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INTRODUCTION

1



1.1. Nucleon-nucleon effective interaction and EOS of Nuclear Matter
The most fundamental, challenging and elusive problem in nuclear physics is to 

understand the nuclear force in terms of the underlying phenomena of nucleonic matter 

equation of state(EOS), structure of finite nuclei etc. with the help of nucleon-nucleon
t

interaction . Usually, the nucleus being a complex quantum system, the observables of 

finite nuclei can be obtained by solving many-body Schrodinger equations. However, 

the amount of difficulties in the computational process has led to the concept of infinite 

nuclear matter (NM) which is a highly idealized simplified system of infinite number of 

nucleons where the Coulomb force between the charged protons is switched off. The 

concept of NM with translational invariance greatly simplifies the calculation and 

provides first hand information about the underlying intricacies of nuclear structure. 

Together with the Local Density Approximation (LDA), this approach of NM has been 

used extensively for finite nuclei structure calculation and for proton-nucleus scattering. 

Since an exact equation of state for NM is not known, nuclear force is approximated by 

an effective interaction. There are two different approaches to get the nucleon-nucleon 

effective interaction. In the first approach, the lowest order interaction is obtained from 

a realistic two-body force that fits the nucleon-nucleon scattering phase shifts together 

with the properties of 2He nucleus by applying Brueckener theory in LDA [1, 2], But 

the success in this direction is very less as these effective nucleon-nucleon interactions 

are unable to predict accurately the binding energy or the saturation density [3]. The 

semi realistic two nucleon interaction models fail to explain the ground state properties 

of nuclear matter and the D- and Fwave phase shifts they predict are not in good 

agreement with experimental data. In order to describe the saturation properties of NM, 

this approach requires higher order correction to the effective nucleon-nucleon 

interaction. However, Hatree-Fock (HF) calculations with some of the effective 

interactions with the inclusion of three-body forces and boost corrections provide good 

results [4], The so called Brueekener-Hatree-Fock (BHF) approach is based on a linked- 

cluster perturbation series of the ground state energy of a many body system. Such 

series was shown to converge when the cluster diagrams are regrouped according to the 

number of hole lines [1, 5|. Variational method j6-8] with realistic nucleon-nucleon 

(NN) potential yielded predictions in close agreement with those from Brueckener

2



theory. The main drawback of BHF approach was its inability to predict the nuclear 

matter saturation properties. The Dirac-Brueckener-Hatree-Fock (DBHF) approach [9- 

13] was developed during 1980’s which could describe successfully the saturation 

properties of nuclear matter. The DBHF method uses realistic NN interactions and 

contains the relativistic features. It describes the nuclear mean field in terms of strong, 

competing scalar and vector fields. These scalar and vector fields, together, account for 

the binding of nucleons as well as the large spin-orbit splitting seen in nuclear states. In 

the second approach, a phenomenological effective interaction with some unknown 

adjustable parameters is constructed and the interaction parameters are determined by 

fitting them to reproduce the known ground state saturation properties of NM such as, 

the binding energy per nucleon , e0(p0) = —16±0.2 MeV, saturation density 

p0 = 0.16 +0.005 fin'3 , pressure at saturation P = 0and the compression modulus or

incompressibility K = 210 + 30 MeV [14]. Although quite less fundamental, the 

analytical simplicity of the phenomenological effective interactions makes them a 

useful tool for nuclear structure calculations and in studying the properties of dense 

matter in neutron stars.

Of late, the incorporation of relativistic effects within the nuclear system has led 

to the development of another popular approach, the Relativistic Mean Field (RMF) 

models [15] in the framework of quantum hadrcdynamics, where the effective 

interaction is generated through a Lagrangian constructed for the exchange of mesons. 

The parameters of the Lagrangian are also fixed up by fitting them to the bulk 

properties of nuclei [16]. Although the earlier RMF models, having only linear coupling 

terms, were successful in producing qualitative properties of nuclei they predicted too 

high NM incompressibility and failed to produce surface properties. In order to 

overcome this deficiency, Boguta and Bodmer [17] introduced a nonlinear (NL) density 

dependent term in the <7 field. The additional density dependent term helped in 

reducing nuclear matter incompressibility to reasonable limits. Basing upon the 

symmetries of Quantum Chromo Dynamics (QCD), Chiral effective theories of nuclear 

force have been developed recently which can well retain the basic degrees of freedom 

related to the low-energy nuclear physics. Chiral effective theories provide a well 

defined scheme to determine the appropriate many-body diagrams to be included at

3



each order of the perturbation. Since the chiral effective theories are based on a low 

momentum expansion, interactions derived from them are not suitable for applications 

in dense nuclear or neutron matter where usually high momenta are involved.

1.2. Skyrme type effective interactions

Right after the fully microscopic non-relativistic self consistent mean-field HF 

calculations of Vautherin and Brink [18], there have been many attempts to construct 

Skyrme type phenomenological effective interactions [19, 20]. The analytical simplicity 

of the Skyrme type effective nteractions makes them useful for nuclear structure 

calculations [21], studying high density behaviour of NM as encountered in neutron 

stars [22, 23] and in finite temperature calculations such as the thermodynamic 

properties of nuclear matter and the determination ofths critical temperatures in Liquid- 

Gas-Phase transition of NM[24-26].

Ignoring the spin-orbit contributions, the Skyrme potential that contains the two- 

body and three-body terms can be written as

v(r) =/0(l+V*a)$(r) +-/,(! +x\Po) £'2S(r) + S(r)i^

+—t3(l + x3Pa) 
6

R
v 7

S(r)

+t2 (1 +x2Pa)k'-S(r)k

(1.2.1)

—y -4 *4 —> | —> —>

with r =rx-r2 and R =—{rx + r2) are the relative wave vectors of two nucleons with

positions r, and r2 ■ The t’s and x’s are constants. Pc is the spin exchange operator. 

The exponent y(y=l for original Skyrme force) takes care of the density dependence 

of the potential. The first two terms are the phenomenological representation of an s- 

wave two-body interaction, with velocity (momentum) dependence in the tx term. The 

3rd term represents the p-wave two-body interaction and the fourth term is a zero range 

three-body interaction (with one integration over the coordinates of the third nucleon 

already performed). In 1972, Vautherin and Brink [18] produced parameter sets SI and 

SII by fitting the ground state properties, such as binding energies and radii, to 

experimental data for two spherical nuclei I60 and 208Pb. In 1975, Beiner et al.

4



generated Sill parameters set [21] that proved to be very successful throughout the mass 

table. The exponent y with a value of 1 predicted too high incompressibility for nuclear 

matter, for example Sill set produced K=356 MeV. The approximate value of K was 

ascertained from the analysis of the experimental data on the giant monopole resonance 

(breathing mode) [14]. In order to account for the incompressibility of symmetric 

nuclear matter, fractional exponent ( y < 1) of the density dependent term in the Skyrme 

potential were chosen by many authors. The Ska set of Kohler [27], SkM set of Krivine 

etal. [28], SGII set of Giai and Sagawa [29] used fractional y (usually y= 1/6) to take 

into account that the incompressibility of symmetric nuclear matter (SNM) be in the 

range 210+30 MeV. It was proposed by Zamick [30] that in order to get a reasonable

value of the SNM incompressibility the exponent y should remain in between j and

2
—. So far many sets of Skyrme forces have been constructed to reproduce different 
3

aspects of nuclear matter properties, properties of finite nuclei, properties of nuclei at 

the j5 -line and nuclei near the proton or neutron drip line. Usual Skyrme forces do not 

give a reasonable behaviour of the nuclear EOS as a function of neutron-proton

p
asymmetry or the proton fraction Yp = ——, where pp is the proton density and p is

NM density. A systematic study [31] of different sets of Skyrme parameterization 

shows that out of 87 sets only 27 sets are useful for the study of neutron star properties. 

The nuclear symmetry energy coefficient Es at normal nuclear matter density is a 

crucial quantity for the study of neutron star properties. For astrophysical applications, 

the effective interaction should fit the calculations of pure neutron matter and should 

reproduce a quite reasonable value of Es at normal NM density which is believed to be 

around 30MeV [32-33]. Notable among the parameters sets derived for astrophysical 

application are that of Siemens and Pandharipande [34], Buchler and Ingber [35], 

Sjoberg [36], Buchler and Datta [37], Friedman and Pandharipande [6].

It is well known that NM saturation can be achieved with density dependent or 

momentum dependent interactions or with a combination of both. The short-range or 

Zero-range Skyrme type interactions are useful for low relative momenta between the
5



interacting nucleons. When comparatively high relative momenta of. the interacting 

nucleons are involved we have to resort to finite range effective interaction. In 1963, 

Seyler and Blanchard employed a Yukawa type finite-range effective interaction of the 

form [38]

v{r,k)- v
h2

(1.2.2)

where r is the separation distance between the nucleons, k is the relative momentum. 

C, v is the strength of the interaction with the subscripts § and v refer to the spin and

isospin degeneracy, a is the range of the Yukawa force, and b is the critical value of 

the relative momentum at which the force becomes repulsive. The Seyler and Blanchard 

finite-range effective interaction can be simply expressed as a Skyrme force with ti = 0 

which predicts much higher value of NM incompressibility. Finite-range effective 

interactions simulated by Gaussian type potentials used in self-consistent calculations 

are that of Brink-Boeker [39] and Gogny [40]. The Gogny interaction [41] is in the form

v(r)= ^{W]+B,Pa -H,PX + „'0(1 + x0Pj)
/=1,2

+ +iW0(al+a2)-

(-A"
p R 5(R)

k'x5(r)k

(1.2.3)

These interactions upon integration do not lead to analytical simplicity and hence are 

less or not used in astrophysical applications.

1.3. Nuclear matter incompressibility and Need of a momentum 

dependent interaction
The NM incompressibility has been traditionally calculated from the breathing 

mode vibration or the Giant Monopole Resonance [14, 42]. With the availability of 

nuclear collision data [43] and with the advent of experimental facilities to cany out 

experiments on Intermediate and high-energy Heavy-Ion (HI) collisions, the studies on 

the nuclear EOS has gained renewed interest. In these experiments it is possible to 

create matter of high density and high temperature. From the analysis of the data
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available from such experiments it is possible to explore and extract information on the 

nuclear EOS at extreme situations of density and temperature. These information are 

also essential for the understanding of certain astrophysical phenomena like neutron star 

properties, their structure and supernova explosion mechanism. The transport model 

calculations based on classical Boltzman equation [14, 45] were performed to extract 

information about the NM EOS. In such calculations the crucial input is the nuclear 

single-particle potential or the nuclear mean field. With momentum independent 

effective interactions leading to nuclear mean field in Skyrme parametrization,

w(p) = AV
,Po

+ B
'p'‘

(1.3.1)
\roj

where A and B are adjustable parameters and a > 1, the transport model calculations 

required a quite high incompressibility ( K=380 MeV) to fit the observed data from the 

pion production and the collective sideward flow [45], But the explosive shock 

mechanism of Supernova requires a soft EOS with K in the range of 140 MeV to 220 

MeV [46-49]. This contradicting extraction of nuclear EOS leads to the use of 

momentum dependent effective interactions and momentum dependent nuclear mean 

fields in transport model calculations [50-52]. Introduction of momentum dependent 

interaction significantly lowered the value of NM incompressibility. In the density 

dependent and momentum independent effective interactions the saturation burden is 

taken by the density dependence of the potential. In a Seyler-Blanchard type effective 

interaction [38] the entire burden of saturation is shouldered by its momentum 

dependence. The Skyrme interactions and the Seyler-Blanchard type effective 

interactions lead to mean fields in NM whose momentum dependent part is repulsive 

[53] and has a quadratic dependence on momentum. On the other hand, the momentum 

dependent part of the mean field in NM derived from finite-range effective interactions 

is attractive and is strong at very low momenta. From the analysis of nucleon-nucleus 

scattering data at intermediate energy it is observed that with the increase in 

momentum, the momentum dependence of the mean field weakens and vanishes at a 

kinetic energy of about 300MeV of incident nucleon and then turns out to be repulsive 

with the further increase in kinetic energy. This behaviour of the mean field with 

increase in momentum is an essential feature for a successful interpretation of HI
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collision data at intermediate energies [54-60]. Similar behaviour of the NM mean field 

has also been observed in microscopic Dirac-Brueckener-Hatree-Fock (DBHF) 

calculations of Li and Machleidt [61, 62], All of these works strongly suggest that 

momentum dependence of nuclear mean field is an unavoidable feature for the 

fundamental understanding of nuclear matter properties and for the successful 

interpretation of the HI collision data. Hence a correct momentum and density 

dependence of the nuclear mean field should be employed in the transport model 

calculations so as to fit the observed energy dependence of the optical potential. The 

momentum dependent mean field used in earlier calculations [50, 52, 60, 63], is in the 

form

»(p) = A
f(L}

\Poj
+ B

,Po
+ —f d3k'- 

Po J
1-

f ~+ ~+

k-k*

(1.3.2)

Av y
where the parameters A, B,C,cr and A are chosen to reproduce the saturation properties 

of NM and provide the necessary incompressibility and fit the HI scattering data.

Keeping a view on the above constraints on nuclear EOS, Behera et al [64] 

have constructed some finite-range momentum and density dependent 

phenomenological effective interactions with minimum number of adjustable 

parameters. These effective interactions have a zero-range density dependent part 

similar to Skyrme interactions and a long-range density-independent part of 

conventional form such as Yukawa, Gaussian or exponential. This effective interaction 

is very similar to the Skyrme type effective interactions except that the tx and t2 terms 

have been replaced by a finite-range interaction. The interaction parameters have been

calculated by fitting the standard values of NM saturation properties i.e. energy per

nucleon e0(p0) = -16 MeV, kinetic energy TF_ = 37 MeV corresponding to 

p0 = 0.161 fm~l and K(p0) = 210MeV. This value of NM incompressibility at

saturation has also been reported by Blaizot et al. [14], The corresponding nuclear mean 

field is of the form
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f „ \
u(p) =A

V Po J
+ B + C

\roJ

'p}
\Po J

I(k,p) (1.3.3)

where the third term comes from the finite-range exchange contribution to the effective 

interaction and takes care of the momentum dependence. In Ref. [65], using the same 

finite range effective interaction, the authors have shown that the resulting momentum 

dependence of the mean field in symmetric nuclear matter (SNM) is in very good 

agreement with the predictions of the microscopic calculations of Wiringa [66], 

particularly with UV14+UVII. The momentum and density dependence of the nuclear 

mean field obtained from these interactions are compared well over a wide range of 

densities and momenta with that of the momentum dependent Yukawa Interaction 

(MDYI) [63]. These effective interactions of Behera et al.[64] have successfully been 

applied to study the thermostatic properties of symmetric NM, Phase Transition studies 

like QGP Phase Transition at finite temperature and the Nuclear Liquid-Gas-Phase 

Transition [65, 67].

1.4. EOS of Asymmetric Nuclear Matter and neutron-proton effective 

mass splitting
Analysis of the anisotropies quantified experimentally over a wide range of 

bombarding energy in the central Au+Au collision has led to fix up a constraint upon 

the EOS of SNM in the form of a band of Pressure-density relation within a 

substantially wide range of density i.e. 2p0 to around 4.6p0 [68, 69]. This constraint 

has eliminated some of the much used EOSs in Nuclear Physics.

With the establishment or construction of many radioactive ion beam (RIB) 

facilities around the world, such as the Cooling Storage Ring (CSR) facility at HERFL 

in China [70], RIB factory at RIKEN in Japan [71], the Facility for Antiproton and Ion 

Research(FAIR)/GSI in Germany [72], SPIRAL2/GANIL in France [ 73] and the 

facility for Rare Isotope Beams (FRIB) in USA [74] and he growing experimental 

facilities using REBs and that of intermediate energy HI collisions induced with neutron 

rich nuclei, have provided ample opportunities to explore the EOS of highly dense and 

hot isospin asymmetric nuclear matter (ANM) with high neutron-proton asymmetry
9



[75-86]. New detectors such as the Time Projection Chamber (TPC) at NSCL/MSU and 

the TPC, SAMURAI at RIKEN, Japan are being planned to study the symmetry energy 

and the nuclear equation of state. In SNM where both the neutron and proton mean 

fields assume the same form and value, things become simpler to calculate different 

nuclear matter properties and since there has been so many constraints fixed from 

different experimental observations, one has a guiding lines to construct the 

phenomenological mean field equations. The EOS of SNM with equal no of neutrons 

and protons is somewhat well determined. Particularly, the energy per particle at normal 

nuclear matter density, is e(p0) = —16 MeV; the incompressibility at saturation 

density p0, as has been determined from GMR studies , to be 240 + 20 Me V [87-94] 

and the pressure-density band or the EOS in the density region 2pQ < p < 5p0 as has 

been constrained from the collective flow data [68], within the limits of experimental 

errors, are known to some extent. However, in ANM, where the proton mean field is 

quite different from the neutron mean field, we have a poor knowledge about the 

momentum and density dependence of nuclear mean field which poses considerable 

difficulties for the complete understanding of its EOS. The important quantity for the 

description of EOS of ANM is the isovector part of the nuclear mean field, 

—>
ur(k,p = pn + pp) defined as

uT(k,p)= Lim
T r YP^U2

un(k,p,Yp)-up(k,p,Yp) 
2(1-2 Yp)

(1.4.1)

i.e. the difference of the neutron mean field and proton mean field at zero temperature 

normalized to the neutron-proton asymmetry (l - 2Yp). Various theoretical approaches 

in the study of EOS of ANM include Dirac-Brueckner-Hartree-Fock (DBHF) 

calculations using realistic nucleon-nucleon interactions derived from relativistic meson 

field theory [61-62, 95-98], Brueckner-Hartree-Fock (BHF) calculations with Reid soft 

core potential [99-102], Brueckner-Bethe-Goldstone (BBG) calculations with the Paris 

potential [103-104], and variational calculation using different combinations of two and 

three nucleon interactions [6, 66]. Besides these microscopic approaches, effective 

theories such as relativistic mean field (RMF) approximations [105-111] and non-
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relativistic effective interactions [112-116] have also been used extensively to study the 

EOS and mean field properties of asymmetric nuclear matter.

The nucleon effective mass is a property that characterizes the propagation of 

(quasi) nucleons through the nuclear medium. It is a reminder of the non locality and 

energy dependence of the nucleon self energy originating from the finite range and non 

locality in the time and space of the nucleon-nucleon interactbn. In very exotic 

systems, the isovector behavior of the neutron anc proton effective masses play 

important role. The momentum dependence of the isovector part of nuclear mean field 

drives the splitting of neutron and proton effective masses with neutron proton 

asymmetry. However, there is no experimental data available from finite nuclei to 

determine the effective mass splitting as a function of neutron richness. So far the 

theoretical predictions regarding the momentum and density dependence of the
—>

isovector part of nuclear mean field uT (k, p) are extremely contradicting. Some BHF

—^

calculations with realistic nucleon-nucleon interactions predict that ux (k, p) should

—>

decrease with the increase in momentum k giving rise to a neutron effective mass going

above that of the proton [117-119] where as relativistic Dirac-Brueckener calculation

[120] and RMF models using Quantum Hadrodynamies (QHD) [105-107] predict that
—> —>

ur(k,p) should increase with the increase in k implying the proton effective mass

going above that of neutron However, experimentally extracted results on the energy

dependence of ur(k,p0) show a decreasing trend supporting the fact that the neutron 

effective mass goes above the proton one although the data are available up to energy 

100 MeV and are associated with large uncertainty [121-123]. The decreasing trend of 

—^
uT(k,p0 ) with momentum k is also predicted in BHF calculations [118, 124] and in 

the calculations of the non-relativistic effective theories till the construction of Sly 

series ofSkyrme parametrization [112,125-126]. The confusion on neutron and proton 

effective mass splitting became complex with the prediction of DBHF calculation in 

Ref [120] that the proton effective mass lies above the neutron one. It was clarified in 

the works of Ref. [127,128] that by considering the energy dependence of self energy
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and comparing the non relativistic effective mass with the vector effective mass in the 

relativistic framework [129], the DBHF calculation also predicts the neutron effective 

mass above the proton one. This was further confirmed in the DBHF calculation in Ref. 

[130], In view of this, now there is an almost a consensual opinion has reached that the 

neutron effective mass in a neutron rich matter will lie above the proton one. There have 

been attempts to constrain the effective mass splitting from the study of observables 

sensitive to the isovector features of the nuclear EOS [81, 84, 131], but the task has not 

yet been accomplished and magnitude of effective mass splitting still remains as an 

open problem in nuclear physics.

1.5. Nuclear Symmetry Energy
The behaviour of the mean fields at Fermi momentum is directly related to the 

density dependence of nuclear symmetry energy Es (p) which may be defined as the 

difference in energy per nucleon in pure neutron matter (PNM) and that in SNM 

Symmetry energy is an important quantity which determines the composition of neutron 

star and the structure of exotic nuclei. It controls the proton fraction in beta stable 

matter. Both theoretically and experimentally, significant progress has been made on 

constraining the behaviour of Es{p) at subnormal density using heavy ion reactions 

[85, 132-139]. The density dependence of nuclear symmetry energy for subnormal 

densities is believed to be linear and is mostly model dependent. Experimentally, the 

symmetry energy is not a directly me asurable quantity and has to be extracted indirectly 

from observables that are related to the symmetry energy. The experimental 

determination of the symmetry energy is therefore depends on reliability of the model in 

describing the experimental observables. Usually two different experimental approaches 

are made to study the nuclear symmetry energy. In the first category, a certain form of 

the density dependence of the symmetry energy is assumed in the theoretical calculation 

and experimental observables are reproduced using dynamical models such as Isospin 

Boltzmann Uehling Uhlenbech (IBUU) [82], the improved quantum molecular 

dynamics(ImQMD) [140] and the antisymmetrized molecular dynamics (AMD) [141]. 

In the second category, the symmetry energy is studied by mapping its value at each 

density by drawing a relationship between the symmetry energy, excitation energy,
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density and temperature [133], These studies make use of the statistical 

multifragmentation model. The density dependence of nuclear symmetry energy Es (p) 

and thus the EOS of ANM are largely unknown, except the value of Es (p) at saturation 

density to be around Es(p0) = 30 MeV, as determined from the empirical liquid drop 

mass formula [142, 143], However at densities away from the normal NM density and 

at densities relevant to neutron stars, the density dependence of Es (p) has been poorly 

understood |119, 136], which pushes the understanding of EOS of ANM into bare 

uncertainties. The principal cause of this uncertainty is the lack of terrestrial data to 

constrain model predictions. In order to probe the density dependence of nuclear 

symmetry energy away from saturation density, many efforts have been made through 

the studies of proton differential elliptic flow and the neutron-proton transverse flow

[144, 145], isospin diffusion studies [132], the n~ In* ratio [83], £“ /E+ (hyperons) 

ratio in HI collisions at SIS (Schwer Ionis Synchroton) energies [146] and within the 

microscopic transport model, ultra relativistic Quantum Molecular Dynamics (QMD) 

models [147]. Recently, there have been attempts to extract nuclear symmetry energy at 

suprasaturation densities from the FOPI data on the nln* ratio in 40Ca+40Ca,

96Ru+%Ru , %Zr+96Zr and l97Au+191Au reactions at SIS/GSI [139] and from the 

structure of finite nuclei such as neutron skin thickness studies [148]. Another 

observable that has been suggested for probing high density behaviour of the symmetry 

energy is the relative and differential collective flow between triton and 3 He particles 

[149],

The prediction of the density dependence of Es(p) at densities away from the 

normal nuclear matter density, from different theoretical calculations is quite 

interesting. The density dependence of Es(p) can be roughly classified into two groups.

In one category of calculations, Es(p) increases monotonically with the increase in 

density whereas in another category of calculations it increases initially and after 

attaining a maximum decreases to have negative values at very high density. Since 

nuclear symmetry energy controls the neutron star composition and cooling mechanism
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p
through the proton fraction Y = —and is required for the understanding of certain

P
phenomena beyond the standard nuclear physics, a more accurate knowledge of its high 

density behaviour becomes an important goal of nuclear physics in the present time. 

Recently Stone et al [31] have examined 87 Skyrme type interactions on the basis of 

their prediction on equilibrium proton fraction and EOS of beta stable matter as well as 

neutron star properties. They have shown that only 27 out of the 87 sets are appropriate 

for astrophysical applications on the basis that Es(p) should have an increasing 

behaviour over a wide range of density. Microscopic calculations of Zuo et al. [118] 

based on realistic nucleon-nucleon interactions and RMF calculations [150] also predict 

such a monotonically increasing behaviour of Es (p). Recently Klahn et al [151] have 

summarized some of the constraints on the high density behaviour of the nuclear 

symmelry energy by applying some recently discovered astronomical bounds from 

compact star cooling phenomenology and neutron star mass measurements together 

with information about the elliptical flow in HI collisions. They have suggested a 

scheme, may not be considered in its final shape, to test different models providing 

successful NM EOS at densities close to the saturation density. Recent measurements

onPSR J0751+1807 imply a pulsar mass of 2.1 ±0.2(^;j )M0 with 1<t(2<7) confidence 

level which constrains maximum neutron star masses to 1.6M0inthe 2o confidence 

level or even 1.9M0 within the 1(7 confidence level. Within the set of EOSs tested by 

Klahn et al. only DD, D3C and DBHF survived the test. Mass of pulsar B in the system 

J0737-3039 is merely 1.249 ± 0.001Me, which is the lowest reliably measured mass for 

any neutron star. Any viable EOS proposed for neutron star matter must predict a 

baryon number in the range 1.366 < Mw <1.375M0for a neutron star whose

gravitational mass is in the range M = 1.249 ± 0.001 M@ . None of the EOSs tested in the 

work satisfied this constraint. The density dependence of symmetry energy of all the 

EOSs considered in Ref [151] vary considerably from each other, however, the 

asymmetric contribution to the energy per particle in neutron star matter shows a 

marginal dependence on different EOSs forming a narrow band. This universal high 

density behavior of the asymmetric part of the energy per nucleon in neutron star matter
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helps the EOSs to pass the direct URCA constraint. However, in the absence of any 

experimental or empirical information, the theoretical determination of nuclear 

symmetry energy at suprasaturation density has loomed as a challenge in nuclear 

physics.

1.6. Objective and Plan of the thesis
The objective behind the present work is to analyse the momentum and density 

dependence of the isovector part of the nuclear mean field uT (k, p) and to focus on 

the existing controversies in the high density behaviour of nuclear symmetry energy as 

well as the two opposite types of splitting of neutron and proton effective masses using 

a simple parametrization of the energy density in ANM based on density dependent 

finite range effective interactions within the framework of non relativistic mean field 

formalism. The simplicity of the energy density we have used, allows us to calculate the 

isospin part of the nuclear mean field and other properties of ANM at zero temperature 

analytically. The density dependent finite range effective interaction constructed for the 

purpose has minimum number of adjustable parameters and yet capable of predicting 

the properties of nuclear matter. Such a simple effective interaction can provide a 

physical insight to the underlying phenomena of the behaviour of momentum and 

density dependence of the nuclear mean field.

In Chapter-II, we have reviewed the current status on the momentum and 

density dependence of the isospin part of nuclear mean field and on the puzzle of the 

neutron and proton effective mass splitting. The riddle has been analysed through a 

most general EOS by considering four interactions, direct and exchange, acting between 

like and unlike pairs of nucleons. The reason behind the controversy on the issue of the 

neutron and proton effective mass splitting is explored by using a simple two parameter 

finite range Yukawa effective interaction. It has been shown in the chapter fiat the 

existing controversies of the neutron-proton effective mass splitting can be attributed to 

the splitting of the exchange strength parameter into like and unlike channels. It is 

shown that the isovector part of the nuclear mean field becomes a decreasing function 

of momentum in the case of stronger exchange interaction in the unlike channel than 

that of the like channel and consequently the neutron effective mass goes above the
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proton effective mass in ANM. On the contrary, if the splitting of the exchange 

interaction into the like channel is stronger compared to that in the unlike channel then 

the isovector part of the mean field becomes an increasing function of momentum and 

the proton effective mass lies over that of the neutron. We have extended the formalism 

to examine the controversies in cases of Skyrme type interactions and Gogny 

interaction. In order to have a clear picture of the status of the existing controversies of 

neutron-proton effective mass splitting in neutron rich ANM, same of the important 

works such as the works of B.A.Li et al. in Ref.[81] and Rizzo et al. in Ref.[84] have 

been discussed.

In Chapter-Ill, we have constructed a density dependent finite range effective 

interaction useful for the investigation of the neutron proton effective mass splitting and 

the momentum and density dependence of neutron and proton mean fields as well as the 

high density behaviour of nuclear symmetry energy. The parameters of this effective 

interaction are fixed from the saturation properties in SNM and the behaviour of 

symmetry energy at saturation. In order to constrain certain parameteis we have used 

the universal high density behaviour of nuclear symmetry energy which envisages a 

stiffest asymmetric part of the nucleonic energy density in neutron star matter (NSM). 

The assumption that neutron effective mass will go above that of the proton restricts the 

exchange strength parameter in the like channel within certain allowed range. Variation 

of the parameter within its allowed range does not affect appreciably the density 

dependence of nuclear symmetry energy. Hence, the zero temperature properties of 

either ANM or NSM are unable to constrain the parameters of the effective interaction 

relevant for the settlement of the controversies regarding the neutron and proton 

effective mass splitting. It is expected that finite temperature calculation may provide 

some ways to constrain the corresponding parameters particularly the exchange strength 

parameter between a pair of like or unlike nucleons.

In Chapter-IV, thermal evolution of nuclear symmetry energy and nuclear free 

symmetry energy along with other properties of ANM are investigated. It has been 

emphasized in the chapter that, only the knowledge of exchange strength parameter and 

range of the exchange interaction between a pair of like or unlike nucleons are sufficient 

to explore the thermal evolution of the properties of ANM. The role of momentum
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dependence on the thermal evolution of nuclear symmetry energy and free symmetry 

energy has been analysed. The results of ideal Fermi gas case have also been calculated 

for comparison It is interesting to note that the momentum dependent interaction has a 

quenching effect on the impact of temperature on the properties of nuclear matter. The 

quenching effect of the momentum dependent interaction is discussed on the basis of 

the entropy density in SNM and PNM. The behaviour of entropy density in SNM and 

PNM for different splitting of the exchange strength parameter has been analysed which 

may help in sorting out an answer to address the existing neutron-proton effective mass 

splitting.

In Chapter-V, using the density dependent finite range Yukawa interaction 

constructed in earlier chapters, we have studied the temperature and density dependence 

of nuclear symmetry energy, free symmetry energy and other properties of NSM for 

three different representative splitting of the exchange strength parameter into like and 

unlike channel within its allowed range as decided in the earlier chapters. Nuclear 

symmetry energy and free symmetry energy are used to calculate the equilibrium proton 

fraction and the EOS of charge neutral beta-stable matter in neutron star.

In Chapter-VI, summary, conclusion and outlook of the work have been 

presented.
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CHAPTER-II

EQUATION OF STATE OF 

NUCLEAR MATTER
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2.1. EOS of Nuclear Matter for general effective interaction
In this chapter we shall discuss the general formalism in the framework of non- 

relativistic mean field theory that can be used to study the momentum and density 

dependence of nuclear mean fields and equation of state of nuclear matter using any 

effective interaction that depends on the separation distance between the two interacting 

nucleons as well as the density of the interacting medium. Some of the works performed 

in this context using various effective models shall be reviewed and also be elaborated 

at appropriate places relevant to the work undertaken in this thesis. The neutron and 

proton mean fields are the quantities of crucial importance in the studies of nuclear 

matter. Under the formalism developed in this chapter it will be shown that the EOS of 

nuclear matter is connected to the values of these nucleonic mean fields at the Fermi 

momentum. It is therefore necessary to consider the momentum dependence aspect of 

the nuclear mean field to be the primary thing that needs to be taken care of properly at 

the beginning of the studies of nuclear matter using any model. This important point has 

been realized at length during the last few decades with the experimental advents of 

high energy heavy-ion collision experiment facilities using radioactive ion beam. The 

momentum dependence of nuclear mean field in SNM as well as the density 

dependence of the EOS in SNM has been understood to a reasonable extent. However, 

in asymmetric nuclear matter, these two important aspects of momentum and density 

dependence of nucleonic mean fields and EOS of ANM are still poorly understood. The 

neutron-proton effective mass splitting in ANM comes from the momentum dependence 

of nucleonic mean fields in ANM, whereas, the density dependence of nuclear 

symmetry energy is connected to the EOS of ANM. In the followings we shall 

formulate the nucleonic mean fields and EOS of ANM in the framework of non 

relativistic mean field theory using phenomenological effective interactions staring 

from the first principle. Some of the works done in these important areas shall also be 

discussed.

The equation of state (EOS) of isospin-asymmetric nuclear matter is described 

by the energy per nucleon e(p) expressed as a function of total nuclear density

p
p = pn + pp, proton fraction Yp = — and temperature T which can be derived from
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the effective nucleon-nucleon interaction. p„ and pp are respectively the neutron and 

proton densities. The total energy of a nuclear system can be expressed as

(2.1.1)

where \i) and | j) are single particle states which can be represented by plane waves for 

infinite nuclear matter with the coulomb force between the charged protons being 

switched off. vd and vex are the direct and exchange part of the effective nucleon- 

nucleon interaction.

Considering the spin saturated isospin asymmetric matter we have altogether 

four direct and exchange interactions acting between like (1) nucleons (i.e. nn and pp ) 

and unlike (ul) nucleons (i.e. np). These four interactions, namely,

vld(r), v'ex(r), vuJ(r) and v">), are expressed as,

(2.1.2)

(2.1.3)

where, the superscript indices ‘s’ and ‘t’ imply interaction in singlet and triplet spin 

states and ‘e’ and ‘o’ imply the interaction in even and odd parity states of the two 

interacting nucleons. vse(r),vte(r),vso(r) and vt0 (r) are the respective interactions 

averaged over angles, spins, and isospins of the two interacting nucleons and are 

functions of separation distance r between the two interacting nucleons and the total 

density p = pn + pp of the medium. The charge symmetry of nuclear interaction

implies that vnn (r) = vpp (r) = v'{r) and vnp (r) = v"1 (r). In the eqs.(2.1.2 and 2.1.3), 

+ve sign is meant for direct interaction and -ve sign is for the exchange interaction.

