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Abstract
Black holes are described by their gravitational properties and this makes them fascinating objects to study
and test theories of gravity. Our current description of the gravitational interaction using general relativity
leaves some open questions: In the case of black holes, general relativity predicts singularities, points where
the theory breaks down and physical quantities become infinitely large. In addition, the seminal work of
Stephen Hawking states that black holes emit radiation following a thermal spectrum and suggests that
black holes lose mass and slowly evaporate. The latter is in conflict with classical general relativity, where
black holes can only grow but never decrease in mass. It is believed that a theory of quantum gravity, where
general relativity is quantized, will avoid singularities and give a detailed description for the evaporation
of black holes. In the present thesis, we address black hole evaporation, also known as the backreaction
problem, using tools of (perturbative) quantum gravity.

In the literature, backreaction is not fully understood from a theoretical point of view. Based on heuristic
arguments using the Stefan-Boltzmann law, one finds a finite lifetime for black holes which scales as M3,
where M is the black hole mass. Ideally, one would perform a full non-perturbative quantum gravity
computation and find the spectrum of the emitted particles, the lifetime of the black hole, and determine
the fate of the black hole after evaporation. As a first step, one uses quantum field theory, the mathematical
framework to describe matter inside the Standard Model of particle physics, to study matter around the
black hole. Quantum field theory assumes a fixed spacetime and can only be formulated when fixing the
black hole spacetime. Then, using a semi-classical version of the field equations of general relativity, one
determines the change of the classical metric. This is only an approximation because for evaporating black
holes the mass of the black hole changes and the spacetime is fully dynamical. Thus, for a realistic picture one
has to avoid references to any background spacetime and attempt a background independent formulation.

In this thesis, we take an intermediate step between semi-classical gravity and full non-perturbative
quantum gravity, known as the hybrid approach. We work in the Hamiltonian formulation with the full
phase space of general relativity and the matter sector. In contrast to the semi-classical methods based on
quantum field theory on black hole spacetimes, the framework is background independent and it includes
backreaction effects.

In our approach, we face two challenges: (i) In its Hamiltonian formulation, general relativity is fully
constrained, i.e. the theoretical description includes redundancies and we have to single out the observable
degrees of freedom. (ii) The equations of general relativity are non-linear and mathematically complex.
Exact solutions are only known for very special cases usually using symmetry assumptions. To address both
obstacles, we employ the reduced phase space approach which completely solves all of the redundancies. To
the best of our knowledge, this approach has not been implemented in the current form before. The idea is
to take the symmetry group of some class of exact solutions of general relativity and to define the symmetric
and non-symmetric variables with respect to the symmetry group. Then, we further split the symmetric and
non-symmetric variables into observable and non-observable degrees of freedom. The observable degrees of
freedom are defined non-perturbatively on the full phase space and their dynamics is fully described by the
reduced Hamiltonian, a Hamiltonian involving the observable degrees of freedom only. We find an implicit,
non-perturbative expression for the reduced Hamiltonian and expand it to second order in the perturbations.

After the general outline of the formalism, we apply it to the case of perturbations around spherically
symmetric spacetimes. Classically, the solution of the equations of general relativity assuming spherical
symmetry is the non-rotating Schwarzschild black hole. We explicitly compute the reduced Hamiltonian
describing the dynamics of the perturbations to second order. As a non-trivial consistency check, we
derive the Hamiltonian equations of motion and compare them with the Regge-Wheeler-Zerilli equations for
perturbations on the Schwarzschild spacetime. Ignoring backreaction effects, we find perfect agreement and
it assures us that the framework produces correct results.

Finally, we briefly discuss how we plan to use the formalism to analyse evaporating black holes. We
introduce the notion of apparent horizons, describing the boundary of the black hole region as seen by an
observer. The area of the apparent horizon is an interesting quantity because it is expected to decrease due
to black hole evaporation. It can be used to link the theoretical findings to current and future experiments.
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Zusammenfassung

Schwarze Löcher werden durch ihre Gravitationseigenschaften beschrieben, was sie zu faszinierenden Ob-
jekten für die Untersuchung und den Vergleich verschiedener Gravitationstheorien macht. Unsere derzeitige
Beschreibung der Gravitation beruht auf der allgemeinen Relativitätstheorie und lässt einige Fragen un-
beantwortet: Im Fall von schwarzen Löchern sagt die allgemeine Relativitätstheorie Singularitäten voraus,
das sind Punkte, an denen die Theorie zusammenbricht und physikalische Größen unendlich groß werden.
Darüber hinaus zeigt die bahnbrechende Arbeit von Stephen Hawking, dass schwarze Löcher Strahlung
aussenden, die einem thermischen Spektrum folgt. Das legt nahe, dass schwarze Löcher Masse verlieren
und langsam verdampfen. Letzteres steht im Widerspruch zur klassischen allgemeinen Relativitätstheorie,
nach der schwarze Löcher nur wachsen, aber niemals an Masse verlieren können. Es wird angenommen,
dass eine Theorie der Quantengravitation, in der die allgemeine Relativitätstheorie quantisiert wird, Singu-
laritäten vermeiden und eine detaillierte Beschreibung der Verdampfung schwarzer Löcher liefern wird. In
der vorliegenden Dissertation befassen wir uns mit der Verdampfung schwarzer Löcher, auch bekannt als
Rückwirkungsproblem, unter Verwendung von Werkzeugen der (perturbativen) Quantengravitation.

In der Literatur ist die Rückwirkung aus theoretischer Sicht nicht vollständig verstanden. Auf der Grund-
lage heuristischer Argumente unter Verwendung des Stefan-Boltzmann-Gesetzes findet man eine endliche
Lebensdauer für schwarze Löcher, die mit M3 skaliert, wobei M die Masse des schwarzen Lochs ist. Ide-
alerweise würde man eine vollständige nicht-perturbative Rechnung in einer Quantengravitationstheorie
durchführen und das Spektrum der emittierten Teilchen, die Lebensdauer des schwarzen Lochs und das
Ergebnis des Vermpfungsprozesses bestimmen. In einem ersten Schritt beschreibt man die Materie um
das schwarze Loch mithilfe der Quantenfeldtheorie, dem mathematischen Rahmen für die Beschreibung der
Materie im Standardmodell der Teilchenphysik. Die Quantenfeldtheorie nimmt eine feste Raumzeit an und
kann nur formuliert werden, wenn die Raumzeit des schwarzen Lochs unveränderlich ist. Mit Hilfe einer
semi-klassischen Version der Feldgleichungen der allgemeinen Relativitätstheorie wird dann die Änderung
der klassischen Metrik bestimmt. Dies ist jedoch nur eine Näherung, da sich bei verdampfenden schwarzen
Löchern die Masse des schwarzen Lochs ändert und die Raumzeit völlig dynamisch ist. Um ein realistis-
cheres Bild zu erhalten, müssen daher Bezüge zu eine Hintergrund-Raumzeit vermieden werden und es muss
versucht werden, eine vom Hintergrund unabhängige Formulierung zu finden.

In dieser Arbeit verwenden wir einen Zwischenschritt zwischen der semi-klassischen Gravitation und der
vollständigen nicht-perturbativen Quantengravitation, der als hybrider Ansatz bezeichnet wird. Wir ar-
beiten in der Hamilton’schen Formulierung mit dem vollen Phasenraum der Allgemeinen Relativitätstheorie
und dem Materiesektor. Im Gegensatz zu den semiklassischen Methoden, die auf der Quantenfeldtheorie
beruhen, ist die Vorgehensweise hintergrundunabhängig und schließt Rückwirkungseffekte mit ein.

Bei unserem Ansatz stehen wir vor zwei wesentlichen Herausforderungen: (i) Die Hamilton’schen For-
mulierung der allgemeinen Relativitätstheorie enthält Zwangsbedingungen, d. h. die theoretische Beschrei-
bung ist redundant und wir müssen die beobachtbaren Freiheitsgrade bestimmen. (ii) Die Gleichungen
der allgemeinen Relativitätstheorie sind nichtlinear und mathematisch komplex. Exakte Lösungen sind
nur für sehr spezielle Fälle bekannt, die in der Regel auf Symmetrieannahmen beruhen. Um beiden Hin-
dernissen zu begegnen, verwenden wir eine Herangehensweise basierend auf dem reduzierten Phasenraum,
welcher die Zwangsbedingungen vollständig löst. Nach unserem besten Wissen wurde diese Vorgehensweise
in unserer Form noch nicht verwendet. Die Idee ist, die Symmetriegruppe einer Klasse von exakten Lö-
sungen der allgemeinen Relativitätstheorie dazu zu verwenden, die Variablen in symmetrische und nicht-
symmetrische Variablen aufzuteilen. Anschließend werden die symmetrischen und nicht-symmetrischen Vari-
ablen in beobachtbare und nicht-beobachtbare Freiheitsgrade unterteilt. Die beobachtbaren Freiheitsgrade
sind nicht-perturbativ auf dem vollen Phasenraum definiert und ihre Dynamik ist vollständig durch den re-
duzierten Hamiltonian, einem Hamiltonian, der nur die beobachtbaren Freiheitsgrade umfasst, beschrieben.
Wir finden einen impliziten, nicht-perturbativen Ausdruck für den reduzierten Hamiltonian und entwickeln
ihn bis zur zweiten Ordnung in den Störungen.

Nach dem allgemeinen Überblick über den Formalismus wenden wir ihn auf den Fall von Störungen um
sphärisch symmetrische Raumzeiten an. In der klassischen Theorie ist die Lösung der Gleichungen der
allgemeinen Relativitätstheorie unter der Annahme sphärischer Symmetrie das nicht rotierende schwarze
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Loch. Wir bestimmen explizit den reduzierten Hamiltonian, der die Dynamik der Störungen bis zweite
Ordnung beschreibt. Als nicht-triviale Konsistenzprüfung leiten wir die Hamilton’schen Bewegungsgleichun-
gen für die Störungen her und vergleichen sie mit den Regge-Wheeler-Zerilli-Gleichungen. Wenn wir die
Rückwirkungseffekte ignorieren, finden wir eine perfekte Übereinstimmung, die uns garantiert, dass unsere
Herangehensweise korrekte Ergebnisse liefert.

Am Ende der Arbeit beschreiben wir kurz, wie wir den Formalismus zur Analyse verdampfender schwarzer
Löcher verwenden wollen. Wir führen den Begriff des “apparent horizon” ein, der den Rand der Region
des schwarzen Lochs aus der Sicht eines Beobachters beschreibt. Die Fläche des apparent horizon ist eine
interessante Größe, da erwartet wird, dass sie durch die Verdampfung des schwarzen Lochs abnimmt. In
Zukunft, planen wir sie zu verwenden, um die theoretischen Erkenntnisse mit aktuellen und zukünftigen
Experimenten zu verknüpfen.
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1
Introduction

Black holes, as solutions to the equations of general relativity, are a key to our understanding of gravity
using both theoretical and experimental methods. In recent years, black holes have gained new attention:
On the experimental side, mergers of binary black holes give new insights into the physics of black holes and
verify general relativity in the regime of strong gravitational fields [4]. Supermassive black holes, such as the
one located in the centre of our galaxy or in the galaxy M87 were directly detected using radio astronomy
by the event horizon telescope [5, 6].

On the theoretical side, several theorems provide information about black holes in a mathematically
rigorous way. For instance, the singularity theorem by Roger Penrose (Nobel prize in 2020) shows that
general relativity predicts the existence of points in spacetime where physical quantities get infinitely large
(singularities) [7]. This demonstrates that new theories beyond general relativity need to be developed. The
analogy between properties of black holes and thermodynamics hints at a deep connection between entropy
and the area of the event horizon and between temperature and mass (black hole thermodynamics,
see [8]). Applying tools of quantum field theory (i.e. the mathematical framework of the Standard Model
of particle physics) to matter on black hole spacetimes, Stephen Hawking provided an explanation for the
temperature of black holes. He showed that black holes emit radiation as an almost perfect black body with
a characteristic temperature (Hawking radiation, see [9, 10]). This relation between general relativity and
quantum mechanics leads to speculations about the quantum nature of the gravitational field. It is generally
believed that a quantization of general relativity is needed to fully resolve the theoretical challenges in black
hole physics [11].

The study of Hawking radiation through quantum field theory on classical spacetimes is flawed because
the (semi-classical) Einstein equations are violated. In general relativity, the Einstein equations relate the
curvature of spacetime to the energy-momentum tensor, that captures the energy and momentum density
of the matter. Black holes are a solution of the equations of general relativity without matter, i.e. for a
vanishing energy-momentum tensor. However, the emission of Hawking radiation leads to a non-vanishing
expectation value for the energy-momentum tensor [12, 13]. This shows that the semi-classical Einstein
equations, which relate the classical curvature of spacetime to the expectation value of the energy-momentum
tensor are violated. To fix this issue, we have to consider the change in the gravitational field due to the
presence of the radiation. This problem known as backreaction has not been successfully resolved in full
generality.

The complete evaporation of black holes raises the following issue: Consider the formation of a black
hole through gravitational collapse of a star, for example due to a supernova explosion, and its evaporation
due to Hawking radiation. Before the star collapses into a black hole, we consider a quantum field on
spacetime which is in a pure state. Then, the star collapses and evaporates due to the Hawking effect. The
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1.1 Quantum Gravity and Black Holes

black hole uniqueness theorem suggests that the Hawking radiation only carries information about mass,
charge and angular momentum of the black hole, obtained by the lowest orders in a multipole expansion
of the gravitational field. Any higher multipole moments of the matter that fell into the black hole will be
lost. Therefore, not all information about the matter inside the black hole is accessible after the complete
evaporation. Since not all the information is available, the state after evaporation is not pure but a mixed
state and we have a conflict with unitary evolution of states in quantum mechanics, where one cannot evolve
from a pure to a mixed state. This is the famous information paradox of black holes [14, 15].

The discussion above shows that classical general relativity not only breaks down at the singularity of
the black hole but is also in strong tension with quantum field theory [8, 13, 16, 17]. It is believed that
satisfying answers can only be provided once a quantum theory of gravity is available. A successful theory of
quantum gravity should be able to explain the fate and possible resolution of the singularity and resolve the
black hole information paradox. Additionally, quantum gravity should provide a first principle explanation
for Hawking radiation, the evaporation of black holes and the result of this process. It should also explain
the entropy of black holes from a microscopic level.

1.1 Quantum Gravity and Black Holes

In the literature, many approaches to quantum gravity are discussed, of which string theory [18], asymptotic
safety [19], causal dynamical triangulations [20], causal sets [21, 22] and canonical quantum gravity (e.g.
loop quantum gravity and spin foams) [23–28] are the most prominent ones. The candidate theory needs to
be rigorously developed such that it provides a framework to tackle the questions raised above.

We saw before that the entropy of a black hole is proportional to the area rather than its volume. The
event horizon is associated to the area of the black hole while the interior is related to its volume. This leads
to speculations whether the information in the interior is fully encoded on its boundary (event horizon).
This is a realisation of the holographic principle studied in string theory [29, 30]. In general, it states
that the information inside a region of spacetime is fully encoded on its boundary. The most important
realization of the holographic principle is the AdS/CFT conjecture [31]. AdS stands for the anti-de Sitter
spacetime, a maximally symmetric spacetime with a constant negative curvature. CFT denotes conformal
field theory, a special type of quantum field theory which is invariant under conformal transformations, i.e.
transformations that include dilations and preserve angles. According to the AdS/CFT conjecture, there is
a dictionary between a gravity theory formulated on an AdS spacetime in the bulk and a conformal field
theory on its boundary.

Black holes are one of the main applications of the holographic principle [32]. For instance, in string
theory, there is significant work on explaining the microscopic origin of the black hole entropy [33]. There
are also proposals about the resolution of the black hole information paradox (see [34–36]). Two suggestions
are the following:

In the black hole complementarity proposal, an observer falling into the black hole would notice
nothing special at the event horizon, while an observer outside the black hole would see the information being
spread out across the “stretched horizon”, a thin quantum mechanical membrane located just outside the
event horizon. This membrane “stores” the information about the infalling particles making the information
accessible for an outside observer and resolving the paradox. Since no observer can see both copies of the
information at the same time the theory is consistent. However, there is no first-principle derivation of the
existence of the stretched horizon and black hole complementarity is subject to ongoing debates.
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1 Introduction

For instance in [35], the authors argue that black hole complementarity is in contradiction with entan-
glement in quantum mechanics. They propose a so-called firewall located outside the event horizon, a
high-energy barrier that destroys all the matter falling into the black hole and hence erases the information
before it crosses the horizon. The existence of a firewall violates the equivalence principle in general rela-
tivity, that a free falling observer should locally see the same physics as in flat spacetime. In addition, the
existence of the firewall is not derived from any fundamental theory and therefore remains rather speculative.

In loop quantum gravity, a microscopic explanation for the black hole entropy has also been derived
based on semi-classical methods of isolated horizons, a generalization of the event horizon [37, 38]. It was
shown in spherically symmetric models for the interior of the black hole, where only symmetric degrees of
freedom were considered, that the singularity is avoided. It is replaced by a region where quantum effects
are non-negligible [39–46]. In these models, the infalling matter moves in, reaches a maximum density,
bounces back and moves out again. This behaviour has been seen in approaches based on the treatment
of the interior of the black hole as a Kantowski-Sachs spacetime, which is homogeneous (spacetime is the
same everywhere) and anisotropic (spacetime looks different in different directions). In [47–49], the authors
studied purely spherically symmetric models where both the interior and exterior are accessible by means
of numerically simulating spherically symmetric matter distributions in the form of dust (non-interacting
particles) and perfect fluids. They also find singularity avoidance. In a different approach, the transition of
a black hole to a white hole, a region of spacetime that matter cannot enter, is proposed. This transition is
due to quantum gravity effects and a transition amplitude can be computed numerically. [50–52].

The study of black holes in two dimensional toy models, such as the CGHS black hole give insights into
the evaporation process [53–55]. In these models, the semi-classical equations are exactly solvable and one
obtains a detailed description for the evaporation of the two dimensional black hole. It is however unclear
how to translate the specific tools for two dimensions to the realistic case of four dimensional spacetimes and
how to generalise to quantum gravity with no semi-classical approximations. In four dimensions, general
relativity with collapsing null dust (non-interacting massless particles) as matter content is exactly solvable
(Vaidya spacetime) [56, 57]. Since null dust is not a fundamental matter content of the universe, one
could instead consider a Higgs - like scalar field. The coupling of a spherically symmetric scalar field to
general relativity has been studied classically [58–60].

In the present thesis, we investigate the problem of backreaction in black hole evaporation. In a heuristic
argument, the power of the emitted radiation can be estimated using the Stefan-Boltzmann law where the
area is given by the area of the event horizon. Assuming that the power is given by a change of the mass of
the black hole, we obtain the time evolution of the black hole mass. For a black hole with mass M , we find a
finite lifetime which scales as M3. Using more elaborate techniques of semi-classical gravity, a more detailed
spectrum of the emitted Hawking quanta and black hole evaporation was computed [61–63]. However, this
approximation is expected to fail at the final stage of Hawking evaporation because the assumption of a
fixed spacetime in the derivation of the Hawking effect is strongly violated.

A full quantum gravity calculation of Hawking evaporation based on first principles faces several challenges:
First of all, the choice of coordinates in general relativity is arbitrary and the theoretical description contains
additional unphysical degrees of freedom. This is evident for instance in the Hamiltonian formulation based
on the ADM variables, where not all phase space variables are independent [64]. They have to satisfy certain
constraints, i.e. relations between the variables. Thus, the description is redundant and we have to find
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observable quantities that are independent of the arbitrariness [65, 66]. Additionally, the Hamiltonian is
a sum of constraints and vanishes if the constraints are satisfied. Therefore, it is not generating any time
evolution (problem of time). To address both challenges, we work in the relational formalism [67–70].
It removes redundancies by defining observables with respect to some reference fields. Time evolution of
the observables can then be recovered and it is described by a new Hamiltonian usually called the physical
Hamiltonian.

1.2 Black Hole Perturbation Theory

Ideally, one would like to perform the analysis described above in a non-perturbative setting. In the presence
of dust as a reference field this program is under active construction (see [70]). Instead of using dust or
other matter fields as a reference, we could use variables within the gravitational sector instead. As it turns
out, this is highly non-trivial due to the complexity of the constraints. Until we have a full non-perturbative
theory of quantum gravity available, we use perturbation theory to develop an approximate description. The
idea is to split the degrees of freedom into symmetric variables defined by some symmetry assumptions and
the non-symmetric variables (see [71]). We assume that the model restricted to the symmetric variables can
be solved exactly. Then, we expand the constraints to some order in the perturbations. In the case of black
holes, we take the symmetric variables to have either spherical symmetry (non-rotating black hole) or axial
symmetry (rotating black hole). Since semi-classical computations suggest that black holes emit angular
momentum faster than mass [62], we consider spherical symmetry in this manuscript. The extension of the
program to the case of axial symmetry is possible using similar tools and left for future investigations.

Perturbation theory around spherically symmetric spacetimes and in particular the Schwarzschild black
hole (non-rotating black hole) is well established in the literature. It was pioneered by Regge, Wheeler and
Zerilli who first showed that the perturbations satisfy two differential master equations [72, 73]. They are
wave equations with potentials which are known as the Regge-Wheeler and Zerilli potentials (see [74] for
a more recent treatment). These works are constrained to the black hole exterior region. For a complete
picture of black hole formation through gravitational collapse, one has to take both the exterior and interior of
the black hole into account. Perturbations in the exterior region were also investigated in the Hamiltonian
formulation for the case of non-rotating black holes [75–79] and later extended to arbitrary spherically
symmetric spacetimes in [80, 81]. In all of these approaches the spherically symmetric background is fixed
and non-dynamical. Any influence of the perturbations on the dynamical background is ignored and hence
these approaches are not suitable to investigate black hole evaporation where backreaction plays a key role.

1.2.1 Hybrid Approach

In the present thesis, we take backreaction into account and do not assume any fixed background keeping it
fully dynamical. This procedure was first explored in the context of cosmology where the symmetric variables
are defined to be homogeneous and isotropic [82, 83]. In the seminal work [84], the authors introduce the
hybrid approach to quantum cosmology which was later extended in [85–92]. The idea is to investigate
perturbations in cosmology by first switching off the dynamics of the background and defining observables
for the perturbations. These observables are introduced through canonical transformations depending on
the homogeneous and isotropic degrees of freedom. Then, one can show that there exists a transformation
for the background variables, depending up to second order on the perturbations, that is canonical on the
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full phase space only up to second order. The result is a Hamiltonian constraint, expanded to second order in
the perturbations. It encodes the dynamics of the system which can then be analysed in the quantum theory.
In a complementary work [93–96], backreaction effects were taken systematically into account using space
adiabatic perturbation theory, a generalization of the Born-Oppenheimer approximation for molecular
systems.

In the case of perturbations around spherically symmetric spacetimes, the hybrid approach was used to
study perturbations in the interior of black holes in the Kantowski-Sachs formulation [97]. In the computa-
tions, the authors of [97] did not fully resolve the redundancies and are left with some remnant constraints.
This is fine for the cosmological model because the resulting Hamiltonian constraint trivially Poisson com-
mutes with itself. Thus, the commutator in the quantum theory is well-defined. However for perturbations
around black holes, we have more spherically symmetric constraints. In the pairwise computation of Poisson
brackets between two constraints, we should obtain a linear combination of constraints. As shown in [71], in
the hybrid approach this is only satisfied up to higher orders. This will translate to the quantum theory and
obstruct its construction. To avoid these issues, in our work, we fully resolve the redundancies. In [71], it is
demonstrated that the hybrid approach is equivalent to our formulation, when one restricts the treatment
to second order and does not solve the Hamiltonian constraint (reduction in stages).

1.2.2 Reduced Phase Space Approach

In [71], a different strategy to perform Hamiltonian perturbation theory based on the reduced phase space
approach is introduced. It solves all redundancies by fixing the reference fields to some value leading to
a physical Hamiltonian describing the dynamics of the observables. The key advantage is that it defines
observables before performing perturbative computations and it gives an explicit formula for the computation
of the physical Hamiltonian to arbitrary orders. The formalism is based on a splitting of the variables into
four distinct sets. On the one hand we have the symmetric and non-symmetric variables defined by the
symmetry assumption. On the other hand we split the variables into observable (true) and non-observable
(redundant) degrees of freedom. Then, the redundant degrees of freedom are used as reference fields to
define the observable degrees of freedom. Following the computations we find a physical Hamiltonian [1–3,
98].

The applications to the question of backreaction and Hawking evaporation is now as follows: We start
with the full phase space of general relativity coupled to matter. In the case of non-rotating black holes, we
use spherical symmetry and split the variables into spherically symmetric and non-spherically symmetric
degrees of freedom. The spherically symmetric sector will be treated exactly and chosen as the background,
whereas the perturbations are given by the non-symmetric degrees of freedom. Then, we need to further
distinguish between the true and the redundant variables. This step is arbitrary but we can motivate our
choice as follows: For the application of the formalism to evaporating black holes, we want to treat both the
exterior and interior of the spacetime and the description should be regular across the horizon. By handling
both the interior and exterior in a consistent way, we do not lose information about matter falling into the
black hole. This might be important for addressing the black hole information paradox. The redundancies
are removed using the Gullstrand-Painlevé coordinates [99, 100], associated to an observer freely falling
into the black hole from infinity. The usage of these coordinate system does not fix the background, rather
it selects a class of spacetimes and the spherically symmetric degrees of freedom are still dynamical. The
Gullstrand-Painlevé coordinates are suitable to study gravitational collapse and cover either a black hole or
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1.2 Black Hole Perturbation Theory

a white hole spacetime. Hence, this opens up the possibility to explore the black hole – white hole transition
proposal in the quantum theory [98].

To recapitulate and clarify some key aspects of our approach, we highlight some of its important properties
and advantages in the following:

First of all, we treat both the spherically symmetric and the non-symmetric variables on equal footing.
The resulting physical Hamiltonian describes the dynamics of the full phase space including the interactions
between the non-symmetric and the symmetric variables. The black hole mass is part of the spherically
symmetric variables, while the Hawking radiation is part of the non-symmetric degrees of freedom. In order
to completely understand black hole evaporation, we have to determine how the radiation is changing the
dynamics of the background. This backreaction is completely neglected in the treatments by Moncrief,
where the black hole mass is fixed. Also in the more general analysis by Brizuela and Martín-García, the
background is general but is not influenced by the perturbations.

In the formalism, we reverse the usual procedure in Hamiltonian perturbation theory applied in the
hybrid approach, where one first perturbs the constraints and then defines observables that are independent
of the redundancy. In contrast to that, we first introduce the observables on the full phase space without
approximations. Then, we derive a non-perturbative physical Hamiltonian describing the full dynamics
of general relativity coupled to matter without the need to employ any perturbative strategy. Since the
physical Hamiltonian is only known in an implicit form, we have to use perturbation theory in order to get
an explicit expression. In other words, we disentangle the solution of the redundancy from perturbation
theory. This clear separation, allows us to unambiguously extend the analysis to higher orders. In the
standard approach, one has to reconsider the construction of observables at every order in perturbation
theory and beyond second order, to the author’s knowledge, there is no consensus in the literature (see [71]
and references therein). To summarize, the framework allows for a consistent and well-defined Hamiltonian
perturbation theory applicable to all orders.

In contrast to other treatments by Moncrief who only considers the exterior of the Schwarzschild spacetime
and [97] who only studied the interior of the black hole, we study both the interior and exterior. Work-
ing in Gullstrand-Painlevé coordinates, we have access to both the interior and exterior simultaneously.
This is crucial to analyse the formation of black holes through gravitational collapse and their subsequent
evaporation. It might also play an important role when addressing the black hole information paradox.

At the current state of our framework, we do not refer to any of the previous results in loop quantum
gravity about the resolution of the black hole singularity. In the approaches based on the Kantowski-Sachs
formulation, one finds a resolution of the black hole singularity by a well-motivated substitution of some
of the classical variables by bounded functions of them. In [43], the analysis in the black hole interior was
extended to all of spacetime. The authors demonstrated that the full spacetime is free of any singularities.
In our approach, we do not modify the classical Hamiltonian of the system. We leave it open whether the
black hole singularity is avoided through different methods, for example due to backreaction effects. If this
is not the case and the presence of the singularity causes technical issues when formulating the quantum
theory, we can refer to the aforementioned works.

The difference of our approach to the hybrid approach is that we completely solve the all the redundancies
in the theory. In [71], it is shown that for a partial solution of the redundancies with respect to the
perturbations only, one recovers the results in the hybrid approach. We argued above that for a partial
reduction, there are anomalies in the quantum theory which can be avoided in our formulation. Furthermore,
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in contrast to the hybrid approach, we define the observables before applying perturbation theory which
allows for an immediate generalization to higher orders.

The backreaction problem of black hole evaporation can be studied in increasing levels of complexity and
mathematical rigour. On the one side of the spectrum, there is the heuristic arguments based on a back of
the envelope calculation using the Stefan Boltzmann law. On the other side, we have the ultimate goal to
perform a full non-perturbative quantum gravity calculation, where both matter and gravity are quantized.
Between these two extremes there are several intermediate steps. One step beyond the heuristic arguments
are the semi-classical Einstein equations. In this approach, gravity is treated classically, while matter is
treated quantum mechanically. The expectation value of the energy momentum tensor of matter gives the
input to compute changes of the classical gravitational field. In this category fall many of the approaches
mentioned above such as the CGHS model and the Vaidya spacetime. In this theses we go beyond these
semi-classical works and also consider general relativity as a quantum theory. Since a full non-perturbative
quantum gravity calculation still seems out of reach using tools available today, we take a perturbative
formulation, where we only treat the observable symmetric degrees of freedom exactly and use perturbation
theory for the observable non-symmetric variables.

In this thesis, we are mostly concerned with the computations for the physical Hamiltonian describing the
dynamics of the theory to second order. As matter content, we investigate the electromagnetic field because
photons are expected to be an important messenger in the spectrum of Hawking radiation. In the future,
we plan to extend this to include also other matter fields such as neutrinos. A careful classical analysis is
essential for constructing a well defined quantum theory. In the quantum theory, we plan to apply the hybrid
quantization framework, where we combine a non-perturbative quantization for the symmetric degrees of
freedom with a perturbative Fock quantization for the perturbations.

In order to check the validity of our approach, we verify whether the physical Hamiltonian is consistent
with the literature when neglecting backreaction and restricting to the black hole exterior. This is a non-
trivial step because, as we explained above, the setup is quite different to the usual approaches. We reverse
the definition of observables and the application of perturbation theory and this might not lead to the same
results. Additionally, we included backreaction effects and there could be new terms in the equations of
motion. Performing several non-standard steps, we can indeed show that our approach leads to the same
results in the regime where both theories apply.

1.3 Outline of the thesis

The thesis is structured in two parts. In sections 2 to 4, we introduce basic concepts about constrained
Hamiltonian systems, general relativity and the Hawking effect. Then, in the second part in chapter 5, we
present original results on the Hamiltonian perturbation theory around spherically symmetric spacetimes
based on the publications [1–3, 98]. Some longer equations in chapter 5 were moved to the appendices and
they also contain original work. In more detail, this manuscript is organized as follows:

In section 2, we review the theory of constrained Hamiltonian systems. First, we explain the Dirac
algorithm for singular Lagrangians and discuss the separation into first and second class constraints. Then,
we explain the construction of observables using the relational framework. We show that in the classical
theory this framework is completely equivalent to a complementary viewpoint where the redundancies are
fixed completely. In the end, the formalism is extended to field theories and we comment on some aspects
that require special care due to the infinite number of degrees of freedom and boundary terms.
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In part 3, we define basic notions in general relativity and derive the Einstein equations from the Einstein-
Hilbert action. Assuming spherical symmetry, we find the Schwarzschild solution for non-rotating black
holes and the Reissner-Nordstrøm solution for charged black holes. We also briefly comment on rotating
black holes which are solutions of general relativity for axial symmetry. Using a foliation of spacetime, we
obtain the Hamiltonian formulation of general relativity based on the ADM variables. With the techniques
for constrained Hamiltonian systems developed in section 2 we solve the Hamiltonian theory and obtain the
reduced Hamiltonian for spherically symmetric spacetimes. We conclude this section with a brief review of
classical theorems about black holes.

Then, chapter 4 discusses quantum field theory on curved spacetimes. We discuss basic concepts of
scalar quantum field theory on curved spacetimes and apply the tools to the derivation of the Hawking
effect. Then, we comment on some known results about the evaporation of black holes based on semi-
classical computations.

The perturbation theory around spherically symmetric spacetimes in general relativity is discussed in
part 5. First, we perform the computation in the Lagrangian setup based on a linearization of the Einstein
equations. The presentation relies on a modern reformulation of the works by Regge-Wheeler and Zerilli
due to [74]. We show that the differential equations for the perturbations reduce to two master equations.
Then, we discuss how the Hamiltonian framework derived in section 2 is applied to general relativity. First
we perform the computation in the Gullstrand-Painlevé coordinates based on the author’s original work in
[2, 3]. We explicitly perform the computation and obtain a physical Hamiltonian describing the dynamics
of the perturbations. As a consistency check, we show that the Hamilton equations of motion match the
ones obtained in the Lagrangian case. For charged black holes we find agreement with the results in [101],
Then, we extend the formulation to a generalization of the Gullstrand-Painlevé coordinates first discussed
in [1].

Ideas for our plans to study the physics of evaporating black holes are presented in section 6. We sketch
a way to introduce a Fock quantization for the perturbations and mention some technical challenges that
might arise. In the second part, we provide a small outlook into current and future astrophysical experiments
to detect evaporating black holes and how our formalism relates to them. The considerations in the present
work appear to be entirely classical. However, as just mentioned, once we gain sufficient mathematical
control of the mode functions, we have at our disposal a well defined Fock representation for the physical
perturbations. All classical observables that we can compute in classical perturbation theory then have an
in principle straightforward quantisation by expanding in annihilation and creation operators followed by
normal ordering. This defines at least a (densely defined) quadratic form (i.e. matrix elements exist but not
necessarily of its formal square), e.g. for the physical Hamiltonian expanded to 3rd order which includes
self-interactions of the perturbations. Accordingly, all the steps performed in this thesis are directly relevant
for the (hybrid) quantisation of black hole perturbation theory.

In section 7, we summarise our findings and conclude our investigation. Possible future avenues for
research are outlined and briefly discussed.

In the appendices we also present original work. In appendices A and B, we list some lengthy formulas
for the computations in section 5 in order not clutter the main text.

17



2
Constrained Hamiltonian Systems and the
Reduced Phase Space Formalism

In general relativity or the Standard model of particle physics, theories are usually formulated in the language
of gauge theories, where the theoretical description contains redundancies. For instance in general relativity,
we have the freedom to choose arbitrary coordinate systems and the Lagrangian is invariant under changes of
coordinates. The Hamiltonian description for systems with gauge symmetries is not straight forward because
the Legendre transformation will be singular. Since for a canonical quantization program, the Hamiltonian
of the system is a crucial ingredient, we have to generalize the Hamiltonian theory.

In [65, 66], a method to obtain a Hamiltonian formulation for Lagrangians with singular Legendre trans-
formation is presented. The Hamiltonian theory now involves constraints, equations on phase space that
have to be satisfied for physical solutions of the equations of motion. In the first part of this chapter, we
review the theory of constrained Hamiltonian systems.

We find that there are two kinds of constraints: first and second class constraints. The first class con-
straints generate gauge transformations and the physical degrees of freedom are given by gauge invariant
variables that commute with all the first-class constraints. In contrast to that, the second class constraints
are directly used to find a reduced description on the hypersurface in phase space where the constraints
are satisfied using the Dirac bracket. In the case of first class constraints, gauge invariant variables can be
constructed explicitly using the notion of relational observables [67, 70]. The idea is that we consider the
value of a given variable once another variable takes a certain value. Another approach is to fix some of the
degrees of freedom to certain values (gauge fixing) and work on the reduced phase space where the gauge
fixing and the constraints are satisfied. In this text, we will introduce both approaches and show that they
are completely equivalent.

Finally, we extend the discussion to the case of field theories. Instead of a discrete index, we now have
a continuous label for the point in space and the constraints may contain differential operators. In the
calculation of variations and Poisson brackets these differential operators lead to boundary terms that can
spoil the differentiability. As we will see, boundary terms need to be added to the constraints in order to
obtain a well-defined Hamiltonian theory.

Due to a lack of mathematical symbols, we will use a different index notation from the rest of the manu-
script in this chapter.

18
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2.1 Singular Legendre Transformations, Constrained Hamiltonian
Systems and the Dirac Algorithm

Consider a classical Lagrangian L(qa, q̇a) without explicit time dependence, where a labels the degrees of
freedom (a = 1, . . . , f). For simplicity of the discussion, we are only considering a finite range for the index
a. The Lagrangian L defines the corresponding action principle by studying the functional S[q] defined by

S[q] :=
∫ t1

t0
dt L(qa, q̇a) . (2.1.1)

The integral depends on the trajectory q(t) and its time derivative and is taken over the time interval
[t0, t1]. For the dynamics, we vary the action with respect to q(t). The stationary points of the action give
the Euler-Lagrange equations determining the classical evolution of the system:

∂L

∂qa
− d

dt

(
∂L

∂q̇a

)
= 0 . (2.1.2)

Notice, that it is a second order differential equation in the time t. However, in general, it is not possible
to solve the system equations for the accelerations q̈a. In fact, this is only possible locally, provided the
matrix

Mab := ∂2L

∂q̇a∂q̇b
. (2.1.3)

is invertible, i.e. the determinant det(M) is non-vanishing. In the case that the M is singular, the acceler-
ation is not uniquely determined by the position and velocities.

For the study of the quantum properties of a theory, it is beneficial to investigate the corresponding
Hamiltonian formulation as well. The aim is a change in perspective where instead of studying the theory
in terms of the tangent bundle coordinatised by the configuration variables and the velocities, we use the
cotangent bundle coordinatised by the configuration variables and conjugate momenta. The momenta pa

conjugate to the configuration variables are introduced by the derivative of the Lagrangian with respect to
the velocities q̇a:

pa := ∂L

∂q̇a
. (2.1.4)

In order to fully remove the velocities q̇a, we have to solve the relations (2.1.4) for the velocities as functions
of the momenta and configuration variables. If the matrix M defined in (2.1.3) is invertible, the inverse
function theorem guarantees, that we can locally solve for q̇a in terms of pa and qa. However, if the rank of
M is some number (f − r) > 0, then we are only able to solve f − r equations for f − r velocities. Let us
without loss of generality solve for the first f − r velocities and obtain relations of the form

q̇A = vA(qa, pA, q̇
i) , (2.1.5)

where A = 1, . . . , f − r, a = 1, . . . , f and i = f − r + 1, . . . , f . The remaining momenta lead to constraints
of the form

ϕi(q, p) := pi − ∂L

∂q̇i

∣∣∣
q̇A=vA(qa,pA,q̇j)

!= 0 . (2.1.6)

These relations are called primary constraints.
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The Hamiltonian H ′ corresponding to a Lagrangian L is called the primary Hamiltonian and is defined
by

H ′ = paq̇
a − L(qa, q̇a)

∣∣∣
q̇A=vA(qa,pA,q̇j)

. (2.1.7)

Here, we are only able to replace a subset of the velocities for the momenta and we leave q̇j (j = f − r +
1, . . . , f). It is easy to show that the primary Hamiltonian is of the form

H ′(qa, pa, q̇
i) = q̇iϕi + H̃(qa, pa) . (2.1.8)

Inside H ′, the velocities q̇i act as Lagrange multipliers enforcing the constraints ϕi. The q̇i are not dynamical
but arbitrary functions.

In summary, we are left with a phase space coordinatized by qa, pa and vi := q̇i equipped with the
symplectic structure {·, ·} and Hamiltonian H ′. The only non-vanishing Poisson bracket is {qa, pb} = δa

b .
The Hamiltonian equations of motion are given by

q̇a =
{
qa, H ′}, ṗa =

{
pa, H

′}, ϕi = 0 . (2.1.9)

It is not difficult to see that they are fully equivalent to the Euler-Lagrange equations.
As it is defined right now, the Hamiltonian theory is however not consistent, because the primary con-

straints might not be consistent with the dynamics. We have to ensure that they are preserved under time
evolution:

ϕ̇i

∣∣∣
ϕ=0

=
{
ϕi, H

′}∣∣∣
ϕ=0

= 0 , (2.1.10)

where ϕ = 0 means that this relation holds on the constraint surface where ϕi = 0 for all i = 1, . . . , r. There
are three possible outcomes for the left-hand side:

1. ϕ̇i

∣∣
ϕ=0 = 0 for some i = 1, . . . , α:

In this case the constraints ϕi are already consistent with the dynamics and nothing has to be done.

2. ϕ̇i

∣∣
ϕ=0 ̸= 0 and {ϕi, ϕj}

∣∣
ϕ=0 = 0 for i = α+ 1, . . . , β and j = 1, . . . , r:

In this case we add the ϕ̇i to the list of constraints and iterate the algorithm by studying the time
derivative of the newly added constraints. The Hamiltonian generating time evolution is still H ′ which
only contains the original list of constraints ϕi, i = 1, . . . , r. All the additional constraints added to
the list of constraints are called secondary constraints.

3. ϕ̇m

∣∣
ϕ=0 ̸= 0 for general vi and {ϕi, ϕj}

∣∣
ϕ=0 ̸= 0 with i = β + 1, . . . , r and j = 1, . . . , r:

The algorithm is guaranteed to terminate after at most 2m−r steps because at each occurrence of case 2,
the number of independent constraints increases by 1 and more than 2m constraints would fully constrain
the phase space.

After the algorithm terminated we are left with r′ constraints of which r are primary and r′ − r are
secondary. For i = 1, . . . , α, the ϕi are of case 1 and for i = α+ 1, . . . , r′, the ϕi are of case 3. In case 3, we
introduce the matrix {ϕi, ϕj} for i = α+ 1, . . . , r′, j = 1, . . . , r. There are two possibilities:

In the first one, the rank of the matrix is not maximal and smaller than r′ − α. Then, the theory is
inconsistent because we are not able to choose the vi such that the constraints are consistent with the
dynamics. We have to rule out such theories and will not consider them further.
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If the rank of the matrix is maximal, i.e. equal to r′ − α, we are able to solve the system of equations{
H̃, ϕi

}∣∣∣
ϕ=0

+ vj{ϕi, ϕj} = 0 , (2.1.11)

with i = α, . . . , r′ and j = 1, . . . , r. The solution is of the form

vi = vi
0 + λµvi

µ , (2.1.12)

where vi
0 is a special solution of the inhomogeneous equation and vi

µ, µ = 1, . . . , r − (r′ − α) is a basis for
the general solution of the homogeneous system. Then, we define

H := H̃ + vj
0ϕj , ϕµ := vj

µϕj (2.1.13)

The ϕµ are constraints that commute with all the other constraints ϕj , j = 1, . . . , r′.
There are two different kinds of constraints. Either they commute with all the other constraints or they

have non-trivial Poisson brackets. This is captured by the following definition:

Definition 2.1: Constraints can be classified into two types:

1. A constraint is called first-class, if it weakly commutes with all constraints.

2. A set of constraints {ϕi}i∈I for some index set I is second class, if the matrix {ϕi, ϕj}, i, j ∈ I has
maximal rank.

Given a set of constraints {ϕi}i∈I , we might wonder if the above definition exhausts all the possibilities.
In fact, this is the case, as we show in the following lemma:

Lemma 2.2: Given a collection of constraints {ϕi}i∈I we can define new constraints ϕ̃i through linear
combinations such that ϕ̃i is first class for i ∈ I1 and ϕ̃i is second class for i ∈ I2.

Proof:
Some of the constraints might already be first class and we are done. Thus, consider the set of all constraints
{ϕi}i∈I′ which are not first class. If the matrix Mij = {ϕi, ϕj} is non-singular, the constraints {ϕi}i∈I′ are
already second-class. If the matrix Mij is singular, we have det(M) = 0 and we can find a non-trivial
solution vi of the equation

vi{ϕi, ϕj} = 0 . (2.1.14)

for all j ∈ I ′. Since by definition viϕi commutes with the first class constraints and it commutes with the
second-class constraints, viϕi is first-class. Iterating until M is non-singular, we succesfully decomposed the
set of constraints {ϕi}i∈I . 2

The decomposition of a given set of constraints into first and second-class is not unique. We can for
example add a linear combination of first-class constraints to a second-class constraint without destroying
the second-class property. It is even possible to add a square of a second class constraint to a first-class
constraint, mainting the first-class property.

In the following we will study both the second and first-class constraints separately.
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2.1.1 First-Class Constraints and Gauge Transformations

In this subsection we will ignore the second-class constraints and focus on the first-class constraints. We
call a general function f on phase space of first-class, if it commutes with all constraints, i.e. {f, ϕi} = 0 for
all i. By construction, the first class constraints and the Hamiltonian H defined in (2.1.13) are first class
functions.

The first-class constraints generate gauge transformations and we define the extended Hamiltonian as

Hλ := H + λiϕi . (2.1.15)

In the definition of the extended Hamiltonian we include both the primary and secondary first-class con-
straints. The presence of the primary first class constraints follows directly from the Hamiltonian H ′ in
(2.1.8). However, the inclusion of all the secondary first class constraints does not strictly follow from the
formalism. It turned out to be the correct prescription in various examples and physical situations.

The time evolution of physical observables should be independent of the choice of λi. This is the case if
the observables commute with the constraints and we define

Definition 2.3: A function f on phase space is called weak Dirac observable, if

{f, ϕI}
∣∣∣
ϕ=0

= 0,∀I . (2.1.16)

It is called a strong Dirac observable if the equality is strong (i.e. without imposing the constraints).

The physics of a Hamiltonian theory with first class constraints is then obtained by finding the Dirac
observables and computing their time evolution. The first class constraints generate gauge transformations
and requiring that that Dirac observables commute with the constraints means that they are gauge invariant.

2.1.2 Second-Class Constraints and the Dirac bracket

Consider a set of second class constraints {ϕi}i∈I together with the matrix Mij := {ϕi, ϕj}. It follows that
i runs over an even number of indices because M is non-singular and anti-symmetric. For second class
constraints we have to proceed differently to first class constraints. The goal is to understand the dynamics
on the constraint surface, i.e. the hypersurface in spacetime where the second class constraints are satisfied.
There are no gauge transformations for second class constraints and we simply have to find a way to compute
Poisson brackets on the constraint surface.

We define a map {·, ·}D on phase space called the Dirac bracket

{f, g}D := {f, g} − {f, ϕi} (M−1)ij{ϕj , g} , (2.1.17)

with the inverse matrix (M−1)ij : (M−1)ijMjk = δi
k. The following lemma shows that the Dirac bracket has

similar properties as the Poisson bracket and has a nice behaviour when we apply it to the constraints:

Lemma 2.4: The Dirac bracket {·, ·}D satisfies for any phase space functions f, g, h:

1. Antisymmetry: {f, g}D = −{g, f}D

2. Linearity: {f + g, h} = {f, h} + {g, h}
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3. Leibniz rule: {f, gh}D = g{f, h}D + {f, g}Dh

4. Jacobi identity: {f, {g, h}D}D + {g, {h, f}D}D + {h, {f, g}D}D = 0

5. {ϕi, f}D = 0

6. {f, g}D

∣∣
ϕ=0 = {f, g}

∣∣
ϕ=0 for g first-class and f arbitrary

Proof:
The first three properties follow easily from the properties of the regular Poisson bracket. A longer and
more tedious calculation shows that the Dirac bracket satisfies the Jacobi identity. The fifth point follows
from

{ϕi, f}D = {ϕi, f} − {ϕi, ϕj} (M−1)jk{ϕk, f} = {ϕi, f} −Mij(M−1)jk{ϕk, f} = 0 . (2.1.18)

For the last point notice that {ϕi, g}
∣∣
ϕ=0 is zero for g of first-class and the Dirac bracket reduces to the

Poisson bracket. 2

Point five is the key property that allows us to set the second-class constraints to zero before or after
evaluating the Dirac bracket. Using the Dirac bracket we can hence restrict the dynamics to the constraint
surface.

2.1.3 Gauge Fixings

We saw that first-class constraints generate gauge transformations. In other words, there are multiple points
in phase space which correspond to the same physical situation. One idea is to reduce the redundancy by
imposing gauge fixing conditions Gi(q, p) = 0 which single out a unique point in each gauge orbit. Such a
gauge fixing condition should have two properties:

1. Accessibility of the gauge:

Given any value for the canonical variables q, p with Gi(q, p) ̸= 0 there needs to be a gauge transfor-
mation q → q′, p → p′ such that Gi(q′, p′) = 0.

2. Complete gauge fixing:

The gauge fixing condition needs to fix the gauge completely and there are no residual gauge trans-
formations. In other words the matrix {Gi, ϕj} has to be invertible.

The second requirement shows that adding gauge fixing conditions as new “constraints” to the first-class
constraints, the combined set is of second-class. Therefore, fully fixing the gauge, we moved from a system of
first-class constraints to a system of second-class constraints. Then, we define the dynamics on the constraint
surface, where the first-class constraints and gauge fixings are satisfied using the Dirac bracket formalism
in the previous section.
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2.2 Relational Observables and the Reduction Point of View

In the previous sections we showed how to treat Hamiltonian theories in the presence of constraints. We
introduced the notion of constraints of first and second class and highlighted the difference in their treatment.
In this section, we present more advanced concepts to handle theories with first class constraints by explicitly
constructing Dirac observables. For this, we introduce reference degrees of freedom and study the dynamics
with respect to them. This concept is known as “relational observables” and was first introduced by Rovelli
in [67]. The concept was extended and more formally studied in [68, 102]. In the context of general relativity
it gained some interest because the observables in full general relativity could be constructed in the presence
of a dust field as reference [69, 70, 103]. In this section, we follow the notation and treatment in [71] and
focus on the finite-dimensional case and leave the extension to field theories for the next section.

We consider a list of first-class constraints {ϕ′
i}i∈I and note that the number of canonical pairs must be

larger than the number of constraints. Thus, we can divide the variables into two sets: the gauge (redundant)
degrees of freedom (ui, vi) with i ∈ I and the remaining true (observable) degrees of freedom (ra, sa) with
a ∈ A. The split is arbitrary but often motivated by the physical situation. Next, we assume that we can
locally solve the constraints ϕ′

i for the momenta v as vi = −hi(r, s, u). Then, we can pass to equivalent
constraints of the form ϕi = vi +hi(r, s, u). A solution like this is usually not unique whenever the constraint
depends on higher than linear order contributions of v. In this case several “branches” of the solution exist
and we have to provide further physical input to restrict to one of these branches.

The advantage of the new constraints ϕi is that they define the same constraint surface but have the
following property:

Lemma 2.5: The constraints ϕi = vi + hi(r, s, u) are of first class and Abelian.

Proof:
First note that the constraints {ϕi}i∈I and {ϕ′

i}i∈I span the same constraint surface. This implies that the
constraints are related by ϕi = f j

i ϕ
′
j with possibly very complicated phase space dependent functions f j

i . It
follows that ϕi are of first-class, because{

ϕi, ϕ
′
j

}∣∣∣
ϕ′=0

= fk
i

{
ϕ′

k, ϕ
′
j

}∣∣∣
ϕ′=0

+ ϕ′
k

{
fk

i , ϕ
′
j

}∣∣∣
ϕ′=0

= 0 , (2.2.1)

where we used the first-class property of the constraints {ϕ′
i}i∈I . The Poisson bracket between two new

constraints can thus be written as
{ϕi, ϕj} = κij

kϕk , (2.2.2)

for some phase space functions κij
k. From the definition of the Poisson bracket, it follows that the left-hand

side is independent of v. Thus, the right-hand side of equation (2.2.2) has to be independent of v as well
and κij

k must vanish. This proves that the {ϕi}i∈I form an Abelian algebra. 2

The physical interpretation of the framework is as follows: The presence of first-class constraints in the
system indicates that we have redundancies in the theoretical description, i.e. not all variables correspond
to physically measurable quantities. To resolve this redundancy, we promote a subset of the variables to
reference degrees of freedom with respect to which we measure the other variables. In our situation, we take
as references the variables ui and describe the values of (r, s) when ui takes a certain value τ i. This is the
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idea of relational observables that we will introduce in the next subsection.
A complementary viewpoint is the gauge fixing prescription, where we fix the value of ui to a fixed number

τ i. Then, we restrict the dynamics to the constraint surface and the gauge ui = τ i. This will be discussed
afterwards and the equivalence of the two prescriptions will be shown.

