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Abstract

We study some aspects of quantum chaos and its relation to scattering near the

black hole event horizon, in the context of gauge/gravity dualities. Chaos is an

important ingredient related to the onset of thermalization. A signal of chaos is given

by the behavior of out-of-time-ordered correlators (OTOC) and exponential growth

of commutators. In the gravity side this growth is controlled by a near-horizon high

energy scattering, semiclassically described by a shockwave geometry.

A holographic quantum mechanical toy model was developed by Kitaev, the SYK

model, consisting of a large number of interacting Majorana fermions without a

quasi-particle description. At low temperatures, this system has an emergent confor-

mal symmetry. The thermodynamics and chaos of the model are described by the

Schwarzian mode associated to the pattern of breaking of the conformal symmetry,

which is also equivalent to the boundary gravitons of dilaton-gravity in 2D. We solve

the physics of this mode exactly, including the computation of OTOC. We also study

its semiclassical limit and find how the shockwave S-matrix describing near-horizon

scattering emerges.

We propose and study a natural extension of the SYK model to two dimensions

that presents holographic behavior described by gravity in three dimensions. We

also study a natural two-dimensional generalization of the Schwarzian mode, which

controls the chaos exponent of the system.

Finally, we study a generalization of the shockwave geometry to include quantum

interference effects. This can be used to obtain interesting bounds for general CFTs

in higher dimensions.
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Chapter 1

Introduction

Most of modern theoretical physics is built on two frameworks. One is quantum me-

chanics (QM). Its relativistic version, quantum field theory (QFT) describes physics

from the elementary particles appearing in the Standard Model to condensed matter

systems. Even though it has not been tested, it is believed that the principles of

quantum mechanics are valid throughout all scales. The second theory is General

Relativity (GR). This describes gravitational interactions which become relevant at

the largest scales, from planetary to cosmological.

Both theories have been extremely successful within their range of applicability,

but they have resisted a unification of their principles. From a theoretical front, naive

attempts to combine the two theories have failed (we will give a concrete example

below). Evidently, finding the principles from which gravity and QM emerge requires

new ideas. One of the most widespread advances lately has been the idea of view-

ing quantum mechanics and gravity not as independent phenomena but as different

equivalent descriptions of the same physics. This is one of the main lessons that

String Theory has taught us through dualities.

Even though these discussions are in theory well motivated one could ask why

should we even care about finding such a theory of quantum gravity, if in the end we
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cannot see these regimes together in a lab. Consider for example the Large Hadron

Collider (LHC). Processes involving elementary particles where QFT is relevant are

being measured at energies of the order of 104 GeV. To observe quantum gravitational

effects we would need to go to 1019 GeV which seems ridiculous considering the

status of current technology. Nevertheless nature has given us such a high energy

accelerator for free: the Big Bang. If we trace back the cosmological evolution,

due to its expansion, early enough in time relevant energies would be so high that

combined effects of quantum mechanics and gravity become unavoidable. This is a

very interesting problem since it would give an understanding of the origin of the

universe. Presumably this might also shed some light on other issues like the nature

of dark matter or dark energy.

This is a very complicated problem to solve. We will focus instead on another

important problem where strong gravitational effects are relevant: black holes. These

are objects so massive and dense that nothing, not even light, can escape them (clas-

sically) beyond their event horizon. This is a fruitful example where one can apply

a naive combination of classical GR and QM concepts that lead to a contradiction.

This was done by mainly Bekenstein and Hawking. According to Bekenstein [1] black

holes should be thought of as carrying an entropy proportional to the area of its event

horizon

SBH =
A

4L2
P

, (1.0.1)

where LP =
√
GN~/c3 ≈ 10−35m stands for the Planck length. This is a huge

degeneracy for objects which classically have ‘no hair’. To give some rough estimates,

a black hole of the mass of the sun (≈ 1030kg) would have to be compressed to a

radius of 3km to become a black hole. In this case its Bekenstein entropy would be

around S ∼ 1077. (This is 20 orders of magnitude larger that the sun’s actual internal

entropy!)
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The nature of this entropy was clarified (to some extent) when Hawking discovered

that black holes emit thermal radiation [2] with a temperature dependent on the black

hole total mass M given by

TH = TPl
MPl

8πM
, (1.0.2)

where MPl =
√

~c/GN ∼ 10−8kg and TPl =
√

~c5/(k2
BGN) ∼ 1032K are the Planck

mass and temperature respectively. For the case of the sun mass black hole M/MPl ∼

1038 this is extremely small 10−8K. This is not necessarily an issue, the universe is

full of black holes and it might be possible to find them small enough to give an

appreciable effect. Hawking derived this effect from studying quantum field in the

black hole background. Therefore when QM and GR are put together, even black

holes evaporate.

Black holes should be thought as a statistical system with a really large num-

ber of microstates and a temperature of evaporation. A serious issue was realized

later by Hawking [3]. Quantum evolution is unitary, meaning information cannot

be destroyed. Black hole evaporation is in a clear conflict with unitarity since the

post-evaporation thermal radiation carries no information about the initial matter

that created the black hole. This is called the information paradox [3]. It is believed

that an answer to this question will require an understanding of the basic princi-

ples of quantum gravity. For example, one of the successes of String Theory was

a microscopic understanding of the black hole entropy [4], which eventually led to a

proposal for a non-perturbative definition of quantum gravity on spaces with negative

cosmological constant, by means of gauge/gravity dualities [5].

In this thesis we will study several aspects of black hole physics focusing on the

region near their event horizon. This was studied early on by Dray and ’t Hooft [6,7]

and recently led to a connection between black holes and quantum chaos by studying

near-horizon scattering in the context of gauge/gravity dualities. If one takes a generic

CFT a natural question to ask is whether its gravitational dual supports black holes
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or not. This is an important question which is not easy to answer, since simple

theories that are solvable do not support black holes, while theories that do are very

complicated (we will see later a quantum mechanical toy model that is an exception

of this rule). As we will review below, quantum chaos is believed to give an answer to

this question. By studying the growth of commutators one can diagnose whether the

bulk contains an event horizon or not. The punch line is that the Lyapunov exponent

is dual to the surface gravity at the horizon. In the rest of this chapter we will explain

these ideas in more detail.

1.1 The S-matrix Ansatz

An important ingredient to study physics near the event horizon of a black hole is the

shockwave solution studied by ’t Hooft [6, 7]. This metric includes the backreaction

produced by a high-energy relativistic particle. The idea of ’t Hooft S-matrix ansatz

is roughly the following. Particles moving close to the horizon get blue-shifted and

generate a large backreaction that affects the Hawking quanta being detected at late

times. Therefore it was believed that this would be an important aspect of black hole

physics since (a very coarse-grained version of) the information of the infalling matter

can be recovered from the Hawking radiation. In the next section we will analyze

these ideas in the context of AdS/CFT, where this found a very precise interpretation

as quantum chaos of the boundary CFT.

1.1.1 Shockwaves in Flat Space

Before moving on to black holes, let us begin with empty D-dimensional Minkowski

space parametrized as x = (t, y1, . . . , yD−2, xD−1) with metric

ds2
flat = 2dx+dx− + dy2, (1.1.1)
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where x± = xD−1 ± t are null coordinates, and we use the index i = 1, . . . , D − 2 to

parametrize the coordinates y of transverse space. To simplify expressions we chose

units for which c = GN = kB = ~ = 1.

One can think about the shockwaves in the following way. We know the exact

geometry of a particle of point-mass M at rest, the Schwarzschild black hole. A

Lorentz transformation allows us to write a solution for a moving massive particle.

Then we can take the limit of a large boost to obtain the shockwave geometry due

to a high-energy relativistic particle propagating in flat space. This exact solution of

Einsteins equations was discovered in 1971 by Aichelburg and Sexl [8]. The derivation

outlined in this paragraph can be found in [6].

Another approach which is computationally simpler is to model the high-energy

particle by a stress tensor localized in the worldline of the particle. For concreteness

take

T part.
++ = 4P−δD−2(y)δ(x+). (1.1.2)

This models a relativistic particle moving along x+ = 0 with momentum P− and

localized in transverse space y = 0. One can then plug in this stress tensor in

Einstein’s equations derived from the action S =
∫ √

gR, where R is the Ricci tensor.

The metric is

ds2 = ds2
flat − 2f(y)δ(x+)(dx+)2, (1.1.3)

where the function that appears on the last term is

f(y) = −P− κ

|y|D−4
, (1.1.4)

where κ is a (D-dependent) numerical constant which is not too important for our

purposes. For the case D = 4 the power law decay becomes a logarithm. The

important feature is the fact that this is proportional to the momentum of the particle.

On these backgrounds Einstein’s equations become linear in f(y) and it is possible to
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f(y)

J +

J −

J +

J −

Figure 1.1: Penrose diagram of flat space. Null past and future infinity is denoted
J ±. A shockwave generated by a high energy particle (red line). The trajectory of a
probe particle is shown in blue.

find exact solutions for an arbitrary mass distribution in transverse space. Moreover,

this geometry is an exact solution even if higher derivative terms are added to the

Einstein-Hilbert action [9].

To understand the Aichelburg-Sexl metric it is useful to analyze the equations of

motion of probe particles moving in it. For either x+ < 0 or x+ > 0 the geometry is

flat space and its geodesics are straight. Therefore the geometry is specified by what

happens to a particle when it crosses the x+ = 0 line. To answer this question we

need to write down the equation of motion of a particle and analyze what happens

near x+ = 0. The effect is a shift, a time delay, along the x− direction given by

∆x− = f(y). (1.1.5)

We show this in Figure 1.1. The red line denotes the high-energy particle backreacting

on the geometry while the blue line denotes a low energy probe. Moreover the particle

also gets refracted in the transverse direction as ∆ dyi

dx+

∣∣
x+=0

= ∂if(y). This effect will

not be too important in what follows but in general should be taken into account.
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1.1.2 The black hole S-matrix

First we will generalize the shockwave metric to a black hole background. We will

focus on the case of asymptotically flat space, leaving the case of negative cosmological

constant (relevant for holography) for the next section.

We will focus in this section on the four-dimensional case. The metric of a static

black hole found by Schwarzschild [10] is given by

ds2
BH = −

(
1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dΩ2, (1.1.6)

where Ω denotes the angular coordinates. This choice of coordinates describes ob-

servers outside of the black hole. Far away r � M the metric becomes flat. We will

refer to t and the energy associated to this choice of time as Schwarzchild time and

energy. In terms of Kruskal coordinates X± ∼ er
?±t, the metric becomes 1

ds2
BH =

32M3e−r/2M

r
dX+dX− + r2dΩ2

2. (1.1.7)

These coordinates are well defined across the horizon (atX± = 0) and can be extended

to the extended wormhole geometry shown in Figure 1.2.

Now focus on an outgoing particle that exits the past horizon and moves very close

to the future black hole horizon. Due to horizon blue-shift (gtt → 0 at the horizon)

this particle will be highly boosted (with respect to an asymptotic observer) even if

its energy is not too high when it reaches the boundary (an important example is

a Hawking quanta for which E ∼ 1/M). Following the discussion in the previous

section we could imagine modeling this particle by a localized stress energy tensor

T part.
−− = 4P+δ2(Ω− Ω′)δ(X−), (1.1.8)

1The radial coordinate used here is r? = r + 2M log |r − 2M |.
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A
B

Figure 1.2: Penrose diagram of the extended Schwarzchild black hole. A shockwave
generated by a high energy particle is shown by a red line (could correspond to
infalling matter). The trajectory of a probe particle is shown in blue (describing a
Hawking quanta for example).

where Ω ∈ S2 parametrizes transverse space, Ω′ denotes the position of the particle,

and P+ denotes the Kruskal momentum of the particle. The geometry that this

particle produces is very similar to the flat space case, namely

ds2 = ds2
BH −

32M3e−r/2M

r
f(Ω)δ(X+)(dX+)2. (1.1.9)

Similarly to the flat space case, this extra term generates a time delay on particles that

cross X+ = 0. The shift is still given by ∆X− = f(Ω). Nevertheless, the equation of

motion for f(Ω) is modified from the flat space case due to the curvature of spacetime.

Nevertheless the solution has the same features f(Ω) ∼ P−g(Ω,Ω′), with g a universal

function that depends on space-time dimension (for a spherical matter distribution it

becomes a constant and eliminate refraction effects on transverse space).

This exact solution of Einstein’s equations was found in 1984 by Dray and ’t

Hooft [6] (see also [11] and [12] for more details). We show a diagram of this geometry

in Figure 1.2. Here we have considered a particle moving very close to the horizon.

Dray and ’t Hooft also found similar solutions with high energy particles moving far

from the horizon, which involves gluing black hole geometries with different masses.
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We are now in a position to describe ’t Hooft’s S-matrix Ansatz. Suppose we

have a black hole which already formed and is slowly evaporating such that we can

approximate the geometry by the Schwarzchild solution. At some time we throw

matter to the black hole. How does this information escape?

In [6, 13] the authors gave an answer and proposed an S-matrix that describes

how part of this information might come out. Consider a particle falling into a black

hole at early times. Consider also a Hawking quanta that if the matter particle had

not been thrown would be detected at a certain late time. As shown in Figure 1.2

these particles interact close to the black hole horizon if the time difference between

throwing the particle and measuring the Hawking quanta ∆t is large. This interaction

occurs at very high energy. We can approximate the backreaction of these particles by

shockwaves near the horizon (any other interaction will be presumably subleading).

The interaction produces a time delay to the Hawking quanta

∆X− ≈ f(Ω,Ω′)P in(Ω′). (1.1.10)

For an arbitrary matter distribution one integrates over Ω′. By looking at the trans-

formation between Kruskal and Schwarzchild frame, it is important to notice that this

delay grows exponentially with the time difference between emission and detection

∆t, namely

∆X ∼ e2πTH∆t, (1.1.11)

where TH corresponds to the Hawking temperature. Since the time delay of the

Hawking quanta is generated by its conjugated momentum we can write a proposal

for this S-matrix as

S = exp

(
i

∫
dΩdΩ′P in(Ω)f(Ω,Ω′)P out(Ω′)

)
, (1.1.12)
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where P in denotes the energy distribution of the infalling matter, while P out corre-

sponds to the observed particle leaving the black hole. For the particular case that

the momentum of the incoming and outgoing particles are localized in the transverse

space S2 this can be simplified as S = eiP
+P− where P+/− = P out/in. We will refer to

this result as the Dray-’t Hooft S-matrix.

This proposal gives a nice idea of how the information of matter thrown to the

black hole can be eventually imprinted on the Hawking radiation. A drawback of

this proposal is the insensitivity of the S-matrix to other quantum numbers other

than energy. Another issue is that, if the boost of the particles near the horizon is

large enough, the time-delay of the Hawking quanta might be large enough to send

the quanta back inside of the black hole. Another issue of this interpretation is the

fact that even though an asymptotic observer detects Hawking modes, an infalling

observer will see the vacuum, and no particle to scatter with. For the purpose of this

introduction, we simply take this idea as a motivation for the content of next section.

