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ABSTRACT

The correction map method means extended phase-space algorithm with correction map. In our research, we have developed
a correction map method, specifically the dissipated correction map method with trapezoidal rule, for numerical simulations
of gravitational waves from spinning compact binary systems. This new correction map method, denoted as C M 3, has shown
remarkable performance in various simulation results, such as phase-space distance, dissipated energy error, and gravitational
waveform, closely resembling the high-order precision implicit Gaussian algorithm. When compared with the previously used
mid-point map which is denoted as C,, the C M3 consistently exhibits a closer alignment with the highly accurate Gaussian
algorithm in waveform evolution and orbital trajectory analysis. Through detailed comparisons and analyses, it is evident that
C M3 outperforms other algorithms, including CM?2 and C, mentioned in this paper, in terms of accuracy and precision in
simulating spinning compact binary systems. The incorporation of the trapezoidal rule and the optimization with a scale factor
y have significantly enhanced the performance of C M3, making it a promising method for future numerical simulations in
astrophysics. With the groundbreaking detection of gravitational waves by the LIGO/VIRGO collaboration, interest in this
research domain has soared. Our work contributes valuable insights for the application of matched filtering techniques in the
analysis of gravitational wave signals, enhancing the precision and reliability of these detection.

Key words: chaos — gravitational waves —methods: numerical —celestial mechanics —binaries: general —stars: kinematics and

dynamics.

1 INTRODUCTION

In our recent work, our group has developed correction map for
the extended phase-space method for the compact spinning binary
systems. Extended phase-space algorithms are proposed by Pihajoki
(2015), which replicate the origin variables of position and momen-
tum to generate corresponding copy variables, thereby expanding
the phase-space representation. All of these processes are partic-
ularly aimed at enabling the application of second-order explicit
leapfrog algorithms to inherently inseparable Hamiltonian systems,
exemplified by the complex dynamics of spinning compact binary
systems modelled through post-Newtonian (PN) approximations as
detailed in Blanchet & Iyer (2003), Zotos et al. (2019), Li et al.
(2020), and Tanay, Stein & Galvez Ghersi (2021). By employing
such extended phase-space techniques, researchers gain access to
numerical solutions not only for the original position and momentum
but also for the duplicated variables. In an ideal scenario, the original
and replicated variables should maintain strict equality throughout
the simulation. However, practical computations reveal that temporal
discrepancies tend to accumulate between these paired variables
due to their inherent interactions within the system. To counteract
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this unwanted drift, Pihajoki (2015) proposes the implementation
of a momentum permutation map, which systematically exchanges
the values of the original and copied momenta at each time-step,
reducing the difference between original variables and copy ones.
Therefore, the design of the mapping matrix has a great impact on
both the accuracy and stability of the extended phase-space method.
Building upon the foundational work laid out in Pihajoki (2015),
Liu et al. (2016) further refined these developments by devising the
coordinate and momenta sequent permutation maps for a fourth-order
extended phase-space explicit algorithm. This advanced algorithm
was ingeniously crafted using a combination of two Yoshida’s
triple products derived from the second-order leapfrog algorithm, as
initially presented by Yoshida (1990). The purpose was to enhance
the accuracy in terms of energy error behaviour during simulations.

However, despite these improvements, the algorithm exhibited
significant shortcomings when applied to numerical simulations of
chaotic orbits. Over time, the disparities between the original and
extended variables grew due to their mutual interactions, which posed
a substantial challenge. While these differences were negligible
for non-chaotic or regular orbits, they could be exacerbated in
numerically sensitive chaotic systems, leading to a detrimental
feedback loop. To address this critical issue, Luo et al. (2017)
proposed the mid-point map. This method effectively ensures that the
original and extended variables remain strictly identical throughout
the simulation process. Moreover, it necessitates the use of only a
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single Yoshida’s triple product to construct a fourth-order algorithm,
thereby achieving a twofold increase in computational efficiency
without compromising the accuracy of results. Moreover, Pan, Wu &
Liang (2021) successfully employed the mid-point map in the context
of coherent PN Euler—Lagrange equations, achieving commendable
computational outcomes. Further underscoring the efficacy of the
mid-point map, Hu et al. (2019) demonstrated its superior per-
formance relative to various alternative algorithms in their recent
study. In order to further improve the accuracy of this algorithm, we
design the correction map. The introduction of manifold correction
technology into this framework significantly enhances the precision
and stability of the algorithms used to simulate such celestial
dynamical behaviours. The manifold correction ensures a more
accurate preservation of the intrinsic geometric structure of physical
systems during long-term evolution, thus reducing cumulative errors
that might arise from conventional numerical integration methods
and maximizes the energy conservation of the conservative system
(Wu et al. 2007; Ma, Wu & Zhong 2008; Wang, Huang & Wu 2018).
And the correction map mitigates the divergence issues in chaotic
orbits.