2.2.1 Relational Observables

In this section, we assume the above setup, where we define the canonical variables (ui, vi)i∈I and (ra, sa)a∈A

and a set of abelianized first class constraints of the form ϕi = vi +hi(r, s, u). Let Gi = ui − τ i be the gauge
fixing condition where τ i are phase space independent. The Poisson algebra of the Gi and ϕi is

{ϕi, ϕj} = {Gi, Gj} = 0, {ϕi, G
j} = −δj

i . (2.2.3)

The following map is of interest

Definition 2.6: Let f be any function on phase space. Then, the relational observable associated to
f when the ui take the values τ i is defined as

Of (τ) :=
∞∑

n=0

1
n!G

i1 · · ·Gin{ϕi1 , · · · , ϕin , f}, (2.2.4)

where for any phase space functions f1, . . . , fn we defined {f1, · · · , fn} := {f1, {f2, . . . , fn}} and {f} := f .

Physically, the relational observable is interpreted as the value the function f takes, when the references
ui take the value τ i. As it turns out, the notion of relational observables is convenient for the construction of
Dirac observables. In the the following theorem we prove several useful properties of relational observables.

Theorem 2.7: Let f be a phase space function. Then the relational observable Of (τ) satisfies

1. Dirac observable: Of (τ) is a Dirac observable

2. Compatibility with the pointwise product: Ofg(τ) = Of (τ)Og(τ)

3. For f(q, p) any analytic function of q, p, we have Of (τ) = f(Oq(τ), Op(τ))

4. Dirac bracket homomorphism: We have
{
Of (τ), Of ′(τ)

}
= O{f,f ′}D

(τ), where {·, ·}D is the Dirac
bracket given by

{f, g}D = {f, g} − {f,Gi}{ϕi, g} + {f, ϕi}{Gi, g} (2.2.5)

Proof:

1. First, we show that for all n, we have

{ϕ1, . . . , ϕn, f} =
{
ϕσ(1), . . . , ϕσ(n), f

}
(2.2.6)

for all permutations σ ∈ Sn. We prove this by induction. The case n = 1 is trivial and the case
n = 2 is easy to verify using the Jacobi identity. Assume that the equation holds for all values smaller
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or equal to n and consider the case n + 1. There are now two options: If the permutation fixes the
number 1, we use the induction hypothesis. If 1 and 2 are swapped we have

{ϕ1, . . . , ϕn, f} = {ϕ1, {ϕ2, {ϕ3, . . . , ϕn, f}}}

= −{ϕ2, {{ϕ3, . . . , ϕn, f}, ϕ1}} − {{ϕ3, . . . , ϕn, f}, {ϕ1, ϕ2}}

= {ϕ2, ϕ1, ϕ3, . . . ϕn, f}

(2.2.7)

and the rest follows from the induction hypothesis for n− 1.

Let us now calculate

{ϕi, Of (τ)} = −
∞∑

n=1

1
(n− 1)!G

i1 · · ·Gin−1{ϕi, ϕi1 , · · · , ϕin−1 , F}

+
∞∑

n=0

1
n!G

i1 · · ·Gin{ϕi, ϕi1 , · · · , ϕin , F} = 0
(2.2.8)

2. We have
Ofg(τ) =

∞∑
n=0

1
n!G

i1 · · ·Gin{ϕi1 , · · · , ϕin , fg}

=
∞∑

n=0

n∑
l=0

(
n

l

)
1
n!G

i1 · · ·Gin{ϕi1 , · · · , ϕil
, f}{ϕil+1 , . . . , ϕin , g}

= Of (τ)Og(τ)

(2.2.9)

In the first step, we used a variant of the generalised Leibniz rule. We need to show that

{
ϕ(i1 , . . . , ϕin), fg

}
=

n∑
l=0

(
n

l

){
ϕ(i1 , . . . , ϕil

, f
}{
ϕil+1 , . . . , ϕin), g

}
(2.2.10)

where we used total symmetrisation of the indices i1, . . . , in.

The base case (n = 1) follows from the Leibniz rule of the Poisson bracket. We assume that the claim
holds for n and consider the case n+ 1:

{
ϕ(i1 , . . . , ϕin+1), fg

}
=

n+1∑
l=1

(
n

l − 1

){
ϕ(i1 , {ϕi2 , . . . , ϕil

, f}
{
ϕil+1 , . . . , ϕin+1), g

}}

=
n+1∑
l=1

(
n

l − 1

){
ϕ(i1 , . . . , ϕil

, f
}{
ϕil+1 , . . . , ϕin+1), g

}
+
{
ϕ(i2 , . . . , ϕil

, f
}{
ϕi1 , ϕil+1 , . . . , ϕin+1), g

}

=
n+1∑
l=1

(
n

l − 1

){
ϕ(i1 , . . . , ϕil

, f
}{
ϕil+1 , . . . , ϕin+1), g

}
+
{
ϕ(i1 , . . . , ϕil−1 , f

}{
ϕil
, . . . , ϕin+1), g

}

=
n+1∑
l=1

[((
n

l − 1

)
+
(
n

l

)){
ϕ(i1 , . . . , ϕil

, f
}{
ϕil+1 , . . . , ϕin+1), g

}]
+ f

{
ϕ(i1 , . . . , ϕin+1), g

}

=
n+1∑
l=0

(
n+ 1
l

){
ϕ(i1 , . . . , ϕil

, f
}{
ϕil+1 , . . . , ϕin+1), g

}

3. We expand f(q, p) as a power series in q, p and then use that Of (τ) is linear and compatible with the
pointwise product.
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4. The Poisson bracket between two relational observables is given by

{Of (τ), Og(τ)} =
∞∑

n,m=0

1
n!m!

[
nGi1 . . . Gin−1Gj1 . . . Gjm{ϕi1 , . . . , ϕin , f}

{
ϕj1 , . . . , ϕjm , G

in , g
}

−mGi1 . . . GinGj1 . . . Gjm−1
{
ϕi1 , . . . , ϕin , G

jm , f
}

{ϕj1 , . . . , ϕjm , g}

+Gi1 . . . GinGj1 . . . Gjm{{ϕi1 , . . . , ϕin , f}, {ϕj1 , . . . , ϕjm , g}}
]

where we used that
{
Gi, ϕi1 , . . . , ϕin , f

}
=
{
ϕi1 , . . . , ϕin , G

i, f
}
. After reindexing and changing the

double summation, we obtain

{Of (τ), Og(τ)} =
∞∑

n=0

1
n!G

i1 . . . Gin

n∑
l=0

(
n

l

)[
{ϕi1 , . . . ϕil

, ϕj , f}
{
ϕil+1 , . . . , ϕin , G

j , g
}

−
{
ϕi1 , . . . , ϕil

, Gj , f
}{
ϕil+1 , . . . , ϕin , ϕj , g

}
+
{
{ϕi1 , . . . , ϕil

, f},
{
ϕil+1 , . . . , ϕin , g

}}]
(2.2.11)

Next, we use induction to show that

{ϕ(i1 , · · · , ϕin), {f, g}} =
n∑

l=0

(
n

l

)
{{ϕ(i1 , · · · , ϕil

, f}, {ϕil+1 , · · · , ϕin), g}}. (2.2.12)

The case n = 1 is clear. Assume that the relation holds for n and consider the case n+ 1:

{ϕ(i1 , · · · , ϕin+1), {f, g}} =
{
ϕ(i1 ,

{
ϕi2 , . . . , ϕin+1), {f, g}

}}
=

n+1∑
l=1

(
n

l − 1

)
{{ϕ(i1 , · · · , ϕil

, f}, {ϕil+1 , · · · , ϕin+1), g}} + {{ϕ(i2 , · · · , ϕil
, f}, {ϕi1 , ϕil+1 , · · · , ϕin+1), g}}

The rest of the calculation is analogous to the calculation in item 2.

Finally, combining the results above we have shown that

{Of (τ), Og(τ)} =
∞∑

n=0

1
n!G

i1 . . . Gin

{
ϕi1 , . . . , ϕin , {f, g} − {f,Gj}{ϕj , g} + {f, ϕj}{Gj , g}

}
(2.2.13)

We recognise the Dirac bracket of f and g, Which finishes the proof.

2

For fully constrained Hamiltonian theories such as general relativity, the Hamiltonian of the system
vanishes, leading to the “problem of time”. The system appears to be “frozen” and no dynamics is possible
at all. The relational framework provides a tool to resolve this issue, using the relational observables by
introducing a so-called multi-fingered time evolution. It is possible to study the evolution of the observables,
through a variation of the gauge fixing condition induced by a change in τ i. The easiest situation is a 1-
parameter family of variations τ i(t) which leads to the notion of physical Hamiltonian:

Definition 2.8: Consider a 1-parameter family of gauge fixings Gi = ui − τ i(t). Let f be a function on
phase space depending only on the true degrees of freedom (r, s). The physical Hamiltonian H(t) is
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defined by
d
dtOf (τ(t)) =: {Of (t), H(t)} . (2.2.14)

Theorem 2.9: The physical Hamiltonian is given by H(t) = Oτ̇(t)ihi
(τ(t)).

Proof:
We calculate the time derivative of the relational observable and find

d
dtOf (τ(t)) = −τ̇ j

∞∑
n=0

1
n!G

i1 . . . Gin{ϕj , ϕi1 , . . . , ϕin , f} (2.2.15)

On the other hand, we have{
Of (τ), Oτ̇(t)ihi

(τ(t))
}

= O{f(r,s),τ̇(t)ihi(r,s,u)}D
(τ(t)) = O{f(r,s),τ̇(t)ihi(r,s,u)}(τ(t))

= O{f(r,s),τ̇(t)iϕi}(τ(t)) = −τ̇(t)j
∞∑

n=0

1
n!G

i1 . . . Gin{ϕi1 , . . . , ϕin , ϕj , f}
(2.2.16)

In the first step, we used the compatibility with the Poisson bracket. Then, we notice that the arguments
of the Poisson bracket are independent of v. Next, we can replace hi by ϕi because f is independent of u.
Finally, we see that both equations coincide. 2

Using the properties of the relational observable, we rewrite the physical Hamiltonian purely in terms of
Dirac observables and an explicit time dependence H(t) = τ̇ ihi(Or(τ(t)), Os(τ(t)), τ(t)).

2.2.2 Gauge Fixing Viewpoint

Consider now the different point of view, where we fix the gauge, i.e. we impose the condition Gi = ui −τ i !=
0. In order that the gauge is preserved under time evolution, we must have

0 = d
dtG = Ġi + {Gi, λiϕi} . (2.2.17)

This equation is equal to τ̇ i =
{
ui, λjvj

}
and we have the solution λi

∗ = τ̇ i. The dynamics of the system is
described using the reduced Hamiltonian.

Definition 2.10: Let f be any function on phase space, depending only on the degrees of freedom (r, s).
The reduced Hamiltonian H is defined by

{f,H} =
{
f, λiϕi

}
ϕ=0,G=0,λ=λ∗

(2.2.18)

A straight-forward computation shows that the right hand side of (2.2.18) is equal to λi
∗{f, hi(r, s, τ(t))}.

Hence, the physical Hamiltonian is equal to H(t) = τ̇ ihi(r, s, τ(t)).
We conclude the discussion by relating the reduced and the relational observable formulation. Fixing the

gauge G = 0 in the relational formalism, the physical Hamiltonian H = τ̇ ihi(Or(τ), Os(τ), τ(t)) simplifies
to the reduced Hamiltonian because Or(τ)

∣∣
G=0 = r and similarly for Os(τ). For the other way, we simply

apply the map defining the relational observable to the reduced Hamiltonian H to recover the physical
Hamiltonian.
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To end this section and before considering field theories, let us discuss the example of a free relativistic
particle:

Example 2.11 (Free Relativistic Particle): Consider a free, relativistic particle in a spacetime (M, g).
The worldline of the particle is a curve γ : R → M with the tangent vectors uµ(τ). The action functional is
given by

S[γ] = −m
∫
R

dτ
√

−gµν(γ(τ))uµ(τ)uν(τ) . (2.2.19)

The conjugate momentum is defined as the functional derivative of the action with respect to the velocity
uµ. We have

pµ(τ) = δS

δuµ(τ) = m
gµν(γ(τ))uν√

−gµν(γ(τ))uµuν
. (2.2.20)

It is easy to see that the momenta pµ satisfy the constraint ϕ = pµpµ + m2 != 0. Performing the Legendre
transformation, we see that the Hamiltonian vanishes and we have a completely constrained system. Hence,
the Hamiltonian is a sum of constraints given by

H = λ(pµp
µ +m2) . (2.2.21)

The constraint does not generate any additional, secondary constraints. Let us choose the spatial components
(xi, pi) as the physical degrees of freedom and (x0, p0) as the gauge degrees of freedom. Solving the constraint
ϕ, we obtain

ϕ̃ = p0 +
√
pipi +m2 , (2.2.22)

where we chose the sign of the square root in order for the particle to have positive energy. For the gauge
fixing we choose G = x0 − τ . In the relational framework, we obtain the Dirac observables

Ox0(τ) = τ Op0(τ) = p0 (2.2.23)

Oxi(τ) = xi + (τ − x0) pi√
pjpj +m2

Opi(τ) = pi (2.2.24)

The physical Hamiltonian for the degrees of freedom Oxi(τ) and Opi(τ) is given by

H =
√
pjpj +m2 (2.2.25)

which agrees with the investigations above.
On the other hand consider the gauge fixed approach where we impose G = x0 − τ . Evaluating the

stability condition for the gauge fixing, we find the equation

0 = d
dτ G = −1 +

{
x0, λϕ̃

}
= −1 + λ (2.2.26)

The solution is λ∗ = 1. Let us consider a function f(xi, pi) of the physical degrees of freedom. Then,

{
f, λϕ̃

}
ϕ=0,G=0,λ=λ∗

= pi√
pjpj +m2

∂f

∂xi
(2.2.27)
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As expected, the physical Hamiltonian is given by

H =
√
pjpj +m2 (2.2.28)

2.3 Extension to Field Theories

In this section we extend the formalism introduced in the chapters before to the case of field theories. Most
of the concepts directly apply in a straight forward way. Before the indices ran over a finite number of values
which needs to be generalised to allow for an infinite number. The canonical variables are now labelled by
discrete indices and a continuous index labeling the point x in space.

The derivation of the Hamiltonian theory from the Lagrangian works similarly. We obtain a list of con-
straints ϕ′

i(x) which depend both on a discrete label i and a continuous label x. For the Dirac algorithm,
we have to be careful because for arbitrary field configurations, the symplectic structure and the constraints
are not guaranteed to be finite. Additionally, it is not clear whether the constraints are functionally dif-
ferentiable. To resolve the first problem, we provide boundary conditions on the fields such that both the
constraints and the symplectic structure remain finite. Furthermore, for a set of constraints ϕ′

i(x) we use
test functions f i(x) to smear the constraints

ϕ′[f ] :=
∫

dx f i(x)ϕ′
i(x) . (2.3.1)

In order that ϕ′[f ] remains finite, we have to impose boundary conditions on f i(x) as well.
In order to cure the possible issue of functional differentiability of the smeared constraints, we need to

introduce boundary terms. The idea is to cancel the problematic terms of the variation occurring at the
boundary with boundary terms that are added to the constraints. These terms are carefully chosen so that
the contributions form the variation and the boundary term cancel out and the combination has a well
defined variational derivative. In terms of the constraints ϕ′[f ], we add a boundary term B[f ] and define

H[f ] := ϕ′[f ] +B[f ] . (2.3.2)

The functions H[f ] have now well-defined functional derivatives. Proper gauge transformations correspond
to those functions f i(x) such that B[f ] = 0. Transformations with non-trivial B[f ] are called symmetry
transformations.

In the remaining part, we discuss the relational formalism for field theories as a generalisation of the pre-
vious discussions. Consider a list of first class constraints {ϕ′

i(x)}i∈I and canonical variables (ui(x), vi(x))i∈I

and (ra(x), sa(x))a∈A. Proceeding in the same way as before, we solve the constraints ϕ′
i(x) = 0 for vi(x)

as vi(x) = v∗
i (x) := −hi(r, s, u;V ) where {VA}A∈A are integration constants from solving differential equa-

tions. These constants appear as “new” degrees of freedom and have the interpretation of global degrees of
freedom located at infinity. Certainly, the VA are functions of the original variables vi and do not contain
any new information when what was already present before. Thus, without loss of generality we can consider
canonical variables such that A ⊂ I.

The boundary degrees of freedom vA can be complemented by conjugate variables {UA}A∈A constructed
from the ui. Gauge fixing all of the ui would be too restrictive, because the UA are dynamical boundary
degrees of freedom. We therefore only restrict the ui which are not part of the UA to fixed values with gauge
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fixing conditions of the form Gi(x) = ui(x) − τ i(x) = 0 for all the i /∈ A . Then, similar to the case before,
the Lagrange multipliers are determined by requiring that{

Gi(x), H[f ]
}

= 0 (2.3.3)

Here we do not consider a one-parameter family of gauge fixing conditions. The solution seems trivial at first,
but there are in fact non-trivial solutions to the equation in field theory, because H[f ] involves differential
operators. Therefore, we have a solution f i = f i

∗(r, s;V, λ) which depends on some integration constants λA.
Let F (r, s;U, V ) be any function of the true degrees of freedom. As before, the function F should have

the same Poisson bracket with reduced Hamiltonian H and with the H[f ] when we restrict to the constraint
surface (v = v∗), gauge cut (u = u∗) and solution of the stability condition (f = f∗). Explicitly,

{F,H} = {F,H[f ]}u=u∗,v=v∗,f=f∗
(2.3.4)

Before deriving the reduced Hamiltonian, we study the boundary term. Using suitable integration by
parts, we can write it in the form

B[f ] =
∫

boundary
fA(x)jA(x) , (2.3.5)

with some boundary currents jA(x). The reduced Hamiltonian is determined by the following theorem (see
Proposition in section 4.5.1 of [98]):

Theorem 2.12: Let χ[j] be a functional such that fA
∗ = δχ[j]

δjA

∣∣∣
j=j∗

. Then, the physical Hamiltonian is
given by H = χ[j∗].

Proof:
We start from the defining equation of the physical Hamiltonian and calculate for any function F (r, s, U, V )

{F,H[f ]}u=u∗,v=v∗,f=f∗
= {F,H[f ]u=u∗,v=v∗}f=f∗

−
∫

dx
[
δH[f ]
δui(x)

{
F, ui

∗(x)
}

+ δH[f ]
δvi(x){F, v∗

i (x)}
]

= {F,B[f ]u=u∗,v=v∗}f=f∗
+
∫

dx
[{
F, ui

∗(x)
}

{vi(x), H[f ]} − {F, v∗
i (x)}

{
ui(x), H[f ]

}]
=
∫

dx fA
∗ (x){F, j∗

A(x)}

(2.3.6)

In the first step we brought the restriction to the constraint surface and to the gauge cut inside the Poisson
bracket. The last two terms come from the subtraction of additional terms compensating the implicit
dependence of H[f ] on (r, s) due to u∗ and v∗. In the next step, the functional derivatives of H[f ] are
rewritten using Poisson brackets. The second term vanishes because ui

∗(x) = τ i(x) is a constant on phase
space and the last term vanishes because of the stability condition of the gauge fixing Gi(x) = 0. We now
replace fA

∗ (x) by δχ[j]
δjA(x)

∣∣
j=j∗

and obtain

{F,H[f ]}u=u∗,v=v∗,f=f∗
=
∫

dx δχ[j]
δjA(x)

∣∣∣∣∣
j=j∗

{F, j∗
A(x)} = {F, χ[j∗]} (2.3.7)

We read off the reduced Hamiltonian H = χ[j∗]. 2
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2 Constrained Hamiltonian Systems and the Reduced Phase Space Formalism

To summarize, for field theorise, the reduced Hamiltonian can be defined without considering one-
parameter families of gauge fixings due to the presence of boundary terms. In this picture, the reduced
Hamiltonian does not have any explicit time dependence and the system is conservative.
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3
Review of Black Holes in Classical General
Relativity

Black holes are regions of spacetime from which nothing can escape. In the vicinity of black holes the
gravitational field becomes so strong that not even light can escape the black hole region. It is therefore of
fundamental importance for our understanding of black holes to have a theory of gravity and our current
theory is general relativity developed by Albert Einstein in 1915. In this section we will review basic concepts
of general relativity and discuss black holes as the solutions of the symmetry reduced Einstein equations.
More information on various topics, touched upon in this section, can be found in the standard textbooks
on the subject [7, 104–106].

In the first part, we introduce basic concepts of differential geometry that are needed for the subsequent
discussions. Then, we present the Einstein-Hilbert action for general relativity and obtain the field equa-
tions for the gravitational fields. We reduce the equations to spherical symmetry and obtain the famous
Schwarzschild and Reissner-Nordstrøm solution for non-rotating black holes. We also shortly comment on
the case of rotating black holes and the Kerr-Newman family of axial symmetric solutions of the Einstein
equations.

Then, we discuss the Hamiltonian formulation of general relativity based on a foliation of spacetime into
three dimensional hypersurfaces, first studied by Arnowitt, Deser and Misner [64]. Due to the invariance
of the Einstein-Hilbert action under changes of coordinates we obtain a constrained Hamiltonian system
and use the tools developed in section 2. Solving the dynamics for spherical symmetry, we obtain the
Hamiltonian counterpart to the solutions obtained from the equations of motion.

Finally, we present important theorems and properties concerning classical black holes. We mention the
famous singularity theorems by Hawking and Penrose showing that black holes with singularities in their
centre are a consequence of generic gravitational collapse and a prediction of general relativity. In other
words, singularities form after the formation of black holes not only in highly symmetric models, which are
never exactly realised in nature, but also for generic initial data for the collapsing matter. We also discuss
the area theorem stating that the area of the event horizon of a black hole can never decrease. We end
with a surprising similarity between black holes and thermodynamics which remains rather mysterious in
classical general relativity.

3.1 Basic Notions in Differential Geometry

In order to understand general relativity, we first have to provide some basic definitions about topology and
differential geometry. This also sets the notation used throughout the rest of this thesis.
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3 Review of Black Holes in Classical General Relativity

We begin by recalling some basic definitions of topological spaces which we are necessary for understanding
the theory of manifolds and differential geometry:

Definition 3.1: A topological space (X,O) is a set X together with a collection O of subsets of X.
The sets in O are called open and they satisfy

1. ∅, X ∈ O

2. For A1, . . . , An ∈ O we have ∩n
i=1Ai ∈ O

3. For (Ai)i∈I with any index set I we have ∪i∈IAi ∈ O

Definition 3.2: Let (X,O) be a topological space.

1. A subset N of X is called a neighbourhood of a point x ∈ X, if there exists an open set A ∈ O such
that x ∈ A ⊂ N

2. (X,O) is called Hausdorff, if for x, x′ ∈ X there exist neighbourhoods A of x and A′ of x′ such that
A ∩A′ = ∅

Given two topological spaces, we can investigate maps between them:

Definition 3.3: Let (X,OX) and (Y,OY ) be two topological spaces.

1. A map f : X → Y is called continuous, if and only if f−1(A) ∈ X for A ∈ Y .

2. If f−1 exists and both f and f−1 are continuous then f is called a homeomorphism.

Finally, we need the notion of paracompactness. This is necessary such that we can define partitions of
unity and such that the integration theory on manifolds is well defined.

Definition 3.4: Let (X,O) be a topological space

1. An open cover (Ai)i∈I of (X,O) is a collection of open sets (Ai ∈ O) such that ∪i∈IAi ⊇ X

2. An open cover (Bj)j∈J is called a refinement of an open cover (Ai)i∈I , if and only if for any Bj there
exists an Ai such that Bj ⊂ Ai.

3. An open cover is locally finite, if and only if for any point x ∈ X there exists an open neighbourhood
N of x such that N ∩Ai ̸= ∅ for only finitely many i ∈ I

4. (X,O) is called paracompact, if every open cover of X has a locally finite refinement.

A smooth manifold is a topological space which locally looks like Rn. This is made mathematically precise
with the introduction of an atlas in the following definition:

Definition 3.5: Let M be a paracompact, Hausdorff and finite-dimensional topological space. M is called
a smooth differentiable manifold, if it is equipped with an atlas (UI , xI)I∈I , where

1. UI ⊂ M open sets covering M

2. xI : UI → Rm homeomorphism called the coordinates, where m is called the dimension of M
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3.1 Basic Notions in Differential Geometry

3. The maps φIJ = xJ ◦ x−1
I : xI(UI ∩ UJ) → xJ(UI ∩ UJ) are smooth maps between subsets of Rm.

The concept of a manifold allows for the introduction of a rich mathematical structure built upon the
notion of smooth functions from the manifold to the complex numbers:

Definition 3.6: Let M be a smooth manifold with atlas (UI , xI)I∈I . We define

1. A smooth function f on M is a map f : M → C such that f ◦ x−1
I : xI(UI) → C is smooth in the

usual sense for all I ∈ I . Notation: f ∈ C∞(M)

2. A smooth vector field v on M is a map v : C∞(M) → C∞(M), f 7→ v[f ] such that the Leibniz
rule is satisfied (v[fg] = v[f ]g + fv[g] for f, g ∈ C∞(M)) and constants are annihilated (v[λ] = 0 for
λ ∈ C). Notation: v ∈ T 1

0 (M)

3. A smooth 1-form ω on M is a map ω : T 1
0 (M) → C∞(M), v 7→ ω[v] that satisfies linearity (ω[fu+

gv] = fω[u] + gω[v] with f, g ∈ C∞(M) and u, v ∈ T 1
0 (M). Notation ω ∈ T 0

1 (M)

4. A smooth tensor field t on M is a map t : (Πa
r=1T

0
1 (M)) × (Πb

s=1T
1
0 (M)) → C∞(M) defined by

((ω1, . . . , ωa), (v1, . . . vb)) 7→ t(ω1, . . . , ωa, v1, . . . , vb). Notation: t ∈ T a
b (M)

There is an interesting operation on the space of vector fields T 1
0 (M). Given two vector fields v, w ∈ T 1

0 (M)
we define their commutator as [u, v](f) := u[v[f ]] − v[u[f ]]. One easily checks the Leibniz property and
sees that this defines a new vector field [u, v] ∈ T 1

0 (M).
The definitions above are quite abstract and it is often useful to work in a chart where one has access to

the maps xI : UI → Rm. This defines m functions on the manifold M: xi
I : UI → R. Given these functions

we define coordinate vector fields ∂I
i by ∂I

j (xi
I) = δi

j . Then, one shows that any vector field can be expanded
in terms of the coordinate vector fields as v = vi∂I

i , where vi are the components of the vector field.
Given the coordinate vector fields ∂I

i we define the coordinate 1-forms by dxi
I : T 1

0 (M) → C by dxi
I(∂I

j ) =
δi

j . Every one form ω is then uniquely expanded in terms of the coordinate one forms as ω = ωidxi
I . Using

the basis for vector fields and 1-forms we can also expand tensor fields t ∈ T a
b (M) as t = ti1...ia

j1...jb
∂I

i1 ⊗
· · · ⊗ ∂I

ia
⊗ dxj1

I ⊗ · · · ⊗ dxjb
I .

The construction above is performed with the reference to a given chart I in the atlas. However, the
same construction can be performed in all the charts. For computations it is convenient to drop the label
I in the above formulas and manipulate vector fields, 1-forms and tensors simultaneously in all charts. In
addition, it is often useful to work with the components ti1...ia

j1...jb
directly. This is called the abstract

index notation and will be used throughout the computations in this thesis.

A useful concept in differential geometry are differential forms:

Definition 3.7: Let M be a smooth manifold with atlas (UI , xI). A smooth n-form ω is a tensor field
ω ∈ T 0

n(M) which is completely anti-symmetric, i.e. for any permutation π ∈ Sn and vector fields v1, . . . vn ∈
T 1

0 (M), we have
ω[v1, . . . , vn] = sgn(π)ω[vπ(1), . . . , vπ(n)] , (3.1.1)

where sgn(π) is the sign of the permutation π. Notation: ω ∈ Λn(M).
On the space of n-forms we define the operations
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3 Review of Black Holes in Classical General Relativity

1. Exterior Product: Let ω1 ∈ Λn1(M) and ω2 ∈ Λn2(M) then, we define a map ∧ : Λn1 × Λn2 → Λn1+n2

by

(ω1 ∧ ω2)[v1, . . . , vn1+n2 ] = 1
n1!n2!

∑
π∈Sn1+n2

ω1[vπ(1), . . . , vπ(n1)]ω2[vπ(n1+1), . . . , vπ(n1+n2)] . (3.1.2)

2. Exterior Derivative: Let ω ∈ Λn(M). The exterior derivative is a map d : Λn(M) → Λn+1(M) given
by

(dω)[v0, . . . vn] =
n∑

k=0
(−1)kvk[ω(v0, . . . , v̂k, . . . , vn)]+

∑
0≤k<l≤n

(−1)k+lω([vk, vl], v0, . . . , v̂k, . . . , v̂l, . . . vn) .

(3.1.3)
v̂k means that the vector field vk is omitted.

A diffeomorphism from M to M is a smooth map φ : M → M such that its inverse φ−1 exists and
both φ,φ−1 are smooth. Every such diffeomorphism defines the pull-back and push-forward of functions,
vector fields, 1-forms and tensor fields. First, the pull back of a function f ∈ C∞(M) is defined by
φ∗f(p) = f(φ(p)), p ∈ M. Then, the push-forward of a vector field is defined by (φ∗v)[f ] = v[φ∗f ] and the
pull-back of a 1-form is defined by φ∗ω[v] = ω[φ∗v]. Since φ is a diffeomorphism, there exists an inverse
φ−1 and we can also define the push-forward of functions and 1-forms (φ∗f = (φ−1)∗f)) and the pull-back
of vector fields φ∗v = (φ−1)∗v. This allows us to define the pull-back and push-forward of general tensor
fields t ∈ T a

b (M):

φ∗t(ω1, . . . , ωa, v
1, . . . vb) = t((φ−1)∗ω1, . . . , (φ−1)∗ωa, φ∗v

1, . . . φ∗v
b)

φ∗t(ω1, . . . , ωa, v
1, . . . vb) = t(φ∗ω1, . . . , φ

∗ωa, (φ−1)∗v
1, . . . (φ−1)∗v

b)
(3.1.4)

In coordinates, we have

(φ∗t)i1...ia
j1...jb

= ti
′
1...i′

a
j′

1...j′
b

∂(φ−1)i1

∂xi′
1

. . .
∂(φ−1)ia

∂xi′
a

∂φj′
1

∂xja
. . .

∂φj′
b

∂xjb
(3.1.5)

Given a vector field v ∈ T 1
0 (M) we define its integral curve. This is a curve cv

p : I ⊂ R → M such that
cv

p(0) = p and
d
dtx

i(cv
p(t)) = vi[cv

p(t)] (3.1.6)

The integral curves define a flow Φv
t : M → M by Φv

t (p) := cv
p(t). The Lie derivative of a tensor field

t ∈ T a
b (M) is defined by

Lv(t) = lim
ϵ→0

(Φv
ϵ )∗t− t

ϵ
(3.1.7)

In coordinates one finds

Lvt = vi∂it
i1...ia

j1...jb
− ∂iv

i1tii2...ia
j1...jb

− · · · − ∂iv
iati1...ia−1i

j1...jb

+ ∂j1v
iti1...ia

ij2...jb
+ · · · + ∂jb

viti1...ia
j1...jb−1i

(3.1.8)

Definition 3.8: Let M be a smooth manifold with atlas (UI , xI)I∈I . A tensor field g ∈ T 0
2 (M) which is

symmetric (g[v, w] = g[w, v]) and non-degenerate (g[v, w] = 0 for all w implies v = 0) is called a pseudo-
Riemannian metric.
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3.2 Connections, Torsion and Curvature

In abstract index notation the metric is denoted by gij . Symmetry implies that gij = gji and the non-
degeneracy allows for the definition of the inverse metric gij with gijgjk = δi

k.

3.2 Connections, Torsion and Curvature

So far, the only structures that allow for taking derivatives on manifolds are the exterior derivative for
n-forms and the Lie derivative Lv that depends on a vector field v. For general tensor fields, there exists
the notion of a connection that we will discuss in the following:

Definition 3.9: A connection is a map ∇ : T a
b (M) → T a

b+1(M) satisfying for all t1, t2 ∈ T a
b (M),

λ1, λ2 ∈ C and f ∈ C∞(M)

1. Linearity:
∇(λ1t1 + λ2t2) = λ1∇t1 + λ2∇t2 (3.2.1)

2. Leibniz rule:
∇(t1 ⊗ t2) = ∇t1 ⊗ t2 + t1 ⊗ ∇t2 (3.2.2)

3. Consistency with action on functions: ∇f = df

4. Commutes with contractions

It is useful to extend the abstract index notation to the covariant derivative. For any vector field v ∈
T 1

0 (M) and tensor t ∈ T a
b (M), we use the vector field to contract the extra index coming from the covariant

derivative and we define
(∇vt)j1...ja

k1...kb
:= vi(∇t)i

j1,...ja
k1...kb

(3.2.3)

Then, we evaluate the covariant derivative on the the basis ∂i and define ∇i := ∇∂i
. We introduce the

connection coefficients Γk
ij by

∇i∂j := Γk
ij∂k (3.2.4)

On one forms, we have ∇idxj = −Γj
ikdxk which follows from the compatibility of the covariant derivative

with contractions. In total for any tensor t ∈ T a
b (M) we have

∇it
j1...ja

k1...kb
= ∂it

j1...ja
k1...kb

+
a∑

l=1
Γjl

ikt
j1...kĵl...ja

k1...kb
−

b∑
l=1

Γk
ikl
tj1...ja

k1...kk̂l...kb
(3.2.5)

where the indices omitted with the hat are replaced by the index k.

Definition 3.10: The torsion T ∈ T 1
2 (M) of a connection ∇ is defined as

T [ω, u, v] := ω[∇uv − ∇vu− [u, v]] (3.2.6)

An explicit evaluation of this expression gives the coefficients

T i
jk := T [dxi, ∂j , ∂k] := Γi

jk − Γi
kj (3.2.7)
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3 Review of Black Holes in Classical General Relativity

Definition 3.11: The curvature R ∈ T 1
3 (M) of a connection ∇ is defined as

R[ω, u, v, w] := ω[∇u∇vw − ∇v∇uw − ∇[u,v]w] (3.2.8)

The components of the curvature tensor in terms of the connection coefficients are

Ri
jkl := R[dxi, ∂k, ∂l, ∂j ] = ∂kΓi

lj − ∂lΓi
kj + Γi

mkΓm
lj − Γi

mlΓm
kj (3.2.9)

For a vector field v ∈ T 1
0 (M), we have the identity

∇i∇jv
k − ∇j∇iv

k = Rk
lijv

l (3.2.10)

So far, the connection was arbitrary and we wish to constrain it using physical input. As it turns out,
using the metric g and requiring the connection to be torsion-free there is a unique choice:

Theorem 3.12: Let (M, g) be a Pseudo-Riemannian manifold. Then, there exists a unique, torsion-free
connection which is compatible with the metric (∇g = 0), the Levi-Civita connection.

An explicit evaluation of the metric compatibility condition gives an explicit formula for the connection
coefficients:

Γi
jk = 1

2g
il(∂jgkl + ∂kgjl − ∂lgjk) . (3.2.11)

This defines the unique Levi-Civita connection associated to the metric g.

Definition 3.13: Let c : I ⊂ R → M, t 7→ c(t) be a curve on M. For any function f ∈ C∞(M), the
tangent vector ċ of the curve c is defined by

ċ[f ] := d
dtf [c(t)] . (3.2.12)

The curve is called a geodesic, if the tangent vector ċ satisfies ∇ċ(ċ) = 0.

3.3 General Relativity in Lagrangian Formulation

We introduced all the necessary notions of differential geometry to introduce Einstein’s theory of general
relativity based on the Lagrangian formulation. In this section, we define the Einstein-Hilbert action and
derive the corresponding equations of motion using the variational principle.

In general relativity, the core quantity is the metric g in spacetime and the uniquely defined, torsion-free
Levi-Civita connection. The dynamics is summarized by the Einstein-Hilbert action:

S[g, ϕ] = 1
2κ

∫
M

d4x
√

− det g(R[g] − 2Λ) + Smatter[g, ϕ] (3.3.1)

Here ϕ stands for any collection of matter fields and Smatter is the matter action depending on the metric
and the matter fields. κ = 16π is the gravitational coupling constant in units G = c = 1 and Λ is the
cosmological constant. For the discussion of black holes in this thesis, we ignore this constant and set it to
zero.
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3.4 Exact Solutions for Black Holes

The equations of motion are derived by a variation of the action with respect to the inverse metric. Let
us first study the variation of the metric determinant and the Ricci scalar. For the determinant we obtain

δ
√

− det g = −1
2
√

− det ggµνδg
µν (3.3.2)

For the Ricci scalar, we use its definition in terms of the Ricci tensor and the Christoffel symbols

δR = δgijRij + gijδRij

= δgijRij + gijδRk
ikj

= δgijRij + gij
(
∇kδΓk

ij − ∇jδΓk
ki

)
= δgijRij + ∇k

(
gijδΓk

ij − gikδΓj
ji

)
(3.3.3)

Inside the action, the second term is a total derivative and leads to a boundary term. We ignore this
boundary term for now and only consider the first term. We have

δS[g, ϕ] = 1
2κ

∫
M

d4x
√

− det g
(
Rij − 1

2gijR+ gijΛ − κTij

)
δgij (3.3.4)

In this equation, we introduced the energy-momentum tensor Tij which arises from the variation of the
matter action with respect to the metric and is defined as

Tij := − 2√
− det(g)

δSmatter
δgij

. (3.3.5)

Thus, we successfully derived the Einstein equations in their Lagrangian form:

Rij − 1
2gijR+ Λgij = κTij , (3.3.6)

In the following sections we study the equations in more detail. A general solution is not known and we
simplify the equations with the help of symmetry assumptions.

3.4 Exact Solutions for Black Holes

Black holes are solutions to the Einstein equations imposing rotational and axial symmetry. For rotational
symmetry we find the non-rotating, uncharged Schwarzschild black hole and the non-rotating and charged
Reissner-Nordstrøm black hole. Imposing axial symmetry the solution is given by the uncharged Kerr black
hole and the charged Kerr-Newman black hole. In these section we closely follow the notation in [74].

In this manuscript we mainly focus on rotational symmetry. An isometry of a spacetime (M, g) is a map
ψ : M → M such that ψ∗g = g. That is ψ preservers the metric and thus distances and angles. The set of all
isometries together with composition form a group. A spacetime (M, g) is called spherically symmetric,
if its group of isometries contains the rotation group SO(3). Furthermore, given a point p ∈ M the orbit of
this point should be isomorphic to the sphere S2.

Therefore, the spacetime factorises as M × S2, where M is an arbitrary 2-dimensional manifold and S2

is the factor coming from the orbits of the isometries. On M we choose local coordinates xa and on S2

we choose xA = (θ, ϕ) as the usual polar coordinates. The general ansatz for the metric compatible with
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3 Review of Black Holes in Classical General Relativity

spherical symmetry is:

ds2 = gab dxa dxb + γ2(xa)ΩAB dxA dxB , (3.4.1)

where ΩAB is the metric of the two-sphere S2 and γ(xa) is a scalar function on M . In the following we
raise and lower indices a, b, c, . . . with the metric gab and indices A,B,C, . . . with the metric ΩAB. We
define two covariant derivatives D and ∇ which are compatible with the metric ΩAB on the sphere S2 and
the metric gab on M respectively. We would like to construct a metric compatible covariant derivative on
M × S2 constructed from both D and ∇. It can be shown that the only non-vanishing Christoffel symbols
with mixed indices are given by

Γa
AB = −γaγΩAB (3.4.2)

ΓA
Ba = γa

γ
δA

B, (3.4.3)

where γa := ∇aγ.

The expression for the metric and the Christoffel symbols can be used to explicitly compute the curvature
tensors. In fact, the only non-vanishing components of these tensors are:

(4)Rab = (2)Rab − 2
γ

∇a∇bγ , (3.4.4)

(4)RAB = ΩAB(1 − γaγ
a − γ□γ) , (3.4.5)

(4)R = (2)R+ 2
γ2 − 2γaγ

a

γ2 − 4
γ
□γ . (3.4.6)

In these equations □ = gab∇a∇b and (2)Rab, (2)R are the Ricci tensor and Ricci scalar of the manifold M

respectively, determined by the metric gab.

Let us consider the gravity theory coupled to some matter content. We assume that it is provided to us
in the form of an energy momentum tensor Tij . For consistency, we require Tij to be spherically symmetric.
In general, it will have the following form

Tijdxi ⊗ dxj = Tabdxa ⊗ dxb + Tγ2ΩABdxA ⊗ dxB . (3.4.7)

This allows the formulation of Einstein’s equations. We have

κTab = Gab = − 2
γ

∇a∇bγ − gab

( 1
γ2 − γaγ

a

γ2 − 2
γ
□γ
)

κT = GA
A = □γ

γ
− 1

2
(2)R

(3.4.8)

using that in two dimensions (2)Rab = 1
2gab

(2)R. We have the following Bianchi identity:

∇bT
ba + 2

γ
γbT

ba − 2
γ
γaT = 0 . (3.4.9)

In the following two subsections, we study solutions of the symmetry reduced Einstein equations. In the
simplest case, we neglect the energy momentum tensor and study the vacuum solutions. We then extend
the treatment by analysing the electromagnetic field as matter content.
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3.4 Exact Solutions for Black Holes

3.4.1 Vacuum Case and the Schwarzschild Solution

For this section, we ignore any matter contributions and study the pure vacuum case, Tij = 0. For the
solution of the equations we consider the one-forms γa dxa, where γa := ∇aγ and ta dxa where ta = ϵabγ

a.
We observe that they are orthogonal gabγatb = 0 and we have γaγa = −tata. Defining f := γaγa, we can
write the metric as gab = 1

f (γaγb − tatb) and the Levi-Civita symbol as ϵab = − 1
f (taγb − γatb).

Consider now the Einstein equations. Taking the trace of the first equation in (3.4.8), we have γ□γ = 1−f .
Inserting this again into the first equation, we have

∇aγb = 1
2γ gab(1 − f) . (3.4.10)

Consider the quantity γ(1 − f). Taking the covariant derivative, we have

∇a(γ(1 − f)) = γa(1 − f) − 2γγb∇aγb = γa(1 − f) − γa(1 − f) = 0, (3.4.11)

and we have the solution f = 1 − rs/γ .
Let’s consider the Schwarzschild coordinates (t, r) and we require γ = r and gtr = 0. Then, we observe

that γadxa = dr and tadxa = ϵabg
bcγcdxa = grrdt. Therefore, we have g = − (grr)2

f dt2 + 1
f dr2 and using the

explicit form of the inverse we have grr = f and g = −fdt2 + 1
f dr2.

Another interesting coordinate system are the Gullstrand-Painlevé (GP) coordinates (τ, r), where we
impose γ = r and grr = 1. Then, we have again γadxa = dr and tadxa = grrdτ − gtrdr. Then, the metric is

g = −(grr)2

f
dτ2 + 2g

rrgtr

f
dτ dr + 1 − (gtr)2

f
dr2 (3.4.12)

From the requirement grr = 1, we have that (gtr)2 = 1 − f = rs/r . Inserting this into the equation for the
metric we have

g = −(grr)2

f
dτ2 + 2g

rrgtr

f
dτ dr + dr2 (3.4.13)

Inverting the metric

g−1 =

− f2

(grr)2 −fgtr

grr

−fgtr

grr f

 (3.4.14)

This equation has a consistent solution given by grr = f and we have the metric in Gullstrand-Painlevé
form:

g = −fdτ2 ± 2
√
rs

r
dτdr + dr2 (3.4.15)

The sign depends on the sign we chose when taking the square root. It corresponds to the out- and ingoing
GP coordinates.

3.4.2 Electromagnetic Matter and the Reissner-Nordstrøm solution

In spherical symmetry, there exists an exact solution for general relativity coupled to electromagnetic mat-
ter, called the Reissner-Nordstrøm solution. The electromagnetic field is described by the field strength
tensor Fij , an anti-symmetric tensor of rank 2. The equations of motion can be derived from the Maxwell-
Lagrangian given by

Sem = −ϵ0
4

∫
M

√
− det ggikgjlFijFkl (3.4.16)
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From the definition of the energy-momentum tensor, we obtain

Tij = ϵ0

(
FikFj

k − 1
4gijFklF

kl
)
. (3.4.17)

In spherical symmetry, the field strength tensor Fij is parametrized by two functions α(t, r) and β(t, r):
Fab = ηabα(t, r) and FAB = ηABβ(t, r) with the antisymmetric tensor ηab =

√
det(g)ϵab and similar for ηAB.

In standard electromagnetism, without magnetic monopoles, the function β will not show up because there
needs to exist a vector potential A such that F = dA. Requiring this, it is not difficult to see that β has to
vanish.

From the parametrization of the field strength tensor in terms of α, we obtain

Tab = −ϵ0
2 gabα

2 , (3.4.18)

TAB = ϵ0
2 γ

2ΩABα
2 . (3.4.19)

The next step is the solution of the equations of motion of the electric field. This is equivalent to solving
the conservation equation of the energy momentum tensor ∇iT

ij = 0. We have the following equation:

∇aα
2 + 4γa

γ
α2 = 0 . (3.4.20)

The solution to this equation is straight forward and given by α2 = Q2γ−4, with the integration constant
Q. This constant will be related to the electric charge of the black hole.

Consider now the Einstein equations. We take the trace of the first equation in (3.4.8) and get

gabκTab = −κϵ0α2 = 2
γ
□γ − 21 − f

γ2 (3.4.21)

This gives γ□γ = 1 − f − κ
2γ

2α2. From the first equation it follows that

∇aγb = 1
2γ gab

(
1 − f − 1

2κϵ0γ
2α2

)
(3.4.22)

Then, consider the covariant derivative of γ(1 − f):

∇a(γ(1 − f)) = γa(1 − f) − 2γγb∇aγb = γa(1 − f) − γa

(
1 − f − 1

2κγ
2α2

)
= 1

2κϵ0γ
2α2γa (3.4.23)

Using the explicit expression for α in terms of γ and Q, the solution is γ(1 − f) = − 1
2γκϵ0Q

2 + rs where rs

is an integration constant. The full solution is then

f(γ) = 1 − rs

r
+ κϵ0

2γ2Q
2 (3.4.24)

The electric charge of the black hole is given by (4πϵ0)Q.

Choosing Schwarzschild like coordinates (t, r) the computations in the previous section give the metric

g = −f(r) dt2 + 1
f(r) dr2 (3.4.25)

42



3.4 Exact Solutions for Black Holes

In Gullstrand-Painlevé coordinates (τ, r), we have

g = −f(r) dτ2 ± 2
√

1 − f(r)dτdr + dr2 (3.4.26)

3.4.3 Rotating Black Holes and Axial Symmetry

In the previous sections, we assumed the solution of the Einstein equations to be spherically symmetric. We
found the Schwarzschild and Reissner-Nordstrøm solutions which both admit a timelike Killing vector ∂t.
A Killing vector v is a vector field such that Lv(g)ij = 0 and a vector field v is called timelike, if g(v, v) < 0.
Recall the following definition of static and stationary spacetimes:

Definition 3.14: A spacetime (M, g) is called stationary, if and only if there exists a timelike Killing
vector field T . The spacetime is called static, if it is stationary and T is orthogonal to a family of hyper-
surfaces.

In the previous section, the Einstein equations imply the metric to be static (Birkhoff’s theorem). However,
spherical symmetry is a strong restriction because in the universe black holes are expected to rotate and
thus break spherical symmetry. The symmetry generalises to axial symmetry around the axis of rotation
and we have to find new solutions to the Einstein equations. The situation for rotating black holes is much
more involved and there is no equivalent theorem to Birkhoff’s theorem.

The most general static black hole solution known until today is characterised by charge Q, mass M and
angular momentum J is the Kerr-Newman black hole [104, 105, 107]. In Boyer-Lindquist coordinates
(t, r, θ, ϕ) the metric reads

ds2 = − ∆
ρ2 (dt− a sin2 θdϕ)2 + sin2 θ

ρ2 ((r2 + a2)dϕ− adt)2 + ρ2

∆ dr2 + ρ2dθ2 . (3.4.27)

For the metric, we defined ∆ := r2 − 2Mr + a2 + Q2 and ρ2 := r2 + a2 cos2 θ. The parameter a is related
to the angular momentum of the black hole by a = J/M . The non-vanishing components of the vector
potential are given by At = −rQ/ρ2 and Aϕ = arQ sin2 θ/ρ2. Taking the limit a → 0, we recover the
Reissner-Nordstrøm solution for charged non-rotating black holes. The Kerr-Newman metric is therefore a
generalisation of the Reissner-Nordstrøm metric to include rotation of the black hole.

The Kerr-Newman black hole also admits a rich symmetry structure: The metric admits two Killing
vector fields ∂t and ∂ϕ since the metric coefficients are independent of the coordinates t and ϕ. The presence
of the timelike Killing vector ∂t shows that the metric is stationary. However, due to the rotation of the
black hole the metric is not static. Additionally, the metric admits a Killing tensor Kµν (see [108], i.e. a
symmetric tensor satisfying ∇(µKνρ) = 0). It is due to this additional symmetry, that the geodesic equations
for rotating black holes are completely integrable.

In section 5, we consider corrections to the highly symmetric black hole solutions for spherically symmetric
spacetimes. This analysis for the case of rotating black holes is more challenging and has first been executed
for the Kerr-Newman black holes by Teukolsky in [109, 110]. The calculation is based on the Newman
Penrose formalism and two equations for the two physical degrees of freedom of the gravitational field
were derived. Due to the increased complexity of axial symmetric black hole solutions, we will restrict to
spherically symmetric spacetimes in this thesis.
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3.5 General Relativity in Hamiltonian Formulation

In this section we present the Hamiltonian formulation of general relativity based on the ADM formulation
first introduced by Arnowitt, Deser and Misner in [64]. A review, on which this section is based can be
found in [24]. The idea is to use a foliation of spacetime by three dimensional hypersurfaces so that we can
define a Hamiltonian generating time evolution from one hypersurface to the next.

We recall the following definition of Cauchy surfaces and globally hyperbolicity necessary to introduce
foliations of spacetime:

Definition 3.15: Let (M, g) be a spacetime. Then

1. A curve c : I ⊂ R → M is called causal if its tangent vectors ċ are timelike or null g(ċ, ċ) ≤ 0.

2. A spacelike hypersurface Σ inside a spacetime (M, g) is called Cauchy surface, if and only if every
inextendible causal curve intersects Σ exactly once.

3. A spacetime (M, g) with a Cauchy surface Σ is called globally hyperbolic.

In the following, we assume (M, g) to be globally hyperbolic. Then a theorem due to Geroch [104], implies
that we can foliate M into non-intersecting hypersurfaces Σt

∼= Σ. The hypersurfaces Σt are Cauchy surfaces
and isomorphic to Σ. Thus, the topology of spacetime is M = R× Σ and we choose local coordinates xµ on
Σ. Consider now an embedding X : R× Σ → M, (t, x) → Xt(x), where Xt(Σ) = Σt.

The surfaces Σt have timelike normals ni∂i with gijn
inj = −1 and the vector fields Xi

,µ∂i are tangential
to Σt. The vector field T i∂i := ∂tX

i∂i can be decomposed into its tangential and normal components:

T i = Nni +NµXi
,µ . (3.5.1)

N is called the lapse function and Nµ is the the shift vector field. With this information we can pull
back the metric to R× Σ and obtain

d2s = gij dxi dxj

= gij [(Nni +NµXi
,µ) dt+Xi

,µ dxµ][(Nnj +NνXj
,ν) dt+Xj

,ν dxν ]

= −(N2 −NµNνgijX
i
,µX

j
,ν) dt2 + 2NNµgijX

i
,µX

j
,ν dt dxν + gijX

i
,µX

j
,νdxµdxν

(3.5.2)

In the computation we used that gijn
inj = −1 and that gijn

iXj
,µ = 0.

It is convenient to introduce the first and second fundamental form for hypersurfaces:

Definition 3.16: The first fundamental form (induced metric) on the hypersurfaces Σ is defined by

mij = gij + ninj . (3.5.3)

The second fundamental form is defined by

Kij = mk
im

l
j∇knl (3.5.4)

The first fundamental form has the property that mijn
i = 0 using the normalisation of the normal ni

and similarly in the second argument. This shows that m is purely spatial and we pull it back onto the
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hypersurfaces. We define mµν := mijX
i
,µX

j
,ν and the metric simplifies to

ds2 = −(N2 +mµνN
µNν)dt2 + 2NNµmµνdtdxν +mµνdxµdxν (3.5.5)

For the formulation of general relativity we also need to split the curvature tensor into the part defined by
the metric m within the hypersurface and the extrinsic components describing how the hypersurfaces bend
inside the surrounding four-dimensional spacetime. The induced metric mµν defines a unique torsion-free
connection ∇ within the surfaces Σ. This connection defines a Riemann curvature tensor and we have to
understand its relation to the four-dimensional Riemann curvature tensor.

