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Abstract

We study some aspects of quantum chaos and its relation to scattering near the
black hole event horizon, in the context of gauge/gravity dualities. Chaos is an
important ingredient related to the onset of thermalization. A signal of chaos is given
by the behavior of out-of-time-ordered correlators (OTOC) and exponential growth
of commutators. In the gravity side this growth is controlled by a near-horizon high
energy scattering, semiclassically described by a shockwave geometry.

A holographic quantum mechanical toy model was developed by Kitaev, the SYK
model, consisting of a large number of interacting Majorana fermions without a
quasi-particle description. At low temperatures, this system has an emergent confor-
mal symmetry. The thermodynamics and chaos of the model are described by the
Schwarzian mode associated to the pattern of breaking of the conformal symmetry,
which is also equivalent to the boundary gravitons of dilaton-gravity in 2D. We solve
the physics of this mode exactly, including the computation of OTOC. We also study
its semiclassical limit and find how the shockwave S-matrix describing near-horizon
scattering emerges.

We propose and study a natural extension of the SYK model to two dimensions
that presents holographic behavior described by gravity in three dimensions. We
also study a natural two-dimensional generalization of the Schwarzian mode, which
controls the chaos exponent of the system.

Finally, we study a generalization of the shockwave geometry to include quantum
interference effects. This can be used to obtain interesting bounds for general CFT's

in higher dimensions.
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Chapter 1

Introduction

Most of modern theoretical physics is built on two frameworks. One is quantum me-
chanics (QM). Its relativistic version, quantum field theory (QFT) describes physics
from the elementary particles appearing in the Standard Model to condensed matter
systems. Even though it has not been tested, it is believed that the principles of
quantum mechanics are valid throughout all scales. The second theory is General
Relativity (GR). This describes gravitational interactions which become relevant at
the largest scales, from planetary to cosmological.

Both theories have been extremely successful within their range of applicability,
but they have resisted a unification of their principles. From a theoretical front, naive
attempts to combine the two theories have failed (we will give a concrete example
below). Evidently, finding the principles from which gravity and QM emerge requires
new ideas. One of the most widespread advances lately has been the idea of view-
ing quantum mechanics and gravity not as independent phenomena but as different
equivalent descriptions of the same physics. This is one of the main lessons that
String Theory has taught us through dualities.

Even though these discussions are in theory well motivated one could ask why

should we even care about finding such a theory of quantum gravity, if in the end we



cannot see these regimes together in a lab. Consider for example the Large Hadron
Collider (LHC). Processes involving elementary particles where QFT is relevant are
being measured at energies of the order of 10* GeV. To observe quantum gravitational
effects we would need to go to 10 GeV which seems ridiculous considering the
status of current technology. Nevertheless nature has given us such a high energy
accelerator for free: the Big Bang. If we trace back the cosmological evolution,
due to its expansion, early enough in time relevant energies would be so high that
combined effects of quantum mechanics and gravity become unavoidable. This is a
very interesting problem since it would give an understanding of the origin of the
universe. Presumably this might also shed some light on other issues like the nature
of dark matter or dark energy.

This is a very complicated problem to solve. We will focus instead on another
important problem where strong gravitational effects are relevant: black holes. These
are objects so massive and dense that nothing, not even light, can escape them (clas-
sically) beyond their event horizon. This is a fruitful example where one can apply
a naive combination of classical GR and QM concepts that lead to a contradiction.
This was done by mainly Bekenstein and Hawking. According to Bekenstein [1] black
holes should be thought of as carrying an entropy proportional to the area of its event

horizon
A

—, (1.0.1)
112

SBH =

where Lp = \/W ~ 107%*m stands for the Planck length. This is a huge
degeneracy for objects which classically have ‘no hair’. To give some rough estimates,
a black hole of the mass of the sun (= 10*'kg) would have to be compressed to a
radius of 3km to become a black hole. In this case its Bekenstein entropy would be
around S ~ 1077, (This is 20 orders of magnitude larger that the sun’s actual internal

entropy!)



The nature of this entropy was clarified (to some extent) when Hawking discovered
that black holes emit thermal radiation [2] with a temperature dependent on the black
hole total mass M given by

Mp

Ty =1Tp—— 1.0.2
H P187TM7 ( )

where Mp; = \/m ~ 107%kg and Tp; = \/W%GN) ~ 10%K are the Planck
mass and temperature respectively. For the case of the sun mass black hole M /Mp; ~
1038 this is extremely small 107K . This is not necessarily an issue, the universe is
full of black holes and it might be possible to find them small enough to give an
appreciable effect. Hawking derived this effect from studying quantum field in the
black hole background. Therefore when QM and GR are put together, even black
holes evaporate.

Black holes should be thought as a statistical system with a really large num-
ber of microstates and a temperature of evaporation. A serious issue was realized
later by Hawking [3]. Quantum evolution is unitary, meaning information cannot
be destroyed. Black hole evaporation is in a clear conflict with unitarity since the
post-evaporation thermal radiation carries no information about the initial matter
that created the black hole. This is called the information paradox [3]. It is believed
that an answer to this question will require an understanding of the basic princi-
ples of quantum gravity. For example, one of the successes of String Theory was
a microscopic understanding of the black hole entropy [4], which eventually led to a
proposal for a non-perturbative definition of quantum gravity on spaces with negative
cosmological constant, by means of gauge/gravity dualities [5].

In this thesis we will study several aspects of black hole physics focusing on the
region near their event horizon. This was studied early on by Dray and 't Hooft [6,7]
and recently led to a connection between black holes and quantum chaos by studying
near-horizon scattering in the context of gauge/gravity dualities. If one takes a generic

CFT a natural question to ask is whether its gravitational dual supports black holes

3



or not. This is an important question which is not easy to answer, since simple
theories that are solvable do not support black holes, while theories that do are very
complicated (we will see later a quantum mechanical toy model that is an exception
of this rule). As we will review below, quantum chaos is believed to give an answer to
this question. By studying the growth of commutators one can diagnose whether the
bulk contains an event horizon or not. The punch line is that the Lyapunov exponent
is dual to the surface gravity at the horizon. In the rest of this chapter we will explain

these ideas in more detail.

1.1 The S-matrix Ansatz

An important ingredient to study physics near the event horizon of a black hole is the
shockwave solution studied by 't Hooft [6,7]. This metric includes the backreaction
produced by a high-energy relativistic particle. The idea of 't Hooft S-matrix ansatz
is roughly the following. Particles moving close to the horizon get blue-shifted and
generate a large backreaction that affects the Hawking quanta being detected at late
times. Therefore it was believed that this would be an important aspect of black hole
physics since (a very coarse-grained version of ) the information of the infalling matter
can be recovered from the Hawking radiation. In the next section we will analyze
these ideas in the context of AdS/CFT, where this found a very precise interpretation

as quantum chaos of the boundary CFT.

1.1.1 Shockwaves in Flat Space

Before moving on to black holes, let us begin with empty D-dimensional Minkowski

D—27 ID_l)

space parametrized as r = (t,y',...,y with metric

ds.. = 2dxde™ 4 dy?, (1.1.1)



+ — 2P~1 £ ¢ are null coordinates, and we use the index i = 1,...,D — 2 to

where x
parametrize the coordinates y of transverse space. To simplify expressions we chose
units for which c= Gy = kg =h = 1.

One can think about the shockwaves in the following way. We know the exact
geometry of a particle of point-mass M at rest, the Schwarzschild black hole. A
Lorentz transformation allows us to write a solution for a moving massive particle.
Then we can take the limit of a large boost to obtain the shockwave geometry due
to a high-energy relativistic particle propagating in flat space. This exact solution of
Einsteins equations was discovered in 1971 by Aichelburg and Sexl [8]. The derivation
outlined in this paragraph can be found in [6].

Another approach which is computationally simpler is to model the high-energy
particle by a stress tensor localized in the worldline of the particle. For concreteness

take

TP = 4P~ 6P 2(y)s(x™T). (1.1.2)

This models a relativistic particle moving along z+ = 0 with momentum P~ and
localized in transverse space y = 0. One can then plug in this stress tensor in
Einstein’s equations derived from the action S = [ VIR, where R is the Ricci tensor.
The metric is

ds? = dsk, — 2f(1)3(+)(da™)?, (1.13)
where the function that appears on the last term is

R

fly) = —P*Mm, (1.1.4)

where k is a (D-dependent) numerical constant which is not too important for our
purposes. For the case D = 4 the power law decay becomes a logarithm. The
important feature is the fact that this is proportional to the momentum of the particle.

On these backgrounds Einstein’s equations become linear in f(y) and it is possible to
5



Figure 1.1: Penrose diagram of flat space. Null past and future infinity is denoted
J*. A shockwave generated by a high energy particle (red line). The trajectory of a
probe particle is shown in blue.

find exact solutions for an arbitrary mass distribution in transverse space. Moreover,
this geometry is an exact solution even if higher derivative terms are added to the

Einstein-Hilbert action [9].

To understand the Aichelburg-Sex] metric it is useful to analyze the equations of
motion of probe particles moving in it. For either 2+ < 0 or ™ > 0 the geometry is
flat space and its geodesics are straight. Therefore the geometry is specified by what
happens to a particle when it crosses the z* = 0 line. To answer this question we
need to write down the equation of motion of a particle and analyze what happens

near = 0. The effect is a shift, a time delay, along the 2~ direction given by

Az~ = f(y). (1.1.5)

We show this in Figure 1.1. The red line denotes the high-energy particle backreacting
on the geometry while the blue line denotes a low energy probe. Moreover the particle
also gets refracted in the transverse direction as AL wi—o = 0"f(y). This effect will

dxt

not be too important in what follows but in general should be taken into account.



1.1.2 The black hole S-matrix

First we will generalize the shockwave metric to a black hole background. We will
focus on the case of asymptotically flat space, leaving the case of negative cosmological
constant (relevant for holography) for the next section.

We will focus in this section on the four-dimensional case. The metric of a static

black hole found by Schwarzschild [10] is given by

2M dr?
dsiy = — (1 — 7) dt* + ! _TM + r2dQ?, (1.1.6)

where ) denotes the angular coordinates. This choice of coordinates describes ob-
servers outside of the black hole. Far away r > M the metric becomes flat. We will
refer to ¢ and the energy associated to this choice of time as Schwarzchild time and

energy. In terms of Kruskal coordinates X* ~ e *!, the metric becomes !

39203 —r/2M
dsiy = 2200 T gX*tdX T 4 r2dO2. (1.1.7)

r

These coordinates are well defined across the horizon (at X* = 0) and can be extended
to the extended wormhole geometry shown in Figure 1.2.

Now focus on an outgoing particle that exits the past horizon and moves very close
to the future black hole horizon. Due to horizon blue-shift (g — 0 at the horizon)
this particle will be highly boosted (with respect to an asymptotic observer) even if
its energy is not too high when it reaches the boundary (an important example is
a Hawking quanta for which £ ~ 1/M). Following the discussion in the previous

section we could imagine modeling this particle by a localized stress energy tensor

TP = 4PT§%(Q — Q)0(X ), (1.1.8)

!The radial coordinate used here is r* = r + 2M log |r — 2M]|.
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Figure 1.2: Penrose diagram of the extended Schwarzchild black hole. A shockwave
generated by a high energy particle is shown by a red line (could correspond to
infalling matter). The trajectory of a probe particle is shown in blue (describing a
Hawking quanta for example).

where Q) € S? parametrizes transverse space, ) denotes the position of the particle,
and P* denotes the Kruskal momentum of the particle. The geometry that this

particle produces is very similar to the flat space case, namely

3,—r/2M
ds? = dsty — 2T )X (X (1.1.9)

r

Similarly to the flat space case, this extra term generates a time delay on particles that
cross X = 0. The shift is still given by AX~ = f(€Q). Nevertheless, the equation of
motion for f(2) is modified from the flat space case due to the curvature of spacetime.
Nevertheless the solution has the same features f(€2) ~ P~¢(€, ), with g a universal
function that depends on space-time dimension (for a spherical matter distribution it
becomes a constant and eliminate refraction effects on transverse space).

This exact solution of Einstein’s equations was found in 1984 by Dray and ’t
Hooft [6] (see also [11] and [12] for more details). We show a diagram of this geometry
in Figure 1.2. Here we have considered a particle moving very close to the horizon.
Dray and 't Hooft also found similar solutions with high energy particles moving far

from the horizon, which involves gluing black hole geometries with different masses.



We are now in a position to describe 't Hooft’s S-matrix Ansatz. Suppose we
have a black hole which already formed and is slowly evaporating such that we can
approximate the geometry by the Schwarzchild solution. At some time we throw
matter to the black hole. How does this information escape?

In [6,13] the authors gave an answer and proposed an S-matrix that describes
how part of this information might come out. Consider a particle falling into a black
hole at early times. Consider also a Hawking quanta that if the matter particle had
not been thrown would be detected at a certain late time. As shown in Figure 1.2
these particles interact close to the black hole horizon if the time difference between
throwing the particle and measuring the Hawking quanta At is large. This interaction
occurs at very high energy. We can approximate the backreaction of these particles by
shockwaves near the horizon (any other interaction will be presumably subleading).

The interaction produces a time delay to the Hawking quanta
AX™ =~ f(Q,)P™(Q). (1.1.10)

For an arbitrary matter distribution one integrates over €)'. By looking at the trans-
formation between Kruskal and Schwarzchild frame, it is important to notice that this
delay grows exponentially with the time difference between emission and detection
At, namely

AX ~ 2 THAL (1.1.11)

where Ty corresponds to the Hawking temperature. Since the time delay of the
Hawking quanta is generated by its conjugated momentum we can write a proposal

for this S-matrix as

S =exp <z / dQdQY P™(Q) £(9, Q’)PO‘“(Q’)), (1.1.12)



where P denotes the energy distribution of the infalling matter, while P°" corre-
sponds to the observed particle leaving the black hole. For the particular case that
the momentum of the incoming and outgoing particles are localized in the transverse
space S? this can be simplified as S = 7P~ where P/~ = Pout/in We will refer to
this result as the Dray-"t Hooft S-matrix.

This proposal gives a nice idea of how the information of matter thrown to the
black hole can be eventually imprinted on the Hawking radiation. A drawback of
this proposal is the insensitivity of the S-matrix to other quantum numbers other
than energy. Another issue is that, if the boost of the particles near the horizon is
large enough, the time-delay of the Hawking quanta might be large enough to send
the quanta back inside of the black hole. Another issue of this interpretation is the
fact that even though an asymptotic observer detects Hawking modes, an infalling
observer will see the vacuum, and no particle to scatter with. For the purpose of this
introduction, we simply take this idea as a motivation for the content of next section.

Finally, even if this S-matrix would reproduce all the information of the matter
particle going in, this would contradict the no-cloning principle of quantum mechanics
[14]. One could argue that contrary to usual QFT expectations, a measurement at
point A in Figure 1.2 does not commute with a measurement at B. The source of
this commutator is the shockwave geometry and generates a [0 4, O] that increases
exponentially with time. A detailed analysis of this effect was studied by Kiem,
Verlinde and Verlinde [15]. The authors propose the principle of complementarity
as a resolution: two modes that when propagated backwards generate such a large
backreaction should be thought of as complementary descriptions of the same operator
in the Hilbert space.

Another interesting feature is the possibility of time folds. To recover the infor-
mation about the infalling particle one could evolve the black hole forward in time

and detect the state of the Hawking quanta. Then one should evolve it back, throw
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the infalling particle, evolve forward again and compare the final state of the Hawk-
ing particle. This is an out-of-time ordered process. In the next section we will see
how the ideas in these final paragraphs fit in the context of gauge/gravity dualities.
Growth of commutators and out-of-time-ordered processes are key in studying quan-

tum chaos, which in turn is dual to high energy scattering near the event horizon.

1.2 Holography and Quantum Chaos

The holographic principle for quantum gravity was enunciated by 't Hooft in 1993 [16]
(see also [17]). This idea is best understood in the context of AdS/CFT, with the first
concrete example found by Maldacena in 1997 [5], see also [18,19]. This consisted of
a duality between type IIB string theory in an AdSs xS® background with a gauge
theory, SU(N) N = 4 supersymmetric Yang-Mills, living in the four dimensional
boundary of AdS (without gravity).

Since 1997 several other examples were discovered that allowed to generalize this
conjecture and claim that any CFT in d-dimensions (the boundary) is dual to a quan-
tum gravitational theory in AdSp—_g4.1 (the bulk). Most examples for the bulk theory
involve string theory with a low energy description by Einstein gravity (possibly plus
some matter). Other examples involve Vasiliev gravity [20] which has a dynamical
metric but the physics is highly non-local as opposed to Einstein gravity.

If a black hole exists in the bulk, it is dual to a thermal state in the boundary.
The boundary temperature and entropy are equal to the Hawking temperature and
Bekenstein entropy of the black hole in the bulk. The extended geometry of a black
hole in AdS is believed to be dual to the thermo-field doubled state that purifies the
thermal state of the boundary [21] (see equation (1.2.6) below). Particles moving
outside the black hole are dual to (single-trace) operator insertions in the boundary

CFT.
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In the context of AdS/CFT one can give a very precise interpretation of the
near-horizon scattering studied by Dray and 't Hooft. Basically, the Dray-'t Hooft
S-matrix is dual to the statement that the boundary conformal field theory (CFT)

presents maximal quantum chaos.

1.2.1 Quantum Chaos

Classical chaos gives a measure of how sensitive is a dynamical system to initial
conditions [22]. Take a system with a large number N degrees of freedom such that
its phase space is parametrized as X = (¢;,p;) with ¢ = 1,..., N. Take trajectories
X (t) which is fixed by initial conditions X (0). The derivative of X (¢) with respect
to X(0) gives a measure of sensitivity to initial conditions. In a chaotic system
this quantity grows exponentially with time with a rate defined as the Lyapunov
exponent A. This can be written in terms of Poisson brackets as {X;(t), X;(0)} ~ eM.
For arbitrary observables V(X (¢)) and W (X(t)) made up of phase space variables,

this implies that for a chaotic system

{V(t), W(0)} ~ e (1.2.1)

In general this rate might depend on the choice of operators. In the context of
thermodynamics classical chaos is fundamental for systems to be able to thermalize.

This analysis can be extended to quantum mechanics. First one replaces phase
space with Hilbert space and Poisson brackets with commutators. The analog of the
observables V' and W are operators acting on the Hilbert space. To avoid phase

cancellations consider the commutator square 2. Then for a state p quantum chaos is

’Imagine taking the expectation value of the commutator. This is related by the Kubo formula
to the linear response change in §(V) when one adds a perturbation §H = W to the Hamiltonian.
This quantity decays too fast, corresponds to quasi-normal modes of the black hole and not near
horizon scattering.
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diagnosed by

V(). W) ~ 3™ (122)

where (O) = Tr[pO] and N? roughly corresponds to the number of degrees of freedom
(e.g. the central charge for a CFT). For a thermal system at temperature ' = 1/ we
take large times to be t > t; with dissipation time t; ~ §. This commutator cannot
increase indefinitely and saturates at the scrambling time ¢, ~ [Slog N. Therefore
we will consider systems with large N where there is a clear distinction between
dissipation and scrambling scale t; < t < t,.

This signature of quantum chaos was introduced in 1969 by Larkin and Ovchin-
nikov [23]. Experimental methods to measure similar observables was developed, for
example, by Jalabert and Pastawski [24] using the Loschmidt echo.

By expanding (1.2.2) most terms are either time or anti-time ordered. For a ther-
mal state and times ¢ > 1/ these correlators thermalize. Nevertheless other terms
give out-of-time ordered correlators (OTOC). The OTOC are the ones responsible for
the exponential growth in (1.2.2) for chaotic systems. It is therefore useful to directly

study instead
() = (VI)WH(0)V(#)W(0))
VOV O)(W(HW(0))

(1.2.3)

Then the statement of a large N system displaying quantum chaos is the statement
that

F(t) ~ fy — %em +..., (1.2.4)

where fo/1 are order 1 (positive) constants. Before moving on to the bulk interpre-

tation we will mention a bound obtained by Maldacena, Shenker and Stanford [25]

which under reasonable assumptions is valid for any quantum system

27 2wkgT
AL < — =
L > ﬂ A 3

(1.2.5)
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where in the right hand side we rewrote the expression in arbitrary units to clarify
its classical limit A — 0. In the next section we will explain how black holes saturate
this bound on chaos. To give some order of magnitude understanding of this bound,
the maximal Lyapunov exponent of a quantum system dual to a solar mass black hole
is given by 1/A\5" = 107" s. On the other extreme, the maximal Lyapunov exponent

of a system at room temperature is 1/ \°omt = 10714 s,

1.2.2 Bulk Perspective

The bulk interpretation of the growth of commutators involved in the definition of
quantum chaos was realized by Shenker and Stanford in [26]. The first step is to
identify the bulk process that computes an OTOC. The idea of Shenker and Stanford
is depicted in Figure 1.3. We will discuss the case of an eternal black hole in AdS.
The bulk geometry is believed to be dual to the thermo-field doubled state between
CFTg and CFTy, as

ITFD) = e 2ln), @ |n)g. (1.2.6)

E

Then the geometry of Figure 1.3 is computing the overlap between two states living

in the Hilbert space H = Hr ® Hy. These states are given by
(W) = Wi#)VI(—t)|TFD), and |¥;) =V (—t)W(¢)|TFD). (1.2.7)

It is then straight forward to see that the overlap (U |W;) = (VI(—t)WT(t)V (=)W (t))
is equivalent to the OTOC between V and W and therefore controls the value of
commutators between operators at separate times. In this expression V and W
are operators acting on the CFTg. This is a one sided OTOC. We will discuss the
two-sided version in chapter 3.

How is this related to the shockwaves of previous sections? From the figure we can

see that if the time difference between the insertion of V' and W is large, the world-
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Vv, —t

Figure 1.3: Penrose diagram of flat space. A shockwave generated by a high energy
particle (red line). The trajectory of a probe particle is shown in blue.

line of the particles in the bulk propagate freely until they meet and interact very
close to the horizon. Due to the blue shift the interaction is dominated by the Dray-'t

Hooft shockwave S-matrix. One can rewrite the OTOC from the bulk perspective as
<‘/1W3‘/2W4> == /\Ifl\IIQSDT\Ifg\I;4, (128)

where W, (P;, z;) correspond to wave-functions (form-factors) that propagate the par-
ticles freely from the boundary of AdS (at a point z;) to their meeting point at the
horizon (with a Kruskal momentum P;). The integrals are not explicitly written cor-
respond to the momenta of the particles (and smearing of operators). Then at that
point we can approximate the geometry by flat space and their S-matrix by the Dray-
't Hooft Ansatz. Details of this calculation can be found in [27]. For times between
dissipation and scrambling times the OTOC normalized by the two-point function
becomes

F(t)=1—kGre?s ' +..., (1.2.9)

where k is some order one positive constant. Since the holographic dictionary tells us
that Gy ~ 1/N?, this has the form of (1.2.4). There is a nice interpretation of this
formula. The contribution to the scattering amplitude due to the exchange of a spin
J particle is given by A ~ s/~! (an eikonal exponentiation of this amplitude gives the

spin-J version of the Dray-'t Hooft S-matrix). The Lyapunov behavior comes from
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the fact that, if we throw in a particle with a boundary energy E then the invariant
energy of the collision near the horizon is given by s ~ est,

Some features (1) the shockwave calculation corresponds to a graviton exchange
with J = 2. (2) The maximal Lyapunov exponent A\;, = 27/ corresponds to a
gravitational blue-shift at the horizon (equal to the surface gravity), and due to the
equivalence principle is universal (cannot depend on the operator), independent on
which particle (i.e. single trace operator V') we throw. (3) The bound on chaos
show that interactions bounded in spin are not consistent. If the spectrum of spins
is unbounded then an infinite sum can resum into an effective Regge trajectory with
Jog < 2. This happens for string theory Jog < 2 and Vasiliev gravity Jeg ~ 0.

One can take this and formulate the following conjecture. Say we are given a
CFT whose dual we do not know and we want to figure out if the gravity theory
supports black holes. In order to find the event horizon we need to compute OTOC
and verify that for every operator (equivalence principle) the growth of commutators
happens at a rate A\, = 27/ (surface gravity in general, maybe with subleading
stringy corrections). Thanks to AdS/CFT we can conjecture a positive answer to
this question for ' =4 SYM, ABJM, etc.

For which kind of theories the answer is negative? For example, it is believed
that U(NN) Chern-Simons at level k coupled to fundamental matter in 3d is dual to
Vasiliev gravity in AdS, [28]. Using 3d dualities between CFT one can also find a
holographic description of the critical O(N) model and Gross-Neveu model. Can we
use these theories to study black hole physics? Given what we have learned we can
compute OTOC for the boundary CFT (see for example [29]). This shows that in

general \; &~ 0, showing that they do not support black holes.
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1.3 Two-Dimensional Holography

An important development in the past years has been the realization by Kitaev [30,31]
that certain quantum mechanical models (solvable but chaotic) present holographic
behavior, the Sachdev-Ye-Kitaev (SYK) model®. Since a large part of this thesis
consists in studying this model in some detail we will give a short summary in the
following section. Even though the precise bulk theory dual to this model is not
known to this date (August 2018) in the low energy regime one can identify a degree
of freedom that captures the gravitational dynamics of dilaton-gravity in AdS, (which

in turn arises from dimensional reduction of near extremal black holes in 4D).

1.3.1 Sachdev-Ye-Kitaev Model

The SYK model consists of a large number N of Majorana fermions ; where i =
1,..., N, such that {¢;,9;} = J;;. These fermions interact in an all-to-all way through

the following Hamiltonian

14/2
= > ity iy, (1.3.1)

i1,0mrig

where ¢ > 2 is an even integer. The original SYK model also displays disorder,
meaning that the couplings are taken from a random distribution. We take a Gaussian
distribution such that qu = (¢ — 1)!J?/N%1. The factors of N are chosen such
that for large N the free energy is extensive. This is a modification made by Kitaev
on models originally studied in a different context by Sachdev and Ye [37,38].

To solve this theory one can go to a mean field description in terms of bilocal

fields
Gr7) = 3 S W), (13:2)

3This QM is supposed to give an exact description of a gravitational 2D system. This is not the
same as acoustic black holes that only model QFT on curved fixed backgrounds [32-36].
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together with a self energy field denoted by 3(7,7’). The path integral over the

fermions and disorder average can be rewritten as
7 - /[dG] [dZ] eN(IOng(af—E)—%de/dT [G(T,T')x(T,T')—JTQG(T,T')(I}). (133)

From now on we can use this action to compute correlators of the bilocal field G(7, 7).
For the derivation of this result one assumes that we work at temperatures high
enough that no ordered-phase takes place (above spin-glass transition).

To reveal the holographic behavior we will focus on low energies (the IR) such
that 1 < fJ < N. The equation of motions for correlators of the bi-local field in
this limit have an emergent conformal symmetry (this was understood by Georges
and Parcollet in [39,40]). From the UV free fermion correlator Guy(7,0) =  sgn7 in

the IR the two-point function becomes

Gr(T,7") = ba sgn(r — 1), (1.3.4)

|7_ _ 7_/|2A

where the scaling dimension is A = 1/q and ba is a function that can be found
explicitly although the expression will not be very important. The conformal trans-

formation acts as

G(r, ) = [f'(D)f (TPAG(f(7), £(7), (1.3.5)

and we can use this to write a solution of the Schwinger-Dyson equation at finite

T

temperature by performing the reparametrization 7 — tan 5 The answer is then

G:< i ) SgnT. (1.3.6)

[ sin %7’

We will show immediately how the pattern of breaking of this symmetry is responsible

for the IR dynamics and the emergence of a gravitational mode.
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From the bi-local action (1.3.3) we can write the connected part of the four-point
function by expanding G — G5, + 0G, integrating over X, and finding the quadratic
term in 6G. The inverse of the kernel appearing in the quadratic term on dG, gives
precisely the connected order 1/N four point function. The result is given, very

schematically, by

1

Flr) = e 4'<¢i(7_1)¢i(7—2)¢j(7_3)¢j(7_4)>conn.a
= (G(n, )G, T))eomn. ~ o (1.3.7)

where following [30,31,41,42] we define the kernel (derived from the mean field action)
as

K (11,705 T3, T4) = —Jz(q — 1D)G(7, 13)G (72, T4)G(7'3,7'4)q_2. (1.3.8)

This should be thought of as a matrix with continuous indeces that acts on the second
pair of times (then finding K(1 — K)~! becomes a complicated problem).This kernel

is SL(2,R) invariant (under 7 — ‘C’ZIS with a,b,c,d € R) and can be expanded in

conformal blocks. Of course we are considering the low energy regime 5.J > 1 (since
otherwise conformal symmetry is broken). Each term in the sum over conformal

blocks corresponds to operators of the form
Onzﬁz:;b oY, A, =20+ 14 2n+ O(1). (1.3.9)

One can also think of these operators as different fluctuation modes of the bilocal
field G(1,7"). Nevertheless, if one takes a careful look at the four point function an
interesting issue appears, related to the patter of symmetry breaking. There is a
mode with A = 2, which is associated to fluctuations of the bilocal field that are

equivalent to reparametrizations by some f(7). This mode, when plugged into the
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expression for the four-point function diverges. This is because the moduli space of
fluctuations of f(7) is non-compact and massless (to leading order in 1/3.J).

This might be an inconsistency of the large §J approximation, but this is not
true. The effect of this mode can be accounted in the following way, while keeping
the contribution from other modes unchanged. The idea is to integrate over all
reparametrization f(7) associated to these “zero”-modes of 0G. For f.J = oo their
action is zero. By computing the leading 1//5.J correction one can find an action for

this mode that makes the theory finite. This is the Schwarzian action

S = C/dT{f(T),T}, (1.3.10)

where C' = agN/J and ag is an order one number which can be computed numerically.
To leading order in 5.J/N one can then expand the four-point function schematically
as

BJ

1
~F:]:isc. _Fc w. _Fcon.7 1.3.11
dise. T 7 sen +N £ ( )

where the first term is the disconnected piece, the last term is the 1/N correction from
conformal modes (and subleading corrections to reparametrization mode action) and
the middle term is this Schwarzian mode corresponding to the breaking of the con-
formal symmetry. As we indicated (at least for small 5J/N) this latter contribution
is enhanced with respect to the conformal part.

This Schwarzian mode, coming from the pattern of breaking of the conformal
symmetry, dominates the IR limit of the SYK model. It controls the entropy, free
energy and the chaos exponent in this model. This mode presents maximal chaos
A = 2w /5. We will explain in the next section how this mode emerges from dilaton-

gravity in AdS,.

20



1.3.2 Jackiw-Teitelboim Model

The gravitational mode giving origin to the Schwarzian action can be obtained from
Jackiw-Teitelboim (JT) gravity [43,44] in two dimensions with a negative cosmological

constant [45-48]. The action of this theory is

1
= . 1.3.
S 167TGN |:/ (I)(R + 2) + /bdy. QbKl + Smatter ( 3 12)

The near-horizon geometry of a near-extremal black hole in 4D is AdS; xS?%. After
reducing on the S? one obtains this action with ® corresponding to the size of S2.
We will analyze this system classically first. The solution to the dilaton equation of
motion sets the geometry to AdS,, with metric

B dt? + dz?
=——,

ds® (1.3.13)

z

with a group of isometries SL(2,R). One could consider a constant dilaton solution
preserving this group of isometries. This situation does not allow finite energy exci-
tations without a catastrophic backreaction [49]. Therefore one needs a dilaton that
breaks this conformal symmetry. One can already find a similarity with the pattern
of symmetry breaking in the IR limit of the SYK model.

The solution for a non-constant dilaton can be written as
O =)+ 09, (1.3.14)

where the precise spacetime dependence of P is not too important. We will only men-
tion that it blows up at the boundary of AdS,. This forces us to put a cut-off on the
AdS geometry where the boundary theory lives, since eventually the approximations

would break down if d® becomes bigger than ®,.
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Take as the boundary a trajectory (t,z) — (f(t), 2(¢)). Fixing a metric boundary
condition glpay = €2, with € small gives z(t) = €f'(t) so that the cut-off surface
is completely fixed by ¢ — f(t). For the dilaton, a natural boundary condition to
consider is 09, = &, /e (take P, constant for simplicity). After plugging this in the

action one gets
P,

S - _87TGN

/dt (F(). 1}, (1.3.15)

In a quantum version of this theory, the right prescription is to integrate of f &

Diff (S1) modulo SL(2,R) transformations f(t) — z]{((:))j:db (but note that SL(2,R) trans-

formations acting on ¢ are broken to only translations). This is the only mode that

survives in the JT model and it is equivalent to the IR mode of the SYK model.

Matching both theories would give C' = agN/J ~ SfGTN. The value of the dilaton

® fixes the extremal values. Since we are taking the cut-off surface at ¢ — 0 and
0P — oo, which should be smaller than ®,, the Schwarzian theory is valid in the
limit Sextremar ~ Py — 00.

The procedure to find observables like correlators of the matter fields is the fol-
lowing. First write their expectation value in rigid AdS, forgetting about gravity. For

example for a field x(x) the boundary four point function is

(x(t)x(t2)x(t3)x (t)) = Faisc(ti) + %Fwnn(ti), (1.3.16)

where Fjyi(t;) is the free bulk field answer while Fiu,(;) corresponds to bulk in-
teractions. To add gravitational interactions perform a reparametrization ¢t — f(¢)
and integrate over f € Diff(S')/SL(2, R) weighted by the Schwarzian action. This
generates three types of contributions just like in equation (1.3.11). The term Fgseny.

corresponds to the “gravitational dressing” of the disconnected (non-interacting) piece
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of the four-point function. The 1/N piece corresponds to interactions of matter fields
in the bulk?.

To summarize, even though the bulk dual of SYK is not the JT model, they
belong in the IR to the same “universality class”. Gravitational interactions of the
dual of SYK are described by the dilaton-gravity part of the JT model. Bulk matter
interactions are not universal and a matching has not been found yet (see for example

[50])-

1.4 Overview of the Thesis

In chapter 2 we will solve the Schwarzian theory and find its exact correlators, both
time ordered and out-of-time-ordered. This will be done by realizing the Schwarzian
theory as a certain limit of 2d Liouville theory. This chapter is based on a paper with
T. Mertens and H. Verlinde [51].

In chapter 3 we will study the semiclassical limit of the expressions found in
chapter 2 and provide more details. We will see the Dray-"t Hooft shockwaves emerge
and propose a quantum generalization of the shockwave S-matrix. This is based also
on [51] and a paper with H. Lam, T. Mertens and H. Verlinde [52].

In chapter 4 we will move on to AdS3;/CFTy. We will propose a SYK-like model
in two dimensions which we argue also shows maximal chaos and is related to gravity
in AdSs. This is based on a paper with H. Verlinde [53].

In chapter 5 we will generalize the idea that maximal chaos is determined by the
breaking of conformal symmetry from the 1D Schwarzian case to 2D. In 2D CFT
conformal symmetry is always broken by an anomaly. Under the assumption that
this dominates the dynamics we will show that commutators increase exponentially

with maximal Lyapunov exponent. The 2D version of the Schwarzian is proposed to

4We could also add gravitational dressing to these interactions but we will mostly neglect them
since they are subleading in V.
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be the action on coadjoint orbits of the Virasoro group. Finally, we will also propose
a discrete lattice model in 2D with maximal chaos and also relate it to quasinormal
modes in the two-point function. This is based on a paper with H. Verlinde [54].

In chapter 6 we will consider as an application a generalization of the usual
shockwave geometry. We will consider higher derivative terms in the bulk such as
S=]/ AdSp ¢W?, where ¢ is a scalar matter field and W is the trace of the Weyl tensor.
This theory supports shockwave geometries which are similar to the ones described in
section 1.1.1 (and also exact solutions of equations of motion [55]). The main differ-
ence is that besides a time delay, this background might also change the nature of the
probe particle (for example, a Higgs particle that hits the shockwave has a non-zero
probability of also turning into a graviton). We will find a nice application of this in
higher dimensional CFTs. This chapter is based on a paper with C. Cordova and J.
Maldacena [56].

Other co-authored articles are [29,57-61].
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Chapter 2

Solving the Schwarzian Theory:

Part 1

We have reviewed in the Introduction the connection between near horizon physics of
black holes and quantum chaos for holographic CETs dual to those geometries [25,26,
30,31,46,62]. We have also reviewed a recently proposed solvable quantum mechanical
model, the SYK model, which exhibits maximal chaos and other characteristics that
indicate it has a holographic dual given by a 2D gravity theory on AdS, [31, 38,41,
42,63-65].

The Schwarzian theory describes the quantum dynamics of a single 1D degree of
freedom f(7) and forms the theoretical gateway between the microscopic SYK model
and the dual 2D dilaton gravity theory [43,45,47,48 66]. In this chapter and the
next we will derive and study the exact correlators of the Schwarzian theory. All the
results then can be translated to a 2D dilaton gravity calculation as explained in the
Introduction.

We will obtain the exact solution of the Schwarzian theory by relating it to a limit
of Liouville theory. This is explained in sections 2.4 and 2.5. In this chapter we will

mainly describe this set-up but also give a summary of the results for the correlators
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in section 2.2. We will also extend this to the supersymmetric cases in a final section
2.6. In the next chapter we will give more details on how to derive it and some further

applications and lessons.

