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Many of the properties of superconductors related
to quantum coherence are revealed when the
superconducting state is forced to vary in space—in
response to an external magnetic field, a proximity
contact, an interface to a ferromagnet or to impurities
embedded in the superconductor. Among the earliest
examples is Andreev reflection of an electron into a
retro-reflected hole at a normal-superconducting
interface. In regions of strong inhomogeneity,
multiple Andreev reflection leads to the formation of
sub-gap states, Andreev bound states, with excitation
energies below the superconducting gap. These
states play a central role in our understanding of
inhomogeneous superconductors. The discoveries
of unconventional superconductivity in many
classes of materials, advances in fabrication of
superconducting/ferromagnetic hybrids and
nanostructures for confining superfluid 3He,
combined with theoretical developments in
topological quantum matter have dramatically
expanded the significance of branch conversion
scattering and Andreev bound state formation. This
collection of articles highlights developments in
inhomogeneous superconductivity, unconventional
superconductivity and topological phases of
superfluid 3He, in which Andreev scattering and
bound states underpin much of the physics of these
systems. This article provides an introduction to
the basic physics of Andreev scattering, bound-
state formation and their signatures. The goal is
both an introduction for interested readers who are
not already experts in the field, and to highlight
examples in which branch conversion scattering and
Andreev bound states provide unique signatures in
the transport properties of superconductors.
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1. Introduction
The Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity was a watershed in modern
condensed matter physics [1]. The key feature of the theory is pair condensation—the macroscopic
occupation of a bound state of fermion pairs. The binding of fermions into Cooper pairs typically
leads to an energy gap in the fermionic excitation spectrum, while condensation of Cooper pairs
leads to the breaking of global U(1) gauge symmetry, the generator being particle number.
The latter implies that the fermionic excitations are no longer charge eigenstates, but each is a
coherent superposition of a normal-state particle and hole, e.g. γ † = uc† + vc, where u and v are
the particle and hole amplitudes defining the Bogoliubov quasi-particles. Charge conservation
is maintained by an additional channel for charge transport via the coherent motion of the pair
condensate.

Many of the remarkable properties of superconductors originate from the coherent
superposition of particle and hole states—particle-hole coherence—that defines the low-energy
excitations of a superconductor, i.e. Bogolibov quasi-particles. One feature of the normal metallic
state that is preserved is that the fermionic excitations of the superconducting state still come in
two flavours: particle-like excitations with group velocity along the direction of the momentum,
vp · p> 0, and hole-like excitations with reversed group velocity, v̄p · p< 0.

The coherence amplitudes, u and v, depend on the pair potential, �(r). Spatial variations
of the pair potential lead to modifications of the coherence amplitudes, particularly to a novel
scattering process, identified by A. F. Andreev, in which an incoming particle-like excitation has a
finite probability to convert to an outgoing hole-like excitation, a process called branch conversion
scattering, or Andreev scattering [2]. When this process is combined with strong spatial variations
or strong scattering, such as occurs in metal-superconductor proximity contacts, or cores of
quantized vortices, or superconducing-ferromagnetic interfaces, multiple Andreev scattering leads
to the formation of Andreev bound states, with sub-gap energies, that are localized near the region
of strong spatial variations of�(r). Indeed the simplest example of Andreev scattering is provided
by the reflection of an electron in a normal (N) region by the pair potential of the superconducting
region as shown in figure 1b.

The two branches of excitations of a normal metal, conduction electrons with charge
−e, momentum p and group velocity vp‖p, and holes—their anti-particle—with charge +e,
momentum p and reversed group velocity, v̄p = −vp, are separately conserved in normal
scattering processes by impurities, defects or surfaces. For example, an electron with momentum
p, velocity vp and energy below the energy gap of an insulator is reflected by the insulating gap
into an outgoing electron with momentum p = p − 2n̂(n̂ · p), and group velocity vp||p, as shown
in figure 1a. This is specular reflection of electrons at a metal–insulator boundary.

Andreev considered the reflection of electrons in a region of normal metal incident on a
region of the same metal, but in the superconducting state, such as occurs in the intermediate
state of a type I superconductor. For energies below the gap, ε <�, the electron is forbidden to
propagate into the superconducting region. However, upon reflection, the outgoing excitation
is a hole, i.e. scattering of an electron by the pair potential converts and electron into a hole.
Furthermore, the reflected hole is not specularly reflected, but retro-reflected as illustrated in
figure 1b. Scattering that involves conversion of an electron into a hole, or vice versa, is called
branch conversion scattering, or Andreev scattering. Another generic feature of Andreev scattering is
that there is very little change in momentum of the retro-reflected hole, δp = 2ε/vf � pf. Thus, both
momentum and charge are transported across the normal–superconductor (N–S) interface. This is
made possible by the transport of charge and momentum by Cooper pairs in the superconducting
region.

(a) From Bogoliubov to Andreev
The theory of inhomogeneous superconductors that goes beyond the limitations of the Ginzburg–
Landau and London theories, and treats the effects of spatial variations of external fields and
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Figure 1. (a) Specular reflection at an N–I boundary, (b) retro-reflection at an N–S boundary and (c) Andreev bound state
confined within an S–N–S sandwich. (Online version in colour.)

the self-consistent pair condensate on equal footing can be formulated starting from Gorkov’s or
Bogoliubov’s mean-field theory of pairing [3,4]. The mean field pairing Hamiltonian,

H=
∫

drψ†
α(r)

[
1

2m∗
(

p − e
c

A(r)
)2

− μ

]
ψα(r)

− 1
2

∫
dr

∫
dr′{ψ†

α(r)ψ†
β (r′)�βα(r′, r) + �̄αβ (r, r′)ψβ (r′)ψα(r)} (1.1)

includes the kinetic energy of the normal-state fermions, where ψ†
α(r) creates a normal-state

conduction electron with spin projection, α ∈ {↑, ↓} at r, and �αβ (r, r′) is the mean pairing
energy, or pair potential for the spin configuration (α,β) of the Cooper pairs and �̄αβ (r, r′) =
−�αβ (r, r′)∗. Since H is bilinear in the fermion field operators, it can be diagonalized by a canonical
transformation,

ψ(r,α) =
∑

n
{un(r,α)γn + vn(r,α)γ †

n }, (1.2)

where the {un(r,α), vn(r,α)} are the particle and hole amplitudes defining the Bogoliubov
transformation to a new set of operators obeying fermion anti-commutation relations: {γn, γ †

n′ } =
δn,n′ and {γn, γn′ } = 0, which diagonalizes the mean-field Hamiltonian, H= Es +∑

n εnγ
†
n γn,

where the sum is over all positive energy states. Occupying the negative energy states generates
the BCS ground state, and accounts for the ground state energy, Es. The mode sum in equation
(1.2) runs over a complete set of orthonormal states {un, vn|∀n}, where the quantum numbers {n}
depend on the geometry and symmetry of the confining potential, and inhomogeneities generated
by the external field and pair potential. The required amplitudes, un(r,α) and vn(r,α), obey the
Bogoliubov equations [5],1

εu(r,α) = +
(

1
2m∗

(
p − e

c
A(r)

)2
− μ

)
u(r,α) +�αβ (r, p)v(r,β) (1.3)

and

εv(r,α) = −
(

1
2m∗

(
p − e

c
A(r)

)2
− μ

)
v(r,α) +�†

αβ (r, p)u(r,β), (1.4)

where p → (h̄/i)V. These equations determine the particle and hole amplitudes that define the
Bogoliubov quasi-particle excitations of an inhomogeneous superconductor described by the
spin-dependent mean-field pair potential, �αβ (r, p).