With the help of the above consideration, the total energy in a nuclear system 

given in eq.(2.1.1) can be written as,

(2.1.4)
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where, for kinetic part we have used the relativistic relationship between energy and 

momentum in order to take into account the possible relativistic effects that may arise at 

high temperature as well as at high density. For nuclear matter in thermal equilibrium at 

temperature T, the neutron and proton occupation probabilities of the single particle 

states are described in terms of their respective Fermi-Dirac distribution functions 

given by

fr(k)
(2k) 1 + exp[{e'T(k,pn,p )-p'T}/T]

(2.1.5)

with i = n,p, where, £ =2 is the spin degeneracy factor, e‘r(k,pn,pp)is the single 

particle energy, p'T is the chemical potential of the nucleon and k is the momentum of

£the nucleon. The normalization factor
(2 ky

has been taken in the expression of the

Fermi-Dirac distribution function in the above eq.(2.1.5) subject to the condition that 
integration over the momentum space of proton and neutron distribution functions shall 
result into respective densities ppand p„,

Pi = \fr (*) d > i = n,p. (2.1.6)
The total energy of nuclear system in eq.(2.1.4) can now be expressed in terms of these

single particle distribution functions as,

E(pn ,pp)= \\fTn{k){C2ti2k2 + M2C4)U2d3kd3R+ jj f/(k)(C2H2k2 + M2C4)U2d3kd3R

+\l\llmk)f?{k')v7d\d\d3kd3k' +1 f JJJ//(*)//(*')vf d\d\d3kd3k'

+ j 1 (k) f/(k') + f/(k)f;(k')]vj d\d\ d3kd3k'

+ jJ IB®"**’*"* erkrr'^'f2fT”(k)fr(k') d\d3r2 d3kd3k'

+ ~ J* *'* v« eikn+ik'hfTp(k)f/(k') d3rx d3r2 d3kd3k'

+ v“ ^ h fr(k)fTp(k') d3rt d3r2 d3kd3k'

+ }jINe-**-** vS //(/c)//(/?) d\d\d3kd3k'

(2.1.7)

where, M is the nucleonic mass and C is the speed of light in vacuum. Under the 

transformation of coordinates into the relative and centre of mass coordinates,
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_ Y ~Y
r = rx-r2, R = 1 2 and d3rxd3rt =d3rd3R the total energy of the nuclear system

can be obtained as

E=\Hd3R, (2.1.8)

where, H is the energy density of the nuclear system. We can write the energy density 

in nuclear matter at thermal equilibrium, Hr (pn,Pp ) > from the above eq.(2.1.7) as,

Hr(p„,pp) = Jt/r" (*) + //(*)] (c2h2k2+M2C4]/2d3k

2 2
+^\v™(r)d3r+t-^-jvf(r)d3r + pnpp\vf{r) d3r

+ 7f/rWr"(*') v':{r)eiCk-^Td3k d3k’d3r

+ \ll\fTP(k)frP(k')v^(r)eiCk-k')F d3k d3k' d3r

+ |jJj[/r(^)/rP(^ + //(W;(*')]v^(r)c,(i-‘^rf3A: d3k'd3r

(2.1.9)
With the use of the notation vnn (r) = vpp (r) = v (r) and v”p (r) = vul (r), the energy 

density IIT(pil,pp) becomes,

Ht(P„,Pp)= lW(k) + fTp(k)] {c2h2k2+M2C4f2d3k 

+ \(Pn + P2P) Wd (r) d3r + pnpp Jv"7 (r) d V

+ \ JJ[/; (k) /r" (k') + fTP(k)fTP(k')]gL(\k-k'\)d3kd3k'

+ \ tf[//(*)// (P) + fTp{k)fr (*')] gt (I k-k' |) d3k d3k\

(2.1.10)
where, g^u/(| k -k' |) are Fourier transforms of the respective exchange interactions 
vS'(r),

g',?(.li-k't)= \e"‘ l'r> dlr. (2.1.11)

The single particle energies e'T(k,pn,pp), i = n,p, are the respective functional 

derivatives of the energy density HT(pn,pp) and can be denoted as
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(2,1,12)e^(k,p,Yp) = 8Ht

5[fr’P]

The neutron single particle energy is, now, given by

e^k,p,Yp) = (C1nV +M2C4f2+p,\v‘d(r)d3r + pp\v'td(r)d3r 

')

(A?+Ph M(r)
+ JJ/r" (* V^’' vL (r) d2rd3k’+JJ/; ^ (0 rfV

4” ’ [' Vtf w d:'r + pnp„ 3 r2 J dp„ dp.

+\Bf?mi\k')+f/(k)fnH^iYr^f^<i2rd2kdik'

+\\\\U?(k)ft(k') + fT'(k)f'$Wii-iY^Y^dirdikdik',

2 oPn
(2.1,13)

and the proton single particle energy as 

ef(k,p,Yp) = (C2ti2k2 +M2C4),/2 +pp jv'(r) d3r + p„ jv’f(r)d3r

+ llfr’WeK“vvl',<.r)d3rd3k'+Bfi(k')e‘^vy;(r)d>rdsk'

2 dpp

*~^W(k)f^h + fr,<,k)/Tr(k')]e',i-i'>,^^d3r d3kd3k'
2 dp,

+\\\\W (*)/r"(*’) + frr(.k)/nk’)VtiYV ^f^-d3r d3kd3k\
z opp

(2.1.14)
In both the expressions of eqs. (2.1.13 and 2.1.14), the last three terms constitute the 

rearrangement part of the neutron and proton mean fields. Since the interactions

vld O'), v'ex(r)y vd (r) and vei(r) depend on p = pn + pp and not separately on pn 

and pp, the neutron and proton rearrangement contributions t> the respective mean 

fields will be the same and can be written as
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+\ JJJt/r (*)/; (*■)+/>' (*)/r' (*■')]',V ■d'kd,k'

+\mfr(k)fT(n+frPWfTP(.h)e^>'^^d3rd,kd3k'.

(2.1.15)
If we write the neutron and proton single particle energies as

e'(k,?n,pp) = (C2/l2k2+M2C4)1/2+<(k,?n,pp), (2.1.16)

where i = n,p and uT'(k,?n,pp) are the single particle potentials or mean fields as 

felt in the nuciear medium by the respective nucleon, then the neutron mean field 

ur(k,pn,Pp)a.t temperature T can, therefore, be given as

*4(*,P„,P,)= [pn Jv^totfr + p, Jvd,rf(r)d3rj

+ llfr Mg'*(I k-k' \)d*k' + f/ (k')g^(| k-k' |)dik\

+ U*(pmtpp) (2.1.17)

Similarly the proton mean field uP (k, pn, pp) at temperature T is given as
u;(k.?n,pp) = [pp|va'(r)d3r+pjvd"'(r)d3rj

+ [f/r (Z')gL»-k'l)d!k' + f’(k')gi(\k~k'\)d=k]

+ UpP„Pr)

(2.1.18)
The nuclear mean fields have three different parts, the first term coming from the direct 

part of the effective interaction and is explicitly density dependent, the second part 

comes from the exchange part of the effective interaction and depends upon the

momentum k, neutron and proton distribution functions f7n'p and temperature T. The

third part of the nuclear mean field, Up , is the rearrangement term.

In the studies of nuclear mean fields aid EOS of ANM, the most important 

quantity is the difference between neutron and proton mean fields,

unT-p(k,p,Yp) = u"T(k,P,Yp)-up(k,p,Yp), (2.1.19)
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expressed as a function of momentum k, total nucleon density ? and proton fraction

Y =^~. Using the mean fields given in the above eqs. (2.1.18 and 2.1.19),
P P

unfp (k,p,Yp) can now be expressed as,

=0 - 2T, )PJM W - V? (r)]dlr

+ J[/? (*')
(2.1.20)

The first term of u'j~p (k,p,Y )coming from direct parts of the interactions is 

independent of temperature and momentum and is directly proportional to the neutron- 

proton asymmetry (l-2Fp). The proportionality factor depends only on the total

nucleon density p . On the other hand, the second part of u'^~p (k, p, Yp ) coming from 

exchange parts of the interactions has a complicated dependence on temperature T, 

momentum k, total nucleon density p and proton fraction Y .

In order to examine the momentum dependence of Uj p (k, p,Yp ) we introduce 

a dimensionless quantity,

M du'fp(k,p,Yp) m d
fi2k dk h k dk

(2.1.21)

The dimensionless quantities
M dUfP(k,p,Y ) .
h2k 8k

directly related to the effective masses

— in cases of neutron and proton are 

as functions of k,p,Yp and T . The
\M j
\ ' n,p

nucleon effective masses arise from the momentum dependence of the mean fields
uTn(p) (k, p,Y ) and are defined through the relation

U-—(C?»2k2+M2C4),nf
U* Jm.m. k

”(p)

1 ae?'<k,?,Y,)
Sk

(2.1.22)

Using the expressions for eT (p){k,p,Y ) given in eqs.(2.1.16 - 2.1.18), the ratio of

effective nucleon masses to the actual mass can be obtained as,
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1/2

M*(k ,p,Yp) >‘(p) ( >
1+ , ,

-m | M auT""»(k,?,Yp)^ -2
------------

M T ( M2C2 J h2 k dk m2c2

(2.1.23)

The dimensionless quantity
M dunT~p (k,p,Y )

------------------- L- has a complicated dependence
h2k dk

on temperature T, momentum k, total nucleon density p and proton fraction Yp for 

finite range exchange interactions. However, in the limit of very large k, we can 

approximate g^'(\k ~k'\) by glef(k) and eq.(2.1.21) reduces to

M 8urP(k,p,Yp) 2Y)oM dg^{k)
h2k dk /«Zk pWn2k dk

dg£(k)
dk

(2.1.24)

This is a very important result in the sense that the dimensionless quantity in this limit 

of large k becomes independent of temperature and is directly proportional to the 

neutron-proton asymmetry parameter (1-2Yp). Now we can ascertain the asymptotic 

behaviour of neutron and proton effective masses from this expression in eq.(2.1.24). If

the asymptotic behaviour of
M du’'-p(k,p,Yp) . ^

—r---------------------- is positive, it implies that the
hk dk

neutron effective mass is less than the proton effective mass for given values of k,p

and Yp. If the asymptotic behaviour of
M du'P(k,p,Yp) 
h2k dk

is negative, it implies that

the proton effective mass is less than the neutron effective mass for given values of k,p

and Yp.

In connection with the splitting of neutron and proton effective masses in 

asymmetric nuclear matter it may be mentioned here that the results obtained from 

different theoretical calculations can be roughly classified into two groups: one in which 

the neutron effective mass goes above that of proton and conversely in the other case, 

i.e., the proton effective mass goes abo\e that of neutron. The results obtained from 

Brueckener-Hatree-Fock (BHF) calculations with realistic nucleon-nucleon interactions 

[117-119] show that the neutron effective mass goes above that of proton, whereas, the
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results obtained in some of the earlier calculations in relativistic Dirac-Brueckener 

Hatree-Fock (DBHF) model [120] and the relativistic mean field (RMF) calculations 

using quantum hadrodynamics (QHD) [105,107] exhibit an opposite type of splitting of 

neutron and proton effective masses. Since the asymptotic behaviour of

M du'r(k,p,Yp)
n2k 8k

is proportional to the total nucleon density p and the neutron-

proton asymmetry parameter (1-2Yp), the splitting of neutron and proton effective 

masses can be small in finite nuclei where both p and (1 - 2Yp) are rather small [106], 

However, this difference in neutron and proton effective masses may be quite relevant 

for the difference between neutron and proton transport properties in highly asymmetric 

and dense nuclear matter. Such situations can be encountered in astrophysical objects, 

such as, neutron stars and supemovae matter and in the terrestrial laboratory in high 

energy heavy-ion collision experiments using radioac:ive ion beams. Neutron stars are 

cold objects (7 = 0) whereas in supemovae matter and the matter formed in the HI 

collision experiments the temperature is high.

Since the momentum dependent term in the neutron and proton mean fields 

involve in Fermi-Dirac momentum distribution functions, it implies that the neutron and 

proton single particle energies, chemical potentials and the distribution functions should 

be calculated in a self-consistent way at each temperature T, proton fraction Yp and 

nuclear density p = p„ + Pp ■ For this purpose an iterative procedure similar to that 

used in Ref. [65] for SNM can be adopted. The basic input in these self consistent 

evaluations are the respective single particle energies at zero temperature,

£n,p (k,p,Yp ). The temperature dependence of nuclear matter properties are therefore

built upon the zero temperature results of neutron and proton mean fields un,p(k,p,Yp) 

and hence these are quantities of crucial importance. At zero temperature, 7 = 0, the 

neutron, proton distribution functions take the forms of step functions

/"*(*) =
(2nf

~k)’ (2.1.25)
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where, the neutron and proton Fermi momenta kn(p) are related to the respective

densities p„{pp)as k* =3n2pn (kp =Zk2pp). With this, further analytical 

simplifications of the exchange integrals involving the distribution functions in the 

expressions of £n,p (k,p,Yp) given in eqs (2.1.17 and 2.1.18) can be performed by 

evaluating the k' - integrations,

|T = 0 \d2r/k Wex{r)\e(kn -k')e~ik'r d3k'

= p„ jd3rj0(kr)3jfnr)vUr). (2.1.26)

Similarly, the other exchange integrals in eqs (2.1.17 and 2.1.18) can be analytically 
simplified and the expressions of u"’p (k,p,Yp) at 7 = 0 become,

un(k,p,Yp) = [pn Jvd'(r)d3r + pp }vd",(r)d3r]+p„ \jQ{kr)--^r\,ex{r)dlr
k„r

+ Pp \Jo(kr) 3-/'.(V) „/,,A ,3 ,ttr,

kpr
-v"(r)</V+t/«(p„,pJ

(2.1.27)

and
uP(k, pjp) = |pp |vd/(r)d3r + pn |vd"/(r)d3r]+ pp Jy0 (kr)-^y^X'jr) d3

kPr

+ Pn I Jo (kr) (r) d3r^UR(p„,pp).
knr

(2.1.28)
The rearrangement energy UR(pn,pp) at zero temperature appearing in these 

equations can be written as,

(p2*+pbrl
U (Pn ’Pp) =....”......P..W (r^r + PnPp \V1 (r) dZr

p' 2 

n J
3y'i (knr)

v Kr j

>2
+

Vi (kPr)

V )
'.d\

dp

l PnPp y>j\(k„r) 3Ji(kpr) dv^r) ^
2 knr k r dp

(2.1.29)
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The difference in neutron and proton mean fields, u" p(k,p,Yp), at zero temperature, 

T = 0, can now be obtained from eqs (2.1.17 and 2.1.18) as, 

un-p(k,p,Yp) = un{k,p,Yp)-up{k,p,Yp)

= (1 - )P (r)-v1<,r)Yr

(v'a(r)-v*(r))j„(kr)d\.+ J . 3MKr) 3A <k,r>
rn j r}knr P kpr

(2.1.30)
The direct part of u"~p(k,p,Yp) is proportional to the isospin asymmetry (1-2Yp). 

The proportionality factor being a function of total density p. The exchange part of

u"~p(k,p,Yp) is also approximately proportional to (1-2Yp) that can be shown by 

making a Taylor series expansion of the square bracketed term in the second integral

about Yp=-( i.e. (l-27p)=0),

Vi(k„r) Vi (kpr) Vi (k„r) Vi(kpr)
k„r

~PP kpr J
P 2

+ (1 - 27„)
f 1 5 1 37i (k„r) Vi (kpr)

P" knr >Jp kpr
^2

(2.1.31)
The first term in the right hand side is zero since at Yp =-^ , pn= pp = ^ and ,

kn=kp = kf, kf being the Fermi momentum in SNM. Hence

- V\(Kr) . ydkPr) 
P" Kr ~Pp = (1 - 2Yp)p jo (kfr) + higher order terms. (2.1.32)

The function u" p{k,p,Y ) can now be written as

u"-”(k,p, ¥„)=<!- 2 rp)p J[v' W - vi (r)]</V

+ (l-2F„)p[/,l (kr)j0 (k/r)(vl:r(r)-v^(r)d1r 
+ higher order terms in (1 - 27 ). (2.1.33)

The higher order terms in this expression will involve only odd powers of (1 - 2Yp) as

the terms having even powers of (1-2Yp) in the Taylor series expansion will
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identically vanish. We now introduce the isovector part of the nuclear mean field 

defined as,

ut(k,p)= Lim
r„-> 1/2

un-p(k,p,Yp) 
2(1-27 )

(2.1.34)

Using eq.(2.1.33) this can be written as 

u (k, p) =~[l(v'd (r) - v'f (r))d3r + Jy0 (kr) j0 (k/r)(v/£V (r) - (r))c?3r].

(2.1.35)
The justification of the approximation of the Taylor series expansion of

Pn
3 j\ (knr)

k„ r
3ji (kpr) 

P kpr
by the first term can be examined in the

followings:

JLPn
3yj (k„r) 3yj (kpr)

k„r
P p ' k/

h(^ya(r)-v'‘̂ Yr

s (1 -2Y,)P jjo (kr)io (kjrMjO-K (r)Yr.
(2.1.36)

Under the assumption that the finite range parts of the exchange interactions between 

like and unlike nucleon pairs have same range but different strengths, the above 

equation becomes

J 3 Mk„r) Vi(kpr)
k,/ Pp kpr Jo (kr) f(r )dir (1 - 2 Yp )p Jy'o (kr)j0 (k fr)f(r)d3r,

(2.1.37)
where , /(r) is the functional form of the finite range exchange interaction. The Taylor

series expansion is valid for low value of the asymmetry (1 - 2Yp) and hence the 

validity of the inequality in eq. (2.1.37) is to be tested at the other extreme, i.e. Yp = 0, 

which is the pure neutron matter (PNM) limit. In this limit eq.(2.1.37) becomes

Pn t^p-jQ(kr)f{r)d3r = pjj0(kr)j0(kfr)f(r)d3r. (2.1.38)

Further, both the integrals have maximum values in the limit k 0 and the above 

equation in this limit becomes
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(2.1.39)

with pn=p, kn= 3n2p and kf =

Pn f(r)d3r = p\j0(kfr)f(r)d3r
Kjr

3iz2p

Comparison of the values of the integrals on both the sides of the above 

inequality at different densities can give the degree of correctness of the approximation 

used in obtaining the isovector part of nuclear mean field in eq. (2.1.35). For the sake of

„-r!a
enumeration, we shall use a Yukawa functional form f(r) = - a being the

(r la)

range parameter. The integrals given in the above inequality can be analytically 

evaluated and the condition in eq.(2.1.39) becomes,

1 tan x(kna)

\ihaf (Koi?

Defining x = kna, this equation reduces to

^ 1 tan

1
1 + (kfa)

1
) 1+(0.5)2/3x2

(2.1.40)

(2.1.41)

£• 0.5 \\■\
R.H.S of eq. 2.1.41 

L.H.S of eq. 2.1.41

4 6
X

10

Figure 2.1. Comparison of the left hand side and the right hand side of 
the eq.(2.1.41) as a function of x.
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In Figure 2.1, the left hand side and right hand side of the above eq. (2.1.41) have been 

compared. The comparison shows that the approximation used to obtain the isovector 

part of the nuclear mean field ut (k,p) given in eq. (2.1.35) is a valid one.

The momentum and density dependence of isovector part of the mean field 

uT(k, p) is crucial in understanding the in-medium nuclear interaction and it is an area 

in nuclear physics which is poorly understood. The isovector part of the nuclear mean 

field at Fermi momentum, uT(k =kf,p), is directly connected to the nuclear symmetry 

energy Es(p), which is shown in the followings. The nuclear symmetry energy is 

defined as

f rP
Es{p>

8 P V d¥„2
(2.1.42)

where, H(p, Yp) is the energy density of ANM at zero temperature. The expression for

H(p,Yp) can be obtained from eqs.(2.1.10 and 2.1.11) by considering the distribution

functions to be step functions and the analytical simplification results into the

expression for energy density at T = 0 in ANM as,

TT,^V, 3M(? f 3 w , J,(P«2+p/)r,/w3
H(p,Yp)------ —p[2xfuf -xfuf-m(xf +uf)\+--------- —\vd(r)dr

8xf

+ PnPp^,f(r)dir+^rlP„" 3/,(V)\2

2 l Kr j
___ r3h(k/)lh(kpr)
+ P.P, J—^-----

•' (r)d3r+-E- J Vi(kpr)

V V J
v'ex (r)d3r

(2.1.43)

In the limit of SNM, i.e. pn = pp = — and k„=kp=kj-, the energy density becomes 

Ho(P)=^j-p\2xfu/ ~xfu/ -ln(x/ +«/)]+-- Jt'i W+vi'(r)]rf3r

+-
'2 (y&fr),y

J
4 ^ V ,

(2.1.44)

where, X/ = hkj
~MC and Uf=(\ + Xf) 1/2
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The symmetry energy defined in eq.(2.1.42) for the energy density in eq.(2.1.43) can be 

expressed as,

£,(P) = -
h2k,
6M

1 +
h2kj
M2C2

\-1/2

+ ■f Jh(r)-v^(r))/3r

+7 jV(V)R W - <ir))d2r \jx\kfrfa{r) + v£(r)VV.

(2.1.45)
The last term along with the kinetic energy contribution given in the first term in right 

hand side of this expression is related to the effective mass at Fermi momentum in 

SNM. The effective mass in SNM is defined as,

M*
M (k,p) 1+

, , \-1/2 n2k2 '

M2C2

| M du(k,?)
h2k 8k

n2 k2 

m2c2

1/2

>

(2.1.46)
where, u{k,p) is the isoscalar part of the mean field, i.e., the mean field of a nucleon in 

SNM at zero temperature and is defined as

„ x r. u"(k,p,Yp) + up(k,p,Yp) 
u(k,p) = Lim----------- -----------------—

Yp-A/2
(2.1.47)

From the expressions of u"(k,p,Yp) and up(k,p,Yp) in eqs.(2.1.27) and (2.1.28), the

isoscalar part of the nuclear mean field is obtained to be

u(k,p) = (C2h2k2 +M2Ca)U2

+ ~ 1 Vd (r) + vd {r)Yr + £ Jy0 (r) + vj (r)]t/3r + UR(p)

(2.1.48)
where,

UR(p)= Lim UR(pn,pp) (2.1.49)
f”:f"_7/2kjj—kp—kj-

From this expression for u(k, p) it follows that

' k du(k,p)
dk S k=kf

~ \j\ 2(kfrpex (r)+ v^(r))f3r. (2.1.50)

Thus, Es(p) as given in eq.(2.1.45) becomes
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h2kf2
E(p) =---- f-s F 6 M

1 +-
n2k/
m2c:

\-1/2
k du(k,p) 
6 dk k =k f

+ £\(v'Ar)-v“J{r)}lir + £ J/„2 {k fr)(v'„(r) - v^r)}/V.

(2.1.51)
Now, the first two terms in this expression can be expressed in terms of the effective 

mass in SNM at Fermi momentum given in eq.(2.1.46) and the nuclear symmetry 

energy given in the last equation becomes,

Es{p) =
h2kf2

6M

M* f *V
<k,p)\ +

1-1/2

M M2C2
k=kf

(2.1.52)
With this definitions for nuclear symmetry energy Es (p), the isovector part of the 

nuclear mean field given in eq.(2.1.35) can be expressed as,

u% (k, p) - 2Es(p) -
h2k/

3 M
rM\, »2*/2

(k,p) +M M2C2

-1/2

k=k. (2.1.53)

+ y Jl/o ^r) - Jo (* fr) l/o (*/r)(vL (O - vt (r))d3r.

This equation has the crucial implication that the density dependence of isovector part

of the mean field, uT{k,p), has been separated out from its momentum dependence. The 

momentum dependence of uT(k,p) is determined by the last term of the above equation 

which we shall be denoting by

< (k,P)=^ JU (kr) - j0(kf r)]/0(kf rfe (r) - (r))d V (2.1.54)

and is solely dependent on the differences between finite range exchange interactions 

between pairs of like and unlike nucleons. It may be noted that for contact interactions 

of S(r) - form uT(k,p) is determined by evaluating it at Fermi momentum, i.e., 

ur(k =kj-,p). In this limit of k=kf, as may be seen from eq.(2.1.54), the function

uf (k,p) vanishes resulting the expression for uf(k = kf,p) to be
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-1/2

(2.1.55)
k=kf

Thus, the density dependence of the isovector part of the nuclear mean field is 

completely determined by the density dependence of nuclear symmetry energy Es{p) 

and the cfensity dependence of effective mass in SNM. The complete knowledge of 

nuclear properties lies in the understanding of momentum and density dependence of 

nuclear mean fields both in SNM as well as in ANM. Thus, before making further 

discussions on the momentum and density dependence of nuclear mean field in ANM it 

will be of crucial advantage to separate out the density dependence of the isoscalar part 

of nuclear mean field as given eq.(2.1.48) (i.e. the nuclear mean field in SNM) from its 

momentum dependence.

The energy per particle in SNM at zero temperature, eQ(p)is obtained from the 

energy density, H0(p) = pe0(p), given in eq.(2.1.43) to be

ur(k = kf,p) = 2Es(p)~
n2kf2

3 M

Ml

M

\2
(M)

.2 1,2
+ -

M2C2

eo(P) =~—f [2*/M/3-xfUf]n(xf +uf)]+£-l[vld(r) + v$(r)}l3
8x

+ZJ 
4 J

3y'i (kfr) 
k,r j

(2.1.56)

We can calculate p—9±hH. from the above equation to be,
dp

de0 (p) 
dp

K.E.part + -j (r) + vuJ(r)\ 3r+-£ Jy0(kfr) \y'e>c{r) + vue‘x(r)]l^r
K kfr J

4- *

f dv'(r) ( 5v“'(r)] n2
d3r + £- [

avi W , a£(r)'| r'Sjx(kfrj'
l dP dp ) 4 1 l. dp dp Jl kfr )d3r k

(2.1.57)

The single particle energy in SNM e(k,p) at zero temperature is given by

e(k,p) = (f2h2k2 +M2C4}12 +u(k,p). From eqs. (2.1.56), (2.1.57) and 

(2.1.48), it follows that
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(2.1.58)e0{p) + p^^- = e(k=kf,p) 
dp

which is the Hugenoltz-VanHoff (HV) theorem, where

£(k = kf,p) = (c2n2kf2 +M2C4 }/2 +u(k = kf,p). (2.1.59)

By using the HV theorem, the isoscalar part of the nuclear mean field can be written as

u(k,p) = e0(p) + p^^-(c2n2kf2+M2C4}/2 +ua(k,p) (2.1.60) 
dp

where,

w “ (k, p) = “ jf/'o (kr) - Jo (k fr)] ~ * " (>4 O') + r. (2.1.61)

These last two equations in the case of SNM are analogous to eqs.(2.1.54) and (2.1.55) 

of ANM respectively. The momentum dependence of nuclear mean field in SNM is

solely determined by the functional ua(k,p) given fa eq.(2.1.61) and depends on the 

sum of the finite range exchange interactions between pairs of like and unlike nucleons. 

uex(k,p) identically vanishes for contact interactions of 5(r) - form. The density 

dependence of u(k,p) is determined at k = kf and from eqs.(2.1.60 and 2.1.61) , it 

follows that,

u{k=kf,p) = e0(p) + p -ic2h2k2+M2Ca)
dp

12

-~e0(p)+^--(c2h2kf2 +M2Ca 
P

jl/2
(2.1.62)

where, P(p) = p_ de0(p) .
dp

is the pressure in SNM. Thus, the density dependence of

isoscalar mean field is determined by the energy per particle e0(p) in SNM.

It should be remarked here that in eqs.(2.1.53 and 2.1.54) and (2.1.61 and 

2.1.62) we have a connection to very old and open problems; momentum and density 

dependence of the Lane potentials [152] which we see in a much more general 

framework. It is important to note here that only finite range parts of the exchange

interactions between two like and unlike nucleons can contribute to u^ik^) and

uf (k,p). Moreover, these two functional vanish at the Fermi momentum k = kj. In
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the simplest form, momentum and density dependence of the functional ua(k,p) and

u?%p) can be simulated by a conventional short range attractive interaction of 

Yukawa, Gaussian or exponential form having the same range a but different strengths 

and e'a for interactions between two like and unlike nucleons. For these forms of 

interactions considered in this simplest way, the exchange integrals appearing in 

eqs.(2.1.61) and (2.1.54) can be calculated analytically[64]. Under this simple 

consideratiop Behera et al. have formulated and studied the momentum and density 

dependence of nuclear mean fields in SNM [64] and ANM [153, 154] which we shall 

discuss in the followings. In the case of such simple finite range exchange interactions, 

the exchange integral functions in SNM and ANM can be given as,

"“(M) ..PAW-j,{kfr)pp^-f(r)d'r (2.1.63)
2p0\f(r)d3r kfr

and
u?(k,p)= ^ p\[J(){kr)-j{){kfr)} Mkfr)f(r)d'r (2.1.64)

2p0 ]f{r)d V

where, /(r) is the functional form of the short range interaction of Yukawa, Gaussian

or exponential form having the range a. The strength parameters e& and e„ are given 

by

Po
W HM-----+—■ B )\mdl (2.1.65)

and

«« = Po M+—p{r)dir. (2.1.66)

Here, M,W,H and B represent the Majorana, Wigner, Heisenberg and Bartlett parts of 

the short range exchange interactions respectively. The analytical simplifications of

these integrals (k,p) and uf(k,p) can be done by using the following prescriptions 

[64] given by,

1

I/W3

. 3j\(kfr)
■jj0(kr)— ------f(r)d r = I(k,p)k,r (2.1.67)

with
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(2.1.68)

and

m,p)=
3A2 (A2 +k/ 

8 kk/

A2+(k + kf)2] 

A2 +(k-kf)2 J

| 3A2 

2k/
3A3 rk + k/ ' k-k/

tan 1 -tan
{ A J { A J

with

1
J/(r)rf3r

jio(^) y0 (k/r)f(r)d?'f' = Jr (k> P) (2.1.69)

Ix (k, p) In
2 's

1 + 4-

(2.1.70)
e-,la

for the Yukawa form of finite range exchange interaction, /(r) =-------- and A = 1 /a.
(r/a)

Analogous analytical expressions can be obtained for the other forms of interaction.
There have been consistent attempts to constrain these parameters, and

a over last few decades from analysis of nucleon-nucleus scattering of data at 

intermediate energies as well as from the studies of experimental observables sensitive 

to the differences between neutron and proton flow data in high energy heavy ion 

collisions [56, 59-60, 63, 65,67], Considerable progress has been made in the 

understanding of the isoscalar part of the nuclear mean field, i.e., in constraining a and

the strength parameter combination (£lex + e“lx). In the following we have discussed the 

procedure used by Behera et al. [64], in constraining these parameters. They have used 

the condition that the optical potential, u(k,p = p0), should vanish at kinetic energy of

the nucleon [c2h2km2 +M2C4J'2 = 1239 MeV ■ This important feature follows from 

the optical model fits to nucleon-nucleus scattering data at intermediate energies that 

u(k,p0) turns out to be repulsive for momenta around k>k300, where, A:300 corresponds 

to a kinetic energy of 300 MeV ( excluding rest mass energy). Using this constraint for 

the optical potential u(k, pQ), it folows from eqs.(2.1.62 and 2.1.63) that

„„ , .0 (c2&V+v2c4}'2-e0(p„>
[/(& km,p0) I(k - kj-g,p0)\- , l . (2.1.71)
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where, kf = {in2 /2^3is the Fermi momentum corresponding to normal nuclear

matter density p0 and e0(p0) is the energy per particle of nuclear matter at p0. For the 

Yukawa form, the analytical expressions of the functional I(k,p) is given in eq.(2.1.68 

) which involves only the range parameter a . By adopting a simultaneous minimization 

procedure, Behera et al. [65] have obtained the values of these two parameters, range 

and strength in SNM, for the Yukawa form of the exchange interaction to be,

ea=(s'a +e£)!2 = -121.8448 MeV

a =0.4044 fin. (2.1.72)

In obtaining these results only the standard values of MC2 =939MeV,

e0(p0) = 923 MeV and [c2fi2kj2 + M2C4) =976 MeV ( corresponding to

p0 =0.1658 fm~3) have been used. The result of the minimization method adopted is 

shown in Figure 2.2. Constraining the finite range exchange strength parameter 

combination, (+ e„) and range parameter a in this way, the results of the

Figure 2.2. Fixation of the range parameter from the simultaneous minimization 
of a and eex. The functional 5(A) = [/(£ = k300, pQ)-I(k = kfo, p0)J is plotted as

a function of A . The minimum of the curve for S(A) gives the respective range 
a of the interaction.
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Figure 2.3. The exchange contribution to the isoscalar part of the nuclear mean 
field uex(k,p) in SNM is plotted as a function of Fermi momentum k for 
three representative values of density. The lower curves is for p = 0.1 fnf3, the 
middle curve is for p = 0.3 fm~3 and the upper curve is for p = 0.5 fml. The 
results are compared with the results of the realistic interaction UV14+UVII of 
Wiringa [66]. The figure has been reproduced from the Ref. [65].

momentum dependence of isoscalar part of the mean field, i.e., uex(k,p), has been 

found to be in good agreement with the results of the microscopic calculations of 

Wiringa [66] over a wide range of momentum and density. The same has been given in

M*
Figure 2.3. It predicts an effective mass in SNM to be -j^-(k^,p0)=0.67 which is in

good agreement with that found from the study of heavy-ion collision experiment data 

[59].

Although the exchange strength parameter combination (e'a +£^ ) has been constrained 

to a reasonable extent from the knowledge of isoscalar part of the nuclear mean field 

obtained from the optical model analysis, the relative strength of the combination 

(e4 -£«) associated with the isovector part of the nuclear mean field is still largely

unknown [80-84, 109]. In fact, even the sign of the combination (e'a -e£) which 

determines the splitting of neutron and proton effective masses is still uncertain. In 

connection with the splitting of neutron and proton effective masses in asymmetric
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nuclear matter, the predictions of different theoretical models are not only diverging but 

also contradicting. The results obtained in the microscopic relativistic Dirac-Brueckener 

Hatree Fock ( DBHF) calculations performed earlier [120] as well as relativistic mean 

field (RMF) approximation using quantum hadrodynamics [105-109] exhibit the 

splitting where proton effective mass goes above the neutron one. On the other hand, 

the results obtained in non-relativistic microscopic calculations such as Brueckener- 

Hatree-Fock (BHF) and calculations using realistic nucleon-nucleon interactions [117- 

118] exhibit a splitting where neutron effective mass goes above the proton one. Most 

of the Skyrme-type effective interactions successfully used in various domains of 

nuclear calculations in the non-relativistic mean field approximations predict the 

splitting similar to the BHF results where neutron effective mass goes above that of 

proton one. However, Sly [112] and SKI [31] type of parameterization of the Skyrme 

forces give a splitting of neutron and proton effective masses in opposite direction 

similar to the early DBHF and RMF calculations where proton effective mass lies above 

tlie neutron one. In recent years Li and co workers [80-83] have studied the effects of 

momentum dependent symmetry potential on heavy ion collisions induced by neutron 

rich nuclei where they have parameterized the neutron and proton single particle 

potentials guided by a Hatree-Fock calcuhtion using Gogny effective interaction. This 

parameterization also gives the splitting where neutron effective mass lies above the 

proton one. Rizzo et al.[84] have analyzed the influence of the two opposite types of 

splitting of neutron and proton effective masses on the flow data in heavy-ion collisions 

using two different simple GBD type parameterization [155] of the energy density.

In the followings we shall be discussing the works of Behera et al. [153-154] 

where the two types of conflicting effective mass splitting have been reproduced by the 

suitable choice of strength of the exchange interactions acting between pairs of like 

nucleons and unlike nucleons. We shall also discuss the conditions those can be 

obtained in the cases of Skyrme type and Gogiy-type forces that can predict the two 

opposite types of neutron and proton effective mass splitting for the interactions.

The nucleonic effective mass ^.P.yr) that is related to the momentum
n,p

dependence of the in medium interaction is defined through the relations given in
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eqs.(2.1.22 and 2.1.23). From these expressions we can write the difference of square of

neutron and proton effective masses as,

Fm* 1 2 Fm* , 1
-rrOc ,P)_ M n

1-fcp)

J£._—un~P (k o Y )h2k dk T { ,p’ p)

1 +
hh2 ^1/2

m2c2
M dug

+■

n2k dk
1+

n2k2 ^1/2

m2c2
+

M du'i
^ '? .

Thus the important quantity for our purpose in the context is the difference in the mean 

fields between a neutron and a proton having the same kinetic energy

«tp (*.P> Yp) = \tT(k,p, Yp)-Uf (k,p, Yp)], (2.1.74)

expressed as a function of momentum k, density p and proton fraction Yp at a given

temperature T. The terms of uP p(k,p,Yp) which depends on momentum k are only 

relevant for deciding the neutron, proton effective mass splitting. In the case of our 

finite range interaction involving two parameters, the range of interaction between a 

pair of like nucleons and unlike nucleons are same but the interactions differ in strength.