2.1 The Schwarzian Action

To fix notation, at finite temperature the action we will study is given by

S = —C/OZT ({f,r}+26—722 ’2> (2.1.1)

_ —C/OﬁdT{F,T}, F = tan (7”;(7)) , (2.1.2)

where C' is the coupling constant of the zero-temperature theory. Here f(7 4+ ) =

f(7) + 8 runs over the space Diff(S!) of diffeomorphisms on the thermal circle, and
" 3 f// 2
{f’T}:7_§<F> (2.1.3)

denotes the Schwarzian derivative (As a 0 + 1 field theory, the variable F' is more
natural as a scalar field at finite temperature since F'(0) = F(f)). Since C has
dimensions of inverse energy we would like to find a proper dimensionless parameter

that tunes the coupling of the theory.
B

A convenient choice of variables is obtained by taking 7 — o~

7, and correspond-
ingly f — % f, such that now the size of the thermal circle becomes 27. With this
choice of scale the action prefactor becomes C' — 27C//5. From this expression be-
comes clear that the dimensionless coupling constant of the theory is given by the
combination xk = 27C/f. The theory becomes perturbative for kK — oo and strongly
coupled for k — 0. The weak coupling regime can happen if either C' is large or the

temperature is high. Correspondingly the strong coupling regime can happen if C' is

small or the temperature is too low.
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In the context of SYK C' ~ N/J and the coupling constant becomes k ~ N/f.J.
In the context of the JT dilaton gravity C' ~ ®,. /G, the renormalized dilaton at the
cut-off surface. Since the Schwarzian is obtained when the cut-off surface is pushed to
the boundary, the Schwarzian describes the near horizon limit of a 4D near extremal
black hole with a very large extremal entropy.

We will turn to the symmetries of the theory now. The action S[f] is invariant

under SL(2,R) Mé&bius transformations that act on F' via

_>aF—|—b
cF+d

(2.1.4)

The model possesses a corresponding set of conserved charges ¢, that generate the
s[(2,R) algebra [ly, 0] = i€wele and commute with the Hamiltonian H. In fact,
as reviewed in section 2.3, the Hamiltonian H is found to be equal to the SL(2,R)
Casimir, H = %&léa. The energy spectrum and dynamics are thus uniquely determined
by the SL(2,R) symmetry. Regarding local symmetries acting on 7, only a U(1)
remains, associated to translations.

The Schwarzian theory is integrable and expected to be exactly soluble at any
value of the inverse temperature 5. In the following, we will label the energy eigen-
values E in terms of the SL(2,R) spin j = —% + ik via

Ek)=—-j(j+1) = ;1 + k2. (2.1.5)

The constant % can be removed by choosing appropriate normal ordering in the quan-
tum theory, and we will drop it throughout most of this work. If we mod out by the

overall SL(2,R) symmetry, the partition sum

2(8) = / Df ¢S (2.1.6)
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reduces to an integral over the infinite dimensional quotient space
M = Diff(S")/SL(2,R). (2.1.7)

This space M equals the coadjoint orbit of the identity element 1 € Diff(S'), which
is known to be a symplectic manifold that upon quantization gives rise to the identity
representation of the Virasoro group Diff(S), i.e. the identity module of the Virasoro
algebra [67-69]. We choose the functional measure du(f) to be the one derived from
the symplectic form on M, which as shown in [70-73] takes the form Df =[] _df/f’.

The fact that the space M is a symplectic manifold was exploited in [73] to show

that the partition function Z is one-loop exact and given by

Z(8) = So+PEo (@)3/2 o2mC/B _ ,So+BEo /Oodu(k) o PE(K) (2.1.8)

B 0

with E(k) = k?/2C and where the integration measure is given in terms of k by
du(k) = dk?sinh(27k), and dk® = 2kdk. We have separated a divergent zero-
temperature, or extremal, entropy Sy and energy FEy. This encompass all the di-
vergencies of the Schwarzian theory, a possible UV completion being the SYK-model.
In this chapter we will focus on the near-extremal dynamics. The exact result for the

spectral density near extremality
p(E) = sinh(27vV2CE) (2.1.9)

is further indication that the Schwarzian theory is completely soluble and we will
show that this is indeed the case.

We will make use of the more detailed property that the space M in (2.1.7)
forms the quantizable coadjoint orbit space that gives rise to the identity module of

the Virasoro algebra. This observation implies that the correlation functions of the
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Schwarzian theory

(0)..0,) = %/MDfeSm 0,..0, = %Tr(eﬁH 0:...0,) (2.1.10)
can be obtained by taking a large central charge ¢ limit of correlation functions of a
soluble 2D CFT with Virasoro symmetry. We will explain and use this relation to
explicitly compute the correlation functions of a natural class of SL(2,R) invariant
observables O;. (Different observables were studied in Appendix D of [51]). We will

now begin by summarizing our main results.

2.2 Overview of results

We will study the correlation functions of the following bi-local operators

o e\
Ou(r1,m2) = <§Sin%[f(7’1) — f(TQ)]) . (2.2.1)

We can think of this expression as the two-point function O,(1, 72) = (O(71)O(72))crr
of some 1D ‘matter CFT’ at finite temperature coupled to the Schwarzian theory, or
equivalently, as the boundary-to-boundary propagator of a bulk matter field coupled
to the 2D dilaton-gravity theory in a classical black hole background.

The bi-local operator (2.2.1) is invariant under the SL(2,R) transformations
(2.1.4). This in particular implies that O, commutes with the Hamiltonian H of
the Schwarzian theory. Therefore the bi-local operators are diagonal between en-
ergy eigenstates. We will see that the time-ordered correlation functions of O,(7, 72)
indeed only depend on the time-difference = — 7.

We will give the explicit formulas for the correlation function with one and two

insertions of the bi-local operator O, !. We will call these the two-point and four-

'Even though we will focus on two- and four-point functions we can compute any 2n-point
correlator. We will comment on this in the next chapter.
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point functions, since they depend on two and four different times 7;, respectively.
In the holographic dual theory they correspond to the AdS, gravity amplitude with
one and two boundary-to-boundary propagators. We will compute the out-of-time
ordered (OTO) four point function, which exhibits maximal Lyapunov behavior and
contains the gravitational scattering amplitudes of the bulk theory as an identifiable

subfactor.
Two-point function

The two-point function at finite temperature is defined by the functional integral with

a single insertion of the bi-local operator

<O€(7177'2)> = %/Dfesm Ou(r1,12) = T2 T1 (2.2.2)

Here we introduced a diagrammatic notation that will be useful below.
The two-point function of the Schwarzian theory at zero temperature was obtained
in [71,72]. As we will show in section 2.5, the generalization of their result to finite

temperature is given by a double integral over intermediate SL(2,R) representation

labels k; and ko
2
(O(11,72)) = /Hdu(/@-) Ao (ki €, 7). (2.2.3)
i=1

We will call the integrand the ‘momentum space amplitude’. In section 2.5 we will

obtain the following explicit formula for Ay (k;, ¢, 7;)

T(0 % iky + iky)

k3 k3
Ao (ki 0, 7;) = —(12=71) 55 —(B—T2+71) 5& 7
2(his £,7i) = € T(20)

(2.2.4)

where ['(z +y =+ 2) is short-hand for the product of four gamma functions with all four

choices of signs. In the following sections, we will derive the above result from the
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relation between the Schwarzian theory and 2D Virasoro CF'T, by taking a suitable
large ¢ limit of known results in the latter.

We will also perform a number of non-trivial checks on the result. In particular,
it reduces to the zero-temperature result of [71,72] in the limit § — oco. We also
check that it reduces to the saddle point calculation of the Schwarzian action when

C — .
Propagators and vertices

From the above expression for the two-point function, we can extract the following
combinatoric algorithm, analogous to the Feynman rules, for computing time-ordered
correlation functions of bi-local operators in the Schwarzian theory. We remark that
these rules still generate a non-perturbative answer for the Schwarzian theory and
merely represent a convenient packaging of the exact amplitudes.

We represent the momentum space amplitude Az (k;, ¢, 7;) diagrammatically as
k1
Ao (ki b)) = 7 o (2.2.5)
ko

The thermal circle factorizes into two propagators, one with ‘momentum’ k; and one

with ‘momentum’ k5. The Feynman rule for the propagator and vertices read

k1

k
4 _
TZ/—\ﬁ = e, —} = Yok, k2). (2.2.6)

ko

The propagator with momentum k& represents the phase factor between 7 and 7 of

an energy eigenstate with energy E = k?/2C.
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Each vertex corresponds to a factor

Yo(ki, k2) = \/F@irigg)jE ihz) (2.2.7)

This vertex factor represents the matrix element of each endpoint of the bi-local oper-
ator between the corresponding two energy eigenstates labeled by k; and ks. This can
be obtained by comparing this expansion with the one obtained from Tr[e=?20;0,)]

assuming a continuous spectrum with density of states u(k).
Time ordered 4-point function

The time-ordered 4-point function comes in different types, depending on the

ordering of the four different times. The simplest ordering is

(O (11,72) Oy (13,71)) = TQTl (2.2.8)

where we assume that the four times are cyclically ordered via 7 < 75 < 73 < 74. This
ordering ensures that the legs of the two bi-local operators do not cross each other.
This time-ordered 4-point function is given by a triple integral over intermediate

momenta

<O£1(7'1,7'2) 062(7’3,7'4>> = /Hd,u(kl) A4(ki7£i77—i)‘ (229)

The momentum amplitude is represented by the diagram

k1

Ag(ki 6, 1) = p, g k, (2.2.10)
D

k4
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Here we took into account the aforementioned result that the bi-local operators com-
mute with the Hamiltonian, so that the same energy eigenstate (labeled by the mo-
mentum variable k) appears on both sides of each bi-local operator.

Applying the Feynman rules formulated above, we find that the momentum am-

plitude of the time-ordered four point function reads

2 2 2
k2 k k

A4(l€i, 0, Ti) _ 6—ﬁ(m—n)—%(74—7'3)—ﬁ(5—72+7'3—T4+T1) '721(]{31, ks)2'7£2(k35, k‘4)2. (2‘2‘11)

In section 2.5, we will explicitly compute the four-point function from the relationship
between the Schwarzian and 2D CFT and confirm that this is indeed the correct

result.?
OTO 4-point function

Finally we will turn to our main interest, the out-of-time-ordered 4-point function

[30,31]. We will diagrammatically represent the OTO 4-point function as

T3 T1
(O, (11,72) Op, (73, 71) ) grp0 = (2.2.13)

T2 T4

where in spite of their new geometric ordering along the circle, we in fact assume
that the four time instances continue to be ordered according to 71 < 7 < 73 <
74. Operationally, we define the OTO correlation function via analytic continuation
starting from the time ordered correlation function with the ordering 7, < 73 < 7 < 74

as indicated by the above diagram. Since for this configuration, the legs of the bi-local

2Note that the amplitude (2.2.11) factorizes into a product of two 2-point amplitudes

Ay (ki b, 7) = ePat As(k1, ks, €1, 701) Az (ka, ks, 02, Ta3) (2.2.12)

and thus indeed only depends on the two time differences 751 = 70 — 7 and 743 = 74 — 73.
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operators do in fact cross, the resulting time ordered 4-point function differs from the
analytic continuation of the uncrossed 4-point function (2.2.11).
In section 3.2, we will show that the OTO correlation function can be expressed

as an integral over four momentum variables

4
<O@1 (7'1,’7'2) Ob (7'3, T4)>OTO = /H du(]ﬁ) ASTO (lﬂi,&',Ti), (2214)
i=1

where the momentum space amplitude is represented by the following diagram (to
avoid clutter, we again suppressed the times 7; labeling the end points of the bi-local

operators)

AQTO (ki by 73) =, K (2.2.15)
ks

Note that we now have four different momentum variables k;. The correlation function
will indeed depend on all four time differences ;.1 — 7;.

The final answer for the momentum amplitude of the OTO 4-point function reads

k2 k2 k3 k3
AT (ki b, 7) = e~ 20 ()36 (o) =55 (u—m) =3¢ (B-matm) (2.2.16)

X Ye, (klv k8)7€2(k87 k4)7€1 (k47 kt>7€2(kt7 kl) X Rkskt [ ]izf gﬂ :

Comparing with the diagram (2.2.15), we recognize the same propagators and vertex
factors as before. However, the momentum amplitude now also contains an additional
factor Ry, g, [ z‘; gﬂ, which takes into account the effect of the two crossing legs in the
diagram (2.2.15). From the holographic dual perspective, it represents the scatter-

ing amplitude of particles in the AdS, black hole background [26,74]. Computing
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this crossing kernel is one of the main goals of this chapter. We will describe this

computation in section 3.2.

The crossing kernel

The role of the crossing kernel is to relate OTO with TO operators

e ko= Ry [Bf] kk (2.2.17)

k4 k4

An alternative name for the crossing kernel is the R-matrix. The matrix Ry, in
fact depends on six numbers, k1, k4, ks, k¢, €1 and £, that all label the spin of a corre-

sponding sextuplet of representations of SL(2,R). It satisfies the unitarity property

P L — = 2k sinh(27
/du(k:) RusRly, = o 8k = ko). p(k) = 2ksinh(2rk).  (2.2.18)

The explicit form of the R-matrix can be found in several different ways. The most
convenient method uses the relation between the Schwarzian QM and 2D CFT. In
section 3.2 we will computeRy, , [2? ﬁf] by taking a large c limit of the CFT R-matrix
that expresses the monodromy of 2D conformal blocks under analytic continuation
over the lightcone. This 2D crossing kernel is explicitly known, thanks to the work
of Ponsot and Teschner [75], see also [76,77]. As shown in [75], the 2D kernel can be
expressed as a quantum 6j-symbol of the non-compact quantum group U,(s[(2,R)).

Taking the large ¢ limit of their formulas, we obtain that

Ri [0 2] = Wiky, ks €3+ ika, 0 — ika, by — ik, 0 + k) (2.2.19)
X Yy (kh ks)’Y@Q (k87 k4)7€1 (k47 kt)’YﬁQ (kh kl)
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where W(a,b,c,d, e, f) denotes the Wilson function, defined as a particular linear
combination of two generalized hypergeometric functions 4F3. The Wilson function
was introduced in [78,79], where it was shown that the above expression in fact
coincides with the classical 6j-symbol of the Lie group SU(1,1) ~ SL(2,R).

The appearance of the 6j-symbols in OTO correlation functions should not come
as a surprise. States and operators in the Schwarzian theory are specified by a rep-
resentation label of SL(2,R). The crossing kernel relates the OTO 4-point function
with the corresponding time-ordered amplitude. It thus applies an isomorphism be-
tween two different orderings of taking a triple tensor product. The 6j-symbols satisfy
some remarkable identities known as the pentagon and hexagon identities. From the
point of view of the Schwarzian theory, these identities are consistency requirements

that follow from locality, analyticity and associativity of the operator algebra.

2.3 Schrodinger formulation

In this section, we outline the Hamiltonian formulation of the Schwarzian theory, and
how it is related to other 1D systems with SL(2,R) symmetry. We temporarily set
B = 2m. The reader familiar with the basic properties of Schwarzian QM can choose

to skip this section.

2.3.1 Zero temperature

We first consider the Schwarzian theory at zero temperature. In this limit, the f2—
term is dropped in the action (2.1.1), reducing it to the pure Schwarzian action
S = [dr{f,7}.> To transit to a Hamiltonian description, it is useful to recast the

Lagrangian into a first order form as

L=myp+mpf — (5 + mse?). (2.3.1)

3Here, in this section only, we will write f(7) instead of f'(7).
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Integrate out 75

Particle on H3 L=1¢*+ ffet | « L=1¢+nf+ nff— mymre?

{ Integrate out f, mp=1

Integrate out 7;

Schwarzian L={f} |« L=1¢ 4 mf —mpe

Integrate out f, my = p

Figure 2.1: Overview of different models with underlying SL(2,R) symmetry. Red
lines indicate one-way lines: they are projections that reduce the dimension of the
phase space.

1D Liouville L= %([)2 — ne®

This first-order form makes clear that the Schwarzian theory has a four dimensional
phase space, labeled by two pairs of canonical variables (¢, m,) and (f, 7). Alterna-
tively, we may view the quantity 7 as a Lagrange multiplier, enforcing the constraint
f = e?. Setting ¢ = log f and integrating out Ty, it is readily seen that the above
first-order Lagrangian indeed reduces to the Schwarzian theory. Upon quantization,
the variables satisfy canonical commutation relations [f, ;] = ¢ and [¢, my| = i.

The invariance of the Schwarzian action under Mobius transformations

af +b
cf +d

f— (2.3.2)
implies the presence of a set of conserved charges
(_y =my, by = fry+my, b o= P+ 2fm +e?,

that satisfy an sl(2, R) algebra. The Hamiltonian H is equal to the quadratic Casimir

H = 71'35 + 7Tf6¢ = g% — %{6—1,51} (233)
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and thus manifestly commutes with the SL(2, R) symmetry generators. In particular,

we can define a mutual eigenbasis of H and 7y = (_;

f

A kY =X\ k), HINE)Y = E(R)AE),  E(R) =14k, (234)

which spans the complete Hilbert space of the theory.

The 1D Schwarzian theory is closely related to the free particle on the 3D Eu-
clidean AdS space H; with coordinates (¢, f, f) and metric ds®> = d¢? + 2e~®dfdf,
and to 1D Liouville theory. The different 1D models and their connections are sum-
marized in Figure 2.1. The H? model has SL(2,R) x SL(2,R) symmetry, which is
broken to SL(2,R) by setting the momentum variable 7; equal to a constant. Sim-
ilarly, the reduction to the 1D Liouville theory proceeds by setting m¢ = p, which

breaks all symmetry.

2.3.2 Finite temperature

Putting the theory at finite temperature (we continue to set 3 = 27 for convenience)
reintroduces the extra f2-term in the action (2.1.1). The effect of this term in the

first order formulation is taken into account by changing the Hamiltonian to
H =73+ mpe? + €. (2.3.5)

Upon solving the constraint f = e?, the added term reduces to €2® = f2. This

Hamiltonian still has SL(2,R) symmetry generated by the charges

(1= cos?(f) my — sin(2f)my + cos(2f)e?,
lo= 1 sin(2f) 7y + cos(2f)my + sin(2f)e?, (2.3.6)

(= sin?(f) m; + sin(2f)my — cos(2f)e?.
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These charges satisfy [lo, (1] = Fly1 and [(1,(_1] = 2{y and all commute with
the Hamiltonian, which can again be identified with the quadratic Casimir operator
H = (3 — 3{0,0_1}. The SL(2,R) symmetry generated by these charges acts via

broken linear transformations on the uniformizing variable F

aF +b

— F= 2 —bec = 1. 2.3.
— Fid tan(f/2), ad — bc (2.3.7)

Since my = {1 + {_; commutes with H, we can again define a mutual eigenbasis
(2.3.4) that span the full Hilbert space of the model. The Schrodinger wavefunctions
of the eigenstates take the form Wy, (f, ¢) = ey (@) where 1y x(¢) solves the

Schrodinger equation

(=03 + Ae? + ) hai(0) = K hai(9), (2.3.8)

given by a 1D particle in a Morse potential V (¢) = Ae? +¢??. The solutions are given
in terms of Whittaker W-functions. The full eigenmode functions normalized in the

flat measure df d¢ are given by

k sinh(27k

Uy k(f,0) = 13 ) |F(zk +X/241/2) | eMe Wy o (2¢9) . (2.3.9)

2.3.3 Particle in a magnetic field

There exists an interesting and useful connection between the Schwarzian model and
a particle on the hyperbolic plane H; in a constant magnetic field [80]. The Landau
problem on H, was first analyzed by A. Comtet and P. J. Houston in [81]. A main
result of [81], which also turns out to be useful for our problem, is an explicit formula

for the spectral density of states.
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Writing the H2 metric as ds® = d¢? + e2?df?, the Lagrangian of the particle is
given by

S = /dt (}Ldﬂ + }Le—%f? + Bfﬂ), (2.3.10)

which identifies the magnetic vector potential as ¢A; = Be™? with ¢ the charge of

the particle. The Hamiltonian of this system, for fixed constant B, is

Hp = p3 + (pe® — B)”, (2.3.11)
where we denoted the canonical conjugate variables by pg and ps. The model is again

invariant under Mobius transformations (2.3.2) and possesses a corresponding set of

SL(2,R) symmetry generators
Co=p; , lo=fpr+ps . b= fpsy+2fps—pre*® +2Be?.  (2.3.12)

Once again, the Hamiltonian is equal to the quadratic Casimir. The normalized
simultaneous eigenmodes of py (with eigenvalue v) and Hp (with eigenvalue E(k) =
1 + k* + B?) take the form [81]

ksinh(27k

U i(f,0) = 0] ) ID(ik — B+1/2)| e e Wiy (2[v]e?) .  (2.3.13)

This should be compared with formula (2.3.9) for the eigenmodes of the Schwarzian
model.

Using the above formula for the eigenmodes, it is straightforward to compute the
density of states for the Landau problem on HJQF. The result for spectral measure

reads
sinh(27k)
cosh(27k) + cos(2wB)

dpp(k) = pp(k)dk = dk? (2.3.14)
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We can use this result to compute the spectral measure of the Schwarzian theory
via the following observation [80]. Upon shifting ¢ — ¢ — log(—2B) with B — oo,

the Hamiltonian Hp reduces to
Hp = p}, +pre® + B, (2.3.15)

which, up to the irrelevant constant B2-contribution, coincides with the Hamiltonian
(2.3.3) for the Schwarzian model at zero temperature. We can use this correspon-
dence to derive the exact formula for the spectral measure (2.1.9) of the Schwarzian
theory quoted in the introduction. Starting from Comtet’s result (2.3.14) and us-
ing that cos(2rB) diverges as B — oo, we deduce that (up to an irrelevant overall

normalization) du(k) = dk?sinh(27k).

2.4 Partition function: a 2D Perspective

In this section we will study the path integral formulation of the Schwarzian theory
at finite temperature. In particular, we will use its relationship to the group Diff(S!)
to reformulate 1D Schwarzian QM as a suitable large ¢ limit of 2D Virasoro CFT.4

The partition function of the Schwarzian theory (2.1.1) is defined as the integral

Z(B) = D—f bl

IO (2.4.1)

over invertible functions f, satisfying the periodicity and monotonicity constraints
f(r+pB) = f(r)+ 5 and f'(7) > 0. The space of functions with these properties spec-

ifies the group Diff(S) of diffeomorphisms of the circle, also known as the Virasoro

group.

4Related ideas are formulated in [82].
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The SL(2,R) quotient in (2.4.1) indicates that the functional integral runs over

the infinite dimensional quotient space
M = Diff(S')/SL(2,R) (2.4.2)

of diffeomorphisms modulo the group of Mébius transformations (2.3.7) acting on
F:tan(%f). This space M is called the coadjoint orbit of the identity element 1 €
Diff(S'), which is known to be a symplectic manifold [67,68]. Its symplectic form

takes the following form

2
™ df/ /\ df/l
This observation was used by Stanford and Witten [73] to evaluate the functional
integral with the help of the Duistermaat-Heckman (DH) formula [83].

The DH formula applies to any integral over a symplectic manifold of the schematic

form

I= /dpdqe‘H(p’Q) (2.4.4)

where H(p,q) generates, via the Poisson bracket {¢,p} = 1, a U(1) symmetry of the
manifold. In this chapter we will apply a somewhat different argument: instead of
the DH theorem, we will use the general fact that the phase space integral of the form
(2.4.4) is equal to the A — 0 limit of the trace of the quantum operator e H®%) over
the Hilbert space obtained by quantizing the phase space:

= ~Hpa) 2.4.
I }il_l’)r(l) Tr(e ). (2.4.5)

The physical intuition that underlies this equality is that for small A, the Hilbert space

admits an orthogonal basis of states each localized within a Planck cell in phase space.
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The trace then takes the form of a sum over all Planck cells, which in the A — 0 limit
reduces to the phase space integral defined via the symplectic measure.

The strategy that we plan to follow is to exploit the fact that, if there exists a
precise way to quantize the phase space M and construct the corresponding Hilbert
space, then the formula (2.4.5) provides an exact and efficient way of computing the

integral I.

2.4.1 Spectral density from modular bootstrap

In our problem, the phase space (M, w) specified by equations (2.4.2) and (2.4.3) can
be quantized through the standard methods of co-adjoint orbit quantization. The
details of this quantization step are explained in detail in [67-70]. Tt is customary to

label the quantization parameter A via

24
h=2" (2.4.6)
c
and introduce the following basis of SL(2,R) invariant functions on M
BC ’ TINT
Ln= 15 0 dr e*™" /B L F, 7} (2.4.7)

The main statement that we will need for our purpose is that in the quantum theory,
these functions L,, become identified with the generators of the Virasoro algebra

Ly L] = (1 — 1) Ly + 1—02(713 )G (2.4.8)

at central charge c. The classical limit A — 0 corresponds to the large central charge
limit ¢ — oo. The Hilbert space of the quantum theory is given by the identity
module of the Virasoro algebra, i.e the linear space spanned by all states obtained by

acting with L_,,’s with n > 2 on the SL(2,R) invariant vacuum state |0).
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The Schwarzian action (in this section we take C' = 1/2 for simplicity)

2472
Be

B
S[f] :—%/Odf (Fr) = -2 (2.4.9)

is the generator of a U(1) symmetry f(7) — f(7 + ). This fact was used in [73]
to invoke the DH formula and conclude that the partition function Z(3) is one-loop
exact.

For our purpose, the relevant observation is that the exponential of the Schwarzian

action can be expressed as an evolution operator

_ 24x?

e S = gbo, g=e P (2.4.10)

in the quantum theory. We are now ready to apply the above argument, that relates
the phase space integral (2.4.4) and the A — 0 limit of the trace (2.4.5), to the

Schwarzian partition function (2.4.1). We obtain the following identity

o

Z(B) = lim Tr(¢"™), g% = e 7 = fixed. (2.4.11)

c— o0
q—1

where the trace is over the identity module of the Virasoro algebra. The quantity
xo(q) = Tr(g"0) is the identity character of the Virasoro algebra. Geometrically, it
represents the torus partition function of a chiral identity sector of a 2D CFT. Taking
the limit ¢ — 1 amounts to sending the modular parameter 7 — 0. In this limit,
the torus degenerates into an infinitesimally thin circular tube. The long direction of
the circular tube is the original thermal circle of the Schwarzian theory. The short
direction is a fiducial circle that we added in order to write the integral over M as a

trace.
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The identity character of a ¢ > 1 CFT takes the form

1-c
q 24 (1—q)

Tr(qLO) = XO(Q) = 77(7—>

: (2.4.12)

where 7)(7) denotes the Dedekind eta function () = ¢2i [[°,(1—¢") with ¢ = €275
The factor (1 — ¢) in the above formula for the identity character accounts for the
presence of the null state L_;|0) = 0.

It is now straightforward to combine equations (2.4.11)-(2.4.12) and extract an
exact expression for the Schwarzian partition function. This can be done in two ways.
First, from the identity n(—2) = \/72n(7) we derive that for ¢ ~ 1, we can replace

—1/2€—i7r/(127').

n(t) ~ (12) Using this result, we can directly take the large ¢ limit of

equation (2.4.11) and deduce that Z () takes the following form

2

Z(B) = e So+BEo (%) 3/Qexp <%> (2.4.14)

Here we absorbed a (divergent) zero-point entropy Sy and a zero-point energy FEj
contribution in the prefactor. This formula matches with the exact result found
in [73,84].

Alternatively, we can apply the modular transformation 7 — —1/7 directly to the
identity character xo(¢) as a whole, and use the known formula for the modular S-
matrix for ¢ > 1 Virasoro CF'T to decompose the result in terms of Virasoro characters

in the dual channel. For this it is convenient to parametrize the highest weights A of

5We apologize to the reader for temporarily also using the symbol 7 for the modular parameter
q = e®™ of the torus. Using equation (2.4.11), we can express the modular parameter 7 in terms

of the temperature g of the Schwarzian and the central charge ¢ of the auxiliary 2D CFT via

1273
Be

. (2.4.13)
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the Virasoro representations and the central charge ¢ as follows®

2

A(P) ==+ P, c=1+6Q*=1+6(b+07")" (2.4.15)

The modular transformation rule of the Virasoro characters then reads

o0 ~P2
- - _Be -
Xo (q)—/ dP Sg xp(q), g=¢e v, xp(@) = 1=, (2.4.16)
0 n(7)
where the modular S-matrix is given by
Sy’ = 4V2sinh (27bP) sinh (457, (2.4.17)

We now set k = £ F = b72(A — 1) = k? and take the limit b — 0 (which sends

¢ — 00) while keeping k, E fixed. In this limit
SE ~ 2k sinh(27k), xp(G) ~ e % (2.4.18)

The second formula has a clear physical significance. The large ¢ limit sends ¢ — 0,
which turns the operator ¢*° into a projection operator on the lowest energy state in

the given channel. Combining (2.4.11), (2.4.16) and (2.4.18) we obtain that
Z(B) = / du(k) e PER), du(k) = d(k?) sinh(27k), (2.4.19)
0

reproducing the result obtained in [73]. The answer for arbitrary C' can be found by
dimensional analysis or simply replacing E(k) = k? — k?/2C.
While the explicit formula (2.4.19) for the spectral density is not a new result, our

derivation provides a new and useful perspective on the Schwarzian theory. Specifi-

6This parametrization is familiar from Liouville CFT. We emphasize, however, that in this section
we are using completely general properties of genus one Virasoro characters.
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Continuum
A CFT Spectrum

Heavy states

A >(c-1)/24
o1 } Spectrum of states
g of Schwarzian QM
Light operators
A << (c-1)/24 Operator spectrum
0—> in Schwarzian QM

Figure 2.2: The spectrum of states in the Schwarzian theory arise from the CFT
spectrum of states with conformal dimension A = % +b?E, in the limit b — 0. The
operators in the Schwarzian are all light CF'T operators with conformal dimension

A=/

cally, it indicates that the 1D model arises as a special ¢ — oo limit of 2D Virasoro
CFT, in which we only keep the states with conformal dimensions A close to the
threshold A, = o (Figure 2.2).

The above modular bootstrap argument identifies a natural spectral density on
the space of Virasoro representations, given by the modular S-matrix element S{
[85]. This spectral density is not a specific property of a particular 2D CFT, but a
universal measure analogous to the Plancherel measure on the space of continuous
series representations of SL(2,R). This measure is defined for any value of the central
charge ¢. We have shown that, after taking the large ¢ limit while zooming in close
to A, = %, it coincides with the exact spectral density of the Schwarzian theory.
In the following sections we will generalize this observation with the aim of studying

correlation functions.

2.4.2 Spectral density from ZZ branes

As further preparation for the study correlation functions, it is useful to derive the

formula for the spectral density from yet another slightly different perspective. As
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Tr(g) = 0 0 — - = (2214 |22)

122)

Figure 2.3: The identity character can be represented as the annulus partition sum of
the Virasoro CFT, or by using channel duality, as the transition amplitude between
two ZZ boundary states.

mentioned above, the identity character x((q) represents the chiral genus one partition
function of the identity sector of the Virasoro CFT. Alternatively, we can identify
Xo(gq) with the partition function of the Virasoro CFT on the annulus. This annulus
partition function is equal a trace over an open string sector of the Virasoro CFT,
or by using channel duality, as the transition amplitude between two ZZ boundary
states [86-88].

vola) = (Z21™|22). (2.4.20)

The Schwarzian theory arises in the limit ¢ — 1, which in the dual closed string
channel corresponds to the limit ¢ — 0, as shown in Figure 2.3. Note that the
insertion of the ZZ branes cuts the thermal circle of the Schwarzian theory into two
halves.”

The 77 boundary state is given as an integral over Ishibashi boundary states
87, 88]®

2mi P
['(1—2ibP)I'(1+ ZE)

22) = /0 TP U (PY|PY, U (P) — (2.4.21)

"This approach to the geometric quantization of the Virasoro group seems related to the one put
forward in [89] for compact groups, but using a topological theory instead of a CFT.
8Here and in the following, we drop irrelevant overall constant factors.
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In the limit we are considering the boundary states are associated to a circle with a
radius that goes to zero (if we map the cylinder to the complex plane) and this allows
us to approximate ||P)) — |P). This is the main feature that will allow us later
to compute correlation functions since it can be used to turn a correlation function
between ZZ-branes into an integral of a correlation function on the sphere. Using
this and taking § = e~#/ ¥ where J is the temperature of the Schwarzian theory, the

partition function becomes
_ [~ 2 —pE; 2 _ : 27 P
Z_/ AP [y (P)? e #%,  |WUgy(P)? = sinh (270 P) smh(T). (2.4.22)
0

For small b this integral is dominated by states with P of order b. Therefore we define

P = kb and take the b — 0 limit; we recover the result (2.4.19).

2.5 Schwarzian correlators from ZZ branes

In this section we will exploit the relationship between the Schwarzian theory and Vi-
rasoro CFT to compute finite temperature correlation functions of SL(2,R) invariant
operators in the Schwarzian theory. Here we will explain mainly how these correlators
are related to Liouville theory. In the next chapter we will give the details about how
to go from the concepts of this section to the concrete results summarized in 2.2.

The simplest such operator is the Schwarzian itself. Its correlation functions are
completely fixed by symmetries and are described in Appendix A of [51].

A more interesting class of correlation functions are those involving the bi-local

operators

20
J/(m) f(72)
Ou(11,72) = ] 5
) ( Sin%[f(ﬁ)—f(fg)]> (251

These operators naturally live on the 2D space K parametrized by pairs of points

3 @

(11, 72) on the thermal circle. We will call I kinematic space, since it plays an
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analogous geometrical role as the kinematic space associated with 2D holographic
CFTs [90,91].
To exhibit the geometry of kinematic space K, let us — motivated by the form

(2.5.1) of the bi-local operators — associate to any point (u,v) € K a classical field

¢a(u,v) via

peruw) _ f'(u) ()

X . (2.5.2)
Fsin 5 [f(u) = f(v)
This field satisfies the Liouville equation
0u0yar(u, v) = 1Y), (2.5.3)

Hence kinematic space K naturally comes with a constant curvature metric ds® =
e29(w?) dudu, and looks like a hyperbolic cylinder with an asymptotic boundary located
at u = v. Note, however, that the metric on kinematic space is now a dynamical
quantity that depends on the dynamical diffeomorphism f(7).

From the saddle-point solution (2.5.2) for the field ¢ we see that the Liouville
vertex operators e2#(“?) and the bi-local operators Oy(7;, 72) placed between two ZZ
branes become identical, if we identify u = 7, and v = 7. Motivated by this, we will

propose the following identification between the correlation functions of both theories

20p(T1,72)

Insertion of Oy(7y,72) in Schwarzian <> Insertion of V; = e in Liouville

In the next chapter we will present detailed evidence in support of this proposal by

deriving the results in section 2.2.
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.-

Figure 2.4: Geometry of the classical Liouville background between two ZZ branes.

2.5.1 ZZ branes and kinematic space

Given the similarity between the two geometric structures, it is tempting to look for
a direct identification between the kinematic space K and the geometry of Liouville
CFT bounded by two ZZ-branes. To make this idea more explicit, let us consider
Liouville CFT with ZZ branes placed at the spatial positions ¢ = 0 and ¢ = 7. The

time direction is parametrized by 7. The action describing this system is

S = 190% /dT/O do [(0¢)* + 4pe*] (2.5.4)

For our application, the only role of the Liouville CFT is to provide a convenient geo-
metrical description of the Virasoro partition function and conformal blocks. Indeed,
Liouville theory is known to be equivalent to the geometric Lagrangian associated
with the symplectic form w on Diff(S') quoted in the previous section.’

We introduce the light-cone coordinates u = 740 and v = 7—o0. We are interested
in the limit ¢ — oo. In this limit, the functional integral localizes on the space of
classical solutions to the Liouville equation of motion. The boundary conditions
of ¢ are that the regions near ¢ = 0 and o0 = 7 corresponds to the asymptotic

regions of a hyperbolic cylinder. It is shown in [92] that the lowest energy solution

9The parameters Q = b+ b~! and P used in the expressions (2.4.15) of the central charge ¢ and
the conformal dimension A are naturally identified with the background charge of the Liouville CFT
and the ‘Liouville momenta’ of the vertex operators Vp with conformal dimension A.
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Figure 2.5: The kinematic space of the Schwarzian theory. The bi-local operator
(2.5.1) in the 1D QM is represented by a local Liouville CET vertex operator in the
2D bulk. The boundary of the kinematic space corresponds to the limit where the
two end-points of the bi-local operator coincide.

is 4pe?® = sin"? 0. Written in the form ds? = e?*dudv this describes a hyperbolic
geometry of the form shown in Figure 2.4.

As explained e.g. in [93], the most general classical solution of Liouville theory can
be obtained by starting with a representative ¢(u,v) for a given conformal class and
then apply a general conformal transformation e2¢®¥) — f/(u) f'(v)e?*(F:/()  The
most general solution thus takes the form given in equation (2.5.2), after performing
a rescaling that maps the distance between the ZZ-branes from 7 to §/2. These
solutions are all isomorphic to the geometry shown in Figure 2.5. We can interpret
this 2d space as a kinematic space of the Schwarzian theory. Note, however, that in
our case, the kinematic space is in fact dynamical.