For a homogeneous superconductor in zero magnetic field, the solutions are momentum
eigenstates, with amplitudes (upα , vpα) determined by the 4 × 4 matrix eigenvalue equation,

1For unconventional superconductors the pair potential depends two spatial coordinates reflecting the internal orbital state
of the Cooper pairs that form the condensate. Thus, it is most convenient to transform to the centre or mass and relative
coordinates, R = (r + r′)/2 and x = r − r′. Since the radial extent of the Cooper pair wave function is typically large compared
to the Fermi wavelength, ξ � h̄/pf, the relative-momentum-space wave function depends on momenta that are concentrated
near the Fermi surface. Thus, we Fourier transform the relative coordinate and express the pair potential as �αβ (R, p).
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|ϕ 〉 = col(up↑ up↓ vp↑ vp↓) and

ĤB|ϕ 〉 = ε|ϕ 〉�
(
ξp1̂ �̂(p)
�̂†(p) −ξp1̂

)(
ûp

v̂p

)
= ε

(
ûp

v̂p

)
, (1.5)

where 1̂ is the unit matrix in spin space, �̂(p) is the 2 × 2 spin matrix order parameter, ξp =
|p|2/2 m∗ − μ is the normal-state excitation energy and ûp (v̂p) is the two-component particle
(hole) spinor.

In what follows I discuss Andreev scattering, bound states and their signatures for
conventional superconductors. Andreev scattering and bound states in d-wave superconductors,
and unconventional spin-triplet superconductors, including superfluid 3He and superconducting-
ferromagnetic hybrids are discussed in several articles in this volume. These superconductors
are generally derived from parent states that are invariant under space inversion. Furthermore,
in most cases of interest the superconducting ground states are either spin-singlet or unitary
spin-triplet states. The latter break spin-rotation symmetry, but the Cooper pairs have no
net spin polarization along any direction in spin space. Inversion symmetry implies that
the pairing interaction responsible the Cooper instability separates into even- and odd-parity
sectors, and thus the Cooper pairs have definite parity, i.e. �̂(−p) = ±�̂(p). Combined with
the antisymmetry of the condensate amplitude under fermion exchange, �αβ (p) = −�βα(−p),
the possible superconducting classes divide into even-parity, spin-singlet states and odd-parity,
spin-triplet states with

�̂(p) =
{
�(p)iσy even parity, spin S = 0,

�(p) · iσσy odd parity, spin S = 1,
(1.6)

expressed in terms of the antisymmetric Pauli matrix, iσy, for spin-singlet pairing, and the
three symmetric Pauli matrices, iσiσy for i = x, y, z, for spin-triplet pairing. Thus, �(p) (�(p)) is
a complex scalar (vector) under spin rotations. The general class of ‘unitary’ states satisfy the
condition,

�̂(p)�̂†(p) = |�(p)|21̂, (1.7)

which for spin-triplet pairing implies that the Cooper pair spin polarization, Spair ∝ i�(p) ×
�(p)∗ ≡ 0 at each point p. The superfluid phases of 3He belong to the unitary spin-triplet class.
The resulting excitation spectrum follows immediately from equations (1.5) and (1.7); there

branches of positive and negative energy states, ε(±)
p = ±

√
ξ2

p + |�(p)|2. The negative energy states
are filled and define the particle-hole coherent ground state.

The positive energy states are the Bogoliubov excitations of the superconductor. For momenta
near the Fermi surface |p| ∼ pf, the normal-state excitation spectrum is linear in the momentum,
εp = |ξp| ≈ vf|p − pf|, and there are two branches: electrons with group velocity vp = vfp̂, and holes
with v̄p = −vfp̂. The corresponding electron- and hole-like excitations of the superconductor have
group velocities,

v
(±)
p̂ (ε) = ±vf

√
ε2 − |�(p̂)|2

ε
, ε≥ |�(p̂)|. (1.8)

Thus, the speed of Bogoliubov excitations becomes vanishingly small as the energy approaches
the gap edge. At energies above the gap variations of the pair potential provide a mechanism for
Andreev scattering between electron- and hole-like excitations at the same energy, as indicated in
figure 2.

In his treatment of heat transport in the intermediate-state Andreev provided an
important simplification of Bogoliubov’s equations for the Fermionic excitations of an
inhomogeneous superconductor, which plays an central role in theoretical developments in
inhomogeneous superconductors and superconductivity under non-equilibrium conditions [6–
10]. The key observation is that the superconducting correlation length, ξ0 = h̄vf/2πkBTc, which is
characteristic length scale for spatial variations of the pair potential, is typically much longer
than the Fermi wavelength, λf = h̄/pf. Thus, for electronic excitations of the superconducting
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Figure 2. Dispersion relations for the normal state (black dashed line) and superconducting state (solid blue line). Branch
conversion scattering is indicated between an electron-like (right blue dot) excitation and a hole-like (left red dot) excitation of
the same energy. For illustrative purposes, the excitation gap was set at�= 0.15 Ef . (Online version in colour.)

state this separation of scales leads to fast spatial variations on the scale of λf, modulated by
slow spatial variations resulting from the pair potential. Furthermore, the excitation gap is small
compared with the Fermi energy, |�(p)| � Ef. Thus, we look for solutions of equations (1.3)–
(1.4) by factoring the ‘fast oscillations’ at the Fermi wavelength, |ϕ(r) 〉 = eipf·r/h̄ × |Ψp(r) 〉, and
retaining the leading order terms in h̄/pfξ0 and |�(p)|/Ef. The latter also implies that the pair
potential can be evaluated for momenta, p ≈ pfp̂. The slow spatial variations of the Bogoliubov
spinors is governed by Andreev’s equation [2],

[ετ̂3 − �̂(p, r)]|Ψp(r) 〉 + ih̄vp ·
(

V − i
2e
h̄c

A(r)
)

|Ψp(r) 〉 = 0, (1.9)

where p = pfp̂, vp = vfp̂, and the pair potential has been redefined by, τ̂3�̂→ �̂. Particle-hole
coherence is encoded in the Andreev spinor |Ψp(r) 〉 = col(up↑(r) up↓(r) vp↑(r) vp↓(r)), and
necessarily on the longer wavelength scale set by the pair potential.

Andreev’s equation is a first-order differential equation for the evolution of the particle-hole
states along ‘trajectories’ defined by a point p̂ on the Fermi surface. For a normal metal in zero
magnetic field Andreev’s equation reduces to decoupled characteristic equations for electron and
hole states with the replacement ε→ ih̄∂t,

(∂t + vp · V)up = 0 and (∂t − vp · V)vp = 0. (1.10)

Thus, for each point on the Fermi surface the electron (e) and hole (h) spinors are given by

|Ψ (e)
p,s 〉 =

(
χs

0

)
e−iεt/h̄ eiεp̂·r/h̄vf and |Ψ (h)

p,s 〉 =
(

0
(−iσy)χs

)
e−iεt/h̄ e−iεp̂·r/h̄vf , (1.11)

where χs is the two-component spinor. Note the convention: (−iσy) rotates the spinor χs by 180◦

about the y-axis. The energy-momentum relation of the electron (hole) solution is p( e
h ) = (pf ±

ε/vf)p̂, and the group velocity is v
( e

h )
p = ±vfp̂.

For a homogeneous, conventional spin-singlet superconductor in zero magnetic field the pair
potential is independent of p and r. The eigenstates of a homogeneous superconductor are
solutions of the form, |Ψ λp,s 〉 = eiλp̂·r/h̄vf | λ 〉, where λ is an eigenvalue and | λ 〉 = col(uλ vλ) is an



6

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20180140

.........................................................

eigenvector of (
ε1̂ −� (iσy)

�∗(−iσy) −ε1̂

)(
uλ
vλ

)
= λ

(
uλ
vλ

)
. (1.12)

For ε >�, there are two eigenvalues, λ± = ±λ(ε), where λ(ε) ≡
√
ε2 − |�|2, each with a twofold

spin degeneracy. The corresponding eigenvectors are the electron- and hole-like Bogoliubov
excitations of the homogeneous bulk superconductor. The electron-like solution is

|Ψ (e)
p,s 〉 = 1√

2ε(ε + λ)

(
(ε + λ)χs

�∗ (−iσy)χs

)
eiλp̂·r/h̄vf

ε�|�|−−−−→
(
χs

0

)
eiεp̂·r/h̄vf (1.13)

and the hole-like solution is

|Ψ (h)
p,s 〉 = 1√

2ε(ε + λ)

(
−�χs

(ε + λ)(−iσy)χs

)
e−iλp̂·r/h̄vf

ε�|�|−−−−→
(

0
(−iσy)χs

)
e−iεp̂·r/h̄vf . (1.14)

All four states are mutually orthonormal, i.e. 〈Ψ t
p,s |Ψ t′

p,s′ 〉 = δt,t′δs,s′ , for t, t′ ∈ {e, h} and s, s′ ∈ {↑, ↓}.
Thus, an electron-like excitation with spin s =↑ is a superposition of a normal conduction electron
with spin s =↑ and a hole with spin s =↓.