Theorem 3.17 (Gauß-Codazzi equations [106]): The projections of the four-dimensional Riemann tensor
in tangential and normal directions are the Gauß-Codazzi equations:

mi′
i m

j′

j m
k′
k m

l′
l

(4)Ri′j′k′l′ = (3)Rijkl +KilKjk −KikKjl (3.5.6)

mi′
i m

j′

j m
k′
k

(4)Ri′j′k′ln
l = (∇iKjk − ∇jKik) (3.5.7)

These two projections of the Riemann tensor are the ones that can be written in terms of the intrinsic and
extrinsic geometry of the hypersurfaces alone. For the remaining projection along the two normal directions,
we additionally need the acceleration of the normal defined by ai = ∇nni. We observe that ai is a spatial
quantity because niai = ni∇nni = 1

2∇n(nini) = 0. One shows that ∇inj = Kij − niaj and can derive an
expression for the projection of the curvature into the two normal directions (see [111]). We will not present
it here as it is not necessary for the further discussions. Due to the symmetry of the Riemann tensor, this
exhausts the full list of projections of the Riemann tensor for codimension 1 hypersurfaces.

Let’s consider the projection of the Ricci scalar along the two normal directions:

ninj(4)Rij = (4)Rkiljn
injgkl = ni[∇j ,∇i]nj

= ∇in
i∇kn

k − ∇kn
i∇in

k + ∇i(ai − ni∇kn
k)

= (Ki
i )2 −KijKij + ∇i(ai − niK)

(3.5.8)

The Ricci scalar is obtained by contracting indices of the Riemann tensor:

(4)R = (4)Rijklg
ikgjl = (4)Rijklm

ikmjl − 2(4)Rijklm
iknjnl

= (3)R+KijKij − (Ki
i )2 − 2∇i(ai − niK)

(3.5.9)

The total derivative will be neglected for now as it only contributes a boundary term to the action. Pulling
the tensors back to the hypersurfaces, we obtain

(4)R = (3)R+KµνKµν − (mµνKµν)2 − 2∇µ(aµ − nµK) (3.5.10)

Inserting everything into the Einstein-Hilbert action and dropping boundary terms, we obtain the ADM
action:

S = 1
κ

∫
R

dt
∫

Σ
dx |N |

√
detm

(
R+KµνK

µν − (mµνKµν)2
)

(3.5.11)

From now on, we assume future oriented foliations with N > 0 so that the absolute value of N can be
replaced by N itself.
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The Hamiltonian formulation of general relativity based on the ADM action is derived using a Legendre
transformation of (3.5.11). We introduce the momenta Wµν , Π and Πµ by

Wµν := δS

δq̇µν
=

√
detm
κ

(Kµν −mµνmρσKρσ)

Π := δS

δṄ
= 0

Πµ := δS

δṄµ
= 0

(3.5.12)

We obtain two primary constraints Π = 0 and Πµ = 0. The first equation can be used to determine the
velocities ṁµν in terms of Wµν . From the first equation we have that

mµνW
µν = −2

√
detm
κ

mµνKµν (3.5.13)

Then, we can solve for Kµν and obtain

Kµν = κ√
detm

(
Wµν − 1

2m
µνmρσW

ρσ
)

(3.5.14)

We find the primary Hamiltonian

H =
∫

Σ
dx ṁµνW

µν + ṄΠ + ṄµΠµ −
√

detmN
κ

(
R+KµνK

µν − (mµνKµν)2
)

=
∫

Σ
dx ṄΠ + ṄµΠµ + 2∇µNνW

µν + N

κ

[
κ2

√
detm

(
WµνW

µν − 1
2(mµνWµν)2

)
−

√
detmR

] (3.5.15)

The third term is integrated by parts and we have

H =
∫

Σ
dx ṄΠ + ṄµΠµ − 2Nµ∇νW

µν + N

κ

[
κ2

√
detm

(
WµνW

µν − 1
2(mµνWµν)2

)
−

√
detmR

]
(3.5.16)

On the phase space, the only non-vanishing Poisson brackets are

{mµν(t, x),W ρσ(t, y)} = κδρ
(µδ

σ
ν)δ(x, y), {N(t, x),Π(t, y)} = δ(x, y), {Nµ(t, x),Πν(t, y)} = δµ

ν δ(x, y)
(3.5.17)

Thus, we successfully derived the primary Hamiltonian H and the constraints Π != 0 and Πµ
!= 0.

Following Dirac’s analysis outlined in section 2, we need to impose the stability of the primary constraints.
Taking Poisson brackets with the Hamiltonian we find

{Π(x), H} = V0(x), {Πµ(x), H} = Vµ(x) (3.5.18)

where we defined the secondary constraints

V0(x) = κ√
detm

(
WµνW

µν − 1
2(mµνWµν)2

)
− 1
κ

√
detmR

Vµ(x) = −2mµρDνW
νρ

(3.5.19)
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We have to add these constraints to the list of constraints and check their stability again. For that it is
useful to study the algebra of V0 and Vµ. The computation is most transparent by introducing “smeared”
constraints. We define V0[f ] :=

∫
Σ dx f(x)V0(x) and V⃗ [f⃗ ] =

∫
Σ f

µ(x)Vµ(x). We obtain the hypersurface
deformation algebra {

V⃗ [f⃗ ], V⃗ [g⃗]
}

= κV⃗ [[f⃗, g⃗]]{
V⃗ [f⃗ ], V0[g]

}
= κV0[f⃗ [g]]

{V0[f ], V0[g]} = κV⃗ [m−1(fdg − gdf)]

(3.5.20)

Using this algebra it is easy to see that the constraints V , Vµ do not generate further secondary constraints.
The lapse function N and shift vector Nµ are completely arbitrary functions. This allows for a simplifi-

cation of the canonical framework by treating N , Nµ as Lagrange multipliers and we move to the reduced
action (canonical ADM action):

S = 1
κ

∫
R

dt
∫

Σ
dx [ṁµνW

µν −NµVµ −NV0] (3.5.21)

In section 2, we saw that in the case of field theories (such as general relativity) we have to be careful
for spacetimes with boundaries. For a well-defined variational principle boundary terms have to be added
to the constraints in order to make the variational principle well-defined. Additionally, the constraints and
symplectic structure need to remain finite and we have to specify suitable fall-off behaviours for the canonical
variables.

In the ADM action, we have the canonical variables mµν and Wµν . We impose asymptotic flat boundary
conditions on them which in Cartesian coordinates are given by

mµν = δµν + 1
r
f+

µν(Ω) + 1
r2 f

−
µν(Ω)

Wµν = 1
r2F

µν
− (Ω) + 1

r3F
µν
+ (Ω)

(3.5.22)

The fall-off condition depends on the parity, where (+) is positive and (−) is negative parity. Let P be the
parity operator defined by Px = −x. Then, f±

µν(PΩ) = ±f±
µν(Ω) and similarly for Fµν

± .
In the following we would like to perform a careful boundary term analysis of the constraints. Adapted

to the spherical symmetry of the Schwarzschild and Reissner-Nordstrøm black holes, we transform the
asymptotically flat boundary conditions to spherical coordinates. Additionally, we would like to work in
Gullstrand-Painlevé coordinates for the spherically symmetric sector. This is not compatible with the
asymptotic flat boundary conditions we defined above and we need to modify the fall-off conditions of the
spherically symmetric sector. The discussion in the following paragraphs is based on [98] where more details
can be found.

Transforming to spherical coordinates we find the following asymptotic behaviour

m33 = 1 + 1
r
f+

33(Ω) + 1
r2 f

−
33(Ω)

m3A = 0 + f+
3A(Ω) + 1

r
f−

3A(Ω)

mAB = r2ΩAB + rf+
AB(Ω) + f−

AB(Ω) (3.5.23)
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W 33 =
√

ΩF 33
− (Ω) +

√
Ω1
r
F 33

+ (Ω)

W 3A =
√

Ω1
r
F 3A

− (Ω) +
√

Ω 1
r2F

3A
+ (Ω)

WAB =
√

Ω 1
r2F

AB
− (Ω) +

√
Ω 1
r3F

AB
+ (Ω)

In this manuscript we would like to work in Gullstrand-Painlevé type coordinates. Recall the Schwarzschild
metric in Gullstrand-Painlevé coordinates from (3.4.15):

ds2 = −
(

1 − rs

r

)
dτ2 + 2

√
rs

r
dτ dr + dr2 + r2dΩ2 (3.5.24)

We need to match this metric with the metric in ADM variables in equation (3.5.5). We observe that
we recover the Gullstrand-Painlevé metric for N = 1, N3 =

√
rs/r , NA = 0, m33 = 1, m3A = 0 and

mAB = r2ΩAB. Note that mµν is compatible with the choice for the asymptotics of mµν in spherical
coordinates. For the momenta, we compute

K33 = −1
2(N3∂3m33 + 2m33∂rN

3) = 1
2

√
rs

r3

KAB = −1
2N

3∂3mAB = −
√
rrsΩAB

(3.5.25)

where we used
Kij = 1

2N
(
ṁij −Nkmij,k −Nk

,imkj −Nk
,jmik

)
(3.5.26)

Then, the only non-vanishing momenta are:

W 33 = 2
√
rrs, WAB = 1

2r2
√
rrsΩAB (3.5.27)

where we used formula (3.5.12) and gijKij = −3
2

√
rs
r3 .

Let’s assume we have performed the transformation from Schwarzschild to Gullstrand-Painlevé coordi-
nates. We have to suitably adapt the fall-off conditions in (3.5.23) to this new coordinate system. Since
the transformation only affects the spherically symmetric sector, we distinguish in the following between the
spherically symmetric degrees of freedom and the non-symmetric ones. We use the following notation:

m33 = e2µ + xv, m3A = 0 + xA, mAB = e2λΩAB + xhΩAB +XAB

W 33 = 1
2e

−2µπµ + yv, W 3A = 0 + 1
2y

A, WAB = 1
4e

−2λπλ + 1
2yhΩAB + Y AB

(3.5.28)

The pairs (µ, πµ) and (λ, πλ) are the spherically symmetric part ofm andW . The variables (xv/h/e/o, yv/h/e/o)
and (Xe/o, Ye/o) are non-spherically symmetric.

For the non-symmetric variables, we immediately obtain the fall-off conditions:

xv = 1
r

(xv
∞)+ + 1

r2 (xv
∞)−, yv = (yv

∞)− + 1
r

(yv
∞)+

xA = (xA
∞)+ + 1

r
(xA

∞)−, yA = 1
r

(yA
∞)− + 1

r2 (yA
∞)+

xh = r(xv
∞)+ + (xv

∞)−, yh = 1
r2 (yh

∞)− + 1
r3 (yh

∞)+
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XAB = r(XAB
∞ )+ + (XAB

∞ )−, Y AB = 1
r2 (Y AB

∞ )− + 1
r3 (Y AB

∞ )+

Based on the Gullstrand-Painlevé metric and the corresponding momenta Wµν , we assume the following
fall-off conditions on the spherically symmetric degrees of freedom

µ = 0 + 1
r5/2µ∞, λ = log(r) + 1

r5/2λ∞, πµ =
√

Ωπ∞
µ

√
r, πλ =

√
Ωπ∞

λ

√
r (3.5.29)

The fall-off conditions of the symmetric and non-symmetric variables make the symplectic term of the
action well defined: ∫

dΣWµνṁµν (3.5.30)

It converges as r tends to infinity because it is of order r−2. The terms of order r−1 vanish because they
correspond to an integral over the sphere of an integrand with odd parity.

Let us now consider the smeared constraints V⃗ [f⃗ ] and V0[f ]. For the variation of the diffeomorphism
constraint, we obtain

δV⃗ [f⃗ ] =
∫

dΣ fµδ[mνρ,µW
νρ − 2∂ρ(mµνP

νρ)]

=
∫

dΣ
[
δWµν(L

f⃗
m)µν − (L

f⃗
W )µνδmµν

]
+
∫

∂Σ
dΣρ[fρWµνδmµν − 2fµδ(mµνW

νρ)]
(3.5.31)

where we used the Lie derivative L
f⃗

with respect to the vector field f i. The boundary integrals are evaluated
over an asymptotic sphere at r = ∞ and the outward normal is pointing in the radial direction dΣρ = δ3

ρ dΩ.
The boundary terms are given by∫

∂Σ
dΩ
[
f3Wµνδmµν − 2fµδ

(
mµνW

3ν
)]

(3.5.32)

In the first boundary term, the symmetric part of W ijδmij behaves as r−2 and the even non-symmetric
part behaves as r−2 and for the odd non-symmetric part we have r−1. Therefore, we have to choose
f3 = r(f3

∞)+ +(f3
∞)− in order for the boundary term to vanish in the limit. Then, provided that the second

contribution to the boundary term is finite, we have written the boundary term as a total variation.

In the second boundary term, the spherically symmetric contribution of δ(mµνW
3ν) grows like the r1/2

and for a finite result we require a stronger fall-off behaviour for the spherically symmetric contribution
f3

sym. We choose f3
sym = O(r−1/2). For the nonsymmetric contributions to δ(mµνW

3ν) we find that for
µ = 3 the term behaves as constant for the odd and like r−1 for the even contributions. For the fall-off of
f3 as above it gives a finite limit as r → ∞. For µ = A, the term behaves as r for the odd parity and as a
constant for the even parity. Therefore, we have to choose fA = (fA

∞)+ + r−1(fA
∞)− to obtain a finite limit.

Thus, we rewrote the boundary term in terms of a total derivative:

−2δ
∫

∂Σ
dΩfµmµνW

3ν (3.5.33)

We define the improved generator of gauge transformations H⃗[f⃗ ] = V⃗ [f⃗ ] + B⃗[f⃗ ], where

B⃗[f⃗ ] = 2
∫

∂Σ
dΩ
[
fµmµνW

3ν
]
. (3.5.34)
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Let’s consider the variation of the Hamiltonian constraint. We need the variation of the Ricci scalar,
which was derived in terms of the variation of the Christoffel symbols in equation (3.3.3). It remains to
compute the variation of the Christoffel symbols in terms of the metric:

δΓi
jk = 1

2g
il(∇jδglk + ∇kδgjl − ∇lgjk) (3.5.35)

Combining it with (3.3.3), we obtain

δR = δgijRij + 1
2∇k

(
gklgij(2∇iδglj − ∇lgij) − gjlgik∇iδgjl

)
= δgijRij + ∇i∇jδgij − ∇k∇k(gijδgij)

(3.5.36)

Recall the smeared Hamiltonian constraint

V0[f ] =
∫

dΣ f

[
κ√

detm

(
WµνW

µν − 1
2(mµνWµν)2

)
− 1
κ

√
detmR

]
(3.5.37)

We observe, that the only dependence on derivatives of canonical variables comes from the Ricci scalar term.
A variation leads to the boundary term

∫
dΣk

√
detm
κ

[(
mikmjl −mijmkl

)
f∇lδmij +

(
mklmij −mikmjl

)
∇lfδmij

]
=
∫

dΣk

√
detm
κ

[(
mikmjl −mijmkl

)
(f∇lδmij − ∇lfδmij)

] (3.5.38)

Similarly to the diffeomorphism constraint, we would like to rewrite the boundary term as a total dif-
ferential. For this, notice that inside the variation we can subtract the non-dynamical part of the metric:
δmij = δ(mij −mND

ij ). We pull the variation outside of the integral and obtain

δ

∫
dΣk

√
detm
κ

[(
mikmjl −mijmkl

)(
f∇l(mij −mND

ij ) − ∇lf(mij −mND
ij )

)]
(3.5.39)

We now show that using the fall-off conditions the correction terms could be neglected. For
√

detm and m−1

putting the variation reduces the power of r in the asymptotic expansion by one. For m−mND the power
of r is not increasing. Therefore, the correction terms have a power of r less compared to the expression
above and they vanish in the limit r → ∞ provided (3.5.39) is finite,

It remains to show that (3.5.39) is finite for suitably chosen f . The fall-off conditions on m are not
modified by the transformation to Gullstrand-Painlevé coordinates. Additionally, working in Cartesian
coordinates it is easy to see that

√
detm and m−1 are of order 1 and that m−mND is of order O(r−1) even

and O(r−2) odd. Hence, choosing f = f+
∞ + rf−

∞ the integral over the sphere gives a finite result.

The improved generator for the Hamiltonian constraint is given by H[f ] = V0[f ] +B[f ], where

B[f ] := −
∫

dΣk

√
detm
κ

[(
mikmjl −mijmkl

)(
f∇l(mij −mND

ij ) − ∇lf(mij −mND
ij )

)]
(3.5.40)

50



3.6 Black Hole Solutions in Hamiltonian Formulation

3.6 Black Hole Solutions in Hamiltonian Formulation

We saw that non-rotating black holes are solutions of the spherically symmetric Einstein equations. In
the following, we derive the Schwarzschild and Reissner-Nordstrøm black hole from the Hamiltonian theory
based on the ADM formulation. A treatment of the coupled Einstein - Maxwell system in the Hamiltonian
form can also be found in [112] and we use a similar notation for the canonical variables. In the analysis,
we split the canonical variables into spherically symmetric and non-symmetric degrees of freedom as in the
previous section and neglect the non-symmetric ones for now.

For the computations we apply the tools we developed for handling constrained Hamiltonian systems
using the reduced phase space approach (see section 2). Recall the expansion of the metric and its conjugate
momentum in terms of the symmetric canonical variables

m33 = e2µ, m3A = 0, mAB = e2λΩAB

W 33 =
√

Ω1
2e

−2µπµ, W 3A = 0, WAB = 1
4e

−2λπλΩAB
(3.6.1)

In addition to the gravitational variables, we introduce electromagnetic matter. The electromagnetic
field is described by the vector potential Ai. The matter action is written in terms of the Faraday tensor
Fij = ∂iAj − ∂jAi:

Sem = − 1
4g2

∫
dx

√
−ggikgjlFijFkl (3.6.2)

In the action we introduced the coupling constant g := ϵ
−1/2
0 .

We now split the four dimensional metric into its 3+1 form. The inverse metric in this decomposition is
given by

gtt = − 1
N2 , gtµ = Nµ

N2 , gµν = mµν − NµNν

N2 (3.6.3)

This gives

S = 1
4g2

∫
dx

√
mN

( 2
N2m

µνF0µF0ν − 4N
µ

N2m
νρFµνF0ρ −mµνmρσFµρFνσ + 2N

µNρ

N2 mνσFµνFρσ

)
(3.6.4)

We introduce the momenta Ei conjugate to Ai. A0 appears in the action without time derivative and we
obtain the primary constraint E0 = 0. For the momentum conjugate to Aµ we find

Eµ =
√
m

g2N
(mµνF0ν −NρmµσFρσ) (3.6.5)

∂0Aµ = g2N√
m

(
mµνE

ν +
√
m
Nρ

g2N
Fρµ

)
+ ∂µA0 (3.6.6)

Inserting this into the action, we obtain the action in its Hamiltonian form

Sem =
∫

dΣdtȦiE
i + Ȧ0E

0 + λE0 +N

(
g2

2
√
m
mµνE

µEν +
√
m

4g2 FµνF
µν

)
+NρFρµE

µ −A0∂µE
µ (3.6.7)

Imposing the consistency of the primary constraint E0 = 0, we find the Gauß constraint ∂µE
µ. Additionally,
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we read off the electromagnetic contributions to the Hamiltonian and diffeomorphism constraints

V em
0 = g2

2
√
m
mµνE

µEν +
√
m

4g2 FµνF
µν

V em
µ = FµνE

ν

(3.6.8)

Let us specialize to spherical symmetry. For a spherically symmetric vector field, we only have the
contributions E3 and A3. The Gauß constraint implies that ∂3E

3 = 0 and therefore E3 has to be a radial
constant. We take E3 =

√
Ωξ.

Because the action depends on Aµ only through the tensor Fµν which contains antisymmetric derivatives
of Aµ, there is no contribution from A3. This immediately implies that ξ is constant in time due to the
Hamiltonian equations for E3. We fix the gauge of the vector potential to A3 = 0 and consistency of the
gauge fixing condition gives a differential equation for A0, which can be solved explicitly.

Combining the gravitational and electromagnetic contributions to the electromagnetic Hamiltonian and
reducing to spherical symmetry, we obtain the spherically symmetric Hamiltonian and the spherically sym-
metric radial diffeomorphism constraint. In terms of the spherically symmetric variables (µ, πµ) and (λ, πλ)
defined in (3.6.1) and the electric charge ξ we find

Cv = 4π
[
e−µ−2λ

(
π2

µ

8 − πµπλ

4 + 2e4λ
(
2λ′′ + 3(λ′)2 − 2λ′µ′ − e2(µ−λ)

))
+ g2

4 e
µ−2λξ2

]
Ch = 4π

[
µ′πµ + λ′πλ − π′

µ

] (3.6.9)

where the prime corresponds to radial derivatives. We changed the variable for the constraints from V to C
in order to agree with the notation used in the section on perturbation theory. The subscript v stands for
“vertical” and is the Hamiltonian constraint, the subscript h stands for “horizontal” and denotes the radial
diffeomorphism constraint.

The strategy is to obtain a solution of these constraints for πµ and πλ. We start with the diffeomorphism
constraint and obtain

πλ = 1
λ′

(
π′

µ − µ′πµ

)
. (3.6.10)

We insert this into the Hamiltonian constraint and obtain a differential equation for πµ:

−∂rπ
2
µ + (λ′ + 2µ′)π2

µ + 16e4λλ′
(
2λ′′ + 3(λ′)2 − 2λ′µ′ − e2(µ−λ)

)
+ 2g2λ′e2µξ2 = 0 (3.6.11)

We can simplify the first two terms by multiplying the expression by e−λ−2µ. We also rewrite the terms
independent of πµ in terms of a total derivative

−∂r

(
e−λ−2µπ2

µ

)
+ ∂r

(
16(λ′)2e−2µ+3λ − 16eλ − 2g2e−λξ2

)
= 0 (3.6.12)

The integration of the differential equation is straight forward. We obtain the solution

π2
µ = e2µ+λ

[
16rs + 16

(
(λ′)2e−2µ+3λ − eλ − g2

4 e
−λξ2

)]
(3.6.13)

where rs is an integration constant. The solution for πλ is obtained by inserting the solution for πµ into the
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expression for the diffeomorphism constraint. We obtain

πλ = 1
2πµ

(
π2

µ + 16e4λ(2λ′′ + 3(λ′)2 − 2λ′µ′ − e2(µ−λ)) + 4g2e2µξ2
)

(3.6.14)

The next step in the program requires a gauge fixing condition. For this we consider the Gullstrand-
Painlevé gauge given by the conditions λ − log(r) = 0 and µ = 0. This gauge is preserved under time
evolution provided that the following equations are satisfied

0 = µ̇ = 4π
[1

4e
−µ−2λ(πµ − πλ)N + ∂rN

3 + µ′N3
]

0 = λ̇ = 4π
[
−1

4e
−µ−2λπµN + λ′N3

] (3.6.15)

This is a system of differential equations for the lapse function N and the radial shift N3. For the solution,
we start by solving the second equation for N :

N = 4
πµ
eµ+2λλ′N3 (3.6.16)

This solution is used in the first equation to eliminate N and to obtain a differential equation for N3.(
1 − πλ

πµ

)
λ′N3 + µ′N3 + ∂rN

3 = 0 (3.6.17)

In this equation, we use our knowledge from the spherically symmetric constraints. We have that πλ =
1
λ′

(
π′

µ − µ′πµ

)
and get the differential equation

(
2µ′πµ + λ′πµ − π′

µ

)
N3 + πµ∂rN

3 = 0 (3.6.18)

We multiply this equation by e−2µ−λ and divide it by π2
µ. Then, the differential equation simplifies to a

total derivative
∂r

(
1
πµ
e2µ+λN3

)
= 0 (3.6.19)

The solution for N3 is straight forward and inserting it into (3.6.16) we have the solution

N = Ce−µ+λλ′, N3 = 1
4Ce

−2µ−λπµ (3.6.20)

The integration introduced an integration constant C. It can be absorbed into a reparametrisation of the
time coordinate. In GP gauge we have N = C and N3 = C

√
rs/r . Thus, we set C = 1 to make contact

with the Schwarzschild metric in GP coordinates that we discussed before.
Let us now evaluate the boundary terms from the previous section

B⃗[f⃗∗] = 2
∫

∂Σ
dΩ f3

∗W
33 =

∫
∂Σ

dΩ f3
∗πµ = lim

r→∞
πe−λπ2

µ (3.6.21)

In the calculation we only kept the first non-trivial orders for r → ∞. f3
∗ was substituted by the solution of

the stability condition we found above.
The reduced Hamiltonian is available through Theorem 2.12 by finding the function χ[j], where j = πµ.
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We have to solve the functional differential equation

lim
r→∞

πe−λπµ = δχ[πµ]
δπµ(r) (3.6.22)

The solution is given by χ[πµ] = limr→∞
1
2πe

−λπ2
µ and the physical Hamiltonian is

H = 1
κ
χ[πµ] = lim

r→∞
π

2κrπ
2
µ (3.6.23)

In this equation we reinserted the gravitational coupling constant κ which is present in front of the gravi-
tational action (see (3.5.21)). In the units G = c = 1, we have κ = 16π. Inserting the solution for π2

µ in
(3.6.13), we have

H = 1
κ
χ[πµ] = lim

r→∞
π

2κ [16rs] = M (3.6.24)

where we used that rs = 2M . The reduced Hamiltonian just corresponds to the ADM mass of the black
hole.

In the solution of the constraint we found an integration constant rs = 2M related to the mass of the
black hole. The discussion in section 2 suggests that there is a canonical pair (M,PM ) corresponding to
a pair of global, observable degrees of freedom located at infinity. The momentum conjugate to the mass
can be constructed explicitly (see [113] and appendix A in [98]). Introducing (M,PM ) using canonical
transformations leads to a new constraint of the form M ′ = 0. In perturbation theory the momentum PM

might play an important role and the mass of the black hole M might actually be dynamical. In this thesis,
we will not study this further and leave this alternative approach for future work.

3.7 Classical Theorems on Black Holes

There are several general results concerning black holes which can be proven rigorously in classical general
relativity. The most famous ones are the singularity theorems showing that singularities are a generic
prediction of general relativity and the black hole area theorem that the area of the black hole event horizon
can only grow with time and never decreases. In this section, we would like to recall some of these theorems
and refer the reader to the literature for detailed proofs of the statements.

In the previous sections, we discussed the solutions of general relativity for spherical symmetry in the
Lagrangian and Hamiltonian formulation. We also mentioned the extension of the results to rotating black
holes and axial symmetry. In all of these spacetimes, the metric is not regular and possesses divergences
at certain points in spacetime. For the Schwarzschild solution in Schwarzschild coordinates, the metric is
divergent at r = 0 and r = 2M . In contrast to that, the same metric in Gullstrand-Painlevé coordinates is
only singular at r = 0 while r = 2M is perfectly regular. Hence, in contrast to the initial believe, the point
r = 2M is not singular and the irregularity in the Schwarzschild coordinates is just an artifact of the choice
of coordinates.

To avoid coordinate artifacts, the study of scalar quantities such as the Ricci scalar R and Kretschmann
scalar RijklR

ijkl are better suited to investigate singularities in spacetime. In fact, the Kretschmann scalar
is perfectly regular at the horizon but diverges at r = 0 showing that there might be a singularity. However,
it could still be possible that the Kretschmann scalar is perfectly regular but Rijkl is still pathological in
some coordinate system.
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A possibility to circumvent the problems of coordinate dependence and using the curvature tensor as a
measure for the presence of singularities in spacetimes, are geodesics. If the geodesic describing the motion
of a freely falling observer in spacetime terminates in finite affine time, we call the spacetime singular.

For the understanding of the singularity theorems, we need to introduce the notion of null geodesic
congruences and review some of their properties. More details on null geodesic congruences can be found
in [104]. Here we will follow closely the notation in [98]. We work in the Hamiltonian formulation of
general relativity and assume (M, g) to be globally hyperbolic and foliated into three-dimensional spatial
hypersurfaces isomorphic to Σ. As before, let n be the timelike normal to Σ (g(n, n) = −1).

Inside the Cauchy surface Σ, we consider a closed, oriented 2-surface S without boundary. This surface
comes equiped with a spacelike normal s which is tangent to Σ (g(n, s) = 0) and we choose it to be normalized
g(s, s) = 1. Like in section 3.5, we define the induced metric on the Cauchy surface Σ by m = g + n ⊗ n.
Similarly, S is equipped with the metric h = m− s⊗ s by pulling back the metric m on Σ to S.

At each point yA ∈ S (A = 1, 2), we define null geodesics cyA(λ) with initial tangents l± = n ± s and
affine parameter λ. This defines two null geodesic congruences C±

S through S with tangent vectors

∂±
λ =

∂cµ
y,±(λ)
∂λ

∂µ =: l±, ∂±
A =

∂cµ
y,±(s)
∂yA

=: eA,± (3.7.1)

Here ∂±
λ is the parallel transport of l± from S along the geodesic and ∇l± l± = 0. The vector field eA,± is

the deviation vector field which describes the deviation of nearby geodesics.
We would like to describe how the geodesic congruence behaves as we move along the geodesics. This

motivates to investigate the covariant derivative ∇l±eA. Using the fact that [∂±
λ , ∂

±
A ] = 0, this is equivalent

to ∇eA l±. Since g(l±,∇eA l±) = 0, the only interesting projection is captured by the tensor

κ±
AB = g(eA,±,∇eB ,±l±) (3.7.2)

Additionally, on C±
S we introduce

h±
AB = g(eA,±, eB,±) . (3.7.3)

and its inverse hAB
± defined by hAB

± h±
BC = δA

C .
Then, we decompose κ±

AB into expansion, shear and rotation:

θ± := hAB
± κ±

AB, σ±
AB := κ±

(AB) − 1
2θ±h

±
AB, ω±

AB := κ±
[AB] (3.7.4)

The quantities describe the expansion, shear and rotation of nearby geodesics in the congruence.
Taking the derivative of κ±

AB in the direction l±, we find the equation

∇l±κ
±
AB = −κ±

ACκ
±
DBh

CD
± −R(eA, l±, eB, l±) (3.7.5)

and using the decomposition of κ±
AB we find Raychaudhuri’s equation:

∇l±θ± = −1
2θ

2
± − σ±

ABσ
AB
± + ω±

ABω
AB
± −R(l±, l±) . (3.7.6)

It describes the change of the expansion along the geodesic congruence and is central to the proof of the
singularity theorems.
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The expansion is a central object in this section and later in section 6 we show a strategy to construct an
explicit, perturbative formula for it. In terms of the variables (mµν ,W

µν), we have

θ± = hµν
± ∇µl±ν = (mµν − sµsν)∇µ(nν ± sν)

= K − sµsνKµν ±mµν∇µsν

= −sµsνWµν√
m

±Dµs
µ

(3.7.7)

In order to avoid explicitly evaluating covariant derivatives, we can multiply the expression by the square
root of m and use the following expression

√
mθ± = −sµsνW

µν ± ∂i(
√
mmµνsν) (3.7.8)

For the study of black holes, the following definition of trapped surfaces turns out to be useful. A trapped
region is defined as a region of spacetime such that both the in- and out-going expansion are smaller than
zero. This coincides with the physical picture of a black hole, where the null rays in a trapped region inside
the black hole need to converge towards the singularity.

Definition 3.18: Consider a globally hyperbolic spacetime (M, g) and a Cauchy surface Σ in it.

1. A closed, orientable 2-surface S ⊂ Σ without boundary ∂ΣS = ∅ is called trapped if θ+, θ− < 0.

2. A trapped region in Σ is a closed subset T ⊂ Σ such that S := ∂ΣT (boundary within Σ) is trapped.

3. The trapped surface in Σ defined by the total trapped region (closure of union of all trapped regions)
is called the apparent horizon AΣ of Σ.

The above definition is within one Cauchy surface Σ. Using the foliation of spacetime, we extend the
trapped surfaces / apparent horizon to all of spacetime. This gives the trapping horizon / apparent horizon
respectively

Definition 3.19: Consider a globally hyperbolic spacetime (M, g) and a foliation F =
⋃

τ∈R Στ of M by
Cauchy surfaces Στ .

1. If τ 7→ Sτ ⊂ Στ is a one parameter family of trapped surfaces then S :=
⋃

τ∈R Sτ is called a trapping
horizon.

2. Let Aτ := AΣτ be the apparent horizon of Στ . Then AF :=
⋃

τ∈RAτ is called the apparent horizon of
F .

For the visualization of the causal structure of spacetimes it is useful to study conformal completions of
spacetime. The idea is to embed the spacetime (M, g) into a larger spacetime (M, g) such that the metrics
are conformally related g = Ω2g. The conformal factor Ω goes to zero at infinity. This brings the the points
infinitely far away to a finite distance but the metric still describes the same causal structure.

For a visual representation, we can study a two-dimensional surface in the conformally compactified
spacetime. The resulting picture, known as a Penrose diagram is a two-dimensional representation of the
causal structure of the full spacetime in a finite plot. The Penrose diagram of the Schwarzschild black hole
forming from gravitational collapse is displayed in figure 3.1.
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r
=
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Figure 3.1: Conformal Diagram of a Schwarzschild black hole

In this picture we marked future and past timelike infinity i+ and i− which corresponds to the points
where timelike geodesics end and begin. A massive particle or timelike observer will start in i− and end up
in i+. The lines I + and I − are called future and past null infinity. Ingoing light rays begin at I − and
end up at I +. Finally, i0 is spacelike infinity and it is the end point of spacelike geodesics. It represents
the point at infinity, infinitely far away.

The Penrose diagram in figure 3.1 of a Schwarzschild black hole has additional features. There is a region
B which is not in the past of I + and therefore, no signal can reach I + from inside B. This region is called
the black hole region and the boundary H = ∂B is the event horizon of the black hole. The zigzag line is
the black hole singularity and we see that observers falling into the black hole will eventually end up in the
singularity.

In contrast to the apparent horizon, the event horizon is a “teleological” notion because we need to know
the full future evolution of the metric in order to determine the location of the black hole region B and
event horizon H. In contrast to that, the apparent horizon is defined quasi-locally in each Cauchy surface.
However, the definition of apparent horizons depends on the particular foliation we chose for its definition.
We can think of this choice of foliation as being associated to an observer looking at the black hole in his own
frame of reference. For instance, in the Gullstrand-Painlevé gauge and the corresponding GP foliation, we
naturally singled out an observer freely falling in the black hole spacetime. The apparent horizon then gets a
direct operational meaning as the region of spacetime this observer would consider as the black hole region.
In contrast to that, the observer could already be inside the event horizon because of some gravitational
collapse in the future without being aware of it. This shows that it is more natural to use the apparent
horizons if we would like to make contact to actual experiments.

The singularity theorem due to Penrose is

Theorem 3.20 (Penrose 1965): Let (M, g) be a globally hyperbolic and connected spacetime with a
non-compact Cauchy surface Σ. Suppose that Rµν l

µlν ≥ 0 for all l null which is satisfied if the Einstein
equations hold and the matter satisfies the strong energy condition. In addition, suppose that M contains a
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trapped surface S and let θ0 be the maximum value of the expansion of both in- and out-going null geodesic
congruences. Then at least one inextendible future directed null geodesic orthogonal to S has affine length
smaller than 2/|θ0|.

Later it was generalised by Hawking by weakening some of the assumptions. For a proof of this theorem
see [104].

In the Schwarzschild spacetime, all the spheres with constant radius r < 2M are trapped surfaces. There
also exist trapped surfaces for perturbations of the Schwarzschild black hole (see section 5): By continuity,
there is a value of r sufficiently small such that the expansion of the sphere around r = 0 is smaller than zero.
Thus, the singularity inside a black hole is not an artefact of treating the black holes with exact spherical
symmetry but is a generic prediction of general relativity.

Another important theorem about black holes in classical general relativity will be discussed next. For
its understanding, we need one preliminary definition:

Definition 3.21: A spacetime (M, g) with conformal completion (M̃, g̃), ψ : M → M̃ is called strongly
future asymptotically predictable, if there exists an open region Õ ⊂ M̃ such that ψ(M) ∩ J−(I +) ⊂
Õ (the closure in M̃ of the intersection between ψ(M) and the causal past of future null infinity). Additional,
(Õ, g̃) has to be globally hyperbolic.

Then, Stephen Hawking proved the black hole area theorem:

Theorem 3.22 (Black Hole Area Theorem; Hawking 1971): Let (M, g) be strongly asymptotically pre-
dictable, R(l, l) ≥ 0 for all l null. Let Σ̃0 and Σ̃1 be Cauchy surfaces for Õ and Σ̃1 ⊂ I+(Σ̃0) (timelike future
of Σ̃0). Let Hj = H ∩ Σj (j = 0, 1), where H = ∂B is the event horizon of the black hole region B. Then,
the area of H1 is larger than or equal to the area of H2, where we define the area functional of Hi as

Ar[Hi] =
∫

Y
d2y

√
det
(
X∗

Hi
g
)
, (3.7.9)

where XHi : Y ⊂ R2 → Hi ⊂ M is the embedding into M describing Hi.

For a proof of this theorem see [104]. The theorem implies that under reasonable assumptions, the area
of the event horizon can never decrease. Therefore, in classical general relativity black holes can only grow
by absorbing matter or by merging with other black holes.

The black hole solutions we presented in section 3.4 are the most general ones in four dimensions according
to the following theorem:

Theorem 3.23 (black hole uniqueness (no hair) theorem): The Kerr-Newman black hole solution is the
only asymptotically stationary, electrovacuum and strongly asymptotically predictable spacetime.

As stated the theorem has not yet been proven. For further technical assumptions, it is possible to prove
weaker versions of the theorem (see [7]).

We conclude this section with an intriguing analogy between black holes and thermodynamics. Consider
the Kerr-Newman family of black holes characterised by mass M , charge Q and angular momentum J = aM .
The spacetime has horizons at r± = m ±

√
m2 − a2 −Q2. Let us study the outer horizon located at r+.

This horizon has area equal to
A = 4π(r2

+ + a2) = 16πMirr (3.7.10)
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where Mirr = m2 +
√
m4 − J2 is the irreducible mass of the black hole. Calculating the variation δA, we

find the relation
δM = κ

8πδA+ ΩHδJ + νδQ (3.7.11)

with κ = r+−m
r2

++a2 , ΩH = a
r2

++a2 and ν = r+Q
r2

++a2 . In analogy with the first law of thermodynamics (δE =
TδS − pδV ) this suggests the identification E → M , T → κ and S → A.

This suggests an analogy between black holes and classical thermodynamics: The zeroth law of thermo-
dynamics that T = const. translates to the condition that κ = const. on the horizon which can be proven
explicitly. The second law of thermodynamics states that the entropy S of a system is never decreasing. This
corresponds to the statement that the area of the event horizon A is not decreasing which is the statement
of the black hole area theorem. The third law of thermodynamics states that T = 0 can never be reached
in physical processes. A black hole with κ = 0 corresponds to an extremal black hole m2 = a2 +Q2 and we
expect it to be impossible to reach such black holes in physical processes.

At this point, this analogy is on a formal level because there is no physical reason to assign a temperature
or entropy to a black hole. Black holes are not emitting any radiation so assigning a non-zero temperature
to them seems impossible. A partial answer to this issue is given in the next section. In the presence of
quantum fields on a black hole spacetime we can show that black holes emit radiation following a thermal
spectrum. The characteristic temperature of this black body radiation will be proportional to κ.
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and the Hawking Effect

In the discussion of classical properties of black holes in the previous section, we encountered an unexpected
similarity between classical thermodynamics and black hole physics. There is an analogy between certain
relations satisfied by the parameters of the Kerr-Newman spacetime and the laws of classical thermodynam-
ics. In particular we made the correspondence between temperature T and surface gravity κ and between
entropy S and the area of the event horizon A. However, this correspondence is very formal because classical
black holes are perfect absorbers and have zero temperature.

In the following, we shed some more light onto this equivalence by considering quantum field theory on
black hole spacetimes. As we will see, due to quantum effects black holes emit particles following a thermal
spectrum with a characteristic temperature. This provides an exact expression for the temperature we
assign to a black hole and fixes the proportionality constants between temperature and surface gravity, and
between entropy and area of the horizon.

The calculation assumes a fixed spacetime, ignoring any backreaction effects of the radiation on the black
hole spacetime. Since, the radiation carries away energy from the black hole we expect the black hole to
lose some of its mass and slowly evaporate. In the end, we show a simple heuristic argument for how this
black hole evaporation process takes place.

This section is structured as follows: First, we introduce quantum field theory on curved spacetime. For
simplicity we only consider a free, massive scalar field and discuss some general properties and new features
if we generalize from Minkowski to arbitrary spacetimes. Then, we apply the formalism to the Schwarzschild
black hole and derive the famous result that black holes emit radiation. We conclude with a short outlook
on the problem of backreaction and the evaporation of black holes.

4.1 Scalar Quantum Field Theory in Curved Spacetime

The subject of quantum field theory in curved spacetime is discussed in by many authors in the literature,
see [8, 13, 16, 17]. In this thesis we only consider the quantization of scalar fields for simplicity. The
discussion is easily generalized to general fields and with a bit more work also to the case of fermions.

Consider a spacetime (M, g) and a Klein Gordon scalar field ϕ minimally coupled to general relativity.
The action for this system is given by

S = −
∫

M
d4x

1
2(∇µϕ∇µϕ+m2ϕ2) . (4.1.1)
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4.1 Scalar Quantum Field Theory in Curved Spacetime

Here, ∇µ is the unique torsion free covariant derivative associated to the metric g and m is the mass of the
scalar field. A variation of the action with respect to the scalar field gives the Klein-Gordon equation

(□ −m2)ϕ = 0 , (4.1.2)

where □ = gµν∇µ∇ν . We call the set of solutions of the Klein-Gordon equation Sol and we denote the
complexification of Sol by SolC. On the space of complexified solutions SolC, we define a sesquilinear form
given by

⟨ψ, ϕ⟩ = −i
∫

Σ
dSµ (ψ∗∇µϕ− (∇µψ)∗ϕ) . (4.1.3)

This map is well-defined since one can show that it is independent of the choice of Cauchy surface. Let Σ1

and Σ2 be two Cauchy surfaces which are the boundary of some spacetime region R. Using Stokes theorem
and the fact that ψ, ϕ satisfy the Klein-Gordon equation, we have

⟨ψ, ϕ⟩Σ1 − ⟨ψ, ϕ⟩Σ2 =
∫

R
d4x

√
− det g(ψ∗□ϕ− □ψ∗ϕ) = 0 (4.1.4)

⟨·, ·⟩ is a possible candidate for an inner product on the space of solutions. However, it fails to be positive
definite and the only way out is to find a subspace where it is positive definite. Consider a decomposition
SolC = Sol+

C
⊕Sol−

C
, such that ⟨·, ·⟩ is positive definite on Sol+

C
and Sol−

C
= (Sol+

C
)∗. Then, for ψ, ϕ ∈ Sol−

C

we find elements ψ+, ϕ+ in Sol+
C

such that ψ = (ψ+)∗ and ϕ = (ϕ+)∗. Then

⟨ψ, ϕ⟩ = ⟨(ψ+)∗, (ϕ+)∗⟩ = −⟨ψ+, ϕ+⟩ ≤ 0 (4.1.5)

Hence, ⟨·, ·⟩ is negative definite on Sol−
C

. Additionally, by definition ⟨ψ, ϕ⟩ = 0 for ψ ∈ Sol+
C

and ϕ ∈ Sol−
C

.
The one particle Hilbert space H is given by the completion of Sol+

C
with respect to the inner product

⟨·, ·⟩. Based on this Hilbert space H we construct the symmetric Fock space FS(H) as

FS(H) =
∞⊕

n=0
H⊙n , (4.1.6)

where ⊙ denotes the symmetrized tensor product of the one-particle Hilbert spaces. The inner product on
the Fock space is given by the sum of the inner products on all the n-particle Hilbert spaces.

On the Fock space we define creation and annihilation operators. They act on a n-particle state as

a(f)ψ1 ⊙ · · · ⊙ ψn = 1√
n

n∑
k=1

⟨f, ψk⟩ψ1 ⊙ · · · ⊙ ψ̂k ⊙ · · · ⊙ ψn (4.1.7)

a†(f)ψ1 ⊙ · · · ⊙ ψn =
√
n+ 1f ⊙ ψ1 ⊙ · · · ⊙ ψn , (4.1.8)

where f ∈ H and ψ̂k means that ψk is omitted. The operators a and a† satisfy the commutation relations

[a(f), a(g)] = 0, [a†(f), a†(g)] = 0, [a(f), a†(g)] = ⟨f, g⟩1H . (4.1.9)

The construction heavily depends on the choice of a positive subspace of SolC. For different choices we
will obtain different Hilbert spaces and consequently a different Fock space. Consider two different choices
of the positive subspace and the two one-particle Hilbert spaces H1 and H2. Now, the question is under
which circumstances the two spaces are unitarily equivalent, i.e. there exists a unitary map U : H1 → H2.
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4 Quantum Field Theory on Curved Spacetimes and the Hawking Effect

In [8], Wald proves a theorem which shows under which circumstances this is the case. Consider the
decomposition SolC = Sol+

C
⊕ Sol−

C
and the projectors P+, P− onto Sol±

C
respectively. Then

(ψ, ϕ) := ⟨P+ψ, P+ϕ⟩ (4.1.10)

defines a positive bilinear form on Sol. Then, we decompose (ψ, ϕ) into real and imaginary parts

(ψ, ϕ) = g(ψ, ϕ) − i

2ω(ψ, ϕ) (4.1.11)

where both g(ψ, ϕ) and ω(ψ, ϕ) are real. From the properties of ⟨·, ·⟩ it follows that g is symmetric and ω

anti-symmetric. For ψ, ϕ ∈ Sol, ω is determined by

Im(ψ, ϕ) = 1
2i
(
⟨P+ψ, P+ϕ⟩ − ⟨P+ψ, P+ϕ⟩

)
= 1

2i(⟨P+ψ, P+ϕ⟩ + ⟨P−ψ, P−ϕ⟩) = 1
2i⟨ψ, ϕ⟩ (4.1.12)

where we used that ψ = P+ψ + P−ψ and that with respect to ⟨·, ·⟩ the positive and negative subspaces are
orthogonal. Therefore, ω is given by

ω(ψ, ϕ) =
∫

Σ
dSµ (ψ∇µϕ− ∇µψϕ) (4.1.13)

which is the symplectic form.
For the discussion of the unitary equivalence we need the notion of Hilbert-Schmidt operators and the

Riesz lemma (see [114]):

Definition 4.1: A bounded operator A ∈ B(H) on some Hilbert space H is called Hilbert-Schmidt
operator, if A has finite Hilbert-Schmidt norm:

∥A∥HS :=
∑

i

∥Aei∥2 , (4.1.14)

where ei is an orthonormal basis of H.

Lemma 4.2 (Riesz lemma): Let H be a Hilbert space. For each element l ∈ H∗ there is a unique y ∈ H
such that l(x) = ⟨y, x⟩ for all x ∈ H.

The map g plays a crucial role in the following theorem:

Theorem 4.3: Consider two different decompositions of the space of complexified solutions SolC and let
g1, g2 be defined as above. Then, the Hilbert spaces H1 and H2 are unitarily equivalent if

1. g1 and g2 induce equivalent norms

2. If case 1 holds, then the Riesz lemma implies the existence of an operator Q : Sol → Sol such that

g1(ψ,Qϕ) = g2(ψ, ϕ) − g1(ψ, ϕ) , (4.1.15)

This operator has to be a Hilbert Schmidt operator

For a proof of this statement see Theorem 4.4.1 in [8].
Let us see some features of different vacua in quantum field theories more explicitly. Consider two Hilbert

spaces H1 and H2 with orthonormal basis v(1)
I and v

(2)
I respectively. Then, we define the annihilation
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4.1 Scalar Quantum Field Theory in Curved Spacetime

operators a(1)
I = a(v(1)

I ) and similarly for H2. These give us access to two different notions of particles in the
two Hilbert spaces. The creation and annihilation operators are related through a Bogoliubov transformation

a
(2)
I =

∑
J

AIJa
(1)
J +BIJ(a(1)

J )†

(a(2)
I )† =

∑
J

(AIJ)∗(a(1)
J )† + (BIJ)∗(a(1)

J )
(4.1.16)

The coefficients A and B are given by AIJ = ⟨v(2)
I , v

(1)
J ⟩ and BIJ = ⟨v(2)

I , (v(1)
J )∗⟩. Imposing that a(2)

I satisfies
canonical commutation relations, we find AIKBJ

K = BIKAJ
K and that AIK(AJ

K)∗ −BIK(BJ
K)∗ = δIJ .

For the comparison of the two Hilbert spaces H1 and H2, we introduce the number operators. On H1,
it is defined by N (1) =

∑
I(a(1)

I )†a
(1)
I and similarly for N (2). The vacuum is the state in the Hilbert space

which is annihilated by the annihilation operator, i.e. a(1)
I |0⟩(1) = 0 for all I. Then, we observe that if B is

non-zero, even if the expected number of particles in one vacuum is zero there might be an infinite number
of particles in the other vacuum. For instance, for the vacuum |0⟩(1) we have

⟨0|(1)N
(2) |0⟩(1) =

∑
IJK

(BIJ)∗BIK ⟨0|(1) a
(1)
J (a(1)

K )† |0⟩(1)

=
∑
IJK

(BIJ)∗BIK ⟨0|(1) [a(1)
J , (a(1)

K )†] |0⟩(1)

=
∑
IJ

(BIJ)∗BI
J = Tr

(
BTB

) (4.1.17)

Not only is it non-zero in general but it might even be divergent. For general spacetimes, there is no way
to decide which of the representations are preferred. Using additional physical input, we can reduce the
ambiguity in the choice of vacuum. In the presence of symmetries, we can require the vacuum to be invariant
under the action of the symmetry.

Another important assumption is the Hadamard condition. Consider the two point function of a scalar
field theory. We require the singularity structure of the two point function to resemble the one in Minkowski
space, i.e.

⟨0|ϕ(x)ϕ(y) |0⟩ = u(x, y)
σ(x, y) + v(x, y) log(σ(x, y)) + w(x, y) (4.1.18)

where u(x, x) = (2π)−2 and σ(x, y) is the squared geodesic distance between x and y (see [115, 116]).
The functions v, w are expanded in powers of σ(x, y) as v(x, y) =

∑∞
n=0 vn(x, y)σn(x, y) and w(x, y) =∑∞

n=0wn(x, y)σn(x, y). Imposing (□x − m2) ⟨0|ϕ(x)ϕ(y) |0⟩, we find a recursion relation for the functions
vn(x, y) and wn(x, y) [117]. This fixes all the vn and the wn except for w0. This corresponds to the fact
that a Green’s function is uniquely determined up to adding a singularity free solution of the Klein-Gordon
equation. Hadamard proved that the series for v and w are uniformly converging inside a region where
σ(x, y) is single valued and the metric is analytic.

In the following we will use the Hadamard condition as a selection criterion for representations of the
canonical commutation and adjointness relations. However, even then, different representations are not
necessarily unitarily equivalent in spatially non-compact spacetimes.
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4 Quantum Field Theory on Curved Spacetimes and the Hawking Effect

4.2 Hawking Effect for Black Holes Formed by Gravitational Collapse

We now apply the tools we discussed to quantum fields on a Schwarzschild black hole spacetime. For
a detailed review of the Hawking effect see [10, 13]. Black holes in the universe are forming through
gravitational collapse and we need to generalise from the case of eternal black holes discussed so far. We
assume that we have a portion of spacetime in the past, which is well described by a Minkowski spacetime.
Then, in an intermediate region, a star forms and collapses to a black hole. After enough time passes, the
black hole settles to a final state which is well described by the Schwarzschild black hole spacetime. At I −

the vacuum state of the quantum field is well described by the Minkowski vacuum, while at I + the vacuum
is well described by the vacuum in a Schwarzschild spacetime.

There is no realistic and exact collapse solution for the intermediate region and we have to use approx-
imations motivated by physical arguments in order to compare the two vacua. For the computations we
assume a massless scalar field minimally coupled to gravity.

The solutions of the Klein-Gordon equation in Minkowski spacetime are well known. The linearity of the
wave equation allows us to construct the general solution of the wave equation as linear combinations of
modes. A mode is a solution of the wave equation for pure frequency ω and near past null infinity I − we
have the mode expansion

ϕ
∣∣∣
I −

=
∑
lm

∫
R+

dω√
2π

√
2ω

(
aM

lmω

1
r
eiωvYlm + c.c.