Finally, we remark that the equivalence between the Schwarzian and the large ¢
limit of Liouville CFT is of course not surprising. It is well-known that the Liouville
stress tensor 7' = 1(¢/)? + ¢ reduces to the Schwarzian derivative when evaluated on
a general classical solution of the form (2.5.2). This observation can be used to show
that the Liouville lagrangian in a combined large ¢ and DLCQ limit reduces to the

Schwarzian action.
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2.6 Supersymmetric Schwarzian

In the previous sections we presented a picture where the Schwarzian theory is com-
pletely solved in terms of known objects of 2D Liouville theory. In this section we
will generalize these arguments to the supersymmetric cases. These theories can like-
wise be realized as the low energy effective theory of certain supersymmetrized SYK
models [94]. For the N/ = 1 Schwarzian theory it is also known how it arises from a

Jackiw-Teitelboim supergravity approach [95].

2.6.1 N =1 Schwarzian theory

The super-Schwarzian is defined in N =1 (7, ) superspace by:

D¢ D30' D¢/

Sch(7) = Schy(1) 4+ 0Schy (1) = 0 (Do)

(2.6.1)

with D = 0y + 00, the superderivative and 0’ = /0, f (9 +n+ %97}377]) as defined
in [96,97] for the reparametrization f and its superpartner 7. Via the same arguments
as for the bosonic theory, we can view the super-Schwarzian theory as the ¢ — oo
limit of N' = 1 super-Liouville theory between a pair of ZZ-branes. As usual, one has
different sectors depending on the fermionic boundary conditions both between the
ZZ-branes (open channel) and along the small circle (closed channel). This gives four
possibilities NS, R, NS or ﬁ, where the tilde means that we insert a (—1)% in the
partition function for the corresponding sector.

From the 2D Liouville perspective, different choices of brane configurations and
different sectors correspond to the quantization of different coadjoint orbits. The one

relevant for the application of the A/ = 1 Schwarzian as a low energy theory is

Diff (S*') /OSp(1]2). (2.6.2)

53



The path integral over this space was formulated and studied in [94] and [73]. This
space is parametrized by a bosonic mode f(7) associated to reparametrizations and
a fermionic mode (7). From the 2D perspective it will turn out the relevant sector
is NS. Following the same procedure as in the construction of bosonic branes in
Liouville one can solve the modular bootstrap to find the exact partition function
associated to ZZ-branes in this section [98,99]. For the /' = 1 case it is still given by
the identity character

NS _c _e=1 O4(T
Zy=1 = x0%(q) = Tras (1) g™ 7% = ¢~ =0 (14¢q) 774((7)2«

(2.6.3)

4872
Taking a parametrization similar to the bosonic case ¢ = ¢~ #¢ and the limit ¢ — oo

we obtain

SN=1 (s 1/2 7T2
Ipn=1 = €70 (E) exp<g>, (2.6.4)

where Sév =1 denotes the zero-point entropy of the system. It is possible to see ex-
plicitly from (2.6.3) that because of supersymmetry, we obtain a vanishing zero-point
energy E{]\/ =1 = 0, although the zero-point entropy is still divergent S{]\/ =1 ~ logb.
The modular transformation of this character automatically gives the exact density

of states of the theory

NS > - - _Be - 04(T
Xo" (Q)—/ dP S§ x3(q), g=-ce [132, xp(q) = 4(T)C]_~ (2.6.5)
0

where the modular S-matrix corresponding to the A/ = 1 extension of the Virasoro
algebra is given by

Sy = 4 cosh(2mbP) cosh(%). (2.6.6)
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Notice that the modular transformation turns the NS sector into the R-sector. T aking

the appropriate limit to recover the Schwarzian theory gives a density of states

Zn—1(B) = /O Oizu(k) e PER), du(k) = dk cosh(27k), (2.6.7)

which matches the result found in [73].

The modular bootstrap of A = 1 super-Liouville also provides an expression for
the ZZ-brane wavefunction. Moreover, a generalization of the DOZZ formula which
gives the OPE coefficients of local operators is also known. Combining these two
pieces of information, in the same way as was done for the bosonic case, we can
obtain correlation functions of local operators between the branes '°. The details and
outcomes of these calculations can be found in Appendix C of [51].

The main observable is a N/ = 1 generalization of the one studied in the bosonic

case, which we denote by

J'(m)f'(72)
Ou(11,72) =
) (%sm%mn) — f(m

20
)]> + (fermion bilinears). (2.6.8)

The explicit form of the extra fermionic terms is given in Appendix C of [51]. The

exact expectation value of this operator G§ (11, 72) = (ON='(71, 7)) is given by

2

2e B

B —
Cilnim) = Tpgim

/dk:ldk:g cosh(27ky) cosh(27ks) e TR —(B—T)k3

. (r(% +0Ei(ky — k)T (£ i(ky + ko))

20 + (ky — —k2)> (2.6.9)

where 7 = 115. The two-point function of its superpartner can also be computed, and

we refer to Appendix C of [51] for the result.

10The only interesting correlator is when a NS vertex operator is inserted, as inserting one R
vertex operator yields zero, by (spacetime) fermion number conservation.
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Stress tensor insertions in Liouville theory lead to (the bosonic piece of) super-
Schwarzian insertions that are dealt with completely analogously as in the bosonic
case, and leads to the constant energy <Schb(7')> = % + %3%2 The fermionic piece
Schy(7) analogously arises from the Liouville supercurrent Ty (with R- boundary
conditions along the circle) and has a zero one-point function due to worldsheet
fermion conservation. Its two-point function does not vanish, and is just as the
bosonic stress tensor two-point function constant up to contact terms. The constant
piece is readily seen to be the square root of the corresponding bosonic piece, due to
G2 = Ly in the parent 2d theory. Importantly, it requires the same 1/b* rescaling

to define a finite quantity: Tr(w) — 52Sch;(7), consistent with 1d supersymmetry:

2%

TF(UJ) + GT(U)) — SChf(T) + GSChb(T).
Going beyond the two-point function, one finds again a Feynman diagram decom-

position which is structurally identical to the bosonic case. The spectral measure now

takes the form

du(k) = dk cosh(27k), (2.6.10)

while the vertices for bosonic and superpartner insertions are respectively given by

sl by = Ha i Z BT T gkl h)) ¥ (ks = ohy) (2.6.11)
P k) = (ki + k)T (5 + € £ i(kr — ko)) T (€ £ i(kn + ko)) + (ko — —k2). (2:612)

o0 (20)

The R-matrix should be computed by taking the Schwarzian limit of the U, (0sp(1(2))
quantum group 6j-symbols for four Ramond continuous near-parabolic insertions and
two light NS insertions. While several results are known on this object, the fusion
matrix with this specific configuration is not yet available [100, 101].

Finally, we briefly comment on the possibility of considering other fermionic

boundary conditions. Using either the characters or the known wavefunctions, one
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Sector 2d 1d

NS Trygqho—c/? bosonic
NS Trys(—) g/ Z
R Trpgho—¢/?4 bosonic

R TYR(—)FQLO_C/24 = Witten index = 0| Witten index = 0

Table 2.1: Table of 2D boundary conditions for supersymmetric Liouville versus the
1D theory that remains in the Schwarzian limit.

immediately deduces that the spectral density for both the R- and the NS-sector is
given by
p(E) = sinh(27VE). (2.6.13)

The characters and their 1d Schwarzian limit are summarized in table 2.1. Only one
interesting supersymmetric sector remains in the 1D limit, and that is the one of the
N = 1 Schwarzian theory introduced above. For NS- and R-sectors, no fermionic
zero-mode along the circle survives and these sectors then give non-supersymmetric
1D thermal models, identical to the bosonic theory. The partition function of the R-
sector contains periodic zero-modes along the circle and periodic fermionic boundary
conditions along the Schwarzian thermal circle, identifying it as the Witten index

both in 2D and in 1D.

2.6.2 N =2 Schwarzian theory

In this section we want to identify which sector of N' = 2 super-Liouville generates

the path integral over the orbit
Diff (S'?) /OSp(2]2), (2.6.14)

relevant for the N' = 2 super-Schwarzian theory [94,97].
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The character of the identity representation is given by

e g w2 (1 —q) 63(q,—vy)
(1-yg2)(L—y'gz) 0(7)’

chys(q,y) = Trns(—1) g0 721y = , (2.6.15)

where ¢ = £ =1+ b% A special feature of the N/ = 2 case is that this is not equal
to the partition function of a pair of ZZ-branes anymore. In [102] T. Eguchi and
Y. Sugawara solved the modular bootstrap for N' = 2 super-Liouville, see also [103].
They found that, in order to do this, one is forced to take a sum over spectral flow.
Moreover, the construction only works for rational central charge ¢ =1+ % for any

K, N € Z. The partition function of the pair of ZZ-brane is equal to the extended

character which is defined as

Zn—=x0 (y) = Y " y"chyz(a.y). (2.6.16)
neNZ

We will take N to be finite and K — oo to take the ¢ — oo limit. Taking the limit

T — %%2 and z = a7 with « fixed, equation (2.6.16) becomes

TNy = % > % ¢ (1=tatn?) (2.6.17)
neNZ
This expression coincides with the exact partition function found in [73] if we identify
a to be proportional to the chemical potential. The parameter N corresponds to the
size of the compact boson present in the A" = 2 multiplet. From a path integral point
of view (as opposed to invoking the modular bootstrap) the same happens in N' = 2
super-Liouville, since besides the field ¢ we have another boson which is compact,
usually denoted Y, with a coupling similar to bosonic sine-Liouville theory. Finally,
this parameter also corresponds to the R-charge of the fermions in the SYK model.
As anticipated, we find that all divergences in this limit disappear. We find

EN=? = 0 due to supersymmetry as in the ' = 1 case, but we also find a finite
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S{]\/ =2 = log %. This seems to indicate that even though bosonic

zero-point entropy
and N = 1 Schwarzian theory should be interpreted as a low energy effective theory
of a QM system, the N' = 2 super-Schwarzian might be a well-defined theory by itself.

Following the procedure applied to the bosonic case, we can read off the density

of states of the theory from the modular properties of the identity character. The

modular transformation of the identity character in the NS sector is given by

-1 o o ginh(7Qp) sinh(27 2
chJﬁ(—,z) :/_ dw/o dp (vQp) ( Q)Qchcont(p,sz)

T T oo Q‘sinhw(%#—i@)!
1
+22/ dw cos mw chppg(w,n; T, 2), (2.6.18)
nez’ "3

where Q% = 2K /N. The integral is over the continuous representation with Liouville
momenta p and R-charge w in the R-sector. The second line corresponds to a sum over
BPS states in the R-sector. These can have arbitrary charge w but the AV = 2 super-
Virasoro algebra implies that they have a fixed dimension Afjpg = £ independent of
the charge. We give some more details of these representations and their characters
in Appendix C of [51]. A similar formula also exists for the modular transformation

of the extended characters

1 z sinh(7Qp) sinh(27 %) m
XNS( - ;) N Z / Z%)Q}Q X?ont(pvﬁ;Taz>

mengK Q‘ sinh ( 5
m 1

— = n; . 2.6.19

+— ;; sin m— XBPS<N 2,n,7,z> ( )

At finite NV the expressions look similar but now instead of having an integral over
charges we have a sum over discrete charges. This was one of the original motivation
to take spectral flow into account, since having a continuum of charges does not seem

physical.
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Before writing down the density of states as a function of energy and charge we
will restrict to the case & = 0 to match (2.6.19) with the expression found in [73].
If we take (2.6.19) in the appropriate limit, and perform the integrals over w, using

some results left for the appendix, we directly obtain

2cosmn [ V1 —4n2l(2my/(1 —4n?)E
pa:O(E)_Zl—zm?( (\/E |

neZ

+ 5(E)) . (2.6.20)

where the integral over the Bessel function comes from the integral over non-BPS
states and the delta function comes from the BPS states. While this is obtained
in [73] by performing an inverse Laplace transform, in our approach both terms have
a physical origin. For arbitrary «, (2.6.19) gives the following density of states as a

function of both energy and charge

N-1
2 o m
+ Nm§:1 /0 dE sinw% S(E) e PP yR-3.  (2.6.21)
From this expression we can obtain the density of states p(E, Q). If we redefine

the chemical potential such that charge is either integer or half-integer y — 3" and

shift m in order to get a dependence y? then we obtain

peont(E,Q) = 1 sinh2ry/E — By (Q)) O(E - Ef (Q) + (+e —), (2.6.22)

SN FE
_ 2 Q
pasc(B.Q) = O(E) —cost— O(2/Q] - N), (2.6.23)

where ©(x) corresponds to the Heaviside step function and we defined the two charge-
dependent threshold energies as following Ej (Q) = (% + %)2.
The modular transformation gives us explicit expressions for these densities which

would be hard to find otherwise, agreeing with the DH calculation [73]. The zero
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energy contribution from BPS states appears only for a finite charge range 2|Q| < %
The continuous part of the spectrum consists of two terms that start contributing
at different energies. The lowest one gives the minimum energy possible for the
continuous spectrum with a fixed charge, which is

Fuin(Q) = (% _ i>2 (2.6.24)

Finally, depending on whether N is even or odd, the sum over charges is either over
integer () or half-integer () respectively.
Having understood the relation between Liouville theory and the Schwarzian, we

will derive correlators in the next chapter.
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Chapter 3

Solving the Schwarzian Theory:

Part 11

In the previous chapter we describe the construction derived in [51] to relate the
Schwarzian correlators to a limit of 2D Liouville CFT, and summarize the main
results.

In this chapter we will present the details regarding the derivation of the correla-
tors. We will begin by deriving time ordered two- and four-point functions in section
3.1.1.

Then, using known properties of Virasoro blocks we will derive the OTOC of the
Schwarzian theory in section 3.2. This is important in its own right since it will allow
us to understand gravitational bulk scattering for the Jackiw-Teitelboim dilaton-
gravity theory in nearly AdS,. In particular, we will propose a non-perturbative
generalization of the 2D version of the Dray-"t Hooft S-matrix by identifying it with
SL(2, R) exchange algebra (through its 6j-symbols) in section 3.3. We check this
correspondence by comparing the large C' semiclassical limit with the shockwave S-

matrix.
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We consider a final application of the exact correlators derived in this chapter by
studying the large C' and large ¢ limit of time-ordered correlators. In section 3.4 we

give a simple picture of the bulk geometric backreaction due to such heavy operators.

3.1 Schwarzian Correlators

3.1.1 Two-point function

First we will focus on the expectation value of a single bi-local operator Gy(1, 72) =
(Oy(71,72)), which is a natural observable as explained in the previous chapters. This
corresponds to the gravitational dressing of a two-point function of local operators.
Based on the proposal of [51] explained above

20 (71,72)

Insertion of Oy(1,72) in Schwarzian < Insertion of V, = e in Liouville

we will compute the one-point function of the operator V, = e*#("1:72) hetween ZZ-
branes. Via the method of images, we can map this one-point function to the chiral
two-point function on a torus. There is no known closed expression for this two-point
function for finite c. Nevertheless we will be able to compute it in the limit relevant
for the comparison with the Schwarzian theory.

Using the known wavefunction (2.4.21) of the ZZ-branes and approximating the

Ishibashi states by primary states we can write (dropping overall constant prefactors)

71

(22|Vi(z,2)|22) = / APAQ W, (P Us(Q)(PIVi(z = et 2 = e #)]Q).  (3.1.1)

We are taking the limit b — 0 in which the spatial circle in the closed string channel
is going to zero. This enables us to use the minisuperspace approximation for the

Liouville CF'T wavefunctions, which in effect amounts to a truncation of the full CFT
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to the zero-mode. Thus we can compute the correlation function in the following way
(ZZ2\V)|2Z) = / dPdQ W, ,(P)U ;,(Q)(P|e=="H20=mH| ), (3.1.2)

where the external states are associated to a wavefunction of the Liouville zero mode

Up(9) = (|P) = ﬁ Kaipp (€9) . (3.1.3)

This state has energy E = P?/b%. If we call P = bk, and Q = bk, the integral that
gives the amplitude between states | P) and |@Q)) matches exactly with the b — 0 limit
of the DOZZ formula [104, 105]

T(C 4 i(ky + ko))
(2iks)T(2ik1 )T (20)°

(P = bhale™1Q = bhs) = [d6 V() Wo(0)e™ = (3.1.4)

Combining this result with the known exact form (2.4.21) of the wavefunction of
the ZZ-branes and dividing by the partition function, we obtain the following formula

for the Euclidean two-point function of the Schwarzian theory

) ; 3 T(0 ik % k)
v _ o) —Ir| gk~ (8] 5% (€4 ik + ks
Gy (71, 72) = /dn(h)dﬂ(b)e ¢ © —RoPTEn (3.1.5)

where 7 = 715, du(k) = dk*sinh(27k) and the + signs mean that one multiplies the
['-functions with all combinations of signs.! In this final answer we reinserted the C'
dependence but in the rest of this chapter we will go back to units in which C' = 1/2.
This expression is valid for —f < 7 < f and needs to be periodically continued
beyond this interval. This was done for Euclidean time, to obtain the Lorenzian two-
point function we need to Wick rotate 7 to imaginary values which will be discussed

shortly. If the Schwarzian is thought of as a low energy limit of the SYK model then

(0 i(ky ko)) = D(€+i(k + ko) )T (€ + ik — k) )T (€ — ik + ko)) T (€ — ik — k2)).
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Figure 3.1: Left: Numerical evaluation of the 7 — 0 limit of 6(G”(7) — G*°(7)) (blue
dots), which coincides with ({tan %(T), 7}) (full black line). Right: Exact two-point

21

function for £ = 1/4, and different values of 3. We indicate the parameter g=2 = 3

¢ = 1/q is the conformal dimension of the fermions in the theory, if the interaction
involves ¢ fermions.

In the remainder of this subsection we will check this result in special limiting
regimes. First we can check that (3.1.5) behaves for 75 — 0 as G?(ﬁ, ) =152+ ..
This is the expected behavior. We can also take the zero-temperature limit 3 — oo.
In this limit, our two-point function reduces to

e D2+ iR)T2(C — i)
22 [(20) ’

G2y 7) = / dk? sinh (27k) e (3.1.6)

which coincides with the result found in [71,72]. In particular this implies that in
the zero-temperature limit the two-point function at large times 7 — oo behaves as

a power-law independently of ¢ as

- re?t 1
G (11, 72) = #()%) m-f- y T 00 (3.1.7)
12

This behavior matches with the numerical computation done in [71,72] using the SYK

model.
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For the case £ = 1 we can go further, since we know that the next-to-leading order

term for 75 — 0 is given by the Schwarzian itself:

T/ f(11) f'(72) 2_ 1 1 (1)
(ﬂsin%[ﬂm—fmﬂ) S et T T (3.18)

This will give us a non-trivial check on the temperature dependence of the exact
two-point function. We can obtain the expectation value of the Schwarzian by taking

derivatives of the partition function

<{tan WfB(T) : T}> = 25_722 + % + const. (3.1.9)

The constant factor depends in part on the zero-point energy. We can eliminate this

factor by substracting the zero-temperature limit of the correlation function

Gy (1) — G°(7)
1/6

o2 3
= — + —. 3.1.10
W TB (3.1.10)

We checked numerically that our formula matches this expectation, as shown in Figure
3.1.

We can also take the weakly coupled (large C') limit. In our conventions, since
we are keeping C fixed, this limit is equivalent to taking f — 0 with 7/ fixed. In
this regime, quantum corrections are suppressed and correlation functions should be

well-approximated by replacing the saddle-point solution

0% (7, 7) = <Bsin £T> . (3.1.11)
B

We have checked that our exact result (3.1.5) indeed has this property, see Figure
3.1. In the next chapter we will focus on the semiclassical limit of the results found

in this section and we will present details of how to derive (3.1.11).
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Real-time two-point function and the thermofield double

To conclude this section, we will make some remarks on the real-time continuation
and physical application of these results.

The two-point function (3.1.5) has a branch point at 7 = 0 and two branch cuts
running on both sides along the real axis. This is because no spacelike separated
points exist in 0+1D. This can then be periodically continued along the entire 7-axis

(Figure 3.2), with periodic branch cuts.

't 't

-ip -ip

L e T A e e

Figure 3.2: Left: Analytic structure of the two-point function. The green line repre-
sents the Euclidean regime. Time-ordered and anti-time-ordered Lorentzian two-point
functions can be found by analytically continuing these expressions to respectively
t £ ie (blue lines). Right: Relevant analytic continuation for the thermofield double
two-point function.

In real time, two possible continuations exist by setting it — ¢ &+ ie, where the
+ sign is for 7 > 0 and the — sign for 7 < 0. These correspond to Lorentzian time-
ordered G (t1,t2) and anti-time-ordered two-point functions G (1,t2) respectively,

for t; > t5 given as expectation values of the following bilocal operators:

Of (t1,t2) = (Ou(t1)Ou(ta)) cpr
(3.1.12)
O, (ti,ta) = (Oult2)Ou(t1)) cpr »
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. _ S Fe) ) - . +
where O (t1,t2) = ( T 3 (7)1 (t2)}ﬂ€> . The explicit expression for G (t) reads

(ignoring the constant prefactor, and with ~,(k1, ko) as given in equation (2.2.7) )

GE(t) = / dpa(key ) dpu(ky) R~ (PHORS o —ehi—ek3 o (F) fe))? (3.1.13)

with Gaussian damping introduced by €. The € — 0" limit is well-defined for both
cases, but in general different. This means the commutator of time-separated opera-

tors:

Of (t1,t2) — Oy (tr, t2) = ([Ou(t1), Ou(t2)]) cpr (3.1.14)

does not vanish in expectation values:

G/ (t12) — Gy (t12) = (OF (t1,t2) — Oy (t1,t2)) # 0. (3.1.15)

This is as expected since all points are timelike separated on the 1D line. Likewise,
one can consider other real-time two-point functions of interest, such as the retarded
correlator: G (t1,t2) = (Gf (t1, t2) + G, (t1, t2)) O(t12).

The long-time behavior of these correlators is easy to determine due to destructive

oscillations of the k;-integrals, and gives (ignoring irrelevant prefactors)

1 1
3/253/2. (3.1.16)

Gi) = EEGEm

At intermediate times (or zero temperature) for which 1 < t < 8, G7(t) ~ 1/t3/2
and at long times ¢ > £, GF(t) ~ 1/t>. In either case, the correlator decreases
monotonically to zero. Hence no Poincaré recurrences occur at very long times. The
Schwarzian theory is rather peculiar from this perspective, as it has a continuum of
states, thereby foiling the standard argument for recurrences, but its density of states

or entropy do not exhibit a volume-divergence. Instead the divergence in the entropy
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Figure 3.3: Two-point left-right correlator in a thermodouble system. The Schwarzian
path integral contains time reparametrizations of the boundary lines that are con-
strained to start and end at the same points as the eternal black hole time coordinate.
A sample clock-ticking configuration is drawn.

arises due to an infinite Sy (which was irrelevant for our entire discussion), signaling
that one needs to go back to its UV completion (e.g. SYK) to understand the very
long time behavior of the theory.

Replacing 7 — T—{-g has the effect of moving one operator insertion to the thermal
copy of the thermofield double, which in the small coupling (small C') limit is just the
eternal AdS, black hole (Figure 3.3) [21]. We note that our discussion here does not
assume a holographic bulk; in a sense we will see what can be deduced of the alleged

bulk dual purely from the Schwarzian system. In real time
(TFD| O (t1) Of (t2) ITFD) = (O; (£ — t1) Ou(t2) )y = Oe(2 — t1,12) (3.1.17)

(the minus sign in front of ¢; on the right hand side corresponds to time running
oppositely in the double, but can be ignored in this discussion) where the thermofield

double state is

ITFD) = \/_ Ze L @) g (3.1.18)

When performing the Lorentzian real-time continuation, no branch cuts are en-
countered and G and G~ coincide (see Figure 3.2). In particular the commutator

vanishes, confirming that all points on opposite sides of the thermofield double are
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spacelike separated. This indicates that the bulk spacetime has a horizon, and that
looks identical to the eternal black hole space-time [21]. It is interesting that the
causal structure of the dual bulk can be decoded from these correlation functions.
Quantum fluctuations of the time reparametrization f(7) in themselves are not suf-
ficient to allow communication between both sides. This is of course expected, as to
make the wormhole traversable, one would need to add an explicit interaction con-
necting the two copies of the thermofield double [106] [107]. Ignoring the prefactors,

the real-time thermodouble correlator can immediately be written down:

GER(t) = / dp(k)dp(ks) e (2 Hit)E—(5-it)k3 MCEICE) (3.1.19)
['(20)
Taking the small temperature limit, one obtains
53/2
GER(t) — — 0. (3.1.20)

G-y G

This behavior corresponds to the disappearance of left-right correlation in the ex-
tremal black hole limit, generalizing this statement from just the classical saddle

point to the full quantum gravity regime.

3.1.2 Four-point function

Next we consider the time-ordered four point function, given by the two-point function

of two bi-local operators.

Gty (11,72, 73,71) = (O, (11, 72) O, (73,74 ). (3.1.21)

There are different choices for how to order the four different times. Here we will

assume that the time instances are cyclically ordered via 71 < 79 < 73 < 74. In the
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diagrammatic representation of the amplitudes, this ordering ensures that the legs of
the two bi-local operators do not cross each other, as indicated in the left-hand side
diagram of Figure 3.5.

We will compute this four-point function by applying the dictionary between the
Schwarzian and 2D Liouville CFT. This leads us to consider the following two-point

function of primary operators between two ZZ-branes
G@152 = <ZZ’W1(21,21)W2(22,22)|ZZ>. (3122)

As explained above, this can be interpreted as a four point function (3.1.21) in the
Schwarzian theory if we identify z; — 7, Z; — 71, 20 — 73 and Z; — 74. For the time-
ordered operator, the locations (z1, Z;) and (z2, Z3) are chosen to be timelike separated,
as indicated on the left-hand side in Figure 3.4, so that their past lightcones do not

intersect.

BN ZEVEN

T4 T To T3 T1 T3 T2 T4

Figure 3.4: The four-point function in the Schwarzian theory corresponds to a two-
point function of two bulk Liouville vertex operators. If the two bulk operators are
timelike separated (left), the correlation function and the end-points of the two bi-
local operators are time ordered. If the two bulk operators are spacelike separated
(right), the legs of the bi-local operators cross each other. Both are thus related by the
CFT monodromy matrix that relates the timelike separated and spacelike separated
two-point functions.

As before, we can go to the closed string channel and write the four point function

as
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0 T2 T4

k‘4 k4

Figure 3.5: The diagrammatic representation of the two types of four-point functions.
The left diagram depicts the time-ordered four-point function (3.1.21) with 7y < 75 <
73 < 714. The diagram on the right represents the out-of-time ordered four point
function: in contrast with the geometric ordering, we assume that the four time
instances are still ordered as 7 < 7, < T3 < T4.

G, = /deQ \I’TZZ(P)‘IJZZ(Q) (P|Vi, (21, 21) Vi, (22, 22)| Q). (3.1.23)

In the Schwarzian limit we are allowed to replace the Ishibashi states ||P)) by the
corresponding primary states |P). The correlation function on the right-hand side is
computed on the sphere and can be expanded in conformal blocks in the V;,Vy —
Ve, Vp channel.

We thus arrive at the following representation for the time-ordered four point

function in terms of 2D CFT data
<P|w1(21,51)w2(22,22)|62> = (3.1.24)

/dPs C(_P7‘€17Ps) C(_P87£27Q> FPS [% 8] (Z1722) ‘FPS [% 8} ('21722)

where C(1,2,3) is the DOZZ OPE coefficient. The cross-ratios in these formulae are
given by z = 21/2 and Z = Z;/Z,. The conformal blocks are defined by the following
normalization

Fr[8 6] () = 20720 0 (1 + ) (3.1.25)

where the ... denote higher order terms in z and z. To take the Schwarzian limit,

we set P = bky, Q = bky and send b — 0, while simultaneously sending z — 0. In
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this limit the conformal block becomes trivial (As we will see in the next section,
the 2D conformal blocks exhibit non-trivial monodromy properties under analytic
continuation. These will turn out to be an essential ingredient in the computation of
out-of-time-ordered correlation functions). Using the same notation as in the previous

section, we obtain?

Gy, = / dk?dkidk? sinh 27k, sinh 27k, sinh 27k, (3.1.26)

(g & iky & iks) T(0y % iky & iks)
T(20,) T(205) '

% e_k%(7'2_7'1)_ki(T4—7'3)—k?(ﬂ—T2+T3—T4+T1) I

This integral expression is only valid in the regime 74 > 73 > 75 > 7.

The formula (3.1.26) is identical to the result (2.2.11) quoted in the Introduction.
Again, it is possible to disentangle the full expression (3.1.26) into propagators and
vertices. Or conversely, applying the Feynman rules outlined in section 2.2 to the
diagram on the left in Figure 3.5, we directly obtained the full result (3.1.26) for the
time-ordered four-point function.

For later reference, we summarize the above calculation of the four point function

by means of the following diagram:

Q Q
— 0 —
Goe, = / dPdQdP, U}, (P)U;,(Q) x |p, x P
—X 0y —
P P

As indicated, the insertion of the ZZ states splits the thermal circle into two halves,

each given by a chiral conformal block of the 2D Virasoro CFT. Each half has the

2The zero-temperature limit factorizes as Gy, = GGY. This zero-temperature result is in
agreement with [71,72]. This factorization would not have happened had we computed the time-
ordered correlator (Oy, (11,74) Oy, (12, 73)).
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> T4 — B B
TQ Ty = 4+Zt1, T4 — 4+Zt2

)T n=-84it;, m=-C+4it

T1

2L

Figure 3.6: Time ordering prescription for the out-of-time ordered four point function
at finite inverse temperature . Note that the time operator insertion at 73 acts
before the operator insertion at 75, even though in real time t; = Im(7) is earlier
than tz = Im(73).

same intermediate momentum F;, and all momenta are integrated over. In the figure,

we have absorbed the OPE coefficients into the definition of the conformal blocks.

3.2 OTO four point function

In this section we consider the out-of time ordered four-point function

G?jgo(ﬁ, T, T3, T4) = <(9@1 (11, 72) Oy, (73, 7'4)>OTO (3.2.1)

The OTO prescription can be implemented in different ways. One convenient choice
is to complexify the time coordinates, and choose the real and imaginary parts as

follows

71:—§+it1, Ty = §+it1, 7'3:—§+7:t2 T4:§+it2, (322)

and consider a time contour prescription as indicated in Figure 3.6.
To compute the OTO correlation functions, one could try to explicitly perform the
three integrals in equation (3.1.26) for the time-ordered correlation function, write

Gy,e, as an analytic function of the four times 7; and then perform the appropriate
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analytic continuation. However, at present we do not know how to perform the
integrals explicitly, so this direct approach is not practical. Luckily, the 2d perspective
of the Schwarzian theory as a limit of 2D Virasoro CFT theory gives another way to
solve the problem. In this section we will combine the calculation presented above
with the ideas of [74] to compute the exact OTO four-point function. Technical details
are delegated to Appendix 3.6.

Most recent studies of OTO correlation functions in (putative) chaotic systems
have focused on the time-dependence. However, as originally pointed out in [74], to
exhibit the dynamical mechanism that underlies the Lyapunov behavior, it is equally
informative to study the four-point function in Fourier space, in which one fixes the
energies of the intermediate states. The latter approach is also more naturally incor-
porated into our construction of the Schwarzian amplitudes in terms of the momentum
space amplitudes.

Before we turn to the derivation, let us first write out the explicit form for the OTO
four point function, as follows from the application of the Feynman rules presented

in section 2.2 to the diagram on the right-hand side of Figure 3.5:

Gpil = / dk?dkidk2dk? sinh 2mk, sinh 27k, sinh 27k, sinh 27k,

D+ ika £ k) D( + ik £ k) D(ly + iky £ ik)D( + ik £ i)
T'(20,) T(265)

(3.2.3)

kq £2 7’62(737T1)7]62(7'377‘2)7k2(T4772)7k§(,37T4+T1)
X Rkskt[kl Kl} X e ™M t 4

The essential new ingredient in this expression is the R-matrix Ry g, [ ],z‘l‘ fﬂ Its ex-
plicit form is given in Appendix 3.6. By gauge/gravity duality this quantity describes
the S-matrix corresponding to scattering of particles close to the horizon of a black
hole. In other words, the integrand is already capturing the information we need to

relate the out-of-time-ordered correlation function to gravitational properties of the
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event horizon. In the remainder of this section, we will explain how the above result
arises from the correspondence with 2D CFT, how to extract the time dependence
and Lyapunov behavior, and how it matches with 2 — 2 scattering via gravitational

shockwaves.

3.3 The R-matrix

The OTO four-point function in the Schwarzian theory corresponds to a two-point
function of two bulk Liouville vertex operators that are spacelike separated, so that
the past lightcones of the two operators cross each other as indicated on the right in
Figure 3.4. From the point of view of the 2D CFT, this means that one of the chiral

conformal blocks has been analytically continued to an OTO conformal block

Goty = (Z2Z|Vi (21, 21)Viy (22, 22)| 2 Z) oo, (3.3.1)

_ / dPdQ Wy (P)U72(Q) (P|Vi, (21, 51)Viu (22, 5)|Q) oo

where the integrand factorizes in terms of CFT kinematic data as

(P|Vi, (21, 21)Viy (22, 22)| @)oo = (3.3.2)

/dPs C(_P7‘€17Ps) C(_P57£27Q> FF%TO [?3 8} (ZIJZ2) fPs [?31 222] (21722)

Here the OTO label indicates that we have applied a specific monodromy transfor-
mation to the 2D conformal block. The effect of this monodromy transformation in
the Schwarzian limit can be found in the following way.

The argument of the s-channel conformal block is z = z1/z9, which goes to zero
in the time-ordered case. Inserting the two operators in opposite order gives 2’ =

1/z = z3/21 — oo. The 2D conformal block behaves non-trivially in the limit where
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the cross ratio becomes infinite. Even though we do not know the explicit expression
for the full conformal block, we can use the R-matrix transformation of Ponsot and
Teschner [75]

el = [ ap, R (23] Fal2310/2) (333)

to extract its exact behavior in the large cross-ratio regime z' — oo by using the
fact that the conformal block inside the integral in (3.3.3) becomes trivial for z =
1/2" — 0. Inserting the transformed conformal block into (3.3.1) and (3.3.2), we
obtain the momentum integral representation of the out-of-time-ordered four-point

function. The total calculation procedure can be graphically represented as

Q Q
41
Gy = /deQ Wy (P)Wiy(Q) % /dPs P, XPS (3.3.4)
o
P P
Q Q
0
= / dPdQ Wl (P)U,(Q) x / dP,dP, Rpp, |P, P
Lo
P P

Our remaining task is to compute the appropriate large ¢ limit of the crossing
kernel of 2D CFT conformal blocks. This calculation is performed in Appendix 3.6.
The 2d crossing kernels, i.e. the F-matrix and R-matrix, are explicitly known and
expressed in terms of U,(s[(2,R)) 6j-symbols [75]. Perhaps unsurprisingly, we will find
that in the Schwarzian limit the Ponsot-Teschner result for the quantum 6j-symbols
reduces to known expressions for the classical 6j-symbols of SU(1,1).

The R-matrix and fusion matrix of 2D Virasoro conformal blocks are related via

Rasat |:043 0421| — eQTri(A2+A4—AS—At)F a3 as (335)

a4 o Qs [a4 041} .
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The F-matrix, in turn, is expressed in terms of the quantum 6;j-symbol via [77]

(e, o, ) C( 0y, i3, i) {oq g O

Favay [ 22 22] = |S4(204) S (201,) |\/ }b, (3.3.6)

054,()[37058 C<O_ésua27051> Qa3 Q4 Qi

where Sy(z) denotes the double Sine function and C'(as, s, ) is the DOZZ three
point function [104,105]. In the 1D limit, we need to take two a’s to be real and
proportional to a; = bf; with /; finite and the other four of the form a; = % + 1bk;

with k; finite. Specifically, we will choose

o = glb, Qg = % + ibkz, Qg = % + ibks,
3 = Egb, gy = % + ibk4, ay = % + Zbk?t

For the application to the Schwarzian theory, we must further take the classical limit

of the quantum 6j-symbols

{El k2 k} = lim 27b° {0‘1 - O‘s}b. (3.3.7)

U3 ky Kyt b—0 a3 Qg oy

Returning to equation (3.3.3) and using the above formulas, we are now obtain
an explicit expression for the large z limit of . The conformal block in the right hand
side again becomes trivial since 2/ = 1/z — 0. The answer can be written as (see

Appendix 3.6)

FOL) = [an e Ry (2]
(3.3.8)

F(€1 + Z]i]4 + Zl{?t)F(gg + ’lkg + Zk't) { 61 kg ks}
U3 ky Ky

T(0; + iky & iky) (s + iky + iky)

= /dk‘f sinh 27k, e~ %

78



with the 6j-symbol as defined via (3.3.7). Note that in the 1D limit the dimensions
of the operators that appear in the phase factor in equation (3.3.5) are all equal to
57 +O(1/c). The phase factor thus becomes trivial.

To obtain the out-of-time-ordered four point function we make the above substi-
tution inside of the integral expression (3.3.2). This leads to the final expression given

in equation (3.2.3), where we define the Schwarzian R-matrix via

0y K
kg €27 __
Bead 101 ={ 0 o} (3.3.9)

With this definition, the R-matrix is naturally a unitary operator relative to the

spectral measure du(k).