Equations (1.9) also have solutions for sub-gap energies, ε < |�|. However, the eigenvalues are
pure imaginary, λ± = ∓Λ(ε) with Λ(ε) ≡

√
|�|2 − ε2,

|Ψ (±)
p,s 〉 = B±

(
(ε ∓ iΛ)χs

�∗(∓iσy)χs

)
e±Λp̂·r/h̄vf . (1.15)

These solutions explode exponentially along the trajectory coordinate, x = p̂ · r, and are non-
normalizeable, and thus unphysical solutions for a homogeneous bulk superconductor, i.e.
there are no sub-gap states of a homogeneous s-wave superconductor. However, these
exploding/decaying solutions are allowed for finite geometries, such as N–S interfaces, or
regions where the pair potential varies sharply in space, such as normal-metal inclusions in a
superconductor, or the cores of vortices [11,12].

What is clear from the solutions to Andreev equations is that the particle-hole degree of
freedom of excitations of the supercondutor is a two-component iso-spin analogous to the spin
degree of freedom. Just as the spin state of a quasi-particle evolves smoothly, ‘rotates’, in the
presence of a slowly varying Zeeman potential, or undergoes a spin-flip transition induced by a
rapidly varying field, the particle-hole isospin can rotate slowly in particle-hole space under the
action of a slowly varying pair potential, or undergo a branch conversion (iso-spin-flip) when
acted upon by a rapidly varying pair potential. The latter case is illustrated by Andreev reflection
at an N–S interface (figure 1b).

(i) Andreev reflection at N–S boundaries

For an electron incident from the normal metallic (N) region with energy below the
superconducting (S) gap there is no propagating solution in the S region. However, an incident
electron penetrates a short distance into the S region as an evanescent coherent particle-hole
excitation decaying into the S region. The discontinuity of the pair potential at the N–S requires a
retro-reflected hole. Thus, the scattering solution that conserves spin for x< 0 is

|Ψ<p,s(x) 〉 =
(
χs

0

)
e+iεx/h̄vf + rA

(
0

(−iσy)χs

)
e−iεx/h̄vf , (1.16)

where rA is the amplitude of the reflected hole. For x> 0, only an evanescent solution decaying
into the S region is physical,

|Ψ>p,s(x) 〉 = 1
ε + iΛ

(
(ε + iΛ)χs

�∗(iσy)χs

)
e−Λx/h̄vf . (1.17)
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The boundary condition at the N–S interface yields the Andreev reflection amplitude,

rA = − �∗

ε + i
√

|�|2 − ε2
, ε≤ |�|. (1.18)

Note that a retro-reflected hole is certain for ε < |�|, i.e. the reflection probability is |rA(ε)|2 ≡ 1.
Andreev reflection also occurs for electrons incident with energies ε > |�|, ‘above-gap

reflection’. Andreev scattering for energies above the gap is a purely quantum mechanical result.
For ε > |�|, the scattering solution for x> 0 is a particle-like excitation propagating into the S
region. There is no hole-like excitation propagating towards the N–S interface from the S region,

|Ψ>p,s(x) 〉 = 1
ε + λ

(
(ε + λ)χs

�∗(−iσy)χs

)
e+iλx/h̄vf , ε≥ |�|. (1.19)

The resulting Andreev reflection amplitude is

rA = �∗

ε +
√
ε2 − |�|2

. (1.20)

Thus, the probability for retro-reflection is

|rA|2 =

⎧⎪⎨⎪⎩
1 ε≤ |�|

|�|2
(ε +

√
ε2 − |�|2)2

ε > |�|. (1.21)

(ii) N–S boundary: heat conductance

For a particular trajectory p and energy ε < |�|, the charge transported across the N–S interface
from the N region is

je = (+e)v(e)
p + (−e)v(h)

p ∗ |rA|2 = 2evfp̂, ε≤ |�|. (1.22)

Since there are no quasi-particle states below the gap of the superconductor, these sub-gap
currents are transported by the condensate of Cooper pairs in the S region.

Electron and hole excitations in the N region also transport energy. For the states defined by
the trajectory p and excitation energies ε≤ |�| the heat current is jq = εv(e)

p + εv(h)
p ∗ |rA(ε)|2 ≡ 0,

which is expected and necessary as there are no states to transport heat energy in the S region, and
the Cooper pair condensate carries zero entropy. However, for excitation energies ε > |�| there is a
net heat current in the N region that is transported by states above the gap in the S region, leading
to a finite thermal conductance for the N–S boundary. In particular, for a thermal bias δT across the
N–S regions the number of excess carriers at energy ε in the hotter N region is δf (ε) = (∂f/∂T)δT,
where f (ε) = 1/(1 + eε/T) is the Fermi distribution. Thus, the heat current transported from the N
region to across the N–S interface is

Jq =A
∫
+

dΩp̂

4π
2Nf

∫∞

0
dεδf (ε)(εvp)[1 − |rA(ε)|2] = κδTn̂, (1.23)

where the integration is over half the Fermi surface corresponding to excitations with p̂ · n̂ ≥ 0
with n̂ directed into the S region normal to the N–S interface (figure 1), and A is the area of
the interface. The resulting thermal conductance includes the additional suppression of the heat
current resulting from the finite probability of Andreev reflection of excitations with energies
above the gap,

κ = 1
2

NfvfA
∫∞

|�|
dε

ε2/4T2

cosh2(ε/2T)
[1 − |rA(ε)|2]. (1.24)

For an N–N contact of area A and temperature drop δT, we obtain the heat conductance of
a Sharvin contact with two normal metallic leads, κN =A(π2/12)NfvfT. Similarly, for the S–S
contact, we obtain the Sharvin heat conductance for two superconducting leads, which is equation
(1.24) without Andreev reflection.
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Figure 3. Thermal conductance of anN–N (black dot-dashes), S–S (blue dashes) andN–S (red line) contact. Andreev reflection
of quasi-particles for energies above the gap for an N–S contact suppresses the conductance below that of an S–S contact.
(Online version in colour.)

Figure 3 shows the thermal conductance of N–N, S–S and N–S contacts. The temperature
dependence of the S–S contact is the same as the thermal conductivity of a bulk BCS
superconductor with non-magnetic impurities, which reflects the suppression of the number
of excitations that can transport heat due to the gap in the spectrum. The conductance of the
N–S contact shows the additional suppression of the heat transport resulting from Andreev
reflection of excitations for ε≥ |�|. This result is the basis for the general view that branch
conversion scattering suppresses heat transport. In §3, I discuss branch conversion scattering and
charge and heat transport in superconducting point-contact Josephson junctions. Both charge
and heat currents depend on the phase difference of between the order parameters of the two
superconducting leads. Under certain conditions of phase bias and temperature bias branch-
conversion scattering leads to strong enhancement of heat transport below Tc. The origin of this
effect is resonant transmission of quasi-particles that results from a shallow Andreev bound state
below the continuum edge.