)
, (4.2.1)

where v = t+ r and u = t− r is constant on I +.
In the Schwarzschild part of spacetime we expand the scalar field in terms of spherical harmonics ϕ =∑
lm blmYlm The wave equation for ϕ reduces to a two dimensional wave equation for blm which reads

(−∂2
t + ∂2

r∗)blm −
(

1 − rs

r

)[
l(l + 1)
r2 + rs

r3

]
blm = 0 (4.2.2)

where r∗ = r+ rs log(r/rs − 1) is the tortoise coordinate. At the horizon r → rs we have r∗ → −∞ and for
r → ∞ we have r∗ → ∞. The potential vanishes both for r∗ → −∞ and r∗ → ∞. At I +, we can find the
solution of the wave equation behaves as

ϕ
∣∣∣
I +

=
∑
lm

∫
R+

dω√
2π

√
2ω

(
aS

lmω

1
r
eiωUYlm + c.c.

)
(4.2.3)

where U = t− r∗ and V = t+ r∗ is constant at I +.
Past null infinity defines a Cauchy surface Σ− := I −, but future null infinity I + does not. Worldlines

falling into the black hole will hit the singularity and are not seen in I +. We need to add the horizon of
the black hole H, in order to make it a complete Cauchy surface Σ+ := H ∪ I +.

We would now like to compute the Klein-Gordon inner product at Σ− to determine the Bogoliubov
coefficients. For this we have to propagate modes at I + back through the collapsing star to I −. Let
ϕ be a solution of the Klein-Gordon equation □ϕ = 0 of the form ϕ = AeiS where A is varying much
slower than S. Defining l = ∇S, the Klein-Gordon equation implies that lili = 0. Additionally, we have
(∇ll)i = lj∇jli = lj∇i∇jS = lj∇ilj = 0. Therefore, in this approximation, we have that l is null and
tangent to a null geodesic. In order to propagate the field from I + to I −, we cover the spacetime with a
grid of constant u = −2rse

−U/(2rs) and v = 2rse
V/(2rs) (Kruskal coordinates). The null ray connecting I +
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r = 0

H

v0

v

u

i0

I +

I −

i−

i+

Figure 4.1: Penrose diagram for the computation of Hawking radiation. The dashed black line is the last
null ray from past null infinity I − reaching an observer at I +. All the null rays for v > v0 will
fall into the singularity. The dashed blue line corresponds to the path of a null ray from I − to
I + assuming the geometric optics approximation.

to I − has two parts (see figure 4.1): Starting from I + at a point u, we follow a path with constant u until
we reach r = 0. Then, the null ray transitions to an ingoing null ray and it goes along a path with constant
v towards I −. Along this full null ray, we set the phase S to be equal to the phase S that we have at I +.
This approximation is called the geometric optics approximation.

From the Penrose diagram we see that v = v0 + u and using the relation between u and U we have

v = v0 − 2rse
− U

2rs =⇒ U = −2rs log
(
v0 − v

2rs

)
(4.2.4)

Since v0 is the last ray reaching I +, we have

fS
ωlm(v) =


1√

2π
√

2ωr
eiωU(v)Ylm for v < v0

0 for v > v0
(4.2.5)

Then, we have to compute the Klein-Gordon inner product between fS
ωlm and the Minkowski space modes

fM
ωlm = 1√

2π
√

2ω
1
re

iωvYlm. We find

⟨fS
ωlm, f

M
ω′l′m′⟩ = i

2π
√
ωω′

δll′δmm′

∫ v0

−∞
dv(iω′ + iω∂vU(v))eiω′v−iωU(v)

= −1
2π

√
ωω′

δll′δmm′

∫ v0

−∞
dv
(
ω′ + 2rsω

v0 − v

)
eiω′v−iωU(v)

(4.2.6)
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Without loss of generality we consider v0 = 0 and introduce the variable t = −vω′. The inner product reads

⟨fS
ωlm, f

M
ω′l′m′⟩ = −1

2π
√
ωω′

δll′δmm′
(
2rsω

′)−2irsω
∫ ∞

0
dt
(

1 + 2rsω

t

)
t2irsωe−it (4.2.7)

We realize the similarity of the integrand with the definition of the gamma function Γ(z) defined by

Γ(z) =
∫ ∞

0

dt
t
tze−t (4.2.8)

and using contour techniques we find that

Γ(z) = ±e±iπz/2
∫ ∞

0

ds
s
sze±is (4.2.9)

The integral in (4.2.7) involves the gamma functions for z = 2irsω + 1 and z = 2irsω and we have

⟨fS
ωlm, f

M
ω′l′m′⟩ = i

2π
√
ωω′

δll′δmm′
(
2rsω

′)−2irsω
eπrsω(Γ(2irsω + 1) + 2irsωΓ(2irsω)) (4.2.10)

Then, using the identity Γ(z + 1) = zΓ(z) we have

⟨fS
ωlm, f

M
ω′l′m′⟩ = i

π
√
ωω′

δll′δmm′
(
2rsω

′)−2irsω
eπrsωΓ(2irsω + 1) (4.2.11)

Using similar steps, we find for the other Bogoliubov coefficient

⟨fS
ωlm, (fM

ω′l′m′)∗⟩ = −i
π

√
ωω′

δll′δmm′
(
2rsω

′)−2irsω
e−πrsωΓ(2irsω + 1) (4.2.12)

We obtain the relation |⟨fS
ωlm, (fM

ω′l′m′)∗⟩| = e−2πrsω|⟨fS
ωlm, f

M
ω′l′m′⟩|

In the previous section, we saw that the number of particles in the mode is equal to

⟨NS
ωlm⟩M = M ⟨0| (aS

ωlm)†aS
ωlm |0⟩M =

∑
l′m′

∫
R+

dω′ |⟨fS
ωlm, (fM

ω′l′m′)∗⟩|2 (4.2.13)

We define the greybody factor Γω as

Γωlm =
∑
l′m′

∫
R+

dω′|⟨fS
ωlm, f

M
ω′l′m′⟩|2 − |⟨fS

ωlm, (fM
ω′l′m′)∗⟩|2 (4.2.14)

In the previous section, we showed that a Bogoliubov transformation with coefficients AIJ , BIJ has to satisfy
the relation AIK(AJ

K)∗ − BIK(BJ
K)∗ = δIJ . Rewriting A and B in terms of the inner products of the

modes fS/M
ωlm implies that the integrand for the greybody factor is infinite. It involves a delta distribution

evaluated at zero which arises because we used plane waves for the computation. For properly normalized
wave packets the greybody factor will be finite.

In the propagation of the scalar field from I + to I − we completely ignored any backscattering effects due
to the curvature of spacetime. Consider the situation in the other direction, i.e. a scalar field at I − which
propagates towards I +. Then, due to the potential in (4.2.2), there will be a certain fraction 1 − Γωlm

which is backscattered towards I + without getting close to the event horizon (reflection at the potential
barrier). This mode does not contribute to Hawking radiation. The remaining fraction Γω is responsible for

66



4.3 Hawking Effect for Eternal Black Holes

Hawking radiation as it passes close to the event horizon. For large ω we expect the wave to pass through
the potential barrier and we have Γωlm ≈ 1. For small ω we expect Γωlm ≪ 1 because a significant portion
of the wave is backscattered.

Combining the definition of the greybody factor Γωlm in (4.2.14) with equation (4.2.13), we find

⟨NS
ωlm⟩M = Γωlm

eβω − 1 (4.2.15)

where β = 4πrs. Except for the greybody factor, this is a Bose distribution for the number of particles with
inverse temperature β. The corresponding temperature is called Hawking temperature TH and is defined by

TH = 1
4πrs

= 1
8π

ℏc3

GkB

1
M

∼ 6.17 × 10−8K

(
M⊙
M

)
(4.2.16)

where we restored units and computed the temperature for a solar mass black hole. The temperature is
very small for black holes of solar mass and up but the expression diverges for M → 0.

4.3 Hawking Effect for Eternal Black Holes

In the derivation above we considered a black hole which formed from gravitational collapse. For the
derivation of the Hawking effect, we had to make some assumptions about the dynamics of the collapse
in order to propagate the field from I + to I −. A more formal and in-depth analysis is possible for the
maximally extended Schwarzschild spacetime in Kruskal coordinates (see figure 4.2).

r = 0

I +

I −

r = 0

I +

I −

i0i0

II

I

IV

III

Figure 4.2: Maximally (Kruskal) extension of the Schwarzschild spacetime. The regions are: the exterior
regions I and III, the black hole region II and the white hole region IV. The diagonal lines are
the event horizons of the black and white hole region.

In this spacetime, we have a black hole and a white hole region (regions II and IV in figure 4.2). The white
hole region is not present in the situation of gravitational collapse. On this spacetime, we can consider a
scalar quantum field theory as explained before. We saw that every representation of the algebra of creation
and annihilation operators corresponds to different vacuum states |0⟩. Such a vacuum state |0⟩ is called
quasi-free, if all of its n-point functions can be reduced to 1 and 2-point functions. There are three main
proposals for quasi-free, vacuum states on this spacetime [105]: The first one is the Hartle-Hawking vacuum
which is a regular Hadamard state everywhere and is invariant under the Schwarzschild Killing vector. It is
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the unique state with this property. The second state is called the Unruh vacuum which is singular on the
white hole horizon but is regular on the black hole horizon and at future infinity. The third vacuum is the
Boulware vacuum which is singular on both horizons. In this state there is no Hawking radiation, i.e. no
flux of radiation at future and past null infinity.

A first step to compute the backreaction is to understand the expectation value of the energy momentum
tensor in the black hole background. This quantity is in general divergent because the definition of the energy
momentum tensor involves products of operator valued distributions evaluated at the same spacetime point.
Since, the product of operator valued distributions is ill-defined, we have to choose suitable regularization
strategies. One proposal is due to Wald [8], where the points where the operator valued distributions are
evaluated are separated into two different points x, y. Afterwards the coincidence limit x → y is taken. If
the states are of Hadamard form, the construction is guaranteed to work.

For the Hartle-Hawking vacuum the renormalized energy momentum tensor has successfully been con-
structed [118]. The energy momentum tensor for the Unruh vacuum is studied by taking the difference
between the Unruh and the Hartle-Hawking vacuum [119]. In these calculations, detailed expressions for
the flux of radiation and the total power can be obtained. One finds that the power of the radiation is
inversely proportional to the square of the mass. This agrees with the heuristic argument based on the
Stefan-Boltzmann law mentioned in the introduction.

The next step of the computation would be to plug the expressions for the expectation values of the energy
momentum tensor into the Einstein equations. However, such a calculation is highly non-trivial. Instead,
let us assume that the energy which is radiated away decreases the mass of the black hole, i.e. Ṁ ∝ −M−2.
Then an integration of this relation gives a lifetime for the black hole which scales as M3. This equation
for the change of the black hole mass has also been found in numerical simulations based on the Vaidya
spacetime [120, 121].

For the computation of the black hole lifetime as explained above, two important assumptions were made:
First, the derivation of the power of the Hawking radiation depends on the assumption that the black
hole mass is fixed. Second, the curvature at the horizon are small compared to the Planck curvature, i.e.
M ≫ MPlanck. Both of these assumptions will not be satisfied towards the end of the black hole lifetime,
when M approaches the Planck mass. At this point, quantum gravity effects will play an important role and
might completely change the picture. Therefore, these semi-classical techniques will not be able to provide
an answer to the fate of evaporating black holes.
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Black Hole Perturbation Theory in General
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This part is the main part of this thesis where we apply the tools developed in sections 2 to 4 to investigate
perturbation theory around spherically symmetric spacetimes. Perturbation theory is a very important
concept within general relativity because the Einstein equations are highly non-linear and exact solutions
are only known under special symmetry assumptions. In section 3 we saw that we obtain the black hole
solutions under the assumptions of spherical and axial symmetry. Another important class of solutions
are cosmological models for which we impose isotropy (the universe looks the same in every direction) and
homogeneity (the universe is the same at every point).

In the first part of this chapter, we review black hole perturbation theory in the Regge-Wheeler-Zerilli
approach using linearized equations of motion in a modern notation following [74]. We define gauge invariant
variables and reduce the equation of motions to two master equations for two master variables.

In the second part, we apply the new Hamiltonian framework to perturbations around spherically sym-
metric spacetimes. The discussion is based on the publications [1–3, 98]. The first paper [98] discusses
the general setup and how the reduced phase space programme is applied to black hole perturbation the-
ory. It discusses the definition of the true and gauge degrees of freedom and how to compute the reduced
Hamiltonian. In [2], the formalism is applied to second order perturbation theory in the pure gravity case.
The explicit solution of the constraint equations are constructed and the physical Hamiltonian is simplified
using several canonical transformations. For a consistency check, the equations of motion of the reduced
Hamiltonian are compared with the Lagrangian approach to black hole perturbation theory when backre-
action is neglected. This is a non-trivial step because the setup is conceptually very different from previous
treatments.

The analysis was generalised in [3] to include the electromagnetic field as matter. Finally, the publication
[1] considers generalised gauges for the spherically symmetric degrees of freedom with the same asymptotic
behaviour as the GP gauge condition. The paper shows that the same arguments lead to a generalized
reduced Hamiltonian as for the strict GP gauge and it reduces to the physical Hamiltonian in [3], if we
enforce the strict GP gauge.

The real virtue of our approach is that it clearly defines the meaning of gauge invariance independent of
perturbation theory. We define the true and gauge degrees of freedom on the full phase space and obtain a
non-perturbative expression for the physical Hamiltonian. Only in a second step, we perturbatively expand
the reduced Hamiltonian in terms of the true non-symmetric degrees of freedom. This calculation can be
cast into the language of standard perturbation theory of constraints with respect to all degrees of freedom
including gauge degrees of freedom with precise coefficients [71].
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Another advantage of the non-perturbative definition of the true degrees of freedom is the possibility to
generalize to higher orders. In the standard approach to Hamiltonian perturbation theory, we need to define
gauge invariant variables order by order in perturbation theory. There is no consensus in the literature how
to define gauge invariants beyond second order.

Furthermore, working in GP gauge, we have access both to the interior and exterior of the black hole.
This is important for a complete picture of black holes, where one has to keep track of matter falling into the
black hole. In the literature, one is usually concerned with the exterior region of the black hole spacetime
studying the dynamics of gravitational waves on a black hole background.

Additionally, we incorporate backreaction effects which arise due to interactions between the symmetric
and non-symmetric true degrees of freedom. In the literature one usually fixes the background spacetime and
treats it as independent of the perturbations. In [75], Moncrief considers a fixed Schwarzschild spacetime
and in [80, 81], the background is general but interactions between the background and the perturbations
are ignored. The backreaction in this thesis looks rather trivial because we only study general relativity
coupled to electromagnetic matter and the symmetric true degrees of freedom are the black hole mass M
and the electric charge ξ. Since both of them arise as integration constants from solving the constraints,
they are fixed and will not change dynamically. In [98], a scalar field as matter is discussed and there are
dynamical, symmetric, true degrees of freedom. In this case and for other matter like massive bosons and
fermions there will be non-trivial backreaction.

5.1 Lagrangian Perturbation Theory

In the following we review the Lagrangian approach to black hole perturbation theory based on a linearization
of the Einstein equations (3.3.6). The study of linear perturbations around the Schwarzschild black hole
was first initiated by Regge, Wheeler and Zerilli [72, 73]. Our exposition is based on the more modern
reformulation in [74] and also follows appendix E of [2]. The idea for the Lagrangian perturbation theory is
as follows:

Assume we know an explicit solutions of the equations for some metric gij and energy-momentum tensor
Tij . This solution is usually obtained by assuming highly symmetric field configurations. Then, we consider
small deviations from the exact solution in the metric hij and the energy-momentum tensor tij . The
deviations are assumed to be small corrections so that it is valid to expand the Einstein equations around
the exact solutions. To first order, we will obtain a linear system of equations for the perturbations.

However, the equations of general relativity are generally covariant, i.e. they transform under changes of
coordinates. The definition, of what is a small correction depends on the system of coordinates. Additionally,
the perturbations we are studying are in general not corresponding to physical observables because they are
depending on the choice of coordinates.

The way out of this is the introduction of combinations of the perturbations which are invariant under
changes of coordinates. Of course this cannot be achieved exactly and we have to restrict to coordinate
transformations up to first order in the perturbations. Consider a vector field ξi(x) on spacetime, which
generates diffeomorphisms via its flow Φξ

ϵ : M → M. For small ϵ a tensor T changes by

(φϵ
ξ)∗T = T + ϵLξT +O(ϵ2) (5.1.1)

In the equation we used the definition of the Lie derivative Lξ. Therefore, to first order a tensor is gauge
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invariant if LξT = 0.

The strategy for a gauge invariant perturbation theory is as follows: From the perturbations of the
metric hij and the energy-momentum tensor tij , we construct quantities which are invariant under gauge
transformations. Then, we insert these quantities into the equations of motion and derive the dynamics for
the gauge invariants. The gauge invariants will correspond to physical observables because they will not
change under changes of coordiantes (to first order).

As discussed before, the background metric for spherical symmetry factorizes as M × S2 into a part
involving the metric on the sphere S2 and a part for a two dimensional manifold M . This suggests a
decomposition of the perturbations into spherical scalar, vector and tensor harmonics [122–124]. We show
a brief review of their theory here and derive some useful formulae.

For a function f : S2 → C consider the equation ΩABDADBf = −l(l + 1)f with l = 0, 1, 2, . . . . A
convenient and complete set of solutions are the spherical harmonics usually denoted by Ylm : S2 → C.
They are defined by

Ylm(θ, ϕ) =
√

2l + 1
4π

(l −m)!
(l +m)!P

l
m(cos θ)eimϕ (5.1.2)

where P l
m(·) are the associated Legendre polynomials. Under complex conjugation, the spherical harmonics

transform as (Ylm)∗ = (−1)mYl,−m. The spherical harmonics are square integrable functions on the sphere
and form an orthonormal basis with respect to the measure on the sphere.∫

S2
dΩ

√
Ω(Ylm)∗Yl′m′ = δll′δmm′ (5.1.3)

where
√

Ω :=
√

det Ω. For real-valued functions it is convenient to introduce real valued spherical harmonics.
They are defined by

Llm :=


1√
2((Ylm)∗ + Ylm), m > 0

Yl,0, m = 0
i√
2((Ylm)∗ − Ylm), m < 0

(5.1.4)

Then, every real valued function on the sphere can be expanded in terms of the real-valued spherical
harmonics with real coefficients. Let f : S2 → R be a function on the sphere. Then we have

f =
∑
lm

flmLlm , (5.1.5)

with the coefficients flm :=
∫

dΩ
√

ΩfLlm The convergence in (5.1.5) is with respect to the L2 norm on the
sphere.

For vector and tensor fields on the sphere, we have to derive a similar decomposition. The vector
spherical harmonics are defined by

[Le
lm]A := 1√

l(l + 1)
DALlm, [Lo

lm]A := 1√
l(l + 1)

ηABΩBCDCLlm , (5.1.6)

where ηAB =
√

ΩϵAB which satisfies ηABη
AC = δC

B . These functions are orthogonal with respect to the inner
product ∫

S2
ΩAB[LI

lm]A[LI′
l′m′ ]B

√
ΩdΩ = δII′

δll′δmm′ . (5.1.7)
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For the proof, we use integration by parts where boundary terms can be neglected because the sphere has
no boundary. If I ̸= I ′ we obtain the combination of derivatives ηABDADB acting on a scalar function Llm.
This vanishes due to anti-symmetry and torsion freeness of the derivative DA. For the two even harmonics
we have ΩABDADBLlm = −l(l + 1)Llm. The orthonormality of the scalar spherical harmonics and the
normalisation factor gives the result. Consider now two odd spherical harmonics. We have the combination
ΩABηA

CηB
D = ΩCD and it reduces to the case of even spherical harmonics.

The tensor spherical harmonics are defined by

[Ltr
lm]AB := 1√

2
ΩABLlm

[Le
lm]AB :=

√
(l − 2)!
2(l + 2)!(DADB + 1

2 l(l + 1)ΩAB)Llm

[Lo
lm]AB :=

√
(l − 2)!
2(l + 2)!D(A

(
ηB)

CDCLlm

)
(5.1.8)

The functions are orthonormal, i.e.∫
S2

dΩ
√

ΩΩACΩBD[LI
lm]AB[LI′

l′m′ ]CD = δII′
δll′δmm′ (5.1.9)

where I = tr, e, o. By construction, the harmonic [Ltr
lm]AB is orthogonal to the other two and Ltr is properly

normalized because ΩABΩAB = 2 and Llm are orthonormal.

For the other calculations, we show that

DA[LI
lm]AB = −1

2

√
(l − 1)(l + 2)

2 [LI
lm]B (5.1.10)

The calculation is based on the observation that for a function f we have DADBDAf = RA
BACD

Cf +
DBD

ADAf = DB(1 + DADA)f . This relation is based on the connection of the Riemann tensor and the
commutator of covariant derivatives.

We prove equation (5.1.10) separately for even and odd parity. For the even parity we calculate√
2(l + 2)!
(l − 2)! D

A[Le
lm]AB =

(
DADADB + 1

2 l(l + 1)DB

)
Llm

=
(
RA

BACD
C − 1

2 l(l + 1)DB

)
Llm

= −(l + 2)(l − 1)
2 DBLlm

(5.1.11)

where we used RABCD = ΩACΩBD − ΩADΩBC . For the odd parity equations we use that for any function
f we have DADBDCf = RABCDD

Df +DBDADCf and obtain√
2(l + 2)!
(l − 2)! D

A[Lo
lm]AB = 1

2D
ADAηB

CDCLlm + 1
2η

ACDADBDCLlm

= 1
2ηB

CDC((1 − l(l + 1))Llm) − 1
2η

AC(ΩACΩBD − ΩADΩBC)DDLlm

= −(l + 2)(l − 1)
2 ηB

CDCLlm

(5.1.12)
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Using these expressions, we can simplify the integrals by integration by parts where the boundary terms
vanish. The integrals reduce to integrals over the vector harmonics and we can use their orthonormality
properties.

Finally, we list some identities for later use:

DADB[Lo
lm]A = [Lo

lm]B
DADB[Le

lm]A = (1 − l(l + 1))[Le
lm]B

DCD
(AL

B)C
o,lm = 1

2(6 − l(l + 1))LAB
o,lm

DCD
(AL

B)C
e,lm = 1

2(6 − l(l + 1))LAB
e,lm + 1

2

√
(l − 1)l(l + 1)(l + 2)

2 ΩABLlm

DBDB[LI
lm]A = (1 − l(l + 1))[LI

lm]A
DCDC [LI

lm]AB = (4 − l(l + 1))[LI
lm]AB

(5.1.13)

The identities are proven using similar tools as shown before.

5.1.1 Linearized Einstein Equations

In section 3.4 we studied solutions of the Einstein equations (3.3.6) for spherical symmetry. For the vacuum
case we found the Schwarzschild solution describing non-rotating, uncharged black holes. Then, we added
the electromagnetic field and obtained the Reissner-Nordstrøm solution for non-rotating charged black holes.

In the following, we go beyond spherical symmetry by introducing non-symmetric degrees of freedom. In
this case, an analytic solution of the Einstein equations has not been found and we use perturbation theory
to find approximate solutions. For the computations, we split the metric into a spherically symmetric
background and non symmetric perturbations. We decompose the metric as

(4)gij dxi ⊗dxj = (gab +hab)dxa ⊗dxb +haB(dxa ⊗dxB +dxB ⊗dxa)+(γ2ΩAB +hAB)dxA ⊗dxB . (5.1.14)

Recall the notation of section 3.4: The spherically symmetric metric was of product form M × S2. On
M we had indices a, b, . . . running over t, 3 with local coordinates xa = (t, r) and a spherically symmetric
metric gab. On S2 we used indices A,B, . . . running over the angular directions θ, ϕ with local coordinates
xA = (θ, ϕ) and the metric on the sphere ΩAB. γ is a function of xa. The unique torsion free connection
compatible with gab is denoted by ∇ and the one associated to ΩAB is DA. The non-symmetric corrections
are hab, haB and hAB.

Similarly, we split the full energy-momentum tensor into background and perturbations:

(4)Tijdxi ⊗dxj = (Tab +tab)⊗dxa ⊗dxb +taB(dxa ⊗dxB +dxB ⊗dxa)+(γ2TΩAB +tAB)dxA ⊗dxB (5.1.15)

Tab and T are the spherically symmetric background contributions and tab, taB and tAB are the non-
symmetric perturbations. For both the metric and the energy-momentum tensor, we assumed that all the
symmetric contributions are put into the background variables.

Assume, that we successfully solved the background Einstein equations derived already in section 3.4:

κTab =
(

− 2
γ

∇a∇bγ − gab

( 1
γ2 − γaγ

a

γ2 − 2
γ
□γ
))

(5.1.16)
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κT = 1
γ2

(
γ□γ − 1

2
2Rγ2

)
(5.1.17)

Recall that γa := ∇aγ and □ := gab∇a∇b is the d’Alembertian of the metric gab.

The linearized Einstein equations are obtained by computing the linearized Einstein tensor which is con-
structed from the linearized Ricci tensor. First, we derive the linearized Christoffel symbols. For simplicity
of notation, we use the metric gab to raise and lower the indices a, b, c, . . . and ΩAB to raise and lower the
indices A,B,C, . . . . The first order corrections to the Christoffel symbols are given by

δΓa
bc = 1

2(∇ch
a

b + ∇bh
a

c − ∇ahbc) (5.1.18)

δΓa
bC = 1

2(DCh
a

b + ∇bh
a

C − ∇ahbC) − γb

γ
ha

C (5.1.19)

δΓa
BC = 1

2(DBh
a

C +DCh
a

B − ∇ahBC) + γγdΩBCh
ad (5.1.20)

δΓA
bc = 1

2γ2

(
∇bh

A
c + ∇ch

A
b −DAhbc

)
(5.1.21)

δΓA
bC = 1

2γ2

(
DCh

A
b −DAhbC + ∇bh

A
C

)
− γb

γ3h
A

C (5.1.22)

δΓA
BC = 1

2γ2

(
DCh

A
B +DBh

A
C −DAhBC

)
+ γd

γ
ΩBCh

dA (5.1.23)

From the perturbed Christoffel symbols we compute the linear perturbations of the Ricci tensor

δRab = ∇c(∇ah
c
b + ∇bh

c
a − ∇chab) + γc

γ
(∇ahcb + ∇bhca − ∇chab) − 1

2∇a∇bh
c
c

− 1
2γ2D

CDChab + 1
2γ2D

C (∇ahCb + ∇bhCa) − 1
2γ2 ∇a∇bh

C
C

+ 1
2γ3

(
γa∇bh

C
C + γb∇ah

C
C

)
− 1
γ4 (γaγb − γ∇a∇bγ)hC

C

(5.1.24)

δRaB = 1
2DB

(
∇ch

c
a − ∇ah

c
c + 1

γ
γah

c
c

)
− 1

2 (□haB − ∇c∇ah
c
B)

− 1
γ

(γa∇ch
c
B − γc∇ah

c
B) − 1

γ2 (γaγc + γ∇a∇cγ)hc
B + 1

2γ2D
C (DBhaC −DChaB)

+ 1
2γ2 ∇a

(
DCh

C
B −DBh

C
C

)
− 1
γ3γa

(
DCh

C
B −DBh

C
C

) (5.1.25)

δRAB = ΩAB

[
γγc∇d

(
hcd − 1

2g
cdhe

e

)
+ (γcγd + γ∇c∇dγ)hcd

]
− 1

2DADBh
c
c + 1

γ
γdΩABDCh

dC

+ 1
2∇c (DAh

c
B +DBh

c
A) − 1

2□hAB + 1
2γ2DC(DAh

C
B +DBh

C
A −DChAB)

− 1
2γ2DADBh

C
C + 1

γ
γc∇c

(
hAB − 1

2ΩABh
C

C

)
− 2
γ2γ

cγc

(
hAB − 1

2ΩABh
D

D

) (5.1.26)

Before computing the linearized Ricci scalar and computing the Einstein tensor as the sum of the linearized
Ricci scalar and Ricci tensor, we study the gauge transformations. As it turns out, the linearized Einstein
equations simplify drastically when presented in gauge invariant variables. Additionally, the discussion is
further simplified exploiting the spherical symmetry of the background spacetime. The perturbations of the
metric and the energy-momentum tensor are expanded into scalar, vector, and tensor spherical harmonics.
To linearized order, the modes with different l,m decouple and can be treated separately. We use the
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convention
hab =

∑
l,m

hlm
ab Llm, tab =

∑
l,m

tlmab Llm

haB =
∑
l,m

∑
I∈{e,o}

hI,lm
a [Llm

I ]B, taB =
∑
l,m

∑
I∈{e,o}

tI,lm
a [Llm

I ]B

hAB = γ2∑
l.m

htr,lmLlmΩAB +
∑

I∈{e,o}
hI,lm[Llm

I ]AB


tAB = γ2∑

l,m

ttr,lmΩABLlm +
∑

I∈{e,o}
tI,lm[LI

lm]AB



(5.1.27)

Here, tr stands for the trace part of the tensor perturbation and I = e, o denotes the even and odd parity
harmonics. The sum over l starts at l = 1 except for the tensor harmonics where it starts at l = 2. The
l = 0 contributions are spherically symmetric and we assume them to be part of the background variables.

The gauge invariant variables are found by studying gauge transformations of the metric, i.e. changes
of coordinates generated by a vector field and by constructing combinations of the variables independent
of this transformation (to linear order). In the preliminaries we saw how tensor fields transform under
gauge transformations generated by a vector field ξi in terms of the Lie derivative. Adapting to the spher-
ically symmetric background and the decomposition of the perturbations, we split the vector field into the
components ξi = (ξa, ξA). Then, we find the transformations

hab → hab − ∇aξb − ∇bξa, haB → haB − ∇aξB −DBξa + 2γa

γ
ξB

hAB → hAB −DAξB −DBξA − 2γγaξaΩAB

tab → tab − ξc∇cTab − ∇aξ
cTcb − ∇bξ

cTac, tAb → tAb −DAξ
cTcb − ∇bξAT + 2γb

γ
ξAT

tAB → tAB − γ2ξc∇cTΩAB − 2γγaξ
aTΩAB −DAξBT −DBξAT

(5.1.28)

In order to determine the transformation of the modes in the expansion into scalar, vector and tensor
spherical harmonics we decompose the components of the vector field ξi according to ξa =

∑
lm ξa

lmLlm and
ξA =

∑
I,l,m ξI

lm[LI
lm]A. This gives the following transformation of the metric perturbations

hlm
ab → hlm

ab − ∇aξ
lm
b − ∇bξ

lm
a

he,lm
a → he,lm

a −
√
l(l + 1)ξlm

a − ∇aξ
e
lm + 2

γ
γaξ

e
lm

ho,lm
a → ho,lm

a − ∇aξ
o
lm + 2

γ
γaξ

o
lm

htr
lm → htr

lm +
√
l(l + 1)
γ2 ξe

lm − 2
γ
γaξlm

a

hI
lm → hI

lm − 2
γ2

√
(l + 2)(l − 1)

2 ξI
lm

(5.1.29)
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For the transformations of the energy-momentum tensor, we find

tlmab → tlmab − ξc
lm∇cTab − ∇aξ

c
lmTcb − ∇bξ

c
lmTac

te,lm
a → te,lm

a −
√
l(l + 1)ξb

lmTab − ∇aξ
e
lmT + 2γa

γ
ξe

lmT

to,lm
a → to,lm

a − ∇aξ
o
lmT + 2γa

γ
ξo

lmT

ttrlm → ttrlm − ξa
lm∇aT − 2

γ
γaξ

a
lmT +

√
l(l + 1)
γ2 ξe

lm

tIlm → tIlm − 2
γ2

√
(l + 2)(l − 1)

2 ξI
lm

(5.1.30)

We search for combinations of the variables that transform trivially under gauge transformations. The
number of independent variables are determined by counting degrees of freedom: The metric and the energy-
momentum tensor in four dimensions have both ten degrees of freedom. The vector field which generates the
gauge transformations has four components. We choose the gauge invariant variables such that we obtain
six gauge invariant variables for the metric and ten gauge invariant variables for the energy-momentum
tensor. For the metric we have

h̃lm
ab = hlm

ab − 1√
l(l + 1)

∇aϵ
lm
b − 1√

l(l + 1)
∇bϵ

lm
a

h̃lm
a = ho,lm

a −
√

2
(l + 2)(l − 1)

γ2

2 ∇ah
o,lm

Klm = htr
lm + 1

2

√
2l(l + 1)

(l + 2)(l − 1)h
e
lm − 2√

l(l + 1)γ
γaϵlma

(5.1.31)

We introduced the quantity ϵlma defined by

ϵlma := he,lm
a − 1

2

√
2

(l + 2)(l − 1)γ
2∇ah

e
lm , (5.1.32)

which transforms as ϵlma → ϵlma −
√
l(l + 1)ξlm

a under gauge transformations.

For the components of the energy-momentum tensor, we find the following gauge invariant quantities

t̃lmab = tlmab − 1√
l(l + 1)

∇cTabϵ
c
lm − 2√

l(l + 1)
(Tac∇bϵ

c
lm + Tbc∇aϵ

c
lm)

t̃o,lm
a = to,lm

a − Tho,lm
a

t̃e,lm
a = te,lm

a − 1√
l(l + 1)

Tabϵ
b
lm −

√
2

(l + 2)(l − 1)
γ2

2 T∇ah
e
lm

t̃Ilm = tIlm − ThI
lm

t̃trlm = ttrlm − 1√
l(l + 1)

ϵalm∇aT + Thtr
lm

(5.1.33)

Next, we insert the gauge invariant variables into the perturbed Einstein equations. The linearized
Einstein equations split into two independent sets of equations, for the perturbations with even and odd
parity. In the following, we will discuss the two cases separately.
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5.1.2 The Odd Parity Master Equation

After inserting the gauge invariant variables, the Einstein equations for the odd parity perturbations are
given by two differential equations. The equations for different l and m variables are independent and we
can solve them separately. For simplicity of notation, we do not display the labels l,m of the perturbations
from now on. The odd parity Einstein equations read

∇ah̃
a =

√
2

(l + 2)(l − 1)κγ
2t̃o (5.1.34)

1
2
(
∇b∇ah̃

b − □h̃a

)
− 1
γ

(γa∇b − γb∇a)h̃b − 1
γ2 (γaγb + γ∇a∇bγ)h̃b

+ (l + 2)(l − 1)
2γ2 h̃a + □γ

γ
h̃a + γbγb

γ2 h̃a = κt̃oa

(5.1.35)

The odd parity master equation was first found by Regge-Wheeler in [72]. Later in [125], the odd parity
master equation was derived in the presence of matter. The derivation is based on the observation, that the
second equation can be rewritten in the form (see [125] for more details)

∇c(γ4∇[a(γ−2h̃c])) + 1
2(l + 2)(l − 1)h̃a = γ2κt̃oa (5.1.36)

1
2ϵac∇c(γ4ϵde∇d(γ−2he)) + 1

2(l + 2)(l − 1)h̃a = γ2κt̃oa (5.1.37)

The first term, involving the differential operators suggests to introduce the variable ψ defined by

ψo = γ3ϵab∇a

(
γ−2h̃b

)
. (5.1.38)

Applying the operator ϵba∇b

(
γ−2·

)
to the equation and introducing the variable ψo, we observe that we

obtain a master equation for the variable ψo:

−1
2γ∇a

(
γ−2∇a(γψo)

)
+ (l + 2)(l − 1)

2γ2 ψo = γϵab∇at̃
o
b . (5.1.39)

After expanding the derivatives, we obtain the Regge-Wheeler equation for the odd parity perturbations

□ψo +
(

− l(l + 1)
γ2 + 1

γ2 (2 − 2γaγ
a + γ□γ)

)
ψo = −2γϵab∇at̃

o
b . (5.1.40)

Note that the calculation does not involve the background equations in any way. There is no background
energy-momentum tensor showing up. The only dependence on the background matter is through the terms
involving γ. This will be different for the even parity perturbations.

Consider the vacuum Schwarzschild solution, Tab = T = 0. In section 3.4 we found that γaγ
a = f and

γ□γ = 1 − f , where f = 1 − rs/γ . With these results, the master equation reduces to

□ψo +
(

− l(l + 1)
γ2 + 3 rs

γ3

)
ψo = 0 . (5.1.41)

We also found similar expressions for f and □γ in the presence of spherically symmetric electromagnetic
matter. We have γ□γ = 1 − f − κϵ0

2γ2Q
2 with f = 1 − rs/γ + κϵ0

2γ2Q
2. In this scenario the master equation
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becomes
□ψo +

(
− l(l + 1)

γ2 + 3 rs

γ3 − 2κϵ0
γ4 Q

2
)
ψo = −2γϵab∇at̃

o
b . (5.1.42)

5.1.3 The Even Parity Master Equation

In the odd parity section, we successfully derived a master equation, which was of the form of a wave equation
for the master variable ψo. This master variable was a scalar quantity defined as a linear combination of
gravitational variables. In the following we perform a similar construction for the even parity sector. The
four equations that the perturbations have to satisfy are given by

κt̃ab = 1
2
(
∇c∇ah̃

c
b + ∇c∇bh̃

c
a − □h̃ab

)
+ γc

γ

(
∇ah̃

c
b + ∇bh̃

c
a − ∇ch̃ab

)
− 1

2∇a∇bh̃
c
c

+ l(l + 1)
2γ2 h̃ab − ∇a∇bK − 1

γ
(γa∇b + γb∇a)K +

(
−

2R

2 − 1
γ2 + γcγc

γ2 + 2□γ
γ

)
h̃ab

− 1
2gab

(
∇c∇dh̃

cd − □h̃c
c + 2γc

γ

(
2∇dh̃

cd − ∇ch̃d
d

)
+ 2
γ2 (γcγd + 2γ∇c∇dγ)h̃cd

+ l(l + 1)
γ2 h̃c

c − 2□K − 6γ
c

γ
∇cK + (l + 2)(l − 1)

γ2 K − 2Rcdh̃
cd
)

(5.1.43)

κγ2t̃tr = γ

2
(
∇a(γ∇ah̃

b
b) − γ∇a∇bh̃

ab − 2γa∇bh̃
ab − 2∇a∇bγh̃

ab
)

− l(l + 1)
4 h̃a

a

+ 2R
γ2

4 h̃
a
a + γ2

2 □K + γγa∇aK

(5.1.44)

κt̃ea =
√
l(l + 1)

2

(
∇bh̃

b
a − ∇ah̃

b
b + γa

γ
h̃b

b − ∇aK

)
(5.1.45)

κγ2t̃e = −1
2

√
(l + 2)(l − 1)

2 h̃a
a (5.1.46)

The first equation can be simplified using the fact that the Einstein tensor for any two-dimensional
manifold vanishes automatically. Therefore, consider gab + hab as a two dimensional metric, then to linear
order the Einstein tensor is given by

∇c∇ahbc + ∇c∇bhac − □hab − ∇a∇bh
c
c + gab(□hc

c − ∇c∇dhcd) + 1
2

(2)R(gabh
c
c − 2hab) = 0 (5.1.47)

Inserting this identity into the first equation, all the second derivatives of hab are removed from the equation
(see [125]).

Furthermore, note that the last equation fixes the trace part of h̃ab. We split the tensor h̃ab into its trace
h = gabh̃ab and trace-free components kab = h̃ab − 1

2gabh. Inserting identity (5.1.47) and splitting h̃ab into
kab and h we find

κt̃ab = γc

γ
(∇akcb + ∇bkca − ∇ckab) + l(l + 1)

2γ2 kab − ∇a∇bK +
(

− 1
γ2 + γcγc

γ2 + 2□γ
γ

)
kab

− 1
γ

(γa∇b + γb∇a)K + 1
2γ (γa∇bh+ γb∇ah) − 1

2γ gabγ
c∇ch+ 1

4gab

( 2
γ2 + l(l + 1)

γ2

)
h

− 1
2gab

(
4γ

c

γ
∇dkcd + 2

γ2 (γcγd + 2γ∇c∇dγ)kcd − 2□K − 6γc

γ
∇cK + (l + 2)(l − 1)

γ2 K
) (5.1.48)
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κγ2t̃tr =
(
γ2

4 □h− γ

2□γh
)

− γ

2
(
γ∇a∇bk

ab + 2γa∇bk
ab + 2∇a∇bγk

ab
)

− l(l + 1)
4 h

+ 2R
γ2

4 h+ γ2

2 □K + γγa∇aK

(5.1.49)

κt̃ea =
√
l(l + 1)

2

(
∇mk

m
a − 1

2∇ah+ γa

γ
h− ∇aK

)
(5.1.50)

κγ2t̃e = −1
2

√
(l + 2)(l − 1)

2 h (5.1.51)

Let us prepare for the derivation of the master equation with two observations. First, the third equation
relates the gradient of K to the divergence of kab:

∇aK = ∇bk
b
a + γa

γ
h− 1

2∇ah− 2√
l(l + 1)

κt̃ea (5.1.52)

The second relation is found by plugging the relation into the second equation. We find an expression for
the contraction ∇a∇bγk

ab:

γ∇a∇bγk
ab = −κγ2t̃tr −

(
l(l + 1)

4 − γaγa

2 − γ2

4
(2)R

)
h− κ√

l(l + 1)
∇a(γ2tea) (5.1.53)

In the case of pure gravity, this relation follows from the trace freeness of kab and the fact that the Ein-
stein equations imply that ∇a∇bγ is proportional to gab. In the presence of matter the situation is more
complicated and the relation is related to the conservation of the energy-momentum tensor.

For the derivation of the master equation, we need three intermediate equations. First, we take the trace
of the first equation. It determines the value of □K.

□K − λ

γ2K − 2
γ3γ

aZa = S1 , (5.1.54)

where we defined Za := γ(γbkab − γ∇aK) and λ := (l + 2)(l − 1). The source term S1 is

S1 = κt̃aa − h

( 1
γ2 + l(l + 1)

2γ2

)
+ 4
γ

∇a∇bγk
ab + 2γ

a

γ
(∇bkab − ∇aK) (5.1.55)

= κt̃aa + γa

γ
∇ah−

(3l(l + 1) + 2
2γ2 − (2)R

)
h− 4κttr − κ√

l(l + 1)
4
γ

∇a(γtea) . (5.1.56)

For the second equation we contract the first equation with γa. Then, we use the equation for S1 to
remove the term □K. We obtain a differential equation that determines the derivative of the quantity γaZa:

∇b(γaZa) + κγTb
aZa + l(l + 1)

2γ Zb + 1
2γ

3κTb
a∇aK + γ

2
(
3(1 − γaγ

a) + γ2κT a
a

)
∇bK + 1

2λ∇b(γK) = S2
b ,

(5.1.57)
In this equation we obtain another source term S2

b defined as

S2
b = κγ2γatab − 1

2γ
2γaγa∇bh− 1

4γbh(2 + l(l + 1)) + 2γγb∇c∇dγk
cd + 2γγbγ

a(∇ckca − ∇aK) − γ2γbS1

= κγ2γatab − 1
2γ

2γaγa∇bh− 1
2γ

2κt̃aa − 1
2γ

2γbS1 (5.1.58)
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The third and last equation is a direct consequence of the original third equation contracted with γa. It
reads

∇aZa − γa

γ
Za + γ2□K = S3 , (5.1.59)

with the source term S3 given by

S3 = 2γκγa√
l(l + 1)

ta − γaγ
ah+ 1

2γγ
a∇ah+ γ∇a∇bγk

ab . (5.1.60)

The derivation of the master equation in the presence of background matter is non-trivial in the general
setup presented in this section. In the case of electromagnetic matter, the differential equations simplify
because Tij is diagonal. A derivation of the master equation in Schwarzschild coordinates can be found in
[101]. In contrast to the odd parity case, the master variable in the even parity will depend non-trivially on
Tij and to the author’s knowledge, the master equation in full generality has not yet been constructed. We
therefore restrict to the case Tij = 0 here.

We apply the differential operator ∇b on the equation S2
b . Then, using Tab = 0 and the Schwarzschild

solution for the background, we obtain the following equation

□(γaZa) + l(l + 1)
2γ

(
∇aZa − γa

γ
Za

)
+ 3γ

2 (1 − γaγ
a)□K + 1

2λ□(γK) = ∇bS2
b (5.1.61)

In this equation, we replace ∇aZa using the equation for S3 and □K using the equation for S1. Additionally,
we introduce the variable ψ = 2γaZa + λγK and obtain

□ψ +
[
− l(l + 1)

γ2 + 3
γ2 (1 − γaγ

a)
]
ψ = 2∇bS2

b − 3γ(1 − γaγa)S1 − l(l + 1)
γ

(S3 − γ2S1) (5.1.62)

Therefore, we have a master equation for the master variable ψ with a potential that, after inserting the
Schwarzschild solution, is the same as in the odd parity sector.

In the literature, usually a different master equation and master variable based on the original work by
Zerilli [73] are discussed. The covariant form of the Zerilli master variable is

ψe = 1
λ+ 2

(
γK + 1

Λγ
aZa

)
, (5.1.63)

where Λ = 1
2λ + 3M

γ . The Zerilli master variable is related to the master variable we found through a
differential relation (see [101]):

ψ = −6rsγ
a∇aψ

e +
(
λ(λ+ 2) + 18r2

s

γ2Λ γaγa

)
ψe (5.1.64)

For pure gravity, the Zerilli master variable satisfies a wave equation for a different potential:

□ψe − 1
4Λ2γ2

(
λ2(λ+ 2) + 3λ2 rs

γ
+ 9λ r

2
s

γ2 + 9 r
3
s

γ3

)
ψZ = 0 (5.1.65)
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5.2 Hamiltonian Perturbation Theory

In the Lagrangian approach, we reduced the linearized Einstein equations to two wave equations for master
variables ψe/o. We obtained the Regge-Wheeler equation for the odd parity perturbations and the Zerilli
equation for the even parity. In this section, we switch to the Hamiltonian perspective, apply the framework
of constrained Hamiltonian systems developed in section 2 and derive a reduced Hamiltonian describing the
dynamics of the perturbations. The formulation incorporates backreaction effects and we expand the physical
Hamiltonian to second order in the perturbations. As a consistency check, we compare the Hamiltonian
equations of motion to the Regge-Wheeler-Zerilli equations in their common domain of validity.

The outline of the strategy is as follows: First, we explain the details about the applications of the
formalism to the case of spherically symmetric black holes based on [98]. We explain how we split the
variables into the observable and non-observable degrees of freedom. Then, we find an asymptotic solution
of the stability condition of the GP gauge fixing and explicitly evaluate the boundary terms. With this
knowledge, we use theorem 2.12 to determine the physical Hamiltonian describing the dynamics of the
perturbations.

Then, in the next part, we explicitly apply the formalism to compute the physical Hamiltonian to second
order. After perturbing the perturbations of the constraints to second order, we solve the constraints for
the momenta of the gauge degrees of freedom. With the help of the previous part, we find the physical
Hamiltonian. In the computation we use the GP gauge and closely follow [2, 3]. In the final section, we
generalize the gauge for the background degrees of freedom and compute the reduced Hamiltonian in this
case. This discussion is based on [1].

5.2.1 Preliminaries

In the following, we study some necessary preliminary concepts and computations to understand the later
calculations. We define the decomposition into spherically symmetric / non-symmetric variables and choose
the gauge / true degrees of freedom. Then, we derive an implicit expression for the physical Hamiltonian
which will be used in later sections. This part is based on [98].

In section 3.5 we introduced the ADM formulation of general relativity. The phase space is coordinatized
by the induced metric mµν and its conjugate momentum Wµν . In this section, we also performed a detailed
boundary term analysis and split the variable into spherically symmetric and non-symmetric degrees of
freedom. We defined

m33 = e2µ + xv, m3A = 0 + xA, mAB = e2λΩAB + xhΩAB +XAB

W 33 = 1
2e

−2µπµ + yv, W 3A = 0 + 1
2y

A, WAB = 1
4e

4λπλ + 1
2yhΩAB + Y AB

(5.2.1)

For the perturbations we have four constraints: one perturbed Hamiltonian constraint and three perturbed
diffeomorphism constraints. Therefore, we choose four of the canonical pairs as gauge degrees of freedom
and obtain two pairs of observable degrees of freedom. The pairs (xv, yv), (xA, y

A) and (xh, yh) will be the
gauge degrees of freedom and the pairs (XAB, Y

AB) will be the observable degrees of freedom.

Similarly to the Lagrangian case, it is convenient for the calculations to expand the variables into scalar,
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vector and tensor spherical harmonics. We use the convention

xv/h =
∑

l≥1,m

x
v/h
lm Llm, yv/h =

∑
l≥1,m

ylm
v/hLlm

xA =
∑

l≥1,m,I

xI
lm[LI

lm]A, yA =
∑

l≥1,m,I

ylm
I [LI

lm]A,

XAB =
∑

l≥2,m,I

XI
lm[LI

lm]A, Y AB =
∑

l≥2,m,I

Y lm
I [LI

lm]A,

(5.2.2)

For the calculation of the reduced Hamiltonian, we need to choose a gauge fixing condition, restricting the
value of µ, λ and of xv, xA, x

h. The choice of admissible gauge fixings is limited by physical requirements.
First of all, it needs to be compatible with the fall-off conditions we imposed on the variables. Additionally, in
some coordinate systems such as the standard Schwarzschild coordinates, the black hole solution is singular
across the black hole horizon. For a complete picture of black holes, we have to cover both the interior
and exterior of the black hole spacetime. Otherwise, we could not determine the future evolution of matter
inside the black hole. In some models of quantum gravity on black hole spacetimes, the matter bounces at
the central singularity [47, 126] and this could be an important part for our understanding of the evolution
of black holes. Based on the discussion of spherically symmetric black holes, we impose the Gullstrand-
Painlevé (GP) gauge. The condition is m33 = 1, m3A = 0 and ΩABmAB = 2r2, which implies µ = 0,
λ = log r for the background and xv = xA = xh = 0 for the perturbations. Note that this gauge does not fix
the background to be the Schwarzschild solution in Gullstrand-Painlevé gauge. Rather the name GP gauge
means that the gauge condition is motivated by a certain class of Schwarzschild solutions. Adding matter
fields such as a scalar field, the background metric will look drastically different from the Schwarzschild
metric in Gullstrand-Painlevé coordinates even when presented in GP gauge.

5.2.1.1 Asymptotic Solution of the Stability Conditions

The GP gauge fixing conditions are not preserved under time evolution in general and we have to assure
this by fixing the Lagrange multipliers. The exact solution for the Lagrange multipliers in all of spacetime
is a very challenging task. However, as it turns out, this is not necessary because for the derivation of
the physical Hamiltonian we only need the boundary terms of the constraints. These boundary terms are
evaluated at infinity and consequently we only need the asymptotic value of the Lagrange multipliers.