However, it is important to acknowledge that in reality compact
spinning binary stars do indeed experience gravitational dissipation.
When gravitational dissipation is taken into account, these systems
cease to be conservative and instead continuously emit gravitational
waves as they lose energy over time — a prediction rooted in
Einstein’s general theory of relativity. This theoretical prediction
was spectacularly confirmed by direct observation in 2016 with the
LIGO experiment (Abbott et al. 2016), which detected gravitational
waves emitted from the coalescence of compact binaries, thereby
validating a cornerstone of relativity theory and inaugurating the new
era of gravitational wave astronomy. It also arouses the enthusiasm
of researchers to study the dynamic evolution of compact celestial
bodies. Wu et al. (2022) presents such integrators tailored to black
hole spacetimes, providing a robust framework for studying the
dynamics of particles in these highly curved regions. Zhou et al.
(2022) delve into the specific scenario of charged particles orbiting a
Schwarzschild black hole under the influence of an external magnetic
field. These studies elucidate the intricate interplay between gravity,
charge, and the magnetic field, thereby enriching our understanding
of the two-body problem where a charged particle interacts with
the black hole. Wang et al. (2021) further extend the scope of
explicit symplectic integrators to general relativity, focusing on the
Hamiltonian associated with Schwarzschild space—time geometry.
The resulting integrators demonstrate their efficacy in accurately
simulating the long-term behaviour of N-body Hamiltonian systems,
as well as in unravelling the chaotic motion of charged particles
in the presence of both a black hole and an external magnetic
field. Wu et al. (2021) address the more complex case of Kerr
black holes, constructing explicit symplectic integrators within the
context of general relativity. To achieve this, a time transformation
is ingeniously applied to the Hamiltonian of Kerr geometry, yielding
a transformed Hamiltonian composed of five separable components,
each with analytically tractable solutions expressed in terms of
a new coordinate time. This innovative approach enhances the
efficiency and accuracy of numerical simulations for Kerr black hole
systems. Sun et al. (2021) introduce an explicit symplectic integrator
tailored to the Kerr space—time geometry, aimed at accurately
capturing the non-integrable dynamics of charged particles orbiting
a Kerr black hole under the influence of an external magnetic
field.

The orbital motion of these compact objects is more dissipative
than that of other small objects and the gravitational waves are easier
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to detect and identify. When the gravitational dissipation term is
considered, in this thesis we readjust the scheme of the correction
map to better serve the numerical simulation of gravitational wave-
forms. As a comparison, we will introduce an implicit algorithm,
there are many kinds of implicit algorithms, e.g. Suzuki (1990)’s
fourth-order composition in this context is realized as a composite
of five individual second-order integrators. Expanding upon this
work, Zhong et al. (2010) incorporated conjugate canonical spin
variables (as presented by Wu & Xie 2010) to develop fourth-
order canonical explicit-implicit mixed-symplectic methods. In
these methods, separable Hamiltonians are handled using the second-
order explicit leapfrog algorithm, while non-separable Hamiltonians
are computed using the second-order implicit mid-point method.
Subsequent elaborations and applications of this construction were
further explored in Wu & Zhong (2011) and Mei, Wu & Liu (2013a).
Seyrich (2013) contributed to the field by proposing Gauss Runge—
Kutta implicit canonical symplectic schemes, which inherently
preserve the underlying structure of the system being modelled. In
addition, Tsang et al. (2015) advanced the development of implicit
slimplectic integrators, tailored for the integration of general non-
conservative systems, such as a Newtonian two-body problem subject
to 2.5PN gravitational radiation reaction terms. These integrators
demonstrate the continued evolution and refinement of numer-
ical techniques for accurately simulating complex astrophysical
phenomena.

We include the four-stage Gauss Runge—Kutta implicit canonical
symplectic algorithm (Seyrich 2013) as a numerical simulation
algorithm tool, whose high-accuracy numerical solutions can be
treated as true solutions. Implicit algorithms are alternative solutions
for computing binary star gravitational waves because they do not
have the restriction of the use of separable or inseparable Hamilto-
nian. Nevertheless, implicit algorithms have multiple iterations that
consume computational resources heavily, as well as convergence
problems of the iterations leading to unavailability of numerical
solutions.

The manuscript is structured as follows. In Section 2, we present
the Hamiltonian formulation for spinning compact binary stars, con-
sidering the 2.5PN dissipative term, and present the corresponding
gravitational wave equations for the two polarization states. Then
the dissipated correction map algorithm with the trapezoidal rule
will be introduced, detailing its implementation and underlying
principles. In Section 3, initial values for various parameters are
specified, and the numerical solutions for spinning compact binary
stars are computed using the dissipated correction map algorithm.
The accuracy of this approach is assessed via phase-space distance,
dissipated energy error, and gravitational waveform comparison, uti-
lizing the numerical solutions from the four-stage implicit Gaussian
algorithm as the reference truth. Finally, conclusions are drawn based
on the results and analyses presented throughout the paper in the
Section 4.

2 SPINNING COMPACT BINARY AND
GRAVITATIONAL WAVE

2.1 The Hamiltonian of spinning compact binary

Before introducing the algorithm, we wish to provide a concise
description of the Hamiltonian for a spin-aligned compact binary
system composed of two objects such as black hole or neutron
star, along with the associated formula for gravitational dissipation
term. We assume that the individual masses of the two bodies are
denoted by m, and m,, with their total mass given by M = m 4+ my,
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the reduced mass defined as u = ™72, the mass ratio g = %,
and the symmetric mass ratio n = "> = ﬁ The dimension-

less coordinate r is expressed in units of M, the momentum p
is measured in units of the reduced mass, and ¢ is denoted as
time.