(b) Bound-state formation: S–N–S weak links
For spatial variations of the order parameter that lead to quantum interference of multiple
Andreev reflections bound states of electron- and hole-like excitations, i.e. Andreev bound states,
form [13]. The simplest geometry for Andreev bound state formation is the S–N–S structure
shown in the right panel of figure 1. The pair potential of the left (L) and right (R) lead is
�L,R = |�| eiϑL,R . Thus, for energies below the excitation gap in either lead only exponentially
decaying solutions are allowed in the left and right leads

|ΨL 〉 = AL

(
(ε − iΛ)χs

�∗
L(−iσy)χs

)
e+Λ(x+d/2)/h̄vf and |ΨR 〉 = AR

(
(ε + iΛ)χs

�∗
R(iσy)χs

)
e−Λ(x−d/2)/h̄vf (1.25)

and counter-propagating solutions within the N region,

|ΨN 〉 = B<N

(
χs

0

)
e+iεx/h̄vf + B>N

(
0

(−iσy)χs

)
e−iεx/h̄vf . (1.26)

Matching the solutions at x = −d/2 and x = +d/2 generates the eigenvalue equation for the
spectrum of Andreev bound states confined by the S–N–S structure,

ε

|�| = (−1)m cos
(

d̄
ε

|�| + ϑ

2

)
, m = 0, 1, (1.27)
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|D|eiJL

z
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|D|e(b)(a)

x

+F0

–F0

Figure 4. (a): Domain wall:π phase change of the superconducting order parameter. (b): Josephson point contact with radius
a� ξ�. Current is transported only via trajectories passing through the aperture. (b) Branches of Andreev bound states of a
S–S weak link dispersing as a function of the phase bias,ϑ . (Online version in colour.)

where d̄ = d/p̂ · n̂ξ� is the effective width of the N region for the trajectory p, in units of the
coherence length, ξ� = h̄vf/|�| and ϑ ≡ ϑR − ϑL is the phase difference between the two S regions.
For d̄ � 1, the number of bound states scales with the effective thickness, N ≈ Integer[d̄/π ], while
for d̄< 1 there is at least one bound state. For zero phase bias, ϑ = 0, the bound state energy lies
near the gap edge, εabs ≈ |�|(1 − 1

2 d̄2).

(c) Connections: Andreev, Dirac and Jackiw–Rebbi zero modes
However, the situation is different if the phase bias is tuned to ϑ = π . In this case, there is always
a bound state with zero energy, even in the limit d̄ → 0, i.e. the limit in which the order parameter
changes sign across the S–S contact as shown in figure 4. The zero-energy bound state for the case
of an S–S contact with a π phase change is a known in many other physical contexts [14,15], and is
a realization of the Jackiw–Rebbi zero-energy bound state of relativistic fermions (Dirac fermions)
coupled to a real scalar field with a domain wall separating two degenerate vacua,

[ih̄(∂t + cα · V) + βgΦ]|ψ 〉 = 0, (1.28)

where |ψ 〉 = col(ψ1,ψ2,ψ3,ψ4) is the four-component Dirac spinor, cα is the light speed velocity
operator, β is 4-component mass operator where Φ(x → ±∞) = ±Φ0 is the scalar field with a
domain wall—a ‘kink’—separating degenerate vacuum states with ∓Φ0, and g is the coupling
that generates the mass of the Dirac fermions [16].

Thus, there is a strong connection to Bogoliubov fermions governed by Andreev’s equation
in which the pair potential is the counterpart of the scalar field. In both cases, the excitations
are described by four-component spinors satisfying a field equation that is linear in space–time
derivatives. The pair potential in Andreev’s equation plays the role of the scalar field of the
Jackiw–Rebbi theory. The zero-energy bound state is topologically protected; i.e. it is robust to
spatial variations of the Φ field, or the pair potential, so long as asymptotically the field describes
degenerate vacuum states with Atiyah–Singer indices sgnΦ(x → ±∞) = ∓ [17]. A key difference
between Jackiw–Rebbi theory and Andreev theory is the pair potential is a complex scalar field,
with a continuous degeneracy of the vacuum manifold. Thus, the bound-state energy disperses
with phase difference, ϑ , between the two S regions. This situation is realized by Josephson point
contacts.

(d) Sharvin contact: Andreev bound states and Josephson currents
The Josephson effect in superconductors connected by a small aperture, a ‘pinhole’ in an
otherwise insulating barrier separating the two superconductors, provides a textbook study of
Andreev bound state formation at the interface between two degenerate superconducting vacua.
The DC Josephson effect in pinhole junctions with ballistic electron transport was considered
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by Kulik and Omelyanchouck (K–O) [18]. They calculated the dependence of the supercurrent
flowing through the point contact as a function of the phase bias across the point contact, i.e.
the current-phase relation, Is(ϑ). Their result reduces to the standard Josephson current-phase
relation, Is = Ic sinϑ , in the Ginzburg–Landau region, |T − Tc| � Tc, but deviates significantly
from Is ∝ sinϑ at low temperatures, developing a discontinuity at ϑ = π/2 at T = 0, with a
divergence of the slope dIs/dϑ |ϑ=π ∼ −(Tc/T)Ic(0) for T � Tc. Although K–O did not explicitly
discuss the role of the sub-gap Andreev bound state spectrum in their original papers, the
anomalies in the current-phase relation of the Josephson point contact are reflections of the current
transported by the spectrum of Andreev bound states and the dispersion of the Andreev bound-
state energies with the phase bias across the weak link. In fact Andreev bound states play a central
role in all transport properties of Josephson weak links, but as will be discussed below and in §3,
their roles in charge and heat transport are fundamentally different.

For a perfectly reflecting boundary with a small aperture of radius, a � ξ�, shown in figure 4,
the total current transported through the weak link is so low that the phase gradient in the
superconducting leads is negligible. Thus, for a superconducting leads specified by phases
ϑL and ϑR asymptotically far from the aperture, the change in phase, ϑ , occurs over a short
distance a � ξ� at the aperture. For phase bias ϑ = π , the point contact separates degenerate
superconducting ground states with a pure sign change for each trajectory passing through the
aperture. The resulting zero-energy bound states correspond to equal amplitude superpositions
of normal-state electrons and holes,

|Ψps(ε= 0) 〉 =
√

|�|
2h̄vp · n̂

(
iχs

(iσy)χs

)
e−|z|/ξ� . (1.29)

If we tune the phase bias away from π the bound state energy disperses with phase as shown in
figure 5. In addition, there are positive and negative energy branches. The negative energy states
are filled at zero temperature and responsible for the ground state supercurrent at non-zero phase
bias. At finite temperature thermal excitation of the Andreev bound sates leads to a reduction of
the critical current.

In order to better understand the role of the bound state spectrum in charge and heat transport,
as well as calculate these currents, we need to calculate the spectral functions for quasi-particles
and Cooper pairs in the presence of boundaries, inhomogeneous pair potentials, as well the
distribution functions for electron- and hole-like excitations under non-equilibrium conditions.
This requires dynamical equations for the propagators for quasi-particles and Cooper pairs, as
well as boundary conditions connecting the scattering states involved in transport through the
Josepshson weak link.

2. From Andreev to Eilenberger
Andreev’s equation is a transport-type equation for the evolution the Bogoliubov spinors along
classical trajectories,

ĤA |Ψp 〉 + ih̄ vp · V |Ψp 〉 = 0, (2.1)

with the operator ĤA defined by ĤA = ετ̂3 − �̂(r, p), where �̂(r, p) is the Nambu matrix order
parameter. For spin-singlet, s-wave pairing

�̂(r, p) = iσy (̂τ1�1(r) − τ̂2�2(r)), (2.2)

where �1 = Re �= |�| cosϑ and �2 = Im �= |�| sinϑ .
Andreev’s equation can also be expressed in terms of a row spinor,

〈 Ψ̃p |ĤA − ih̄vp · V 〈 Ψ̃p | = 0. (2.3)

The row spinor 〈 Ψ̃p | is not simply the adjoint of |Ψp 〉 since ĤA is not Hermitian, but is easily
constructed, and the physical solutions are normalized to 〈 Ψ̃p |Ψp 〉 = 1. For |ε|>�, the two

branches are propagating solutions, the particle-like solution is |Ψ (+)
p 〉, with group velocity vp‖p,
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and the hole-like solution is |Ψ (−)
p 〉, with reversed group velocity, vp‖ − p. For sub-gap energies

the solutions are exploding and decaying functions along the trajectory, and thus relevant only in
the vicinity of boundaries, domain walls, interfaces and weak links.

