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It is well-known that there is no spherical/topologically spherical gravitational waves in vacuum space 
in general relativity. We show that a deviation from general relativity leads to exact vacuum spherical 
gravitational waves, no matter how tiny this deviation is. We also discuss the related topics, including 
Vaidya-like metric in f (R) gravity. We demonstrate that the existence of spherical gravitational wave is 
a non perturbative property for gravities. We investigate energy carried by this nonperturbative wave. 
We first find the wave solution from investigations of Vaidya-like metric in f (R) gravity, which has only 
one longitude polarization. We further extend it to a metric with two transverse polarizations by directly 
solving the field equation.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
A general property of modern field theory is that all inter-
actions propagate at finite velocity in manner of waves. Almost 
immediately after the construction of general relativity, Einstein 
proposes a perturbative plane gravitational wave in general relativ-
ity in 1916. After a centenary exploration, LIGO and VIRGO probe 
the first signal for gravitational waves from a binary black hole, 
which is a billion light years away from us [1].

In 1925, Brinkmann found the first exact solution for gravita-
tional wave [2]. After that, several exact solutions for gravitational 
waves are found [3]. Spherical wave, as a most useful model for 
other interactions and in linearized general relativity, is absent 
in general relativity for vacuum space. Several modified gravities 
are proposed based on theoretical and observational problems of 
general relativity. Usually, a modified gravity has extra parame-
ters compared to general relativity, and it smoothly comes back 
to general relativity when the extra parameters vanish or reduce 
to some special values. In special cases, a modified gravity has 
non-perturbative property. These properties are especially valuable 
since the answer is “quantized” for such a property, which main-
tains for an infinitesimal modification of general relativity. From 
the aspect of observations, one can distinguish general relativity 
from modified gravity even for one certain test invoking such a 
property.

Through studies of Vaidya like spacetime in f (R) gravity, we 
find topologically spherical vacuum wave in this modified gravity, 
which is strictly prohibited in general relativity. f (R) gravity is a 
scalar tensor theory, which is conformally equal to general relativ-
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ity. The topologically spherical metric, especially the flat case, is 
widely used in studies of AdS/CFT.

It is easy to prove a Birkhoff-like or generalized Birkhoff theo-
rem for topological spherical metric. For a spherical metric,

ds2 = −b(t, r)dt2 + a(t, r)dr2 + r2d�2, (1)

in which d�2 can be,

d�2 = dx2 + sin2(x)dy2, dx2 + dy2, dx2 + sinh2(x)dy2, (2)

respectively, which denotes three different topological cases. One 
obtains the Ricci tensor,

R01 = − 1

ra

∂a

∂t
. (3)

For vacuum case, R01 = 0 leads to a(t, r) = a(r). Then one finds,

R00

b
+ R11

a
= 0, (4)

which leads to,

∂b

∂r

1

b
= −∂a

∂r

1

a
. (5)

An integration of the above equation yields

b(t, r) = b1(t)b2(r). (6)

And b1(t) can be absorbed into the coordinate time t . The above 
calculations are independent on spatial topology. Thus we prove 
the Birkhoff like result for topological spherical space. This result 
shows that not only a spherical vacuum wave but also topological 
spherical vacuum waves are prohibited in general relativity.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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In principle, the generalized Birkhoff theorem becomes invalid 
in modified gravity, since a vacuum space in modified gravity is 
effectively equal to a space with matters in general relativity. Now 
we consider the f (R) gravity. The action of general f (R) gravity 
reads

S = 1

16πG

(∫
d4x

√−det(g) f (R)

)
+ Sm. (7)

Here G is the Newtonian constant, g is the metric tensor, and Sm

denotes the action of matter fields. The field equation follows the 
action (7) reads,

f R Rμν − 1

2
f gμν − ∇μ∇ν f R + gμν� f R = 8πGTμν, (8)

where f R = ∂ f
∂ R , and Tμν presents the stress-energy for matter 

fields. For f (R) = Rd+1, the field equation becomes,

(d + 1)Rd Rμν − 1

2
Rd+1 gμν − (d + 1)∇μ∇ν Rd

+ gμν(d + 1)�Rd = 8πGTμν. (9)