For the solution of the stability conditions, recall the gravitational contributions to the constraints of the
full theory. It is enough to consider these, since the matter contributions are independent of the gravitational
momenta. In section 3.5, we derived

V grav
0 = 1√

m

(
mµρmνσ − 1

2mµνmρσ

)
WµνW ρσ −

√
m(3)R (5.2.3)

V grav
µ = −2mµν∇ρW

νρ (5.2.4)

In this section, we also considered the smeared versions of the constraints V0[f ] and V⃗ [f⃗ ]. The stability
condition for the gauge fixing m33 = 1, m3A = 0 and mABΩAB = 2r2 is given by the calculation of the
Poisson brackets with the Hamiltonian:{

m33, V0[f ] + V⃗ [f⃗ ]
}

= 2f√
m

(
m3µm3ν − 1

2m33mµν

)
Wµν + 2mµ3∇3f

µ = 0 (5.2.5)
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{
m3A, V0[f ] + V⃗ [f⃗ ]

}
= 2f√

m

(
m3µmAν − 1

2m3Amµν

)
Wµν + 2mµ3∇A(fµ) + 2mµA∇3f

µ = 0 (5.2.6){
ΩABmAB, V0[f ] + V⃗ [f⃗ ]

}
= 2f√

m

(
mAµmBν − 1

2mABmµν

)
ΩABWµν + 2ΩABmµA∇Bf

µ = 0 (5.2.7)

For the asymptotic solution of these equations, we only keep the leading order terms in the limit r → ∞
and drop all the sub-leading terms. Asymptotically, we have to solve the following equations for r → ∞:

f

4
√
m

(
π∞

µ − π∞
λ

)√
r +m3µ∂3f

µ + Γ33νf
ν = 0 (5.2.8)

f

4
√
m
π∞

µ

√
r − 1

2r2 ΩABmµA∂Bf
µ − 1

2r2 ΩABΓABνf
ν = 0 (5.2.9)

f√
m
r2yA +mµ3∂Af

µ + Γ3Aµf
µ +mµA∂3f

µ + ΓA3µf
µ = 0 (5.2.10)

We split the covariant derivative of fµ into the partial derivative and the Christoffel symbols. The leading-
order asymptotic expressions for the Christoffel symbols are

Γ333 ∼ − 1
2r2 (xv

∞)+

Γ33A ∼ 1
2r∂A(xv

∞)+

Γ3AB ∼ 1
2
(
∂B(x∞

A )+ + ∂A(x∞
B )+ − 2rΩAB

)
∼ −rΩAB

ΓA33 ∼ − 1
2r∂A(xv

∞)+

ΓAB3 ∼ 1
2
(
∂B(x∞

A )+ − ∂A(x∞
B )+ + 2rΩAB

)
∼ rΩAB

ΓABC ∼ r2

2 ΓΩ
ABC

(5.2.11)

Here, ΓΩ
ABC is the standard Christoffel symbol on the sphere calculated from the metric ΩAB. Additionally,

we need the expression for the determinant of the metric and to leading order in r we find
√
m ∼ r2√

Ω.
Inserting the results for the asymptotic Christoffel symbols, the leading order contributions to the last
equation are

∂Af
3 + r2∂3fA = 0 (5.2.12)

Then, assuming that SA behaves as r−2, the equation implies that the non-symmetric part of S3 behaves
as r−1. Using this, the first two equations are

f

4r3/2

(
π∞

µ − π∞
λ

)
+ ∂3f

3
sym = 0 (5.2.13)

f

4r3/2π
∞
µ − 1

r
f3

sym = 0 (5.2.14)

This is the same equation as in section 3.6 and we solve it using the same strategy. From the second
equation, we get a relation between f and f3

sym:

f = 4
√
r

π∞
µ

f3
sym (5.2.15)
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Then, the first equation gives

∂3f
3
sym + 1

r

(
1 − π∞

λ

π∞
µ

)
f3

sym = 0 (5.2.16)

For the solution of the differential equation, we have to provide the relation between the constants π∞
µ

and π∞
λ . The diffeomorphism constraint in terms of the partial derivative and Christoffel symbol reads

Vµ = −2mµν∂ρW
νρ − 2ΓµνρW

νρ. (5.2.17)

Taking the radial component, we find that the leading order contribution behaves as r−1/2 and it implies
that π∞

µ = 2π∞
λ . With this relation, the differential equation for f3

sym becomes

∂3f
3
sym + 1

2rf
3
sym = 0 . (5.2.18)

The solution of the differential equation is straight forward. In terms of a suitably chosen integration
constant C, we have

f3
sym ∼

Cπ∞
µ

4
√
r

(5.2.19)

Then, the lapse function f is asymptotically equal to f ∼ C. As in the spherically symmetric case in section
3.6, the lapse goes to 1 for C = 1. In terms of the variable πµ, we can equivalently write f3

sym ∼ πµ/(4
√

Ωr)
because by definition, it has the same asymptotic behaviour.

5.2.1.2 Evaluation of the Boundary Terms

For the physical Hamiltonian, we need to evaluate the boundary terms and the stability conditions for the
gauge fixings. The non-vanishing contributions to the boundary term of the diffeomorphism constraint is

B⃗[f⃗ ] = 2
∫

∂Σ
dΩ
[1

2f
3πµ + f3yv + r2fAyA

]
. (5.2.20)

Using the fact that the perturbative contribution to f3 vanishes like r−1 and the one to fA like r−2 only
the first term survives. Using the explicit expression for f3 we found above, we are left with

B⃗[f⃗ ] =
∫

∂Σ
dΩ

√
Ω
π2

µ

4r = lim
r→∞

π
π2

µ

r
(5.2.21)

Thus, the value of the boundary term of the diffeomorphism constraint only depends on the asymptotic
value of πµ at infinity.

The boundary term of the Hamiltonian constraint gives

B[f ] := −
∫

dΣρ

√
detm
κ

[
(mµρmνσ −mµνmρσ)

(
f∇σ(mµν −mND

µν ) − ∇σf(mµν −mND
µν )

)]
(5.2.22)

Let us insert the asymptotic expansion for mµν . For the square root of the determinant of m, the dominant
contribution comes from the non-dynamical part of the metric. Additionally, we use that in GP gauge, the
metric takes the form m33 = 1, m3A = 0 and mABΩAB = 2r2. The inverse metric is then m33 = 1, m3A = 0
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and mAB is the inverse of mAB as a 2 × 2 matrix. We find

B[f ] := −
∫

∂Σ
dΩr

2√
det Ω
κ

[
mνσ

(
f∇σ(m3ν −mND

3ν ) − ∇σf(m3ν −mND
3ν )

)
−mµν

(
f∇3(mµν −mND

µν ) − ∇3f(mµν −mND
µν )

)]
=
∫

∂Σ
dΩr

2√
det Ω
κ

[
mAB

(
f∇3(mAB −mND

AB) − ∇3f(mAB −mND
AB)

)] (5.2.23)

Next, we bring the inverse metric mAB inside the bracket and have

=
∫

∂Σ
dΩr

2√
det Ω
κ

[
f∇3(2 −mAB

NDmAB) − ∇3f(2 −mAB
NDmAB)

]
(5.2.24)

However the bracket term vanishes because mAB
NDmAB = 2 in Gullstrand-Painlevé gauge. Since this is the

dominant, finite order at infinity and it vanishes, all the higher orders have to vanish because they fall off
faster. In [98], a more careful analysis reveals that B[f ] behaves as O(r−1).

The reduced Hamiltonian is then derived using theorem 2.12. Since the boundary term is exactly the
same as in section 3.6, we have the reduced Hamiltonian

H = lim
r→∞

π

2κrπ
2
µ = lim

r→∞
π

2κr
(
(π(0)

µ )2 + 2π(0)
µ π(2)

µ +O(3)
)

(5.2.25)

We expanded the spherically symmetric, gauge momentum πµ to second order in the perturbations where
π

(0)
µ is the zeroth order solution of the symmetric constraints and π

(2)
µ the second order solution. Note

that as in section 3.6, the reduced Hamiltonian is not just the boundary term as one would naively expect.
There is a non-trivial factor of 1/2 due to the non-trivial relation between the reduced Hamiltonian and
the boundary term (see theorem 2.12).

5.2.1.3 The Electromagnetic Field

In addition to the gravitational degrees of freedom, we study the electromagnetic field. In section 3.6, we
derived the Hamiltonian formulation in terms of the electric field Eµ and the vector potential Aµ. We found
that for the spherically symmetric part, the only non-vanishing component was E3 =

√
Ωξ, where ξ is a

constant related to the electric charge. The full electric field and vector potential are expanded into scalar
and vector spherical harmonics according to

A3 =
∑

l≥1,m

xlm
M Llm

AB =
∑

l≥1,m,I

XI,lm
M [LI,lm]B

E3 =
√

Ωξ +
√

Ω
∑

l≥1,m

yM
lmLlm

EB =
√

Ω
∑

l≥1,m,I

Y M
I,lm[LI,lm]B .

(5.2.26)

For the electromagnetic field we also have to choose suitable fall-off conditions for the variables (Aµ, E
µ).
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According to [98], a good choice for a well-defined Hamiltonian theory is

xM ∼ (xM )+r−1 + (xM )−r−2

XI
M ∼ (XI

M )+ + (XI
M )−r−1

yM ∼ (yM )− + (yM )+r−1

Y M
I ∼ (Y M

I )−r−1 + (Y M
I )+r−2 .

(5.2.27)

where we suppressed the label l,m for simplicity. As for the gravitational perturbations, the subscript +/−
stands for odd and even parity with respect to the parity operator P introduced in section 3.5. This should
not be confused with the decomposition into even and odd vector spherical harmonics. In the literature, one
also uses the terms polar and axial for the vector spherical harmonics in order to better distinguish between
the two concepts.

5.2.1.4 Outline of the Next Steps in The Computation

For the computation of the reduced phase space and the reduced Hamiltonian, we have to solve the con-
straints V0 and Vµ for the symmetric degrees of freedom πµ, πλ and for the non-symmetric degrees of freedom
yv, y

A, yh. We split the full constraints into the symmetric contributions C and the non-symmetric contribu-
tions Z, i.e. the modes of V with l ≥ 1. The symmetric constraints are found by averaging the constraints
over the sphere:

Cv :=
∫

S2
V0dΩ, Ch :=

∫
S2
V3dΩ (5.2.28)

The modes of the non-symmetric constraints (l ≥ 1) are defined by

Zv
lm :=

∫
S2
LlmV0 dΩ , Zh

lm :=
∫

S2
LlmV3 dΩ , ZI

lm :=
∫

S2
[LI

lm]VA dΩ (5.2.29)

Note that all of these constraints involve both symmetric and non-symmetric degrees of freedom. Consider
an expansion of the smearing functions f = fsym +

∑
l≥1,m flmLlm, f3 = f3

sym +
∑

l≥1,m f3
lmLlm and fA =∑

I,l≥1,m f I
lm[LI

lm]A. Then, we have

V0[f ] + V⃗ [f⃗ ] =
∫

dr

fsymCv + f3
symCh +

∑
l≥1,m

(
Zv

lmflm + Zh
lmf

3
lm +

∑
I

ZI
lmf

I
lm

) (5.2.30)

We determine the reduced phase space by solving the symmetric constraints C for πµ, πλ and the non-
symmetric constraints Z for yv, y

A, yh. Due to the complexity of the constraints of the full theory, such
a solution is very difficult using the non-perturbative constraints C and Z. Therefore, we truncate the
constraints after some order in the perturbations:

Cv/h = (0)Cv/h + (1)Cv/h + (2)Cv/h +O(3)

Z
v/h/I
lm = (0)Z

v/h/I
lm + (1)Z

v/h/I
lm + (2)Z

v/h/I
lm +O(3)

(5.2.31)

The subscript i in (i)C and (i)Z stands for the order in the perturbations (x, y) and (X,Y ). Using the
definition of the constraints, we have (1)Cv/h = 0 because this contribution is linear in the perturbations and
the average of the perturbations over the sphere vanishes. By construction of the non-symmetric constraints
Z, the zeroth order contributions (0)Z

v/h/I
lm vanish. In addition to the constraints, we also expand the gauge
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momenta into orders of the perturbations.

πµ/λ = π
(0)
µ/λ + π

(1)
µ/λ + π

(2)
µ/λ +O(3)

y = y(0) + y(1) + y(2) +O(r)
(5.2.32)

We insert this expansion of the variables into the expansion of the constraints and collect terms of equal
order. The solution is then obtained by solving the constraints order by order. Since (1)Cv/h = (0)Zv/h/I = 0,
we set y(0) = 0 and π

(1)
µ/λ = 0.

The zeroth order equations are (0)Cv/h = 0 and this determines π(0)
µ , π

(0)
λ as we saw in section 3.5. To first

order we have to solve the non-symmetric constraints (1)Z
v/h/I
lm = 0 for y(1) where we use the solution π

(0)
µ/λ

of the zeroth order symmetric constraints. To second order, we have both symmetric and non-symmetric
constraints. Since in this thesis we are only interested in the reduced Hamiltonian to second order, it is
sufficient to know π

(2)
µ . This function is determined by solving the equations

∫
dr′
[
δ(0)Cv/h

δπµ(r′) π
(2)
µ (r′) +

δ(0)Cv/h

δπλ(r′) π
(2)
λ (r′)

]
+ (2)Cv/h = 0 (5.2.33)

In this equation we have to use the zeroth and first order solutions that we already determined. In [71, 98],
it was shown that this procedure to iteratively solve the constraints generalizes to higher orders. Thus, we
obtain a perturbative solution of the constraints for the gauge momenta and can determine the physical
Hamiltonian to arbitrary order using equation (5.2.25).

5.2.2 The Perturbed Constraints

After all the necessary preparatory steps, we begin the explicit computations for the reduced Hamiltonian
to second order in this section. For the calculation of the perturbed constraints, we do not fix any gauge
and derive all the formulas in full generality for later use. Although the perturbative calculation of the
constraints is possible in any gauge, for the formalism described in this thesis to apply, we have to restrict to
gauges which are compatible with the asymptotic behaviour of the Gullstrand-Painlevé gauge in section 3.5.
This is necessary so that the boundary term analysis is still valid and we can find the reduced Hamiltonian
as in section 5.2.1. The exposition of the calculation in this section is based on appendix A of [1] and
appendix B of [2].

First, we calculate various quantities of the spherically symmetric metric. The Christoffel symbols are
given by

Γ3
33 = µ′

Γ3
AB = −λ′e2(λ−µ)ΩAB

ΓA
3B = λ′δA

B,

(5.2.34)

The Christoffel symbol ΓA
BC is just the usual Christoffel symbol on the 2-sphere S2. All other components

of the Christoffel symbol vanish. The Ricci tensor, scalar curvature, and Einstein tensor are computed by
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taking derivatives of the Christoffel symbols. The non-vanishing components are

R33 = −2
(
λ′′ + λ′(λ′ − µ′)

)
RAB = ΩAB

(
1 − (λ′)2e−2µ+2λ −

(
λ′′ + λ′(λ′ − µ′)

)
e2(λ−µ)

)
R = 2e−2λ − 2(λ′)2e−2µ − 4

(
λ′′ + λ′(λ′ − µ′)

)
e−2µ

G33 =(λ′)2 − e2(µ−λ)

GAB =ΩAB

(
λ′′ + λ′(λ′ − µ′)

)
e2(λ−µ)

(5.2.35)

Next, we turn to the computations of the first and second order corrections of the diffeomorphism and
Hamiltonian constraints. We split the induced metric and its conjugate momentum into the spherically
symmetric background and the perturbations. We use the notation mµν = mµν + δmµν and Wµν =
W

µν + δWµν . The variables with a bar are the background expanded in terms of µ, πµ and λ, πλ. The
degrees of freedom with δ are the perturbations which we assume not to have any spherically symmetric
contribution. In the following calculations, we raise and lower indices with the background metric mµν .

Before calculating the linear and quadratic perturbations of the constraints, we recall useful formulas for
the first and second order perturbations of the inverse metric, the Christoffel symbols, the Ricci tensor and
the Ricci scalar. We have up to terms of higher order

mµν =mµν − δmµν + δmµρδmνσmρσ

√
m =

√
m

(
1 + 1

2δm
µ

µ + 1
8
(
(δmµ

µ)2 − 2δmµνδmµν

))
√
m

−1 =
√
m

−1
(

1 − 1
2δm

µ
µ + 1

8
(
(δmµ

µ)2 + 2δmµνδmµν

))
Γµ

νρ =Γµ
νρ + 1

2m
µσ(∇νδmρσ + ∇ρδmνσ − ∇σδmνρ) − 1

2δm
µσ(∇νδmρσ + ∇ρδmνσ − ∇σδmνρ)

Rµν =1
2
(
2mρσ∇ρ∇(µδmν)σ − □δmµν − ∇µ∇νδm

ρ
ρ

)
− 1

2∇ρ

(
δmρσ

(
2∇(µδmν)σ − ∇σδmµν

))
+ 1

2∇ν(δmρσ∇µδmρσ) + 1
4∇σδmρ

ρ

(
2∇(µδmν)σ − ∇σδmµν

)
− 1

4
(
2∇(ρδmν)σ − ∇σδmµρ

) (
2∇(νδmα)β − ∇βδmαν

)
mασmρβ

R =∇µ∇νδm
µν − □δmµ

µ

+ δmµν
(
□δmµν + ∇µ∇νδm

ρ
ρ − 2mρσ∇(ρ∇µ)δmνσ

)
− ∇ρδm

ρσ∇µδmµσ

+ ∇ρδm
ρσ∇σδm

µ
µ + 3

4∇µδmρσ∇µδmρσ − 1
4∇σδmρ

ρ∇σδm
µ

µ − 1
2∇ρδmµσ∇σδmµ

ρ

(5.2.36)

We begin with the computations for the gravitational contributions to the diffeomorphism constraint. To
first order we have

(1)V grav
µ = −2∇ρ

(
δmµνW

νρ +mµνδW
νρ
)

+W
νρ∇µδmνρ . (5.2.37)

We decompose the indices into the radial 3 and angular A,B, . . . components. This gives two sets of
constraints, the radial and angular diffeomorphism constraints. We find

(1)V grav
3 = − 2eµ∂r

(
eµδW 33

)
− 2e2µDAδW

3A + 2e2λλ′ΩABδW
AB −

√
Ω∂r(πµe

−2µ)δm33

−
√

Ωπµ

2 e−2µ∂rδm33 −
√

Ωπλ

2 e−2λDAδm3A +
√

Ωπλ

4 e−2λΩAB∂rδmAB ,
(5.2.38)
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(1)V grav
A = − 2ΩAB∂r

(
e2λδWB3

)
− 2e2λΩABDCδW

BC +
√

Ωπµ

2 e−2µDAδm33

−
√

Ω∂r

(
πµe

−2µδm3A

)
+

√
Ωπλ

4 e−2λ
(
DAΩCDδmCD − 2DBδmAB

)
.

(5.2.39)

The second order perturbations of the full diffeomorphism constraint takes the form

(2)V grav
µ = −2∇ρ(δmµνδW

νρ) + δW νρ∇µδmνρ . (5.2.40)

For the calculation, we do not need the non-symmetric constraints at second order. It is sufficient to only
compute the radial component µ = 3 because the angular components have no spherically symmetric part.
We obtain

(2)V grav
3 =δW 33∂rδm33 − 2∂r

(
δW 33δm33

)
− 2δm3A∂rδW

3A

− 2DA

(
δm33δW

3A
)

+ δWAB∂rδmAB − 2DA

(
δm3BδW

AB
)
.

(5.2.41)

Next, we investigate the gravitational contributions to the Hamiltonian constraint. The first order cor-
rections to the Hamiltonian constraint are given by

(1)V grav
0 = 1√

m

(
W

ρσ
mµρmνσ − 1

2mµνW
ρσ
mρσ

)(
2δWµν + 2mµαδmαβW

βν − 1
2m

αβδmαβW
µν
)

+
√
m
(
Gµνδmρσm

µρmνσ − ∇µ∇νδmρσm
µρmνσ + □δmµνm

µν
)
.

(5.2.42)

The indices µ, ν, . . . are split into the radial and angular components. We find

(1)V grav
0 =1

2(πµ − πλ)eµ−2λδW 33 − 1
2πµe

−µδWABΩAB − 1
16

√
Ωπ2

µe
−µ−4λΩABδmAB

+ 3
16

√
Ωπ2

µe
−3µ−2λδm33 − 1

8
√

Ωπµπλe
−3µ−2λδm33

+ eµ+2λ
[
e−2(µ+λ)(DAD

Aδm33 − δm33) + e−2(µ+λ)
(
∂2

r − µ′∂r − λ′∂r + (λ′)2
)
ΩABδmAB

+ e−4µ
(
−2λ′∂r + 6λ′µ′ − 3(λ′)2 − 2λ′′

)
δm33 − 2e−2(µ+λ)(∂r − µ′ + λ′)DAδm3A

+ e−4λ
(
DAD

AδmCDΩCD −DADBδmAB

)]
.

(5.2.43)

The second order contributions to the Hamiltonian constraint are more involved due to the presence of the
Ricci scalar and the square root of the metric. Expanding everything carefully, we obtain the following
second order perturbation of the Hamiltonian constraint

(2)V grav
0 = 1√

m

[
δWµνδW ρσ

(
mµρmνσ − 1

2mµνmρσ

)
+ δWµνW

ρσ(4δmµρmνσ − (δmµνmρσ + δmρσmµν))

+W
µν
W

ρσ
(
δmµρδmνσ − 1

2δmµνδmρσ

)
+ 1

8
(
2δmµνδmµν + (δmµ

µ)2
)(
W

ρσ
W ρσ − 1

2(W ρ
ρ)2
)

+ 1
2δm

ρ
ρ(δWµ

µW
ν

ν +W σ
σW

µνδmµν − 2WµνW στδmµσmντ − 2δWµνWµν)
]

(5.2.44)

−
√
m
[
δmµ

ρδm
ρνRµν − 1

2δm
ρ

ρδm
µνRµν + 1

8
(
(δmρ

ρ)2 − 2δmµνδmµν

)
R

+ ∇µδmνρ∇σδmαβm
µνρσαβ
(1) + δmµν∇ρ∇σδmαβm

µνρσαβ
(2)

]
,

In the last row, we abbreviated the contractions with the metric by some tensors m(1) and m(2). They
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are linear combinations of the products of three inverse metrics defined by

mµνρσαβ
(1) := −mµνmρβmσα +mµνmρσmαβ + 3

4m
µσmναmρβ − 1

4m
µσmνρmαβ − 1

2m
µβmναmρσ (5.2.45)

mµνρσαβ
(2) :=1

2m
µνmραmσβ − 1

2m
µνmρσmαβ +mµαmνβmρσ +mµρmνσmαβ −mµσmναmρβ

−mµρmναmσβ .
(5.2.46)

The computations for the first four lines of the second order Hamiltonian constraint are straight forward.
In the last line, we have first and second covariant derivatives of the perturbed metric. To simplify the
computations, we explicitly compute the decomposition of the second derivative of the perturbed metric
into radial and angular components. It is convenient to introduce the following derivative operator:

D(a,b) := ∂r − aµ′ − bλ′, (5.2.47)

Then, the second covariant derivatives of δmµν in radial and angular components are

∇r∇rδm33 = D(3,0)D(2,0)δm33

∇r∇rδm3A = D(2,1)D(1,1)δm3A

∇r∇rδmAB = D(1,2)D(0,2)δmAB

∇r∇Aδm33 = D(2,1)(DAδm3B − 2λ′δm3A

)
∇r∇Aδm3B = D(1,2)

(
DAδm3B − λ′δmAB + λ′e2(λ−µ)ΩABδm33

)
∇r∇AδmBC = D(0,3)

(
DAδmBC + λ′e2(λ−µ)(ΩABδm3C + ΩACδm3B)

)
∇A∇rδm33 = DAD

(2,1)δm33 − 2λ′D(1,2)δm3A (5.2.48)

∇A∇rδm3B = λ′e2(λ−µ)ΩABD
(2,1)δm33 +DAD

(1,2)δm3B − λ′D(0,3)δmAB

∇A∇rδmBC = DAD
(0,3)δmBC + λ′e2(λ−µ)

(
ΩABD

(1,2)δm3C + ΩACD
(1,2)δm3B

)
∇A∇Bδm33 = DADBδm33 + λ′e2(λ−µ)ΩABD

(2,2)δm33 − 4λ′D(AδmB)r + 2(λ′)2δmAB

∇A∇Bδm3C = 2λ′e2(λ−µ)ΩC(ADB)δm33 +DADBδm3C + λ′e2(λ−µ)ΩABD
(1,2)δm3C

− 2(λ′)2e2(λ−µ)ΩACδm3B − (λ′)2e2(λ−µ)ΩBCδm3A − 2λ′D(AδmB)C

∇A∇BδmCD = (λ′)2e4(λ−µ)(ΩBCΩAD + ΩBDΩAC)δm33 + 2λ′e2(λ−µ)
(
ΩC(ADB)δm3D + ΩD(ADB)δm3C

)
+DADBδmCD + λ′e2(λ−µ)

(
ΩABD

(0,2)δmCD − 2λ′ΩA(CδmD)B
)

The first three lines of (5.2.44) involve the gravitational momenta. Their splitting into radial and angular
components is

1
2e

4µδW 33δW 33 + 2e2(µ+λ)ΩABδW
3AδW 3B + e4λ

(
δWABδWAB − 1

2(δWA
A)2

)
− ΩABe

2(µ+λ)δW 33δWAB + 1
4(3πµ − πλ)δW 33δm33 − δW 33ΩABδmAB

πµ

4 e2(µ−λ) + πµδW
3Aδm3A

− ΩABδW
ABδm33

πµ

4 e2(λ−µ) − 1
2δW

ABδmAB(πµ − πλ) + 1
4(πµ − πλ)ΩABΩCDδWABδmCD (5.2.49)

+
( 3

64π
2
µ + 1

32πµπλ

)
e−4µ(δm33)2 +

( 1
16π

2
µ + 1

8πµπλ

)
e−2(µ+λ)ΩABδm3Aδm3B
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− 3
32π

2
µe

−2(µ+λ)δm33ΩABδmAB +
(
π2

µ

32 − πµπλ

16 + π2
λ

16

)
e−4λΩABΩCDδmACδmBD

+
(
π2

µ

64 + πµπλ

32 − π2
λ

32

)
e−4λΩABΩCDδmABδmCD .

The fourth line in (5.2.44) contains the background curvature tensors and gives

− 1
4
(
1 +

(
(λ′)2 + 2λ′′ − 2λ′µ′

))
e2(λ−µ))e−4µ−2λ(δm33)2

+ 1
2
(
λ′′ + λ′(λ′ − µ′)

)
e−2λ−4µδm33ΩABδmAB − (λ′′ + λ′(λ′ − µ′))e−2λ−4µΩABδm3Aδm3B (5.2.50)

+ 1
2
(
1 − (λ′)2e2(λ−µ)

)
e−6λδmABδmAB − 1

4
(
1 − (λ′)2e2(λ−µ)

)
e−6λ

(
δmABΩAB

)2

Then, we study the first term in the last line of (5.2.44) involving the first covariant derivative of the
metric perturbations. The expansion of this term in terms of radial and angular components is

−
√
m∇µδmνρ∇σδmαβm

µνρσαβ
(1) = 1

2e
−4µ−2λ(∂r − 2µ′)δm33(∂r − 2λ′)δmABΩAB

− e−4µ−2λ(∂r − 2µ′)δm33

(
DAδm3A − λ′ΩABδmAB + 2λ′e2(λ−µ)δm33

)
+ 1

2e
−4µ−2λ(DAδm33 − 2λ′δm3A)(DBδm33 − 2λ′δm3B)ΩAB

+ e−2µ−4λ
(
DAδmBC + λ′e2(λ−µ)(ΩABδm3C + ΩACδm3B)

)
(DDδm33 − 2λ′δm3D)

(
ΩABΩCD − 1

2ΩADΩBC

)
+ e−2µ−4λ

(
DAδmBC + λ′e2(λ−µ)(ΩABδm3C + ΩACδm3B)

)
(∂r − µ′ − λ′)δm3D(ΩADΩBC − 2ΩABΩCD)

+ e−2µ−4λ
(
DAδm3B − λ′δmAB + λ′e2(λ−µ)ΩABδm33

)(
DCδm3D − λ′δmCD + λ′e2(λ−µ)ΩCDδm33

)
× (5.2.51)

×
(

3
2ΩACΩBD − 1

2ΩADΩBC − ΩABΩCD

)
+ e−2µ−4λ(∂r − 2λ′)δmAB

(
DCδm3D − λ′δmCD + λ′e2(λ−µ)ΩCDδm33

)
(ΩABΩCD − ΩADΩBC)

+ 1
4e

−2µ−4λ(∂r − 2λ′)δmAB(∂r − 2λ′)δmCD(3ΩACΩBD − ΩABΩCD)

+ e−6λ
(
DAδmBC + λ′e2(λ−µ)(ΩABδm3C + ΩACδm3B)

)(
DDδmEF + λ′e2(λ−µ)(ΩDEδm3F + ΩDF δm3E)

)
mABCDEF

(1)

Finally, the last term consists of the second derivative of the metric perturbation. Its splitting into radial
and angular contributions is given by

−
√
mδmµν∇ρ∇σδmαβm

µνρσαβ
(2)

= e−4µ−2λ
[1

2δm33∇r∇rδmABΩAB − 1
2δm33∇r∇Aδm3BΩAB − 1

2δm33∇A∇rδm3BΩAB + 1
2δm33∇A∇Bδm33ΩAB

]
+ e−2µ−4λ

[1
2δm33∇A∇BδmCD(ΩACΩBD − ΩABΩCD) + δm3A∇r∇BδmCD(ΩABΩCD − ΩACΩBD)

+ δm3A∇B∇Cδm3D(2ΩADΩBC − ΩACΩBD − ΩABΩCD) + δm3A∇B∇rδmCD(ΩABΩCD − ΩACΩBD (5.2.52)

+ δmAB∇r∇rδmCD

(
ΩACΩBD − 1

2ΩABΩCD

)
+ δmAB∇r∇Cδm3D

(
1
2ΩABΩCD − ΩACΩBD

)
+ δmAB∇C∇rδm3D

(
1
2ΩABΩCD − ΩACΩBD

)
+ δmAB∇C∇Dδm33

(
ΩACΩBD − 1

2ΩABΩCD

)]
+ e−6λδmAB∇C∇DδmEFm

ABCDEF
(2)

In the last step, we insert the explicit form of the background metric and background momenta in terms
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of (µ, πµ) and (λ, πλ). The perturbations are expanded into the variables (xv, yv), (xh, yh), (xA, y
A) and

(XAB, Y
AB) and then further decomposed into the (l,m)-dependent modes.

At first order, the constraints do not contain any spherically symmetric contribution because the average
of a spherical harmonic with l > 0 over the sphere vanishes. The non-spherically symmetric contributions to
the constraints are decomposed into scalar and vector spherical harmonics. For simplicity of the notation,
we will not write the (l,m)-dependence of the coefficents in the mode expansion in the following equations.
For the first order constraints, we obtain the non-symmetric constraints using the integrals in (5.2.29)

(1)Zh
lm = −2eµ∂r(eµyv) + e2µ

√
l(l + 1)ye + 2λ′e2λyh − ∂r(πµe

−2µ)xv − 1
2πµe

−2µ∂rx
v

+ πλ

2 e−2λ
√
l(l + 1)xe + πλ

2 e−2λ∂rx
h

(5.2.53)

(1)Ze
lm =

√
2(l + 2)(l − 1)

(
e2λYe + πλ

4 e−2λXe
)

− ∂r

(
e2λye + πµe

−2µxe
)

−
√
l(l + 1)e2λyh

+ 1
2

√
l(l + 1)πµe

−2µxv

(5.2.54)

(1)Zo
lm =

√
2(l + 2)(l − 1)

(
e2λYo + πλ

4 e−2λXo
)

− ∂r

(
e2λyo + πµe

−2µxo
)

(5.2.55)

(1)Zv
lm = 1

2(πµ − πλ)eµ−2λyv − 1
2πµe

−µyh − 1
8π

2
µe

−µ−4λxh + 1
16(3π2

µ − 2πµπλ)e−3µ−2λxv

+ e−3µ+2λ(−2λ′∂r + 6λ′µ′ − 3(λ′)2 − 2λ′′ − e2µ−2λ(l(l + 1) + 1))xv

+ 2e−µ
(
∂2

r − µ′∂r − λ′∂r + (λ′)2 − 1
2e

2µ−2λl(l + 1)
)
xh + 2e−µ

√
l(l + 1)(∂r − µ′ + λ′)xe

− eµ−2λ

√
(l + 2)(l + 1)l(l − 1)

2 Xe

(5.2.56)

At second order, we are only interested in the symmetric contributions of the constraints. We obtain
them, by averaging the radial diffeomorphism and Hamiltonian constraints over the sphere. The results are
rather lengthy and we use a short-hand notation to avoid the indices (l,m). For two sets of coefficients in a
mode expansion {flm}lm and {glm}lm, we define

f · g :=
∑
lm

flmglm . (5.2.57)

In this notation, the gravitational contributions to the second order symmetric constraints are using equation
(5.2.28)

(2)Ch = −xo · ∂ryo + Yo · ∂rX
o + yv · ∂rx

v − 2∂r(xv · yv) − xe∂r · ye + Ye · ∂rX
e + yh · ∂rx

h (5.2.58)

(2)Cv = eµ

2 yo · yo + e−µ+2λYo · Yo + 1
2e

−µ−2λπµx
o · yo − 1

2e
−µ−2λ(πµ − πλ)Yo ·Xo

+
(
π2

µ

16 + πµπλ

8

)
e−3µ−4λxo · xo − e−3µxo ·

(
−4λ′∂r − 2λ′′ + (λ′)2 + 6λ′µ′ − 1

2e
2(µ−λ)l(l + 1)

)
xo

− e−µ−2λ

√
(l + 2)(l − 1)

2 xo ·
(
∂r − 2λ′)Xo +

(
π2

µ

32 − πµπλ

16 + π2
λ

16

)
e−µ−6λXo ·Xo

− e−2λ−µXo ·
(
∂2

r − 4λ′∂r − µ′∂r + 5
2(λ′)2 + λ′µ′ − λ′′

)
Xo − 3

4e
−2λ−µ∂rX

o · ∂rX
o

+ 1
2e

3µ−2λyv · yv + 1
4e

−µ−2λxv · yv(3πµ − πλ) + e−5µ−2λxv · xv
( 3

64π
2
µ + 1

32πµπλ

)
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+ 1
4e

−5µ+2λxv ·
(
e2(µ−λ) + 12λ′∂r + 6λ′′ − 30λ′µ′ + 9(λ′)2

)
xv + 1

2e
µye · ye + 1

2πµe
−µ−2λxe · ye

+
( 1

16π
2
µ + 1

8πµπλ

)
e−3µ−4λxe · xe + e−3µxe ·

(
4λ′∂r + 2λ′′ − 6λ′µ′ − (λ′)2

)
xe + 1

8e
−µ−6λπ2

µx
h · xh

− 1
2e

−µ−2λ
(
4(λ′)2xh · xh − 4λ′xh · ∂rx

h + ∂rx
h · ∂rx

h
)

+ e−µ+2λYe · Ye − 1
2e

−µ−2λ(πµ − πλ)Xe · Ye + e−µ−6λ
( 1

32π
2
µ − 1

16πµπλ + 1
16π

2
λ

)
Xe ·Xe (5.2.59)

+ eµ−2λ 1
4
(
−3∂rX

e · ∂rX
e +Xe · (−4∂2

r + 4µ′∂r + 16λ′∂r − 4µ′λ′ − 10(λ′)2 + 4λ′′)Xe
)

− eµyh · yv − πµ

2 eµ−4λyv · xh − 1
4πµe

−3µxv · yh − 3
16π

2
µe

−3µ−4λxv · xh

− e−3µxv ·
(1

2 l(l + 1)e2(µ−λ)xh + ∂2
rx

h − 3µ′∂rx
h + (λ′)2xh − λ′∂rx

h) − e−3µ∂rx
h · ∂rx

v

−

√
(l + 2)(l + 1)l(l − 1)

8 e−µ−2λxv ·Xe − e−3µ
√
l(l + 1)xv · ∂rx

e

− e−3µ
√
l(l + 1)xe ·

(
−3µ′xv − λ′xv + ∂rx

v)+ e−µ−2λ
√
l(l + 1)xe ·

(
2λ′xh − ∂rx

h
)

+

√
(l + 2)(l − 1)

2 e−µ−2λxe ·
(
2λ′Xe − ∂rX

e)
The results have been double checked with the symbolic computation features of the computer algebra
system Mathematica and the package xAct [127].

As matter content we study electromagnetic radiation. In section 3.6 the Hamiltonian formulation for the
electromagnetic field was introduced. It gives rise to matter contributions to the diffeomorphism Cem

µ and
Hamiltonian constraints Cem

0 . Additionally, the Gauß constraint VG has to be satisfied by the electromagnetic
field.

In the section 3.6 on the Hamiltonian treatment of spherically symmetric spacetimes, we found that the
background electromagnetic field is fully described by a non-trivial radial electric field E3 =

√
Ωξ. We found

that the background Gauß constraint implies that ξ is a constant which we related to the electric charge.
In this section we use the notation Eµ = E

µ + δEµ and Aµ = Aµ + δAµ, where the quantities with δ are
considered as small non-symmetric perturbations.

Since the Gauß constraint VG is linear in the electric field, we can treat it exactly. We find

VG = ∂µE
µ = ∂rδE

3 +DAδE
A , (5.2.60)

where we used the expression E
3 =

√
Ωξ. The index µ is split into its radial and angular directions.

Additionally, we notice that Eµ is a vector density, so that the covariant divergence and the partial divergence
are the same. In terms of the mode decomposition, we have

(VG)lm = ∂ry
M
lm −

√
l(l + 1)Y M

e,lm (5.2.61)

The electromagnetic part of the diffeomorphism constraint is given by

V em
µ = FµνE

ν , (5.2.62)

The calculations are simpler if we introduce the magnetic field Bµ := 1/2 ϵµνρFνρ with the Levi-Civita
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symbol ϵµνρ. The relation between Fµν and Bµ is easily inverted and we have Fµν = ϵµνρB
ρ. In terms of

the perturbed vector potential, the magnetic field is

B3 =
∑

l≥1,m

√
l(l + 1)Xo,lm

M Llm (5.2.63)

BA =
∑

l≥1,m

(
∂rX

o,lm
M LA

e,lm + (
√
l(l + 1)xlm

M − ∂rX
e,lm
M )LA

o,lm

)
(5.2.64)

In terms of the magnetic field, the diffeomorphism constraint reads

V em, no G
µ = FµνE

ν = ϵµνρE
νBρ (5.2.65)

For the calculation of the first order perturbations, we notice that the background magnetic field vanishes.
Therefore, the only non-vanishing combination is of the form E

3
δBµ. Due to the antisymmetry of the

Levi-Civita symbol only the angular components of the constraint are non-vanishing and we have

V em, no G
A = −

√
ΩξϵACB

C =
√

Ωξ
∑

l≥1,m

(
−∂rX

o,lm
M Lo

lm + (
√
l(l + 1)xlm

M − ∂rX
e,lm
M )Le

lm

)
(5.2.66)

where ϵAC = ϵ3AC is the Levi-Civita symbol on the sphere.

To second order, we only need the spherically symmetric radial diffeomorphism constraint. To second
order it is given by

(2)Ch =
∫

S2
ϵACδE

AδBCdΩ

= Y M
o · ∂rX

o
M + Y M

e · ∂rX
e
M −

√
l(l + 1)Y M

e · xM .

(5.2.67)

where we used the abbreviation (·) for the sum over the product of two coefficients in the mode expansion.

The electromagnetic contributions to the Hamiltonian constraint V em
0 are also conveniently rewritten

using the magnetic field:

V em
0 = 1

2mµν

(
g2

√
m
EµEν +

√
m

g2 BµBν

)
. (5.2.68)

To first order, only the electric terms contribute because the background magnetic field vanishes. We have

(1)V em
0 = g2

2
√
m

(δm33 − 1
2m33δmµνm

µν)(E3)2 + g2
√
m
m33E

3
δE3 . (5.2.69)

The first order correction to the electromagnetic Hamiltonian constraint does not have any symmetric
components. We insert the explicit form of the perturbed metric and the electric field and obtain

((1)Zem
v )lm =

√
Ωg

2

2 e
−µ−2λ

((1
2x

v
lm − xh

lme
2(µ−λ)

)
ξ2 + 2e2µξyM

lm

)
. (5.2.70)
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The second order corrections of the electromagnetic Hamiltonian constraint are

V em
0 = g2

2
√
m

(1
8m33((δmµ

µ)2 + 2δmµνδm
µν) − 1

2δm33δm
µ

µ

)
(E3)2

+ g2
√
m

(δm3µδE
µE

3 − 1
2m33δmµνm

µνE
3
δE3) + g2

2
√
m
mµνδE

µδEν +
√
m

2g2 mµνδB
µδBν) .

(5.2.71)

We split the indices into radial and angular components and use the decomposition of the perturbed metric
and the electromagnetic field. We find the second order symmetric contribution

(2)Cem
v = g2

2 e
−µ−2λ

[1
8
(

− e−4µxv · xv − 4e−2µ−2λxv · xh + 4e−2µ−2λ(xo · xo + xe · xe) + 8e−4λxh · xh

+ 2e−4λ(Xe ·Xe +Xo ·Xo)
)
e2µξ2 + ξ(xv − 2e2µ−2λxh) · yM

+ 2(xoY M
o + xeY M

e )ξ + e2µyM · yM + e2λY M
e · Y M

e + e2λY M
o · Y M

o

]
(5.2.72)

+ 1
2g2 e

−µ−2λ
[
e2µl(l + 1)Xo

M ·Xo
M + e2λ∂rX

o
M · ∂rX

o
M

+ e2λ(
√
l(l + 1)xm − ∂rX

M
e ) · (

√
l(l + 1)xm − ∂rX

M
e )
]
.

5.2.3 Solution of the Perturbed Constraints in Gullstrand-Painlevé Gauge

The next step in the reduced phase space formulation is the solution of the constraints for the momenta of
the gauge degrees of freedom. In the previous section we derived the first order non-symmetric constraints
which have to be solved for the perturbative gauge momenta and the second order symmetric constraints
which give rise to second order corrections to the symmetric gauge momenta.

In this section, we specialise to GP gauge and study both the gravitational and electromagnetic contribu-
tions to the constraints. We closely follow [2, 3]. Before presenting the constraints in this gauge, we evaluate
the Gauß constraint. It fixes the variable yM in terms of Y M

e :

ylm
M :=

√
l(l + 1)

∫
Y M

e,lm dr (5.2.73)

We gauge fix the conjugate variable xM
lm = 0.

The task is to solve the constraints (0)C + (2)C = 0 for πµ and πλ and (1)Z = 0 for yv/h and yI . For the
derivation of the second order physical Hamiltonian, we only need to compute the solutions of the constraints
up to second order in the perturbations. For the momenta y, we will only get first order solutions y(1). The
solutions for πµ and πλ will have first and second order contributions. We therefore split them into the
zeroth order parts π(0)

µ , π(0)
λ and second order parts π(2)

µ , π(2)
λ . The zeroth order solution π

(0)
µ , π(0)

λ was
already determined in section 3.6.

Imposing the GP gauge on the background degrees of freedom (µ = 0, λ = log r), the first order non-
symmetric constraints are

(1)Zh
lm = −2∂ryv +

√
l(l + 1)ye + 2ryh − ∂rπµx

v − 1
2πµ∂rx

v + πλ

2r2

√
l(l + 1)xe + πλ

2r2∂rx
h (5.2.74)

(1)Ze
lm =

√
2(l + 2)(l − 1)

(
r2Ye + πλ

4r2X
e
)

− ∂r(r2ye + πµx
e) +

√
l(l + 1)

(
πµ

2 xv − r2yh

)
−ξ∂rX

e
M

(5.2.75)
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(1)Zo
lm =

√
2(l + 2)(l − 1)

(
r2Yo + πλ

4r2X
o
)

− ∂r

(
r2yo + πµx

o
)

− ξ∂rX
o
M (5.2.76)

(1)Zv
lm = 1

2r2 (πµ − πλ)yv −
(

2r∂r + l(l + 1) + 2 − 2rs

r

)
xv − 1

2πµyh − 1
r2

√
(l + 2)(l + 1)l(l − 1)

2 Xe

+ 2
(
∂2

r − 1
r
∂r − (l + 2)(l − 1)

2r2 − rs

r3

)
xh + 2

√
l(l + 1)

(
∂r + 1

r

)
xe + g2

r2 ξ
√
l(l + 1)

∫
Y M

lm dr

(5.2.77)

In the equations we replaced the quadratic terms in πµ and πλ by their background values which is consistent
to the order we are working in.

In the GP gauge for the background, the second order symmetric constraints read

(2)Ch = −xo · ∂ryo + Yo · ∂rX
o + yv · ∂rx

v − 2∂r(xv · yv) − xe · ∂rye + Ye · ∂rXe + yh · ∂rx
h

+ Y M
e · (Xe

M )′ + Y M
o · (Xo

M )′
(5.2.78)

(2)Cv = 1
2yo · yo + 1

2r2πµx
o · yo + 1

r2x
o ·
(

4r∂r − 3 + l(l + 1)
2 + 2rs

r

)
xo + r2Yo · Yo

− 1
2r2 (πµ − πλ)Yo ·Xo − 1

r4X
o ·
(
r2∂2

r − 4r∂r + 7
2 + r2

s

g2ξ2 − 4rrs

)
Xo − 3

4r2∂rX
o · ∂rX

o

− 1
r3

√
(l + 2)(l − 1)

2 xo · (r∂r − 2)Xo

+ 1
2r2 yv · yv + 1

4r2 (3πµ − πλ)xv · yv + xv ·
(

3r∂r + 1 + rs

r
− g2ξ2

4r2

)
xv + 1

2ye · ye + 1
2r2πµx

e · ye

+ 1
r2x

e ·
(

4r∂r − 3 + 2rs

r

)
xe − 1

2r4

(
4
(

1 − rs

r

)
xh · xh − 4rxh · ∂rx

h + r2∂rx
h · ∂rx

h
)

+ r2Ye · Ye − 1
2r2 (πµ − πλ)Xe · Ye − 1

r4X
e ·
(
r2∂2

r − 4r∂r + 7
2 + r2

s

g2ξ2 − 4rrs

)
Xe (5.2.79)

− 3
4r2∂rX

e · ∂rX
e − yh · yv − πµ

2r4 yv · xh − 1
4πµx

v · yh − ∂rx
h · ∂rx

v

− 1
r2x

v ·
(
r2∂2

rx
h − r∂rx

h + l(l + 1) + 2
2 xh + 3rs

r
xh − g2ξ2

2r2 x
h

)
−
√
l(l + 1)xv · ∂rx

e

− 1
2r2

√
(l + 2)(l + 1)l(l − 1)

2 xv ·Xe −
√
l(l + 1)1

r
xe · (−xv + r∂rx

v)

+ 1
r3

√
l(l + 1)xe ·

(
2xh − r∂rx

h
)

+

√
(l + 2)(l − 1)

2
1
r3x

e · (2Xe − r∂rX
e)

+ g2

2r2

[(
2xo · Y M

o +
√
l(l + 1)

(
xv − 2

r2x
h
)

·
∫
Y M

e dr + 2xe · Y M
e

)
ξ

+ l(l + 1)
∫
Y M

e dr ·
∫
Y M

e dr + r2(Y M
e · Y M

e + Y M
o · Y M

o )
]

+ 1
2g2r2

[
l(l + 1)Xo

M ·Xo
M + r2(Xo

M
′ ·Xo

M
′ +Xe

M
′ ·Xe

M
′)
]

In the following, we perform the calculations for the solutions of the constraints in two steps. First,
we solve the second order symmetric constraints to obtain the second order corrections to the background
momenta π

(2)
µ , π(2)

λ . In this step, we assume that we successfully solved the non-symmetric first order
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constraints for y. Then, we consider the first order constraints and solve them for y and insert the results
into the solution we obtained for the second order symmetric constraints. Finally, we simplify the results of
the computations using canonical transformations.

5.2.3.1 Solution of the Second Order Constraints

As explained above, the symmetric constraints are solved for the momenta πµ and πλ. We consider the
ansatz πµ = π

(0)
µ + π

(2)
µ and πλ = π

(0)
λ + π

(2)
λ . Inserting this into the spherically symmetric Hamiltonian and

diffeomorphism constraints, we obtain to second order

Cv ∼ 4π
4r2

(
π(0)

µ π(2)
µ − π(0)

µ π
(2)
λ − π(2)

µ π
(0)
λ

)
+ (2)Cv = 0 , (5.2.80)

Ch ∼ 4π
(1
r
π

(2)
λ − (π(2)

µ )′ + (2)Ch

)
= 0 . (5.2.81)

In these equations, (2)Cv and (2)Ch are the expressions quadratic in the perturbations (x, y) and (X,Y )
defined in (5.2.58) and (5.2.59). The exact form of them depends on the solution of the first order
constraints. As we will see, the exact expression will not be relevant for the solution of the second order
constraints that we discuss in this part. By construction, (2)Cv and (2)Ch will not depend on π

(2)
µ , π

(2)
λ .

Setting xv/h/e/o = 0 as required by the full GP gauge, (2)Cv and (2)Ch simplify drastically and we have

(2)Ch = Yo · ∂rX
o + Ye · ∂rXe + Y M

e ∂rX
e
M + Y M

o ∂rX
o
M (5.2.82)

(2)Cv = r2Yo · Yo − 1
2r2 (πµ

(0) − πλ
(0))Yo ·Xo − 1

r4X
o ·
(
r2∂2

r − 4r∂r + 7
2 + r2

s

g2ξ2 − 4rrs

)
Xo

+ r2Ye · Ye − 1
2r2 (πµ

(0) − πλ
(0))Xe · Ye − 1

r4X
e ·
(
r2∂2

r − 4r∂r + 7
2 + r2

s

g2ξ2 − 4rrs

)
Xe (5.2.83)

− 3
4r2 (∂rX

e · ∂rX
e + ∂rX

o · ∂rX
o) + 1

2(y(1)
o · y(1)

o + y(1)
e · y(1)

e ) + 1
2r2 y

(1)
v · y(1)

v − y
(1)
h · y(1)

h

+ g2

2r2

[
l(l + 1)

∫
Y M

e dr ·
∫
Y M

e dr + r2(Y M
e · Y M

e + Y M
o · Y M

o )
]

+ 1
2g2r2

[
l(l + 1)Xo

M ·Xo
M + r2(∂rX

o
M · ∂rX

o
M + ∂rX

e
M · ∂rX

e
M )
]

In the above equations, we have to substitute the solution of the first order constraints for y(1)
v/h/e/o.

The quantity π(2)
λ is related to (π(2)

µ )′ through the second equation Ch = 0 and will be used to eliminate
π

(2)
λ in the first equation. We have

π
(2)
λ = r

(
(π(2)

µ )′ − 1
4π

(2)Ch

)
. (5.2.84)

This implies using the first equation Cv = 0 that

π(0)
µ

(
1 −

π
(0)
λ

π
(0)
µ

)
π(2)

µ − rπ(0)
µ (π(2)

µ )′ + rπ
(0)
µ

4π
(2)Ch + 4r2

4π
(2)Cv = 0 . (5.2.85)

The zeroth order symmetric constraints imply that π(0)
λ satisfies π(0)

λ = r(π(0)
µ )′ (see (3.6.10)) This simplifies
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the differential equation for π(2)
µ and we have after dividing by r2

(1
r
π(0)

µ π(2)
µ

)′
− 1

4πrπ
(0)
µ

(2)Ch − 4
4π

(2)Cv = 0 . (5.2.86)

The solution of this differential equation is straight forward using an integration over r:

π(2)
µ = 4r

4ππ(0)
µ

∫
dr
[
π

(0)
µ

4r
(2)Ch + (2)Cv

]
. (5.2.87)

The solution for π(2)
λ is determined by solving Cv for π(2)

λ in terms of π(2)
µ :

π
(2)
λ =

(
1 −

π
(0)
λ

π
(0)
µ

)
π(2)

µ + 4r2

4ππ(0)
µ

(2)Cv (5.2.88)

Since the physical Hamiltonian depends only on πµ, we provide the following explicit expression

πµ ∼ π(0)
µ + π(2)

µ = π(0)
µ

1 + 1
4π(4rs − g2ξ2/r)

∫
dr

√rs

r
− g2ξ2

4r2
(2)Ch + (2)Cv

 (5.2.89)

5.2.3.2 The Dipole Perturbations (l = 1)

After completing the second order constraints we now focus on the non-symmetric first-order constraints.
The dipole perturbations with l = 1 need to be treated separate from the rest of the perturbations, due to
the absence of the tensor spherical harmonics for l = 1. There are no gravitational observables left, only the
electromagnetic dipole perturbations Xe/o

M , Y M
e/o will contribute to the physical Hamiltonian.

The first-order constraints for even and odd parity separate and we can solve them independently. For the
odd parity perturbations we have the non-symmetric first-order constraint Zo. We work in the GP gauge
(xo = 0) and find the solution of the differential equation with some integration constants am:

y1m
o = 1

r2

(
am − ξXo,1m

M

)
. (5.2.90)

For the interpretation of am, we expand the Kerr black hole solution to linear order in the angular momentum
parameter a. In Boyer-Lindquist coordinates we have

ds2 = −
(

1 − rs

r

)
dt2 + 1

1 − rs
r

dr2 + r2dΩ2 + 2rsa

r
sin2 θdtdϕ (5.2.91)

For the comparison we need to compute the perturbation of the shift vector to the momenta yo using the
stability condition of the gauge fixing xo = 0. This condition reads

ẋo
1m = {xo

1m, N
(2)C0 +N3(2)Cr + r−2δNo · Zo}

∣∣∣
xo=0,N=1,N3=

π
(0)
µ
4r

(5.2.92)

= y1m
o + r2∂r(r−2δNo

1m) . (5.2.93)

The Poisson bracket is evaluated at the solution of the background stability condition for N and N3 which
is consistent up to the first-perturbative order. The differential equation can be integrated directly and we
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have
δNo

1m = am

3r . (5.2.94)

The term associated to the integration constant would grow quadratically as r approaches infinity. For
consistency with the fall-off conditions, the integration constant has to vanish to ensure that δNo decays
as r goes to infinity. Comparing with the linearized Kerr metric, we observe that a0 will be related to the
angular momentum parameter a. The three components of am stand for the three directions the angular
momentum can point to and a0 is the angular momentum in the z-direction. A more in-depth argument for
the relation of the odd parity dipole perturbations to the linearized Kerr black hole, see [74].