The product of the particle- and hole amplitudes,

Fαβ (r, p; ε) = upα(r; ε)vpβ (r; ε) (2.4)

is the Cooper pair propagator, which determines the spectral composition of the pair potential. The
latter satisfies the BCS mean-field self-consistency condition, which for spin-singlet pairing is

�(r, p) = 〈g(p, p′)
∫

dε tanh
( ε

2T

)
P(r, p′; ε)〉p′ , (2.5)

where the integration over the spectral function of correlated pairs, P(r, p; ε), is cut-off atΩc � EF,
the bandwidth of attraction for the pairing interaction, g(p, p′). The latter is integrated over the
Fermi surface, 〈. . .〉p′ ≡ ∫

dΩp′/4π (. . .).
The pair propagator is one component of the Nambu matrix propagator,

Ĝ(r, p; ε) =
∑
μ,ν

gμν |Ψ (μ)
p 〉〈 Ψ̃ (ν)

p |, (2.6)

which satisfies Eilenberger’s transport equation [6],

[ĤA, Ĝ(r, p; ε)] + ih̄vp · V Ĝ(r, p; ε) = 0. (2.7)

Physical solutions to equation (2.7) must also satisfy Eilenberger’s normalization condition [6],

(Ĝ(r, p; ε))2 = −π 2̂1. (2.8)

Eilenberger’s formulation provides the spectral functions for both the quasi-particle and
Cooper pair excitations from components of the quasi-classical propagator. For spin-singlet
pairing in the absence of an external fields and magnetic interfaces the off-diagonal components of
the propagator describe pure spin-singlet pairing correlations. As a result the Nambu propagator
can be expressed in the form,

ĜR = GRτ̂3 + iσy(FR
1 τ̂1 − FR

2 τ̂2). (2.9)

The superscript refers to the causal (retarded in time) propagator, obtained from equation (2.7)
with the shift, ε→ ε + i0+. The diagonal propagator in Nambu space, GRτ̂3, determines the
spectral function, or local density of states, for the fermionic excitations with momentum p = pfp̂,
while the off-diagonal component, FR =FR

1 + iFR
2 , determines the spectral function for the

pairing correlations,

N (r, p; ε) = − 1
π

Im GR(r, p; ε) and P(r, p; ε) = − 1
π

Im FR(r, p; ε). (2.10)

For spin-singlet pairing in the absence of magnetic fields and boundaries, we can transform
the four-component Nambu matrices and spinors into two-component spinors in particle-hole
space with a unitary transformation that removes the factors of iσy corresponding to π rotations
of the hole spinors relative to the particle spinors, i.e. �̂= (iσy)(Re �τ̂1 − Im �τ̂2) → Û†

π �̂Ûπ =
(Re �τ̂1 + Im �τ̂2), and ĜR → Û†

π ĜRÛπ with Ûπ = diag(1̂, (−iσy)).
For homogeneous equilibrium, the solution to Eilenberger’s equation that also satisfies the

normalization condition, and reproduces the normal-state density of states in the limit �= 0 is

ĜR
0 (p; ε) = −π ετ̂3 − �̂(p)√

(ε + i0+)2 − |�(p)|2
, (2.11)

which describes the bulk spectral functions for quasi-particles and Cooper pairs,

N (r, p; ε) = |ε|√
ε2 − |�|2

Θ(ε2 − |�|2) and P(r, p; ε) = −�√
ε2 − |�|2

Θ(ε2 − |�|2). (2.12)
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The equilibrium charge current in the quasi-classical theory can be calculated by weighting the
charge currents of electrons and holes by their corresponding spectral weights and equilibrium
occupations,

Je = 2Nf

∫ dΩp

4π

∫
dε {+ev(+)

p N (e)(r, p; ε) f (e)(ε) − ev(−)
p N (h)(r, p; ε) f (h)(ε)}, (2.13)

where f (e) = f (ε) is the equilibrium Fermi distribution for particle excitations and f (h)(ε) = 1 − f (ε)
is the equilibrium occupation for holes. We can express the current in terms of the quasi-classical
propagator by recognizing that the spectral weights for particle-like (hole-like) excitations for
trajectory p are given by N (e) =N (h) =N (r, p; ε) = −(1/4π ) Im Tr{τ̂3Ĝ

R(r, p; ε)}. Thus, the charge
current reduces to

Je = 2Nf

∫ dΩp̂

4π

∫
dεevpN (r, p; ε) f (ε). (2.14)

For equilibrium properties, it is convenient to express the current in terms of the Matsubara
propagator, which is related to the retarded and advanced propagators by analytic continuation,
i.e. ĜR(ε→ iεn) = ĜM(εn), where iεn = i(2n + 1)πT are the poles of the Fermi distribution. Thus,
equation (2.14) can be transformed to

Je = 2Nf

∫ dΩp̂

4π
evpT

∑
n

1
4

Tr{̂τ3Ĝ
M(r, p; εn)}. (2.15)

(a) Sharvin contact: propagators and spectral functions
Consider a Sharvin contact that couples two conventional, spin-singlet superconductors with
phase bias, ϑ = ϑR − ϑL. For a trajectory p passing through the aperture, as shown in figure 4,
the pair potentials of the two superconducting leads are given by, �(z< 0) ≡�(−) = |�| e−iϑ/2

and �(z> 0) ≡�(+) = |�| e+iϑ/2. In the limit, a � ξ0, the phase change occurs at the point contact.
The propagators far from the point contact are defined by local equilibrium propagators,

ĜM
0,± = −π iεnτ̂3 − (�(±)

1 τ̂1 −�
(±)
2 τ̂2)√

(ε2
n + |�|2

, (2.16)

where �
(±)
1 = |�| cos(ϑ/2) and �

(±)
2 = ±|�| sin(ϑ/2). The propagator obeys the Eilenberger

equation, which is a first-order differential equation along the classical trajectory, and thus a
continuous function of x = p̂ · r. The inhomogeneity of the pair potential generates local solutions
of equation (2.7) that are confined within a few coherence lengths of the point contact, and encode
the spectral information of the sub-gap Andreev states.

It is convenient to transform the matrix transport equation to a linear differential equation
acting on vectors defined in a three-dimensional vector space [19],

1
2 vp · ∇| G 〉 = M̂| G 〉, (2.17)

with

| G 〉 ≡

⎛⎜⎝F1
F2
G

⎞⎟⎠ M̂ =

⎛⎜⎝ 0 −iεn −�2
+iεn 0 �1
−�2 �1 0

⎞⎟⎠ . (2.18)

For either the left or right S region, we can express the physical solution |G 〉 in terms of the
eigenvectors of the Hermitian matrix M̂, i.e. orthonormal solutions of M̂| λ 〉 = λ| λ 〉. There are

three eigenvalues, {λμ|μ ∈ {0, ±1}}: λ0 = 0 and λ± = ±λ, with λ=
√
ε2

n + |�|2. The eigenvector with
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eigenvalue μ= 0 is

| 0 〉 = 1
λ

⎛⎜⎝ �1
�2

−iεn

⎞⎟⎠ (2.19)

and corresponds to the bulk equilibrium propagator in equation (2.16). The eigenvectors for
eigenvalues λ± = ±λ are

| ± 〉 = 1√
2λλ1

⎛⎜⎝±iεnλ−�1�2
λ2

1
iεn�2 ∓ λ�1

⎞⎟⎠ , (2.20)

where λ1 ≡
√
ε2

n +�2
1. The set of eigenvectors are orthonormal, 〈μ | ν 〉 = δμν . The general solution

in half-space x< 0 (x> 0) can be expressed in terms of eigenvectors of the corresponding half-
space operator, M̂±,

| G(±)(x) 〉 =
∑
μ

C(±)
μ (x)|μ 〉±. (2.21)

From equation (2.17), we project out the differential equations for the amplitudes,

1
2
vf
∂C(±)

μ (x)
∂x

= λμC(±)
μ (x). (2.22)

Thus, there is a constant solution for μ= 0, and exponential solutions for μ= ±,

C(±)
0 (x) = C(±)

