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CHAPTER-I

INTRODUCTION



1.1. Nucleon-nucleon effective interaction and EOS of Nuclear Matter
The most fundamental , challenging and elusive problem in nuclear physics is to
understand the nuclear force in terms of the underlying phenomena of nucleonic matter
equation of state(EOS), structure of finite nuclei etc. with the help of nucleon-nucleon
inéeraction . Usually, the nucleus being a complex quantum system, the observables of
finite nuclei can be obtained by solving many-body Schrédinger equations. However,
the amount of difficulties in the computational process has led to the concept of infinite
nuclear matter (NM) which is a highly idealized simplified system of infinite number of
nucleons where the Coulomb force between the charged protons is switched off. The
concept of NM with translational invariance greatly simplifies the calculation and
provides first hand information about the underlying intricacies of nuclear structure.
Together with the Local Density Approximation (LDA), this approach of NM has been
used extensively for finite nuclei structure calculation and for proton-nucleus scattering.
Since an exact equation of state for NM is not known, nuclear force is approximated by
an effective interaction. There are two different approaches to get the nucleon-nucleon
effective interaction. In the first approach, the lowest order interaction is obtained from
a realistic two-body force that fits the nucleonrnucleon scattering phase shifts together
with the properties of *He nucleus by applying Brueckener theory in LDA [1, 2]. But
the success in this direction is very less as these effective nucleonnucleon interactions
are unable to predict accurately the binding energy or the saturation density [3]. The
semi realistic two nucleon interaction models fail to explain the ground state properties
of nuclear matter and the D- and Ewave phase shifts they predict are not in good
agreement with experimental data. In order to describe the saturation properties of NM,
this approach requires higher order correction to the effective nucleon-nucleon
interaction. However, Hatree-Fock (HF) calculations with some of the effective
interactions with the inclusion of three-body forces and boost corrections provide good
results [4]. The so called Brueckener-Hatree-Fock (BHF) approach is based on a linked-
cluster perturbation series of the ground state energy of a many body system. Such
series was shown to converge when the cluster diagrams are regrouped according to the
number of hole lines [1, 5. Variational method [B-8] with realistic nucleon-nucleon

(NN) potential yielded predictions in close agreemert with those from Brueckener



theory. The main drawback of BHF approach was its inability to predict the nuclear
matter saturation properties. The Dirac-Brueckener-Hatree-Fock (DBHF) approach [9-
13] was developed during 1980°s which could describe successfully the saturation
properties of nuclear matter. The DBHF method uses realistic NN interactions and
contains the relativistic features. It describes the nuclear mean field in terms of strong,
competing scalar and vector fields. These scalar and vector fields, together, account for
the binding of nucleons as well as the large spin-orbit solitting seen in nuclear states. In
the second approach, a phenomenological effective interaction with some unknown
adjustable parameters is constructed and the interaction parameters are determined by

fitting them to reproduce the known ground state saturation properties of NM such as,

the binding energy per nucleon , ¢,(p,)=-16£0.2 MeV, saturation density
P, = 0.16 £0.005 fin? | pressure at saturation P=0and the compression modulus or

incompressibility K =210 £30MeV [14]. Although quite less findamental, the
analytical simplicity of the phenomenological effective interactions makes them a
useful tool for nuclear structure calculations and in studying the properties of dense
matter in neutron stars.

Of late, the incorporation of relativistic effects within the nuclear system has led
to the development of another popular approach, the Relativistic Mean Field (RMF)
models [15] in the framework of quantum hadrcdynamics, where the effective
interaction is generated through a Lagrangian constructed for the exchange of mesons.
The parameters of the Lagrangian are also fixed up by fitting them to the bulk
properties of nuclei [16]. Although the earlier RMF mcdels, having only linear coupling
terms, were successful in producing qualitative prope:-ties of nuclei they predicted too
high NM incompressibility and failed to produce surface properties. In order to
overcome this deficiency, Boguta and Bodmer [17] int-oduced a nonlinear (NL) density
dependent term in the ¢ field. The additional density dependent term helped in
reducing nuclear matter incompressibility to reascmable limits. Basing upon the
symmetries of Quantum Chromo Dynamics (QCD), Chiral effective theories of nuclear
force have been developed recently which can well retain the basic degrees of freedom
related to the low-energy nuclear physics. Chiral effective theories provide a well

defined scheme to determine the appropriate many-body diagrams to be included at

3



each order of the perturbation. Since the chiral effective theories are based on a low

momentum expansion, interactions derived from them are not suitable for applications

in dense nuclear or neutron matter where usually high momenta are involved.

1.2. Skyrme type effective interactions

Right after the fully microscopic non-relativistic self consistent mean-field HF
calculations of Vautherin and Brink [18], there have been many attempts to construct
Skyrme type phenomenological effective interactions [29, 20]. The analytical simplicity
of the Skyrme type effective nteractions makes them useful for nuclear structure
calculations [21], studying high density behaviour of NM as encountered in neutron
stars [22, 23] and in finite temperature calculations such as the thermodynamic
properties of nuclear matter and the determination ofthe critical temperatures in Liquid-
Gas-Phase transition of NM[24-26].

Ignoring the spin-orbit contributions, the Skyrme potential that contains the two-

body and three-body terms can be written as

W(F) =ty (14 x, P, )8(r) +-:lztl (1+xP, )[k'za(?) 4 a(?)kZ] b, (1+x, B, K-8(r) &

N S
+£6t3(l+x3PG)[p(RH 57 a.21)

s T - - -

. 1 . .
with r =n—r, and R =E(r1+ r,) are the relative wave vectors of two nucleons with

positions ;: and r_; . The #’s and x’s are constants. P, is the spin exchange operator.
The exponent y(y=1 for original Skyrme force) takes care of the density dependence
of the potential. The first two terms are the phenomenological representation of an s
wave two-body interaction, with velocity (momentum) dependence in the ¢, term. The
3" term represents the p-wave two-body interaction ard the fourth term is a zero range
three-body interaction (with one integration over the coordinates of the third nucleon
already performed). In 1972, Vautherin and Brink [18] produced parameter sets SI and
SII by fitting the ground state properties, such as binding energies and radii, to

experimental data for two spherical nuclei O and ®Pb. In 1975, Beiner et al.

4



generated SIII parameters set [21] that proved to be very successful throughout the mass
table. The exponent y with a value of 1 predicted too high incompressibility for nuclear
matter, for example SIII set produced K=356 MeV. The approximate value of K was
ascertained from the analysis of the experimental data on the giant monopole resonance
(breathing mode) [14]. In order to account for the incompressibility of symmetric
nuclear matter, fractional exponent (y <1) of the density dependent term in the Skyrme
potential were chosen by many authors. The Ska set of Kohler [27], SkM set of Krivine
etal. [28], SGII set of Giai and Sagawa [29] used fractional y (usually y=1/6) to take
into account that the incompressibility of symmetric nuclear matter (SNM) be in the

range 210+ 30 MeV. It was proposed by Zamick [30] that in order to get a reasonable

value of the SNM incompressibility the exponenty should remain in between % and

%. So far many sets of Skyrme forces have been constructed to reproduce different

aspects of nuclear matter properties, properties of finite nuclei, properties of nuclei at
the f —line and nuclei near the proton or neutron drip line. Usual Skyrme forces do not

give a reasonable behaviour of the nuclear EOS as a function of neutron-proton

. P, . . .

asymmetry or the proton fraction Y, =——, where p, is the proton density and p is
p

NM density. A systematic study [31] of different sets of Skyrme parameterization
shows that oﬁt of 87 sets only 27 sets are useful for the study of neutron star properties.
The nuclear symmetry energy coefficient E_ at normal nuclear matter density is a
crucial quantity for the study of neutron star properties. For astrophysical applications,
the effective interaction should fit the calculations of pure neutron matter and should

reproduce a quite reasonable value of E_ at normal NM density which is believed to be

around 30MeV [32-33]. Notable among the parameters sets derived for astrophysical
application are that of Siemens and Pandharipande [34], Buchler and Ingber [35],
Sjoberg [36], Buchler and Datta [37], Friedman and Pandharipande [6].

It is well known that NM saturation can be achieved with density dependent or
momentum dependent interactions or with a combination of both. The short-range or

Zero-range Skyrme type interactions are useful for low relative momenta between the
5



interacting nucleons. When comparatively high relative momenta of.the interacting
nucleons are involved we have to resort to finite range effective interaction. In 1963,
Seyler and Blanchard employed a Yukawa type finite-range effective interaction of the
form [38]

-5 - e-—r/a }:2
Wr k)= ~Cop 1= (12.2)

where ris the separation distance between the nucleons, Z is the relative momentum.
C,, is the strength of the interaction with the subscripts & and v refer to the spin and
isospin degeneracy, a is the range of the Yukawa force, and bis the critical value of
the relative momentum at which the force becomes repulsive. The Seyler and Blanchard
finite-range effective interaction can be simply expressed as a Skyrme force with 7, =0
which predicts much higher value of NM incompressibility. Finite-range effective

interactions simulated by Gaussian type potentials used in self-consistent calculations
are that of Brink-Boeker [39] and Gogny [40]. The Gogny interaction [41] is in the form

N 2 NP o
w(r)y= YW, + B,P, —H,P, -M,P,P,Y™" " 4:,(1+x,P, )[p(Rﬂ 5(R)

i=1,2
++iW,(0, +0,)- [l?'x 6(7)75}.

(1.23)
These interactions upon integration do not lead to analytical simplicity and hence are

less or not used in astrophysical applications.

1.3. Nuclear matter incompressibility and Nezd of a momentum

dependent interaction
The NM incompressibility has been traditionally calculated from the breathing
mode vibration or the Giant Monopole Resonance [14, 42]. With the availability of
nuclear collision data [43] and with the advent of experimental facilities to carry out
experiments on Intermediate and high-energy Heavy-Ion (HI) collisions, the studies on
the nuclear EOS has gained renewed interest. In these experiments it is possible to

create matter of high density and high temperature. From the analysis of the data



available from such experiments it is possible to explore and extract information on the
nuclear EOS at extreme situations of density and temperature. These information are
also essential for the understanding of certain astrophysical phenonena like neutron star
properties, their structure and supernova explosion mechanism. The transport model
calculations based onclassical Boltzman equation B4, 45] were performed to extract
information about the NM EOS. In such calculations the crucial input is the nuclear
single-particle potential or the nuclear mean field. With momentum independent

effective interactions leading to nuclear mean field in Skyrme parametrization,

u(p) = A(—-E-]+B(—p—) (13.1)
Py Py

where A and B are adjustable parameters and o >1, the transport model calculations
required a quite high incompressibility ( K=380 MeV) to fit the observed data from the
pion production and the collective sideward flow [45]. But the explosive shock
mechanism of Supernova requires a soft EOS with K in the range of 140 MeV to 220
MeV [46-49]. This contradicting extraction of nuclear EOS leads to the use of
momentum dependent effective interactions and momentum dependent nuclear mean
fields in transport model calculatiors [50-52]. Introduction of momentum dependent
interaction significantly lowered the value of NM incompressibility. In the density
dependent and momentum independent effective interactions the saturation burden is
taken by the density dependence of the potential. In a Seyler-Blanchard type effective
interaction [38] the entire burden of saturation is shouldered by its momentum
dependence. The Skyrme interactions and the Seyler-Blanchard type effective
interactions lead to mean fields in NM whose momentum dependent part is repulsive
[53] and has a quadratic dependence on momentum. On the other hand, the momentum
dependent part of the mean field in NM derived from finite-range effective interactions
is attractive and is strong at very low momenta. From the analysis of nucleon-nucleus
scattering data at intermediate energy it is observed that with the increase in
momentum, the momentum dependence of the mean field weakens and vanishes at a
kinetic energy of about 300MeV of incident nucleon and then turns out to be repulsive
with the further increase in kinetic energy. This behaviour of the mean field with

increase in momentum is an essential feature for a successful interpretation of HI
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collision.data at intermediate energies [54-60]. Similar sehaviour of the NM mean field
has also been observed in microscopic Dirac-Briueckener-Hatree-Fock (DBHF)
calculations of Li and Machleidt [61, 62]. All of these works strongly suggest that
momentum dependence of nuclear mean field is an unavoidable feature for the
fundamental understanding of nuclear matter properties and for the successful
interpretation of the HI collision data. Hence a correct momentum and density
dependence of the nuclear mean field should be employed in the transport model
calculations so as to fit the observed energy dependence of the optical potential. The

momentum dependent mean field used in earlier calculations [50, 52, 60, 63], is in the

form
u(p)=A(£J+B[£—J +2€ jdsl?—ﬂ—’i-]f—)—z- (1.3.2)
0 Po Po rnY
| k=k
A

where the parameters 4, B, C,o and A are chosen to reproduce the saturation properties
of NM and provide the necessary incompressibility and fit the HI scattering data.

. Keeping a view on the above constraints on nuclear EOS, Behera er al [64]
bave constructed . some finite-range momenturn and density dependent
phenomenological effective interactions with minimum number of adjustable
parameters. These effective interactions have a zero-range density dependent part
similar to Skyrme interactions and a long-range density-independent part of
conventional form such as Yukawa, Gaussian or exponential. This effective interaction
is very similar to the Skyrme type effective interactions except that the ¢ and ¢, terms
have been replaced by a finite-range interaction. The interaction parameters have been

calculated by fitting the standard values of NM saturation properties i.e. energy per
nucleon ey (p,)=-16 MeV, kinetic energy T, =37MeV cormesponding to
P, =0.161fm> and K(p,)=210MeV. This value of NM incompressibility at

saturation has also been reported by Blaizot et al. [14]. The corresponding nuclear mean
field is of the form



o
u(p) =A[£]+B[—p—j +C(—p—]l(k, 0) (13.3)
0 Po o
where the third term comes from the finite-range exchange contribution to the effective
interaction and takes care of the momentum dependence. In Ref. [65], using the same
finite range effective interaction, the authors have shown that the resulting momentum
dependence of the mean field in symmetric nuclear matter (SNM) is in very good
agreement with the predictions of the microscopic calculations of Wiringa [66],
particularly with UV14+UVIL. The momentum and density dependence of the nuclear
mean field obtained from these interactions are compared well over a wide range of
densities and momenta with that of the momentum dependent Yukawa Interaction
(MDYT) [63]. These effective interactions of Behera et al.[64] have successfully been
applied to study the thermostatic properties of symmetric NM, Phase Transition studies
like QGP Phase Transition at finite temperature and the Nuclear Liquid-Gas-Phase
Transition [65, 67].

1.4. EOS of Asymmetric Nuclear Matter and neutron-proton effective
mass splitting

Analysis of the anisotropies quantified experimentally over a wide range of
bombarding energy in the central Aut+Au collision has led to fix up a constraint upon
the EOS of SNM in the form of a band of Pressure-density relation within a
substantially wide range of density i.e. 2p, to around 4.6p, [68, 69]. This constraint
has eliminated some of the much used EOSs in Nuclear Physics.

With the establishment or construction of many radioactive ion beam (RIB)
facilities around the world, such as the Cooling Storage Ring (CSR) facility at HIRFL
in China [70], RIB factory at RIKEN in Japan [71], the Facility for Antiproton and Ion
Research(FAIR)/GSI in Germany [72], SPIRAL2/GANIL in France [ 73] and the
facility for Rare Isotope Beams (FRIB) in USA [74] and he growing experimental
facilities using RIBs and that of intermediate energy HI collisions induced with neutron
rich nuclei, have provided ample opportunities to explore the EOS of highly dense and

hot isospin asymmetric nuclear matter (ANM) with high neutron-proton asymmetry
9



[75-86]. New detectors such as the Time Projection Chamber (TPC) at NSCL/MSU and
the TPC, SAMURAI at RIKEN, Japan are being planned to study the symmetry energy
and the nuclear equation of state. In SNM where both the neutron and proton mean
fields assume the same form and value, things become simpler to calculate different
nuclear matter properties and since there has been so many constraints fixed from
different experimental observations, one has a guiding lines to construct the
phenomenological mean field equations. The EOS of SNM with equal no of neutrons

and protons is somewhat well determined. Particularly, the energy per particle at normal
nuclear matter density, is e(p,) =—-16 MeV; the incompressibility at saturation
density p,, as has been determined from GMR studies , to be 240120 MeV [87-94]

and the pressure-density band or the EOS in the density region 2p, < p < 5 p, as hag
been constrained from the collective flow data [68], within the limits of experimental
errors, are known to some extent. However, in ANM, where the proton mean field is
quite different from the neutron mean field, we have a poor knowledge about the
momentum and density dependence of nuclear mean field which poses considerable
difficulties for the complete understanding of its EOS. The important quantity for the
description of EOS of ANM is the isovector part of the nuclear mean field,

u,(l_g,p =p, +p,) defined as

S "k, Y )=u(k,p.Y
o Fpre i LGP T ) T,)

JLim, Shoar) (1.4.1)

i.e. the difference of the neutron mean field and proton mean field at zero temperature
normalized to the neutron-proton asymmetry (1—2Y p). Various theoretical approaches

in the study of EOS of ANM include Dirac-Brueckner-Hartree-Fock (DBHF)
calculations using realistic nucleon-nucleon interactions derived from relativistic meson
field theory [61-62, 95-98], Brueckner-Hartree-Fock (BHF) calculations with Reid soft
core potential [99-102], Brueckner-Bethe-Goldstone (BBG) calculations with the Paris
potential [103-104], and variational calculation using different combinations of two and
three nucleon interactions [b, 66]. Besides these microscopic approaches, effective

theories such as relativistic mean field (RMF) approximations [105-111] and non-
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relativistic effective interactions [112-116] have also been used extensively to study the
EOS and mean field properties of asymmetric nuclear matter.

The nucleon effective mass is a property that characterizes the propagation of
(quasi) nucleons through the nuclear medium. It is a reminder of the non locality and
energy dependence of the nucleon self energy originating from the finite range and non
locality in the time and space of the nucleon-nucleon interacton. In very exotic
systems, the isovector behavior of the neutron anc proton effective masses play
important role. The momentum dependence of the isovector part of nuclear mean field
drives the splitting of neutron and proton effective masses with neutron proton
asymmetry. However, there is no experimental data available from finite nuclei to
determine the effective mass splitting as a function of neutron richness. So far the

theoretical predictions regarding the momentum and density dependence of the

-
isovector part of nuclear mean field u_(%, p) are extremely contradicting. Some BHF
calculations with realistic nucleorrnucleon interacticns predict that u, (k, p) should

decrease with the increase in momentum ;c)giving rise to a neutroneffective mass going
above that of the proton [117-119] where as relativistic Dirac-Brueckener calculation
[120] and RMF models using Quantum Hadrodynamics (QHD) [105-107] predict that

u,(k,p) should increase with the increase in k£ implying the proton effective mass

going above that of neutron However, experimentally extracted results on the energy

—>
dependence of u, (k,p,) show a decreasing trend supporting the fact that the neutron

effective mass goes above the proton one although the data are available up to energy

100 MeV and are associated with large uncertainty [121-123]. The decreasing trend of

u, (;c), Po) with momentum £ is also predicted in BHF calculations [118, 124] and in
the calculations of the nonrelativistic effective theories till the construction of Sly
series of Skyrme parametrization [112,125-126]. The confusion on neutron and proton
effective mass splitting became complex with the prediction of DBHF calculation in
Ref [120] that the proton effective mass lies above the neutron one. It was clarified in

the works of Ref. [127,128] that by considering the energy dependence of self energy
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and comparing the non relativistic effective mass with the vector effective mass in the
relativistic framework [129], the DBHF calculation also predicts the neutron effective
mass above the proton one. This was further confirmed in the DBHF calculation in Ref.
[130]. In view of this, now there is an almost a consensual opinion has reached that the
neutron effective mass in a neutron rich matter will lie above the proton one. There have
been attempts to constrain the effective mass splitting from the study of observables
sensitive to the isovector features of the nuclear EOS [81, 84, 131}, but the task has not
yet been accomplished and magnitude of effective mass splitting still remains as an

open problem in nuclear physics.

1.5. Nuclear Symmetry Energy

The behaviour of the mean fields at Fermi momentum is directly related to the
density dependence of nuclear symmetry energy E (p) which may be defined as the
difference in energy per nucleon in pure neutron matter (PNM) and that in SNM
Symmetry energy is an important quantity which determines the composition of neutron
star and the structure of exotic nuclei. It controls the proton fraction in beta stable
matter. Both theoretically and experimentally, significant progress has been made on

constraining the behaviour of E_ (p) at subnormal density using heavy ion reactions

[85, 132-139]. The density dependence of nuclear symmetry energy for subnormal
densities is believed to be linear and is mostly model dependent. Experimentally, the
symmetry energy is not a directly me asurable quantity and has to be extracted indirectly
from observables that are related to the symmetry energy. The experimental
determination of the symmetry energy is therefore depends on reliability of the model in
describing the experimental observables. Usually two different experimental approaches
are made to study the nuclear symmetry energy. In the first category, a certain form of
the density dependence of the symmetry energy is assumed in the theoretical calculation
and experimental observables are reproduced using dynamical models such as Isospin
Boltzmann Uehling Uhlenbech (IBUU) [82], the improved quantum molecular
dynamics(ImQMD) [140] and the antisymmetrized molecular dynamics (AMD) [141].
In the second category, the symmetry energy is studied by mapping its value at each

density by drawing a relationship between the symmetry energy, excitation energy,
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density and temperature [133]. These studies make use of the statistical
multifragmentation model. The density dependence of nuclear symmetry erergy E_(p)
and thus the EOS of ANM are largely unknown, except the value of E_(p) at saturation

density to be around E (p,) =30 MeV, as determined from the empirical liquid drop
mass formula [142, 143]. However at densities away from the normal NM density and
at densities relevant to neutron stars, the density dependence of E_(p) has been poorly
understood [119, 136], which pushes the understanding of EOS of ANM into bare
uncertainties. The principal cause of this uncertainty is the lack of terrestrial data to
constrain model predictions.- In order to probe the density dependence of nuclear

symmetry energy away from saturation density, many efforts have been made through

the studies of proton differential elliptic flow and the neutron-proton transverse flow
[144, 145], isospin diffusion studies [132], the #~ /z™" ratio [83], £~ /Z* (hyperons)
ratio in HI collisions at SIS (Schwer Ionis Synchroton) energies [146] and within the
microscopic transport model, ultra relativistic Quantum Molecular Dynamics (QMD)
models [147]. Recently, there have been attempts to extract nuclear symmetry energy at
suprasaturation densities from the FOPI data on the 7~ /&% ratio in **Ca+*Ca,
®Ru+" Ru, *7r+>*7zr and " Au+'""4u reactions at SIS/GSI [139] and from the
structure of finite nuclei such as neutron skin thickness studies [148]. Another
observable that has been suggested for probing high density behaviour of the symmetry
‘energy is the relative and differential collective flow between triton and *He particles
[149].

The prediction of the density dependence of E,(p) at densities away from the
normal nuclear matter density, from different theoretical calculations is quite

interesting. The density dependence of E (p) can be roughly classified into two groups.

In one category of calculations, E (p) increases monotonically with the increase in

density whereas in another category of calculations it increases initially and after
attaining a maximum decreases to have negative values at very high density. Since

nuclear symmetry energy controls the neutron star composition and cooling mechanism
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through the proton fraction Y, :p—”and is required for the understanding of certain

phenomena beyond the standard nuclear physics, a more accurate knowledge of its high
density behaviour becomes an important goal of nuclear physics in the present time.
Recently Stone et al. [31] have examined 87 Skyrme type interactions on the basis of
their prediction on equilibrium proton fraction and EOS of beta stable matter as well as
neutron star properties. They have shown that only 27 out of the 87 sets are appropriate
for astrophysical applications on the basis that E (p) should have an increasing
behaviour over a wide range of density. Microscopic calculations of Zuo et al [118]
based on realistic nucleon-nucleon interactions and RMF calculations [150] also predict
such a monotonically increasing behaviour of E_ (p). Recently Klahn et al. [151] have
summarized some of the constraints on the high density behaviour of the nuclear
symmety energy by applying some recently discovered astronomical bounds from
compact star cooling phenomenology and neutron star mass measurements together
with information about the elliptical flow in HI collisions. They have suggested a
scheme, may not be considered in its final shape, to test different models providing

successful NM EOS at densities close to the saturation density. Recent measurements

on PSR J0751+1807 imply a pulsar mass of 2.1+ 0.2(}3%)M 4, with 1o (20°) confidence
level which constrains maximum- neutron star masses to 1.6 yin the 26 confidence

level or even 1.9M , within the 1o confidence level. Within the set of EOSs tested by
Klahn et al. only DD, D*C and DBHF survived the test. Mass of pulsar B in the system
J0737-3039 is merely 1.249 + 0.001 M, which is the lowest reliably measured mass for
any neutron star. Any viable EOS proposed for neutron star matter must predict a

baryon number in the range 1.366<M, <1.375M for a neutron star whose

gravitational mass is in the range M =1.249 + 0.001 M, . None of the EOSs tested in the
work satisfied this constraint. The density dependence of symmetry energy of all the
EOSs considered in Ref[151] vary considerably from each other, however, the
asymmetric contribution to the energy per particle in neutron star matter shows a
marginal dependence on different EOSs forming a narrow band. This universal high
density behavior of the asymmetric part of the energy per nucleon in neutron star matter
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helps the EOSs to pass the direct URCA constraint. However, in the absence of any
experimental or empirical information, the theoretical determination of nuclear
symmetry energy at suprasaturation density has loomed as a challenge in nuclear

physics.

1.6. Objective and Plan of the thesis

The objective behind the present work is to analyse the momentum and density
dependence of the isovector part of the nuclear mean field u_(k, p) and to focus on

the existing controversies in the high density behaviour of nuclear symmetry energy as
well as the two opposite types of splitting of neutron and proton effective masses using
a simple parametrization of the energy density in ANM based on density dependent
finite range effective interactions within the framework of non relativistic mean field
formalism. The simplicity of the energy density we have used, allows us to calculate the
isospin part of the nuclear mean field and other properties of ANM at zero temperature
analytically. The density dependent finite range effective interaction constructed for the
purpose has minimum number of adjustable parameters and yet capable of predicting
the properties of nuclkar matter. Such a simple effective interaction can provide a
physical insight to the underlying phenomena of the behaviour of momentum and
density dependence of the nuclear mean field.

In Chapter-II, we have reviewed the current status on the momentum and
density dependence of the isospin part of nuclear mean field and on the puzzle of the
neutron and proton effective mass splitting. The riddle has been analysed through a
most general EOS by considering four interactions, direct and exchange, acting between
like and unlike pairs of nucleons. The reason behind the controversy on the issue of the
neutron and proton effective mass splitting is explored by using a simple two parameter
finite range Yukawa effective interaction. It has been shown in the chapter hat the
existing controversies of the neutron-proton effective mass splitting can be attributed to
the splitting of the exchange strength parameter into like and unlike channels. It is
shown that the isovector part of the nuclear mean field becomes a decreasing function
of momentum in the case of stronger exchange interaction in the unlike channel than

that of the like channel and consequently the neutron effective mass goes above the
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proton effective mass in ANM. On the contrary, if the splitting of the exchange
interaction into the like channel is stronger compared to that in the unlike channel then
the isovector part of the mean field becomes an increasing function of momentum and
the proton effective mass lies over that of the neutron. We have extended the formalism
to examine the controversies in cases of Skyrme type- interactions and Gogny
interaction. In order to have a clear picture of the status of the existing controversies of
neutron-proton effective mass splitting in neutron rich ANM, ©me of the important
works such as the works of B.ALi et al. in Ref.[81] and Rizzo et al. in Ref.[84] have
been discussed.

In Chapter-1II, we have constructed a density dependent finite range effective
interaction useful for the investigation of the neutron-proton effective mass splitting and
the momentum and density dependence of neutron and proton mean fields as well as the
high density behaviour of nuclear symmetry energy. The parameters of this effective
interaction are fixed from the saturation properties in SNM and the behaviour of
symmetry energy at saturation. In order to constrain certain parameters we have used
the universal high density behaviour of nuclear symmetry energy which envisages a
stiffest asymmetric part of the nucleonic energy density in neutron star matter (NSM).
The assumption that neutron effective mass will go above that of the proton restricts the
exchange strength parameter in the like channel within certain allowed range. Variation
of the parameter within its allowed range does not affect appreciably the density
dependence of nuclear symmetry energy. Hence, the zero temperature properties of
either ANM or NSM are unable to constrain the parameters of the effective interaction
relevant for the settlement of the controversies regarding the neutron and proton
effective mass splitting. It is expected that finite temperature calculation may provide
some ways to constrain the corresponding parameters particularly the exchange strength
parameter between a pair of like or unlike nucleons. ,

In Chapter-IV, thermal evolution of nuclear symmetry energy and nuclear free
symmetry energy along with other properties of ANM are investigated. It has been
emphasized in the chapter that, only the knowledge of exchange strength parameter and
range of the exchange interaction between a pair of like or unlike nucleons are sufficient

to explore the thermal evolution of the properties of ANM. The role of momentum
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dependence on the thermal evolution of nuclear symmetry energy and free symmetry
energy has been analysed. The results of ideal Fermi gas case have also been calculated
for comparison. It is interesting to note that the momentum dependent interaction has a
quenching effect on the impact of temperature on the properties of nuclear matter. The
quenching effect of the momentum dependent interaction is discussed on the basis of
the entropy density in SNM and PNM. The behaviour of entropy density in SNM and
PNM for different splitting of the exchange strength parameter has been analysed which
may help in sorting out an answer to address the existing neutron-proton effective mass
splitting.

In Chapter-V, using the density dependent finite range Yukawa interaction
constructed in earlier chapters, we have studied the temperature and density dependence
of nuclear symmetry energy, free symmetry energy and other properties of NSM for
three different representative splitting of the exchange strength parameter into like and
unlike channel within its allowed range as decided in the earlier chapters. Nuclear
symmetry energy and free symmetry energy are used to calculate the equilibrium proton
fraction and the EOS of charge neutral beta-stable matter in neutron star.

In Chapter-VI, summary, conclusion and outlook of the work have been

presented.
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CHAPTER-II

EQUATION OF STATE OF
NUCLEAR MATTER
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2.1. EOS of Nuclear Matter for general effective interaction

In this chapter we shall discuss the general formalism in the framework of non
relativistic mean field theory that can be used to study the momentum and density
dependence of nuclear mean fields and equation of state of nuclear matter using any
effective interaction that depends on the separation distance between the two interacting
nucleons as well as the density of the interacting medium. Some of the works performed
in this context using various effective models shall be reviewed and also be elaborated
at appropriate places relevant to the work undertaken in this thesis. The neutron and
proton mean fields are the quantities of crucial importance in the studies of nuclear
matter. Under the formalism developed in this chapter it will be shown that the EOS of
nuclear matter is connected to the values of these nucleonic mean fields at the Fermi
momentum. It is therefore necessary to consider the momentum dependence aspect of
the nuclear mean field to be the primary thing that needs to be taken care of properly at
the beginning of the studies of nuclear matter using any model. This important point has
been realized at length during the last few decades with the experimental advents of
high energy heavy-ion collision experiment facilities using radioactive ion beam. The
momentum dependence of nuclear mean field in SNM as well as the density
dependence of the EOS in SNM has been understood to a reasonable extent. However,
in asymmetric nuclear matter, these two important aspects of momentum and density
dependence of nucleonic mean fields and EOS of ANM are still poorly understood. The
neutronproton effective mass splitting in ANM comes from the momentum dependence
of nucleonic mean fields in ANM, whereas, the density dependence of nuclear
symmetry energy is comnected to the EOS of ANM. In the followings we shall
formulate the nucleonic mean fields and EOS of ANM in the framework of non
relativistic mean field theory using phenomenological effective interactions staring
from the first principle. Some of the works done in these important areas shall also be
discussed.

The equation of state (EOS) of isospin-asymmetric nuclear matter is described

by the energy per nucleon e(p) expressed as a function of total nuclear density
. Pp . .
p=p,+p,, proton fraction ¥, === and temperature T which can be derived from
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the effective nucleon-nucleon interaction. p, and p, are respectively the neutron and

proton densities. The total energy of a nuclear system can be expressed as

E= 310 +5 Zolal )+l 0] @1

l¢j

where |z> and | ]) are single particle states which can be represented by plane waves for
infinite nuclear matter with the coulomb force between the charged protons being
switched off. v, and v, are the direct and exchange part of the effective nucleon-

nucleon interaction.
Considering the spin saturated isospin asymmetric matter we have altogether
four direct and exchange interactions acting between like (1) nucleons (i.e. nn and pp )

and unlike (ul) mnucleons (i.e. np). These four interactions, mnamely,

vh(r), v (#), V¥ (r) and v"/(r), are expressed as,
l se 3 0
Vien () =77 (r)izv’ (r) (2.12)

v;,'l(a)(r) = %vse )+ ';-"v'e 2 i%v” n=x % v (r) (2.1.3)
where, the superscript indices ‘s’ and ‘t’ imply interaction in singlet and triplet spin
states and ‘e’ and ‘o’ imply the interaction in even and odd parity states of the two
interacting nucleons. v**(r), v*(r), v¥’(r) and v"(r) are the respective interactions
averaged over angles, spins, and isospins of the two interacting nucleons and are
functions of separation distance r between the two interacting nucleons and the total
density p=p,+ p, of the medium. The charge symmetry of nuclear interaction
implies that v"" (r) =v? (r) = v’(r) and v () =v" (r). In the eqs.(2.1.2 and 2.1.3),
+ve sign is meant for direct interaction and —ve sign is for the exchange interaction.