We now use the result for y1m
o in (5.2.87) for π(2)

µ to find the odd parity dipole contributions to the
momentum π

(2)
µ :

ππ
(0)
µ

r
π(2)

µ

∣∣∣
l=1,odd

=
∑
m

∫
dr
[
N3Y M

o,1mX
M
o,1m

′ +N
(g2

2 (Y M
o,1m)2 + 1

2g2

(
(Xo,1m

M
′)2 + 2 + g2ξ2r−2

r2 (Xo,1m
M )2

)

+ a2
m + 2ξamX

o,1m
M

2r4

)]
(5.2.95)

There are three first order constraints in the even parity sector: Zv, Zh and Ze. We solve them for the
gauge momenta yh, yv and ye and keep the true degrees of freedom of the electric field (Xe,1m, Ye,1m). The
solution of the constraint equation Zv = 0 for yh in terms of yv is

y1m
h = 1

r2

(
1 − πλ

πµ

)
y1m

v + 2
√

2g2ξ

r2πµ

∫
Y M

e,1m dr . (5.2.96)

Additionally, we use Zh = 0 to express ye in terms of yv:

y1m
e = 1√

2

(
2∂ry

1m
v − 2

r

(
1 − πλ

πµ

)
y1m

v

)
− 4g2ξ

rπµ

∫
Y M

e,1m dr (5.2.97)

The remaining constraint Ze together with the solutions for yh and ye give a differential equation for yv:

√
2r2∂2

ry
1m
v +

√
2r(6rrs − g2ξ2)
4rrs − g2ξ2 ∂ry

1m
v − 2

√
2g2ξ2rrs

(4rrs − g2ξ2)2 y
1m
v = s(r) , (5.2.98)

where s(r) is a “source” term depending on the electromagnetic field:

s(r) = ξ∂rX
e,1m
M − 4g2ξrrs

(4rrs − g2ξ2)3/2

∫
Y M

e,1m dr + 2g2ξr√
4rrs − g2ξ2Y

M
e,1m . (5.2.99)

Notice that the source term only contributes for charged black holes (ξ ̸= 0). For simplicity of the notation
we do not display the labels 1,m in the following computations.

To fully solve the first-order constraints, we have to find a solution of the second order, linear and
inhomogeneous differential equation. The theory for such differential equations implies that the solution is
the sum of a particular solution of the inhomogeneous equation and the general solution of the homogeneous
equation. The solution of the homogeneous equation is of the form yv = CIy

I
v + CIIy

II
v , where CI and CII
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are constants and yI
v , yII

v are linearly independent solutions given by

yI
v = 1

πµ
, yII

v = 1 − 2gξ
πµ

arctan
(
πµ

2gξ

)
(5.2.100)

The particular solution of the inhomogeneous equation is obtained from the method of variation of con-
stants. We consider the constants CI and CII to depend on r and have the ansatz

ypart
v (r) = CI(r)yI

v(r) + CII(r)yII
v (r) (5.2.101)

Inserting this equation into the inhomogeneous differential equation including the source term s(r), we
have

√
2r2(C ′′

I y
I
v + 2C ′

Iy
I
v

′ + C ′′
IIy

II
v + 2C ′

IIy
II
v

′) +
√

2r(6rrs − g2ξ2)
4rrs − g2ξ2 (C ′

Iy
I
v + C ′

IIy
II
v ) = s(r) . (5.2.102)

Since yI
v and yII

v are solutions of the homogeneous differential equation, the terms without derivatives acting
on CI and CII vanish. The second term in the equation motivates us to consider solutions CI and CII that
satisfy C ′

Iy
I
v +C ′

IIy
II
v = 0. We take the derivative of this relation and simplify the first term of the differential

equation and we obtain √
2r2
(
C ′

Iy
I
v

′ + C ′
IIy

II
v

′
)

= s(r) (5.2.103)

In addition, the relation C ′
Iy

I
v + C ′

IIy
II
v = 0 is used to eliminate the function C ′

II from the equation. We
have

√
2r2CI

′
(
yI

v
′ − yI

v

yII
v

yII
v

′
)

= s(r) (5.2.104)

The solution of this equation is straight forward and we obtain the solutions for CI and CII :

CI =
∫

s(r)
√

2r2
(
yI

v
′ − yI

v

yII
v
yII

v
′
) dr , (5.2.105)

CII =
∫

s(r)
√

2r2
(
yII

v
′ − yII

v

yI
v
yI

v
′
) dr . (5.2.106)

The integration constant is not important and was neglected because we are only interested in a particular
solution of the differential equation. Combining the results, the particular solution reads

ypart
v =

∫
s(r)

√
2r2
(
yI

v
′ − yI

v

yII
v
yII

v
′
) dr yI

v +
∫

s(r)
√

2r2
(
yII

v
′ − yII

v

yI
v
yI

v
′
) dr yII

v . (5.2.107)

The even parity contributions to π(2)
µ are then given by

ππ
(0)
µ

r
π(2)

µ

∣∣∣
l=1,even

=
∑
m

∫
dr πµ

4r Y
M

e,1m(Xe,1m
M )′ + 1

2(y1m
e )2 −

(
2
√

2g2ξ

r2πµ

∫
Y M

e,1m dr
)
yv + 1

2g2

[
Xe,1m

M
′
]2

+ g2

2r2

(
2
(∫

Y M
e,1m dr

)2
+ r2(Y M

e,1m)2
)
, (5.2.108)

In the equation, ye and yv are functions of Xe
M and Y M

e through the solution of the first order constraints.
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The equation for π(2)
µ depends in a complicated way on the integrals and derivatives of Xe

M and Y M
e . We

define new variables Ae and Πe
A as

Ae,1m = g2
∫
Y M

e,1m dr , Πe,1m
A = g−2∂rX

e,1m
M . (5.2.109)

Inserting the solution for ye and the new variables Ae,Πe
A into (5.2.108) we get

ππ
(0)
µ

r
π(2)

µ

∣∣∣
l=1,even

=
∑
m

∫
dr πµ

4rΠe,1m
A Ae,1m′ +

(
y′

v − 1
r
yv + πλ

rπµ
yv

)2

− 2
√

2ξ
rπµ

(
y′

v + πλ

rπµ
yv

)
Ae,1m

+ 1
2

(
g2(Πe,1m

A )2 + 1
g2

(
(Ae,1m′)2 + 1

r2π2
µ

(2π2
µ + 16g2ξ2)(Ae,1m)2

))
. (5.2.110)

Because of the complexity of the solution for yv, inserting it into this equation yields a very complicated
expression. It would be desirable to find a canonical transformation simplifying the expressions to reach a
more tractable formula for the even dipole perturbations. A further analysis of the dipole perturbations is
left for future investigations.

5.2.3.3 Solution of the First Order Constraints - Odd Parity

In this section, we turn to the odd parity perturbations for l ≥ 2. In the previous chapter on the dipole
perturbations, we saw that the solution of the odd parity sector is simpler compared to the even parity one.
We expect the same to be true for l ≥ 2 due to the fact that there is only one constraint equation Zo = 0
that has to be solved. The odd parity sector consists of the gauge degrees of freedom (xo

lm, y
lm
o ) and the

true gravitational degrees of freedom (Xo
lm, Y

lm
o ) as well as the true degrees of freedom of the Maxwell field

(Xo,lm
M , Y M

o,lm). From now on, in this section we will not display the labels l,m.
The constraint equation Zo = 0 is a differential equation for yo whose solution in GP gauge (xo = 0) is

y(1)
o = 1

r2

∫ [√
2(l + 2)(l − 1)

(
r2Yo + π

(0)
λ

4r2 X
o

)
− ξ∂rX

o
M

]
dr . (5.2.111)

This is already the full solution for the odd parity case and it can be inserted into equation (5.2.87) to
obtain the odd parity contributions to π(2)

µ . The result is still rather long and not very suitable for further
investigations. In the following we perform two canonical transformations to simplify the expression.

The canonical transformation leaves the electromagnetic sector invariant. Nevertheless, for a unified
treatment of the odd and even parity sectors later, we redefine the variables Ao = Xo

M and Πo
A = Y M

o . The
first transformation for the gravitational variables is motivated by the integral appearing in the solution for
y

(1)
o . We introduce a new variable Q for this integral and find a canonically conjugate variable P . Explicitly,

we have

P := 1√
2
∂r

(
r−2Xo

)
(5.2.112)

Q :=
√

2
∫

dr
(
r2Yo + π

(0)
λ

4r2 X
o

)
. (5.2.113)

The transformation depends on the electromagnetic field through the implicit dependence of π(0)
λ on ξ. Let
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us check that it is indeed a canonical transformation. The Poisson bracket of P with itself vanishes trivially.
For the remaining brackets consider smeared versions of the variables, i.e. we define Q[f ] =

∫
f(r)Q(r) dr

and similarly P [f ] :=
∫
f(r)P (r)dr. Then, we calculate

{Q[f ], P [g]} =
∫

dr1dr2

[∫ r1
f(r̃1)dr̃1∂r2g(r2)

{
r2

1Yo(r1) + π
(0)
λ (r1)
4r2

1
Xo(r1), r−2

2 Xo(r2)
}]

= −
∫

dr1dr2

[∫ r1
f(r̃1)dr̃1∂r2g(r2)r2

1 r
−2
2 δ(r1, r2)

]
=
∫

drf(r)g(r)
(5.2.114)

This is the expected result that shows that Q and P are canonically conjugated. Using similar methods one
shows explicitly that the Poisson bracket {Q[f ], Q[g]} vanishes. Therefore, the transformation is canonical.

The solution for y(1)
o and the first canonical transformation are now inserted into equation (5.2.87). After

imposing the GP gauge (xo = 0) and a simplification using integration by parts, we find

4r
π

(0)
µ

π(2)
µ

∣∣∣
l≥2,odd

=
∫

dr 1
4rπ

(0)
µ (PQ′ + Πo

AA
o′) + 1

2

(
r2P 2 + 1

r4 (l + 2)(l − 1)Q2 + 1
r2 (Q′)2

)

+ 1
2

(
g2(Πo

A)2 + 1
g2

(
l(l + 1)
r2 + g2ξ2

r4 + (Ao′)2
))

−
√

(l + 2)(l − 1)
r4 ξQAo

(5.2.115)

In the above expression we neglected the boundary term from the integration by parts which is given by

∫
dr d

dr

(
2r2P

∫
P dr + 1

2(2r + rs)
(∫

P dr
)2
)
. (5.2.116)

With the second canonical transformation, we would like to transform r2P 2 + r−2(Q′)2 into new variables
(Qo, P o) such that the factors of r disappear and we are left with P 2 + (Q′)2. Furthermore, this transfor-
mation introduces the Regge-Wheeler potential into the Hamiltonian which we found in the analysis of the
linearised equations of motion. The transformation rescales Q and P by r and adds a shift to P :

Q = rQo (5.2.117)

P = 1
r

(
P o − πµ

4r2Q
o
)

(5.2.118)

In order to check that the transformation is canonical, we have to calculate three Poisson brackets. The one
of Q with itself is trivially vanishing and also the one of P with itself vanishes due to the anti-symmetry of
the Poisson bracket. It remains to calculate the one between Q and P and one readily sees that it gives the
correct result because Qo and P o have the correct prefactors of r.

Applying this transformation in the solution for π(2)
µ , we obtain after another integration by parts

4r
π

(0)
µ

π(2)
µ

∣∣∣
l≥2,odd

=
∫

dr
[

1
4rπ

(0)
µ (P o(Qo)′ + Πo

A(Ao)′) −
√

(l + 2)(l − 1)
r3 ξQoAo

+ 1
2
(
(P o)2 + (Qo′)2 + 1

r4 (l(l + 1)r2 − 3rrs + g2ξ2)(Qo)2
)

+ 1
2

(
g2(Πo

A)2 + 1
g2

(
(Ao′)2 + 1

r4

(
l(l + 1)r2 + g2ξ2

)
(Ao)2

))]
.

(5.2.119)

The boundary term arising from the integration by parts was neglected in the above expression. The
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boundary term is given by

−
∫

dr d
dr

(
1

2r2

(
rs − r − g2ξ2

4r

)
(Qo)2

)
. (5.2.120)

For a unified treatment of the odd and even parity perturbations later, we define three potentials: the
gravitational potential V o

grav, the electromagnetic potential V o
em and the coupling potential V o

Coup:

V o
grav := 1

r2

(
Uo − 3rs

2r W
o
)

(5.2.121)

V o
em; = 1

r2

(
Uo + 3rs

2r W
o
)

(5.2.122)

V o
Coup := gξ

r3W
o . (5.2.123)

In the definition of the potentials, we further defined two functions Uo and W o that depend on the
Schwarzschild radius rs and the charge ξ of the background black hole solution:

W o = 1 (5.2.124)

Uo = l(l + 1) − 3rs

2r + g2ξ2

r2 . (5.2.125)

The potentials simplify the solution for π(2)
µ and we have the result of this section including the boundary

term that we neglected before

4r
π

(0)
µ

π(2)
µ

∣∣∣
l≥2,odd

= Bo +
∫

dr 1
4rπ

(0)
µ (P o(Qo)′ + Πo

A(Ao)′) (5.2.126)

+ 1
2

(
(P o)2 + g2(Πo

A)2 + (Qo′)2 + 1
g2 (Ao′)2 + V o

grav(Qo)2 + 1
g2V

o
em(Ao)2 + 2

g

√
(l + 2)(l − 1)V o

CoupQ
oAo

)
,

The boundary term in terms of the original variables Xo and Yo reads

Bo =
∑
lm

 1
r3

(
1 − rs

r
+ g2ξ2

4r2

)(∫
dr
(
r2Y lm

o + π
(0)
λ

4r2 X
o
lm

))2

+ 6r − rs

4r4 (Xo
lm)2 − 1

r2X
o
lm(Xo

lm)′

 (5.2.127)

At infinity the boundary term vanishes due to the decay behaviour of (Xo, Yo). The function Xo grows
at most linearly and Yo vanishes quadratically implying that the integral grows linearly with r at infinity.
Together, we observe that the boundary term vanishes asymptotically as O(r−1).

5.2.3.4 Solution of the First Order Constraints - Even Parity

The remaining first order constraints are in the even parity sector for l ≥ 2. In the following, we proceed
in analogy with the dipole and odd parity first order constraints. There are three first order constraints,
the radial and angular diffeomorphism constraints Ze, Zh and the Hamiltonian constraint Zh. In addition,
there are three corresponding gauge degrees of freedom (xv, yv), (xh, yh) and (xe, ye) in the gravitational
sector. The observable degrees of freedom are (Xe, Ye) for gravity and (Xe

M , Y M
e ) for the electromagnetic

field.
The constraint equation Zv = 0 gives a relation between the momenta yv and yh. We solve the constraint
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for yh in terms of yv and obtain

yh = 1
r2

(
1 −

π
(0)
λ

π
(0)
µ

)
yv +

√
2(l − 1)l(l + 1)(l + 2)

r2π
(0)
µ

Xe + 2g2ξ

r2π
(0)
µ

√
l(l + 1)Xe

M (5.2.128)

where we imposed the gauge xv = xh = xe = 0. From the radial diffeomorphism constraint we obtain a
solution for ye in terms of yh and yv:

ye = 1√
l(l + 1)

(−2ryh + 2∂ryv) (5.2.129)

Finally, the angular diffeomorphism constraint in the gauge xv = xh = xe = 0 reads

∂r(r2ye) −
√
l(l + 1)r2yh − ξ∂rX

e
M +

√
2(l + 2)(l − 1)

(
r2Ye + π

(0)
λ

4r2 X
e

)
= 0 , (5.2.130)

In this equation, we eliminate ye and yh using the relations above and obtain a differential equation for yv.
The solution for the spherically symmetric momenta π(0)

µ and π
(0)
λ is inserted and we obtain

2r2∂2
ryv + 2r(6rrs − g2ξ2)

4rrs − g2ξ2 ∂ryv + 8(l + 2)(l − 1)r2r2
s − 2(−4 + 3l(l + 1))rrsg

2ξ2 + (l + 2)(l − 1)g4ξ4

(4rrs − g2ξ2)2 yv = s(r) ,

(5.2.131)

with a “source” term s(r) depending on the variables (Xe
M , Y M

e ) and (Xe, Ye).

s(r) =
√

2(l − 1)l(l + 1)(l + 2)
(

− 2r
π

(0)
µ

Xe′ + r2Ye

+ 4
(
−
(
l2 + l − 2

)
g2ξ2r − 2g2ξ2rs + 4

(
l2 + l − 1

)
r2rs + 8rr2

s

)
r(π(0)

µ )3
Xe
)

(5.2.132)

+
√
l(l + 1)

(
ξΠA − 4rg2ξ

π
(0)
µ

A′ − 8g2ξ
(
(l + 2)(l − 1)g2ξ2 − 4

(
l2 + l − 1

)
rrs
)

(π(0)
µ )3

A

)

It is an inhomogeneous, linear, and second order differential equation with the inhomogeneity s(r). The
theory for linear differential equations implies that the solution is the sum of a general solution of the
homogeneous equation and a particular solution of the inhomogeneous equation.

So far, a solution has not yet been constructed explicitly in the general case. In [2], we analysed the pure
gravity case and obtained an explicit solution. Setting Xe

M , Y M
e and ξ to zero, we have the equation

2r2∂2
ryv + 3r∂ryv + (l + 2)(l − 1)

2 yv = s(r) , (5.2.133)

where the “source” term s(r) becomes

s(r) :=
√

2(l + 2)(l + 1)l(l − 1)
(
r2Y e + πλ

4r2X
e + l(l + 1) − 1

π
(0)
µ

Xe − 2r
π

(0)
µ

∂rX
e

)
. (5.2.134)

The homogeneous solution is obtained by setting the source term s(r) to zero. The general solution of the
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equation is

yv = C+r
α+ + C−r

α− , (5.2.135)

C± are integration constants and α± are defined as

α± = −1
4 ± i

4

√
4(l + 2)(l − 1) − 1 . (5.2.136)

The particular solution of the full equation including the source term is computed using the method of the
variation of constants. We find

yv = rα−

∫
dr̃
(

2ir̃α+− 1
2√

4(l + 2)(l − 1) − 1
s(r̃)

)
− rα+

∫
dr̃
(

2ir̃α−− 1
2√

4(l + 2)(l − 1) − 1
s(r̃)

)
(5.2.137)

This expression is quite complicated and inserting it into the expression for π(2)
µ would lead to a very long

result. This result would then have to be simplified using canonical transformations to obtain a tractable
theory. However, it is not easy to “guess” the required transformations even for the pure gravity setup.

In the following, we take a detour to derive the desired result based on the works by Moncrief [75]. In this
formulation we work in a different gauge given by Xe = xe = p2 = 0, where p2 is a function of xv, yv, x

h, yh.
The advantage of working in this gauge is that the solution of the constraints is possible without solving any
differential equations. Additionally, we obtain the canonical transformations by comparing our expressions
with the work by Moncrief. Then, we transform the result to the original gauge where (Xe, Ye) are the true
degrees of freedom.

We start with the solution of the diffeomorphism constraints. We work in the gauge Xe = xe = 0 and
solve them for ye and Y e:

y(1)
e = − 1√

l(l + 1)

(
− 2∂r(yv) + 2ryh − ∂rπ

(0)
µ xv − 1

2π
(0)
µ ∂rx

v + π
(0)
λ

2r2 ∂rx
h
)

(5.2.138)

Y (1)
e = − 1

r2
√

2(l + 2)(l − 1)

(
−∂r(r2y(1)

e ) +
√
l(l + 1)

(1
2π

(0)
µ xv − r2yh − ξ∂rX

e
M

))
, (5.2.139)

In the second equation, we have to substitute y(1)
e with the solution of the first equation.

The expressions in this section become rather lengthy and for convenience of notation, we define the
following combinations of the background constants rs and ξ:

n := 1
2(l + 2)(l − 1) , (5.2.140)

∆ := 1 − rs

r
+ g2ξ2

4r2 , (5.2.141)

Λ := n+ 3rs

2r − g2ξ2

2r2 . (5.2.142)

Following the analysis of Moncrief in [75], we have to solve the first-order Hamiltonian constraint (1)Zv
lm for

xh. We insert the solution of the diffeomorphism constraint above as well as the gauge condition xe = Xe = 0
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into this constraint. Then, we find

(1)Zv
lm = 1

2r2 (π(0)
µ − π

(0)
λ )yv −

(
2r∂r + l(l + 1) + 2 − 2rs

r

)
xv − 1

2π
(0)
µ yh

+ 2
(
∂2

r − 1
r
∂r − (l + 2)(l − 1)

2r2 − rs

r3

)
xh + g2

r2 ξ
√
l(l + 1)

∫
Y M

lm dr
(5.2.143)

We observe that Zv depends on first and second derivatives of xh. Thus, in order to obtain an explicit
expression, we have to solve a second order linear differential equation. This is not straight forward as we
saw in the beginning of this subsection. Simplifying the constraint using a canonical transformation, we
plan to arrive at a more tractable expression that does not involve derivatives of xh. We introduce new
variables (q1, p1) and (q2, p2) with a canonical transformation where q2 = xh. We take the ansatz

xv = q1 +Bq2 + C∂rq2 +Dp1 (5.2.144)

xh = q2 (5.2.145)

yv = p1 +G∂rq2 (5.2.146)

yh = p2 −Bp1 + ∂r[(C −DG)p1] − ∂r(Gq1) +Kq2 −BG∂rq2 , (5.2.147)

The functions C,D,G,B and K will be determined below by imposing conditions on the first order
Hamiltonian constraint after the transformation. The transformation is canonical no matter the choice for
the functions. Let us calculate some non-trivial Poisson brackets by smearing the variables, i.e. xv[f ] =∫
f(r)xv(r)dr and similarly for the others. The Poisson bracket of xv with the other variables are

{xv[f ], xv[g]} =
{
xv[f ], xh[g]

}
= 0

{xv[f ], yv[g]} =
∫

drfg (5.2.148)

{xv[f ], yh[g]} =
∫

dr(−Bfg − (C −DG)f∂rg +Bfg − ∂r(Cf)g −DGf∂rg) = 0

The Poisson brackets of xh are {
xh[f ], xh[g]

}
=
{
xh[f ], yv[g]

}
= 0 (5.2.149){

xh[f ], yh[g]
}

=
∫

drfg

The remaining Poisson brackets are

{yv[f ], yv[g]} = 0

{yv[f ], yh[g]} =
∫

dr(−∂r(Gf)g −Gf∂rg) = 0 (5.2.150)

{yh[f ], yh[g]} =
∫

dr(∂r(BGf)g − ∂r(BGg)f +BG∂rfg −BG∂rgf) = 0

Combining the results, we see that assuming that (q1, p1) and (q2, p2) are conjugate pairs, we recover the
standard Poisson bracket relations for the (xv, yv) and (xh, yh). Thus, the transformation is canonical.

In order to find the functions C,D,G,B,K, we require the transformed first order Hamiltonian constraint
to be independent of the first and second derivative of q2. Plugging the transformation into the first order
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Hamiltonian constraint, the derivative terms of q2 read

2(1 − rC)∂2
r q2 +

( 1
2r2 (π(0)

µ − π
(0)
λ )G− 1

2π
(0)
µ BG− 2

r
− 2r∂rC − (l(l + 1) + 2 − 2rs

r
)C − 2rB

)
∂rq2

(5.2.151)
The first bracket implies that C = r−1. Using the expression for C and the solution for π(0)

λ in terms of π(0)
µ ,

we find
B = 1

4r2 − rπ
(0)
µ G

[
1
2rπ

(0)
µ G+ 4rs

r
− g2ξ2

2r2 − 2(l(l + 1) + 2)
]

(5.2.152)

As an additional requirement, we would like the first order Hamiltonian constraint to be independent of
the first derivative of p1. The relevant contribution to Zv is

−
(

2rD + 1
2π

(0)
µ (C −DG)

)
∂rp1 (5.2.153)

The bracket vanishes provided that

D = π
(0)
µ

rπ
(0)
µ G− 4r2

(5.2.154)

The function G is determined by looking at the solution for y(1)
e which depends on up to second derivatives

of q2. The contribution to y(1)
e proportional to ∂2

r q2 is

1√
l(l + 1)

(
2G+ 1

2π
(0)
µ C

)
∂2

r q2 (5.2.155)

Thus, the solution y
(1)
e of the diffeomorphism constraint simplifies provided that

G = −π
(0)
µ

4r (5.2.156)

In summary, we so far determined the following expressions

C = 1
r
, D = π

(0)
µ

4r2(∆ − 2) , G = −π
(0)
µ

4r , B = − 1
2r2(∆ − 2)

(
rs

r
− (l(l + 1) + 2)

)
. (5.2.157)

To find the remaining function K we used the symbolic calculation features of Mathematica. Consider
the integral for π(2)

µ in equation (5.2.87) and apply the canonical transformation to the variables q and p.
It depends on higher derivative terms of the form q2q

′′
2 , q′

2q
′′
2 . The function K can be tuned such that these

contributions vanish. We have to take

K = 2
(∆ − 2)2r2π

(0)
µ

(
2
r
∂r

(
r2∆(Λ + 2∆)

)
− Λl(l + 1)

(
∆2 − 3∆ + 2

)
− 2l(l + 1)

(
2∆2 − 5∆ + 4

)
− 4∆

− rs

r

(
∆2 − 4∆ + 2

))
. (5.2.158)

We complete the first canonical transformation with the investigation of the electromagnetic sector. The
second order Hamiltonian constraint C(2)

v depends on the integral of the momentum Y M
e . Therefore, we
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perform a canonical transformation and introduce new canonical variables (A,ΠA) defined by

A := −
∫
Y M

e dr , ΠA := −∂rX
e
M . (5.2.159)

The canonical transformations for the gravitational and electromagnetic degrees of freedom are inserted
into the first order Hamiltonian constraint. The expression is simplified using Mathematica and we find the
following solution for the variable q2

q
(1)
2 = 1

r2l(l + 1)Λ
[
2r4(Λ + 2∆)q1 − 2r5((∆ − 2)q1)′ +

√
l(l + 1)g2ξA

]
. (5.2.160)

In the computation we chose the gauge p2 = 0.

All the first order constraints are successfully solved for the variables ye, Ye and q2 = xh in the gauge
xe = Xe = p2 = 0. In terms of the variables (q1, p1) as well as the solution q

(1)
2 above, we find

y(1)
e = 1

r3 (4r2 + 4rrs − g2ξ2)
√
l(l + 1) (4rrs − g2ξ2)

[
r2
(
6rrs − g2ξ2

) (
4r(r + rs) − g2ξ2

)
q1 (5.2.161)

+ l(l + 1)
(
4rrs − g2ξ2

) (
r
((
l2 + l + 6

)
r + 3rs

)
− g2ξ2

)
q

(1)
2 − 4l(l + 1)r4

√
4rrs − g2ξ2p1

]

Y (1)
e =

√
2l(l+1)
l2+l−2

(
−g2ξ2 +

(
l2 + l − 2

)
r2 + 3rrs

)
r2 (4r (rs + r) − g2ξ2) p1 + 4

(
l2 + l + 3

)
rrs − g2 (l2 + l + 2

)
ξ2

2
√

2r
√

(l − 1)l(l + 1)(l + 2) (4rrs − g2ξ2)
∂rq1

+
(
−g2ξ2 +

(
l2 + l − 2

)
r2 + 3rrs

) [ √
l(l + 1)

r4
√

2(l + 2)(l − 1) (4rrs − g2ξ2)

−
√
l(l + 1)

(
−g2 (l2 + l + 4

)
ξ2 + 4

(
l2 + l + 5

)
rrs + 8r2)

2r4 (−g2ξ2 + 4r2 + 4rrs)
√

2(l + 2)(l − 1) (4rrs − g2ξ2)

]
q2 (5.2.162)

+ g4 (−3l2 − 3l + 2
)
ξ4 + 2g2 (11l2 + 11l − 14

)
ξ2rrs − 8

(
5l2 + 5l − 9

)
r2r2

s

2
√

2
√
l (l3 + 2l2 − l − 2)r2 (4rrs − g2ξ2) 3/2 q1

− ξ√
2(l + 2)(l − 1)r2∂rX

e
M

The canonical transformation and the solutions y(1)
e , Y (1)

e and q(1)
2 need to be inserted into the solution of

the second order constraints for π(2)
µ . Equation (5.2.87) will then only involve the true degrees of freedom

(q1, p1) and (A,ΠA). We will not present the result of the computations with Mathematica due to its
length but describe which transformations simplify it further. In analogy to the odd parity sector, the
canonical transformations will provide a tractable solution depending on the Hamiltonian version of the
Zerilli potential.

The canonical transformation has two parts: For the first one, we would like to remove some of the
coupling terms between the gravitational and electromagnetic degrees of freedom. This is achieved by a shift
of p1 by A and ΠA with appropriate transformations of A and ΠA to make the transformation canonical.
Additionally, we rescale the variables q1 and p1 so that the new variables (Q,P ) appear as 1/2(P 2 + (Q′)2).
We choose the transformation

p1 =
√

(l + 2)(l − 1)
l(l + 1)

r(∆ − 2)
Λ

(
P + ξ

r
√

(l + 2)(l − 1)
ΠA + ΓA

)
(5.2.163)
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q1 =
√

l(l + 1)
(l + 2)(l − 1)

Λ
r(∆ − 2)Q (5.2.164)

A = Ã− ξ

r
√

(l + 2)(l − 1)
Q (5.2.165)

ΠA = Π̃A + ΓQ (5.2.166)

where the function Γ is defined as

Γ = g2ξ

8
√

(l + 2)(l − 1)rΛ(∆ − 2)π(0)
µ

(
r−8 ∂

∂r

(
16r9Λ(1 − ∆)

)
− 8l(l + 1)

(
2∆2 − 11∆ + 9

)
+ 16Λl(l + 1)(1 − ∆) + 16

(
−4∆2 + ∆ + 3

) )
.

(5.2.167)

The transformation above removes all the couplings between the gravitational and the electromagnetic field,
except for a term proportional to QA.

The second canonical transformation is removing the couplings between the position and momentum
variables within the gravitational and electromagnetic sectors. They are removed by shifting the momenta
P̃ and Π̃A. The new variables Qe, P e and Ae,Πe

A are defined by

Q = Qe, P = P e +AgravQ
e (5.2.168)

Ã = 1
g2A

e, Π̃A = g2Πe
A − g2ξ2π

(0)
µ

8r4Λ Ae (5.2.169)

The function Agrav which shifts the gravitational momentum is

Agrav =
1

2(l − 1)(l + 2)r4Λ(π(0)
µ )3(∆ − 2)2

[
64(l + 2)2(l − 1)2(3 + l(l + 1)(12 + l(l + 1)))r8r2

s + g8ξ8(−218 + 85l(l + 1))rrs

− 5g10ξ10(l + 2)(l − 1) + 32(l − 1)(l + 2)r7rs(4(1 + l(l + 1))(18 + 5l(l + 1))r2
s − g2ξ2(l − 1)(l + 2)(3 + l(l + 1)(12 + l(l + 1))))

+ 2g4ξ4r3rs(4(−934 + 235l(l + 1))r2
s − g2ξ2(252 + 5l(l + 1)(24 + 17l(l + 1)))) + 2g6ξ6r2((914 − 285l(l + 1))r2

s

+ 2g2ξ2(8 + 3l(l + 1)(2 + l(l + 1)))) + 8r5rs(48(−31 + 5l(l + 1))r4
s − 8g2ξ2(113 + l(l + 1)(7 + 32l(l + 1)))r2

s (5.2.170)

+ g4ξ4(l + 2)(l − 1)(82 + 17l(l + 1)(6 + l(l + 1)))) + 4r6(48(35 + l(l + 1)(−1 + 3l)(4 + 3l))r4
s

− 8g2ξ2(l − 1)(l + 2)(1 + l(l + 1))(69 + 16l(l + 1))r2
s + g4ξ4(l + 2)2(l − 1)2(4 + l(l + 1)(12 + l(l + 1))))

+ 4g2ξ2r4(−8(−469 + 95l(l + 1))r4
s + g2ξ2(724 + l(l + 1)(184 + 223l(l + 1)))r2

s

− g4ξ4(l + 2)(l − 1)(16 + l(l + 1)(20 + 3l(l + 1))))
]

.

The even parity contributions to the solution π
(2)
µ of the second order symmetric constraints are then

computed explicitly using Mathematica. We perform the first canonical transformation and introduce the
new variables (q1, p1), (q2, p2). Then, we substitute the solutions of the first order constraints y(1)

e , Y
(1)

e and
q

(1)
2 that we derived above. We complete the calculation by inserting the last two canonical transformations

and simplify the result using integration by parts.

For the presentation of the result, we introduce three potentials: one for the gravitational field V e
grav, one

for the electromagnetic field V e
em and one for the coupling term V e

coup. The potentials are given by

V e
coup := gξ

r3W
e (5.2.171)

V e
grav := 1

r2

(
U e − 3rs

2r W
e
)

(5.2.172)
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V e
em := 1

r2

(
U e + 3rs

2r W
e
)
. (5.2.173)

These are the same definitions as in the odd parity sector. The difference are the functions W e and U e

which for the even parity are defined as

W e := ∆
Λ2

(
2n+ 3rs

2r

)
+ 1

Λ

(
n+ rs

2r

)
(5.2.174)

U e :=
(

2n+ 3rs

2r

)
W e +

(
Λ − n− rs

2r

)
− 2n∆

Λ (5.2.175)

The solution for π(2)
µ in terms of the potentials is given by

r

ππ
(0)
µ

π(2)
µ

∣∣∣
l≥2,even

=
∫

dr
[ 1
4rπµ(P e(Qe)′ + ΠA′) + 1

2
(
(P e)2 + (Qe′)2 + V e

grav(Qe)2
)

(5.2.176)

+ 1
2

(
g2Π2 + 1

g2 (A′)2 + 1
g2V

e
emA

2
)

+
√

(l + 2)(l − 1)
g

V e
coupAQ

e
]

(5.2.177)

The above expression was simplified using integration by parts and all the boundary terms were neglected.
In the appendix A, we present the explicit form of the boundary term. In the following, we show that the
boundary term vanishes in the limit as r goes to infinity.

The fall-off conditions on the gravitational and electromagnetic degrees of freedom imply fall-off conditions
on the variables introduced in this section using canonical transformations:

q1 ∼ q0
1r

−1 p1 ∼ p0
1 q2 ∼ q0

2r A ∼ A0r Ae ∼ Ae
0r Qe ∼ Qe

0 . (5.2.178)

Here, the sub-/superscript 0 signifies that the quantities are radial constants but could still depend on l,m.
In this notation, the first non-trivial order of the boundary term of π(2)

µ is

1
ππ

(0)
µ

(
− 1

2(p0
1)2 + 3

2(q0
1)2 + (l2 + l + 2)

(l + 2)(l + 1)l(l − 1)(q0
1)2 + 2q0

1q
0
2 − 3(l2 + l + 2)

2 q0
1q

0
2 + 1

2(q0
2)2

− (l2 + l + 2)(q0
2)2 + 1

8(3l4 + 6l3 + 13l2 + 10l + 16)(q0
2)2 + g2(l2 + l + 2)ξ√

l(l + 1)(l + 2)(l − 1)
A0q

0
1

− 1
2g

2ξ
√
l(l + 1)q0

2A0 − 1
2(Qe

0)2 + g4ξ2

2(l + 2)(l − 1)(Ae
0)2 + 2 g2ξ

2
√

(l + 2)(l − 1)
Ae

0Q
e
0

)
+O(r−1)

(5.2.179)

Thus, the leading order contributions behaves as r−1/2. In the computation for the reduced Hamiltonian,
we will see that the contribution due to the boundary term vanishes in the limit r → ∞.

Working in the gauge xe = Xe = p2 = 0, we reduced the solution for π(2)
µ into a form analogous to the

result for the odd parity case. In the rest of this manuscript we would like to work instead in the GP gauge
which requires xv = xh = xe = 0 so that the physical degrees of freedom are (Xe, Ye) for the gravitational
and (Xe

M , Y M
e ) for the electromagnetic degrees of freedom. In the remaining part of this subsection, we

show that we can relate our choice of gauge to the GP gauge. The solution for π(2)
µ stays the same where

(Qe, P e) and (Ae,Πe
A) are now functions of (Xe, Ye) and (Xe

M , Y M
e ).

Let us analyse how we can change the gauge in a simplified example where we have one constraint
C(x, y,X, Y ) of two conjugate pairs of canonical variables (x, y) and (X,Y ). We consider two options to
choose the physical degrees of freedom: On the one hand we can choose (x, y) as the physical variables,
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solve the constraint for Y and gauge fix X. On the other hand, we can select (X,Y ) as the physical degrees
of freedom, solve the constraint for y and gauge fix x. In the first case, we obtain the equivalent constraint
Z = Y + H(X,x, y) and we use the gauge fixing condition G = X = 0. In the second case we have
z = y + h(x,X, Y ) with the gauge fixing g = x = 0.

In both cases, the two solutions z and Z define a projector on gauge invariant functions on phase space,
i.e. functions that commute with the constraints z and Z respectively. The projectors O and o are defined
for any phase space function f . The map in equation (2.2.4) evaluated at τ = 0 is equivalently written as

Of := [eVZ(S) · f ]S=X (5.2.180)

of := [eVz(s) · f ]s=x , (5.2.181)

where VA is the Hamiltonian vector field associated to the phase space function A. The Hamiltonian
vector field VA is defined by its action on functions VA[f ] = {A, f}, where {·, ·} is the Poisson bracket.
The function S are smearing functions that are set to X and x respectively after the evaluation of all the
Poisson brackets. Using the properties of the map O that we proved in section 2, we can evaluate O and
o for an arbitrary function F (x, y,X, Y ) on phase space. We find [OF ]X=0 = F (x, y, 0,−H(0, x, y)) and
[oF ]x=0 = F (0,−h(0, X, Y ), X, Y ) where we used the gauge fixings g,G. Let us introduce the notation
EX=0 = [OF ]X=0 and ex=0 = [oF ]x=0.

In the process of gauge fixing, we lose all the information about non-gauge invariant contributions and
the relation between EX=0 and ex=0 is not clear. For this reason, we will not implement the gauge fixing
and find expressions of the form E = E(Ox, Oy, X) = F (Ox, Oy, X,−H(X,x, y)) and e = e(oX , oY , x) =
F (x,−h(x,X, Y ), X, Y ). In this way, we can clearly distinguish the gauge invariant dependence through
the maps O, o and the gauge variant contributions due to x,X. After fixing the gauge, we would set these
additional gauge variant dependence to zero and there would be no way to recover that dependence from
the gauge fixed version. If the original function F were weakly gauge invariant, the functions e, E would
be independent of x,X, i.e. E(Ox, Oy, X) = E(Ox, Oy) and similarly for e. In this case, the gauge fixed
versions of e,E would contain all the information. Let us therefore assume that F is weakly gauge invariant.
Then, we obtain

E(x, y) = E(Ox, Oy)X=0 = [OF ]X=0 = [OOF
]X=0

= [OoF ]X=0 = [Oe]X=0 = e([OoX ]X=0, [OoY ]X=0)

= e([oX ]X=0,Y =−H , [oY ]X=0,Y =−H) .

(5.2.182)

For the third step, we use that O is a projector and in the fourth step we use that OF = oF due to the weak
gauge invariance of F . Then, we use the definition of e and then pull the projector O inside the argument
of e. Finally, we apply the projector O to oX and oY . Similarly we can work in the other direction showing
that for weakly gauge invariant F we can work with both gauges and can relate the results afterwards.

This means that for the translation of π(2)
µ between our gauge and the GP gauge we have to first show weak

gauge invariance and then perform the explicit computation to relate the expression in the two gauges. Since
the gauge xe = 0 is common to both gauge fixings, we only need to consider the change from Xe = p2 = 0
to xh = xv = 0.

First, we have to define the observable map O to find the gauge invariant extensions of q1, p1, A,ΠA. We
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construct the solution of the first order constraints leaving Xe and p2 unfixed using Mathematica and have

q
(1)
2 = 1

2l(l + 1)Λ
(√

2(l + 2)(l + 1)l(l − 1)Xe + 2
(
(l2 + l + 2)r2 − 3rrs + g2ξ2

)
q1

+ r(4r2 + 4rrs−g
2ξ2)q′

1 + 2
√
l(l + 1)g2ξA+ r2π(0)

µ p2
) (5.2.183)

y(1)
e =

√
l(l + 1)π(0)

µ
((
l2 + l + 6

)
r2 + 3rrs − g2ξ2)

2r3 (4r2 + 4rrs − g2ξ2) q
(1)
2 + 4

√
l(l + 1)r

4r2 + 4rrs − g2ξ2 p1

+ 2
(
g2ξ2 − 6rrs

)√
l(l + 1)rπ(0)

µ

q1 − 2r√
l(l + 1)

p2

(5.2.184)

Y (1)
e =

(
2rs

(
−g2ξ2 + 2

(
l2 + l + 5

)
r2 + 4rrs

)
− g2 (l2 + l + 2

)
ξ2r
)

r3π
(0)
µ (g2ξ2 − 4r2 − 4rrs)

Xe

− 8
2
√

2(l + 2)(l + 1)l(l − 1)r2(π(0)
µ )3 (g2ξ2 − 4r2 − 4rrs)

[
g6
(
l2 + l − 6

)
ξ6

− 2g4l(l + 1)
(
l2 + l + 10

)
ξ4r2 + 4rrs(22 − 3l(l + 1))g4ξ4

+ 16
(
l(l + 1)

(
l2 + l + 10

)
− 2

)
r3rsg

2ξ2 (5.2.185)

+ 16r2r2
s

(
g2(3l(l + 1) − 25)ξ2 − 2

(
l(l + 1)

(
l2 + l + 10

)
− 3

)
r2 − 4

(
l2 + l − 9

)
rrs

) ]
q1

+ 2
√

2l(l + 1)Λ√
(l + 2)(l − 1) (−g2ξ2 + 4r2 + 4rrs)

p1 + 8
(
l2 + l + 3

)
rrs − 2

(
l2 + l + 2

)
g2ξ2√

2(l + 2)(l − 1)r2 (g2ξ2 − 4r2 − 4rrs)π(0)
µ

g2ξA

− ξ√
2(l + 2)(l − 1)r2 ΠA + 4

(
2g2ξ2 +

(
l2 + l − 6

)
r2 − 9rrs

)√
2(l − 1)l(l + 1)(l + 2) (−g2ξ2 + 4r2 + 4rrs)

p2

Within our approximation we only have to construct the observable map O to first order in the perturbations.
It is therefore sufficient to truncate the infinite series in the definition of O at linear order because the
solutions q(1)

2 , y
(1)
e , Y

(1)
e are of first order. For any function F , its gauge fixed version defined by the projector

O is given by

OF = F +
∫

dr̃
[
p2(r̃){q2(r̃) − q

(1)
2 (r̃), F} + xe(r̃){ye(r̃) − y(1)

e (r̃), F (r)} +Xe(r̃){Ye(r̃) − Y (1)
e (r̃), F}

]
.

(5.2.186)
For the canonical variables (A,ΠA) and (q1, p1), we find the gauge invariant extensions

OA = A− ξ√
2(l + 2)(l − 1)r2X

e (5.2.187)

OΠA
= ΠA + 8

(
l2 + l + 3

)
rrs − 2

(
l2 + l + 2

)
g2ξ2√

2(l + 2)(l − 1)r2 (g2ξ2 − 4r2 − 4rrs)π(0)
µ

g2ξXe + g2ξ√
l(l + 1)Λ

p2 (5.2.188)

Oq1 = q1 +
√

2l(l + 1)
(l + 2)(l − 1)

2Λ
(−g2ξ2 + 4r2 + 4rrs)X

e (5.2.189)

Op1 = p1 − 8
2
√

2(l + 2)(l + 1)l(l − 1)r2(π(0)
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l2 + l + 10

)
ξ4r2 + 4rrs(22 − 3l(l + 1))g4ξ4

+ 16
(
l(l + 1)

(
l2 + l + 10

)
− 2

)
r3rsg

2ξ2 (5.2.190)

+ 16r2r2
s

(
g2(3l(l + 1) − 25)ξ2 − 2

(
l(l + 1)

(
l2 + l + 10

)
− 3

)
r2 − 4

(
l2 + l − 9

)
rrs

) ]
Xe
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+ ∂r

(
r
(
g2ξ2 − 4r2 − 4rrs

)
2l(l + 1)Λ p2

)
−
(

2r2

l(l + 1) + 2r2

Λ

)
p2 .

The gauge-variant contributions to π
(2)
µ are now determined as follows: First we start from equation

(5.2.87) and replace (A,ΠA) and (q1, p1) by their gauge invariant extensions and the necessary gauge-
variant correction terms. Then, we use the solutions of the first order constraints to eliminate q2, ye, Ye.
We will work in the common gauge xe = 0 and find

r

ππ
(0)
µ

π(2)
µ

∣∣∣
l≥2,even

=
∫
I(Oq1 , Op1 , OA, OΠA

) dr +A1 +A2 +A3 . (5.2.191)

The integrand I(Oq1 , Op1 , OA, OΠA
) is a function of the gauge invariant extensions only and A1, A2 and A3

are gauge variant boundary terms. They depend on Xe, p2 and q2, where the dependence on q2 comes from
the fact that we simplified π(2)

µ before inserting the solution for q2. The explicit expression for the boundary
terms is given in appendix A. Surprisingly, the only dependence on the gauge-variant variables is within
the boundary term. It is not clear why this is the case and it remains to be seen whether this is true more
generally.

In the calculation of the physical Hamiltonian, we are interested in the solution for π(2)
µ in the limit as r

goes to infinity. Therefore, we define the leading order contributions to the gravitational and electromagnetic
variables and have

q1 ∼ q0
1r

−1, p1 ∼ p0
1, Oq1 ∼ q0

1r
−1, Op1 ∼ p0

1, q2 ∼ q0
2r, p2 ∼ p0

2r
−2,

Xe ∼ Xe
0r, A ∼ A0r, OA ∼ A0r . (5.2.192)

The variables with sub-/superscript 0 on the right-hand side are independent of r but still depend on l,m.
The leading order contribution to the boundary term is given by

3∑
i=1

Ai = 1
r

[3l4 + 6l3 − 5l2 − 8l + 8
16 (Xe

0)2 − 3
4

√
2(l − 1)l(l + 1)(l + 2)Xe

0q
1
0 − g2ξl(l + 1)

2
√

2(l + 2)(l − 1)
A0

+ 2
(l + 2)(l − 1)p

0
1p

0
2 − 4

l(l + 1)(l − 1)2(l + 2)2 (p0
2)2 + q0

2

(1
4

√
2(l − 1)l(l + 1)(l + 2)Xe

0 (5.2.193)

− 1
8(3l(l + 1) + 2)(l(l + 1)q0

2 − 4q0
1) − 1

2q
0
2 + 1

2

√
l(l + 1)g2ξA0

)]
+O(r−3/2)

The expression is vanishing as r−1 and in the section of the physical Hamiltonian we see that this fall-off
behaviour is sufficient to drop the boundary terms. Hence, in the computation of the physical Hamiltonian
it is justified to consider the solution for π(2)

µ to be weakly gauge invariant. To complete the transforma-
tion between the two physical degrees of freedom, we relate Qe, P e, Ae,Πe

A to the true degrees of freedom
Xe, Y e, A,ΠA. Then, using the appropriate canonical transformation, the final result for π(2)

µ will have the
same form as before.

In the computations for our gauge, we defined (Ae,Πe
A) in terms of the gauge invariant extensions OA, OΠA

.
Thus, it is sufficient to show how OA and OΠA

are related to the variables (A,ΠA) and (Xe, Ye) which are
the true degrees of freedom in GP gauge. This is achieved by looking at the relations we obtained using the
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observable map:

OA = A− ξ√
2(l + 2)(l − 1)r2X

e (5.2.194)

OΠA
= ΠA + 8

(
l2 + l + 3

)
rrs − 2

(
l2 + l + 2

)
g2ξ2√

2(l + 2)(l − 1)r2 (g2ξ2 − 4r2 − 4rrs)π(0)
µ

g2ξXe + g2ξ√
l(l + 1)Λ

p2 , (5.2.195)

The function p2 is given by

p2 = yh +Byv − ∂r(Cyv) (5.2.196)

where we have to insert the solutions of the constraints for yh, yv that we derived in the beginning of this
section. Provided we can solve the differential equation for yv, we expressed p2 purely in terms of Xe, Ye.

In the gravitational sector, the master variables (Qe, P e) are defined in terms of Oq1 , Op1 with a canonical
transformation. It is therefore sufficient to relate Xe, Ye, A,ΠA to Oq1 and Op1 . In the definition of the
observable map we had

Oq1 = Dyv +
√

2l(l + 1)
(l + 2)(l − 1)

2Λ
4r2 + 4rrs − g2ξ2X

e (5.2.197)

Op1 = p1 − 8
2
√

2(l + 2)(l + 1)l(l − 1)r2(π(0)
µ )3 (g2ξ2 − 4r2 − 4rrs)

[
g6
(
l2 + l − 6

)
ξ6

− 2g4l(l + 1)
(
l2 + l + 10

)
ξ4r2 + 4rrs(22 − 3l(l + 1))g4ξ4

+ 16
(
l(l + 1)

(
l2 + l + 10

)
− 2

)
r3rsg

2ξ2 (5.2.198)

+ 16r2r2
s

(
g2(3l(l + 1) − 25)ξ2 − 2

(
l(l + 1)

(
l2 + l + 10

)
− 3

)
r2 − 4

(
l2 + l − 9

)
rrs

) ]
Xe

+ ∂r

(
r
(
g2ξ2 − 4r2 − 4rrs

)
2l(l + 1)Λ p2

)
−
(

2r2

l(l + 1) + 2r2

Λ

)
p2 .

Expressing p2 in terms of Xe, Ye, A,ΠA as in equation (5.2.196), we related the (Qe, Pe) to the true degrees
of freedom in GP gauge.

In this section, we saw that working directly in the GP gauge is more complicated and we decided to use
a detour with a different choice of gauge. In this gauge we derived a solution for π(2)

µ which is very similar
to the result for the odd parity. Then, we showed that we can go back to the GP gauge and related the
master variables (Qe, Pe) and (Ae,Πe

A) to the physical degrees of freedom in GP gauge.

For later convenience, we also computed the boundary term for the even parity perturbations in the case
of pure gravity. In the GP gauge it is given by

Be =
∑
lm

[
(l + 2)(l − 1)r2 + 5(l + 2)(l − 1)rrs − (l2 + l − 17)r2

s

2r4rsΛ Xe
lmX

e
lm − 1

r2X
e
lm(Xe

lm)′

+

√
2(l + 2)(l − 1)

l(l + 1)
r − rs

2r√rrsΛX
e
lm∂ry

(1)
v,lm + 2r(r − rs)

2l(l + 1)rΛ∂ry
(1)
v,lm∂ry

(1)
v,lm + 2((l2 + l − 1)r + rs)

2l(l + 1)rΛ y
(1)
v,lm∂ry

(1)
v,lm

(5.2.199)

+

√
(l + 2)(l − 1)

2l(l + 1)
(l − 1)(l + 2)

(
l2 + l − 1

)
r3 +

(
l(l + 1)

(
l2 + l + 2

)
− 5
)
r2rs + 3

(
l2 + l − 1

)
rr2

s + 6r3
s

r5/2√
rs ((l2 + l − 2) r + 3rs)2 Xe

lmy
(1)
v,lm
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+
(
l2 + l − 2

)2
r3 + (l − 1)(l + 2)

(
l(l + 1)

(
l2 + l − 3

)
+ 8
)
r2rs + 3

(
l2 + l − 11

)
r3

s − 9(2l(l + 1) − 5)rr2
s

8l(l + 1)r4Λ3 (y(1)
v,lm)2

]

5.2.3.5 Decoupling of the Equations

In the two subsections before, we obtained the solution for π(2)
µ in the odd and even parity case. With

canonical transformations we reduced the expression such that the dependence on the background mass and
charge is inside three potentials V (e/o)

grav , V (e/o)
em and V (e/o)

coup . At second order, it is possible to further simplify
the solution for π(2)

µ with a “rotation” of the canonical variables to remove the coupling term.
We chose the naming conventions in the even and odd parity sector so that the solution for π(2)

µ looks
identical. The only difference is the definition of the potentials which we do not need to use for the decoupling.
We use the following ansatz for the canonical transformation depending on an angle θ:

(
Qo/e

Ae/o

)
=

 cos θ 1
g sin θ

−g sin θ cos θ

Qe/o
1

Q
e/o
2

 (
P e/o

Πe/o
A

)
=

 cos θ g sin θ
−1

g sin θ cos θ

P e/o
1
P

e/o
2

 (5.2.200)

This is a canonical transformation provided the parameter θ only depends on the constants l, rs, g and ξ.
Inserting the transformation into the expression for π(2)

µ we obtain for both the even and odd parity

r

ππ
(0)
µ

π(2)
µ

∣∣∣
l≥2

=
∫

dr 1
4rπ

(0)
µ (P1Q

′
1 + P2Q

′
2)

+ 1
2
(
P 2

1 + g2P 2
2 + (Q′

1)2 + 1
g2 (Q′

2)2 + V1Q
2
1 + 1

g2V2Q
2
2 + 2

g

√
(l + 2)(l − 1)V12Q1Q2

)
.