Finally, even if this S-matrix would reproduce all the information of the matter

particle going in, this would contradict the no-cloning principle of quantum mechanics

[14]. One could argue that contrary to usual QFT expectations, a measurement at

point A in Figure 1.2 does not commute with a measurement at B. The source of

this commutator is the shockwave geometry and generates a [OA,OB] that increases

exponentially with time. A detailed analysis of this effect was studied by Kiem,

Verlinde and Verlinde [15]. The authors propose the principle of complementarity

as a resolution: two modes that when propagated backwards generate such a large

backreaction should be thought of as complementary descriptions of the same operator

in the Hilbert space.

Another interesting feature is the possibility of time folds. To recover the infor-

mation about the infalling particle one could evolve the black hole forward in time

and detect the state of the Hawking quanta. Then one should evolve it back, throw
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the infalling particle, evolve forward again and compare the final state of the Hawk-

ing particle. This is an out-of-time ordered process. In the next section we will see

how the ideas in these final paragraphs fit in the context of gauge/gravity dualities.

Growth of commutators and out-of-time-ordered processes are key in studying quan-

tum chaos, which in turn is dual to high energy scattering near the event horizon.

1.2 Holography and Quantum Chaos

The holographic principle for quantum gravity was enunciated by ’t Hooft in 1993 [16]

(see also [17]). This idea is best understood in the context of AdS/CFT, with the first

concrete example found by Maldacena in 1997 [5], see also [18,19]. This consisted of

a duality between type IIB string theory in an AdS5 ×S5 background with a gauge

theory, SU(N) N = 4 supersymmetric Yang-Mills, living in the four dimensional

boundary of AdS (without gravity).

Since 1997 several other examples were discovered that allowed to generalize this

conjecture and claim that any CFT in d-dimensions (the boundary) is dual to a quan-

tum gravitational theory in AdSD=d+1 (the bulk). Most examples for the bulk theory

involve string theory with a low energy description by Einstein gravity (possibly plus

some matter). Other examples involve Vasiliev gravity [20] which has a dynamical

metric but the physics is highly non-local as opposed to Einstein gravity.

If a black hole exists in the bulk, it is dual to a thermal state in the boundary.

The boundary temperature and entropy are equal to the Hawking temperature and

Bekenstein entropy of the black hole in the bulk. The extended geometry of a black

hole in AdS is believed to be dual to the thermo-field doubled state that purifies the

thermal state of the boundary [21] (see equation (1.2.6) below). Particles moving

outside the black hole are dual to (single-trace) operator insertions in the boundary

CFT.
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In the context of AdS/CFT one can give a very precise interpretation of the

near-horizon scattering studied by Dray and ’t Hooft. Basically, the Dray-’t Hooft

S-matrix is dual to the statement that the boundary conformal field theory (CFT)

presents maximal quantum chaos.

1.2.1 Quantum Chaos

Classical chaos gives a measure of how sensitive is a dynamical system to initial

conditions [22]. Take a system with a large number N degrees of freedom such that

its phase space is parametrized as X = (qi, pi) with i = 1, . . . , N . Take trajectories

X(t) which is fixed by initial conditions X(0). The derivative of X(t) with respect

to X(0) gives a measure of sensitivity to initial conditions. In a chaotic system

this quantity grows exponentially with time with a rate defined as the Lyapunov

exponent λ. This can be written in terms of Poisson brackets as {Xi(t), Xj(0)} ∼ eλt.

For arbitrary observables V (X(t)) and W (X(t)) made up of phase space variables,

this implies that for a chaotic system

{V (t),W (0)} ∼ eλt. (1.2.1)

In general this rate might depend on the choice of operators. In the context of

thermodynamics classical chaos is fundamental for systems to be able to thermalize.

This analysis can be extended to quantum mechanics. First one replaces phase

space with Hilbert space and Poisson brackets with commutators. The analog of the

observables V and W are operators acting on the Hilbert space. To avoid phase

cancellations consider the commutator square 2. Then for a state ρ quantum chaos is

2Imagine taking the expectation value of the commutator. This is related by the Kubo formula
to the linear response change in δ〈V 〉 when one adds a perturbation δH = W to the Hamiltonian.
This quantity decays too fast, corresponds to quasi-normal modes of the black hole and not near
horizon scattering.
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diagnosed by

〈|[V (t),W (0)]|2〉 ∼ 1

N2
eλt, (1.2.2)

where 〈O〉 = Tr[ρO] and N2 roughly corresponds to the number of degrees of freedom

(e.g. the central charge for a CFT). For a thermal system at temperature T = 1/β we

take large times to be t� td with dissipation time td ≈ β. This commutator cannot

increase indefinitely and saturates at the scrambling time ts ∼ β logN . Therefore

we will consider systems with large N where there is a clear distinction between

dissipation and scrambling scale td � t� ts.

This signature of quantum chaos was introduced in 1969 by Larkin and Ovchin-

nikov [23]. Experimental methods to measure similar observables was developed, for

example, by Jalabert and Pastawski [24] using the Loschmidt echo.

By expanding (1.2.2) most terms are either time or anti-time ordered. For a ther-

mal state and times t � 1/β these correlators thermalize. Nevertheless other terms

give out-of-time ordered correlators (OTOC). The OTOC are the ones responsible for

the exponential growth in (1.2.2) for chaotic systems. It is therefore useful to directly

study instead

F (t) =
〈V †(t)W †(0)V (t)W (0)〉
〈V (t)V (0)〉〈W (t)W (0)〉 . (1.2.3)

Then the statement of a large N system displaying quantum chaos is the statement

that

F (t) ≈ f0 −
f1

N2
eλLt + . . . , (1.2.4)

where f0/1 are order 1 (positive) constants. Before moving on to the bulk interpre-

tation we will mention a bound obtained by Maldacena, Shenker and Stanford [25]

which under reasonable assumptions is valid for any quantum system

λL ≤
2π

β
=

2πkBT

~
, (1.2.5)
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where in the right hand side we rewrote the expression in arbitrary units to clarify

its classical limit ~→ 0. In the next section we will explain how black holes saturate

this bound on chaos. To give some order of magnitude understanding of this bound,

the maximal Lyapunov exponent of a quantum system dual to a solar mass black hole

is given by 1/λsun
L = 10−5 s. On the other extreme, the maximal Lyapunov exponent

of a system at room temperature is 1/λroomT
L = 10−14 s.

1.2.2 Bulk Perspective

The bulk interpretation of the growth of commutators involved in the definition of

quantum chaos was realized by Shenker and Stanford in [26]. The first step is to

identify the bulk process that computes an OTOC. The idea of Shenker and Stanford

is depicted in Figure 1.3. We will discuss the case of an eternal black hole in AdS.

The bulk geometry is believed to be dual to the thermo-field doubled state between

CFTR and CFTL as

|TFD〉 =
∑

E

e−βEn/2|n〉L ⊗ |n〉R. (1.2.6)

Then the geometry of Figure 1.3 is computing the overlap between two states living

in the Hilbert space H = HR ⊗HL. These states are given by

|Ψf〉 = W †(t)V †(−t)|TFD〉, and |Ψi〉 = V (−t)W (t)|TFD〉. (1.2.7)

It is then straight forward to see that the overlap 〈Ψf |Ψi〉 = 〈V †(−t)W †(t)V (−t)W (t)〉

is equivalent to the OTOC between V and W and therefore controls the value of

commutators between operators at separate times. In this expression V and W

are operators acting on the CFTR. This is a one sided OTOC. We will discuss the

two-sided version in chapter 3.

How is this related to the shockwaves of previous sections? From the figure we can

see that if the time difference between the insertion of V and W is large, the world-

14



V,−t

W, t

Figure 1.3: Penrose diagram of flat space. A shockwave generated by a high energy
particle (red line). The trajectory of a probe particle is shown in blue.

line of the particles in the bulk propagate freely until they meet and interact very

close to the horizon. Due to the blue shift the interaction is dominated by the Dray-’t

Hooft shockwave S-matrix. One can rewrite the OTOC from the bulk perspective as

〈V1W3V2W4〉 =

∫
Ψ1Ψ2SDTΨ3Ψ4, (1.2.8)

where Ψi(Pi, xi) correspond to wave-functions (form-factors) that propagate the par-

ticles freely from the boundary of AdS (at a point xi) to their meeting point at the

horizon (with a Kruskal momentum Pi). The integrals are not explicitly written cor-

respond to the momenta of the particles (and smearing of operators). Then at that

point we can approximate the geometry by flat space and their S-matrix by the Dray-

’t Hooft Ansatz. Details of this calculation can be found in [27]. For times between

dissipation and scrambling times the OTOC normalized by the two-point function

becomes

F (t) = 1− κGNe
2π
β
t + . . . , (1.2.9)

where κ is some order one positive constant. Since the holographic dictionary tells us

that GN ∼ 1/N2, this has the form of (1.2.4). There is a nice interpretation of this

formula. The contribution to the scattering amplitude due to the exchange of a spin

J particle is given by A ∼ sJ−1 (an eikonal exponentiation of this amplitude gives the

spin-J version of the Dray-’t Hooft S-matrix). The Lyapunov behavior comes from
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the fact that, if we throw in a particle with a boundary energy E then the invariant

energy of the collision near the horizon is given by s ∼ e
2π
β
t.

Some features (1) the shockwave calculation corresponds to a graviton exchange

with J = 2. (2) The maximal Lyapunov exponent λL = 2π/β corresponds to a

gravitational blue-shift at the horizon (equal to the surface gravity), and due to the

equivalence principle is universal (cannot depend on the operator), independent on

which particle (i.e. single trace operator V ) we throw. (3) The bound on chaos

show that interactions bounded in spin are not consistent. If the spectrum of spins

is unbounded then an infinite sum can resum into an effective Regge trajectory with

Jeff < 2. This happens for string theory Jeff . 2 and Vasiliev gravity Jeff ∼ 0.

One can take this and formulate the following conjecture. Say we are given a

CFT whose dual we do not know and we want to figure out if the gravity theory

supports black holes. In order to find the event horizon we need to compute OTOC

and verify that for every operator (equivalence principle) the growth of commutators

happens at a rate λL = 2π/β (surface gravity in general, maybe with subleading

stringy corrections). Thanks to AdS/CFT we can conjecture a positive answer to

this question for N = 4 SYM, ABJM, etc.

For which kind of theories the answer is negative? For example, it is believed

that U(N) Chern-Simons at level k coupled to fundamental matter in 3d is dual to

Vasiliev gravity in AdS4 [28]. Using 3d dualities between CFT one can also find a

holographic description of the critical O(N) model and Gross-Neveu model. Can we

use these theories to study black hole physics? Given what we have learned we can

compute OTOC for the boundary CFT (see for example [29]). This shows that in

general λL ≈ 0, showing that they do not support black holes.
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1.3 Two-Dimensional Holography

An important development in the past years has been the realization by Kitaev [30,31]

that certain quantum mechanical models (solvable but chaotic) present holographic

behavior, the Sachdev-Ye-Kitaev (SYK) model3. Since a large part of this thesis

consists in studying this model in some detail we will give a short summary in the

following section. Even though the precise bulk theory dual to this model is not

known to this date (August 2018) in the low energy regime one can identify a degree

of freedom that captures the gravitational dynamics of dilaton-gravity in AdS2 (which

in turn arises from dimensional reduction of near extremal black holes in 4D).

1.3.1 Sachdev-Ye-Kitaev Model

The SYK model consists of a large number N of Majorana fermions ψi where i =

1, . . . , N , such that {ψi, ψj} = δij. These fermions interact in an all-to-all way through

the following Hamiltonian

H =
iq/2

q!

∑

i1,...,iq

Ji1i2...iqψi1ψi2 . . . ψiq , (1.3.1)

where q > 2 is an even integer. The original SYK model also displays disorder,

meaning that the couplings are taken from a random distribution. We take a Gaussian

distribution such that J2
i1...iq

= (q − 1)!J2/N q−1. The factors of N are chosen such

that for large N the free energy is extensive. This is a modification made by Kitaev

on models originally studied in a different context by Sachdev and Ye [37,38].

To solve this theory one can go to a mean field description in terms of bilocal

fields

G(τ, τ ′) =
1

N

∑

i

ψi(τ)ψi(τ ′), (1.3.2)

3This QM is supposed to give an exact description of a gravitational 2D system. This is not the
same as acoustic black holes that only model QFT on curved fixed backgrounds [32–36].
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together with a self energy field denoted by Σ(τ, τ ′). The path integral over the

fermions and disorder average can be rewritten as

Z =

∫
[dG][dΣ] e

N
(

log Pf(∂τ−Σ)− 1
2

∫
dτ ′dτ

[
G(τ,τ ′)Σ(τ,τ ′)−J2

q
G(τ,τ ′)q

])
. (1.3.3)

From now on we can use this action to compute correlators of the bilocal field G(τ, τ ′).

For the derivation of this result one assumes that we work at temperatures high

enough that no ordered-phase takes place (above spin-glass transition).

To reveal the holographic behavior we will focus on low energies (the IR) such

that 1 � βJ � N . The equation of motions for correlators of the bi-local field in

this limit have an emergent conformal symmetry (this was understood by Georges

and Parcollet in [39,40]). From the UV free fermion correlator GUV(τ, 0) = 1
2

sgnτ in

the IR the two-point function becomes

GIR(τ, τ ′) = b∆
1

|τ − τ ′|2∆
sgn(τ − τ ′), (1.3.4)

where the scaling dimension is ∆ = 1/q and b∆ is a function that can be found

explicitly although the expression will not be very important. The conformal trans-

formation acts as

G(τ, τ ′)→ [f ′(τ)f ′(τ ′)]2∆G(f(τ), f(τ ′)), (1.3.5)

and we can use this to write a solution of the Schwinger-Dyson equation at finite

temperature by performing the reparametrization τ → tan πτ
β

. The answer is then

G =

(
π

β sin π
β
τ

)2∆

sgnτ. (1.3.6)

We will show immediately how the pattern of breaking of this symmetry is responsible

for the IR dynamics and the emergence of a gravitational mode.
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From the bi-local action (1.3.3) we can write the connected part of the four-point

function by expanding G→ Gs.p. + δG, integrating over Σ, and finding the quadratic

term in δG. The inverse of the kernel appearing in the quadratic term on δG, gives

precisely the connected order 1/N four point function. The result is given, very

schematically, by

F(τi) ≡
1

N2

∑

i,j

〈ψi(τ1)ψi(τ2)ψj(τ3)ψj(τ4)〉conn.,

= 〈G(τ1, τ2)G(τ3, τ4)〉conn. ∼
1

N

K

1−K , (1.3.7)

where following [30,31,41,42] we define the kernel (derived from the mean field action)

as

K(τ1, τ2; τ3, τ4) = −J2(q − 1)G(τ1, τ3)G(τ2, τ4)G(τ3, τ4)q−2. (1.3.8)

This should be thought of as a matrix with continuous indeces that acts on the second

pair of times (then finding K(1−K)−1 becomes a complicated problem).This kernel

is SL(2,R) invariant (under τ → aτ+b
cτ+d

with a, b, c, d ∈ R) and can be expanded in

conformal blocks. Of course we are considering the low energy regime βJ � 1 (since

otherwise conformal symmetry is broken). Each term in the sum over conformal

blocks corresponds to operators of the form

On =
1

N

∑

i

: ψi ∂nt ψ
i :, ∆n = 2∆ + 1 + 2n+O(1). (1.3.9)

One can also think of these operators as different fluctuation modes of the bilocal

field G(τ, τ ′). Nevertheless, if one takes a careful look at the four point function an

interesting issue appears, related to the patter of symmetry breaking. There is a

mode with ∆ = 2, which is associated to fluctuations of the bilocal field that are

equivalent to reparametrizations by some f(τ). This mode, when plugged into the
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expression for the four-point function diverges. This is because the moduli space of

fluctuations of f(τ) is non-compact and massless (to leading order in 1/βJ).