With the help of the above consideration, the total energy in a nuclear system

given in eq.(2.1.1) can be written as,

E(pmp_,,) iz I(Czhzkz'l”M C )llzl >+ ZZ(y'vdly>+w Z Z(yiv:i y>
l=n,p i#j ul~n P ]
Z Z(Jl|vex|y)+— SN (i

—npx#; ul—np i#j

14}

ex

@2.1.4)
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where, for kinetic part we have used the relativistic relationship between energy and
momentum in order to take into account the possible relativistic effects that may arise at
high temperature as well as at high density. For nuclear matter in thermal equilibrium at
temperature 7', the neutron and proton occupation probabilities of the single particle

states are described in terms of their respective Fermi-Dirac distribution functions
given by

& 1
(27)" 1+expl{er ¢k, p,, p,) ~ 1y} T]
with i =n,p, where, £ =2 is the spin degeneracy factor, €.(k,p,,p ,)is the single

fi(k) = (2.15)

particle energy, L. is the chemical potential of the nucleon and k is the momentum of

8

(2m)
Fermi-Dirac distribution function in the above eq.(2.1.5) subject to the condition that
integration over the momentum space of proton and neutron distribution functions shall
result into respective densities p,and p,,

p.=[f k)&, i=n,p. @.16)
The total energy of nuclear system in eq.(2.1.4) can now be expressed in terms of these

the nucleon. The normalization factor

+ has been taken in the expression of the

single particle distribution functions as,

E(p,.p,)= jjf,"(i{)(clfzzk2 +MC*) "k d R+ [ f,”(l?)(Czhzkz +M*C*)*d’kd’R
v [l @@ andin ok a® s [l RV 2 EYWE drdndkdk
v L[l @i B+ s s O dna ke
*’;“f HI AR g EREE f0(6) () A &y dRdE
*‘;' [[[[e 550 vip *2oks o) £ (B') d*r; d°r kK’
+1I [[fer®an v F3Es oriiey 2 (k') s dn, kK
"”ﬂ TRAKR g HVEE () £ () dry dPry kK

@2.1.7)

where, M is the nucleonic mass and C is the speed of light in vacuum. Under the

transformation of coordinates into the relative and centre of mass coordinates,
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-%, R= d ;rz d d3nd’r, =d*rd*R the total energy of the nuclear system

7=

o 3

can be obtained as

E=[Hd'R, 2.18)

where, H is the energy density of the nuclear system. We can write the energy density

in nuclear matter at thermal equilibrium, H, (p,, P, ), from the above eq.(2.1.7) as,
Ho(pp,) = LA B+ frG0) (22 + m2ct ) ak
+Il)é_,2jvg" (nNd’r +%ifv‘fp (r)d3r +P.P, v (r) dir
L B E) v ) kR 2
g @@ e T Pk aE a

1 ney o N £t n i(k-k)F '
N Y R Y A O R A L
(2.1.9
With the use of the notation " (r)=v” ()=+/(r) and v? (r) = v (r), the energy

density Hy(p,,p,) becomes,
H(p,.p,) = [LA7 )+ (O] (C2r2k + M2C* )" ak

+ 202+ PO () dPr v p,p, [V () dr

+ (U ) A7 G+ f7 ) S R gh R =B )k dF

* LG S B + 1) f7 R g2 B =D 'k &,
(2.1.10)

where, g/ ((k-k'|) are Fourier transforms of the respective exchange interactions

),

g (k-k D= [0 Ty @111

The single particle energies 8}(/2,;),,, p,), i=n,p, are the respective functional

derivatives of the energy density H,(p,,, p ») and can be denoted as
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oHy
—\{fﬂ p}

The neutron single particle energy is, now, given by

er?k,p.Y,)= (2.1.12)

er(k,p,Y,) = (C?h*k* +M2C*)"2 + p, V() d*r+p, [vi () dr
+J'I (k) t(k k)l‘ ! (r)d I’d kI+J'J'fT (k )el(k k)l‘ ul( )dsrd kl

(pn +pp) avd (l’) 3 "l( ) 3
. d d’r
] o r+p,,p,,I P

H n

!
T m[ (B)f2R) + £ ) S (e Yle '“‘“ra‘;“m PRak

k'Y F avld( )

H

+= Im FrE) frEY + £RE) £ RN R e a3 a3k dPE

(2.1.13)
and the proton single particle energy as

ef (k,p,Y,)=(C*r*k* + M*C* )2 +p, [vi(r) d’r+p, vil(ryd’r
+ [[f2 G EFT (P P+ [ (kYT (ndPr dPk

(pn+pp) avd(r) ";I(I‘) 3
2 .‘-app pnpp_[ 0 ) d'r

e OV, ,

e HI[ BN+ £ fE Ry ER a()d Ok d’k

F4
ik-k"yF a"mr (9]
op

4

+= HI[ R 1KY+ FE R fE RN =22 dr BPkdE

(2.1.14)
In both the expressions of egs. (2.1.13 and 2.1.14), the last three terms constitute the

rearrangement part of the neutron and proton mean fields. Since the interactions
Vi @), Vi (7), v¥(r) and v*/(r) dependon p=p, +p, and not separately on p,
and p P’ the neutron and proton rearrangement contributions b the respective mean

fields will be the same and can be written as
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avgl (7') d3

(pn pz) Iavfi(r) d3

+
5 ” p.P, |

UF (P> P,)=
-t m[ DRV + R £ G R “a;r)f rdkdn

wl
+= m[ TR [ R+ F R FE (e """‘>’3"ap(’”)d3 rdRdN

(2.1.15)
If we write the neutron and proton single particle energies as

er(k,2,,p,) = (CRK* +M’CH™ +ui(k,?,,p,), 2.1.16)

where i =pn, p and uTi(k,?n,pp) are the single particle potentials or mean fields as
felt in the nuclear medium by the respective nucleon, then the neutron mean field

ur(k,p,,p,)at temperature T can, therefore, be given as

ik, p,) =00 [Va OFr+p, v (@)d% ]
P Engh (F—F DK + £ g (1 -k )d’K']
+U7 (p,P,) (2.1.17)

Similarly the proton mean field u7 (k, p,,p,)at temperature 7 is given as
wd(?,,0,)=p, v/ O r+p, [v," )]
i el F-F Dak' + fr(RNg (k- F pae]
+U7 (P,sP,)

(2.1.18)
The nuclear mean fields have three different parts, the first term coming from the direct

part of the effective interaction and is explicitly density dependent, the second part

comes from the exchange part of the effective interaction and depends upon the

momentum k, neutron and proton distribution functions f;” and temperature T'. The

third part of the nuclear mean ﬁe_ld, UZX . is the rearrangement term.

In the studies of nuclear mean fields amd EOS of ANM, the most important

quantity is the difference between neutron and proton mean fields,
up ” (k,p,Yp) =up(k, p,Yp) —ur (k,p,Yp), (2.1.19)
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expressed as a function of momentum k, total nucleon density ? and proton fraction

Y, =~e- Using the mean fields given in the above egs. (2.1.18 and 2.1.19),
p

uy P (k,p,Yp) can now be expressed as,

up P (k,p,Y,) =(1-2Y,)p [[vg () ~ vy (N]d’r

+ L Y = PG gh (ke —k' ) —g (| k~k' )Id*K
(2.1.20)

The first term of  u; P (k,p,Y,)coming from direct parts of the interactions is
independent of temperature and momentum and is directly proportional to the neutron-

proton asymmetry (1-2Y,). The proportionality factor depends only on the total

nucleon density p. On the other hand, the second part of ur?(k, p,Y,) coming from
exchange parts of the interactions has a complicated dependence on temperature T,

momentum k, total nucleon density p and proton fraction Y.

In order to examine the momentum dependence of u;” (k, p,Y,) we introduce
a dimensionless quantity,

M ourP(k,pY,) M o

'k Ok Wk ak“[ ') - fF g (k—F' - g"’(!k-k'])]d3k']

(2.1.21)

M oulr(k,p,Y,)

The dimensionless quantities —
hk Ok

in cases of neutron and proton are

*

directly related to the effective masses ( ) as functions of k,p,Y, and T'. The
n,p

nucleon effective masses arise from the momentum dependence of the mean fields

u,"? (k,p,Y ) and are defined through the relation
{1 d —(C*r*k? + M2C*)'”2 _ 107 nY,)
k dk Tk ok

Using the expressions for &."%@ (k,p,Y ) given in eqs.(2.1.16 - 2.1.18), the ratio of

(2.1.22)

M=M*

effective nucleon masses to the actual mass can be obtained as,
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M B M?C? n2k ok T MEC?
(2.1.23)

- N -2
[M*(k,p,Yp)}"(p) ) [l+ 722 ] 12 N M du,"® k,2,Y,) 721>
T
M our” (k,p,Y,)
nk Ok

on temperature T, momentum k, total nucleon density p and proton fraction Y, for

The dimensionless quantity has a complicated dependence

finite range exchange interactions. However, in the limit of very large %k, we can

Lul Lul

approximate g (|k k")) by gh(k) and eq.(2.1.21) reduces to

au""P k’ ’Y A 1 wl
‘Azl r ( p P) N (l_zyp)p A;’ agex(k)__agzx(k) i
'k ok large k Wk ok ok

(2.124)
This is a very important result in the sense that the dimensionless quantity in this limit
of large k becomes independent of temperature and is directly proportional to the
neutron-proton asymmetry parameter (1-2Y,). Now we can ascertain the asymptotic
behaviour of neutron and proton effective masses from this expression in eq.(2.1.24). If
M Our P (k,p,Y,)
n’k ok
neutron effective mass is less than the proton effective mass for given values of k,p
M our?(k,p,Y,)
n’k ok

the proton effective mass is less than the neutron effective mass for given values of £, p

the asymptotic behaviour of is positive, it implies that the

and Y, . If the asymptotic behaviour of is negative, it implies that

and Y.

In connection with the splitting of neutron and proton effective masses in
asymmetric nuclear matter it may be mentioned here that the results obtained from
different theoretical calculations can be roughly classified into two groups: one in which
the neutron effective mass goes above that of proton and conversely in the other case,
i.e., the proton effective mass goes abowe that of neutron. The results obtained from
Brueckener-Hatree-Fock (BHF) calculations with realistic nucleon-nucleon interactions

[117-119] show that the neutron effective mass goes gbove that of proton, whereas, the
26



results obtained in some of the earlier calculations in relativistic Dirac-Brueckener
Hatree-Fock (DBHF) model [120] and the relativistic mean field (RMF) calculations
using quantum hadrodynamics (QHD) [105,107] exhibit an opposite type of splitting of
neutron and proton effective masses. Since the asymptotic behaviour of
M oy (kp,Y,)
R’k ok

proton asymmetry parameter (1-2Y,), the splitting of neutron and proton effective

is proportional to the total nucleon density p and the neutrom

masses can be small in finite nuclei where both p anc (1-2Y,)are rather small [106].
However, this difference in neutron and proton effective masses may be quite relevant
for the difference between neutron and proton transport properties in highly asymmetric
and dense nuclear matter. Such situations can be enccuntered in astrophysical objects,
such as, neutron stars and supernovae matter and in the terrestrial laboratory in high
energy heavy-ion collision experiments using radioac-ive ion beams. Neutron stars are
cold objects (T=0) whereas in supernovae matter and the matter formed in the HI
collision experiments the temperature is high.

Since the momentum dependent term in the neutron and proton mean fields
involve in Fermi-Dirac momentum distribution functions, it implies that the neutron and

proton single particle energies, chemical potentials and the distribution functions should
be calculated in a self-consistent way at each temperature T, proton fraction Y, and
nuclear density p=p, +p,. For this purpose an iterative procedure similar to that

used in Ref. [65] for SNM can be adopted. The basic input in these selfconsistent

evaluations are the respective single particle energies at zero temperature,
e"?(k,p,Y,). The temperature dependence of nuclear matter properties are therefore

built upon the zero temperature results of neutron and proton mean fields »™?(k, p, Y,)

and hence these are quantities of crucial importance. At zero temperature, T =0, the

neutron, proton distribution functions take the forms of step functions

[ ey = (Z—i)—ﬂ(k,,(p, -k), (2.1.25)
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where, the neutron and proton Fermi momenta k,, are related to the respective
densities  p,(p,)as k, =3x’p, (k) =3x*p,). With this, further analytical
simplifications of the exchange integrals involving the distribution functions in the
expressions of €"7(k,p,Y,) given in egs (2.1.17 and 2.1.18) can be performed by

evaluating the k' — integrations,

HdSrd k'fr (k) iE-kYF éx(”) Té (2 ) re:f.r i (r)j@(k k) —ik'F d3k'
—pnfd ¥ jo (k) ——— ( ) vl (7). (2.1.26)

Il

Similarly, the other exchange integrals in egs (2.1.17 and 2.1.18) can be analytically
simplified and the expressions of u™* (k,p,Y,) at T=0 become,

u"(k,p,Y,)= [pn [vq (r)d3r+pp j'vd"[(r)d3 ]+pn [ jio (er)y=2222= jlk( ) L(nd’r
+p, 7 o(k) ( )v“’( Y& r+U% (p,.p,)
p
(2.1.27)
and
35, (k
u?(k, p,Y,) = [pp fvi'@d*r+p,| vd“’(r)d3r]+ P, [Jo (kr)-—J;;(—-&Qv;(r) d’r
F4
+p, jjo(kr)gllgﬁvg(r)d3r+(]‘q(pn,pp).
ni‘
(2.1.28)

The rearrangement energy U R(p”, p p) at zero temperature appearing in these

equations can be written as,

( H 2)
UR(p,.p,) = ~’3———f”’—jv; (dr +p,p, [V () d*r

L8103 (33D Y (3360 ()
2 k,r k,r op

PPl (31 Cyr) 3006") v ) s
2 k,r k,r  op
(2.1.29)
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The difference in neutron and proton mean fields, u"” (k,p,Y,), at zero temperature,

T =0, can now be obtained from eqs (2.1.17 and 2.1.18) as,
u"? (k,p,Y,)=u"(k,p,Y,)-u’(k,p,Y,)

=-27,)p s () v (O fr

3ik,r) 30(kr)

k,r Pk or

4

(L (=4 (1) )jg Uery .

(2.1.30)
The direct part of u""?(k,p,Y,) is proportional to the isospin asymmetry (1-2Y,).

+] p,

The proportionality factor being a function of total density p. The exchange part of

u"?(k,p,Y,) is also approximately proportional to (1-2Y,) that can be shown by

making a Taylor series expansion of the square bracketed term in the second integral

1 ..
about ¥, = 3 (ie. (1-21,)=0),

3jitkyr) 3Aakpr) | 1 3k 35ikpT)
ok P k,r "ok P kpr Y,,-l

+(1- 2Yp )(_l 0 Jl:pn 35 Ear) —Pp > (kP")J o
Y, =

N

207, k,r kpr

(2.1.31)

The first term in the right hand side is zero since at ¥, =% s Pu=Pp =% and ,

k,=k, =k, k, being the Fermi momentum in SNM. Hence

36,0 3l

" ko ? kr

} =(1-2Y,)p jolk;r)+ higher order terms. (21.32)
n ]

The function «"? (%, p,7, ») can now be written as

u" P (k,p,Y,)=(1-2Y,)p [[v; (r)—vi(r)]d’r

+(1=2Y,)p [ jo (kr) jo Uk ;1)L (F) =V () d*F
+ higher order terms in (1- 2Y,). (2.1.33)

The higher order terms in this expression will involve only odd powers of (1-2Y, ») as

the terms having even powers of (1-2Y,) in the Taylor series expansion will
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identically vanish. We now introduce the isovector part of the nuclear mean field
defined as,
u" ?(k,p,Y )
u,(k,p)= Lim ————*=.
f12 - 2(1-2Y,)
Using eq.(2.1.33) this can be written as
e, p) =2 [0 )=y O+ oGl ot (1) v @)l |

_ (2.1.35)
The justification of the approximation of the Taylor series expansion of

3j1(k,r 31k,r)
{Pn J1( )..p p

(2.1.34)

:| by the first term can be examined in the

k,r r kpr
followings:
3j,(k,r) 3j1(k,r)| . ! ul 3
Il: n lknl’ “Fp kp: Jo (kr)[vex (i") Ve (r)]d ¥

= (1-2Y,)p [ (r) jo U, PV () = v () |
(2.1.36)

Under the assumption that the finite range parts of the exchange interactions between
like and unlike nucleon pairs have same range but different strengths, the above

equation becomes

= pp ——— o (k) [V = (1=2Y,)p [jolhkn) jolk ) ()7

j{ 30, 3iik,)
n P

(2.1.37)
where , f(r) is the functional form of the finite range exchange interaction. The Taylor

series expansion is valid for low value of the asymmetry (1- 2Y,) and hence the
validity of the inequality in eq. (2.1.37) is to be tested at the other extreme, i.e. Y, =0,
which is the pure neutron matter (PNM) limit. In this limit eq.(2.1.37) becomes

35, (k7
o, I_._ZlkL:L) JokA F()dr = p [ ok jolk r) £ dr . (2.138)

Further, both the integrals have maximum values in the limit % — 0 and the above

equation in this limit becomes
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p. P 0yt = p [k, 1) (2139

n

37t2p‘

2

Comparison of the values of the integrals on both the sides of the above

with p, =p, k,=3n"pand k, =

inequality at different densities can give the degree of correctness of the approximation
used in obtaining the isovector part of nuclear mean field in eq. (2.1.35). For the sake of
-rla

(r/a)

range parameter. The integrals given in the above inequality can be analytically

enumeration, we shall use a Yukawa functional form f(r)=

, o being the

evaluated and the condition in eq.(2.1.39) becomes,

f 1 tanCko)) 1 (2.1.40)
k0" (k) 1+ (ko)

Defining x = k,a, this equation reduces to

1 tan'x 1
3= = 2.141
(xz x: ) 1+(0.5)”3 x* ( )

\
\
B
3
kY
% 0 5 ;3\3
l","\\ R.H.8 of eq. 2.1.41
A\
AN ——— LH.Sofeq.2.1.41
RN
0 , )
0 2 4 6 8 10

Figure 2.1. Comparison of the left hand side and the right hand side of
the eq.(2.1.41) as a function of «x.
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In Figure 2.1, the left hand side and right hand side of the above eq. (2.1.41) have been
compared. The comparison shows that the approximation used to obtain the isovector
part of the nuclear mean field u,(k,p) givenin eq. (2.1.35) is a valid one.

The momentum and density dependence of isovector part of the mean field
u. (k,p) is crucial n understanding the in-medium nuclear interaction and it is an area
in nuclear physics which is poorly understood. The isovector part of the nuclear mean
field at Fermi momentum, u,(k =k, p), is directly connected to the nuclear symmetry
energy E,(p), which is shown in the followings. The nuclear symmetry energy is

defined as

) .
E (p)= (W} (2.1.42)

2
oY,

Y;7=

DO | e

where, H(p,Y,)is the energy density of ANM at zero temperature. The expression for

H(p,Y,) can be obtained from eqs.(2.1.10 and 2.1.11) by considering the distribution

functions to be step functions and the analytical simplification results into the

expression for energy density at 7 =0 in ANM as,

mc (P,
Hp.X) === p[Zx u, —xu, ~Ini, ‘”‘/)]*'”E"“'_"I"d(”)d3
A
kY A Ze)
+p,0, [V “'(r)d3r+p; 1{ "kr ] O+ ][—‘kpr”—] Vu (Nd'r
3.1x(k")3fl(k ) 3
ll d
+pnppJ knr kp ( )
(2.1.43)
In the limit of SNM, i.e. p, =p, :-g- and k, =k, =k, , the energy density becomes
2
H, (p)_ [fouf —XU, ln(xf+uf)]+£-—ﬂv (")+V31(”)]d3
8x,°
3
£ (Y b vl
4 k)r

(2.1.44)

hk s
where, xf=—M—C-and ur=(+x, )”2
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The symmetry energy defined in eq.(2.1.42) for the energy density in eq.(2.1.43) can be

expressed as,

w0 oww )
E ()= ( J o (ORAG) R

oM M C?

+% [70> eL ¢) — v —-5- [4,2 L () + v ())ar
(2.1.45)
The last term along with the kinetic energy contribution given in the first term in right

hand side of this expression is related to the effective mass at Fermi momentum in

SNM. The effective mass in SNM is defined as,

{M* « )}__ LY M ouge) T
M P E M2C? Wk ok M2C?
(2.1.46)

where, u(k, p) is the isoscalar part of the mean field, i.e., the mean field of a nucleon in

12

SNM at zero temperature and is defined as

u"(k,p,Y Y+u?(k,p,Y
u(k,p):ny;?/zz (*p ”)2u( i "). (2.1.47)

From the expressions of u”" (k,p.Y,) and u?(k,p,Y,) in eqs.(2.1.27) and (2.1.28), the

isoscalar part of the nuclear mean field is obtained to be

u(k,p) = (C*n*k* + M*C*)'?

pj'[vd(r)+v“’(r)k r+p_[jo(k) (f )[ (r)+v“’(r)]d r+U%(p)

(2.1.48)
where,
U*® (p)= __Lzm/ U® (P P,) (2.1.49)
k,,:k,,:/cf
From this expression for u(k, p) it follows that,
k Ou(k, p) 2
(; = -, =~-—§- IJI (kfr)(véx )+ vzi (r)}lz'r . (2.1.50)

Thus, E (p) as given in eq.(2.1.45) becomes

33



-2 '
nk,’
E(;o)—hic (1 +(.k.-———a“(k’p))
g 6M L M2C 6 Ok )i,

o IR O) R P D RO RE)
(2.1.51)
Now, the first two terms in this expression can be expressed in terms of the effective

mass in SNM at Fermi momentum given in eq.(2.1.46) and the nuclear symmetry
energy given in the last equation becomes,

-1/2
B2 2 M 2 B2k 2
E,(p)=—Z {—(k,p)J +—t

6M M M2c?
k=ky

+= I(vd(r)—v (r))d ro+ “*J.]O (kfr)( (r) - v, (r))d

(2.1.52)
With this definitions for nuclear symmetry energy E,(p), the isovector part of the

nuclear mean field given in eq.(2.1.35) can be expressed as,

5 5 . 2 2 2 -1/2
n2k 2 (u n’k,
uy (k, p) = 2E, (p) - k,p)| +—L5
k

IM M M*C

, (2.1.53)

+% [l ) - Jo (& 1) ] (kfr)(v; (- v () 3
This equation has the crucial implication that the density dependence of isovector part
of the mean field, u,(k, p), has been separated out from its momentum dependence. The
momentum dependence of u,(k, p) is determined by the last term of the above equation

which we shall be denoting by

u® (k, p) =§ [Us tr) = o e, ) )i P, () v () (2.1.54)
and is solely dependent on the differences between finite range exchange interactions
between pairs of like and unlike nucleons. It may be noted that for contact interactions

of §()-form u,(k,p) is determined by evaluating it at Fermi momentum, i.e.,

ug(k=ky,p). In this limit of k=k,, as may be seen from eq.(2.1.54), the function

ug" (k, p) vanishes resulting the expression for u7*(k =k, p) to be
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IM M?3C?

k=k,

-1/2
nk (M >Rk
u,(k =k, p) =2E, (p) - H—M—(k,p)] TR B (2.1.55)

Thus, the density dependence of the isovector part of the nuclear mean field is
completely determined by the density dependence of nuclear symmetry energy E (p)
and the density dependence of effective mass in SNM. The complete knowledge of
nuclear properties lies in the understanding of momentum and density dependence of
nuclear mean fields both in SNM as well as in ANM. Thus, before making further
discussions on the momentum and density dependence of nuclear mean field in ANM it
will be of crucial advantage to separate out the density dependence of the isoscalar part
of nuclear mean field as given eq.(2.1.48) (i.e. the nuclear mean field in SNM) from its
momentum dependence.

The energy per particle in SNM at zero temperature, e (0)is obtained from the

energy density, H (p) =pe,(p), given in eq.(2.1.43) to be

ey(p) = B:ZC [2xfuf ~X U, ln(xf +u, )]+%f[vfi(r)+v"’(r)}i

S
2
3j,(k
+—§— J‘[—m—hk(f:{r)J [v;, )+ v;‘: (r)}zdr
(2.1.56)
We can calculate pg%(ﬂ)— from the above equation to be,
p
3
p de;;p) = K.E. part+ £ J’[vd(r)wg'(r)]d r+ 8 [jutk, )(-————Jl( L )J[ L) vl
kyr

+{P_2 I(av;(r)+av (r))da f(av’ ®, av::(r)][ﬁx(kf’))dsr}.
4 )\ op op 4 X op op kyr
(2.1.57)

The single particle energy in SNM g(k,p) at zero temperature is given by

/12
8(k,p)=(C2h2k2+M2C4)’ +u(k, p). From egs. (2.1.56), (2.1.57) and
(2.1.48), it follows that
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eo(P)+Pg%‘;l()—p-)-=8(k=kf,p) (2.1.58)

which is the Hugenoltz VanHoff (HV) theorem, where

e(k=k,.p)=(Cn’k,} +M*C*)” +utk=k,,p). (2.1.59)
By using the HV theorem, the isoscalar part of the nuclear mean field can be written as
ulk,p) =e, (p) + p 2222 0(” )_(cn2k,? +m2ct ) +umk,p) (2.1.60)
where,
w ko)=L [l ~ oty "(ff MLl olr. @16)

These last two equations in the case of SNM are analogous to egs.(2.1.54) and (2.1.55)
of ANM respectively. The momentum dependence of nuclear mean field in SNM is
solely determined by the functional »%(k,p) given n eq.(2.1.61) and depends on the

sum of the finite range exchange interactions between pairs of like and unlike nucleons.
u®*(k,p) identically vanishes for contact interactions of &(r)-form. The density
dependence of u(k,p) is determined at k =k, and from eqs.(2.1.60 and 2.1.61) , it

follows that,

u(k =k, ,p) = er(p)+ p 2P _(c2n2p 2+ ar2ct)”?
dp (2.1.62)
(P) 2424 2 2 4 /2 o
—eo(p)+ =B _(c2n?k * +MC?)

where, P(p)=p? is the pressure in SNM. Thus, the density dependence of

o(P)
dp
isoscalar mean field is determined by the energy per particle ey(p) in SNM.

It should be remarked here that in eqs.(2.1.53 and 2.1.54) and (2.1.61 and
2.1.62) we have a connection to very old and open problems; momentum and density
dependence of the Lane potentials [152] which we see in a much more general

framework. It is important to note here that only finite range parts of the exchange

interactions between two like and unlike nucleons can contribute to »* (k,p) and

us (k,p). Moreover, these two functional vanish at the Fermi momentum &=k - In
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the simplest form, momentum and density dependence of the functional u* (%, p) and

uZ (k,p) can be simulated by a conventional short range attractive interaction of
Yukawa, Gaussian or exponential form having the same range ¢ but different strengths
el and ¢! for interactions between two like and unlike nucleons. For these forms of

interactions considered in this simplest way, the exchange integrals appearing in
egs.(2.1.61) and (2.1.54) can be calculated analytically[64]. Under this simple
consideration Behera et al have formulated and studied the momentum and density
dependence of nuclear mean fields in SNM [64] and ANM [153, 154] which we shall
discuss in the followings. In the case of such simple finite range exchange interactions,

the exchange integral functions in SNM and ANM can be given as,

]1(f)

) ul
u® (k p)~—(3———)~—p [0 Ger) - 10<kfr)]

200 |70V f(r)d3r (2.1.63)
and
i
ug (k ,p)*—(fwﬁ);pj[;o(k )- Jo(kfr)] Jolke;r) f(d*r (2.1.64)

where, f(r) is the functional form of the short range interaction of Yukawa, Gaussian

or exponential form having the range . The strength parameters ¢! and ¢! are given

by ‘
g = pO(M —-2—’- +—I§—B) j f(nd’r (2.1.65)
and
H H 3
e’ = p, (M +7) [rear. (2.1.66)

Here, M,W,H and B represent the Majorana, Wigner, Heisenberg and Bartlett parts of

the short range exchange interactions respectively. The analytical simplifications of

these integrals u (k,p) and uS*(k,p) can be done by using the following prescriptions

[64] given by,

3k st r)
k,r

T 755 [l ———=f(")d’r =1 (k,p) 2.1.67)

VG )
with
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It.p) N (A +E, ——kz)]n A +(k+ k)
P)=
8kk,’ A+ (k—k ) (2.1.68)
2 3 k+k k—k
RELSEIN {tan_l[ Af)_tan»l( ! fj}
2k ;" 2k,
and
1 . , 3
5 Jio(kn) jo k1) f(r)d r = I (k, p) (2.1.69)
Jf(r)d’rI e
with
A k,’
= 1+4—=|»
1) = m[ +44 ]
(2.1.70)
~ria
for the Yukawa form of finite range exchange interaction, f(r) = %) and A =1/c.
r

Analogous analytical expressions can be obtained for the other forms of interaction.

ul

- and

There have been consistent attempts to constrain these parameters, ¢! , ¢
o over last few decades from analysis of nucleon-nucleus scattering of data at
intermediate energies as well as from the studies of experimental observables sensitive
to the differences between neutron and proton flow data in high energy heavy ion

collisions [56, 59-60, 63, 65,67]. Considerable progress has been made in the

understanding of the isoscalar part of the nuclear mean field, i.e., in constraining o and

the strength parameter combination (&!, +£). In the following we have discussed the
procedure used by Behera et al. [64], in constraining these parameters. They have used
the condition that the optical potential, u(k,p = p,), should vanish at kinetic energy of

the nucleon (C2h2k3002 +M*c? )1;2 =1239 Mey . This important feature follows from

the optical model fits to nucleon-nucleus scattering data at intermediate energies that
u(k, po) tumns out to be repulsive for momenta around k > k44, Where, k4, corresponds
to a kinetic energy of 300 MeV ( excluding rest mass energy). Using this constraint for

the optical potential u(k, py), it follows from egs.(2.1.62 and 2.1.63) that

2k, 2 2t — ey (po)

0

gl el
2

[k = kg 00) -1k =k ,p)]= @.1.71)
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where, k& W= (37:2 Po /2)”3is the Fermi momentum corresponding to normal nuclear

matter density p, and e (p,) is the energy per particle of nuclear matter at p,. For the

Yukawa form, the analytical expressions of the functional I(k, p) is given in eq.(2.1.68
) which involves only the range parameter o . By adopting a simultaneous minimization
procedure, Behera et al.[65] have obtained the values of these two parameters, range

and strength in SNM, for the Yukawa form of the exchange interaction to be,
€, = (el +e)2 = -121.8448 MeV
a =0.4044 fm. (2.1.72)
In obtaining these results only the standard values of MC? =939MeV,

1/2
e,(p,) =923 MeV and (Czs“zzkfu2 +M2C4) =976 MeV' ( corresponding to
Po =0.1658 fm>) have been used. The result of the minimization method adopted is
shown in Figure 2.2. Constraining the finite range exchange strength parameter

combination, (el + &) and range parameter « in this way, the results of the

~0.3 1
=2
1771

-04

- Non-Relativistic
Relativistic
._0‘5 i i : - i i n i i 1.
0 1 2 3 4 5 6 7 8

A ffml.
Figure 2.2. Fixation of the range parameter from the simultaneous minimization

of a and ¢,,. The functional S(A)= [I(k =k3o0, Po) —Ik=ky, po)J is plotted as

a function of A . The minimum of the curve for S(A) gives the respective range
o of the interaction.
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Figure 2.3. The exchange contribution to the isoscalar part of the nuclear mean

field u**(k, p) in SNM is plotted as a function of Fermi momentum £ for
three representative values of density. The lower curves is for p =0.1 fin™, the

middle curve is for p=0.3 fin™ and the upper curve is for p=0.5 fm™. The
results are compared with the results of the realistic interaction UV14+UVII of
Wiringa [66]. The figure has been reproduced from the Ref. [65].

momentum dependence of isoscalar part of the mean field, i.e., u®(k,p), has been

found to be in good agreement with the results of the microscopic calculations of

Wiringa [66] over a wide range of momentum and density. The same has been given in

*

M

good agreement with that found from the study of heavy-ion collision experiment data

[59].

Figure 2.3. It predicts an effective mass in SNM to be (k 1,2P9)=0.67 which is in

Although the exchange strength parameter combination (¢ éx +£) has been constrained

to a reasonable extent from the knowledge of isoscalar part of the nuclear mean field

obtained from the optical model analysis, the relative strength of the combination
(el -eM) associated with the isovector mrt of the nuclear mean field is still largely
unknown [80-84, 109]. In fact, even the sign of the combination (e! —¢*) which

determines the splitting of neutron and proton effective masses is still uncertain. In

connection with the splitting of neutron and proton effective masses in asymmetric
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nuclear matter, the predictions of different theoretical models are not only diverging but
also contradicting. The results obtained in the microscopic relativistic Dirac-Brueckener
Hatree Fock ( DBHF) calculations performed earlier [120] as well as relativistic mean
field (RMF) approximation using quantum hadrodynamics [105-109] exhibit the
splitting where proton effective mass goes above the neutron one. On the other hand,
the results obtained in nomrelativistic microscopic calculations such as Brueckener-
Hatree-Fock (BHF) and calculations using realistic nucleon-nucleon interactions [117-
118] exhibit a splitting where neutron effective mass goes above the proton one. Most
of the Skyrme-type effective interactions successfully used in various domains of
nuclear calculations in the non-relativistic mean field approximations predict the
splitting similar to the BHF results where neutron effective mass goes above that of
proton one. However, Sly [112] and SKI [31] type of parameterization of the Skyrme
forces give a splitting of neutron and proton effective masses in opposite direction
similar to the early DBHF and RMF calculations where proton effective mass lies above
the neutron one. In recent years 1i and co workers [80-83] have studied the effects of
momentum dependent symmetry potential on heavy ion collisions induced by neutron
rich nuclei where they have parameterized the neutron and proton single particle
potentials guided by a Hatree-Fock calcubtion using Gogny effective interaction. This
parameterization also gives the splitting where neutron effective mass lies above the
proton one. Rizzo et al.[84] have analyzed the influence of the two opposite types of
splitting of neutron and proton effective masses on the flow data in heavy-ion collisions
using two different simple GBD type parameterization [155] of the energy density.

In the followings we shall be dscussing the works of Behera et al [153-154]
where the two types of conflicting effective mass splitting have been reproduced by the
suitable choice of strength of the exchange interactions acting between pairs of like
nucleons and unlike nucleons. We shall also discuss the conditions those can be
obtained in the cases of Skyrme type and Gogny-type forces that can predicf the two

opposite types of neutron and proton effective mass splitting for the interactions.