3.3.1 Schwarzian 6j-symbols

In this section we present the explicit expression for the Schwarzian limit of the
6j-symbols of the Virasoro CFT. A general expression for this quantity at finite
¢, and its relation with the monodromy of the 2D conformal blocks, was found by
B. Ponsot and J. Teschner in [75]. For our purpose, we need to take the large c
limit outlined above. Details of the calculation are given in Appendix 3.6. After
some straightforward algebra, one arrives at the somewhat daunting looking integral
expression (3.6.17). The integral can be done by the method of residues. The final

result can be organized in the following symmetric expression

{51 kg ks

ls b K } = /T (b, £ iky + iky)T (03 % iky £ 1k )T (€1 £ ik =+ k)T ((s £ kg £ ik,)
t

X W(l{fs, k?t, 0+ ik4, ly — ik4, 63 - /l.kQ, 63 + ikg), (3310)
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where we define I'(z £+ y £ 2) as a shorthand for the product of the gamma function
with four combinations of signs. The function that appears in the right hand side is a
rescaled version of the Wilson function introduced by W. Groenevelt [78,79]. The orig-
inal function introduced in [78,79] is denoted by W(«, 3; a, b, ¢, d) = ¢o(5; a,b, ¢, 1—d)
and it is proportional to a generalized hypergeometric function ;Fg evaluated at z = 1
whose coefficients depend on «, £, a, b, ¢ and d.

Given that the above expression was obtained as a limit of the quantum 6j-symbol,
it is natural to suspect that the result can be interpreted as a classical 6j-symbol.
The above indeed matches with the 6j-symbol associated to the Lie algebra su(1,1)
found by W. Groenevelt [78,79]. The heavy operators with label k; correspond to
the principal unitary series representations of su(1,1), while the light operators ¢;
correspond to the discrete series.® The expression (3.3.9) enjoys tetrahedral symmetry
that acts by permutations on the six spin labels.* In addition, the 6j-symbols satisfy

the unitarity condition

/dk:sp(ks){ 2 :z Zt}T{ 2 IZ Z} — @5(/@— k), (3.3.11)
with p(k) = 2ksinh(27k), which underscores the proposed holographic interpreta-
tion of the R-matrix (3.3.9) as describing a gravitational scattering amplitude in the
bulk. This unitarity condition is also responsible for the crossing symmetry of the 2D
Liouville four point function [75].

Wilson functions also appeared recently as a fusion matrix of conformal blocks
in a toy-model CFT with SL(2,R) symmetry [108] [109]. It would be interesting to

understand how these two approaches are related.

3Note that even though SU(1,1) and SL(2,R) are isomorphic, their tensor categories are different
and they have different 6j-symbols.

4The classical 6j-symbol of any Lie group can indeed be written as the expectation value of six
Wilson lines, glued together into a tetrahedron, of the corresponding 2D BF-gauge theory.
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3.3.2 Gravitational Scattering and Chaos

In this section we will present evidence that our following proposal of the full gravi-

tational S-matrix in the Jackiw-Teitelboim model
R — Matrix <> Gravitational S — matrix (3.3.12)

is correct. This is done in detail in [52]. In [52] we show how time ordered correlators
coincide with free propagation in the bulk when one takes the semiclassical limit of ¢
fixed and C' large.

In particular the Fourier-space amplitudes of time-ordered correlators correspond
to bulk-to-boundary propagators of free fields in AdS,. This is true for an arbitrary
correlator as long as it is time-ordered. Changes in F/(k) are related to energies as
measured by an asymptotic observer. This is true in the Jackiw-Teitelboim approxi-
mation of dilaton-gravity. Fields only interact through the Schwarzian gravitational
dressing which is suppressed for large C'.

For example take the two-point function. The exact answer was given in equation
(3.1.13). After labeling the integration variables as k3 = E and k¥ = E + w the

real-time two-point function can be written in the form
GF(t) ~ /dEp(E)e_ﬂE/dweiwt|AE(w,€)|2, (3.3.13)

where we include in the amplitude Ag the density of states p(E + w) and the gamma
functions coming from the OPE coefficients in equation (3.1.5). If we take w < E
then [Ag(w, 0)]* ~ T (¢ £ 2#5) This amplitude Ag(w, ¢) is the Fourier transform of
a bulk-to-boundary propagator.

As we reviewed in the introduction, OTOC are highly sensitive to gravitational

interactions through shockwaves. Therefore we expect to see the semiclassical S-
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matrix emerge for these quantities. We will focus on this quantity in the following
sections.

We have shown that the characteristic behavior of the OTO correlation function
is governed by an R-matrix in the form of a 6j-symbol. This R-matrix is a unitary
matrix, that incorporates the gravitational bulk scattering amplitude in momentum
space. In this section we summarize how one can extract the characteristic Lyapunov
exponent from the R-matrix. Our discussion here closely follows the derivation given
in section 1 of [74] for case of AdS;/CFT,.

The R-matrix depends on six parameters, {1, (3, ks, ks, ks and k;. Following [74],

let us label the four momenta as follows

k’QZM, k‘SZM—FOé,
(3.3.14)
k4:M+w, kt:M—i—ﬁ

We will assume that we are in the regime M > «, 8,w > f1,{3. So to isolate the
leading order behavior, we will set ¢; = {3 = 0. In this notation, the explicit integral

formula for the R-matrix takes the form

D(t — 2iMao)T(u + 200

_ [ du Tl (i — u)'(i{a —w) —u)'(u —i(a+ 5 —w))
Hag _/c 27 F(u—ia)(u—ia+iw)

) \/ D(—ie)T (i) (i(w — a))T(—i(w — §)) \/ D(2iM)T(—20M )T (20Mpso )T (—2iMp 1))
[(ia) (=) (—i(w — )T (i(w — B)) || T'(=2iMq)I'(2iMg)I'(—2iMaqe)(20Mp40)

(3.3.15)

where 2iM, = 2iM + i«, etc.

How do we extract physical information from this expression for R,z? Since
in the Schwarzian QM, it represents an exchange property of the momentum space
amplitude, it is useful to label the operators by means of their momentum, or rather,

by means of the amount they shift the momentum of the state on which they act.
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Figure 3.7: The R-matrix describes the gravitational shockwave interaction between
an infalling and outgoing matter perturbation near a black hole horizon. The particle
trajectories divide the space-time into four regions.

Concretely, we can define the action of a momentum space operator A, via the
algebraic rule

Ay M) = v4(w) M+ w), (3.3.16)

where |M> denotes an energy eigenstate with SL(2,R) spin j = —%+iM, with y4(w) =
Yo, (M, M+w) the vertex function. This algebraic rule allows us to multiply operators
and keep track of the time dependence through the usual Schrodinger evolution. This
prescription works as long as the operators are time-ordered.

The R-matrix (3.3.15) prescribes what happens if we exchange two operators and

place them in out-of-time order. Schematically,

By—aAa[M) = Rag Ay_g Bs |M). (3.3.17)
B

Here 37 ; is short-hand for [dBp(M+3) with p(M+5) = (M+f3) sinh(27(M+f3)) the

spectral density of the intermediate state [M + (3).
From the bulk perspective, this exchange algebra expresses the physical effect of
an ingoing perturbation created by B, _, (the ‘butterfly’) on an outgoing signal A,
as indicated in Figure 3.7. To see the associated Lyapunov behavior, we need to
translate the scattering phase to the time domain. This is done via the standard

rules of geometric optics, which is justified since in the regime of interest, the phase
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of the R-matrix is rapidly changing with frequency. Focusing on this phase factor,
we write

Rop = e'los. (3.3.18)

Next, we localize the operators A and B in time by considering them as wave-packets
with a given approximate frequency. In the leading order stationary phase approxi-

mation the exchange relation then takes the form
Bwfa(tl) Aa(tg) = 6”“3 Aw,,g(gg) Bﬁ(gl), (3319)

where the value of 3, t, and t; on the right-hand side are fixed by the stationary

phase criterion. Let us introduce the time differences
to =ty —t1, ts =ty — 1. (3.3.20)

These time differences are linked through the frequency dependence of the scattering

phase R,p = e/e# via the Hamilton-Jacobi (geometric optics) equations

0L 1 0l _Olas 1 Olag
*" 9E,  2M da T 9E;  2M 95

(3.3.21)

which follow from the fact that both sides of the exchange relation (3.3.19) have the
same dependence on « and (3.

The prediction from bulk gravity is that the time delay £, — t5 of the outgoing
signal A due to the perturbation B grows exponentially with the time separation
to — 11

- 2
Ty —ty ~ 6/\1v1(t2—1t1)7 Ay = B_W’ (3‘3'22)
M

>The phase I,z is the generating function of the canonical transformation between the initial and
final canonical variables (E,,t,) and (Eg,tg).
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with Sy the temperature of the black hole dual to the state \M> We have

2

S(M) = 2aM, E(M) = M?, By = =&
M

Ant =2M. (3.3.23)

Can we extract this from the exact expression (3.3.15) for the R-matrix?
We have thus far not been able to find a precise enough way to evaluate the
integral 3.3.15. So we will proceed by making a plausible assumption, in the form of

the following
Ansatz: in the semiclassical regime, (3.3.15) is dominated by the residue at u = 0.

The pole at v = 0 appears due to the I'(u) factor in the integrand. The above
hypothesis is supported by several pieces of evidence. First, a naive application of
Stirling and the stationary phase approximation indeed points to the existence of a
saddle point near u = 0. Secondly, as we will see shortly, via this Ansatz we can make
contact with the semi-classical analysis of [74], which applies in the regime of large ¢
and large conformal dimensions A — % of order c. We leave the further justification

of the above simplifying Ansatz for future study.

L(i(2M+a))

m) ~ 21 10g(2M), we find

Evaluating the residue and approximating log(

that

L) @B)T(—i(w — a))I(—i(w — §))
I(—ia)l(=iB)I (i(w — o)L (i(w = 5))

Rg;:o) _ efi(aJrﬁ*W)tM F(z(w —a— ﬁ)) \/

with ¢y ~ log(2M). Now using Stirling gives

I.p ~ aloga + flogf — (w—a)log(w—a) — (w—B)log(w— )

— (a+ B —w)log(a+ —w) — (a+ - w)tg, (3.3.24)

which is identical to the formula for I, derived in [74] from both 2+1D gravity

and from 2D Virasoro CFT. Using this expression for I,5 and the geometric optics
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relations (3.3.21) we can now compute the time difference ¢4 as functions of a, w, and

the time difference ¢,

1 a+f—w 1 a+f—w
to —tn=—1 Dty —tp=—1 : 3.3.25
LD Og(Za(w 04)> R W Og(ZB(w—ﬁ)) ( )
or equivalently [74]
B =w—a+2a(w—a)eMla=tr) (3.3.26)
a = w—PB+ 28w — B)eMmlts=tr), (3.3.27)

These two relations are identical to the ones derived for the shockwave scattering
process near a black hole in 2+1D AdS space-time [26], and also match with the ex-
pected behavior in the AdS, Jackiw-Teitelboim model. Equation (3.3.26) determines

B and tg as a function of a and the time difference ¢, =t — t;. One finds

) 1 - 2
b—t= 1 log(w O‘) ~ 22 ulta—ti—tr) (3.3.28)

M B Am ’

which exhibits the expected maximal Lyapunov growth.

3.3.3 Semiclassical Limit of OTOC

In this section we will repeat the previous analysis at the level of the time dependence
of correlators. The OTO four-point function can be expressed in terms of this bulk
S-matrix and the asymptotic wave functions as reviewed in [52] and explained in [47].

The integrals can be computed explicitly, with the result [47] ©

(ViW3VaWy)

= 220U (204,14 20, — 204,1/2), 3.3.29
(ViVa) (WsWo) (26 126 1/2) (33.29)

SEven though it is not obvious from this expression one can verify using the properties of the
hypergeometric function U(a, b, z) that the right hand side is invariant under ¢; <> ¢s.
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where we define the cross-ratio

Zﬁ eﬂ'(t3+t4*t1*t2)/ﬁ

2 = ) 3.3.30

167C sinh % sinh % ( )

If we make the choice of the insertions times similar to [47], explicitly ¢; = —z'g,
to=0,1t3=1t— ig and t, =t + i%, then the cross-ratio becomes z = %e%t. The

shockwave calculation is valid for ¢ > 0 large with this combination z held fixed.
The result 3.3.29 captures all the physics contained in the shockwave S-matrix. The
Lyapunov behavior is a small part of it (only its small z limit). Unfortunately due to
technical reasons a result analogous to 3.3.29 cannot be obtained in higher dimensions.

In this section we will derive the semiclassical limit of the OTOC reproducing
(3.3.29) directly from the 2d picture. We will consider units in which C' = 1/2. Since
the dimensionless coupling is 2rC'/5 the semiclassical limit is equivalent to taking
£ — 0 in these units. This match implies that the semiclassical limit of the R-matrix

coincides with the Dray-"t Hooft S-matrix. Schematically we deduced

R(C — OO) ~ SDray—’tHooft (3331)

since they generate the same OTOC. The left hand side is written in terms of k;’s
which match with the Dray-t Hooft S-matrix written in terms of energies measured
by asymptotic observers. A detailed version of this relation was derived in [52].

In the 2d picture, the inverse temperature 3 of the Schwarzian gives the distance
between the ZZ branes. Taking 5 — 0 in the Schwarzian means sending the distance
between the ZZ-branes to zero faster than the size of the circle in the extra dimension.
Namely, 3 goes to 0 faster than ¢ — 1, where ¢ = €™ denoted the g-modulus of the
2d annulus. In this limit the Schwarzian becomes equivalent to Liouville between two

infinite ZZ-branes, namely on a strip of width § instead of an annulus.
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The upshot of the previous argument is that we can reproduce the semiclassical
Schwarzian correlators from local operators between two infinite ZZ-branes. The Li-
ouville one-point function, which corresponds to the Schwarzian two-point function,
is easy to compute exactly from the 2d CF'T perspective, since the system can be
mapped to the upper-half-plane by a conformal transformation. The answer imme-

diately has the required form

20
<V>strip = < i ) ) (3.3.32)

Bsin%

where ¢ corresponds to the conformal dimension of the Liouville operator. This can
be related to the real time answer by analytic continuation.

Now we compute the Liouville 2pt function/Schwarzian 4pt function using this
approach. Again, we can map the infinite strip to the upper-half plane, and we take
the positions of the two local vertex operator insertions to be z; and z3, while the
images of these operators will be denoted by 2, and z4 (even though they should
strictly be given by z{ and z§ we will allow them to be generic). The two-point
function can be written in two equivalent ways. First, we can take the OPE between

the two insertions and between the two images, obtaining

TAATAL
<§/111/2§<I/I3/3V?/i> - /dP V22(P) Cywe f(gv w P, n>, (3.3.33)

where n = % is the cross-ratio, Uy is the ZZ-brane wavefunction, Cyywp repre-
sents the Liouville OPE coefficient between the operators V', W and an intermediate
channel operator with Liouville momentum P. F(P,n) denotes the conformal block
in this channel. Another representation of this correlation function can be obtained
by performing the OPE between an operator and its image. In this case it was shown

that only the vacuum block appears (see section 6 of [88] and also [61] for a different

perspective on this result). Defining the new cross ratio via x = 1 — n and using the
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exponential map z; = 6%”, the 77 identity gives

(ViVaWsWy) oA (VW sinh 742 sinh 74
TAAYALR =z V]:(V W vac, $>7 T = L T ipp L (3.3.34)
B B
For fixed t1,...,t; ~ O(1) and ¢ — oo, the cross-ratio is finite and the vacuum block

becomes trivial, implying that (Vi VoaWsWy) ~ (ViVa) (W3W,). For the time-ordered
four-point function this is the final answer.

The out-of-time ordered four-point function is equal to the vacuum block evaluated
on the second sheet. It turns out this indeed exactly reproduces the shockwave calcu-
lation. The vacuum block on the second sheet is found by performing a monodromy
operation on the block. As observed in [110], this monodromy remains non-trivial in
the combined x — 0 and ¢ — oo limit, with the product cx is held fixed and finite.

The exact formula for the identity block in this limit was found to be [110]

(ViWsVoWy) : 2y VW
V) (WsWy) Hoc},f;glﬁxedx ]:z"dSheet(V W’Vac’x>

(3.3.35)
= 2720U(20,1 426, — 205,1/2),

where the right hand side involves the cross ratio z defined in equation (3.3.30). Here
we used the precise relation between the Virasoro central charge ¢ and the Schwarzian
coupling 2wC'/B. This matches exactly with the shockwave calculation in equation

(3.3.29).

3.4 Geometric Interpretation

In this section we will review and summarize the semiclassical computation of cor-

relators, its geometric interpretation and connection to backreaction in AdS;. We

consider large C' and large ¢ in order to understand backreaction. One approach is

to go back to the Jackiw-Teitelboim model [45,47,48] and rephrase the path integral
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as describing a particle in a magnetic field [80] (see also [107] and [111]). Instead we
will start from the exact correlators of [51], take their semiclassical limit and explain
how to interpret them as backreaction on the geometry.

For simplicity we focus on the two-point function for operators of dimension /.
By semiclassical limit we mean both large C' and large ¢ with ¢/C fixed. The exact

two-point function from [51] can be written in two equivalent ways

@3, T(0 ik ik
(O(O®O) = / T dhpths) - DUER £ik) )
L T(20)
= / [ dkido; e"e0em0), (3.4.2)
i=1,2

where the action is given by

2
I(k;, 0;,7,0) = 1;2 <%Tl + 0;k; — log p(kz)) + llog (COS% + cos %) + Io(0),
(3.4.3)
and we defined 77 = 7 and 75 = f — 7 and the density of states p(k) = 2k sinh 27k.
This second way of expressing the two-point function will be very useful below. We
will refer to I(k;, ;) as the action associated to the two-point function with values k;
and #;. At this point this gives an exact expression computing the two-point function,
up to an unimportant normalization factor I, which appears as a constant term in
the action.
What happens in the semiclassical limit for large C7 In this case the integrals
over k; and #; become dominated by a saddle-point approximation. This happens for
k;/C ~ O(1) and 6; ~ O(1) since the action becomes I ~ O(C'). This allows one to

use saddle-point in this limit. Due to this scaling we define the semiclassical action

I,. as

I(ki, 0;) = Clsc.(k;, 0;). (3.4.4)
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Figure 3.8: Geometric minimization problem. The gray circle is euclidean AdS,. The
blue line is the cut-off boundary of AdS. X and Y correspond to the insertions of
the two-point function. We separate the boundary in two arcs of length L, L, and
enclosing area Aj,As.

In this limit the action simplifies to

2

k; 0, 02\
Lo (i 0;,7,0) = L (0 — 210k | 01 il 2) 41, (34,
Clic( 7,0) i212(207+( ) )—l— og(0082—|—0052>—|—0 (3.4.5)

we see from this expression that we also need to require ¢ ~ O(C') in order to get a

non-trivial answer. The saddle-point equations given by O, Is.. = 0p,Is.. = 0 simplify

fori=1,2 to
k;
k; 14
-0, - 0, 6y " (347)
sin 3 COS 5 + COS 5

Following [111] this can be given a geometric meaning. In this work the authors show
that the calculation of the two-point function is equivalent to the geometric problem
of minimizing an action proportional to the sum of the area enclosed by the boundary

curve and an extra term

¢ log cosh D, (3.4.8)

where D is the geodesic distance between the insertions of the two-point function.
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The minimization can be done in steps. First one can minimize both halves of the
boundary curve independently and get two arcs of a circle. We show this configuration
in Figure 3.8. Then the minimization is done with respect to the opening angle and
its area. This is manifest in our formula (3.4.5). The variables 6; and 6, correspond
to the opening angle of both circles while k; and ks are proportional to the radius of
curvature of each arc. Moreover the first four terms in (3.4.5) are proportional to the
total area inside the boundary curve while the term proportional to ¢ corresponds
to the geodesic length between the boundary insertions. It would be interesting to
derive this result from a purely geometric perspective.

For concreteness one can check this with an example. If ¢/C is fixed but much
smaller than one then the solutions is k; ~ ky = 20C/f and 6, = 27?%, 0y = 2%’6)‘%7.
This is consistent with the two-point function not affecting the geometry and com-
puting simply the renormalized geodesic distance between the points in AdS. On the
other hand for ¢/C fixed and large ki ~ 27C/7, ko ~ 2nC/(B — 7) and 27 — 0; =~ 2.
In this limit the points X and Y become close and the boundary turns into two
full circles touching at a point, as in Figure 7 of [112]. A similar geometrical anal-
ysis can be done for an arbitrary time-ordered correlator and the generalization is

straightforward.

3.5 Concluding Remarks

In section 3.1.1 we described how to perform an analytic continuation that takes our
finite temperature two-point function to the thermofield double state. Moreover, as
explained in section 3.2, the OTO correlators are built up from insertions of the R-
matrix, which have a holographic interpretation in terms of gravitational scattering.
In section 3.3.2 we give some evidence of the Lyapunov behavior of the OTO correlator
when t 2 (. For even larger times ¢ > C, starting from equation (3.2.3) we can

deduce a power-law decay as ~ ¢~% consistent with the results of [71,72].
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In [51] we have also constructed a new type of observables that respect the
SL(2,R) symmetry. Their correlators can be found exactly through a Knizhnik-
Zamolodchikov equation approach. Since they do not seem to play a role in SYK we
will not review this here but refer the reader to Appendix D of [51].

To conclude, we mention some other possible generalizations of the formalism
presented in this chapter. It would be interesting to extend our analysis of correlation
functions to the supersymmetric cases beyond N' = 1. The N = 2 theory has an
abelian R-symmetry making it a non-trivial extension. N = 2 Liouville theory is also
related to 2D black holes through an FZZ-like duality. The N' = 4 case would also be
instructive, as it would correspond to an SYK-like model with non-abelian symmetry.
Another natural generalization is to study the generalized Schwarzian theory that
arises by taking the 1D limit of 2D Toda theory (see for example [113]), which has
an extended symmetry algebra, and to construct the corresponding generalized SYK
model and Jackiw-Teitelboim theory that would have this extended Schwarzian model
as its low energy description. Likewise, it would be interesting to understand whether
the methods of this chapter can be applied to the 2D Schwarzian theory proposed
in [53].

3.6 Appendix: 2d CFT Fusion Matrix

First we will present some definitions and properties of special functions appearing
recurrently in Liouville theory, both in the DOZZ formula for the OPE coefficients
and in the fusion matrix.

All special function are built upon a deformed version of the Gamma function

_ Do(xfb, 71
To(e) = 5 3 ) (3.6.1)
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where I'y(z]€q, €2) is the Barnes double gamma function. This function is uniquely
defined by the properties under a shift in b or b=! of its argument. We are interested

in the b — 0 limit. In this regime one can approximate this function by

Ty(bz) — (2rb?)2E~2)D(x), (3.6.2)

(e=3), (3.6.3)

N

Iy(Q —bx) — (27b)”

These approximations can be used to obtain the Schwarzian limit of the DOZZ for-
mula, reproducing the results in the main text.

Finally, in the integral formula for the fusion matrix the relevant combination of

'y is called the double-sine function and defined by S,(z) = Fbr(béf)z). The following

limit will be useful below. If we keep z fixed and take b — 0 the following limit
Sy(bx) ~ (2mb?)* 2T (). (3.6.4)

These and more results can be found in [114]. In the next section of this appendix we
will use these approximate expressions to obtain the Schwarzian limit of the fusion
matrix.

Now we will compute the fusion matrix. A formula for the 6j-symbols of

U,(sl(2,R)), derived in [77], is given by

a1 g o
{a3 au ai}b = A(Oés,0427al)A(O@;,as,Oés)A(Oén043,042)A(Oé4,04t,041)

X /dqu(u — (194)Sp(u — rs34)Sp(u — uagy) (3.6.5)
c

Sp(u — a104)Sp (1234 — w) Sp(vstrs — w) Sp(ston — 1) Sp(2Q — u)

where, following the notations of [77] we defined the following normalization factors

Sb(al + g — as)Sb(al + a5 — &Q)Sb(ag + a5 — al) ) s
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The integral is defined for the cases in which all a; € % + iR. The contour C
approaches 2() + iR at infinity and passes the real axis in the interval (3Q)/2,2Q). In
order to take the Schwarzian limit we need an analytic continuation of this formula.
Unfortunately, although this representation makes the symmetries of the 6j-symbol
manifest, it does not allow for a natural evaluation in the Schwarzian limit. Instead
we will start a representation that does not have the symmetry manifest but makes

the analytic continuation straightforward

{ a1 as as} _ M(as, oz, a1) M (ay, as, o) { a1 Qg Ols}an (36.7)
ag as o)y M(oy, az, a0) M (Qy, ap, ) Las ag ap )y e
with a; = QQ — a4. The prefactors are defined as
Sp(ar + ay — az)Sy(ag + ag + as — Q))m
M(as, az, o1) = : 3.6.8
(a5, az, 1) ( S + ag — ) Sy + ag — ay) ( )

and following [76] we use the following integral representation of the asymmetric

67-symbol

b Splag + ap — az)Sp(as + as — ay) J_ino

a1 az agyan Syl + oy — o) Sp(on + a1 — ay) /"L'oo 4 S,(Us + 9)
{ a3 Oy Ozt} ) ds H Sb(‘/z +S) (369)

i=1

where the U; and V; factors are defined as
U =as+a; —as Vi=2Q+a,—a; —ag —ay
Us=Q+as— a3 —ay Vo=Q+as+ar—ag —ay
Us=as+ a3 —au Vi = 20

U4 == Q + Qg — (g — Oy V;L == Q (3610)

In the limit we are interested in, which we refer to as the Schwarzian limit, we choose

the following set of parameters
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Q Q

o] = glb, Qg = 5 -+ ’ibkg, Qg = 5 -+ ’lbks
3 = fgb, gy = % + ’ibk’4, Oy = % -+ Zbk?t

It is important to make this identification in this order since otherwise the b — 0
limit will be ill-defined. One can check that all the pre-factors have a well-defined
b — 0 limit, by using the identities of the previous appendix involving double sine
functions. Having done this, the only non-trivial aspect of the calculation is the
integral appearing in the definition, which we denote by

G E L Sy(Ui + s)
I(j1, ko, js, ka; ko, Ky z/ — 47%? - = (3.6.11)
1, 72, J3 2, Rt gsb(vri-s)

—iso 2T

In the Schwarzian limit the integrand becomes

2 ﬁ Sp(Us +5)  T(s+ilky — ks + ko + ka)T(s — i[ks + ki — kg — ka])
Tl i) T T(s + j1 — (ks — k2))T(s + js — (ks — k1))
F<3 - Qst)F(S)F(]l + 7’<k5 - k2) - S)F(j?) + Z(ks - k4) - 3)

Before writing down the answer for this integral, let’s consider the most general

case and solve the following problem

oo 2mi T(b, + 5)T(by + 5) D(A-s)I(B-s). (3.6.12)

I /+i<>0 ds T'(a; + s)['(ag + s)I'(az + s)I'(ay + )

This can be computed by the method of residues. The integral is done over the
imaginary axis, and we take a contour that leaves the poles of I'(A — s) and I'(B — s)
to the right, and all the other poles to the left. For the integral relevant for the
computation of the 6j-symbols this is the proper contour to take. If we close the

contour to the right and pick up only the poles of I'(A —s) and I'(B — s), this integral
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is given by

I'(B—A)T]L T(A+a A A A A
7= ( )szl ( +CL)4 3 + a1 A+ a9 + as +CL4;1 +(A<—>B)
['(A+b)I'(A + by) A+b A+by1+A—B

(3.6.13)
For the particular choice of parameters that appear in the 6j-symbol integral it is
instructive to recognize this sum of hypergeometric functions as a Wilson function.

This function was introduced in [78,79] and is defined as

F(d_a)4Fg[a+iﬁa—iB a+ o d—z’a;l]
a+b a+c 14+a—d

W(a, B;a,b,¢,d) = T(a+b)(a+c)l(d+if)(d+ i)

+ (a <> d),

(3.6.14)
where d = (b+c+d—a)/2 and @ = (a + b+ ¢ — d)/2. As seen from the definition,
this is not the most general sum of hypergeometric functions and it requires a specific
relation between its parameters. It is explained in [78,79] that the Wilson function
can also be written as a single 7 Fg hypergeometric function evaluated at z = 1, which
makes some non-trivial symmetries of its parameters more transparent.

If we use the general integral result given in equation (3.6.13), and evaluate for
the particular parameters of equation (3.6.12), to apply it to the Schwarzian limit of

the 6j-symbol, then we obtain the final answer for the integral as
I =T(d=+if)(d=+ia)(a+iB)T(a +ic) W(a, B;a,b, ¢, d), (3.6.15)
with the identification of o« — kg, 8 — k; and
a = j1+ iky, b = j1 — iky, c = jsz — iko, (3.6.16)

d = jz+ ks, a = ji1 — ks, d = js —iky.
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After including the prefactors we can use this formula for the integral to derive the
final expression of the 6j-symbols of Liouville theory in the Schwarzian limit, equation
(3.3.10). This says that the 6j-symbol is proportional to the Wilson function. Using

(3.3.10), let’s see how the symmetries of the 6j-symbols are recovered.

e The Wilson function is symmetric in all the last four arguments. This means
there is a symmetry ks — —k4 and ky — —ko. This symmetry is preserved by

the prefactor.

e Exchange j; <+ j3 together with ky <> k4, which is also preserved by the pref-

.. . . a1 G Qg a3 Qg O
actor. This is equivalent to the relation = :
Q3 Oy o ap az oy

e In [78,79] another relation is proven, referred to as duality of the Wilson func-

tion,
W(ksa ktv j1+7;k47 jl_iklb j3_/ik27 j3+lk2) = W(k27 k4a jl‘i‘ikt? jl_ikta j3_7;k87 ]3+/lks)

.. : . Q1 Q2 Qg Q) Qg Q2
This is also preserved by the prefactor and implies { } = { }
a3 04 O Q3 O Oy

e Finally, one can also exchange in both the Wilson function and the prefactor

ks <> k; together with ko <+ k4, namely
W(ks, ki j1tika, j1—ika, js—ika, jstike) = W(ky, ks; j1+ika, j1—ika, js—ika, jstiky),

a1 g Qs ay «
Whichimplies{ b }:{a1 ! t}.

a3 Gy oy a3 2 O

At the level of the Wilson function, the unitarity of the 6j-symbols has already been
proven by Groenevelt. After including the right prefactors, the 6j-symbol generates

an integral transformation equivalent to what he denotes as a Wilson transform of

type 1.
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To conclude this appendix, we give an integral expression of the 6j-symbol which

will be useful in the main text (here k.1, = k, *+ ky, etc)

53 k4 kt F(gl — Zk’g + Z]{'S)F(fg + Zkg + zk:t)F(él + Zk4 + Zk’t)r(fg — 2]€4 + Zk’s)
. / du T(u)T (u—2ikg)U(ut ik pa—gse) D ikyro o) (G +iky—s — )T (f+ik, g —u)
211 F(u+€1—iks_g)F(u+€3—ikS_4) )
—ioo (3.6.17)
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Chapter 4

Generalizations of the SYK Model

In previous chapters we have analyzed in a lot of detail the IR dynamics of the SYK
quantum mechanical model. In this chapter and the next we will study to what
extent we can generalize the lessons from the previous chapters to two dimensional
field theories.

We will present a solvable field theory in two dimensions which has an IR descrip-
tion based on the breaking of conformal symmetry, just as the SYK model. We will
also analyze to what extent the dynamics of the IR mode is related to gravity in 3D
and controls the quantum chaos of the theory. In order to do this we will need to start
from UV fermions with an unusual action. This can be thought of as a topological
version of the Ising model, as explained in the main text.

In the rest of this section we will give an overview of the results presented in this
chapter. In sections 4.1 and 4.2 we will define the model and find a close resemblance
of its spectrum with SYK. In section 4.3 we will analyze the IR mode of this theory
and how it emerges from gravity in AdSs.

To begin, we will analyze the pattern of scale invariance in the SYK model and

the interplay between the UV and the IR. The SYK model of ¢; with {¢;,1;} = d;;
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with ¢ = 1,..., N is specified by the 1D action

Sove = [t (S dvows — 1Y davin) (@)

i1,erig

Here J;,.;, denotes a set of gaussian random couplings. We can split (4.0.1) as
S = Syv+5Smr. Note that both terms exhibit reparametrization invariance, but that
transforms as a scalar in the UV, but has scale dimension A = 1/¢ in the IR. The SYK
model exhibits approximate conformal symmetry in the IR, and has been proposed to
give a holographic description of a 2D black hole space-time. The link with the gravity
dual finds support in the fact that both sides give rise to an effective 1D Goldstone
mode whose action is described by the Schwarzian derivative [31,42,46-48,63,64,66].

In this chapter we propose a 2D QFT generalization® of the SYK model (4.0.1),
which we argue preserves most of the desired features. In particular, via the same
reasoning that applies to 1D case, we will argue that the 2D model appears to exhibit
conformal symmetry in the IR and gives rise to an emergent Goldstone mode asso-
ciated with broken 2D reparametrization invariance. We find that the same effective
action of the Goldstone mode can also be derived from the 3D AdS gravity action,
viewed as a functional of the boundary metric. These results indicate that our 2D
model flows in the IR to a holographic 2D CFT, and may thus provide new insight

into the dynamical mechanism that underlies AdS3/CFTy duality.

4.1 The 2D model

In this section, we will give two characterizations of our 2D model. First we introduce
the model via its Lagrangian, and then we present a Hamiltonian formulation. We

give some special attention to the UV limit of our model.

!Proposals for 2D generalizations of SYK with a discretized spatial dimension are given in [115-
117].
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4.1.1 Lagrangian formulation

A naive attempt to generalize the SYK model to 2D is to promote the i variables
to 2D Majorana fermions with a standard kinetic term %w&w. This choice assigns
canonical scale dimension [¢)] = 1/2. The interaction term then has dimension ¢/2,
which is at best marginal. In the 1D action (4.0.1), on the other hand, the UV term
assigns v scale dimension [¢)] = 0, so the interaction term is relevant and the model
is strongly coupled in the IR.

To write the 2D generalization of (4.0.1) we introduce fermionic variables ¢, and
" with ¢ = 1,...,N. One can think of ¢, and v¢_ as the two chiral components
of a 2D Majorana fermion. However, to preserve the essential features of the SYK
dynamics, we replace the usual fermion kinetic term by the UV term in the following

2D action
S = Syv + Sr

Sov = Y / dPx o)t 9,0 bt 9, (4.1.1)

SIR: Z /dQX(]il__.jq@Di_l...?/)iq ]+177/Jiq

11,0000

where J;, ;. denote a set of gaussian random couplings with

J*(g—1)q!
(Jir..5,)°) = NI (no sum) . (4.1.2)
The unconventional kinetic term? in Syy is chosen such that v has canonical scale
dimension [¢],, = 0. The couplings in Sig thus have dimension [J] = 2. The
interaction term is therefore relevant and dominates the IR dynamics.
The total action defines a proper relativistic QF'T, but does not come with a fixed

light cone. Both terms in (4.1.1) do not depend on a choice of metric: the UV term is

2The quartic kinetic term in (4.1.1) can be viewed as a fermionic cousin of the Nambu-Goto
action. It is also similar to the fermionic Wess-Zumino term that appears in the Green-Schwarz
superstring action [118].
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topological, whereas the IR term only requires a choice of integration measure. Syy is
reparametrization invariant if ¢ transform as scalars, while Sig has reparametriza-
V2 (R (x)).-
The fact that the UV and IR transformation laws are different is a first hint that

osr
oxv

tion symmetry provided the fermions transform as ¢} (x) — |det

the model may give rise to an effective Goldstone mode associated with broken
reparametrization symmetry. The UV and IR action still share area preserving dif-
feomorphisms as a common symmetry group.

Note that the quartic kinetic term involves a diagonal pairing between the chiral
partners wi and 1° , but the IR interaction term does not. The action (4.1.1) is
invariant under local Lorentz transformations 1%, — M!¢i. For the UV action,
these can act independently on each sector. We will treat the overall local Lorentz
invariance as a gauge symmetry.

The quartic kinetic term is a central new ingredient of our proposal. So it is
important to understand its physical role and consequences. We have seen some of
its desirable properties. Some apparent drawbacks are that it obscures the form of
the anti-commutation relations and does not produce a standard fermion propagator.
To gain some further insight, let us take a closer look at the theory defined by Syv

just by itself.

4.1.2 UV limit: Topological Ising CFT

The UV theory splits up into N decoupled topological theories with a single pair of
chiral Majorana fermions each. Let us focus on one of these UV sectors. A non-
linear fermionic action similar to Syy with N = 1 was recently considered in [119] in
the context of a proposed topological theory of Majorana edge modes of a p, + ip,

superconductor.?

3 A similar topological fermionic model has also been considered by D. Haldane (private commu-
nication).
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By introducing Hubbard-Stratonovich variables eff we can rewrite the UV action

as

1

S = §/d2xe“”(ez¢a&,¢a — €av€, e’ ) (4.1.3)

with a = 4. This action is manifestly reparametrization and local Lorentz invariant.
We can think of the ej; variable as a Cartan zweibein, that parametrizes a dynamical
2D metric and local Lorentz frame. For fixed ej, the action (4.1.3) has a conventional
fermion kinetic term. Integrating out e}, gives back the quartic action.