This might be an inconsistency of the large βJ approximation, but this is not

true. The effect of this mode can be accounted in the following way, while keeping

the contribution from other modes unchanged. The idea is to integrate over all

reparametrization f(τ) associated to these “zero”-modes of δG. For βJ = ∞ their

action is zero. By computing the leading 1/βJ correction one can find an action for

this mode that makes the theory finite. This is the Schwarzian action

S = C

∫
dτ{f(τ), τ}, (1.3.10)

where C = αSN/J and αS is an order one number which can be computed numerically.

To leading order in βJ/N one can then expand the four-point function schematically

as

F = Fdisc. +
βJ

N
FSchw. +

1

N
Fconf., (1.3.11)

where the first term is the disconnected piece, the last term is the 1/N correction from

conformal modes (and subleading corrections to reparametrization mode action) and

the middle term is this Schwarzian mode corresponding to the breaking of the con-

formal symmetry. As we indicated (at least for small βJ/N) this latter contribution

is enhanced with respect to the conformal part.

This Schwarzian mode, coming from the pattern of breaking of the conformal

symmetry, dominates the IR limit of the SYK model. It controls the entropy, free

energy and the chaos exponent in this model. This mode presents maximal chaos

λL = 2π/β. We will explain in the next section how this mode emerges from dilaton-

gravity in AdS2.
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1.3.2 Jackiw-Teitelboim Model

The gravitational mode giving origin to the Schwarzian action can be obtained from

Jackiw-Teitelboim (JT) gravity [43,44] in two dimensions with a negative cosmological

constant [45–48]. The action of this theory is

S =
1

16πGN

[∫
Φ(R + 2) +

∫

bdy.

ΦbK

]
+ Smatter. (1.3.12)

The near-horizon geometry of a near-extremal black hole in 4D is AdS2 ×S2. After

reducing on the S2 one obtains this action with Φ corresponding to the size of S2.

We will analyze this system classically first. The solution to the dilaton equation of

motion sets the geometry to AdS2, with metric

ds2 =
dt2 + dz2

z2
, (1.3.13)

with a group of isometries SL(2,R). One could consider a constant dilaton solution

preserving this group of isometries. This situation does not allow finite energy exci-

tations without a catastrophic backreaction [49]. Therefore one needs a dilaton that

breaks this conformal symmetry. One can already find a similarity with the pattern

of symmetry breaking in the IR limit of the SYK model.

The solution for a non-constant dilaton can be written as

Φ = Φ0 + δΦ, (1.3.14)

where the precise spacetime dependence of δΦ is not too important. We will only men-

tion that it blows up at the boundary of AdS2. This forces us to put a cut-off on the

AdS geometry where the boundary theory lives, since eventually the approximations

would break down if δΦ becomes bigger than Φ0.
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Take as the boundary a trajectory (t, z)→ (f(t), z(t)). Fixing a metric boundary

condition g|bdy = ε−2, with ε small gives z(t) = εf ′(t) so that the cut-off surface

is completely fixed by t → f(t). For the dilaton, a natural boundary condition to

consider is δΦb = Φr/ε (take Φr constant for simplicity). After plugging this in the

action one gets

S = − Φr

8πGN

∫
dt {f(t), t}. (1.3.15)

In a quantum version of this theory, the right prescription is to integrate of f ∈

Diff(S1) modulo SL(2,R) transformations f(t)→ af(t)+b
cf(t)+d

(but note that SL(2,R) trans-

formations acting on t are broken to only translations). This is the only mode that

survives in the JT model and it is equivalent to the IR mode of the SYK model.

Matching both theories would give C = αSN/J ∼ Φr
8πGN

. The value of the dilaton

Φ0 fixes the extremal values. Since we are taking the cut-off surface at ε → 0 and

δΦ → ∞, which should be smaller than Φ0, the Schwarzian theory is valid in the

limit Sextremal ∼ Φ0 →∞.

The procedure to find observables like correlators of the matter fields is the fol-

lowing. First write their expectation value in rigid AdS2 forgetting about gravity. For

example for a field χ(x) the boundary four point function is

〈χ(t1)χ(t2)χ(t3)χ(t4)〉 = Fdisc(ti) +
1

N
Fconn(ti), (1.3.16)

where Fdisc(ti) is the free bulk field answer while Fconn(ti) corresponds to bulk in-

teractions. To add gravitational interactions perform a reparametrization t → f(t)

and integrate over f ∈ Diff(S1)/SL(2, R) weighted by the Schwarzian action. This

generates three types of contributions just like in equation (1.3.11). The term FSchw.

corresponds to the “gravitational dressing” of the disconnected (non-interacting) piece
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of the four-point function. The 1/N piece corresponds to interactions of matter fields

in the bulk4.

To summarize, even though the bulk dual of SYK is not the JT model, they

belong in the IR to the same “universality class”. Gravitational interactions of the

dual of SYK are described by the dilaton-gravity part of the JT model. Bulk matter

interactions are not universal and a matching has not been found yet (see for example

[50]).

1.4 Overview of the Thesis

In chapter 2 we will solve the Schwarzian theory and find its exact correlators, both

time ordered and out-of-time-ordered. This will be done by realizing the Schwarzian

theory as a certain limit of 2d Liouville theory. This chapter is based on a paper with

T. Mertens and H. Verlinde [51].

In chapter 3 we will study the semiclassical limit of the expressions found in

chapter 2 and provide more details. We will see the Dray-’t Hooft shockwaves emerge

and propose a quantum generalization of the shockwave S-matrix. This is based also

on [51] and a paper with H. Lam, T. Mertens and H. Verlinde [52].

In chapter 4 we will move on to AdS3/CFT2. We will propose a SYK-like model

in two dimensions which we argue also shows maximal chaos and is related to gravity

in AdS3. This is based on a paper with H. Verlinde [53].

In chapter 5 we will generalize the idea that maximal chaos is determined by the

breaking of conformal symmetry from the 1D Schwarzian case to 2D. In 2D CFT

conformal symmetry is always broken by an anomaly. Under the assumption that

this dominates the dynamics we will show that commutators increase exponentially

with maximal Lyapunov exponent. The 2D version of the Schwarzian is proposed to

4We could also add gravitational dressing to these interactions but we will mostly neglect them
since they are subleading in N .
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be the action on coadjoint orbits of the Virasoro group. Finally, we will also propose

a discrete lattice model in 2D with maximal chaos and also relate it to quasinormal

modes in the two-point function. This is based on a paper with H. Verlinde [54].

In chapter 6 we will consider as an application a generalization of the usual

shockwave geometry. We will consider higher derivative terms in the bulk such as

S =
∫

AdSD
φW 2, where φ is a scalar matter field and W is the trace of the Weyl tensor.

This theory supports shockwave geometries which are similar to the ones described in

section 1.1.1 (and also exact solutions of equations of motion [55]). The main differ-

ence is that besides a time delay, this background might also change the nature of the

probe particle (for example, a Higgs particle that hits the shockwave has a non-zero

probability of also turning into a graviton). We will find a nice application of this in

higher dimensional CFTs. This chapter is based on a paper with C. Cordova and J.

Maldacena [56].

Other co-authored articles are [29,57–61].
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Chapter 2

Solving the Schwarzian Theory:

Part I

We have reviewed in the Introduction the connection between near horizon physics of

black holes and quantum chaos for holographic CFTs dual to those geometries [25,26,

30,31,46,62]. We have also reviewed a recently proposed solvable quantum mechanical

model, the SYK model, which exhibits maximal chaos and other characteristics that

indicate it has a holographic dual given by a 2D gravity theory on AdS2 [31, 38, 41,

42,63–65].

The Schwarzian theory describes the quantum dynamics of a single 1D degree of

freedom f(τ) and forms the theoretical gateway between the microscopic SYK model

and the dual 2D dilaton gravity theory [43, 45, 47, 48, 66]. In this chapter and the

next we will derive and study the exact correlators of the Schwarzian theory. All the

results then can be translated to a 2D dilaton gravity calculation as explained in the

Introduction.

We will obtain the exact solution of the Schwarzian theory by relating it to a limit

of Liouville theory. This is explained in sections 2.4 and 2.5. In this chapter we will

mainly describe this set-up but also give a summary of the results for the correlators
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in section 2.2. We will also extend this to the supersymmetric cases in a final section

2.6. In the next chapter we will give more details on how to derive it and some further

applications and lessons.

2.1 The Schwarzian Action

To fix notation, at finite temperature the action we will study is given by

S[f ] = −C
∫ β

0

dτ

({
f, τ

}
+

2π2

β2
f ′2
)

(2.1.1)

= −C
∫ β

0

dτ
{
F, τ

}
, F ≡ tan

(
πf(τ)

β

)
, (2.1.2)

where C is the coupling constant of the zero-temperature theory. Here f(τ + β) =

f(τ) + β runs over the space Diff(S1) of diffeomorphisms on the thermal circle, and

{
f, τ

}
=
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

(2.1.3)

denotes the Schwarzian derivative (As a 0 + 1 field theory, the variable F is more

natural as a scalar field at finite temperature since F (0) = F (β)). Since C has

dimensions of inverse energy we would like to find a proper dimensionless parameter

that tunes the coupling of the theory.

A convenient choice of variables is obtained by taking τ → β
2π
τ , and correspond-

ingly f → β
2π
f , such that now the size of the thermal circle becomes 2π. With this

choice of scale the action prefactor becomes C → 2πC/β. From this expression be-

comes clear that the dimensionless coupling constant of the theory is given by the

combination κ ≡ 2πC/β. The theory becomes perturbative for κ→∞ and strongly

coupled for κ→ 0. The weak coupling regime can happen if either C is large or the

temperature is high. Correspondingly the strong coupling regime can happen if C is

small or the temperature is too low.
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In the context of SYK C ∼ N/J and the coupling constant becomes κ ∼ N/βJ .

In the context of the JT dilaton gravity C ∼ Φr/GN , the renormalized dilaton at the

cut-off surface. Since the Schwarzian is obtained when the cut-off surface is pushed to

the boundary, the Schwarzian describes the near horizon limit of a 4D near extremal

black hole with a very large extremal entropy.

We will turn to the symmetries of the theory now. The action S[f ] is invariant

under SL(2,R) Möbius transformations that act on F via

F → aF + b

cF + d
. (2.1.4)

The model possesses a corresponding set of conserved charges `a that generate the

sl(2,R) algebra [`a, `b] = iεabc`c and commute with the Hamiltonian H. In fact,

as reviewed in section 2.3, the Hamiltonian H is found to be equal to the SL(2,R)

Casimir, H = 1
2
`a`a. The energy spectrum and dynamics are thus uniquely determined

by the SL(2,R) symmetry. Regarding local symmetries acting on τ , only a U(1)

remains, associated to translations.

The Schwarzian theory is integrable and expected to be exactly soluble at any

value of the inverse temperature β. In the following, we will label the energy eigen-

values E in terms of the SL(2,R) spin j = −1
2

+ ik via

E(k) = −j(j + 1) =
1

4
+ k2. (2.1.5)

The constant 1
4

can be removed by choosing appropriate normal ordering in the quan-

tum theory, and we will drop it throughout most of this work. If we mod out by the

overall SL(2,R) symmetry, the partition sum

Z(β) =

∫

M

Df e−S[f ] (2.1.6)

27



reduces to an integral over the infinite dimensional quotient space

M = Diff(S1)/SL(2,R). (2.1.7)

This space M equals the coadjoint orbit of the identity element 1 ∈ Diff(S1), which

is known to be a symplectic manifold that upon quantization gives rise to the identity

representation of the Virasoro group Diff(S1), i.e. the identity module of the Virasoro

algebra [67–69]. We choose the functional measure dµ(f) to be the one derived from

the symplectic form onM, which as shown in [70–73] takes the form Df =
∏

τ df/f
′.

The fact that the spaceM is a symplectic manifold was exploited in [73] to show

that the partition function Z is one-loop exact and given by

Z(β) = eS0+βE0

(2πC

β

)3/2

e2π2C/β = eS0+βE0

∫ ∞

0

dµ(k) e−βE(k) (2.1.8)

with E(k) = k2/2C and where the integration measure is given in terms of k by

dµ(k) = dk2 sinh(2πk), and dk2 = 2kdk. We have separated a divergent zero-

temperature, or extremal, entropy S0 and energy E0. This encompass all the di-

vergencies of the Schwarzian theory, a possible UV completion being the SYK-model.

In this chapter we will focus on the near-extremal dynamics. The exact result for the

spectral density near extremality

ρ(E) = sinh
(
2π
√

2CE
)

(2.1.9)

is further indication that the Schwarzian theory is completely soluble and we will

show that this is indeed the case.

We will make use of the more detailed property that the space M in (2.1.7)

forms the quantizable coadjoint orbit space that gives rise to the identity module of

the Virasoro algebra. This observation implies that the correlation functions of the
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Schwarzian theory

〈
O1 ...On

〉
=

1

Z

∫

M

Df e−S[f ]O1 ...On =
1

Z
Tr
(
e−βH O1 ...On

)
(2.1.10)

can be obtained by taking a large central charge c limit of correlation functions of a

soluble 2D CFT with Virasoro symmetry. We will explain and use this relation to

explicitly compute the correlation functions of a natural class of SL(2,R) invariant

observables Oi. (Different observables were studied in Appendix D of [51]). We will

now begin by summarizing our main results.

2.2 Overview of results

We will study the correlation functions of the following bi-local operators

O`(τ1, τ2) ≡
( √

f ′(τ1)f ′(τ2)
β
π

sin π
β
[f(τ1)− f(τ2)]

)2`

. (2.2.1)

We can think of this expression as the two-point functionO`(τ1, τ2) = 〈O(τ1)O(τ2)〉CFT

of some 1D ‘matter CFT’ at finite temperature coupled to the Schwarzian theory, or

equivalently, as the boundary-to-boundary propagator of a bulk matter field coupled

to the 2D dilaton-gravity theory in a classical black hole background.

The bi-local operator (2.2.1) is invariant under the SL(2,R) transformations

(2.1.4). This in particular implies that O` commutes with the Hamiltonian H of

the Schwarzian theory. Therefore the bi-local operators are diagonal between en-

ergy eigenstates. We will see that the time-ordered correlation functions of O`(τ1, τ2)

indeed only depend on the time-difference τ2 − τ1.

We will give the explicit formulas for the correlation function with one and two

insertions of the bi-local operator O` 1. We will call these the two-point and four-

1Even though we will focus on two- and four-point functions we can compute any 2n-point
correlator. We will comment on this in the next chapter.
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point functions, since they depend on two and four different times τi, respectively.