*

M
M

The nucleonic effective mass { (k,p, Y, )} that is related to the momentum

mp

dependence of the in medium interaction is defined through the relations given in
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egs.(2.1.22 and 2.1.23). From these expressions we can write the difference of square of

neutron and proton effective masses as,

M3 .
M* . P oM T T &P
[—M“(k’p)jl —{T,f(k’p)} = -1/2 172
" » L, R (Mg M auf
Mic?)  nlk ok M*C?) % ok

(2.1.73)

Thus the important quantity for our purpose in the context is the difference in the mean

fields between a neutron and a proton having the same kinetic energy
WP (k,p,Y,) = k9, Y,) ~uE (6., )], (2.1.74)

expressed as a function of momentum k , density p and proton fraction ¥, at a given

temperature 7. The terms of uy ?(k,p,Y,) which depends on momentum £ are only
relevant for deciding the neutron, proton effective mass splitting. In the case of our
finite range interaction involving two parameters, the range of interaction between a
pair of like nucleons and unlike nucleons are same but the interactions differ in strength.
For such interaction, the momentum dependent part of up”(k,p,Y,) given in

eq.(2.1.20) becomes

l}t}f—p (k’p’Yp)jmomenmm dependent  part = (E{a - 8:;“17 pT (k,p,Yp) ? @2.1.75)
where,
1 - - - -
Gr e p.,) === [l @) - 1f @) 2 (B - R D% (2.176)
0

and the strength parameters ¢/ and ¢ are given in eqgs.(2.1.65 and 66) respectively.

ex

ff and fF are the Fermi-Dirac momentum distribution functions for neutron and

proton respectively at temperature T. g, (|k —4'|) is the normalized Fourier transform

of the finite range exchange interaction given by

j‘ei(E—E').Ff(r) d3r
[rndr

—rila

(r/'a)

go(k~k'|)=

@.177)

which, for the Yukawa form of the interaction, f(r)= , becomes
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A2

with A:}—-, o being the range of the interaction. The dimensionless function
o

g (k—k'])= (2.1.78)

1+

Gr(k,p,Y,) appearing in eq.(2.1.75) has a very complicated dependence on temperature
T, momentum & , total nucleon density p and proton fraction Y, iy However, in the

particular situation of very large k i.e |k| >>|k'|, where g, (k- k'|) appearing inside

the integral in eq.(2.1.76) can be approximated by g, (k) and the functional
Grikp,Y,) simplifics 0 Gp(k,p,Y,) g s ®(~2Y,)Lg (k). We can, now,
Po

examine the neutron and proton effective mass splitting without going into detail -

calculation of u7™?(k,p,Y,). In this asymptotic limit of drge k, the dimensionless
M B

quantity ﬁﬁuT (k,p,Y,) appearing in the expression of neutronproton effective

mass difference in eq.(2.1.73) can be calculated for the Yukawa form of exchange

interaction from eqs.(2.1.75, 2.1.76 and 2.1.78) and is given by

_ ol 2
M a "—1’( P> p) ""_2(1 2 \Mp (\Eex sex) & (2'1'79)

72k dk EpoTF] "W py (1+0?k2)

This is the corresponding expression of eq.(2.1.24) for the Yukawa form of the

exchange interaction. It is evident from this expression that the asymptotic behaviour of

th jk 7 P (k,p,Y,) is positive for negative values of (¢, —¢X). This implies that
hj‘zlk 5k ur (k, p,Y, ks —M—gak-uT(k p,Y,) and asymptotically the neutron effective mass

[A;[l *k,p.Y, )} is less than the proton effective mass [—% k., p,Y, )} . On the other
»

n

hand, the asymptotic behaviour of ;A% jk (A p,Y,) is negative for positive values

of (&! —¢"!) and asymptotically the proton effective mass will be less than the neutron
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effective mass. In order to examine the dependence of neutron-proton effective mass

splitting on the splitting of the combined exchange parameter, (&’ + &), into like and
unlike channels in more detail way we consider the zero-temperature case with the

Yukawa form of exchange interaction. In this case the neutron and proton effective

masses can be obtained analytically from eq.(2.1.23) with the help of the following

relations,
| 3N +h, 4K (R +(ketk,)?
1 au”(k,p,)';,)_el IA 8k’ A +k—-k,)
k& 00| 3NN +E ) 1 6N 1
Tk WG R -k K N k)R + -k, )]
[ R kR {A2+(k+kp)2}
i Pe &%, N +k—k,)
| NN 4k, K 1 6A' 1
1 24 2 2 2 Fy) 2 + 2 2 2§42 2
] *k, W Geork) P IN 4 (=8, k7 N+ 4k, Y AT + (k)
(2.1.80)
and
3NN +k, ) h{z\? +(+k p)z} ]
1ar®pR)_ Py &'k, A +e—k,)
k& po| KW +k ! ) 1 N 1
A R A W R I I +(k~kp)2J_
WA K D). R +Gerk ) ]
sl pn 8‘73’%3 1\2 +(k—kﬂ)2
+Eex—
Po| 3N (R +k-K) 1 6A' 1

.*—-—-—.
W Rk, PIC+k P] k(R 4tk P IR+ G-k Y

(2.1.81)
Now, the two opposite type of neutron-proton effective mass splitting can be
reproduced by considering suitable splitting of the exchange strength parameter

! ul
E, +¢&
g, = [ %} into like (1) and unlike (ul) channels. In order to examine this two

representative values of the splitting of ¢, _, namely,

ex?
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gl —fa g _a __ (CaseA) (2.1.82)

gl = i _fx __ (CaseB) (2.1.83)
are considered. The neutron and proton effective masses as a function of momentum in

asymmetric nuclear matter having density p=p, and Y, =0.1 are shown in the Figures
2.4(a) and 2.4(b) for the two cases A and B. (e., —£2) is positive for case A and the

neutron effective mass goes above the proton one as expected, whereas, (¢! - ) is
negative in case B and hence the splitting is in the opposite direction. The asymptotic
behaviour of neutron and proton effective mass splitting as obtained from eq.(2.1.79)
are also shown in the same figure for comparison. The asymptotic results agree quite
well with the exact result for & >>3.5 fm™'. The density dependence of these two
opposite types of splitting of neutron and proton effective masses could also be quite
important for the differences between neutron and praton transport properties in highl)‘/

asymmetric dense nuclear matter. Hence, the neutron and proton effective masses at

p——" |
/
/f
/7
e 7 I
S o. @ L
;?L d €oy =€, /3
ul_
O% Eex _—86)(13
X / ’
:2" // — neutron / — neutron
=, o asymptotic(n) §o asymptotic(n)
— -~ asymptotic(p) —-— asymptotic(p) |
0‘5 : L " i L L 1. 1 L L L 2 I L It t I

Figure 2.4. (a)Neutron and proton effective mass as function of Fermi
momentum for case A. at a fixed density p=p, and proton fraction

Y, =0.1(b) Same as (a) for the case B. The asymptotic cases are also shown for
comparison.
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Figure 2.5. (a)Neutron and proton effective mass as function of relative density
forcase A. at k =0 and at a fixed proton faction ¥, =0.1. (b) Same as (a) for
the case B.

k=0 for these two representative cases as a function of density are shown in Figures
2;5 (a) and (b). As expected, the neutron and proton effective mass splitting has the
similar trend in Figures 2.4(a) and 2.5(a) and Figures 2.4(b) and 2.5(b). The density
dependence of both neutron and proton effective masses in Figures 2.5(a) and (b) shows

that it decreases with increase in density. However, the rate of decrease is considerably

slowed down at higher densities. It may be worth noticing here that for the two

representative cases A and B, the absolute value of (¢! - e;‘)f') does not change and as a
result the curves for the neutron effective mass in Figures 2.4(a) and 2.5(a) are
converted to the curves for the proton effective mass in Figures 2.4 (b) and 2.5(b) and
conversely.

The two types of neutron and proton effective mass splitting discussed above by
considering the two representative sets A and B can be characterized from the
behaviour of the momentum dependence of isovector part of nuclear mean field,

u, (k,p), given in eq.(2.1.53). The expression for the isovector part of the mean field for

our Yukawa form of exchange interaction becomes,
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p2p 2 . 5, 1712 .
e (ks p) = 2 (p) ~——L. {[M (""”]+ hk } +ul (k, p) (2.1.84)
k=k

M M M2c?
7
where, the functional ».(k, p) is now given by
! ul ~rla
e Ex € . . . €
uf (k,p)=——(-Tll’—J[Jo(kr)-Jo(kfr)]Jo(kfr) dr. (2189
e 3 p() }’/a
2[—d’r
rlio
-ria
Now, je d’r = 4na’® and using the identities,
rle
e 3 1+(z,+x,)
Ijo(kr)jo(kfr)e 4 =22 m[ | 2} (2.1.86a)
rla zpxp | 1+(zp—xp)
and
TN r)em P =T In(l + 4x,%) (2.1.86b)
Jo Ky o xf2 ) .

the analytical result for »7 (k, p) becomes

Il 1 2
uf‘(k,p)=(£“" Sex)ﬁ 1 h{ +(z,+x,) ].._ 12 1n(1+4xf2)}
X

8  polz;x, |14(z,—x,) ,
(2.1.87)

where, z, =0k and x, =0k,.

The calculation of u,(k, p) in eq.(2.1.84) as a function of % requires the knowledge of

"

Aj{ (k=ky,p) cormresponding to the

density p and value of nuclear symmetry energy E (p) at the same density p.The

effective mass in SNM at Fermi momentum,

effective mass in SNM for our Yukawa form of exchange interaction can be calculated

from the momentum dependent part of isoscalar mean field, u*(k,p), given in

*

M

eq.(2.1.61). The momentum dependence of v (k,p) at different nuclear matter

densities have been discussed in Refs [64, 65, 67]. Calculation of nuclear symmetry
energy, E, (p), requires the complete knowledge of the interaction. The density

dependence of E (p) still remains as a major area of research in nuclear physics.
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Figure 2.6. u (k,p,) as a function of & is shown for the two representative

splittings of £, = (¢!, +&)/2. The experimentzlly extracted data are shown by
the closed area.

However, its accepted value at normal density p, lies around 30 MeV. At normal

nuclear matter density, the value of effective mass at Fermi momentum is obtained to be

L]

%(k fy»P0)=0.67 for our Yukawa form of interaction. The momentum dependence of

u, (k, py) in normal nuclear matter is calculated for our two representative cases A and

B and is given in Figure 2.6. The contradicting behaviour of the isovector part of mean
field for the two sets of exchange strength parameters A and B is evident in the Figure

2.6. While u,(k,p,) decreases with increase in momentum for case A, it increases for
case B. Thus an increasing behaviour of u, (k, p) (i.e. of u(k, p)) implies that proton
effective mass is larger than the neutron effective mass and for decreasing behaviour of
us (k, p) the opposite is the case. Both the curves of u. (k, p) for two types of neutron
and proton effective mass splitting intersect each other at the value of kequal to the
Fermi momentum % , corresponding to density p. The functional ;" (k,p) vanishes at

k=k, and the value of wu, (k =k;,p) is determined from the first two terms in right
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hand side of eq.(2.1.84) predicting the same value at Fermi momentum corresponding
to a given density for both kinds of neutronproton effective mass splitting.

The momentum and density dependence of neutron and proton effective masses
have still remained as unresolved problems in nuclear physics. From the asymptotic

M ou; P(k,p,Y,)

S = , as may be seen from eq.(2.1.79) the magnitude of

expression of

splitting is proportional to the total density and neutromproton asymmetry parameter

(1-27,). The splitting of neutron and proton effective masses may be small around
normal nuclear matter density p, and, therefore, may be small in finite nuclei where the
density p and asymmetry (1-2Y,) are rather small in order to give rise to any

noticeable effect. However, these two opposite types of splitting of neutron and proton
effective masses may be quite relevant in situations where both density and asymmetry
are high. Such conditions of highly asymmetric hot and dense matter can be formed in
the laboratory in heavy-ion collisions experiments involving radioactive ion beams.
Analysis of the transport properties in such dense asymmetric matter produced in the
heavy-ion collision experiments have been performed by several workers [80, 81, 83]
but little success has been achieved in resolving the puzzle. The formation and cooling
mechanism of neutron stars can be considered as another area of interest for studying
the effect of neutron-proton effective mass splitting. This we shall be studying in the
subsequent chapters. By now it is clear that neutron-proton effective mass splitting
arises due to the difference in momentum dependence of the mean fields experienced by
a neutron and a proton having same kinetic energy in an asymmetric nuclear matter
medium. It will be of interest to examine this aspect of neutron-proton effective mass

splitting in case of the existing Gogny type and Skyrme type interactions.

2.2. Neutron-Proton effective mass splitting in Gogny type interactions
The Gogny effective interaction is given by
VEEY ()= X OV, +BiBy — HiPs M B, )M 41514+ 33P5) p7 (R)8(F)

i=1,2

22.1)
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where, the first two terms represent the short and long range parts of the interaction
having ranges p, and pu,, respectively, and the last term is the zero-range density

dependent term.

With the help of the analytical expression of u""? (k,p,Y,) given in eq.(2.1.33)
and the definition of  u,(k,p) in eq.(2.1.53), the dimensionless quantity

M " (k,p,Y,)
1’k ok

can be expressed as,

M ou"P(k,p,Y,)
n2k ok

M ug (%, p)

o I
(222)

where, u7(k,p) is given in eq.(2.1.54) . The functional 47 (k,p) for the Gogny

=2(1-2,)

effective interaction in eq.(2.2.1) can be

u?(k,p)zg >, I:-i—(vfe ~3v/° )—%(v,‘-’e + 39/ =3y ~v,-s°)}
=12
X {jjo (kN jo (kf")e_(r/'u’)zdsr - jjg?'(kfr)e”(r’l’"")2 d3r}
2.2.3)

where, v* v/, v°,v® with i=12 are the finite short and long range strength
parameters in singlet-even, triplet-even, triplet-odd and singlet-odd states. Now

evaluating the strength factor in the square bracketed term and using the identities,

J'j kr)j.(k r)e—'2/”2d3r=ﬂ—‘u—3- exps — z—x}z —expl — Ztx ’
OFHOS zx 2 2

(2.2.42)

and

3/2,,3
. - 2 T 42
fjoz(kfr)e i d3r=—————x2‘u (Q-e™)

(2.2.4b)
where, z=uk and x=uk,, the expression for u;" (k,p) in case of Gogny effective

interaction can be analytically expressed as,

“k+k
i
k L

2

2k W, ) -

uy (k,p)=——= —+B, |-Lde~* “(l~e”4kf " ) .
- (6p) 3«/;1\,. i=zl,:2( 2 'J k

(2.2.5)
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Here in this expression A, is related to the range parameter u; as A; = 2 Now the
i

M aull~p (k,p,Yp)

n’k ok

dimensionless quantity becomes,

M " (k,p,Y,)
nk ok

ke, Y kek, V k2
(%) %{;(ﬁ A5 }_..{__)(—)

' M
=21-21)—

! \ i

k+k '[%)2
{5
2.2.6)

In Gogny effective interaction the values of the two raage parameters y, and u, are
0.7 fm and 12 fm respectively. It is evident from the above expression in eq.(2.2.6)

that in the asymptotic region of large momentum, the behaviour of the neutron-proton
effective mass splitting for the case of Gogny interacticns will be determined from the

short range part (u; =0.7 fim) as the contribution coming from the long range part

(i, =1.2 fm) can be safely ignored. Thus, the sign of (ZZ—‘— + B, ) for the short range

60 T T T T LT ' I ‘ I
I/
N -
P4
s, < ’
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Figure 2.7. u{*(k,p,) is plotted as a function of Fermi momentum k at a fixed

nuclear matter density p = p, for different Gogny interactions. The results of
the some Skyrme interactions are also shown for comparison.
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part of the Gogny effective interaction will determine whether asymptotically for large
k the neutron effective mass is above the proton effective mass or the other way
around. Amongst the different sets of Gogny effective interactions used by Blaizot et al.
[42], this parameter combination is positive for D1S and D250 and therefore

asymptotically for large & the proton effective mass goes above the neutron effective
mass. On the other hand, asymptotically for large £, (%—‘--z—B,) is negative for DI,

D260, D280 and D300 and as a result the neutron effective mass goes above the proton

effective mass. This can be seen from the Figure 2.7 where we have shown the variation

of uf*(k, py)at normal density p, over a wide range of momentum k=0 to 6 fm™'.

2.3. Neutron-Proton effective mass splitting in Skyrme type
interactions

The energy density Hy(p,,p,) in ANM at temperature 7 for Skyrme type
interactions is given by

2

h 1
Hy (P, P,) =" +Zt0[(2+x0)p2 ~(2x, +1)(p,” +p,)]

t
+54 P2 +x)p* - (2% +1(p,” +p,)]
1
+—8~[zfl 2+x)+t,(2+x,)hp
1
+§[(t2 (2x2 + 1) - tl (2‘x1 +l))(Tnpn +Tp pp )]

(2.3.1)
where, the total density p=p, +p p» total kinetic energy density t=17, +7 p with the
definition 7, = _[f;.’*" (k)k*dk, and tosX0s t3,%3, 7,1, 4,12 and x, are the parameters
of Skyrme interaction . At zero temperature, T =0, the momentum distribution function

Irs (l;) takes the form of step function 6(k, , k), where knp =(375 ZP,,,p )”3 and the

3
kinetic energy density becomes T =T, +T, = 3 (k,.2p,, +k p2 Pp). The energy density

H(p,,p,) in ANM at zero temperature for Skyrme type interaction now becomes
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3 1
H(p,,p,)= Z—M-g(kfp,, +k,fp,,)+zto [2+x)p" ~ (2%, +D(p,” +p,")]

t v 1
o P24 %)p" = 2x +1)(p,” +p, M+ 2+ 31)+ 6,2 +2)hp

1 .
+ g[tz 2x, +D)—4,2x, + DIz, p, +7,0, ]
(2.3.2)
Here we have used the non-relativistic expression for kinetic energy density for sake of
simplicity. The neutron and proton single particle energies are obtained as the

respective functional derivatives of the energy density,

oH(p,,P,)
g, (k,p,.P,)= —
(2.3.3)
and
O (p,,p,)
gp(k’pn’pp) = 07 EL
ar,l
234
The neutron single particle energy for the Skyrme energy density given in eq.(2.3.2)
becomes
hk?
&,k PsPp) =7 =+t (K, Pos Py),

(2.3.5)

where, u, (k,p,,p,) is the neutron single particle potential obtained as

t 4 -
ty (6,9, ) =12+ %)P = 250 +Dp, 1 4752 P72 433007 = 2x3 +1D(p,” + 9, )]
t 1
+T32-p7[(2 +x3)p —(2x, +1)p,,] +§[t1 (2+x)+1,(2+x,)]( + pk?)

1
+§[z2 (2%, + 1) —1,(2x + D], +p, k)]
(2.3.6)
The proton single particle energy for the Skyrme energy density in eq (2.3.2) becomes

272

nk
gp(k’pn’pp)ZW-‘-up(k’pn’pp) 2.3.7)

where u,(k,p,,p,) is the proton single particle potential obtained as
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t by i
u,(k,p,,P,) =—2°-[(2 +x)p —(2x,+Dp,] +7-2—2-p’ W2 +x,)p" —@x +0(p," +p,)]
t 1
+I;—py[(2+x3)p -@2x;+)p,] +§[t1(2+x,) +1,(2+x,)] + pk*)

+-§-[:2 (2%, +1)—1,(2%, +D](z, + k)] 2.3.8)

In case of Skyrme type interactions the neutron and proton single particle

potentials have k?-type momentum dependence. This & also the case in case of Seyler-

Blanchard interaction [38]. One can derive the equivalent expression for u.(k,p) for

Skyrme type interaction, in terms of symmetry energy E(p), effective mass in SNM

M-M-(k 7»P) and the functional ;" (k, p) as given in eq.(2.1.53).

The neutron and proton single particle potentials in eqs.(2.3.6) and (2.3.8) can

be expanded in powers of asymmetric parameter B = &;EL. The neutron and proton

P. P,

densities in terms of B are p, =-§-(I+ p) ad p, =%(I—ﬁ), respectively.

Expanding the neutron and proton single particle potentials in powers of f and

retaining terms upto the 1% powerin f, one gets,

u, (k,p,ﬁ)zu(k,p)+ﬁ{—t—§(xo +ljp --lt-iz_(xs +l]pr+l +-§[t1(2 +x,)+4,(2 +x2)](kf2 +k2)L23_}

2 2
(2.3.9)
t 1 t 1Y ., 1
u,(k, p,B) = u(k, p) + B{—g(xo +—2-)p +~1-§2-(x3 +—i]p7 ! —g[t, @2 +x)+6,Q2+x,)kk,* +k2)—g—}
(2.3.10)
2 \I/3
where, &, =(37[ P J . u(k,p) is the single particle pctential in SNM for the Skyrme

type interactionand is given by
3t0 123 7+l 1 2
u(k,p)=—4—p+l—6-(y+2)p —;~-1---6-[3t1 +(5+4x,)8, JT + pk?) (23.11)
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with 7= %k fz p - Now the isovector part of the neutror-proton single particle potential,

u"(k,p,ﬁ)“u,,(kap;ﬂ)
2B

, for the Skyrme energy density functional becomes,

u (k,p) =

u (k,p)= ——%’-(xo + %)p~%(x3 +-;—)p 1 4»—%2-(k2 + ku )P, (2.3.12)

where, Q is defined as

0= é—[tz(Zx?_ +1) -4 (2% +1)]. (2.3.13)

2.3.1. Symmetry energy E (p) for Skyrme energy density
1 3*H(p,B)

Using the definition of nuclear symmetry energy, E (p)= > ,
28 B |,

the expression E(p) for the Skyrme energy density is obtained as,

2

27 2
(2.3.14)
where, the quantity P is defined as
P =-;-[(2 +x )t + 2+ X5)t,] (2.3.15)

and @ is defined in eq.(2.3.13). In obtaining this we have used the nonrelativistic

expression for kinetic energy term.

2.3.2. Effective mass * (k,p) in SNM for Skyrme type interactions

M
The expression for effective mass m (k,p) in SNM for the nonrelativistic
. * -1
approximation of kinetic energy density is given by M (k,p)= 14 M oulkp) ;
M nlr ok

where, u(k,p) is the single particle potential in SNM. For the Skyrme single particle

potential in SNM, given in eq.(2.3.11), the effective mass for Skyrme-type interaction

becomes,
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x 1
M 2M 134+ (5 +4xy)1

=11+ .
-1 D rCrdnla

(2.3.16)

It may be noted that for Skyrme type interactions or any other effective interactions,
such as, Seyler-Blanchard interaction, which results into quadratic momentum
dependence of the single particle potential, the effective mass does not have momentum
dependence.

The nuclear symmetry energy Eg(p) in eq.(2.3.14) can now be expressed in

terms of the isovector part of the » — p single particle potential in eq.(2.3.12) as,

_1 Pk NP Q4 e
Es(p)—zu,(k,p)-{ o +(P+2j 3 } 20—k, ). (2.3.17)

Thus, the isovector part of the nuclear mean field in ANM given in eq.(2.2.12) in case

of Skyrme interactions can now be expressed as,

_ n’k? M Q.2 , 2
u,(k,p)-zEs(p){ L {1+(Q+2P);;P}L 3@ ekhe, a1y
=ks

where, Q+2P=~;—[3t, +1,(5+4x,)]and the term inside the curly bracket can be

identified as the inverse of the effective mass in SNM given in eq.( 2.3.16). So, finally
u, (k, p) for the Skyrme type interactions can be expressed as,

th 2 * -1 ’
u, (k. p) =2, (p) ——M;—[%(mj +2@ -k M. (23.19)

This may be compared with the expression for u.(k,p) derived for general effective

interaction earlier in eq.(2.1.53), but with the consideration of nonrelativistic

approximation for kinetic energy part in place of relativistic one. It follows from the

comparison that the expression for 7 (k,p) for Skyrme type interaction is given by the

simple expression,

n 1
k)= % (PP T2 +) -1 25-+D]E 4 )p
(2.3.20)
M ('514{-%r (k,p)

Now, the dimensionless quantity ——
n’k ok

for the Skyrme case results into a very

simple structure,
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M oul (k, M
e P e ex + D=0 Cx DI, @321)

which is independent of momentum £ . This implies that in case of Skyrme interactions,

as well as, in the cases of effective interactions which have %2-momentum dependence
in the single particle potentials, there will be no temperature dependence in the neutron
and proton effective mass. The neutronproton effective mass splitting at a given

density p will only depend on the neutron proton asymmetry, i.e., (1-2Y,) and will be

same at all finite temperatures to its zero-temperature value. The sign of the parameter
0 =é—[t2(2x2 +1)=¢;(2x; +1) will determine whether the neutron effective mass is

above that of the proton or the other way around. The Skyrme parameterizations such as
SGII, RATP, SKP, SKX, SKXm, SKSC, LNS, BSk17, BSk17st [29, 131, 156] have
also negative values of parameter Q. In all these cases ;" (k, p) in eq.(2.3.20) will be a
decreasing function of %4 and hence the neutron effective mass is above the proton
effective mass irrespective of temperature, momentum and density. On the other hand,
all the SLY type and SKI-SKI6 give positive value of the parameter @ and in these
cases the proton effective mass is above the neutron one. For Skyrme parameterizations
such as SKSC4 and T6 for which x, =x, =-05, the parameter Q vanishes and the
neutron and proton effective masses are identical. The values of the parameter @ for
different Skyrme sets are listed in Table-1.

From the general expressions of isoscalar and isovector parts of the nuclear
mean fields given in egs.(2.1.60 and 2.1.61) and (2.1.53 and 54) it is evident that

momentum dependence of nuclear mean field and density dependence of nuclear EOS
are two distinct features. The study on one of these two aspects of nuclear matter using
an effective theoretical model requires the other aspect to remain unchanged in the

process of calculation. This was not possible with the Skyrme effective forces having a
single conventional density dependent term, proportional to p?, where the exponent y

is strongly correlated to the incompressibility K(p) as well as the effective mass
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Table-1. Values of the parameter ¢ for dirferent Skyrme sets.

Skyrme Xy X f t; Q/2
sets
GS 0 0 336.2 -85.7 -26.37
RS 0 0 336.0 -84.8 -26.3
SGI -0.50 -1.73 515.9 84.5 -12.99
SLY0 -0.50 -0.93 485.2 -440.5 23.68
SLY1 -0.31 -1.0 488.3 -568.9 23.96
SLY10 -0.67 -1.0 431.0 -305.0 28,22
SLY?2 -0.73 -0.78 482.2 -290.0 24.01
SLY?230a -0.84 -1.0 489.5 -566.6 56.22
SLY3 -0.34 -1.0 481.0 -540.8 24,18
SLY4 -0.34 -1.0 486.8 -546.4 2441
SLYS -0.32 -1.0 484.2 - -556.7 23.90
SLY6 -0.47 -1.0 462.2 -448.6 26.30
SLY7 -0.49 -1.0 461.3 -433.9 26.54
SLYS8 -0.34 -1.0 480.8 -538.3 24.03
SLY9 -0.62 -1.0 510.6 -429.8 34.52
SV 0 0 970.6 107.2 -53.96
SKI1 -5.78 -1.29 439.8 2697.6 23.88
SKI12 -1.74 -1.53 438.4 3054 28.63
SKI3 -1.17 -1.09 561.6 -227.1 63.78
SK14 -2.89 -1.33 473.8 1006.9 37.08
SKI5 -1.31 -1.05 550.8 -126.7 64.48
SKI6 -2.14 -1.38 483.9 528.4 41.08
SKMP -0.40 -2.96 503.6 57.3 -23.91
SKO -2.81 -1.46 303.4 791.7 -7.39
SKO' -1.33 -2.32 301.5 154.8 -3.94
SkT4 -0.50 -0.50 303.4 -303.4 0
SkT5 -0.50 . -0.50 328.8 -328.8 0
GSkl -1.7586 -1.8068 397.23 264.63 19.27
GSkII -0.7203 -1.8369 393.08 266.08 -33.64
SSk -0.4519 -0.9214 435.0 -382.04 17.51
LNS 0.65845 -0.95382 266.735 -337.135 -19.5
BSk17 -0.832102 49.4875 389.102 -3.1742 -3.68
BSk17st -0.834832 29.0669 388.916 -5.3076 -3.34
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*

M (p) in nuclear matter. We shall show it in the followings. The energy per particle in

SNM,

e, (p)=ﬂ§p—) , for the Skyrme forces as follows from eq.(2.3.2) with

p,=p,=p/2is,

w ()" L. 3 4 3[3 + 4,5+ 4x)] 3x2 )"
e(p)= Ftgp +=2pH o2 2 5/3
o (P) 10M[ 2 J Pt TP TS 16 2 ) P

. (2322)

, can be

The pressure in nuclear matter, P(p)=p* ...........a‘z;’(p )
D

2 (3z2 )" 3 : 30, +4, (5 +4x,)) (3n2 )
P(p)=—|— By Zigp 2 (y+p T 4 2 2 8/3,
) SM( > } PPl +top® + 2 (r+ Dp v 7] °

(2.3.23)

and nuclear matter incompressibility,

2
K(p)=922P) 18P 4 g2 O eulP)
op p op

becomes

3n? (372" ot 3 32 )"
K(p) =— L2 pq y +)p? +[3t, +1, (5+4x,)]| — 33
» SM[ 2] p 167(7 )P 8[ |+, (5+4x,)] 5 p

18] # (3m2)"” 3 , a [Bt +6,G+4x,)] (372 )"
+__l:__(___j p5/3+-§t0p2 +_i—36_(,},+1)p7 2+[ 1 +H6( 2)] Pt

plsM\ 2 16 2

(2.3.24)

These three quantities at saturation density, p = p,, becomes

3t (32 3 t
€ (Po) =—‘(“‘_) P, +—§top0 +'1"36'po

2
pt, A3+ 1, 5+ 4x,)] 377 ’3p5,3
oM\ 2 0

80 2
(2.3.25)

2/3
n? (3n? 5i3 .3 2 13 2

P(py)=0=—u| — =t +=2(y +D)p,T +

(Po) SM( 5 ) Py 2 0Po Te (r +Dpy

(34 +1,(5+4x,)]( 372 273 $/3
16 2 Po

(2.3.26)
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32 (32 ¥ 9t 3 a2 )
K(PO)Z“'——[ 5 ) P()S/3 +"1“63‘Y(7+1)Po}’+1 +"8"[3t1+t2(5+4x2)](_2—) Poﬂ3

M
(2.3.27)
For a given set of values for p,, e,(p,) and K(p,), these three equations (2.3.25 - 27)

can be solved to obtain the values of three unknown parameters ¢,, f; and 6,
where,
63 :[3{1 +12 (5+4x2)] . (2.3.28)

*

)‘Aﬂ(p)in

SNM given in eq.(2.3.16). This conclusion is, however, not correct in a specil case

This parameter @, thus obtained, uniquely determines the effective mass

corresponding to the value of the exponent 'y=—§-. For this special case, the above three

egs. (2.3.25 -27) are given by,

2/3
3n% (3n? s/3 3 3 5/3
+ =t +—=F(0,,! =
IOM( > ] Po gloPo t o (85,23)py e(po)
(2.3.29)
W2 (372 2/3 3
n 2/3 5/3
222 +Ztypy + F(O,,t =0
SM( 7 J Po 2 0Po (05.13)Py (2.3.30)
and
312 (322"
2/3 5/3
——] — +6F(0,,t =K
SM( 5 ] Po O, 13)P0 (Po), (23.31)
where, the new parameter F(0,,7;) is given by,
ANERARE
T
FO,,t;)=—|0,| —| +2¢
(05,13) Te s[ > ] 35 | (2.3.32)

Thus, in this particular case of y:-:-?l, there are two unknowns ¢, and F(6,,s;) in egs.
3

(2.3.29- 31). The first two equations can be used to determine these two parameters, ¢,
and F(6,.,t;), and then the comresponding value of K(p,)can be calculated. The
definition of F(6,,;) in eq.(2.3.32) above allows to choose 6, freely. Thus, for the
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given value of nuclear matter incompressibility K(p,) corresponding to y:%, the

effective mass can be freely chosen. This important fzature is illustrated well in the
work of Cochet et al [157]. This work of Cochet et al is a major breakthrough in
disentangling the strong correlation between the effective mass and incompressibility in
cases of Skyrme forces with single density dependent term. Inclusion of a second
density dependent term enabled to chose the incompressibility and effective mass
independently. The theoretical justification of the two independent density dependent
terms, as discussed by Cochet et al.[157], originates fromBruec‘kener correlations in the
context of mixed non orthogonal vacua [158] and renormalization of three body forces
through a density-dependent two body interaction[-8, 131, 158-160]. With the
development of this improved version of Skyrme interaction that is able to disentangle
the strong correlation between incompressibility and effective mass, Leisinki ez al
[131] in their work studied the effect of the variation of neutron-proton effective mass
splitting on properties sensitive to the isovector features of nuclear EOS. The Skyrme

effective force containing two density dependent terms used by Leisinki et al. in their

study, is given by,

V(R,7)= 22] to; 1+ x, B)SH [ pR)]> + 1211 (1 +x,P)EFk? + k* 8(F)]
i=0

+ty (L + X B Y -8(F )k +iWo (G + 65 xS (F)k
(2.3.33)
where, the symbols have their usual meaning. The neutron and proton effective masses
have been obtained from the energy density resulting from this Skyrme interaction in

€q.(2.3.33) in ANM by using the relation

n’ _oH _1 By +t2(5+4x2)]p+qﬁ[t2(1+2x2)—t,(l+2xl)]p

oM, br, 2M 16 16

(2.3.34)

where, ¢ =+1,—1respectively for neutrons and protors. Thus, the neutron, proton

effective masses can now be given as

M _M g2 (2.3.35)
M, M, M, M,
where, —£ and —* are defined as the isoscalar and isovector effective masses given as
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M N 2M [3t, +1,(5+4x,)

=1 =1+K 2.3.36
M* :1+2A2/[ '[3t1+t2(5+4x2)_[—t1(1+2x1)+t2(1+2x2) p=l+x
M, h 16 16
(2.3.37)

with, x, =81;:(—2[3t1 +1,(5+4x,))]and «, =-‘3_14—2[t1(2+x1)+12(2+x2 )] is defined as the

isovector enhancement factors. The quantities A/, and x,are not isovector quantities in
the sense of isovector couplings of the functional. It follows through the terminology
used for x,of the Thomas-Reiche-Kahn sum rule in Ref. [161]. The splitting of
effective masses is quantified by

AM* M, M,

n

MMM 2.3.38
20k, - ;) @339
S
such  that AM™ > 0, for x, >K;,  or  equivalently M, <M, or

[t;(1+ 2x) + t5 (1 + 2x, )] < 0. It may be noted here that the expression of the quantity

( ;j M ] in the work of Leisinki ef al. as obtained from egs.(2.3.36) and (2.3.37) is

M _dug (k,p)

exactly same with the result of dimensionless functional PEPE— obtained in our

formalism for Skyrme interaction given in eq (2.3.21).

The advantage of using a second density dependent term lies in the fact that it
provides additional freedom to adjust the high-density part of pure neutron matter
(PNM) allowing a free choice of neutron and proton effective masses with a good fit to
EOS of PNM. This can be better understood if we write the expressions for energy per
particle in SNM, e,(p), and PNM ¢, (p) for the Skymme interaction given in
€q.(2.3.33),
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5 2 \2/3 2 \2/3
es(p) = > [3” J p“’+Cé’p+%C<§(3ﬂ ] p’"

10M | 2 5
(2.3.39)
and
e, (p)=%}(3x2)2’3p2’3 +(C§ + c{’ )p+-:-(CE LCHERHY3p5? (2.3.40)
* where,
o :izt(ﬁpm = 3too “’”Etmf)”3 +§t02p2/3 (2.3.41a)

g g% 8 8

: 3 +(5+4xy),
Cf =————=r2
16
p 2 1 ir3
(23.41b) =Z—gt0i(l+2xm)p
=0

(2.341c)

-1+ 2x, )tl +(1+ 2x, )tz ) (2341(1)

16

It may be noted that if we set ¢y, =0, #4 =¢, and ¢ :% then we get the conventional

cl =

expression for energy per particle e,(p) of Skyrme interaction with single density
dependent term with 7:% as given in eq.(2.3.22). Alorg with this, if we take x, =0,

Xoo =X, and x,, =x, then we get corresponding conventional expression for ¢, (p) in
PNM. |

Now if C? coefficients will contain one low power of the density (o« p'/¢) asin
case of Sly-type interaction [112], this will influence more on the low density behaviour
of the EOS of PNM. The effective mass term then determines the high-density part of
the EOS. Thus, in case of PNM, the EOS above the safuration density is then mostly
fixed by the terms proportional to (Cj +Cy ) of €q.(2.3.40) and any attempt to use the
density dependence to counteract its effects results in a very strong constraint on the
incompressibility of SNM. This in turn degrades the behaviour of the functional at and
below saturation density. It may be recalled that for AM * > 0, corresponds to C¥ <0, i.e.
[- @ +2x)4 +@ +2x,)1,]< 0, which drives the high-density behaviour of EOS in PNM
down and explains why the usual Skyrme functionals predict either a collapse of the
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PNM if AM">0,or like the Sly functionals fitted to EOS in PNM that results into

* . - .
AM <0, i.e., proton effective mass is greater than neutron one.

In case of the present form of Skyrme intecaction containing two density

dependent terms (o« p'3, p?/3) the above discussion does not apply and allows a free
choice of neutron, proton effective masses along with a good fit to EOS of PNM and

satisfactory nuclear matter properties. With the help of this advantage of the additional
second density dependent term Leisinki ef al. [131] have constructed three new Skyrme

parameter sets those corresponding to M, <M, ( set named f ), M, =M, (set named

), M,>M,(set named £), in their work in Ref[131] and have used them in

calculating the observables of infinite nuclear matter and finite nuclei, paying particular
attention to controlling the agreement with Brueckenzr-Hatree-Fock calculations of
spin-isospin content of the finite nuclear equation of state. In this attempt of resolving
the existing uncertainty in neutron-proton effective mass splitting using Skyrme force,
Leisinski et al. have concluded that the various constraints arising in their study cannot
be fulfilled simultaneously, calling at least for an extession of its P-wave part of the
Skyrme forces. Similar attempts in other areas have also been made in recent years to
resolve the neutron-proton effective mass splitting problem as well as the high density
behaviour of nuclear symmetry energy. In this context the works of Li et ¢l.[81] and
Rizzo et al. [84] can be discussed. In their works they have made attempts to constrain
the momentum and density dependence of the isovector part of the nuclear mean field
from the analysis of observables sensitive to neutron and proton flow data resulting
from medium and high energy heavy-ion collision experiments using radioactive ion
beams. During that period the development in the atea of radioactive ion beam
experiment facilities had inspired a good deal of hope it resolving these two important

and long standing issues in the field of nuclear research.