In the following text, we set 8πG = 1. Only from the action form 
Rd+1, one may expect that all the results in this gravity come back 
to general relativity when d → 0. However, one will see that this 
is not the case. In spherically symmetric static case, the solution 
is found by Clifton et al. [4]. Then Zhang et al. extend it to the 
higher dimensional case and the 3-dimensional case [5] by ther-
modynamic method. This method is further extended to obtain 
various solutions [6]. Some other interesting 3-dimensional solu-
tions in extended gravity are explored in [7].

Inspired by the original Vaidya metric and generalized Vaidya 
metric in extended gravities [8], we write the metric ansatz as,

ds2 = f (u, r)du2 + 2p(u, r)dudr + r2γi jdxidx j, (10)

where γi j is the metric on a 2-dimensional constant curva-
ture space N with sectional curvature k = ±1, 0, and the two-
dimensional spacetime T spanned by the coordinates (u, r) pos-
sesses the metric as hab . Comparing to the original form, this 
Vaidya metric has an extension that gur is not a constant. One 
will see that this is necessary for Vaidya metric in f (R) gravity. 
We Assume the pure radiation as the source matter field,

Tab = �(u, r)(du)a(du)b
.= �(u, r)(k)a(k)b. (11)

Then one obtains,

ka = − 1

p

(
∂

∂r

)a

. (12)

Thus the stress-energy describes a null matter propagating along 
ka , which satisfies kaka = 0.

To obtain the field equation under the ansatz (10) is really 
involved but straightforward. The resulted f (u, r), p(u, r) and 
�(u, r) under the condition k = 1 read,

f (u, r) = −r
4n−2−4n2

n−2

(
r

2n
n−2 − 2M(u)r

4n2−8n+7
n−2

)
, (13)

p(u, r) = − 1

|2 − n|
√

|7 + 4n − 30n2 + 28n3 − 8n4| r
(n−1)(2n−1)

2−n ,

(14)

and,

�(u, r) = 1
2

Pp(u, r)
dM

, (15)

3(n − 2)(n − 1)(4n − 10n + 7) du

2

where,

P =(
24+n3n − 25+n3nn + 23+n31+nn2 − 23+n3nn3 + 6nn4)

×
[

n2 − n

(2n2 − 2n − 1)r2

]n

r
5−9n+4n2

n−2 . (16)

In the above equations we introduce n = d + 1, which can slightly 
shorten the formulae. Here M(u) is an arbitrary C4-function of u. 
One can check that the above solution reduces to the Vaidya solu-
tion in general relativity when n = 1, and to the Clifton-Borrow 
one in outgoing Eddington-Finkelstein when M is a constant. 
A special note is that in the reduction to the Vaidya in general 
relativity the factor d will be cancelled in the numerator and de-
nominator when d → 0. Thus the metric ansatz (10) indeed can be 
treated as generalized Eddington-Finkelstein coordinates. There is a 
distinct difference that gur is not a constant in the pure radiation-
sourced Rd+1-gravity. The property of the case k = −1 is similar to 
the case k = 1. We just list the result here,

f (u, r) = r
4n−2−4n2

n−2

(
r

2n
n−2 + 2M(u)r

4n2−8n+7
n−2

)
, (17)

p(u, r) = − 1

|2 − n|
√

|7 + 4n − 30n2 + 28n3 − 8n4| r
(n−1)(2n−1)

2−n ,

(18)

and,

�(u, r) = 1

3(n − 2)(n − 1)(4n2 − 10n + 7)
Pp(u, r)

dM

du
. (19)

Now we discuss the case k = 0. This case leads to a non-
perturbative vacuum gravitational wave solution in Rd+1-gravity, 
which has no general relativity limit. The solution reads,

f (u, r) = 2M(u)r
5−4n
n−2 , (20)

p(u, r) = − 1

|2 − n|
√

|7 + 4n − 30n2 + 28n3 − 8n4| r
(n−1)(2n−1)