We define the vector r to represent the relative separation between
the two bodies, with its magnitude representing the distance. The
unit vector pointing along r is then given by n = ﬁ The provided
equations describe the Hamiltonian H of a binary system, composed
of two interacting bodies, taking into account various PN correc-
tions and spin—orbit and spin—spin interactions. The Hamiltonian is

expressed as a sum of several sub-Hamiltonians:
H = Hy + Hipy + Hopn + Hsoss. (1

Each of these components represents a distinct aspect of the
system’s dynamics and is respectively written as

v
2

N | =

Hy=Tp)+ V(@) = ; ()
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+n(n-p) ]; + (3)

1 1
Hypy = 1 (1=5n+57")p° + 3 [(5—20n — 3n*p?
—20*(n -p)’p’ —3n°(n - p)']

1

1

"

1
+5 65+ 8mp® + 3n(n - p)’| =

1 1
—-(14+3n—. 4
Z(+3m )
Hsoss = Hisso + Hass denotes spin—orbit and spin—spin inter-

actions. This term captures the influence of the bodies’ intrinsic spins
on their orbital motion. It is composed of two parts:

1
Hysso = 8- (r xp), (5)
r
113 2 2
Hogs = 23 [72(50 -r) —So] , (6)
where S is given by
3 38
S=12+—1|8 24+ —18 7
{+2ﬂ}1+{+2}2, 7
and S assumes the form
1
So = <1+E> S+ 1+ p8)Ss. ®)

The positional vector r and its associated momentum p obey
the Hamiltonian canonical equations, which govern their temporal
evolution as follows:

. 0H

= )
. _ _0H (10)
P="%

These equations embody the fundamental dynamics of the non-
spin components of the system. Simultaneously, the spin vectors S ;
experience time evolution according to

an
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wherein the cross-product x encapsulates the intrinsic rotational
character of the spin dynamics. Collectively, these expressions
define the comprehensive time-dependent behaviour of the system
as prescribed by the Hamiltonian H.

Observing equation (11), it becomes evident that neither of the
spin variables exhibits the canonical conjugacy property. To rectify
this, Wu & Xie (2010) capitalized on the conserved nature of the
individual spin magnitudes and introduced a novel set of generalized
coordinates 6; and the corresponding generalized momenta &;. This
transformation allows for the unit spin vectors to be recast in the
following form:

pjcost;
§; = p;sing; | . (12)
§;/S;

The Hamiltonian, as expressed by equation (1), now manifests
a structure with 10 distinct, canonically conjugate phase-space
variables, constituted by the tuple (r, 6, 6,;p, &1, &). This reconfig-
uration ensures that each coordinate variable is paired with its proper
momentum counterpart, thereby restoring the fundamental sym-
plectic structure inherent in Hamiltonian mechanics. Consequently,
under this newfound parametrization, the Hamiltonian assumes the
appellation of

H(r,0;p.§) = H(.p.S)). 13)

Before considering gravitational dissipation, the constants of
motion mentioned in this systems include the total energy £ = H,
total angular moment vector J =S, + S, +r x p, and the spin
lengths S = S7.

These constants of motion play crucial roles in constraining the
behaviour of the binary system and serve as essential diagnostics
when numerically integrating the equations of motion derived from
the Hamiltonian (1). The aforementioned sophisticated symplectic
integration schemes, such as those developed by Lubich, Walther &
Bruegmann (2010), Zhong et al. (2010), Seyrich (2013), and Tsang
et al. (2015), are designed to efficiently and accurately simulate
the dynamics of such systems while preserving these fundamental
conservation laws.

2.2 Gravitational radiation reaction

Before discussing the gravitational dissipation of binary stars, we
write down the second-order PN approximation Lagrangian corre-
sponding to the Hamiltonian (1):

L(r,#,81,8:) = Ly + Lipy + Lopn + Lsoss, (14)
where
o1
Ly=—+ -, (15)
2 r

Lipy = S0 — 3+ [(3 T i
8 2
O (16)
g ro2r2’

1 1
Lary = ¢ (1= +137°) £ + ¢ [ (7= 129 — 92) #
1
(4 — 10n)y(n - 7% + 352 -r)“} 2
.

+ = [(4 =20+ i + 301 + n)@n - 7] riz

1
+ - +3n)r—3, 17)

Al— o] —
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the terms L goss consisted by L 55 and Lgs are provided in Hartl &
Buonanno (2005),

1
Lisso = _ﬁs'(rXi)v (18)
1 [3 ) )
Lyss = 55 ﬁ(SO 1) =S85 (19)

the Lagrangian (14) and Hamiltonian (1) can be transformed into
each other by Legendre transformation:

H=p-i—L, (20)

p = OL/or. @1)

The Hamiltonian (1) that governs a binary system is con-
served, unless dissipative effects from gravitational radiation at
the 2.5PN order are taken into account, which render the system
non-conservative. Conventionally, such dissipative terms are not
directly integrated into the Lagrangian expression of the equation
(14); instead, they should be appended to the equations of mo-
tion directly. With doubling the degrees of freedom, r — (r,7),
Tsang et al. (2015) introduce the dissipative terms in Lagrangian
form:

A@ 7,77, 81,8 = L(r, 7,81, 82) — L. 7. 81, 52)

+ Lge(r, F.F, 7). (22)
Herer, = (r +r)/2 andr_ = r — r. Within the adopted unit system,
the description of the radiative reaction force, as presented in the

works of Galley & Tiglio (2009) and Galley & Leibovich (2012), is
given by

16 Gy 1) 4817 PGy 1)

L =
EENS T TS5 P
+24("'+"'+)2(';+"'7)
7|
16(i‘+-r+)2(r+-r_)
15 Irs |6
144 |i'+|2(f+ -r+)2(r+ r-)
5 Iril®
j . 3 .
—40(r+ ry) ('7'+ r,):| (23)
7|