In the holographic dual theory they correspond to the AdS2 gravity amplitude with

one and two boundary-to-boundary propagators. We will compute the out-of-time

ordered (OTO) four point function, which exhibits maximal Lyapunov behavior and

contains the gravitational scattering amplitudes of the bulk theory as an identifiable

subfactor.

Two-point function

The two-point function at finite temperature is defined by the functional integral with

a single insertion of the bi-local operator

〈
O`(τ1, τ2)

〉
=

1

Z

∫
Df e−S[f ]O`(τ1, τ2) = τ2 τ1

` (2.2.2)

Here we introduced a diagrammatic notation that will be useful below.

The two-point function of the Schwarzian theory at zero temperature was obtained

in [71, 72]. As we will show in section 2.5, the generalization of their result to finite

temperature is given by a double integral over intermediate SL(2,R) representation

labels k1 and k2

〈
O`(τ1, τ2)

〉
=

∫ 2∏

i=1

dµ(ki) A2(ki, `, τi). (2.2.3)

We will call the integrand the ‘momentum space amplitude’. In section 2.5 we will

obtain the following explicit formula for A2(ki, `, τi)

A2(ki, `, τi) = e−(τ2−τ1)
k21
2C
−(β−τ2+τ1)

k22
2C

Γ(`± ik1 ± ik2)

Γ(2`)
, (2.2.4)

where Γ(x±y±z) is short-hand for the product of four gamma functions with all four

choices of signs. In the following sections, we will derive the above result from the
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relation between the Schwarzian theory and 2D Virasoro CFT, by taking a suitable

large c limit of known results in the latter.

We will also perform a number of non-trivial checks on the result. In particular,

it reduces to the zero-temperature result of [71, 72] in the limit β → ∞. We also

check that it reduces to the saddle point calculation of the Schwarzian action when

C →∞.

Propagators and vertices

From the above expression for the two-point function, we can extract the following

combinatoric algorithm, analogous to the Feynman rules, for computing time-ordered

correlation functions of bi-local operators in the Schwarzian theory. We remark that

these rules still generate a non-perturbative answer for the Schwarzian theory and

merely represent a convenient packaging of the exact amplitudes.

We represent the momentum space amplitude A2(ki, `, τi) diagrammatically as

A2(ki, `, τi) =

k1

τ2 τ1

k2

` (2.2.5)

The thermal circle factorizes into two propagators, one with ‘momentum’ k1 and one

with ‘momentum’ k2. The Feynman rule for the propagator and vertices read

τ1τ2

k

= e−
k2

2C
(τ2−τ1) ,

k2

k1
` = γ`(k1, k2) . (2.2.6)

The propagator with momentum k represents the phase factor between τ1 and τ2 of

an energy eigenstate with energy E = k2/2C.
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Each vertex corresponds to a factor

γ`(k1, k2) =

√
Γ(`± ik1 ± ik2)

Γ(2`)
. (2.2.7)

This vertex factor represents the matrix element of each endpoint of the bi-local oper-

ator between the corresponding two energy eigenstates labeled by k1 and k2. This can

be obtained by comparing this expansion with the one obtained from Tr[e−βHO1O2]

assuming a continuous spectrum with density of states µ(k).

Time ordered 4-point function

The time-ordered 4-point function comes in different types, depending on the

ordering of the four different times. The simplest ordering is

〈
O`1(τ1, τ2)O`2(τ3, τ4)

〉
=

τ3

τ2

τ4

τ1`1

`2

(2.2.8)

where we assume that the four times are cyclically ordered via τ1 < τ2 < τ3 < τ4. This

ordering ensures that the legs of the two bi-local operators do not cross each other.

This time-ordered 4-point function is given by a triple integral over intermediate

momenta
〈
O`1(τ1, τ2)O`2(τ3, τ4)

〉
=

∫ 3∏

i=1

dµ(ki) A4

(
ki, `i, τi

)
. (2.2.9)

The momentum amplitude is represented by the diagram

A4

(
ki, `i, τi

)
= ksks

`1

`2

k1

k4

(2.2.10)
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Here we took into account the aforementioned result that the bi-local operators com-

mute with the Hamiltonian, so that the same energy eigenstate (labeled by the mo-

mentum variable ks) appears on both sides of each bi-local operator.

Applying the Feynman rules formulated above, we find that the momentum am-

plitude of the time-ordered four point function reads

A4

(
ki, `i, τi

)
= e−

k21
2C

(τ2−τ1)− k24
2C

(τ4−τ3)− k2s
2C

(β−τ2+τ3−τ4+τ1) γ`1(k1, ks)
2γ`2(ks, k4)2. (2.2.11)

In section 2.5, we will explicitly compute the four-point function from the relationship

between the Schwarzian and 2D CFT and confirm that this is indeed the correct

result.2

OTO 4-point function

Finally we will turn to our main interest, the out-of-time-ordered 4-point function

[30,31]. We will diagrammatically represent the OTO 4-point function as

〈
O`1(τ1, τ2)O`2(τ3, τ4)

〉
OTO

=

τ2

τ3

`2 `1

τ4

τ1

(2.2.13)

where in spite of their new geometric ordering along the circle, we in fact assume

that the four time instances continue to be ordered according to τ1 < τ2 < τ3 <

τ4. Operationally, we define the OTO correlation function via analytic continuation

starting from the time ordered correlation function with the ordering τ1 < τ3 < τ2 < τ4

as indicated by the above diagram. Since for this configuration, the legs of the bi-local

2Note that the amplitude (2.2.11) factorizes into a product of two 2-point amplitudes

A4

(
ki, `i, τi

)
= eβ

k2
s

2C A2

(
k1, ks, `1, τ21

)
A2

(
k4, ks, `2, τ43

)
(2.2.12)

and thus indeed only depends on the two time differences τ21 = τ2 − τ1 and τ43 = τ4 − τ3.
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operators do in fact cross, the resulting time ordered 4-point function differs from the

analytic continuation of the uncrossed 4-point function (2.2.11).

In section 3.2, we will show that the OTO correlation function can be expressed

as an integral over four momentum variables

〈
O`1(τ1, τ2)O`2(τ3, τ4)

〉
OTO

=

∫ 4∏

i=1

dµ(ki) AOTO
4

(
ki, `i, τi

)
, (2.2.14)

where the momentum space amplitude is represented by the following diagram (to

avoid clutter, we again suppressed the times τi labeling the end points of the bi-local

operators)

AOTO
4

(
ki, `i, τi

)
= kskt

`2 `1

k1

k4

(2.2.15)

Note that we now have four different momentum variables ki. The correlation function

will indeed depend on all four time differences τi+1 − τi.

The final answer for the momentum amplitude of the OTO 4-point function reads

AOTO
4

(
ki, `i, τi

)
= e−

k21
2C

(τ3−τ1)− k2t
2C

(τ3−τ2)− k24
2C

(τ4−τ2)− k2s
2C

(β−τ4+τ1) (2.2.16)

× γ`1(k1, ks)γ`2(ks, k4)γ`1(k4, kt)γ`2(kt, k1)×Rkskt

[
k4
k1

`2
`1

]
.

Comparing with the diagram (2.2.15), we recognize the same propagators and vertex

factors as before. However, the momentum amplitude now also contains an additional

factor Rkskt

[
k4
k1

`2
`1

]
, which takes into account the effect of the two crossing legs in the

diagram (2.2.15). From the holographic dual perspective, it represents the scatter-

ing amplitude of particles in the AdS2 black hole background [26, 74]. Computing
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this crossing kernel is one of the main goals of this chapter. We will describe this

computation in section 3.2.

The crossing kernel

The role of the crossing kernel is to relate OTO with TO operators

kskt
`2 `1

k1

k4

= Rkskt

[
k4
k1
`2
`1

]
kskt

`1

`2

k1

k4

(2.2.17)

An alternative name for the crossing kernel is the R-matrix. The matrix Rkskt in

fact depends on six numbers, k1, k4, ks, kt, `1 and `2, that all label the spin of a corre-

sponding sextuplet of representations of SL(2,R). It satisfies the unitarity property

∫
dµ(k) RkskR

†
kkt

=
1

ρ(ks)
δ(ks − kt), ρ(k) = 2k sinh(2πk). (2.2.18)

The explicit form of the R-matrix can be found in several different ways. The most

convenient method uses the relation between the Schwarzian QM and 2D CFT. In

section 3.2 we will computeRkskt

[
k4
k1
`2
`1

]
by taking a large c limit of the CFT R-matrix

that expresses the monodromy of 2D conformal blocks under analytic continuation

over the lightcone. This 2D crossing kernel is explicitly known, thanks to the work

of Ponsot and Teschner [75], see also [76,77]. As shown in [75], the 2D kernel can be

expressed as a quantum 6j-symbol of the non-compact quantum group Uq(sl(2,R)).

Taking the large c limit of their formulas, we obtain that

Rkskt

[
k4
k1

`2
`1

]
= W(ks, kt; `1 + ik4, `1 − ik4, `2 − ik1, `2 + ik1) (2.2.19)

× γ`1(k1, ks)γ`2(ks, k4)γ`1(k4, kt)γ`2(kt, k1)
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where W(a, b, c, d, e, f) denotes the Wilson function, defined as a particular linear

combination of two generalized hypergeometric functions 4F3. The Wilson function

was introduced in [78, 79], where it was shown that the above expression in fact

coincides with the classical 6j-symbol of the Lie group SU(1, 1) ∼ SL(2,R).

The appearance of the 6j-symbols in OTO correlation functions should not come

as a surprise. States and operators in the Schwarzian theory are specified by a rep-

resentation label of SL(2,R). The crossing kernel relates the OTO 4-point function

with the corresponding time-ordered amplitude. It thus applies an isomorphism be-

tween two different orderings of taking a triple tensor product. The 6j-symbols satisfy

some remarkable identities known as the pentagon and hexagon identities. From the

point of view of the Schwarzian theory, these identities are consistency requirements

that follow from locality, analyticity and associativity of the operator algebra.

2.3 Schrödinger formulation

In this section, we outline the Hamiltonian formulation of the Schwarzian theory, and

how it is related to other 1D systems with SL(2,R) symmetry. We temporarily set

β = 2π. The reader familiar with the basic properties of Schwarzian QM can choose

to skip this section.

2.3.1 Zero temperature

We first consider the Schwarzian theory at zero temperature. In this limit, the ḟ 2-

term is dropped in the action (2.1.1), reducing it to the pure Schwarzian action

S =
∫
dτ {f, τ}.3 To transit to a Hamiltonian description, it is useful to recast the

Lagrangian into a first order form as

L = πφφ̇+ πf ḟ − (π2
φ + πfe

φ). (2.3.1)

3Here, in this section only, we will write ḟ(τ) instead of f ′(τ).
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Figure 2.1: Overview of different models with underlying SL(2,R) symmetry. Red
lines indicate one-way lines: they are projections that reduce the dimension of the
phase space.

This first-order form makes clear that the Schwarzian theory has a four dimensional

phase space, labeled by two pairs of canonical variables (φ, πφ) and (f, πf ). Alterna-

tively, we may view the quantity πf as a Lagrange multiplier, enforcing the constraint

ḟ = eφ. Setting φ = log ḟ and integrating out πφ, it is readily seen that the above

first-order Lagrangian indeed reduces to the Schwarzian theory. Upon quantization,

the variables satisfy canonical commutation relations [f, πf ] = i and [φ, πφ] = i.

The invariance of the Schwarzian action under Möbius transformations

f → af + b

cf + d
(2.3.2)

implies the presence of a set of conserved charges

`−1 = πf , `0 = fπf + πφ, `1 = f 2πf + 2fπφ + eφ,

that satisfy an sl(2,R) algebra. The Hamiltonian H is equal to the quadratic Casimir

H = π2
φ + πfe

φ = `2
0 − 1

2
{`−1, `1} (2.3.3)
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and thus manifestly commutes with the SL(2,R) symmetry generators. In particular,

we can define a mutual eigenbasis of H and πf = `−1

πf
∣∣λ, k

〉
=λ
∣∣λ, k

〉
, H

∣∣λ, k
〉

= E(k)
∣∣λ, k

〉
, E(k) ≡ 1

4
+ k2, (2.3.4)

which spans the complete Hilbert space of the theory.

The 1D Schwarzian theory is closely related to the free particle on the 3D Eu-

clidean AdS space H+
3 with coordinates (φ, f, f̄) and metric ds2 = dφ2 + 2e−φdfdf̄ ,

and to 1D Liouville theory. The different 1D models and their connections are sum-

marized in Figure 2.1. The H3
+ model has SL(2,R) × SL(2,R) symmetry, which is

broken to SL(2,R) by setting the momentum variable π̄f equal to a constant. Sim-

ilarly, the reduction to the 1D Liouville theory proceeds by setting πf = µ, which

breaks all symmetry.

2.3.2 Finite temperature

Putting the theory at finite temperature (we continue to set β = 2π for convenience)

reintroduces the extra ḟ 2-term in the action (2.1.1). The effect of this term in the

first order formulation is taken into account by changing the Hamiltonian to

H = π2
φ + πfe

φ + e2φ. (2.3.5)

Upon solving the constraint ḟ = eφ, the added term reduces to e2φ = ḟ 2. This

Hamiltonian still has SL(2,R) symmetry generated by the charges

`−1= cos2(f) πf − sin(2f)πφ + cos(2f)eφ,

`0=
1
2

sin(2f) πf + cos(2f)πφ + sin(2f)eφ, (2.3.6)

`1= sin2(f) πf + sin(2f)πφ − cos(2f)eφ.
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These charges satisfy [`0, `±1] = ∓`±1 and [`1, `−1] = 2`0 and all commute with

the Hamiltonian, which can again be identified with the quadratic Casimir operator

H = `2
0 − 1

2
{`1, `−1}. The SL(2,R) symmetry generated by these charges acts via

broken linear transformations on the uniformizing variable F

F → aF + b

cF + d
, F = tan(f/2), ad− bc = 1. (2.3.7)

Since πf = `1 + `−1 commutes with H, we can again define a mutual eigenbasis

(2.3.4) that span the full Hilbert space of the model. The Schrödinger wavefunctions

of the eigenstates take the form Ψλ,k(f, φ) = eiλfψλ,k(φ) where ψλ,k(φ) solves the

Schrödinger equation

(
−∂2

φ + λeφ + e2φ
)
ψλ,k(φ) = k2ψλ,k(φ), (2.3.8)

given by a 1D particle in a Morse potential V (φ) = λeφ+e2φ. The solutions are given

in terms of Whittaker W -functions. The full eigenmode functions normalized in the

flat measure df dφ are given by

Ψλ,k(f, φ) =

√
k sinh(2πk)

4π3

∣∣Γ
(
ik + λ/2 + 1/2

)∣∣ eiλfe−φ/2W−λ/2,ik
(
2eφ
)
. (2.3.9)

2.3.3 Particle in a magnetic field

There exists an interesting and useful connection between the Schwarzian model and

a particle on the hyperbolic plane H+
2 in a constant magnetic field [80]. The Landau

problem on H+
2 was first analyzed by A. Comtet and P. J. Houston in [81]. A main

result of [81], which also turns out to be useful for our problem, is an explicit formula

for the spectral density of states.
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Writing the H2
+ metric as ds2 = dφ2 + e−2φdf 2, the Lagrangian of the particle is

given by

S =

∫
dt
(1

4
φ̇2 +

1

4
e−2φ ḟ 2 +Bḟe−φ

)
, (2.3.10)

which identifies the magnetic vector potential as qAf = Be−φ with q the charge of

the particle. The Hamiltonian of this system, for fixed constant B, is

HB = p2
φ +

(
pfe

φ −B
)2
, (2.3.11)

where we denoted the canonical conjugate variables by pφ and pf . The model is again

invariant under Möbius transformations (2.3.2) and possesses a corresponding set of

SL(2,R) symmetry generators

`−1 =pf , `0 = fpf + pφ , `1 = f 2pf + 2fpφ − pfe2φ + 2Beφ. (2.3.12)

Once again, the Hamiltonian is equal to the quadratic Casimir. The normalized

simultaneous eigenmodes of pf (with eigenvalue ν) and HB (with eigenvalue E(k) =

1
4

+ k2 +B2) take the form [81]

Ψν,k(f, φ) =

√
k sinh(2πk)

4π3|ν|
∣∣Γ
(
ik −B + 1/2

)∣∣ eiνf e−φ/2WB,ik

(
2|ν|eφ

)
. (2.3.13)

This should be compared with formula (2.3.9) for the eigenmodes of the Schwarzian

model.