2−n ,

(21)

�(u, r) = 0, (22)

and the Ricci scalar,

R = 0. (23)

Since Tab = 0, it is a vacuum solution in Rd+1-gravity. We check 
that it is not the Minkowski metric in special coordinates, since

Rabcd Rabcd

= 4(n − 2)2

(7 + 4n − 30n2 + 28n3 − 8n4)2
r

15−24n+8n2
n−2

×
(

3(47 − 118n + 112n2 − 48n3 + 8n4)r
7

n−2 M(u)2

+21/2(7n − 2 − 7n2 + 2n3)r
5n

n−2 p(u, r)
dM

du

)
. (24)

In previous text, we demonstrate the generalized Birkhoff theorem, 
which also forbids a gravitational wave in topological spherical 
vacuum space in general relativity. And we point out the possi-
bility to find a such wave in modified gravity. Here we discover 
a typical example for gravitational wave in topological spherical 
vacuum space in modified gravity. Furthermore, this is a nonper-
turbative property of Rd+1 gravity. For what ever a tiny d, it exists. 
For an exact zero d, it vanishes. We will study more of this prop-
erty in the following text.
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We discuss the properties of this gravitational wave in detail. 
First, the parameter of the graviton ray (analogy to light ray) is u
and thus the wave vector of this wave is,

Ka = −(du)a. (25)

To obtain the detailed properties of the null congruence of the 
graviton ray, we construct tetrad for this metric,

τ1 = du, τ2 = −[g00du + 2g11dr]1

2
, τ3 = rdx, τ4 = rdy. (26)

Under this tetrad formalism, the metric reads,

g = −τ1τ2 − τ2τ1 + τ 2
3 + τ 2

4 . (27)

The graviton congruence is geodesic congruence, since

K a∇a Kb = 0. (28)

Different from the case pp-wave, K is not a Killing vector in view 
of,

∇K = −1

rg01
(τ 2

3 + τ 2
4 ) + −g′

00 + 2ġ01

2g01
τ 2

1 . (29)

Here a prime denotes derivative with respect r, and a dot for 
u. Since the equations become very lengthy, we directly present 
them in form of components of the metric in (10) and (20), (21). 
To study the motion of the congruence, we explore its expansion, 
shear, and twist on sectional 2-surface τ3 − τ4. We use a hat to 
denotes the projection of a tensor on the section τ3 − τ4. The ex-
pansion, shear, and twist read,

θ̂ = ĝab(∇a K b )̂ = − 2

rg01
, (30)

σ̂ab = (∇(a Kb))̂ − 1

2
θ̂ ĝab = 0, (31)

and,

ω̂ab = (∇[a K b])̂ = 0, (32)

respectively. Thus the graviton ray congruence is shear-free, twist-
free, but expanding. This result agrees with our physical intuition 
for a radial gravitational wave. About the ratio of variation of θ̂ , 
the Raychaudhuri equation for affine parameterized null congru-
ence tells,

K a∇aθ̂ = − 1

2
θ̂2 − σ̂abσ̂

ab + ω̂abω̂ab − Rab K a K b

= − 2

r2 g2
01

− 2g′
01

rg3
01

. (33)

Note that here the congruence has affine parameterized since 
K a∇a Kb = 0. For a non affine parameterized congruence, the Ray-
chaudhuri equation will be different. The Raychaudhuri equations 
for σ̂ab and ω̂ab are not presented here, since they are identically 
equal to zero all over the congruence.