Analogous to the conventional Lagrangian L, which yields the con-
servative Euler—Lagrange equations of motion, the non-conservative
Lagrangian A gives rise to a set of non-conservative Euler—Lagrange
equations governing the system’s dynamics:

{d a,A OA} =0. (24)
dror_  Or_

The abbreviation ‘PL’ denotes the physical limit, a condition in
which the two variables r and 7 are required to be identical (i.e.
r=rand i =7, or equivalently r, =r, r_ =0, and i, = i) after
the necessary derivatives have been computed in equation (24). It is
crucial to note that enforcing the PL in equation (22) would render
it devoid of practical utility. When the PL is taken into account, the
extended coordinate 7 and its time derivative 7 cease to feature in the
equations.

Although in the PL, r and r are equated, it is important to

emphasize that 7 is distinct from the extended coordinate 7 which
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will be introduced in following section and used in the construction
of extended phase-space algorithms. Similarly, while r and 7 are set
equal at every integration step, they do not share the same conceptual
basis as r and 7 in the PL.

Employing the Legendre transformation, Galley (2013) derived
a new Hamiltonian from the newly formulated non-conservative
Lagrangian:

L@, 7,p.p.S1,82)=p-#—p-F— A, F,iT.S1,S2)
=H(@r 6;p, &) — H{T, 0;:p. &)
— Lre(r, 7, p,P). (25)

It is worth mentioning that the momenta p and p are the standard
conjugate momenta associated with the conservative scenario dis-
cussed earlier. Furthermore, the term Lgrg appearing in equation (25)
is derived by substituting p and p for # and r, respectively, in equation
(23).

The Hamiltonian’s canonical equations governing the dynamics
of this non-conservative system I" can be expressed as

0H oL
= — — |: RR:| :Q(I’, 91,92;17,51,52), (26)
op op— |p
. oH
0 = — =0, 01,0:;p, &, &), @n
0§
. o0H
by = — = Os(r, 01, 03, &1, &2); (28)
06,
o0H oL
p=—r [ RR} =P(r, 61, 65:p, &1, &), 29
Gl 0g- |pp
) oH
f1= — 5~ =B 61, 60p. £1.62). (30)
I
, 0H
& = ——— =Eyr, 01,0;p,61,6). G
00,

Indeed, the dissipative terms are conspicuously absent in equation
(26), given that Lgg in equation (25) is explicitly independent of the
momentum componentp _. Analogously to the conservative scenario,
the dissipative effects manifest solely in the acceleration equation
(29).

Upon the emission of gravitational radiation, the total time
derivative of the Hamiltonian H fails to vanish, instead assuming
the form

dH i [aLRR} . 32)
PL

dr or_

Knowing the Hamiltonian canonical equations under the effect
of gravitational dissipation, we can obtain numerical solutions
for the evolution of binary orbits over time, and these numeri-
cal solutions will become the variables used in the calculation
of gravitational waves, of course, the actual observed waveform
depends on the direction of the wave source and the observer.
Assuming an observer located in the xoz plane, let p denote the
direction along the intersection line of the orbital plane with the
horizon. Define ¢ = N x p, where N represents the orientation of
the observer. The two polarization states of a gravitational wave are
given by

hy =5 (Pib; — id;) ", (33)

hye =% (i) + pg) h'l. (34)
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The indices i, j = 1, 2, 3 correspond to the x, y, and z components,
respectively, with repeated indices denoting Einstein’s summation
convention. The 2PN approximation of the waveform h;; (Will &
Wiseman 1996) expands as

. 2nM [ ~ij " . .
== [0+ P+ PQY 4 P QY

4+ PISQi 4 p1s Qisjo 1 P2Qi

+P20Y + P20 . (35)
Here, D represents the distance between the observer and the wave
source. The superscripts, such as P 15 indicate the effective PN order,

while the subscripts specify the nature of each term. The sub-terms
of h'/ are given by
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r
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. A o
P20y =—6(7) n{ [l = bl =5 X + 50 x| !

F2[Xs (- Xs) = Xa (- xa)1" nj)} , (42)
where dm =m; —my, Xs = % (%4—%), Xa =
5 (:TI% — fl—z%) v=0h% 0 = (14 56y — Dp* — ) p —

n(n-p)’, and R =n-v. Once obtained numerical solutions for
the time-evolution of ¢ and p of a spinning compact binary system
through numerical methods, we can construct the corresponding
gravitational waveforms. In the subsequent chapter, we will devise
an optimized correction map in extended phase-space algorithm for
this system.

2.3 Dissipative correction map in extended phase-space method

Since the Hamiltonian H cannot be separated into multiple integrable
parts, the symplectic leapfrog method cannot be applied directly to
these Hamiltonians, unless they are suitably modified to a splitting
form. An effective approach to solving this problem is the extended
phase-space method. Pihajoki (2015) introduced a new pair of
conjugate and canonical variables (, p) from the original variables
(r,p). This doubles the phase-space variables, (r, p)—>(r, T.p.p)
and constructs a new Hamiltonian H(r, 7, p,p) using two identical
Hamiltonians H; and H,:

H(r,7,p.p) = Hi(r,p) + H:F,p). (43)

When it comes to the Hamiltonian (13), the formulation (43) should
be rewritten as

H(r,0,7.0:p. & 5, & = H\(r,0,,p, &) + H:F, 6;,p, &).  (44)

Observing that both (r, 6;,p, &) and (r, 6,.,17, é;') constitute two
pairs of conjugate canonical variables, it is immediately apparent that
the newly formed Hamiltonian H comprises two distinct integrable
components.