Using the above formula for the eigenmodes, it is straightforward to compute the

density of states for the Landau problem on H2
+. The result for spectral measure

reads

dµB(k) = ρB(k)dk = dk2 sinh(2πk)

cosh(2πk) + cos(2πB)
. (2.3.14)
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We can use this result to compute the spectral measure of the Schwarzian theory

via the following observation [80]. Upon shifting φ → φ − log(−2B) with B → i∞,

the Hamiltonian HB reduces to

HB = p2
φ + pfe

φ +B2, (2.3.15)

which, up to the irrelevant constant B2-contribution, coincides with the Hamiltonian

(2.3.3) for the Schwarzian model at zero temperature. We can use this correspon-

dence to derive the exact formula for the spectral measure (2.1.9) of the Schwarzian

theory quoted in the introduction. Starting from Comtet’s result (2.3.14) and us-

ing that cos(2πB) diverges as B → i∞, we deduce that (up to an irrelevant overall

normalization) dµ(k) = dk2 sinh(2πk).

2.4 Partition function: a 2D Perspective

In this section we will study the path integral formulation of the Schwarzian theory

at finite temperature. In particular, we will use its relationship to the group Diff(S1)

to reformulate 1D Schwarzian QM as a suitable large c limit of 2D Virasoro CFT.4

The partition function of the Schwarzian theory (2.1.1) is defined as the integral

Z(β) =

∫ Df
SL(2,R)

e−S[f ] (2.4.1)

over invertible functions f , satisfying the periodicity and monotonicity constraints

f(τ +β) = f(τ)+β and f ′(τ) > 0. The space of functions with these properties spec-

ifies the group Diff(S1) of diffeomorphisms of the circle, also known as the Virasoro

group.

4Related ideas are formulated in [82].
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The SL(2,R) quotient in (2.4.1) indicates that the functional integral runs over

the infinite dimensional quotient space

M = Diff(S1)/SL(2,R) (2.4.2)

of diffeomorphisms modulo the group of Möbius transformations (2.3.7) acting on

F = tan(πf
β

). This space M is called the coadjoint orbit of the identity element 1 ∈

Diff(S1), which is known to be a symplectic manifold [67, 68]. Its symplectic form

takes the following form

ω =

∫ 2π

0

dx

[
df ′ ∧ df ′′
f ′2

− df ∧ df ′
]
. (2.4.3)

This observation was used by Stanford and Witten [73] to evaluate the functional

integral with the help of the Duistermaat-Heckman (DH) formula [83].

The DH formula applies to any integral over a symplectic manifold of the schematic

form

I =

∫
dpdq e−H(p,q) (2.4.4)

where H(p,q) generates, via the Poisson bracket {q, p} = 1, a U(1) symmetry of the

manifold. In this chapter we will apply a somewhat different argument: instead of

the DH theorem, we will use the general fact that the phase space integral of the form

(2.4.4) is equal to the ~→ 0 limit of the trace of the quantum operator e−H(p,q) over

the Hilbert space obtained by quantizing the phase space:

I = lim
~→0

Tr
(
e−H(p,q)

)
. (2.4.5)

The physical intuition that underlies this equality is that for small ~, the Hilbert space

admits an orthogonal basis of states each localized within a Planck cell in phase space.
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The trace then takes the form of a sum over all Planck cells, which in the ~→ 0 limit

reduces to the phase space integral defined via the symplectic measure.

The strategy that we plan to follow is to exploit the fact that, if there exists a

precise way to quantize the phase space M and construct the corresponding Hilbert

space, then the formula (2.4.5) provides an exact and efficient way of computing the

integral I.

2.4.1 Spectral density from modular bootstrap

In our problem, the phase space (M, ω) specified by equations (2.4.2) and (2.4.3) can

be quantized through the standard methods of co-adjoint orbit quantization. The

details of this quantization step are explained in detail in [67–70]. It is customary to

label the quantization parameter ~ via

~ =
24π

c
(2.4.6)

and introduce the following basis of SL(2,R) invariant functions on M

Ln =
βc

48π2

∫ β

0

dτ e2πinτ/β
{
F, τ

}
. (2.4.7)

The main statement that we will need for our purpose is that in the quantum theory,

these functions Ln become identified with the generators of the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m (2.4.8)

at central charge c. The classical limit ~→ 0 corresponds to the large central charge

limit c → ∞. The Hilbert space of the quantum theory is given by the identity

module of the Virasoro algebra, i.e the linear space spanned by all states obtained by

acting with L−n’s with n > 2 on the SL(2,R) invariant vacuum state |0
〉
.
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The Schwarzian action (in this section we take C = 1/2 for simplicity)

S[f ] = −1

2

∫ β

0

dτ {F, τ} = −24π2

βc
L0 (2.4.9)

is the generator of a U(1) symmetry f(τ) → f(τ + δ). This fact was used in [73]

to invoke the DH formula and conclude that the partition function Z(β) is one-loop

exact.

For our purpose, the relevant observation is that the exponential of the Schwarzian

action can be expressed as an evolution operator

e−S[f ] = qL0 , q ≡ e
− 24π2

βc (2.4.10)

in the quantum theory. We are now ready to apply the above argument, that relates

the phase space integral (2.4.4) and the ~ → 0 limit of the trace (2.4.5), to the

Schwarzian partition function (2.4.1). We obtain the following identity

Z(β) = lim
c→∞
q→1

Tr
(
qL0
)
, q

c
24 = e−

π2

β = fixed. (2.4.11)

where the trace is over the identity module of the Virasoro algebra. The quantity

χ0(q) = Tr(qL0) is the identity character of the Virasoro algebra. Geometrically, it

represents the torus partition function of a chiral identity sector of a 2D CFT. Taking

the limit q → 1 amounts to sending the modular parameter τ → 0. In this limit,

the torus degenerates into an infinitesimally thin circular tube. The long direction of

the circular tube is the original thermal circle of the Schwarzian theory. The short

direction is a fiducial circle that we added in order to write the integral over M as a

trace.
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The identity character of a c > 1 CFT takes the form

Tr
(
qL0
)
≡ χ0(q) =

q
1−c
24 (1− q)
η(τ)

, (2.4.12)

where η(τ) denotes the Dedekind eta function η(τ) = q
1
24

∏∞
n=1(1−qn) with q = e2πiτ .5

The factor (1 − q) in the above formula for the identity character accounts for the

presence of the null state L−1|0〉 = 0.

It is now straightforward to combine equations (2.4.11)-(2.4.12) and extract an

exact expression for the Schwarzian partition function. This can be done in two ways.

First, from the identity η(− 1
τ
) =
√
τ2η(τ) we derive that for q ∼ 1, we can replace

η(τ) ∼ (τ2)−1/2e−iπ/(12τ). Using this result, we can directly take the large c limit of

equation (2.4.11) and deduce that Z(β) takes the following form

Z(β) = eS0+βE0

(
π

β

)3/2

exp
( π2

β

)
. (2.4.14)

Here we absorbed a (divergent) zero-point entropy S0 and a zero-point energy E0

contribution in the prefactor. This formula matches with the exact result found

in [73,84].

Alternatively, we can apply the modular transformation τ → −1/τ directly to the

identity character χ0(q) as a whole, and use the known formula for the modular S-

matrix for c > 1 Virasoro CFT to decompose the result in terms of Virasoro characters

in the dual channel. For this it is convenient to parametrize the highest weights ∆ of

5We apologize to the reader for temporarily also using the symbol τ for the modular parameter
q = e2πiτ of the torus. Using equation (2.4.11), we can express the modular parameter τ in terms
of the temperature β of the Schwarzian and the central charge c of the auxiliary 2D CFT via

τ =
12πi

βc
. (2.4.13)
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the Virasoro representations and the central charge c as follows6

∆(P ) =
Q2

4
+ P 2, c = 1 + 6Q2 = 1 + 6

(
b+ b−1

)2
. (2.4.15)

The modular transformation rule of the Virasoro characters then reads

χ0 (q)=

∫ ∞

0

dP SP0 χP (q̃), q̃ = e−
βc
6 , χP (q̃) =

q̃P
2

η(τ̃)
, (2.4.16)

where the modular S-matrix is given by

SP0 = 4
√

2 sinh
(
2πbP

)
sinh

(
2πP
b

)
. (2.4.17)

We now set k = P
b
, E = b−2(∆ − c−1

24
) = k2 and take the limit b → 0 (which sends

c→∞) while keeping k, E fixed. In this limit

SP0 ∼ 2k sinh(2πk), χP (q̃) ∼ e−βk
2

. (2.4.18)

The second formula has a clear physical significance. The large c limit sends q̃ → 0,

which turns the operator q̃L0 into a projection operator on the lowest energy state in

the given channel. Combining (2.4.11), (2.4.16) and (2.4.18) we obtain that

Z(β) =

∫ ∞

0

dµ(k) e−βE(k), dµ(k) = d(k2) sinh(2πk), (2.4.19)

reproducing the result obtained in [73]. The answer for arbitrary C can be found by

dimensional analysis or simply replacing E(k) = k2 → k2/2C.

While the explicit formula (2.4.19) for the spectral density is not a new result, our

derivation provides a new and useful perspective on the Schwarzian theory. Specifi-

6This parametrization is familiar from Liouville CFT. We emphasize, however, that in this section
we are using completely general properties of genus one Virasoro characters.
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Figure 2.2: The spectrum of states in the Schwarzian theory arise from the CFT
spectrum of states with conformal dimension ∆ = c−1

24
+ b2E, in the limit b→ 0. The

operators in the Schwarzian are all light CFT operators with conformal dimension
∆ = `.

cally, it indicates that the 1D model arises as a special c → ∞ limit of 2D Virasoro

CFT, in which we only keep the states with conformal dimensions ∆ close to the

threshold ∆c = c
24

(Figure 2.2).

The above modular bootstrap argument identifies a natural spectral density on

the space of Virasoro representations, given by the modular S-matrix element SP0

[85]. This spectral density is not a specific property of a particular 2D CFT, but a

universal measure analogous to the Plancherel measure on the space of continuous

series representations of SL(2,R). This measure is defined for any value of the central

charge c. We have shown that, after taking the large c limit while zooming in close

to ∆c = c−1
24

, it coincides with the exact spectral density of the Schwarzian theory.

In the following sections we will generalize this observation with the aim of studying

correlation functions.

2.4.2 Spectral density from ZZ branes

As further preparation for the study correlation functions, it is useful to derive the

formula for the spectral density from yet another slightly different perspective. As
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Tr
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qL0
)

=

|ZZ〉

〈ZZ|

= 〈ZZ| q̃L0 |ZZ〉

Figure 2.3: The identity character can be represented as the annulus partition sum of
the Virasoro CFT, or by using channel duality, as the transition amplitude between
two ZZ boundary states.

mentioned above, the identity character χ0(q) represents the chiral genus one partition

function of the identity sector of the Virasoro CFT. Alternatively, we can identify

χ0(q) with the partition function of the Virasoro CFT on the annulus. This annulus

partition function is equal a trace over an open string sector of the Virasoro CFT,

or by using channel duality, as the transition amplitude between two ZZ boundary

states [86–88].

χ0(q) = 〈ZZ|q̃L0|ZZ〉. (2.4.20)

The Schwarzian theory arises in the limit q → 1, which in the dual closed string

channel corresponds to the limit q̃ → 0, as shown in Figure 2.3. Note that the

insertion of the ZZ branes cuts the thermal circle of the Schwarzian theory into two

halves.7

The ZZ boundary state is given as an integral over Ishibashi boundary states

[87,88]8

|ZZ〉=
∫ ∞

0

dP ΨZZ(P ) ||P 〉〉, ΨZZ(P ) =
2πiP

Γ(1− 2ibP )Γ(1 + 2iP
b

)
. (2.4.21)

7This approach to the geometric quantization of the Virasoro group seems related to the one put
forward in [89] for compact groups, but using a topological theory instead of a CFT.

8Here and in the following, we drop irrelevant overall constant factors.
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In the limit we are considering the boundary states are associated to a circle with a

radius that goes to zero (if we map the cylinder to the complex plane) and this allows

us to approximate ||P 〉〉 → |P 〉. This is the main feature that will allow us later

to compute correlation functions since it can be used to turn a correlation function

between ZZ-branes into an integral of a correlation function on the sphere. Using

this and taking q̃ = e−β/b
2
, where β is the temperature of the Schwarzian theory, the

partition function becomes

Z=

∫ ∞

0

dP |ΨZZ(P )|2 e−β P
2

b2 , |ΨZZ(P )|2 = sinh
(
2πbP

)
sinh

(
2πP
b

)
. (2.4.22)

For small b this integral is dominated by states with P of order b. Therefore we define

P = kb and take the b→ 0 limit; we recover the result (2.4.19).

2.5 Schwarzian correlators from ZZ branes

In this section we will exploit the relationship between the Schwarzian theory and Vi-

rasoro CFT to compute finite temperature correlation functions of SL(2,R) invariant

operators in the Schwarzian theory. Here we will explain mainly how these correlators

are related to Liouville theory. In the next chapter we will give the details about how

to go from the concepts of this section to the concrete results summarized in 2.2.

The simplest such operator is the Schwarzian itself. Its correlation functions are

completely fixed by symmetries and are described in Appendix A of [51].

A more interesting class of correlation functions are those involving the bi-local

operators

O`(τ1, τ2) ≡
( √

f ′(τ1)f ′(τ2)
β
π

sin π
β
[f(τ1)− f(τ2)]

)2`

. (2.5.1)

These operators naturally live on the 2D space K parametrized by pairs of points

(τ1, τ2) on the thermal circle. We will call K kinematic space, since it plays an
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analogous geometrical role as the kinematic space associated with 2D holographic

CFTs [90,91].