Let us take a brief look at the classical theory. The equations of motion of (4.1.3)

imply
€W€:¢+5’u¢+ - 07 6: = ¢—au¢—a
(4.1.4)
e, -0y = 0, e, = V10
Locally we can introduce two scalar fields X* such that
ef =e"r 0, X7, e, = e 0, X" (4.1.5)

We can then solve the equation of motion (4.1.4) by setting ¢»_(X~) and ¢, (X ™). So
for a moment it looks like ¢ and v, behave like a pair of chiral fermions that prop-
agate along two independent light-cone directions specified by X~ and X . However,

from (4.1.4) and (4.1.5) we also deduce that

9, X 9,X" =0 (4.1.6)

which can only be solved if the two light-cone directions in fact coincide. So the
UV model (4.1.3) does not have true propagating modes. As we will argue below, it

describes a topological field theory.
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Introducing a dynamical 2D metric via g,, = N eZel”,, assembling 1, and ¢ _ into

a two component fermion, and performing a simple field rescaling ¢ = ¢*/31, we may
further rewrite (4.1.3) as a standard action of a 2D Majorana fermion coupled to 2D
gravity

5= /@(%&WZ _ 1), (4.1.7)

This rewriting of Syy is closely analogous to the procedure that recasts the Nambu-
Goto action into that of a free boson coupled to 2D gravity. Minimal models coupled
to 2D gravity have been studied extensively, starting with KPZ [120]. Our treatment
will need to be somewhat different. In the end, we want to be able to add the IR action
in (4.1.1) as an interaction term. Since the interaction term is invariant only under
area preserving diffeomorphisms, we are not allowed to treat the full diffeomorphism
group as a gauge symmetry of the UV theory. So instead of viewing the model as a
gravitational theory, we will treat it as a topological CFT with local gauge invariant
observables [121-124].

Equations (4.1.3) and (4.1.7) describe a 2D Ising CFT with gauged Virasoro sym-
metry. The gauging projects out all Virasoro descendent and leaves only three local

observables given by the dressed primary operators: the unit operator 1, the spin

field o and
€(x) = U ()1 (x). (4.1.8)

We will call this theory the topological Ising CFT. It is the simplest example of a
topological RCFT. Some relevant properties of topological RCFTs are summarized
in the appendix. For the purpose of our main discussion here, it is sufficient to note

that:

e In Euclidean signature, the correlation functions of local observables are indepen-
dent of positions of the operators. They equal an integer, given by the number of

independent chiral conformal blocks associated with the corresponding CFT corre-
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Figure 4.1: In a topological CFT, local operators are attached to two Wilson lines
that connect to past null infinity. Whether two operators are space-like or time-
like separated is a topological distinction, encoded via the relative ordering of the
asymptotic end-points xf and xét of the respective Wilson lines. The bulk has no
fixed metric.

lation function [124].
e The three gauge invariant local observables €, o and 1 all have scale dimension zero.

The operator algebra forms a commutative, associative ring isomorphic to the Ising

fusion rules

1x1=1, 1xo=0, 1xe=€¢, €e€xe€=1, €xXo=0, ocxoc=1+E¢€.

e In Minkowski space, TCFT correlation functions acquire non-trivial position de-
pendence  due to operator ordering. This dependence reflects the monodromy of
the chiral conformal blocks, or equivalently, the topological braid properties of the

chiral CF'T operators.

Let us elaborate this last point. Just like in an ordinary RCFT, local observables in
a topological RCFT can be factorized into a sum of chiral components. The properties
of these chiral components are made most manifest by formulating the TCFT as a
gauged WZW model [124]. In this formulation, the chiral operators are attached to
a Wilson line of a flat gauge field that stretches out to the corresponding (past or
future) null infinity. The Wilson lines encode the topological braid properties of the
chiral operators of the CFT.
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Hence local operators in a TCFT look as indicated in Figure 4.1. The space-
time position of a local operator is labeled by the locations z;7 and x; where the
Wilson lines attach to past null infinity. Since null infinity of 2D Minkowski space-
time is one-dimensional, time ordering again becomes topological. The 2D light-cone
thus also becomes a topological notion, that divides 2D space-time into four regions.
Correspondingly, for each pair of operators we can distinguish four types of relative
separations: past, future, left and right. Thanks to the presence of the Wilson lines,
these four are all topologically distinct.

Specializing to the simplest example: for the 2-point function of two € operators

in the topological Ising model, the prescription outlined above and in the appendix

e [ @) @) = 1 F
(Teitye) = | CrHON@) =1 R
(1) (2) (- (2w-(1)) = -1 L

| (@) (- (2e(1)) =1 P

The four outcomes correspond to four different operator orderings. Here we intro-
duced the double time ordering symbol T = P, P_, where P, denotes the time or-
dering symbol that orders the operators according to increasing light-cone time +z=.
We can abbreviate the above table as

<T€(X1)€(X2)> = sgn(z],) sgn(zyy) (4.1.9)

TCFT

Here the 2D location x = (27, 27) of each operator is defined via the position of the
end-points of the Wilson lines, as indicated in Figure 4.1. The formula (4.1.9) should

be compared with the formula (T(7)1Y(72)) = sgn(7i2) for the 2-point function of
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a single free Majorana fermion.* It forms the basis for the rest of our story. In
Appendix 4.6 we sketch how the above result (4.1.9) for the two-point function can
be derived from the UV Lagrangian via a functional integral.

More generally, applying the TCF'T rules to the n-point function gives that

(Te(1)€(2)...€(n)) = (FLyFtEen o even (4.1.10)
0 n odd

where #(1,2, ..., n) counts the number of times a pair of operators needs to cross each
other’s light cone in order to rearrange all operators to be space-like separated. Note
that, since € and 1 have a unique OPE channel, at most one single chiral conformal
block contributes for each n-point function. So the value of the Euclidean n point
function is simply equal to 1.

The expression (4.1.10) can be rewritten in somewhat more familiar form as follows

(Te(xy)... €(xn)) = Pf(sgn(:v;-;)) Pf(sgn(xi_j)). (4.1.11)

TCFT

A proof of the equality between (4.1.10) and (4.1.11) is given in Appendix A. We see
that the non-chiral n-point functions factorize into a product of two chiral factors.
This factorization property allows us to define the n-point functions of the chiral
Majorana fermions as

(Teps(x1)... Yi(xn)) = Pf(sgn(xf;)) (4.1.12)

TCFT

It is natural to refer to the chiral fields ¢, (z%) and ¢_(x~) as ‘topological 2D
Majorana-Weyl fermions’. They arise from the topological Ising model after per-

forming a chiral projection.

4The vacuum two-point function of free 1D Majorana fermions remains unchanged at finite tem-
perature [31,42]. The same property holds true for the vacuum two-point function in our topological
UV theory. This statement would not be true for 2D Majorana fermions with the usual kinetic term.
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Our 2D model (4.1.1) in fact makes essential use of a chiral projection of this kind.
Each term in the interaction Lagrangian in (4.1.1) contains an equal number of left-
and right chiral fermions, but the pairing can be off diagonal. In other words, the
interaction term is built up from general fermion bi-linears wﬁrwj_ . To allow for such
operators with ¢ # j, while preserving locality, we need to perform an analog of the
GSO projection familiar from superstring theory. The complete UV theory is defined
by taking a tensor product of N topological Ising models, and then performing a chiral
projection that allows us to act with general fermion bi-linears @/}i@/}i . Similar to the
GSO projection, this eliminates the non-chiral spin operators o; of each individual
topological Ising model from the UV spectrum. The resulting theory then remains

local.

4.1.3 Hamiltonian formulation

We would like to verify that the 2D action (4.1.1) defines a unitary QFT. The Hamil-
tonian formulation is usually most well adapted for this purpose. So let us write
x = (x,t) and identify the Hilbert space H of states defined on a constant time-
slice. We should then check that there are no negative norm states and that the
Hamiltonian generates a unitary time evolution. The formalism of matrix product
states [125,126] will turn out to be helpful.

In many interesting quantum many body systems, the wave function |¥) depends
in a non-trivial way on the spatial ordering of the quasi-particles. A matrix product
state (MPS) representation of a quantum state encodes this spatial dependence by
means of an auxiliary quantum system [125,126]. To define this auxiliary quantum
system for our setting, we introduce two collections of N Majorana fermions with

anti-commutation relations

{Wh (@), ¥h(y)} = oY, (¥ (), 9L (y)} = 0, (4.1.13)
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with 7,7 = 1,.., N. Note that the anti-commutator does not depend on the locations
z and . So we can simply set ¢’ (x) = % with {1’ %} = 0% acting on a 2 x 2M/2
dimensional auxiliary Hilbert space. The role of the position x is to keep track of
spatial operator ordering within the matrix product state, in the same way that time
t can be used to keep track of time ordering for a free 1D Majorana fermion.

States in the Hilbert space H = H ® H_ are given by a sum of factorized states
|@!)|U7) where I and J represent a multi-index, e.g. I = {iy,...,i,} labeling the
internal quantum numbers of the chiral Majorana particles. Each factor [¥l) is

represented by a many body wave function in the form of a matrix product state
W (g, at) = (ne|Pe o (27) i (25)]0) (4.1.14)

where |ny) is short-hand for the unique fermion number eigen state that gives a non-
zero overlap. Here P, denotes the path ordering symbol that places the operators in
spatial order with position xf increasing from left to right for ¥_ and from right to

left for ¥, . Alternatively, we can write the MPS wave function as a 1D path integral

ip i1

i1...0p i . 1yt Y ip i1
‘IJ:I: (xzipaxi) - /[dwi]eizzfdf quiaiﬁji w:t(xlig) i(xi>

Note that this functional integral is reparametrization invariant in z*, and that U1
is a piece-wise constant function of the positions xi In the case that all ¢*’s have
the same index, it reduces to the Pfaffian expression (4.1.12).

This MPS representation provide a natural basis for the energy eigen states of
the UV theory described by the quartic Lagrangian (4.1.1) or its HS representation
(4.1.3). Due to the reparametrization symmetry, the states only depend on the spatial
ordering of the fermionic fields. Moreover, since the Hamiltonian of the UV theory

identically vanishes, all MPS states automatically have zero energy.
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The Hamiltonian of the full interacting model is defined as a linear mapping on

the MPS wave functions. It is given by a pure interaction term H = f[int(t) =

— [dx ﬁmt(x,t) with

Ling(z,t) = Y Jipjy V2 (x,1) .. (2, ) (4.1.15)

1,050q
the same interaction term as in (4.1.1), and where ¢ (%) with #* = 24 now denote
operators that insert ¢’ (z*) into the corresponding chiral MPS wave function. Here
we reintroduced the time dependence as prescribed by the interaction picture. Note,
however, that the free Hamiltonian H identically vanishes. The ¢ dependence is
therefore spurious, except for its effect on operator ordering. The dependence on the

* arises due to the intrinsic path-ordering of the matrix

two light cone coordinates x
product states.
Integrating the Schrodinger equation produces a double lightcone-time ordering

prescription

Texp(-i / it Fue(t)) = Texp (i / dart / dx‘ﬁint(ﬁ,x‘)) (4.1.16)

where T = P, P_ puts all operators in order of increasing light cone time, both along
the 1 and —xz~ direction. In this way, through the use of the matrix product state
formalism, we have made contact with the TCF'T prescription outlined in the previous
subsection.

The last remaining task is to provide an inner product on H. It seems reasonable
to assume that it can be defined such that the states [¥1) form an orthonormal basis
of the respective chiral Hilbert spaces H.. In principle one should be able to derive
this inner product from the path-integral formulation, starting from the action (4.1.1),
or vice versa, derive the path-integral and the action (4.1.1) from the Hamiltonian

formalism outlined here. We leave this problem for future study.
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4.2 Schwinger-Dyson equations

Now that we have introduced the 2D model, we would like to analyze its large N
dynamics. The factors of N in (4.1.2) are chosen so that the model admits a regular
large N limit. We would like to analyze the low point correlation functions of the
2D model, working to leading order in 1/N. Throughout, we will assume that the
standard SYK analysis applies to our 2D model. In particular, we assume that we
can use the replica method to take the disorder average, and that the model does not

undergo a spin glass transition.

4.2.1 SD equations at large N

The simplest non-trivial correlation function with a regular large N limit is

F(x1,%2) N2 Z<w+ z )L (1 1/1+(x2)1p]_(2:2)>

At leading order in 1/N, it factorizes as
f(X1,X2) == G+(X1,X2)G_(X1,X2) (421)

We can identify G4 (x1,x2) with the dressed fermionic two point functions

1 . )

Galxi,x2) = & Z (YL (xn) (x2) ), (4.2.2)
with the understanding that each should always appear in the local combination
(5.3.10).

To compute the two point functions, we can try to follow the standard SYK

procedure and sum all relevant leading order diagrams. We start by writing the UV

action in the Hubbard-Stratonovich form (4.1.3) by introducing a total of N Cartan
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frames e}, one for each of the N sectors. It is not difficult to see, however, that by
restricting ourselves to observables of the type (4.2.1) and (4.2.2), defined as equal

weighted sums over all N sectors, that only the collective field

1
+ _ -
e = & E €; (4.2.3)

participates in the large N dynamics. More precisely, if we split each frame variable
as e = et + &, the deviation é* will decouple in correlation functions of averaged
observables. This property follows from the fact that the interaction term between
frame variables and v is linear in ejt, and that the fermion propagator lines involve
a uniform sum over i. So the frame variables always couple via

2 = 2

i i— &7 i —b——1

a a
el
1
1
1
1

———

For the computation of large N correlation functions, we can thus replace the frame
variables by their large N average (4.2.3) and use the following effective form of the

UV action
1 , .
SUV = 5 /d2x e ( Z G(L w;ayw; — N@ZQ; ) . (424)

Notice that there is now an explicit factor of N in front of the last term.

We now proceed to apply the same large N logic as in 1D. We write the per-
turbation series for fixed e as a sum of ‘iterated melon’ diagrams [31,41,42]. The
fermions then have a standard kinetic term and propagator. At the end, we integrate
out e, which diagrammatically amounts to connecting all ), and _ lines by an e
propagator

1

<€Z(X1) 6; <X2)> = N Guué(l‘u)- (425)

[

Note that each Wick contraction et e~ produces a factor of 1/N.

113



A slight problem with the procedure just outlined, however, is that the ¢ prop-
agators are singular at e = 0, which is the point around which we wish to define
the perturbation series. So whenever the e-line connects to a i propagator, the
propagator in fact collapses to a point. This is not surprising, since we are in fact
trying to write a perturbative expansion for an action (4.1.1) without any quadratic
term.

A more practical approach is to recast the model in terms of bosonic bi-local
dynamical mean fields, given by the two-point function G4 (x1,x2) and self-energies
YE(x1,%0).°> After performing the disorder average and integrating out the fermions,

one obtains the following effective action
S/N = — Zlog Pf(e"e},0, — X%) — /e’“’e+e

w5 (6 - L@ey)

This effective action looks quite similar to the dynamical mean field action of the 1D

(4.2.6)

SYK model [31,42,127]. The key new features are the doubling of the number of
fields and the presence of the frame variable e®.
Since the action has an overall factor of N, the Schwinger-Dyson equations for

G4+ and ©F reduce in the large N limit to the following saddle point equations

Ei(Xlz) - JzGi(Xlg)q_lG;F(Xlg)q, (427)

(e’“’e 0 Gi — Ei * Gi) (X12) = (5 (Xlg) (428)
0G+(x12)

ef(xl) = ;—Xg . (4.2.9)

5Here and in the following we use the same symbols for the dynamical fields as for the on-shell
solutions.
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Figure 4.2: Diagrammatic representation of the SD equations (4.2.7), (4.2.8) and
(4.2.9) for ¢ = 2.

ge
{2 ¢33

The * in equation (4.2.8) denotes the convolution product. Assuming translation sym-
metry, equation (4.2.9) yields a constant value for ef., which on dimensional grounds,
is proportional to the temperature 5~! times (52.J)~1/2.

We can represent the SD equations in diagrammatic notation as follows. Let us

denote the chiral factorization equation (5.3.10) as

F(x1,%2) = (4.2.10)

where each line with a blob represents a dressed propagator G (xi2) of the chiral
Majorana fermion. The color of the blob represents whether it is a ¢, (blue) or a ¢_
(grey).

The SD equations for ¢ = 2 are then depicted as in Figure 4.2. The left-hand side
denotes each inverse propagator, while the first term on the right-hand side denotes
the self-energy. The second term is the contribution from the dynamical kinetic term,

which takes the form of a tadpole diagram attached via an e propagator.
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4.2.2 Conformal limit

Continuing the standard SYK logic, we first focus on the IR limit. The interaction
term then dominates and, working to leading order in 32.J, we can drop the UV term.

The SD equation (4.2.8) then truncates to
(Gi % Ei)(Xlg) = —0(x12). (4.2.11)
In momentum space (and assuming translation invariance) this further simplifies to
Gi(k)ZE(k) = —1. (4.2.12)

We will solve equations (4.2.7) and (4.2.11) via a scaling Ansatz momentarily.
Equations (4.2.7)-(4.2.11) are diffeomorphism invariant, and as in the 1D model,
this points to a zero mode of the linearized SD equations. In the following sub-
section, we will exhibit this zero mode by studying the four point function. As a
quick preparation, consider a change in G4 that corresponds to a reparametrization
(xt,27) = (T +et,27 + €7). In the IR limit this is still a solution of SD equations
if we take the Green function and self energy to transform accordingly. The variation

of equation (4.2.11) gives the conditions
6G1 * X5 + Go % 6%F = 0. (4.2.13)

We can take the product on the right by (3%)~! = G. to isolate G+ and use the
expression for ¥F in terms of G in the second term to eliminate the self energy from

the equation. The above equation then takes the form, c.f. [31] [42]

(5(11) — Kab) * 5€Gb =0. (4214)

116



where K, is the integration kernel

Ky (2171---$4) = —J2(q - 5ab)Ga($13)Ga($24)Lab($34)

G (2 G ()" (4.2.15)

Lay (@) = Go(2)Go(2)

This shows that the eigenvalues of the kernel are 1 when evaluated at reparametriza-

tions of the conformal answer. Below we will make this formal conclusion explicit.

Two-point function

We will now study the SD equations, following the approach of [39,40]. In the IR
regime, we adopt the following scaling Ansatz for the dressed propagators and self

energies
sgn(z™)

Ge(x) = b|m+|A:|:s|x—|A:Fs

(4.2.16)
sgn(z*)
|zt AFs g2 AFs

Ne(x) = J20H!

with b some constant. Here A and s denote the sum and difference of the left-
and right scale dimensions. In the following, we will sometimes use the notation
AL = A+ s. The sign functions in (4.2.16) implement Fermi statistics, and match
with 2-point function of the UV theory. The IR Ansatz breaks the diffeomorphism
invariance of the IR theory. A new feature of the 2D model, relative to the 1D case,
is that the sign and scaling functions specify a choice of light-cone direction and a
signal propagation speed.

The Ansatz (4.2.16) solves the SD equations (4.2.7) and (4.2.11) provided that
A =1/q and
(1-A)—s?) 2

= a2 (4.2.17)

212q __ (
T T oG a ) (G A )
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Figure 4.3: Diagrammatic definition of the kernel that gives the four-fermion corre-
lation function. Here each line represents multiple dressed propagators, with multi-
plicity as indicated.

The value of the spin s is not determined by the SD equations.® For generality, we
will treat s as a free parameter. The most reasonable and consistent choice is to set
s = A. We will call this the chiral limit, as it preserves the property that ¢, and _

depend only on one light cone coordinate. Note, however, that the s — A limit has

to be taken together with a J — oo limit, while keeping b fixed.

Four-point function

Next we study the following four types of four-point functions

Funlr o a) =~ S (05 (o0 ) ()45 ()

N2 £
i\j
with a,b = +. Like the two-point functions, these have to be thought of a part
of a locally left-right symmetric correlation function. The 1/N corrections to these
four point functions can be computed with the help of the kernel K, introduced in
(4.2.15).
To leading order in 1/N, we have

FO = (—Ga(213)Ga(21) + Ga(12)Ga(223) ) bap- (4.2.18)

a

6 A similar issue appears in [94] for the supersymmetric SYK model.
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As explained in [31,41,42], the 1/N corrections to Fy;, are found by summing up the

n-th order contributions F C(LZ) defined via the recursive formula

Fot = 3 Ky x FY (4.2.19)

C

where K, denotes the kernel (4.2.15) and * denotes the double convolution product
defined by identifying and integrating over the last two coordinates of K,, and the
first two coordinates in ]-'c(: ). The diagrammatic form of the matrix elements of the
kernel is depicted in Figure 5.1.

The iterative procedure gives the following expression

1

e FO. (4.2.20)

F:

where we have absorbed the matrix product into the definition of . Inserting the

conformal Ansatz (4.2.16) into (4.2.15) gives the factorized expression

1
Ko = —— K (x]) K (7)) (4.2.21)

Agp

— (q—bu)a?, (4.2.22)

with a, defined in equation (4.2.17).

Two representative examples of the chiral kernels are

1
K, = — (4.2.23)
o |2 15] 8- [ | A w3y 2725
sgn(3) sgn(zy,)
Kt = P “ (4.2.24)

|25 | A+ |5y At [y 2725+

with Ay = A £+ s. The action of K;tb on the four point functions can be computed

with the standard SYK technique, by decomposing each F; in terms of eigenfunctions
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of the conformal Casimir [30,31,41,42]. These eigenfunctions are given by the three
point functions of the fermion with an operator of some given left and right conformal
dimension (h,h). A novel feature of our model is that the eigenvalues of the kernels
are given by two different types of integrals. One type of integral looks SYK-like
fdxl dxs KLF(O, 1, x4, xg)sgn(x12)|w12|h7A+. We denote the corresponding eigenvalue
by ka, (h). The other type of integral looks like [dzidzs K1, (0,1,21,%2)|z12|" 2.
We denote the corresponding eigenvalue by I%A_(h). When acting on an eigenstate
the kernel then takes the form

1 ka(hka () L5ka (h)ka,(h)
Koy = — (4.2.25)

L];A—(h) kA+<B) ]%A—(h) kA+(h)

The kernel K, gives useful information about the spectrum. As a first consistency
check, let us act with K on an eigenmode with conformal dimension (h, h) = (2,0).
This mode corresponds to the stress tensor, and is expected to describe the effective

Goldstone mode associated with broken reparametrization invariance. We find that

(—Al—l—AKA-&-s) . _A;S

2—A—s 2—A—s

Kab‘ = ( ) ( ) (4.2.26)
h=2 _Ats (“1+A)(A—s)
h=0 A(2—A+s) A(2—A+s)

which manifestly satisfies det(1 — K) = 0. Hence the intermediate states with scale
dimension (2,0) and (0,2) appear as poles in the conformal strong coupling limit of
the expression (4.2.20).

In Figure 4.4 we have plotted det(1 — K) for chiral intermediate states with left
scale dimension h with h = 0. For illustration, we also included the case s = 1/2
given by the dashed magenta graph. The blue graph corresponds to s = A = 1/g,
which is the chiral limit with A_ = 0. In both cases we have set ¢ = 4. We see the

expected symmetry between h and 1 — h. For s = 1/2, there are additional zeroes
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Figure 4.4: Plot of det(1 — K) as a function of the left scale dimension h with h = 0.
The dashed magenta plot corresponds to A = 1/4 and s = 1/2, and the blue plot to
A=s=1/4.

at h = 0 and 1, which indicates the possible presence of a spin one current, c.f. [94].
The spectrum of zeroes of the s = A = 1/4 case, on the other hand, looks identical

to that of the SYK model. This theory is a plausible candidate for a 2D QFT with

maximal chaos. The explicit formula for det(1 — K) for h =0, s = A = 1/q is

= 2)a — ese)
(T ()2 (sin(rh) +sin(Z)) T2 — 2~ (1 - 2+ 1)

det(1—K) = 1 +

which coincides with the expression for 1 — K in the SYK model [31,41,42]. We leave
a detailed calculation of the four-point function and the spectrum of states for future

work.

4.3 Effective action of the Goldstone mode

We would like to exhibit the effective action of the reparametrization mode. In prin-
ciple, we could try to follow the procedure used in [30,31,42], compute the correction
to the kernel K, that follows from including the UV term of the action (4.1.1), and
use this to find the linearized action of the zero modes. We reserve this calculation

for a future project. Here we will instead make a short-cut, which appears justified
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in the case that ¢ is small enough so that an expansion in € = 1 — 2/q is valid [64].

Note that in our model, the ¢ = 2 system is still an interacting QFT.

4.3.1 Double Schwarzian action

We start from the dynamical mean field action (4.2.6), and perform the redefinition

¥t = Ziﬁd — e“”ei@u. This redefinition moves all the e* dependence into a separate

UV term
S/N = Suyv + Sk

S = — 3 logPE(S) + / / (e, - 1P @oey) @

1 4 a a
Suv = 5 /dQX " eqp (eMGI; — euelj) (4.3.2)
Here we defined
8Gb(X12)
G — b 20N e) 4.3.
#(Xl) ¢ an X2—X1 ( 3 3)

The IR term is the same as before, and leads to the conformal and reparametrization
invariant equations of motion (4.2.7) and (4.2.11). However, because ¥ is the shifted
variable, equation (4.2.11) is now exact, and equation (4.2.7) receives a subleading
correction due to the presence of the UV term (4.3.2). An exact treatment of the
consequences of this correction term could be accessible in the large ¢ limit [42]. We
will instead look at the regime ¢ = 2/(1 — €) with € small, and restrict our attention
to the chiral limit s = 1/q.

The total bosonic action (4.3.1) has the same invariances as the original fermionic
action (4.1.1), namely (i) area preserving diffeomorphisms, and (ii) local Lorentz
transformations. These symmetries are shared by the UV and IR terms in the action

and we will treat both as gauge symmetries. The IR action is also invariant under
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local conformal transformations’

(u,v) = (x4 (u),z_(v)). (4.3.4)

This conformal symmetry is broken in two separate ways. Picking a particular con-
formal IR solution of the SD equations spontaneously breaks the local conformal
invariance to the global conformal group. This leads to the presence of a Goldstone
mode, parametrized by the conformal transformation (z,(u),z_(v)). Moreover, the
UV action is not invariant under the same local conformal transformation rule as the
IR action. So it induces a non-trivial effective action for the Goldstone mode.

To get the leading order form of the effective action of the Goldstone mode, we

perform a local conformal transformation on the IR propagator. It transforms as
Gi(u,v,a,0) = [/ 2/ )2 [ 7 ])% Go(g, 7y) (4.3.5)

with (z4,%4) = (2. (u),z_(v),z,(a),z_(0)) and 2/, = d,x,(u), etc. In the chiral
limit A.— Oand A, =A=1/q = %(1 — €), the dressed propagator behaves in the
conformal regime as G (z, %) = MEIT;‘I, We can now use this expression, transform
it via (4.3.5), plug it into the UV action (4.3.2), and extract the dependence on = (u)
and z_(v).

The conformal propagator diverges in the coincident limit. This divergence is
expected to be removed by the UV modification. A more practical method is to
take the coincident limit while subtracting the singular contribution in the (u,v)
coordinates. Working to leading order in € and using that

o' (u)x' (a) 1

1
Bl e sweriawny | R L o

In the rest of this subsection, we temporarily move the upper + index on z% to a lower index.
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with {z,u} = % —3 (%)2 the Schwarzian derivative, we find that the effective action

of the reparametrization modes takes the form

S—JI\J[V = 1—62 dudv (ej{m+,u} + e;{x_,v}) —/e““e:e; (4.3.7)

After integrating out e*, we obtain

S a
% = 73 dudv{z ,u}{z_,v}. (4.3.8)

Applying the € expansion method of [64] gives that

_ Qg 5 2 4
as = 1 (1—2€%) + O(e) (4.3.9)

with a, defined in (4.2.17). The effective action (4.3.8) is a functional on the group
of the 2D conformal transformations. It generalizes the Schwarzian action for the
reparametrization mode of the SYK model. We expect that, by generalizing the
analytic and numerical analysis of [42] to the 2D model, it should be possible to

compute the pre-coefficient ag for general values of q.

4.3.2 Free energy and spectral density

By considering the transformation of the Schwarzian derivative under conformal map-
pings, we can extract useful information about the behavior of the theory on a circle
and at finite temperature. At finite temperature, the effective action (4.3.8) receives

additional terms

a—JS dudv (T__{x+, up+ T {x", v} + T++T__>
7T2 /' \2 7T2 /1 \2
Ty = _Q(er) ) r._= _Q(x—) ) (4.3.10)
ekt 32
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with S the left- and right-moving inverse temperature. This term is subdominant at
low temperature, but becomes important at distance scales of order the thermal wave
length. If we take, say, the left moving high temperature limit, we obtain a single
Schwarzian action for the right-movers. This suggests that the 2D model reduces to
the 1D SYK model by performing a DLCQ limit.

Equation (4.3.8) captures the explicit breaking of conformal invariance of the IR
theory due to UV term in (4.1.1). Its form as a product of two chiral Schwarzian
derivatives, as well as the finite temperature correction term (4.3.10), indicates that
the leading order correction to the IR conformal field theory takes the form of an
irrelevant 7T deformation, given by the product of the left- and right-moving stress
tensors [128-131].

To test this interpretation, let us consider the model on a cylinder with circum-

ference I = 278

The conformal mapping from the plane to the cylinder induces
a negative Casimir energy, which can be taken into account by setting {z,,u} =
{z_,v} =—1/2 in equations (4.3.8)-(4.3.10). Now consider the contribution of the ef-
fective action of the Goldstone mode to the free energy at finite temperature. Setting
B+ = 3, we find that
27 B 2 9

_BF > —% Od:c/odt (-%-F%)

(4.3.11)

2rNag <—B A7 47T4>

4] 8B

We wish to compare this result with the free energy of a CFT of central charge
c with a TT deformation. The energy spectrum and thermodynamics of this class

of theories was studied in detail in [128-130], and a holographic interpretation® has

830 all dimensionful quantities are measured in units of the cylinder radius.

9The holographic dual of the 7T deformation proposed in [131] is closely similar to the candidate
AdS; dual interpretation of the 1D SYK model developed in [46-48], built on the earlier work [45].
In both cases, the boundary of the AdS space-time is moved into the bulk. On the CFT side, this
represents an explicit breaking on conformal invariance and gives rise to an associated dynamical
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recently been proposed in [131]. Using the results of [128] [131], one finds that the
free energy of a deformed CFT with action Scpr + f puTT has the following small

temperature expansion

cBf 7w  muc?

—BFeprimr = D + 35 25

+ .. (4.3.12)

The first two terms are the standard CF'T expression for the Casimir energy and
specific heat. Comparing the expressions (4.3.11) and (4.3.12) suggests that the IR
limit of our model is a 2D CFT with central charge ¢, and that the leading deviation
on conformal invariance is given by a T'T interaction with coupling p, with ¢ and g
given by

c Nag 27 4J

¢ _ Nas _ 2 _ , 43.1
Ur  4J =707 Nag (4.3.13)

This reciprocal relation between ¢ and p precisely agrees with the relationship derived
from the holographic dictionary proposed in [131].

By performing an inverse Laplace transform of the partition function Z(3) = e ?F
with respect to 3, we can extract the spectral density as a function of the energy E:

p(E) o exp (27r % <1 — % + >> (4.3.14)

The leading term is the Cardy formula!® and the subleading term reflects the explicit
breaking of conformal symmetry. This formula precisely matches with the low energy
expansion of the exact equation of state EL — £E? = ;252 relating the energy and
the entropy S = log p(E) of the TT deformed CFT [131], provided we set L = 27
and p as in (4.3.13).

pseudo-Goldstone mode. We will make the AdSs3 interpretation of the action (4.3.8) more explicit
in the next subsection.
0Here E is defined such that the CFT ground state has negative Casimir energy E/L = —c/12.
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4.3.3 Relation with AdS; gravity

The double Schwarzian action (4.3.8) can be related to the 3D AdS gravity action as
follows.

In the above derivation we identified the effective Goldstone degree of freedom
with the group of ‘passive’ conformal reparametrizations (4.3.4). To match with
the gravity side, it is convenient to represent the Goldstone mode as an ‘active’ 2D

conformal transformation
(zF,27) = (U@=F),V(z7)) (4.3.15)

defined as the inverse mapping of (4.3.4). In terms of (U,V), the effective action
(4.3.8) reads

ig\f/‘f]] = /dQX S (U)S-(V), (4.3.16)

where S, (U) and S_(V) are defined via
S.(U)0U ={U,x"}, S (V)ov ={V,z }. (4.3.17)

We will now show that the effective action (4.3.16) is equal to the 3D gravity

action

S[U, V] = Sgav|U, V] (4.3.18)

evaluated on a suitable classical solution of 3D gravity defined on a AdS; space-time
with finite radial cut-off, specified as follows. Let B denote the boundary of the

cut-off AdS3 space-time. We define the Einstein action via

1

1
rav = —2A K+1
S 167Gy /\/E(R )+ 8GN /B( 1)
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where, besides the usual extrinsic curvature term K, we included a boundary cos-
mological constant identical to the standard counter term used in holographic renor-
malization. The classical solution associated with (U, V) is defined via the boundary

condition that the pull back of the 3D bulk metric to B is a flat 2D metric given by

ds®|p = dUudv = U'(z1)V' (27 )datdo™. (4.3.19)

The holographic identification (4.3.18) holds if we identify the bulk Newton constant

as
1 B NOéS
167Gy 4J

(4.3.20)

Equation (4.3.18) looks a little surprising at first. One might think that, since the
gravity action is reparametrization invariant, it should be independent of U(z") and
V(z~). Recall, however, that the Lagrangian changes by a total derivative under an
active diffeomorphism, and that 2D conformal transformations necessarily extend all
the way to null infinity. A helpful way to visualize the asymptotic region is by mapping
the 2D space-time onto a Penrose diagram. The conformal transformations are then
analogous to the BMS group. Once we choose a preferred reference coordinate system,
the dependence of the action on U(z™) and V(z~) becomes finite and computable.

The holographic identification (4.3.18) can be derived in various ways. One is
direct computation. Another route is to show that the action (4.3.16) satisfies the
Hamilton-Jacobi equation that governs the radial evolution of a classical action in 3D
gravity. An instructive derivation goes via the following three basic steps.

First we reintroduce the frame variables e* and rewrite (4.3.16) as the minimum

over e* of

/ P (e 8, (U)+ ¢t S(v)—eejey (4.3.21)
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Next we introduce the background zweibein
+ _ — _
Edzt = dU, E, dat =dv (4.3.22)
and make use of the relationship between the Polyakov-Liouville action (viewed as a

functional of the zweibein)

1
SLIE] = = RO'R, G = N ELE,, (4.3.23)

and the Schwarzian derivative to write

S, v] e
S ewn(sie s - fes) s

Here we used that, in the linearized approximation, SL[E + ¢] = [(eZS4(U) +
ef S_(V)). Note that the Polyakov action vanishes for the flat metric (4.3.22) and
that {U,z} = —1(¢/)? + ¢" with ¢ =logU’.

Since the Polyakov action arises by integrating out a 2D CFT, the identity (4.3.24)
is yet another indication that the IR theory describes a 2D CFT in a fluctuating metric
G = Nap(E 4 €2)(E} + €)). Integrating out the metric fluctuations first produces a
CFT with a T'T deformation.

The third and final step in the derivation of (4.3.18) uses an (underappreciated)
result of Freidel that establishes a direct transformation between the 3D Einstein
action evaluated on a classical background and the Polyakov action evaluated on the

boundary metric [132]

Syrar[ E] = min (SL(E +e) — / ewe;e;) (4.3.25)

(&
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Here Sgav(E) is the classical bulk gravity action with boundary conditions g, =
Ny EGEY.  The formula (4.3.25) forms the basis of the holographic interpretation
of the TT deformed theory proposed in [131]. In our context, it provides the link
between 3D gravity and the choice of kinetic term in our proposed 2D analog of the

SYK model. A detailed derivation of the relation (4.3.25) can be found in [132].

4.4 Conclusion

We have proposed a 2D QFT generalization of the SYK model, consisting of N
Majorana fermions with a random non-linear interaction. While the quartic kinetic
term of our action (4.1.1) looks somewhat unconventional, it can be rewritten as
in (4.1.3) as a conventional quadratic kinetic term coupled to a dynamical metric.
The total action is invariant under area preserving diffeomorphisms and local Lorentz
transformations. We treat both invariances as gauge symmetries.

We have presented evidence that the model exhibits conformal symmetry in the IR,
and that the low energy dynamics is dominated by an emergent Goldstone-like mode
associated with the breaking of conformal reparametrization symmetry. Just as in
SYK, this symmetry breaking is introduced by the fact that UV action assigns a lower
scale dimension [¢)]yy = 0 to the Majorana fermions than the relevant interaction
term, which prescribes that [¢)]jr = 1/¢. Some questions that need further study
are: Is there a principle that fixes the IR value of the spin s, or is it an adjustable
parameter? What do the Hilbert space, energy spectrum, partition function and
correlation functions look like?