Given this property, it is reasonable to anticipate that the second-
order leapfrog algorithm would be well suited to numerically
whole the Hamiltonian H. The implementation of such splitting
methods proceeds as follows: When H; and H, represent the
operators that facilitate the analytical solution of the individual
Hamiltonians H; and H,, respectively, and & denotes the cho-
sen time-step, a standard leapfrog algorithm can be expressed
as

Ax(h) = H> (g) H,(hH, (g) . 45)

It is noteworthy that, given identical initial conditions, the solution
pairs (r, p) and (7, p) are anticipated to coincide at each time-step.
Nevertheless, their trajectories rapidly deviate in subsequent time-
steps due to the intricate interdependence between the solution (r, p)
derived from H; and the solution (r, p) associated with H,. This
phenomenon manifests itself as a compensatory relationship, where
any increase in the value of H; over half of the entire Hamiltonian H s
is accompanied by a commensurate decrease in H,, and vice versa.
Motivated by the inherent symmetry between H; and H,, Luo et al.
(2017) devise a mid-point map and ensure the equality between H,
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and H,:
,0,0,0,0,0

L R)

S L L N=I=
S LS L wi=wni=

S W= D=
(S]]

M, (46)

0,0,0,0,3,1.0,0
0,0,0,0,0,0,1 1

1272

11
0,0,0,0,0,0,1 1

The purpose of Map M, is to take the mid-point values between
original variables and their corresponding duplicate variables and
reassign these mid-points to both the original and duplicate variables,
e.g. r =7 = (r+T7)/2. This operation effectively aligns initially
unequal pairs of original and replica variables, ensuring they become
identical and thus preventing further divergence during subsequent
evolutionary processes. Subsequently, the leapfrog algorithm com-
bined with the mid-point map can be formulated as

h h
Cy(h) = Ay(hWM, = H, (§> H\(h)H, <5) M. 47

From the nth time-step to the subsequent (n + 1)th step, the corre-
sponding numerical solutions can be represented as

(43)

LN DD Ny
Il
)
0~

LN DS Y

§] n+l EJ n

When gravitational dissipation is taken into account, the constants
of motion associated with the Hamiltonian are no longer conserved.
Consequently, in evaluating the absolute energy error for Algorithm
C,, we cannot employ the conventional approach £ — E, where E is
the instantaneous energy and E| is the initial energy. Instead, we must
resort to equation (32), which accounts for the energy dissipation due
to gravitational radiation. To proceed, let us first re-express equation
(32) in a suitable form for our purposes:

AH(n) = h <r [7“‘“*(”’ p")} ) : 49)
or- PL

Equation (49) enables us to compute the energy dissipated between

the (n + 1)th and nth steps. Alternatively, apart from this approach,
we can also estimate the energy dissipated within a single time-step
by subtracting the Hamiltonian at step n from its value at step n + 1,
ie. H,+) — H,, utilizing the numerical solutions corresponding to
these respective steps. Both methods yield an approximation of the
energy loss due to dissipation within a given time interval. However,
the integral invariant relation such as equation (32) can be used as
a precision check in numerical integrals because it is more precise
than H, 1, — H, (Huang & Innanen 1983; Mikkola & Innanen 2002).
Therefore, we can set the absolute energy error of the dissipative
system as the following formula:

-
AEC = (Hy — H,) — Z AH(n). (50
n=0

Here H, is the initial Hamiltonian value, and H; is the Hamiltonian
value at time . Given the presence of numerical errors, the absolute
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energy error AEC does not equal to zero. However, drawing
inspiration from the principles of manifold correction (Wu et al.
2007; Ma et al. 2008; Wang et al. 2018; Luo, Lin & Yang 2020), we
can devise a correction map matrix:

s

S S S wirwIR

M, , (51)

where the scaling factor « is obtained through the application of the
following relation:

Lol
= Hy— ZAH(n).

n=0

) 0;+6; a(p+p) &+&
2 2 0 2 2

(52)

M,, in addition to ensuring equality between the original and
duplicate variables, serves a crucial function in nullifying the energy
error, such that AEC = 0. Although this does not eliminate the
inherent energy error stemming from the dissipated energy (49)
itself, we can harness the differential structure of the Algorithm
A, and incorporate the trapezoidal rule to enhance the accuracy of
the dissipated energy calculation. With this modification, equation
(49) can be rewritten as

h.. oL s D,
AHM)R = —F, - [M}
4 or_ L
h aLRR(Fg7Pg)
HE L Bl e
PL
h. OLgr(Fuy1. D,
+ 5 RRTnt1, Pryt) . (53)
4 or_ PL

The variables 7,, 7y, Pps ity Tu, pa, Tutls Fni1, and P, have
already been computed during the standard leapfrog Algorithm A,
and need not be recalculated. Incorporating equation (53), we will
rewrite M,, equations (50) and (52) as follows:

,0,0,0,0,0,0
,0,0,0,0,0,0
33.0,0,0,0

2
,1,0,0,0,0
0 . (54)

- NI NR

L

i
S L vl
i

S @ NR NR
R

M;

g
=

)