2.4 Workof B A. Lietal
In the work of Li ef al. [81], they have basically made an attempt to constrain

the density dependence of nuclear symmetry energy. The effective energy density in

ANM used in the work for transport model analysis of HI collision flow data is given

by,
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2 71 /2

Hy(ppop,) =50 2 [, 00K dk+V(p,T, ),

r=—1/2

where, the interaction part is given by

A,,P,,P,, +_/£_ 2 2 B pa+\

Vip,T,B)= p '(P,. +p, )+""_'J o (1-xp*)
[ [
., (2.342)
+_ZCTT J‘!d:’o d3 If;(r p)ff(rp).
0 7,7 1+ 2 )
A

. . . 1
In this expression 4,,4,,B,C - A,x,0 are the parameters involved. 'c,'c'=5 for

neutron and -% for proton and 7=#7’, cr:-g— and £, (F,p) is the momentum

distribution function. The nucleonic mean fields in ANM under thermal equilibrium

follow from the above eq.(2.3.42) by taking the functional derivative and is given as,

. Py p i
U(p,T,B,5,7) =4, AP+ B
(p,T,B,p,7) (x)p + (x)p + (pJ

0 0

+1
2C 7, D 2C 7, D
v g LB T gy SLD)
Po I+(p=-p) /A" Py I+(p-p) /A
(2.3.43)
The parameters 4,(x),4,(x),B,C; ;,C, - and A are considered to be temperature

independent and have been obtained by fitting the momentum dependence of
U(p,T=0,8, p,7) to that predicted by the Gogny Hatree-Fock and/or the Brueckener

Hatree-Fock calculations, along with the constraints, such as, saturation properties of

symmetric nuclear matter and the symmetry energy E (p,)=30MeV at normal

nuclear matter density p, =0.16 fm™. The parameter B =106.35MeV along with the

value of a:% is adjusted to give the value of the nuclear matter incompressibility

K(po)=211MeV . The momentum dependence of neutron and proton mean fields is
adjusted from the fitting to the Gogny Hatree-Fock and/or BHF calculations that results

the values of the strength parameters for the momentum dependent parts

C.r =-103.4MeV and C,, =-11.7MeV for the value of the parameter A =p}, ie,
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Fermi momentum in normal SNM. The parameter x is considered as a free parameter in

terms of which the rest two parameters, 4, (x) and 4,(x), are expressed as

2B 2B
A, (x)=-9598-x and Ay (x)=-120.57 + x . (2.3.44)
o+l U+l

In this work of Li ef al. the free parameter x is varied to reproduce different density

dependence of nuclear symmetry energy for a given effective mass splitting. The value

of the parameter x is put by hand and two values, namely, x=1 and (are considered
in this work. In subsequent works [85] other values of x=-1-2 are also considered.
The density dependence of symmetry energy E (p) for the case x =1 is the same as the
default Gogny interaction, i.e., it has decreasing trend teyond normal density p,. The
density dependence of E,(p) for the case x =0 has a st:ffer behaviour and do not show
a decreasing behaviour at higher values of density, in agreement with the predictions of
RMF calculations. The contribution of the kinetic energy part of E (p) and the
different potential part contributions for the cases x=1 and 0 given in the Figure 2 of
Ref. [81] is shown below in Figure 2.8 for reference. The widely different behaviour of

the potential parts, as can be seen from the figure, for the cases x =0 and 1 results into

E, (Mel)

20
e ’6’,6.:. i ,‘-'O.'a
p (tm™) | |

Figure 2.8. Contributions of the potential and kinetic parts of the nuclear
symmetry energy calculated for the MDI interaction of B. A.Li et al.[81]. In the
figure RMF result and calculations for Gogny interaction are also shown for

comparison. The figure has been reproduced from Ref.[81].
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Figure 2.9. The density dependence of nuclear matter symmetry energy is
shown for different values of the parameter x in the MDI interaction of Chen ef

al. [85]. The present figure is reproduced from Rezf. [85].

the different behaviour of E (p) for the two cases. The density dependence of the

symmetry energy E (p) is still stiffer for the values of x=-1 and -2. The plot of
E(p) as a function of P as given in Figure 1 of Ref. B5] for these four different
Po

cases x=1,0,~1 and -2 are given here in Figure 2.9 for reference. The purpose of Li et

al. in this work was to obtain EOSs predicting widely varying symmetry energy E, (p)
at supranormal densities for same neutron-proton effective mass. splitting. This is

accomplished by the use of the parameter x in the density dependent term. As it is well

known that the momentum dependence of isovector pert of the neutron-proton mean

u, —u
fields, ——~, determines the effective mass splitting, both the symmetry energy

corresponding to x =1 and 0 will have the same effective mass splitting as momentum
dependent part of single particle potential in eq.(2.3.43) is independent of x. For each
case of symmetry energy, Li ef al. have examined the rolz of momentum dependence in

the isovector potential by comparing the results for the present case with the results for

the cases with nucleon potential U, . (p,B,p,T)=U,(p,p)+U,, (p,B,7) that has

sym
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the same momentum dependence for the isoscalar part and a momentum independent
symmetry potential U, (p,[3,7) that gives the same FE_(p) as that of the case in
eq.(2.3.43). The momentum  dependent and the corresponding momentum
independent symmetry potentials for the different cases of symmetry energy density,
x=1,0, have been used by Li ef al. in their transport model analysis of data of several
experimental observables in heavy-ion collision reactions induced by neutronrich
nuclei at rare isotope accelerator(RIA). In this attempt Li ef al have found significantly
different predictions for the two cases of symmetrv potentials with‘ and without
momentum dependence. But they have not been able tc extract the accurate behaviour
of the density dependence of symmetry energy £ (p) and have concluded that
momentum- and density- dependence of symmetry potential (i.e. the isovector part of

u —up

the neutron-proton mean fields, ) have to be dezermined simultaneously for the

purpose of extracting actual behaviour of E (p). The reason of this unsuccessful
attempt may be attributed to the limited scope of the formalism to vary simultaneously
the momentum- and density-dependence of isovector part of the mean field, u, (%, p).In
their formalism Li et al. could obtained different density-dependence of u, (%, p), i€,
different behaviour of E_(p), by changing the value of the parameter x. However, for
each case of E (p) thus obtained there was no scope to vary the momentum
dependence of u.(k, p), as the strength and range of the momentum dependent parts,
ie, C,.,C, and A are fixed. During the same period Rizzo et al. [84] had made an
attempt to study the effect of momentum dependence of the isovector part of the mean
field on the flow dynamics. Let us now compare the momentum dependence of
isovector potential of the works in Refs. [81, 85] with thz results obtained with our two
parameter finite range Yukawa interaction as discussed :n section 2.1. The momentum
dependent parts of the nucleonic mean field in ANM used by Li ef al. givén in eq
(2.3.43) are similar to the exchange part of the neutron/proton mean field obtained for
the Yukawa form of finite range part of the interaction used by us. The strength
parameters 2C_ . and 2C, . of the momentum dependent parts of the work of Li et al

ul
ex
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can be identified with those of ¢! and ¢ used in our work given in eqs.(2.1.65) and



(2.1.66), respectively. The parameter A that specifies the range of the interaction has

been taken to be A =1.0 p% by Li et al. The parameter A used in our work is related to
that of Li et al. by a factor of #, i.e, Aof Lief al is equivalent to #A of our work. We

have expressed our A in the units of wave number in normal nuclear matter , & fo> ie.

A =Jky , A being the multiplying constant factor. Thus the value of A corresponding

to A=1.0p% of Li et al. is 1. However, for our case with finite range Yukawa

el +e¥

interaction A and the exchange strength parameter ¢,, = X of the isoscalar part

of the mean field are obtained by adopting a simultaneous minimization procedure
subject to the available constraint on energy dependence of optical pdtential, as has

been discussed in the section 2.1. The value of A thus obtained in our case of Yukawa

el ve

interaction is 1.833. The strength of the exchange parameter, ¢, = 5 &, of the

isoscalar part of the mean field obtained in our work is -121.84 MeV, whereas, the

corresponding  value  of  strength  parameter of Li et al is
%(2Cr1+2CW')=-115.1MeV. It may be seen that the strength of exchange

interaction of isoscalar part of the mean field of Li er al and our case of Yukawa

interaction are in good agreement, whereas, they differ largely in the range of the
interaction. Now we shall compare the results of u_(k, p,) for this case of Li et al with

our results obtained for different splittings of exchange parameter ¢, in SNM into two

like and unlike channels eéx and g;‘; The results are calculated from the expression of
u,(k,py) given in eq.(2.1.53). It requires values of symmetry energy and effective mass

in SNM at normal density p, apart from the momentum dependent term defined

through the functional, uf*(k,p,). The value of the symmetry energy at normal nuclear
matter density used by Li et al. is, E¢(p,)=30 MeV . The momentum dependent part of
the isoscalar potential of Li et al. can be analytically exprassed as,

SAY A2 + k2 kD (A +(h+k,)? 2 3 k+k k—k
(Cor +Crr) ( j; In| — ( f)z + 3A2 - 3A3 tan! L\~ tan™ | —L
8kky N +k=kp) )| 2%/ 2+ A A

(2.3.45)
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The value of effective mass in SNM at normal  density

M—(kf ,Po)= {1+ for the case is calculated to be 0.6684. Here in
M 0

MUk p) "
hk ok

k=ky,
the above expression we have used our notation except the exchange strength

parameter, C, . and C, .. The expression of u, (k, p) can now be written as

nk, 2 1 1+ (z+x5)% 1
u, (k, pg) =2E, (pg) ——2 —(c! - cuh nd 1+ 0)2 - 21n{1+4x02}
2M 8zxy  |1+(z - xp) 8x,
(2.3.46)
22

is

where, x, =ak, and z=ok.The plotof u_(k,p,) as a function of energy E= th

given in the Figure 2.10. The result of our Yukawa form of the finite range interaction
for different representative splittings of ¢, into ¢! and g are also given for
comparison. It may be seen that the result of Li et. al. and our result for
el —e¥ =1.1¢,, are close to each other. In our calculation we have used the same value
I
M

of Es(p,) =30 MeV and value of (ky,,po)=0.67 obtained for our case.
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Figure 2.10. Isovector part of nuclear mean field u, (k, p,)plotted as a function

of energy for different values (€., —€Y)/&,.. The work of B.A.Li et al[81] has
been compared with the present calculation.
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The slope of the curve of u_(k,p,) is another relevant quantity that has been

extracted from optical model analysis of nucleon-nucleus scattering data, as discussed
by Li et al. in their work [81], should be within 0.1-0.2. We shall obtain here analytical

expression for the slope of the curve u,(k,p). In order to obtain this one needs to
ou,, (k, p) . .
evaluate — We shall evaluate it for the general case of u_ (%, p) obtained from

eq.(2.1.53) for our two parameter exchange interaction as given by,

1
nk, nk, 2
u, k,p) =2, (p) - & HM j (MC”

ul

ezl [Uoten - o, Mo,y f Y.

20, [f(Od’r
(2.3.47)
Differentiation with respect to energy gives
our (k, p) _ duz (k,p) Ok (2348)
oE ok ©OF
(i) For the case of small values of E:

OE _ 1k 4 Ouz(kp) M dur(k,p)
ok M OE n’k ok
From the expression of u,(k, p) given above, we get

For the case pC << MC?,

dur(k,p) _ M L -ei) o
OE 'k 2p [f(r)d’r Ok

Imwwdhﬂﬂﬂdr

(2.3.49)
Now, in case of E—>0, ie. k—0, we can use approximation

Jotkr)=1- (kr) - and in this limit the expression for slope of the curve for

u (k, p) becomes
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. Ou.(k,p) M —e"‘)p ] (kr)? ; 3
L = ex £X —_— 1_—.+... k d
Eno  BE Rk 2p [ f(r)d3r 6k‘“ 6 1iolk,r) f(rydor

ul
:“61‘: f?f_(ﬁ)d)ﬁ) frijotkyryf(ryd’r (2.3.50)
0
For the case of our Yukawa form of finite range interaction the integral in the above

expression becomes

rsm(k e

k d’r = iy 3.
[r? Jole,r) fr)dPr = 3 Kr o ridr (2.3.51)
Using the identity
T 3" b
~Bx x" n
6[51nbxe dx =(~1) o5 (bz 5 ) Re 8 >0 and 5>0, (2.3.52)

we evaluate the last integral in eq (2.3.51) as

2
iz aA\f

I ey ey A oy T J
2 (2.3.53)
s (x, -3)

=-8nx 5
(x," +1)°

k
with A-——l—and Xp = f
o

Thus, the slope parameter of the curve of u_(k,p) in the limit £#—0 can be

calculated from the expression

Ou,(k,p) M e! "’ o? (x, -3)

ex

ok IETE po (x, +1)}

(2.3.54)

(ii) For any valueof E:

We can have

% _ (C 2k + M2cHY? =cnl1-
ok ok

M2C4 1/2
E? J

and
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1
2 ~4 \5 I Ll
=..-1—(1-M < Jz et et [risn joter) f ) ar

Crl B ) 2po[f()dr
(2.3.55)
For Yukawa form of f(r), the integral in the above =xpression becomes
o s m|1 [Ntk k+k; k-,
[r 51 Ger) jok pr) f(r)d r=——| e St =H— - -
fL A +(k—kj) R +(k+ke)? A +(k—k,)
(2.3.56)

2.5. Work of Rizzo et al.

The emphasis of the work of Rizzo et al. [84] in their work was to search for
observational effects of the two opposite types of neutron-proton effective mass
splittings in the interpretation of collective flow data tkrough collision simulations. In
the work, the simulation has been performed for the two opposite types of effective
mass splittings by using an effective energy density that has been widely used for
symmetric nuclear matter case. They have obtained the two opposite types of effective
mass splittings by suitably adding a parameter, z,, to ths momentum dependent part of
the energy density, to be more specific, to the isoveczor part. The variation of this
parameter results in the variation of neutron and proton effective masses keeping the
symmetry energy and its density dependence unchanged. The compelling force behind
this work of Rizzo er al. was the predictions of newly constructed Skyrme-Lyon
interaction sets (SLy-force) [112] those predict the proton effective mass value higher
than the neutron one, in contradiction to the predictions of earlier Skyrme sets. This
predictions of SLy forces gained profound support at that time by the same finding of
Hoffmann ez al [120] from the microscopic relativistic-Dirac-Brueckner (DBHF)
calculations, although non-relativistic BHF calculations are leading to opposite
conclusion [118, 162]. The effective energy density in asymmetric matter used by Rizzo

et al. is given by
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(23.57)
where,
T, = 2 ; [k £, () (K, A) (2.3.57a)
(27m)

with i =n, p and the functional g(k, A) is given by

2 -1
g(k,A)=[l+(k—;k >” : (2.3.57b)

In this eq.(2.3.57) for energy density, the first term is the kinetic energy term where
fi(k), i=n,p are the respective Fermi-Dirac distribution functions and the last term is
the momentum dependent term. This energy density is referred to as BGBD
parameterization which reduces to the GBD parameerization version, for =0,
proposed earlier by Gale, Bertsch and Das Gupta [50] in connection to the study of EOS
in symmetric nuclear matter. The parameters 4,B,C,c and A are taken to be same as

in the GBD parameterization version, namely, 4=-144MeV, B=203.3MeV,
C=-T5MeV, 0'=% and A=1.5p§9), pif’) being the Fermi momentum at normal

density, p,=0.16 fm™. The energy density predicts an incompressibility in normal
nuclear matter K(p,)=210MeV . The value of the parameter z decides the strength of

the momentum dependence in the isospin channel. In terms our notation, a given gz,

£ I ul

decides the splitting of the exchange strength parameter, ¢, =—-§1-22-4‘-"~, into two

different channels of interaction between the like nucleons and unlike nucleons. The
rest two parameters x, and x, of the BGBD parameterization are adjusted to give the
same value of symmetry energy at normal density, E,(p,)=33MeV , for the different
cases of effective mass splitting considered in their work. The neutron and proton mean
fields are now obtained by the functional derivatives of the BGBD energy density in

eq.( 2.3.57) as,
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(2.3.58)

with j#i'=n, p and the upper sign refers to neutrons and lower sign refers to protons.
The last term, besides the GBD momentum dependence, contains an isospin dependent

part which results into different effective masses for protons and neutrons. From the

M oU;

, the nucleon effective
ok 1y,

definitions of effective mass, F%:l =[l

mass in the present case of BGBD parameterization becomes,

M‘(k,p) =[1+ M i{Ciﬂﬁ}(‘B‘)ch):}*l
Po

M Kk dk 5
~1
1+£2(c Cc- SZIﬂ)ldg(k)
h 5 k dk

(2.3.59)
The factor }1—»4%(]? inside the square bracket for the GBD version of g(k) given in

eq.(2.3.57b) becomes
2k—<k>)
Ldglk) _ _ Ak (2.3.60)

k dk { [k—<k>ﬂ2
1+ ===
A

Under the GBD parameterization the average momentum in all directions is considered

to be zero, i.e. <k >=0.

2
Hence, [k"<k>J ki
A

GBD 2 .
= (7\_} with i=n, p, which becomes

k=k,‘

2 273

(zc__sz z(k_J {ai ﬁ)_p_} |
A b=k, A Po
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where, the upper sign is for neutron and lower one is for proton and &, =1 5nlp isthe

Fermi momentum in normal nuclear matter. The neutron and proton effective masses at

their respective Fermi momenta for the present case is g-ven by

- -1-1

ey | bl

[M (k,po)} |y N 5 D,
k=k

M ) k 2 3P
| oo
L A Po

where, upper sign is for neutron and lower one is for proton. Rizzo et al. have produced

(2.3.61)

both types of effective mass splittings in ANM, the proton effective mass going above
that of the neutron and vice versa, by adjusting the parameter z, appearing in the
expression for effective mass in eq.(2.3.61). Two sets of values for z,, x,and x, are
chosen, those give opposite neutron and proton effective mass splittings but provide
almost similar behaviour of the symmetry energy E,(p), having the same value at
saturation E,(p,)=33MeV . In particular, they have chosen 2z, =+50,x,=1589 and
x3=-0195 that give proton effective mass above the neutron one and
71 =-36.75,xy =—1477 and x; =-1.101that give neutron effective mass above that of ‘
the proton. The potential part of the symmetry energy along with the separate
contributions from momentum independent part and momentum dependent parts are
shown in the Figure 2.11 for the two cases and the corresponding results of neutron
proton effective mass splitting are shown in the inside blocks of the respective figures.
Rizzo et al. have studied the flow observables, in particular the transverse and
elliptical flow differences in AutAu collision at 250 MeV, using the mean fields for
these two cases and found them to be selective probes of momentum dependence of the
isovector part of the nuclear EOS. In order to examine the effect of stiffness of nuclear
symmetry energy on these flow observables, Rizzo et al. have produced relatively soft
symmetry energy by adjusting the values of the parameters x,and x; while keeping the
values of z, for the two cases to be the same. This way they could produce relatively

soft density dependence of nuclear symmetry energy for the same neutron-proton
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Figure 2.11. Potential part of the nuclear symmetry energy plotted as a function
of the relative density p/ p,. Separate contribution of the momentum dependent

part and momentum independent part are also shown in the figure. The left panel

is for M, <M ; and the right panel is meant for M, >M ;. The figure is

reproduced from the work of Rizzo et al [84].
effective mass splitting and have examined the effect on the flow observables. They
have found that the observed effects are not changed by largely changing the density
dependence of symmetry energy while keeping the momentum dependence of the
isovector part of the mean field unchanged.

In another contemporary work[163], B.A. Li has studied the energy dependence
of the isovector part of the mean field for the two cases considered by Rizzo et al. and
have compared tﬁe results with the experimentally extracted results of Lane potential

[152]. Li has also compared the isoscalar parts of the potzntials for these two cases as a

function of density for four values of momentum k=1,2,3 and 4 fm™!, with the

results of realistic interaction UV14+UVII of Wiringa [66]. The figures depicting the
results of Li as obtained in the work of Ref. [163] are given in Figure 2.12. It may be

seen that the results for isoscalar potentials for the two cases are same and compares

reasonably well with the realistic calculation up to & =3 f =1, However, the isovector
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results are compared with the results of
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Isoscalar potentials as functions of relative density. The
realistic interaction

UV14+UVIL. The figure has been reproduced from the Ref. [163].
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Figure 2.13. Isovector part of the nuclear mean at normal nuclear matter
density, i.e, the Lane potential is plotted as a function of the energy. The
experimentally extracted data is shown as the shaded region in the graph. The
Figure is reproduced from the Ref. [163].
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part of the mean field at normal density, i.e., Lane pctential, as function of energy is
found to have completely different and opposite behaviour for the two cases as may be
seen from Figure 2.13. Comparing with the results es depicted in the same figure,
extracted on the Lane potential from the nucleon-nucleus reaction studies up to

E =100 MeV , Li has given his opinion in favour of th= neutron effective mass greater

than the proton effective mass, M ; >M ; , in neutron-rich dense matter.,

Effective energy densities resulting into similar momentum dependent terms in
their resulting neutron and proton mean fields, as in case of BGBD, have been used
widely in the studies of EOS of ANM, in recent years by Moustakidis [164, 165] and
Moustakidis and Panos [166]. In their works the authors have mainly emphasized on
examining the éontn'bution of the momentum depencent part of the neutron-proton
mean fields at finite temperature, T =0, to the various relevant properties of ANM. The

energy density used in these works for ANM is given by

h2k2
i fpa b T1+1f, (0, k. T]d%k
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(23.62)
where, the first term is the kinetic energy density defined through the Fermi-Dirac

distribution functions, f, with 7 =x,p, for neutron and proton defined in eq. (2.3.57a)

and the rest part is the interaction part with the functions ¢, defined as

7,0, B.T) =z [’k g(k,A,) £ (P, T). (23.63)
(2m)

It may be noted that the above energy density is similar tc the energy density used in the

work of Rizzo et al. given in eq.(2.3.57), except that here Moustakidis has taken two

momentum dependent terms having two different range parameters A, =15k, and

A,=3k,. The parameters 4,B,0,C;,C, and B' have been obtained from the
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description of SNM and the additional parameters x, x;, z, and z, are constrained by
empirical knowledge of ANM. Using this energy density given in eq.(2.3.62) and the
nucleonic mean field resulting from it, Moustakidis have studied the effect of
temperature on the symmetry energy and neutron and proton mean fields [164]. In this
work, Moustakidis have approximated the energy density of ANM in eq.(2.3.62) by a
quadratic approximation
H(p,T,Y,)=H(p,T.Y, =1/2)+ H,.,(p.T.Y,) (2.3.64)
where,
H,(p.T,Y,)=(1-2Y,)? p E (p). (2.3.64a)
He has also calculated the equilibrium proton fracﬁon Y, of the n+ p + e matter under

beta-equilibrium. In a subsequent work [165], Moustakidis has studied the effect of

parameterization of interaction part of the symmetry energy, i.e., Esim (p), as well as,
the momentum dependence generator function g(k,A;) on the isovector part of the
mean field and neutron-proton effective mass splitting by considering different

functional forms for these two quantities. In this investigation, Moustakidis has

considered three forms of parametérized version of E™ (p), namely,

in in in Z(P/p() )2
EMpye | £, EM(p)cLand EM(p)e PO

Po Po 1+(p/py)
and two different forms of g(k,A;), namely,

27! 2
g(k,A;)=[l+(-/€-]:l and g(k,A,o{l—(;\"TJ }

Parameterization of the interaction part of the symmetry energy, E™ (p), into the above
three forms have been done by adjusting the parameters xg,x;,z,and z;. In another
work [166], Moustakidis and Panos have studied the equation of state of beta-stable
n+ p+e+y matter at finite temperature by using the same model. It may be
mentioned here that the momentum and temperature dependence of nuclear mean fields
resulting from the energy density used by Moustakidis and co-workers arise solely from

the last term in eq.(2.3.62). The discussion can be more transparently seen by
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considering the case of SNM by setting =0 and f, =f, = f, for which the energy

density of Moustakidis becomes

2 2
4Rk FUeTYd kL a2

H(p,T)=( 312M oy

o+
o 2]
4 \Po) 4 pzcjdkg(k/\)f(kr)

o1 271. P
HB(,)( " ] @) py
Py

(2.3.65)

The single particle energy and nuclear mean field can be obtained by taking the

functional derivative of the energy density, i.e., g(p,k,T)= [f] , and we get,

272 (4 , ol
£(p,k,T)=h k +A'P—+B(£} (0+1+2B(p/p0)2 )
20 o) ot

C d’k kA, k,TYy+— > C, glk,A,
(M)s Z [@°k gk, A) £ )+p0§2 glk,A,)
(2.3.66)

Py

In this expression, the first term in the right hand side is the kinetic energy term which
has quadratic momentum dependence and the rest terms give the mean field. The 1* and
2" terms of the mean field are functions of density p only ( independent of
momentum k and temperature 7'); the third term of the mean field is dependent on
density p and temperature T (independent of momentum k) which is responsible for
accounting for the temperature effect of the interaction part and the last term of the
mean field depends on density p and momentum % ( independent of temperature T),
which along with the kinetic energy term comstitute the effective mass term. This type
of density p, momentum &k and temperature 7T dependences in the single particle
energy expression is characteristic of the GBD approximated energy densities used by
Moustakidis and co-workers as well as Rizzo et al.[84].

The GBD type momentum dependence in the mean field used in the above
works of Moustakidis and Rizzo et al. can be obtained as an approximation of the

general expression of the momentum dependent part of the mean field resulting from
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the two parameter Yukawa form of exchange interaction used in section 2.1 in the study
of momentum dependence of isovector part of the mean field and neutron-proton
effective mass splitting. The contribution of the finite range part of the exchange
interaction to the energy density in SNM at a given dznsity p and temperature 7 is

given by

H(P,T) - [[[fr (k) fr (k) "D f(ryd’kd’k' d*r
~ ([ fr (k) fr (k) gk —k')) d’kd*k’

where, g(|k —k'|) is normalized Fourier transform of the finite range interaction f(r),

(2.3.67)

which for the Yukawa form becomes,

1
-k’
A2
given in eq (2.1.78). Thus, the contribution to the energy density from the finite range

2o (k—k'])=
1+

Yukawa interaction part becomes

1
|k -k
Az
In this expression & and k' are the momenta of the two interacting nucleons. Under

[[£r ) fr &) drdy. (2.3.68)

1+

GBD approximation, momentum & is measured with respect to the average of the
momenta k' for the particles in the neighborhood of k. Thus the above contribution
under GBD approximation becomes,

1
1+]I€—<ic">§2
v

Now, under the normalization, J' fT(I;) d’k=p, the above expression further

RGNIG) dkdk' (2.3.69)

simplifies to
! d’k.

7 2
1+}k~-<k >l
AZ

plfrk) (2.3.70)

Now we compare the contribution of the exact expression in eq.(2.3.68) and GBD
approximated expression in eq.(2.3.70) to the mean field in SNM. The contribution of

the exact case is
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plfr® ——.l—.-l-z- &k, (2.3.71)

PILala
AZ

where as, that of the GBD approximation is
d’k p

k . N 2.3.72
Jfr@) P (23.72)
1+

A® A?

The contribution of the exact case as given above in eq.(2.3.71), has all the three
functional dependence of momentum &, density p and temperature 7. This coupled

contributions of k,p and T warrants self-consistent evaluation at finite temperature.
On the other hand, the contribution of the GBD approximated case, given eq ( 2.3.72),
comprises of two terms, the first term is a function of temperature and density and the
second term is a function of density and momentum. This is the type of p, k and
T dependénce of the nuclear mean field obtained in the works of Moustakidis as well as
Rizzo et al. For such GBD approximated case where the temperature and momentum
dependence of the mean field have been decoupled, no selfconsistent calculation is
required in finite temperature calculations.

The objective of all the studies of nuclear mean fields and EOSs discussed in our
forgoing discussions mainly lies in its application to analyze the flow data produced in
heavy ion collision experiments and/or to predict neutron star properties and its
formation mechanism. In these works the thrust have been on the use of suitable
effective energy density as well as the neutron and proton mean fields resulting from
these energy densities which are capable of producing neutron-proton effective mass
splittings of different magnitudes. In this context it is mentioned here that the neutron
proton effective mass splittings of different magnitudes can be achieved from the
variation of exchange strength parameters of the finite range exchange interaction

acting between a pair of like nucleons and a pair of unlike nucleons. This has been
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shown in Figures 2.4(a) and (b) by considering a single Yukawa form of the finite range
part of the interaction. We shall be mainly using this Yukawa form for the finite range
part of the interaction in our subsequent studies. The effective interaction in complete
form that will be used in our subsequent investigations is obtained by adding a zero-
range density dependent part to the finite range part and is given by

Y

V() = o0+ %58 (1) =1, (1 +x,P,) —2E_ 57)
6 1+5p (R) 2.3.73)
-ria
+(¥ + BP, — HP, ~MP,P,)*
rla

In this expression 7 =7 - 7%, R=—(F +7,) are relative and centre of mass coordinates

of the two interacting nucleons; W,B,H and M are the strengths of the Wigner,

1+6,-C 1+7, -7
=______1_2, P1,-=—l—“'2" are

Bartlet, Heisenberg and Majorana components; P, 5 p
L

spin and isospin exchange operators respectively and ¢ is the range of the finite range

Yukawa interaction. This interaction in eq (2.3.73) is similar to the Skyrme type
interaction except that the ¢,- and ¢,- terms are replaced by the finite range term and the
density dependent ¢,-term has been modified. The replacement of ¢ - and ¢,- terms by
the finite range term is essential so as to account for the correct momentum dependence
of the nuclear mean field as extracted from the optical model fits in heavy-ion collision

studies at intermediate energies [52-59, 67]. The density dependence taken in the ¢,-

term of the Skyrme- type interactions have the form p?(R), whereas we have

N 4
considered it in the modified form having the denominator {lﬁ-bp (R)} with an

additional parameter 5 from the consideration of avoiding supraluminous behaviour of
the nuclear EOS at high density which is a common feature observed with the typical
Skyrme- type interactions constructed prior to the Sly type interactions. It may be noted
here that Skyrme parameterizations have been very successful in predicting results at
and around normal nuclear matter density, low isospin asymmetry and momentum upto

Fermi momentum corresponding to normal density. However, they fail in their
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prediction of experimental/ empirical results when extrapolated to high density, high
asymmetry and high momentum region. The finite range effective interaction in
€q.(2.3.73) to be used in our present analysis of EOS of nuclear matter with particular
emphasis to dense and highly isospin asymmetric case and at high momentum region
contains altogether 11 parameters, namely, ¢y,xg,t5.%3,b,7,W,B,H,M and o . This
interaction in its simple form in eq.(2.3.73) was develooed by Behera et al.[64] and has
been used in the study of momentum and density dependence of the isoscalar part of
nuclear mean field at zero as well as at finite temperatare [64, 65, 67]. This interaction
has also been used in the analysis of the momentum and density dependence of
isovector part of nuclear mean field at zero temperature [153]. The motivation of the
thesis is to search for constraints on the momentum and density dependence of isovector
part of the nuclear mean field, which has not been possible on the zero temperature
studies as will be discussed in chapter-III. We shall study ANM at finite temperature
using this interaction. For this purpose we shall discuss the fixation of the parameters of
this interaction from the studies of symmetric matter and asymmetric matter under beta
equilibrium in chapter-III. We shall also compére the zero temperature results of this

interaction with the results obtained from different microscopic model

2.6. Conclusion

In chapter-II, we have reviewed the momentam and density dependence of
nuclear mean field using the formalism developed by Behera et al. [64, 65, 67, 153,
154]. Under this formalism, it has been shown that the nuclear mean field as function of
momentum and nucleonic density is the fundamental importance for the study. At Fermi
momentum, the nuclear mean field describes the density dependence of nuclear EOS.
Detailed derivation has been made in order to establish the fact. In this formalism, the
exchange part of the finite range effective interacticn accounts for the momentum
dependence of nuclear mean field and thereby the neutron-proton effective masses in
the medium. Using a two parameter Yukawa interaction, not only diverging but
contracting behaviour of neutron-proton effective masses in neutron rich matter, as
obtained by Behera et al. [153], has been worked out. Several parametrized sets for a

given interaction are found in literature. While parametrizing the interaction for certain
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purpose, the momentum dependence aspect of the mean field is not being properly
taken care of. This has been explicitly demonstrated in the cases of different Gogny and
Skyrme sets. With the gain of importance for the study of momentum dependence of
nuclear mean field, it was required to vary the momentum dependence keeping the
density dependence of the EOS unchanged. In case of Skyrme sets it was not possible

till the work of Cochet ez al.[157]. Cochet et al have shown that this could be possible

in case of Skyrme sets by considering more than one density dependent term in the

interaction. Subsequently, Leisinski et al[131] have attempted to constrain the
momentum dependent aspect of nuclear mean field using Skyrme interactions with the

prescription of Cochet et al[157]. The works of Cochet et al. and Leisinski e al. have
been reviewed in this chapter. The analysis of flow data from heavy ion collision
experiments through transport model has motivated Li et al[81] and Rizzo et al.[84] in
attempting to constrain these two important aspects of nuclear mean field. With the
advent of producing the different density dependent nuclear EOS having same
momentum dependence of nuclear mean field and the other way around, they have
constructed phenomenological energy densities. The works of the Li et al [81] and

Rizzo et al. [84] have been reviewed in good detail. The momentum dependence of the
isovector part of the nuclear mean field resulting from the work of Li ef al.[81] has been
compared with that of Behera et al. The analytical expression for the slope of
u, (k, py) has been derived. The contribution of the finite range part of the interaction

to the energy density under GBD approximation has been derived and used in reviewing
the works of Moustakidis and co-workers [164, 165, 166].
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CHAPTER-III

EQUATION OF STATE OF
ASYMMETRIC NUCLEAR
MATTER WITH FINITE RANGE
YUKAWA INTERACTION
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3.1. Finite Range Yukawa Interaction and EOS of ANM

In this chapter we shall obtain the equation of state of asymmetric nuclear matter
using the finite range interaction having Yukawa form given in eq.(2.3.73) in the last
chapter. The EOS of ANM involves altogether nine adjustable parameters expressed as
combinations of the eleven parameters of the effective interaction. The energy density,
H(p,Y,,T), at density p, asymmetry (1-27, ) and temperature T for effective
interaction in general form is given in eq.(2.1.9) in the previous chapter. The expression

of the energy density resulting from the density dependent finite range Yukawa

interaction in eq.( 2.3.73) is given by
H(paYp,T)zj{f; (ic‘)_}_frp(ig):](c2h2k2 +M2C4)l/2 d3k
FRTRS NPT
LY R el e + o] e L
2[p0 pgﬂ l+bp (p" pp) pO pg'ﬂ 1+bp pnpp

28;* B GG + £ RV S R g (kK ) d*k dF

+

ul

+§—§~mf: BVf2 Y+ £2 BV 0 g (F - Dk &K

(3.1.1)
where, f7(k), t=n,p, are the respective FermiDirac distribution functions and

g..(k —k']) is the normalized Fourier transform of the finite range interaction given in

€q(2.3.73), which for the Yukawa form becomes g, (k -k'|)=

b,y, &, €, €, €, €L, €4 and o are the nine adjustable parameters required for

complete description of ANM. The new parameters £, &', €, €,', €, and &5 in

terms of the interaction parameters t,,x,¢;,%3,6,7,W,B,H,M and o are expressed by

s{,:po[i‘)—(1~x0)+4m3(W+§~H——Aﬁ'-ﬂ, (3.1.2a)
2 2 2

1l ty 3 B
£} =p0[—é—(2+x0)+4ﬂu{ (W+~?:-H, (3.1.2b)
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e =pit [%(1 —x3 )], (3.1.2¢)

el pgn[_lt_a_z_ @ +x3)} (3.1.2d)

¢l —am 3p0(M -%’« +~f§--— B), (3.1.2¢)
ul 3 H

ey =4mx pO[M +—5-]. (3.1.29%

The neutron-proton single particle energy resulting from this energy density in

€q.(3.1.1) can be given by

8’ 8! p Y
€D (p,Y kT)=(CHhk? + M2C*y2 4| S04 E7
(P T, BT)=( ) {po pl™ (pr} })"“”

ul

gul 8 7 8:) n _'l P _.I f
+{—°—+—-§;( 2 Hpm,—f— (AP g.(E-F']) dk

Py pit\1+bp 2p,

&y QYR no '
oo 7 gk =E D) & +us (o)
0

(3.1.3)
where, ug(p)is the rearrangement energy that arises from the explicit density

dependence of the interaction and for our interaction in eq.(2.3.73), it is given by

! 2 2 ] —
& (pa+p}) & ] ! (3.14)

e 0
At zero temperature, T'=0, the neutron and proton Fermi-Dirac distribution functions

reduces to step functions,

3
(2r)’

N GE Ok, —k), t=np

)]/3

)1/3 are

where, & =2 is the spin degeneracy factor, &, =(3rn’g,)'"” and k, =(37%p,
respectively the Fermi momenta corresponding to the neutron and proton densities p,
and p,.