For such interaction, the momentum dependent part of u^p(k,p,Yp) given in 

eq.(2.1.20) becomes

lar'fM.iyJ'momentum dependent part
= {e'„-eZ'fiT(k,p,Yt), (2.1.75)

where,
GT{k,p,Yp) = — j[//' (*') -fp (*')] ga(\k- V \)d2k' (2.1.76)

P o
and the strength parameters s1̂ and e"7 are given in eqs.(2.1.65 and 66) respectively. 

fp and fp are the Fermi-Dirac momentum distribution functions for neutron and

proton respectively at temperature T. ga(\k-k'\) is the normalized Fourier transform 

of the finite range exchange interaction given by

Sex{\k-k'\) =
\eiihk')l f{r)d\

\f{r)d3
(2.1.77)

-rta
which, for the Yukawa form of the interaction, f(r) =------- , becomes

(r/a)
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iTTF (2,1'78)
1+T^

with a=—, « being the range of the interaction. The dimensionless function 
a

GT(k,p, Yp) appearing in eq.(2.1.75) has a very complicated dependence on temperature 

T , momentum k , total nucleon density p and proton fraction Yp . However, in the

particular situation of very large k i.e \k\ »\k'\, where ga (| k - k’ |) appearing inside 

the integral in eq.(2.1.76) can be approximated by and the functional

GT{k,p,Yp) simplifies to GT(k,p,Yp) lagek*Q. ~2Yp)—ga(k). We can, now,
P o

examine the neutron and proton effective mass splitting without going into detail 

calculation of u’j-~p(k,p,Y ). In this asymptotic limit of irge k, the dimensionless

quantity -y-——u"~p (k,p,Yp) appearing in the expression of neutron-proton effective 
tilk dk

mass difference in eq.(2.1.73) can be calculated for the Yukawa form of exchange 

interaction from eqs.(2.1.75, 2.1.76 and 2.1.78) and is given by

M d „-p 
h2k dk

- UjP{k,p,Y„)rr-^-2(l-2Yp) ,
Mp (e^-ej)___ cY

Po (1+a2k2f
(2.1.79)

l*l»M ' *■' ti

This is the corresponding expression of eq.(2.1.24) for the Yukawa form of the 

exchange interaction. It is evident from this expression that the asymptotic behaviour of

-4r——u'r P(k,p,Yn) is positive for negative values of (eL -e'£). This implies that
n2k dk 1 p

M 5 Uf{k,p,Yp) ——up(k,p,Yp) and asymptotically the neutron effective mass
h2k dk 

M*
M (k,P,Yp)

P h2k dk

is less than the proton effective mass M
M

(k,p,Yp) On the other

hand, the asymptotic behaviour of p(k,p,Y ) is negative for positive values
%1k dk y

of (elex -£"0 and asymptotically the proton effective mass will be less than the neutron
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effective mass. In order to examine the dependence of neutron-proton effective mass

splitting on the splitting of the combined exchange parameter, (elex + £‘ex), into like and 

unlike channels in more detail way we consider the zero-temperature case with the 

Yukawa form of exchange interaction. In this case the neutron and proton effective 

masses can be obtained analytically from eq.(2.1.23) with the help of the following 

relations,

1 du"(k,p,Yp) j p^ 
k ck “p0

' 3A2(A2 +A:,,2+A:2), [a2 +(k+k„)2\
8 kX \f?+(k~kn)2}

3A*(A2+k„2-k2) _________ 1 6A4 __________ 1__________
2tk; [a2+(k+k„)2\A2+(k-k„f)+ k; [a2+(*+*„)2Ia2 Hk-Kf)

+el
Po

' 3A2 (A2 +k; +k2) ^ [A2 + (k+kp f ]

8k}k; [A2 + (k-kp )2j

] 3A2(A2 +kp2 -k2) i +6A?___________1__________
2k%2 [A2 + (k+kp f JA2 + {k-kpf\+ k2 [A2 + (k+kpf Ja2 + {k~kpf\

(2.1.80)
and

1 ctffopjp) 
k ck

Pp
Po

’ 3A2 (A2 +kp Yk2) ( \/i +(k+kp)2 j 

[A2 +(k-kp)2 J

M(A2+kp2-^) j  6A? J
_H 2eT2 \A2Hk+kp)2\A2+ik-kp)2\+k2 [a2 +(k+kpf }a2 +(fc-^,)2j

■ fPl P« ''"ex _
Po

' 3A2(A2 +k2 +k2) [/? +(k+k„)2)
[A2Hk-kt,f\

]3A2(Al+k2-0) 1  6/t  1
2k2k2 [A2 +(k+kn )2[a2 +(k-kn +(k+kn)2 [A2+(t-kf\

(2.1.81)
Now, the two opposite type of neutron-proton effective mass splitting can be 
reproduced by considering suitable splitting of the exchange strength parameter

f g/ _|_ g«/ A
£ac = ' a _ a into like (1) and unlike (ul) channels. In order to examine this two

representative values of the splitting of eex, namely,
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— (Case A) (2.1.82)/ ^ex fiui _ 
fcev — ^ 5 ~ 3

*4=—- 4/=:j- — (CaseB) (2.1.83)

are considered. The neutron and proton effective masses as a function of momentum in 

asymmetric nuclear matter having density p = p0 and Yp = 0.1 are shown in the Figures

2.4(a) and 2.4(b) for the two cases A and B. -e^ ) is positive for case A and the

neutron effective mass goes above the proton one as expected, whereas, (e^ ) is

negative in case B and hence the splitting is in the opposite direction. The asymptotic 

behaviour of neutron and proton effective mass splitting as obtained from eq,(2,1.79) 

are also shown in the same figure for comparison. The asymptotic results agree quite

well with the exact result for k »3.5 fm~l ■ The density dependence of these two 

opposite types of splitting of neutron and proton effective masses could also be quite 

important for the differences between neutron and proton transport properties in highly 

asymmetric dense nuclear matter. Hence, the neutron and proton effective masses at

Figure 2.4. (a)Neutron and proton effective mass as function of Fermi 
momentum for case A. at a fixed density p = p0 and proton fraction 
Yp = 0.1(b) Same as (a) for the case B. The asymptotic cases are also shown for 
comparison.
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Figure 2.5. (a)Neutron and proton effective mass as function of relative density 
for case A. at k = 0 and at a fixed proton fraction Yp = 0.1. (b) Same as (a) for 
the case B.

k = 0 for these two representative cases as a function of density are shown in Figures 

2.5 (a) and (b). As expected, the neutron and proton effective mass splitting has the 

similar trend in Figures 2.4(a) and 2.5(a) and Figures 2.4(b) and 2.5(b). The density 

dependence of both neutron and proton effective masses in Figures 2.5(a) and (b) shows 

that it decreases with increase in density. However, the rate of decrease is considerably 

slowed down at higher densities. It may be worth noticing here that for the two

representative cases A and B, the absolute value of (elex-e“lx) does not change and as a 

result the curves for the neutron effective mass in Figures 2.4(a) and 2.5(a) are 

converted to the curves for the proton effective mass in Figures 2.4 (b) and 2.5(b) and 

conversely.

The two types of neutron and proton effective mass splitting discussed above by 

considering the two representative sets A and B can be characterized from the 

behaviour of the momentum dependence of isovector part of nuclear mean field, 

ut(k,p), given in eq.(2.1.53). The expression for the isovector part of the mean field for 

our Yukawa form of exchange interaction becomes,
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2, 2

uT (k, p) = 2ES (p)-
3M

(M\k,p 

V M 7

2, 2
-1/2

Jr*
M2C2

+ «f (*,p)
*=*»■

where, the functional (£, p) is now given by

-riot

«f(*,P) = -
-3r Po2f------ </

J rla

(2.1.84)

7" j[/0 (*>*) - 7o (fc/fOl/o (A /r)77^i3r • (2'1 -85)

e~r,a
Now, f-------d*r = 4koc3 and using the identities,

rla

J 7o (fr) j 0 (A: / r) </3 r = In
rla z fx'/•V

1+^+X^)

l+(z/-x/)
and

-r la
h'o2(kfr)~-—d3r\,fi f u , - -ln(l + 4x/ ), 

rla x.V
the analytical result for (£, p) becomes

«f(*»P) (4-cO p
8 Po

-In
Z/2C/

l+(z/ -l-Xy)

l + (z/-x/)

(2.1.86a)

(2.1.86b)

-ln(l + 4^^- )

(2.1.87)

where, zf=ak and Xy = akf ,

The calculation of ux (k,p) in eq.(2.1.84) as a function of k requires the knowledge of

effective mass in SNM at Fermi momentum, ^—(k=kf,p) corresponding to the
M J

density p and value of nuclear symmetry energy Es{p) at the same density p. The 

effective mass in SNM for our Yukawa foim of exchange interaction can be calculated 

from the momentum dependent part of isoscalar mean field, ua(k,p), given in

eq.(2.1.61). The momentum dependence of ^—{k,p) at different nuclear matter
M

densities have been discussed in Refs [64, 65, 67]. Calculation of nuclear symmetry 

energy, Es(p), requires the complete knowledge of the interaction. The density 

dependence of Es(p) still remains as a major area of research in nuclear physics.
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Figure 2.6. ux(k,p0) as a function of k is shown for the two representative 
splittings of = {elex +e^)/2. The experimentally extracted data are shown by 
the closed area.

However, its accepted value at normal density p0 lies around 30 MeV. At normal 

nuclear matter density, the value of effective mass at Fermi momentum is obtained to be 

M*
---- {kf ,Po) = 0.67 for our Yukawa form of interaction. The momentum dependence of
M y°

ut(k,pQ) in normal nuclear matter is calculated for our two representative cases A and 

B and is given in Figure 2.6. The contradicting behaviour of the isovector part of mean 

field for the two sets of exchange strength parameters A and B is evident in the Figure 

2.6. While uT(k,p0) decreases with increase in momentum for case A, it increases for

case B. Thus an increasing behaviour of u% (k, p) (i.e. of uf (k,p)) implies that proton 

effective mass is larger than the neutron effective mass and for decreasing behaviour of 

uf (k,p) the opposite is the case. Both the curves of ux(k,p) for two types of neutron 

and proton effective mass splitting intersect each other at the value of k equal to the 

Fermi momentum kf corresponding to density p . The functional uf{k,p) vanishes at 

k = kf and the value of ux{k = kf,p) is determined from the first two terms in right
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hand side of eq.(2.1.84) predicting the same value at Fermi momentum corresponding 

to a given density for both kinds of neutron-proton effective mass splitting.

The momentum and density dependence of neutron and proton effective masses 

have still remained as unresolved problems in nuclear physics. From the asymptotic

expression of
M du'rP(k,p,Yp)

h2k dk
, as may be seen from eq.(2.1.79) the magnitude of

splitting is proportional to the total density and neutron-proton asymmetry parameter 

(1 - 2Yp). The splitting of neutron and proton effective masses may be small around 

normal nuclear matter density p0 and, therefore, may be small in finite nuclei where the 

density p and asymmetry (1-2Yp) are rather small in order to give rise to any 

noticeable effect. However, these two opposite types of splitting of neutron and proton 

effective masses may be quite relevant in situations where both density and asymmetry 

are high. Such conditions of highly asymmetric hot and dense matter can be formed in 

the laboratory in heavy-ion collisions experiments involving radioactive ion beams. 

Analysis of the transport properties in such dense asymmetric matter produced in the 

heavy-ion collision experiments have been performed by several workers [80, 81, 83] 

but little success has been achieved in resolving the puzzle. The formation and cooling 

mechanism of neutron stars can be considered as another area of interest for studying 

the effect of neutron-proton effective mass splitting. This we shall be studying in the 

subsequent chapters. By now it is clear that neutron-proton effective mass splitting 

arises due to the difference in momentum dependence of the mean fields experienced by 

a neutron and a proton having same kinetic energy in an asymmetric nuclear matter 

medium. It will be of interest to examine this aspect of neutron-proton effective mass 

splitting in case of the existing Gogny type and Skyrme type interactions.

2.2. Neutron-Proton effective mass splitting in Gogny type interactions
The Gogny effective interaction is given by

v^sny(r)= Y.(Wi+B,Pa -H,Pt
i=I,2

-M,PaPx)e -(rlnp1 +13 (1 + x3Pa )p7(R)8(r)

(2.2.1)
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where, the first two terms represent the short and long range parts of the interaction 

having ranges px and p2, respectively, and the last term is the zero-range density 

dependent term.

With the help of the analytical expression of un p (k,p,Yp) given in eq.(2.1.33) 

and the definition of ux(k,p) in eq.(2.1.53), the dimensionless quantity 

M du"-p(k,p,Yp)
—----------------- — can be expressed as,h2k dk *

M Bit "~p (k,p,Yp) ~ M duf (k, p)
%2k dk p n2k dk

(2.2.2)
where, uf(k,p) is given in eq.(2.1.54) . The functional uf(k,p) for the Gogny 

effective interaction in eq.(2.2.1) can be

x (J7o (kr)j0(kfr)e

)-j(v,“+3f-3v»-v")

(2.2.3)

where, vfe,vje,vf,vf° with i = 1,2 are the finite short and long range strength 

parameters in singlet-even, triplet-even, triplet-odd and singlet-odd states. Now 

evaluating the strength factor in the square bracketed term and using the identities,

jjo(kr)j0(kfr)e r~/M d3r *3/v

zx
exp<- z-x -ext Z+ X

(2.2.4a)
and

\j2{kfr)e-r2 lp2 d2r=^-(\-e-xl)
x£‘

(2.2.4b)
where, z = pk and x = pkf, the expression for (k, p) in case of Gogny effective 

interaction can be analytically expressed as,

K (k>p) = -
2k,

?>4kA, M,2

(w. n ^-l + B.. ——« e ' A '
k

l J

>-(l - e~Akf21 A‘2

(2.2.5)
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Here in this expression Ais related to the range parameter /q as A, = —. Now the

dimensionless quantity 

M du"-p(k,p,Yp)

M dun p(k,p,Yp)
n2k dk

becomes,

h2k dk
2(1—27 )

M

f21+s. e ' Al ' -e A, J >+-
2 kf 
Ak V A, , V A, ,

(2.2.6)

In Gogny effective interaction the values of the two range parameters jttj and [i2 are 

0.7 fm and 1.2 fm respectively. It is evident from the above expression in eq.(2.2.6) 

that in the asymptotic region of large momentum, the behaviour of the neutron-proton 

effective mass splitting for the case of Gogny interactions will be determined from the 

short range part (/q =0.7 fm) as the contribution coming from the long range part

( jj^ =1.2 fm) can be safely ignored. Thus, the sign of Wy
+ B< for the short range

Figure 2.7. u*x(k,pQ) is plotted as a function of Fermi momentum A; at a fixed 
nuclear matter density p = p0 for different Gogny interactions. The results of 
the some Skyrme interactions are also shown for comparison.
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part of the Gogny effective interaction will determine whether asymptotically for large. 

k the neutron effective mass is above the proton effective mass or the other way 

around. Amongst the different sets of Gogny effective interactions used by Blaizot et al. 

[42], this parameter combination is positive for D1S and D250 and therefore 

asymptotically for large k the proton effective mass goes above the neutron effective

mass. On the other hand, asymptotically for large k, Wx + B. is negative for Dl,

D260, D280 and D300 and as a result the neutron effective mass goes above the proton 

effective mass. This can be seen from the Figure 2.7 where we have shown the variation 

of u*x(k, p0) at normal density p0 over a wide range of momentum k = 0 to 6 fm~l.

2.3. Neutron-Proton effective mass splitting in Skyrme type 
interactions

The energy density HT(pn,pp) in ANM at temperature T for Skyrme type 
interactions is given by

ht (P. ,PP) = ^+\t0[(2 + x0)p2- (2x0 +1 )(p„2 +pp2)]

+ + *3)p2 ~(2x3 +l)(p„2 + pp2)]

+ g[*i(2 + *i) + t2(2 + x2)]up 

+“[(^(2x2 + 1)-*i(2x1 +1 ))(T„p„ +Tppp)]

(2.3.1)

where, the total density p = pn+ pp, total kinetic energy density t = t„ +rp with the 

definition tn p = jf^’p(k)k2dk, and to,x0, t3,x3,y,tuxi,t2 and x2 are the parameters 

of Skyrme interaction . At zero temperature, T = 0, the momentum distribution function 

fr~o (k) ta^es the form of step function 0(knp -k), where k =(3k2 plipJn and the

3 2 2
kinetic energy density becomes T=T„ +Tp= — (Jcn pn +kp pp). The energy density

H{pn,pp) in ANM at zero temperature for Skyrme type interaction now becomes
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H(.P.,Pp) = ~(.K2P. +kp1pp)+U„[(2 + x,)p2 -(2*0+1 )(P„2 + Pp2)]

+^-pr[(2+x3)p2 -(2x3 +l)(p)f2 +pp2j]+-[?i (2+xl)+t2(2+x2)]rp 

+ -^2(2*2 +l)-^,(2x, +l)](T„p„ +TPPP}]

(2.3.2)

Here we have used the non-relativistic expression for kinetic energy density for sake of 

simplicity. The neutron and proton single particle energies are obtained as the 

respective functional derivatives of the energy density,

and

(^> Pn’Pp)
dH{p„,pp)

w
(2.3.3)

£p(k,Pn,pp) = mpn,PP)
5[/p]

(2.3.4)
The neutron single particle energy for the Skyrme energy density given in eq.(2.3.2) 

becomes

h2k2
(*, Pn >PP) = + «„ (*> Pn > Pp ) >

(2.3.5)

where, un (k,pn,pp) is the neutron single particle potential obtained as 

un(k,pt„pp)=^jK2 + x0)p-(2x0 +1)Pj +7^-Pr“1[(2+^3)P2 — (2^3 +1)(P„2 +Pp2)]

+ l2 + xl)p “(2x3 +l)p»] + ^[^l(2 + xl ) + ;2(2 + jc2)KT + P^2)

+i[t2(2x2 + l)-q(2*i + 1)](t„ +pnk2)}

(2.3.6)
The proton single particle energy for the Skyrme energy density in eq (2.3.2) becomes

ti2k2
ep (k,pn ,pp)= — + up (k, p„, pp) (2.3.7)

where up(k,p„,pp) is the proton single particle potential obtained as
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M,(^p„.p,)=Y[(2+^)p-(2x0+i)pp]+r-|:p5'"IP+x3)p2-(2^+i)(pn2+p/)]

+ 7TPr[(2 + x3)p -(2x3 + l)pp] + -|/1(2 + x1) + t2(2 + x2)](T + pk2)
12 o

+ \[t2{2x2 + l)-tI(2xI +1 )](tp+Ppk2)] (2.3.8)
O

In case of Skyrme type interactions the neutron and proton single particle 

potentials have k2 -type momentum dependence. This k also the case in case of Seyler- 

Blanchard interaction [38], One can derive the equivalent expression for ux(k,p) for 

Skyrme type interaction, in terms of symmetry energy Es(p), effective mass in SNM

M*
-----(kf,p) and the functional uf{k,p) as given in eq.(2.1.53).
M J

The neutron and proton single particle potentials in eqs.(2.3.6) and (2.3.8) can

P« ~ Pbe expanded in powers of asymmetric parameter p = —-----—. The neutron and proton
Pn +Pp

densities in terms of f5 are pn=-^(l + f}) and pp=^(l~P), respectively.

Expanding the neutron and proton single particle potentials in powers of ft and 

retaining terms upto the 1st power in p, one gets,

w„(A,P>0) = «(£>P) + Pj-^-f*o +-!r|p-7!;[*3 +\}py+l +zitd2 + x0 + ti(2 + xi)Xkf2 +k2)~

(2.3.9)
2 V 2/ 121 J 2

s(k,p,p) = u(k,p) + p\^- x0 + ^jp + -~^x3 + jjpr+1 -(2+Xl) + t2(2 + x2)lk/ +k2)

(2.3.10)

where, kf
r. 2 V/3 3 % p
k 2 y

. u{k,p) is the single particle potential in SNM for the Skyrme

type interaction and is given by

'(£»P)=~~P + ~(7 + 2)py+1 +T~r[3^ +(5 + 4x2)i2](T + pk2) (2.3.11) 
4 16 16
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with r = —k/p . Now the isovector part of the neutron-proton single particle potential, 

u (k,p, B) — u (k,p,B)
uT(k,p) = —---------- ---------------- , f°r the Skyrme energy density functional becomes,

2j3

u,(k,p) = --±
f n t3 ( n

>
< o + - p-

V " 12 l 3 2)
pr-'+Q(k2+k/)p, (2.3.12)

where, Q is defined as

O
(2.3.13)

2.3.1. Symmetry energy es(p) for Skyrme energy density

Using the definition of nuclear symmetry energy, Es(p)
1 d2H(p,P)

'SKt'' 2/3 dp2 

the expression Es(p) for the Skyrme energy density is obtained as,

f O
ES(P)

fcV tj nV H 
6M 4

x0 +■
V -/ 24

x3 +■
V

p7+1 + (P + 2Q)
■J

where, the quantity P is defined as
1(

P = -[(2 + x,)/, + (2 + x2)t2]

^=o

k/p
3 ’

(2.3.14)

(2.3.15)

and Q is defined in eq.(2.3.13). In obtaining this we have used the non-relativistic 

expression for kinetic energy term.

2.3.2. Effective mass —(k,p) in SNM for Skyrme type interactions
M

MThe expression for effective mass ---- (k,p) in SNM for the non-relativistic
M

Jl^t ^approximation of kinetic energy density is given by ---- (k, p) ■
M

1 + M du(k,p)
-i-i

h2k die

where, u(k,p) is the single particle potential in SNM. For the Skyrme single particle 

potential in SNM, given in eq.(2.3.11), the effective mass for Skyrme-type interaction 

becomes,
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(2.3.16)^ 2M J" 3/1 4* (5 + 4^2 )?2 
+~hr 1 16

—i

•Pi •

It may be noted that for Skyrme type interactions or any other effective interactions, 

such as, Seyler-Blanchard interaction, which results into quadratic momentum 

dependence of the single particle potential, the effective mass does not have momentum 

dependence.

The nuclear symmetry energy Es(p) in eq.(2.3.14) can now be expressed in 

terms of the isovector part of the n- p single particle potential in eq,(2.3.12) as,

Es{p)=^uv{k,p) + 2 7,2r_k
6M

f
■ 4*

V 2)

Q)k/p
4

(2.3.17)

Thus, the isovector part of the nuclear mean field in ANM given in eq.(2.2.12) in case 

of Skyrme interactions can now be expressed as,

ux{k,p) = 2Es(p) - n2k2

3M
1 + (Q + 2P)—pM

1“:n7

+ Q(k2-kf2)P, (2.3.18)
k=k(

where, Q + 2P = — [3i, +t2(5 + 4x2)]and the term inside the curly bracket can be 
8

identified as the inverse of the effective mass in SNM given in eq.( 2.3.16). So, finally 

ux(k, p) for the Skyrme type interactions can be expressed as,

ux(k,p) = 2Es(p) —
frk 2 /

/
3 M

M_
M

V1
(p> +f(*2-*/)<>• (2.3.19)

This may be compared with the expression for ux(k,p) derived for general effective 

interaction earlier in eq.(2.1.53), but with the consideration of non-relativistic 

approximation for kinetic energy part in place of relativistic one. It follows from the

comparison that the expression for uf (k,p) for Skyrme type interaction is given by the 

simple expression,

<(KP)= -2Qc-kf)p =1^+1)-^+!)W-kf2)p

(2.3.20)

Now, the dimensionless quantity —....... *....— for the Skyrme case results into a very
h2k dk

simple structure,
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(2.3.21)
M du?(k,p) 
h2k dk

= -^[*2(2*2+l)-fi(2*1+l)]p,
8 fi

which is independent of momentum k. This implies that in case of Skyrme interactions,

as well as, in the cases of effective interactions which have k2 -momentum dependence 

in the single particle potentials, there will be no temperature dependence in the neutron 

and proton effective mass. The neutron-proton effective mass splitting at a given 

density p will only depend on the neutron-proton asymmetry, i.e., (1-2Y ) and will be 

same at all finite temperatures to its zero-temperature value. The sign of the parameter

Q=—[t2(2x2 +\)~ t\{2x\ +1) will determine whether the neutron effective mass is 
8

above that of the proton or the other way around. The Skyrme parameterizations such as 

SGII, RATP, SKP, SKX, SKXm, SKSC, LNS, BSkl7, BSkl7st [29, 131, 156] have

also negative values of parameter Q. In all these cases w“(£,p) in eq.(2.3.20) will be a 

decreasing function of k and hence the neutron effective mass is above the proton 

effective mass irrespective of temperature, momentum and density. On the other hand, 

all the SLY type and SKI-SKI6 give positive value of the parameter Q and in these 

cases the proton effective mass is above the neutron one. For Skyrme parameterizations 

such as SKSC4 and T6 for which X] =x2 = -0.5, the parameter Q vanishes and the 

neutron and proton effective masses are identical. The values of the parameter Q for 

different Skyrme sets are listed in Table-1.

From the general expressions of isoscalar and isovector parts of the nuclear 

mean fields given in eqs.(2.1.60 and 2.1.61) and (2.1.53 and 54) it is evident that 

momentum dependence of nuclear mean field and density dependence of nuclear EOS 

are two distinct features. The study on one of these two aspects of nuclear matter using 

an effective theoretical model requires the other aspect to remain unchanged in the 

process of calculation. This was not possible with the Skyrme effective forces having a 

single conventional density dependent term, proportional to p 7, where the exponent y 

is strongly correlated to the incompressibility K(p) as well as the effective mass
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Table-1. Values of the parameter Q for different Skyrme sets.

Skyrme
sets

X\ x2 h h e/2

GS 0 0 336.2 -85.7 -26.37
RS 0 0 336.0 -84.8 -26.3
SGI -0.50 -1.73 515.9 84.5 -12.99

SLYO -0.50 -0.93 485.2 -440.5 23.68
SLY1 -0.31 -1.0 488.3 -568.9 23.96

SLY 10 -0.67 -1.0 431.0 -305.0 28.22
SLY2 -0.73 -0.78 482.2 -290.0 24.01

SLY230a -0.84 -1.0 489.5 -566.6 56.22
SLY3 -0.34 -1.0 481.0 -540.8 24.18
SLY4 -0.34 -1.0 486.8 -546.4 24.41
SLY5 -0.32 -1.0 484.2 -556.7 23.90
SLY6 -0.47 -1.0 462.2 -448.6 26.30
sly? -0.49 -1.0 461.3 -433.9 26.54

. SLY8 -0.34 -1.0 480.8 -538.3 24.03
SLY9 -0.62 -1.0 510.6 -429.8 34.52

SV 0 0 970.6 107.2 -53.96
SKI1 -5.78 -1.29 439.8 2697.6 23.88
SKI2 -1.74 -1.53 438.4 305.4 28.63
SKI3 -1.17 -1.09 561.6 -227.1 63.78
SKI4 -2.89 -1.33 473.8 1006.9 37.08
SKI5 -1.31 -1.05 550.8 -126.7 64.48
SKI6 -2.14 -1.38 483.9 528.4 41.08

SKMP -0.40 -2.96 503.6 57.3 -23.91
SKO -2.81 -1.46 303.4 791.7 -7.39
SKO' -1.33 -2.32 301.5 154.8 -3.94
SkT4 -0.50 -0.50 303.4 -303.4 0
SkT5 -0.50 . -0.50 328.8 -328.8 0
GSkI -1.7586 -1.8068 397.23 264.63 19.27
GSkn -0.7203 -1.8369 393.08 266.08 -33.64
SSk -0.4519 -0.9214 435.0 -382.04 17.51
LNS 0.65845 -0.95382 266.735 -337.135 -19.5

BSkl7 -0.832102 49.4875 389.102 -3.1742 -3.68
BSkl7st -0.834832 29.0669 388.916 -5.3076 -3.34
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—— (p) in nuclear matter. We shall show it in the followings. The energy per particle in 
M

SNM,

e0(P):
tt

—2---- , for the Skyrme forces as follows from eq.(2.3.2) with

Pn = P* =Pt2 is,

e0(p) =
3 h2

10 M
3k_

\ 2 y
2/3 , J t „ , ‘3 ,,7+1 , 3 [3q +12 (5 + 4x2 )]

p~+I*p + wp,”+5
^ 3k2^2n

16 V 2 j
.5/3

. (2.3.22)

The pressure in nuclear matter, P(p) = p1 dfo.(P), can be
dp

P(P)=
/3?t,^2/3

5 M K 2 j
5/3,3, , h , ,^7+2 , PO + h (5 + 4x2)]P +g<oP +“(y+l)Pr +

^ 3n 2 N'2/3

16 V 2 J
p8/3,

(2.3.23)

and nuclear matter incompressibility, K(p) = 9------ = 18^^ +9p2 - e°^,
dp p dp

becomes

*(P) = ~
3^2f37T_2^ 

v 2 /

2/3

+ -

5M 

18

Q/ 3
p5/3 +^.7(7 + 1)pr+. + ^ +/2(5 + 4x2)] 

lo 0
f3n2^ 2/3

.5/3

n2 ^K2^1'1

5M V 2 ,
p5/3 + -r0p2 +-^-(y+l)pr+2 +2 . h 7+2

V 2 y

[31\ +t2 (5 + 4jc2)] 2\2'3

8 16 16
3 n

V 2 y
.8/3

P

(2.3.24)

These three quantities at saturation density, p = p0, becomes

eo (Po) —
3/i 2 2^3

10M 2 j
Po2'" +~toPa + —Po7+1 + 3[3/l+^(5 + 4X2)]
HO g 0K0 16K0 80

^3tt2 ^ 2/3

V 2 y
5/3

Po

(2.3.25)

P(Po)=0 =
5 M k 2 y

2/3

p05/3 +7;oPo2 +—(r+i)Por+z +
o io

7+2 , [3/, +/,(5+4x2)3 2 ^2/3

16
3E

v 2 y
8/3

Po 

(2.3.26)
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K(Po)-
3h2f,-2\2li

5 M
3tt

v 2 ,
5/3 . ^3 v/,/±n„ y+l 3.

Po +-~Y(Y+l)Po + gC3/, +t2(5 + 4x2)]
(~ 2\ 3 n

v 2 y

2/3

P 0
5/3

(2.3.27)
For a given set of values for pQ, e0(p0) and K(p0), these three equations (2.3.25 - 27) 

can be solved to obtain the values of three unknown parameters t0, t3 and 6S, 

where,

0S = [3/,+<2(5 + 4jc2)]. (2.3.28)

M*This parameter e thus obtained, uniquely determines the effective mass ---- (p) in
M

SNM given in eq.(2,3.16). This conclusion is, however, not correct in a special case
2

corresponding to the value of the exponent y = —. For this special case, the above three

eqs. (2.3.25 -27) are given by,

3 n
f 9 \ 2 / 3( 3k 2 '

10 M
3 3Po5/3 + 7'oPo + -F(0s>h)P 0
O J

5/3

n 2 ^

5M 2v z y

2/3
„ 2/3 . 3 . 5/3 n
Po +TfoPo+^(^j’^)Po -0o

e(Po)

(2.3.29)

(2.3.30)

and

3r
2/3

5M 2v z y
p02/3+6F(es,(3)p05,3=.s:(p0),

where, the new parameter F(ds,t3) is given by,

F(P„t3) =
16

0,
^2^

v 2 y
H---- t-x

(2.3.31)

(2.3.32)

Thus, in this particular case of y~—, there are two unknowns t0 and F(6s,t3) in eqs.
3

(2.3.29- 31). The first two equations can be used to determine these two parameters, tQ 

and F(0s,t3), and then the corresponding value of K(p0)can be calculated. The 

definition of F(0s,t3) in eq.(2.3.32) above allows to choose 6S freely. Thus, for the
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given value of nuclear matter incompressibility K(p0) corresponding to y=—, the

effective mass can be freely chosen. This important feature is illustrated well in the 

work of Cochet et al. [157]. This work of Cochet et al. is a major breakthrough in 

disentangling the strong correlation between the effective mass and incompressibility in 

cases of Skyrme forces with single density dependent term. Inclusion of a second 

density dependent term enabled to chose the incompressibility and effective mass 

independently. The theoretical justification of the two independent density dependent 

terms, as discussed by Cochet et a/.[157], originates fromBrueckener correlations in the 

context of mixed non orthogonal vacua [158] and renormalization of three body forces 

through a density-dependent two body interaction[18, 131, 158-160], With the 

development of this improved version of Skyrme interaction that is able to disentangle 

the strong correlation between incompressibility and effective mass, Leisinki et al. 

[131] in their work studied the effect of the variation of neutron-proton effective mass 

splitting on properties sensitive to the isovector features of nuclear EOS. The Skyrme 

effective force containing two density dependent terms used by Leisinki et al. in their 

study, is given by,

V(R,r) = ^t0i(l + x0iPa)8(r)[p(R)f3 +I/, (1 + x,Pa)[S(r)k2 + ka 5(F)]
i=0 2
+ t2(l + x2Pa)k'-S(r)k + iW0(d\ +<J2 )k'xS(r)k

(2.3.33)
where, the symbols have their usual meaning. The neutron and proton effective masses 

have been obtained from the energy density resulting from this Skyrme interaction in 

eq.(2.3.33) in ANM by using the relation

h2 dll h2 [3^ +12 (5 + 4x2 )] _ [/20 + 2x2)~ £,(1 +2xj)]
2 M; dxq

+- ■p+qis- p (2.3.34)
2M 16 16

where, q = +l,-lrespectively for neutrons and protons. Thus, the neutron, proton 

effective masses can now be given as

M M
M Mq

7 + qP
( M M ^ 

kK M'vJ
(2.3.35)

where, and 
M

are defined as the isoscalar and isovector effective masses given as
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(2.3.36)
Jtf=1+2M[3,,+^(5+4x2)
m a2 16 H

M , 2 M 
= ! + —=-

M,

[3^ + /2(5 + 4x2) [—£j(l + 2X]) + f2 (1 + 2x2)
16 16

p=l+Kv

(2.3.37)

Af Mwith, ks=—— [3r, + t2(5 + 4x2)]and jcv =—-[t1(2 + xI) + t2(2 + x2)3 is defined as the
m AM

isovector enhancement factors. The quantities M*v and ?cvare not isovector quantities in 

the sense of isovector couplings of the functional. It follows through the terminology 

used for xrvof the Thomas-Reiche-Kahn sum rule in Ref. [161]. The splitting of 

effective masses is quantified by

AM\M*n M*p 

M M M
2{kv-kx)

(1 + ks)2-(kv-ks)2

(2.3.38)

such that

Hj(l + 2x,)

M_
M'

V J

AM ’ > 0, for kv > ks , or equivalently M* <M* or

+12 (1 + 2jc2 )] < 0. It may be noted here that the expression of the quantity

in the work of Leisinki et al. as obtained from eqs.(2.3.36) and (2.3.37) is

exactly same with the result of dimensionless functional M duf(k,p) 
h2k dk

obtained in our

formalism for Skyrme interaction given in eq (2.3.21).

The advantage of using a second density dependent term lies in the fact that it 

provides additional freedom to adjust the high-density part of pure neutron matter 

(PNM) allowing a free choice of neutron and proton effective masses with a good fit to 

EOS of PNM. This can be better understood if we write the expressions for energy per 

particle in SNM, eQ(p), and PNM e„(p) for the Skyrme interaction given in 

eq.(2.3.33),
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and

where,

c0(P) =
3 h 2 ^ 3tc2 ^ 2 /3

lOAf V 2 ,
, 2 /3 + c0pp + jc;

^32 V'3
,5/3

e«(p)=-^7(37r2)2/3p2/3 +(C0P + C/’)p + |(CcT +C\ )(37T2)2/3p 
10M 5

0 VI 3 j/3 3 3 ]/3 3
Co =Z-^.P = ^00+~^t0lP +^02 P 2/3

/=0 ^ 8

(2.3.39)

(2.3.40)

(2.3.41a)

t 3q + (5 +4x2 )?2rT -Lo ~ 16
2 1(2.3.41b) C/’^—ai+ZAjP'

i=0 °

r ~ 0 + 2xi )^i + 0 + 2x2 )t2

II3

c =
16

(2.3.41c)

(2.3.41d)

It may be noted that if we set t02 = 0, t00 = t0 and r01 =— then we get the conventional
6

expression for energy per particle e0 (p) of Skyrme interaction with single density

dependent term with 7=~ as given in eq.(2,3.22). Along with this, if we take xg2 =0,

x00=x0 and x0 s = x3 then we get corresponding conventional expression for en(p) in 

PNM.

Now if Cf coefficients will contain one low power of the density ( oc pl/6 ) as in 

case of Sly-type interaction [112], this will influence more on the low density behaviour 

of the EOS of PNM. The effective mass term then determines the high-density part of 

the EOS. Thus, in case of PNM, the EOS above the saturation density is then mostly

fixed by the terms proportional to (Cg +Cf)of eq.(2.3.40) and any attempt to use the 

density dependence to counteract its effects results in a very strong constraint on the 

incompressibility of SNM. This in turn degrades the behaviour of the functional at and

below saturation density. It may be recalled that for AM * > 0, corresponds to Cf < 0, i.e. 

[- (1 + 2x\ )fj + (1 + 2x2)t2]< 0, which drives the high-density behaviour of EOS in PNM 

down and explains why the usual Skyrme functionals predict either a collapse of the
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PNM if AM* > (for like the Sly functionals fitted to EOS in PNM that results into 

AM* <0, i.e., proton effective mass is greater than neutron one.