(5.2.201)

The new potentials V1, V2 and V12 are

V1 := 1
r2

(
U −

(3rs

2r cos(2θ) +
√

(l + 2)(l − 1)gξ
r

sin(2θ)
)
W

)
(5.2.202)

V2 := 1
r2

(
U +

(3rs

2r cos(2θ) +
√

(l + 2)(l − 1)gξ
r

sin(2θ)
)
W

)
(5.2.203)

V12 := 1
r2

(√
(l + 2)(l − 1)gξ

r
cos(2θ) − 3rs

2r sin(2θ)
)
W (5.2.204)

The goal of the transformation is to find the angle θ such that the coupling potential V12 vanishes. This is
achieved if θ satisfies

cos(2θ)2 = 9r2
s

9r2
s + 4(l + 2)(l − 1)g2ξ2 , (5.2.205)

sin(2θ)2 = 4(l + 2)(l − 1)g2ξ2

9r2
s + 4(l + 2)(l − 1)g2ξ2 . (5.2.206)

To find the angle θ we need to take a square root of the equations which could take two values. For
consistency with the situation without electromagnetic field, we would like the transformation to reduce to
the identity transformation if the electric charge ξ is zero. This condition fixes the sign of both square roots
to be positive. This gives the relations for the sine and cosine of 2θ

cos(2θ) = 3rs√
9r2

s + 4(l + 2)(l − 1)g2ξ2 , (5.2.207)
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sin(2θ) = 2
√

(l + 2)(l − 1)gξ√
9r2

s + 4(l + 2)(l − 1)g2ξ2 . (5.2.208)

Using this relations the potentials V1 and V2 reduce to

V1 = 1
r2

(
U − 1

2r

√
9r2

s + 4(l + 2)(l − 1)g2ξ2W

)
, (5.2.209)

V2 = 1
r2

(
U + 1

2r

√
9r2

s + 4(l + 2)(l − 1)g2ξ2W

)
. (5.2.210)

We successfully decoupled the electromagnetic and gravitational degrees of freedom for both the even and
odd parity sector. The solution for π(2)

µ then only depends on the two potentials V1 and V2.

5.2.4 Reduced Hamiltonian

In section 5.2.1, we derived an implicit expression for the physical Hamiltonian in terms of the asymptotic
solution for the spherically symmetric, gravitational variables. The dependence on the matter content of
the theory is through the solution of the constraints for π(2)

µ . The reduced Hamiltonian is given by the
evaluation of a boundary term at infinity and for one asymptotic end we have

H = lim
r→∞

πc

κr
π2

µ = lim
r→∞

π

2κr
(
(π(0)

µ )2 + 2π(0)
µ π(2)

µ

)
(5.2.211)

= M + 1
κ

∫
R+

dr 1
4rπ

(0)
µ

(2)Ch + (2)Cv . (5.2.212)

In terms of the solutions for π(2)
µ we have

H = M +Hl=1 + 1
κ

∑
l≥2,m,I

∫
R+

dr N3P I
lm∂rQ

I
lm + N

2
(
(P I

lm)2 + (∂rQ
I
lm)2 + VI(QI

lm)2
)
. (5.2.213)

Here, Hl=1 are the contributions from the dipole perturbations. The labels l,m label the coefficients in
the expansion into spherical harmonics and I stands for the even and odd parity and the labels 1 and 2 of
chapter 5.2.3.5. The functions VI are the Regge-Wheeler-Zerilli potentials derived in the previous section
and we introduced the background solutions of the lapse and shift vector N = 1, N3 = 4π(0)

µ /r.

The dipole contributions Hl=1 are given by

Hl=1 = 1
κ

∑
m

∫
dr
[
N3Y M

o,1mX
M
o,1m

′ +N
(g2

2 (Y M
o,1m)2 + 1

2g2

(
(Xo,1m

M
′)2 + 2 + g2ξ2r−2

r2 (Xo,1m
M )2

)

+ a2
m + 2ξamX

o,1m
M

2r4

)]
+
∑
m

∫
dr
[
N3Πe,1m

A Ae,1m′ +
(
y′

v − 1
r
yv + πλ

rπµ
yv

)2

− 2
√

2ξ
rπµ

(
y′

v + πλ

rπµ
yv

)
Ae,1m

+ N

2

(
g2(Πe,1m

A )2 + 1
g2

(
(Ae,1m′)2 + 1

r2π2
µ

(2π2
µ + 16g2ξ2)(Ae,1m)2

))]
. (5.2.214)

We split the integral into two pieces for the odd and even parity contributions.
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Setting am = 0 in the odd parity sector, we obtain

1
κ

∑
m

∫
dr
[
N3Y M

o,1mX
M
o,1m

′ +N
(g2

2 (Y M
o,1m)2 + 1

2g2

(
(Xo,1m

M
′)2 + 2 + g2ξ2r−2

r2 (Xo,1m
M )2

)]
. (5.2.215)

It has a similar form to the Hamiltonians for l ≥ 2 for a potential V o
l=1 that reads

V o
l=1 = 2r2 + g2ξ2

r4 , (5.2.216)

This potential is simply the potential V o
em evaluated for l = 1.

The even parity contributions to the dipole Hamiltonian still contains the function yv. Restricting to the
case of uncharged black holes we can ignore this contribution because then the source term s(r) vanishes.
If we additionally ignore the homogeneous solution for yv we obtain

∑
m

∫
dr
[
N3Πe,1m

A Ae,1m′ + N

2
(
g2(Πe,1m

A )2 + 1
g2

(
(Ae,1m′)2 + 2

r2 (Ae,1m)2
))]

,

In this case the potential is very simple and reduces to

V e
l=1

∣∣∣
ξ=0

= 2
r2 . (5.2.217)

This agrees with the restriction of the electromagnetic, even parity potential to the case ξ = 0 and l = 1.

5.2.5 Generalisation of the Background Gauge Fixing

In [1], we constructed the physical Hamiltonian for perturbations around spherically symmetric spacetimes
using a generalized gauge fixing. Instead of using the GP gauge to restrict the value of the background
gauge degrees of freedom µ and λ, we consider more general but phase space independent functions. The
formula for the physical Hamiltonian in terms of the evaluation of πµ at infinity is still valid provided that
the new, generalized gauge has the same asymptotic behaviour as the GP gauge described in (3.5.29). An
extension of the treatment to other gauges is of interest for the following reasons:

The generalization of the gauge serves as a proof of concept that the framework in this manuscript can
be used for many different scenarios. As we will see in this section, we need to take the same steps as
before with suitable generalizations of the canonical transformations. It is non-trivial that this is possible
in a straight forward way. In the more general setup, new problems could arise that we did not see when
restricting to the Gullstrand-Painlevé gauge. Additional and different methods might be needed to solve the
constraints and to bring the physical Hamiltonian into a similar shape to (5.2.213). A successful calculation
in the generalized setting strengthens the trust into the new framework and serves as a consistency check.

Note that different gauge conditions could a priori yield different physical Hamiltonians which would be
neither astonishing nor inconsistent for the following reason: Consider two different gauge fixing conditions
G and G′, then the Dirac observables corresponding to a phase space function f are F = OG

f and F ′ = OG′
f

respectively as described in section 2. Unless f is weakly gauge invariant the two functions F and F ′

are different Dirac observables. It is therefore not obvious a priori that we will obtain the same Dirac
observable corresponding to the physical Hamiltonian in the two gauges. In the present case, f should
actually be a weak Dirac observable as it is known that the physical Hamiltonian is one of the Poincaré
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charges when asymptotically flat boundary conditions hold [24]. While we did not explicitly check this, we
will independently confirm below that F=F’ using that the generalised gauges are asymptotically GP.

The restriction to only one gauge might not be ideal because there could be regions in spacetime where
this gauge breaks down. One example is the Schwarzschild gauge where we set πµ = 0 and λ = log r. This
gauge fixing is perfectly suitable to investigate the exterior of the black hole. Moving towards the event
horizon of the black hole, the function µ inside the metric will get infinitely large and the gauge breaks
down. This is merely a bad choice of gauge and as we discussed before, moving to the GP gauge we have
access to both the interior and exterior of the black hole. In contrast to the Schwarzschild gauge, the GP
gauge is perfectly regular across the horizon. Similarly, the GP gauge could have limitations that we are
not aware of at the moment and switching to a different gauge might be required in the future.

In the following, we present the derivation of the physical Hamiltonian in generalized gauges based on [1].
We start with the solution of the second order constraints and then describe the solution of the first order
constraints. In the computations we do not compute the dipole contributions (l = 1) which is left for future
explorations. The physical Hamiltonian is simplified using several canonical transformations until it is in a
more tractable form.

5.2.5.1 Solution of the Second Order Constraints

The solution of the second order constraints carries through in the same way with slight generalizations.
We start from the expansion of the symmetric constraints up to second order in the perturbations. We split
the symmetric gauge momenta into terms of zeroth and second order in the perturbations; πµ = π

(0)
µ + π

(2)
µ .

Then we find the equations

Cv ∼ πe−µ−2λ
(
π(0)

µ π(2)
µ − π(0)

µ π
(2)
λ − π(2)

µ π
(0)
λ

)
+ (2)Cv = 0 , (5.2.218)

Ch ∼ 4π
[
µ′π(2)

µ + λ′π
(2)
λ − (π(2)

µ )′
]

+ (2)Ch = 0 . (5.2.219)

In the generalized case, we fix xv/h/e/o = 0 while keeping λ, µ free. Then the functions (2)Cv and (2)Ch which
are of second order in the perturbations are given by

(2)Ch = Yo · ∂rX
o + Ye · ∂rX

e + Y M
o · ∂rX

o
M + Y M

e · ∂rX
e
M (5.2.220)

(2)Cv = e−µ+2λYo · Yo − 1
2e

−µ−2λ(π(0)
µ − π

(0)
λ )Yo ·Xo + e−µ−6λ

(
(π(0)

µ )2

32 −
π

(0)
µ π

(0)
λ

16 + (π(0)
λ )2

16

)
Xo ·Xo

− e−2λ−µXo ·
(
∂2

r − 4λ′∂r − µ′∂r + 5
2(λ′)2 + λ′µ′ − λ′′

)
Xo − 3

4e
−2λ−µ∂rX

o · ∂rX
o

+ e−µ+2λYe · Ye − 1
2e

−µ−2λ(π(0)
µ − π

(0)
λ )Xe · Ye + e−µ−6λ

(
(π(0)

µ )2

32 −
π

(0)
µ π

(0)
λ

16 + (π(0)
λ )2

16

)
Xe ·Xe

+ eµ−2λ 1
4
(
−3∂rX

e · ∂rX
e +Xe · (−4∂2

r + 4µ′∂r + 16λ′∂r − 4µ′λ′ − 10(λ′)2 + 4λ′′)Xe
)

(5.2.221)

+ eµ

2 y
(1)
o · y(1)

o + 1
2e

3µ−2λy(1)
v · y(1)

v + 1
2e

µy(1)
e · y(1)

e − eµy
(1)
h · y(1)

v

+ g2

2 e
−µ−2λ

[1
4e

2µ−4λ(Xe ·Xe +Xo ·Xo)ξ2 + e2µl(l + 1)
∫
Y M

e dr ·
∫
Y M

e dr

+ e2λ(Y M
e · Y M

e + Y M
o · Y M

o )
]
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+ 1
2g2 e

−µ−2λ
[
e2µl(l + 1)Xo

M ·Xo
M + e2λ∂rX

o
M · ∂rX

o
M + e2λ∂rX

M
e · ∂rX

M
e

]
The solution of the differential equations (5.2.219) works in the same way as in the GP gauge. The

second equation (Ch = 0) is solved for π(2)
λ

π
(2)
λ = 1

λ′

(
(π(2)

µ )′ − µ′π(2)
µ − 1

4π
(2)Ch

)
. (5.2.222)

This reduces the first equation to a differential equation for π(2)
µ :

π
(0)
µ

λ′

(
λ′ + µ′ − λ′π

(0)
λ

π
(0)
µ

)
π(2)

µ − π
(0)
µ

λ′ (π(2)
µ )′ + π

(0)
µ

4πλ′
(2)Ch + eµ+2λ

π
(2)Cv = 0 . (5.2.223)

Employing the relation between π
(0)
λ and π

(0)
µ , we eliminate π(0)

λ and find

(e−λ−2µπ(0)
µ π(2)

µ )′ − e−λ−2µ

4π π(0)
µ

(2)Ch − e−µ+λ

π
λ′(2)Cv = 0 . (5.2.224)

Integrating this differential equation we find the solution for π(2)
µ

π(2)
µ = eλ+2µ

ππ
(0)
µ

∫
dr
[1

4e
−λ−2µπ(0)

µ
(2)Ch + e−µ+λλ′(2)Cv

]
(5.2.225)

The solution for π(2)
λ is found using the first equation in (5.2.219) and we have

π
(2)
λ =

(
1 −

π
(0)
λ

π
(0)
µ

)
π(2)

µ + eµ+2λ

ππ
(0)
µ

(2)Cv . (5.2.226)

This completes the computations necessary for the second order constraints. There were no significant
difficulties in the computations. Restricting µ and λ to their values according to the strict GP gauge
(µ = 0, λ = log r), we recover the previous expressions.

5.2.5.2 Solution of the First Order Constraints – Odd Parity

We start again with the odd parity sector for l ≥ 2. The physical degrees of freedom are (Xo, Yo) for the
gravitational and (Xo

M , Y M
o ) for the electromagnetic degrees of freedom. In the generalized Gullstrand-

Painlevé gauge, we have to solve one odd parity constraint Zo for yo. This constraint reads

(1)Zo
lm =

√
2(l + 2)(l − 1)

(
e2λYo + πλ

4 e−2λXo
)

− ∂r

(
e2λyo

)
− ξ∂rX

o
M (5.2.227)

The solution of this constraint is

y(1)
o = e−2λ

∫
dr
[√

2(l + 2)(l − 1)
(
e2λYo + πλ

4 e−2λXo
)

− ξ∂rX
o
M

]
. (5.2.228)

In terms of the variables (Xo, Yo), the physical Hamiltonian is rather complicated and not in a very tractable
form. In the case of the Gullstrand-Painlevé coordinates, it was simplified significantly using two canoni-
cal transformations. We found a generalization of these transformation and the combined transformation
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introducing the master variables (Qo, Po) are:

Qo :=
√

2e−λ
∫

dr
(
e2λYo + π

(0)
λ

4 e−2λXo

)

P o := eλ

√
2
∂r

(
e−2λXo

)
+ πµ

4 e−2λQo

(5.2.229)

For the electromagnetic variables we define Ao = Xo
M and Πo

A = Y M
o .

The solution of the first order constraints and the canonical transformation are inserted into the solution
for π(2)

µ . We find

π(2)
µ

∣∣∣
odd

= eλ+2µ

ππ
(0)
µ

∫
dr
[

1
4e

−λ−2µπ(0)
µ (P o · (Qo)′ + Πo

A · (Ao)′) + 1
2e

−2µ+λλ′
(
P o · P o + g2Πo

A · Πo
A

+Qo′ ·Qo′ + 1
g2 (Ao)′ · (Ao)′ + V o

gravQ
o ·Qo + 1

g2V
o

emA
o ·Ao + 2

g

√
(l + 2)(l − 1)V o

CoupQ
o ·Ao

)]
,

(5.2.230)

The equation above reduces to the form we obtained before in Gullstrand-Painlevé gauge. In the generalized
gauge, the potentials are defined by

V o
grav := e2µ−2λ

(
Uo − 3

2e
−λrsW

o
)

V o
em := e2µ−2λ

(
Uo + 3

2e
−λrsW

o
)

V o
Coup := e2µ−3λgξW o ,

(5.2.231)

The functions W o and Uo read

W o := 1, Uo := l(l + 1) − 3
2e

−λrs + e−2λg2ξ2 . (5.2.232)

The solution for π(2)
µ was simplified using several integration by parts. The corresponding boundary terms

were dropped in the above formula and they are given by∫
∂

∂r

[
e−2µ+λλ′Xo · ∂r(e−2λXo) + 1

2

(
rs

2 − eλ + 2e3λ−2µ(λ′)2
)
e−4λ(Xo)2

− e−2λ

2

(
rs − eλ − 1

4g
2ξ2e−λ

)
(Qo)2

] (5.2.233)

In the generalized setting, this boundary term also vanishes in the limit r → ∞ as r−1.
In this section, we saw that a similar procedure with appropriate generalizations leads to a very similar

structure for the solution of π(2)
µ . The results are all compatible with the strict GP gauge when we restrict

the background variables to µ = 0 and λ = log r.

5.2.5.3 Solution of the First Order Constraints – Even Parity

Let us now turn to the even parity first order constraints for l ≥ 2. In the case of the strict GP gauge,
we found that the attempt to directly solve the first order constraints in the GP gauge leads to very
complicated differential equations. The solution of these equations is not straight forward and we avoided
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explicitly constructing them by working in an intermediate gauge xe = Xe = p2 = 0. Then, we switched
back to the Gullstrand-Painlevé gauge xe = xh = xv = 0 and obtained the solution for π(2)

µ in terms of this
gauge.

Since the direct approach was very involved already in the strict GP gauge, we assume the same to be
true in the generalized setting. Hence, we directly start with the alternative gauge xe = Xe = p2 = 0. The
solution of the first order diffeomorphism constraints in the generalized setup for ye and Ye is

y(1)
e = − e−2µ√

l(l + 1)

(
− 2eµ∂r(eµyv) + 2λ′e2λyh − ∂r(πµe

−2µ)xv − 1
2πµe

−2µ∂rx
v + πλ

2 e−2λ∂rx
h
)

(5.2.234)

Y (1)
e = − e−2λ√

2(l + 2)(l − 1)

(
− ∂r(e2λy(1)

e ) −
√
l(l + 1)e2λyh + 1

2

√
l(l + 1)πµe

−2µxv − ξ∂rX
e
M

)
. (5.2.235)

Similarly to the strict GP gauge, we would like to solve the first order Hamiltonian constraint for xh. The
non-trivial dependence of this constraint on derivatives of xh motivates us to perform a canonical transfor-
mation from (xv, yv) and (xh, yh) to new variables (q1, p1) and (q2, p2). The ansatz for the transformation
is the same as in equation (5.2.147). The generalized parameters C,D,G,B and K can be found using a
similar strategy as we used before. One finds

C = 1
λ′ e

2µ−2λ, D = − 4πµe
4µ

π2
µ + 16(λ′)2e4λ

, G = − πµ

4λ′ e
−2µ−2λ

B = 8e4µ

π2
µ + 16e4λ(λ′)2

(
e−λrs − (l(l + 1) + 2)

)
.

(5.2.236)

The function K is more complicated it is given by

K = 32e−6λe−2µ

M2
1πµ(λ′)4

(
2e4λ−2µ(λ′)5∂r

((
2∆2 + ∆Λ

)
e2µ

(λ′)2

)
− Λl(l + 1)

(
∆2e4µ − 3∆e2λ+2µ(λ′)2 + 2e4λ(λ′)4

)
− 2l(l + 1)

(
2∆2e2λ+2µ(λ′)2 − 5∆e4λ(λ′)4 + 4e6λ−2µ(λ′)6

)
− 4∆e4λ(λ′)4 (5.2.237)

− rse
−λ
(
∆2e2λ+2µ(λ′)2 − 4∆e4λ(λ′)4 + 2e6λ−2µ(λ′)6

))
,

In this expression, we introduced a generalization of the variables n,∆ and Λ that we already encountered
in the strict GP gauge. These variables as well as the new variable M1 are defined by

n := 1
2(l + 2)(l − 1) (5.2.238)

∆ := 1 − e−λrs + 1
4e

−2λg2ξ2 (5.2.239)

Λ := n+ 3
2e

−λrs − 1
2e

−2λg2ξ2 (5.2.240)

M1 := 4
λ′ e

−µ−λ
(
∆ − 2e−2µ+2λ(λ′)2

)
. (5.2.241)

After this canonical transformation, the first order Hamiltonian constraint is independent of derivatives
of the variable q2. The solution of the first order Hamiltonian constraint Zv for q2 is

q
(1)
2 = (λ′)2

2l(l + 1)Λ
[
4e4λ−4µ(Λ + 2∆)q1 − e−3µ+5λ(M1q1)′ + 2

√
l(l + 1)g2ξAe4µ

]
. (5.2.242)
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where we defined
A := −

∫
Y M

e dr , ΠA := −∂rX
e
M . (5.2.243)

Following an analogous strategy, we successfully solved all the first order constraints and can insert the
results into the formula for π(2)

µ . However, as expected, the result is not very tractable in the generalized
gauge and we wish to simplify it using canonical transformations. The transformation involves two steps as
in the GP gauge. First, we scale the variables (q1, p1), (A,ΠA) and remove coupling terms between gravity
and the electromagnetic field. The transformation is

p1 =
√

(l + 2)(l − 1)
l(l + 1)

e−µ+2λλ′M1
4Λ

(
P + ξe−λ√

(l + 2)(l − 1)
ΠA +A3A

)
(5.2.244)

q1 =
√

l(l + 1)
(l + 2)(l − 1)

4Λ
e−µ+2λλ′M1

Q (5.2.245)

A = Ã− ξe−λ√
(l + 2)(l − 1)

Q (5.2.246)

ΠA = Π̃A + ΓQ (5.2.247)

where the generalized form of Γ is

Γ = g2ξ

2e3µ+6λλ′Λ
√

(l + 2)(l − 1)πµM1

(e6λ+4µ

(λ′)
∂

∂r

(
16Λe2λ−4µ(λ′)2

(
(λ′2 − ∆e2µ−2λ

))
+ 16l(l + 1)e4(λ+µ)

(
e4λ−4µ(λ′)4 − ∆2

)
+ 16Λl(l + 1)e4(λ+µ)

(
e2λ−2µ(λ′)2 − ∆

)
− (λ′)2

(
2e2(λ+µ)

(
−8g4ξ4 − 4e2λ

(
8g2ξ2 + 21r2

s

)
+ 53g2ξ2rse

λ + 84rse
3λ
))

− 8e6λ(λ′)4
(
8g2ξ2 + 4e2λ − 21rse

λ
)

+ 32∆2e4(λ+µ)
)
.

(5.2.248)

The second canonical transformation removes the coupling terms QP and ÃΠ̃A. In its generalized form,
we have

Q = Qe, P = P e +AgravQ
e (5.2.249)

Ã = 1
g2A

e, Π̃A = g2Πe
A − g2ξ2e−4λπµ

8Λ Ae , (5.2.250)

Since Agrav is quite long, we will not display it here explicitly. It can be found in appendix B.

The solutions of the first order constraints and all three canonical transformations are now inserted into
the formula for π(2)

µ . After integrating by parts and dropping the boundary terms, we obtained using
Mathematica

π(2)
µ

∣∣∣
even

= eλ+2µ

ππ
(0)
µ

∫
dr
[
π

(0)
µ

4 e−2µ−λ(P e · (Qe)′ + Πe
A · (Ae)′) + 1

2e
−2µ+λλ′

(
P eṖ e +Qe′ ·Qe′ + V e

gravQ
e ·Qe

)

+ 1
2e

−2µ+λλ′
(
g2Πe

A · Πe
A + 1

g2A
e′ ·Ae′ + 1

g2V
e

emA
e ·Ae

)
+ e−2µ+λλ′ 1

g
V e

coupQ
e ·Ae

]
. (5.2.251)

The structure of this solution is very similar to the one obtained earlier in GP gauge. The potentials V e
grav,
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V e
em and V e

coup are given by

V e
coup := e2µ−3λgξW e (5.2.252)

V e
grav := e2µ−2λ

(
U e − 3

2e
−λrsW

e
)

(5.2.253)

V e
em := e2µ−2λ

(
U e + 3

2e
−λrsW

e
)
. (5.2.254)

The generalized expressions for W e and U e are

W e := ∆
Λ2

(
2n+ 3

2e
−λrs

)
+ 1

Λ

(
n+ 1

2e
−λrs

)
(5.2.255)

U e :=
(

2n+ 3
2e

−λrs

)
W +

(
Λ − n− 1

2e
−λrs

)
− 2n∆

Λ (5.2.256)

The even parity contributions to the solution π
(2)
µ were simplified by canonical transformations and the

boundary term was dropped. It is recorded explicitly in appendix B in full detail. Let us analyse the leading
r behaviour of the boundary term. As r tends to infinity, the canonical variables behave approximately as

q1 ∼ q0
1r

−1 p1 ∼ p0
1 q2 ∼ q0

2r A ∼ A0r Ae ∼ Ae
0r Qe ∼ Qe

0 . (5.2.257)

In the above relations, the sub-/superscript 0 indicates that the variables are constant with respect to r

but still depend on l,m. We also use the asymptotic behaviour of the background degrees of freedom in
(3.5.29). The leading order contributions to the boundary term of π(2)

µ behaves as

1
ππ∞

µ

√
r

(
− 1

2(p0
1)2 + 3

2(q0
1)2 + (l2 + l + 2)

(l + 2)(l + 1)l(l − 1)(q0
1)2 + 2q0

1q
0
2 − 3(l2 + l + 2)

2 q0
1q

0
2 + 1

2(q0
2)2

− (l2 + l + 2)(q0
2)2 + 1

8(3l4 + 6l3 + 13l2 + 10l + 16)(q0
2)2 + g2(l2 + l + 2)ξ√

l(l + 1)(l + 2)(l − 1)
A0q

0
1

− 1
2g

2ξ
√
l(l + 1)q0

2A0 − 1
2(Qe

0)2 + g4ξ2

2(l + 2)(l − 1)(Ae
0)2 + 2 g2ξ

2
√

(l + 2)(l − 1)
Ae

0Q
e
0

)
+O(r−1)

(5.2.258)

This shows that the leading order behaves as r−1/2 and as we will see, it drops out of the physical Hamil-
tonian.

The above analysis in generalized GP gauge demonstrates that the formalism produces consistent results
also for the solution of the even parity constraints. However, we still have to relate the gauge xe = Xe =
p2 = 0 to the original gauge xv = xh = xe = 0. For this we would need to prove weak gauge invariance of the
solution π

(2)
µ and then relate the master variables (Qe, P e) in the two gauges. So far this has not yet been

achieved due to the complexity of the canonical transformation and the length of the involved expressions.
The completion of this part of the even parity analysis is left for future studies.

5.2.5.4 The Physical Hamiltonian

Both the odd and even parity solutions for π(2)
µ can be further simplified by completely decoupling the

electromagnetic and gravitational degrees of freedom. In the strict GP gauge in section 5.2.3.5, we found a
“rotation” in the sapce of variables (Qe/o, P e/o) and (Ae/o,Πe/o

A ) such that the solution for π(2)
µ completely

decouples in the transformed variables. The new variables (Q1, P 1) and (Q2, P 2) were found exactly in the
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same way for both the even and odd parity. It is not difficult to see, that the same transformation also works
in the case of generalized gauges. Then, we found new potentials V1, V2 after the transformation which are
defined by

V I
1 = e2µ−2λ

(
U I − 1

2e
−λ
√

9r2
s + 4(l + 2)(l − 1)g2ξ2W I

)
(5.2.259)

V I
2 = e2µ−2λ

(
U I + 1

2e
−λ
√

9r2
s + 4(l + 2)(l − 1)g2ξ2W I

)
, (5.2.260)

The reduced Hamiltonian is found by evaluating the stability condition of the generalized GP gauge and
then computing the boundary terms. In [1], it is shown that the physical Hamiltonian is given by the same
formula as in the case of GP gauge, In fact, one can check the computation in section 5.2.1 and observe
that in the asymptotic evaluation of the boundary term we only needed the asymptotic behaviour of the
Gullstrand-Painlevé gauge. We assumed the generalized gauge to have the same asymptotic behaviour and
thus the same formula applies. To second order in the perturbations the physical Hamiltonian is

H = lim
r→∞

π

2κr
(
(π(0)

µ )2 + 2π(0)
µ π(2)

µ +O(3)
)

(5.2.261)

In terms of the solution of the constraints that we constructed above, we obtain

H = M + 1
κ

∑
l≥2,m,I

∫
R+

dr
[
N3

(0)P
I
lm∂rQ

I
lm +

N(0)
2 e−µ

(
(P I

lm)2 + (∂rQ
I
lm)2 + VI(QI

lm)2
)]

+O(3) , (5.2.262)

In this equation, I runs over the labels 1,2 as well as even, odd. (QI , P I) are the decoupled master variables
and VI the corresponding potentials. In the equation we also introduced the zeroth order solution of the
stability conditions that we found in section 3.6:

N(0) = λ′e−µ+λ , (5.2.263)

N3
(0) = πµ

4 e−λ−2µ . (5.2.264)

This concludes the discussion of the generalized gauges. We closely followed the computations in the
strict GP gauge and generalized the canonical transformations which now depend on the choice for µ and
λ. Restricting to the strict GP gauge, the formulas reduce to the ones that we found before. Surprisingly,
generalizing the gauge did not produce a completely different expression but it looks quite similar. The
structure of the physical Hamiltonian is exactly the same, where now N(0) and N3

(0) have a more complicated
form.

The fact that we obtained a similar expression which is consistent with our previous analysis, shows
that the method we used can be applied consistently to many different gauges. In the generalization we
investigated, we did not face any significant issues and the analysis worked without the need to use a different
strategy. In the next section, we will see that the physical Hamiltonian we obtained for generalized gauges
is consistent with the Regge-Wheeler-Zerilli equations in the common domain of validity. This non-trivial
consistency check shows that our framework is consistent with the literature and self-consistent under the
formulation in different gauges. This justifies the application of the formalism to the study of black hole
evaporation in the future.
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5.2.6 Comparison to Lagrangian Approach

We analysed perturbations around spherically symmetric spacetimes in the Lagrangian and Hamiltonian
approach. In the Lagrangian setup, we used a covariant formulation of perturbation theory to derive the
covariant form of the Regge-Wheeler-Zerilli wave equation for a master variable. The difference between
the odd and even parity perturbations is captured by the potentials acting as an effective mass term for the
master variables.

Then, we started from the Hamiltonian formulation of general relativity based on the ADM formulation.
We used the Gullstrand-Painlevé gauge fixing to derive a reduced Hamiltonian describing the dynamics of
the theory. The result was simplified using several canonical transformations. In the following, we compare
the two formalisms by computing the Hamiltonian equations of motion for the reduced Hamiltonian. Finally,
we investigate the relation between the master variables in the Hamiltonian and Lagrangian formulation for
the pure gravity case.

The relevant second order contribution to the reduced Hamiltonian describing the physics of the pertur-
bations is of the form

H = 1
κ

∫
dr N3PQ′ + N

2
(
P 2 + (Q′)2 + V Q2

)
. (5.2.265)

We will treat all the different fields (even/odd, matter/gravity) simultaneously. The difference between them
is the explicit form of the potential function V which needs to be inserted. For simplicity we set κ = 1.

The Hamilton equations of motion are

Q̇ = δH̃

δP
= N3Q′ +NP , (5.2.266)

Ṗ = −δH̃

δQ
= ∂r(N3P ) + ∂r(NQ′) −NV Q . (5.2.267)

The two equations are combined to give a second order partial differential equation for the variable Q. The
first equation is used to express P in terms of Q̇ and Q′. Then, the second equation becomes

−∂t

( 1
N

(
Q̇−N3Q′

))
+ ∂r

(
N3

N

(
Q̇−N3Q′

))
+ ∂r(NQ′) −NV Q = 0 . (5.2.268)

This equation is not yet in a covariant form using the two dimensional metric gab on the (t, r) part of
spacetime. In GP gauge and in terms of N,N3 we have

g =
(

−N2 + (N3)2 N3

N3 1

)
g−1 =

− 1
N2

N3

N2

N3

N2 1 − (N3)2

N2

 (5.2.269)

The determinant of the metric is −N2 and we have
√

− det(g) = N . Dividing the equation of motion for Q
by N and introducing components of the metric g, we get

1√
−g

∂t

(√
−g
(
gttQ̇+ gtrQ′

))
+ 1√

−g
∂r

(√
−g
(
grtQ̇+ grrQ′

))
= V Q . (5.2.270)

We recognize the differential operator on the left-hand side as the Laplace operator □ = gab∇a∇b associated
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to g. Thus, the equation reduces to the wave equation

□Q = V Q . (5.2.271)

In section 5.1, we derived the wave equation for a master variable ψe/o in the even and odd parity sectors
for pure gravity. In [101], Chandrasekhar generalised the analysis to also include the electromagnetic field
working in Schwarzschild coordinates. In the following, we compare the wave equations for the different
potentials. First, let us consider the special case of pure gravity and set all the electromagnetic contributions
to zero. Then, in the even parity sector we have

W o = 1, Uo = l(l + 1) − 3rs

2r , V o
grav = 1

r2

(
l(l + 1) − 3rs

r

)
(5.2.272)

This agrees with the expression for the Regge-Wheeler equation in formula 5.1.41. For the even parity, we
have

W e = 1
Λ2

(
n2 + 2n+ 3rs

2r − 3r2
s

4r2

)

V e
grav = 1

r2

[
2nW e + rs

r
− 2n∆

Λ

]
= 1
r2Λ2

[
2n3 + 2n2 + 3n2 rs

r
+ 9r2

s

2r2n+ 9r2
s

4r3

]

= 1
4r2Λ2

[
λ2(λ+ 2) + 3λ2 rs

r
+ 9λr

2
s

r2 + 9r
3
s

r3

]
(5.2.273)

where we used λ = (l+ 2)(l− 1) = 2n. This potential is the same as the Zerilli potential in the even parity
master equation (5.1.65). Therefore, in the vacuum case, we have perfect agreement between the equations
of motion from the Lagrangian and Hamiltonian framework.

The comparison of the equations of motion including the electromagnetic field is more complicated. In
order to show the equivalence of our results with the ones in [101], we have to perform a change of coordinates
in the wave equation from Gullstrand-Painlevé to Schwarzschild coordinates. The wave equation in (5.2.271)
is already in a covariant form and we simply have to express the Laplace operator in the Schwarzschild
coordinate system. The metric in Schwarzschild coordinates is given by g = diag(−∆,∆−1) where ∆ is
defined in equation (5.2.141). In terms of the Schwarzschild coordinates (t, r) we have

□Q = −∆−1∂2
tQ+ ∂r(∆∂rQ) = ∆−1

(
−∂2

t + ∂2
r∗

)
Q . (5.2.274)

The variable r∗ is the tortoise coordinate defined by the relation ∆∂r = ∂r∗ . Then, the wave equation in
Schwarzschild coordinates is (

−∂2
t + ∂2

r∗

)
Q = ∆V Q . (5.2.275)

In [101], Chandrasekhar derives the equation(
−∂2

t + ∂2
r∗

)
Z

(±)
i = V

(±)
i Z

(±)
i . (5.2.276)

It is a wave equation in Schwarzschild coordinates for the master functions Z±
i with the potentials V ±

i . The
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label (±) stands for odd (−) and even (+) parity and i = 1, 2 labels the two independent variables within
the even and odd parity sector respectively.

The potential in the odd parity sector is

V −
i = ∆

[
l(l + 1)
r2 − qj

r3

(
1 + qi

(l − 1)(l + 2)r

)]
(i, j = 1, 2, i ̸= j) , (5.2.277)

where q1 and q2 are defined by the relations q1 + q2 = 3rs and −q1q2 = (l + 2)(l − 1)g2ξ2. Comparing the
potential with our solution V o

1/2 we find perfect agreement.

For even parity, Chandrasekhar finds the potentials

V +
1 = ∆

r2

[
U + 1

2(q1 − q2)W
]

(5.2.278)

V +
2 = ∆

r2

[
U − 1

2(q1 − q2)W
]
, (5.2.279)

with the same definitions as in the odd parity case for q1 and q2. This potential is also exactly the same as
V e

1/2 of our computations. Therefore for both odd and even parity, the equations of motion of the reduced
Hamiltonian match the calculations based on the linearised Einstein equations in the literature.

We conclude this section by relating the master variables of the Hamiltonian and Lagrangian computations.
For simplicity, we only study the case of pure gravity for l ≥ 2 neglecting any electromagnetic contributions.
The reduced Hamiltonian generates the dynamics for the gravitational master variables Qo, Qe and we would
like to know if they agree with the gravitational master variables ψo, ψe defined in section 5.1.

In the odd parity sector, the variable Qo is related to the true degrees of freedom (Xo, Yo) by

Qo =
√

2
r

∫
dr
(
r2Yo + πλ

4r2X
o
)
, (5.2.280)

In the Lagrangian approach, we defined the master variable

ψo = r3ϵt3
(
∂t(r−2h̃r) − ∂r(r−2h̃t)

)
. (5.2.281)

The quantities h̃t and h̃r are the components of the gauge invariant variable h̃a of the odd parity perturba-
tions. In the notation used in the Hamiltonian theory, h̃a is related to the metric and angular shift vector
by

h̃r = xo − r2√
2(l + 2)(l − 1)

∂r(r−2Xe) (5.2.282)

h̃t = ho
t − 1√

2(l + 2)(l − 1)
∂tX

e (5.2.283)

In the odd parity sector of the Hamiltonian approach only the perturbation of the angular shift vector δNA

is non-vanishing. We expand it into spherical vector harmonics δNA =
∑

l,m r−2ho
t,lmL

A
o,lm. Substituting

the gauge invariant variables h̃r and h̃t in the master variable ψo we obtain

ψo = −r3ϵt3∂r(r−2ho
t ) . (5.2.284)
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The stability of the gauge fixing condition xo = 0 fixes the shift vector ho
t . We have the stability condition

ẋo =
{
xo, N (2)Cv +N3(2)Ch + r−2ho

t · Zo
}

xo=0,yo=y
(1)
o ,N=1,Nr=

√
rs/r

(5.2.285)

= y(1)
o + r2∂r(r−2ht) . (5.2.286)

After calculating the Poisson bracket, we impose the gauge fixing xo = 0 and the solution of the first order
constraints yo = y

(1)
o . Using the stability condition, the odd parity master variable becomes

ψo = rϵt3y(1)
o . (5.2.287)

Inserting the solution of the first order constraints for yo, we obtain

ψo = ϵt3
√

2(l + 2)(l − 1)
r

∫
dr
(
r2Yo + πλ

4r2X
o
)

(5.2.288)

The expression for the Levi-Civita pseudotensor is ϵt3 = 1 and we see that ψo agrees with Qo up to an
l-dependent prefactor.

In the even parity case, we arrived at the Zerilli wave equation, satisfied by the master variable ψe in the
Lagrangian approach and Qe in the Hamiltonian formulation. We start with the variable ψe and show that
it corresponds to the variable Qe up to a constant prefactor. ψe is defined as

ψe = 1
l(l + 1)

(
γK + 1

Λ
(
γγaγbkab − γ2γa∇aK

))
. (5.2.289)

K and kab are gauge invariant variables of the even parity sector. In section 5.1, we related them to the
metric perturbations as

K = r−2xh − 2√
l(l + 1)r

γahe
a , (5.2.290)

kab = hab − 1√
l(l + 1)

(∇ah
e
b + ∇bh

e
a) . (5.2.291)

In the gauge we chose in the Hamiltonian formulation, we set he
3 = 0 and he = 0. The perturbations of lapse

function and shift vector are related to htt, ht3 and he
t . Here, we use the notation N +

∑
lm δNlmLlm for the

lapse function and N3 +
∑

lm δN3
lmLlm and

∑
lm δN e

lm[Le,lm]A for the shift vector. The metric perturbations
are then given by

htt = −2NδN + xv(N3)2 + 2N3δN3 ,

ht3 = δN3 + xvN3 ,

h33 = xv ,

he
t = r2δN e ,

he
3 = 0 .

(5.2.292)

For ψe, we also have to know the vector γa which is defined as the derivative of γ. In the GP gauge, γ = r

and we have γa = ∂ar = (0, 1). We raise the index with the inverse metric and get

γt =
√
rs

r
, γ3 = 1 − rs

r
. (5.2.293)
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Using the results for γa, K and kab the even parity master variable reads

ψe = r

l(l + 1)((l + 2)(l − 1)r + 3rs)
[
r−2((l + 2)(l − 1)r + 3rs)xh + 2rγaγbhab − 2

√
rs

r
∂tx

h (5.2.294)

− 2
(

1 − rs

r

)
∂rx

h + 4
r

(
1 − rs

r

)
xh + 1√

l(l + 1)

(
4r2γb∇b(r−1γa)he

a − 4Λγahe
a

)]
. (5.2.295)

For the last term involving he
a, we have to evaluate the second covariant derivative of γ. In the calculations

for the derivation of the Schwarzschild metric, we showed that

∇a∇bγ = gab

2r2 rs . (5.2.296)

We substitute this result into ψe and after some simplification, we find

ψe = r

l(l + 1)((l + 2)(l − 1)r + 3rs)
[
r−2

(
(l2 + l + 2)r − rs

)
xh + 2rγaγbhab − 2

√
rs

r
∂tx

h (5.2.297)

− 2
(

1 − rs

r

)
∂rx

h + 4
r

(
1 − rs

r

)
xh − 2

√
l(l + 1)γahe

a

]
. (5.2.298)

The time derivative of xh is determined by the Hamilton equations of motion. We obtain them by calculating
the Poisson bracket of xh with the Hamiltonian:

ẋh =
{
xh, δN · (1)Zv + δN3 · (1)Zh + r−2he

t · (1)Ze +N (2)Cv +N3(2)Ch

}
(5.2.299)

= −1
2πµδN + 2rδN3 −

√
l(l + 1)he

t +N3∂rx
h −Nyv − 1

4πµx
v . (5.2.300)

To finish the calculation we have to expand γaγbhab in terms of the explicit expression for γa. We have

γaγbhab = xv + 1
2rπµδN

3 − 1
8r2π

2
µδN . (5.2.301)

Inserting ẋh and γaγbhab into ψe, we find

ψe = 1
l(l + 1)((l + 2)(l − 1)r + 3rs)

[((
l2 + l + 2

)
− rs

r

)
xh − 2r∂rx

h + 1
2πµy

v + 1
8
(
π2

µ + 16r2
)
xv
]
.

(5.2.302)

After carefully studying the canonical transformations of the even parity sector, we notice that up to an
l-dependent factor, ψe is equal to Qe. Hence, in both the even and odd parity sectors the wave equations
and the master variables agree in the Hamiltonian and Lagrangian approach.

5.3 Summary

In the previous chapters, we discussed black hole perturbation theory from the Lagrangian and Hamiltonian
perspectives. First, we reviewed the linear perturbation theory based on the Einstein equations in modern
notation based on [74, 125]. The treatment separates into the odd and even parity sectors, which can be
treated independently. In each sector, we found two master equations which are satisfied by two master
variables constructed from the perturbations.

Then, we applied the canonical framework developed in section 2 to general relativity in the Hamilto-
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nian formulation based on ADM variables. We distinguished the canonical variables into symmetric and
non-symmetric variables as well as true and gauge degrees of freedom. Then, the reduced phase space is coor-
dinatized by the true symmetric and true non-symmetric degrees of freedom. After constructing the reduced
phase space by solving the constraints up to second order, we performed several canonical transformations.
The result is a reduced Hamiltonian describing the dynamics of the reduced phase space.

The treatment of Hamiltonian black hole perturbation theory is well established in the literature. However,
in order to successfully apply it to the case of black hole evaporation with backreaction, we had to take
some non-trivial steps. The advantages of the formulation used above are as follows:

First of all, we used a different formulation for black hole perturbation theory that has not been used
in the literature before. In the standard approach, one expands the constraints to second order in the
perturbations and then defines gauge invariant variables that commute with the constraints. These gauge
invariant variables are only defined up to second order in perturbation theory. When moving to higher
orders, one needs to repeat the analysis order by order and define third order gauge invariants, fourth order
gauge invariants and so on. On top of that beyond second order, there is no consensus in the literature on
how to construct the higher order gauge invariants. In our formulation, we first define the gauge invariants
to all orders and then construct the reduced phase space perturbatively. The gauge-invariant (true) degrees
of freedom are completely fixed to all orders.

In other treatments, backreaction is not included because the spherically symmetric sector is treated as
independent of the non-symmetric degrees of freedom. In the treatment by Moncrief [75], the background
is assumed to be the Schwarzschild solution and the perturbations are propagating on this background
without affecting it. Later, Brizueal and Martín-García [80, 81] generalized the Hamiltonian analysis to
general spherically symmetric backgrounds without backreaction. In the formulation used in this thesis all
the backreaction effects are included. For only Maxwell matter the backreaction is trivial because the true
symmetric degrees of freedom are integration constants. Including different matter fields (e.g. scalar field,
fermions), the backreaction becomes non-trivial.

The GP gauge condition used in the above computations was chosen because it covers both the interior
and exterior of the black hole spacetime. This is important for a complete picture of evaporating black
holes. For example adding a scalar field, we can investigate the dynamical formation of a black hole and its
subsequent evaporation. For this to make sense, we have to track the matter that is inside the black hole.
This dynamics of the matter inside the black hole could be important for our understanding of the fate of
evaporating black holes.

The computations above can also be regarded as a consistency check of the formalism when applied gravity
coupled to Maxwell matter. This consistency check was non-trivial as it involved several non-standard steps.
Our formulation applied gauge fixing, while other approaches use gauge invariant variables. We had to
translate the master variables between the two pictures in order to verify our results. Additionally, there
were several non-trivial canonical transformations involved for the derivation of the reduced Hamiltonian.
This is a strong indication that the formalism can be trusted and that an extension to all orders and with
more matter content with backreaction is meaningful. Thus, the analysis in this thesis provides the start
for future investigations on black holes.
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6
Physics of Evaporating Black Holes and
Experiments

In section 4.2, we showed that a Schwarzschild black hole emits radiation whose spectrum follows that of a
black body with characteristic temperature TH . We also argued that due to this effect black holes should
lose mass and thus evaporate after a finite lifetime which scales as M3. The argument was very heuristic
because in the calculation of the Hawking effect, we assumed the spacetime to remain unchanged. While for
very large black holes this seems like a reasonable assumption, for tiny black holes that already evaporated
most of their mass this is no longer true.

In this section, we would like to describe how we plan to obtain a more in-depth analysis of Hawking
evaporation including backreaction effects. In the first section, we introduce the quasi-local mass as the
square root of the area of the apparent horizon and sketch a way to obtain a perturbative expansion of it.
Then, we give a brief outlook into the challenges we will have to face when formulating the quantum theory.
We conclude with a short discussion of current and future experimental searches for evaporating black holes.

6.1 Backreaction using the Quasi-Local Mass

In section 3.7, we introduced the notion of trapped surfaces and apparent horizons. We argued that the
apparent horizon is associated to an observer and that it is the boundary of the black hole as seen by this
observer. The area of the apparent horizon is an interesting observable for the study of Hawking evaporation.
In the classical theory, we expect the time derivative of the area to be positive in analogy to the black hole
area theorem. Going to the quantum theory, the change of the area is not necessarily positive due to black
hole evaporation. In quantum field theory, classical energy inequalities, needed for the proof of the area
theorem, are not satisfied in general. The backreaction effect would then manifest itself in a decrease of the
area of the apparent horizon.

Equivalently to working with the area of the apparent horizon, we can take its square root and define the
notion of a quasi-local mass:

Definition 6.1: Given a foliation F of a globally hyperbolic spacetime (M, g) by Cauchy surfaces Στ the
quasi-local mass at time τ is defined as

[M0]2 := Ar[Aτ ]
16π (6.1.1)

where Aτ is the area of the apparent horizon at time τ .

In [98], it was shown that the shape of the apparent horizon can be computed perturbatively to any
order in perturbation theory. Since the rest of the discussion in this thesis is in the Gullstrand-Painlevé

131



6 Physics of Evaporating Black Holes and Experiments

(GP) gauge, we will work in the same gauge here as well. The strategy is as follows: Since the apparent
horizon for Schwarzschild black holes is a sphere where the radius is given by the Schwarzschild radius rs, we
assume the perturbed apparent horizon to be of spherical topology. The apparent horizon is a codimension
1 hypersurface and we choose the embedding Y : R × S2 → M with Y (τ, ·) : S2 → Στ to describe it. We
assume the embedding to be of the form

Y τ (τ, y) = τ, Y 3(τ, y) = ρ(τ, y), Y A(τ, y) = yA . (6.1.2)

The surface is parametrized by a function ρ(τ, y). This function is called the radial profile and defines the
shape of the surface. Then, for each τ we compute the normal s of the surfaces Sτ := Y (τ, S2) tangent to
Στ . The radial profile is then determined by evaluating (3.7.8) with the normal s, the induced metric m
and the conjugate momentum W .

The solution of (3.7.8) is calculated using a series expansion of ρ in terms of the perturbations, i.e.
ρ = ρ(0) + ρ(1) + ρ(2) + . . . where ρ(i) is of i-th order in the perturbations. By construction, the zeroth order
contribution is just ρ(0) = rs and then the solution for ρ is constructed order by order. [98] shows that such
a perturbative solution can by constructed in an iterative way.

Pulling back the induced metric m onto the surfaces Sτ , we define the area of the apparent horizon. The
area will be available in terms of a series in the perturbations A = A(0) + A(2) + . . . . Note that the first
order contributions to A vanish because the calculation of the area involves an integral over the sphere and
the perturbations are assumed not to contain any symmetric contributions. The zeroth order contribution is
just the area of a sphere with the Schwarzschild radius, i.e. A = 4πr2

s . Using the definition of the quasi-local
mass we find as expected M0 = M , where M is the black hole mass. Therefore, the normalization factor
of 16π in the definition of the quasi-local mass was chosen correctly. In the quadratic approximation, the
perturbations will lead to quadratic corrections to the quasi-local mass.

After deriving an explicit expression for the quasi-local mass to second order, we quantise it using a Fock
representation. This representation is motivated by the shape of the reduced Hamiltonian which we derived
in the previous chapter to second order. For a well-defined quantum operator associated to the quasi-local
mass, we have to normal order it. In order to construct a rigorous quantum theory for the perturbations,
we have to address the following challenges:

The mode functions for the even parity perturbations are solutions of the Regge-Wheeler equation which
reads

□ψl,s − l(l + 1)r + (1 − s2)rs

r3 ψl,s = 0 , (6.1.3)

where s corresponds to the spin of the matter field, i.e. s = 0 for scalar fields, s = 1 for electromagnetic
fields and s = 2 for the gravitational field. Assuming the modes to have the time dependence eiωτ , the
equation reduces to an ordinary, second order, linear differential equation. In the mathematics literature
a lot is known about these equations and their solutions (see [128]). In [129, 130], the authors show that
the solution of the differential equation can be written in terms of confluent Heun functions ([131, 132]).
The solution of the radial differential equation are known locally as power series around the points r = 0,
2M and ∞. However, for a full knowledge of the mode, one has to know the global solution of the Heun
equation from r = 0 to r = ∞. This requires the introduction of appropriate matching conditions of the
power series solutions.
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6.2 Experimental Tests for Evaporating Black Holes

Once we have the mode functions under control, we have to address the issue that the constant GP time
hypersurfaces in GP coordinates are not Cauchy surfaces. Therefore, the mode functions will not be complete
and it is impossible to expand an arbitrary field into the modes. A possible solution to this is outlined
in appendix C of [98]. The GP coordinates cover either the ingoing or outgoing Eddington-Finkelstein
coordinates. The idea is to glue a white hole spacetime covered by the outgoing GP coordinates to a black
hole spacetime covered by the ingoing GP coordinates along the black hole and white hole singularities. In
the resulting black hole – white hole spacetime, the constant GP time hypersurfaces are extended through
the singularity and are Cauchy surfaces. Defining the mode solutions of the Regge-Wheeler equation on
such a Cauchy surface has the potential to be a complete mode system.