To clearly study the expansion of the graviton ray congruence, 
we write θ and K a∇a θ̂ explicitly in coordinates u and r,

θ̂ = 2|d − 1|√
1 − 4d + 6d2 − 4d3 − 8d4

r
1+2d2

d−1 , (34)

and,

K a∇aθ̂ = − 2(1 − d + 2d2 − 2d3)

1 − 4d + 6d2 − 4d3 − 8d4
r

2(1+2d2)
d−1 . (35)

It is clear that both expansion and its ratio of variation is indepen-
dent on u. Based on the studies of Vaidya and Kinnersley metrics, 
3

one finds that u can be regarded as time in some sense. Thus we 
call the wave in (20), (21) steady (not standing) gravitational wave. 
When d → 0, θ̂ and K a∇a θ̂ have well-posed limits as follows,

lim
d→0

θ̂ = 2

r
, (36)

and,

lim
d→0

K a∇aθ̂ = − 2

r2
. (37)

However, we know that d = 0 implies general relativity, in which 
such topological spherical wave is forbidden. There is no wave 
in such case in general relativity, therefore θ̂ and K a∇a θ̂ in such 
space must be zero. d = 0 is a discontinuous point for θ̂ and 
K a∇a θ̂ . Again we see that the topological spherical wave is a non 
perturbative phenomenon in Rd+1 gravity.

Then we discuss the energy transfer in this topological spher-
ical wave space. The energy of gravitational field is very intricate. 
Because of equivalence principle, stress-energy in tensor form does 
not exist. However, under several situations, we have to consider 
gravitational energy inclosed in a finite space, for example gravi-
tational waves carry energy from remote black hole to the Earth, 
energy of the baryons is transferred to the gravity field in collaps-
ing process of a star. Based on these considerations and several 
others, people develop the theory of quausilocal energy. Based on 
the inherent symmetry of the spacetime, one develops the gener-
alized Misner-Sharp energy for f (R) gravity [9]. The generalization 
is based on the idea related to conserved charge of conserved cur-
rent. For spherical space, Kodama vector is defined as,

O a = −εab∇br, (38)

where εab is the Levi-Civita tensor of the 2-dimensional u −r space 
of (10), and r is the areal coordinate. It is easy to confirm that,

∇a O b + ∇b O a = 0, (39)

which is in analogy to the property of a time-like Killing vector in 
stationary space. We thus define a conserved charge,

MM S = −
∫

∗(T ab O b), (40)

where Tab is the stress-energy of the spacetime and a star denotes 
Hodge dual operator. After some calculations, one arrives at a little 
involved result [9]. Invoking this result, one finds,

2MM S = (2M(u))
1−d

1+2d+4d2 , (41)

which is independent on r. The result is the same for all the 3 
topologies for (13), (17), and (20). When d = 0, it naturally comes 
back to Vaidya mass function in general relativity. In the cases of 
k = ±1, the variation of M(u) can be ascribed to the energy carried 
away by pure radiations, which is similar to the original Vaidya 
solution. However, the case k = 0 is a pure empty space in which 
Tab = 0. Under this situation, one has to attribute the variation of 
M(u) to gravitational radiations via radial gravitational waves. This 
case has no general relativistic limit. Again, one sees that it is a 
non perturbative effect.

In addition to the argument from the energy radiation, we 
make further discussion about the problem “why the metric (10)
and (20), (21) describes a gravitational wave”. Let’s review the first 
known exact gravitational wave solution, i.e., the Brinkmann solu-
tion,

ds2 = ηab + Pdξdξ. (42)



H. Zhang Physics Letters B 816 (2021) 136220
Here ηab is the Minkowski metric in Cartesian coordinates (t, x,
y, z), ξ = t − z, and P is a function of ξ, x, y which satisfies,

∂2 P

∂x2
+ ∂2 P

∂ y2
= 0. (43)

This requirement comes from Einstein field equation. P has several 
different forms. For example, one sets P = f (ξ)(x2 − y2), which 
describes a plane wave travelling along z-direction on a Minkowski 
background.