In case of the present form of Skyrme interaction containing two density

dependent terms (oc pI/3,p2/3) the above discussion does not apply and allows a free 

choice of neutron, proton effective masses along with a good fit to EOS of PNM and 

satisfactory nuclear matter properties. With the help of this advantage of the additional 

second density dependent term Leisinki etal. [131] have constructed three new Skyrme

parameter sets those corresponding to M* <M*p ( set named f_), M* = M* (set named 

fc), M* >M* (set named f+), in their work in Ref.[131] and have used them in 

calculating the observables of infinite nuclear matter and finite nuclei, paying particular 

attention to controlling the agreement with Brueckener-Hatree-Fock calculations of 

spin-isospin content of the finite nuclear equation of state. In this attempt of resolving 

the existing uncertainty in neutron-proton effective mass splitting using Skyrme force, 

Leisinski et al. have concluded that the various constraints arising in their study cannot 

be fulfilled simultaneously, calling at least for an extension of its P-wave part of the 

Skyrme forces. Similar attempts in other areas have also been made in recent years to 

resolve the neutron-proton effective mass splitting problem as well as the high density 

behaviour of nuclear symmetry energy. In this context the works of Li et al. [81] and 

Rizzo et al. [84] can be discussed. In their works they have made attempts to constrain 

the momentum and density dependence of the isovector part of the nuclear mean field 

from the analysis of observables sensitive to neutron and proton flow data resulting 

from medium and high energy heavy-ion collision experiments using radioactive ion 

beams. During that period the development in the area of radioactive ion beam 

experiment facilities had inspired a good deal of hope in resolving these two important 

and long standing issues in the field of nuclear research.

2.4. Work of R A. Li et al
In the work of Li et al. [81], they have basically made an attempt to constrain 

the density dependence of nuclear symmetry energy. The effective energy density in 

ANM used in the work for transport model analysis of HI collision flow data is given 

by,
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n1 '^2Hr(P„ Pr) = ttt i jf,(*)k2dk+V(p,T,/3),
2M r=_i/2

where, the interaction part is given by

V{p, T, p) = —+ ^- (p„2 + p2) +—^—2—(1 -xp2) 
- 2 " f a+lp; KPo
1 ,fx(r,p)ft(r,p')+—Ecr>T,|p3prfV _,.2

Po t? , . (P-P)

(2.3.42)

1 + -
A

In this expression Au,Al,B,CTtX-Kx,<j are the parameters involved. t,t’ = — for 

1 4neutron and for proton and r cr = — and fx (r,p) is the momentum

distribution function. The nucleonic mean fields in ANM under thermal equilibrium 

follow from the above eq.(2.3.42) by taking the functional derivative and is given as,

U(p,T,P,p,t) = Au(x)£*- + A,(x)&- + B
Po Po

2C~ <*-' • /t(^P)

/ \<*
_P_
PoJ (l-xP2)-Stx Jpt

+ - M'V- ■ 4* •
2C, j^'r

ff+1 Po* 

fx(r,p)
Po J 1 + (P-PT/A^ Po J 1 + (P-P') /A2

(2.3.43)
The parameters All{x),Al(x),B,CTiX,CT<x’ and A are considered to be temperature 

independent and have been obtained by fitting the momentum dependence of 

U(p,T = 0,P,p,r) to that predicted by the Gogny Hatree-Fock and/or the Brueckener- 

Hatree-Fock calculations, along with the constraints, such as, saturation properties of 

symmetric nuclear matter and the symmetry energy Es(p0) = 30MeV at normal 

nuclear matter density p0 = 0.16 fm'3. The parameter B = 106.35 A/e Falong with the

4
value of a = — is adjusted to give the value of the nuclear matter incompressibility

K(p0) = 2\\MeV. The momentum dependence of neutron and proton mean fields is 

adjusted from the fitting to the Gogny Hatree-Fock and/or BHF calculations that results 

the values of the strength parameters for the momentum dependent parts

Cxx = -103.4A/eF and Cxx> = -l X.lMeV for the value of the parameter A = p°F, i.e.,
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Fermi momentum in normal SNM. The parameter x is considered as a free parameter in 

terms of which the rest two parameters, Au(x) and At{x), are expressed as

Au(x) =-95.98 -x------ and A/ (x) = -120.57 + x------. (2.3.44)" <7 + 1 1 tr+1

In this work of Li et al. the free parameter x is varied to reproduce different density

dependence of nuclear symmetry energy for a given effective mass splitting. The value

of the parameter x is put by hand and two values, namely, x = l and Oare considered

in this work. In subsequent works [85] other values of x = -1,-2 are also considered.

The density dependence of symmetry energy E (p) for the case x = 1 is the same as the

default Gogny interaction, i.e., it has decreasing trend beyond normal density p0. The

density dependence of Es (p) for the case x = 0 has a stiffer behaviour and do not show

a decreasing behaviour at higher values of density, in agreement with the predictions of

RMF calculations. The contribution of the kinetic energy part of Es(p) and the

different potential part contributions for the cases x = 1 and 0 given in the Figure 2 of 

Ref. [81] is shown below in Figure 2.8 for reference. The widely different behaviour of 

the potential parts, as can be seen from the figure, for the cases x = 0 and 1 results into

Figure 2.8. Contributions of the potential and kinetic parts of the nuclear 
symmetry energy calculated for the MDI interaction of B. A.Li et al.[81]. In the 
figure RMF result and calculations for Gogny interaction are also shown for 
comparison. The figure has been reproduced from Ref.[81].
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Figure 2.9. The density dependence of nuclear matter symmetry energy is 
shown for different values of the parameter x in the MDI interaction of Chen et 
al. [85]. The present figure is reproduced from Ref. [85].

the different behaviour of Es (p) for the two cases. The density dependence of the 

symmetry energy Es (p) is still stiffer for the values of x = -1 and -2. The plot of

Es(p) as a function of — as given in Figure 1 of Ref. [85] for these four different
Po

cases x = l,0,-l and -2 are given here in Figure 2.9 for reference. The purpose of Li et 

al.m this work was to obtain EOSs predicting widely varying symmetry energy Es(p) 

at supranormal densities for same neutron-proton effective mass splitting. This is 

accomplished by the use of the parameter x in the density dependent term. As it is well 

known that the momentum dependence of isovector part of the neutron-proton mean

Un~Upfields, ------- determines the effective mass splitting, both the symmetry energy
2/3

corresponding to x = 1 and 0 will have the same effective mass splitting as momentum 

dependent part of single particle potential in eq.(2.3.43) is independent of x. For each 

case of symmetry energy, Li et al. have examined the role of momentum dependence in 

the isovector potential by comparing the results for the present case with the results for 

the cases with nucleon potential Unoms(p,p, p,t) = U0 (p, p) + Usym (p, /3,r) that has
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the same momentum dependence for the isoscalar part and a momentum independent 

symmetry potential U (p,fi,T) that gives the same Es(p) as that of the case in 

eq.(2.3.43). The momentum dependent and the corresponding momentum 

independent symmetry potentials for the different cases of symmetry energy density, 

x = 1,0, have been used by Li et al. in their transport model analysis of data of several 

experimental observables in heavy-ion collision reactions induced by neutron-rich 

nuclei at rare isotope accelerator(RIA). In this attempt Li et a l have found significantly 

different predictions for the two cases of symmetry potentials with and without 

momentum dependence. But they have not been able tc extract the accurate behaviour 

of the density dependence of symmetry energy Es (p) and have concluded that 

momentum- and density- dependence of symmetry potential (i.e. the isovector part of

Un ~Up
the neutron-proton mean fields, — ) have to be determined simultaneously for the

purpose of extracting actual behaviour of Es{p). The reason of this unsuccessful 

attempt may be attributed to the limited scope of the formalism to vary simultaneously 

the momentum- and density-dependence of isovector part of the mean field, ux{k,p). In 

their formalism Li et al. could obtained different density-dependence of ux(k,p), i.e., 

different behaviour of Es(p), by changing the value of the parameter x. However, for 

each case of Es(p) thus obtained there was no scope to vary the momentum 

dependence of ux(k,p), as the strength and range of the momentum dependent parts, 

i.e., CXX,CXX> and A are fixed. During the same period Rizzo et al. [84] had made an 

attempt to study the effect of momentum dependence of the isovector part of the mean 

field on the flow dynamics. Let us now compare the momentum dependence of 

isovector potential of the works in Refs. [81, 85] with the results obtained with our two 

parameter finite range Yukawa interaction as discussed :n section 2.1. The momentum 

dependent parts of the nucleonic mean field in ANM used by Li et al. given in eq 

(2.3.43) are similar to the exchange part of the neutron/proton mean field obtained for 

the Yukawa form of finite range part of the interaction used by us. The strength 

parameters 2Cx x and 2Cx x> of the momentum dependent parts of the work of Li et al

can be identified with those of ela and e„ used in our work given in eqs.(2.1.65) and
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(2.1.66), respectively. The parameter A that specifies the range of the interaction has 

been taken to be A =1.0 p% by Li et al. The parameter A used in our work is related to 

that of Li et al. by a factor of h, i.e., A of Li et al. is equivalent to M of our work. We 

have expressed our A in the units of wave number in normal nuclear matter , kfo, i.e. 

A = Akfo, X being the multiplying constant factor. Thus the value of X corresponding

to A =1.0 pp of Li et al. is 1. However, for our case with finite range Yukawa

+ £u^
interaction A and the exchange strength parameter eex = ex ^ ex of the isoscalar part

of the mean field are obtained by adopting a simultaneous minimization procedure 

subject to the available constraint on energy dependence of optical potential, as has 

been discussed in the section 2.1. The value of X thus obtained in our case of Yukawa

f +£Ul
interaction is 1.833. The strength of the exchange parameter, eex = e* ex , of the

isoscalar part of the mean field obtained in our work is -121.84 MeV, whereas, the 

corresponding value of strength parameter of Li et al. is

^(2CXZ +2Ctt-) =-\\5.lMeV. It may be seen that the strength of exchange

interaction of isoscalar part of the mean field of Li et al. and our case of Yukawa 

interaction are in good agreement, whereas, they differ largely in the range of the 

interaction. Now we shall compare the results of uT(k,p0) for this case of Li et al with 

our results obtained for different splittings of exchange parameter eex in SNM into two

like and unlike channels slex and g“j. The results are calculated from the expression of 

wT (k, p0) given in eq.(2.1.53). It requires values of symmetry energy and effective mass 

in SNM at normal density p0 apart from the momentum dependent term defined

through the functional, u*x{k, p0). The value of the symmetry energy at normal nuclear 

matter density used by Li et al. is, Es (p0) = 30 MeV. The momentum dependent part of 

the isoscalar potential of Li et al. can be analytically expressed as,

(CTT + Crf)
3A2(A2 +k/.k2)

8 kk/
In

( ft +(k + kf/'] 

A2 +(k-kf)2 A

3A
2k/ 2k/

3A -i Jtan 1
rk + kj ^ 

j
-tan-l

k — kf^
A

• ✓ J

(2.3.45)
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The value

M n x

of effective mass in
. -i-i

1 +
M dU(k,p0) 
fik ck

SNM at normal density 

for the case is calculated to be 0.6684. Here in
k=kfa

the above expression we have used our notation except the exchange strength 

parameter, Cx T and CT x,. The expression of ux (k, p) can now be written as

h2k 2
uT(k,pQ) = 2Es (p0)------ - (Clex - C%)

2M 8zx0 il + (z-x0)2| 8xn2

(2.3.46)

where, x0 = ok^ and z = ak .The plot of ux (k, p0) as a function of energy E ■ h2k2 
2 M

is

given in the Figure 2.10. The result of our Yukawa form of the finite range interaction 

for different representative splittings of sa into e^. and e'^ are also given for 

comparison. It may be seen that the result of Li et. al. and our result for 

eL ~ £ex =l-l£er are close to each other. In our calculation we have used the same value

of Es (po) = 30 MeV and value of ^-(k^,p0) = 0.67 obtained for our case.

Figure 2.10. Isovector part of nuclear mean field ux(k,p0) plotted as a function

of energy for different values Ea. The work ofB.A.Li e*a/.[81J has
been compared with the present calculation.
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The slope of the curve of ux (k, p0) is another relevant quantity that has been 

extracted from optical model analysis of nucleon-nucleus scattering data, as discussed 

by Li et al. in their work [81], should be within 0.1-0.2. We shall obtain here analytical 

expression for the slope of the curve ux(k,p). In order to obtain this one needs to

evaluate We shall evaluate it for the general case of ux(k,p) obtained from

eq.(2.1.53) for our two parameter exchange interaction as given by,

'M*
uT(k,p) = 2Es(p)- *V

3 M M
(kf,p)

2 fhkf v 

JlCj

+ Jfro (kr) - Jo (kfr)]j0 (kf r) f(r) d3 r.
2p0 J f(r)d r

Differentiation with respect to energy gives

dux (k, p) _ dux (k, p) dk 
m _ E dE

(i) For the case of small values of E:

(2.3.47)

(2.3.48)

t-i 2 dE h2k , dux(k,p) M dux(k,p)
F dk M BE n2k dk

From the expression of ux{k,p) given above, we get

(2.3.49)
Now, in case of £■-»(), i.e. k^> 0, we can use approximation 

(kr)2
j0 (kr) = 1---------+ • ■ • and in this Emit the expression for slope of the curve for

6

ux(k,p) becomes
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Um 8uAk,p) M (eL-ej)p 8 
£-> o 8E h2k 2p01 /(r)d3r 8k

in
(kr)' + ■••] j0(kfr)f(r)d}r

1 r2 J0(kfr)f(r)d3r (2.3.50 )
M (g L-£ui)p
6»2 Pol/O-)^3'-

For the case of our Yukawa form of finite range interaction the integral in the above

expression becomes

\r2 j0{kfr)f(r)d3r^Anf^f''------ r4 dr

Using the identity

rsin(kfr) e~r/a 

0 kfr r/a

Jsin bxe-pxxndx =(-!)”
dj3’\b2+p:

, Re (5 > 0 and b > 0,

we evaluate the last integral in eq (2.3.51) as

fr2./o(V)/MrfV=^(-i)
9A A2y

-87ra
(x/-3)5 V-*/
(*/ + 1)3

(2.3.51)

(2.3.52)

(2.3.53)

1 k
with A = — and xf =—. a J A

Thus, the slope parameter of the curve of uT(k,p) in the limit »0 can be 

calculated from the expression

duT(k,p) M (eL-£l*)p a2 (x/~ 3)

3 ft" Po (x/+l)3
(2.3.54)

(ii) For any value of E:

We can have

™=A-(cW+M2C4)l/2 = Ch
8k 8k

m2c4^112

v /
and
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dux(k,p) 1 r M2C4> 
dF~~~Ch{ W~,

j[/c. (kr) ~ Jo(k/r)]./o(^/r)/(>0d*r >
a^[2p0J/(rM3r

£2 J 2p0jf(r)d3r
\rj\(kr)jo{kfr)f(r)d3r

(2.3.55)
For Yukawa form of f{r), the integral in the above expression becomes

j>-Mkr)j0(kfr)f(r)d3r = — 
kkj- k A2 +(k-kf)2

A2 +(k + kf)2

A2+{k + kf)2 A2 4

(2.3.56)

k + k j-

2.5. Work of Rizzo et al
The emphasis of the work of Rizzo et al. [84] in their work was to search for 

observational effects of the two opposite types of neutron-proton effective mass 

splittings in the interpretation of collective flow data through collision simulations. In 

the work, the simulation has been performed for the two opposite types of effective 

mass splittings by using an effective energy density that has been widely used for 

symmetric nuclear matter case. They have obtained the two opposite types of effective 

mass splittings by suitably adding a parameter, z,, to the momentum dependent part of 

the energy density, to be more specific, to the isovector part. The variation of this 

parameter results in the variation of neutron and proton effective masses keeping the 

symmetry energy and its density dependence unchanged. The compelling force behind 

this work of Rizzo et al. was the predictions of newly constructed Skyrme-Lyon 

interaction sets (SLy-force) [112] those predict the proton effective mass value higher 

than the neutron one, in contradiction to the predictions of earlier Skyrme sets. This 

predictions of SLy forces gained profound support at that time by the same finding of 

Hoffmann et al. [120] from the microscopic relativistic-Dirac-Brueckner (DBHF) 

calculations, although non-relativistic BHF calculations are leading to opposite 

conclusion [118, 162], The effective energy density in asymmetric matter used by Rizzo 

et al. is given by
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(2.3.57)
where,

(2.3.57a)

with i = n,p and the functional g(k,A) is given by

(2.3.57b)

In this eq.(2.3.57) for energy density, the first term is the kinetic energy term where 

fi(k), i = n,p are the respective Fermi-Dirac distribution functions and the last term is 

the momentum dependent term. This energy density is referred to as BGBD 

parameterization which reduces to the GBD parame:erization version, for = 0, 

proposed earlier by Gale, Bertsch and Das Gupta [50] in connection to the study of EOS 

in symmetric nuclear matter. The parameters A,B, C,cr and A are taken to be same as 

in the GBD parameterization version, namely, A = -\AAMeV , B = 203.3MeV,

C = -15MeV, cr = — and A=l.5pf\ pp being the Fermi momentum at normal

density, p0 = 0.16 fm~3. The energy density predicts an incompressibility in normal 

nuclear matter K(p0) = 2lOMeV . The value of the parameter z, decides the strength of 

the momentum dependence in the isospin channel. In terms our notation, a given z}

_i_ g

decides the splitting of the exchange strength parameter, ..&■, into two

different channels of interaction between the like nucleons and unlike nucleons. The 

rest two parameters xQ and *3 of the BGBD parameterization are adjusted to give the 

same value of symmetry energy at normal density, Es(p0)-33MeV, for the different 

cases of effective mass splitting considered in their work. The neutron and proton mean 

fields are now obtained by the functional derivatives of the BGBD energy density in 

eq.( 2.3.57) as,
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«» P £(*)
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(2.3.58)

with i*i' = n,p and the upper sign refers to neutrons and lower sign refers to protons. 

The last term, besides the GBD momentum dependence, contains an isospin dependent 

part which results into different effective masses for protons and neutrons. From the

definitions of effective mass, M*(k, p) = \i + M dUt~
M i=n,p fik dk

, the nucleon effective
t=H,p

mass in the present case of BGBD parameterization becomes,

M\k,p) 
M

, M d I C-8z, _ 
1+——<!e +-------- lp

n^kdk

M(„ C-8z. , ^

(JL|
kPo y

g(k)

1+-T- C±-. * l
1 dg(k)
k dk

(2.3.59)
1 dg(k)The factor —inside the square bracket for the GBD version of g(k) given in 
k dk

eq.(2.3.57b) becomes
2 {k- <k>)

1 dg(k) A2k
k dk

1 + k— < k >
(2.3.60)

v A y
Under the GBD parameterization the average momentum in all directions is considered 

to be zero, i.e. <k>= 0.

Hence, k-<k>
A

GBD (fa

k=kj
with i = n,p, which becomes

k— <k>
-

(kTo

k=k; kaj

2/3
API '
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where, the upper sign is for neutron and lower one is for proton and ky = 1.5k2p is the 

Fermi momentum in normal nuclear matter. The neutron and proton effective masses at 

their respective Fermi momenta for the present case is g:ven by

M'(k,p0)
M

k=k„

1+-

2M d C-8z 1
h2Az dk^ " p U>J

1 + vA,
2/3

(2.3.61)

where, upper sign is for neutron and lower one is for proton. Rizzo et al. have produced 

both types of effective mass splittings in ANM, the proton effective mass going above 

that of the neutron and vice versa, by adjusting the parameter z, appearing in the 

expression for effective mass in eq.(2.3.61). Two sets of values for zx, x0 and x3 are 

chosen, those give opposite neutron and proton effective mass splittings but provide 

almost similar behaviour of the symmetry energy Es (p), having the same value at 

saturation Es(p0) = 33MeV. In particular, they have chosen z, = +50, x0 =1.589 and 

x3 =-0.195 that give proton effective mass above the neutron one and 

zx =-36.75,x0 =-1.477 and x3 ——1.101 that give neutron effective mass above that of 

the proton. The potential part of the symmetry energy along with the separate 

contributions from momentum independent part and momentum dependent parts are 

shown in the Figure 2.11 for the two cases and the corresponding results of neutron- 

proton effective mass splitting are shown in the inside blocks of the respective figures.

Rizzo et al. have studied the flow observables, in particular the transverse and 

elliptical flow differences in Au+Au collision at 250 MeV, using the mean fields for 

these two cases and found them to be selective probes of momentum dependence of the 

isovector part of the nuclear EOS. In order to examine the effect of stiffness of nuclear 

symmetry energy on these flow observables, Rizzo et al. have produced relatively soft 

symmetry energy by adjusting the values of the parameters x0 and x3 while keeping the 

values of z, for the two cases to be the same. This way they could produce relatively 

soft density dependence of nuclear symmetry energy for the same neutron-proton
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Figure 2.11. Potential part of the nuclear symmetry energy plotted as a function 
of the relative density p / p0. Separate contribution of the momentum dependent 
part and momentum independent part are also shown in the figure. The left panel 
is for M* <M*p and the right panel is meant for M*n > M*. The figure is 
reproduced from the work of Rizzo et al [84],

effective mass splitting and have examined the effect on the flow observables. They 

have found that the observed effects are not changed by largely changing the density 

dependence of symmetry energy while keeping the momentum dependence of the 

isovector part of the mean field unchanged.

In another contemporary work[163], B.A. Li has studied the energy dependence 

of the isovector part of the mean field for the two cases considered by Rizzo et al. and 

have compared the results with the experimentally extracted results of Lane potential 

[152]. Li has also compared the isoscalar parts of the potentials for these two cases as a

function of density for four values of momentum k = 1, 2, 3 and 4 fm~\ with the 

results of realistic interaction UV14+UVII of Wiringa [66]. The figures depicting the 

results of Ii as obtained in the work of Ref. [163] are given in Figure 2.12. It may be 

seen that the results for isoscalar potentials for the two cases are same and compares

reasonably well with the realistic calculation up to k- 3 fm~x. However, the isovector
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Figure 2.12. Isoscalar potentials as functions of relative density. The 
results are compared with the results of realistic interaction 
UV14+UVIL. The figure has been reproduced from the Ref. [163].
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Figure 2.13. Isovector part of the nuclear mean at normal nuclear matter 
density, i.e, the Lane potential is plotted as a function of the energy. The 
experimentally extracted data is shown as the shaded region in the graph. The 
Figure is reproduced from the Ref. [163].
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part of the mean field at normal density, i.e., Lane potential, as function of energy is 

found to have completely different and opposite behaviour for the two cases as may be 

seen from Figure 2.13. Comparing with the results as depicted in the same figure, 

extracted on the Lane potential from the nucleon-nucleus reaction studies up to 

E = \00MeV , Li has given his opinion in favour of the neutron effective mass greater

than the proton effective mass, M* > M*, in neutron-rich dense matter.

Effective energy densities resulting into similar momentum dependent terms in 

their resulting neutron and proton mean fields, as in case of BGBD, have been used 

widely in the studies of EOS of ANM, in recent years “by Moustakidis [164, 165] and 

Moustakidis and Panos [166], In their works the authors have mainly emphasized on 

examining the contribution of the momentum dependent part of the neutron-proton 

mean fields at finite temperature, T * 0, to the various relevant properties of ANM. The 

energy dens ity used in these works for ANM is given by

(2.3.62)
where, the first term is the kinetic energy density defined through the Fermi-Dirac 

distribution functions, fx with t = n,p, for neutron and proton defined in eq. (2.3.57a) 

and the rest part is the interaction part with the functions tt defined as

(2.3.63)

It may be noted that the above energy density is similar to the energy density used in the 

work of Rizzo et al. given in eq.(2.3.57), except that here Moustakidis has taken two 

momentum dependent terms having two different range parameters A,=1.5£yo and

A2 = 3/cyo. The parameters A,B,cr,C!,C2 and B' have been obtained from the
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description of SNM and the additional parameters jc0, x3, z, and z, are constrained by 

empirical knowledge of ANM. Using this energy density given in eq.(2.3.62) and the 

nucleonic mean field resulting from it, Moustakidis have studied the effect of 

temperature on the symmetry energy and neutron and proton mean fields [164], In this 

work, Moustakidis have approximated the energy density of ANM in eq.(2.3.62) by a 

quadratic approximation

H(p,T,Yp) = H(p,T,Yp =1/2) + Hasy(p,T,Yp) (2.3.64)

where,

Has)l(pJ, Yp) = ( l- 2 Yp)2 p Es(p). (2.3.64a)

He has also calculated the equilibrium proton fraction Yp of the n + p + e matter under 

beta-equilibrium. In a subsequent work [165], Moustakidis has studied the effect of 

parameterization of interaction part of the symmetry energy, i.e., (p), as well as,

the momentum dependence generator fimction g (k, A) on the isovector part of the 

mean field and neutron-proton effective mass splitting by considering different 

functional forms for these two quantities. In this investigation, Moustakidis has

considered three forms of parameterized version of £'nt (p), namely,

eT(p)*-
P o P o

and two different forms of g(k, A ,•), namely,

and Ef(p)cc 2(p/po)
l + (p/Po)

g(k> A,) = 1 + k
A,

'N 2~ -l
( Ir') 2 "

and g(£,A,-) = 1-
) (A/)

Parameterization of the interaction part of the symmetry energy, Efx (p), into the above 

three forms have been done by adjusting the parameters x0,x3,z,and z3. In another 

work [166], Moustakidis and Panos have studied the equation of state of beta-stable 

n + p + e + p matter at finite temperature by using the same model. It may be 

mentioned here that the momentum and temperature dependence of nuclear mean fields 

resulting from the energy density used by Moustakidis and co-workers arise solely from 

the last term in eq.(2.3.62). The discussion can be more transparently seen by
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considering the case of SNM by setting [} = 0 and f„=:fp=f, for which the energy 

density of Moustakidis becomes

(2.3.65)

The single particle energy and nuclear mean field can be obtained by taking the
3Hfunctional derivative of the energy density, i.e., e(p,k,T) =----- , and we get,
d[f]

(2.3.66)

In this expression, the first term in the right hand side is the kinetic energy term which 

has quadratic momentum dependence and the rest terms give the mean field. The 1st and 

2nd terms of the mean field are functions of density p only ( independent of 

momentum k and temperature T); the third term of the mean field is dependent on 

density p and temperature T (independent of momentum k) which is responsible for 

accounting for the temperature effect of the interaction part and the last term of the 

mean field depends on density p and momentum k (independent of temperature T), 

which along with the kinetic energy term constitute the effective mass term. This type 

of density p, momentum k and temperature T dependences in the single particle 

energy expression is characteristic of the GBD approximated energy densities used by 

Moustakidis and co-workers as well as Rizzo et al.[84],

The GBD type momentum dependence in the mean field used in the above 

works of Moustakidis and Rizzo et al. can be obtained as an approximation of the 

general expression of the momentum dependent part of the mean field resulting from
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the two parameter Yukawa form of exchange interaction used in section 2.1 in the study 

of momentum dependence of isovector part of the mean field and neutron-proton 

effective mass splitting. The contribution of the finite range part of the exchange 

interaction to the energy density in SNM at a given density p and temperature T is 

given by

H(p,T)-> f/rM/r(*V|i_iV f(r)d'kd'k'd'r 

~JJ/,»/rW g(\k~k'\) d’kd3k'

where, g(|jt-£'|) is normalized Fourier transform of the finite range interaction f(r), 

which for the Yukawa form becomes,

1
*«(!*-*'I) =

1 + \k-k'\2

given in eq (2.1.78). Thus, the contribution to the energy density from the finite range 

Yukawa interaction part becomes

1\\fAk)fT{k')
1 + | k-k'\ 

A2

d3kd3k'. (2.3.68)

In this expression k and k' are the momenta of the two interacting nucleons. Under 

GBD approximation, momentum k is measured with respect to the average of the 

momenta k' for the particles in the neighborhood of k. Thus the above contribution 

under GBD approximation becomes,

1 ;3/'JJ/r(*)/r(*')
1 +

\k-<k’>\
d3kd3k' (2.3.69)

Now, under the normalization, d3k=p, the above expression further

simplifies to

1p\fAk)
' - |2

d3k.
1 + \k — <k’>\

A2

(2.3.70)

Now we compare the contribution of the exact expression in eq.(2.3.68) and GBD 

approximated expression in eq.(2.3.70) to the mean field in SNM. The contribution of 

the exact case is
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1 (2.3.71)pj/z-W
1 + \k-k'\

A2

dlk,

where as, that of the GBD approximation is

\fr(k) dik

1 + \k-k'\ \k-k'\2
(2.3.72)

1 +
A A

The contribution of the exact case as given above in eq.(2.3.71), has all the three 

functional dependence of momentum k, density p and temperature T. This coupled 

contributions of k, p and T warrants self-consistent evaluation at finite temperature. 

On the other hand, the contribution of the GBD approximated case, given eq ( 2.3.72), 

comprises of two terms, the first term is a function of temperature and density and the

second term is a function of density and momentum. This is the type of p, k and 

T dependence of the nuclear mean field obtained in the works of Moustakidis as well as 

Rizzo et al. For such GBD approximated case where the temperature and momentum 

dependence of the mean field have been decoupled, no self consistent calculation is 

required in finite temperature calculations.

The objective of all the studies of nuclear mean fields and EOSs discussed in our 

forgoing discussions mainly lies in its application to analyze the flow data produced in 

heavy ion collision experiments and/or to predict neutron star properties and its 

formation mechanism. In these works the thrust have been on the use of suitable 

effective energy density as well as the neutron and proton mean fields resulting from 

these energy densities which are capable of producing neutron-proton effective mass 

splittings of different magnitudes. In this context it is mentioned here that the neutron 

proton effective mass splittings of different magnitudes can be achieved from the 

variation of exchange strength parameters of the finite range exchange interaction 

acting between a pair of like nucleons and a pair of unlike nucleons. This has been
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shown in Figures 2.4(a) and (b) by considering a single Yukawa form of the finite range 

part of the interaction. We shall be mainly using this Yukawa form for the finite range 

part of the interaction in our subsequent studies. The effective interaction in complete 

form that will be used in our subsequent investigations is obtained by adding a zero- 

range density dependent part to the finite range part and is given by

r -> ~\f
vCr)=t„(i+x„P„)SCr) + ):h(\+xiP„)

o
P(R)

1 + bp(R)
S(r)

(2.3.73)

+ (if + BPa - HPX - MPaPz )■
-rla

rla

In this expression r = r, - r2, R =—(q + r2) are relative and centre of mass coordinates 

of the two interacting nucleons; W,B,H and M are the strengths of the Wigner,

Bartlet, Heisenberg and Majorana components; Pa 1+cf, -&2
Pr

1+?1 -h are

spin and isospin exchange operators respectively and a is the range of the finite range 

Yukawa interaction. This interaction in eq (2.3.73) is similar to the Skyrme type 

interaction except that the tx - and t2 - terms are replaced by the finite range term and the 

density dependent /3-term has been modified. The replacement of tx - and t2 - terms by 

the finite range term is essential so as to account for the correct momentum dependence 

of the nuclear mean field as extracted from the optical model fits in heavy-ion collision 

studies at intermediate energies [52-59, 67], The density dependence taken in the t3-

term of the Skyrme- type interactions have the form pr(R), whereas we have

r -> ir
considered it in the modified form having the denominator l+bp(R) with an

additional parameter b from the consideration of avoiding supraluminous behaviour of 

the nuclear EOS at high density which is a common feature observed with the typical 

Skyrme- type interactions constructed prior to the Sly type interactions. It may be noted 

here that Skyrme parameterizations have been very successful in predicting results at 

and around normal nuclear matter density, low isospin asymmetry and momentum upto 

Fermi momentum corresponding to normal density. However, they fail in their
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prediction of experimental/ empirical results when extrapolated to high density, high 

asymmetry and high momentum region. The finite range effective interaction in 

eq.(2.3.73) to be used in our present analysis of EOS of nuclear matter with particular 

emphasis to dense and highly isospin asymmetric case and at high momentum region 

contains altogether 11 parameters, namely, t0,x0,t3.x3,b,y,W,B,H,M and a. This 

interaction in its simple form in eq.(2.3.73) was developed by Behera et a/.[64] and has 

been used in the study of momentum and density dependence of the isoscalar part of 

nuclear mean field at zero as well as at finite temperature [64, 65, 67]. This interaction 

has also been used in the analysis of the momentum and density dependence of 

isovector part of nuclear mean field at zero temperature [153]. The motivation of the 

thesis is to search for constraints on the momentum and density dependence of isovector 

part of the nuclear mean field, which has not been possible on the zero temperature 

studies as will be discussed in chapter-IIL We shall study ANM at finite temperature 

using this interaction. For this purpose we shall discuss the fixation of the parameters of 

this interaction from the studies of symmetric matter and asymmetric matter under beta 

equilibrium in chapter-III. We shall also compare the zero temperature results of this 

interaction with the results obtained from different microscopic model

2.6. Conclusion
In chapter-II, we have reviewed the momentum and density dependence of 

nuclear mean field using the formalism developed by Behera et al. [64, 65, 67, 153, 

154], Under this formalism, it has been shown that the nuclear mean field as function of 

momentum and nucleonic density is the fundamental importance for the study. At Fermi 

momentum, the nuclear mean field describes the density dependence of nuclear EOS. 

Detailed derivation has been made in order to establish the fact. In this formalism, the 

exchange part of the finite range effective interaction accounts for the momentum 

dependence of nuclear mean field and thereby the neutron-proton effective masses in 

the medium. Using a two parameter Yukawa interaction, not only diverging but 

contracting behaviour of neutron-proton effective masses in neutron rich matter, as 

obtained by Behera et al. [153], has been worked out. Several parametrized sets for a 

given interaction are found in literature. While parametrizing the interaction for certain
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purpose, the momentum dependence aspect of the mean field is not being properly- 

taken care of. This has been explicitly demonstrated in the cases of different Gogny and 

Skyrme sets. With the gain of importance for the study of momentum dependence of 

nuclear mean field, it was required to vary the momentum dependence keeping the 

density dependence of the EOS unchanged. In case of Skyrme sets it was not possible 

till the work of Cochet et a/.[157]. Cochet et al have shown that this could be possible 

in case of Skyrme sets by considering more than one density dependent term in the 

interaction. Subsequently, Leisinski et al. [131] have attempted to constrain the 

momentum dependent aspect of nuclear mean field using Skyrme interactions with the 

prescription of Cochet et al[157]. The works of Cochet et al. and Leisinski et al have 

been reviewed in this chapter. The analysis of flow data from heavy ion collision 

experiments through transport model has motivated Li et al. [81] and Rizzo et al. [84] in 

attempting to constrain these two important aspects of nuclear mean field. With the 

advent of producing the different density dependent nuclear EOS having same 

momentum dependence of nuclear mean field and the other way around, they have 

constructed phenomenological energy densities. The works of the Li et al. [81] and 

Rizzo et al. [84] have been reviewed in good detail. The momentum dependence of the 

isovector part of the nuclear mean field resulting from the work of Li et a/.[81] has been 

compared with that of Behera et al. The analytical expression for the slope of 

uT (k, p0) has been derived. The contribution of the finite range part of the interaction

to the energy density under GBD approximation has been derived and used in reviewing 

the works of Moustakidis and co-workers [164, 165,166].
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3.1. Finite Range Yukawa Interaction and EOS of ANM
In this chapter we shall obtain the equation of state of asymmetric nuclear matter 

using the finite range interaction having Yukawa form given in eq.(2.3.73) in the last 

chapter. The EOS of ANM involves altogether nine adjustable parameters expressed as 

combinations of the eleven parameters of the effective interaction. The energy density, 

H(p,Yp,T), at density p, asymmetry (1 - 2Yp) and temperature T for effective 

interaction in general form is given in eq.(2.1.9) in the previous chapter. The expression 

of the energy density resulting from the density dependent finite range Yukawa 

interaction in eq.( 2.3.73) is given by

H(fi,Y ,T) = J[/r (&) + //(k)](C2nk2 + M2C*y 2 ak

+-
1 1L+ e

Poy+1
r p
V1 +bp

y

) (,pI+p2p)+ ^ S.
*T

ui / \y( P '

Po P Y+l .1 + bp P„Pt

(*)/;(* ')+fTp(k)f' (k')gj\ k -k' i) d*k d3k'
2p0

+ (k)frP(k') + fTp{k)f” (k')gex(\ k-k' \)d3k d3k'
2P0

(3.1.1)
where, f£(k), r = n,p, are the respective Fermi-Dirac distribution functions and 

Sex (I k - k' |) is the normalized Fourier transform of the finite range interaction given in

1eq.(2.3.73), which for the Yukawa form becomes gex (\k -k' |):
1 4-

lit-jfc'i

b,y, e', £p', £.', £.“', e[x, £uex and a are the nine adjustable parameters required for

complete description of ANM. The new parameters e!0, £0u/, £y, £y, e[x and £UJX in 

terms of the interaction parameters t0, x0, , x3, b, y, W, B, H, M and a are expressed by

eo = Po

eo =Po

-(l-x0) + 4 m:

-(2+x0) + 4m'

B MW+—-H 
2 2

BW + 
v 2

(3.1.2a)

(3.1.2b)
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e7 =P0+1

£y = PV

“(1-X3) 12 3

Ii(2 + X3)

/ . 3 (t. W H _|eL =4® Po^A/ —~+~ S I’

=4m3p0fM+-^

(3.1.2c)

(3.1.2d) 

(3.1.2e)

J
(3.1.25

The neutron-proton single particle energy resulting from this energy density in 

eq.(3.1.1) can be given by

en(p) (p, Y ,k,T) = (C2fi2k2 +M2C4)U2 +

^+<Lf_P v

Po Po
7+!