The expression for energy density in ANM, at zzro temperature (T=0), for the

finite range Yukawa interaction (2.3.73) becomes,
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2
3MCp > [—13—{2x1u3. —x,u, —In(x, +ur)}}
T

8 T=n,p| X

1| & 8;' _pP ’ 2 | € E;I P ’
Rl J A 4 T A

2 Fix ; 2 —rla
+3_;(_ pzj 3jk)) e’ d3r+p2 3k, 1) | e ! 2
2p, | "k, rla Uk rlo

H(p,Y,)=

e Bitk) 3D e
,D n p r J k k / r
p " o rlo
(3.15)
with x, = ke ug =(1+x,)""?, ji(kyr)with T=n,p are first order Spherical Bessel
functions.

The neutron single particle energy, for the finite range interaction having
Yukawa form, considered in the present work, becomes

g Y el e Y
8" k ,Y Czh kZ M2c4 1/2 +_}' p + 0 R A Y p
ep )= ) [po p&“(“bp) },;1 L)o p&’*‘(“bp i

3j, k.1 LEa 3 k,)) e
-f (k{ } r/a P,,J‘ &, )( k,r ] r/adr

(3.1.6)
The proton single particle energy €7(k,p,Y,) can be written from the above

+uR(p).

expression for neutron single particle energy by interchanging » and p ie. nep in

the right hand side of the equation. These expressions of neutron and proton single

particle energies can be written in terms of the mean fields as

e"P(k,p,Y,) = (C*n°k> + M*C*)? +u" P (k,p,Y,) (3.1.7)
where the first term is the kinetic energy of neutron( proton) under consideration and
the rest part can be identified as the respective mean fields, u"® (k,p,Y,). In the
expressions for energy density and mean fields the exchange integrals (integrals

associated with the terms containing &/ and £) can be evaluated analytically. The
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complete description of ANM now requires the knowledge of the nine parameters

b,y,eh,e¥ ¢! ,€,€y €L €4 and o as discussed earlier. We shall now consider the case

of symmetric nuclear matter in order to constrain the possible number of parameters

from the empirical and experimental data available.

3.2. Symmetric Nuclear Matter

The energy density H(p,T) and the single particle energy e(k, p,T) in SNM at
finite temperature can be obtained from egs.(3.1.1) and (3.1.7) by

substituting /7' (k) = f7' (k) = fT(k) and p, =p, =% in these equations and are given
by

rel)p? @y +ey) pr
4 py Apl" (L+bp)

)H L () fr (k) g (K~ Nd’k &K'

H(p,T)= [fr(k)(C*H' K> +M*C*)"* d’k + G

(e +8“’

3B.2.1)
and

&(p, k, Ty=(C*H*k* + M>C*Y'* +u(k, p,T) (322
with u(k, p,T) being the mean field in SNM at finite temperature and is given as

(ehretl) (€ +eh

¥+l
I y ( ! 3
u(k,p,T)—- 2p0 P 2 },+1 (1+bp] (l bp ) 2p0 _[fT(k)gex(lk k |)d

(3.2.3)
We shall hence forth identify the strength parameter combinations as
! ul
(o +Ed) (&y +&;) (el +e
, = e e Texs 324
0= 5 ¥ 5 E, = > ( )

At zero temperature, T = 0, the energy density H (p) and mean field u(k,p) in SNM

become,
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3MC'*p
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where the functional J(p) and I(p) are

, 2
1[311(7‘[")] e "/ 43,

kfr rlo
J(p): ~rlo
€ d3r
rla
6 4 4% 2 4 2 3 2k
O] TS S PN YO A TS BELS mn_l( f]
32k; 8ky A 8k 4Aky ki A
(3.2.7)
and
3' k " 2 ~ric
fite 2N €2 g,
kfr rlo
I(k’p)= e~r/a
j d*r
rla
3NN +k KD (A ++k,)* 2 3 k+k k—k
— ( _g‘ )]n . ( f )2 : 3A7 3A3 ftan_l f _tan_l f
8Kk, Nk [ 2k 27 | A A
: (3.2.8)
hkf 1/3

with x, =2 W= (+x,)"? and k, =(1.5 z% p)'” being the Fermi momentum in

SNM and A = 1 , o being the range of the finite range interaction.
o

The energy per particle in SNM at 7' =0, for our interaction given in

eq.(2.3.73), can now be expressed as

3IMC? 3
2x us —x 4, ~In(x, +u, )+
8xf { s s ( f f)} 2 po 2pg+l

£
s(p) = i£+yp[9

Y

£
+—=-nJ
] 2 prp

(3.2.9)
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From these equations it is evident that complete description of EOS of SNM requires
the knowledge of six parameters b,7,¢€g,€,,€,, and o which can be adjusted from the

saturation condition of normal nuclear matter and from the available empirical and

experimental data.

3.2.1. Parameter fixation in SNM
Out of the six number of parameters, the two parameters ¢, and o which are

involved in the momentum dependent part of the nuclear mean field in SNM are
constrained by adopting a simultaneous minimization procedure, as discussed in the last
chapter, so as to give a correct behaviour of momentum dependence as extracted from
optical model fits to nucleon-nucleus scattering data at intermediate energies [52-59,
67]. The mean field thus obtained reproduces the results of the realistic interaction quite

accurately over a wide range of momentum and density, as has been shown in Figure

M (k=ky,
2.3 in the last chapter. The effective nucleon mass, -——(‘—L&l in SNM at normal

density, is predicted to be 0.67.

The parameter p appearing in the denominator of the density dependent term of
the interaction is constrained so as to avoid supraluminous behaviour of the SNM at
high density. As discussed in Ref [65], the constraint on the parameter 5 results into
the expression,

1 -1

2 7+
bp, > M , (3.2.10a)
Sy —e(po)
M 2
where, S, = {%[Sxfuf + Zx}uf —31In(x, +uf)]} , (3.2.10b)
X
4 P=pPy

MC? is the rest mass energy of the nucleon, e,(p,) is the energy per particle at normal

density p,. The remaining two strength parameters £y and €y can be obtained from
the saturation conditions of SNM. In the present work, we have taken standard values of

MC? =939 MeV, energy per nucleon in SNM e (p,) =923 MeV and
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(Czhzk}'o +M*C*)"? =976 MeV (corresponding to p,=0.1658 fm®). The exponent
y determines the stiffness of the EOS of SNM at high densities and can be constrained
by using the pressure~density relationship extracted from analysis of flow data in high
energy heavy-ion collisions [68] and depicted in Figure 3.1 by the bounded region in
the density range 0.32 fin® < p <0.736 fin> (i.e, 2.0< p/p, < 4.6, with p, = 0.16
fri? ). In the same figure pressure~density curves calculated with the Yukawa form of
interaction for different values of exponent ¥ are also shown for comparison. It can be

seen from the figure that the experimentally allowed region approximately constrains

the value of 7 in the range 1/12 < ¥ < 1. While all EOSs of SNM in this range of 7y

give similar results at saturation and sub-saturation densities they differ considerably

from each other when extrapolated to high densities. It may be noted here that the two

parameters €y and €, diverge rapidly when y decreases below 1/12 and approaches

the catastrophic region of the EOS as y —0. Transport model calculations have also
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=
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Figure 3.1. Pressure-density relations for five different EOSs of SNM with
=1/12, 1/6, 1/3, 1/2 and 1 compared with the EOS of Danielewicz et al [68]
extracted from flow data in heavy-ion collisions and depicted by the bounded
region.
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demonstrated that subthreshold Kproduction in high energy heavy-ion collisions can
provide a suitable tool to constrain the EOS of SNM at densities p <3p,[167-169].

Theoretical analysis of the subthreshold K production data implies behaviour of the
EOS in the considered density range is consistent with the flow data constraint shown in

Figure 3.1.

The behaviour of EOSs of SNM around normal density p, is determined by
energy per particle e;(p,) and incompressibility K(p,). While different theoretical
models predict similar values for e (p,), they differ widely in the values of K(p,).
The value of K(p,) for the allowed range of y in Figure 3.1 varies fom 190 MeV to
287 MeV. It may be noted here that the centroid energies for giant monopole
resonances in finite nuclei depend mainly on the value of K(p,) [42, 87, 170-171].

Studies on monopole vibrations in heavy nuclei using Gogny-type effective interactions
[42] as well as Skyrme-type interactions [14, 172-174] have approximately constrained
the value of nuclear matter incompressibility K(p,) in the range 200 MeV to 240

MeV. This range of K(p,) constrains the value of 7 in the range 1/6 to 1/2 for the
interaction in &.(2.3.73). In a recent work [175], employing the Lagrangian models
such as non linear- o model (NL o ), the scalar-vector interaction model (SVI) and the
o - coupling model(SIGO) to analyze the breathing mode giant monopole resonance
for the nuclei 2% pp, '2sn, *°Zr, ®®Ca and “*Ca( which cover a broad range of nuclear
mass), Sharma has predicted that the nuclear matter incompressibility at saturation
should be around 272 MeV¥ . This value of nuclear incompressibility corresponds to a

value of y somewhat close to 1 for our interaction. However, in order to study the

effect of momentum dependence on the nuclear EOS and nuclear mean field we shall
use 'y=% which corresponds to nuclear matter incompressibility K(p,) =240 MeV and

the P~ p curve for this value of y passes almost through the middle of the P~p

region experimentally extracted from the analysis of heavy-ion collision flow data.

The supraluminous behaviour is a serious defect of the nuclear effective

interactions. At least within the density region of the nuclear matter where the
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Figure 3.2. The velocity of sound in SNM as a function of density p for five
different values of the exponent ¥ =1/12,1/6, 1/3, 1/2 and 1.

Table 2. Values of interaction parameters in SNM.

3 E o € y Ep
: 7Y b[fm’] olfm] ]
Parameters in SNM MeV] [MeV] [MeV]

172 0.5668 0.4044 -121.84 7691 -57.86

interaction is used for studies of nuclear matter properties, should be free from this

supraluminous defect, i.e., the velocity of sound within that density region should not

cross the value of the velocity of light in vacuum. In our case, for all the five values of

y , the interactions do not show any supraluminous behaviour and the values of

velocity of sound for all values of y, remain well below the value of velocity of light

in vacuum up to quite a high range of density, as shown in the Figure 3.2. This is due to

the fact that this important aspect has been taken care up by suitably modifying the

density dependent term of the interaction. The values of the six parameters

b,7,€y,€,,€, and o thus determined for the study of EOS in SNM are given in table

2. Considering the range of the interaction between a pair of like nucleons (p-p, r-n) to
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be the same as that of a pair of unlike nucleons (r-p), we need to know how the strength

/ ! .
parameters €, =(8£:x + 825()/2, Ey= (8'}/ + 8; ) /2 and £0=(8(l) + 831)/2 split as we

go from symmetric matter to isospin asymmetric nuclear matter.

3.3. Parameter fixation in Asymmetric Nuclear Matter

l /
Once the parameters b, 7, @, €,y =(alex + 823()/2, Ey=(€y+ 5;/1 ) /2 and

£o= (8([) + 86'1)/2 are fixed by the mean field proverties and EOS of SNM, the
complete calculation of neutron and proton mean field properties and EOS of ANM

would require the correct splittings of the three parameters (g, + €21), (€} + £¥!) and

(sly + 8;“) into two specific channels for interactions between like (1) and unlike (ul)
nucleons. However, there are no experimental/ empirical constraints on the splittings of
these three combined parameters except for the value of nuclear symmetry energy
E_(p,) at normal density. Different choices of these splittings can therefore Jead to
extremely divergent and even contradicting results on the momentum and density

dependence of isovector part of nuclear mean field, u_(k,p ). For example, the sign of

the combination (g, — £2) determines the nature of splitting of neutron and proton
effective masses [154]. In this context we note that momentum dependence of the Lane
potential [152], v, = 4u, (k, p,) at normal density p,, has been extracted from nucleon
nucleus scattering data upto 100 MeV [121, 122] and has been used to constrain the
isospin splitting of nuclear mean field [124, 163]. This is shown in Figure 3.3 by the
bounded region which indicates that u, (%, p,) has a value of about 2846 MeV at k =0
and decreases as a function of 4. It may be noted that the experimentally extracted
results on the energy dependence of u,(k,p,) show a decreasing trend supporting the
fact that neutron effective mass goes above the proton ore although the data is available
upto energy 100 MeV and is associated with large uncertainty [121-123]. This
decreasing trend of u, (%, p,) with momentum £k is also the theoretical predictions of
Brueckner-Hartree-Fock (BHF) calculations [118, 124] and of the non relativistic

effective theories till the construction of Sly series [112, 125, 126] of Skyrme
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parameterizations. The confusion on neutron and proton effective mass splitting became
complex with the prediction of DBHF calculation in Ref. [120] that proton effective
mass lies above the neutron one. It was clarified in the works of Refs. [127, 128] that by
considering the energy dependence of selfenergy and comparing the non relativistic
effective mass with the vector effective mass in the relativistic framework [129], the
DBHEF calculation also predicts the neutron effective mass above the proton one. This
was further confirmed in the DBHF calculation in Ref. [130]. In view of this it is almost
the consensus opinion that the neutron effective mass in a neutron rich asymmetric
matter will lie above the proton one. There have been attempts to constrain the effective
mass splitting from the study of observables sensitive to the isovector features of the
nuclear EOS [81, 84, 131], but the task has not bezn accomplished yet and the

magnitude of effective mass splitting still remains as an open problem.
3.3.1. Constraining the splitting of the parameter (8 L+ 8::)

For the above mentioned purpose, the functional, u (k,p,), is calculated as a
function of momentum & from the relations given in eq.(2.3.47) for the present
ex ex

interaction in eq.(2.3.73) with different splittings of (e; +e" ) into ¢! and ¥, where

we have used the standard value of symmetry energy at normal density,

E (py)=30MeV , the value of effective mass,

Mk,
——(ﬂi—@l:o.s'z, in SNM of the

interaction and the results are given in the Figure 3.3. The results of DBHF [130] and
BHF with three body rearrangement force [124] is also given in the same figure for
comparison. The curve for ¢! = (géx +el )/ 6 in our case is in close agreement with the
DBHF result, whereas, in case of BHF results, there is a reasonable agreement with our
case of ¢! = (eéx +e:,‘fc)/3 within the experimentally extracted region. Since, in the case
of the splitting, g/ = (Séx +g;‘;)/6, the curve of u_(k, p,, in the low momentum region
lies close to the uppér boundary of the experimental results we have considered it as one
case for our study. For values of £/ less in magnitude than this value the curves will lie
well outside in the experimentally extracted data at low momentum region. The other

extreme case considered here is g, =g for which the neutron and proton effective

o =

98



50 T

(2

MK, .pYM=0.67, E (p,)=30 MeV, ¢,= _— (e, ¥e, VB

"""""" (e v‘/f +eoxw a4

(E ve, V3
BHF
DBHF

(Bax +e5, )2 ]

ur(k’po)[MeV]

-10 " 3 "
0 2 4
kM T
Figure 3.3. u (k,p,) as a function of & is shown for different splittings of
(el + &) within the range &/, =(g/, +£)/6 and (¢, +€)/2 considered in

the work. The experimentally extracted data is shown by the closed area. The
results of DBHF [130], BHF [124] are also show.

masses calculated as a function of momentum % at given temperature T, total nucleon
density p and proton fraction Y, in ANM will be the same. Beyond this limiting value,

{
Eex

=g, the exchange interaction between a pair of like micleons become stronger
compared to that between a pair of unlike nucleons resulting into the proton effective

mass above the neutron one which contradicts to the predictions of various microscopic

models on neutron and proton effective mass splitting.

3.3.2. Constraining the splitting of the parameter (8(1) + &) ) and

leg+ey)

3.3.2.(a) Role of Symmetry Energy in ﬁ-stable matter and EOS of NSM

ul
ex?

For a given splitting of (€, +£€2) into €. and £, the complete study of

ANM requires the splittings of the other two combinations (€, + £}’ ) and (8; + 8;’," )

into two different channels for interaction between two like and unlike nucleons. While

different theoretical models predict similar values of g _(p,) they widely differ in the
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aE (p)

\ f g =
values of £ (p,) [p dp

} which is directly related to the slope of the
P=py

symmetry energy at normal density p,. We have used these two nuclear matter

properties in deciding the splitting of the parameter combinations (€4 + €. ) and

ul

(8,’, + €, ). In this context, we assume a given splitting of (€. + &%) into £/, and €

ex

, take a standard value of g (p,) that decide the splitting of one of the two parameter

combinations and then assign arbitrary values to £ ( p,) that decides the splitting of the

rest one parameter combination. The EOSs of ANM corresponding to the different
values of g (p,) thus obtained will give different high density behaviour of nuclear

symmetry energy £ _(p). In order to constrain the EOS of ANM out of these infinitely
large numbers of possible EOSs, we have calculated, ia each case of these EOSs, the
equilibrium proton fraction in charge neutral n+p+e+p matter under beta
equilibrium, i.e., neutron star matter (NSM) that is the major composition of the interior
of normal neutron stars. As will be shown in the followings the asymmetric part of the
nuclear EOS, more specifically the nuclear symmetry energy, is crucial in determining
the equilibrium proton fraction in NSM, and hence plays the crucial part in the
composition and cooling mechanism of the neutron stars.
The conditions for beta equilibrium is »

My =My =l = Uy, (G3.1)
and charge neutrality condition is

Y, =Y, +Y, (33.2)

where, y,;, i=n,p,eu, are the comesponding chemical potentials and

Y; =£f-, i=p,e i, are the respective particle fractions. In the followings we shall
p

show that these conditions completely depend on the asvmmetric part of the nucleonic
energy density.
The isospin symmetry of nuclear forces allows to expand the energy density of

asymmetric nuclear matter, H(p,Y »), in even powers of asymmetry (1-27, )5
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H(p,Y,)=H(p)+ H (p)1-2Y, )? + terms involving higher even powers of (1-2v,).
(3.3.3)

It is a well known fact that the contributions of the higher order terms, (1-2Y A )" with
n>2, is very small and the quadratic approximation of the infinite series in the right
hand side of eq. (3.3.3) is a very good and quite accuratz approximation [ 117, 164, 166,
176, 177].
Under this quadratic approximation, we have

H(p,Y,)=H,(p)+H, (p)1-27,)’ (3.34)
Now as the symmetric nuclear matter and pure nectron matter constitute the two
extremes of the asymmetric nuclear matter, corresponding to the limiting values of
Y, =—12- and O respectively, we can identify H,(p) as the energy density in SNM and
H,(p) to be the difference of energy densities in PNM and SNM,

H,(p)=H,(p)-H,(p) (33.5)
Using the fact that H, (p)=pe, (p) and H(p)=pe,(p), where, e (p) and ¢,(p)
are the energy per particle in PNM and SNM, respectively, we can write H_(p) as

H,(p)=ple,(p)-eo(p)]- (33.6)

The energy density in ANM given in eq.(3.3.4) now becomes
H(p,Y,) = pey(p) +(1-2Y,)" ple,(p) — e, (p)] (33.7)
and comparing it with the conventional expression for

H(p,Y,) = pey(p) +(1-27,)’ pE,(p),
we can identify the nuclear symmetry energy E (p) by,
E (p)=e,(p)—e,(p). (3.3.8)

The validity of the quadratic approximation at zero-temperature, 7 =0, can be examined

by calculating energy per particle in ANM at given density as a function of asymmetry
-2y, )* . This is shown in the Figure 3.4 for different densities.

The neutron and proton chemical potentials, u, and p,are defined as
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Figure 3.4. The energy per particle in ANM relative to the energy per particle in
SNM is plotted as a function of the square of the asymmetry parameter for
different nuclear matter densities. The linear curves show the quadratic
dependence of the energy per particle on the asymmetry parameter.

. =———6Hép’y”) (3.3. %)
P n
and
O0H(p,Y,
:.._.__(_p_L) (3.3.9b)
p d pp
The difference of the neutron and proton chemical potential can be expressed as
| 1 0H(p,Y,)
U =—— , 3.3.10
which for the energy density H(p,Y,) ineq.(3.3.7) becomes
u, ""Llp =4(l_2Yp)Es(p) (3'311)

The electrons and muons present inside the neutron star core can be treated as non

interacting relativistic Fermi gas and the electron and muon chemical potentials are

given by
o =(c2n?a? +m2ct)?, i=e,u (3.3.12)
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k; being the Fermi momentum of the respective leptonic system and is given in terms

of the leptonic density as k; =(37:2p,-)”3. The conditions of the charge neutral beta
stable matter are now given as

12

/2
4(1-2Y,)E,(p) = [C2h2 (3zpr, f° +M§C“] = [C2h2(37r2 oY, f"? +M'f,c“]

(3.3.13a)
and

Y,=Y, +Y,. (3.3.13b)
From the above two equations it is evident that at a given density p, if the value of
nuclear symmetry energy E (p) is known, then both the equations can be solved
simultaneously to get ¥,,Y, and ¥, at that density. Hence it is the asymmetry part of
the nucleonic energy density of the neutron star matter that solely determines the
composition of the normal neutron stars. With the knowledge of nucleonic (protons and
neutrons) and leptonic (electrons and muons) fractions, the energy density and pressure
of the nucleonic part can be calculated for the EOS of ANM gven in eq.(3.3.4) and the
leptonic counterparts are obtained from the norinteracting relativistic Fermi gas model.

The total energy density and pressure of NSM can be given as,
HYM = HY (p,Y,)+ H* (p,Y,)+H* (p,Y,) (33.19)

PMM = PN (p,¥,)+P¢(p.Y,) +P*(p,Y,). (33.15)

NSM and PNSM

These quantities H are the inputs to the hydrodynamic equilibrium

equations of neutron star, known as Tolmann-Oppenheimer-Volkov (TOV) equations,

AP py Mt 4 r? iz
;z_G(8+—C'7J rir-—2Gm/€'2; (310
M= _[471:1‘26 dr 3.3.17)
which are solved to obtain the mass and radius of neutron stars. In these equations &€ is
the energy density, m(r) is the gravitational mass inside the radius of spherer, M is
the gravitational mass of the star and G is the universal gravitational constant. These
equations are solved from the interior of the star to its exterior where P(R)=0 and
m(R)=M , where R is the radius of the star. The TOV equations are integrated for a
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given value of the central density € and can be solved when the relation
P(r) = P(e(r)) between the pressure and the energy density is known at each point.
That means the structure of the star depends upon the EOS of NSM. Thus it is the
density dependence of nuclear symmetry energy E (p) that is crucial in determining
the structure and composition of the normal neutron stars. However, the high density
behaviour of nuclear symmetry energy is still a standing question to be answered and as
mentioned earlier the predictions of different models are not only divergent but also
contradicting. In a recent work, Klahn et al. [151] have examined the abilities of
several relativistic EOSs, very much successful in predicting the results at normal
nuclear matter density, in reproducing the constraints resulting from recent observations
on neutron star phenomenology and constraint resulting from the heavy ion collision
(HIC) experiments. They have found that none of the EOSs could reproduce more than
50% of the tests. However, they have observed that the EOSs which remain at the top of
the test, their asymmetric contributions of the nucleonic part in NSM form a close
group although their density dependence of symmetry energies differ considerably in a
wider range. In the following we shall show that in case of our EOS of ANM given
eq.(3.1.5) we can obtain widely varying high density behaviour of nuclear symmetry

! ul
Ey+ €
energy by considering different splittings of the strength parameters €, = —0—2—-—0——~and
/ ul
8}, + & y . ) ‘
€y =-—-—2——— into like (1) and unlike (ul) channels where all of these EOSs have the

same value of nuclear symmetry energy at normal nuclear matter density, E, (p,). Out
of these large number of EOSs obtained from arbitrary splittings of the parameters g,
and ¢&,, we find a group of EOSs giving almost the same asymmetric contribution in
NSM.
3.3.2.(6) Universal High density behaviour of the asymmetric contribution of
nucleonic part in NSM
Earlier it has been shown that different splittings of the exchange strength

I ul

€x ex

parameter £, = into like and unlike channels solely account for the different
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neutrorrproton effective mass splittings in ANM and we shall consider two
representative values of this splitting. We shall examine the high density behaviour of
nuclear symmetry energy for these two representative cases of effective mass splitting
which may give us an insight into the measure of influence of momentum dependence,
if any, on the density dependence of nuclear EOS. In obtaining the different splittings of

the strength parameters g, and ¢, into the like and unlike channels, we have assumed a

standard value for E (p,) that decides the splitting of one of the two parameter

combinations and then assign arbitrary values to E!(py)=p, dE(;;p ) that decides the
P

0
splitting of the rest parameter combination. In the present work, the symmetry energy
E,(p) has been calculated as the difference between the energy per particle in PNM
and SNM, where the expression for the energy per particle of SNM is given in
eq.(3.2.9) for our interaction given in eq.( 2.3.73 ). The expression for the energy

density in PNM at T =0, for our interaction , is given by

2
H, (p)=§—%—%~e{2x u) —x,u, ~In(x, +u")}

n-n Hon
H

3.3.18)
! 2 81 2 14 ! 2 ’ (
+£0p + y P 1 P +_£;cxp_JN(p)
2 p0 2p" " \1+bp 2 p,
so that the energy per particle in PNM is
2
e, (p) = 3243 {2xnui —x,u, —In(x, +u, )}
xn

(3.3.19)

where,

3A° 9A* 42 3A* 9N? 3A* (2,
JN(p):[(BZké +8k4 j]n[l+ e J“‘Sk“ +4k2 E tan ‘[ - ﬂ, (3.3.20)

L

with k,=(3z2p)"’ is the Fermi momentum in PNM at density p, x L and
H p p H MC

u, =(1+x,”)"2. Here we have taken the standard value of E,(p,)=30 MeV that

determines splitting of one of the two parameters ¢, and ¢, into like and unlike

105



channel and the splitting of the other parameter is constrained from the assigned value
of E!(p,). The different density dependence of E (p) thus obtained for different
representative values of E;(p,) for the two cases of effective mass splitting

; 81 + gul , 8[ ut
ex = —“—Gﬁ and g, =—%—= discussed earlier in this section, are shown in

Figures 3.5(a) and 3.5(b) respectively. For each EOS in both cases of effective mass

£

splitting, the beta equilibrium proton fraction Y, have been calculated by solving the
eqs. (3.3.13a) and (3.3.13b) simultaneously by adopting an iterative procedure. The
equilibrium proton fractions Y, thus obtained as a function of density p for the two
cases of &/ have been shown in Figures 3.6(a) and 3.6(b). With the knowledge of

proton fraction Y,, we can calculate the nucleonic part of the energy density,

HY(p,Y »), in charge neutral beta stable n+p-+e-+[l matter, ie, neutron star

matter, by the help of the equation for ANM given in eq. (3.3.4). Now the asymmetric

contribution of the nucleonic part in neutron star matter can be calculated by subtracting
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Figure 3.5. (a) High density behaviour of nuclear symmetry energy E_(p) for
Eix = (Sf,x+ 82,‘2)/6 at different slope parameters of the nuclear symmetry

energy. (b) The same as (a) for 8;. = (Séx + egi)/ 3. The value of the slope
parameter E;(p,) is given in the unit of MeV. '
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the energy density in SNM from H” (p, Y,) and we get,
S¥M (0,7 y=|H"Y (p,Y,)- H(p,Y, =1/2)]. (3.321)

SN (p,Y ») as a function of density p is calculated for the different EOSs of ANM

and is shown in Figures 3.7(a) and 3.7(b) for each of the two cases of € . It is seen that

in eachcase of splitting of &,,, there is a critical value of E;(p,) for which the density

dependence of $™" (p,Y,) is a maximum over the range of density considered and

also it remains almost stationary within a narrow range around this critical value of

wl

« )/ 6, where we

E.(pg)- This is shown in Figure 3.8(a) for the case s; = 2(3; +é&
have shown the density dependence of ™ (p,¥,) for the range of Ej(p,) for which

sNsM (p,Y,)remains almost the same. In the adjacent two figures we have shown the

curves for density dependences of symmetry energy E (p) and proton fraction ¥, (p)

for the EOSs corresponding to the same cases of E;(p,) considered in the first figure.
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Figure 3.8. (a) Asymmetric contribution to the nucleonic part of energy density
in Neutron Star Matter for &/ =2(¢! +£)/6 at different slope parameters of

ex

the nuclear symmetry energy (b) The nuclear symmetry energy as function of
density for the same case of 8; and (c) the corresponding equilibrium proton
fraction Y, (p) as functions of density p.
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Table 3. Critical values of E_(p ,7=0) for the three different cases of effective mass

splitting as obtained from the stiffest high-density behaviour of S™(p,¥,,7=0) in
NSM and the interaction parameters in ANM.

Parameters in ANM el =(el +£"/6 gl =2l +e")/6 el = +e)/2
Ey(py, T =0)(MeV) 21.02 21.49 21.97
el Mev) -40.61 -81.23 -121.84
€, MeV) 75.81 65.73 55.69
E) MeV) -87.46 -50.49 -13.57

The symmetry energy and proton fraction curves for the EOSs show considerable
difference from each other, whereas, for all of these EOSs the asymmetric contributions
of nucleonic part in NSM are almost same. This stationary behaviour of $™ (p,7,)

over a narrow range around the critical value of E!(p,) is referred to as the universal
high density behaviour of §™™ ip,Yp). This universal high density behaviour of

S™M(p,Y,) has been calculated for the other cases of effective mass splitting and
found to be almost same as that given in Figure 3.8(a) fcr their respective critical values
of E;(py). Since the principle of extremity is a law of nature, we have finally

considered the value of E(p,) (out of the infinitely large number of possible values)

for which the functional S™ (p,Y,) is maximum over the range of density 0 to 10 p,
in each case of the different effective mass splittings. The values of E/(p,) thus
obtained for the different cases of £/ = (¢! +&¥)/6, Ae! +£¥)/6 and (!, +¢£“)/2
are 21.02 MeV, 21.49 MeV and 21.97 MeV respectively. The interaction parameters in
ANM thus obtained for the different cases of neutron-proton effective mass splitting

corresponding to different values of &’ are given in table 3. The case of splitting

ul
éx

e :x = (géx + £¥)/2 is a boundary case beyond which the neutron-proton effective mass

splitting reverses its sign.
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3.4. Comparison of the predictions with the results of microscopic
calculation
It may be noted here that E!(p,) is related to the slope parameter L as
L =3E%(p,)- Thus the values of slope parameter obtained for the two cases are 63 MeV

and 64.5 MeV. The value of L has been constrained within range [ =86+25MeV
from the analysis of isospin diffusion studies [83, 85, 132, 134, 138] in heavy-ion
collisions using the isospin-dependent Boltzmann-Uehling- Uhlenbeck (IBUU) transport
model with the momentum dependent MDI interaction. From the analysis of neutron
skin thickness of Shetty et alhave predicted the value within the range
30 <L < 80MeV [134]. The value of L has been constrained within range 60 <L <107

MeV from the analysis of neutron skin thickness studies as well as isospin diffusion
studies [83]. The value of L parameter predicted from our analysis of beta stable matter
conforms well to this range and remains towards the lower side.

The nine parameters required for the calculations of mean field properties and EOS of
nuclear matter are thus constrained as discussed above. The predictability of the nuclear
matter results with our interaction in eq.(2.3.73) can now be examined by comparing
with the results of the realistic as well as other calculations that reproduce the results of

microscopic calculations. The density dependence of energy per particle,
e, (p)=H,(p)/p, in PNM at zero-temperature for our interaction for each of the two
representative cases €. =(e. +£2)/6 (Case A) and &' = (¢! +£")/2 (Case B) of
neutron-proton effective mass splitting are shown in Figure 3.9. The curves of e, (p)
for both the cases are almost same over the entire range of density p shown in the
figure. The energy per particle, e,(p)=H,(p)/p, in SNM at zero-temperature which
is same for both the cases is also shown in Figure 3.9 as a function of density p . The
density dependence of e, (p) and e,(p) obtained by Akmal et. al. [4] for the realistic
interaction A18+dv+UIX* are shown in Figure 3.9 for comparison. The results of
e, (p) and e, (p)calculated for the LNS interaction set [178] are also given in the same

figure. The LNS interaction is the Skyme parameterization of the EOS calculated in the

framework of BHF model. The LNS interaction parameters are constrained to reproduce
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Figure 3.9. Energy per particle in SNM and PNM, ¢;(p,) and ¢,(p,), as
functions of p for the two cases A and B are compared with the results of
A18+dv+UIX* [4] and LNS interaction [178].

the BHF results of neutron and proton effective masses in ANM [178]. The results of
e,(p) and e,(p) for the two cases A and B are in good agreement with those of Akmal
et. al. upto a density p=0.65 fm ™. However, beyond this density the curves of e, (p)
and e;(p) obtained by Akmal et. al. become more znd more stiff compared to our
results. The agreement of our results with the LNS case for both ¢, (p) and ¢, (p) are
good upto a density p=0.4 fim™ beyond which the LNS curves in both cases become
soft compared to our curves.

The density dependence of nuclear symmetry energy E (p,T=0) at zero-
temperature with our interactions for the two cases A and B are shown in Figure 3.10.
The two curves of E (p,T =0) differ little from each other in the entire range of

density shown. It can also be seen that the stiffest high density behaviour of the

SNSM

functional (p,Y,, T =0) constrains the density dependence of Eg(p,T'=0) in

both the cases which are neither very stiff nor soft at high densities. This is a very
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Figure 3.10. Nuclear syminetry energy as a function of density at zero
temperature (T=0) for the two cases A and B and compared with the results of
A18+dv+UIX* [4] and LNS [178] interactions.

important conclusion on this elusive high density behaviour of nuclear symmetry
energy predicted from the extrapolation of the experimental multifragmentation studies

[133]. However the degree of stiffness and/or softness is still remained unanswered.
The density dependence of Eg(p,T =0) for both cases of A18+dv+UIX* [4] and LNS
interaction [178] are also shown in Figure 3.10 for comparison. The curves of

E (p,T =0) obtained in the present work compares well with the results of
A18+dv+UIX* upto a density p=0.65 fm~ . However, beyond this density the curve of
E (p,T=0) in case of AIl8+dv+UIX* interaction becomes more and more stiff
compared to our results. On the other hand the comparison of our results with that of

LNS interaction case is good upto density p=0.4 fin™. Beyond this density the LNS

results become softer and softer and start decreasing after attaining a peak about

density, p=0.8 fn™.
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3.5. Conclusion

The parameter fixation in SNM and PNM using various available constraints
is discussed in detail in the frame work of Behera et al.[64]. It has been shown that, it is
possible to construct EOSs differing widely in their momentum dependence while
giving the same density dependence of isovector part of the nuclear mean field. The
results of such EOSs have been compared with the results from microscopic
calculations. The two cases, Case A and Case B considered above are the examples of
the EOSs those give same density dependence but widely varying in their momentum
dependence. In other words, both the EOSs give the same density dependence of energy
per particle in SNM and nuclear symmetry energy but different neutron-proton effective
mass splitting in ANM. Such EOSs having same density dependence (momentum
dependence) but differing in momentum dependence (density dependence) are of
crucial relevance in the transport model analysis of heavy-ion collision data in the
attempt to ascertain the momentum and density dependence of isovector part of the
nucléar mean field. At present although there is by and large consensus among the
various microscopic and effective theories on the nature of the neutron-proton effective
mass splitting that neutron effective mass in neutron rich asymmetric matter will lie
above the proton one, the magnitude of the neutron-proton effective mass splitting still
remains as an open problem. From the above attempts to constrain the splitting of the

ul

parameter 8;. +E,

mto like and unlike channels by restricting to the region of
experimentally extracted results as shown in Figure 3.3 and the fact that the neutron

effective mass should go above the proton one, it is certain that the permitted range for

] £ +8"l

ul i
S-—-‘i‘—z—2‘~. The zero temperature properties of

!