0 (0), C(±)
+ (x) = C(±)

+ (0) e+2λx/vf and C(±)
− (x) = C(±)

− (0) e−2λx/vf . (2.23)

The half-space solutions must asymptotically approach the bulk solution, and thus take the
form,

| G(−)(x) 〉 = π | 0 〉− + C(−)
+ e+2λx/vf | + 〉−, x< 0 (2.24)

and
| G(+)(x) 〉 = π | 0 〉+ + C(+)

− e−2λx/vf | − 〉+, x> 0. (2.25)

Continuity of the propagator at x = 0 fixes the amplitudes, C(−)
+ = −√

2π (�(−)
2 /λ1) = −C(+)

− . Thus,
the quasi-particle component of the propagator evaluated at the point contact becomes

G(p, z = 0−; εn) = −π iεnλ− (1/2)|�|2 sinϑ

ε2
n + |�|2 cos2(ϑ/2)

. (2.26)

The total supercurrent at the point contact is obtained from equation (2.15) and the cross section
of the Sharvin contact,

Is = (πa2)2Nf

∫
p̂·n̂>0

dΩp

4π
2n̂ · vp

π

2
T
∑

n

|�|2 sinϑ

ε2
n + |�|2 cos2(ϑ/2)

. (2.27)

The normal-state Sharvin conductance, GN = πa2

2 e2Nfvf, valid in the ballistic limit �� a, is
determined by the area of the aperture, the density of states and Fermi velocity for quasi-particle
charge transport. Thus, in terms of the contact resistance, RN = 1/GN,

Is = π

eRN
T
∑

n

|�|2 sinϑ

ε2
n + |�|2 cos2(ϑ/2)

= π |�|
eRN

sin(ϑ/2) tanh
( |�| cos(ϑ/2)

2T

)
, (2.28)

where the last form is obtained from the Matsubara series representation for the hyperbolic
tangent function. This is the result for the current-phase relation originally obtained by K–O [18].
It reduces to the current-phase relation for a Josephson tunnel junction, Is = Ic sinϑ , in the limit
T → Tc, where the critical current,

Ic = π |�|2
4eRNTc

∝
(

1 − T
Tc

)
, |T − Tc| � Tc (2.29)

is the result obtained by Ambegaokar & Baratoff [20], except that the tunnelling conductance is
replaced by the Sharvin conductance. However, at low temperatures the current-phase becomes
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Figure 5. (a) Josephson current as a function of phase bias and temperature for a Sharvin point contact. The current is
normalized in units of the Ambegaokar–Baratoff critical current at T = 0, Ic0 = π�(0)/2e RN. (b) Branches of Andreev bound
states of a Sharvin point contact Josephson weak link dispersing as a function of the phase bias,ϑ . (Online version in colour.)

increasingly asymmetric near ϑ = π as shown in figure 5, and discontinuous at T = 0,

Is(T = 0) = π�(0)
e RN

sin
(
ϑ

2

)
sgn

(
cos

(
ϑ

2

))
. (2.30)

In addition to the divergence of the slope dIs/dϑ |ϑ=π as T → 0, the K−O result predicts a critical
current that is twice that of the Ambegaokar–Baratoff result.

The anomaly in the temperature dependence of the current-phase relation of the Josephson
current obtained by Kulik–Omelyanchouck has its origin in the Andreev bound-state spectrum
of the phase-biased Sharvin weak link. This can be made clear by expressing the current defined
by equation (2.27) as an integration over the spectral current density, weighted by thermal
occupation of the current-carrying excitation spectrum. Starting from the first equality of equation
(2.28), the current-phase relation is determined by the sum,

J = T
∑

n

�1�2

ε2
n +�2

1
≡ T

∑
n

G(iεn), (2.31)

where �1 = |�| cos(ϑ/2) and �2 = |�| sin(ϑ/2), and G(z) = −�1�2/(�2
1 − z2) is the analytic

extension of the summand to the complex plane. We can transform the current-phase relation
to an integral over the spectral density for the current by expressing the Matsubara sum as a
contour integral around the poles of the Fermi function, use analyticity to deform the contour to
integration infinitesimally above and below the real axis,

J =
∫+∞

−∞
dε

(
f (ε) − 1

2

)(
GR(ε) − GA(ε)

−2π i

)
, (2.32)

where GR(ε) = G(ε + i0+) (GA(ε) = G(ε − i0+)) is the retarded (advanced) current response to the
phase bias, and the difference of these two response functions is the spectral function for the
Josephson current

Γ (ε) = GR(ε) − GA(ε)
−2π i

= 1
2
�2[δ(ε − ε−(ϑ)) − δ(ε − ε+(ϑ))]. (2.33)

The spectral function is defined by delta functions at energies corresponding to the positive and
negative energy Andreev levels

ε±(ϑ) = ±|�| cos
(
ϑ

2

)
, −π ≤ ϑ ≤ +π . (2.34)
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The dispersion of the Andreev levels with phase is shown in the right panel of figure 5. The phase
gradient of these energy levels

I±(ϑ) = dε±(ϑ)
dϑ

= ∓1
2
|�| sin

(
ϑ

2

)
(2.35)

determines the spectral weight of the Andreev bound states to the Josephson current. These
gradients determine the magnitude of the current transported by the Andreev levels in the
Sharvin aperture. In particular, the current spectral function is

Γ (ε) = [I−(ϑ)δ(ε − ε−(ϑ)) + I+(ϑ)δ(ε − ε+(ϑ))]. (2.36)

With this result for the spectral current density the Josephson current becomes,

Is = π

eRN

∑
ν=±

f (εν )
dεν
dϑ

. (2.37)

Evaluating this result reduces to the K–O result for the current-phase relation in equation (2.28)
and demonstrates explicitly that the Josephson current of a Sharvin point-contact is transported
by the occupied spectrum of Andreev bound states (see also [21]). In particular, the Josephson
current at T = 0 is determined by the occupied spectrum of negative energy Andreev levels,
and on this basis the discontinuity in the current-phase relation at ϑ = π is explicit from the
discontinuity in the slope of the negative energy branch shown in the right panel of figure 5.

(b) Partially transparent point contacts
The point-contact Josephson weak link discussed above is based on perfect transmission for
classical trajectories that pass through the aperture of the S–S contact. The generalization of
the Sharvin contact to a partially transparent contact requires boundary conditions for the
propagators corresponding to scattering states related by the normal-state scattering matrix
(S-matrix) as shown in figure 6,

S =
(

r d
d∗ r

)
, (2.38)

where r (d) is the reflection (transmission) amplitude of normal-state quasi-particles for
trajectories passing through the aperture from the left to the right lead. Unitarity of the S-matrix
requires |r|2 + |d|2 = 1, where R = |r|2 (D = |d|2) is the probability for reflection (transmission) by
the point contact. The reflection and transmission amplitudes depend on the incident, reflected
and transmitted trajectories, p and p, shown in the left panel of figure 6. For a non-magnetic
interface r and d are independent of the quasi-particle spin. In the following, we assume the S-
matrix amplitudes are independent of the momenta, except the S-matrix couples only states that
conserve momentum parallel to the interface.

Interface scattering couples states defined on different trajectories, and when combined
with Andreev scattering, modifies the spectrum of Andreev bound states at the point
contact. The theory of Andreev bound state formation at partially transparent interfaces, with
multiple scattering by the boundary and pair potential, is formulated in terms of boundary
conditions for the particle-hole coherence amplitudes that can be used to construct the quasi-
classical propagators [22–24]. The formulation of these boundary conditions and generalizations
to magnetically active interfaces, with applications to pair breaking in unconventional
superconductors, superfluid 3He and hybrid superconducting-magnetic materials, is discussed
by Eschrig [25].