To exhibit the geometry of kinematic space K, let us – motivated by the form

(2.5.1) of the bi-local operators – associate to any point (u, v) ∈ K a classical field

φcl(u, v) via

eφcl(u,v) =

√
f ′(u)f ′(v)

β
π

sin π
β
[f(u)− f(v)]

. (2.5.2)

This field satisfies the Liouville equation

∂u∂vφcl(u, v) = e2φcl(u,v). (2.5.3)

Hence kinematic space K naturally comes with a constant curvature metric ds2 =

e2φ(u,v)dudv, and looks like a hyperbolic cylinder with an asymptotic boundary located

at u = v. Note, however, that the metric on kinematic space is now a dynamical

quantity that depends on the dynamical diffeomorphism f(τ).

From the saddle-point solution (2.5.2) for the field φ we see that the Liouville

vertex operators e2`φ(u,v) and the bi-local operators O`(τ1, τ2) placed between two ZZ

branes become identical, if we identify u = τ1 and v = τ2. Motivated by this, we will

propose the following identification between the correlation functions of both theories

Insertion of O`(τ1, τ2) in Schwarzian ↔ Insertion of V` = e2`φ(τ1,τ2) in Liouville

In the next chapter we will present detailed evidence in support of this proposal by

deriving the results in section 2.2.
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ZZZZ

Figure 2.4: Geometry of the classical Liouville background between two ZZ branes.

2.5.1 ZZ branes and kinematic space

Given the similarity between the two geometric structures, it is tempting to look for

a direct identification between the kinematic space K and the geometry of Liouville

CFT bounded by two ZZ-branes. To make this idea more explicit, let us consider

Liouville CFT with ZZ branes placed at the spatial positions σ = 0 and σ = π. The

time direction is parametrized by τ . The action describing this system is

S =
c

192π

∫
dτ

∫ π

0

dσ
[
(∂φ)2 + 4µe2φ

]
(2.5.4)

For our application, the only role of the Liouville CFT is to provide a convenient geo-

metrical description of the Virasoro partition function and conformal blocks. Indeed,

Liouville theory is known to be equivalent to the geometric Lagrangian associated

with the symplectic form ω on Diff(S1) quoted in the previous section.9

We introduce the light-cone coordinates u = τ+σ and v = τ−σ. We are interested

in the limit c → ∞. In this limit, the functional integral localizes on the space of

classical solutions to the Liouville equation of motion. The boundary conditions

of φ are that the regions near σ = 0 and σ = π corresponds to the asymptotic

regions of a hyperbolic cylinder. It is shown in [92] that the lowest energy solution

9The parameters Q = b+ b−1 and P used in the expressions (2.4.15) of the central charge c and
the conformal dimension ∆ are naturally identified with the background charge of the Liouville CFT
and the ‘Liouville momenta’ of the vertex operators VP with conformal dimension ∆.
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e`φ(u,v)

u v

Figure 2.5: The kinematic space of the Schwarzian theory. The bi-local operator
(2.5.1) in the 1D QM is represented by a local Liouville CFT vertex operator in the
2D bulk. The boundary of the kinematic space corresponds to the limit where the
two end-points of the bi-local operator coincide.

is 4µ4e2φ = sin−2 σ. Written in the form ds2 = e2φdudv this describes a hyperbolic

geometry of the form shown in Figure 2.4.

As explained e.g. in [93], the most general classical solution of Liouville theory can

be obtained by starting with a representative φ(u, v) for a given conformal class and

then apply a general conformal transformation e2φ(u,v) → f ′(u)f ′(v)e2φ(f(u),f(v)). The

most general solution thus takes the form given in equation (2.5.2), after performing

a rescaling that maps the distance between the ZZ-branes from π to β/2. These

solutions are all isomorphic to the geometry shown in Figure 2.5. We can interpret

this 2d space as a kinematic space of the Schwarzian theory. Note, however, that in

our case, the kinematic space is in fact dynamical.

Finally, we remark that the equivalence between the Schwarzian and the large c

limit of Liouville CFT is of course not surprising. It is well-known that the Liouville

stress tensor T = 1
2
(φ′)2 +φ′′ reduces to the Schwarzian derivative when evaluated on

a general classical solution of the form (2.5.2). This observation can be used to show

that the Liouville lagrangian in a combined large c and DLCQ limit reduces to the

Schwarzian action.
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2.6 Supersymmetric Schwarzian

In the previous sections we presented a picture where the Schwarzian theory is com-

pletely solved in terms of known objects of 2D Liouville theory. In this section we

will generalize these arguments to the supersymmetric cases. These theories can like-

wise be realized as the low energy effective theory of certain supersymmetrized SYK

models [94]. For the N = 1 Schwarzian theory it is also known how it arises from a

Jackiw-Teitelboim supergravity approach [95].

2.6.1 N = 1 Schwarzian theory

The super-Schwarzian is defined in N = 1 (τ, θ) superspace by:

Sch(τ) ≡ Schf (τ) + θSchb(τ) =
D4θ′

Dθ
− 2

D3θ′D2θ′

(Dθ′)2
, (2.6.1)

with D = ∂θ + θ∂τ the superderivative and θ′ =
√
∂τf

(
θ + η + 1

2
θη∂τη

)
as defined

in [96,97] for the reparametrization f and its superpartner η. Via the same arguments

as for the bosonic theory, we can view the super-Schwarzian theory as the c → ∞

limit of N = 1 super-Liouville theory between a pair of ZZ-branes. As usual, one has

different sectors depending on the fermionic boundary conditions both between the

ZZ-branes (open channel) and along the small circle (closed channel). This gives four

possibilities NS, R, ÑS or R̃, where the tilde means that we insert a (−1)F in the

partition function for the corresponding sector.

From the 2D Liouville perspective, different choices of brane configurations and

different sectors correspond to the quantization of different coadjoint orbits. The one

relevant for the application of the N = 1 Schwarzian as a low energy theory is

Diff
(
S1|1)/OSp(1|2). (2.6.2)
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The path integral over this space was formulated and studied in [94] and [73]. This

space is parametrized by a bosonic mode f(τ) associated to reparametrizations and

a fermionic mode η(τ). From the 2D perspective it will turn out the relevant sector

is ÑS. Following the same procedure as in the construction of bosonic branes in

Liouville one can solve the modular bootstrap to find the exact partition function

associated to ZZ-branes in this section [98,99]. For the N = 1 case it is still given by

the identity character

ZN=1 = χÑS0 (q) = TrNS(−1)F qL0− c
24 = q−

c−1
24 (1 + q)

√
θ4(τ)

η(τ)3
. (2.6.3)

Taking a parametrization similar to the bosonic case q = e−
48π2

βc and the limit c→∞

we obtain

ZN=1 = eS
N=1
0

(
π

β

)1/2

exp
( π2

β

)
, (2.6.4)

where SN=1
0 denotes the zero-point entropy of the system. It is possible to see ex-

plicitly from (2.6.3) that because of supersymmetry, we obtain a vanishing zero-point

energy EN=1
0 = 0, although the zero-point entropy is still divergent SN=1

0 ∼ log b.

The modular transformation of this character automatically gives the exact density

of states of the theory

χÑS
0 (q)=

∫ ∞

0

dP SP0 χR
P (q̃), q̃ = e−

βc
12 , χP (q̃) =

√
θ4(τ̃)

η(τ̃)

q̃P
2

η(τ̃)
, (2.6.5)

where the modular S-matrix corresponding to the N = 1 extension of the Virasoro

algebra is given by

SP0 = 4 cosh
(
2πbP

)
cosh

(
2πP
b

)
. (2.6.6)
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Notice that the modular transformation turns the ÑS sector into theR-sector. Taking

the appropriate limit to recover the Schwarzian theory gives a density of states

ZN=1(β) =

∫ ∞

0

dµ(k) e−βE(k), dµ(k) = dk cosh(2πk), (2.6.7)

which matches the result found in [73].

The modular bootstrap of N = 1 super-Liouville also provides an expression for

the ZZ-brane wavefunction. Moreover, a generalization of the DOZZ formula which

gives the OPE coefficients of local operators is also known. Combining these two

pieces of information, in the same way as was done for the bosonic case, we can

obtain correlation functions of local operators between the branes 10. The details and

outcomes of these calculations can be found in Appendix C of [51].

The main observable is a N = 1 generalization of the one studied in the bosonic

case, which we denote by

O`(τ1, τ2) ≡
( √

f ′(τ1)f ′(τ2)
β
π

sin π
β
[f(τ1)− f(τ2)]

)2`

+ (fermion bilinears). (2.6.8)

The explicit form of the extra fermionic terms is given in Appendix C of [51]. The

exact expectation value of this operator Gβ
` (τ1, τ2) = 〈ON=1

` (τ1, τ2)〉 is given by

Gβ
` (τ1, τ2) =

2e−
π2

β

π5/2β−1/2

∫
dk1dk2 cosh(2πk1) cosh(2πk2) e−τk

2
1−(β−τ)k22

×
(

Γ
(

1
2

+ `± i(k1 − k2)
)
Γ
(
`± i(k1 + k2)

)

Γ(2`)
+ (k2 → −k2)

)
(2.6.9)

where τ = τ12. The two-point function of its superpartner can also be computed, and

we refer to Appendix C of [51] for the result.

10The only interesting correlator is when a NS vertex operator is inserted, as inserting one R
vertex operator yields zero, by (spacetime) fermion number conservation.
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Stress tensor insertions in Liouville theory lead to (the bosonic piece of) super-

Schwarzian insertions that are dealt with completely analogously as in the bosonic

case, and leads to the constant energy
〈
Schb(τ)

〉
= 1

β
+ 2π2

β2 . The fermionic piece

Schf (τ) analogously arises from the Liouville supercurrent TF (with R- boundary

conditions along the circle) and has a zero one-point function due to worldsheet

fermion conservation. Its two-point function does not vanish, and is just as the

bosonic stress tensor two-point function constant up to contact terms. The constant

piece is readily seen to be the square root of the corresponding bosonic piece, due to

G2
0 = L0 in the parent 2d theory. Importantly, it requires the same 1/b2 rescaling

to define a finite quantity: TF (w) → 1
2b2

Schf (τ), consistent with 1d supersymmetry:

TF (w) + θT (w)→ Schf (τ) + θSchb(τ).

Going beyond the two-point function, one finds again a Feynman diagram decom-

position which is structurally identical to the bosonic case. The spectral measure now

takes the form

dµ(k) = dk cosh(2πk), (2.6.10)

while the vertices for bosonic and superpartner insertions are respectively given by

γ`(k1, k2)2 =
Γ
(

1
2

+ `± i(k1 − k2)
)
Γ
(
`± i(k1 + k2)

)
+ (k2 → −k2)

2Γ(2`)
, (2.6.11)

γΨ
` (k1, k2)2 =

(k1 + k2)2Γ
(

1
2

+ `± i(k1 − k2)
)
Γ
(
`± i(k1 + k2)

)
+ (k2 → −k2)

2Γ(2`)
. (2.6.12)

The R-matrix should be computed by taking the Schwarzian limit of the Uq(osp(1|2))

quantum group 6j-symbols for four Ramond continuous near-parabolic insertions and

two light NS insertions. While several results are known on this object, the fusion

matrix with this specific configuration is not yet available [100,101].

Finally, we briefly comment on the possibility of considering other fermionic

boundary conditions. Using either the characters or the known wavefunctions, one
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Sector 2d 1d

NS TrNSq
L0−c/24 bosonic

ÑS TrNS(−)F qL0−c/24 Z
R TrRq

L0−c/24 bosonic

R̃ TrR(−)F qL0−c/24 = Witten index = 0 Witten index = 0

Table 2.1: Table of 2D boundary conditions for supersymmetric Liouville versus the
1D theory that remains in the Schwarzian limit.

immediately deduces that the spectral density for both the R- and the NS-sector is

given by

ρ(E) = sinh(2π
√
E). (2.6.13)

The characters and their 1d Schwarzian limit are summarized in table 2.1. Only one

interesting supersymmetric sector remains in the 1D limit, and that is the one of the

N = 1 Schwarzian theory introduced above. For NS- and R-sectors, no fermionic

zero-mode along the circle survives and these sectors then give non-supersymmetric

1D thermal models, identical to the bosonic theory. The partition function of the R̃-

sector contains periodic zero-modes along the circle and periodic fermionic boundary

conditions along the Schwarzian thermal circle, identifying it as the Witten index

both in 2D and in 1D.

2.6.2 N = 2 Schwarzian theory

In this section we want to identify which sector of N = 2 super-Liouville generates

the path integral over the orbit

Diff
(
S1|2)/OSp(2|2), (2.6.14)

relevant for the N = 2 super-Schwarzian theory [94,97].
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The character of the identity representation is given by

chÑS(q, y) = TrNS(−1)F qL0− c
24y`0 =

eπiĉ
z2

τ q−
1

4b2 (1− q)
(1− yq 1

2 )(1− y−1q
1
2 )

θ3(q,−y)

η(τ)3
, (2.6.15)

where ĉ = c
3

= 1 + 2
b2

. A special feature of the N = 2 case is that this is not equal

to the partition function of a pair of ZZ-branes anymore. In [102] T. Eguchi and

Y. Sugawara solved the modular bootstrap for N = 2 super-Liouville, see also [103].

They found that, in order to do this, one is forced to take a sum over spectral flow.

Moreover, the construction only works for rational central charge ĉ = 1 + 2K
N

for any

K,N ∈ Z. The partition function of the pair of ZZ-brane is equal to the extended

character which is defined as

ZN=2 = χÑS0 (q, y) =
∑

n∈NZ

q
ĉ
2
n2

yĉnchÑS(q, y). (2.6.16)

We will take N to be finite and K → ∞ to take the c → ∞ limit. Taking the limit

τ → 2π
β
b2 and z = ατ with α fixed, equation (2.6.16) becomes

ZN=2 =
4

π

∑

n∈NZ

cos π(α + n)

1− 4(α + n)2
e
π2

β

(
1−4(α+n)2

)
. (2.6.17)

This expression coincides with the exact partition function found in [73] if we identify

α to be proportional to the chemical potential. The parameter N corresponds to the

size of the compact boson present in the N = 2 multiplet. From a path integral point

of view (as opposed to invoking the modular bootstrap) the same happens in N = 2

super-Liouville, since besides the field φ we have another boson which is compact,

usually denoted Y , with a coupling similar to bosonic sine-Liouville theory. Finally,

this parameter also corresponds to the R-charge of the fermions in the SYK model.

As anticipated, we find that all divergences in this limit disappear. We find

EN=2
0 = 0 due to supersymmetry as in the N = 1 case, but we also find a finite
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zero-point entropy SN=2
0 = log 4

π
. This seems to indicate that even though bosonic

and N = 1 Schwarzian theory should be interpreted as a low energy effective theory

of a QM system, the N = 2 super-Schwarzian might be a well-defined theory by itself.