. . &E_TE

this parameter €' is —=—=<L¢g
ex 6 éx
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asymmetric nuclear matter like the nuclear symmetry energy or the equilibrium proton
fraction behave in the same way for both the extreme cases as can be ascertained from

Figure 3.10. In other words the zero temperature cakulations of asymmetric nuclear
matter may not be able to constrain further the splitting of the parameter £/ . In view of
this and in the absence of any precise experimental or empirical information, finite
temperature calculation may be useful to constrain further the parameter &’ . It is

important to note here that the interaction has no explicit temperature dependence but
the thermal evolution of the properties of nuclear matter is simulated through the Fermi-
Dirac distribution functions appearing in the exchange part of the energy density and
mean fields. Thus the exchange strength parameter is crucial in deciding the nature and
extent of thermal evolution in nuclear matter. Hence it is expected that finite
temperature calculations of ANM can be useful in further constraining the splitting of

ul
ex

€, into & and & . In this attempt we shall calculate the thermal evolution of various
properties of SNM , PNM and ANM in the next chapter with the different effective
mass splittings as obtained in this chapter for the finite range effective interaction in

eq.( 2.3.73).
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CHAPTER-1V

THERMAL EVOLUTION
IN NEUTRON RICH MATTER
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4.1. Thermal evolution of Nuclear Matter Properties

The energy density and single particle energy in ANM at temperature 7 for our
interaction in eq.(2.3.73) with Yukawa form for the finite range part are given in

egs.(3.1.1)-(3.1.3). The exact calculations of these properties in ANM requires the

-3
knowledge of neutron and proton momentum distribution functions, f7 (k) and

S (k), at given temperature T, density p and asymmetry (1—2Y,). The distribution

functions at temperature 7" are given by

& 1
(k)= - : : 4.1.1
)= Gay swle (b Do DT+ @11

where, i = n, p and the distribution functions are subjected to the constraint

[rrewd=p,, | 4.12)

Here, the spin degeneracy factor & takes values £ =2 and & and yf, with i=n,p
are the respective single particle energies and chemical potentials. In the evaluation of
the neutron and proton distribution functions we require the knowledge of respective
single particle energies which in turn involve the distribution functions warranting a
self-consistent calculation. Further, in the evaluation of the distribution function for one
type of nucleon we require the knowledge of respective single particle energies which
in turn involves the distribution functions of both kinds of particles making the self
consistent calculation a difficult one. Instead of entering into such a complicated self
consistent calculation, we have adopted the quadratic approximation as discussed in
chapter-III for the case of zero-temperature, 7 =0, generalized to the case of finite
temperature 7. The energy density and pressure in ANM under this generalized

quadratic approximation at temperature 7 can now be given as,
Hp.Y,,T)=Hy(p,T)+(1-2¥, P H (p.T) (4.13)

Plp,,.7)=By(p,T)+(1- 27, P P.(p,T), 4.1.4)
These expressions have the crucial advantage that the Y, dependence of H ( ,YF,T)

and P(p, Y, T ) are separated out from their dependence on p and 7. The quadratic
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approximation is a very good and quite accurate approximation at zero temperature
[117, 164, 166] as well at finite temperature [176, 177,179]. In order that egs. (4.1.3)
and (4.1.4) be valid in the complete domain of ANM, i.e. from PNM to SNM, we can
identify H (p,7)and P,(p,T) to be the symmetry energy density and symmetry energy

pressure respectively at temperature 7' and define them in terms of the differences

between the energy densities as well as pressure in PNM and SNM,
Hy(p,T)=pEs(p,T)=H,(p,T)- Ho(p,T), 4.15)
B (p,T)=P,(p,T)-Po(p.T)- 4.1.6)
where, E (p,T) is the nuclear symmetry energy as a function of p and 7. It is evident
from egs. (4.1.3)-(4.1.6) that a complete description of EOS of ANM at finite
temperature amounts to separate descriptions of EOSs of PNM and SNM at same
temperature 7 and same tofal nucleon density p.
The energy density and single particle energy in SNM at temperature 7 for our
interaction in eq.( 2.3.73) with Yukawa form for the finite range part are given in
egs.(3.2.1)-(3.2.3). These properties in case of PNM at temperature T with our

interaction having Yukawa form are also given by similar expressions as,

- ! 2 81 14
H,(p.7)= [ @m(cnr +m2c ) arp+ 22 L Zr | P | 2
n(p ) j-fT ( )( ) 9 po 2p07+l 1+bp p
i —> - -> -
+—§j— [[£7™ ) £ (Vg o (| PR K
1]
(4.1.7)

The parameters 86, 8;, and 8; appearing in this equation are defined in egs.(3.2.1a-

3.2.1f). The functional g, (k—k'|)is the normalized Fourier transformation of the

Yukawa interaction. The Fermi-Dirac momentum distribution functions in SNM and

- -
PNM, ie., f;"™ (k) and f,"""(k), are given by,

£y =2 (b), 4150

(2my

with the occupation probability defined as
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1
~exp{€ (k,p,T)—p'(p,T)YT+1

ny (k) (4.1.8b)

with i =0(n) for SNM( PNM) and subject to the coastraint [f; "M (Z) Pr=p.
Here, the spin-isospin degeneracy factor £ takes valuss & =4(2) in SNM (PNM) and
¢ and p', with j=0(n), are the respective single particle energies and chemical
potentials.

The single particle energies in SNM and PNM =zan be obtained as the functional

derivatives of respective energy densities and are given by,

. ] ul 81 +€“1 7+
& (k,p,T):(c2h2k2+M~c4)‘”+(€°+8°)£+(’ ”{)( P ) (1+by+1)
2 P 2P, 1+ bp 2

! ul - >
+ (Eex +8ex) J‘fTSNM (k)gex(l k— k' Dd3k
2p,
4.1.9)
and

el st
" (k,p,T)=(Cr2k? +M?C* ) vl By 2 | _P (1+b +1)
€ ( p ) ( )1 Opo p07+l 1+bp 14 2

el - -
. [ e (=K D’k
0

(4.1.10)

It is evident from the expressions of energy density and single particle energy in

both SNM and PNM that the temperature dependenze of the mean fields and the
interaction parts of energy densities are simulated thrcugh the respective Fermi-Dirac
momentum distribution functions while the interaction itself has no explicit temperature
dependence. The momentum dependent parts of the mean fields involve the respective
distribution functions and therefore imply self-consistent calculations. The momentum
distribution functions as well as mean fields both in SNM and PNM can be evaluated
self-consistently at each density p and temperature 7 by adopting an iterative
procedure [62]. Here the basic input is the respective single particle energies at zero
temperature. At T =0 the Fermi-Dirac distribution functions take the form of step

functions and the respective single particle energies as well as the complete EOSs of
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SNM and PNM can be calculated analytically. The single particle energy in SNM at
T =0 is given in eq.(3.2.2). The single particle energy in PNM at 7 =0 for our

interaction with Yukawa type finite range part is given by
e, p . & (o " v
e" (k,p,T=0)=(C*Rk* + M*C*)" +e{ L+ +—L-| —— (1+b +—)
( p ) ( ) 0 po po y+1 1 + bp 7 2

3N (A7 + 2 ~k2) {A2+(k+kn)2} 3A2

8k A +(k—Fk,) | 2k
+e! P " (k=k,) ! 4.1.11)

“po| 3N ,I(k+k,,) -l(k—k,,)
——qtan | ——— |~fan | ——
2% A A

where, the Fermi momentum k, is related to the density p as &k 3 = 37r2p. The

temperature dependence of single particle energies as well as chemical potentials are
obtained in the process of self-consistent evaluation of distribution functions in SNM
and PNM at given density p and temperature 7. Once the distribution functions, single

particle energies and chemical potentials are obtained, the pressure in SNM as well as in

PNM can be calculated by adopting standard procedure.

4.1.1. Effective Single particle energy and Fermi-Dirac distribution

function at finite temperature

As has been discussed earlier, the temperature dependence of the mean fields
and the interaction parts of energy densities are simulated through the respective Fermi-
Dirac momentum distribution functions. In view of this, thermal evolution of EOSs of
SNM and PNM, i.e. propertiecs of SNM and PNM relative to their zero-temperature

!

results, can be calculated only in terms of the exchange parameters €, ,€& :x{ and the

range ¢¢ without having to require the knowledge of other parameters &), &2/, 8;,, e;f’

and the exponent ¥ . The momentum distribution functions both in SNM and PNM can
be obtained self-comsistently at each nucleon density p and temperature T by

introducing effective single particle energies in SNM and PNM which contain only the

momentum depend ent parts and can be written as,
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ul - -
&% (,p,T) = [(Czh*’-kz warictyrs Bt e [row gy (it dﬂ,

(4.1.12)
And

€y (lc,p,ir)z[(fﬂrﬁkz+Mzc“)“2 j’ PNM(k)gex k _)’l)d k] (4.1.13)

These effective single particle energies would correspond to the respective effective

chemical potentials Lo (p,T) and u(p,T) such that

[ (6, T)- ip, D)= €,y k. p, 1) - big(p, D] With i=0, n.
In order to obtain the thermal evolution of properties of PNM we require the splitting of
the combination (g/ +&) into ¢! and ¢! for interactions between pairs of like and

unlike nucleons. Different splittings of the combined parameter (g! +¢

g, ) into like and
unlike channels will, therefore, predict different thermal evolution of properties of
PNM. As mentioned earlier, the controversy on the nature of n— p effective mass
splitting is more or less resolved and now there is a consensus opinion that neutron

effective mass goes over that of proton in neutron rich ANM. This implies that &/

should lie within 0 and €, [153]. However, there is no consensus among different
theoretical models on the actual value of g;. Under the circumstances, we therefore

vary the parameter ¢ ; in the ‘range 0 to g, and examine its influence on the thermal
evolution of different properties of PNM. The results in SNM and PNM thus obtained
are also compared with the respective predictions of ideal Fermi gas model where the
mean fields are momentum independent. The momentum distribution functions in the
ideal Fermi gas model are evaluated by considering onlv the kinetic energy terms in the
expressions of the effective single particle energies in eqgs. (4.1.12) and (4.1.13) and the
thermal evolutions of properties of SNM and PNM are calculated. Comparison of the
results for our interaction with the predictions of ideal Fermi gas model will bring out
the effect of momentum dependence of the nuclear mean fields on the thermal

evolutions of the properties.
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The basic ingredients in the finite temperature calculation of properties of SNM
and PNM are the respective occupation probabilities, ni(k), i=0,n calculated' self-
consistently using the effective single particle energies given in egs.(4.1.12) and
(4.1.13). The effective single particle energies eiff (k,p,T) and the respective chemical

potentials .. (p,T) are obtained in the process of self-consistent evaluation of ni(k).

The occupation probabilities, ny(k), i=0,n as a function of momentum k for both
momentum dependent and momentum independent mean field cases in SNM and PNM
are shown in Figures 4.1(a) and (b), respectively, at three different temperatures

T =0, 20,40 MeV for density p=0.1 fm>. In case of PNM in Figure 4.1(b) we have

T=0

(a) SNM

p=0.1fm"
08

n,”(k)

k [fm™

Figure 4.1. (a) Fermi-Dirac occupation probability, n2(k), in SNM for
momentum dependent and momentum indeperdent mean fields shown as a
function of momentum k at temperatures, T=0, 20 and 40 MeV for nuclear
matter density, p=0.1 fm—. The momentum independent cases (€, =0)
correspond to ideal Fermi-gas model results (b) Fermi-Dirac occupation
probability, nz(k), in PNM for the same cases as in (a). Curves for ¢/ =0
corresponds to ideal Fermi- gas model results in PNM.
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(b)
PNM

p=0.31fm™

4 o] 1 2 3 4
Kk [fm ']

o

Figwre 4.2. (a) Fermi-Dirac occupation probability in SNM for momentum
dependent and momentum independent mean fields shown as a function of
momentum £ at temperatures, T=0, 20 and 40 MeV for nuclear matter density,
p =0.3 fm™. The momentum independent cases (&, =0) correspond to ideal

Fermi-gas model results. (b) Fermi-Dirac occupation probability, ny(k), in

PNM for the same cases as in (a). Curves for 8; =0 corresponds to ideal
Fermi- gas model results in PNM

considered the two extreme values of ¢ ; in its allowed range, namely, 8; =0 and

€,,- The occupation probabilities in PNM for different ¢! , within its allowed range,
lie in between the results of these two extreme cases. The Fermi gas model results in
SNM and

PNM are also given in the Figures 4.1(a) and (b) for comparison with the respective
momentum dependent mean field cases. In Figures 4.2(a) and (b) the results of
occupatioﬁ probabilities for the same cases as in Figures 4.1(a) and (b) are shown at a

higher density, p=0.3fm">. From Figures 4.1 and 4.2 it can be seen that the
occupation probabilities, n;(k), of the states k£ <k,, i= f,n, decrease with increase

in temperature extending the tail to higher £ values in both SNM and PNM. The results
of SNM and PNM in each of the Figures 4.1 and 4.2 show that the effect of temperature
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is relatively larger in SNM as compared to PNM. It is also evident from both the figures
that temperature has a larger effect in case of momentum independent mean fields
(Fermi gas model results) than that of momentum dependent mean fields in both SNM
and PNM. This effect is larger at higher temperature. Thus a momentum dependent
attractive nuclear mean field that increases with a rise in momentum has the important
role in lowering the effect of temperature on the occupation probability in SNM as well
as in PNM. We shall now examine the effect of these features of occupation
probabilities in SNM and PNM on the thermal evolution of various nuclear matter

properties. The momentum dependence of nuclear mean field in SNM is constrained
with the fixed values of g_ and « thereby fixing the evolution of occupation
probability at given temperature and density in SNM. However, the actual momentum
dependence of the mean field in PNM is yet to be decided and the possible range of &/
is 0 to g, . Different ¢ ; in this range will give different occupation probabilities in
PNM. In our study of thermal evolution of nuclear matter properties we have, therefore,
considered four representative cases of gjx, namely, eéx =0,¢e,/3,2¢, /3, €, that

covers the whole range of allowed momentum dependence of PNM mean field.

4.1.2. Entropy density
The entropy densities, S;(p,T), i =0,n in SNM and PNM can be calculated

from the relation,

£
271:)3

a1 = T oo men i+ (- o - e )|,

(4.1.149
where, £=4(2) for SNM (PNM) and ng’" (k) are the respective occupation probabilities
at temperature T . The results of entropy densities in SNM and the four different cases

of PNM, namely, ¢! =0,¢,/3,2¢, /3 and e, , as a function of density p are shown
at two different temperatures, T= 40 and 60 MeV, in figures 4.3(a) and (b)
respectively. Comparing our results with those obtained from ideal Fermi gas model in

both SNM and PNM, it is seen that momentum dependence of the mean fields plays
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Figure 4.3. (a) Entropy density, 7S, ,(p,T), in SNM and four cases of PNM

corresponding to e/ =0, ¢, /3, 2¢,, /3 and &, shown as a function of density
p at temperature T= 40 MeV. Fermi gas model results in SNM and PNM

correspond to €, =0 and ¢/ =0, respectively. (b) Same as (a) but at
temperature, T=60 MeV.

important roles to reduce the effect of temperature. It is also seen from the figures that
the entropy density obtained in the ideal Fermi gas model in SNM goes above that of
PNM and the difference increases with density. On the other hand our results of entropy

density in PNM exceeds that of SNM at a higher density if the parameter ¢/ lies in
between 0 to 2g, /3, which is contrary to the results obtained with ideal Fermi gas

model. The density at which the entropy density in PNM exceeds that of SNM

gradually increases with increase in the magnitude of the parameter ¢! from 0 to
2¢, /3. With increase in temperature the crossing over point shifts to higher density.
For the specific choice of & =2¢, /3 the entropy density in PNM approaches that of
SNM asymptotically at large density. With increase in the magnitude of ¢! from
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2e,. /3 towards ¢_ the curves of entropy are pushed more and more below that of

SNM. In case of ¢! =¢_, the entropy density in PNM is always less than that of SNM,

This kind of behaviour is similar to results obtained in the ideal Fermi gas model over

the whole range of density. With increase in temperature the curve of PNM lies more
and more below that of SNM one and the difference T[S, (p,T)-S,(p,T )] assumes
larger and larger negative values in the high cnsity region. Thus it is found that the
whole range of €. is now divided into two parts based on the consideration that
whether the quantity T[S" (p,1)-S, (p,T)] can change sign at any value of density or
not. A

The question, now, automatically arises whether the entropy density in PNM
being a system of one kind of particles can exceed that of SNM which is a two
component system or not!! A plausible answer to this pertinent question may be
searched in the areas of study of heavy-ion collision dynamics involving highly neutron
rich radioactive nuclei. If an answer to this basic question can be obtained then it can
help constrain the magnitude of neutron and proton effective mass splitting in ANM. In

the absence of a satisfactory answer to this fundamental question we can still divide the
whole possible range of splitting, 0<e! <g, , of our combined exchange strength
parameter (g. + ¢) into like and unlike channels in two parts, (a) 0<e! <2¢, /3
and (b) 2¢_ /3<el <¢_ .In case the answer to the question raised above is ‘yes’ then
the possible range of eix is confined to the range as given in (a) 0 < g;c <2¢, /3 andif
‘no’ then the possible range of g; is (b) 2e, /3<¢ éx <g, and accordingly the

magnitude of neutron and proton effective mass splitting in ANM can be further

constrained.

4.2. Thermal evolution of Bulk properties in SNM and PNM

The allowed range of ¢! is now divided into two groups, namely, (a) O to

2¢, /3 and (b) 2g,/3 to g, ,on the basis of the two contrasting behaviours found in

the results of entropy density in PNM relative to the SNM one for different momentum
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dependence of PNM mean field in this range. We now examine the thermal evolution in
other properties of SNM and PNM, such as, internal energy density, free energy density
and pressure for different choices of &/ within its allowed range 0<e! <e,. The
thermal evolutions of these quantities in SNM and PNM are defined as their values at

temperature T relative to the zero-temperature values,

H'"(p,T)=H,(p,T)-H,(p,T =0), (4.1.15)
F"(p,T)=F,(p,T)~F,(p,T=0), (4.1.16)
P"p,7)=F(p,T)-F(p,T=0)s (4.1.17)

with j=0,n for SNM and PNM respectively.

4.2.1. Thermal evolution of internal energy density
The thermal evolution of internal energy density in SNM (PNM), H; (p,T),can

be given by,

krny

Hio (0,T) = (25){ Jlewe? v m2ct)” mo @y atk - flcnk +m2ct)” d3kjl

2
4 e n oy n g =, , - '
+5((25)3] [ﬂngw(k) np (k") g (k- k' Ndk d’k _kf{{;gaqu_k |)d3kd3kj|

(4.1.18)

! ul i
e _+er)|( e
where, Az———( = ‘”‘)( =

5 ;—} and £ =4(2). The integral I implies integration over
P :

0 kromy

the Fermi sphere of radius £, in SNM (PNM). As has been mentioned earlier, it is
evident from eq.(4.1.18) that only the kinetic energy terms and finite range exchange
terms contribute to the thermal evolution in SNM (PNM). The results of thermal

evolution of internal energy density in SNM and the four cases of PNM, namely,
el =0,e,/32,/3 and €, are given in Figure 4.4 as a function of density at

temperature, 7= 40 MeV. The ideal Fermi gas model results in SNM is also given in

the same figure.
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Figure 4.4. Thermal evolution of internal energy density, u (p,1), in SNM and

four cases of PNM corresponding to ¢! =0, ¢, /3, 2¢, /3 and g, shown asa

function of density p at temperature T= 40 MeV. Fermi-gas model results in
SNM and PNM correspond to €,, =0 and ¢’ =0, respectively.

4.2.2. Thermal evolution of free energy density

The thermal evolution of free energy density in SNM (PNM) can now be given
in terms of entropy density, 7S, (p,T) and Hy, (p,T) as

E;(’;:) (p,T) :H(’)]('n)(@T) _TSO(n) (p,T)'

(4.1.19)
FO’(” ,(p,T) in SNM (PNM) is calculated as a function of density at temperature 7'= 40

MeV for the same cases as in Figure 4.4, and the results are shown in Figure 4.5. The
thermal evolution of pressure can be given by,

‘Pof(l:;) (poT) ":P[}lo(n)(P,T) _)u()(n) (ps T= 0)]_ F:;’(’;)(P,T) -
From

(4.1.20)
the definition of effective chemical

potentials, it
(ug”

is apparent that
(0T - ng"(p, T=0)] = [u*"(p,T)-pu""(p,T=0)]. The effective chemical

potential in case of SNM (PNM) at finite temperature is obtained in the process of self-
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Figure 4.5. Thermal evolution of free energy density, £#(p,7), in SNM and four

cases of PNM cormresponding to ¢! =0,¢,/3, 2, /3 and €, shown as a
function of density p at temperature T= 40 MeV. Fermi-gas model results in
SNM and PNM correspond to €, =0 and ¢/ =0, respectively.

5
consistent evaluation of momentum distribution function ") () whereas, its
zero-temperature counterpart is obtained from eq.(3.2.2) (eq.(4.1.11)) by considering

only the kinetic and finite range exchange terms evaluated at the Fermi momentum

k =k, corresponding to density p.

4.2.3. Thermal evolution of pressure
The thermal evolution of pressure, p’ (p,1), in SNM (PNM) as function of density at

T = 40 MeV is given in Figure 4.6 for the same cases, as in Figure 4.5. The thermal
evolutions of internal energy density and pressure have positive values both in SNM
and PNM, whereas, it is negative in case of free energy density as can be seen from
respective Figures 4.4, 4.5 and 4.6. It can also be seen from Figures 4.4 and 4.5 that

thermal evolutions of internal energy density and free energy density for different cases

of € in PNM show similar behaviour as in case of entropy density in Figure 4.3. For

€ éx in the range 0 to 2¢, /3 the results of PNM crossover the respective SNM result at

certain higher densities, whereas, there is no crossing over of PNM and SNM results at
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Figure 4.6. Thermal evolution of pressure, p(p,T), in SNM and four cases of

PNM corresponding to ¢! =0, ¢, /3, 2¢, /3 and ¢, shown as a function of
density p at temperature T= 40 MeV. Fermi-gas model results in SNM and
PNM correspond to £,, =0 and ¢/ =0, respectively.

any density in case €. is in between 2¢, /3 and e, .For el =2¢, /3, the thermal
evolution of internal energy density and free energy density in PNM approaches the
SNM result asymptotically. Thus it is found that, like the case of entropy density,

thermal evolutions of internal energy density and free energy density in PNM relative to

SNM results have similar behaviour in the two different regions of & éx , specified by (a)
and (b) in the foregoing discussion. However, in case of thermal evolution of pressure
deviation from this common behaviour occurs as can be seen from Hgure 46. The
deviation from this common behaviour is due to the thermal evolution of chemical
potential term, [y %™ (p,T)— u® (p,T = 0)]. We shall now examine the thermal evolution

of nuclear symmetry energy and free symmetry energy which are two important

quantities in the studies of formation and cooling mechanism of neutron stars.
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4.3. Thermal evolution of Nuclear Symmetry Energy
The nuclear symmetry energy at finite temperature, E(p,T), can be obtained
from the finite temperature expression of nuclear symmetry energy density defined in

eq.(4.1.5) by dividing it with p,

Eg(p,T) =[H"(p’T),;H°(p’n]=(e,, (p.1)~¢,(p.T)), @.2.0)

where, e, (p,T) and ey (p,T) are respectively the energy per particle in PNM and
SNM at density p and temperature T . The thermal evolution of nuc lear symmetry
energy Eg(p,T) can be obtained by subtracting the zero-temperature result from it and
we denote the quantity by the functional,

Q(p.T) =|Es (p,T) - E5(p,T=0)]. @2.2)
The calculationof Q(p,T) as a function of density at a given temperature T requires
the knowledge of thermal evolution of the energy densities in SNM as well as in PNM.
The thermal evolution in SNM is obtained by taking the difference of energy density
expressions at finite 7 and zero-temperature given in egs.(3.2.1) and (3.2.5)
respectively. The resulting expression will contain only the kinetic energy terms and
finite range exchange terms of finite 7' and zero-temperature expressions. Similarly,
the thermal evolution of the energy densities of PNM can be calculated from eqgs.(4.1.7)
and (3.3.18). We have studied the thermal evolution of symmetry energy for the two

representative  values of €, namely, & =(e. +€Y)/6 (Case A) and

gl =(e! +€“)/2 (Case B), those constitute the extreme cases obtained from the
nature of effective mass splitting and analysis of Lane potential results as discussed in
the Chapter-IIl. The results of the calculated density dependence of Q(p,T) at different
temperature T are given in Figure 4.7(a) and (b) for the two different splittings of the
combination (8; + 8::) in cases A and B. It can be seen that Q(p,T) is negative at low

density and decreases with increase in density for both the cases A and B. With further

increase in density p, the functional Q(p,T) attains a minimum and then increases.

However, in the higher density region the rate of increase of Q(p,T) is faster in case A
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Figure 4.7. (a) Nuclear symmetry energy at temperature T relative to its zero
temperature result (The functional Q(p,T) in eq.(4.2.2)) shown as a function of

density for case A at three different temperatures, T=20, 40 and 60 MeV. (b)
Same as (a) for case B.

than in case B. As a result of this ((p,T) changes sign and becomes positive in the

higher density region in case A as can be seen from Figure 4.7(a), whereas, it remains

negative in case B for the entire range of density. As expected the effect of temperature

on ({p,T) is found to increase with an increase in the magnitude of exchange strength

parameter ¢/ in PNM as well as with temperature 7.

4.3.1. Thermal evolution of Symmetry energy for EOSs corresponding

to momentum independent mean field ( Fermi gas model)
The results of Q(p,T) for the ideal Fermi gas are shown in Figure 4.8 at three different

temperatures. It can be seen from the Figure 4.8 that, Q(p,T) assumes negative values

at any temperature over the whole range of density. At a given density, Q(p,T) takes

larger negative value at higher temperature. With the increase in density, for a given

131



N IR
\\ . e
=5 r A\ 7
= \\ . o
= N e 40 e
l":; x_\ —— e
£
O -
N
- 1 0 L '~ — - i
- —
-16 : : :
0 0.4 0.8 1.2 1.6

p {fm]
Figure 4.8. Fermi gas model results of thermal evolution of symmetry energy,
O(p,T), shown as a function of density p at three different temperatures, T= 20,
40 and 60 MeV.

temperature, it decreases and then saturates after attaining a minimum in the high

density region.

4.3.2. Thermal evolution of Symmetry energy for EOSs corresponding

to momentum dependent mean field
In order to examine the effect of momentum dependence on the thermal

evolution of symmetry energy, we have shown the results of the functional Q(p,T) for

the cases ¢/ =0,¢, /3 2¢,_/3 and €, in Figure 4.9 at temperature 7 =40 MeV .

For all the four cases, at a given temperature, Q(p,T) decreases with the increase in

density, attains a minimum and then increase with the increase in density. A changeover
of sign in Q(p,T) takes place if ¢! lies in the range between 0 to 2¢_ /3 whereas

Q(p,T) remains negative all through the density regionif £’ lies in the range between
2¢,./3 10 ¢,.For g/ =2¢, /3, O(p,T) vanishes asymptotically at high density. The
curves of Q(p,T) are gradually pushed lower towards the ideal Fermi gas results as
¢! increases from 0 to g, implying that momentum dependent mean field plays a role

to reduce the effect of temperature. The quenching effect in the high density region
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Figure 4.9. Thermal evolution of symmetry energy, g(p, ), shown as a function
of density p at temperature T= 40 MeV for four cases of

el =0,¢,/3, 2, /3 and €, . The Fermi gas model result is given as solid
line with filled circles.
decreases with decrease in the attractive strength of the finite range exchange
interaction between the unlike nucleons pair. It may be noted here that for given finite
range exchange
interactions operating between two like and unlike nucleons, the temperature and
density dependence of the functional Q(p,T) does not depend on how the density

dependence of zero-temperature symmetry energy Eg(p,T = 0) has been constrained.

4.4. Thermal evolution of Free Symmetry Energy

In the study of finite temperature nuclear matter properties the nuclear free
symmetry energy plays a very important role. It has crucial importance in phenomena,
such as, EOS of supermova matter, composition and cooling mechanism ofnewly born

neutron stars, etc. The free energy density in case of SNM and PNM are defined as,

F,(p,.T)=H,(p,T)~TS,(p,T) @3.1)

and
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F, (p,7)=H,(p,1)-T5,(p,T) , (4.32)
respectively, where H,(p,T)and S,(p,T); H,(p,T)and S (p,T) are the
respective energy densities and entropy densities.

Under the consideration that the quadratic expansion of the free energy to be
valid we can express the free energy density in asymmetric nuclear matter as

F(p,T.Y,)=F,(p,T,Y,=1/2)+(1-2Y,)’F,(p,T), (4.3.3)

where, F,(p,T) is the free symmetry energy density. Following the argument in
expressing the nuclear symmetry energy in eq.(4.1.5) we can write the nuclear free
symmetry energy density as,
F.(p,T)=F, (p,T,Y, =0)-Fy(p,T,Y, =1/2) 4.3.4)
In view of the egs. (4.3.1) and (4.3.2), the nuclear free symmetry energy density can
now be expressed as
F(p,7)=[H,(p,1) - Hy(p.T)]- T[S, (p.7) -S (0, 7] 4.35)
The thermal evolution of nuclear free symmetry energy relative to its zero temperature
results is expressed through the functional
F,(p,T)-F,(p,T=0)
P o
where, F (p,T= 0)=[Hﬂ (p,T=0)-H,(p,T = 0)]. Thus Q,.(p,T) can also be

0,(p,T)= 43.6)

expressed in terms of thermal evolution of symmetry energy as,
0:(p.T) = Ap.D-TIs,(p. 1) - 5,(p:T)]. (43.7)
Thermal evolution of free symmetry energy, O.(p,T") can now be calculated as
a function of density from the results of Q(p,T") and entropy densities in SNM and
PNM. The results of Q(p,T) as a function of density for the same cases, as in Figure

4.9, are shown in Figures 4.10(a) and (b) at two different temperatures 7= 40 and 60
MeV, respectively. The corresponding ideal Fermi gas model results are ako shown in

the same figures. The results show that the thermal evolution of free symmetry energy
Qr(p,T) is large positive at low values of the density for both momentum dependent
and momentum independent cases, in contrast to the negative values of Q(p,T), and it

decreases with increase in density. The large positive values in the low density region is
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Figure 4.10. (a) Thermal evolution of free symmetry energy, ¢.(p,T), @ a

function of density p for four cases of ¢! =0,¢,/3,2¢, /3 and &, at

temperature T= 40. (b) Same as (a) for T=60 MeV. The respective Fermi gas
model results are given as solid lines with filled circles in the corresponding
figures.

basically due to the fact that entropy in SNM is large compared to that in PNM in this

S, (0.T)— S,(p, )]
Jo,

negative values in the low density region. The rate of decrease of Q.(p,T) slows

density region and hence the factor in eq. (4.3.7) assumes large

down in the high density region for all the cases shown in the Figures 4.10(a) and (b).
But the ideal Fermi gas model results of Q. (p,T) remain larger positive as compared
to momentum dependent mean field cases over the whole range of density. The
decrease in Q(p,T) with increase in density in the momentum dependent mean field
cases is relatively sharper compared to the ideal Fermi gas case and the rate of decrease
also depends on the value of €.,. In case of 0<el <2¢,/3, Qp(p,T) becomes

negative at certain density and approaches negative asymptotic value in the high density

region. For 2¢_ /3 <g; <g, ,theresult of Q.(p,T) remains positive at all densities
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and approaches to a positive asymptotic value in the high density region showing
similar behavior as that of the ideal Fefmi model case. On the other hand, thermal
evolution of Q.(p,T) for ! =2¢, /3 does not become negative at any density and
vanishes asymptotically. The behaviours of Q.(p,T") found for the different cases of
gl are true at any temperature. Thus, thermal evolutions of symmetry energy and free
symmetry energy in the two ranges of &', specified by (a) and (b) in the foregoing
discussions, have similar behaviour to what has been observed in cases of entropy

density as well as thermal evolution of internal energy density and free energy density.

4.5. Neutron-proton effective mass splitting in ANM at 7 =0 for

different choices of € fo
Two distinct behaviours in the thermal evolution of nuclear matter properties in
PNM relative to their respective SNM results are found in the regions, €. in between
(@ 0to 2, /3 and (b) 2¢,/3 to ¢, . The results of thermal evolution of these
properties in ANM will be in between the corresponding results in SNM and PNM and
shall correspond to the same characteristic behaviour depending on the value of &€ in

these two ranges. We shall now examine the #n and p effective mass splitting in ANM

at zero-temperature for different cases of 8!« in the whole range between 0 and &€, .

The calculation of 7 and p effective masses in ANM requires only the momentum
dependent parts of the mean fields which are obtained from the finite range exchange
interactions. The neutron and proton effective mass splitting at zero-temperature as

functions of momentum k, asymmetry B and densicy p are shown in the Figures
4.11(a), (b) and (c) respectively for the three boundary cases & =(g’ +€")/6,

gl =(el +€¥)/2 and ] =2(e! +€")/6. The neutron and proton effective mass

splitting is found to be increasing function of all the three variations, k£, 8 and p,with

ul

ex?

increase in the difference between the exchange strength parameters, ¢! and g

acting between a pair of like and unlike nucleons, respectively. Thus the splitting is
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Figure 4.11. (a) Neutron and proton effective mass shown as function of
momentum for the three different cases of splitting for a given proton fraction

Y, =0.1and at normal density p,. (b) Same as (a) but shown as function of
neutron-proton asymmetry at normal density. (¢) Same as (a) but shown as
function of density at a fixed proton fraction ¥, =0.1.

maximum for case A. In case B, there is no splitting between the neutron and proton
effective masses in ANM as the strength of exchange mteraction between like pair and
unlike pairs of nucleons are the same. Beyond this boundary value where the exchange
strength between a pair of like nucleons becomes stronger than that of a unlike
nucleons, the proton effective mass will be predicted to go over the neutron one that
contradicts the largely accepted view of larger neutron effective mass than proton one in
neutron rich matter. For the critical case that subdivides the whole range specified by
case A and case B into two groups so far as the behaviour of entropy per particle in
SNM and PNM is concerned, the results for neutron and proton effective mass splitting
in ANM lies in between the two cases A and B. The results for neutron and proton
effective mass splitting in ANM as a function of asymmetry B=(1-2Y ,) obtained in
our calculation for the three different cases is compared with the results of DBHF

calculation [180] and is given in Figure 4.12. The results of our calculation for the
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Figure 4.12. Neutron-proton effective mass plotted as function of neutron
proton asymmetry f=(1-2Y,) for different splitting strengths. The DBHF
calculation of Sammarruca [180] ( solid line) is also shown for comparison. The
upper three curves are the neutron effective mass where as the lower curves are
for proton effective mass.
critical value of &/ agree to a reasonable extent with the predictions of DBHF
calculation. The difference between the curves of neutron effective mass (as well as
proton effective mass) for & =2¢, /3 and the DBHF results appearing in the figure is

mainly due to the difference between the effective masses in SNM. It is to be noted here

that for each of these three representative values of €. we can determine the splitting
of the rest two parameters, &, and &,, corresponding to the density dependent parts

into like and unlike channels according to the procedure as discussed in the last chapter.
The EOSs of ANM thus obtained for all these three cases give the same density
dependence at zero-temperature, as may be seen from Figures 3.9 and 3.10, but vary

widely in their momentum dependence as evident from Figure 4.11. Thus the EOSs
corresponding to the three representative values of £. exhibit widely varying thermal

evolution of the nuclear matter properties as enumerated in the foregoing discussions.
The calculation of the neutron and proton effective masses as well as the thermal

evolution of nuclear matter properties discussed above in this section are possible only
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with the knowledge of momentum dependent parts of the nucleonic mean fields.
However the complete calculation of nuclear symmetry energy and nuclear free
symmetry energy requires the complete knowledge of the EOS, both density as well as
momentum dependent parts. Studies of these two properties at finite temperature has
important relevance in isoscaling studies of multifragmentation phenomena and in
supernovae matter aé well as formation mechanism of neutron stars as will be discussed

in the following chapter.