/" ^ \

^1 + bp j Pn (P)

po prl{'+bpV
Pm +~f\fr(P){k') gex{\k-k'\) d2k’

zp0

+-
2p0

l//(n)(^') gex(\k-k'\)d2k'+uR{p)

(3.1.3)
where, uR(p)is the rearrangement energy that arises from the explicit density

dependence of the interaction and for our interaction in eq.(2.3.73), it is given by

ur(p)-
I /„2 , »2\ nitl

3 _ pnpp
B7 yPn+Pp) Er

Pi" 2 PS-

At zero temperature, T = 0, the neutron and proton Fermi-Dirac distribution functions 

reduces to step functions,

17+1
7P 7-1

(1 + bp) 7+1
(3.1.4)

/r.o (*) - -*). * = »,/>
(2k)

where, £ =2 is the spin degeneracy factor, £„ =(3n2p„)rn and kp = (3n2 pp)in are 

respectively the Fermi momenta corresponding to the neutron and proton densities pn 

and pp.

The expression for energy density in ANM, at zero temperature (T=0), for the 

finite range Yukawa interaction (2.3.73) becomes,
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H(P,rp)=^Y£ E ■yfaS'-w-Wx.+U')}
t=n,p\_Xx

1
+ - 

2

jF‘ E1 (±0-+-—L
Po Po

f

y+l
P

vl+^Py

V
(Pn+Pl) +

-ill c'(/
£o_+£x_

7+1

+ -

^Po
pH ViiKr) 

v V y

\2 r/a

r/a
dlr + pl\

Po Po

Vi(kpr)

P
K\+bpj

V
P»Pt

(o .• -r/a

F"l V / r/a
-d3r

,ul
+tp-PA *,/

3./,(^r) 3^!(^r) e-r/a

k r r/ap
-drr

(3.1.5)

with xt=—uT = (1 + xT)l/2, y, (/cTr) with x = n,p are first order Spherical Bessel 
MC

functions.
The neutron single particle energy, for the finite range interaction having 

Yukawa form, considered in the present work, becomes

e"(k,p,Y ) = (C li k +MC) + +-

Po P(y-rf

+—P„ Jj„(k„r) 
Po

+ uR(fi).

3ji (k„r) 
kr

Y -r/a

l+bp 

e:

p +
ul £‘“

£°_ + br
Po Po7+1

V

l+bp)

r/a
-dir +

Po
PP\jAkpr) 3h(kpr)

. Kr J

-r/a

r/a
-d\

(3.1.6)
The proton single particle energy Ep(k,p,Yp) can be written from the above 

expression for neutron single particle energy by interchanging n and p i.e. n++ p in 

the right hand side of the equation. These expressions of neutron and proton single 

particle energies can be written in terms of the mean fields as

£n{p) (k, pjp) = (C2n2k2 +M2C4)u2 + un{p) (k,p, Yp) (3.1.7)

where the first term is the kinetic energy of neutron( proton) under consideration and 

the rest part can be identified as the respective mean fields, (k,p,Yp). In the 

expressions for energy density and mean fields the exchange integrals (integrals 

associated with the terms containing e1̂ and e£) can be evaluated analytically. The
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complete description of ANM now requires the knowledge of the nine parameters 

b,Y,EQ,e‘Q ,e!y,ey and a as discussed earlier. We shall now consider the case

of symmetric nuclear matter in order to constrain the possible number of parameters 

from the empirical and experimental data available.

3.2 Symmetric Nuclear Matter

The energy density H(p,T) and the single particle energy e(k, p,T) in SNM at 

finite temperature can be obtained from eqs.(3.1.1) and (3.1.7) by

substituting fj{k) = fj (k) =-^ fT(k) and pn = pp =•£ in these equations and are given

by

(£'+£'") P2 (£J+<) p
H(p,T) = \fT(k){C2h2k2 +M2C4)1/2 d2k +

,y+2
+

+ (£*,,„ 1 JJt/r(*)/r(*')*. (I i-i' I)d3k d3k
o

4 Po 4p^+l (i+bPy

3, t

and
(3.2.1)

e(p,k,T) = (C2h2k2 +M2C4)112 +u(k,p,T) (3.2.2)

with u(k,p, T) being the mean field in SNM at finite temperature and is given as

u(k,p,T)-
(£0+£Q/) „ . (£y+£7 K

2p0 2P(
7+1

Y+l-2-f (i+bP+b+^y^ifT(k')&x(.\k-k'\)d!k.
l+bp) 2 2p0

We shall hence forth identify the strength parameter combinations as

fio =
(£o+£o/) (e ly+e?) (£«+e«)

=

(3.2.3)

(3.2.4)

At zero temperature, T = 0, the energy density H0(p) and mean field u(k,p) in SNM 

become,
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(3.2.5)
Ho(P)

3 MC2p 
8x,

fylXfU 3 - xfuf - ln( xf + u f)}

+ io.P_ + ^l r „ v
2 p0 2p y+i V1 + bP J

p2+-^p2J(p) 
2Po

and

u(k,p)=£0-£- +
°Po Po+1

( „ y+1

{l+bp)
(l+bp+h+e P-i(k,p) 

2 Po
where the functional J(p) and I(p) are

J
j(p)

3/i (kf r))‘ e~rt« d3 r
K kfr r/a

-r la
f-------d\
J r/a 

3 A6 9A4
v32 k} 8 k4f

\ (
1+ /In

J A2^ / 8 kj 4k f k}
-tan

(3.2.6)

3A4 9A2 3A3 . _/2k, A

v A ,
(3.2.7)

and

\Ukf)
('•si /!„ -a'N"rV\(k/r) \ e~rla .3

V V 7 r/a
d5r

-r/ar& ,3f----- </V
J r/a

3A2(A2 +kf2 -k2)' \rt+(k+kf)2} 3A2 3A3 j

8M/
-fa >+-

A2+(*-^/)2j 7kj1 2k/
tan

rkJrkf'
-tan1

k—kf^

l A 7 l A J
(3.2.8)

Mr
with xy =~; > uf = 0 + Xy)1/2 and kf = (1.5 n2 p)1/3 being the Fermi momentum i

SNM and A = ~, a being the range of the finite range interaction. 
a

The energy per particle in SNM at T = 0, for our interaction given in 

eq.(2.3.73), can now be expressed as

/ _ V

m

Mp)
3MC
8x,

{2XyWy -XfUf -InfXy + Uj )} + ~— H-----
2 Po 2Pr V1 +bPj

+ ^PJ(P)
2p0

(3.2.9)

92



From these equations it is evident that complete description of EOS of SNM requires 

the knowledge of six parameters b,Y,e0,er,eex and a which can be adjusted from the 

saturation condition of normal nuclear matter and from the available empirical and 

experimental data.

3.2.1. Parameter fixation in SNM
Out of the six number of parameters, the two parameters and a which are

involved in the momentum dependent part of the nuclear mean field in SNM are 

constrained by adopting a simultaneous minimization procedure, as discussed in the last 

chapter, so as to give a correct behaviour of momentum dependence as extracted from 

optical model fits to nucleon-nucleus scattering data at intermediate energies [52-59, 

67]. The mean field thus obtained reproduces the results of the realistic interaction quite 

accurately over a wide range of momentum and density, as has been shown in Figure

2.3 in the last chapter. The effective nucleon mass,
M*(k = kf,p0) 

■M
in SNM at normal

density, is predicted to be 0.67.

The parameter b appearing in the denominator of the density dependent term of 

the interaction is constrained so as to avoid supraluminous behaviour of the SNM at 

high density. As discussed in Ref [65], the constraint on the parameter b results into 

the expression,

bp0 *
MC2 \ 7+1

A <Po)
(3.2.10a)

where,
MC2
4x

3 [3x^1^ + 2xfuf - 3 ln(xy + uf)\ (3.2.10b)
P=Po

MC2 is the rest mass energy of the nucleon, e0 (p0) is the energy per particle at normal

density p0. The remaining two strength parameters £q and £y can be obtained from 

the saturation conditions of SNM. In the present work, we have taken standard values of 

MC2 =939 MeV, energy per nucleon in SNM e0(P0) =923 MeV and
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{C2Ti2k2^ +M2C4)u2 = 976MeV (corresponding to p0=0.1658 fm'3). The exponent 

y determines the stiffness of the EOS of SNM at high densities and can be constrained 

by using the pressure-density relationship extracted from analysis of flow data in high 

energy heavy-ion collisions [68] and depicted in Figure 3.1 by the bounded region in 

the density range 0.32 fin-3 < p <0.736 fin-3 (i.e., 2.0 < p/p0 < 4.6, with p0 = 0.16 

fin"3 ). In the same figure pressure-density curves calculated with the Yukawa form of 

interaction for different values of exponent y are also shown for comparison. It can be 

seen from the figure that the experimentally allowed region approximately constrains 

the value of y in the range 1/12 < y < 1. While all EOSs of SNM in this range of y 

give similar results at saturation and sub-saturation densities they differ considerably 

from each other when extrapolated to high densities. It may be noted here that the two

parameters £q and ey diverge rapidly when y decreases below 1/12 and approaches 

the catastrophic region of the EOS as y -*0. Transport model calculations have also

Figure 3.1. Pressure-density relations for five different EOSs of SNM with y 
=1/12, 1/6, 1/3, 1/2 and 1 compared with the EOS of Danielewicz et al. [68] 
extracted from flow data in heavy-ion collisions and depicted by the bounded 
region.
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demonstrated that subthreshold Reproduction in high energy heavy-ion collisions can 

provide a suitable tool to constrain the EOS of SNM at densities p < 3p0[167-169]. 

Theoretical analysis of the subthreshold IC production data implies behaviour of the 

EOS in the considered density range is consistent with the flow data constraint shown in 

Figure 3.1.

The behaviour of EOSs of SNM around normal density p0 is determined by 

energy per particle e0 (p0) and incompressibility K(p0). While different theoretical 

models predict similar values for e0(p0), they differ widely in the values of K(p0). 

The value of K(p0) for the allowed range of y in Figure 3.1 varies fom 190 MeV to 

287 MeV. It may be noted here that the centroid energies for giant monopole 

resonances in finite nuclei depend mainly on the value of K(p0) [42, 87, 170-171]. 

Studies on monopole vibrations in heavy nuclei using Gogny-type effective interactions 

[42] as well as Skyrme-type interactions [14, 172-174] have approximately constrained 

the value of nuclear matter incompressibility K{p0) in the range 200 MeV to 240

MeV. This range of K(p0) constrains the value of y in the range 1/6 to 1/2 for the 

interaction in eq.(2.3.73). In a recent work [175], employing the Lagrangian models 

such as non linear- a model (NLct ), the scalar-vector interaction model (SVI) and the 

<7 -w coupling model(SIGO) to analyze the breathing mode giant monopole resonance 

for the nuclei 208 Pb, mSn, %Zr, 4sCa and 40Ca( which cover a broad range of nuclear 

mass), Sharma has predicted that the nuclear matter incompressibility at saturation 

should be around 272 MeV. This value of nuclear incompressibility corresponds to a 

value of y somewhat close to 1 for our interaction. However, in order to study the 

effect of momentum dependence on the nuclear EOS and nuclear mean field we shall

use Y~— which corresponds to nuclear matter incompressibility K(p0) = 240 MeV and

the P~ p curve for this value of y passes almost through the middle of the P~ p 

region experimentally extracted from the analysis of heavy-ion collision flow data.

The supraluminous behaviour is a serious defect of the nuclear effective 

interactions. At least within the density region of the nuclear matter where the
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Figure 3.2. The velocity of sound in SNM as a function of density p for five 
different values of the exponent y =1/12, 1/6, 1/3, 1/2 and 1.

Table 2. Values of interaction parameters in SNM.

Parameters in SNM
7

1/2

b [fin3]

0.5668

a [fin]
[MeV]

0.4044 -121.84

[MeV]

76.91

eo
[MeV]

-57.86

interaction is used for studies of nuclear matter properties, should be free from this

supraluminous defect, i.e., the velocity of sound within that density region should not

cross the value of the velocity of light in vacuum. In our case, for all the five values of

y , the interactions do not show any supraluminous behaviour and the values of

velocity of sound for all values of y, remain well below the value of velocity of light

in vacuum up to quite a high range of density, as shown in the Figure 3.2. This is due to

the fact that this important aspect has been taken care up by suitably modifying the

density dependent term of the interaction. The values of the six parameters

b,y,£0,er,ea and a thus determined for the study of EOS in SNM are given in table

2. Considering the range of the interaction between a pair of like nucleons (p-p, n-n) to
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be the same as that of a pair of unlike nucleons (i>p), we need to know how the strength

parameters £ex = (s+ £^)/2, £y= /2 and £0 = (£q + £q1 ) 12 split as we

go from symmetric matter to isospin asymmetric nuclear matter.

3.3. Parameter fixation in Asymmetric Nuclear Matter

Once the parameters b, y, a, £ex = (sj.x + sjfx)/2, £y= (By + £y) 12 and

£q={£q+ Eq)[2 are fixed by the mean field properties and EOS of SNM, the 

complete calculation of neutron and proton mean field properties and EOS of ANM 

would require the correct splittings of the three parameters (SgX + £“1) > (go + so ) and

(s'y + s“*) into two specific channels for interactions between like (1) and unlike (ul) 

nucleons. However, there are no experimental/ empirical constraints on the splittings of 

these three combined parameters except for the value of nuclear symmetry energy

Es(p0) at normal density. Different choices of these splittings can therefore lead to 

extremely divergent and even contradicting results on the momentum and density 

dependence of isovector part of nuclear mean field, ut(k,p ). For example, the sign of

the combination (e’x- £ex) determines the nature of splitting of neutron and proton 

effective masses [154], In this context we note that momentum dependence of the Lane 

potential [152], Vj = 4uT (k, p0) at normal density p0, has been extracted from nucleon-

nucleus scattering data upto 100 MeV [121, 122] and has been used to constrain the 

isospin splitting of nuclear mean field [124, 163]. This is shown in Figure 3.3 by the 

bounded region which indicates that ur(k,p0) has a value of about 28±6 MeV at k = 0

and decreases as a function of k. It may be noted that the experimentally extracted 

results on the energy dependence of uT(k,p0) show a decreasing trend supporting the 

fact that neutron effective mass goes above the proton one although the data is available 

upto energy 100 MeV and is associated with large uncertainty [121-123]. This 

decreasing trend of «T (k, p0) with momentum k is also the theoretical predictions of 

Brueckner-Hartree-Fock (BHF) calculations [118, 124] and of the non relativistic 

effective theories till the construction of Sly series [112, 125, 126] of Skyrme
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parameterizations. The confusion on neutron and proton effective mass splitting became 

complex with the prediction of DBHF calculation in Ref. [120] that proton effective 

mass lies above the neutron one. It was clarified in the works of Refs. [127,128] that by 

considering the energy dependence of self-energy and comparing the non relativistic 

effective mass with the vector effective mass in the relativistic framework [129], the 

DBHF calculation also predicts the neutron effective mass above the proton one. This 

was further confirmed in the DBHF calculation in Ref. [130]. In view of this it is almost 

the consensus opinion that the neutron effective mass in a neutron rich asymmetric 

matter will lie above the proton one. There have been attempts to constrain the effective 

mass splitting from the study of observables sensitive to the isovector features of the 

nuclear EOS [81, 84, 131], but the task has not been accomplished yet and the 

magnitude of effective mass splitting still remains as an open problem.

3.3.1. Constraining the splitting of the parameter (e^. + e"')

For the above mentioned purpose, the functional, uT(k,p0), is calculated as a

function of momentum k from the relations given in eq.(2.3.47) for the present

interaction in eq.(2.3.73) with different splittings of (e^. +e^) into e^and g"!, where

we have used the standard value of symmetry energy at normal density,
*

Es(p0)-30MeV, the value of effective mass, ----^-’—-=0.67, in SNM of the

interaction and the results are given in the Figure 3.3. The results of DBHF [130] and 

BHF with three body rearrangement force [124] is also given in the same figure for

comparison. The curve for e'ex= (slex + £“*)/ 6 in our case is in close agreement with the 

DBHF result, whereas, in case of BHF results, there is a reasonable agreement with our 

case of elex= [e[x +£"*)/3 within the experimentally extracted region. Since, in the case 

of the splitting, e!ex= (e^. +£“*)/6, the curve of ut(k,p0) in the low momentum region 

lies close to the upper boundary of the experimental results we have considered it as one 

case for our study. For values of s!ex less in magnitude than this value the curves will lie 

well outside in the experimentally extracted data at low momentum region. The other 

extreme case considered here is elex=e1̂  for which the neutron and proton effective
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Figure 3.3. ur(k,p0) as a function of k is shown for different splittings of 
(e« + e£) within the range = (e^ +s^)/6 and (e'x + £“x)/2 considered in 
the work. The experimentally extracted data is shown by the closed area. The 
results of DBHF [130], BHF [124] are also shown.

masses calculated as a function of momentum k at given temperature T, total nucleon 

density p and proton fraction Yp in ANM will be the same. Beyond this limiting value,

£lx = £ex' t^ie exchange interaction between a pair of like nucleons become stronger 

compared to that between a pair of unlike nucleons resulting into the proton effective 

mass above the neutron one which contradicts to the predictions of various microscopic 

models on neutron and proton effective mass splitting.

3.3.2. Constraining the splitting of the parameter + e"') and

(4+<)

3.3.2. (a) Role of Symmetry Energy in /3 -stable matter and EOS of NSM

For a given splitting of (£^ + £^) into £px and e“x, the complete study of

ANM requires the splittings of the other two combinations (£q + €q ) and (s!, + £jf ) 

into two different channels for interaction between two like and unlike nucleons. While 

different theoretical models predict similar values of Ef P0) they widely differ in the

99



values of e,(P0) =
dEs(p) 

dp
which is directly related to the slope of the

JP=Po

symmetry energy at normal density p0. We have used these two nuclear matter 

properties in deciding the splitting of the parameter combinations (£g + £q ) and 

(£y + £y ). In this context, we assume a given splitting of (e^ + e”1) into e[x and £"'x

take a standard value of e (P0) that decide the splitting of one of the two parameter

combinations and then assign arbitrary values to Es(Po) that decides the splitting of the 

rest one parameter combination. The EOSs of ANM corresponding to the different 

values of e’s( P0) thus obtained will give different high density behaviour of nuclear 

symmetry energy Esip)- hi order to constrain the EOS of ANM out of these infinitely 

large numbers of possible EOSs, we have calculated, in each case of these EOSs, the 

equilibrium proton fraction in charge neutral n + p + e+p matter under beta 

equilibrium, i.e., neutron star matter (NSM) that is the major composition of the interior 

of normal neutron stars. As will be shown in the followings the asymmetric part of the 

nuclear EOS, more specifically the nuclear symmetry energy, is crucial in determining 

the equilibrium proton fraction in NSM, and hence plays the crucial part in the 

composition and cooling mechanism of the neutron stars.

The conditions for beta equilibrium is

and charge neutrality condition is

Pn-“ M p i^e fj j
(3.3.1)

V= 74-7 x e ~ * jt (3.3.2)

where, ph i = n,p,e,p, are the corresponding chemical potentials and

PiYj = —, i = p,e,p, are the respective particle fractions. In the followings we shall 
P

show that these conditions completely depend on the asymmetric part of the nucleonic 

energy density.

The isospin symmetry of nuclear forces allows to expand the energy density of 

asymmetric nuclear matter, H(p, Yp), in even powers of asymmetry (1-27^),
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H(p,Yp) = H(p) + Hs(p)(l-2Yp)2 + terms involving higher even powers of (1- 27^).

(3.3.3)

It is a well known fact that the contributions of the higher order terms, (1-27/ with

n> 2, is very small and the quadratic approximation of the infinite series in the right 

hand side of eq. (3.3.3) is a very good and quite accurate approximation [ 117, 164, 166, 

176, 177],

Under this quadratic approximation, we have

H(p,Yp)=H0(p) +Hs(p)( 1 -21 pf (3.3.4)

Now as the symmetric nuclear matter and pure neutron matter constitute the two 

extremes of the asymmetric nuclear matter, corresponding to the limiting values of

Yp =~ and 0 respectively, we can identify H0 (p) as the energy density in SNM and

Hs (p) to be the difference of energy densities in PNM and SNM,

Hs(p) = Hn(p)-H0(p) (3.3.5)

Using the fact that Hn(p) = pen(p) and H0(p) = p e0(p), where, en(p) and e0(p) 

are the energy per particle in PNM and SNM, respectively, we can write Hs(p) as

Hs(P) = pk(P)-e0(p)]. (3.3.6)

The energy density in ANM given in eq.(3.3.4) now becomes

H(p,Yp) = pe0(p)+( 1 -27/ p[en(p)-e0{p)\ (3.3.7)

and comparing it with the conventional expression for 

H(p,Yp) = peQ(p)+(l-2Ypf pEs(p), 

we can identify the nuclear symmetry energy Es(p) by,

Es (P) = en (P) “ (P)- (3-3.8)

The validity of the quadratic approximation at zero-temperature, t = 0, can be examined 

by calculating energy per particle in ANM at given density as a function of asymmetry

(1 - 2Yp )2. This is shown in the Figure 3.4 for different densities.

The neutron and proton chemical potentials, pn and pp are defined as
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Figure 3.4. The energy per particle in ANM relative to the energy per particle in 
SNM is plotted as a function of the square of the asymmetry parameter for 
different nuclear matter densities. The linear curves show the quadratic 
dependence of the energy per particle on the asymmetry parameter.

and

Pn
dH(p,Yp)

(3.3. 9a)

dH(p,Yp)

p sPp
The difference of the neutron and proton chemical potential can be expressed as

1 dH(P,Yp)

(3.3. 9b)

P„~PP =- dYnP

which fcr the energy density H(p,Yp ) ineq.(3.3.7) becomes

p„-/up=4(l-2Yp)Es(p).

(3.3.10)

(3.3.11)

The electrons and muons present inside the neutron star core can be treated as non 

interacting relativistic Fermi gas and the electron and muon chemical potentials are 

given by

Pi = (c2h2kf +Mf i = e,p (3.3.12)
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kj being the Fermi momentum of the respective leptonic system and is given in terms

of the leptonic density as kt =(3w2p, |/3. The conditions of the charge neutral beta 

stable matter are now given as

4(1-2 Yp)Es(p)-.
C2h2(37t2pYe}n +M2C4]n =[c2n2(37t2pYfJ)2n +M^C4]/2

(3.3.13a)
and

Yp=Ye+ Yp. (3.3.13b)

From the above two equations it is evident that at a given density p, if the value of 

nuclear symmetry energy Es(p) is known, then both the equations can be solved 

simultaneously to get Yp, Ye and Yp at that density. Hence it is the asymmetry part of

the nucleonic energy density of the neutron star matter that solely determines the 

composition of the normal neutron stars. With the knowledge of nucleonic (protons and 

neutrons) and leptonic (electrons and muons) fractions, the energy density and pressure 

of the nucleonic part can be calculated for the EOS of ANM gven in eq.(3.3.4) and the 

leptonic counterparts are obtained from the non-interacting relativistic Fermi gas model. 

The total energy density and pressure of NSM can be given as,

hnsm = Hn {p,Yp)+He{p,Ye) + H^(p,Yp) (3.3.14)

pNSM =PN {pjp)+pe{p je)+P^{pj^, (3.3.15)

These quantities IiNSM and pNSM are the inputs to the hydrodynamic equilibrium 

equations of neutron star, known as To lmann-Oppenheimer-Volkov (TOV) equations,

dP
dr

= -G £+-

. 3 Pm + Anr5 ——
_______ C2

r(r - IGm/C1)
(3.3.16)

M = \A%r1Edr (3.3.17)

which are solved to obtain the mass and radius of neutron stars. In these equations £ is 

the energy density, m(r) is the gravitational mass inside the radius of sphere r, M is 

the gravitational mass of the star and G is the universal gravitational constant. These 

equations are solved from the interior of the star to its exterior where P(R) = 0 and 

m(R)=M, where R is the radius of the star. The TOV equations are integrated for a
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given value of the central density ec and can be solved when the relation 

P(r) = P(£(r)) between the pressure and the energy density is known at each point. 

That means the structure of the star depends upon the EOS of NSM. Thus it is the 

density dependence of nuclear symmetry energy Es(p) that is crucial in determining 

the structure and composition of the normal neutron stars. However, the high density 

behaviour of nuclear symmetry energy is still a standing question to be answered and as 

mentioned earlier the predictions of different models are not only divergent but also 

contradicting. In a recent work, Klahn et al. [151] have examined the abilities of 

several relativistic EOSs, very much successful in predicting the results at normal 

nuclear matter density, in reproducing the constraints resulting from recent observations 

on neutron star phenomenology and constraint resulting from the heavy ion collision 

(HIC) experiments. They have found that none of the EOSs could reproduce more than 

50% of the tests. However, they have observed that the EOSs which remain at the top of 

the test, their asymmetric contributions of the nucleonic part in NSM form a close 

group although their density dependence of symmetry energies differ considerably in a 

wider range. In the following we shall show that in case of our EOS of ANM given 

eq.(3.1.5) we can obtain widely varying high density behaviour of nuclear symmetry

energy by considering different splittings of the strength parameters £n =-

£n+ £
ul

and

£y + £y
£y =----------  into like (1) and unlike (ul) channels where all of these EOSs have the

same value of nuclear symmetry energy at normal nuclear matter density, Es(p0). Out 

of these large number of EOSs obtained from arbitrary splittings of the parameters e0 

and zy, we find a group of EOSs giving almost the same asymmetric contribution in 

NSM.

3.3.2.(b) Universal High density behaviour of the asymmetric contribution of 

nucleonic part in NSM

Earlier it has been shown that different splittings of the exchange strength

eL +parameter £ex ------------- into like and unlike channels solely account for the different
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neutron-proton effective mass splittings in ANM and we shall consider two 

representative values of this splitting. We shall examine the high density behaviour of 

nuclear symmetry energy for these two representative cases of effective mass splitting 

which may give us an insight into the measure of influence of momentum dependence, 

if any, on the density dependence of nuclear EOS. In obtaining the different splittings of 

the strength parameters e0 and ey into the like and unlike channels, we have assumed a 

standard value for Es(p0) that decides the splitting of one of the two parameter

combinations and then assign arbitrary values to E’s (p0) = p0 dEs(p)
dp Po

that decides the

splitting of the rest parameter combination. In the present work, the symmetry energy 

Es(p) has been calculated as the difference between the energy per particle in PNM 

and SNM, where the expression for the energy per particle of SNM is given in 

eq.(3.2,9) for our interaction given in eq,( 2.3.73 ). The expression for the energy 

density in PNM at T = 0, for our interaction , is given by

Hn (p) = -ftp.£ {2xnu] -xnun -ln(x„ + un)}
oX„

1 „2 f+ *L£L+5l-P7+12 Po 2 p0‘ VJ 
so that the energy per particle in PNM is 

3 MC2

+ £^P_jN(p)
l+bp) 2 p0

(P) = “TT- “ XnUn ~ + U„ )}
8x,

+£L£_+i_£. + fa.(p)

where,

JN(P) =

2 Po 2 pj*\l+bp) 2 p

3A4 9A2 3 A3f 3A6 9A41 InI . 1 + _l[[32*: 8k4„) l A2 J u:+'4kt -tan
r 2k ^

v Ay

(3.3.18)

(3.3.19)

(3.3.20)

with k„=^>n2p]/3 is the Fermi momentum in PNM at density p, x„ and

un =(l +xn2)in. Here we have taken the standard value of Es (p0) =30 MeV that 

determines splitting of one of the two parameters e0 and eY into like and unlike
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channel and the splitting of the other parameter is constrained from the assigned value 

of E's(p0). The different density dependence of Es(p) thus obtained for different 

representative values of E's (p0) for the two cases of effective mass splitting

e i
ex

£t + £Ulcex T cex and £
g/ t glrf 
°eir ' cev discussed earlier in this section, are shown in

Figures 3.5(a) and 3.5(b) respectively. For each EOS in both cases of effective mass 

splitting, the beta equilibrium proton fraction Y have been calculated by solving the 

eqs. (3.3.13a) and (3.3.13b) simultaneously by adopting an iterative procedure. The 

equilibrium proton fractions Yp thus obtained as a function of density p for the two

cases of e'a have been shown in Figures 3.6(a) and 3.6(b). With the knowledge of 

proton fraction Y , we can calculate the nucleonic part of the energy density,

HN(p,Yp), in charge neutral beta stable n + p + e + fl matter, i.e., neutron star 

matter, by the help of the equation for ANM given in eq. (3.3.4). Now the asymmetric 

contribution of the nucleonic part in neutron star matter can be calculated by subtracting

Figure 3.5. (a) High density behaviour of nuclear symmetry energyEs(p) for

e’ex = (e[x + ) / 6 at different slope parameters of the nuclear symmetry

energy, (b) The same as (a) for e^. = {e[x + e^)/3. The value of the slope 
parameter E's (p0) is given in the unit of MeV.
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Figure 3.6. (a) Equilibrium proton fraction Yp in Neutron Star Matter for 

£ex ~ (eL+ e«)/6 at different slope parameters of the nuclear symmetry 

energy, (b) The same as (a) for £gX = (£lex + £^)/3.

Figure 3.7. (a) Asymmetric contribution to the nucleonic part of energy density 
in Neutron Star Matter for£lex = (£lex + £^)/6 at different slope parameters of 

the nuclear symmetry energy, (b) The same as (a) for £lex = (£*ex + £UJX)/3.
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(3.3.21)

the energy density in SNM from IIN (p,Yp) and we get,
(p, Yr )= \h»(p, rp )■- H(p, Yp = 1 !7)\

SNSM (p, Yp ) as a function of density p is calculated for the different EOSs of ANM

and is shown in Figures 3.7(a) and 3.7(b) for each of the two cases of £'x. It is seen that

in eachcase of splitting of £ex, there is a critical value of E' (p0) for which the density

dependence of SNSM (p,Yp) is a maximum over the range of density considered and 

also it remains almost stationary within a narrow range around this critical value of 

E's(Po)- This is shown in Figure 3.8(a) for the case £'a = 2{e'ex + £^)/6, where we 

have shown the density dependence of SNSM (p, Yp) for the range of E's (p0) for which 

SNSMip,Yp)remains almost the same. In the adjacent two figures we have shown the 

curves for density dependences of symmetry energy Es (p) and proton fraction Yp (p) 

for the EOSs corresponding to the same cases of E's (p0) considered in the first figure.

Figure 3.8. (a) Asymmetric contribution to the nucleonic part of energy density 
in Neutron Star Matter for s!ex ~2(elex+ e'‘x)/6 at different slope parameters of 
the nuclear symmetry energy (b) The nuclear symmetry energy as function of 
density for the same case of £^. and (c) the corresponding equilibrium proton 
fraction Yp(p) as functions of density p.
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Table 3. Critical values of Es(pn,T = 0) for the three different cases of effective mass

splitting as obtained from the stiffest high-density behaviour of SNSM (p,Yp,T = 0) in 
NSM and the interaction parameters in ANM.

Parameters in ANM £', = (e't+e"')/6 e1 =(e' +£"')/2ex 'ex ex'

Es(p0,T = 0)(MeV) 21.02 21.49 21.97

4 (MeV) -40.61 -81.23 -121.84

Ey (MeV) 75.81 65.73 55.69

4 (MeV) -87.46 -50.49 -13.57

The symmetry energy and proton fraction curves for the EOSs show considerable 

difference from each other, whereas, for all of these EOSs the asymmetric contributions

of nucleonic part in NSM are almost same. This stationary behaviour of SNSM (p,Yp) 

over a narrow range around the critical value of E's (p0) is referred to as the universal 

high density behaviour of SNSM(p,Yp). This universal high density behaviour of

SNSM (p,Yp) has been calculated for the other cases of effective mass splitting and 

found to be almost same as that given in Figure 3.8(a) for their respective critical values 

of E's(p0). Since the principle of extremity is a law of nature, we have finally 

considered the value of E's(p0) (out of the infinitely large number of possible values)

for which the functional SNSM (p, Yp) is maximum over the range of density 0 to 10 p0 

in each case of the different effective mass splittings. The values of E’s (p0) thus 

obtained for the different cases of = (e^ + e“')/6, 2(e^+ e^)/6 and (e^ + e^)/2 

are 21.02 MeV, 21.49 MeV and 21.97 MeV respectively. The interaction parameters in 

ANM thus obtained for the different cases of neutron-proton effective mass splitting 

corresponding to different values of s'a are given in table 3. The case of splitting

eL = (4 + 4 V 2 is a boundary case beyond which the neutron-proton effective mass 

splitting reverses its sign.
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3.4 Comparison of the predictions with the results of microscopic 

calculation
It may be noted here that E's(p0) is related to the slope parameter L as 

L = 3E'S (p0) ■ Thus the values of slope parameter obtained for the two cases are 63 MeV 

and 64.5 MeV. The value of L has been constrained within range L = 86 +25MeV 

from the analysis of isospin diffusion studies [83, 85, 132, 134, 138] in heavy-ion 

collisions using the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport 

model with the momentum dependent MDI interaction. From the analysis of neutron 

skin thickness of Shetty et al.have predicted the value within the range 

30 <L < 80MeV [134]. The value of L has been constrained within range 60 <L< 107 

MeV from the analysis of neutron skin thickness studies as well as isospin diffusion 

studies [83]. The value of L parameter predicted from our analysis of beta stable matter 

conforms well to this range and remains towards the lower side.

The nine parameters required for the calculations of mean field properties and EOS of 

nuclear matter are thus constrained as discussed above. The predictability of the nuclear 

matter results with our interaction in eq,(2.3.73) can now be examined by comparing 

with the results of the realistic as well as other calculations that reproduce the results of 

microscopic calculations. The density dependence of energy per particle, 

en (p) = Hn (p) Ip, in PNM at zero-temperature for our interaction for each of the two 

representative cases e'a = {elex + e^)/6 (Case A) and e'ex = (e'x + e"')/2 (Case B) of 

neutron-proton effective mass splitting are shown in Figure 3.9. The curves of en(p) 

for both the cases are almost same over the entire range of density p shown in the 

figure. The energy per particle, e0 (p) =//,, (p) Ip, in SNM at zero-temperature which 

is same for both the cases is also shown in Figure 3.9 as a function of density p. The 

density dependence of en (p) and e0 (p) obtained by Akmal et. al. [4] for the realistic 

interaction A18+dv+UIX* are shown in Figure 3.9 for comparison. The results of 

en{p) and e0(p)calculated for the LNS interaction set [178] are also given in the same 

figure. The LNS interaction is the Skyme parameterization of the EOS calculated in the 

framework of BHF model. The LNS interaction parameters are constrained to reproduce
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Figure 3.9. Energy per particle in SNM and PNM, e0(p0) and en(p0), as 
functions of p for the two cases A and B are compared with the results of 
A18+dv+UIX* [4] and LNS interaction [178].

the BHF results of neutron and proton effective masses in ANM [178], The results of

en (p) and e0 (p) for the two cases A and B are in good agreement with those of Akmal

et. al. upto a density p =0.65 fnf*. However, beyond this density the curves of en (p)

and e0(p) obtained by Akmal et. al. become more and more stiff compared to our

results. The agreement of our results with the LNS case for both en(p) and e0(p) are

good upto a density p =0.4 /m“3 beyond which the LNS curves in both cases become 

soft compared to our curves.

The density dependence of nuclear symmetry energy Es(p,T = 0) at zero- 

temperature with our interactions for the two cases A and B are shown in Figure 3.10. 

