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ABSTRACT

We extend the Legendre transform to non-convex functions with van-
ishing Hessian using a mix of envelope and general solutions of the
Clairaut equation. Applying this to constraint systems, the proce-
dure of finding a Hamiltonian for a singular Lagrangian is just that
of solving a corresponding Clairaut equation with a subsequent appli-
cation of the proposed Legendre-Clairaut transformation. We obtain
the unconstrained version of Hamilton’s equations. We demonstrate
the origin of the Dirac primary constraints, along with their explicit
form, and this is done without using the Lagrange multiplier method.

Modern field theories are in fact degenerate dynamical systems whose key
feature is the presence of constraints [1, 2]. The most common way to deal
with such systems is to use the Dirac approach [3] based on extending a
phase space and constructing the so-called total Hamiltonian. In spite of
its general success, e.g. in describing systems with gauge symmetries and
gravity [4, 5], the Dirac approach has limited applicability and some inner
problems [6]. Therefore, it is worthwhile to reconsider several basic ideas of
the Hamiltonian formalism per se starting from the Legendre transforma-
tion treated as a solution of the Clairaut equation also in the singular case.
The Dirac approach is based on the following idea: in finding a Hamilto-
nian, to use the standard definition of momenta, then perform the Legendre
transformation and add Lagrange multipliers, subsequently to be removed
by imposing some relations between constraints [3].

Here we revisit the procedure of finding a Hamiltonian for both regular and
singular cases. This procedure is reduced to that of solving the Clairaut
partial differential equation. In the case of regular systems a Hamiltonian
corresponds to its envelope solution [7], while adding the general solution of
Clairaut equation leads to the total Hamiltonian of singular systems, and
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arbitrary constants correspond to the Lagrange multipliers within the Dirac
approach [3]. Such solutions exist for smooth Lagrangian functions, while
the standard Legendre transformation is applicable in the regular case only.
To solve the Clairaut equation in the singular case, we introduce a half-
envelope solution, which is an envelope solution in regular variables and a
general solution in nonregular variables. We use the coordinate language
which is convenient for making the basic idea transparent as well as for
further applications.

First recall the standard Legendre transform definition [7]. The Legendre

transform of a convex function! F : R® — R is a map Leg : I — G, where
G (p) : R™ — R is another convex function (in the dual space) such that

G (p) = max,G (p,x), and G (p,x) =l p - x — F'(x). The maximum is

attained, when

9G (p,x) OF (x)
TRY _p- M, 1)
0x ox
which, for a given p, can determine x unambiguously, but not vice versa.
The convexity implies that the Hessian Hp (x) L et H 62};(;() is positive,

which ensures that (globally) there is only one critical point, the maximum
[7].

Now we reformulate the Legendre transform in terms of the differential
equation for G (p) as above. Let us suppose that (1) has a solution x =
X (p) with X : R™ — R", then

G(p) Y G(p,X(p)=p-X(p) - F(X(p)). 2)

22a(p) @) (6x<p>>2 92F(x)
op? op ox2

Since the functions F' and G belong to the same

2
convexity class and in the case of convex functions one has rank ‘ a%p(;’) H =

rank HBZ}:((QX) H Next we differentiate (2) and get B(G?E)p) @ X (p), which

allows us to exclude X (p) from (2) and obtain

GCl (p) =p- G (p) _F <8GCZ (p)> ,

o o 3)

which is just the Clairaut equation [9]. Obviously, (3) has solutions even
in cases, where (1) cannot be resolved in x, and therefore the standard

n

—~
'"We use vector notation [7] in which x € R x R x ...R = R", and x -y is the scalar
product. Functions and variables are denoted by capitals and lowercase letters, respec-
tively. A scalar differentiable function F' : R"™ — R is denoted by F(x). A vector
OF /0x denotes a gradient of F' whose entries are just partial derivatives 0F /0z",
i=1,...[]] = n, and for 9> F /0z'02’ we sometimes use the notation 9°F /0x>. Also,
0V /0x denotes the divergence of a vector function V : R™ — R" in a similar manner.
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Legendre transform (2) does not exist (thus we add the superscript C1).