The motivation for our study is to find new examples of strongly coupled 2D
QFTs with potential gravity duals and to elucidate the role of the reparametrization
mode in the holographic dictionary. While our model still needs to be put on firmer
footing, there are encouraging signs that it is well defined and exhibits the hallmarks
of a holographic dual to AdS; gravity. In particular, it seems plausible that the
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conformal symmetry is non-linearly realized in terms of the reparametrization mode.
In [54] we have shown that this uniquely dictates the commutation relations of the
Goldstone modes and implies maximal Lyapunov growth of out-of-time ordered cor-
relation functions. In view of the results of [54] [74] and the discussion in section
4.3.3, we expect that the effective theory of the reparametrization mode should be
closely related to Liouville theory. A natural route towards making this relationship
concrete is to postpone the integral over Hubbard-Stratonovich variable e* and to
extract its effective action by making use of equation (4.3.24).

Finally, it is natural to speculate whether a similar approach could lead to pro-
posed generalizations of the SYK model to higher dimensions. The UV action has an

obvious reparametrization invariant generalization

Eab"'fG'meU waa#¢a ¢bau¢b e wfagl/}f‘

Adding a ¥ interaction term would again be a relevant deformation, and the two
terms combined would be invariant under volume preserving diffeomorphisms. How-
ever, it seems premature to pursue this generalization without first obtaining a better

understanding of the landscape of lower dimensional examples.

4.5 Appendix: Topological RCFT

What is a topological RCF'T? A rational CFT is a CFT with an infinite chiral algebra
g D Vir and a finite set of primary fields @;. For minimal models, g equals the
Virasoro algebra. A topological RCFT is defined by gauging the chiral algebra g. This
projects the operator content to the set of primary fields, and removes all position
dependence of the Euclidean correlation functions of local operators. All known

RCFT can be represented as coset WZW models, and all known topological RCFTs
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can be formulated as fully gauged WZW models. The topological Ising model is a
gauged su(2), coset with k = 2.
In Euclidean space, the four-point correlation function of local operators O; =

O;(x;) in a TCEFT are specified via the following simple rule [122-124]
<010203O4>TCFT = dim(H1234),

where H 1234 denotes the linear vector space spanned by the chiral conformal blocks

2 3

Fa(1234) = A1,

associated with the corresponding CFT correlation function. This rule satisfies all
axioms of 2D TQFT [121]. For gauged WZW models, the above prescription naturally
follows from the identification of Hi934 with the Hilbert space of a 3D Chern-Simons

theory in the presence of four Wilson lines. Schematically
Fa(1234) = Wi (1)W2(2)W5(3)W4(4)[|0)cs. (4.5.1)

The CS functional integral on R? x S* reduces to the TCFT amplitude on R? and
takes the form of a sum of inner products between the left and right chiral conformal

blocks [122-124]
<010203O4>TCFT = Z <]:a|]:a> = trH1234(H£)‘

Here we used the conventional RCFT normalization of conformal blocks, for which
the fusion and braid operations are represented as unitary matrices. In this unitary

basis, the OPE coefficients are all given by integer fusion coefficients N;;;. The local
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observables thus form a commutative, associative ring isomorphic to the fusion algebra
k

In Minkowski space-time, operator ordering plays a non-trivial role. Local
operators in an RCFT decompose as a sum of factorized terms O(z,x™) =
S VH(a@T)V; (7). The VF are known as chiral vertex operators. Chiral vertex
operators of the same chirality satisfy non-trivial braiding relations, and can be
thought of as end points of light-like Wilson lines. Whenever a V; passes through
the light-cone of another Vj, the corresponding chiral conformal block undergoes a

non-trivial monodromy. E.g.

2 3 3 2

Fa(1234) = > RGFi(1324)  or Jui = > Ry, JJ

P =l
b

a

Here R, is known as the R-matrix and € = £1. This choice of sign indicates that
the braiding move depends on orientation. The ordering of chiral vertex operators is
encoded via the end-point of the corresponding Wilson lines, as indicated in Figure
4.1.

In non-chiral correlation functions, the above monodromy produces a discontinuity
when operators pass through each others light-cone. The monodromy of the left- and
right-light cone have opposite orientation, so the total monodromy cancels out when
two operators pass through both of each other’s light-cones. Hence the Euclidean
correlation functions are single valued and the non-chiral CFT thus remains local.

The same chiral decomposition and dependence on operator ordering holds true
in a topological RCFT. The TCFT correlation functions thus acquire a non-trivial

position dependence

(010:0504), = (FulRip|Fp) = trp150i(R)
a,b
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where R, is the R-matrix that implements the braiding operation that re-arranges all
operators into space-like separated positions. The above discussion easily generalizes
to higher n-point functions.

Applying this general prescription to the special case of the n point functions of
the operators €(x) = 14 (x)1_(x) gives the result (4.1.10). The relevant R matrix in
this case is simply equal to the (—1) factor that implements Fermi statistics. The
equality between (4.1.10) and (4.1.11) then follows directly by applying the definition
of the Pfaffian

1

Pf(M> = ﬁghjlizjz...injnMiljl MinQ Mz

(4.5.3)

for the case that M;; = sgn(z;;) (with = 2¥). One can make a permutation of
the n points such that they are in order of increasing x. This can be recast as a
permutation of the indices that gives an overall factor of (—1)¥ where P is the parity
of the permutation. Then the value is fixed by the Pfaffian when the points are
ordered such that z; < x5 < ... < 1,. This gives a factor of (—1)"/2. Since n is even,

the total factor is equal to 1 for the product (4.1.11) of the left- and right-Pfaffian.

4.6 Appendix: Two point function from path integral

In this appendix we sketch a formal path integral derivation of the UV correlation
function given in equation (4.1.11) starting from the Lagrangian formulation of the
theory (4.1.3). In the main text we argued that the natural gauge invariant observ-
ables of this theory are products of the form €(x) = 1 (x)1_(x). For simplicity we

will focus on the two-point function (€(x) €(0)) of a slightly modified theory, in which
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the fermionic variables 11 are both replaced by complex fermions

1 _
S = §/d2xe“”(ezwa&,wa — €€y, e ),
(4.6.1)

= %/d2x(e+m/7+dw++e Ap-dip- — et Ne ).

The generalization of the calculation outlined below to general n-point functions of
the theory with real fermions is more involved but straightforward.

We will compute the two-point function (€(x) €(0)) by performing the path inte-
gral in steps: we first do the path integral over the fermions with fixed e* and then

we integrate over the HS variable e*

(ex) ) = A [[de] 20 (G, (9w 0), (- ()9-(0), (462

Here NV is a normalization factor. Next we make use of the reparametrization sym-
metry of the action (4.6.1) to choose a gauge in which e* = eI dz*. We will call
this the light-cone gauge, as it fixes the dynamical light-cone to align with the z*
coordinate axes. In this gauge, the coordinate system x = (2, 27) is linked to the
frame variable e* and this in particular means that the seemingly local operator €(x)
is in fact non-local when expressed as covariant observable.

The fermion propagator in the light-cone gauge is given by

(52002 0), (0-(95-(0), = T sm(a”) % S seaa”)
= % x sgn(zt)sgn(z™). (4.6.3)

This looks like an unpractical observable, since it involves the inverse of the frame
fields. We can put it in a more manageable form via a Schwinger parametrization
ei"' = fooo d\teter, Inserting this and performing the gaussian path integral over
+
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the HS fields gives

Nfl /[dei] e%j‘e-‘r/\ e‘% _ N / d)\er)\i l/\+/\ 5@ (x )6( )(X)7
€+ Xje_
— / d)\Jr/ d)\i 1/\+)\_5(2)(X)
+
- = / ATy (4.6.4)

In the first line we performed the integral over the HS field, using the fact that the
propagator gives a contact term (ef(x)eZ(0)) = —id®(x). In the second line we
rewrote the delta function as a derivative with respect to A~, which allows us to
integrate by parts and evaluate at A= = 0. This cancels all spacetime dependence
of the correlation function (4.6.4), yielding a divergent constant which we choose to

cancel out by the overall normalization constant A'. We thus obtain

(€(x) €(0)) = sgn(z™") sgn(z"). (4.6.5)

This is the TCF'T correlator quoted in the main text. It takes the form of the product
of two 1D propagators. Note that the cancellation of the delta-function factors is
essentially enforced by the fact that e(x) has canonical scaling dimension equal to
zZero.

The above derivation of the two point function from the four-fermion UV action
(4.1.1) is admittedly somewhat formal and should be supplemented with the right
1€’s to make each step well-defined.

The generalization to n-point function requires a bit more effort, but a combination
of fermi statistics, Wick’s theorem and dimensional analysis essentially prescribes that

the final result must take the form (4.1.11).
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We leave a more complete and careful path-integral derivation of the result (4.1.11)
to future work but we hope this preliminary calculation clarifies the topological nature

of the UV theory.
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Chapter 5

Conformal Symmetry and

Quantum Chaos

In the previous chapter we have proposed a 2D field theoretic version of the SYK
model. The IR mode of this model controls the thermodynamics, thermalization,
quasi-normal modes and chaos exponent of the theory. In this chapter we will be
more general, go beyond SYK-like proposals, and extend these ideas to 2D CFTs.
Since conformal symmetry is always broken by an anomaly (we have in mind large
¢) we would like to find a universal theory describing this Goldstone-like mode in 2D.
This would not mean that any CF'T is maximally chaotic but rather that theories with
an IR dynamics dominated by this mode saturate the chaos bound. We will study to
what extent this theory controls the chaos exponent and saturates the chaos bound.
We will also analyze properties of Ruelle resonances (quasi-normal mode frequencies)
and relate these time scales to the location of singularities in OPE coefficients. We
also define a toy model using discrete Liouville theory that shares both features. In

the following section we begin by giving a summary and overview of results.
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5.1 Overview

As reviewed in the introduction, characteristics of chaotic systems, such as Lyapunov
behavior, scrambling and Ruelle resonances, can be effectively isolated by studying
out-of-time ordered correlation functions [30,31,41,62,133-136]. Many body quantum
chaos is interesting in its own right, but usually hard to quantify. Identifying simple
models or general mechanisms that exhibit aspects of quantum chaos is therefore a
worthwhile goal. In this chapter we make three interrelated observations that may
help 1) identify a new class of toy models in the form of a simple lattice model built out
of parafermionic spin variables 2) clarify the relationship between maximal quantum
chaos and the non-linear realization of conformal symmetry at finite temperature, 3)
relate the spectrum of Ruelle resonances to analytic properties of OPE coefficients in

the CF'T. We now briefly describe each of the three components of our story.

1) A discrete model of many body quantum chaos

Useful many body systems that may exhibit chaos are quantum spin chains and
matrix models. Another interesting example is the SYK model, which is solvable
at strong coupling, maximally chaotic, and exhibits emergent conformal symmetry
at low energies [31]. Our model of interest combines ingredients and properties of
both examples, with the added feature that its Lyapunov behavior can be exhibited
via weakly coupled effective field theory. The model described below is a minor
specialization of the class of integrable lattice models introduced by Faddeev, Kashaev
and Volkov [137-141].

The model is assembled from a collection of Zy parafermionic operators f,, labeled
by an integer 1 < n < L with L some large odd integer. We identify fy,.; = f;, so

the integers n label points on a 1D periodic lattice. The f, satisfy the algebra

fonti1fon = Q% fonfonti, q=emN, (5.1.1)
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Figure 5.1: The discrete model is defined on a rhombic lattice. We indicated the
center (o, 7) of the diamond (o + 1,7+ 1). The equation of motion (5.1.3) expresses
the variable at the top of the diamond in terms of the other three.

while [f,, f,,] = 0 for [m —n| > 2. This parafermion algebra can be realized on a finite
dimensional Hilbert space H =V, ® Vo ® ... ® V, with V,, an N-dimensional vector
space attached to the link between site n and n + 1, on which f, and f,; act via
appropriate clock and shift matrices. In the end, we imagine taking the continuum
limit L — oo. The integer N is assumed to be large but finite. As we will see shortly,
N will be proportional to the central charge of the low energy effective CFT.

The time-evolution is discrete and specified as follows [137-139]. We relabel the
variables f,, by means of two integers f,, with ¢ + 7 = even, via fg, o = fo, and
fory11 = forp1. The relabeled variables specify the initial condition of the model.
The time evolution will generate a discrete, cylindrical 14+1-D space time formed by a
rhombic lattice. The time evolution proceeds via a local propagation rule [137-139].

We can focus on a single diamons shaped lattice cell

eN = fo‘,7'+17 €g = fo‘,Tfla ew = fafl,‘ra eg = fUJrLT. (512)

The evolution equation of the model reads

EWEE

(5.1.3)

ENEs =

140



Equation (5.1.3) is the simplest example of a Y-system. It specifies the variable ey at
the top of the diamond shaped lattice cell in terms of the other three variables eg, ew
and eg, see Figure (5.1). The Y-system (5.1.3) defines an integrable lattice model,
that can be recognized as a discretized version of 2D hyperbolic geometry [137-139].
The exchange relation (5.1.1) amounts to a quantization of this hyperbolic geometry.!

The lattice model is a well defined quantum system, albeit one with a discrete
time evolution. The model has been constructed [137-139] so that in the large L
and IR limit, it describes a 2D continuum CFT with a non-linearly realized confor-
mal symmetry with central charge ¢ = 1 + 6(b + b71)? with * = 1/N. As we will
explain, this CFT exhibits maximal Lyapunov behavior, and an infinite set of Ruelle
resonances matching the quasi-normal frequencies of the BTZ black hole [142].

It may seem surprising that an integrable model can display properties character-
istic of many body quantum chaos. To address this potential worry, one could choose
to perturb the system away from integrability. One could add disorder e.g. by using

the freedom of normalization of the f, to set f/f, = k.1 with x, random real

NxN?
numbers picked from a narrow probability distribution centered around %, = k. Al-
ternatively, one could add frustration e.g. by including a next-to-neighbor interaction

in the time step rule (5.1.2) and (5.1.3) via
v fors = (14 el (b efry ) /(14 L )AL (5.14)

Since the features of quantum chaos will already become apparent in the unperturbed
model, we will instead focus on this idealized case, while ignoring the role of exact
integrability. Indeed, we can note that there are other systems, such as N' =4 SYM
theory at large IV, that are believed to be both integrable and chaotic. We will return

to this point in the concluding section.

'In some way, one may view the model as a many body analogue of a hyperbolic billiard.
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2) Lyapunov from Goldstone

A central part of our reasoning consists of a new physical derivation of the Lya-
punov behavior of an irrational CFT at finite temperature. The idea is as follows.
1+1-D CFTs are characterized by an infinite conformal symmetry group, given by

reparametrizations of the lightcone coordinates u and v

(u,v) = (§(u), n(v)) (5.1.5)

This conformal symmetry is broken by the conformal anomaly and by the presence of
a finite energy density at finite temperature (and by the UV-cut-off). For a CFT with
a dense asymptotic energy spectrum, it is then natural to expect that the conformal
symmetry is non-linearly realized in terms of a light Goldstone mode.

This motivates us to consider the effective field theory of the relevant Goldstone
excitation, described by the chiral field £(u) in (5.1.5) that parameterizes the confor-
mal group. The effective Lagrangian is uniquely fixed by symmetries, and given by
the geometric action of the Virasoro group [70]. In section 5.2, we will use this insight
to derive the commutation relations of the Goldstone fields &(u) and n(v). We will

find that the thermal expectation value of the commutators squared

([€(u),€(0)]* ) ~ ™, ([n(v),n(0)]*) ~ €™, (5.1.6)

initially grow exponentially with the time separation, with a temperature dependent
Lyapunov exponent A = 27 /3. In fact, we will derive the somewhat more precise

result that, inside a thermal expectation value, the commutator between two generic
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local operators takes the form?
[W(tl),‘/(tQﬂ >~ 66’\t128t1W(t1)0t2V(t2) (517)

with € some constant proportional to 1/c. This result, which holds for time-like
separations in the intermediate range ¢ > At15 > 1, matches with the bulk interpre-
tation of the commutator as resulting from a near horizon gravitational shockwave
interaction [15,26].

The role of the modes v — £(u) and v — n(v) play the same role as the pseudo-
Goldstone mode t — f(t) appearing in the IR effective description of quantum me-
chanical models like SYK. In this case the conformal symmetry is both spontaneously

and explicitly broken.

3) Ruelle resonances as poles in OPE coefficients
A main characteristic of a chaotic system is that it thermalizes: out of time ordered
correlation functions decay to zero at late times. The approach toward equilibrium is
governed by Ruelle resonances [143]. They appear as poles in the Fourier transform of
the thermal two-point function, or in systems that obey the eigenstate thermalization
hypothesis (ETH) [144-148], the matrix element between two excited states with total
energy M
G@y:/ﬁmﬂowomwmam (5.1.8)

The Ruelle resonances of holographic 2D CFTs are well studied [142,149]. As
argued in [150], the matrix element reduces (for small t) to the thermal 2-point

function. Its Fourier transform G(w) has poles at resonant frequencies

w:—%;m+h% (5.1.9)

2Here for simplicity we only consider the time dependence of the correlator. In general, the left-
and right-moving sectors each may have their own temperature and Lyapunov exponents A, ., =

270/ By p-
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that coincide with the quasi-normal modes of the BTZ black hole [142]. By factorizing

the matrix element (5.1.8) in the intermediate channel, we can write

Gw) = > o(M+w—E)[(MO]i)]? (5.1.10)
liyeHcrT
= p(M +w) [(M|O|M +w)|* (5.1.11)

where we used that in the Cardy regime, we can replace the spectral density p(E) =
>y 0(E'— E;) by a continuous distribution, and label the CFT states by their energy.
We learn that the Ruelle resonances dictate the analytic structure of the matrix
element of a light operator O between two highly excited states. This indicates that
the resonances must show up as poles in the OPE coefficient of a light operator and
two heavy operators. Or in AdS-dual terms, the quasi-normal modes should show up
as poles in the absorption and emission amplitudes of wave perturbations by a BTZ
black hole.

In section 5.4 we will show that the analytic continuation of the OPE coefficients of
the continuum limit of our model indeed has poles located at the expected frequencies

(5.1.9). This supports the statement that the continuum limit of the model is ergodic.

5.2 Lyapunov from Goldstone

Consider an irrational 2D CFT with central charge ¢ > 1 with an asymptotic density
of states given by the Cardy formula, and with a sparse low energy spectrum. We
place the CFT on a circle, parameterized by a periodic coordinate x with period 2.

We introduce light-cone coordinates (u,v) = (t — z,t + x).
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Consider a finite energy state with a constant expectation value for, say, the left-

moving energy momentum tensor

(T(u)) = Ly > % (5.2.1)

In this regime, we can associate to the state a finite inverse temperature % =./3 4‘20.

Let us perform a general conformal transformation (5.1.5). We require that
E(u+2m) =E&(u) + 27 (5.2.2)

The expectation value of the energy momentum tensor transforms non-trivially
(T(u)) = Lo&(u) + 1—(/’255@) (5.2.3)

with S¢ the Schwarzian derivative

Se(u) = %(gfl((Z))>2 - (i,l((z))y (5.2.4)

The spontaneous breaking of conformal symmetry is displayed via the £-dependence
of this expectation value. Indeed, we can compare the relation (5.2.3) with the ex-
pression for the energy-momentum tensor of a fluid. The first term is analogous to the
usual kinetic energy % pv®, whereas the second term in (5.2.3) is the familiar vacuum
contribution due to the conformal anomaly. It has a well-known physical explanation
in terms of the Hawking-Unruh effect: the coordinate change from u to £(u) reshuffles
the positive frequency (annihilation) and negative frequency (creation) modes, and
thus alters the notion of the vacuum state.

Our physical assumption is that, for irrational CFTs at large ¢ and in the Cardy

regime, it becomes accurate to treat the coordinate transformation &(u) as a Gold-
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stone field, in terms of which the conformal symmetry is non-linearly realized. Adopt-
ing this logic, we thus promote £(u) to an operator, that acts within the Hilbert sub-
space spanned by all states with energy density close to Lg, and their descendants.
Within this subspace, we can remove the expectation value in (5.2.3) and elevate the

equality in (5.2.3) to an operator identity
c
T(u) = Lo€"(u) + 75 Se(w). (5.2.5)

As we will see shortly, the expression (5.2.5) for the energy-momentum tensor in terms
of &(u) is familiar from the geometric quantization of Diff(S'), the group of (chiral)
conformal transformations in 2D.

A cautious reader may view equation (5.2.5) simply as a (in)convenient parame-
terization of the energy momentum tensor 7'(u). However, another way to state our
assumption is that the symmetry parameter £(u) acts as a genuine local quantum field
that creates and annihilates local physical excitations. Given that (u) is a scalar and

T (u) is the generator of conformal transformations, we know that?

[T(Ul)f(%)} = hél(uz)&uu) h

alo

(5.2.6)

[T(w1), T(u)] = —A(T(u1) + T(us))d (wr2) + 25”’(1@12). (5.2.7)

The emergence of a light Goldstone mode at finite temperature can be explained as
a physical consequence of the fact that an irrational CFT in the Cardy regime has

an extremely dense energy spectrum.

3Here we absorb a factor of A = 6/c in the definition of T'(u). This is a customary step, that
exhibits the fact that the commutation relations (5.2.6) and (5.2.7) become semi-classical at large c.
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Equations (5.2.6) and (5.2.7) become semi-classical in the large ¢ limit. From

equation (5.2.1) we see that the field £(u) has expectation value

(&(u)) = u (5.2.8)

So semi-classically, we can think of the Goldstone field as: {(u) = u + small fluctua-
tions.

We are now ready to state the main technical result of this section:

The three relations (5.2.5), (5.2.6) and (5.2.7) uniquely determine the commutation
relation of the Goldstone field £(u), and are sufficient to derive the Lyapunov growth

of commutators.

Working to leading order in 1/¢, one finds that [151] [92,93]

€(u12) sinh(A7(uq, us))
Lo Losinh A

T(ug,ug) = &(uy) — &(ug) — me(ua), A=/ 2401/0 (5.2.10)

with e(x) the stair step function, defined via € (z) = 20(x) with §(z) the periodic

[€(ur), E(ua)] = (5.2.9)

delta-function: €(x) = 2n+1 for x € (2mn, 2m(n+1)). The same argument and deriva-
tion goes through for the right-movers. So we also have a right-moving Goldstone
mode 7(v) = v + small fluctuations, that satisfies the analogous commutation rela-
tion (5.2.9).* The left- and right-moving Goldstone fields commute [¢(u), n(v)] = 0.
A detailed derivation of equation (5.2.9) and (5.2.10) can be found in [151] [92,93].

Here we give a short summary. The constituent relation (5.2.5) between the energy-

4For simplicity we will assume that the left and right movers have the same temperature.
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momentum tensor and the field £(u) can be decomposed as

T(u) = ¢*(u) —2¢"(u), (5.2.11)
pu) = 2 &) + 3 log(AE/(w). (5.2.12)

The commutation relations (5.2.6) and (5.2.7) then follow from the free field commu-

tator

[p(ur), p(uz)] = he(ura), (5.2.13)

with s = 6/c. So our task has been simplified: all we need to do is use relation (5.2.12)
to solve of {(u) in terms of ¢(u), and use the chain rule to deduce the commutator
of £(uy) and &(ug) from the free field commutator (5.2.13) of ¢.

The free field ¢(u) is periodic up to a shift
o(u+27) = p(u) + T (5.2.14)

Using this fact, equation (5.2.12) integrates to [92]

1 2T 624p(u+y)f)\7r
E(u) =y log < / dy —> (5.2.15)
0

sinh w

With this relation and equation (5.2.13) in hand, it is now a relatively straightforward
calculation to derive the result (5.2.9) and (5.2.10).

Let us turn to the physical consequences of equations (5.2.9) and (5.2.10). We
observe that A is equal to the maximal Lyapunov exponent A\ = 27/3. We will assume
that A > 1, i.e. the thermal wave length is very short compared to the size of the
spatial circle. The second term in the commutator (5.2.9), and its right-mover counter

part, thus grows exponentially with the coordinate differences w15 and vi5 over the
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range

B < |up| < 2w, B < |upp| < 27 (5.2.16)

We will restrict our attention to this coordinate range. In this regime, equation
(5.2.9) implies that the commutator between two local functions f(us) = f(£(us))

and ¢ = g(&(uq)) of the Goldstone fields satisfy

[f(u1>7g(u2)] o gHlural=2m) f/(ul)g/(%)‘ (5‘2'17)

Here we used equation (5.2.8) to replace {(u) — w on the r.h.s. We would like to
translate equation (5.2.17) into a statement about the commutator between local
CF'T operators.

Consider some local CFT operator O(u,v). Under the conformal transformation

(5.1.5) it transforms as

O(u, v) = €(u)™ 1 ()" O (€(uw), n(v)) (5.2.18)

Hence local operators are indeed non-trivial functions of the dynamical Goldstone
fields.

It is logical to take this observation one step further, and, similarly as we did for
the energy-momentum tensor, assume that local operators O(u, v) can be represented
as c-number valued functions of the operator valued fields {(u) and n(v) and their
derivatives. The collection of these functions is determined by the spectrum and
operator algebra of the CFT. Their form is constrained by the locality requirement

that space-like separated operators commute. This condition is very restrictive: it
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prescribes that primary local operators are all of the form [92,93, 152—-154]

On(u,v) = (f(u,0))", (5.2.19)

N
4sinh2(%(f(u) — 77(“)))

(5.2.20)

Equations (5.2.9) and (5.2.10) can then be used to compute the commutation relations
between time-like separated operators, as follows.
The accepted test for Lyapunov growth of the commutator between two local

operators W and V' is to compute the expectation value

(We(u, v) [W(u,v),V(0,0)]Ve(0,0)) (5.2.21)

where the subscript . indicates a small displacement. This expectation value is equal
to the difference between a time ordered and an out-of-time-ordered (OTO) correla-
tion function. The OTO correlation function is obtained via analytic continuation of
the time ordered correlation functions, where one circles, say, the coordinate u around
the origin. This operation amounts to analytic continuation of the left-moving con-
formal blocks to the second Riemann sheet. Of course, we could also choose to do the
analytic continuation using the coordinate v. This would have given the same final
result.

The full-circle-monodromy M of a conformal block is the square M = R? of
half-circle-monodromy known as the R-operation. The R-operator, acting on the left
conformal blocks, re-orders the left-moving parts of the operators W and V. In the
linearized regime, i.e. to leading order in 1/¢, we can write R ~ 1 — r with r the
perturbative operation that takes the commutator between the left-moving parts of W
and V. The full-circle-monodromy is M ~ R? = 1 — 2r and thus the full commutator

inside (5.2.21) is equal to acting with (1 — M) = 2r on the two operators W and V.

150



From equation (5.2.17) we then deduce that
[W(Ul, U1>, V(Ug, ’UQ)} >~ 26)\(1“27”0) 0U1W(u1, U1> aUQV(UQ, UQ) (5222)

This result, which holds for time like separation in the regime (5.2.16), displays the
maximal Lyapunov behavior and the linearized gravitational effect of an early incom-
ing perturbation (created by V') on the arrival time of the outgoing signal (detected
by W).

We end with a brief comment on the extension to higher orders. As indicated by
the description of the monodromy moves, one expects that the commutator (5.2.22)
exponentiates to a non-perturbative exchange relation. Fourier transforming the left-
moving coordinate via W, (v) = [du e’ W (u,v), this exchange algebra is expected

to take the following form
Wa(v1)Vica(vz) = > Mo Vy(va) Wep(v1). (5.2.23)
B

If we assume that the bulk interaction is dominated by gravity, then AdS/CFT makes
a precise prediction for the monodromy matrix M, [74]. The prediction precisely

matches with the monodromy matrix of Liouville CFT [74].

5.3 A Chaotic Lattice Model

In this section, we will connect the FKV lattice model, defined by equations (5.1.1),
(5.1.2) and (5.1.3), with the above effective CFT derivation of Lyapunov behavior.
The motivation for studying the lattice model is two-fold. First, the geometric
theory of the Goldstone fields &(u) and n(v) is an effective theory, that only becomes
accurate at finite temperature and long distance scales. Like all effective field theories,

it does not define a fully consistent CFT by itself, nor does it have a unique UV
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completion. There are two ways in which one can try to embed an effective field
theory into a self-consistent quantum system: a) look for an explicit UV completion,
or b) introduce an explicit UV regulator. Approach b) is more practical.

A second motivation is that one can hope that the lattice model, by virtue of
being more well defined, may allow for more explicit dynamical understanding of the
underlying mechanism for chaos. Indeed, it turns out that the lattice Liouville model
can be formulated in a way that preserves the geometric appeal of the continuum
theory [137-139]

The Y-system (5.1.3) and the expression (5.2.19) of local operators in terms of
the function (5.2.20) both have a direct connection with hyperbolic geometry. To see

this, we first note that the 14+1-D metric defined by

N\2dédn
(2sinh(3(€ —n)))*

ds®> = f(u,v)dudv = (5.3.1)

describes a hyperbolic space-time with constant negative curvature. The authors
of [137-139] gave a beautiful discretized description of this 2D hyperbolic metric as
follows.

We can write equation (5.3.1) as

1 (eAf(u+A) _ eAf(qu)) (eAn(erA) _ eAn(va))

flu,v) = A2 (PEWTA) = Ml A)) (A(u—B) — cAnv-2))

(5.3.2)

with A an infinitesimal coordinate shift. Note that this expression for f(u,v) looks
like a cross-ratio. So it is invariant under Mobius transformations. Now consider the

values of f(u,v) in four nearby points, separated by null shifts A

fO',’T—l = f(ua U)) fa+1,T = f(u + A, U)v
(5.3.3)
fo'flﬂ- = f(u,'U+A>, f0.77.+1 = f<u+A,U+A)
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)\f(u)j eAE(u:I:A), An(v )\n(U:tA)’

These four cross-ratios depend on six functions e M@ and e
but thanks to the Mdébius invariance, only three of the six functions are independent.
Therefore, the four cross-rations (5.1.2) satisfy one relation [137-139]. Putting A = 1,

it reads

fa+1 chr—lT
foriifor g = Tlol, . 5.3.4
,7+1tor—1 (1 + f0.+177_)(1 + fgfl’T) ( )

This confirms that the equation of motion of the FKV lattice model is a discretization

of the hyperbolic metric (5.3.1). The parafermionic algebra
fofner = @ fopafn (5.3.5)

defines a quantization of the space of discretized hyperbolic metrics.
Our new observation is that this lattice model can serve as a useful prototype of
quantum chaos. The most direct way to substantiate this claim would be compute

an out-of-time ordered four-point function of local operators

< fO’,T+t+1 [fa,'r—i-t—ly fO’,T+1:| fU,T—l >B (536)

at finite temperature, as a function of the time difference t. While this would in
principle be doable, we will leave this task to future work. Instead we will cut the
computation short, by banking on the results of [137-139, 141] that show that the
above lattice model in the large L limit approaches continuum Liouville CFT. To-
gether with the result of the previous section, this is sufficient to demonstrate that

the continuum limit of the lattice model displays maximal Lyapunov behavior.
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For completeness, let us display a few more elements of the dictionary. Working

to leading order at large N

+ o+ £
efn efm — oPm p¥n q2€nm ePu2) pp(ur) — pplur) pp(uz) he(uiz)
+ +
ePniL = 2™ en ePUtam) — 2mA pp(u) (5.3.7)
+ A A A
% eSOn = e2 &n __ e2 &n—1 GSD(U) — aue 2 §(u)

The right column lists the formulas (5.2.13), (5.2.14) and (5.2.12) that were used to
derive the commutation relation (5.2.9) of the left-moving Goldstone variable &(u).
The left column is the lattice version of the same set of relations, with €., the dis-
cretized stair-step function. We can write a parallel set of formulas that represent
the right-moving modes ¢(v) and n(v) in terms of lattice variables ¢, and 7,.
Lattice variables ¢ that satisfy the exchange relation in (5.3.7) are obtained
from the local operators f,, in two steps [137-139] [141]. First we define two mutually

commuting sets of chiral operators w via

Wi = qfoni1fas, W, = qfoni1f,. (5.3.8)

+ _ :|:2wmnW:|: :I:

These satisfy the algebra wiwE = ¢ , With Wmn = sgn(m —n)0m—n|,1. The

chiral variables pT are then defined as

L
on = ) amlogwn,  prp = +2mA 21 = %Z ogwy. (5.3.9)

m

At the initial time 7 = 0, we can recover the single valued local parafermionic opera-

tors fo, from the non-local chiral variables via
for = €97 Pt (5.3.10)
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This is the lattice version of the relation e2?(#%) = ¢#(¥)+2() that expresses a non-chiral

free field vertex operator into the product of the two chiral vertex operators. We note,

however, that the time evolution (5.3.4) does not amount to free field propagation.
Among many other non-trivial results, [137-139] and [141] give an explicit con-

struction of a unitary time evolution operator U that implements the time step (5.3.4)
forpn = Uf,, U, (5.3.11)

This time evolution does not preserve the chiral factorization (5.3.10). However, it is
shown that there exists a Backlund operator B that solves the time evolution via

+ -
f,, = B leio-ne b+ B (5.3.12)

)

This Backlund operation is causal but highly non-local, and no explicit representation
of B is known at present. Indeed, as exemplified by this equation, all non-trivial
dynamics of the Liouville lattice model is encoded in the way in which the two chiral
sectors get mixed and become entangled under the time evolution step (5.3.4). Our
results are evidence that this mixing and entangling is happening in a maximally
efficient way.

Our argument that the lattice model exhibits maximal Lyapunov growth is a copy
of the effective CFT derivation presented in section 5.2. The three relations in the
left column of equation (5.3.7) specify the commutation relations of the &, variables,
in the same way as the right column fixes the commutator algebra of £(u). The
commutator algebra is expected to approach the continuum result (5.2.9) in the large
L limit. Our working assumption is that the exact solution (5.3.12) of the lattice
model leads to an expression of the local operators f, - in terms of the chiral modes

&, and 7, that mirrors formula (5.3.2). Via the same reasoning as in section 5.2, this
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expression can then be used to verify that the lattice model is local and to establish

that the OTO four point function (5.3.6) grows exponentially with time.

5.4 Ruelle Resonances

In this section we will expand on the topic of Ruelle resonances, which provide another
signature of chaos and ergodicity. We will briefly review these concepts and then use
the intuition for large c irrational conformal field theories to translate the knowledge
about these resonances into concrete CF'T data. We will introduce a notion of OPE
coefficients (of light operators between heavy states) as analytic functions of energy.
We will see that the presence of Ruelle resonances, in combination with the conformal
bootstrap and AdS/CFT, impose stringent constraints on the form of these analytic
OPE functions. We will then verify that the known OPE coefficients of the effective
CFT of section 5.2 and the continuum limit of the lattice model of section 5.3 satisfy

all these physical requirements.

4.1 Ruelle resonances in CFT

Ruelle resonances are poles in the Fourier transform of linear response functions
that govern thermalization, the decay process towards thermal equilibrium after a
quench. Consider a small perturbation produced by a local operator Op(x) to the

Hamiltonian

SH = / ()0 (x). (5.4.1)

Here J(z) is an external source. Then one can study how this perturbation influences
the time evolution of the expectation value of some other operator (O,(0)), which for

convenience we place at x = 0. By expanding the evolution operator to linear order

5(0,(0)) = / do’ Grt(2') I (z'), (5.4.2)
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where Gt (z) = 0(t)([Oa(z), On(0)]) (With ¢ = time component of x) is the retarded

Green’s function. GL5!(z) may be expressed in terms of two point functions as

Gg?;(m) = 9(75)(G:b(37) - ng(@)v (5.4.3)

with G} () = (O.(2)0,(0)) the time ordered two point function and G, (z) =
(0p(0)O,(x)) the out-of-time-ordered two point function. Equation (5.4.2) is the
basis of linear response theory, from which one can deduce transport properties such
as the Kubo formula. Response functions are usually analyzed in the frequency
domain. The Ruelle resonances appear as poles in the complex frequency plane.
The imaginary part of the location of the poles determines the relaxation time. The
leading behavior in 6(Oy)(t) is governed the viscous hydrodynamical mode with the
smallest imaginary part.

We are interested in studying this response function in a pure state microcanonical
ensemble, defined by some highly excited CFT state | M) with a large scale dimension
M > {5, so deep in the Cardy regime. The two-point functions of interest are given
by the matrix elements of the two light operators O, and O, between two heavy

states

G (u,0) = (M|Oa(u, v)On(0)| M)

(5.4.4)
Gop(u,v) = (M[Op(0)Oa(u,v)|M)

For 2D CFTs at large ¢, it has been argued in [150] that the matrix elements (5.4.4)
are dominated by the identity conformal block (which for G*(u,v) is given by the

term with ~ = 0 on the left in Figure 5.2.) For large ¢, this identity block is well
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approximated by the thermal 2-point function on an infinite 1D space

. s N (. me
Gb(u,0) = dup (sinh (%(u + i€)) > (Sinh (%(v + i€)) > ' (5.4.5)

with g = ﬂ\/c/w . This is a useful result, that supports both the ETH and the dual
identification of the two point function as the boundary-to-boundary propagator of a
bulk field in a BTZ black hole background.

The validity of equations (5.4.5) is somewhat limited, however. It only holds
for spatial separations that are small compared to the size of the spatial circle, and
for the OTO two-point function, the time difference must be short compared to the
scrambling time, since otherwise one enters the Lyapunov regime. On the gravity side,
the perturbation O, creates an incoming wave that may collide with the outgoing
wave detected by O,, and thereby substantially affect its future trajectory. This
gravitational effect will show up as a modification of the OTO two-point function
G~ (u,v), and was studied in section 5.2. Here we will focus on the late time behavior
of the time ordered 2-point function G (u,v).