The two curves of Es(p,T = 0) differ little from each other in the entire range of 

density shown. It can also be seen that the stiffest high density behaviour of the 

functional SNSM(p,Yp,T = 0) constrains the density dependence of Es(p,T = 0) in 

both the cases which are neither very stiff nor soft at high densities. This is a very
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Figure 3.10. Nuclear symmetry energy as a function of density at zero 
temperature (T=0) for the two cases A and B and compared with the results of 
A18+dv+UIX* [4] and LNS [178] interactions.

important conclusion on this elusive high density behaviour of nuclear symmetry 

energy predicted from the extrapolation of the experimental multifragmentation studies 

[133], However the degree of stiffness and/or softness is still remained unanswered.

The density dependence of Es (p,T = 0) for both cases of A18+dv+UIX* [4] and LNS 

interaction [178] are also shown in Figure 3.10 for comparison. The curves of 

Es(p,T = 0) obtained in the present work compares well with the results of 

A18+dv+UIX* upto a density p =0.65 fm~l . However, beyond this density the curve of 

Es (p,T = 0) in case of A18+dv+UIX* interaction becomes more and more stiff 

compared to our results. On the other hand the comparison of our results with that of 

LNS interaction case is good upto density p =0.4/m“3 - Beyond this density the LNS 

results become softer and softer and start decreasing after attaining a peak about 

density, p=0.8/m"3.
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3.5. Conclusion

The parameter fixation in SNM and PNM using various available constraints 

is discussed in detail in the frame work of Behera et al.[64]. It has been shown that, it is 

possible to construct EOSs differing widely in their momentum dependence while 

giving the same density dependence of isovector part of the nuclear mean field. The 

results of such EOSs have been compared with the results from microscopic 

calculations. The two cases, Case A and Case B considered above are the examples of 

the EOSs those give same density dependence but widely varying in their momentum 

dependence. In other words, both the EOSs give the same density dependence of energy 

per particle in SNM and nuclear symmetry energy but different neutron-proton effective 

mass splitting in ANM. Such EOSs having same density dependence (momentum 

dependence) but differing in momentum dependence (density dependence) are of 

crucial relevance in the transport model analysis of heavy-ion collision data in the 

attempt to ascertain the momentum and density dependence of isovector part of the 

nuclear mean field. At present although there is by and large consensus among the 

various microscopic and effective theories on the nature of the neutron-proton effective 

mass splitting that neutron effective mass in neutron rich asymmetric matter will lie 

above the proton one, the magnitude of the neutron-proton effective mass splitting still 

remains as an open problem. From the above attempts to constrain the splitting of the

parameter £^ + £^ into like and unlike channels by restricting to the region of 

experimentally extracted results as shown in Figure 3.3 and the fact that the neutron 

effective mass should go above the proton one, it is certain that the permitted range for 

£* + £ul . £* +£ul
this parameter e'ex is —-----— < £^. <—-----—. The zero temperature properties of

6 2
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asymmetric nuclear matter like the nuclear symmetry energy or the equilibrium proton 

fraction behave in the same way for both the extreme cases as can be ascertained from 

Figure 3.10. In other words the zero temperature calculations of asymmetric nuclear 

matter may not be able to constrain further the splitting of the parameter e'v. In view of 

this and in the absence of any precise experimental or empirical information, finite 

temperature calculation may be useful to constrain further the parameter e'a. It is 

important to note here that the interaction has no explicit temperature dependence but 

the thermal evolution of the properties of nuclear matter is simulated through the Fermi- 

Dirac distribution functions appearing in the exchange part of the energy density and 

mean fields. Thus the exchange strength parameter is crucial in deciding the nature and 

extent of thermal evolution in nuclear matter. Hence it is expected that finite 

temperature calculations of ANM can be useful in further constraining the splitting of

into e'a and £"j,. In this attempt we shall calculate the thermal evolution of various 

properties of SNM , PNM and ANM in the next chapter with the different effective 

mass splittings as obtained in this chapter for the finite range effective interaction in 

eq.( 2.3.73).
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CHAPTER-1 V

THERMAL EVOLUTION 
IN NEUTRON RICH MATTER
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4.1. Thermal evolution of Nuclear Matter Properties

The energy density and single particle energy in ANM at temperature T for our 

interaction in eq.(2.3.73) with Yukawa form for the finite range part are given in 

eqs.(3.1.1)-(3.1.3). The exact calculations of these properties in ANM requires the

—y

knowledge of neutron and proton momentum distribution functions, //'(&) and

// (k), at given temperature T, density p and asymmetry (1 - 2Yp ). The distribution 

functions at temperature T are given by

(4.1.1)

where, i = n,p and the distribution functions are subjected to the constraint

(4.1.2)

Here, the spin degeneracy factor <§ takes values £ = 2 and s' and p‘, with i = n,p 

are the respective single particle energies and chemical potentials. In the evaluation of 

the neutron and proton distribution functions we require the knowledge of respective 

single particle energies which in turn involve the distribution functions warranting a 

self-consistent calculation. Further, in the evaluation of the distribution function for one 

type of nucleon we require the knowledge of respective single particle energies which 

in turn involves the distribution functions of both kinds of particles making the self- 

consistent calculation a difficult one. Instead of entering into such a complicated self 

consistent calculation, we have adopted the quadratic approximation as discussed in 

chapter-III for the case of zero-temperature, r = 0, generalized to the case of finite 

temperature T. The energy density and pressure in ANM under this generalized 

quadratic approximation at temperature T can now be given as,

H(p,Yp,T) = H0{p,T)+(l-2YpfHs{p,T) (4.1.3)

These expressions have the crucial advantage that the Yp dependence of H(p,Yp,T) 

and P{p,Yp,T) are separated out from their dependence on p and T. The quadratic
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approximation is a very good and quite accurate approximation at zero temperature 

[117, 164, 166] as well at finite temperature [176, 177,179]. In order that eqs. (4.1.3) 

and (4.1.4) be valid in the complete domain of ANM, i.e. from PNM to SNM, we can 

identify Hs(p,T) and Ps(p,T) to be the symmetry energy density and symmetry energy 

pressure respectively at temperature T and define them in terms of the differences 

between the energy densities as well as pressure in PNM and SNM,

Hs{p,T) = pEs(p,T) = Hn(p,T)-H0{p,T), (4.1.5)

Ps(p,T) = P„(p,T)~P0(p,T). (4.1.6)

where, Es(p,T) is the nuclear symmetry energy as a function of p and T. It is evident 

from eqs. (4.1.3)-(4.1.6) that a complete description of EOS of ANM at finite 

temperature amounts to separate descriptions of EOSs of PNM and SNM at same 

temperature T and same total nucleon density p.

The energy density and single particle energy in SNM at temperature T for our 

interaction in eq.( 2.3.73) with Yukawa form for the finite range part are given in 

eqs.(3.2.1)-(3.2.3). These properties in case of PNM at temperature T with our 

interaction having Yukawa form are also given by similar expressions as,

H (p,T)= \fTPNM{kic2ti2k2 +M2C4)V2d3k+—— +
J A ’ 2 p0 2 p

\\frNM(Ik-k' \)d*kd3k'

7+1

Y

l + bP.

2p0

(4.1.7)

The parameters e'0, s' and s'ex appearing in this equation are defined in eqs.(3.2.1a-

—> —>

3.2.If). The functional gex{k-k'|)is the normalized Fourier transformation of the 

Yukawa interaction. The Fermi-Dirac momentum distribution functions in SNM and

PNM, i.e., fjSNM (k) and fPNM{k), are given by,

fi(k) g
(2 *y n'r(k),

with the occupation probability defined as

(4.1.8a)
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(4.1.8b)n'r(k) exp{[e! (k,p,T)-n,(p,T)]/T:+l

with i = 0(n) for SNM( PNM) and subject to the constraint (k) dlk = p.

Here, the spin-isospin degeneracy factor q takes values £ =4(2) in SNM (PNM) and

e' and p1, with i =0(n), are the respective single particle energies and chemical 

potentials.

The single particle energies in SNM and PNM can be obtained as the functional 

derivatives of respective energy densities and are given by,

e° (k,p,T)=(c2ft2k2 +M2C4f2 +2 (e'-t-e"') p (e'r+G?)
+ ■

P 0 2por+‘
P

V1 + bp

\ r+i /
1 + by + 7

+ ffrNM (*)?„(I \)dlk
2p0 J

(4.1.9)

and

e" (k,p,T) = (c2h2k2 +M2C4J11 +e'0—+
Po P0

7+1
p TV

1+bp) { ' 2

+ ^-\fTPNM{k)gJ\k~k'\)d2k'. 

Po

(4.1.10)

It is evident from the expressions of energy density and single particle energy in 

both SNM and PNM that the temperature dependence of the mean fields and the 

interaction parts of energy densities are simulated through the respective Fermi-Dirac 

momentum distribution functions while the interaction itself has no explicit temperature 

dependence. The momentum dependent parts of the mean fields involve the respective 

distribution functions and therefore imply self-consistent calculations. The momentum 

distribution functions as well as mean fields both in SNM and PNM can be evaluated 

self-consistently at each density p and temperature T by adopting an iterative 

procedure [62], Here the basic input is the respective single particle energies at zero 

temperature. At T = 0 the Fermi-Dirac distribution functions take the form of step 

functions and the respective single particle energies as well as the complete EOSs of
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SNM and PNM can be calculated analytically. Hie single particle energy in SNM at 

T = 0 is given in eq.(3.2.2). The single particle energy in PNM at T = 0 for our 

interaction with Yukawa type finite range part is given by

where, the Fermi momentum kn is related to the density p as k\ = 3n2p ■ The 

temperature dependence of single particle energies as well as chemical potentials are 

obtained in the process of self-consistent evaluation of distribution fimetions in SNM 

and PNM at given density p and temperature T. Once the distribution functions, single 

particle energies and chemical potentials are obtained, the pressure in SNM as well as in 

PNM can be calculated by adopting standard procedure.

4.1.1. Effective Single particle energy and Fermi-Dirac distribution 

function at finite temperature
As has been discussed earlier, the temperature dependence of the mean fields 

and the interaction parts of energy densities are simulated through the respective Fermi- 

Dirac momentum distribution functions. In view of this, thermal evolution of EOSs of 

SNM and PNM, i.e. properties of SNM and PNM relative to their zero-temperature

results, can be calculated only in terms of the exchange parameters £lex ,£UJX and the

range a without having to require the knowledge of other parameters e'0, stf, £y, £y 

and the exponent / . The momentum distribution functions both in SNM and PNM can 

be obtained self-consistently at each nucleon density p and temperature T by 

introducing effective single particle energies in SNM and PNM which contain only the 

momentum dependent parts and can be written as,
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<ff{hp,T) 2-fc2;_2 , * /r 2/-*4 \ 1/2 . v-'ex ^ ex{clVkL +Mic'yi + (eL + O
2p0

f/ra"^')g„Q?-?l)rf3*'

(4.1.12)

And

e* (k,p,T) (C2h2k2 +M2C4)112
+ ^LjfrPm(k')gJ\k-k,\)d3k' 

P 0 j
(4.1.13)

These effective single particle energies would correspond to the respective effective 

chemical potentials and p"ff(p,T) such that

[si{k,p,T)-pXp,T)]=[deff{k,p,T)-pieff{p,T)} with i = 0, n.

In order to obtain the thermal evolution of properties of PNM we require the splitting of 

the combination (e‘ +e"/)into e1 and efor interactions between pairs of like and 

unlike nucleons. Different splittings of the combined parameter (e'r +e''c/) into like and 

unlike channels will, therefore, predict different thermal evolution of properties of 

PNM. As mentioned earlier, the controversy on the nature of n — p effective mass 

splitting is more or less resolved and now there is a consensus opinion that neutron 

effective mass goes over that of proton in neutron rich ANM. This implies that g'r

should lie within 0 and £ex [153]. However, there is no consensus among different 

theoretical models on the actual value of e' . Under the circumstances, we therefore

vary the parameter e1 in the range 0 to eex and examine its influence on the thermal 

evolution of different properties of PNM. The results in SNM and PNM thus obtained 

are also compared with the respective predictions of ideal Fermi gas model where the 

mean fields are momentum independent. The momentum distribution functions in the 

ideal Fermi gas model are evaluated by considering only the kinetic energy terms in the 

expressions of the effective single particle energies in eqs. (4.1.12) and (4.1.13) and the 

thermal evolutions of properties of SNM and PNM are calculated. Comparison of the 

results for our interaction with the predictions of ideal Fermi gas model will bring out 

the effect of momentum dependence of the nuclear mean fields on the thermal 

evolutions of the properties.
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The basic ingredients in the finite temperature calculation of properties of SNM 

and PNM are the respective occupation probabilities, n‘T(k), i = 0,n calculated self- 

consistently using the effective single particle energies given in eqs.(4.1.12) and 

(4.1.13). The effective single particle energies (k,p,T) and the respective chemical

potentials /j'eff (p,T) are obtained in the process of self-consistent evaluation of n‘T(k).

The occupation probabilities, n'T(k), i = Q,n as a function of momentum k for both 

momentum dependent and momentum independent mean field cases in SNM and PNM 

are shown in Figures 4.1(a) and (b), respectively, at three different temperatures 

T = 0, 20,40 MeV for density p = 0.1 fin3. In case of PNM in Figure 4.1(b) we have

Figure 4.1. (a) Fermi-Dirac occupation probability, n^{k), in SNM for 
momentum dependent and momentum independent mean fields shown as a 
function of momentum k at temperatures, T=0, 20 and 40 MeV for nuclear 
matter density, p = 0.1 fm~3. The momentum independent cases (ea =0) 
correspond to ideal Fermi-gas model results (b) Fermi-Dirac occupation 
probability, nHr (k), in PNM for the same cases as in (a). Curves for e[x = 0 
corresponds to ideal Fermi-gas model results in PNM.
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Figure 42. (a) Fermi-Dirac occupation probability in SNM for momentum 
dependent and momentum independent mean fields shown as a function of 
momentum k at temperatures, T=0, 20 and 40 MeV for nuclear matter density, 
p - 0.3 /m-3- The momentum independent cases (eex = 0) correspond to ideal

Fermi-gas model results, (b) Fermi-Dirac occupation probability, n'^(k), in

PNM for the same cases as in (a). Curves for £la=0 corresponds to ideal 
Fermi-gas model results in PNM

considered the two extreme values of in its allowed range, namely, e!a = 0 and

£ex. The occupation probabilities in PNM for different e‘a, within its allowed range, 

lie in between the results of these two extreme cases. The Fermi gas model results in 

SNM and

PNM are also given in the Figures 4.1(a) and (b) for comparison with the respective 

momentum dependent mean field cases. In Figures 4.2(a) and (b) the results of 

occupation probabilities for the same cases as in Figures 4.1(a) and (b) are shown at a 

higher density, p = 0.3 fin3. From Figures 4.1 and 4.2 it can be seen that the

occupation probabilities, n'r(k), of the states k <kj, i = f,n, decrease with increase

in temperature extending the tail to higher k values in both SNM and PNM. The results 

of SNM and PNM in each of the Figures 4.1 and 4.2 show that the effect of temperature
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is relatively larger in SNM as compared to PNM. It is also evident from both the figures 

that temperature has a larger effect in case of momentum independent mean fields 

(Fermi gas model results) than that of momentum dependent mean fields in both SNM 

and PNM. This effect is larger at higher temperature. Thus a momentum dependent 

attractive nuclear mean field that increases with a rise in momentum has the important 

role in lowering the effect of temperature on the occupation probability in SNM as well 

as in PNM. We shall now examine the effect of these features of occupation 

probabilities in SNM and PNM on he thermal evolution of various nuclear matter 

properties. The momentum dependence of nuclear mean field in SNM is constrained 

with the fixed values of ea and (X thereby fixing the evolution of occupation 

probability at given temperature and density in SNM. However, the actual momentum 

dependence of the mean field in PNM is yet to be decided and the possible range of e'a 

is 0 to ea. Different el in this range will give different occupation probabilities in 

PNM. In our study of thermal evolution of nuclear matter properties we have, therefore, 

considered four representative cases of elex, namely, e[x = 0,eex/3, 2eex /3, ecx that 

covers the whole range of allowed momentum dependence of PNM mean field.

4.1.2. Entropy density

The entropy densities, Sj(p,T), i = 0,n in SNM and PNM can be calculated 

from the relation,

So,„(P,2>- jU'" (*)ln /#"(*) + (l -/#"(*))ln(l - 4’n (k)\dh,
(In)

(4.1.14)

where, £= 4(2) for SNM (PNM) and n^n(k) are the respective occupation probabilities 

at temperature T. The results of entropy densities in SNM and the four different cases 

of PNM, namely, elm = 0,6^ 13,/3 and , as a function of density pare shown 

at two different temperatures, T= 40 and 60 MeV, in figures 4.3(a) and (b) 

respectively. Comparing our results with those obtained from ideal Fermi gas model in 

both SNM and PNM, it is seen that momentum dependence of the mean fields plays
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Figure 4.3. (a) Entropy density, TS0n(p,T), in SNM and four cases of PNM 

corresponding to el = 0, ea /3, 2eex /3 and ea shown as a function of density 
p at temperature T= 40 MeV. Fermi-gas model results in SNM and PNM

correspond to £ex = 0 and e'cx -0, respectively, (b) Same as (a) but at 
temperature, T=60 MeV.

important roles to reduce the effect of temperature. It is also seen from the figures that 

the entropy density obtained in the ideal Fermi gas model in SNM goes above that of 

PNM and the difference increases with density. On the other hand our results of entropy 

density in PNM exceeds that of SNM at a higher density if the parameter e'a lies in 

between 0 to 2e „. / 3, which is contrary to the results obtained with ideal Fermi gas 

model. The density at which the entropy density in PNM exceeds that of SNM 

gradually increases with increase in the magnitude of the parameter e1 from 0 to 

2sex/3. With increase in temperature the crossing over point shifts to higher density. 

For the specific choice of e[x = 2£ex / 3 the entropy density in PNM approaches that of 

SNM asymptotically at large density. With increase in the magnitude of e'ex from
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2eex/3 towards eex the curves of entropy are pushed more and more below that of 

SNM. In case of e'a = ecx, the entropy density in PNM is always less than that of SNM. 

This kind of behaviour is similar to results obtained in the ideal Fermi gas model over 

the whole range of density. With increase in temperature the curve of PNM lies more

and more below that of SNM one and the difference T[Sn(p,T)~ S0(p,T)] assumes 

larger and larger negative values in the high cbnsity region. Thus it is found that the 

whole range of fJex is now divided into two parts based on the consideration that 

whether the quantity rjs,, (p,T)-S0(p,T)] can change sign at any value of density or 

not.

The question, now, automatically arises whether the entropy density in PNM 

being a system of one kind of particles can exceed that of SNM which is a two 

component system or not!! A plausible answer to this pertinent question may be 

searched in the areas of study of heavy-ion collision dynamics involving highly neutron 

rich radioactive nuclei. If an answer to this basic question can be obtained then it can 

help constrain the magnitude of neutron and proton effective mass splitting in ANM. In 

the absence of a satisfactory answer to this fundamental question we can still divide the 

whole possible range of splitting, 0<£'a<£ , of our combined exchange strength

parameter (ela + e*) into like and unlike channels in two parts, (a) 0 < e^. < 2ea / 3 

and (b) 2c /3 <sL< £ .In case the answer to the question raised above is ‘yes’ then 

the possible range of elsx is confined to the range as given in (a) 0< e^. < 2^/3 and if 

‘no’ then the possible range of is (b) 2£ex /3 <£lex < ea and accordingly the 

magnitude of neutron and proton effective mass splitting in ANM can be further 

constrained.

4.2. Thermal evolution of Bulk properties in SNM and PNM

The allowed range of e‘ex is now divided into two groups, namely, (a) 0 to

2c„ /3 and (b) 2eex / 3 to £ex , on the basis of the two contrasting behaviours found in 

the results of entropy density in PNM relative to the SNM one for different momentum
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dependence of PNM mean field in this range. We now examine the thermal evolution in 

other properties of SNM and PNM, such as, internal energy density, free energy density

and pressure for different choices of e'ex within its allowed range 0<£'x<£ex. The 

thermal evolutions of these quantities in SNM and PNM are defined as their values at 

temperature T relative to the zero-temperature values,

Hf (p, T) = H, (p, T)-H, (p, T = 0), (4.1.15)

Ff'(p, T) = F; (p, T) -F, (p, r = 0), (4.1.16)

P*(p,T)=Pi(p,T)~Pi(p,T = 0), (4.1.17)

with i=0,n for SNM and PNM respectively.

4,2.1. Thermal evolution of internal energy density
The thermal evolution of internal energy density in SNM (PNM), H*K){p,T), can 

be given by,

A

(2nf
( e V

l(c2h2k2 +M2C4f2 n°rw(k)d3k- j(cW +M2C4f2 d3k
V('0

$
y(2n)- j

JK00 (*) ”r")(*') gj\k - k' |)d3kd3k' - jjga {\k-k'\)d3kd3k'

(4.1.18)
Voi)

where, A
(e1 +eul)v ex ex J

^Po vPo j
and g = 4 (2). The integral J implies integration over

the Fermi sphere of radius kf(n) in SNM (PNM). As has been mentioned earliei; it is 

evident from eq.(4.1.18) that only the kinetic energy terms and finite range exchange 

terms contribute to the thermal evolution in SNM (PNM). The results of thermal 

evolution of internal energy density in SNM and the four cases of PNM, namely,

£L = 0, £a /3, 2eex /3 and £ex are given in Figure 4.4 as a function of density at 

temperature, T= 40 MeV. The ideal Fermi gas model results in SNM is also given in 

the same figure.
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Figure 4.4. Thermal evolution of internal energy density, H*n{p,T), in SNM and

four cases of PNM corresponding to e' = 0, e /3, 2ea /3 and Ea shown as a 
function of density p at temperature T= 40 MeV. Fermi-gas model results in 
SNM and PNM correspond to £ex = 0 and e'ex = 0, respectively.

4.2.2. Thermal evolution of free energy density

The thermal evolution of free energy density in SNM (PNM) can now be given 

in terms of entropy density, TS0(nj(p,T) and H^n)(p,T) as

F*n){p,T) =H*K)(p,T) -TS0(n)(p,T). (4.1.19)

F0'*) (p,T) in SNM (PNM) is calculated as a function of density at temperature T = 40 

MeV for the same cases as in Figure 4.4, and the results are shown in Figure 4.5. The 

thermal evolution of pressure can be given by,

C (P’2”) =PlMm(P,T)in) (P, T = 0)] - F*n){p,T). (4.1.20)

From the definition of effective chemical potentials, it is apparent that 

[p°jn)(p,T)- p°jn)(p,T = 0)] = [nm(p,T)-nm(p,T = 0)]. The effective chemical 

potential in case of SNM (PNM) at finite temperature is obtained in the process of self-
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Figure 4.5. Thermal evolution of free energy density, in SNM and four

cases of PNM corresponding to e'r = 0, ea /3, 2eex /3 and ea shown as a 
function of density p at temperature T= 40 MeV. Fermi-gas model results in 
SNM and PNM correspond to ea = 0 and e't = o, respectively.

—►

consistent evaluation of momentum distribution function f^miPNM\k), whereas, its 

zero-temperature counterpart is obtained from eq.(3.2.2) (eq.(4.1.11)) by considering 

only the kinetic and finite range exchange terms evaluated at the Fermi momentum 

k = k/(n] corresponding to density p .

4.2.3. Thermal evolution of pressure

The thermal evolution of pressure, P$a)(p,D > i11 SNM (PNM) as function of density at 

T = 40 MeV is given in Figure 4.6 for the same cases, as in Figure 4.5. The thermal 

evolutions of internal energy density and pressure have positive values both in SNM 

and PNM, whereas, it is negative in case of free energy density as can be seen from 

respective Figures 4.4, 4.5 and 4.6. It can also be seen from Figures 4.4 and 4.5 that 

thermal evolutions of internal energy density and free energy density for different cases 

of e't in PNM show similar behaviour as in case of entropy density in Figure 4.3. For

elex in the range 0 to 2ea /3 the results of PNM crossover the respective SNM result at 

certain higher densities, whereas, there is no crossing over of PNM and SNM results at
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Figure 4.6. Thermal evolution of pressure, p£(p,T), in SNM and four cases of

PNM corresponding to e'ex= 0, eex /3, 2eex / 3 and eQ. shown as a function of 
density p at temperature T= 40 MeV. Fermi-gas model results in SNM and 
PNM correspond to £ex = 0 and e!ex = 0, respectively.

any density in case £4 is in between 2ea /3 and ■ For e'ex = 2eex/3, the thermal 

evolution of internal energy density and free energy density in PNM approaches the 

SNM result asymptotically. Thus it is found that, like the case of entropy density, 

thermal evolutions of internal energy density and free energy density in PNM relative to

SNM results have similar behaviour in the two different regions of elex, specified by (a) 

and (b) in the foregoing discussion. However, in case of thermal evolution of pressure 

deviation from this common behaviour occurs as can be seen from Rgure 46. The 

deviation from this common behaviour is due to the thermal evolution of chemical 

potential term, [p.w{p,T)- Ju0l")(p,7’ = 0)]. We shall now examine the thermal evolution 

of nuclear symmetry energy and free symmetry energy which are two important 

quantities in the studies of formation and cooling mechanism of neutron stars.
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4.3. Thermal evolution of Nuclear Symmetry Energy

The nuclear symmetry energy at finite temperature, Es (p, T), can be obtained 

from the finite temperature expression of nuclear symmetry energy density defined in 

eq.(4.1.5) by dividing it with p,

EJpJ) = ^Hn{p,T)~H^P^ = {en{p,T)-e,{p,T)), (4.2.1)

P
where, en(p,T) and e0(p,T) are respectively the energy per particle in PNM and 

SNM at density p and temperature T. The thermal evolution of nuc lear symmetry 

energy Es(p,T) can be obtained by subtracting the zero-temperature result from it and 

we denote the quantity by the functional,

Q(p,T) = [Es (p,T)-Es (p,T = 0)]. (4.2.2)

The calculation of Q(p,T) as a function of density at a given temperature T requires 

the knowledge of thermal evolution of the energy densities in SNM as well as in PNM. 

The thermal evolution in SNM is obtained by taking the difference of energy density 

expressions at finite T and zero-temperature given in eqs.(3.2.1) and (3.2.5) 

respectively. The resulting expression will contain only the kinetic energy terms and 

finite range exchange terms of finite T and zero-temperature expressions. Similarly, 

the thermal evolution of the energy densities of PNM can be calculated from eqs.(4.1.7) 

and (3.3.18). We have studied the thermal evolution of symmetry energy for the two 

representative values of Ela, namely, s1̂ = (e^ + e^)/6 (Case A) and

eL = (sL + e'*)/2 (Case B), those constitute the extreme cases obtained from the 

nature of effective mass splitting and analysis of Lane potential results as discussed in 

the Chapter-Ill. The results of the calculated density dependence of Q(p,T) at different 

temperature T are given in Figure 4.7(a) and (b) for the two different splittings of the 

combination (f^r in cases A aid B. It can be seen that Q{p,T) is negative at low

density and decreases with increase in density for both the cases A and B. With further 

increase in density p, the functional Q(p,T) attains a minimum and then increases. 

However, in the higher density region the rate of increase of Q{p,T) is faster in case A
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Figure 4.7. (a) Nuclear symmetry energy at temperature T relative to its zero 
temperature result (The functional Q(p,T) in eq.(4.2.2)) shown as a function of
density for case A at three different temperatures, T=20, 40 and 60 MeV. (b) 
Same as (a) for case B.

than in case B. As a result of this Q(p,T) changes sign and becomes positive in the 

higher density region in case A as can be seen from Figure 4.7(a), whereas, it remains 

negative in case B for the entire range of density. As expected the effect of temperature 

on Q(P,T) is found to increase with an increase in the magnitude of exchange strength

parameter e1̂ in PNM as well as with temperature T.

4.3.1. Thermal evolution of Symmetry energy for EOSs corresponding 

to momentum independent mean field (Fermi gas model)
The results of Q(p,T) for the ideal Fermi gas are shown in Figure 4.8 at three different 

temperatures. It can be seen from the Figure 4.8 that, Q(p,T) assumes negative values 

at any temperature over the whole range of density. At a given density, Q(p,T) takes 

larger negative value at higher temperature. With the increase in density, for a given
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Figure 4.8. Fermi gas model results of thermal evolution of symmetry energy, 
Q(p,T), shown as a function of density p at three different temperatures, T= 20, 
40 and 60 MeV.

temperature, it decreases and then saturates after attaining a minimum in the high 

density region.

4.3.2. Thermal evolution of Symmetry energy for EOSs corresponding 

to momentum dependent mean field
In order to examine the effect of momentum dependence on the thermal 

evolution of symmetry energy, we have shown the results of the functional Q(p,T) for

the cases e'cx = 0, Eex /3, 2eex /3 and in Figure 4.9 at temperature T =40 MeV.

For all the four cases, at a given temperature, Q(p,T) decreases with the increase in

density, attains a minimum and then increase with the increase in density. A changeover

of sign in Q(p,T) takes place if s'„ lies in the range between 0 to 2eex /3 whereas

Q(p,T) remains negative all through the density region if e[x lies in the range between

2eex/3 to eex. For e'ex = 2eex /3, Q(p,T) vanishes asymptotically at high density. The

curves of Q{p,T) are gradually pushed lower towards the ideal Fermi gas results as

e'ex increases from 0 to ea implying that momentum dependent mean field plays a role

to reduce the effect of temperature. The quenching effect in the high density region
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Figure 4.9. Thermal evolution of symmetry energy, g(p; t), shown as a function 
of density p at temperature T= 40 MeV for four cases of

eL = °> e«/3> 2e« /3 and . The Fermi gas model result is given as solid 
line with filled circles.

decreases with decrease in the attractive strength of the finite range exchange 

interaction between the unlike nucleons pair. It may be noted here that for given finite 

range exchange

interactions operating between two like and unlike nucleons, the temperature and 

density dependence of the functional Q(p,T) does not depend on how the density 

dependence of zero-temperature symmetry energy Es(p,T = 0) has been constrained.

4.4. Thermal evolution of Free Symmetry Energy
In the study of finite temperature nuclear matter properties the nuclear free 

symmetry energy plays a very important role. It has crucial importance in phenomena, 

such as, EOS of supernova matter, composition and cooling mechanism of newly bom 

neutron stars, etc. The free energy density in case of SNM and PNM are defined as,

F0(p,T)=H0(p,T)-TS0(p,T) (4.3.1)

and
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F(p,T)=Hn(p,T)-TSn(p,T) , (4.3.2)

respectively, where H0(p,T) and S0(p,T); Hn(p,T) and Sn (p,T) are the 

respective energy densities and entropy densities.

Under the consideration that the quadratic expansion of the free energy to be 

valid we can express the free energy density in asymmetric nuclear matter as

F(p,T,Yp) = F0(p,TJp=\/2) + (l~2Yp)2Fs(p,T), (4.3.3)

where, Fs(p,T) is the free symmetry energy density. Following the argument in 

expressing the nuclear symmetry energy in eq.(4.1.5) we can write the nuclear free 

symmetry energy density as,

Fs{p,T)=F„(p,T,Yp =Q)-F0(p,T,YP =1/2) (4.3.4)

In view of the eqs. (4.3.1) and (4.3.2), the nuclear free symmetry energy density can 

now be expressed as

Fs(p,T)=[Hn(p,T)-H0(p,T)]-T[S„(p,T)-S0(p,T)] (4.3.5)

The thermal evolution of nuclear free symmetry energy relative to its zero temperature 

results is expressed through the functional

QApA)
Fx(p,T)-Fx(p,T = 0) 

P
(4.3.6)

where, Fs(p,T = 0)=[Hn(p,T = 0)-Ho(p,T = 0)]. Thus QF(pJ) can also be 

expressed in terms of thermal evolution of symmetry energy as,

QApJ) = Q(pJl-T[SMT)-S0(p,T)]. (4.3.7)

Thermal evolution of free symmetry energy, QF(p,T) can now be calculated as 

a function of density from the results of Q(p,T) and entropy densities in SNM and 

PNM. The results of QF(p,T) as a function of density for the same cases, as in Figure 

4.9, are shown in Figures 4.10(a) and (b) at two different temperatures T= 40 and 60 

MeV, respectively. The corresponding ideal Fermi gas model results are also shown in 

the same figures. The results show that the thermal evolution of free symmetry energy 

QF{p,T) is large positive at low values of the density for both momentum dependent 

and momentum independent cases, in contrast to the negative values of Q(p,T), and it 

decreases with increase in density. The large positive values in the low density region is
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Figure 4.10. (a) Thermal evolution of free symmetry energy, QF(p,T)> as a

function of density p for four cases of e'ex = 0, e^/3, 2eex /3 and £a at 
temperature T= 40. (b) Same as (a) for T=60 MeV. The respective Fermi gas 
model results are given as solid lines with filled circles in the corresponding 
figures.

basically due to the fact that entropy in SNM is large compared to that in PNM in this 

density region and hence the factor —- — ■■ ————— ineq. (4.3.7) assumes large

negative values in the low density region. The rate of decrease of QF(p,T) slows 

down in the high density region for all the cases shown in the Figures 4.10(a) and (b). 

But the ideal Fermi gas model results of QF(p,T) remain larger positive as compared 

to momentum dependent mean field cases over the whole range of density. The 

decrease in QF{p,T) with increase in density in the momentum dependent mean field 

cases is relatively sharper compared to the ideal Fermi gas case and the rate of decrease 

also depends on the value of e‘ex. In case of 0<e^< 26^/3, QF(p,T) becomes 

negative at certain density and approaches negative asymptotic value in the high density 

region. For 2ea /3<£lex<£ex , the result of QF(p,T) remains positive at all densities
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and approaches to a positive asymptotic value in the high density region showing 

similar behavior as that of the ideal Fermi model case. On the other hand, thermal 

evolution of QF(p,T) for ela = 2epv /3 does not become negative at any density and 

vanishes asymptotically. The behaviours of QF(p,T) found for the different cases of 

e'ex are true at any temperature. Thus, thermal evolutions of symmetry energy and free 

symmetry energy in the two ranges of e^, specified by (a) and (b) in the foregoing 

discussions, have similar behaviour to what has been observed in cases of entropy 

density as well as thermal evolution of internal energy density and free energy density.

4.5. Neutron-proton effective mass splitting in ANM at T = 0 for 

different choices of £lex

Two distinct behaviours in the thermal evolution of nuclear matter properties in 

PNM relative to their respective SNM results are found in the regions, e'ex in between

(a) 0 to 2eex/3 and (b) 2eex/3 to eex . The results of thermal evolution of these 

properties in ANM will be in between the corresponding results in SNM and PNM and 

shall correspond to the same characteristic behaviour depending on the value of e'ex in 

these two ranges. We shall now examine the n and p effective mass splitting in ANM 

at zero-temperature for different cases of £'a in the whole range between 0 and £a. 

The calculation of n and p effective masses in ANM requires only the momentum 

dependent parts of the mean fields which are obtained from the finite range exchange 

interactions. The neutron and proton effective mass splitting at zero-temperature as 

functions of momentum k, asymmetry ft and densiry p are shown in the Figures 

4.11(a), (b) and (c) respectively for the three boundary cases e^. =(e^ + e^)/6, 

£L =(£L + and £'a =2(£la + e^)/6. The neutron and proton effective mass

splitting is found to be increasing function of all the three variations, k, j5 and p, with 

increase in the difference between the exchange strength parameters, e‘ex and £l‘x, 

acting between a pair of like and unlike nucleons, respectively. Thus the splitting is
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Figure 4.11. (a) Neutron and proton effective mass shown as function of 
momentum for the three different cases of splitting for a given proton fraction 
Yp = 0.1 and at normal density pQ. (b) Same as (a) but shown as function of 
neutron-proton asymmetry at normal density, (c) Same as (a) but shown as 
function of density at a fixed proton fraction Yp = 0.1.

maximum for case A. In case B, there is no splitting between the neutron and proton 

effective masses in ANM as the strength of exchange interaction between like pair and 

unlike pairs of nucleons are the same. Beyond this boundary value where the exchange 

strength between a pair of like nucleons becomes stronger than that of a unlike 

nucleons, the proton effective mass will be predicted to go over the neutron one that 

contradicts the largely accepted view of larger neutron effective mass than proton one in 

neutron rich matter. For the critical case that subdivides the whole range specified by 

case A and case B into two groups so far as the behaviour of entropy per particle in 

SNM and PNM is concerned, the results for neutron and proton effective mass splitting 

in ANM lies in between the two cases A and B. The results for neutron and proton 

effective mass splitting in ANM as a function of asymmetry /3 = (l-2Y ) obtained in

our calculation for the three different cases is compared with the results of DBHF 

calculation [180] and is given in Figure 4.12. The results of our calculation for the
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p
Figure 4.12. Neutron-proton effective mass plotted as function of neutron- 
proton asymmetry /? = (l-2YP) for different splitting strengths. The DBHF 
calculation of Sammarruca [180] ( solid line) is also shown for comparison. The 
upper three curves are the neutron effective mass where as the lower curves are 
for proton effective mass.

critical value of e'a agree to a reasonable extent with the predictions of DBHF 

calculation. The difference between the curves of neutron effective mass (as well as 

proton effective mass) for e'ex = 2eex/3 and the DBHF results appearing in the figure is 

mainly due to the difference between the effective masses in SNM. It is to be noted here 

that for each of these three representative values of e.'ex we can determine the splitting 

of the rest two parameters, £0 and ey, corresponding to the density dependent parts

into like and unlike channels according to the procedure as discussed in the last chapter. 