, , , = Hy — AH ,
5 > 5 5 o ; (m)TR

H(y(rm ;46 y(p+p) si+5> il

(55)

L
L1

AEC2 = (Hy — H,) — Z AH®0)1xR. (56)

n=0

Dissipated correction map method — 3993

The adjustment of M3 to the original and copied variables can be
written

, yr+7)/2
F Yo+ /2
6| |@+ae
6| | @+opn
p |~ | vo+mn 67
bl |re+pr
§ & +&)/2

& & +£&n/2

Compared with M,, Mapping Mj; is designed such that the new
energy error formula (56) consistently equals zero. Additionally,
employing the trapezoidal rule for calculating dissipated energy typ-
ically yields higher accuracy. Furthermore, Mapping M3 endeavours
to optimize the numerical solution by incorporating a scale factor y.
The extended phase-space algorithms respectively combining with
Mapping M, and Mapping M3 can be formulated as follows:

CM2(h) = Ax(WM,, = H, (%) H,(WH, (%) M., (58)
CM3(h) = Ax(WM; = H, (%) H,(WH, (%) M;. (59)

The newly designed C M3 algorithm will henceforth be referred
to as dissipated correction map method with trapezoidal rule. In
the following section, we will conduct a comparative analysis of
Algorithms C,, CM2, and CM3 in the numerical simulations of
spinning compact binary systems. We will utilize numerical solutions
obtained via the four-stage implicit Gaussian method, serving as
the reference ‘truth solution’, to assess the performance of these
algorithms.

3 NUMERICAL SIMULATIONS

Our primary focus lies in assessing the performance of the algorithms
outlined in Section 2 when applied to controlling numerical errors
in PN systems of spinning compact binaries, as modelled by the
Hamiltonian formulation given in equation (1). This 10-dimensional
canonical spin Hamiltonian possesses four integrals of motion: the
total energy and the three components of the total angular momentum
vector. However, the lack of a fifth integral renders the system non-
integrable, potentially giving rise to chaotic behaviour in certain spin
Hamiltonians, as demonstrated in Zhong et al. (2010), Mei et al.
(2013a, b), and Luo et al. (2020, 2022).

To this end, we consider Orbit 1 with the following initial
conditions:

(B;r,p) =(1526,0,0,0,021,0), xi = x2 =1,

N T LT
S1 = (pj cos 1 p1 sin 1T —0.983734),

N T LT
S> = (p>cos T 02 sin T —0.983734),

p1 = p2 = /1 —(—0.983734)%.

Here, the spin vectors S; = S;8; (for j = 1,2) are defined such
that § ; are unit vectors and the spin magnitudes §; = x jm§ /m?,
with 0 < x; < 1 representing dimensionless spin parameters. Pro-
ceeding according to the phase-space expansion procedure detailed
in Section 2, we derive the new Hamiltonian H, thereby allowing
the use of the Algon'th~ms C,, CM?2, and CM3 in the numerical
calculations involving H.
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orbit1 c,
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Figure 1. Energy error of A E C2 calculated by extended phase-space method
with all maps. The C M3 algorithm consistently displays the highest levels of
accuracy and long-term stability among the tested methods. Conversely, the
energy calculations produced by C» exhibit the most pronounced bias. The
C M2 scheme offers a marginal improvement in accuracy compared with C;.

4 orbit1
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Figure 2. Phase-space distance Dps between Gauss4 and other algorithms
as functions of time-steps. The distances in the ascending order are C M3,
CM2, and C5. The Dps of CM?2 starts out the smallest distance but keeps
growing and eventually becomes the second closest, while C M3 rises to the
smallest distance. C; is the longest distance and ranking last.

For comparative purposes, a four-stage implicit Gaussian algo-
rithm with eighth-order accuracy, denoted as Gauss4, will also be
employed to solve Hamiltonian (1), serving as a reference solution.

In Fig. 1, we plot the absolute energy errors AEC?2 for each
algorithm with fixed time-step & = 0.5, revealing that C, exhibits
the poorest error behaviour, with C M2 demonstrating marginally
better performance. Both algorithms display a slight energy offset,
which is not uncommon in dissipative systems. On the other hand,
C M3 exhibits the highest precision, approaching the limit of double-
precision arithmetic on our computing platform, and has excellent
stability. Given C M 3’s inherent characteristic of correction map M3
to minimize A EC2, this superior accuracy is anticipated; however,
it renders the comparison of energy errors alone insufficient for
impartially evaluating the overall performance of algorithms.

To address this, in Fig. 2, we present the phase-space distances
between the numerical solutions produced by each algorithm and
the reference solutions obtained using four-stage implicit Gaussian
method. Here Dy = \/[(r, 0;;p. &)auss — (., 03 p. &)]%, the solu-
tions of Gauss4 are denoted as (7, 0j;p, &)gauss- Initially, CM2
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Figure 3. Dissipative energy error AEC3 =3 " AH(n)r —

I3
Lol

w0 OH(n)Gauss Ttepresents the difference between the dissipated

[
energy > ::01 AH (n)TR calculated by each algorithm and dissipated energy

L1

,7:0 AH (n)Gauss calculated by the higher order algorithm Gauss4. The
evolution law of each algorithm is highly similar to the phase-space distance
in Fig. 2.

displays the shortest phase-space distance, but it rapidly deteriorates
and becomes inferior to C M3, which subsequently maintains the
closest proximity to the true solution. Throughout this period, C,
consistently remains the farthest from the reference. This plot,
while ultimately reaching similar conclusions as Fig. 1 regarding
algorithmic performance, reveals a little differences in the temporal
evolution, particularly highlighting C M2 as initially outperforming
the others.