The incoming wave deforms the black hole horizon state. The subsequent ring
down of the black hole towards equilibrium is the dual of the thermalization process
of the CFT. Both processes are governed by an infinite set of resonances. On the
gravity side, these resonances are the quasi-normal modes. These can be analyzed
perturbatively, by considering small fluctuations of fields propagating in the neigh-
borhood of the black hole horizon. These resonant quasi-normal frequencies are an

infinite series of complex numbers, labeled by a non-negative integer n via [142]

w=+k— i%(n + h). (5.4.6)

with k is the momentum of the infalling mode and h the conformal dimension of the

fluctuating field. This result was derived using the Poincaré patch, corresponding
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with a CFT on an infinite line, and with vanishing Dirichlet boundary conditions at
infinity [142].° Tt is reasonable to assume that the result generalizes to black holes in
global AdS, with a periodic spatial boundary, by replacing the momentum £ by an
integer angular momentum /¢.

In the CFT, the quasi-normal modes manifest themselves as Ruelle resonances,
that appear as poles in the Fourier transform of the retarded thermal Green’s function

(5.4.3)
G t) = fau fav 0 ), (547)

which via equation (5.4.5) yields a spectrum that matches with the gravity prediction
(5.4.6). Our goal in this section is to use the presence of these Ruelle poles to extract
useful information about the OPE coefficients of the CFT. Earlier papers with results

that overlap with this section are [150, 155].

4.2 Resonances and OPE coefficients

As a preparation, let us look at the different conformal block expansions of the
matrix elements (5.4.4), as shown schematically in Figure (5.2). We temporarily
rotate to euclidean signature and set (u,v) = (z,Z). The first equal sign of these

identities represents the crossing symmetry relation

2

Gab(z) = Z CaMM+wCl\1\/£IJlraw “vaw [1;/[ Bkﬂ (Z)‘Z = Z CI{I/IM Canb |]:h[ﬁkﬂ (1 - Z)}
w h
(5.4.8)

where 7, [MM] (2) represents the Virasoro block shown on the left in Figure (5.2).

We see that crossing symmetry relates the ‘t-channel block’ with heavy intermediate

5Notice that this Dirichlet boundary condition eliminates all gravitational excitations correspond-
ing to the Virasoro descendants in the CFT. This restriction will become relevant later.
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Z - Z M+4w — M-+’
w

M M M

Figure 5.2: Diagrammatical representation of crossing symmetry and the exchange
algebra of the CFT correlation function of two heavy operators, labeled by M, and
two light ones, labeled by a and b.

channel (labeled by M+ w) to the ‘s-channel block’ with a light intermediate channel
(labeled by h).

The second relation in Figure (5.2) is the exchange algebra relation,

S Caontrw OV B Y] P = D Coanrar OV | £, LM (1/2) [ (5.4.9)

that imposes locality in the Euclidean region. In Lorentzian language, it implies that
the R-matrix R, . that relates the chiral time-ordered conformal block (labeled by M
+w) to the out-of-time-ordered conformal block (labeled by M+w’) is an appropriate
unitary transformation, so that in the euclidean region, it cancels out between the
left- and right-movers of the complete CFT four-point function. After rotating to
Lorentz signature, the R-matrix does show up in a non-trivial way, in the relation
between the time-ordered Green’s function G}, (u,v) and the OTO Green’s function
G () [74].

We wish to extract information regarding the Fourier transform of G}, from its ex-
pansion (5.4.8) in conformal blocks, in the channel shown in the middle of Figure (5.2).
This is not directly possible, since no explicit expression for the Virasoro conformal
blocks is known. So let us take a step back and write the crossing symmetry formula

as a sum over primary operators and descendants. Let v denote the n-th coefficient
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MM

of the Laurent expansion of the Virasoro conformal block %, [M}

|(2). From now
on we focus on the diagonal part of the two point function Gap(u,v) = G(u,v)dap. It

has the following expansion

G(u,v) = G, , ()G, ,(v) (5.4.10)
I4)

Gup(u) = > Cantatew, Yok ellortnol (5.4.11)
nr

and a similar formula holds for G, (v). Here |i) runs over all conformal primary
states of the CFT in the neighborhood of the high energy state |M). In the sum we
allowed all states with different left- and right conformal dimension (A; 1, A;r) =
(M +w;p, M + w; ).

We want to take the Fourier transform (5.4.7) with respect to both light-cone

coordinates. It is useful to introduce the spectral density of CF'T primary states

,O(LUL, wR) = Z 5<M +wyp, — AZ7L)(5(M + wp — A@R). (5.4.12)
|4)

We then have
dw' G, 1)

2m W —w — 1€

G w, () = (5.4.13)

G(w,l) = Z CamMiw,—ny CaMMiwr—ng Ty Tng p(WL —nr,wr — ng), (5.4.14)

np,MRr

with wy, = 1(w + ¢) and wg = 5(w — ¢). For a given CFT, G™(w, ) contains exact
information about the spectrum of primary fields, in the form of a dense set of poles
along the real axis, with residues equal to the corresponding OPE coefficient. The

Ruelle resonances appear as a series of poles in G™*(w, ) located off the real axis.
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Based on equation (5.4.5) and the results of [150] and [142], we expect that their
location should match with the quasi-normal frequencies (5.4.6).

The spectrum of an irrational CFT at large ¢ becomes very dense in the Cardy
regime. In this type of situation, it is customary to treat the spectrum as a continuum
with spectral density given by the Cardy formula, and elevate the OPE coefficients
to continuous functions of the conformal weights. The Ruelle resonances are then

expected to arise as poles in the analytic continuation of the OPE coefficients.%

Let us summarize. The OPE coefficients between light and heavy operators satisfy
several non-trivial compatibility conditions: they solve the CFT bootstrap equations
(5.4.8) and (5.4.9), and must be compatible with the known location (5.4.6) of the
Ruelle resonances. The question is: do these conditions uniquely fix the form of the
OPE coefficients, in the universal high energy regime in which the CFT spectrum is

governed by the Cardy formula? Do we know of any solutions to these conditions?

4.3 Ruelle from Liouville

The answer to the last question is affirmative: Liouville theory solves both condi-
tions. The bootstrap program of Liouville CFT is by now on firm footing [76]. Our
new observation is that the OPE coefficients of Liouville CFT, given by the famous
DOZZ formula [104,105], indeed exhibit a series of poles that precisely match with
the quasi-normal frequencies (5.4.6) of the BTZ black hole. This observation gives
extra support to the proposal that Liouville theory should be viewed as the effective
CFT that captures universal high energy behavior of holographic CFTs. As we will
discuss in the concluding section, this result also sheds light on whether the lattice
model of section 5.3 has ergodic dynamics or not.

Liouville CFT has a continuous spectrum labeled by the momentum variable «

via Ay = a(Q — ) with c =1+ 6Q? and Q = b+ b~'. In section 5.6 we review the

SEvidently, the Ruelle poles do not arise from the density of states. The Laurent coefficients 7%
are fixed by conformal symmetry and they only exhibit poles for frequencies associated to degenerate
states. The degenerate states appear at different locations than the quasi-normal modes.
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expression for the three point function C'(ay, am, ag) for a light operator, labeled by oy,
and two heavy operators, labeled by as and a3. Denoting the conformal dimensions

as Ay = h, Ay = M and A3 = M+w, the corresponding Liouville momenta are

b2 (5.4.15)

w —_—
2v/M 4

oy >~ bh, a3 — Qg 1

where 8 = 27/ bv/M is the inverse temperature associated with the state M.

The DOZZ three-point function C'(aq, s, a3) has a rich pole structure. As ex-
plained in Appendix 5.6, the series of poles that are relevant to our physical situation
are located at

a1+ a3 — as = nb, n ez, (5.4.16)
which via equations (5.4.15) and (5.4.16) tells us that Cyymyw has poles at

W= —i%(n—l—h). (5.4.17)

Plugging this into (5.4.14), and doing the integral (5.4.13), we learn that the retarded

Green’s function G™*(w, ¢) has poles for

4
w = —{+2ng —i%(n—l—h),
neN.  (5.4.18)

w = €+2n3—i%(n+h).

These are the Ruelle resonances that govern the thermalization dynamics of Liouville
CFT. Notice that relative to the list (5.4.6) of BTZ quasi-normal modes, the series
(5.4.18) reveals additional poles shifted by the excitation numbers n; and ng of the
left- and right-moving Virasoro descendants. These additional poles arise because

in our CFT calculation, we did not exclude the possibility that the incoming wave
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created by O, also excites boundary gravitons. If we ignore the energy stored in the

boundary gravitons, we recover the expected BTZ result (5.4.6).

5.5 Conclusions

In this chapter we have made three observations that clarify the geometric origin of
chaotic behavior in irrational 2D CFTs. We argued that in holographic CFTs at
finite temperature, conformal symmetry is non-linearly realized by means of univer-
sal Goldstone-like fields &(u) and n(v), that describe the near-horizon gravitational
dynamics of the dual theory. The effective field theory is weakly coupled and its
maximal Lyapunov behavior can be demonstrated at the semi-classical level.

We used this insight to propose a new toy model for quantum chaos in the form of
the FKV lattice model, with an integrable equation of motion given by a Y-system.
Integrability may seem unhelpful for generating ergodic behavior. Indeed, integrable
systems are seen as prototypical counter-examples for the ETH: their single state mi-
crocanonical ensemble is understood to be described by the generalized Gibbs ensem-
ble (GGE), which has many chemical potentials, one for each conserved quantity [156].
However, this reasoning assumes that the state that defines the microcanonical en-
semble is an (approximate) eigenstate of many or all conserved quantities. Instead,
if we choose an energy eigenstate that otherwise is a random linear superposition of
eigenstates of all other conserved quantities, then the usual ETH can still apply. The
conserved quantities in the FKV lattice model are highly non-local, and with respect
to local observables the dynamics still looks random and thermalizing. As discussed
in the introduction, this random dynamics can be reinforced by introducing some
degree of disorder.

Indeed the discrete model seems particularly useful for studying propagation of
entanglement, and even though the continuum limit is expected to be described by

a CFT, the entanglement propagation generated by the Y-system rule (5.1.3) is non-
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ballistic and mixes left- and right-moving signals. Our conjecture that the lattice
dynamics is ergodic is further supported by the fact that the continuum limit of
the model is expected to be described by Liouville theory, which via the observation
of section 5.4 has Ruelle resonances that prescribe the approach towards thermal
equilibrium.

Of course, underlying all three observations in this chapter, is the idea that the
bulk gravitational dynamics of holographic 2D CFTs is accurately captured by 2D
Liouville CFT [74]. This emergent Liouville field can be viewed as encoding the
dynamical interplay between geometric entanglement and energy flow. This interpre-
tation combines the idea of kinematic space [90,157], that the entanglement entropy
S(u,v) of an interval [u,v] between two space-like separated points * = u and x = v

describes a metric on a 2D hyperbolic space via
ds® = 0,0,5(u,v) dudv, (5.5.1)
with the first law of entanglement thermodynamics

5S(u,v) = 0K (u, v) / " P () 6Too () (5.5.2)

u

with Py, (2) the conformal Killing vector associated with the Rindler Hamiltonian
K (u,v) of the interval [u,v]. Equation (5.5.2) can be integrated into an expression
for the energy-momentum tensor 7,5 in terms of the entanglement entropy S(u,v),

which looks exactly like the Liouville energy momentum tensor, via the identification
o(u,v) = S(u,v) (5.5.3)

of the Liouville field with the entanglement entropy. Note that both quantities de-

fine locally constant curvature metrics, and both transform inhomogeneously under
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coordinate transformations. Hence the dynamics of kinematic space seems intimately

connected with the emergence of an effective Liouville field in holographic 2D CFT.

5.6 Appendix: DOZZ three point function

In this appendix we summarize the DOZZ formula for the OPE coefficients of Liouville
theory [104,105]. A nice review can be found in [158]. After introducing the formula
we will study its analytic properties which are relevant for the application we consider
in the main text.

The DOZZ formula computes the OPE coefficients between three primary opera-
tors of Liouville theory. These operators are labeled by a complex parameter o and

can be written in terms of the Liouville field ¢(z,%) in the following way
Vo, (2,2) = 4¢3 5=1.23. (5.6.1)

The dimension of the state in term of its label is A, = A, = a(Q — ). As usual the
central charge is ¢ = 1+6Q?% and Q = b+ %, where b is a positive real parameter. The
semiclassical limit ¢ > 1 corresponds to b < 1. That is the limit we are interested in,
although the result for Liouville theory is supposed to be valid more generally. Now

we can state the DOZZ formula which for generic ;23 and b is given by

b2—2b2] (@i )

/b
7y (b?) YoYp(201)Yp(2000) T (2c3)
O(Oél, a9, Oé3) -

T (X, i — Q) Ve + g — as)Ty(ay — o — o) Ty + ag — o)’
(5.6.2)

where 1 is the cosmological constant, v(x) = I'(z)/T'(1 —x) and Ty = %ﬁ””o. Ty(x)
is an entire function. It is usually defined by analytic continuation of an integral
representation valid for 0 < Re(z) < @ which can be found in [104,105]. Here we will
not need more information about this function other that its zeros since it gives the

position of the poles in the DOZZ formula in terms of the a’s. Specifically, they are
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located at

/
1
m _mt +b(n' +1), m,m' nn €Z". (5.6.3)

Looking at the formula (5.6.2) we see all the poles are located in terms of the labels

« at

m m +1

g+ a3 —Q = 5 bn, or 7 + (b+ 1)n/, (5.6.4)
oy +og — a3 = —% —bn, or m’;— L + (b+ 1)n/, (5.6.5)
oy — g oz = —% —bn, or m/lj_ L + (b+ 1)n/, (5.6.6)
ay o — o) = —% —bn, or m’;— L +(b+1)n'. (5.6.7)

These are all the poles of the OPE coefficients. Now we will use the semiclassical
limit to identify the poles that are physically relevant for the discussion in the main
text, i.e. the ones that survive the b — 0 limit. The external operators that we
are interested in are such that one is light, «aq, two are heavy, as and ag, and the
difference between the two heavy operators is small. This means we fix the scaling
with b in the b — 0 limit such that oy ~ b, oy ~ az ~ b~! and a3 — ay ~ b. Then it
is clear that the relevant poles to retain are the ones in equation (5.6.5) and (5.6.6)
for only n non zero. These two sets of poles for n > 0 can be combined into a single
formula

ap+ag—ay=0bn, néeZ, (5.6.8)

where now n runs over all the integers. We see this has the right scaling since both
the left and right hand side scale as b in the semiclassical limit. All the rest of the

poles disappear in the heavy-heavy-light limit we are interested in here.
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Chapter 6

Interference Effects

In the introduction we explained the relation between black holes, quantum chaos and
gravitational shockwaves. We have studied these features for quantum mechanics and
CFTs in the previous chapters.

In this chapter we will study a different aspect of shockwaves solutions. We will
consider bulk theories in AdSp and study (without black holes) the effect of higher
derivative terms in the action. In [159] the authors showed that the constrain of a
positive time delay (equivalent to the averaged null energy condition) puts constrains
on purely gravitational terms like S ~ [ R? or S ~ [ R®. In this chapter we will
study an interference effect of shockwaves that will allow us to put constrains on
non-minimal coupling between matter and gravity such as S = «a [ ¢W?2 These
shockwaves not only produce a time delay but also has a probability of inducing a
transition ¢ — ¢, where ¢ indicates the graviton. The nature of this shockwave is
explained in section 6.8. The bounds we obtain on this coupling a can be found in
section 6.6. For a general theory roughly a < R3 4. If we furthermore assume a local

bulk theory one can easily improve this to a@ < (%, 1.

I The string length ¢2 . gives the scale of the lowest mass higher spin field in the bulk. If the bulk

str

theory is local then /s < Rags-
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Besides the application for local bulk physics, this can be turn around and obtain
general bounds for an arbitrary CFTs. This is done by relating a non-local version
of the shockwave with a conformal collider experiment where one measures the inte-
grated energy at infinity [160]. The coupling of S ~ [ ¢W? is related to Cpre and
we will put bounds on this OPE coefficient in general theories.

To make the presentation as clear as possible we start from this point of view in
sections 6.3, 6.4 and 6.5, and later focus on the bulk interpretation described in the
previous paragraph. We leave some applications to de-Sitter and inflation to section

6.7.

6.1 Introduction

We consider the conformal collider physics experiment discussed in [160]. In that
setup, we produce a localized excitation by acting with a smeared operator near the
origin of spacetime. Then we measure the energy flux at infinity per unit angle.
Requiring that the energy flux is positive imposes constraints on the three-point
function coefficients. This method was used to constrain three-point functions of the
stress tensor in [160-162].

In this chapter we use this same method to constrain the three-point functions of
two stress tensors and another operator (TT'O). The new idea consists of creating
the initial state by a linear combination of a stress tensor operator and the opera-
tor @. The three-point function (TT'O) appears as a kind of interference term in
the expression for the energy. Requiring that the total contribution to the energy
flux is positive imposes a non-trivial upper bound on the absolute magnitude of this
three-point correlator. We apply these ideas to general scalar operators O as well as
conserved currents with spin one, J, where we use it to put bounds on the gravita-
tional anomaly in d = 4 CFTs. Because the bound arises from quantum mechanical

interference effects, these bounds are stronger than those obtained in states created
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by a single primary local operator and its descendants (though the resulting bounds
involve more OPE coefficients).

This energy flux at infinity is given by an integral of the stress tensor. On the
boundary of Minkowski space this integral is simply the average null energy & =
[ dx=T__. Wereview this in section 6.2. Physically, we expect that this energy should
be positive for all angles. Recently, the average null energy condition was proven
using entanglement entropy methods [163] as well as reflection positivity euclidean
methods [164]. When we create a localized state using the stress tensor, this energy
distribution is completely determined by the three-point function of the stress tensor.
Two of the insertions correspond to the insertions creating the state in the bra and
the ket. The third corresponds to the one measuring the energy flux at infinity. The
resulting bounds could also be obtained by requiring standard reflection positivity of
the euclidean theory [165,166]. However, the conformal collider calculations provide
an efficient way to extract the results.

One of our main results is a sum rule constraining the OPE coefficients of scalar
primary operators O with the energy-momentum tensor 7'. In spacetime dimensions
d > 4 there is a single OPE coefficient controlling the (I'T'O) three-point function.

We find that this data is constrained as

Z |Crro,I* f(Ai) < Np | (6.1.1)

Scalar Primaries O;

where Np is one of the three OPE coefficients in (T'TT') (the one occurring in a theory

of free bosons), and the non-negative function f(A) is given explicitly by

(d — 1)3d7T2dF (g) ['(d+1)r (%)F (A_ dT;) _ (6.1.2)
(d=2)°T (§+2)'T (52)°T (d- §)

f(A) =

This function arises by doing the integrals involved in smearing the operator as well

as in computing the energy flux. We derive this bound in detail in section 6.3,

170



and discuss some simple physical consequences such as its interpretation in free field
theories, large N holographic systems, and general implications for the asymptotics
of OPE coefficients.

In section 6.4 we consider analogous results in spacetime dimension three. This
case is special because the three-point functions of interest admit both parity pre-
serving and parity violating structures. The bounds we find generalize those recently
obtained in [167]. We apply our results to large N Chern-Simons matter theories, and
further use them to obtain predictions on OPE coefficients Crro for scalars in the
Ising model using the recent results of the conformal bootstrap [168]. For instance,

we find that operator € has an OPE coefficient constrained as

|Crre| < 1751 Crroge| (6.1.3)

where the right-hand side is the value in the free scalar theory based on the field ¢.

In section 6.5 we consider bounds in four-dimensional CFTs with a global sym-
metry current J. We apply the same techniques to obtain universal constraints on
the gravitational anomaly of the current J.

In section 6.6 we show that the (T'T'O) correlator can be generated from a gravity
theory in AdSg;; through a higher derivative term, [ ¢W?, in the bulk effective
action. We match the coefficient of this term to the Cpro coefficient in the boundary
theory by performing the same collider experiment in the bulk, where it involves
propagation through a shock wave. One interesting feature of this presentation is
that the resulting bound is independent of the mass of ¢. Thus, the A dependence
of (6.1.1) is purely kinematic and results from translating the boundary three-point
function coefficient to a bulk interaction. We use our AdS presentation to show that

o’ corrections satisfy the bound.
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In section 6.7 we extrapolate the bounds we obtained in AdS to “quasi bounds” on
the coefficients of the effective action in de Sitter space. We call them “quasi-bounds”
because, unfortunately, for de-Sitter we do not know how to prove a sharp bound. We
can think of these as a good indication for where the bulk effective theory should break
down. We apply these “quasi-bounds” to constrain the amplitude of chiral gravity
waves, and to constrain the violations of the inflationary “consistency condition” for

the two-point function. Both of these effects arise from higher curvature couplings of

the form ¢W? or ¢WW*.

6.2 ANEC and the Conformal Collider

6.2.1 The Average Null Energy Condition

The null energy condition is a central assumption in many classical theorems of general
relativity. These results allow us to exclude unphysical spacetimes where causality
violation, naked singularities, or other physical pathologies occur [169].

If we move beyond classical field theory, these results appear to be in doubt.
Quantum effects lead to fluctuations that prohibit any local operator from having a
positive expectation value in every state [170]. (We review these ideas in Appendix A
of [56].) In particular the local energy density and other components of the energy-
momentum tensor have negative expectation value in some states.

Deeper investigation reveals a potential resolution. While components of the
energy-momentum tensor are pointwise non-positive, a weaker hypothesis, the so-
called average null energy condition, is often sufficient to enforce causal behavior [171].
This condition states that the integral along a complete null geodesic of the null en-

ergy density is a positive definite operator

£ :/ do T >0. (6.2.1)

oo
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Recently there has been significant interest in understanding the average null en-
ergy condition (6.2.1) in the context of local quantum field theories. In [164], an
argument was given establishing (6.2.1) in conformal field theories by examining the
constraints of causality on the light-cone operator product expansion. In [163], an al-
ternative argument was given linking the average null energy operator to entanglement
entropy, then establishing positivity using strong subadditivity. These information
theoretic methods have also been extended to obtain new inequalities strengthening
(6.2.1) [172].

Given that the average null energy in quantum field theory is now a theorem, it

is interesting to take it as input and use it to constrain conformal field theory data.

6.2.2 The Conformal Collider

An efficient way to extract consequences of the average null energy condition in CFTs
is to use the conformal collider setup of [160]. This technique is closely related to deep
inelastic scattering experiments in conformal field theory [160,173]. As we review, in
the context of AdS/CFT these bounds arise from demanding causality of the bulk
theory in a shockwave background.

The specific physical problem of interest is to create a disturbance in a conformal
field theory and then to measure the correlation of energy deposited at various angles
at future null infinity (see Figure 6.1).

The states in which we measure the energy are obtained by acting with local
operators O(z) on the Lorentzian vacuum |0). We further give these states definite

timelike momentum ¢.2 Thus we examine the state

|0(q,\)) = N/ddx e X O(z)|0) , (6.2.2)

2For technical reasons it is sometimes useful to create a localized wavepacket instead of an exact
momentum eigenstate. This subtlety will not affect our discussion.
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Figure 6.1: In the conformal collider experiment (a), the energy created by a localized
excitation (blue) is measured far away by a calorimeter (red). (b) For a CFT, this is
equivalent to measuring the energy at null infinity J+.

where \ is a polarization tensor accounting for the possible spin of O, and N is a
normalization factor defined such that (6.2.2) has unit norm.

We now measure the energy at null infinity in this state. In d dimensions null
infinity is a sphere S?~2 and we parameterize it by a unit vector n.

(E))ro = lim r?2 /_00 dx™ (O(q, M| T-—(x~,mn)|O(gq, \)) . (6.2.3)

r—00
o0

The average null energy condition implies that the resulting function is non-negative
as a function of the direction n.

Since we are working in a conformal field theory this energy expectation value may
be explicitly evaluated. Indeed the object being integrated in (6.2.3) is a three-point
function (OTO) in Lorentzian signature with a prescribed operator ordering. Thus,

the result of (6.2.3) is an explicit function of OPE coefficients.

External States Created by T

Let us review the essential details of this calculation in the case where the external
state is created by an energy momentum tensor. In general in d > 4 spacetime dimen-

sions, the three-point function of energy-momentum tensors may be parameterized in
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terms of three independent coefficients
(TTT) = Ng{(TTT)g + Np(TTT)p + Ny (TTT)y , (6.2.4)

where the various B, F,V structures are those that arise in a theory of respectively
free bosons, fermions, or (d—2)/2 forms.?> Our conventions are such that for free fields,
Np counts the number of real scalars, Nr the total number of fermionic degrees of
freedom (e.g. it is 2192 for a Dirac fermion), and Ny counts the number of degrees of
freedom in a (d — 2)/2 form (for a single such field this number is T'(d — 1) /T'(d/2)?).

A single linear combination of these coefficients is fixed by the conformal Ward
identity, and related to the two-point function coefficient Cr of energy momentum

tensors

1 d d d?
= — | ——N — —N . 2.
Cr Q?l_l <d—1 B+2NF+ 5 V) (625)

where 2, is the area of a sphere S™.* As another point of reference let us briefly
specialize to the case of four-dimensional theories. In that case, the coefficients of
the three-point function are related to conformal anomalies a, ¢ that parameterize the
trace of the energy-momentum tensor in a general metric background

c 2 a 2
= — FE
1672 1672

(6.2.6)

where W is the Weyl tensor and £ is the Euler density. The coefficient c is propor-
tional to Cp, while

1

Returning to case of general dimensions we now investigate the null energy oper-

ator using these three-point functions. It is useful to organize the calculation using

3In odd d there is no free field associated to the structure parameterized by Ny, but nevertheless
there is still a structure. See [162,174] for details.
4,1 =202 /T (n)2).
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the relevant symmetries, which are rotations on the null S¢~2. In addition, the three-
point function of 7”s is parity invariant.® It follows that the most general expression

for the null energy is

Ly )\;*j)\iknjnk 1 . /\fj)\klninjnknl 2
2\ g Tad=1) ™ BE 1]

(6.2.8)

(EM)ar = Qi

where the constants have been fixed so that the total energy of the state is ¢, and t,
and t4 are computable functions of Ng, Ng, Ny .

A useful way to understand the answer is to view the vector n as fixed and to
decompose the states (parameterized by their polarizations) under the remaining
symmetry group SO(d — 2). For example, the polarization that has spin zero under

rotations around the 7 axis is

Ap; o (nnj - <d5ij 1)) (6.2.9)

In a similar way we can write polarization tensors that have spin one and spin two
under rotation around the 77 axis. The energy flux in the direction n is the same for
every state in a fixed SO(d — 2) representation, and we denote them by ¢7;/Q4_o.

Explicitly carrying out the integrals gives:

B to 2ty d—2 B Np
Ty = (1—d_1—d2_1)+d_1(t2+t4)—po(d)(CT)>
T, = (1_d—1_d2—1)+§:p1(d> (C_T)’ (6.2.10)

Ny
T = 1_d—1_d2—1_p2(d)<C_T> :

5In d = 3 the three-point function has a parity odd piece which we discuss in section 6.4.
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where the index labels the SO(d —2) charge and in the above p;(d) is a positive func-
tion that depends only on the spacetime dimension (and not the OPE coefficients).
Their explicit form can be found in Appendix B of [56].

Additional symmetries imply constraints on the parameters above. In any super-
conformal field theory we have t; = 0. For holographic CFTs dual to Einstein gravity
the parameters are to = t4, = 0, giving angle independent energy one-point functions
To=T =T, =1.

Returning to the general discussion, we can see from (6.2.10) that the average null

energy condition implies the inequalities

Ng >0, Np >0, Ny >0. (6.2.11)

One significant remark concerning the bounds (6.2.11) is that they may clearly be
saturated in free field theories. Conversely, it has been argued [175] that any theory
that saturates the conformal collider bounds must be free. The fact that the bounds
may be saturated in actual CFTs illustrates that the conformal collider is an efficient
way of extracting the implications of the average null energy condition. Namely, we
could not possibly get a stronger bound, otherwise we would run into a contradiction

with free theories.

6.3 Bounds on 77O in d > 4

We now turn to our main generalization of the conformal collider bounds reviewed
in section 6.2.2. We explore the consequences of the average null energy condition in
more general states than those created by a single primary operator. Specifically in
this section we will investigate states which are obtained by a linear combination of
primary operators. We will find that the average null energy condition in such states

yields new inequalities on OPE coefficients.
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In this section, the states we consider will be created by a linear combination of the
energy-momentum tensor and a general scalar hermitian operator O. We parameterize

such a state in terms of normalized coefficients v;

(W) = v1[T(g, A)) +v2|O(q)) - (6.3.1)

The energy one-point function in the collider experiment is now a matrix

(€ ()T = ol (Tl NIEMIT(g, M) (T(a, MEM)OQ) | 63.2)

(T'(g, VIEM)O(q))*  {O(g)|€(n)[O(q))
The average null energy condition implies that this matrix is positive definite. This
is a stronger condition than requiring that the diagonal entries are positive and will
imply new inequalities on OPE coefficients.

The majority of the entries in this matrix have already been computed. For
instance, in section 6.2.2 we reviewed the portion of the matrix involving the energy
expectation value in states created by the energy momentum tensor. Even simpler
is the entry involving the expectation value in the scalar state which gives rise to a

uniform energy distribution

(O@EMIOW) = 5~ - (6.3.3)

It remains to determine the off-diagonal entries in the matrix. It is again useful
to organize the expected answer using the rotation group on the null sphere. Clearly

we have

(T(q. VIEM)|O(q)) ~ Aynind . (6.3.4)
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Therefore, the only polarization of the energy momentum tensor that participates
in the non-trivial interference terms is the scalar Tj aligned along the axis n (see
equation (6.2.9)).

To extract this matrix element we require the three-point function (7'7°0). In all
d > 4, the conservation constraints on 7" imply that this correlator is fixed in terms of
a single OPE coefficient Crrp. We set conventions for our normalization of this OPE
coefficient by examining a simple OPE channel. Specifically we restrict all operators
to a two-plane, spanned by complex coordinates z, z. Then the OPE is

TITA(0) ~ HFO0) (6:35)

If we further assume that O is hermitian then the OPE coefficient Crro is real.
Additional details of this correlator including the full d-dimensional Lorentz covariant
OPE and relation to the spinning correlator formalism of [176] are given in Appendix
B of [56].

Based on these remarks, we can in general parameterize the energy flux in the

direction n coming from the off-diagonal matrix element (6.3.4) as

(Tl lEmIow) = - (e nw)) | (6.36)

where h(A) is some universal function that may be extracted from the conformal
collider calculation, and the factors of C'r and Cp arise from normalizing the states.

The relevant portion of the energy matrix (6.3.2) is two-by-two and takes the form

q Ty 110 p(A)

vCrCo . (6.3.7)
Qg Crro h(A) 1
VCrCo
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Positivity of this matrix therefore leads to the constraint

|Crrol?

hAY? < T, . 3.
e Q)P < Ty (6:3.8)

More generally we may instead consider the collider experiment in a state created
by T plus a general linear combination of primary scalar operators. Positivity of the

resulting energy matrix is then equivalent to the following sum rule

2
> el e <. (6.39)

Scalar Primaries O;

The explicitly computation of the function A(A) can be found in Appendix B of [56].

By combining the result with the expression (6.2.10), we may reexpress the bound as

|Crro,|?
> e f(A) < Np | (6.3.10)

Scalar Primaries O;

where f(A) is given as

(d—1)%dr*T (£) T(d+ I(A)T (A — 42)

M T G ) T T 8

(6.3.11)

6.3.1 Analysis of the Bound

We now turn to an analysis of the consequences of the general bound (6.3.10). The

function f(A) has a number of significant properties.

e Expanded near the unitarity bound we find a first order pole:

d—2 1
; (T N x) LS (6.3.12)
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Therefore in any family of theories, an operator O which is parametrically
becoming free (i.e. A = (d—2)/2+ x with z tending to zero) must have |Crro|

vanish at least as fast as /.

For large A we find exponential growth

4A
AFH

F(A) (6.3.13)

We may use this growth to approximate the sum in the bound for scalar op-
erators of large A. Indeed, let p(A) denote the asymptotic density of scalar
primary operators. From convergence of the sum we then deduce that for large

A the spectral weighted OPE coefficients must decay exponentially fast

7d

(6.3.14)

These estimates agree with those implied by convergence of the OPE expansion

found in [177] for scalar operators.

If A is an even integer greater than or equal to 2d we find that f(A) vanishes.
We can understand the necessity of this as follows. We can imagine a large NV
CFT dual to weakly coupled theory of gravity. In such theories we can consider
the sequence of operators O =: TAB9?" T :. At large N the dimensions of
these operators are fixed to A = 2d 4 2n. Moreover, for these operators %2‘9 is
of order C2. Thus, compatibility with the bound (6.3.10) for large C', requires

that f(A) vanishes at these locations.

The above argument does not explain why f(A) has double zeros. But the

double zeros imply that the bound may be obeyed at subleading order, where
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we include the anomalous dimensions of these operators which scale as 1/Cr,

by truncating the sum on n.°

e The function f(A) is non-zero for A = d. Therefore the bound (6.3.10) may be
applied to marginal operators. In that context, it constrains the change in Crp

at leading order in conformal perturbation theory.

6.3.2 Free Field Theories and Destructive Interference

Let us investigate the bound further in free field theories. These examples are inter-
esting because the bound (6.3.10) is saturated.

Consider first a theory of a free real boson ¢ in dimension d. There is a Z,
global symmetry under which ¢ is odd and the energy-momentum tensor 7' is even.
Therefore we need only consider scalars made from an even number of ¢’s. Since the
explicit expression for T' is quadratic in the free fields, the only possible scalars that
may contribute to the bound are : ¢? : and : ¢* :.

By a simple inspection of the Wick contractions we deduce that : ¢* : has vanishing

TTO correlation function”. Meanwhile : ¢? : has

|Crrol?  (d—2)*T(d/2+1)*
Co  8r2(d—1)*

(6.3.15)

This exactly saturates the bound (6.3.10).

We can also consider the bound applied to free fields of different spin. In d = 4 the
theory of free fermions or free gauge bosons have vanishing Ng. Therefore the bound
implies that for all scalar operators O either Crro vanishes, or @ has dimension

2d + 2n for non-negative integer n.

6We thank E. Perlmutter for comments on this point.
" The contractions imply that (T'T : ¢* :) o< (T : ¢? :)(T : $? :), which is zero since two-point
functions of different operators vanish.
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It is straightforward to directly verify this prediction. For instance consider the
free vector. The gauge invariant field strength gives rise to two local operators F/ Ify and
F,,, which are respectively self-dual and anti-self-dual two-forms. Note that this free
field theory enjoys a continuous electromagnetic duality symmetry under which F ljfj
rotate with opposite charge. The energy-momentum tensor 7),, is neutral under this
transformation, and hence a scalar operator O with non-vanishing C'rro must also
be neutral. If we recall that F ,;/F ~H vanishes identically, then we see that the lowest
dimension neutral scalar operator is (F\, F***)(F_;F~F). Since this has dimension
eight, the weight function f(A) vanishes. Moreover all other scalar operators that
are neutral have larger even integer dimension. Thus, the bound is obeyed.

A more physical way to understand why the bound is saturated in the free scalar
theory is to visualize the state created by local operators.

Let us consider the action of an operator with non-zero energy but zero spatial
momentum. If the operator is a bilinear in the fields, such as the stress tensor in a
free theory, then it will create a pair of particles with back to back spatial momenta.
Of course, the operator creates a quantum mechanical superposition of states where
these momenta point in various directions. For a scalar bilinear operator we get an
s-wave superposition. For the stress tensor we get a superposition determined by the
polarization tensor.

As in previous sections, we measure the energy in the angular direction n and
hence can focus on the properties of the wavefunction for the pair of particles in that
particular direction. As in section 6.2.2 it is convenient to decompose the polarization
tensors of the operators according to their angular momentum around the n axis. We
can then easily check that a spin zero state T; can be produced only in a theory of
scalars, a spin one state 77 can be produced only in a theory of fermions, and 75 only
in a theory of vectors (or d/2—1 forms), see Figures 6.2(a,b,c). This explains formula

6.2.10.
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Figure 6.2: We consider operators with zero spatial momentum that create a pair of
free particles. In (a,b,c) we consider a stress tensor operator. We decompose the stress
tensor according to the spin around that axis. (a) The spin zero state is obtained for
scalars, spin one for fermions (b) and spin two for vectors or self-dual forms (c). (d)
is the state produced by a scalar operator with can interfere with (a). (e) is produced
by a current with spin one along the observation axis and can interfere with (b). (f)
is a current with spin zero along the observation axis in a theory of scalars. It cannot
interfere with (a).

A scalar operator of the form O =: ¢? :, where ¢ is an elementary scalar, can also
produce a back to back combination of scalar particles, see Figure 6.2(d). Along the
direction of observation this combination has the same form as the one produced by 7j,
in Figure 6.2(a). It is clear that we can make a quantum mechanical superposition so
that the wavefunction for the pair vanishes along that particular observation direction.
This saturates the bound because we get zero energy along that direction. For that
superposition of T" and O the energy along other directions is still non-zero.