The EOSs of ANM thus obtained for all these three cases give the same density 

dependence at zero-temperature, as may be seen from Figures 3.9 and 3.10, but vary 

widely in their momentum dependence as evident from Figure 4.11. Thus the EOSs

corresponding to the three representative values of e‘ex exhibit widely varying thermal 

evolution of the nuclear matter properties as enumerated in the foregoing discussions. 

The calculation of the neutron and proton effective masses as well as the thermal 

evolution of nuclear matter properties discussed above in this section are possible only
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with the knowledge of momentum dependent parts of the nucleonic mean fields. 

However the complete calculation of nuclear symmetry energy and nuclear free 

symmetry energy requires the complete knowledge of the EOS, both density as well as 

momentum dependent parts. Studies of these two properties at finite temperature has 

important relevance in isoscaling studies of multifragmentation phenomena and in 

supemovae matter as well as formation mechanism of neutron stars as will be discussed 

in the following chapter.

4.6. Conclusion
In this chapter we have made an attempt to constrain the momentum dependence 

of nuclear mean field by considering the thermal evolution of nuclear matter properties. 

The thermal evolution in nuclear matter has been calculated in terms of the thermal 

evolution in SNM and PNM. In absence of definite idea about the momentum 

dependence of PNM mean field, we have considered different representative cases 

within the allowed range of momentum dependence of PNM mean field. It has been 

found that the momentum dependence of the nuclear mean field has the important 

influence of reducing the effect of temperature. We have found a critical value

e’x - —sex within the whole allowed range of £lex, i.e. 0 < s'ex < £a. On both sides of 

this value, the thermal evolution in SNM and PNM show two contrasting behaviours. If

0 < s1. < — £ . then the thermal evolution in PNM crosses that of SNM at certain higher

density. If -e0 <e'x < e^then no such cross over phenomena takes place. Also

entropy density in PNM also does not cross over that in SNM at any density. Since the 

PNM is a one component system, the entropy density in PNM should not cross that of 

SNM. Therefore it is less likely that the momentum dependence of PNM mean field

2
should lie within the range 0 < E!ex < For this critical value it has been found that,

the magnitude of neutron-proton effective mass splitting in ANM agrees quite well with 

the results obtained in ab initio DBHF calculation.
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CHAPTER-V

PROPERTIES OF NUCLEAR 
MATTER AT FINITE 

TEMPERATURE AND EQUATION 
OF STATE OF CHARGE NEUTRAL 

n + p + e+ fi MATTER UNDER 
BETA EQUILIBRIUM
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In the last chapter the thermal evolution of important nuclear matter properties 

like nuclear symmetry energy and free symmetry energy have been studied which 

requires only the knowledge of finite range exchange interactions acting between a pair 

of like nucleons and unlike nucleons. Within the framework of the formalism used in 

our work, it is the finite range exchange part of the interaction that determines the 

momentum dependence of the nuclear mean field and also simulates the temperature 

evolution of nuclear matter properties. From the studies on entropy per particle and 

thermal evolution of vario us nuclear matter properties in the last chapter it is clear that 

the momentum dependence of the nuclear mean field has the crucial role in making the 

system a more ordered one and also in counterbalancing the effect of temperature on the 

nuclear matter properties. In this context two contrasting behaviours have been noticed 

depending on the magnitude of splitting of the combined exchange strength parameter

(e^. + £„) into like and unlike channels, £^ and £^, respectively. It is also found 

that there is a critical value of this splitting close to e1̂  = 2{elex + e"‘)/6 (corresponding 

to =4(ela + e'£)/6), that divides the admissible range of the splitting of the 

combined exchange strength parameter {£les + £"7) into two distinct groups. In the case

of splitting of the exchange strength parameter where £^ value lies below this critical 

value then the entropy in PNM can become more than that of SNM as the density 

increases and in this case the functional behaviour of properties like nuclear symmetry 

energy and free symmetry energy at finite temperature relative to zero temperature gets 

inverted in the high density region. On the other hand if the splitting is such that

£^ value lies in the other half then entropy in PNM does not surpass the SNM result

and the functional behaviors of properties like nuclear symmetry energy and free 

symmetry energy at finite temperature relative to zero temperature do not get inverted

in the high density region. For the critical value of £^. the finite temperature results 

approach the zero-temperature ones asymptotically in the high density region. In the 

work of the present chapter we shall study the finite temperature nuclear matter 

properties as well as the EOS of beta equilibrated charge neutral n+p + e + fl matter 

for these three extreme cases of splitting of exchange strength parameter, namely, (i)
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eL =(£L + eev)/6 (case A) (ii) eL =(£i- + £«)/2 (case B) and (di) the critical case 

e'ex = 2(e'ex + s‘‘x)/6, in order to find out the differences in the prediction of the results.

5.1 Temperature dependence of Nuclear symmetry energy
The nuclear symmetry energy and free symmetry energy at finite temperature

are defined in terms of the difference of energy density and free energy density in PNM 

and SNM at finite temperature respectively as,

Es{p,T) = lHMT) HoiP’Dl = (p,r)-e0(p,T))

Fiy„, (P,T) =
[H,(p,T)-Htip,T)]-T[S,ip,T)-Slp,T)]

The symmetry energy at finite temperature, Es(p,T), has crucial relevance in the 

isoscaling behaviour studies of multifragmentation phenomena in heavy-ion collision 

experiments at intermediate energies [133, 141, 181-183]. On the other hand, the free 

symmetry energy, Fsym(p,T), at finite temperature plays important role in the 

formation and cooling mechanism of newly bom neutron stars [136, 184-186].

The calculation of symmetry energy, Es(p,T), at non-zero temperature T 

requires the knowledge of energy densities in SNM and PNM as functions of p and T.

The energy density of SNM for our interaction is given in eq.(3.2.1) and all the six 

parameters required for calculation are known fom saturation conditions and nuclear 

matter incompressibility and are given in table 2 of chapter-III. The results for energy 

density H()(p,T) in SNM as a function of density at different temperatures are shown 

in the Figure 5.1. The calculation in PNM for the three representative cases of splitting 

of the exchange strength parameter, (£^. + £&), as mentioned above now requires the 

additional splitting of the combined strength parameters of the density dependent parts, 

(e'0 + Eq) and (£y + £y), into like and unlike channels. The parameter fixation in 

PNM has been discussed in chapter-III and the values of the parameters in case of these 

three representative cases are given in table 3 in the same chapter. The energy density in 

PNM, Hn(p,T), as a function of density at different temperatures for the three cases, 

case A, case B and critical case, are shown in Figures 5.2(a), (b) and (c) respectively.
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Figure 5.1. Energy density in SNM shown as a function of density at four 
different temperatures T=0, 20, 40 and 60 MeV.
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Figure 5.2. (a) Energy density in PNM shown as a function of density at four 
different temperatures T=0, 20, 40 and 60 MeV for case A. (b) Same as (a) for 
case B. (c) Same as (a) for the critical case.
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Figure 5.3. (a) Nuclear symmetry energy shown as a function of density for the 
critical case at temperatures T=0, 20, 40 and 60 MeV. (b) Same as (a) for case 
A. (c) Same as (a) for the case B.

The density dependence of nuclear symmetry energy Es(p,T) at different 

temperatures is shown in Figure 5.3(a) for the critical value of £^. . For this case, 

inversion in the functional relationship between the finite and zero-temperature results 

does not occur and the finite temperature result approaches the zero-temperature one 

asymptotically in the high density region as expected from earlier discussions in the 

previous chapter. In order to visualize the contrasting behaviour of density dependence 

of nuclear symmetry energy Es{p,T) in the cases of splitting of the exchange strength 

parameter on either sides of the critical value we have also calculated the results for the 

two other cases, £'a =(£,ex + £^)/6 and e'a =(e'a + £^)/2, given as case A and case 

B, respectively. The results are shown in Figures 5.3(b) and (c) for the two cases A and 

B, respectively. The crossover phenomena resulting into an inversion of the functional 

relationship between the finite and zero-temperature results take place in the high 

density region in case A, whereas in case B, the finite temperature results remain below
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the zero-temperature ones at all the densities considered. Under the formalism used in 

our work, the temperature dependence of the interaction part in nuclear matter 

properties is simulated through the momentum dependent part of the nuclear mean field 

which, in turn, arises from the exchange part of the interaction. Moreover, the 

temperature dependence of the symmetry energy has the behaviour that it decreases 

with increase in temperature, it is expected that in case of case B there will be a stronger 

temperature dependence in comparison to case A. The stronger temperature dependence

in case B is a consequence of larger magnitude of the parameter resulting into 

stronger momentum dependence in PNM as compared to case A. Thus for the case B, 

the curves of Es(p,T) are shifted more and more below the curve Es(p,T = 0) with 

increase in temperature as can be seen in Figure 5.3(c) and the thermal evolution of the 

symmetiy energy remains negative at all densities and all temperatures. Thus the 

functional Q(p,T) remains negative in case B for the entire range of density shown in 

Figures 4.7(b). The relatively weaker momentum dependence in PNM in case A has the 

consequence of a weak temperature dependence in PNM that further decreases with 

increase in density resulting into a crossing over of the high temperature curves with the

low temperature ones in the density region around p >0.8/w~3, as can be seen from 

Figure 5.3(b). Consequently the functional Q(p,T) becomes positive at higher densities, 

as shown in Figures 4.7(a) for case A. On the other hand, for the critical case shown in 

Figure 5.3(a), the strength of momentum dependence in PNM is such that the effect of 

temperature gets washed out in the high density region and the curves of Es(p,T)

approach to the Es(p,T = 0) one asymptotically in the high density region. From the 

Figure 3.9 of chapter-HI, it can be seen that the density dependence of Es(p,T = 0) for 

the cases A and B are almost identical over the entire range of density. Thus a 

comparison of Fgures 5.3(b) with 5.3(c) shows that different symmetry energies may 

have similar density dependence at zero temperature but they can differ significantly 

from each other at finite temperature. A comparison of the results obtained in our cases 

of different momentum dependence in PNM with the results in Ref. [176] shows that the 

temperature dependence of nuclear symmetiy energy for case A shown in Figure 5.3(b) 

is similar to those obtained in Ref. [176] for their interaction with x = 0.
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5.1.1. Prediction of Symmetry energy from isoscaling analysis of 

Multifragmentation phenomena
The density dependence of symmetry energy at non-zero temperature is 

important in the studies of isoscaling analysis in multifragmentation phenomena [133, 

141, 176, 181-183] as well as in the calculation of fractions of different particles in - 

equilibrated n+p+e+p matter [164, 177]. In the study of multifragmentation 

processes the ratio R2i(N,Z) of the yields of a fragment with Z protons and N 

neutrons from two reactions reaching the same temperature T obeys an exponential 

relation R21(N,Z) oc ea N . The isoscaling coefficient a is related to the symmetry 

energy Es(p,T) as

(5.1.1a)

where,

k\{ZIAf\={Zx I Ax)2 ~{Z2 / A2)2 (5.1.1b)

is the difference between the (Z(. / Ai )f=12 values of the two fragmenting sources

created in the two reactions. The isoscaling coefficient (X is extracted from the 

experimental data by plotting the number of isotopes formed for different Z, namely 

Z=2, 3, 4, etc., as function of neutron number, N. The slope of these different curves is 

same and given by a. The isoscaling coefficient a and the temperature T of the 

fragment emitting source are measured experimentally from which the value of 

Es(p,T) can be extracted from eqs. (5.1.1a & b). However, the freeze out density pf 

of the fragmenting source at the site of formation of the particular nuclei has not yet 

been possible to extract from the experiments and therefore depends on the model used. 

This is the reason why different groups predict different values of the symmetry energy 

at same T extracted from the same experiments conducted at different laboratories. In 

order to see the model dependence of the value of freeze out density pf of the 

fragmenting sources we calculate the symmetry energy Es(p,T) as a function of 

temperature for the two representative cases A and 3 in Figures 5.4(a) and (b) at 

different densities from 0.4p0 to p0. In the same figures, the experimental data of the
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Figure 5.4. (a) Temperature dependence of symmetry energy for case A at
different densities from 0.4p0 to p0. The experimental data of the measured 
temperature dependent symmetry energy from Texas A&M university (TAMU) 
and INDRA-ALADIN collaboration at GSI are also included, (b) Same as (a) 
for case B.

measured temperature dependent symmetry energy from Texas A&M University 

(TAMU) 1187] and the INDRA -ALADIN Collaboration at GSI [188, 189] are also 

included. The curves of Es(p,T) for same density p have similar temperature 

dependence for the two cases considered, except that the rate of decrease of symmetry 

energy with increase in temperature is relatively faster in case B compared to case A. 

From Figures 5.4(a) and (b) it is also clearly seen that the experimentally observed 

evolution of symmetry energy is mainly due to the change in density rather than 

temperature, as pointed out in Refs.[176, 190]. The average freeze-out density of the 

fragment emission source can be estimated from the measured temperature dependent 

symmetry energy based on isoscaling analysis in multifragmentation phenomena 

included in Figures 5.4(a) and (b). The average freeze-out density pf for case A lies 

within 0.47p0 and 0.59p0 for TAMU data while it is within 0.49p0 and 0.83p0 for 

INDRA-ALADIN Collaboration data. On the other hand, for case B, p/ is found to be 

within 0.5p0 and 0.61p0 for TAMU data and between 0.52p0 and 0.84p0 forlNDRA-
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ALADIN Collaboration data. The shift in the freeze-out density pf towards higher 

density in case B compared to case A is due to the fact that for a given density p below 

normal density p0, the curve of Es (p, T) for case B is always below that of case A and 

the difference slowly increases with an increase in temperature and a decrease in 

density, as can be seen from Figures 4.5(a) and (b). It is interesting to compare the 

results of freeze-out density estimated in both the cases A and B with those obtained in 

Ref.[176], For the interaction used in their study in Ref.[176] with x = 0 the average 

freeze-out density pf is within 0.41p0 and 0.52p0 for TAMU data while it is between

0.42p0 and 0.75p0 for INDRA-ALADIN Collaboration data. On the other hand, for 

the interaction with x = -l, pf is within 0.57p0 and 0.68p0 for TAMU data and

between 0.58p0 and 0.84p0 for INDRA-ALADIN Collaboration data. It may be 

mentioned here that in view of the recent work of Souza et. al. [191] the TAMU and 

INDRA-ALADIN Collaboration data need to be modified taking surface effect into 

account. But in any case the necessity to find out the freeze-out density in a particular 

reaction experiment in order to ascertain the value of Es (p,T) from isoscaling analysis 

remains unchanged. We have also repeated the calculation for the critical case and the 

results are shown in Figure 5.5. The average freeze-out density pf in this case lies

within 0.47p0 and 0.6lp0 for TAMU data while it is within 0.49p0 and 0.84p0 for 

INDRA-ALADIN Collaboration data.

Since the temperature evolution of symmetry energy is built upon its zero- 

temperature result through the self consistently evaluated Fermi-Dirac momentum

distribution functions in SNM and PNM, the freeze out density p/ estimated in this 

way would also critically depend on the stiffness of the curve of Es(p,T = 0) in the 

density region p < p0. With an increase in the stiffness of Es (p,T = 0) in this density 

region the freeze-out density pf would gradually shift to lower and lower density. 

From an analysis of isoscaling data in multifragmentation phenomena it has been 

inferred in Ref. [133] that the density dependence of Es(p,T = 0) should neither be
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Figure 5.5. (a) Temperature dependence of symmetry energy for the critical 
case at different densities from 0.4p0 to p0. The experimental data of the 
measured temperature dependent symmetry energy from Texas A&M university 
(TAMU) and INDRA-ALADIN collaboration at GSI are also included.

very stiff nor soft in the region p < p0 and that the value of zero-temperature symmetry 

energy at half of the normal nuclear matter density, i.e., p =~~’ should have the order

18-20MeV. In this context, we note that the value of Es(p =-^-,T =0) is found to

be 18.1 MeV for case A, 17.7 MeV for case Band 17.9 Me V for the critical case.

The results of density dependence of nuclear symmetry energy density 

Hs(p,T) = pEs(p,T) defined in eq.(4.1.5) are given for the three cases, case A , case 

B and the critical case at different temperatures T = 0, 20, 40 and 60 MeV in Figures 

5.6(a), (b) and (c) respectively. As expected the functional Hs{p,T) has relatively a 

larger temperature dependence in case B compared to case A in so far as the decreasing 

trend of energy density with temperature is concerned, whereas, in critical case the 

temperature dependence is intermediate between these two cases which gets washed out 

in the high density region
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Figure 5.6. (a) Nuclear symmetry energy density shown as a function of density 
for case A at temperatures T=0, 20, 40 and 60 MeV. (b) Same as (a) for case B. 

(c) Same as (a) for the critical case.
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Figure 5.7. (a) Nuclear symmetry energy pressure shown as a function of 
density for case A at temperatures T=0, 20, 40 and 60 MeV. (b) Same as (a) for 
case B. (c) Same as (a) for the critical case.
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5.1.2. Symmetry Energy Pressure at finite temperature
In Figures 5.7(a), (b) and (c) the density dependence of symmetry energy 

pressure Ps{p,T) defined in eq.(4.1.6) are shown at different temperature T for the 

same three cases. It is seen that Ps(p,T) is a decreasing function of T. However, the 

rate of decrease of Ps(p,T) with temperature is faster in case B than in A, whereas, it 

is intermediate between these two for the critical case.

5.1.3. Free Symmetry Energy
The free energy per particle in SNM and PNM are given as 

Fsnm(p,T) = [H0(p,T)-TS0(p,T)]/p and Fpnm(p,T) = [Hn(p,T)-TS„(p,T)]/p, 

respectively. The free energy per particle in SNM and the three cases in PNM are 

shown in Figures 5.8(a) and 5.9(a), (b) and (c), respectively, as function of density at 

different temperatures. In both the cases of SNM and PNM the free energy decreases 

with increase in temperature at a given density. The magnitude of decrease becomes 

smaller with increase in density. In PNM, for all the three cases considered, the curves 

corresponding to higher value of temperature lye below the curves for lower 

temperatures in the whole range of density unlike the case of symmetry energy that 

shows a crossing over phenomena for case A . The magnitude of decrease for the three

cases of s'a at different values of density do not vary much giving nearly similar 

values for the three cases. However, there is a trend that the rate of decrease is relatively 

more in case of case A in comparison to case B, whereas, the behaviour for the critical 

case lies intermediate between these two cases. In Figure 5.8 (b), we have compared our 

results of the free energies in SNM at different temperatures with the results of 

Brueckener-Bethe- Goldstone calculations of Burgio et al.[192]. Our results agree quite 

well with the BBG results upto density p « 0.3 fnf3. Beyond this density, the curves of 

our calculations become stiffer than that of the BBG calculation.

We can now calculate the free symmetry energy,

FSym(P’T) = Fpnm(pJ) ~ FSnmiPJ) , (5-1 2)
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Figure 5.8. (b) Free energy in SNM shown as a function of density at three 
different temperatures T=0, 20 and 40 MeV and the results of the present 
formalism are compared with the BBG calculations of Burgio et al.[ 191]. In the 
figure the curves with solid circles represent the BBG calculations.
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Figure 5.8. (a) Free energy in SNM shown as a function of density at four 
different temperatures T=0, 20, 40 and 60 MeV.
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Figure 5.9. (a) Free energy in PNM shown as a function of density for case A at 
temperatures T=0, 20,40 and 60 MeV. (b) Same as (a) for case B (c) Same as (a) 
for the critical case.

as the difference between the free energy per particle in PNM and in SNM. The results 

of free symmetry energy, FSym (p,T), for the three cases of are shown as function 

of density at different temperatures in Figures 5.10(a), (b) and (c). The results, in 

general, show that the free symmetry energy increases with increase in temperature 

which is contrary to the behaviour of nuclear symmetry energy that gives a decreasing 

trend. However, a similar crossing over phenomenon as noticed in the case of nuclear 

symmetry energy for case A is also found in the case of free symmetry energy. In case 

A for the free symmetry energy shown in Figure 5.10(a), at around density

p x 0.8 fnf3 the curves corresponding to higher temperatures which were lying above 

the zero temperature curve at lower densities, cross and lye below the zero temperature 

curve with further increase in density. This crossing over phenomena in case A is 

expected from the results of symmetry energy in Figure 5.3 and entropy in Figure 4.9 

for the case. Similarly for case B in Figure 5.10 (b), expected result is also obtained that 

the finite temperature curves will not cross the zero temperature one and will lye above
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Figure 5.10. (a)Free symmetry energy shown as a function of density for the 
case A at temperatures T=0, 20, 40 and 60 MeV. (b) Same as (a) for case B. (c) 
Same as (a) for the critical case.

it at all densities considered. For the critical case in Figure 5.10(c) the result is as per 

expectation that the effect of temperature vanishes in the high density region and all 

curves approach the zero temperature result asymptotically.

5.2. Equilibrium proton fraction and EOS of charge neutral P -stable 
n + p +e + fi matter at finite temperature

In supemovae matter the inside temperature is as high as of the order T-10-40 

MeV and asymmetry Yp(p,T) «1/3. The heavy element core of massive star inside the 

supernova matter undergoes a gravitational collapse resulting into either directly to a 

black hole or to a metastable proto neutron star. The newly formed neutron star under 

gravitational collapse mechanism of the supemovae-II has an initial temperature of the 

order 50 MeV and has a quite large proton fraction The large proton fraction initiates 

the so called URCA process and produces copious amount of neutrinos. The newly bom 

neutron star cools rapidly via emission of neutrinos within few seconds and reaches a 

temperature less than 1 MeV. In situations which are governed by isothermal processes
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the entropy changes, whereas, for isentropic processes the entropy is constant. Out of 

the limited numbers of works performed in this area of finite temperature neutron star 

calculation found in the literature, some have used the symmetry energy in their 

calculations [193, 194] and others have used the free symmetry energy [192], In our 

earlier work [179] we have studied the EOS of NSM at finite temperature by taking the 

symmetry energy. Here we shall make the same study considering the free energy as the 

input in solving the beta stability condition. The important differences in the results of 

the two considerations will be discussed at appropriate places. The process of formation 

and cooling of the protoneutron stars can be basically considered as isentropic process 

where the free energy plays the crucial role. In view of this in the calculation of 

equilibrium proton fraction in charge neutral /J -stable n + p+e + p matter in supemovae 

matter and proto neutron stars, it is essential to consider the free symmetry energy 

instead of symmetry energy.

5.2.1 EOS of NSM at finite temperature
The y3 -stabiliy condition can now be expressed by using the quadratic 

approximation of the free energy density as given in eqs.(4.3.3 - 4.3.5). The difference 

between neutron and proton chemical potentials at a given density p and 

temperature T, in terms of free symmetry energy, can be expressed as

p„(p,T)-jip(p,T)=4(l-2Yp(p,T))Fsym(p,T). (5.2.1)

The p -stability condition becomes,

C^^pY^T))2'3 +MlCA\

(5.2.2)

which is the same as given in eq.(3.3.13a) except that die symmetry energy, Es{p), is 

replaced by free symmetry energy, Fmj{p,T). Here both the leptons e and il are 

described as relativistic ideal Fermi gases. The charge neutrality condition is given by 

Yp(p,T) = Ye(p,T) + Yil(p,T). (5.2.3)

Thus, the problem now reduces to solve the equation,

4 [l-2Yr(P,T)]Fm,(p,T) = Mp,T),
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subject to the condition of charge neutrality in eq.(5.2.3). Here p(p.T) is the 

/3 -equilibrium chemical potential corresponding to the equality in eq.(5.2.2). In this 

model the charge neutrality condition takes the form,

YpiP,T)-
1 2 f

k2dk
7t-p i=e,p 0Jexp{[(C2h2k2 +mfC4)U2 -p(p,T)]/T} +1

(5.2.5)

where, m, with i = e,p are the rest masses of electron and muon. If the density and 

temperature dependence of nuclear free symmetry energy F (p, T) is known, then 

eqs.(5.2.4) and (5.2.5) can be solved to obtain the /3 - equilibrium chemical potential 

p{p,T), the leptonic fractions Yj(p.T), i=e,p , and the proton fraction YP(p,T) at each 

density p and temperature T. Thus the composition of NSM at nonzero temperature 

in terms of fractions of neutron, proton, electron and muon at different nucleon density 

p and temperature T is essentially determined by the temperature and density

dependence of nuclear free symmetry energy, F (p,T).

The EOS of /? - equilibrated n + p + e + p matter, i.e., NSM, is considered as 

an ideal mixture of a nucleonic and a leptonic part. The energy density and pressure in 

NSM can therefore be written as,

hnsm (p, yp, t)=hn (p, Yp, r)+ He{p,Ye, r)+ (5.2.6)

PNSM(p,Yp,T) = PN(p,Yp,T)+Pe(p,Ye,T)±P!1(p,Yll,T). (5.2.7)

The nucleonic part of the energy density HN{p,Yp;T) and pressure in

NSM are calculated from the EOS of ANM described in eqs.(4.1.3)-(4.1.6) 

corresponding to the equilibrium proton fraction Yp(p,T) for given density p and

temperature T. This requires the knowledge of energy densities Hn{p,T) and 

H0(p,T) as well as pressures P„{p,T) and PQ (p.T) in PNM and SNM as functions of 

density p and temperature T. On the other hand, the leptonic energy densities 

He(p,Ye,T) and HM{p,Yp,T) as well as pressures Pe(p,Ye,T) and P'' {p,Yp,T) can

be calculated in the relativistic ideal Fermi gas model by using the Fermi-Dirac 

momentum distribution functions of the leptons given in connection with eq.(5.2.5).
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Figure 5.11. (a) Equilibrium chemical potential p(p,T) in NSM shown as a 
function of density for case A at four different temperatures, T=0, 20, 40 and 60 
MeV. (b) Same as (a) for case B. (c) Same as (a) for the critical case.

5.2.2. Composition of NSM at finite temperature for different choices of e'x

The temperature and density dependence of nuclear free symmetry energy 

F (p, T) obtained in our case shown in Figures 5.10(a), (b) and (c) are used now to 

solve eqs.(5.2.4) and (5.2.5) to calculate the p - equilibrium chemical potential 

n(p,T), the leptonic fractions 7.(p, 7’), i=e,p, and the proton fraction YP(p,T) at 

each density p and temperature T . The density dependence of p(p, T) at different 

temperature T, thus obtained is shown in Figures 5.11(a), (b) and (c) for the three cases 

of our representative values of corresponding to case A , case B and the critical 

case, respectively. The -equilibrated chemical potential jl{p,T) is found to be a 

decreasing function of temperature relative to the zero temperature result in all the three 

cases. The magnitude of decrease of p(p,T) with increase in temperature is relatively 

larger in case A compared to case B, whereas, in the critical case it lies intermediate 

between the two cases A and B. This means that the functional

[1 - 2Yp(pfT)]F (p,r) in j3 - equilibrated n + p + e + p matter is a decreasing

u(
p.

T)
 [M

eV
]
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Figure 5.12. (a) Equilibrium proton fraction Yp(p,T) in NSM shown as a 
function of density for case A at four different temperatures, T=0, 20, 40 and 60 
MeV. (b) Same as (a) for case B.(c) Same as (a) for the critical case.

function of temperature T at any given density p . In view of this the equilibrium

proton fraction YP(p,T) would increase in a region of density p where the free

symmetry energy F increases with temperature. The proton fraction YP(p,T)

also increases in a region of density p where {p,T) decreases at a rate slower

than p(p,T) with increasing temperature. On the other hand YP(p,T) decrease with

increase in temperature T in a region of density p where Fsym(p,T) decreases at a

faster rate than p(p,T) with increase in temperature. These points are illustrated in

Figures 5.12(a), (b) and (c) where the density dependence of the calculated equilibrium

proton fractions YP(p,T) are given at different temperature T for the cases A, B and

the critical case, respectively. The corresponding electron and muon fractions, and

Yfl (p, 7 ), are shown as functions of density p in Figures 5.13(a), (b)and (c) and

Figures 5.14(a), (b) and (c) respectively. So far as the variation in the density

dependence of Yp(p,T) with increase in temperature is concerned, the complete

domain ofp in Figures 5.12 can be roughly divided into two parts: p < p(T) and
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Figure 5.13.(a) Electron fractions, Ye{p,T)corresponding to the equilibrium 
proton fraction Yr (p, T) in NSM shown as a function of density for case A at 
four different temperatures, T=0, 20, 40 and 60 MeV. (b) Same as (a) for case B. 
(c) Same as (a) for the critical case.

p > p(T). Here p(T) is a critical cfensity corresponding to temperature T where 

YP(p,T) has a minimum. It can be seen from Figures 5.12 that all the three cases 

exhibit similar density dependence of YP(p,T) with increasing temperature in the 

region p<p(T). The proton fraction YP(p,T) increases sharply with decreasing 

density in this region when temperature increases. This is a consequence of the fact that 

the rate of decrease of p(p,T) in this low density region is much faster than the

decrease in Fsym(p,T) with increasing temperature. On the other hand, the variation in

the density dependence of Yp(p,T) in the region p> p(T) with increasing temperature 

is found to be relatively larger for case B as compared to A. Comparing Figures 5.10, 

5.11 and 5.12 in the region p> p(T) it is seen that the effect of increasing temperature 

is manifested largely through an increase in the proton fraction Yp{p,T) in case B as 

compared to A. This is due to the fact that the rate of increase in free symmetry energy 

slows down in this region of density for case A as well as the chemical potential has a 

smaller value as compared to case B. This is a consequence of the fact that the nuclear
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Figure 5.14. (a) Muon fractions (p, T)corresponding to the equilibrium
proton fraction YP(p,T) in NSM shown as a function of density for case A at 
four different temperatures, T=0, 20, 40 and 60 MeV. (b) Same as (a) for case 
B.(c) Same as (a) for the critical case.

mean field in PNM has a stronger momentum dependence in case B than in case A due 

to the large difference in their values of exchange strength parameter e'a. The results 

for the critical case lie intermediate between these two cases. In order to have a better 

visualization of the above discussion we have shown the proton and lepton fractions as 

function of density at temperature T - AOMeV for the three cases considered, in Figure 

5.15. It may be noted here that the temperature dependence of the proton fraction 

calculated by taking the symmetry energy, Es(p,T), in the beta stability condition in 

eq. (5.2.1) instead of free symmetry energy, as has been done in our earlier work in 

Ref. [179], then we get an opposite behaviour in the results of proton fraction for case A 

and case B in comparison to the results obtained in the present calculation shown in 

Figure 5.12. In the case of our earlier work of Ref.[179] considering symmetry energy 

in beta stability condition, the effect of increase in temperature is manifested largely 

through an increase in the proton fraction YP(p,T) in case A as compared to B. This 

can be seen from comparing the Figures 5.12(a) and (c) with the Figures 11(a) and (b)
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Figure 5.15. Equilibrium particle fractions of the neutron star matter as function 
of density for the three cases at temperature T=40 MeV. Curves with filled 
diamonds are for electron fractions. Curves with filled circles are for the muon 
fractions.

of Ref. [179]. Thus the composition of neutron star matter will have large differences 

under the two considerations for a given value of and, therefore, also differ in 

cooling mechanism.

5.2.3. Cooling under direct URCA process for different choices of e‘ex

The fact that temperature dependence of the free symmetry energy Fsym(p,T)

and equilibrium proton fraction Yp(p,T) are sensitive to the choice of the splitting of

the parameters (e[,x+ e“x) into £lex and e“lx, it can have a crucial relevance in the study

of thermal evolution of neutron stars. The neutron stars are bom with an interior

temperature of the order -50 MeV, but rapidly cool via neutrino emission to

temperature less than 1 MeV within seconds [177,195], The conditions of direct URCA
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processes in n + p + e + fl matter under ft -equilibrium can be given by 

Ynu\p,T)<Ypu\p,T) + Y^(p,T) and/or Yy\p,T)<Ypy\p,T) + Y"\p,T). The

direct URCA process at T = 60MeV is allowed over the whole range of density 

considered in case of case B, whereas, it continues starting from low density upto a 

density 13 fand 1.5 fm* in the case A and the critical case, respectively. Similarly at

T-AQMeV the direct URCA process is allowed upto density 0.2/hr3, 1.0fm~3 and 

1.3/ffT3 in case of case A, the critical case and case B, respectively. At T = 20MeV 

direct URCA process is not allowed in all these thee cases. These results are, however, 

qualitative in nature in the sense that they are calculated on the basis of n+ p + e+p 

matter under p - equilibrium and presence of other hyperons, mesons or quarks have 

not been taken into consideration in this work. We further note that the occurrence/non­

occurrence of direct URCA process with increase in temperature as discussed above 

would crucially depend on how the density dependence of symmetry energy 

Es(p,T = 0) at zero temperature is fixed. In this context, it can be mentioned that the 

universal high density behaviour of the functional

Snsu(p,Yp,T = 0) = 1(i-2Yp(p,T=0)}hs(p,T = 0)\nsm is used to constrain the 

density dependence of Es(p,T - 0) in our work. As a result of this, the density 

dependence of Es(p,T - 0) for both the cases A and B given in Figure 3.10 of chapter- 

ill differ little from each other over the entire region of density and also do not allow 

direct URCA processes.

5.2.4. Universal High density behavior of the functional SNSM (p,YP,T)

The functional SNSM (p,YP,T) at finite temperature can be given by

S“su (p,Yr,T) = [(l-27, (p,T)f where Ft(p,T) is the free energy

density, and the expression reduces to the zero-temperature expression at T = 0. The 

asymmetric contribution to the nucleonic part of free energy density in NSM, i.e.,

SNSM (p,Yp,T) = |(l - 2Y (p,T)f Fs(p,T) I is shown in Figure 5.16 as a function of
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Figure 5.16. Asymmetric contribution to the nucleonic part of free energy 
density SNSM(p,YP,T) in NSM shown as a function of density at four different 
temperatures, T=0, 20, 40 and 60 MeV for the two cases A and B.

density p at different temperature T for the two extreme cases A and B. It is seen from

Figure 5.16 that the curves of SNSM (p, YP,T) for these two different cases are the same 

over the entire range of density at any given temperature T. In this context we note that 

the universal high density behaviour of the functional SNSM(p,YP,T = 0) at zero 

temperature was used to constrain the density dependence of nuclear symmetry energy 

Es(p,T = 0) for both the cases A and B. Figure 5.16 shows that this universal high 

density behaviour is also valid at finite temperature. However, with increase in 

temperature the curves of SNSM (p, YP ,T) are gradually pushed below.

5.3. EOS of NSM for the three choices of e'liX

The density and temperature dependence of equilibrium proton fraction 

YP (p,T) and chemical potential p(p,T) obtained above can now be used to calculate 

the EOS of P -equilibrated n + p + e + p matter (NSM) from eqs.(5.2.6) and (5.2.7).
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5.3.1. Nucleonic contribution to energy density and pressure
The nucleonic part of the energy density and pressure, i.e., HN{p,Y ,t) and

PN(pJPj\ comprise of contributions from symmetric part and asymmetric part of 

nuclear EOS as given in eqs.(4.1.3) and (4.1.4). The symmetric contributions, HQ(p,l) 

and P0(p,l), are the same for the three cases A , B and the critical case. H0(p,T) as a 

function of density p and temperature T has been shown in Figure 5.1. The energy 

densityH0(p,T) increases with the increase in temperature. The asymmetric 

contribution to the nucleonic part of energy density, SNSM(p,Yp,T), is plotted in Figure 

5.16 and has been discussed in section 5.2.4. In Figure 5.17, we have shown the density 

dependence of the symmetric contribution to the nucleonic part of pressure, P0(p,T) at 

different representative temperatures. P0(p,T) increases with increase in temperature. 