Beyond phase-space distance, we further assess algorithmic
performance by subtracting the dissipation energy calculated
by each algorithm from that computed using the highly
accurate four-stage implicit Gaussian method, AEC3 =

f=—0| AH(n)tR — Zni_o] A H (n)gayss- Since the latter provides the
most reliable estimate of dissipation energy, this approach offers
an objective basis for comparison. In accordance with this strategy,
we generate Fig. 3. It can be seen that Fig. 3 demonstrates striking
similarities in the evolutionary trends with those observed in Fig.
2, with CM?2 initially outperforming its counterparts, followed by
a decline in performance and eventual supersession by C M3, while
C, consistently underperforms throughout.

Fig. 4 presents gravitational waveform plots generated by various
algorithms with setting the directionp = (1, 0, 0) and the orientation
of the observer N = (0, sin(;r/4), cos(rr/4)). Specifically, Fig. 4a
depicts the waveform for h,, where it is immediately apparent
that the waveforms produced by C2,CM2,CM3, and Gauss4
are virtually indistinguishable to the naked eye due to their near-
complete overlap. However, upon closer inspection through local
magnification, discernible differences become evident. Fig. 4b serves
this purpose, providing an amplified view of the h, waveform
evolution. Here, it is clear that C M3 yields the waveform closest in
resemblance to that produced by the high-order Gauss4 algorithm,
followed by C M2, with C, exhibiting the greatest deviation from
Gauss4.

Fig. 4c then displays the &, component of the gravitational waves,
generated by each algorithm. Similarly, at a cursory glance, the
waveforms appear largely similar. To reveal the nuances, Fig. 4d
offers a magnified look at the local details of the &, waveforms,
again revealing that C M3 maintains the closest alignment with the
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Figure 4. The gravitational waveform 4, and A in Orbit 1. (a) The global
evolution diagram of &, drawn by Co, CM?2, CM3, and Gauss4, they are
almost the same. (b) A, local magnification diagram, it can be seen that the
result of C M3 is closest to Gauss4, followed by C M2, and finally C. (c) The
global evolution graph of &, with almost no difference among all algorithms.
(d) h4 locally enlarged figure shows that the rankings of evolution closest to
Gauss4d are CM3, CM?2, and C,.
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orbit2
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Figure 6. The extended phase-space method, incorporating all maps, was
utilized to compute the energy error of AEC2. In particular, the CM3
algorithm consistently demonstrated the highest degrees of precision and
long-term stability among the methods tested. On the other hand, the energy
calculations generated by C; exhibited the most significant deviation. The
CM?2 scheme offered a slight enhancement in accuracy compared with C5.

highly accurate Gauss4 waveform, while the other algorithms follow
in decreasing proximity.

Lastly, Fig. 5 presents a graphical rendering of the binary star’s
orbital trajectory in configuration space as calculated by Gauss4.
This visual representation serves to provide readers with a more
intuitive understanding of the underlying physical dynamics, com-
plementing the waveform analysis and offering a comprehensive
perspective on the system’s behaviour as modelled by the highest
precision algorithm under consideration.

To delve deeper into the comparative performance of these
algorithms, we conduct numerical simulations for a distinct orbit,
designated Orbit 2, characterized by the following initial conditions:

(B:r.p) = (1:23,0,0,0,0.24,0), x1 = xo = 1,
8, = (p cos ;, o1 sin %, —0.983734),

8 = (p2 cos %, pa sin %, —0.983734),

p1 = p2 =+/1—(—0.983734)

and setting fix time-step h = 0.6. While there is a degree of
consistency in the overall performance of each algorithm between
Orbit 1 and Orbit 2, subtle differences emerge, except the patterns
of energy errors. From Fig. 6, we see that the energy error AEC?2
evolution law drawn in Orbit 2 and Orbit 1 has the same conclusion,
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Figure 7. Phase-space distance Dy between Gauss4 and other algorithms
as functions of time-steps. The distances in the ascending order are C M3,
CM?2, and C3. The Dys of C M3 keeps the smallest distance, while C M2 is
farther away. C; is the longest distance and ranking last.
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Figure 8. Dissipative energy error AEC3 = ::0 AH(n)TR —
1
ril:() AH(n)gauss represents the difference between the dissipated
L
energy Znh:o AH (n)tr calculated by each algorithm and dissipated energy
I3

f;ol AH(n)Gauss calculated by the higher order algorithm Gauss4. The
evolutions of C3 (black), CM2 (red dash), and CM3(green dot) are highly
similar to the phase-space distance in Fig. 7.