We call a map Leg?" : F — G defined by (3) a (generalized) Legendre-
Clairaut transform with F' (x) being any (smooth) function (not necessarily
convex). For a convex function F' (x), if G (p) = Legr (p) is its standard
Legendre transform, then G (p) satisfies (3), hence G (p) coincides with

G (p) = Leg% (p), the Legendre-Clairaut transform of F (x). Now we

demonstrate the converse statement. Let us write a general solution of (3)
as

Gen (P.€) =P-c—F(c), (4)

where ¢ € RV. The envelope solution can be obtained from the extremum

~Cl
condition M%c(p’c) =p-— 61:;_((;:) = 0, which coincides with the condition (1)
(this Ggeln actually coincides with G above). If Hp (c) > 0 (F is convex),

the extremum condition can be solved by ¢ = X (p). Then the envelope
solution of (3) is

G (p) Y GS (0, X () =p-X(p)— F(X(p) ZG(p). (5)

This means that, given a convex function F (x), if G (p) = Leg%! (p),
then G¢ (p) = Legr (p) = G (p). Also, only in this (convex) case both
mappings £eg®’ and Leg are involutive Leg® o Legt! = id, Lego Leg = id.
Thus, the standard Legendre transforms in the class of convex functions
are in 1-1 correspondence with the envelope solutions of the Clairaut equa-
tion (3). This provides an exposition of the ordinary theory [7, 9] in a
special way, which is convenient for our subsequent purposes that involve
more general classes of functions related to the Hamiltonian structure of
constraint systems [3, 5.

Indeed, let us consider the case of a non-convex function F'(x), when its
Hessian Hp (x) vanishes. The standard Legendre trick does not work, be-
cause (1) cannot be solved for x in this case [7]. On the other hand, the
Clairaut equation (3) assumes nothing but smoothness about F' (x). There-
fore, we can forget the condition of its obtaining and start from the Clairaut
equation itself, then try to find the solutions. In this way, we can extend
the Legendre-Clairaut transform to the degenerate case Hr (x) = 0. Let

o P91l = k < n and k is constant on the domain of F (x). Without

rank H

loss of generality, we can assume the indices are rearranged in such a way
that a non-singular minor of rank k is in the upper left-hand corner. Then,
we express the index i as a pair i = (i1,42), 41 = 1,...k, is = k+1,...n, and
correspondingly any vector variable is presented as x = (x1,X3), x; € R¥,
x9 € R"%. We call the first and the second entry of x as regular and non-
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regular, respectively. In this notation, the Clairaut equation (3) becomes

. 9G (p1,p2) 4 po- 9G“ (p1, p2)

G (p1,p2) = p1

op1 Op2
_r <8GCZ (Plypz)’ 9G! (P17p2)> ‘ (6)
Ip1 Op2

By analogy with (4), the general solution is
éffzn(l)hpzychcz)=P1'01+P2'02—F(C1,62)7 (7)

where ¢; € R, co € R" . Our intention now is to search for the envelope
solution (5) in regular variables only. But it is still the general solution
(4) with arbitrary co with respect to non-regular variables. We call such a
solution a half-envelope solution of the Clairaut equation. Differentiate (7)
in c; to get

8(;56171 (p17p27c17c2) . _ oOF (01,02)
dcy ocy

=Pp1 =0 (8)

Since the sub-Hessian H}l) (x) L et H %
1

resolve (8) with respect to ¢; and obtain ¢; = X (p1,¢2). The subsequent
substitution to (7) yields

‘ does not vanish, we can

G (P1,P2,C2) = @feln (p1, P2, X (P1,¢2),C2)
=p1-X(p1,¢2) +p2-c2 — F(X(p1,¢2),¢c2), (9)

which can be treated as an explicit form of the Legendre-Clairaut transform
for a non-convex function F'(x) having degenerate Hessian matrix. Note
that the relation between the Legendre transform and the parallel curves
(which is connected with the above general solution) was considered a long
time ago [10, 11].

Now we apply the Legendre-Clairaut transform to the Hamiltonian proce-
dure for constraint systems with finite number of degrees of freedom (in the
language of classical mechanics). This is sufficient for exploring the main
idea which can be easily generalized to a field theory (e.g. using DeWitt’s
condensed notation [12].

Let Q be a n-dimensional configuration space being a smooth manifold with
local coordinates q = (ql, . ..q”) (all statements can be translated into

the coordinate free language [13, 8]). A Lagrangian on Q is a continuous
function £ : TQ — R that is smooth on the tangle bundle TQ\ {0} which in
_ dq(?)

local coordinates is determined by? (q, v), where v () = —i— are velocities.

2As we consider time independent Lagrangians for conciseness, the time-dependent
case can be treated similarly.
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In this notation the Euler-Lagrange equations of motion are

d 0L (V) 9L (V) <
where W q);; (V) «f 325((1) (v) /0viOv’ is the Hessian matrix and
def OL(g) (V) n JO2L (o) (V)
Koy (V) = =g = X1 v i

The standard Legendre transformation [7] is a local mapping TQ — T*Q
(the latter is the phase space which is (g, p) in local coordinates) or Leg :
L — H, where H : T*Q — R is a Hamiltonian.