4.6. Conclusion
In this chapter we have made an attempt to constrain the momentum dependence

of nuclear mean field by considering the thermal evolution of nuclear matter properties.
The thermal evolution in nuclear matter has been calculated in terms of the thermal
evolution in SNM and PNM. In absence of definite idea about the momentum
dependence of PNM mean field, we have considered different representative cases
within the allowed range of momentum dependence of PNM mean field. It has been
found that the momentum dependence of the nuclear mean field has the important

influence of reducing the effect of temperature. We have found a critical value

gl = —i—eﬂ within the whole allowed range of €/ ,ie. 0<ég! <g_. On both sides of

€ ex?

this value, the thermal evolution in SNM and PNM show two contrasting behaviours. If

ex

0<e! < -z—eex then the thermal evolution in PNM crosses that of SNM at certain higher

density. If —gigex <g! <e, then no such cross over phenomena takes place. Also

entropy density in PNM also does not cross over that in SNM at any density. Since the
PNM is a one component system, the entropy density in PNM should not cross that of
SNM. Therefore it is less likely that the momentum dependence of PNM mean field

ex —

should lie within the range 0 <g/ < -g—gex. For this critical value it has been found that,

the magnitude of neutron-proton effective mass splitting in ANM agrees quite well with

the results obtained in ab initio DBHF calculation.



CHAPTER-V

PROPERTIES OF NUCLEAR
MATTER AT FINITE
TEMPERATURE AND EQUATION
OF STATE OF CHARGE NEUTRAL
n+p+e+ il MATTER UNDER
BETA EQUILIBRIUM

140



In the last chapter the thermal evolution of important nuclear matter properties
like nuclear symmetry energy and free symmetry energy have been studied which
requires only the knowledge of finite range exchange mteractions acting between a pair
of like nucleons and unlike nucleons. Within the framework of the formalism used in
our work, it is the finite range exchange part of the interaction that determines the
momentum dependence of the nuclear mean field and also simulates the temperature
evolution of nuclear matter properties. From the stucies on entropy per particle and
thermal evolution of vario us nuclear matter properties in the last chapter it is clear that
the momentum dependence of the nuclear mean field has the crucial role in making the
system a more ordered one and also in counterbalancing the effect of temberature on the
nuclear matter properties. In this context two contrasting behaviours have been noticed

depending on the magnitude of splitting of the combined exchange strength parameter

ul

= » respectively. It is also found

1 T/ AN : . I
(g, + €,.) into like and unlike channels, £, and &€

ul
ex

that there is a critical value of this splitting close to . =2(e! +£!*)/6 (corresponding

to g = 4(.&‘;c + s;‘;)/ 6), that divides the admissible range of the splitting of the
combined exchange strength parameter (€ ! + &Y into two distinct groups. In the case

of splitting of the exchange strength parameter where Eéx value lies below this critical
value then the entropy in PNM can become more than that of SNM as the density
increases and in this case the functional behaviour of properties like nuclear symmetry
energy and free symmetry energy at finite temperature relative to zero temperature gets
inverted in the high density region. On the other hend if the splitting is such that
€’ value lies in the other half then entropy in PNM does not surpass the SNM result
and the functional behaviors of properties like nuclear symmetry energy and free
symmetry energy at finite temperature relative to zero temperature do not get inverted
in the high density region. For the critical value of Eéx the finite temperature results

approach the zero-temperature ones asymptotically in the high density region. In the
work of the present chapter we shall study the finite temperature nuclear matter
properties as well as the EOS of beta equilibrated charge neutral n+ p+e+ (i matter

for these three extreme cases of splitting of exchange strength parameter, namely, (i)
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el =(el +€%)/6 (case A) (i) &’ =(¢., +£")/2 (case B) and (iii) the critical case

el =2(e! +£)/6, in order to find out the differences in the prediction of the results.

5.1 Temperature dependénce of Nuclear symmetry energy
The nuclear symmetry energy and free symmetry energy at finite temperature

are defined in terms of the difference of energy density and free energy density in PNM

and SNM at finite temperature respectively as,

Ey(p,1) - @ T );H" ®CD_ (. (p,7)=e,(p,T)

Féym(p5T)= [Hn (p’T)_HO(p,T)];T[Sn (p7T)—S(p9T)] .

The symmetry energy at finite temperature, £,(0,77), has crucial relevance in the

isoscaling behaviour studies of multifragmentation phenomena in heavy-ion collision
experiments at intermediate energies [133, 141, 181-183]. On the other hand, the free
symmetry energy, F Aym( p,T), at finite temperature plays important role in the
formation and cooling mechanism of newly born neutron stars [136, 184-186].

The calculation of symmetry energy, Eg(p,T), at non-zero temperature T
requires the knowledge of energy densities in SNM and PNM as functions of p and T.

The energy density of SNM for our interaction is given in eq.(3.2.1) and all the six
parameters required for calculation are known fom saturation conditions and nuclear

matter incompressibility and are given in table 2 of chapter-III. The results for energy
density H,(p,T) in SNM as a function of density at cifferent temperatures are shown
in the Figure 5.1. The calculation in PNM for the three representative cases of splitting
of the exchange strength parameter, (. + &), as mentioned above now requires the

additional splitting of the combined strength parameters of the density dependent parts,

(€h+ €y and (87’, + 8;1 ), into like and unlike channels. The parameter fixation in

PNM has been discussed in chapter-1IT and the values of the parameters in case of these

three representative cases are given in table 3 in the same chapter. The energy density in
PNM, H (p,T), as a function of density at different temperatures for the three cases,

case A, case B and critical case, are shown in Figures 5.2(a), (b) and (c) respectively.
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Figure 5.1. Energy density in SNM shown as a function of density at four
different temperatures T=0, 20, 40 and 60 MeV.
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Figure 5.2. (a) Energy density in PNM shown as a function of density at four

different temperatures T=0, 20, 40 and 60 MeV for case A. (b) Same as (a) for
case B. (c) Same as (a) for the critical case.
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Figure 5.3. (a) Nuclear symmetry energy shown as a function of density for the
critical case at temperatures T=0, 20, 40 and 6) MeV. (b) Same as (a) for case
A. (c) Same as (a) for the case B.

The density dependence of nuclear symmetry energy Eg(p,T) at different

temperatures is shown in Figure 5.3(a) for the critical value. of 8; . For this case,
inversion in the functional relationship between the finite and zero-temperature results
does not occur and the finite temperature result approaches the zero-temperature one
asymptotically in the high density region as expected from earlier discussions in the
previous chapter. In order to visualize the contrasting behaviour of density dependence
of nuclear symmetry energy E,(p,T) in the cases of splitting of the exchange strength
parameter on either sides of the critical value we have zlso calculated the results for the
two other cases, £/ =(g +€%)/6 and g =(g! +¢£¥)/2, given as case A and case
B, respectively. The results are shown in Figures 5.3(b) and (c¢) for the two cases A and
B, respectively. The crossover phenomena resulting into an inversion of the functional

relationship between the finite and zero-temperature results take place in the high

density region in case A, whereas in case B, the finite temperature results remain below
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the zero-temperature ones at all the densities considered. Under the formalism used in
our work, the temperature dependence of the interaction part in nuclear matter
properties is simulated through the momentum dependent part of the nuclear mean field
which, in turn, arises from the exchange part of the interaction. Moreover, the
temperature dependence of the symmetry energy has the behaviour that it decreases
with increase in temperature, it is expected that in case of case B there will be a stronger

temperature dependence in comparison to case A. The stronger temperature dependence
in case B is a consequence of larger magnitude of the parameter ¢! resulting into
stronger momentum dependence in PNM as compared to case A. Thus for the case B,
the curves of E (p,T) are shifted more and more below the curve E (p,T = 0) with
increase i temperature as can be seen in Figure 5.3(c) and the thermal evolution of the
symmetry energy remains negative at all densities and all temperatures. Thus the
functional Q(p,T) remains negative in case B for the entire range of density shown in
Figures 4.7(b). The relatively weaker momentum dependence in PNM in case A has the
consequence of a weak temperature dependence in PNM that further decreases with
increase in density resulting into a crossing over of the high temperature curves with the
low temperature ones in the density region around p>0.8 fm™, as can be seen from
Figure 5.3(b). Consequently the functional Q(p,T)becomes positive at higher densities,
as shown in Figures 4.7(a) for case A. On the other hand, for the critical case shown in
Figure 5.3(a), the strength of momentum dependence in PNM is such that the effect of
temperature gets washed out in the high density region and the curves of Eg(p,T)

approach to the E¢(p,T =0) one asymptotically in the high density region. From the
Figure 3.9 of chapter-1I1, it can be seen that the density dependence of E¢(p,7 =0) for
the cases A and B are almost identical over the entire range of density. Thus a
comparison of Figures 5.3(b) with 5.3(c) shows that different symmetry energies may
have similar density dependence at zero temperature but they can differ significantly
from each other at finite temperature. A comparison of the results obtained in our cases
of different momentum dependence in PNM with the results in Ref.[176] shows that the
temperature dependence of nuclear symmetry energy for case A shown in Figure 5.3(b)

is similar to those obtained in Ref.[176] for their interaction with x =0.

145



5.1.1. Prediction of Symmetry energy from isoscaling analysis of
Multifragmentation phenomena
The density dependence of symmetry energy at non-zero temperature is
important in the studies of isoscaling analysis in mulrifragmentation phenomena [133,
141, 176, 181-183] as well as in the calculation of fractions of different particles in f3 -
equilibrated n+p+e+pu matter [164, 177]. In the study of multifragmentation
processes the ratio R,(N,Z) of the yields of a fragment with Z protons and N

neutrons from two reactions reaching the same temperature T obeys an exponential
relation R, (N,Z)x e* V. The isoscaling coefficient « is related to the symmetry

energy Eg(p,T) as

a =4—E“‘(TP—’DA[(Z/ 22, (5.1.1a)

where,
Az 4 |=z,14) - (2,14, (5.1.1b)
is the difference between the (Z;/4;),,, values of the two fragmenting sources
created in the two reactions. The isoscaling coefficient O is extracted from the

experimental data by plotting the number of isotopes formed for different Z, namely

7=2, 3, 4, etc., as function of neutron number, N. The slope of these different curves is

same and given by ¢ . The isoscaling coefficient a and the temperature T of the

fragment emitting source are measured experimentally from which the value of
Eg(p,T) can be extracted from egs. (5.1.1a & b). However, the freeze out density p,

of the fragmenting source at the site of formation of the particular nuclei has not yet
been possible to extract from the experiments and therefore depends on the model used.
This is the reason why different groups predict differen: values of the symmetry energy
atsame T extracted from the same experiments conducted at different laboratories. In

order to see the model dependence of the value of freeze out demsity p, of the

fragmenting sources we calculate the symmeuy energy E;(p,7T) as a function of
temperature for the two representative cases A and 3 in Figures 5.4(a) and (b) at

different densities from 0.4p, to p,. In the same figures, the experimental data of the
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Figure 5.4. (a) Temperature dependence of symmetry energy for case A at
different densities from 0.4p, to p,. The experimental data of the measured
temperature dependent symmetry energy from Texas A&M university (TAMU)

and INDRA-ALADIN collaboration at GSI are also included. (b) Same as (a)
for case B.

measured temperature dependent symmetry energy from Texas A&M University
(TAMU) [187] and the INDRA -ALADIN Collaboration at GSI [188, 189] are also
included. The curves of E (p,T) for same density p have similar temperature

dependence for the two cases considered, except that the rate of decrease of symmetry
energy with increase in temperature is relatively faster in case B compared to case A.

From Figures 5.4(a) and (b) it is also clearly seen that the experimentally observed
evolution of symmetry energy is mainly due to the change in density rather than
temperature, as pointed out in Refs.[176, 190]. The average freeze-out density of the
fragment emission source can be estimated from the measured temperature dependent

symmetry energy based on isoscaling analysis in multifragmentation phenomena
included in Figures 5.4(a) and (b). The average freeze-out density p, for case A lies
within 0.47p, and 0.59p, for TAMU data while it is within 0.49p, and 0.83p, for
INDRA-ALADIN Collaboration data. On the other hand, for case B, p ;s found to be

within 0.5p, and 0.61p, for TAMU data and between 0.52p, and 0.84p, for INDRA-
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ALADIN Collaboration data. The shift in the freeze-out density p, towards higher
density in case B compared to case A is due to the fact that for a given density p below
normal density p,, the curve of E;(p,T) for case B is always below that of case A and

the différence slowly increases with an increase in temperature and a decrease in
density, as can be seen from Figures 4.5(a) and (b). It is interesting to compare the
results of freeze-out density estimated in both the cases A and B with those obtained in
Ref.[176]. For the interaction used in their study in Ref[176] with x =0 the average
freeze-out density p, is within 0.41p,; and 0.52p, for TAMU data while it is between

0.42p, and 0.75p, for INDRA-ALADIN Collaboration data. On the other hand, for
the interaction with x=-1, p, is within 0.57p, and 0.68p, for TAMU data and

between 0.58p, and 0.84p, for INDRA-ALADIN Collaboration data. It may be

mentioned here that in view of the recent work of Souza et. al. [191] the TAMU and
INDRA-ALADIN Collaboration data need to be modified taking surface effect into

account. But in any case the necessity to find out the freeze-out density in a particular
reaction experiment in order to ascertain the value of E;(p,T) from isoscaling analysis
remains unchanged. We have also repeated the calculation for the critical case and the
results are shown in Figure 5.5. The average freeze-out density p , In this case lies
within 0.47p, and 0.61p, for TAMU data while it is within 0.49p, and 0.84p, for
INDRA-ALADIN Collaboration data.

Since the temperature evolution of symmetry energy is built upon its zero-

temperature result through the selfconsistently evaluated Fermi-Dirac momentum
distribution functions in SNM and PNM, the freeze out density p ; estimated in this
way would also critically depend on the stiffness of the curve of E (p,T =0) in the
density region p < p,. With an increase in the stiffness of E¢(p,T =0) in this density
region the freeze-out density p, would gradually shift to lower and lower density.

From an analysis of isoscaling data in multifragmentation phenomena it has been

inferred in Ref.[133] that the density dependence of Eg(p,T =0) should neither be
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Figure 5.5. (a) Temperature dependence of symmetry energy for the critical
case at different densities from 0.4p, to p,. The experimental data of the

measured temperature dependent symmetry energy from Texas A&M university
(TAMU) and INDRA-ALADIN collaboration at GSI are also included.

very stiff nor soft in the region p < p, and that the value of zero-temperature symmetry

Py

energy at half of the normal nuclear matter density, i.e, p = —2—, should have the order

18—-20MeV . In this context, we note that the value of E(p =—%’-,T =0) is found to

be 18.1MeV for case A, 17.7 MeV for case B and 17.9 pmey for the critical case.

The results of density dependence of nuclear symmetry energy density
HS(p,T) = pE(p,T) defined in eq.(4.1.5) are given for the three cases, case A , case
B and the critical case at different temperatures 7 = 0, 20, 40 and 60 MeV in Figures
5.6(a), (b) and (c) respectively. As expected the functional Hs(p,T) has relatively a
larger temperature dependence in case B compared to case A in so far as the decréasing

trend of energy density with temperature is concerned, whereas, in critical case the

temperature dependence is intermediate between these two cases which gets washed out
in the high density region.
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Figure 5.6. (a) Nuclear symmetry energy density shown as a function of density
for case A at temperatures T=0, 20, 40 and 60 MeV. (b) Same as () for case B.
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Figure 5.7. (a) Nuclear symmetry energy pressure shown as a function of

density for case A at temperatures T=0, 20, 40 and 60 MeV. (b) Same as (a) for
case B. (¢) Same as (a) for the critical case.
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5.1.2. Symmetry Energy Pressure at finite temperature
In Figures 5.7(a), (b) and (c) the density dependence of symmetry energy

pressure P, Q),T) defined in eq.(4.1.6) are shown at different temperature 7 for the
same three cases. It is seen that P.(p,T) is a decreasing function of 7'. However, the

rate of decrease of P, (p,T ) with temperature is faster in case B than in A, whereas, it

is intermediate between these two for the critical case.

5.1.3. Free Symmetry Energy

The free energy per particle in SNM and PNM are given as
(P, D) =[Hy(p,T)-1IS,(p,D]/p and F,,(p,T)=[H,(p,T)-T5,(p,T))/ p,
respectively. The free energy per particle in SNM and the three cases in PNM are
shown in Figures 5.8(a) and 5.9(a), (b) and (c), respectively, as function of density at
different temperatures. In both the cases of SNM and PNM the free energy decreases
with increase in temperature at a given density. The magnitude of decrease becomes
smaller with increase in density. In PNM, for all the three cases considered, the curves
corresponding to higher value of temperature lye below the curves for lower
temperatures in the whole range of density unlike the case of symmetry energy that

shows a crossing over phenomena for case A . The magnitude of decrease for the three
cases of 8; at different values of density do not vary much giving nearly similar
values for the three cases. However, there is a trend that the rate of decrease is relatively
more in case of case A in comparison to case B, whereas, the behaviour for the critical
case lies intermediate between these two cases. In Figure 5.8 (b), we have compared our
results of the free energies in SNM at different temperatures with the results of
Brueckener-Bethe- Goldstone calculations of Burgio et al.[192]. Our results agree quite
well with the BBG results upto density p ~0.3 fm~. Beyond this density, the curves of
our calculations become stiffer than that of the BBG calculation.

We can now calculate the free symmetry energy.
Fg.(p,T)=F,,,(0,T)-F,,(p,T), (5.1.2)
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Figure 5.8. (a) Free energy in SNM shown as a function of density at four
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Figure 5.8. (b) Free energy in SNM shown as a function of density at three
different temperatures T=0, 20 and 40 MeV and the results of the present
formalism are compared with the BBG calculations of Burgio et al.[ 191]. In the
figure the curves with solid circles represent the BBG calculations.
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temperatures T=0, 20,40 and 60 MeV. (b) Same as (a) for case B (c) Same as (a)
for the critical case.

as the difference between the free energy per particle in PNM and in SNM. The results

of free symmetry energy, Fy,, (p,T), for the three cases of 8; are shown as function

of density at different temperatures in Figures 5.10(a), (b) and (c). The results, in
general, show that the free symmetry energy increases with increase in temperature
which iscontrary to the behaviour of nuclear symmetry energy that gives a decreasing
trend. However, a similar crossing over phenomenon as noticed in the case of nuclear
symmetry energy for case A is also found in the case of free symmetry energy. In case
A for the free symmetry energy shown in Figure 5.10(a), at around density
p ~0.8 fm™ the curves corresponding to higher temperatures which were lying above
the zero temperature curve at lower densities, cross and lye below the zero temperature
curve with further increase in density. This crossing over phenomena in case A is
expected from the results of symmetry energy in Figure 5.3 and entropy in Figure 4.9
for the case. Similarly for case B in Figure 5.10 (b), expected result is also obtained that

the finite temperature curves will not cross the zero temperature one and will lye above
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Figure 5.10. (a)Free symmetry energy shown as a function of density for the
case A at temperatures T=0, 20, 40 and 60 MeV. (b) Same as (a) for case B. (c)
Same as (a) for the critical case.

it at all densities considered. For the critical case in Figure 5.10(c) the result is as per
expectation that the effect of temperature vanishes in the high density region and all

curves approach the zero temperature result asymptoticelly.

5.2. Equilibrium proton fraction and EOS of charge neutral S -stable
n+ p +e+ | matter at finite temperature
In supernovae matter the inside temperature is as high as of the order 7" ~10-40

MeV and asymmetry Y,(p,T) =1/3. The heavy element core of massive star inside the

supernova matter undergoes a gravitational collapse resulting into either directly to a
black hole or to a metastable proto neutron star. The rewly formed neutron star under
gravitational collapse mechanism of the supernovae-II has an initial temperature of the
order 50 MeV and has a quite large proton fraction The large proton fraction initiates
the so called URCA process and produces copious amount of neutrinos. The newly born
neutron star cools rapidly via emission of neutrinos within few seconds and reaches a

temperature less than 1 MeV. In situations which are governed by isothermal processes
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the entropy changes, whereas, for isentropic processes the entropy is constant. Out of
the limited numbers of works performed in this area of finite temperature neutron star
calculation found in the literature, some have used the symmetry energy in their
calculations [193, 194] and others have used the free symmetry energy [192]. In our
earlier work [179] we have studied the EOS of NSM at finite temperature by taking the
symmetry energy. Here we shall make the same study considering the free energy as the
input in solving the beta stability condition. The important differences in the results of
the two considerations will be discussed at appropriate places. The process of formation
and cooling of the protoneutron stars can be basically considered as isentropic process
where the free energy plays the crucial role. In view of this in the calculation of
equilibrium proton fraction in charge neutral g -stable n+ p +e+ pmatter in supernovae
matter and proto neutron stars, it is essential to consider the free symmetry energy

instead of symmetry energy.

5.2.1 EOS of NSM at finite temperature
The p-stabiliy condition can now be expressed by using the quadratic
approximation of the free energy density as given in egs.(4.3.3 - 4.3.5). The difference

between neutron and proton chemical potentials at a given density p  and
temperature T', in terms of free symmetry energy, can be expressed as

H, (p:T)_ zup(P,T) = 4(1_ 2Yp(paT))Fsym(psT) : (5:2.1)
The j -stability condition becomes,

1/2 7

) 2
4(1- 2Y, (p, THF,, (p) = [C2h2(3752 oY, (p, 1)) +M§C"] =[c2h2(3rc2py,, Xy i +M§C“yl

(5.2.2)
which is the same as given in eq.(3.3.13a) except that the symmetry energy, Es(p), is

replaced by free symmetry energy, F, (p,7). Here both the leptons ¢ and u are

described as relativistic ideal Fermi gases. The charge nzutrality condition is given by

Y,(p.T) =Y,(p,T)+Y,(p.T). (5.23)
Thus, the problem now reduces to solve the equation,
4 [1-2v,(p, D] F,, (0,T)= ulp,T), (5:24)
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subject to the condition of charge neutrality in eq.(5.2.3). Here u(p,7) is the
B —equilibrium chemical potential corresponding to the equality in eq.(5.2.2). In this
model the charge neutrality condition takes the form,
1 k>dk
n’p r‘=§,u 0 exp{[(C* R k" +m>CH'? —u(p, T/ T} +1’
(5.2.5)

— 8

YP(p,T):

whe;e, m; with i=e,u are the rest masses of electron and muon. If the density and
temperature dependence of nuclear free symmetry energy F,, (p,T) is known, then
€qs.(5.2.4) and (5.2.5) can be solved to obtain the S - equilibrium chemical potential
u(p,T), the leptonic fractions ¥(p,T),i=e,u, and the proton fraction ¥, (p,T) at each
density p and temperature 7. Thus the composition of NSM at non-zero temperature

in terms of fractions of neutron, proton, electron and ruon at different nucleon density

p and temperature 7T is essentially determined by the temperature and density
dependence of nuclear free symmetry energy, F,, (P, ).
* The EOS of B —equilibrated n+ p+ e+ u matter, i.e., NSM, is considered as

an ideal mixture of a nucleonic and a leptonic part. The energy density and pressure in

NSM can therefore be written as,

H" (0,7, T)=H"(p.Y,,T)+ H* (p,Y,,T)+ H" (p,Y,.,T) (5.2.6)

P¥(p,Y ,T)=P*(p,Y,,T)+P*(p,,,T)+ P*(p,Y,,T). (5.2.7)
The nucleonic part of the energy density H" (p,Yp,T) and pressure PV (p,Yp,T) in
NSM are calculated from the EOS of ANM described in egs.(4.1.3)-(4.1.6)
corresponding to the equilibrium proton fraction Y,(p,T) for given density p and
temperature 7. This requires the knowledge of energy densities H, (p,T) and
H,(p,T) as well as pressures P,(p,T) and P,(p,T) in PNM and SNM as functions of
density p and temperature T. On the other hand, the leptonic energy densities
H"'(p,Ye,T) and H”( ,Y”,T) as well as pressures Pe(p,Ye,T) and P* (p,Y”,T) can

be calculated in the relativistic ideal Fermi gas model by using the Fermi-Dirac

momentum distribution functions of the leptons given in connection with eq.(5.2.5).
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5.2.2. Composition of NSM at finite temperature for different choices of £’
The temperature and density dependence of nuclear free symmetry energy
F,,.(p,T) obtained in our case shown in Figures 5.10(a), (b) and (c) are used now to

solve eqs.(5.2.4) and (5.2.5) to calculate the J-equilibrium chemical potential

p(p,T), the leptonic fractions Y,(p,T), i=e, i, and the proton fraction Y,(p,T) at
each density p and temperature T'. The density dependence of p(p,T) at different
temperature T, thus obtained is shown in Figures 5.11(a), (b) and (c) for the three cases
of our representative values of séx corresponding to case A , case B and the critical
case, respectively. The f-equilibrated chemical potential y(p,T) is found to be a
decreasing function of temperature relative to the zero temperature result in all the three
cases. The magnitude of decrease of p(p,T") with increase in temperature is relatively

larger in case A compared to case B, whereas, in the critical case it lies intermediate

between the two cases A and B. This means that the functional
[1-2Y,(p,DF,

om (p,T ) in f3- equilibrated » + p + ¢ + g matter is a decreasing

300 . ; . — : . . : :
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Figure 5.11. (a) Equilibrium chemical potential u(p,T) in NSM shown as a

function of density for case A at four different temperatures, T=0, 20, 40 and 60
MeV. (b) Same as (a) for case B. (c) Same as (a) for the critical case.
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Figure 5.12. (a) Equilibrium proton fraction Y,(p,7) in NSM shown as a

function of density for case A at four different temperatures, T=0, 20, 40 and 60
MeV. (b) Same as (a) for case B.{c) Same as (a) for the critical case.

function of temperature 7 at any given density p. In view of this the equilibrium
proton fraction Y,(p,T’) would increase in a region of density p where the free
symmetry energy F,,, (p,T) increases with temperature. The proton fraction Y, (p,T)
also increases in a region of density p where F, (p,T ) decreases at a rate slower
than u(p,T) with increasing temperature. On the other hand Y,(p,T) decrease with
increase in temperature T in a region of density p where Fsym(p,T ) decreases at a
faster rate than p(p,7T") with increase in temperature. These points are illustrated in
Figures 5.12(a), (b) and (c) where the density dependence of the calculated equilibrium

proton fractions Yp(p,T) are given at different temperature T for the cases A, B and

the critical case, respectively. The corresponding electron and muon fractions, and
Y, (p,T), are shown as functions of density p in Figures 5.13(a), (b)and (c) and
Figures 5.14(a), (b) and (c) respectively. So far as the variation in the density
dependence of Y,(p,T) with increase in temperature is concerned, the complete

domain of p in Figures 5.12 can be roughly divided into two parts: p < p(T') and
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Figure 5.13.(a) Electron fractions, Y,(p,T)corresponding to the equilibrium

proton fraction Y,(p,T) in NSM shown as a function of density for case A at

four different temperatures, T=0, 20, 40 and 60 MeV. (b) Same as (a) for case B.
(c) Same as (a) for the critical case.

p>p(T). Here p(T) is a critical censity corresponding to temperature T where
Y,(p,T) has a minimum. It can be seen from Figures 5.12 that all the three cases
exhibit similar density dependence of Y,(p,I’) with increasing temperature in the
region p<p(T). The proton fraction Y,(p,T) increases sharply with decreasing
density in this region when temperature increases. This is a consequence of the fact that
the rate of decrease of y(p,7) in this low density region is much faster than the

decrease in F (p,T ) with increasing temperature. On the other hand, the variation in

the density dependence of Y,(p,T) in the region p> p(T) with increasing temperature
is found to be relatively larger for case B as compared to A. Comparing Figures 5.10,
5.11 and 5.12 in the region p> p(T’) it is seen that the effect of increasing temperature
is manifested largely through an increase in the proton fraction Y,(p,7) in case B as

compared to A. This is due to the fact that the rate of increase in free symmetry energy

slows down in this region of density for case A as well as the chemical potential has a

smaller value as compared to case B. This is a consequence of the fact that the nuclear
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mean field in PNM has a stronger momentum dependence in case B than in case A due

to the large difference in their values of exchange strength parameter ¢! . The results
for the critical case lie intermediate between these two cases. In order to have a better
visualization of the above discussion we have shown the proton and-lepton fractions as
function of density at temperature T =40MeV for the three cases considered, in Figure
5.15. It may be noted here that the temperature dependence of the proton fraction
calculated by taking the symmetry energy, E_ (p,T ), in the beta stability condition in
eq. (5.2.1) instead of free symmetry energy, as has been done in our earlier work in
Ref [179], then we get an opposite behaviour in the results of proton fraction for case A
and case B in comparison to the results obtained in the present calculationshown in
Figure 5.12. In the case of our earlier work of Ref.[179] considering symmetry energy
in beta stability condition, the effect of increase in temperature is manifested largely
through an increase in the proton fraction Y.(p,T) in case A as compared to B. This

can be seen from comparing the Figures 5.12(a) and (c) with the Figures 11(a) and (b)
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Figure 5.15. Equilibrium particle fractions of the neutron star matter as function
of density for the three cases at temperature T=40 MeV. Curves with filled
diamonds are for electron fractions. Curves with filled circles are for the muon
fractions.

of Ref. [179]. Thus the composition of neutron star matter will have large differences

under the two considerations for a given value of eéx and, therefore, also differ in

cooling mechanism.

5.2.3. Cooling under direct URCA process for different choices of ¢’
The fact that temperature dependence of the free symmetry energy Fsym(p,T )

and equilibrium proton fraction Y,(p,T’) are sensitive to the choice of the splitting of

the parameters (¢! + g/)into ¢! and g%, it can have a crucial relevance in the study

of thermal evolution of neutron stars. The nezutron stars are bom with an interior

temperature of the order ~50 MeV, but rapidly cool via neutrino emission to

temperature less than 1 MeV within seconds [177,195]. The conditions of direct URCA
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processes in n+p+e+ ft matter under J-equilibrium can be given by
Y, (p, 1) <Y, (p,T) +Y,"* (p,T) andlor Y,"*(p,T)<¥,"*(p,1)+Y, " (p,T). The
direct URCA process at T = 60MeV is allowed over the whole range of density
considered in case of case B, whereas, it continues starting from low density upto a

density 1 3 f3and 1.5 fm™ in the case A and the critical case, respectively. Similarly at

T =40Mev the direct URCA process is allowed upto density 0.2 />, 1.0 fm‘3 and

1.3 fm™ in case of case A, the critical case and case B, respectively. At T =20MeV
direct URCA process is not allowed in all these thee cases. These results are, however,
qualitative in nature in the sense that they are calculated on the basis of n+p+e+pu
matter under [f —equilibrium and presence of other hyperons, mesons or quarks have
not been taken into consideration in this work. We further note that the occurrence/non
occurrence of direct URCA process with increase in temperature as discussed above

would crucially depend on how the density dependence of symmetry energy
E_ (p,T =0) at zero temperature is fixed. In this context, it can be mentioned that the

universal high density behaviour of the functional
S (p,%,,T =0)=|1-27,(p,T =0 Hy(p,T =0)] s used to constrain the
density dependence of E,(p,T=0) in our work. As a result of this, the density

dependence of E, (p,T =0) for both the cases A and B given in Figure 3.10 of chapter-

III differ little from each other over the entire region of density and also do not allow

direct URCA processes.

5.2.4. Universal High density behavior of the functional S™" (p,Y,,T)
The functional S™Y (p,Y,,T) at finite temperature can be given by

S (p,%,,1) = |1 -2Y, (0, D) Fy (p,T)], ,» Where F,(p,T) is the free energy

density, and the expression reduces to the zero-temperature expression at 7' =0. The

asymmetric contribution to the nucleonic part of free energy density in NSM, i.e.,

S¥M (p,¥,,T) = |27, (0, T)f Fy ( p,T)JNSM is shown in Figure 5.16 as a function of
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Figure 5.16. Asymmetric contribution to the nucleonic part of free energy

density §™"(p,Y,,T) in NSM shown as a function of density at four different
temperatures, T=0, 20, 40 and 60 MeV for the two cases A and B.

density p at different temperature 7 for the two extreme cases A and B. It is seen from
Figure 5.16 that the curves of $™M (p,Y,,T) for these two different cases are the same
over the entire range of density at any given temperature 7T . In this context we note that
the universal high density behaviour of the functional S™"(p,Y,,T =0) at zero
temperature was used to constrain the density dependence of nuclear symmetry energy

Eg(p,T =0) for both the cases A and B. Figure 5.16 shows that this universal high

density behaviour is also valid at finite temperature. However, with increase in

temperature the curves of S (p,¥,,T) are gradually pushed below.

5.3. EOS of NSM for the three choices of ¢
The density and temperature dependence of equilibrium proton fraction

Y, (p,T) and chemical potential u(p,T) obtained above can now be used to calculate

the EOS of B -equilibrated n+ p + e+ matter (NSM) from egs.(5.2.6) and (5.2.7).
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5.3.1. Nucleonic contribution to energy density and pressure

The nucleonic part of the energy density and pressure, ie, HY (p,Yp,T) and
P (p,Yp,T), comprise of contributions from symmetric part and asymmetric part of
nuclear EOS as given in eqs.(4.1.3) and (4.1.4). The svmmetric contributions, H, (o, T)
and B (p,T), are the same for the three cases A , B and the critical case. H,(p,T) asa
function of density p and temperature T has been shown in Figure 5.1. The energy

density H,(p,T) increases with the increase in temperature. The asymmetric

contribution to the nucleonic part of energy density, S™"(p,¥,,T), is plotted in Figure
5.16 and has been discussed in section 5.2.4. In Figure 5.17, we have shown the density
dependence of the symmetric contribution to the nucleonic part of pressure, B(p,T) at
different representative temperatures. B(p,T) increases with increase in temperature.

The asymmetric contribution to the nucleonic part of pressure in NSM, ie.,
R,fy(p,YP,T) =[(1—2Yp (p,T))zPS (p,T)LSM is shown as a function of density p at
different values of temperature 7' in Figures 5.18(a). (b) and (c) for the three cases
respectively. It is found that P;L(p, Y,,T) decreases with increase in temperature for all

the three cases considered.