Following the procedure applied to the bosonic case, we can read off the density

of states of the theory from the modular properties of the identity character. The

modular transformation of the identity character in the ÑS sector is given by

chÑS

(−1

τ
,
z

τ

)
=

∫ ∞

−∞
dω

∫ ∞

0

dp
sinh(πQp) sinh(2π p

Q)

Q
∣∣ sinh π

(
p
Q + i ωQ2

) ∣∣2 chR
cont(p, ω; τ, z)

+2
∑

n∈Z

∫ 1
2

− 1
2

dω cosπω chR
BPS(ω, n; τ, z), (2.6.18)

where Q2 = 2K/N . The integral is over the continuous representation with Liouville

momenta p and R-charge ω in the R-sector. The second line corresponds to a sum over

BPS states in the R-sector. These can have arbitrary charge ω but the N = 2 super-

Virasoro algebra implies that they have a fixed dimension ∆R
BPS = c

24
independent of

the charge. We give some more details of these representations and their characters

in Appendix C of [51]. A similar formula also exists for the modular transformation

of the extended characters

χÑS

(−1

τ
,
z

τ

)
=

1

N

∑

m∈Z2NK

∫ ∞

0

dp
sinh(πQp) sinh(2π p

Q)

Q
∣∣ sinh π

(
p
Q + i ωQ2

) ∣∣2 χ
R
cont

(
p,
m

N
; τ, z

)

+
2

N

∑

n∈Z

N−1∑

m=1

sin π
m

N
χR

BPS

(m
N
− 1

2
, n; τ, z

)
. (2.6.19)

At finite N the expressions look similar but now instead of having an integral over

charges we have a sum over discrete charges. This was one of the original motivation

to take spectral flow into account, since having a continuum of charges does not seem

physical.
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Before writing down the density of states as a function of energy and charge we

will restrict to the case α = 0 to match (2.6.19) with the expression found in [73].

If we take (2.6.19) in the appropriate limit, and perform the integrals over ω, using

some results left for the appendix, we directly obtain

ρα=0(E) =
∑

n∈Z

2 cosπn

1− 4n2

(√
1− 4n2I1

(
2π
√

(1− 4n2)E
)

√
E

+ δ(E)

)
, (2.6.20)

where the integral over the Bessel function comes from the integral over non-BPS

states and the delta function comes from the BPS states. While this is obtained

in [73] by performing an inverse Laplace transform, in our approach both terms have

a physical origin. For arbitrary α, (2.6.19) gives the following density of states as a

function of both energy and charge

Z(β, α) =
1

N

∑

m∈Z

∫ ∞
m2

4N2

dE

8E
sinh

(
2π
√
E − m2

4N2

)
e−βE

(
y
m
N

+ 1
2 + y

m
N
− 1

2

)

+
2

N

N−1∑

m=1

∫ ∞

0

dE sinπ
m

N
δ(E) e−βE y

m
N
− 1

2 . (2.6.21)

From this expression we can obtain the density of states ρ(E,Q). If we redefine

the chemical potential such that charge is either integer or half-integer y → yN and

shift m in order to get a dependence yQ then we obtain

ρcont(E,Q) =
1

8N

sinh(2π
√
E − E+

0 (Q))

E
Θ(E − E+

0 (Q)) +
(
+↔ −

)
, (2.6.22)

ρdisc(E,Q) = δ(E)
2

N
cos π

Q

N
Θ(2|Q| −N), (2.6.23)

where Θ(x) corresponds to the Heaviside step function and we defined the two charge-

dependent threshold energies as following E±0 (Q) ≡
(
Q

2N
± 1

4

)2
.

The modular transformation gives us explicit expressions for these densities which

would be hard to find otherwise, agreeing with the DH calculation [73]. The zero
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energy contribution from BPS states appears only for a finite charge range 2|Q| < N
2

.

The continuous part of the spectrum consists of two terms that start contributing

at different energies. The lowest one gives the minimum energy possible for the

continuous spectrum with a fixed charge, which is

Emin(Q) =

( |Q|
2N
− 1

4

)2

. (2.6.24)

Finally, depending on whether N is even or odd, the sum over charges is either over

integer Q or half-integer Q respectively.

Having understood the relation between Liouville theory and the Schwarzian, we

will derive correlators in the next chapter.
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Chapter 3

Solving the Schwarzian Theory:

Part II

In the previous chapter we describe the construction derived in [51] to relate the

Schwarzian correlators to a limit of 2D Liouville CFT, and summarize the main

results.

In this chapter we will present the details regarding the derivation of the correla-

tors. We will begin by deriving time ordered two- and four-point functions in section

3.1.1.

Then, using known properties of Virasoro blocks we will derive the OTOC of the

Schwarzian theory in section 3.2. This is important in its own right since it will allow

us to understand gravitational bulk scattering for the Jackiw-Teitelboim dilaton-

gravity theory in nearly AdS2. In particular, we will propose a non-perturbative

generalization of the 2D version of the Dray-’t Hooft S-matrix by identifying it with

SL(2, R) exchange algebra (through its 6j-symbols) in section 3.3. We check this

correspondence by comparing the large C semiclassical limit with the shockwave S-

matrix.
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We consider a final application of the exact correlators derived in this chapter by

studying the large C and large ` limit of time-ordered correlators. In section 3.4 we

give a simple picture of the bulk geometric backreaction due to such heavy operators.

3.1 Schwarzian Correlators

3.1.1 Two-point function

First we will focus on the expectation value of a single bi-local operator G`(τ1, τ2) =

〈O`(τ1, τ2)〉, which is a natural observable as explained in the previous chapters. This

corresponds to the gravitational dressing of a two-point function of local operators.

Based on the proposal of [51] explained above

Insertion of O`(τ1, τ2) in Schwarzian ↔ Insertion of V` = e2`φ(τ1,τ2) in Liouville

we will compute the one-point function of the operator V` = e2`φ(τ1,τ2) between ZZ-

branes. Via the method of images, we can map this one-point function to the chiral

two-point function on a torus. There is no known closed expression for this two-point

function for finite c. Nevertheless we will be able to compute it in the limit relevant

for the comparison with the Schwarzian theory.

Using the known wavefunction (2.4.21) of the ZZ-branes and approximating the

Ishibashi states by primary states we can write (dropping overall constant prefactors)

〈ZZ|V`(z, z̄)|ZZ〉 =

∫
dPdQ Ψ†ZZ(P )ΨZZ(Q)〈P |V`(z = e

τ1
b2 , z̄ = e−

τ2
b2 )|Q〉. (3.1.1)

We are taking the limit b→ 0 in which the spatial circle in the closed string channel

is going to zero. This enables us to use the minisuperspace approximation for the

Liouville CFT wavefunctions, which in effect amounts to a truncation of the full CFT
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to the zero-mode. Thus we can compute the correlation function in the following way

〈ZZ|V`|ZZ〉 =

∫
dPdQ Ψ†ZZ(P )ΨZZ(Q)〈P |e−(β−τ)He2`φe−τH |Q〉, (3.1.2)

where the external states are associated to a wavefunction of the Liouville zero mode

ΨP (φ) = 〈φ|P 〉 =
2

Γ
(
−2iP

b

) K2iP/b

(
eφ
)
. (3.1.3)

This state has energy E = P 2/b2. If we call P = bk2 and Q = bk1, the integral that

gives the amplitude between states |P 〉 and |Q〉 matches exactly with the b→ 0 limit

of the DOZZ formula [104,105]

〈P = bk2|e2`φ|Q = bk1〉 =

∫
dφ Ψ†P (φ)ΨQ(φ)e2`φ =

Γ(`± i(k1 ± k2))

Γ(2ik2)Γ(2ik1)Γ(2`)
. (3.1.4)

Combining this result with the known exact form (2.4.21) of the wavefunction of

the ZZ-branes and dividing by the partition function, we obtain the following formula

for the Euclidean two-point function of the Schwarzian theory

Gβ
` (τ1, τ2) =

( β
2π2C

)3/2

2
√
πe

2π2C
β

∫
dµ(k1)dµ(k2)e−|τ |

k21
2C
−(β−|τ |) k

2
2

2C
Γ
(
`± i(k1 ± k2)

)

(2C)2`Γ(2`)
(3.1.5)

where τ = τ12, dµ(k) = dk2 sinh(2πk) and the ± signs mean that one multiplies the

Γ-functions with all combinations of signs.1 In this final answer we reinserted the C

dependence but in the rest of this chapter we will go back to units in which C = 1/2.

This expression is valid for −β < τ < β and needs to be periodically continued

beyond this interval. This was done for Euclidean time, to obtain the Lorenzian two-

point function we need to Wick rotate τ to imaginary values which will be discussed

shortly. If the Schwarzian is thought of as a low energy limit of the SYK model then

1Γ
(
`± i(k1 ± k2)

)
= Γ

(
`+ i(k1 + k2)

)
Γ
(
`+ i(k1 − k2)

)
Γ
(
`− i(k1 + k2)

)
Γ
(
`− i(k1 − k2)

)
.
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Figure 3.1: Left: Numerical evaluation of the τ → 0 limit of 6(Gβ(τ)−G∞(τ)) (blue

dots), which coincides with 〈{tan πf(τ)
β
, τ}〉 (full black line). Right: Exact two-point

function for ` = 1/4, and different values of β. We indicate the parameter g−2 = 2π
β

.

` = 1/q is the conformal dimension of the fermions in the theory, if the interaction

involves q fermions.

In the remainder of this subsection we will check this result in special limiting

regimes. First we can check that (3.1.5) behaves for τ12 → 0 as Gβ
` (τ1, τ2) = τ−2`

12 + ...

This is the expected behavior. We can also take the zero-temperature limit β →∞.

In this limit, our two-point function reduces to

G∞` (τ1, τ2) =

∫
dk2 sinh (2πk) e−|τ |k

2 Γ2(`+ ik)Γ2(`− ik)

2π2 Γ(2`)
, (3.1.6)

which coincides with the result found in [71, 72]. In particular this implies that in

the zero-temperature limit the two-point function at large times τ → ∞ behaves as

a power-law independently of ` as

G∞` (τ1, τ2) =
Γ(`)4

22`Γ(2`)

1

τ
3/2
12

+ . . . , τ →∞. (3.1.7)

This behavior matches with the numerical computation done in [71,72] using the SYK

model.
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For the case ` = 1 we can go further, since we know that the next-to-leading order

term for τ12 → 0 is given by the Schwarzian itself:

(
π
√
f ′(τ1)f ′(τ2)

β sin π
β
[f(τ1)− f(τ2)]

)2

=
1

τ 2
12

+
1

6

{
tan

πf(τ)

β
, τ
}

+ . . . (3.1.8)

This will give us a non-trivial check on the temperature dependence of the exact

two-point function. We can obtain the expectation value of the Schwarzian by taking

derivatives of the partition function

〈{
tan

πf(τ)

β
, τ
}〉

=
2π2

β2
+

3

β
+ const. (3.1.9)

The constant factor depends in part on the zero-point energy. We can eliminate this

factor by substracting the zero-temperature limit of the correlation function

Gβ
1 (τ)−G∞1 (τ)

1/6

∣∣∣∣
τ→0

=
2π2

β2
+

3

β
. (3.1.10)

We checked numerically that our formula matches this expectation, as shown in Figure

3.1.

We can also take the weakly coupled (large C) limit. In our conventions, since

we are keeping C fixed, this limit is equivalent to taking β → 0 with τ/β fixed. In

this regime, quantum corrections are suppressed and correlation functions should be

well-approximated by replacing the saddle-point solution

Ocl
` (τ1, τ2) =

( π

β sin π
β
τ

)2`

. (3.1.11)

We have checked that our exact result (3.1.5) indeed has this property, see Figure

3.1. In the next chapter we will focus on the semiclassical limit of the results found

in this section and we will present details of how to derive (3.1.11).
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Real-time two-point function and the thermofield double

To conclude this section, we will make some remarks on the real-time continuation

and physical application of these results.

The two-point function (3.1.5) has a branch point at τ = 0 and two branch cuts

running on both sides along the real axis. This is because no spacelike separated

points exist in 0+1D. This can then be periodically continued along the entire τ -axis

(Figure 3.2), with periodic branch cuts.

t

-ib

ib
2

t

ib

-ib

Figure 3.2: Left: Analytic structure of the two-point function. The green line repre-
sents the Euclidean regime. Time-ordered and anti-time-ordered Lorentzian two-point
functions can be found by analytically continuing these expressions to respectively
t ± iε (blue lines). Right: Relevant analytic continuation for the thermofield double
two-point function.

In real time, two possible continuations exist by setting iτ → t ± iε, where the

+ sign is for τ > 0 and the − sign for τ < 0. These correspond to Lorentzian time-

ordered G+
` (t1, t2) and anti-time-ordered two-point functions G−` (t1, t2) respectively,

for t1 > t2 given as expectation values of the following bilocal operators:

O+
` (t1, t2) = 〈O`(t1)O`(t2)〉CFT ,

(3.1.12)

O−` (t1, t2) = 〈O`(t2)O`(t1)〉CFT ,
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where O±` (t1, t2) ≡
( √

f ′(t1) f ′(t2)
β
π

sinh π
β

[f(t1)−f(t2)]±iε

)2`

. The explicit expression for G±` (t) reads

(ignoring the constant prefactor, and with γ`(k1, k2) as given in equation (2.2.7) )

G±` (t) =

∫
dµ(k1)dµ(k2) e±itk

2
1−(β±it)k22e−εk

2
1−εk22 γ`(k1, k2)2 (3.1.13)

with Gaussian damping introduced by ε. The ε → 0+ limit is well-defined for both

cases, but in general different. This means the commutator of time-separated opera-

tors:

O+
` (t1, t2)−O−` (t1, t2) = 〈[O`(t1),O`(t2)]〉CFT , (3.1.14)

does not vanish in expectation values:

G+
` (t12)−G−` (t12) =

〈
O+
` (t1, t2)−O−` (t1, t2)

〉
6= 0. (3.1.15)

This is as expected since all points are timelike separated on the 1D line. Likewise,

one can consider other real-time two-point functions of interest, such as the retarded

correlator: Gret
` (t1, t2) =

(
G+
` (t1, t2) +G−` (t1, t2)

)
θ(t12).

The long-time behavior of these correlators is easy to determine due to destructive

oscillations of the ki-integrals, and gives (ignoring irrelevant prefactors)

G±` (t)→ 1

t3/2
1

(β ± it)3/2
β3/2. (3.1.16)

At intermediate times (or zero temperature) for which 1 � t � β, G±` (t) ∼ 1/t3/2

and at long times t � β, G±` (t) ∼ 1/t3. In either case, the correlator decreases

monotonically to zero. Hence no Poincaré recurrences occur at very long times. The

Schwarzian theory is rather peculiar from this perspective, as it has a continuum of

states, thereby foiling the standard argument for recurrences, but its density of states

or entropy do not exhibit a volume-divergence. Instead the divergence in the entropy
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t

Figure 3.3: Two-point left-right correlator in a thermodouble system. The Schwarzian
path integral contains time reparametrizations of the boundary lines that are con-
strained to start and end at the same points as the eternal black hole time coordinate.
A sample clock-ticking configuration is drawn.

arises due to an infinite S0 (which was irrelevant for our entire discussion), signaling

that one needs to go back to its UV completion (e.g. SYK) to understand the very

long time behavior of the theory.