. . . d
First consider the regular case, when the Hessian Hg (v) 2]

det HW(q)Z-j (v) H is nonvanishing. Indeed, the above observations imply that
it is the Legendre transform in velocities (considering q as parameters®)

such that Hq) (p) = max vﬂ(q) (p, V), where ﬂ(q) (p,Vv) def p-v—Lq (V).
The extremum occurs, when

Mg (P, V) g (V)

which can be resolved with respect to velocities v = Vg (p), since the
Hessian is nonvanishing. Then in the regular case the Hamiltonian is

def
Hiq) (P) = Hq) (P, Viq)(P)) =P V() (P) = Lig) (Vg (P)) - (12)
Now we differentiate Hq) (p) and obtain

OHg) (P) (11)
;7]9 = V(g (P)- (13)

Because (13) holds for all q, p identically for a solution of (11), we are able
to substitute V(q) (p) into (12) and obtain the Clairaut equation for the

Hamiltonian as follows (cf. (3))

oM (P) MG, (p)
Cl _ (a) (a)
H(q)(P)—P‘T—ﬁq <T) (14)

We call this map a (generalized) Legendre-Clairaut transformation Leg@l
L — HC, because (14) has a solution also in the case of singular La-
grangians. In the regular case we follow the steps of the previous section
in considering a general solution of (14)

Higgen (P V) =PV = Lig) (V) (15)

3We write g-dependence as a subscript to single out coordinates as passive variables
or parameters under the Legendre transformation for which v, p are the active variables.
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where initially v = C(q) are constants with respect to the active variables

v, P, i.e. arbitrary functions of q as parameters. The envelope solution of
(15) is subject to the extremum condition

ov ov ’
which coincides with (11) and determines additional dependence on the
momenta when we resolve (16) (which is possible because Hy # 0), and
we denote this solution by v =V (p). After substituting into (15) we

obtain the envelope solution of the Clairaut equation (14) as

def

Higrens ) = Higygen (V) v=v o)) = P~ Vi(a) (P) = L(a) (V(q) (P));

(17)
which coincides with the standard Legendre transformation (12), as it
should be in the regular case [9].

Consider a singular dynamical system for which the Hessian H, vanishes.
Direct application of the standard Legendre transformation is not possible
now, because (11) cannot be solved with respect to velocities v. But in the
Clairaut equation (14) there are no restrictions on L) (v) except smooth-

ness, and so we are able to consider the (generalized) Legendre-Clairaut
transformation (14) in the singular case Hg, (v) = 0 as well.

Let the rank of the Hessian matrix be less than half of the configuration
space dimension rank HW(q)ij (V)H =k < n and k is constant. We rear-
range the indices 4, j in such a way that a non-singular minor of rank k& will
be in the upper left-hand corner. Then, we express the index ¢ as a pair ¢ =
(i1,i2),4 = 1,...k, 12 = k+1,...n, and decompose sets of coordinates and
momenta as q = (q1,q2), p = (p1, p2) calling the first and the second set
as regular and nonregular coordinates/momenta, respectively. In this nota-
. . A Wz i Wz i def W(H) W(m)
tion the Hessian matrix is W;; = ( Z;i Z;z > = ( wen w2 >,
where WMD) is nonsingular det W11 £ 0. It is worthwhile to note that
rank W) = k and rank W2 = 0. Then the Clairaut equation (14)
acquires the form

Ci Cl
O () —py TR ®) g ®) | (OHig (P) Ol (p)
(@) \P op1 Op2 (a op1 = Op2 ’

(18)
which we treat as a definition of H(C;l) (p) in the case of singular Lagrangians.

We cannot derive this, as in the regular case, because there is no relation
(16) for nonregular variables. A general solution of this partial differential
equation is

ﬂ(%l)gen (P,v1,Vv2) =P1- V1 +P2- Ve — Lq) (V1,V2), (19)
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where vi = Cy(q), va = Cy(q) are arbitrary functions of the passive vari-

ables q. As compared to (16), we can find the envelope solution for the
regular part only, i.e. we obtain the half-envelope solution. The extremum
condition for regular variables now is

87:[(63)5]6” (P, v1,Va) N 0L (q) (v1,Vv2)
8v1 ! 8v1

=0, (20)

which can be solved (due to det W) £ 0) as v = Vg (P1,V2) lva=Ca(q) =
V(g (P1,C2(q))- Then we substitute this solution into (19) and obtain the
“half-Hamiltonian” (or unconstrained Hamiltonian) in the form

def HC!