1000 ! -
7=0.5

800

600

Pip.T) MeVfm ]

400

200

0

" 01331 12 1.6
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Figure 5.17. Symmetric part of nucleonic pressure in NSM shown as a function

of density at four different temperatures, T=0, 2¢, 40 and 60 MeV.
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Figure 5.18. (a) Asymmetric contribution to the nucleonic part of pressure in
NSM shown as a function of density for case A at four different temperatures,
T=0, 20, 40 and 60 MeV . (b) Same as (a) for case B. (c) Same as (a) for the
critical case.

5.3.2. Leptonic contribution to energy density
The total leptonic contribution to the energy density in NSM,

H'(p,T)=H*(p,Y,,T)+ H"(p,Y,,T), for the three cases A, B and the critical case
are shown as functions of p at different temperatures in Figures 5.19 (a) , (b) and (¢)
respectively. The leptonic part of energy density is found to increase with increasing

temperature. However, the rate of increase of H*(p,T) with temperature is relatively
higher for case B as compared to A and the result for the critical case is intermediate
between these two cases. The higher rate of increase in leptonic fraction in case B is due
to the fact that the proton fraction Y,(p,T) increases at a faster rate with increasing
temperature in case Bthan in A as can be ssen from Figures 5.12(a) and (b). The
temperature dependence of leptonic energy density found here for the different cases
considered has shown an opposite trend to the results obtained in ow earlier work [179],

where the equilibrium proton fraction was calculated with the symmetry energy in the

165



80 ; . . - ' S

(a) (b) (©)

aéxlz(gﬁi’.'-"e@)‘»“‘)/s E@xlz(sexl'*[:s‘xu‘)/z g'.’.‘('=2(sﬂ)il+8'3’.w)/6
60 - _ L .
e 7
Fand . ; P
; r / .
.§ /’ ; 7
= . e ) ;. )
240t PR ‘ ; ‘ S
et £ /o , 4 ’ o
F:: 1’/ ,’ / / o /o, v
o oy /s
~‘3: 4/ e ’/ ! /s / zl
S 7 oS VR
rs / ’
s / S0 P
EE - S S/ / ’ it /
20 + S0 4 F S0 S/ . : S0
< " rs ,/ ',’ ::" 7 S /
/, /, // - T=0 K ,‘/ /7,_“ —T= -.‘_! ;s o =)
i 201 L ;5SS —me 20 ;S dS ---- 20
R . B B U R A
I BRI - ¢} i &80 ir .0/ i & 10
0 :'"// 1 A 1 ;l/, 1 J 1 ;:” // ) i 1
0 0.4 0.8 1.2 1.6 0 0.4 0.8 1.2 16 0 0.4 0.8 . 1.2 1.6
p Ifm™] p Ifm™] p Ifm™]

Figure 5.19. (a) Leptonic part of the energy density in NSM shown as a function
of density for case A at four temperatures, T=0, 20, 40 and 60 MeV. (b) Same as
(a) for case B. (c) Same as (a) for the critical case.

beta stability condition. This is obvious because in the calculation of Ref.[179] the
temperature dependence of proton fraction in case A was obtained to be stronger than

that of case B, a behaviour opposite to the present one.

5.3.3. Leptonic contribution to pressure
The total leptonic pressure P*(p,T)=P*(p,Ys,T) + P*(p,Y,,T) in NSM is

given as a function of density p at different temperature 7 in Figures 5.20(a), (b) and

(c) for cases A , B and the critical case. The leptonic part of the pressure P*(p,T)
slowly decreases upto a temperature 7=20 MeV and then it increases with further
increase in temperature. This behaviour of the leptonic part of the pressure is similar to
the trend obtained in our earlier calculation in Ref.[179] . But in the present case the
rate of increase in leptonic part of the pressure with temperature in case B is more than
that in case A, whereas, in the calculation of Ref[194] the trend was opposite to the

current one.
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Figure 5.20. (a) Leptonic part of the pressure in NSM shown as a function of

density for case A at four temperatures, T=0, 20, 40 and 60 MeV. (b) Same as
(a) for case B. (c) Same as (a) for the critical case.

5.3.4. Total energy density and pressure

The total energy density H™M (p,¥,,T) and pressure P (p,¥,,T) in NSM, as given
in eqs.(5.2.6) and (5.2.7), are calculated as functions of p at different temperatures for

the three cases A, B and critical case and the results are shown in Figures 5.21(a), (b)
and (c) and 5.22(a), (b) and (c), respectively. The energy density H™(p,¥,,T) and

pressure P (p,¥,,T) show a gradual slow increase with increase in temperature 7

for all the three cases A B and the critical case. Mcreover, the results for the three

different cases of splittings of (¢! + &) considered bLere are similar and do not show

any appreciable difference at finite temperature.

5.4. Neutron Star properties
The calculation of mass and radius of neutron star using TOV equation requires

the energy density and pressure as input. It is thercfore expected that for all the three

cases A, B and critical case corresponding to different splitting of (¢! + &) would
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Figure 5.22. (a) Total pressure in NSM shown as a function of density for case
A at four temperatures, T=0, 20, 40 and 60 MeV. (b) Same as (a) for case B. (c)
Same as (a) for the critical case.
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Figure 5.23. Mass Radius relation of Neutron star for the three cases at
temperature T=5 MeV and for the critical case &t temperature T=10 MeV.

predict similar results for the bulk properties, such as, mass and radius of neutron star at

finite temperature. In order to verify this we have solved the TOV equation for EOS of

NSM at temperatures T’ =5 and 10 MeV. The mass versus radius (M ; ~ R) relation is

shown in the Figure 5.23 for the three cases of splitting of (g/ + ¢¥!) at temperature
T'=5 MeV. 1t is found that the results are similar for all the three cases considered and
does not allow to draw any conclusion on the momentum dependence of mean field in
PNM from the study of bulk properties of normal neutron stars at finite temperature.

The effect of temperature in neutron star can be seen by comparing the corresponding
results of (M ~ R) relation for the same EOSs at T=5 and 10 MeV in the same
Figure 5.23. It can be seen that the radius of the neutron star increases with temperature.

The maximum mass neutron star predicted at 7 =5Mel for the EOS of NSM
corresponding to the critical case is 1.854 M@ and radius 9.94 Kms in comparison to
the corresponding values 1.86 M , and 10.13 Kms at 7= 10 MeV. As we move from

the maximum mass towards the lower mass region the radius shows a comparatively

stiff increase in case of the neutron star at higher temperature. For the critical case the

radius of 1.4 M ., mass neutron star at T =5 MeV increases form 11.2
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Kms to 12.2 Kms, as temperature rises to 7= 10 MeV. The increase in radius with
temperature is in qualitative agreement with the findings of the earlier works [186,194].
The central density of the neutron star also decreases with rise in temperature. The mass
versus central density (M ; ~ p.) of the neutron star at 7= 5 and 10 MeV are shown
in the Figure 5.24 for the EOS of NSM corresponding to the critical case. The radius
versus central density (R~ p.) at these temperatures for the critical case are also

shown in Figure 5.25. The radius decreases rapidly initially with increase in central
density as it starts from low value and then approaches a constant value slowly which is

in agreement with the findings in Refs.[186, 194].

5.5. Conclusion
Using the density dependent finite range Yukawa interaction we have studied

the density and temperature dependence of Nuclear Symmetry energy and Free
symmetry energy for the three choices of the parameter 8;, namely,

8; =g, /3,2¢,/3 and €. At low temperature we have compared our results of the
Nuclear Symmetry energy with the experimentally extracted data from isoscaling
analysis of the multifragmentation phenomena. It has been concluded from the
discussion that the extracted evolution of symmetry energy from experiments are
mainly due to the density rather than temperature. The composition of neutron star, i.e.

p-stable n+ p+e+ | matter, and equilibrium chemical potential have been

calculated using Free symmetry eﬁergy. The chemical composition and hence the
cooling via direct URCA process are found to be sensitive to temperature variation of
the matter. From the total energy density and pressure, we have calculated the Neutron
star properties. With the increase in temperature, it is found that the radius of neutron
star increases which is in agreement with other works. We have found that the total

energy density and pressure are almost the same irrespective of the choice of the
parameter 8;. The neutron star properties also show marginal difference for the three

different choices of Sf,x.
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CHAPTER-VI

SUMMARY AND CONCLUSION
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In this work we have studied the momentum and density dependence of nuclear
mean fields and equation of state of nuclear mattzr. In this context, it is worth
mentioning that the fundamental quantities are the neutron and proton mean fields as a
function of momentum, total density, isospin asymmetry and temperature. The
momentum dependence of the nucleonic mean fields is connected to the neutron and
proton effective masses in nuclear matter, whereas, the study of equation of state s
connected to the results of the mean fields at and arcund the Fermi momentum. The
studies on these two important aspects (momentum and density dependence) of nuclear
mean fields in isospin asymmetric nuclear matter at zero-temperature, 7 =0, can be
divided into two parts, (i) isoscalar part and (ii) isovector part. The isoscalar part
pertains to the properties in SNM, whereas, the isovector part gives the contributions
arising out of the asymmetry in neutron and proton in the nuclear ma tter medium. There
are empirical/experimental constraints available for symmetric matter and hence the
‘momentum and density dependence aspects of isoscalar part are understood to a
reasonably satisfactory extent. On the otherhand, our vnderstanding of mome ntum and
density dependence of isovector part of the nuclear mean field is poor which may be
attributd to the limited constraints; empirical or experimental, available in this case. The
momentum dependence of isovector part of the nuclear mean field is connected to the
neutron-proton effective mass splitting in isospin asymmetric nuclear matter, whereas,
its behaviour at the Fermi surface is directly connected to the density dependence of
symmetry energy. These two aspects, n-p effective mass splitting and density
dependence of symmetry energy, are the two important areas of current nuclear
research. In this thesis we have focused on these two important aspects within the
framework of nornrelativistic mean field formalism using finite range effective
interactions.

In chapter-II, we have reviewed some of the earlier works and discussed a
general framework as worked out by Behera et al.[64, 65, 153] by considering four
interactions, direct and exchange, acting between pairs of like and unlike nucleons
which are functions of separation distance between the pair of interacting nucleons and
depends on the total nucleonic density of the medium. Under this formalism it has been

shown that the density dependence of energy per particle in SNM is connected to the
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isoscalar part of the mean field at Fermi surface. Similarly, the isovector part of the
nuclear mean field at Fermi momentum is related to the density dependence of nuclear
symmetry energy. These relations demonstrate that the nuclear mean fields are the
crucial quantities in the studies of momentum dependence of isoscalar and isovector
parts of the single particle potential and equation cf states of nuclear matter. The
uncertainty associated with the momentum dependence of isovector part of the nuclear
mean field has been discussed in terms of nct only diverging but also contradictory
predictions on the results of neutron-proton effective mass splitting in isospin
asymmetric nuclear matter by the different theoretical models. In the general
framework, we have sown that the problem of n-p effective mass splitting centers
around the splitting of the total finite range exchange interaction into interactions
between like nucleon pairs (nn, pp-like channel) and unlike nucleon pairs (np-unlike
channel) in ANM. The two types of contradicting behaviour of n-p effective mass
splitting as predicted by different theoretical models could be reproduced by
considering different splittings of the exchange interact:on into like and unlike channels.
It is shown that the isovector part of the nuclear mzan field becomes a decreasing
function of momentum in the case of stronger exchange interaction in the unlike
channel than that of the like channel and consequently the neutron effective mass goes
above the proton effective mass in ANM. On the contrary, if the splitting of the
exchange interaction into the like channel is stronger compared to that in the unlike
channel then the isovector part of the mean field becomes an increasing function of
momentum and the proton effective mass lies over that of the neutron. This
contradictory behavior has been shown explicitly by considering a single finite range
interaction term having Yukawa form characterized by a strength and range parameters.
The exchange strength and range parameters are detern:ined by adopting a simultaneous
minimization procedure using the constraint resulting from the optical model analysis of
the nucleonrnucleus scattering data at intermediate energies that the attractive nuclear
mean field should vanish at nucleonic kinetic energy around 300 MeV. The interaction
thus obtained gives a good description of momentum dependence of isoscalar part of
the mean field over a wide range of momentum end density consistent with the

predictions of the microscopic calculations of Wiringa [66] using realistic hamiltonians.
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By splitting this total exchange strength parameter into the like and unlike channels in
different magnitudes, diverging as well as the contradicting behaviour of np effective
mass splitting as found in cases of different models could be reproduced. The formalism
has been extended to examine the effective mass splitting in the cases of Gogny and
Skyrme-type interactions. The momentum dependent parts of isovector potential for the
respective cases are worked out for the purpose. It is found that in the cases of Gogny
interaction sets D1, D260, D280 and D300 the neutron effective mass lie above the
proton one, where as, for D1S and D250 sets, the proton effective mass lies above that
of the neutron. In case of Skyrme parameterization only the P- and D-state parameters,
t,X,t,,x, decide the nature of np effective mass splitting. The Skyrme sets having
negative values of the resulting functional Q predict the neutron effective mass above
the proton one and for positive values of Q, the proton effective mass goes above the
neutron one. The Skyrme sets for which the functional  vanishes, there is no np
effective mass splitting in ANM. The values of the functional for several sets of
Skyrme-interactions have been calculated and are given in table-1. Majority of the
Skyrme-interaction sets correspond to the case where neutron effective mass is above
the proton one and there are few Skyrme sets for which neutron and proton effective
masses are equal in ANM. The SLy-sets, SKI-sets which are relatively recent and are
constructed with the purpose for application to the isospin rich dense matter,
particularly for neutron star calculations, predict the proton effective mass above the
neutron one. Any attempt to analyze nuclear properties sensitive to the np effective
mass splitting requires the variation of the magnitude of effective mass splitting without
changing the nuclear matter properties. This was mot possible with the available Skyrme
interaction sets containing a single density dependent term. In such case the
incompressibility is found to be strongly correlated with the effective mass and
variation of the effective mass drastically changes the nuc lear matter incompressibility.
The work of Cochet et al. [157] prescribed necessary modification by including an
additional density dependent term that could enable to disentangle the correlation
between the effective mass and incompressibility. By considering the exponent in one
of the density dependent term of the Skyrme sct to be 2/3 one gains the freedom to
vary the effective mass without changing the incompressibility. We have discussed the
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work of Cochet et al. [157] in some detail. The advantage of the modification
introduced by Cochet et. al. in Skyrme interaction is utilized by Leisinski et al. [131] to
analyze the nuclear properties sensitive to np effective mass splitting by varying the
magnitude of n-p effective mass splitting. The work of Leisinski et. al. has been
discussed in this section. However, Leisinski et. al. have concluded that the'existing
Skyrme interaction needs to be improved in triplet-odd channel for further progress in
this direction. The large uncertainty associated with the np effective mass splitting is a
measure of our poor understanding of the momentum dependence of isovector part of
the nuclear mean field. The situation is also similar with regards to the density
dependence of isovector part of the nuclear mean field. The divergent results of the
different theoretical models on the density dependence of nuclear symmetry energy are
a measure of it. The density dependence of nuclear symmetry energy has crucial
importance beyond standard nuclear physics, i astrophysical objects like supernovae
and neutron stars. The growing experimental facilities for heavy ion collisions with
radioactive ion beams raise hopes in the search for answers on these two important
aspects of isovector part of the mean field. The technique used is to analyze the flow
data by using transport model calculations. In these isospin dependent transport model
calculations the inputs are the neutron and proton mean fields. Li et al. [81] in their
attempt to constrain the density dependence of nuclear symmetry energy have analyzed
the flow data by using neutron and proton mean fields resulting from their momentum
dependent interaction (MDI). They have used different density dependence of nuclear
symmetry energy keeping the momentum dependence of isovector part of the mean
field unchanged. The work of Li et al. and the technique adopted in producing different
density dependence of nuclear symmetry energy for the same n-p effective mass
splitting has been discussed at length in this chapter. Their results on momentum
dependence of isovector part of the mean field has been compared with our predictions

considering different splittings of finite range exchange strength parameter. Both the
results agree reasonably well for g éx =0.85¢_.. Rizzo et al. [84], considered a GBD
type effective energy density and adjusted some parameters by hand in the momentum
and density dependent terms to reproduce different n-p effective mass splitting for

almost same density dependence of symmetry energy. Rizzo et al. have studied the
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effect of two opposite types of n-p effective mass splitting on the flow data. Li [163] in
an independent work has studied the energy dependence of the isovector part of mean
field at normal nuclear matter density, i.e., Lane potential, using the effective energy
density of Rizzo et al. for the two opposite cases of np effective mass splitting. With
the success of constructing an effective energy density that can produce different
momentum dependence of neutron and proton mean fields for the same density
dependence of symmetry energy, Moustakidis and co-workers [164-166] examined the
effect of temperature on various properties in ANM. In the formalism used by
Moustakidis, the effect of temperature is simulated through the momentum distribution
functions appearing in the momentum dependent parts of the mean fields and the EOS.
Moustakidis has used similar functional form of effective energy density as used by
Rizzo et al. but having two finite range terms having different ranges and strengths. The
works of Rizzo et al. and Moustakidis and co-workers have been discussed in some
detail in this chapter and the energy density from a finite range Yukawa interaction
under the GBD-approximation has also been derived.

In Chapter-III, guided by the work of Behera et al. [64, 65, 153], we have
constructed an effective interaction to study the mean field properties and EOS of ANM
and to address the above mentioned problem of neutron — proton effective mass
splitting. It is interesting to not that, with this effective interaction containing a single
finite range term having Yukawa form, n-p effective mass splitting of desired
magnitude can be reproduced by considering different splittings of finite range
exchange strength parameter into like- and unlike-channels. The effective interaction
contains a total of 11-number of adjustable parameters. Out of the 11l-numbers of
interaction parameters, only six in terms of their combination are required for complete
description of SNM. The procedure for determination of these six parameters using the

available constraints in SNM is discussed in this chapter. The parameter y determines
the stiffness of the EOS and the allowed range of it is found to be y=1/12to 1 subject

to the condition that the pressure-density curve remains within the region extracted from
the analysis of flow data in HI-collision experiments [68]. The study of ANM requires
how the three strength parameters given in eq. (3.2.4) splits into like and unlike

channels. In absence of adequate constraints available to decide the splitting of all three
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strength parameters, we have first decided the allowec range of splitting for the finite
range exchange strength parameter, (Eéx +£;{), keeping in view the result of Lane

potential and the predictions of different microscopic methods which restricted 8"{\.

between 0 and (Eéx + Sgﬁ )/2. Tt has been found that for the splitting £, =(&. + g;‘; )6

the momentum dependence of Lane potential agrees reasonably well with the DBHF

ul
ex

result while for séx = Séx + £, )/6 the agreement is well with the BHF results. For a

given splitting of finite range exchange strength parameter the splitting of rest two

ul

strength parameters, namely, (8(’) + 8{)" Y2 and (8§,+ €, )2, are ascertained from

assuming a standard value of symmetry energy at normal nuclear matter density and

universal high density behaviour of asymmetric contritution of the nucleonic part to the
EOS of charge neutral beta stable n+ p +e+ U matter (NSM), S™ (p,Y ). In the
process of ascertaining the universal high density behaviour, the slope of symmetry
energy at normal density, E.(p,), which is related to the slope parameter, L=3E%(p,),
is constrained. The value of the slope parameter of the EOSs corresponding to the
variation of the exchange parameter splitting with in the range g ; = (g; + g::‘:) /6 to
e ix = (g; + g:: )/2 thus predicted are lying with in the range 63-66 MeV. This is
consistent with the range 60< L <107 MeV obtained from the analysis of both neutron
thickness studies and isospin diffusion studies. Constraining the parameters in ANM in
this way predicts the density dependence of symmetry energy of the EOS which is
neither stiff nor very soft. The EOSs obtained corresponding to the different splittings
of the finite range exchange parameter predict n-p effective mass splitting over a wide
range, but give almost same density .dependence of nuclear symmetry energy as can be
seen from Figures 3.9 and 3.10. The results also compare well with the results of the
microscopic calculation using realistic interaction as cen be seen from the same figures.
These EOSs are the example of the cases having same density dependence but differing
widely in their momentum dependence.

The interaction used in the work has no explicit temperature dependence and the
effect of temperature is simulated through the Fermi-Dirac distribution functions

appearing in the exchange parts of the energy density and mean fields. The exchange
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parts also decide the momentum dependence of the neutron and proton mean fields in
nuclear matter. Hence the thermal evolution of nuclear matter properties has been
examined in Chapter-IV to have more insight into the momentum dependence aspect of
nuclear mean fields. In this Chapter-IV, the thermal evolution of nuclear matter
properties in ANM, such as, energy density, pressure, entropy density, symmetry energy
and free symmetry energy, have been studied using the parabolic approximation for
energy in ANM. Under this parabolic approximation the study of ANM is equivalent to
independent studies of SNM and PNM. Since the temperature effect is simulated
through the Fermi-Dirac distribution functions appearing in the exchange parts of the
energy density and mean fields we have, therefore, defined effective single particle
energies in SNM and PNM only by taking the kinetic term and the finite range
exchange term. The self consistent evaluations of the distribution functions at non-zero
temperature in SNM and PNM therefore determine the respective effective chemical
potentials. Thus the thermal evolution of nuclear matter properties requires only the
knowledge of range and exchange strength parameter in SNM and PNM. The exchange
strength parameter in PNM can have values in between ¢ ; =0 and ¢ ; =(5; +g é‘: )2
as decided from the nature of np effective mass splitting in neutron rich asymmetric

matter. We have studied the thermal evolution of nuclear matter properties for various

representative values of ¢/ within this range. The results for the cases ¢! =0 and

¢, =0 in SNM and PNM correspond to their respective nom interacting Fermi gas
model results. We have examined the occupation probability distribution functions in
SNM and PNM as functions of momentum for given density at different temperatures.
Apart from the well known fact that with temperature there will be spread of occupation
probability distribution to the region of higher momentum, it is also noticed that the
momentum dependence of the nucleonic mean field reduces the effect of temperature.

The manifestation of this important aspect of momentum dependence of nuclear mean

field has been examined in the cases of nuclear matter properties of SNM and PNM by

calculating their respective thermal evolutions considering different representative
values of €. within its possible range 0 and (&% + £)/2 in case of PNM. The results

on entropy per particle in PNM show that it can exceed the SNM results at higher
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density in the case 0<e <2(e! +e)/6 and it does not exceeds that of SNM at any

density for 2(e! +€¥)/6<el <(el +€)/2.For £! =2(e! +£")/6 the entropy in
PNM approaches that of SNM in the asymptotic region of high density, which is true at
any temperature. The behavior of entropy raises an obvious question that whether the
entropy in PNM being a one component system, can exceed that of SNM which is a two
component system!! Moreover, the Fermi gas model results on this aspect, which can be
considered as pure quantum mechanical effect, show that the entropy in PNM is always

less than that of SNM at any density and at any temperature. Even in absence of a
concrete answer to the above raised question, the whole allowed region of € canbe

divided into two parts, 0< 8; < 2(8; +£;':) /6 and

ul
ex

2(8;r +8Z)/ 6 Se; S(S,’a +£&.)/2 depending on either of the two possibilities. In
case of thermal evolution of other properties, such as, energy density, free energy

density similar behaviour has been observed. At a given temperature, these properties in
case of PNM exceed that of SNM in the high density region for Eéx value lying in the
former range. The density at which the crossing over takes place has a higher value for

larger magnitude of Séx in this range. On the other hand, no such crossing over

phenomena occur when the value of 8\; lies in the range specified latter and the

behaviour is qualitatively similar to the corresponding Fermi gas model results. Hence
the thermal evolutions in the cases of nuclear symmetry energy and nuclear free

symmetry energy are found to change sign at the values of density where energy density

and free energy density in PNM surpass that of SNM values in case of 8; in the range

ul
e

0< 8; <2(e. +£")/6, whereas, no such change of sign take place for the case where

i

g, lies in the range 2(el +€u)/6<¢€, <(eL+en)/2. In the case of

ul
ex

el =2(el +€)/6 the thermal evolution in the cases of all of these nuclear matter
properties in PNM approaches that of SNM results in the asymptotic region of high
density. The np effective mass splitting in ANM at zero temperature as a function of
asymmetry for these representative values of 8(; hes been calculated and shown in
Figure 4.11(b). For relatively weaker momentum dependence in PNM the np effective
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mass splitting is found to be wider. Thus as the strength 8; in PNM increases in
magnitude starting from O the separation between the neutron and proton effective mass
curves go on decreasing while, on the other hand, the density at which the thermal

evolution of nuclear matter properties in PNM crosses the corresponding results of

wl
ex

SNM go on increasing. At the critical value ¢ =2(¢ + &)/ 6 the thermal evolution

in case of PNM approaches that of SNM asymptotically in the high density region. As
Eéx increases beyond this critical value no crossing over phenomena will occur at any
density and the thermal evolution in PNM will remain smaller than that of SNM at all
values of density. The n-p effective mass splitting in ANM for this critical value,
el =2e! +€)/6, is found to compare reasonably well with the results of the

microscopic DBHF calculation, as has been shown in Figure 4.12. In absence of a

concrete answer to the question raised in the above discussion we can not rule out the

other possibilities of 8; in its allowed range. So in our subsequent study of nuclear
matter properties and EOS of charge neutral beta stable matter at finite temperature in

the next chapter-V, we have considered the three choices of 8;, namely,

gl =(el +e")/6 (case A), 2(g! + €“)/6 (critical case) and (¢! + &)/2 (case B).
The two choices about the critical value are equidistant from it and represent the cases
of two distinct behaviours found in connection with the thermal evolution study.

The study of the thermal evolution of nuclear matter properties in chapter-IV
required only the knowledge of the exchange part of the interaction. The complete study
of each of these nuclear matter properties (instead of relative to their zero temperature
results) requires the complete interaction. All the six parameters required in the study of

SNM and their determination has been discussed in chapter-1II. In the same chapter the

procedure adopted to determine the splitting of the strength parameters &, €, into like

ul

y » for given choice of splitting of exchange

and unlike channels, &, 8}', and €Y, €

strength parameter has also been discussed. Thus for each of the three choices of £ as

given above as case A, B and critical value the EOS of PNM can be obtained. In this
connection we have studied the symmetry energy, free symmetry energy at different

temperatures by calculating the energy density as well as free energy density in SNM
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and for the three cases of PNM. The energy densities in SNM and PNM are found to be
increasing functions of temperature at a given density. The effect of temperature on
energy density of SNM is found to be stronger than in PNM which can be understood in
terms of the value of Fermi momertum corresponding to the same density. Since at
given density the Fermi momentum in case of SNM is smaller than that of PNM, the
effect of temperature will be more on SNM. Thus the symmetry energy which is the
difference between the energy per particle in PNM and SNM is found to be a decreasing
function of temperature, however in case A at a higher density about p~0.8 fm” the
finite temperature curves crosses the zero-temperature one implying that the
temperature effect has become stronger in PNM as compared to SNM. In case B the
finite temperature results do not show such crossing over phenomena and the finite
temperature curves lies below the zero-temperature one at all values of density. In
critical case the finite temperature curves approacies the zero-temperature result
asymptotically in the region of high density implying the vanishing of the thermal effect
at higher density. Hence it can be concluded that in case of relatively weaker
momentum dependence in PNM mean field (¢!, < 2(¢.. + £)/6), the thermal effect on
energy density of PNM becomes stronger than that of SNM at some higher density.
However, for relatively stronger momentum depsndence of PNM mean field

(e ;{ >2e ; T g:;')/ 6) the temperature effect on energy density of PNM is less than that

~ of SNM at all values of density. For ¢/ =2(e + &)/ 6 the effect of temperature in
SNM and PNM approaches the same value in the asymptotic region of high density.
The results in these three cases are the expected ones as obtained from the thermal
evolution study of the cases given in Figures. 4.5(a) and (b). The predictions of these
three cases have been used to analyze the finite temperature results of symmetry energy
extracted from the isoscaling analysis of multifragmentation phenomena in heavy-ion
collision experiments. It has been found that the density range in the region p < p,
within which the experimental data of nuclear symmeiry energy at measured values of
temperature lies in case A has relatively smaller values as compared to case B. This
implies that the stiffness of the finite temperature symmetry energy curve for case A in

this sub-nucleonic region of p < p, is more in comparison to case B. Thus, although the
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three choices of momentum dependence of PNM mean field give same density
dependence of symmetry energy at zero-temperature, their results at finite temperature
vary quantitatively as well as qualitatively. The nuclear symmetry energy pressure
which is related to the slope of the symmetry energy curve has been calculated as a
function of density at different temperatures for the three cases of PNM. The qualitative
features of the different curves for the three cases are similar where the symmetry
energy pressure increases as density starts increasing from low value and the rate of
increase slows down at higher density and ultimately starts decreasing after reaching a
maximum. The rate of increase of the symmetry energy curve at low density region is
comparatively more in case A compared to case B and the rate of decrease in high
density region is comparatively less in case A compared to case B.

The free energies per particle in PNM and SNM have been found to be
decreasing functions of temperature at a given density although the energy densities are
increasing functions and this is due to the entropy factor. The free symmetry energy is
calculated as the difference between the results of free energy per particle in PNM and
SNM. The free symmetry for the three cases of PNM is found to be increasing function

of temperature, but in case A it becomes a decreasing function relative to its zero-

temperature result beyond certain higher density around p = 0.8 fin™. In case B the free
energy behaves as an increasing function at all values of density and in critical case the
effect of temperature washes out in the asymptotic region of high density and the finite
temperature result approaches the zero-temperature one. For relatively weaker
momentum dependence in the mean field of PNM the increasing behaviour of free
symmetry energy relative to its zero-temperature result becomes a decreasing one in the
high density region where as for stronger momentum dependence the increasing trend
does not reverse at any density. The free energy in SNM at different temperatures are
also compared with the results obtained under Brueckner-Bethe-Goldstone (BBG)
calculations. The agreement is quite good upto density p =0.3 fm~ beyond which our
results become relatively stiffer than the BBG results.

Free symmetry energy at non zero temperature has crucial role in the study of
supernovae matter and formation mechanism of neutron stars. The isothermal processes

those might be taking place in supernovae matter that has temperature in the range
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10~40 MeV are crucially governed by the free energy. The nucleonic and leptonic
fractions in the supernovae matter under isothermal condition are to be determined from
the conditions as given in eqs. 5.2.3 and 5.2.4. By solving the two equations self
consistently the nucleonic and leptonic fractions as a function of density at different
temperatures have been obtained. In the process of evaluation of the particle fractions in
the beta equilibrated n+p+e+p matter at nonzero temperature, one obtains the
respective equilibrium chemical potential at the given density and temperature. The
equilibrium chemical potential as a function of density at different temperatures show
similar behaviour for the three cases of momentum dependence in PNM, given in
Figures 5.11.(a), (b) and (c), where the chemical potential at a given density decreases
with increase in temperature. However, the magnitude of decrease in case A is
comparatively larger than that of case B. The stronger temperature dependence resulting
into a smaller chemical potential in case A may be attributed to the relatively weaker
momentum dependence in PNM in this case. Moreover, the rise of free symmetry
energy slows down with increase in density in this case A. On the otherhand, the
chemical potential in case B has relatively larger value as well as the free symmetry
energy has a stiffer rise and hence the effect of temperature is largely manifested
through an increase in proton fraction in case B as compared to case A. This is shown in
Figures 5.12(a), (b) and (c) where one finds that the proton fraction in case B is more
than case A at all values of temperature. This is also shown in Figure 5.15 where the
results for the three cases are shown at a given temperature. The relatively higher value
of proton fraction in case B allows the occurrence of direct URCA process over a wider
density range compared to other two cases. However, in absence of any experimental/
empirical constraints on the URCA processes in neutron star matter it is not possible to
decide on the momentum dependence of mean field in PNM and hence the n-p effective
mass splitting in ANM.,

The equilibrium proton fraction in the charge neutral beta equilibrated
n+ p+e+ p Mmatter at finite temperature enables one to calculate the EOS of hot neutron
star matter that is present in the protoneutron stars. The nucleonic parts of the energy
density and pressure are calculated from the EOS of ANM corresponding to the

asymmetry given by the value of the equilibrium proton fraction at given value of
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density and temperature. In calculating the nucleonic contribution to the EOS of hot

neutron star matter it has been found that the asymmetry contribution to the energy

density at finite temperature, S¥¥ (p,¥,,T), also obey the same universal high density
behaviour that was used at zero-temperature to constrain the parameter in ANM. As a
result of this the asymmetric contributions of the nucleonic part, §"¥ (p,Yp,T), In
case A and B are found to be the same. This is because both free symmetry energy and
equilibrium proton fraction in case A have relatively smaller values compared to case B
and hence (1-2Y,(p,T)) increases in the former case whereas it decreases in the latter

case resulting into the same §™

(p,Yp,T) in the two cases. The asymmetric nucleonic
contribution to pressure is found to be a decreasing function of temperature in both the
cases A and B having the same characteristic behaviour that at a given temperature it
increases with increase in density and attains a maximum value and then decreases with
further increase in density. The rate of increase in case A is relatively more compared
to case B. The symmetry parts of nucleonic contributions to energy density and pressure
in neutron star matter are found to be increasing functions of temperature. The leptonic
parts of energy density and pressure are calculated from the non interacting relativistic
Fermi gas model consideration. Both the contributions are found to be increasing
func tions of temperature having relatively higher contributions in case B than case A.
This is because the equilibrium proton fraction is more in case B than in case A. The
leptonic and asymmetric nucleonic contributions to energy density and pressure in both
the cases A and B are small compared to the symmetric contribution which is same in
both the cases and hence the EOSs of neutron star matter at a given temperature are
found to be almost same in both the cases A and B. The neutron star properties have
been calculated for two different temperatures T=5 and 10 MeV for the critical case. It
is found that the splitting of the exchange strength parameter does not have an
appreciable affect on the bulk properties of neutron star matter except on its
composition,

On the whole, a simple finite range effective interaction having Yukawa form
has been used to study the two important aspects of ANM, namely, the density
dependence of symmetry energy and n-p effective mass splitting in neutron rich dense

matter. The procedure adopted in constraining the parameters in ANM using the
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universal high density behaviour of the asymmetric ccntribution in neutron star matter
predicts the density dependence of symmetry energy to be neither stiff nor very soft.
This qualitative feature on the high density behaviour of nuclear symmetry energy is
also in agreement with the extrapolation of the findings of the continuously going on
experimental efforts to constrain the value of the symmetry energy in the density range
at and below normal nuclear matter density. The neuzron star can be considered as a
suitable terrestrial laboratory for the study of high density behaviour of nuclear
symmetry energy. However the existing available data on the composition and cooling
mechanism of neutron star are not sufficient for the purpose. In this connection it may
be mentioned that once an answer to the question that whether direct URCA process
takes place in neutron stars or not can largely constrain the density dependence of
symmetry energy. On the other important aspect of ANM, that is the momentum
‘dependence of neutron and proton mean fields, we have made an effort to find a
solution to it from the study of temperature effect on the nuclear matter properties.
From the study it has been possible to sub-divide the whole allowed range for
momentum dependenée of neutron and proton mean fields into two parts. The actual
behaviour will correspond to which of the two parts depends on the answer to the
question raised whether the thermal evolution in PN can exceed that of SNM at a
higher density or not. The boundary line dividing the whole range into two parts
corresponds to the critical momentum dependence of nzutron and proton mean fields for
which the thermal evolution in PNM can at best approach that of SNM in the
asymptotic region of high density. In order to make further progress in these direction
more experimental data on the observables sensitive to these two aspects of ANM from
heavy-ion reaction studies involving radioactive ion beam as well as constraints from
neutron star phenomenology are required. Further, it mray be mentioned here that in the
transport model analysis of heavy-ion collision data the neutron and proton mean fields
are the basic inputs and the mean fields resulting from our simple interaction having the
flexibility of predicting different momentum dependence of mean fields for same
density dependence and vice-versa can be considered as an experimental advantage for

the purpose.
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