparative performance of these 

lgorithms, we conduct numerical simulations for a distinct orbit, 
esignated Orbit 2, characterized by the following initial conditions: 

 β; r , p ) = (1; 23 , 0 , 0 , 0 , 0 . 24 , 0) , χ1 = χ2 = 1 , 

ˆ S 1 = ( ρ1 cos 
π

4 
, ρ1 sin 

π

4 
, −0 . 983 734) , 

ˆ S 2 = ( ρ2 cos 
π

4 
, ρ2 sin 

π

4 
, −0 . 983 734) , 

ρ1 = ρ2 = 

√ 

1 − ( −0 . 983 734) 2 

and setting fix time-step h = 0 . 6. While there is a degree of
onsistency in the overall performance of each algorithm between 
rbit 1 and Orbit 2, subtle differences emerge, except the patterns
f energy errors. From Fig. 6 , we see that the energy error � EC2
volution la w dra wn in Orbit 2 and Orbit 1 has the same conclusion,
MNRAS 533, 3987–3998 (2024) 
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Figure 7. Phase-space distance D ps between Gaus s 4 and other algorithms 
as functions of time-steps. The distances in the ascending order are CM3, 
CM2, and C 2 . The D ps of CM3 keeps the smallest distance, while CM2 is 
f arther aw ay. C 2 is the longest distance and ranking last. 

Figure 8. Dissipative energy error � EC3 = 

∑ 

t 
h 
−1 

n = 0 � H ( n ) TR −∑ 

t 
h 
−1 

n = 0 � H ( n ) Gauss represents the difference between the dissipated 

energy 
∑ 

t 
h 
−1 

n = 0 � H ( n ) TR calculated by each algorithm and dissipated energy ∑ 

t 
h 
−1 

n = 0 � H ( n ) Gauss calculated by the higher order algorithm Gaus s 4. The 
evolutions of C 2 (black), CM2 (red dash), and CM3(green dot) are highly 
similar to the phase-space distance in Fig. 7 . 
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nd CM3 is still the most accurate and stable long-term evolution,
M2 ranks second with a gap of several orders of magnitude,

nd C 2 ranks last slightly below CM2. The change of the phase-
pace distance diagram in Fig. 7 compared for Orbit 1 is that CM3
aintains the minimum distance from the exact solution. CM2 does

ot have an advantage like Orbit 1 at the beginning and then lower
han CM3, but slightly worse than CM3 in the long run. Of course,
oth CM2 and CM3 outperform C 2 in approximating the exact
hase-space behaviour, the comparison of their performances in Orbit
 reveals that CM3 sustains its role as the superior integrator. 
Consistent with the observations from the phase-space distance

nalysis, the energy error diagram in Fig. 8 , which employs the
aus s 4-calculated dissipative energy as the reference truth value,

urther confirms the performance hierarchy of the investigated
lgorithms. Once again, CM3 emerges as the most accurate, followed
losely by CM2, while C 2 occupies the third position. The evolution-
ry trends displayed in this energy error plot strikingly resemble those
ncountered in Fig. 7 , highlighting the strong correlation between the
hase-space distance and energy error metrics in characterizing the
NRAS 533, 3987–3998 (2024) 
fficacy of these numerical integration schemes, whether it’s Orbit
 or Orbit 2. The congruity between the phase-space distance and
nergy error profiles underscores the fact that both measures are
f fecti vely capturing the same fundamental aspect of algorithmic
erformance: the ability to accurately track the true dynamics of the
pinning compact binary system. This strong correlation implies that
he conclusions drawn from analysing any one indicator in isolation
re likely to echo those of the other, enhancing the reliability of the
 v erall assessment. 
Fig. 9 presents four distinct diagrams, labelled (A), (B), (C),

nd (D), each offering specific insights into the gravitational wave
ignatures generated by the studied algorithms with ̂  p = (1 , 0 , 0) and̂ 
 = (0 , sin ( π/ 4) , cos ( π/ 4)). 
(a) and (c) show the o v erall gravitational waveforms for the ‘ h x ’

nd ‘ h + 

’ polarizations, respectiv ely, pro viding a global perspective
n the radiation emitted by the spinning compact binary during Orbit
. Across these comprehensive views, all algorithms yield waveforms
hat are essentially indistinguishable from one another, indicating
 high degree of agreement in their o v erall representation of the
ra vitational wa ve signal. 
(b) and (d) investigate the local amplification details of the ‘ h x ’

nd ‘ h + 

’ polarizations, where subtle differences in the waveforms
ecome apparent. In these magnified sections, CM3 is revealed to ex-
ibit the closest resemblance to the benchmark Gaus s 4 calculation,
nd slightly closer than CM2, with C 2 demonstrating the greatest
eviation. This finding aligns with the conclusions drawn from the
nalysis of Orbit 1. 