H(C(;l)half (p7 VQ) (q)gen (p7 Vi, V2) |V1=V(q) (pl,Vg) (21)

=p1- V(g (P1,v2) + P2 - va — Lg) (V(q) (P1,V2),v2)

where vy = Cy(q) remain arbitrary functions of the passive variables q.

In this picture the relation (20) is not a definition of the momenta, but
rather a condition for the existence of the envelope solution for the regular
part. A similar condition for the nonregular part does not exist. Therefore
at this initial stage the nonregular momenta ps have no connection with
the Lagrangian (analogous to (20)), thus now a “true” (in the standard
definition) phase space is formed by (qi,p1) € (7*Q), only.

Note that in [14] the passage from the Lagrangian L) (v) to the general

solution ﬂ%)gen (p, v1,v2) is called “a slow and careful Legendre transfor-

mation”, while the further passage to the half-Hamiltonian H(C:ll) half (p,v2)
is called “a reduction of the global Hamiltonian Morse family”. Also, the
given Legendre-Clairaut transformation becomes exactly a generalized Leg-
endre transformation as of [15].

Now we consider the full differential of both sides of (21) and use the
extremum condition (20), which gives

8H(C(¥)half (p, V2) _ 8£(q) (Vl, Vg)
dq1,2 3 0q1,2 V1=V (q)(P1,C2(q))
va=Cy(q) v2=Cy(q)
+RE(1;17)2) (pa CZ(q)) ) (22)
OHE! hal (p, VZ)
5 a;f = V(g (P1: Coq)) » (23)
! v2=Csy(q)
OHE! (p, v2)
(@half \F>
=C 24
90y 2(q); (24)

v2=Ca(q)



140 STEVEN DUPLILJ

where
n OC (o) 41
1’2 2(q)’Z
il =k+1 41,2
8£(q) (Vl, Vg)
Pl () = P2 = W) (1) i) (P1) = 507 viapCu)
v2=Cy(q)
(26)

and Cy(q) are still arbitrary. Note that ¥ (q) (p1) and therefore @ (p)
have no dependence on the unsolved velocities va, because, if some of them
appeared there, we could derive them from (26), which contradicts the fact
that the rank of the Hessian is k and rank W2 = 0. Then, using the

Lagrange equations (10), we obtain “half-Hamilton equations of motion”
(or unconstrained Hamilton equations)

Pt ®) _ g 4 R (b, 0
%}:ﬁ(p) — &, (28)
Pl ) _ b, 4 gy (p) + RE (bt (29)
%}f@ — . (30)

It can be shown that the system (27)—(30) leads to the equations of motion
which are equivalent to the Lagrangian ones (10). Observe that (27)—(30)
become the standard system of Hamilton equations, iff the following system
of equations (generalized constraints) is valid

R (0.42) =0, ®(q)(p) + R (0, &) =0 (31)

The generalized constraints (31) are sufficient to introduce the standard
Poisson brackets and the “correct” time evolution. If the Hamiltonian does
not depend on time explicitly, then it is a constant equal to the preserved
energy [7].

In the Dirac formalism [3] one imposes

P (P) =0, &g (p) =0, (32)

which are the standard primary scleronomous constraints (which should
be functionally independent, otherwise see [16]). Obviously then, the con-
ditions in (32) are more restrictive than those in (31). But, they lead to
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the “correct” phase space in regular and nonregular variables, in which for
both sets of momenta the derivatives of the Lagrangian with respect to
corresponding velocities, are initially treated as definitions [13]. Indeed,
this allows one to consider (q,p) as points of the entire “true” phase space
T*Q, while the Legendre transformation becomes then a degenerate map-
ping with a kernel [13]. The “half-Hamiltonian” (21) can now be presented

as the sum of Hgg)) (p1) and the linear combination of the primary con-

straints
0
OH iy (P Cagq)) = Hiz) (P1) + Coq) - B(q) (P). (33)
©)
Mg (P1) = P1 - V(q) (P1, Coq)) — Lia) (Via) (P1,Ca(q)) » Co(a))

+ Caq) ¥(q (P1) (34)

where Hgg)) (p1) does not depend on pz or Cyq) due to (20) and (24). In

this case (33) coincides (formally) with the Dirac’s total Hamiltonian [3].

So the concise treatment of constraint systems using the Clairaut partial dif-
ferential equation presented here gives a different explanation of the Dirac
primary constraints from the Lagrange multiplier method, as well as a dif-
ferent understanding of the nature of primary constraints. In some cases
this can lead to possible generalizations. Moreover, it can be applied in
the cases where the standard constraint methods do not work or are too
cumbersome.
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