This approach provides a clue to find our solution for gravita-
tional wave in a different way. Besides Minkowski space, the Rd+1

gravity permits a second ground state,

ds2 = 2pdudr + r2(dx2 + dy2), (44)

where p takes the form in (14). This metric is not Minkowski since,

Rab = −2d(1 + 2d)

(1 − d)r2
(dr)a(dr)b. (45)

One confirms that (44) satisfies the field equation (8) without 
source. Similar to the case of Brinkmann, one introduces a grav-
itational wave term propagating along areal coordinate r on the 
background (44),

ds2 = q(u, r)β(x, y)du2 + 2pdudr + r2(dx2 + dy2). (46)

The wave solution (20), (21), and (22), which is happen found 
through investigations Vaidya-like solutions, only has a longitude 
polarization. However, generally a gravitational wave has trans-
verse polarizations in any gravitational theory which generalizes 
general relativity. Thus we naturally introduce the transverse po-
larization term β(x, y) to find a more general wave than that of 
(20), (21), and (22).

Substituting (46) into the field equation (8) with Tab = 0, and 
after some involved but routine calculations, one arrives at,

q = C(u)r− 1−4d
1−d , (47)

and β(x, y) is an arbitrary C-2 function of x, y. Setting C(u) =
2M(u), and calling to mind n = d + 1, one checks that the about 
q is exactly the same as f in (20). Similar to the Brinkmann so-
lution describing a wave on a Minkowski background, the metric 
(46) describes a gravitational wave on a background (44).

Finally, we explore the algebraic property of this spherical wave 
spacetime. We write the tetrad (27) in Newman-Penrose formal-
ism,

g = −τ1τ2 − τ2τ1 + mm̄ + m̄m, (48)

where,

m = 1√
2
(τ3 + iτ4), m̄ = 1√

2
(τ3 − iτ4). (49)

We find,

�2 = −C1342 = M(u)β(x, y)(1 − d)(2 + d)

2(1 − 4d + 6d2 − 4d3 − 8d4)
r

4+2d2
d−1 , (50)

�3 = −C1242

= − M(u)β(x, y)|1 − d|(2 + d)

2
√

2
√

1 − 4d + 6d2 − 4d3 − 8d4
r

4−d
d−1

(
i
∂β

∂ y
+ ∂β

∂x

)
,

(51)

and,

�1 = �4 = 0. (52)
4

Thus it is a metric of Petrov-II. If the wave has no transverse polar-
izations, it reduces to a Petrov-D metric since �3 vanishes under 
this condition.

At last, we say something about the status of Rd+1-gravity in 
modified gravities. Rd+1-gravity is the most pure and tractable in 
f(R) gravities. Even such a pure construction may explain some in-
tricate phenomenon [10]. Furthermore, some important example in 
f(R) gravity models [11] reduces to Rd+1-gravity. For example, the 
Starobinsky model,

L = R + αR2, (53)

reduces to R2-gravity at high energy scale. In the very early uni-
verse, for example the inflation stage, it is just R2-gravity. Also, 
Rd+1-gravity has an interesting non-trivial black hole solution [4].

We concisely summarize the main results in this letter. We 
find a topologically spherical gravitational wave in vacuum space 
in Rd+1 gravity. This type of wave is forbidden in general relativ-
ity. This is a non perturbative effect. For an infinitesimal positive 
or negative d, this wave exists. But it suddenly disappears when 
d = 0. That is to say, any infinitesimal deviation from general 
relativity leads to such a wave. We investigate properties of the 
congruence of graviton rays of this wave, and find it is twist-free, 
shear-free, but expanding. We find this wave solution through in-
vestigations of a Vaidya-like solution in f (R) gravity. We also show 
how to obtain it through an approach similar to the Brinkmann 
plane wave solution. Algebraically, it is a Petrov-II metric. It is 
found d < 10−19 in the weak field approximation by using the 
tests in solar system. Due to our studies, even such a tiny dif-
ferentiation from Einstein gravity leads to an inevitable longitude 
polarization for gravitational waves. At present stage, we do not 
have information of polarization of gravitational waves. We hope 
that the third generation GW detectors like the Einstein Telescope 
[12] and Cosmic Explorer [13] find some indications for polariza-
tions of gravitational waves.
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