and CM3 is still the most accurate and stable long-term evolution,
CM?2 ranks second with a gap of several orders of magnitude,
and C; ranks last slightly below CM2. The change of the phase-
space distance diagram in Fig. 7 compared for Orbit 1 is that CM3
maintains the minimum distance from the exact solution. C M2 does
not have an advantage like Orbit 1 at the beginning and then lower
than C M3, but slightly worse than C M3 in the long run. Of course,
both CM?2 and CM3 outperform C, in approximating the exact
phase-space behaviour, the comparison of their performances in Orbit
2 reveals that C M3 sustains its role as the superior integrator.
Consistent with the observations from the phase-space distance
analysis, the energy error diagram in Fig. 8, which employs the
Gauss4-calculated dissipative energy as the reference truth value,
further confirms the performance hierarchy of the investigated
algorithms. Once again, C M 3 emerges as the most accurate, followed
closely by C M2, while C, occupies the third position. The evolution-
ary trends displayed in this energy error plot strikingly resemble those
encountered in Fig. 7, highlighting the strong correlation between the
phase-space distance and energy error metrics in characterizing the
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efficacy of these numerical integration schemes, whether it’s Orbit
1 or Orbit 2. The congruity between the phase-space distance and
energy error profiles underscores the fact that both measures are
effectively capturing the same fundamental aspect of algorithmic
performance: the ability to accurately track the true dynamics of the
spinning compact binary system. This strong correlation implies that
the conclusions drawn from analysing any one indicator in isolation
are likely to echo those of the other, enhancing the reliability of the
overall assessment.

Fig. 9 presents four distinct diagrams, labelled (A), (B), (C),
and (D), each offering specific insights into the gravitational wave
signatures generated by the studied algorithms withp = (1, 0, 0) and
N = (0, sin(r/4), cos(rr /4)).

(a) and (c) show the overall gravitational waveforms for the ‘h,’
and ‘h,’ polarizations, respectively, providing a global perspective
on the radiation emitted by the spinning compact binary during Orbit
2. Across these comprehensive views, all algorithms yield waveforms
that are essentially indistinguishable from one another, indicating
a high degree of agreement in their overall representation of the
gravitational wave signal.

(b) and (d) investigate the local amplification details of the ‘h,’
and ‘h.’ polarizations, where subtle differences in the waveforms
become apparent. In these magnified sections, C M 3 is revealed to ex-
hibit the closest resemblance to the benchmark Gauss4 calculation,
and slightly closer than CM?2, with C, demonstrating the greatest
deviation. This finding aligns with the conclusions drawn from the
analysis of Orbit 1.

Lastly, Fig. 10 illustrates the orbital evolution of the binary system
in configuration space as modelled by Gauss4 throughout Orbit
2. This visualization offers a complementary perspective on the
underlying dynamical processes driving the observed gravitational
wave patterns, providing a more holistic understanding of the
system’s behaviour.

Despite these distinctions, the general trends observed across the
two orbits provide valuable insights into the strengths and weak-
nesses of the employed numerical methods, ultimately informing
their suitability for accurately simulating a wide range of spinning
compact binary configurations.

4 SUMMARY

This work has focused on the development and evaluation of the
dissipated correction map method with the trapezoidal rule for
numerical simulations of gravitational waves emitted by spinning
compact binary systems. Our objective was to advance the frontiers
of simulating inherently intricate and complex celestial phenomena,
particularly concentrating on enhancing the precision and stability
of extended phase-space algorithms. The proposed dissipated cor-
rection map builds upon the foundation of extended phase-space
techniques, tackling key challenges encountered in modelling the
complex dynamics of these systems using PN approximations. Here,
we highlight the substantial enhancements offered by the dissipated
correction map over the mid-point map and their implications for
future research in gravitational wave astronomy.

In the numerical simulations and performance assessment, we
rigorously test the effectiveness of the CM 3, we carried out exten-
sive numerical simulations using a 10-dimensional canonical spin
Hamiltonian, known for its tendency to display chaotic dynamics
due to the absence of a fifth integral. This choice of this Hamiltonian
allowed us to appraise the correction map method’s performance
under conditions that are particularly taxing for numerical integra-
tors. The simulations were performed for Orbit 1 and 2, and the
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Figure 9. The gravitational waveform 4, and A in Orbit 2. (a) The global
evolution diagram of &, drawn by Co, CM?2, CM3, and Gauss4, they are
almost the same. (b) A, local magnification diagram. It can be seen that the
waveforms of C M3 and C M2 are between that of Gauss4 and C,. And CM3
is slightly closer to Gauss4 than CM2. (c) The global evolution graph of
h, with almost no difference among all algorithms. (d) /24 locally enlarged
figure shows that the rankings of evolution closest to Gauss4 are similar to
the ranking in /.

Dissipated correction map method — 3997

Figure 10. The projection of Orbit 2 onto x — y — z space plot by Gauss4.

outcomes were contrasted against those obtained using the mid-point
map which was the already established algorithms. Our analyses
revealed several compelling advantages of the C M3 over the C, and
alternative approaches. Energy error evaluations demonstrated that
the C M3 consistently achieved the lowest energy errors, signifying
superior conservation attributes and a heightened level of accuracy
in tracing the system’s energy evolution. Furthermore, the dissipated
energy comparison showed that the CM3 closely paralleled the
results obtained from the high-precision Gaussian algorithm, further
supporting its accuracy in representing the dynamics of the binary
system. Temporal stability evaluations, quantified via phase-space
distance analysis, unmistakably showed that the C M 3 outperformed
the CM?2 and C, over time. This means that the numerical solution
of CM3 is closer to the Gauss4 algorithm as the truth value.

Visual scrutiny of the simulated gravitational waveforms provided
compelling testament to the C M3 superiority. Gravitational wave-
forms computed using the C M3 closely mimicked those generated
by the high-precision Gaussian algorithm, particularly in regions
of local magnification, indicating that the C M3 captures the fine-
grained details of the wave signal with better performance. Therefore,
compared with the previous C, algorithm, CM?2 or C M3, especially
CM3, is recommended to simulate the gravitational waveform of
spinning compact binaries.
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