The asymmetric contribution to the nucleonic part of pressure in NSM, i.e.,

■OP Jp,T) = I1 - 2YP(P,T)f Ps(P’t)\sm is show11 as a function of density p at 

different values of temperature T in Figures 5.18(a), (b) and (c) for the three cases 

respectively. It is found that P^(p, Yp, T) decreases with increase in temperature for all 

the three cases considered.

Figure 5.17. Symmetric part of nucleonic pressure in NSM shown as a function 
of density at four different temperatures, T=0, 20, 40 and 60 MeV.
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Figure 5.18. (a) Asymmetric contribution to the nucleonic part of pressure in 
NSM shown as a function of density for case A at four different temperatures, 
T=0, 20, 40 and 60 MeV . (b) Same as (a) for case B. (c) Same as (a) for the 
critical case.

5.3.2. Leptonic contribution to energy density
The total leptonic contribution to the energy density in NSM,

HL(p,T) = He (p,Ye,T)+ H1' (p,Ym,l), for the three cases A, B and the critical case 

are shown as functions of p at different temperatures in Figures 5.19 (a) , (b) and (c) 

respectively. The leptonic part of energy density is found to increase with increasing 

temperature. However, the rate of increase of HL(p,T) with temperature is relatively 

higher for case B as compared to A and the result for the critical case is intermediate 

between these two cases. The higher rate of increase in leptonic fraction in case B is due 

to the fact that the proton fraction YP(p,T) increases at a faster rate with increasing 

temperature in case Bthan in A as can be seen from Figures 5.12(a) and (b). The 

temperature dependence of leptonic energy density found here for the different cases 

considered has shown an opposite trend to the results obtained in mr earlier work [179], 

where the equilibrium proton fraction was calculated with the symmetry energy in the
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Figure 5.19. (a) Leptonic part of the energy density in NSM shown as a function 
of density for case A at four temperatures, T=0, 20, 40 and 60 MeV. (b) Same as 
(a) for case B. (c) Same as (a) for the critical case.

beta stability condition. This is obvious because in the calculation of Ref. [179] the 

temperature dependence of proton fraction in case A was obtained to be stronger than 

that of case B, a behaviour opposite to the present one.

5.3.3. Leptonic contribution to pressure
The total leptonic pressure PL(p,T) =Pe(p,YP,T) + P11 (p,YP,T) in NSM is

given as a function of density p at different temperature T in Figures 5.20(a), (b) and

(c) for cases A , B and the critical case. The leptonic part of the pressure PL(p,T) 

slowly decreases upto a temperature r=20 MeV and then it increases with further 

increase in temperature. This behaviour of the leptonic part of the pressure is similar to 

the trend obtained in our earlier calculation in Ref. [17 9] . But in the present case tie 

rate of increase in leptonic part of the pressure with temperature in case B is more than 

that in case A, whereas, in the calculation of Ref. [194] the trend was opposite to the 

cuxxent one.
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Figure 5.20. (a) Leptonic part of the pressure in NSM shown as a function of 
density for case A at four temperatures, T=0, 20, 40 and 60 MeV. (b) Same as 
(a) for case B. (c) Same as (a) for the critical case.

5.3.4. Total energy density and pressure

The total energy density IiNSM {p,YP,T) and pressure PNSM(p,YP,T) in NSM, as given 

in eqs.(5.2.6) and (5.2.7), are calculated as functions of p at different temperatures for 

the three cases A, B and critical case and the results are shown in Figures 5.21(a), (b) 

and (c) and 5.22(a), (b) and (c), respectively. The energy density HNSM(p,YP,T) and 

pressure PNSM (p,YP,T) show a gradual slow increase with increase in temperature T 

for all the three cases A, B and the critical case. Moreover, the results for the three 

different cases of splittings of (e,ex + e&) considered here are similar and do not show 

any appreciable difference at finite temperature.

5.4. Neutron Star properties
The calculation of rrass and radius of neutron star using TOV equation requires 

the energy density and pressure as input. It is therefore expected that for all the three

cases A, B and critical case corresponding to different splitting of (el + e“lx) would
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Figure 5.21. (a) Total energy density in NSM shown as a function of density for 
case A at four temperatures, T=0, 20, 40 and 60 MeV. (b) Same as (a) for case 
B. (c) Same as (a) for the critical case.

P [frn-i] P [fm 3] p [fm 3]

Figure 5.22. (a) Total pressure in NSM shown as a function of density for case 
A at four temperatures, T=0, 20, 40 and 60 MeV. (b) Same as (a) for case B. (c) 
Same as (a) for the critical case.
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Figure 5.23. Mass Radius relation of Neutron star for the three cases at 
temperature T=5 MeV and for the critical case at temperature T=10 MeV.

predict similar results for the bulk properties, such as, mass and radius of neutron star at 

finite temperature. In order to verify this we have solved the TOV equation for EOS of 

NSM at temperatures T = 5 and 10 MeV. The mass versus radius (MG ~ R) relation is 

shown in the Figure 5.23 for the three cases of splitting of (e'ex+ el‘lx) at temperature 

T =5 MeV. It is found that the results are similar for all the three cases considered and 

does not allow to draw any conclusion on the momentum dependence of mean field in 

PNM from the study of bulk properties of normal neutron stars at finite temperature.

The effect of temperature in neutron star can be seen by comparing the corresponding 

results of (Ma ~ R) relation for the same EOSs at T =5 and 10 MeV in the same 

Figure 5.23. It can be seen that the radius of the neutron star increases with temperature. 

The maximum mass neutron star predicted at T = 5MeV for the EOS of NSM 

corresponding to the critical case is 1.854 M@ and radius 9.94 Kms in comparison to 

the corresponding values 1.86 M q and 10.13 Kms at T= 10 MeV. As we move from

the maximum mass towards the lower mass region the radius shows a comparatively 

stiff increase in case of the neutron star at higher temperature. For the critical case the

radius of 1.4 M mass neutron star at T = 5 MeV increases form 11.2
©
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Figure 5.24. Neutron star Mass as a function of central density for the critical 
case at two different temperatures T=5 and 10 MeV.

Figure 5.25. Neutron star radius as a function of central density for the critical 
case at two different temperatures T=5 and 10 MeV.
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Kms to 12.2 Kms, as temperature rises to T = 10 MeV. The increase in radius with 

temperature is in qualitative agreement with the findings of the earlier works [186,194]. 

The central density of the neutron star also decreases with rise in temperature. The mass

versus central density (Ma ~ pc) of the neutron star at T = 5 and 10 MeV are shown 

in the Figure 5.24 for the EOS of NSM corresponding to the critical case. The radius 

versus central density (R ~ pc) at these temperatures for the critical case are also 

shown in Figure 5.25. The radius decreases rapidly initially with increase in central 

density as it starts from low value and then approaches a constant value slowly which is 

in agreement with the findings in Refs.[186, 194],

5.5. Conclusion
Using the density dependent finite range Yukawa interaction we have studied 

the density and temperature dependence of Nuclear Symmetry energy and Free

symmetry energy for the three choices of the parameter e'a, namely,

eL =eex 2sex / 3 and £ . At low temperature we have compared our results of the 

Nuclear Symmetry energy with the experimentally extracted data from isoscaling 

analysis of the multifragmentation phenomena. It has been concluded from the 

discussion that the extracted evolution of symmetry energy from experiments are 

mainly due to the density rather than temperature. The composition of neutron star, i.e. 

P -stable n + p + e + jl matter, and equilibrium chemical potential have been 

calculated using Free symmetry energy. The chemical composition and hence the 

cooling via direct URCA process are found to be sensitive to temperature variation of 

the matter. From the total energy density and pressure, we have calculated the Neutron 

star properties. With the increase in temperature, it is found that the radius of neutron 

star increases which is in agreement with other works. We have found that the total 

energy density and pressure are almost the same irrespective of the choice of the

parameter £^. The neutron star properties also show marginal difference for the three 

different choices of £l .ex
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CHAPTER-VI

SUMMARY AND CONCLUSION
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In this work we have studied the momentum and density dependence of nuclear 

mean fields and equation of state of nuclear matter. In this context, it is worth 

mentioning that the fundamental quantities are the neutron and proton mean fields as a 

function of momentum, total density, isospin asymmetry and temperature. The 

momentum dependence of the nucleonic mean fields is connected to the neutron and 

proton effective masses in nuclear matter, whereas, the study of equation of state s 

connected to the results of the mean fields at and around the Fermi momentum. The 

studies on these two important aspects (momentum and density dependence) of nuclear 

mean fields in isospin asymmetric nuclear matter at zero-temperature, T = 0, can be 

divided into two parts, (i) isoscalar part and (ii) isovector part. The isoscalar part 

pertains to the properties in SNM, whereas, the isovector part gives the contributions 

arising out of the asymmetry in neutron and proton in the nuclear ma tter medium. There 

are empirical/experimental constraints available for symmetric matter and hence the 

momentum and density dependence aspects of isoscalar part are understood to a 

reasonably satisfactory extent. On the otherhand, our understanding of momentum and 

density dependence of isovector part of the nuclear mean field is poor which may be 

attributd to the limited constraints; empirical or experimental, available in this case. The 

momentum dependence of isovector part of the nuclear mean field is connected to the 

neutron-proton effective mass splitting in isospin asymmetric nuclear matter, whereas, 

its behaviour at the Fermi surface is directly connected to the density dependence of 

symmetry energy. These two aspects, n-p effective mass splitting and density 

dependence of symmetry energy, are the two important areas of current nuclear 

research. In this thesis we have focused on these two important aspects within the 

framework of non-relativistic mean field formalism using finite range effective 

interactions.

In chapter-II, we have reviewed some of the earlier works and discussed a 

general framework as worked out by Behera et al.[64, 65, 153] by considering four 

interactions, direct and exchange, acting between pairs of like and unlike nucleons 

which are functions of separation distance between the pair of interacting nucleons and 

depends on the total nucleonic density of the medium. Under this formalism it has been 

shown that the density dependence of energy per particle in SNM is connected to the
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isoscalar part of the mean field at Fermi surface. Similarly, the isovector part of the 

nuclear mean field at Fermi momentum is related to the density dependence of nuclear 

symmetry energy. These relations demonstrate that the nuclear mean fields are the 

crucial quantities in the studies of momentum dependence of isoscalar and isovector 

parts of the single particle potential and equation cf states of nuclear matter. The 

uncertainty associated with the momentum dependence of isovector part of the nuclear 

mean field has been discussed in terms of not only diverging but also contradictory 

predictions on the results of neutron-proton effective mass splitting in isospin

asymmetric nuclear matter by the different theoretical models. In the general

framework, we have diown that the problem of n-p effective mass splitting centers

around the splitting of the total finite range exchange interaction into interactions

between like nucleon pairs (nn, pp-like channel) and unlike nucleon pairs (np-unlike 

channel) in ANM. The two types of contradicting behaviour of n-p effective mass 

splitting as predicted by different theoretical models could be reproduced by 

considering different splittings of the exchange interaction into like and unlike channels. 

It is shown that the isovector part of the nuclear mean field becomes a decreasing 

function of momentum in the case of stronger exchange interaction in the unlike 

channel than that of the like channel and consequently the neutron effective mass goes 

above the proton effective mass in ANM. On the contrary, if the splitting of the 

exchange interaction into the like channel is stronger compared to that in the unlike 

channel then the isovector part of the mean field becomes an increasing function of 

momentum and the proton effective mass lies over that of the neutron. This 

contradictory behavior has been shown explicitly by considering a single finite range 

interaction term having Yukawa form characterized by a strength and range parameters. 

The exchange strength and range parameters are determined by adopting a simultaneous 

minimization procedure using the constraint resulting from the optical model analysis of 

the nucleon-nucleus scattering data at intermediate energies that the attractive nuclear 

mean field should vanish at nucleonic kinetic energy around 300 MeV. The interaction 

thus obtained gives a good description of momentum dependence of isoscalar part of 

the mean field over a wide range of momentum and density consistent with the 

predictions of the microscopic calculations of Wiringa [66] using realistic hamiltonians.
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By splitting this total exchange strength parameter into the like and unlike channels in 

different magnitudes, diverging as well as the contradicting behaviour of n-p effective 

mass splitting as found in cases of different models could be reproduced. The formalism 

has been extended to examine the effective mass splitting in the cases of Gogny and 

Skyrme-type interactions. The momentum dependent parts of isovector potential for the 

respective cases are worked out for the purpose. It is found that in the cases of Gogny 

interaction sets Dl, D260, D280 and D300 the neutron effective mass lie above the 

proton one, where as, for D1S and D250 sets, the proton effective mass lies above that 

of the neutron. In case of Skyrme parameterization only the P- and D-state parameters, 

tx,xx,t2,x2 decide the nature of up effective mass splitting. The Skyrme sets having 

negative values of the resulting functional Q predict the neutron effective mass above 

the proton one and for positive values of Q, the proton effective mass goes above the 

neutron one. The Skyrme sets for which the functional Q vanishes, there is no np 

effective mass splitting in ANM. The values of the functional for several sets of 

Skyrme-interactions have been calculated and are given in table-1. Majority of the 

Skyrme-interaction sets correspond to the case where neutron effective mass is above 

the proton one and there are few Skyrme sets for which neutron and proton effective 

masses are equal in ANM. The SLy-sets, SKI-sets which are relatively recent and are 

constructed with the purpose for application to the isospin rich dense matter, 

particularly for neutron star calculations, predict the proton effective mass above the 

neutron one. Any attempt to analyze nuclear properties sensitive to the n-p effective 

mass splitting requires the variation of the magnitude of effective mass splitting without 

changing the nuclear matter properties. This was not possible with the available Skyrme 

interaction sets containing a single density dependent term. In such case the 

incompressibility is found to be strongly correlated with the effective mass and 

variation of the effective mass drastically changes the nuc lear matter incompressibility. 

The work of Cochet et al. [157] prescribed necessary modification by including an 

additional density dependent term that could enable to disentangle the correlation 

between the effective mass and incompressibility. By considering the exponent in one 

of the density dependent term of the Skyrme set to be 2/3 one gains the freedom to 

vary the effective mass without changing the incompressibility. We have discussed the
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work of Cochet et al. [157] in some detail. The advantage of the modification 

introduced by Cochet et. al. in Skyrme interaction is utilized by Leisinski et al. [131] to 

analyze the nuclear properties sensitive to »p effective mass splitting by varying the 

magnitude of n-p effective mass splitting. The work of Leisinski et. al. has been 

discussed in this section. However, Leisinski et. al. have concluded that the existing 

Skyrme interaction needs to be improved in triplet-odd channel for further progress in 

this direction. The large uncertainty associated with the »p effective mass splitting is a 

measure of our poor understanding of the momentum dependence of isovector part of 

the nuclear mean field. The situation is also similar with regards to the density 

dependence of isovector part of the nuclear mean field. The divergent results of the 

different theoretical models on the density dependence of nuclear symmetry energy are 

a measure of it. The density dependence of nuclear symmetry energy has crucial 

importance beyond standard nuclear physics, n astrophysical objects like supemovae 

and neutron stars. The growing experimental facilities for heavy ion collisions with 

radioactive ion beams raise hopes in the search for answers on these two important 

aspects of isovector part of the mean field. The technique used is to analyze the flow 

data by using transport model calculations. In these isospin dependent transport model 

calculations the inputs are the neutron and proton mean fields. Li et al. [81] in their 

attempt to constrain the density dependence of nuclear symmetry energy have analyzed 

the flow data by using neutron and proton mean fields resulting from their momentum 

dependent interaction (MDI). They have used different density dependence of nuclear 

symmetry energy keeping the momentum dependence of isovector part of the mean 

field unchanged. The work of Li et al. and the technique adopted in producing different 

density dependence of nuclear symmetry energy for the same n-p effective mass 

splitting has been discussed at length in this chapter. Their results on momentum 

dependence of isovector part of the mean field has been compared with our predictions 

considering different splittings of finite range exchange strength parameter. Both the 

results agree reasonably well for e'a = 0.85eer. Rizzo et al. [84], considered a GBD 

type effective energy density and adjusted some parameters by hand in the momentum 

and density dependent terms to reproduce different n-p effective mass splitting for 

almost same density dependence of symmetry energy. Rizzo et al. have studied the

176



effect of two opposite types of n-p effective mass splitting on the flow data. Li [163] in 

an independent work has studied the energy dependence of the isovector part of mean 

field at normal nuclear matter density, i.e., Lane potential, using the effective energy 

density of Rizzo et al. for the two opposite cases of n-p effective mass splitting. With 

the success of constructing an effective energy density that can produce different 

momentum dependence of neutron and proton mean fields for the same density 

dependence of symmetry energy, Moustakidis and co-workers [164-166] examined the 

effect of temperature on various properties in ANM. In the formalism used by 

Moustakidis, the effect of temperature is simulated through the momentum distribution 

functions appearing in the momentum dependent parts of the mean fields and the EOS. 

Moustakidis has used similar functional form of effective energy density as used by 

Rizzo et al. but having two finite range terms having different ranges and strengths. The 

works of Rizzo et al. and Moustakidis and co-workers have been discussed in some 

detail in this chapter and the energy density from a finite range Yukawa interaction 

under the GBD-approximation has also been derived.

In Chapter-Ill, guided by the work of Behera et al. [64, 65, 153], we have 

constructed an effective interaction to study the mean field properties and EOS of ANM 

and to address the above mentioned problem of neutron - proton effective mass 

splitting. It is interesting to note that, with this effective interaction containing a single 

finite range term having Yukawa form, n-p effective mass splitting of desired 

magnitude can be reproduced by considering different splittings of finite range 

exchange strength parameter into like- and unlike-channels. The effective interaction 

contains a total of 11-number of adjustable parameters. Out of the 11-numbers of 

interaction parameters, only six in terms of their combination are required for complete 

description of SNM. The procedure for determination of these six parameters using the 

available constraints in SNM is discussed in this chapter. The parameter y determines 

the stiffness of the EOS and the allowed range of it is found to be y—1/12 to 1 subject 

to the condition that the pressure-density curve remains within the region extracted from 

the analysis of flow data in Hl-collision experiments [68]. The study of ANM requires 

how the three strength parameters given in eq. (3.2.4) splits into like and unlike 

channels. In absence of adequate constraints available to decide the splitting of all three
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strength parameters, we have first decided the allowed range of splitting for the finite 

range exchange strength parameter, (Elgx + £^), keeping in view the result of Lane 

potential and the predictions of different microscopic methods which restricted £^.

between 0 and (£^. + £^ )/2. It has been found that for the splitting £^.=(£^. + £^)/6 

the momentum dependence of Lane potential agrees reasonably well with the DBHF 

result while for £„=2( £^. + £^ )/6 the agreement is well with the BHF results. For a 

given splitting of finite range exchange strength parameter the splitting of rest two 

strength parameters, namely, ( £q + Eg )/2 and (e'r + £"})/2, are ascertained from 

assuming a standard value of symmetry energy at normal nuclear matter density and 

universal high density behaviour of asymmetric contribution of the nucleonic part to the

EOS of charge neutral beta stable n + p + e + jl matter (NSM), SNSM (p, Yp). In the 

process of ascertaining the universal high density behaviour, the slope of symmetry 

energy at normal density, E's(p0), which is related to the slope parameter, L = 3E's(p0), 

is constrained. The value of the slope parameter of the EOSs corresponding to the 

variation of the exchange parameter splitting with in the range = (£lex + £&)/6 to

elx =(eex +£&)12 ^us predicted are lying with in the range 63-66 MeV. This is 

consistent with the range 60 < L <107 MeV obtained from the analysis of both neutron 

thickness studies and isospin diffusion studies. Constraining the parameters in ANM in 

this way predicts the density dependence of symmetry energy of the EOS which is 

neither stiff nor very soft. The EOSs obtained corresponding to the different splittings 

of the finite range exchange parameter predict n-p effective mass splitting over a wide 

range, but give almost same density dependence of nuclear symmetry energy as can be 

seen from Figures 3.9 and 3.10. The results also compare well with the results of the 

microscopic calculation using realistic interaction as can be seen from the same figures. 

These EOSs are the example of the cases having same density dependence but differing 

widely in their momentum dependence.

The interaction used in the work has no explicit temperature dependence and the 

effect of temperature is simulated through the Fermi-Dirac distribution functions 

appearing in the exchange parts of the energy density and mean fields. The exchange
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parts also decide the momentum dependence of the neutron and proton mean fields in 

nuclear matter. Hence the thermal evolution of nuclear matter properties has been 

examined in Chapter-IV to have more insight into the momentum dependence aspect of 

nuclear mean fields. In this Chapter-IV, the thermal evolution of nuclear matter 

properties in ANM, such as, energy density, pressure, entropy density, symmetry energy 

and free symmetry energy, have been studied using the parabolic approximation for 

energy in ANM. Under this parabolic approximation the study of ANM is equivalent to 

independent studies of SNM and PNM. Since the temperature effect is simulated 

through the Fermi-Dirac distribution functions appearing in the exchange parts of the 

energy density and mean fields we have, therefore, defined effective single particle 

energies in SNM and PNM only by taking the kinetic term and the finite range 

exchange term. The self-consistent evaluations of the distribution functions at non-zero 

temperature in SNM and PNM therefore determine the respective effective chemical 

potentials. Thus the thermal evolution of nuclear matter properties requires only the 

knowledge of range and exchange strength parameter in SNM and PNM. The exchange 

strength parameter in PNM can have values in between e1 = 0 and g^ = (g't + e^)/ 2 

as decided from the nature of np effective mass splitting in neutron rich asymmetric 

matter. We have studied the thermal evolution of nuclear matter properties for various 

representative values of e[x within this range. The results for the cases = 0 and 

g^ = 0 in SNM and PNM correspond to their respective non-interacting Fermi gas 

model results. We have examined the occupation probability distribution functions in 

SNM and PNM as functions of momentum for given density at different temperatures. 

Apart from the well known fact that with temperature there will be spread of occupation 

probability distribution to the region of higher momentum, it is also noticed that the 

momentum dependence of the nucleonic mean field reduces the effect of temperature. 

The manifestation of this important aspect of momentum dependence of nuclear mean 

field has been examined in the cases of nuclear matter properties of SNM and PNM by 

calculating their respective thermal evolutions considering different representative 

values of £'a within its possible range 0 and (£„ + £& )/2 in case of PNM. The results 

on entropy per particle in PNM show that it can exceed the SNM results at higher
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density in the case 0 < e1 < 2(4 +e“j)/6 and it does not exceeds that of SNM at any

density for 2(4+4)/6<4 <(4 +e"')/2. For 4 = 2(4 + 4)/6 the entropy in 

PNM approaches that of SNM in the asymptotic region of high density, which is true at 

any temperature. The behavior of entropy raises an obvious question that whether the 

entropy in PNM being a one component system, can exceed that of SNM which is a two 

component system!! Moreover, the Fermi gas model results on this aspect, which can be 

considered as pure quantum mechanical effect, show that the entropy in PNM is always 

less than that of SNM at any density and at any temperature. Even in absence of a

concrete answer to the above raised question, the whole allowed region of 4 can be 

divided into two parts, 0<4 < 2(4 +4)/6 and

2(4 +4)/6 <4 <(4 +4)/2 depending on either of the two possibilities. In 

case of thermal evolution of other properties, such as, energy density, free energy 

density similar behaviour has been observed. At a given temperature, these properties in

case of PNM exceed that of SNM in the high density region for 4 value lying in the 

former range. The density at which the crossing over takes place has a higher value for 

larger magnitude of 4 in this range. On the other hand, no such crossing over

phenomena occur when the value of 4 hes h* the range specified latter and the 

behaviour is qualitatively similar to the corresponding Fermi gas model results. Hence 

the thermal evolutions in the cases of nuclear symmetry energy and nuclear free 

symmetry energy are found to change sign at the values of density where energy density

and free energy density in PNM surpass that of SNM values in case of 4 hi the range 

0< 4 < 2(4 +4)/6= whereas, no such change of sign take place for the case where 

4 lies in the range 2(4 +4)/6<4 <(4 + 4V2- In the case of 

e/ =2(e/ +£“')/ 6 the thermal evolution in the cases of all of these nuclear matter 

properties in PNM approaches that of SNM results in the asymptotic region of high 

density. The n-p effective mass splitting in ANM at zero temperature as a function of 

asymmetry for these representative values of 4 has been calculated and shown in 

Figure 4.11(b). For relatively weaker momentum dependence in PNM the n-p effective
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mass splitting is found to be wider. Thus as the strength £^. in PNM increases in 

magnitude starting from 0 the separation between the neutron and proton effective mass 

curves go on decreasing while, on the other hand, the density at which the thermal 

evolution of nuclear matter properties in PNM crosses the corresponding results of 

SNM go on increasing. At the critical value e!a =2(e^.+ e'^)/6 the thermal evolution 

in case of PNM approaches that of SNM asymptotically in the high density region. As 

e'e; increases beyond this critical value no crossing over phenomena will occur at any 

density and the thermal evolution in PNM will remain smaller than that of SNM at all 

values of density. The n-p effective mass splitting in ANM for this critical value, 

e1 =2{e'ex+ e^)/6, is found to compare reasonably well with the results of the 

microscopic DBHF calculation, as has been shown in Figure 4.12. In absence of a 

concrete answer to the question raised in the above discussion we can not rule out the

other possibilities of £^. in its allowed range. So in our subsequent study of nuclear 

matter properties and EOS of charge neutral beta stable matter at finite temperature in 

the next chapter-V, we have considered the three choices of £la, namely,

eL = (£L + 0/6 (case A)> 2(e^ + el‘l)l6 (critical case) and (e'x + euJx)l2 (case B). 

The two choices about the critical value are equidistant from it and represent the cases 

of two distinct behaviours found in connection with the thermal evolution study.

The study of the thermal evolution of nuclear matter properties in chapter-IV 

required only the knowledge of the exchange part of the interaction. The complete study 

of each of these nuclear matter properties (instead of relative to their zero temperature 

results) requires the complete interaction. All the six parameters required in the study of 

SNM and their determination has been discussed in chapter-III. In the same chapter the

procedure adopted to determine the splitting of the strength parameters £0, £y into like 

and unlike channels, e'0, £y and £„ , £y , for given choice of splitting of exchange

strength parameter has also been discussed. Thus for each of the three choices of £^ as

given above as case A, B and critical value the EOS of PNM can be obtained. In this 

connection we have studied the symmetry energy, free symmetry energy at different 

temperatures by calculating the energy density as well as free energy density in SNM
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and for the three cases of PNM. The energy densities in SNM and PNM are found to be 

increasing functions of temperature at a given density. The effect of temperature on 

energy density of SNM is found to be stronger than in PNM which can be understood in 

terms of the value of Fermi momeitum corresponding to the same density. Since at 

given density the Fermi momentum in case of SNM is smaller than that of PNM, the 

effect of temperature will be more on SNM. Thus the symmetry energy which is the 

difference between the energy per particle in PNM and SNM is found to be a decreasing 

function of temperature, however in case A at a higher density about p«0.8 frn3 the 

finite temperature curves crosses the zero-temperature one implying that the 

temperature effect has become stronger in PNM as compared to SNM. In case B the 

finite temperature results do not show such crossing over phenomena and the finite 

temperature curves lies below the zero-temperature one at all values of density. In 

critical case the finite temperature curves approaches the zero-temperature result 

asymptotically in the region of high density implying the vanishing of the thermal effect 

at higher density. Hence it can be concluded that in case of relatively weaker 

momentum dependence in PNM mean field (e‘ < 2(e[: + e^)/6), the thermal effect on 

energy density of PNM becomes stronger than that of SNM at some higher density. 

However, for relatively stronger momentum dependence of PNM mean field

(e^ >2(el + e^)/6) the temperature effect on energy density of PNM is less than that 

of SNM at all values of density. For e1 = 2(elex + e"')/6 the effect of temperature in 

SNM and PNM approaches the same value in the asymptotic region of high density. 

The results in these three cases are the expected ones as obtained from the thermal 

evolution study of the cases given in Figures. 4.5(a) and (b). The predictions of these 

three cases have been used to analyze the finite temperature results of symmetry energy 

extracted from the isoscaling analysis of multifragmentation phenomena in heavy-ion 

collision experiments. It has been found that the density range in the region p < p0 

within which the experimental data of nuclear symmetry energy at measured values of 

temperature lies in case A has relatively smaller values as compared to case B. This 

implies that the stiffness of the finite temperature symmetry energy curve for case A in 

this sub-nucleonic region of p < p0 is more in comparison to case B. Thus, although the
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three choices of momentum dependence of PNM mean field give same density 

dependence of symmetry energy at zero-temperature, their results at finite temperature 

vary quantitatively as well as qualitatively. The nuclear symmetry energy pressure 

which is related to the slope of the symmetry energy curve has been calculated as a 

function of density at different temperatures for the three cases of PNM. The qualitative 

features of the different curves for the three cases are similar where the symmetry 

energy pressure increases as density starts increasing from low value and the rate of 

increase slows down at higher density and ultimately starts decreasing after reaching a 

maximum. The rate of increase of the symmetry energy curve at low density region is 

comparatively more in case A compared to case B and the rate of decrease in high 

density region is comparatively less in case A compared to case B.

The free energies per particle in PNM and SNM have been found to be 

decreasing functions of temperature at a given density although the energy densities are 

increasing functions and this is due to the entropy factor. The free symmetry energy is 

calculated as the difference between the results of free energy per particle in PNM and 

SNM. The free symmetry for the three cases of PNM is found to be increasing function 

of temperature, but in case A it becomes a decreasing function relative to its zero- 

temperature result beyond certain higher density around pm 0.8 fin1. In case B the free 

energy behaves as an increasing function at all values of density and in critical case the 

effect of temperature washes out in the asymptotic region of high density and the finite 

temperature result approaches the zero-temperature one. For relatively weaker 

momentum dependence in the mean field of PNM the increasing behaviour of free 

symmetry energy relative to its zero-temperature result becomes a decreasing one in the 

high density region where as for stronger momentum dependence the increasing trend 

does not reverse at any density. The free energy in SNM at different temperatures are 

also compared with the results obtained under Brueckner-Bethe-Goldstone (BBG) 

calculations. The agreement is quite good upto density p m0.3 fm~3 beyond which our 

results become relatively stiffer than the BBG results.

Free symmetry energy at non- zero temperature has crucial role in the study of 

supemovae matter and formation mechanism of neutron stars. The isothermal processes 

those might be taking place in supemovae matter that has temperature in the range
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10-40 MeV are crucially governed by the free energy. The nucleonic and leptonic 

fractions in the supemovae matter under isothermal condition are to be determined from 

the conditions as given in eqs. 5.2.3 and 5.2.4. By solving the two equations self 

consistently the nucleonic and leptonic fractions as a function of density at different 

temperatures have been obtained. In the process of evaluation of the particle fractions in 

the beta equilibrated n + p + e + p. matter at non-zero temperature, one obtains the 

respective equilibrium chemical potential at the given density and temperature. The 

equilibrium chemical potential as a function of density at different temperatures show 

similar behaviour for the three cases of momentum dependence in PNM, given in 

Figures 5.11.(a), (b) and (c), where the chemical potential at a given density decreases 

with increase in temperature. However, the magnitude of decrease in case A is 

comparatively larger than that of case B. The stronger temperature dependence resulting 

into a smaller chemical potential in case A may be attributed to the relatively weaker 

momentum dependence in PNM in this case. Moreover, the rise of free symmetry 

energy slows down with increase in density in this case A. On the otherhand, the 

chemical potential in case B has relatively larger value as well as the free symmetry 

energy has a stiffer rise and hence the effect of temperature is largely manifested 

through an increase in proton fraction in case B as compared to case A. This is shown in 

Figures 5.12(a), (b) and (c) where one finds that the proton fraction in case B is more 

than case A at all values of temperature. This is also shown in Figure 5.15 where the 

results for the three cases are shown at a given temperature. The relatively higher value 

of proton fraction in case B allows the occurrence of direct URCA process over a wider 

density range compared to other two cases. However, in absence of any experimental/ 

empirical constraints on the URCA processes in neutron star matter it is not possible to 

decide on the momentum dependence of mean field in PNM and hence the n-p effective 

mass splitting in ANM.

The equilibrium proton fraction in the charge neutral beta equilibrated 

n + p + e + p matter at finite temperature enables one to calculate the EOS of hot neutron 

star matter that is present in the protoneutron stars. The nucleonic parts of the energy 

density and pressure are calculated from the EOS of ANM corresponding to the 

asymmetry given by the value of the equilibrium proton fraction at given value of
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density and temperature. In calculating the nucleonic contribution to the EOS of hot 

neutron star matter it has been found that the asymmetry contribution to the energy 

density at finite temperature, SNSM(p,YP,T), also obey the same universal high density 

behaviour that was used at zero-temperature to constrain the parameter in ANM. As a 

result of this the asymmetric contributions of the nucleonic part, SNSM (p,YP,T), in 

case A and B are found to be the same. This is because both free symmetry energy and 

equilibrium proton fraction in case A have relatively smaller values compared to case B 

and hence (1 -2Yp (p,T)) increases in the former case whereas it decreases in the latter

case resulting into the same SNSM (p, YP,T) in the two cases. The asymmetric nucleonic 

contribution to pressure is found to be a decreasing function of temperature in both the 

cases A and B having the same characteristic behaviour that at a given temperature it 

increases with increase in density and attains a maximum value and then decreases with 

further increase in density. The rate of increase in case A is relatively more compared 

to case B. The symmetry parts of nucleonic contributions to energy density and pressure 

in neutron star matter are found to be increasing functions of temperature. The leptonic 

parts of energy density and pressure are calculated from the non interacting relativistic 

Fermi gas model consideration. Both the contributions are found to be increasing 

functions of temperature having relatively higher contributions in case B than case A. 

This is because the equilibrium proton fraction is more in case B than in case A. The 

leptonic and asymmetric nucleonic contributions to energy density and pressure in both 

the cases A and B are small compared to the symmetric contribution which is same in 

both the cases and hence the EOSs of neutron star matter at a given temperature are 

found to be almost same in both the cases A and B. The neutron star properties have 

been calculated for two different temperatures T=5 and 10 MeV for the critical case. It 

is found that the splitting of the exchange strength parameter does not have an 

appreciable affect on the bulk properties of neutron star matter except on its 

composition.

On the whole, a simple finite range effective interaction having Yukawa form

has been used to study the two important aspects of ANM, namely, the density

dependence of symmetry energy and n-p effective mass splitting in neutron rich dense

matter. The procedure adopted in constraining the parameters in ANM using the
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universal high density behaviour of the asymmetric contribution in neutron star matter 

predicts the density dependence of symmetry energy to be neither stiff nor very soft. 

This qualitative feature on the high density behaviour of nuclear symmetry energy is 

also in agreement with the extrapolation of the findings of the continuously going on 

experimental efforts to constrain the value of the symmetry energy in the density range 

at and below normal nuclear matter density. The neu;ron star can be considered as a 

suitable terrestrial laboratory for the study of high density behaviour of nuclear 

symmetry energy. However the existing available data on the composition and cooling 

mechanism of neutron star are not sufficient for the purpose. In this connection it may 

be mentioned that once an answer to the question that whether direct URCA process 

takes place in neutron stars or not can largely constrain the density dependence of 

symmetry energy. On the other important aspect of ANM, that is the momentum 

dependence of neutron and proton mean fields, we have made an effort to find a 

solution to it from the study of temperature effect on the nuclear matter properties. 

From the study it has been possible to sub-divide the whole allowed range for 

momentum dependence of neutron and proton mean fields into two parts. The actual 

behaviour will correspond to which of the two parts depends on the answer to the 

question raised whether the thermal evolution in PNM can exceed that of SNM at a 

higher density or not. The boundary line dividing the whole range into two parts 

corresponds to the critical momentum dependence of neutron and proton mean fields for 

which the thermal evolution in PNM can at best approach that of SNM in the 

asymptotic region of high density. In order to make further progress in these direction 

more experimental data on the observables sensitive to these two aspects of ANM from 

heavy-ion reaction studies involving radioactive ion beam as well as constraints from 

neutron star phenomenology are required. Further, it may be mentioned here that in the 

transport model analysis of heavy-ion collision data the neutron and proton mean fields 

are the basic inputs and the mean fields resulting from our simple interaction having the 

flexibility of predicting different momentum dependence of mean fields for same 

density dependence and vice-versa can be considered as an experimental advantage for 

the purpose.
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