For a partially transparent, non-magnetic point contact that couples only the incident,
specularly reflected and momentum conserving transmitted trajectory the Andreev bound
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Figure 6. Left: Josephson point contact with radius a� ξ�. Current is transported only via trajectories passing through
the aperture with transmission probability D. Right: Branches of Andreev bound states of an S–c–S weak link dispersing as
a function of the phase bias,ϑ . (Online version in colour.)

energies are given by [26],

ε±(ϑ , R) = ±|�|
√

cos2
(
ϑ

2

)
+ R sin2

(
ϑ

2

)
. (2.39)

Thus, boundary reflection opens a low-energy gap in the Andreev bound-state spectrum at ϑ = π ,
ε+ − ε− = 2R|�|. Thus, there is no topological protection of the zero mode for ϑ = π because there
is a finite probability for back reflection with no change in phase.

For a small area point contact with finite transmission, the Josephson current is determined by
equation (2.37), but with the Andreev bound state dispersion is given by equation (2.39). In the
zero-temperature limit, the current is carried entirely by the negative energy branch in figure 6,

Is(0, D) = IAB
c (D)

sinϑ√
cos2(ϑ/2) + R sin2(ϑ/2)

=

⎧⎪⎨⎪⎩
IAB
c (0) sinϑ , D → 0,

2IAB
c (1) sin

(
ϑ

2

)
sgn

(
cos

(
ϑ

2

))
D → 1,

(2.40)

which reduces to the result obtained by Ambegaokar and Baratoff for a tunnel junction in the limit
D � 1, with IAB

c (D) = (π |�|/2eRAB
N ), where 1/RAB

N ≡ 1/RN × D is equivalent to the perturbation
theory result for the tunnelling conductance between normal-metal leads in the limit D → 0, and
the Sharvin conductance in the limit D → 1. For transparency D → 1, we recover the result of
Kulik and Omelyanchouck with an enhanced critical current and the discontinuity in the slope
associated with the Andreev bound state dispersion near ϑ = π . Figure 7 shows the evolution of
the Josephson current-phase relation with the barrier transparency, D, at zero temperature. The
effect of a gap in the bound state spectrum is to ‘normalize’ the current-phase relation towards
the Ambegaokar–Baratoff result for the Josephson current-phase relation based on second-order
perturbation theory in the tunnelling Hamiltonian.

The approach of the critical current to that obtained by Ambegaokar and Baratoff might
suggest that perturbation theory in the transmission probability, D, is generally valid to a broader
range of transport processes in superconducting point contacts. This however is not the case.
Even very low transmission, D � 1, leads to Andreev bound state formation. The multiple
scattering processes that lead to bound-state formation also affect the continuum spectrum near
the gap edge. This process is inherently non-perturbative, and when the back-action of bound-state
formation on the continuum spectrum is relevant to transport the non-perturbative nature of the
Andreev bound-state spectrum is revealed. There are many examples in which the back-action
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on the continuum spectrum resulting from Andreev bound state formation leads to important
new physics. In this volume, Mizushima & Machida [27] discuss the importance of the back-
action by the continuum on the edge current in chiral superfluids and superconductors, and
in particular, the magnitude of the ground state angular momentum of superfluid 3He-A. The
edge current is determined by both the negative-energy Andreev bound states which are chiral
fermions, and the current generated by the back-action on the continuum spectrum [19,28,29]. In
the context of phase-biased Josphson junctions and weak links, the non-perturbative nature of
transport in superconducting junctions is particularly evident when considering heat transport
through Josephson junctions.

3. Heat transport in Josephson junctions and point contacts
Heat is carried by unbound quasi-particles making up the continuum spectrum above the gap
of an S–c–S Josephson junction, and it is the imprint of the Andreev bound state spectrum on
the transmission probability of these quasi-particles through an S–c–S junction that reveals the
non-perturbative nature of transport in Josephson junctions, and in this case the breakdown of
perturbation theory based on the tunnelling Hamiltonian for heat transport, as well as other non-
equilibrium processes such as thermo-electric transport [30], and heat current noise [31]. Here I
focus on heat transport in phase- and temperature-biased Josephson junctions and point contacts.

Heat transport through a Josephson junction was first studied by Maki & Griffin [32], and in
more detail by Guttman et al. [33,34], following closely the perturbation theory approach based
on the tunnelling Hamiltonian method employed by Josephson [35] and Ambegoakar & Baratoff
[20]. The failure of perturbation theory in the tunnelling Hamiltonian (tH) is evident in all three
papers. In particular, Guttman et al. [34] give the following result for the heat current transported
through a Josephson junction with temperature bias δT = TR − TL,2

ItH
Q = −ANfvfDδT

∫∞

�(T)
dε
ε2

T

(
− ∂f
∂ε

)
ε2 −�(T)2 cosϑ√

ε2 −�(T + δT)2
√
ε2 −�(T)2

. (3.1)

For any phase bias, ϑ �= 0, 2π , the tH result is divergent due to an essential singularity at ε=� in
the linear response limit, i.e. to linear order in δT. In [32,34], the authors regulate the divergence

2Note that I have used the notation of this article for the normal-state transmission probability and normal-state density of
states factors, etc. What matters here is the integral over the joint density of states for the bulk quasi-particle excitations and
coherence factors which is as given in [34].
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in the formula for the heat current of the tH theory by introducing the temperature bias into the
density of states of the higher temperature superconducting lead. This ad hoc procedure leads
to a non-analytic dependence of the heat current on the temperature bias, and thus to a failure
of linear response theory for heat transport through a Josephson junction with arbitrarily small
temperature bias δT. However, the resolution of the singularity in the tunnelling conductance is
not found in the breakdown of linear response theory, but in a failure of perturbation theory in
the tunnelling Hamiltonian. Indeed, the result of the tH theory is missing the effects of Andreev
bound-state formation, which is non-perturbative, on the continuum spectrum, and specifically
on the transmission probability of the Bogoliubov quasi-particles that transport thermal energy.

A non-perturbative formulation of the theory of heat transport in Josephson junctions based
on an S-matrix theory for multiple barrier and Andreev scattering was presented in [26,36], and
extended to charge-spin transport under non-equilibrium conditions in [24,37,38], and described
by Eschrig [25] and Holmqvist et al. [39].

The heat transported through an S–c–S Josephson junction or point-contact is carried by
Bogoliubov particle and hole-like excitations in the superconducting leads. Thus, for weak non-
equilibrium conditions the heat current is linear in the temperature bias, JQ = −κδT, with the
thermal conductance of the S–c–S junction given by

κ =A
∫∞

|�|
dεNB(ε)[εvB(ε)]D(ε,ϑ)

∂f
∂T

=ANfvf

∫∞

|�|
dεD(ε,ϑ)

(
ε2

T

)(
− ∂f
∂ε

)
, (3.2)

where ∂f/∂T = (−ε/T)∂f/∂ε is the thermal bias of the quasi-particle distributions of the
superconducting leads. The second form of equation (3.2) follows from the density of states
for the quasi-particles in the superconducting leads, NB(ε) = Nfε/

√
ε2 − |�|2, and the speed of

these excitations, vB(ε) = vf
√
ε2 − |�|2/ε. The key element in equation (3.2) is the transmission

probability, D(ε,ϑ), for Bogoliubov quasi-particles with energy ε in the presence of the phase
bias, ϑ . The normal-state transmission probability, D, is renormalized by multiple barrier and
Andreev scattering from the phase-biased order parameter.