6.2 Experimental Tests for Evaporating Black Holes

In this section, we briefly outline the current and future searches for evaporating black holes using astro-
and astroparticle experiments. In section 4.2, we briefly sketched that from semi-classical arguments, the
spectrum of the emitted Hawking quanta is obtained. However, due to the small Hawking temperature for
black holes with a large mass, the radiation is very weak. A more promising source of Hawking radiation
are primordial black holes [133–136] that already evaporated away most of their mass and are in the final
stage of the evaporation process. These black holes are expected to emit a significant amount of radiation
that could be detected in experiments. For these black holes, the assumptions on which the semi-classical
backreaction is based are not fully justified and as the black hole mass approaches the Planck mass the
description breaks down. In this regime, which is very important for the detection of Hawking radiation,
new tools based on quantum gravity need to be developed.

The observational signature highly depends on the fate of evaporating black holes and there are several
conflicting proposals in the literature: The black hole could stop evaporating and form a stable remnant
[136–139], the black hole could explode in a burst or radiation [140], or it could tunnel from a black hole to
a white hole [50, 51, 141]. For observations the proposal of exploding black holes is very interesting because
this will lead to stronger signals. The detection of these signals originating from primordial black holes can
be used to directly get an estimate for the abundance of primordial black holes. This is of interest because
these black holes are a candidate for dark matter in the universe.

The most promising messengers for detecting bursts of radiation from evaporating black holes are neu-
trinos and gamma rays [61]. For gamma rays, the Fermi Large Area Telescope (Fermi-LAT), a space-based
instrument provides bounds on the abundance of evaporating primordial black holes [142, 143]. For ground
based detectors, one uses the fact, that gamma rays produce a shower of charged particles in earth’s atmo-
sphere. These particles are highly energetic and move faster than the speed of light in air and Cherenkov
light is emitted which can be captured by telescopes. The H.E.S.S collaboration is looking for signs of
evaporating black holes [144]. With future experiments like the Cherenkov Telescope Array (cta) more data
will be available.

In a similar way, neutrino observations put constraints on primordial black holes [145, 146]. For example,
the IceCube experiment located at the South Pole in the antarctic ice measures neutrinos through their
interaction with water in the ice [147]. They establish bounds on the abundance of primordial black holes.
Future neutrino detectors, such as km3Net are expected to provide more data that will improve previous
results.

The above, non-exhaustive list of experiments shows that Hawking radiation from primordial black holes
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is a very active field of research. However, from a theoretical point of view more research in quantum gravity
has to be conducted in order to interpret the data of the experiments and to obtain constraints on quantum
theories of gravity. Then, the data of current and future experiments might be able to constrain theories of
quantum gravity and could help to solve the mystery surrounding the fate of evaporating black holes.

The thesis and the formalism developed in the previous sections aims for addressing these questions. As
explained in section 6.1, we define a quantum operator associated to the quasi-local mass. In the quantum
theory, we expect the black hole to lose mass and thus the quasi-local mass is expected to decrease with
time. This decrease will give a direct insight into the power emitted during the evaporation process.

In the hybrid quantization approach, we go beyond what we discussed in section 6.1 and combine the Fock
quantization of the perturbations with a non-perturbative quantisation of the spherically symmetric degrees
of freedom. This was first successfully applied in the context of cosmology in the seminal work [84] and
then generalized to many other models [85–92]. However, in our situation, there cannot be any backreaction
on the black hole mass M because we do not have a Dirac observable conjugate to it. We are left with
two options (see [98]): (i) We extend the analysis by introducing a Dirac observable conjugate to M . (ii)
We interpret the quasi-local mass M0 as an extension of the zero mode M to all the modes coming from
the perturbations. For additional matter fields such as a scalar field or fermions, we would have explicit
backreaction and can systematically compute the backreaction using space adiabatic perturbation theory
[148], a generalization of the usual Born-Oppenheimer approximation of molecular physics.

For realistic theory of black holes we have to include additional matter fields. In [98], a scalar field
was studied next to the gravitational and electromagnetic degrees of freedom. This scalar field can be
interpreted as the Higgs field in the Standard model of particle physics. Using the scalar field we plan to
explore realistic black hole formation scenarios through gravitational collapse. Furthermore, we can get
insights into the evolution of primordial boson stars. In the future, additional matter fields such as fermions
(e.g. neutrinos), which are also important messengers of Hawking radiation, can be added.
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7
Conclusion

In this thesis, we discussed a Hamiltonian formulation for theories with constraints (redundancies) that has
a direct application to the Hamiltonian formulation of general relativity in terms of ADM variables. For
future applications to Hawking radiation and black hole evaporation, we initiated a (perturbative) quantum
gravity computation. Non-rotating black holes (Schwarzschild black holes) are spherically symmetric and
we treated the spherically symmetric degrees of freedom exactly, whereas the non-symmetric variables are
handled perturbatively. The new idea of our approach is to split the degrees of freedom into four sets: We
distinguish between the symmetric and non-symmetric degrees of freedom, as well as between redundant
and observable variables. The splitting of the variables is performed non-perturbatively on the full phase
space of general relativity coupled to matter fields. Then, by fixing the values of the redundant degrees
of freedom, we obtain the reduced phase space coordinatized by the observable degrees of freedom. The
dynamics of the reduced phase space is determined by the physical Hamiltonian which is given by the
evaluation of a boundary term at infinity. In order that the way we fix the redundancy is preserved under
time evolution, certain extra stability conditions have to be satisfied. We successfully solved these extra
conditions asymptotically at infinity, which is enough to find the non-perturbative expression for the physical
Hamiltonian valid to all orders. A non-trivial consistency check demonstrated the validity of our formalism.

7.1 Summary of the Results

Black holes in the universe are uniquely characterised by charge, mass and angular momentum. Semi-
classical calculations suggest that due to Hawking radiation angular momentum is radiated away faster than
mass. Hence, we restricted to non-rotating black holes and we assume spherical symmetry for the symmetric
degrees of freedom. Solving the constraints to first and second order, we explicitly calculated the reduced
phase space for both background and perturbations. After suitable canonical transformations, we obtained
a tractable physical Hamiltonian to second order in the perturbations. As a consistency check, we computed
the Hamilton equations of motion, changed to Schwarzschild coordinates and neglected backreaction. In this
common domain of validity, we recover the Regge-Wheeler-Zerilli equations [72, 73, 101] for the perturbations
on a black hole spacetime. Therefore, in this limit our formalism agrees with known results in the literature
but it goes beyond the Regge-Wheeler-Zerilli equations and Moncrief’s Hamiltonian analysis [75] by including
backreaction and by working in Gullstrand-Painlevé coordinates.

The real virtue of our approach is the disentangling between the definition of the observables and per-
turbation theory. In this way, the observables are defined non-perturbatively to all orders of perturbation
theory. There is no need to perturbatively resolve the redundancy in the description order by order, which
is not well understood in the literature beyond second order (see [71]). The observables are free of redun-
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dancies without any approximation and not just up to higher orders in perturbation theory. This makes
the formalism very transparent and an extension to higher orders in perturbation theory is possible without
technical issues.

In this manuscript, we fully solve all of the constraints on the classical level and the full dynamics are
given by the physical Hamiltonian. In contrast to the Hamiltonian in the ADM formulation of general
relativity this Hamiltonian generates physical time evolution for the observables. The absence of constraints
is also an advantage for the construction of the quantum theory. In the presence of more than one constraint
in the classical theory, Poisson brackets between constraints give a linear combination of constraints only
up to higher order terms. This translates into the quantum theory, where constraints become constraint
operators and their commutator will pick up anomalous terms. These anomalies make the construction of
a well-defined quantum theory considerably more complicated.

By construction, our formalism includes backreaction effects. Instead of fixing the spherically symmetric
spacetime to the Schwarzschild geometry, like black hole perturbation theory is usually studied in the
literature, we left it completely arbitrary and did not remove the interactions between the background
and the perturbations. Working on the full phase space of general relativity coupled to matter, we are
guaranteed to include all backreaction effects. This is crucial for the application of our approach to black
hole evaporation, where the Hawking radiation (perturbations) influences the black hole mass (background).
In the present thesis, we only investigated the Einstein-Maxwell sector and observed that backreaction is
quite limited because the only spherically symmetric observables are mass and charge of the black hole. The
full power of the formalism will unfold when using more general matter for which the symmetric sector is
still a (quantum) field theory as exemplified in [98] for (charged) scalar fields.

For fixing the redundancies in the Hamiltonian description, we chose the Gullstrand-Painlevé coordinates
that allows the treatment of both the interior and exterior of the black hole spacetime. The GP gauge
is associated to an observer freely falling from infinity, which is a good approximation for an observatory
around a black hole in free-fall. The GP coordinates are used to describe either a black hole or a white
hole spacetime. Glueing the white hole singularity to the black hole singularity, we obtain a black hole
– white hole transition scenario (see [98]). In this glued spacetime, the constant GP time surfaces are
Cauchy surfaces. A Cauchy surface is a surface in spacetime such that the physics in all of spacetime can be
reconstructed from initial data on it. Then, given a complete set of modes, i.e. elementary solutions of the
wave equation, on the Cauchy surface, we can uniquely expand any quantum field in terms of the modes.
It could be possible to extend the quantum field theory across the singularity from the black hole to the
white hole region without technical issues. Then, the singularity would be perfectly regular in the quantum
theory without using quantum effects for the symmetric observables.

In the case that such an extension is not possible, we have to apply methods from non-perturbative
quantum gravity to the symmetric sector in order to cure the singularity. In this case, there will be a
quantum transition region around the singularity where the black hole and white hole spacetimes are glued
together. Alternatively, adding a scalar field such as the Higgs to the theory, we can use methods developed
for the study of Oppenheimer Snyder collapse toy models.

After establishing the classical Hamiltonian theory, we mentioned some physical applications of the theory
in future investigations. The notion of event horizon is very global and not suitable for the study of
evaporating black holes because we do not expect an event horizon in spacetimes with evaporating black
holes. A better notion are apparent horizons, that correspond to the boundary of the trapped region an
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observer would measure. The observer dependence of the apparent horizon is not a disadvantage because
in a realistic scenario, we will observe the black hole while freely-falling in a black hole spacetime. For
instance, an observer on earth will not have any experimental access to event horizons in the universe
but can only probe spacetime locally. In section 6, we sketched how we plan to determine a first principle
derivation of the quasi-local mass loss. The present thesis will provide the necessary preparations to perform
the computations and relate the theory to experimental data. In the end, we also presented some recent
experimental searches for burst events of evaporating black holes. In current and future gamma ray and
neutrino observatories such events are searched and used to constrain the abundance of primordial black
holes.

In summary, in this thesis, we initiated a new approach for the study of quantum backreaction effects in
general relativity with a special focus on black hole evaporation. By considering classical perturbation theory
in the Hamiltonian framework, we provided the basis for future explorations using canonical quantization
techniques. The key novelties of the framework are the clear separation between the definition of observables
and perturbation theory as well as the inclusion of backreaction, keeping the spherically symmetric sector
dynamical.

7.2 Future Research

The present work offers many opportunities for future research. In the following, we provide a non-exhaustive
list of ideas for future projects, applications and extensions of the formalism:

In the computations, we only considered the electromagnetic field as matter and additional matter
fields such as scalar fields or fermionic particles of the Standard Model are of interest. In order to provide
the full spectrum of emitted particles, we have to take all matter fields in the Standard Model of particle
physics into account. With regards to current and future astrophysics experiments, neutrinos, photons, and
gravitational waves are important messengers [133–136]. For electromagnetic matter, we found that the
physical Hamiltonian contains a mass term which only depends on the black hole mass M and the electric
charge ξ. In the presence of additional matter fields, we will have more spherically symmetric, observable
degrees of freedom. This will lead to additional contributions in terms of the new spherically symmetric
degrees of freedom to the mass term (backreaction). For the observation of Hawking radiation, secondary
effects from interactions of the emitted particles need to be investigated based on calculations using the
Standard Model of particle physics .

In our formulation of perturbation theory in general relativity, we defined the non-perturbative gauge
invariants and obtained an implicit expression for the reduced Hamiltonian to all orders. Only in a second
step, we explicitly computed the physical Hamiltonian to second order to find the approximate dynamics.
In the future, we plan to extend the calculations to higher orders. To second order, the perturbations can
be considered as free fields with a background-dependent mass term. Higher order corrections will lead to
interactions of the perturbations and the interaction of gravitational waves.

In addition, we can extend the formalism to rotating black holes and analyse perturbations around black
holes of the Kerr-Newman type. For this, we have to generalise the symmetry group from spherical to axial
symmetry. The study of rotating black holes is important for a complete understanding of astrophysical
black holes forming from stellar collapse. The theory of perturbations around rotating black holes was
initiated by Teukolsky in [109, 110]. Rotating black holes will introduce new effects due to the more complex
horizon structure. Furthermore, the frame-dragging effect pulls matter close to the black hole horizon in
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the direction of rotation [105, 106].

The reduced Hamiltonian was found by the careful analysis of the boundary structure of the phase space
of general relativity. Essentially it is given by the ADM mass which allows for a systematic expansion
with respect to the perturbations to any desired order. In general relativity, one finds a rich structure of
boundary degrees of freedom. It is encoded by the Bondi - Metzner - Sachs (BMS) group [149–152],
an asymptotic symmetry group of general relativity, which is a generalization of the Poincaré group. It gives
insights into the radiation at null infinity and we could learn further details about Hawking radiation. In
this thesis, the analysis was performed at spacelike infinity and we need to extend it to null infinity [153].
Recently, boundary degrees of freedom gained new interest as a way to study quantum theories of gravity
[154, 155].

After establishing the classical theory for the perturbations, the next step is the construction of the
quantum theory. There are several options for this: The easiest case is to apply a Fock quantisation to
the black hole perturbations. In this approach, we have to figure out if the mode functions are well-defined
at the horizon and at the singularity. In section 6.1, we briefly discussed some challenges that we have to
face when constructing a complete mode system. Only if the mode system is complete, we can uniquely
expand any quantum field in terms of modes. In case of the Regge-Wheeler equation, modes are potentially
singular at r = 0 (signularity), r = 2M (horizon) and at infinity. Hence, it might be necessary to cure and
resolve the singularities using suitable regularizations.

A possible way to resolve the singularities is the hybrid approach to quantized perturbed systems in
general relativity [84]. The symmetric observables are treated non-perturbatively, while the non-symmetric,
true degrees of freedom are quantized using a Fock representation. The non-perturbative quantization for
the background is motivated by the non-polynomial nature of the gravitational interaction which is still
present in the symmetric sector. The perturbative Fock representation for the perturbations is suggested
because truncating the perturbation theory at second order leads to a Hamiltonian which is quadratic in
the fields.

The hybrid approach was first successfully used in the cosmological setting [85–92]. In cosmology, the
symmetric degrees of freedom are assumed to be homogeneous (independent of the point in spacetime) and
isotropic (independent of direction). The results from cosmology can be taken over to the study of black
holes by realizing that the interior spacetime of the Schwarzschild black hole can be rewritten in terms
of a Kantowski-Sachs cosmology. Similarly, a non-perturbative treatment of dust collapse models leads to
a resolution of the singularity inside the black hole. The non-perturbative treatment of the spherically
symmetric sector typically leads to the resolution of the singularity inside black holes.

Additionally, a recently found orthonormal basis for singular Schrödinger operators can be used [156,
157]. The elements of this basis have the property that they vanish both at infinity and at 0 such that
the operators x and x−1 are well defined. Therefore, in terms of this basis, the Coulomb potential for the
hydrogen atom, which is proportional to x−1 is well-defined at x = 0. This could also be useful for the
singularity inside the Schwarzschild black hole.

For the derivation of the physical Hamiltonian, we asymptotically evaluated the stability condition of the
gauge fixing, guaranteeing that our way to fix the redundancy is preserved under time evolution. In the
classical theory, we also solve the consistency conditions perturbatively in the interior of spacetime to some
order in the perturbations. Working to second order, we determine lapse and shift in terms of the true
degrees of freedom and thus express the full spacetime metric in terms of the observables. Then, we can
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7.2 Future Research

quantize the expression for the full metric to study its expectation values and fluctuations in the quantum
theory. We call the expectation value of the metric the effective metric and we plan to investigate its
causal structure, i.e. the causal relations between events in spacetime. In general relativity, the causal
structure is often visualized in two dimensional pictures, called Penrose diagrams. Comparing the Penrose
diagram of classical black holes and of the effective metric, we intend to find changes due to quantum effects.
These modifications could be important hints for describing the late stage of black hole evaporation and the
result of this process.

Finally, we plan to find templates for the experimental investigation of black hole evaporation. Using
the notion of quasi-local mass, we aim to compute the spectrum of Hawking radiation in the late stage of
the evaporation process. Based on these results, we plan to provide information about the regimes where we
expect observable amounts of radiation. This is important for analysing data of current detectors and for
designing future experiments. We would like to find out, whether black holes explode in a burst of radiation
at the end of their lifetime and if so, we would like to derive templates for these events.
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A
Boundary Terms in the Even Parity
Computations in Gullstrand-Painlevé Gauge

In the computation for the even parity contributions with l ≥ 2 to π(2)
µ , we solved the first order constraints

in an alternative gauge Xe = xe = p2 = 0 avoiding any differential equations. The solution for π(2)
µ was then

simplified with the help of three canonical transformations and an integration by parts. Using the symbolic
computation features of Mathematica we determined the corresponding boundary term that was dropped
in the main text:
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In order to make contact with the solution for π(2)
µ in GP gauge, we needed to proof that the solution is

weakly gauge invariant. π(2)
µ has two contributions, on the one hand we have a gauge invariant integral over

the bulk and on the other hand there is a gauge variant boundary term. With the help of Mathematica, we
explicitly computed the boundary term which includes three contributions A1, A2, A3. For the first one, we
integrated by parts before inserting q2 to simplify the expression. The corresponding boundary term is
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sξ2

+ 16
(

l(l + 1)
(

l(l + 1)
(

l2 + l − 5
)

(3l(l + 1) + 52) + 579
)

− 1017
)

r4
s

)
+ 64r9

(
16(l(l + 1)(l(l + 1)(5l(l + 1) − 86) − 757) + 36)r5

s
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− 4g2(l(l + 1)(l(l + 1)(l(l + 1)(12l(l + 1) + 145) − 704) + 1153) − 3848)ξ2r3
s

+ g4(l(l + 1)(l(l + 1)(l(l + 1)(6l(l + 1) + 251) − 688) + 956) + 80)ξ4rs

)
+ 4r5

(
g8(l(l + 1)(3l(l + 1)(15l(l + 1) + 16) − 8548) + 4000)rsξ8

+ 4g6(7l(l + 1)(68l(l + 1) + 1315) − 79032)r3
sξ6 − 32g4(133l(l + 1) − 16413)r5

sξ4
)

− 32r8
(

g6
(

l(l + 1)
(

l(l + 1)
(

l(l + 1)
(

l2 + l + 39
)

− 88
)

+ 132
)

+ 48
)

ξ6

− 2g4(l(l + 1)(l(l + 1)(3l(l + 1)(6l(l + 1) + 71) − 556) − 6) − 5408)r2
sξ4

+ 16g2(l(l + 1)(3l(l + 1)(5l(l + 1) − 51) − 2578) + 906)r4
sξ2 + 288(l(l + 1)(3l(l + 1) + 41) − 375)r6

s

)
+ 4r6

(
g8(l(l + 1)(l(l + 1)(l(l + 1)(3l(l + 1) + 34) + 72) − 568) − 816)ξ8

− 8g6(l(l + 1)(l(l + 1)(40l(l + 1) − 67) − 7549) + 3864)r2
sξ6 − 16g4(l(l + 1)(374l(l + 1) + 6615) − 57687)r4

sξ4

+ 1152g2(8l(l + 1) − 591)r6
sξ2
)

− 16r7
(

1728
(

l2 + l − 54
)

r7
s − 48g2(l(l + 1)(52l(l + 1) + 821) − 7298)ξ2r5

s

+ 4g4(−l(l + 1)(10l(l + 1)(7l(l + 1) − 37) − 12829) − 6176)ξ4r3
s

+ g6(l(l + 1)(l(l + 1)(l(l + 1)(12l(l + 1) + 139) − 40) − 1148) − 3392)ξ6rs

)]
Xep2

The remaining boundary term is due to p2 and it is given by

A3 =
r5
(

3g4ξ4 − 24g2ξ2r (rs + r) − 16r2
(

r2 − 6rrs − 3r2
s

))
2l2(l + 1)2 (−g2ξ2 + (l2 + l − 2) r2 + 3rrs) 2 (p′

2)2

+
1

8l2(l + 1)2r2 (4r (rs + r) − g2ξ2) Λ3

[ (
−3g4ξ4 + 24g2ξ2r (rs + r) + 16r2

(
r2 − 6rrs − 3r2

s

))
×

×
(

−5g4ξ4 + g2ξ2r
((

l2 + l + 10
)

r + 34rs

)
+ 2r2

(
(l − 1)(l + 2)

(
l2 + l − 4

)
r2 − 4

(
l2 + l + 1

)
rrs − 27r2

s

)) ]
p2p′

2

+
r2
√

4rrs − g2ξ2
(

g2ξ2 − 4r (rs + 3r)
)

l(l + 1) (−g2ξ2 + (l2 + l − 2) r2 + 3rrs)
p′

2Oq1 +
r2
(

3g4ξ4 − 24g2ξ2r (rs + r) − 16r2
(

r2 − 6rrs − 3r2
s

))
l(l + 1) (4r (rs + r) − g2ξ2) (−g2ξ2 + (l2 + l − 2) r2 + 3rrs)

p′
2Op1

+
1

4l(l + 1)r3π
(0)
µ (4r (rs + r) − g2ξ2) Λ2

[
− 9g8ξ8 + g6ξ6r ((5l(l + 1) + 142)r + 131rs)

− 2g4ξ4r2
(

28
(

l2 + l + 4
)

r2 + (31l(l + 1) + 750)rrs + 353r2
s

)
− 16g2ξ2r3

(
(l − 1)(l + 2)(2l(l + 1) − 13)r3 − (33l(l + 1) + 65)r2rs − (16l(l + 1) + 321)rr2

s − 104r3
s

)
+ 32r4rs

(
−11

(
l2 + l + 16

)
rr2

s + (l − 1)(l + 2)(4l(l + 1) − 27)r3 − (38l(l + 1) + 17)r2rs − 45r3
s

) ]
Oq1 p2

+
1

4l(l + 1)r3 (g2ξ2 − 4r (rs + r)) 2Λ2

[ (
−3g4ξ4 + 24g2ξ2r (rs + r) + 16r2

(
r2 − 6rrs − 3r2

s

))
× (A.0.4)

×
(

−5g4ξ4 + g2ξ2r
((

l2 + l + 10
)

r + 34rs

)
+ 2r2

(
(l − 1)(l + 2)

(
l2 + l − 4

)
r2 − 4

(
l2 + l + 1

)
rrs − 27r2

s

)) ]
Op1 p2

+
1

32l2(l + 1)2r5 (g2ξ2 − 4r (r + rs)) 2Λ4

[
128
(

l2 + l − 2
)2

(3l(l + 1) − 8)r12

+ 64(l − 1)(l + 2)(l(l + 1)(l(l + 1)(7l(l + 1) − 47) + 154) − 224)rsr11

+ 16
(

4(2l(l + 1) − 7)
(

l(l + 1)
(

l(l + 1)
(

l2 + l − 31
)

+ 98
)

− 32
)

r2
s

− g2(l − 1)(l + 2)(l(l + 1)(l(l + 1)(7l(l + 1) − 48) + 196) − 352)ξ2
)

r10

+ 16rs

(
g2(992 − l(l + 1)(l(l + 1)(l(l + 1)(4l(l + 1) − 111) + 540) − 460))ξ2

− 4
(

l(l + 1)
(

l(l + 1)
(

l(l + 1)
(

l2 + l + 27
)

+ 57
)

− 1817
)

+ 2904
)

r2
s

)
r9

+ 8
(

g4
(

l
(

l
(

(l(l(l + 4) − 15) − 59)l3 + 103l + 242
)

+ 180
)

− 744
)

ξ4

+ 2g2
(

l(l + 1)
(

3l(l + 1)
(

l(l + 1)
(

l2 + l + 24
)

+ 191
)

− 7778
)

+ 11032
)

r2
sξ2

− 24(l(l + 1)(l(l + 1)(3l(l + 1) + 35) − 803) + 227)r4
s

)
r8
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+ 4rs

(
− g4

(
l(l + 1)

(
3l(l + 1)

(
l(l + 1)

(
l2 + l + 21

)
+ 312

)
− 9716

)
+ 12160

)
ξ4

+ 12g2(l(l + 1)(l(l + 1)(13l(l + 1) + 186) − 3517) − 696)r2
sξ2 − 432

(
l2 + l − 31

) (
l2 + l + 6

)
r4

s

)
r7

+
(

g6
(

l(l + 1)
(

l(l + 1)
(

l(l + 1)
(

l2 + l + 18
)

+ 420
)

− 3752
)

+ 4000
)

ξ6

− 4g4(3l(l + 1)(7l(l + 1)(3l(l + 1) + 49) − 5534) − 13664)r2
sξ4

+ 48g2(l(l + 1)(51l(l + 1) − 1132) − 10858)r4
sξ2 − 1728

(
l2 + l − 81

)
r6

s

)
r6

+ g2ξ2rs

(
g4(l(l + 1)(3l(l + 1)(15l(l + 1) + 268) − 11212) − 18176)ξ4

+ 12g2(27416 − l(l + 1)(115l(l + 1) − 2213))r2
sξ2 + 432(7l(l + 1) − 570)r4

s

)
r5

+ g4ξ4
(

− g4
(

l2 + l − 10
) (

3l(l + 1)
(

l2 + l + 29
)

+ 182
)

ξ4

+ g2(l(l + 1)(387l(l + 1) − 6302) − 101256)r2
sξ2 − 12(183l(l + 1) − 14857)r4

s

)
r4

+ g6ξ6rs

(
2g2(7620 − l(l + 1)(27l(l + 1) − 362))ξ2 + 7(121l(l + 1) − 9720)r2

s

)
r3

+ g8ξ8
(

g2(l(l + 1)(3l(l + 1) − 32) − 900)ξ2 − 3(61l(l + 1) − 4816)r2
s

)
r2 + 3g10(7l(l + 1) − 540)ξ10rsr − g12

(
l2 + l − 75

)
ξ12
]

(p2)2
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B
Some Formulas for the Even Parity Analysis in
Generalised Gullstrand-Painlevé Gauge

In this section we list some equations used in the section on the generalised GP gauge. In the computation for
the even parity contributions with l ≥ 2 to the solution of π(2)

µ , we performed three canonical transformations.
In the last one, we shifted the momentum P e by the term AgravQ

e. The explicit expression for Agrav reads

Agrav =
2

(l − 1)(l + 2)e6µ+10λ(λ′)3M2
1 (π(0)

µ )3Λ

[
− 1024e14λ

(
4g4ξ4 − 30eλg2rsξ2 + 4e4λ

(
l2 + l − 2

)2
+ 27e3λ

(
l2 + l − 2

)
rs

+ e2λ
(

54r2
s − 7g2

(
l2 + l − 2

)
ξ2
))(

λ′
)9

+ 1024e14λ
(

4g4ξ4 − 27eλg2rsξ2 + 4e4λ
(

l2 + l − 2
)2

+ 27e3λ
(

l2 + l − 2
)

rs + e2λ
(

45r2
s − 8g2

(
l2 + l − 2

)
ξ2
))

µ′
(

λ′
)8

+ 256e10λ
(

6e6λ+2µl6 + 18e6λ+2µl5 + 38e6λ+2µl4 − 12e5λ+2µrsl4 + 4e8λµ′′l4 + 46e6λ+2µl3 − 24e5λ+2µrsl3 + 8e8λµ′′l3

− 132e6λ+2µl2 − 15e2(λ+µ)g4ξ4l2 − 100e4λ+2µg2ξ2l2 − 240e4λ+2µr2
s l2 + 384e5λ+2µrsl2 + 120e3λ+2µg2ξ2rsl2

− 12e8λµ′′l2 − 8e6λg2ξ2µ′′l2 + 24e7λrsµ′′l2 − 152e6λ+2µl − 15e2(λ+µ)g4ξ4l − 100e4λ+2µg2ξ2l − 240e4λ+2µr2
s l

+ 396e5λ+2µrsl + 120e3λ+2µg2ξ2rsl − 16e8λµ′′l − 8e6λg2ξ2µ′′l + 24e7λrsµ′′l + 176e6λ+2µ + 12e2µg6ξ6 + 86e2(λ+µ)g4ξ4

− 558e3λ+2µr3
s + 200e4λ+2µg2ξ2 + 1128e4λ+2µr2

s + 465e2(λ+µ)g2ξ2r2
s − 4e4λ

(
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
2
(

µ′
)2

− 744e5λ+2µrs − 129eλ+2µg4ξ4rs − 624e3λ+2µg2ξ2rs

− 4e4λ
(

4g4ξ4 − 27eλg2rsξ2 + 4e4λ
(

l2 + l − 2
)2

+ 27e3λ
(

l2 + l − 2
)

rs + e2λ
(

45r2
s − 8g2

(
l2 + l − 2

)
ξ2
))

λ′′

+ 16e8λµ′′ + 4e4λg4ξ4µ′′ + 16e6λg2ξ2µ′′ + 36e6λr2
sµ′′ − 48e7λrsµ′′ − 24e5λg2ξ2rsµ′′

)(
λ′
)7

− 512e10λ
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)(
µ′
(

e2µ
(

− 6g4ξ4 + 44eλg2rsξ2 + e4λ
(

l4 + 2l3 + 21l2 + 20l − 44
)

− 4e3λ
(

5l2 + 5l − 31
)

rs + e2λ
(

g2
(

5l2 + 5l − 34
)

ξ2 − 81r2
s

))
− 2e4λ

(
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
λ′′
)

+ 2e4λ
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
λ(3)
)(

λ′
)6

+ 16e6λ
(

48e4λ+2µ
(

g2ξ2 + 4e2λ − 4eλrs

) (
µ′
)2 (

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2

+ 64e8λ
(

λ′′
)2 (

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2 − 32e4λ+2µ

(
g2ξ2 + 4e2λ − 4eλrs

)
µ′′
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2

+ e4µ
[

− 36g8ξ8 + 540eλg6rsξ6 + e2λg4
(

g2
(

7l2 + 7l − 430
)

ξ2 − 3024r2
s

)
ξ4 − e3λg2rs

(
g2
(

201l2 + 201l − 4754
)

ξ2 − 7500r2
s

)
ξ2

+ 4e8λ
(

l2 + l − 2
)2 (

l4 + 2l3 − 51l2 − 52l − 156
)

+ 8e7λ
(

29l6 + 87l5 − 11l4 − 167l3 − 792l2 − 694l + 1548
)

rs

− 4e5λrs

(
g2
(

107l4 + 214l3 + 737l2 + 630l − 3320
)

ξ2 + 18
(

27l2 + 27l − 298
)

r2
s

)
+ 4e6λ

(
g2
(

−15l6 − 45l5 + 37l4 + 149l3 + 394l2 + 312l − 832
)

ξ2 + 24
(

6l4 + 12l3 + 67l2 + 61l − 254
)

r2
s

)
− 4e4λ

(
−2g4

(
9l4 + 18l3 + 40l2 + 31l − 226

)
ξ4 + g2

(
−293l2 − 293l + 4378

)
r2

sξ2 + 1737r4
s

) ]
+ 32e4λ+2µ

[
6g6ξ6 − 62eλg4rsξ4 + e6λ

(
l2 + l − 2

)2 (
l2 + l + 22

)
− e5λ

(
17l4 + 34l3 − 207l2 − 224l + 380

)
rs

− e3λrs

(
g2
(

−79l2 − 79l + 314
)

ξ2 + 243r2
s

)
+ e4λ

(
4g2
(

l4 + 2l3 − 15l2 − 16l + 28
)

ξ2 − 3
(

47l2 + 47l − 178
)

r2
s

)
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+ e2λ
(

g4
(

−11l2 − 11l + 46
)

ξ4 + 213g2r2
sξ2
) ]

λ′′
)(

λ′
)5

(B.0.1)

+ 16e6λ+2µ
(

g2ξ2 + 4e2λ − 4eλrs

) (
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

) [
µ′
(

e2µ
(

− 36g4ξ4 + 267eλg2rsξ2

+ 16e4λ
(

l4 + 2l3 + 8l2 + 7l − 18
)

− 12e3λ
(

8l2 + 8l − 65
)

rs − 4e2λ
(

g2
(

−5l2 − 5l + 54
)

ξ2 + 123r2
s

))
− 64e4λ

(
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
λ′′
)

+ 32e4λ
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
λ(3)
] (

λ′
)4

− 8e2(λ+µ)
(

g2ξ2 + 4e2λ − 4eλrs

) [
18e4λ+2µ

(
g2ξ2 + 4e2λ − 4eλrs

) (
µ′
)2 (

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2

+ 32e8λ
(

λ′′
)2 (

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2 − 10e4λ+2µ

(
g2ξ2 + 4e2λ − 4eλrs

)
µ′′
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2

+ e4µ
[

− 4g8ξ8 + 64eλg6rsξ6 − e2λg4
(

g2
(

11l2 + 11l + 54
)

ξ2 + 374r2
s

)
ξ4 + 2e3λg2rs

(
5g2
(

8l2 + 8l + 61
)

ξ2 + 477r2
s

)
ξ2

+ 4e8λ
(

l2 + l − 2
)2 (

l4 + 2l3 − 15l2 − 16l − 24
)

+ 4e7λ
(

22l6 + 66l5 − 49l4 − 208l3 − 189l2 − 74l + 432
)

rs

+ e5λrs

(
g2
(

−199l4 − 398l3 − 73l2 + 126l + 1768
)

ξ2 + 36
(

l2 + l + 78
)

r2
s

)
+ 4e6λ

(
g2
(

−6l6 − 18l5 + 23l4 + 76l3 + 41l2 − 116
)

ξ2 +
(

73l4 + 146l3 + 108l2 + 35l − 812
)

r2
s

)
− e4λ

(
16g4

(
−2l4 − 4l3 + l2 + 3l + 15

)
ξ4 + g2

(
155l2 + 155l + 2276

)
r2

sξ2 + 900r4
s

) ]
+ 2e4λ+2µ

[
36g6ξ6 − 375eλg4rsξ4 + 16e6λ

(
l2 + l − 2

)2 (
l2 + l + 9

)
− 12e5λ

(
4l4 + 8l3 − 105l2 − 109l + 202

)
rs

− 9e3λrs

(
g2
(

−47l2 − 47l + 218
)

ξ2 + 164r2
s

)
− 4e4λ

(
3
(

65l2 + 65l − 277
)

r2
s − g2

(
l4 + 2l3 − 91l2 − 92l + 180

)
ξ2
)

+ e2λ
(

1293g2ξ2r2
s − 8g4

(
7l2 + 7l − 36

)
ξ4
) ]

λ′′
] (

λ′
)3

− 4e2λ+4µ
(

g2ξ2 + 4e2λ − 4eλrs

)
2
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

) [
µ′
(

e2µ
(

− 8g4ξ4 + 63eλg2rsξ2

+ 8e4λ
(

l4 + 2l3 + 4l2 + 3l − 10
)

− 12e3λ
(

l2 + l − 17
)

rs − 8e2λ
(

7g2ξ2 + 15r2
s

))
− 52e4λ

(
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
λ′′
)

+ 20e4λ
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
λ(3)
] (

λ′
)2

+ e4µ
(

g2ξ2 + 4e2λ − 4eλrs

)
2
[

8e2(λ+µ)
(

g2ξ2 + 4e2λ − 4eλrs

) (
µ′
)2 (

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2

+ 16e6λ
(

λ′′
)2 (

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2

− 4e2(λ+µ)
(

g2ξ2 + 4e2λ − 4eλrs

)
µ′′
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2

+ e4µ
[

g6
(

−5l2 − 5l + 2
)

ξ6 + eλg4
(

45l2 + 45l − 22
)

rsξ4 + 2e2λg2
(

2g2
(

3l4 + 6l3 − 7l2 − 10l + 4
)

ξ2 − 5
(

13l2 + 13l − 8
)

r2
s

)
ξ2

+ 4e6λl
(

l2 + l − 2
)2 (

l3 + 2l2 − 3l − 4
)

+ 8e5λ
(

l2 + l − 2
)2 (

5l2 + 5l − 3
)

rs

+ 2e3λrs

(
g2
(

−37l4 − 74l3 + 77l2 + 114l − 56
)

ξ2 + 12
(

5l2 + 5l − 4
)

r2
s

)
+ 4e4λ

(
l2 + l − 2

) (
g2
(

−3l4 − 6l3 + 7l2 + 10l − 4
)

ξ2 + 3
(

9l2 + 9l − 8
)

r2
s

) ]
+ 4e2(λ+µ)

[
8g6ξ6 − 87eλg4rsξ4 + 8e6λ

(
l2 + l − 2

)2 (
l2 + l + 5

)
+ 12e5λ

(
l4 + 2l3 + 26l2 + 25l − 54

)
rs

− 3e3λrs

(
g2
(

−25l2 − 25l + 166
)

ξ2 + 120r2
s

)
− 4e4λ

(
2g2
(

l4 + 2l3 + 11l2 + 10l − 24
)

ξ2 + 3
(

13l2 + 13l − 71
)

r2
s

)
+ e2λ

(
309g2ξ2r2

s − 8g4
(

l2 + l − 9
)

ξ4
) ]

λ′′
]

λ′

− 4e2λ+6µ
(

g2ξ2 + 4e2λ − 4eλrs

)
3
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2
(

3µ′λ′′ − λ(3)
) ]

Similar to the strict GP gauge, we simplified the solution for π(2)
µ with an integration by parts. In the

main text, we argue that we can drop the boundary term. Explicitly, it is given by(
2e−λ−2µ −

3e−3λ

λ′2 ∆
)

(q′
2)2 +

e−4λ
(

rs − eλ
(

l2 + l + 2
))

λ′ q′
2q2 +

(
4eλ−4µλ′ −

2e−2µ−λ

λ′ ∆
)

q′
2q1 −

3
4λ′ e−3λπ

(0)
µ q′

2p1 −
1
2

e−3λ
√

l(l + 1)g2ξAq2

+
4e2µ−2λ

(
eλ
(

l2 + l + 2
)

− rs

) (
−20e4λ+2µ (λ′)2 (g2ξ2 + 4e2λ − 4eλrs

)
+ e4µ

(
g2ξ2 + 4e2λ − 4eλrs

)
2 + 64e8λ (λ′)4)

π0(r)
(

e2µ
(

g2ξ2 + 4e2λ − 4eλrs

)
− 8e4λ (λ′)2) 2

q2p1

+
[

4e−3µ−3λ
(

eλ
(

l2 + l + 2
)

− rs

)
∆

λ′M1
+

1
4

e−3λ−2µ
(

g2ξ2 − 2e2λl(l + 1) − 2eλrs

)
−

4e−λ−2µ (λ′µ′ − λ′′) ∆
4 (λ′)2 − 2eλ−4µ

(
λ′′ − λ′µ′ +

(
λ′
)2
)]

q2q1
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+
[

−
4l(l + 1)e−7λ∆2Λ

(λ′)2M2
1

+
1
2

e−4λ
(

4rs − 3eλ
(

l2 + l + 2
))

+
e−10λ−6µ

4(λ′)2M2
1

(
16e4λ+2µ

(
λ′
)2
(

− 2eλ
(

6g2ξ2 + 17r2
s

)
+ 9g2ξ2rs

+ 4e3λ
(

l2 + l − 10
)

− 2e2λ
(

l2 + l − 38
)

rs

)
+ e4µ

(
g2ξ2 + 4eλ

(
eλ − rs

))(
6eλ
(

6r2
s − g2

(
l2 + l − 2

)
ξ2
)

− 9g2ξ2rs

+ 8e3λ
(

l4 + 2l3 − l + 6
)

+ 4e2λ(4l(l + 1) − 21)rs

)
+ 64e8λ

(
λ′
)4 (

2eλ
(

l2 + l + 6
)

− 9rs

) ]]
(q2)2

+
[

g2ξe−3λ−6µ

8
√

l(l + 1)Λ2

[
e2µλ′′

(
g2ξ2 + 4eλ

(
eλ − rs

)) (
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
+ 8e4λ

(
λ′
)3

µ′
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
− e2µλ′µ′

(
g2ξ2 + 4eλ

(
eλ − rs

)) (
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
− 8e4λ

(
λ′
)4 (

−3g2ξ2 + e2λ
(

l2 + l − 2
)

+ 6eλrs

)
+
(

λ′
)2
(

e2µ
(

−3g4ξ4 − e2λ
(

g2
(

l2 + l + 18
)

ξ2 + 30r2
s

)
+ 20g2eλξ2rs + 2e4λ(l − 1)(l + 2)

(
l2 + l + 4

)
+ 48e3λrs

)
+ 8e4λλ′′

(
g2ξ2 − e2λ

(
l2 + l − 2

)
− 3eλrs

))]
Aq1 (B.0.2)

+
e−4µ+λ

(
−192e2µ−2λ (λ′)2 ∆ + 48e4µ−4λ∆2 + 128 (λ′)4)

2(λ′)2M2
1

(p1)2 +
2e−5µπ

(0)
µ

(
4 (λ′)2 − e2µ−2λ∆

)
λ′M1

q1p1

+
g2e−2µξ

4
√

l2 + l − 2

[
−

2g2ξ2e−2λ (λ′)2

Λ
+

e−4λ

2Λλ′e3µ+3λM1

(
− 32e6λ

(
λ′
)4 (

−2g2ξ2 + e2λ
(

l2 + l − 2
)

+ 6eλrs

)
+ e4µ

(
g2ξ2 + 4eλ

(
eλ − rs

)) (
−g2

(
l2 + l + 2

)
ξ2 + 2e2λ(l − 1)(l + 2)

(
l2 + l + 2

)
+ 2eλ

(
l2 + l + 4

)
rs

)
− 4e2(λ+µ)

(
λ′
)2 (

2g4ξ4 + e2λ
(

30r2
s − g2

(
l2 + l − 10

)
ξ2
)

− 16g2eλξ2rs + 4e3λ
(

l2 + l − 8
)

rs + 2e4λ(l − 1)l(l + 1)(l + 2)
))

+ 4λ′′ − 4λ′µ′

]
QeAe +

e−2λg4ξ2∆
4Λ

(Ae)2 +
(

2(l2 + l + 2)r
l(l + 1)(l + 2)(l − 1)

+ O(r0)
)

(q1)2 +
(

−
1
r

+ O(r−2)
)

(Qe)2

In the formula we did not explicitly display the terms in front of (q1)2 and (Qe)2. We list them separately
because they are quite lengthy and require a lot of space. The terms proportional to (q1)2 are

1
8l(l + 1)

(
−g2ξ2 + e2λ (l2 + l − 2) + 3eλrs

)
2 (λ′)2

[
eλ−10µ

(
64e8λ

(
−5g2ξ2 + 7e2λ

(
l2 + l − 2

)
+ 18eλrs

) (
λ′
)8

− 64e8λ
(

−2g2ξ2 + 8e2λ
(

l2 + l − 2
)

+ 15eλrs

)
µ′
(

λ′
)7

+ 16e4λ
(

6e4λ+2µl4 + 12e4λ+2µl3 − 26e4λ+2µl2 − 9e2(λ+µ)g2ξ2l2 + 34e3λ+2µrsl2 − 4e6λµ′′l2 − 32e4λ+2µl − 9e2(λ+µ)g2ξ2l

+ 34e3λ+2µrsl − 4e6λµ′′l + 40e4λ+2µ + 7e2µg4ξ4 + 34e2(λ+µ)g2ξ2 + 66e2(λ+µ)r2
s + 4e4λ

(
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

) (
µ′
)2

−104e3λ+2µrs − 43eλ+2µg2ξ2rs + 4e4λ
(

−4g2ξ2 + 6e2λ
(

l2 + l − 2
)

+ 15eλrs

)
λ′′ + 8e6λµ′′ + 4e4λg2ξ2µ′′ − 12e5λrsµ′′

) (
λ′
)6

− 16
(

e4λµ′
(

e2µ
(

3g4ξ4 − 25eλg2rsξ2 + 2e4λ
(

l4 + 2l3 − 13l2 − 14l + 24
)

+ 4e3λ
(

8l2 + 8l − 25
)

rs + e2λ
(

g2
(

−9l2 − 9l + 22
)

ξ2 + 54r2
s

))
+4e4λ

(
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
λ′′
)

− 4e8λ
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
λ(3)
) (

λ′
)5

+
(

−16e4λ+2µ
(

g2ξ2 + 4e2λ − 4eλrs

) (
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

) (
µ′
)2

− 64e8λ
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

) (
λ′′
)2

+ e4µ
(

−9g6ξ6 + 92eλg4rsξ4 + e2λg2
(

g2
(

19l2 + 19l − 86
)

ξ2 − 296r2
s

)
ξ2 + 4e6λ

(
3l6 + 9l5 − 17l4 − 49l3 + 30l2 + 56l − 32

)
+ 4e5λ

(
29l4 + 58l3 − 99l2 − 128l + 140

)
rs + 4e3λrs

(
g2
(

−37l2 − 37l + 130
)

ξ2 + 75r2
s

)
+4e4λ

(
3
(

23l2 + 23l − 62
)

r2
s − 4g2

(
2l4 + 4l3 − 7l2 − 9l + 13

)
ξ2
))

+ 16e4λ+2µ
(

5g4ξ4 − 33eλg2rsξ2 + 2e4λ
(

l4 + 2l3 − 9l2 − 10l + 16
)

+ 12e3λ
(

2l2 + 2l − 7
)

rs + e2λ
(

g2
(

−7l2 − 7l + 26
)

ξ2 + 54r2
s

))
λ′′

+16e4λ+2µ
(

g2ξ2 + 4e2λ − 4eλrs

) (
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
µ′′
) (

λ′
)4

− e2µ
(

g2ξ2 + 4e2λ − 4eλrs

) (
µ′
(

e2µ
(

g2ξ2 + 4e2λ − 4eλrs

) (
−4g2ξ2 + 6e2λ

(
l2 + l − 2

)
+ 15eλrs

)
−16e4λ

(
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
λ′′
)

+ 16e4λ
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
λ(3)
) (

λ′
)3

+ e2µ
(

g2ξ2 + 4e2λ − 4eλrs

)(
e2µ
(

g2ξ2 + 4e2λ − 4eλrs

) (
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

) (
µ′
)2

+ 16e4λ
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

) (
λ′′
)2

+ e2µ
(

g2ξ2 + 4e2λ − 4eλrs

) (
−6g2ξ2 + 4e2λ

(
l2 + l − 2

)
+ 15eλrs

)
λ′′

−e2µ
(

g2ξ2 + 4e2λ − 4eλrs

) (
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
µ′′
) (

λ′
)2

− e4µ
(

g2ξ2 + 4e2λ − 4eλrs

)
2
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

) (
µ′λ′′ − λ(3)

)
λ′
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−e4µ
(

g2ξ2 + 4e2λ − 4eλrs

)
2
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

) (
λ′′
)2
)]

The contributions proportional to (Qe)2 are

1

8(l − 1)(l + 2)
(

−g2ξ2 + e2λ (l2 + l − 2) + 3eλrs

)
λ′
(

e2µ
(

g2ξ2 + 4e2λ − 4eλrs

)
− 8e4λ (λ′)2)2 (

e2µ
(

g2ξ2 + 4e2λ − 4eλrs

)
− 4e4λ (λ′)2)×

×
[

e−3λ−2µ
(

1024e14λ
(

−g4ξ4 − 21eλg2rsξ2 + 7e4λ
(

l2 + l − 2
)2

+ 39e3λ
(

l2 + l − 2
)

rs + 2e2λ
(

27r2
s − 5g2

(
l2 + l − 2

)
ξ2
))(

λ′
)9

− 1024e15λ
(

8eλ
(

l2 + l − 2
)

+ 15rs

) (
−g2ξ2 + e2λ

(
l2 + l − 2

)
+ 3eλrs

)
µ′
(

λ′
)8

− 256e10λ
(

6e6λ+2µl6 + 18e6λ+2µl5 + 58e6λ+2µl4 + 4e4λ+2µg2ξ2l4 − 30e5λ+2µrsl4 + 4e8λµ′′l4 + 86e6λ+2µl3 + 8e4λ+2µg2ξ2l3

− 60e5λ+2µrsl3 + 8e8λµ′′l3 − 192e6λ+2µl2 − 21e2(λ+µ)g4ξ4l2 − 136e4λ+2µg2ξ2l2 − 318e4λ+2µr2
s l2 + 522e5λ+2µrsl2

+ 162e3λ+2µg2ξ2rsl2 − 12e8λµ′′l2 − 8e6λg2ξ2µ′′l2 + 24e7λrsµ′′l2 − 232e6λ+2µl − 21e2(λ+µ)g4ξ4l − 140e4λ+2µg2ξ2l

− 318e4λ+2µr2
s l + 552e5λ+2µrsl + 162e3λ+2µg2ξ2rsl − 16e8λµ′′l − 8e6λg2ξ2µ′′l + 24e7λrsµ′′l + 256e6λ+2µ + 4e2µg6ξ6

+ 62e2(λ+µ)g4ξ4 − 558e3λ+2µr3
s + 264e4λ+2µg2ξ2 + 1284e4λ+2µr2

s + 411e2(λ+µ)g2ξ2r2
s

− 4e4λ
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2
(
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)2
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(

2g4ξ4 − 21eλg2rsξ2 + 6e4λ
(
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)2

+ 33e3λ
(

l2 + l − 2
)

rs + e2λ
(
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(
l2 + l − 2

)
ξ2
))

λ′′

+16e8λµ′′ + 4e4λg4ξ4µ′′ + 16e6λg2ξ2µ′′ + 36e6λr2
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) (
λ′
)7
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(
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(
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+ 3eλrs
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µ′
(
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(
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(
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(

17l2 + 17l − 76
)

rs + e2λ
(
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(
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)
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− 16e6λ
(
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(
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(
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)
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(
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)
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)
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(
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(
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(
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)
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(
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(
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(
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(
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(
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(
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(
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(
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)
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(
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(
l2 + l − 2

)2 (
l2 + l + 10

)
− 4e5λ

(
16l4 + 32l3 − 339l2 − 355l + 646

)
rs

− 3e3λrs

(
g2
(

−145l2 − 145l + 646
)
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)
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(
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(
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(
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(
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(
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s

+ 3eλ
(

−29g4ξ4 + e2λg2
(

25l2 + 25l − 166
)

ξ2 + 4e4λ
(

l4 + 2l3 + 26l2 + 25l − 54
))

rs

+8
(

e2λ
(

l2 + l − 2
)

− g2ξ2
)2 (

g2ξ2 + e2λ
(

l2 + l + 5
)))

λ′′
)

λ′

+4e2λ+6µ
(

g2ξ2 + 4e2λ − 4eλrs

)
3
(

−g2ξ2 + e2λ
(

l2 + l − 2
)

+ 3eλrs

)
2
(

3µ′λ′′ − λ(3)
)) ]
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List of Symbols

Differential Geometry:
M General differential manifold, most of the time four-dimensional
C∞(M) Space of smooth functions on M
T a

b (M) Space of smooth tensor fields on M
Λn(M) Space of smooth n-forms on M
Lvt Lie derivative of the tensor field t with respect to the vector field v

gij Pseudo-Riemannian metric on M with signature (−,+,+,+)
∇ Connection on M
Γi

jk Connection coefficients of the connection ∇
T i

jk Torsion tensor of the connection ∇
Ri

jkl, Rij , R Riemann curvature tensor, Ricci tensor and Ricci scalar of the connection ∇
Tij Energy momentum tensor
M Two-dimensional manifold with metric gab and connection ∇
S2 Two-sphere with metric ΩAB and connection DA

F = ∪tΣt Foliation of a spacetime M into Cauchy surfaces Σt

Σ Hypersurface in a foliation of spacetime with metric mµν , connection ∇, and extrinsic
curvature Kµν

Indices:
i, j, . . . Index on the full manifold M
a, b, . . . Index on the two-dimensional manifold M

A,B, . . . Index on the sphere S2

µ, ν, . . . Index on the hypersurface of the foliation Σ

Hamiltonian Formulation:
V0, Vµ Full Hamiltonian and diffeomorphism constraints of general relativity coupled to matter
B Boundary term of the constraints
C Symmetric constraints with respect to some symmetry group
Z Non-symmetric constraints with respect to some symmetry group
(x, y) Non-symmetric gauge degrees of freedom
(X,Y ) Non-symmetric true degrees of freedom

Quantum theory:
H Hilbert space
FS(H) Symmetric Fock space constructed from the Hilbert space H
a, a† Creation and annihilation operators
AIJ , Bij Bogoliubov coefficients
⟨·, ·⟩ Klein-Gordon inner product

Constants: In the thesis we work in units c = G = ℏ = 1.
Λ Cosmological constant
κ = 16π Gravitational constant
g Coupling constant of the electromagnetic field
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