A similar argument helps us understand why we also saturate the (7'7".J) correlator
bound in the four dimensional theory of a Weyl fermion (see section 6.5). In that
case we can make a superposition of the state 7} in Figure 6.2(b) with the state

Ji in 6.2(e). Notice that we are using that J couples to a chiral fermion. If there
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was another fermion with the same helicity but opposite charge, as it would be the
case for a vector-like current, then we would have an additional contribution to the
state created by the current that will have a relative minus sign compared to the
other charged particle pair. On the other hand, for the state created by the stress
tensor these two contributions have the same sign, therefore we cannot destructively
interfere them.

This highlights that the bound comes from a quantum mechanical interference
effect. We saturate the bound through a destructive interference effect that prevents
particles from going into a particular direction. It is important to note that this is an
interference for the pair of particles. For example, if we consider a theory of scalars
with a U(1) symmetry generated by a current J, then in a basis of real scalars the
current will create two different scalars, say ¢! and ¢2. This cannot interfere with the
state created by the stress tensor where we have the same scalar for the two particles

indicated in Figure 6.2(a).

6.4 Bounds on 770 in d = 3

In this section we will consider the case of d = 3 separately. There are two reasons for
doing this. First, the stress-tensor three-point function has two parity even structures,
instead of three as in d > 4, and has a parity odd piece which is special to d = 3.
Secondly, the correlation function (TT°O) also has an extra parity odd structure
special to d = 3 [178].

First we consider external states created by the stress-tensor. We parametrize the

three-point function of energy-momentum tensors as

(TTT) = Ng(TTT) 5 + Np{TTT) p + Noaa(TTT)oad , (6.4.1)
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where Np and N already appeared in the d > 4 case and Nyqq parametrizes a new
structure. We use the same convention for the explicit expression for (T7T7T)qqq as
in [167]®. In d > 4 the energy one-point function of the collider experiment has a
SO(d—2) symmetry for the calorimeter direction n. The linearly independent tensor
polarizations are organized as scalar, vectors or tensors with respect to this symmetry.
In d = 3 the group becomes SO(1) and there are only two types of polarizations, which
we take as
1 10 1 [ 01

el L 1 v2 {1

The collider energy one-point function for an arbitrary polarization has the structure

gnind? 1 €7 (nn™ N jm gy nP + ngn™ X5, Agpn®n?)
A2 4) "™ INE

(6.4.3)

To obtain a bound on these parameters we can consider a state created by |¥) =
v1|T(q, No)) + v2|T(q, \1)). The energy matrix becomes
Ty Toaa

(U|E(n)| W) = Qiqﬁ ’ v, (6.4.4)
i Toaa Th

where Th = 1—1t4/4, Ty = 1+t4/4 and Toqq = d4/4. These parameters were computed

in [167] in terms of the (T'T'T) parameters Ng, Np and Nygq obtaining

3 3 3

CrTy = Nogd - (6.4.5)

1672 °

For supersymmetric CFTs t; = 0 just as in the case d > 4. Also, CFTs dual to

Einstein gravity have t, = d, = 0.

8 We identify our Nyqq with their 7pr/3.
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The average null energy condition implies that the matrix (6.4.4) is positive def-
inite. This implies ¢4 and dy lie inside a circle t3 + d3 < 42, or equivalently Nz > 0,
Np >0, and N2, < NgyNg.

Now we will generalize this construction along the same lines as presented in
section 6.3. We will consider a superposition between stress tensor and a scalar

operator states

(W) = 01|T(q, Mo)) + v2|T(q, \1)) + v3|O(q)) - (6.4.6)

As anticipated above, for d = 3 the correlation function (TT'O) is now determined

by two parameters
(TTO) = CLBATTO) eyen + C5F(TTO) pad (6.4.7)

where the even part is given by specializing the arbitrary d correlator d = 3, and our
choice of normalization for the odd part is given explicitly in Appendix B of [56]. We
can make our conventions for this latter term as in (6.3.5) in the following way. We
can define C99%, by the following OPE
. odd %
T..(z, 2,y = 0)T,,(0) ~ TTOMO(O) ) (6.4.8)
where the three spatial coordinates are (z, z,y).

Using this normalization, the energy one-point function is given in terms of a

three-by-three matrix as

To Toaa JeLEhg (D)
q odd
(WIEM)|T) = 5 v Toaa T Tensia) v
Crro” heven(A) C%%go* hOdd(A) 1
VCrCo ' "3d VCrCo ' "3d

(6.4.9)
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where the functions S (A) and h339(A) can be obtained as

12¢/672,/T(2A — 1)
F(&Er(A+3) I(52) 7

12¢/67%/T(2A —1) 1
Fr2+45)T(A+3) T3-9%)

2

h33i(A) (6.4.10)

hg‘éen(A) (6411)
Demanding positive definiteness of the energy matrix gives several types of constraints

which involve the scalar OPE coefficients. Two of these bounds are easy to generalize

to an arbitrary number of scalar operators

odd
feven( ) < NB ) Z | fodd ) < NF y (6412)

even

Z |

where we defined foqd/even = ]hOdd/ “M2/3. We can consider the positivity of the
determinant of the 3 x 3 matrix. This gives an independent bound which together

with the bound on (TTT) is sufficient for the positivity of the energy one-point

function
even |2 A
| (A0 , 105 P fo(A)
CTCOi OTCOi
R even. ' ven Az Codd . A Az
9N, |OF7, v/ feven(2) O,V foaalB)] NpNp — N2, .(6.4.13)

CrCo,

This bound can also be generalized to include an arbitrary number of scalar operators.
However, as opposed to the situation in section 6.3, the bounds involving different
number of operators are independent. Their expressions in this case become more
cumbersome and we will omit them here.

The (6.4.10) (6.4.11) have similar properties as the one appearing for the d > 4
bound. Namely they diverge at the unitarity bound A = 1/2 and have zeros at
6 + 2n (even) and 7 4 2n (odd) for integer n. The zeros in the even case were

explained by the existence of operators with two stress tensors in theories that are
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dual to weakly coupled gravity, see the last point in section 6.3.1. The odd ones

have the same explanation, except that now the scalar operators have the structure

GABCTAD 82"8(;TBD )

6.4.1 Chern-Simons Matter Theories

In this section we apply the bounds derived to large N Chern Simons theories at
level k coupled to fundamental matter. For definiteness we will consider fundamental
fermions. We will denote the 't Hooft coupling by § = 7 N/2k. The elements of the
energy matrix involving the stress tensor were computed in [167] using the explicit

large N expressions for the stress tensor three-point function [179]. The result is
Ty =2cos?8, Ty=2sin*0, T,qq =2sinfcosb . (6.4.14)

Using the conventions in, for example, [180] we can compute the off-diagonal elements
involving stress-tensor mixed with a scalar operator. In the fermionic theory we
consider the scalar denoted by O ~ 1) has dimension A = 2. The final result for

the energy matrix is

2c0s260  2sinfcosf +/2cosb
<‘If|5(n)!\11>=%vT 2sinfcosf  2sin20  2sinf |v. (6.4.15)
V2 cos b V/2sin 6 1

As a function of the 't Hooft coupling, this matrix has the property that all the minors
have vanishing determinant. This implies saturation for all types of superposition of
states. For the case of the stress tensor this was noted in [167], but we find that this

is a more general feature for states where we also act with O.
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Figure 6.3: 3d Ising model allowed region for Crr. and Cpp.r.

Even though we do not have a concrete physical picture explaining this, we expect
a picture along the lines of section 6.3.2, where the interaction with the Chern-Simons
gauge field has the effect of replacing free bosons or fermions by “free anyons”.

This discussion can also be applied to the case of CS coupled to fundamental
bosons. From [179] we know that the energy matrix, given in terms of CFT three-point
functions, can be obtained from the fermionic theory by the replacement 6§ — 6 + 7
when we consider the operator O ~ ¢? of dimension A = 1. More generally we can
consider the answer (6.4.15) as giving the energy matrix of a large N theory with a

slightly broken higher spin symmetry parametrized by 6.

6.4.2 3d Ising Model

As another example, we can apply our bounds to obtain predictions for three-point
coefficients for the 3d Ising model. First let us parameterize the three-point coef-
ficients of the energy-momentum tensor. Since this theory is parity preserving the
coefficient Nyqq in (6.4.1) is necessarily zero. The remaining two structures in (77T

have recently been computed numerically using the conformal bootstrap in [168,181].
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Explicitly?
Np ~ .9334 , Np ~ .0131 . (6.4.16)

The Ising model has a Zs global symmetry under which 7" is even. Therefore only Z,
even scalars participate in the bound. The lightest Z, even and parity even scalar is

the operator € whose dimension is known

A, ~ 1.4127 . (6.4.17)

Therefore, in a normalization where the two-point function coefficient of ¢ is one, we

can evaluate (6.4.12) and find the bound

|CTT€| < .0088 = (1'751)Ofree ) (6418)

where in the last equation we normalized the answer by the expression (6.3.15) for
the value of the OPE coefficient in the free theory Chee = |Crr.g2.|/ \/@ . Note
that although : ¢? : saturates the bound in the free field theory, the dimension of ¢
is larger than that of : ¢ : and hence the OPE coefficient Crr. may be larger than
Crr.p2..

We can obtain a stronger bound by including the operator ¢’ of dimension A,/ &
3.8303 in the sum of (6.4.12). Using the correct values for feyen(A) for these dimen-

sions and normalizing by the 7T : $? : OPE we obtain the constraint

0.3267|Crre|* 4 0.0063|Crra |* < Ch. - (6.4.19)

9In making these estimates we use a value of § ~ .014. This is the central value of the calculation
of [168] based on expectations for the parity odd scalar gap.
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Since the operators ¢ and ¢’ are hermitian their OPE coefficients are real and the
bound above defines the allowed region of OPE coefficients as the interior of an

ellipse shown in Figure 6.3.

6.5 Boundson 77Jin d=14

As a final example, we consider states created by a linear combination of the energy-
momentum tensor and a conserved vector current .J in d = 4 spacetime dimensions. In
this case the three-point function (7'7"J) is controlled by a single OPE coefficient Crry
and is parity violating. This three-point function is presented in detail in Appendix
B of [56].

One reason why this OPE coefficient is interesting is that it is equivalent to a non-
trivial mixed anomaly between the flavor symmetry generated by J and the Lorentz
symmetry generated by 7' [182]. In the presence of a background metric g, the current

J is not conserved but instead obeys [183-185]

C
(VEI)g] = #E“V”RMVMRWM : (6.5.1)

where R, is the Reimann tensor.
In the above, our normalization is such that the coefficient Crp; may be expressed

as the net chirality of the charges of elementary Weyl fermions:

CTTJ = Z q; — Z q; - (652)

Left Weyl ¢ Right Weyl j

In particular, for the theory of a single Weyl fermion Crr; is one. In an abstract CFT
without a Lagrangian presentation our normalization of the OPE coefficient is defined

as follows. Fix complex coordinates (z,w). Then the OPE of operators restricted to
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the w = 0 plane is

C z = J?
T (2) T (0) ~ 47;'?6 (2J7 — 2J7) . (6.5.3)

We will also need the three-point function (7°J.J). This correlator is controlled by

two independent coefficients:
(TJJ) = Qtp(T T )en + Qi p(TT Nwr - (6.5.4)

Here the structures C'B and W F' are those found for the U(1) current in a theory of
free complex bosons (C'B) or free Weyl fermions (W F). In a free field theory, these

are expressed in terms of the charges of elementary fields as (see [174])

Qtp = Z q Qivp = Z q; - (6.5.5)

complex scalars ¢ Weyl fermions ¢

In general, a single linear combination of these OPE coefficients is fixed by the Ward

identity. We have

(JJ) x Cy = é (Qép +2Q% ) - (6.5.6)

The two-point function coefficient C'; can also be interpreted as a conformal anomaly.
Indeed, in the presence of a non-trivial background gauge field that couples to J, the

energy-momentum tensor acquires an anomalous trace. In our conventions this is

(TM[A] = %F“ﬁFaﬁ : (6.5.7)

We can bound the anomaly coefficient C'rp; using the same methods described in
earlier sections for scalar operators. We enforce positivity of the average null energy

operator £ in the state |¥) created by a linear combination of 7" and J

(W) = |T(q, Ar)) + |J(q, As))- (6.5.8)
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The expectation values (€),,.r and (£),,.; have been computed in [160]. The matrix
of energy expectation values in the states |¥) may again be decomposed in terms of
the SO(2) rotation symmetry about the vector n. The current operator J contributes
states of charge —1,0,1. As in the review of section 6.2.2 we may express the null

energy expectation value as (q.J;/4mw) where i is the SO(2) charge. One then finds

2

Ji = &F . (6.5.9)

By repeating the collider calculation we find that the new off-diagonal matrix

element is given by

_q ()5 Crry . m i
(T(g, M) ()| (g, ) = 47T< e i AT n) . (65.10)

Note that this structure is parity odd as expected. There are other allowed parity
odd expressions in terms of \;; and n‘, but they do not arise in the null-energy matrix
element. An important feature of (6.5.10) is that only those states of SO(2) charge
+1 can mix with the energy-momentum tensor. In particular, this means that bound
will only involve the coefficient T} defined in (6.2.10).

Explicitly choosing appropriate polarization tensors we then find that positivity

of the null energy matrix £ leads to a single constraint on these OPE coefficients:

Ciry < QfrNwr (6.5.11)

where Ny r = Np/2 counts the effective number of Weyl Fermions in the (T7T)
correlation function. This bound is saturated in the free field theory of Weyl fermions.

This can be understood using the interference argument described in section 6.3.2.
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6.5.1 Supersymmetry and the R-Current

As in our analysis of scalar operators, we can generalize these results to states created
by multiple currents. This is particularly interesting in the case of supersymmetric
theories.

In supersymmetric theories, there is always a current Jg contained in the same
supermultiplet as 7T'. In particular, since it resides in a different multiplet it can
be distinguished from an ordinary flavor current Jr. We would like to improve our
bound on the trace anomaly of Jr to account for the fact that the R-current Jg

always exists. In order to do this we consider the state created by

“Il> = Ul‘T(q, >\T>> + U2|JR(q, )\J)> + U3|Jp<q, )\J)> . (6512)

The new ingredient appearing in the calculation of the energy matrix corresponding to
this state involves the three-point function (7'JgJg). Using superconformal invariance
we can fix this correlator completely. Since the details are not very illuminating we will
outline the procedure. The number of parity even structures, two of them, coincides
with the ones appearing in (T'J.J), namely relaxing permutation symmetry does not
add new structures [176]. Moreover, using supersymmetric Ward identities [186] one
can check that no parity odd structure is allowed for (T'JrJr).1% Out of the two OPE
coefficients characterizing (T'JrJr), a linear combination of them is related to the
two-point function (JgJr), which vanishes due to superconformal invariance. This
leaves (T'JgrJF) fixed by a single OPE coefficient. Finally, since Jg lies in the same
multiplet as the stress tensor we can relate this number to Cprp, the mixed anomaly
generated by the flavor current.

Combining the results outlined in the previous paragraph, and the fact that there

is no new structure involved in the collider calculation, it is straightforward to obtain

10This is not true for a three-point function of a stress tensor and two different conserved currents
(T'J1J2) in a generic theory.
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the off-diagonal matrix element

q 20 CTTF
= — — 5.1
(Trlg: As)IE1 (4, A0)) 4 ( 3t CTCF) ’ (6.5.13)

where we chose n = (1,0,0) and Ay = (0,1,4) for definiteness.

We can express parameters related to the R-current in terms of a and ¢ = Cprt /40.
The two-point function is related to Cr by a supersymmetry Ward identity as Cr =
Le. Tts mixed anomaly is also fixed by supersymmetry to Crrr = 16(c — a). Finally
the energy one-point function is given by J = % [160, 166]. Supersymmetry also

fixes this parameter for flavor currents as J&; = 1. Taking these facts into account

allows us to write down the energy matrix as a function only of a, ¢, Cprrp and Ck.

We obtain
2c—a c—a 1 C
e VB R
q
(U|E|V) = EUT V3ee a Lo v, (6.5.14)
1 Crrrp _1 Crrr 1
V2e VOr  V6c VCF

where for definiteness we have chosen A; = (0, 1,7) and a tensor polarization with the
same SO(2) spin.
Enforcing the positivity of this matrix yields several constraints. The leading

two-by-two minor involving states |T(¢, Ar)) + |Jr(q, As)) gives the bound

IA
ole
IA
(NN OV]

, (6.5.15)

N | —

which coincides with those derived in [160]. This bound is saturated by a free chiral

multiplet, ¢ = %, or a free vector multiplet, ¢ = %

To constrain the gravitational anomaly coefficient we evaluate the determinant of

the full three-by-three matrix (6.5.14). This gives the following bound on the mixed
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anomaly for a flavor current

a 1 C?
S —94q — ZITE ) > | 5.1
(C 2) (360 24a Cr )_0 (6.5.16)

For a free chiral multiplet the bound is automatically saturated, since the first term

in the left hand side vanishes independently of C'rrp. Therefore we will assume that

ol

> % Then we obtain the following bound

Clrr
—= < 3c—2 0.1
120F_30 a, (6.5.17)

which is stronger than the one derived in the previous section, without the use of
supersymmetry. Note also that this is consistent with the free vector multiplet. In
that case the right-hand-side vanishes, but there are also no flavor currents.

To conclude this section, we can mention some contexts where such bound on
the mixed anomaly is relevant. First of all, when we consider holographic CFT this
anomaly is related to a 5d Chern-Simons term of the form [ A A R A R, where A is
the gauge field dual to the current J (we will see in the next section how our bounds
translate to bounds on the gravity couplings for the case of TTO).

Finally, in the context of hydrodynamics and transport, quantum anomalies induce
a special type of transport coefficients, see [187] and, in particular, for the mixed
anomaly [188-190]. The coefficient bounded in this section Crry, is related to the
mixed anomaly recently observed experimentally in Weyl semimetals [191]. In the
linear response regime, the mixed anomaly produces an energy current ; given by
[188-190]

j = 24Crr,T°B | (6.5.18)
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where we denote the temperature by 1" and the system is placed in a fixed magnetic
field B. This allows us to translate our results into concrete bounds for transport

coeflicients.

6.6 Bounds on Coefficients of the AdS Effective Action

If the d dimensional boundary theory has an AdS;,; dual, then we would like to
translate the bounds on Cprro to bounds on the coefficients of the bulk effective
action. We are imagining that the theory has a large N expansion. Then, to leading
order, the bulk is given by a collection of free fields propagating on the AdS metric.
The simplest interactions correspond to bulk three-point interactions. These lead to
three-point functions in the boundary theory. For the case of gravitons we have a
three-point interaction coming from the Einstein Lagrangian, but it is also necessary
to include higher derivative terms, of the form W? and W3, in order to get the most
general structures for the tensor three-point function. It is possible to match the
coefficients of the new structures to the coefficients of these higher derivative terms
in the Lagrangian [160,162].

Here we consider the same problem for the case of the (I'T'O) correlator. The
first observation is that in Einstein gravity this correlator is zero, since the action
of any field, expanded around the minimum of its potential has an action without a
linear term in the scalar field. Notice that this also implies that a massive scalar field
cannot not decay into two gravitons. However, we can write the higher derivative

term

S = M;ll_la/dd“x\/g)(WQ (6.6.1)
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in the action, where we normalized the y field to be dimensionless.!! This term enables
the field x to decay into two gravitons. In flat space there is only one structure for
the on shell three-point function between a scalar and two gravitons, except in four
dimensions where there is also a parity odd one, as we discuss later. Therefore the
vertex (6.6.1) represents the general interaction that we can have in the theory. There
can be other ways to write it which give the same three-point function as (6.6.1). It
is possible to check that (6.6.1) gives rise to a (I'T'O) three-point function with the

coeflicient

Crroy/f(A)  8V2d(d—1)n¥? «
VCOr VA +10(d)2) Ry’

(6.6.2)

At first sight, it seems surprising that the function f(A) appearing here is the same
as the one that appears in the bound (6.3.10). This means that the A dependence
disappears when we express the bound in terms of a. This is easy to understand
when we derive (6.6.2) as follows.

First we notice that integrating the stress tensor along a null line, as in the def-
inition of the energy measurement & = [dz~T__(z~,27 = 0,5 = 0), we produce a
shock wave in the bulk that is localized at 7 = 0. We can then imagine scattering a
superposition of y and a graviton through this shock wave. This leads to a time delay
that is given by a matrix mixing the graviton and the scalar. An important point is
that the propagation through the shock wave is given by integrating the wave equa-
tion in a small interval before and after z* = 0. Only the shock wave contributes to
this short integral over z™, but the scalar mass term does not contribute. Therefore
the time delay matrix is independent of the mass of the scalar. We can determine the
precise coefficient in (6.6.2) by doing this explicit computation for Einstein gravity

plus (6.6.1). We then get a bound on « by requiring that the time delay is positive.

I Here My, is the reduced Planck mass in d 4 1 dimensions, defined so that the Einstein term is
d—1

d—1
S = M”Tl [ d¥lz,/gR. Similarly, the action of the scalar field is S = M"Tl JI(Vx)? = m?x?].
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Comparing this to the bound (6.3.10) we fix the coefficient to the one in (6.6.2). We
explain this in more detail in Appendix 6.8.
This same shock wave method enables one to set even stricter bounds on « if one

2 as was discussed in [159]

assumes that there is a gap to the higher spin particles,’
for the case of the graviton higher derivative interactions. A similar analysis can be
done for the 5d Chern-Simons term coupling dual to the mixed anomaly [192].

In string theory, we expect that « is the order of o/, the inverse string tension. If
gravity is a good approximation, o/ < R?, then we find that the bound on (6.6.2) is
far from being saturated. The bound is saturated only as the string length becomes of
the order of the radius of AdS. In particular, this implies that the bound is satisfied,
and far from being saturated, for the Konishi operator of N' = 4 super Yang Mills
at strong coupling. This operator is the lightest non-protected single trace operator
which has a dimension growing like A oc A/* at strong coupling, A > 1.

In the four dimensional case, we can also have a parity odd correlator with a
corresponding coupling. In flat space this is related to the fact that the three-point
functions with ++ or —— graviton helicities are Lorentz invariant by themselves.
(The —+ graviton helicities are forbidden by angular momentum conservation). We

can then write the action as
S= 02 [ deG | 2R —28) + (V)2 = m32] + [ anW? + aox WV | (6.6.3)
- il g 9 9 X X Qe X Qo X Y.

where as above we have defined x to be dimensionless.'® In this normalization a;
has dimensions of length squared. They can be related to the coefficients of the

three-point function as

770 Nteven(A) _ 2 a. Co%ohoaa(A) _ 2
V CT \/iRidSAL ’ \Y CT \/§ 124dS4

12We thank E. Perlmutter and D. Meltzer for discussions on this issue.
13 We also define (W) pvpo = %EWMW‘;V

po:

(6.6.4)
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The bounds in this case then read

2 2 1
Vae T % (6.6.5)

Riss, 122

in the case that there are no purely gravitational corrections to Einstein gravity. Of
course, if there are three-point functions that lead to corrections to Einstein gravity,

then the bound is corrected to those given in section 6.4.

6.7 Constraints for de-Sitter and Inflation

The physics of inflation might be our very best window into very high energy physics.
The standard inflationary theory starts with a scalar field coupled to the Einstein
action and includes all two (or less) derivative interactions. The universe undergoes a
period of expansion that is governed by a nearly de-Sitter solution, characterized by
a Hubble scale H that is nearly constant. The effective coupling of the gravitational
sector is of order H/M,; which is very small, less than 107°. However, it is possible
that there are corrections to the two derivative action due to the presence of a light
string scale. The value of the string tension could be fairly low H*> < T. When
the string tension becomes comparable to the Hubble scale, we expect significant
corrections to the two derivative action. We do not have an explicit scenario where
this happens. However, a similar situation happens in AdS space when we consider
a gravity dual of a not so strongly coupled large N theory. Therefore it is natural
to question whether something similar could happen in inflation and we can look
for signatures of such a low string scale. It is important to find signatures that are
as model independent as possible. Specially nice signatures are those that have a
non-vanishing contribution in the de-Sitter approximation. These are not strongly
suppressed by slow roll factors. In addition, their form is strongly constrained by the

de-Sitter isometries. An example of such contributions are the three-point functions
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of gravity fluctuations, where the higher derivative corrections were discussed in [193].
Another interesting case are the couplings of the form f,(x)W? or fo(x)WW*. These
two couplings are particularly interesting because their effects are visible at the two-
point function level.

Let us discuss first the parity odd coupling, which leads to chiral gravity waves
[194,195]. Namely, we have different gravity wave two-point functions, hhy, hhg, for

the left and right handed circularly polarization. We can define the asymmetry A as

(6.7.1)

hh* — hhE fo(x) of
A= ————— =422 H? = 47/ 2e | == | H? -
WAL+ hRE ' H mV2e (8X> ’ X

9
My’
where y is defined to be dimensionless and ¢ is the inflaton with canonical normal-
ization. (The £ comes from going from x to /€, since the derivative of the scalar
can have either sign). If we were in AdS; we would have a sharp bound on the
coefficients via the condition (6.6.5), after we identify a, = g—i. It is reasonable to
think that in the de-Sitter case too, there will be trouble is the bound is violated. Of
course, we know that even near-saturation of the bound implies that the field theory
approximation is breaking down.

In the de-Sitter case we do not have a sharp derivation of a bound from boundary
theory reasoning. We do not have an analog of the null energy condition, discussed
in section 6.4, for the boundary theory, since the boundary theory is purely spacelike.
It would be nice to have a sharp derivation of a de-Sitter version of the bound. In
de-Sitter, we can talk of a “quasi-bound”, which we get by simply applying the same
bound on the coefficients of the action that we had in anti-de-Sitter. This quasi-bound
should be viewed simply as an educated guess, including numerical coefficients, for the
validity of bulk effective theory. A near saturation of these quasi-bounds is a strong
indication of a light string scale which could also have other manifestations such as

indirect evidence of higher spin massive particles, etc [196]. In summary, in de-Sitter
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also we have a quasi-bound on the coefficients similar to (6.6.5), with 1/Raqs — H

dfe 2 of, 2_ ——s H?
\/<3X) +<8X) a az+a§§12\/§. (67.2)

This bound, then implies a quasi-bound on the asymmetry (6.7.1) of the form

4
Al < %ﬁ . (6.7.3)

The allowed values by this quasi-bound seem to be smaller than the smallest possible
measurable value from the CMB B-modes as analyzed in [197]. Conversely, this
means that if chiral gravity waves through E-B mode correlators are measured, then
we would need a higher derivative coupling with a coefficient so large that it violates
(6.7.2).

Let us turn now to a discussion of the parity even coupling. This coupling gives
rise to a violation of the consistency condition for the two-point function [198], even

in the case that the speed of sound is close to one,

ny QHdtfe 9 (e
—8—=1+8H*——-=1+8H ,
r (dex)? vV 2e

(6.7.4)

where we assumed that the speed of sound for the scalar is close to one. Here n; is the
tensor spectral index and r the tensor to scalar ratio conventionally defined. Then
the bound we had in (6.7.2) translates into the following constraint on the violation

of the consistency condition
‘—8— - 1‘ <. (6.7.5)

Finally we will comment on Scalar-Tensor-Tensor Three-Point Functions. The

®W? higher derivative coupling between the scalar and the graviton also give rise
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to new contributions to the scalar-tensor-tensor three-point function. This is a con-
tribution, that is non-vanishing in the de-Sitter limit. More precisely, if we can
approximate 0, f.(x(t)) by a constant, then we get a contribution even in de-Sitter
space. The standard Einstein gravity contribution, [199], is suppressed by a slow roll
factor /e, if we assume that 0, f is of order one. Of course, our bound constrains the
size of this three-point function because it is constraining the size of the coefficient
e ~ D, fu(X(1)).

The three-point function for the parity odd coupling f,(x)WW™* was computed in
[200], where it was found to be proportional to 8>2< f. One might have naively expected
a de-Sitter invariant contribution proportional to ay = 0, fo, when we approximate
this by a constant. The explicit computation by [200] shows that there is no such
contribution. This seems surprising at first sight because this parity odd coupling
does indeed give a non-vanishing contribution to the three-point function in the AdS,
case. The reason it vanishes in de-Sitter is that it gives a contribution to the de-Sitter
wavefunction that is a pure phase, which disappears when we take the absolute value
squared of the wavefunction. The same happens with the W?2W* parity violating
graviton three-point coupling [201]. The correlator proportional to 8>2< f found in [200]
has an extra factor of ¢ and is not expected to be de-Sitter invariant (though we did
not check this explicitly).

It should be noted that the correction to the two-point function consistency con-
dition (6.7.4) has the right form so that the consistency condition involving the soft
limit of the three-point function [199,202] is obeyed, though we have not explicitly
checked the precise numerical coefficients. A similar remark applies in the parity odd
case; the correction to the two-point function (6.7.1) is such that the soft limit of the

three-point function in [200] obeys the consistency condition.
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6.8 Appendix: Computing the Bound in the Gravity Theory

In this appendix we relate the OPE coefficient Crro to a coefficient, «, in the AdSp

effective action

MD72
S = ”QZ U VIR —2A) + (V) — m*x? + 2axW? |, (6.8.1)
. : . _ (D-1)(D-2) . .
where D is the dimension of AdSp and A = ——=—=. x is defined to be dimen-

2
2R3 45

sionless and « has dimensions of length squared.

In principle we can compute the relation between o and Cryro by computing the
three point function between a scalar and the graviton produced by this cubic term
in the Lagrangian, using Witten diagrams. Instead, we will follow a different route.
We will directly compute the energy correlator in gravity and derive a bound on a by
demanding its positivity. We then relate o and Crpo by demanding that this gravity
bound, in terms of «, matches the bound we obtained in terms of Cpre in the field
theory analysis.

We will rely on [160, 162] where the energy correlators were computed in gravity.
An important point is that the insertion of 7 _ corresponds to a shock wave localized
in a null plane. Furthermore, an operator insertion at the origin with definite energy-
momentum gives rise to an excitation that crosses this null plane at a localized point.
For this reason the computation of the bound boils down to analyzing the propagation
of an excitation through a suitable gravitational shock wave in flat space. The AdSp
space is only relevant for determining the transverse profile of the shock wave, as we
will see below.

For these reasons we consider a shock wave of the form

ds® = ds3,. + (dz")?6(x")h(y) , dsi,. = —dxdz™ + dy* . (6.8.2)
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Adding gravitons we get
ds® = dsg,, + (dz™)?5(21)h(y) + da"dz”(,.Ce*G(p) + h.c., (6.8.3)

with ¢* = 0, ¢*p, = 0. Note that the graviton polarization is (,, = (,(,, and is
normalized to one (. = 1. We can think of G(p) and G(p) as complex numbers,
which in the quantum theory will be related to a and a'. Inserting (6.8.3) into (6.8.1)

we can derive the quadratic and cubic interaction terms.

D-2

s = 22 [ty {[pop + 06 [GOIGH) +4p xR +
+8p> a?0;0;h6(xT)G(p)x(p) + c.c.} (6.8.4)

where we only wrote the terms relevant for our computation, ignoring transverse
derivatives in the kinetic terms. Momentarily setting the scalar field to zero, we see

that we have the following equation for the graviton as it crosses the shock wave

Ahyy = Bylat—or — hylat—o- = ip_hh, . (6.8.5)

Exponentiating this, h,, (zt = 0%) = eP~"h,,,(z* = 07), we see that the time delay
is simply given by h. This is as expected from (6.8.2) since we can shift x= by h
and make the term involving h disappear if we ignore its y dependence. So far, we
considered the computation in flat space. An insertion of the null energy integrated
along a ray in the boundary theory gives rise to a shockwave in Ad.Sp which is localized
on a null direction. Its dependence on the transverse directions is the following. The
transverse space is an Hp_o. This is easy to see in embedding coordinates where AdSp
is WHW~4+WHW, = —1 (setting Rags, = 1). The null plane is W+ = 0. It contains
the null direction parametrized by W~ as well as the transverse space WHEW,, = —1.

The profile of the wave is proportional to h oc (W9 — Wint)2=D [160, 162], with a
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positive coefficient. Here 7 is a vector on the sphere at infinity in the boundary

Minkowski space. For (6.8.4) we need the derivatives at W = 0, which are given by

1
h—h, 0;0;h = [(constant)d;; + (D — 2)(D — 1)7’%”;‘]th— ,  (6.8.6)
AdSp

where the constant does not matter because the graviton is traceless. If we take a
localized shockwave instead then the result is the same replacing R34 — b, with b
being the shockwave impact parameter.

The relevant component of the graviton is the one with polarization along n’. This

ID—21 . . dij
B e o S
Gij D3 [nn o 2} . (6.8.7)

The expression for the time delay acting on a superposition of a graviton and a scalar

has the expression

is now a matrix proportional to

=40 - )V =D 5
v 1 AdSp

, (6.8.8)

where the matrix is acting on a two dimensional space where one direction is the
scalar and the other is the graviton with polarization (6.8.7). The unitarity bound

comes from the restriction that the eigenvalues are non-negative, or |y| < 1, which is

|| 1 1
<

R, ~ 4D —1/D _3)(D-2) 4d/{d—2)(d-1) (6.8.9)

where d is the dimension of the boundary. Comparing this with the bound obtained
in (6.3.8), with the non-Einstein-gravity structures set to zero, we obtain (6.6.2). Of
course, once we get the proportionality constant between o and C'rro for the Einstein

gravity case, the same constant holds also if we add the purely gravitational higher
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derivative terms that generate the other tensor structures for (I'TT). We could add
them to this computation, but we expect to reproduce the bounds we got in the
general field theory analysis.

In the special case of the four dimensional theory, we actually have two couplings

(6.6.3). This leads to a new interaction term in (6.8.4) of the form

aC0;0;h — .7 0;0;h + a,Cle;0,0;h (6.8.10)

where now ¢;; is the two dimensional epsilon symbol. This means that the scalar can
now mix with the other graviton polarization component besides (6.8.7). Namely,
o il sl

defining (6.8.7) as (g, it can also mix with ¢ = €'(J. Now the time delay is a a

three by three matrix

1 v B
Qe Oy

v 10 |, 751N§R2 , 5512\/§R2 : (6.8.11)
AdSy AdSy

B0 1

where the rows and columns correspond to the scalar and the two graviton polar-
izations. Now the bound is (6.6.5). Comparing this to (6.4.13), after setting the
non-Einstein-gravity structures to zero, we get the precise mapping to the Crro co-

efficients (6.6.4).
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Chapter 7

Conclusions

In this thesis we have studied several aspects of quantum chaos and near horizon
scattering in black holes, related by gauge/gravity duality.

A lot of progress has been done after the discovery of holographic quantum me-
chanical systems such as the SYK model. These systems are characterized as being
described in the IR by a pseudo-Goldstone mode that controls the breaking of con-
formal symmetry. This mode is directly related to the gravitational mode of dilaton
gravity in (nearly) AdS,. This connection explains the thermodynamics and chaos of
SYK at low temperatures.

One of the results in this thesis, explained in chapter 2, has been to solve the
Schwarzian/JT-gravity theory by finding the exact correlators (both time and out-of-
time ordered). On the QM side this is interesting since exact answers for OTOC in
non-trivial theories (specially maximally chaotic) are generally non tractable. More-
over this gives a solution to the Jackiw-Teitelboim model for quantum gravity. Of
course this is still an expansion around large extremal entropy and is not useful to
decide questions sensitive to the fine grained details of the black hole spectrum like

the information paradox, but its still some progress.
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As a by-product of this in chapter 3 we found a non-perturbative generalization
of the Dray-"t Hooft S-matrix describing scattering near the black hole horizon. This
is an interesting situation to study as we have explained in the Introduction. Even in
the semiclassical analysis there are more to shockwaves than the Lyapunov exponent.
In the eikonal approximation one can compute OTOC beyond the ¢ > ( limit. In
higher dimensions this is technically complicated but in near AdS, one can use it as
a toy model for the more realistic situations.

It would be interesting to understand the fine-grained details of the spectrum
responsible for the unitarization of the black hole evaporation. One option is to do
numerics on the SYK model but the most interesting outcome would be understnading
general lessons that could be applied to higher dimensions.

Another important open question is to identify a (possibly) string theory construc-
tion from which to derive the dual of the SYK model. Some evidence points into the
belief that this should be a theory of strings in 2D, and not a reduction from higher
dimensions. This would also help clarify the resolution of the information paradox in
this simplified setting.

Other interesting question in holography for which NAdS,/NCFEFT; might be help-
ful is to understand in which sense entanglement between disconnected QM systems
creates the space time region connecting them. This is related to the belief that
gravity and spacetime are closely connected to quantum information.

In chapters 4 and 5 we have extended some lessons from SYK to two dimensions.
We have argued that a natural candidate for the theory describing the breaking of
conformal symmetry is the theory of coadjoint orbits of the Virasoro group. This
theory also controls the chaos exponent and gives maximal chaos. We have also
found ways to create 2D field theories which share several of the prominent features

with SYK.
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Finally another interesting connection is between shockwaves and the recently
proved averaged null energy condition (ANEC). In chapter 6 we have studied aspects
of this connection in the context of the conformal collider. This produced mostly
interesting bounds on general CFTs. For holographic CFT's this puts severe constrains
on the low energy effective action for string theory. This would be interesting to study

further and moreover if it has some connection with black holes and quantum chaos.
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