(a) Phase-sensitive heat transport: Andreev’s demon
Multiple barrier and Andreev scattering leads to the renormalized transmission probability, D =
De→e + De→h, which is the sum of the probabilities for transmission with (e → h and h → e) and
without (e → e and h → h) branch conversion [26,36],

D e→e
h→h

= D
(ε2 − |�|2)(ε2 − |�|2 cos2(ϑ/2))

[ε2 − |�|2(1 − D sin2(ϑ/2))]2
, ε≥ |�| (3.3)

and

D e→h
h→e

= DR
(ε2 − |�|2) |�|2 sin2(ϑ/2)

[ε2 − |�|2(1 − D sin2(ϑ/2))]2
, ε≥ |�|. (3.4)

Both transmission amplitudes have poles at sub-gap energies corresponding to the Andreev
bound state energies given in equation (2.39). Transmission with branch-conversion (De→h)
vanishes in the limit ϑ = 0, as does the sub-gap Andreev bound state. The transmission
probability is then given by the normal-state transparency. As a result equation (3.2) for
the thermal conductance reduces to that for the S−S contact in equation (1.24), i.e. without
Andreev reflection. Transmission with branch-conversion also vanishes for a Sharvin contact
without barrier reflection. Nevertheless, the transmission probability for Bogoliubov excitations
is renormalized by the formation of the point-contact Andreev bound state by multiple Andreev
scattering by the phase-change of the pair potential,

D = (ε2 − |�|2)
ε2 − |�|2 cos2(ϑ/2)

, ε≥ |�|, (3.5)

which gives the result for the heat current of a superconducting S–c–S contact first obtained
by Kulik & Omelyanchouck [40], and which is analytic for ϑ �= 0 and δT → 0. Both the phase
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state [26]. (Online version in colour.)

dependence of the heat current, and the analyticity for small thermal bias, originate from the
appearance of the Andreev bound state energy in the denominator of the transmission probability
for Bogoliubov quasi-particle excitations.

Indeed for thermal excitations, i.e. energies ε≥ |�| above the gap, the Andreev bound
state pole (i) eliminates the unphysical divergence that is present in the perturbative result
for the thermal conductance based on the tunnelling Hamiltonian, and (ii) for low normal-
state barrier transmission, D � 1, and phase bias tuned to ϑ = π , the shallow Andreev bound
state leads to resonant heat transport by quasi-particles. The resonance in the transmission
probability for ϑ = π is shown in figure 8. The Andreev bound state lies just below the continuum
edge, εb � |�|(1 − D/2) and generates a transmission resonance peak just above the gap,
εres � |�|(1 + D/2).

It is worth noting that in the limit D � 1, if we set D = 0 everywhere except for the prefactor in
equations (3.3) and (3.4), i.e. evaluate D perturbatively, then we obtain singular result of Refs.
[32,34]. The bound state removes the singularity in the transmission probability obtained in
perturbation theory and leads to a thermal conductance that is finite and vanishes for D → 0,
but is non-analytic in the normal-state transmission probability in the ‘tunnelling limit’, i.e.
κ ∼ D ln D. The result for κ(ϑ) to leading order in D also has non-analytic corrections to the phase
modulation of the thermal conductance, in addition to the modulation ∝ cosϑ (or equivalently
sin2(ϑ/2)),

κ(ϑ) = κ0 − κ1 sin2 ϑ

2
ln
(

sin2 ϑ

2

)
+ κ2 sin2 ϑ

2
, (3.6)

where the coefficients are given in [26], and the relative importance of the ln-term increases
significantly for tunnel junctions (D � 1) at very low temperatures.

In summary, phase-sensitive heat transport arises in Josephson point contacts from both the
coherence factors for the Bogoliubov excitations that transport heat as well as the back-action
of the Andreev bound-state spectrum on the transmission probability for these excitations. In the
tunnelling limit, the shallow bound state acts as Andreev’s Demon by controlling the heat transport
by tuning the resonance with the phase bias. This is shown in the right panel of figure 8, where
the heat current is suppressed for ϑ = 0, but strongly enhanced by tuning the phase to ϑ = π to
maximize resonant transmission of hot carriers near the gap edge.
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4. Outlook
Experimental studies of charge transport in Josephson junctions, and the development of
quantum devices based on phase-sensitive charge transport have a long history since Josephson’s
original prediction. By contrast, experimental studies, in particular, the observation of phase-
sensitive heat transport is relatively new. Quantum oscillations of the heat current in an SNS
Andreev interferometer were reported in [41], and in a Josephson junction based interferometer in
[42]. The experimental realization of quantum oscillations in heat transport has lead to substantial
interest in the heat transport in mesoscopic superconducting devices based for phase-sensitive
control of heat transport as a frontier research area [43,44].

In the broader context of unconventional and topological superconductors, charge, heat
and spin transport provide wide-ranging opportunities for new physics, and potentially new
device functionalities. Many of these frontier research areas are highlighted in this special
volume.
Data accessibility. This article has no additional data.
Competing interests. I declare I have no competing interests.
Funding. The research of the author has been supported by the National Science Foundation, and currently by
grants DMR-1508730 and PHY-1734332.
Acknowledgements. I thank my collaborators, Matthias Eschrig, Micke Fogelström, Tomas Löfwander, Wave
Ngampruetikorn Takeshi Mizushima, Oleksii Shevtsov Anton Vorontsov, Mehdi Zarea Erhai Zhao, and the
late Dierk Rainer, who was an inspiration for many theoretical developments on Andreev scattering and
bound-state formation in unconventional superconductors.

References
1. Bardeen J, Cooper LN, Schrieffer JR. 1957 Theory of superconductivity. Phys. Rev. 108,

1175–1204. (doi:10.1103/PhysRev.108.1175)
2. Andreev AF. 1964 Thermal conductivity of the intermediate state in superconductors. Sov.

Phys. JETP 19, 1228–1234.
3. Gorkov LP. 1958 On the energy spectrum on superconductors. Zh. Eskp. Teor. Fiz. 34, 735–738.
4. Bogoliubov NN. 1958 New method in the theory of superconductivity. Zh. Eskp. Teor. Fiz. 34,

58–65.
5. Kurkijärvi J, Rainer D. 1990 Andreev scattering in superfluid 3He. In ‘Helium Three’ (eds

WP Halperin, LP Pitaevskii), pp. 313–352. Amsterdam, The Netherlands: Elsevier Science
Publishers.

6. Eilenberger G. 1968 Transformation of Gorkov’s equation for type II superconductors into
transport-like equations. Zeit. Phys. 214, 195–213. (doi:10.1007/BF01379803)

7. Larkin AI, Ovchinnikov YN. 1969 Quasiclassical method in the theory of superconductivity.
Sov. Phys. JETP 28, 1200.

8. Serene JW, Rainer D. 1983 The quasiclassical approach to 3He. Phys. Rep. 101, 221–311.
(doi:10.1016/0370-1573(83)90051-0)

9. Shelankov A. 1985 On the derivation of the quasiclassical equations for superconductors.
J. Low Temp. Phys. 60, 29–44. (doi:10.1007/BF00681651)

10. Millis A, Rainer D, Sauls JA. 1988 Quasiclassical theory of superconductivity near
magnetically active interfaces. Phys. Rev. B 38, 4504–4515.

11. Rainer D, Sauls JA, Waxman D. 1996 Current carried by bound states of a superconducting
vortex. Phys. Rev. B 54, 10 094–10 106. (doi:10.1103/PhysRevB.54.10094)

12. Sauls JA, Eschrig M. 2009 Vortices in chiral, spin-triplet superconductors and superfluids. New
J. Phys. 11, 075008. (doi:10.1088/1367-2630/11/7/075008)

13. Andreev AF. 1966 Electron spectrum of the intermediate state of superconductors. Sov. Phys.
JETP 22, 455–458.

14. Su WP, Schrieffer JR, Heeger AJ. 1979 Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701.
15. Hu CR. 1994 Midgap states as a novel signature of dx2−y2 -wave superconductivity. Phys. Rev.

Lett. 72, 1526.
16. Jackiw R, Rebbi C. 1976 Solitons with fermion number 1

2 . Phys. Rev. D 13, 3398–3409.
(doi:10.1103/PhysRevD.13.3398)

http://dx.doi.org/doi:10.1103/PhysRev.108.1175
http://dx.doi.org/doi:10.1007/BF01379803
http://dx.doi.org/doi:10.1016/0370-1573(83)90051-0
http://dx.doi.org/doi:10.1007/BF00681651
http://dx.doi.org/doi:10.1103/PhysRevB.54.10094
http://dx.doi.org/doi:10.1088/1367-2630/11/7/075008
http://dx.doi.org/doi:10.1103/PhysRevD.13.3398


21

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A376:20180140

.........................................................

17. Atiyah M, Patodi V, Singer I. 1975 Spectral asymmetry and Riemannian Geometry. I. Camb.
Philos. Soc. 77, 43–69. (doi:10.1017/S0305004100049410)
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