Lastly, Fig. 10 illustrates the orbital evolution of the binary system
n configuration space as modelled by Gaus s 4 throughout Orbit
. This visualization offers a complementary perspective on the
nderlying dynamical processes driving the observed gravitational
av e patterns, pro viding a more holistic understanding of the

ystem’ s behaviour . 
Despite these distinctions, the general trends observed across the

wo orbits provide valuable insights into the strengths and weak-
esses of the employed numerical methods, ultimately informing
heir suitability for accurately simulating a wide range of spinning
ompact binary configurations. 

 SUMMARY  

his work has focused on the development and evaluation of the
issipated correction map method with the trapezoidal rule for
umerical simulations of gravitational waves emitted by spinning
ompact binary systems. Our objective was to advance the frontiers
f simulating inherently intricate and complex celestial phenomena,
articularly concentrating on enhancing the precision and stability
f extended phase-space algorithms. The proposed dissipated cor-
ection map builds upon the foundation of extended phase-space
echniques, tackling key challenges encountered in modelling the
omplex dynamics of these systems using PN approximations. Here,
e highlight the substantial enhancements offered by the dissipated

orrection map o v er the mid-point map and their implications for
uture research in gravitational wave astronomy. 

In the numerical simulations and performance assessment, we
igorously test the ef fecti veness of the CM3, we carried out exten-
ive numerical simulations using a 10-dimensional canonical spin
amiltonian, known for its tendency to display chaotic dynamics
ue to the absence of a fifth integral. This choice of this Hamiltonian
llowed us to appraise the correction map method’s performance
nder conditions that are particularly taxing for numerical integra-
ors. The simulations were performed for Orbit 1 and 2, and the
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Figure 9. The gra vitational wa veform h x and h + in Orbit 2. (a) The global 
evolution diagram of h x drawn by C 2 , CM2, CM3, and Gauss4, they are 
almost the same. (b) h x local magnification diagram. It can be seen that the 
waveforms of CM3 and CM2 are between that of Gaus s 4 and C 2 . And CM3 
is slightly closer to Gaus s 4 than C M2. (c) The global evolution graph of 
h + , with almost no difference among all algorithms. (d) h + locally enlarged 
figure shows that the rankings of evolution closest to Gaus s 4 are similar to 
the ranking in h x . 

Figure 10. The projection of Orbit 2 onto x − y − z space plot by Gaus s 4. 
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utcomes were contrasted against those obtained using the mid-point 
ap which was the already established algorithms. Our analyses 

e vealed se veral compelling adv antages of the CM3 o v er the C 2 and
lternative approaches. Energy error evaluations demonstrated that 
he CM3 consistently achieved the lowest energy errors, signifying 
uperior conservation attributes and a heightened level of accuracy 
n tracing the system’s energy evolution. Furthermore, the dissipated 
nergy comparison showed that the CM3 closely paralleled the 
esults obtained from the high-precision Gaussian algorithm, further 
upporting its accuracy in representing the dynamics of the binary 
ystem. Temporal stability e v aluations, quantified via phase-space 
istance analysis, unmistakably showed that the CM3 outperformed 
he CM2 and C 2 o v er time. This means that the numerical solution
f CM3 is closer to the Gauss4 algorithm as the truth value. 
Visual scrutiny of the simulated gra vitational wa v eforms pro vided

ompelling testament to the CM3 superiority. Gravitational wave- 
orms computed using the CM3 closely mimicked those generated 
y the high-precision Gaussian algorithm, particularly in regions 
f local magnification, indicating that the CM3 captures the fine- 
rained details of the wave signal with better performance. Therefore, 
ompared with the previous C 2 algorithm, CM2 or CM3, especially 
M3, is recommended to simulate the gravitational waveform of 

pinning compact binaries. 
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