Replacing τ → τ+ β
2

has the effect of moving one operator insertion to the thermal

copy of the thermofield double, which in the small coupling (small C) limit is just the

eternal AdS2 black hole (Figure 3.3) [21]. We note that our discussion here does not

assume a holographic bulk; in a sense we will see what can be deduced of the alleged

bulk dual purely from the Schwarzian system. In real time

〈TFD| OL` (t1)OR` (t2) |TFD〉 =
〈
O`
(
iβ
2
− t1

)
O`(t2)

〉
CFT

= O`
(
iβ
2
− t1, t2

)
(3.1.17)

(the minus sign in front of t1 on the right hand side corresponds to time running

oppositely in the double, but can be ignored in this discussion) where the thermofield

double state is

|TFD〉 =
1√
Z

∑

i

e−
βEi
2 |∗i〉L ⊗ |i〉R . (3.1.18)

When performing the Lorentzian real-time continuation, no branch cuts are en-

countered and G+ and G− coincide (see Figure 3.2). In particular the commutator

vanishes, confirming that all points on opposite sides of the thermofield double are
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spacelike separated. This indicates that the bulk spacetime has a horizon, and that

looks identical to the eternal black hole space-time [21]. It is interesting that the

causal structure of the dual bulk can be decoded from these correlation functions.

Quantum fluctuations of the time reparametrization f(τ) in themselves are not suf-

ficient to allow communication between both sides. This is of course expected, as to

make the wormhole traversable, one would need to add an explicit interaction con-

necting the two copies of the thermofield double [106] [107]. Ignoring the prefactors,

the real-time thermodouble correlator can immediately be written down:

GLR
` (t) =

∫
dµ(k1)dµ(k2) e−(β2 +it)k21−(β2−it)k22

Γ
(
`± i(k1 ± k2)

)

Γ(2`)
. (3.1.19)

Taking the small temperature limit, one obtains

GLR
` (t) → β3/2

(
β
2
− it

)3/2 (β
2

+ it
)3/2

→ 0. (3.1.20)

This behavior corresponds to the disappearance of left-right correlation in the ex-

tremal black hole limit, generalizing this statement from just the classical saddle

point to the full quantum gravity regime.

3.1.2 Four-point function

Next we consider the time-ordered four point function, given by the two-point function

of two bi-local operators.

G`1`2(τ1, τ2, τ3, τ4) =
〈
O`1(τ1, τ2)O`2(τ3, τ4)

〉
. (3.1.21)

There are different choices for how to order the four different times. Here we will

assume that the time instances are cyclically ordered via τ1 < τ2 < τ3 < τ4. In the
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diagrammatic representation of the amplitudes, this ordering ensures that the legs of

the two bi-local operators do not cross each other, as indicated in the left-hand side

diagram of Figure 3.5.

We will compute this four-point function by applying the dictionary between the

Schwarzian and 2D Liouville CFT. This leads us to consider the following two-point

function of primary operators between two ZZ-branes

G`1`2 = 〈ZZ|V`1(z1, z̄1)V`2(z2, z̄2)|ZZ〉. (3.1.22)

As explained above, this can be interpreted as a four point function (3.1.21) in the

Schwarzian theory if we identify z1 → τ2, z̄1 → τ1, z2 → τ3 and z̄2 → τ4. For the time-

ordered operator, the locations (z1, z̄1) and (z2, z̄2) are chosen to be timelike separated,

as indicated on the left-hand side in Figure 3.4, so that their past lightcones do not

intersect.

τ1 τ2τ4 τ3 τ1 τ4τ3 τ2

Figure 3.4: The four-point function in the Schwarzian theory corresponds to a two-
point function of two bulk Liouville vertex operators. If the two bulk operators are
timelike separated (left), the correlation function and the end-points of the two bi-
local operators are time ordered. If the two bulk operators are spacelike separated
(right), the legs of the bi-local operators cross each other. Both are thus related by the
CFT monodromy matrix that relates the timelike separated and spacelike separated
two-point functions.

As before, we can go to the closed string channel and write the four point function

as
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ksks

`1

`2

k1

k4

τ3

τ2

τ4

τ1

kskt
`2 `1

k1

k4

τ2

τ3

τ4

τ1

Figure 3.5: The diagrammatic representation of the two types of four-point functions.
The left diagram depicts the time-ordered four-point function (3.1.21) with τ1 < τ2 <
τ3 < τ4. The diagram on the right represents the out-of-time ordered four point
function: in contrast with the geometric ordering, we assume that the four time
instances are still ordered as τ1 < τ2 < τ3 < τ4.

G`1`2 =

∫
dPdQ Ψ†ZZ(P )ΨZZ(Q) 〈P |V`1(z1, z̄1)V`2(z2, z̄2)|Q〉. (3.1.23)

In the Schwarzian limit we are allowed to replace the Ishibashi states ||P 〉〉 by the

corresponding primary states |P 〉. The correlation function on the right-hand side is

computed on the sphere and can be expanded in conformal blocks in the V`2VQ →

V`1VP channel.

We thus arrive at the following representation for the time-ordered four point

function in terms of 2D CFT data

〈P |V`1(z1, z̄1)V`2(z2, z̄2)|Q〉 = (3.1.24)

∫
dPs C(−P, `1, Ps)C(−Ps, `2, Q) FPs

[
`1
P

`2
Q

]
(z1, z2) FPs

[
`1
P

`2
Q

]
(z̄1, z̄2)

where C(1, 2, 3) is the DOZZ OPE coefficient. The cross-ratios in these formulae are

given by z = z1/z2 and z̄ = z̄1/z̄2. The conformal blocks are defined by the following

normalization

FPs
[
`1
P

`2
Q

]
(z1, z2) = z∆P−∆s

1 z
∆s−∆Q

2

(
1 + . . .

)
(3.1.25)

where the . . . denote higher order terms in z and z̄. To take the Schwarzian limit,

we set P = bk1, Q = bk4 and send b → 0, while simultaneously sending z → 0. In
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this limit the conformal block becomes trivial (As we will see in the next section,

the 2D conformal blocks exhibit non-trivial monodromy properties under analytic

continuation. These will turn out to be an essential ingredient in the computation of

out-of-time-ordered correlation functions). Using the same notation as in the previous

section, we obtain2

Gβ
`1`2

=

∫
dk2

1dk
2
4dk

2
s sinh 2πk1 sinh 2πk4 sinh 2πks (3.1.26)

× e−k
2
1(τ2−τ1)−k24(τ4−τ3)−k2s(β−τ2+τ3−τ4+τ1) Γ(`2 ± ik4 ± iks) Γ(`1 ± ik1 ± iks)

Γ(2`1) Γ(2`2)
.

This integral expression is only valid in the regime τ4 > τ3 > τ2 > τ1.

The formula (3.1.26) is identical to the result (2.2.11) quoted in the Introduction.

Again, it is possible to disentangle the full expression (3.1.26) into propagators and

vertices. Or conversely, applying the Feynman rules outlined in section 2.2 to the

diagram on the left in Figure 3.5, we directly obtained the full result (3.1.26) for the

time-ordered four-point function.

For later reference, we summarize the above calculation of the four point function

by means of the following diagram:

G`1`2 =

∫
dP dQdPs Ψ†ZZ(P )ΨZZ(Q) ×

P

Q

Ps

`1

`2

×

P

Q

Ps

`1

`2

As indicated, the insertion of the ZZ states splits the thermal circle into two halves,

each given by a chiral conformal block of the 2D Virasoro CFT. Each half has the

2The zero-temperature limit factorizes as G∞`1`2 = G∞`1G
∞
`2

. This zero-temperature result is in
agreement with [71, 72]. This factorization would not have happened had we computed the time-
ordered correlator

〈
O`1(τ1, τ4)O`2(τ2, τ3)

〉
.
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−β/2

β/2

τ1

τ2

τ3

τ4

τ1 = −β
4

+ it1, τ3 = −β
4

+ it2

τ2 = β
4

+ it1, τ4 = β
4

+ it2

Figure 3.6: Time ordering prescription for the out-of-time ordered four point function
at finite inverse temperature β. Note that the time operator insertion at τ3 acts
before the operator insertion at τ2, even though in real time t1 = Im(τ2) is earlier
than t2 = Im(τ3).

same intermediate momentum Ps, and all momenta are integrated over. In the figure,

we have absorbed the OPE coefficients into the definition of the conformal blocks.

3.2 OTO four point function

In this section we consider the out-of time ordered four-point function

GOTO
`1`2

(τ1, τ2, τ3, τ4) =
〈
O`1(τ1, τ2)O`2(τ3, τ4)

〉
OTO

(3.2.1)

The OTO prescription can be implemented in different ways. One convenient choice

is to complexify the time coordinates, and choose the real and imaginary parts as

follows

τ1 = −β
4

+ it1, τ2 =
β

4
+ it1, τ3 = −β

4
+ it2 τ4 =

β

4
+ it2, (3.2.2)

and consider a time contour prescription as indicated in Figure 3.6.

To compute the OTO correlation functions, one could try to explicitly perform the

three integrals in equation (3.1.26) for the time-ordered correlation function, write

G`1`2 as an analytic function of the four times τi and then perform the appropriate
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analytic continuation. However, at present we do not know how to perform the

integrals explicitly, so this direct approach is not practical. Luckily, the 2d perspective

of the Schwarzian theory as a limit of 2D Virasoro CFT theory gives another way to

solve the problem. In this section we will combine the calculation presented above

with the ideas of [74] to compute the exact OTO four-point function. Technical details

are delegated to Appendix 3.6.

Most recent studies of OTO correlation functions in (putative) chaotic systems

have focused on the time-dependence. However, as originally pointed out in [74], to

exhibit the dynamical mechanism that underlies the Lyapunov behavior, it is equally

informative to study the four-point function in Fourier space, in which one fixes the

energies of the intermediate states. The latter approach is also more naturally incor-

porated into our construction of the Schwarzian amplitudes in terms of the momentum

space amplitudes.

Before we turn to the derivation, let us first write out the explicit form for the OTO

four point function, as follows from the application of the Feynman rules presented

in section 2.2 to the diagram on the right-hand side of Figure 3.5:

GOTO
`1`2

=

∫
dk2

1dk
2
4dk

2
sdk

2
t sinh 2πk1 sinh 2πk4 sinh 2πks sinh 2πkt

×
∣∣Γ(`2 + ik4 ± iks)Γ(`1 + ik1 ± iks)Γ(`2 + ik1 ± ikt)Γ(`1 + ik4 ± ikt)

∣∣
Γ(2`1) Γ(2`2)

(3.2.3)

× Rkskt

[
k4
k1

`2
`1

]
× e−k

2
1(τ3−τ1)−k2t (τ3−τ2)−k24(τ4−τ2)−k2s(β−τ4+τ1) .

The essential new ingredient in this expression is the R-matrix Rkskt

[
k4
k1

`2
`1

]
. Its ex-

plicit form is given in Appendix 3.6. By gauge/gravity duality this quantity describes

the S-matrix corresponding to scattering of particles close to the horizon of a black

hole. In other words, the integrand is already capturing the information we need to

relate the out-of-time-ordered correlation function to gravitational properties of the
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event horizon. In the remainder of this section, we will explain how the above result

arises from the correspondence with 2D CFT, how to extract the time dependence

and Lyapunov behavior, and how it matches with 2→ 2 scattering via gravitational

shockwaves.

3.3 The R-matrix

The OTO four-point function in the Schwarzian theory corresponds to a two-point

function of two bulk Liouville vertex operators that are spacelike separated, so that

the past lightcones of the two operators cross each other as indicated on the right in

Figure 3.4. From the point of view of the 2D CFT, this means that one of the chiral

conformal blocks has been analytically continued to an OTO conformal block

GOTO
`1`2

= 〈ZZ|V`1(z1, z̄1)V`2(z2, z̄2)|ZZ〉OTO, (3.3.1)

=

∫
dPdQ Ψ†ZZ(P )ΨZZ(Q) 〈P |V`1(z1, z̄1)V`2(z2, z̄2)|Q〉OTO.

where the integrand factorizes in terms of CFT kinematic data as

〈P |V`1(z1, z̄1)V`2(z2, z̄2)|Q〉OTO = (3.3.2)

∫
dPs C(−P, `1, Ps)C(−Ps, `2, Q) F OTO

Ps

[
`1
P

`2
Q

]
(z1, z2) FPs

[
`1
P

`2
Q

]
(z̄1, z̄2)

Here the OTO label indicates that we have applied a specific monodromy transfor-

mation to the 2D conformal block. The effect of this monodromy transformation in

the Schwarzian limit can be found in the following way.

The argument of the s-channel conformal block is z = z1/z2, which goes to zero

in the time-ordered case. Inserting the two operators in opposite order gives z′ =

1/z = z2/z1 → ∞. The 2D conformal block behaves non-trivially in the limit where
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the cross ratio becomes infinite. Even though we do not know the explicit expression

for the full conformal block, we can use the R-matrix transformation of Ponsot and

Teschner [75]

FPs [ 2
1

3
4 ](z′) =

∫
dPt RPsPt

[
2
1

3
4

]
FPt [ 3

1
2
4 ](1/z′) (3.3.3)

to extract its exact behavior in the large cross-ratio regime z′ → ∞ by using the

fact that the conformal block inside the integral in (3.3.3) becomes trivial for z =

1/z′ → 0. Inserting the transformed conformal block into (3.3.1) and (3.3.2), we

obtain the momentum integral representation of the out-of-time-ordered four-point

function. The total calculation procedure can be graphically represented as

GOTO
`1`2

=

∫
dPdQ Ψ†ZZ(P )ΨZZ(Q) ×

∫
dPs

P

Q

Ps

`1

`2
P

Q

Ps (3.3.4)

=

∫
dPdQ Ψ†ZZ(P )ΨZZ(Q) ×

∫
dPsdPt RPsPt

P

Q

Ps

`1

`2
P

Q

Pt

Our remaining task is to compute the appropriate large c limit of the crossing

kernel of 2D CFT conformal blocks. This calculation is performed in Appendix 3.6.

The 2d crossing kernels, i.e. the F -matrix and R-matrix, are explicitly known and

expressed in terms of Uq(sl(2,R)) 6j-symbols [75]. Perhaps unsurprisingly, we will find

that in the Schwarzian limit the Ponsot-Teschner result for the quantum 6j-symbols

reduces to known expressions for the classical 6j-symbols of SU(1, 1).

The R-matrix and fusion matrix of 2D Virasoro conformal blocks are related via

Rαsαt

[
α3
α4

α2
α1

]
= e2πi(∆2+∆4−∆s−∆t)Fαsαt

[
α3
α4

α2
α1

]
. (3.3.5)
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The F-matrix, in turn, is expressed in terms of the quantum 6j-symbol via [77]

Fαsαt
[
α3
α4

α2
α1

]
= |Sb(2αt)Sb(2αs)|

√
C(α4, αt, α1)C(ᾱt, α3, α2)

C(α4, α3, αs)C(ᾱs, α2, α1)

{ α1 α2 αs

α3 α4 αt

}
b
, (3.3.6)

where Sb(x) denotes the double Sine function and C(α3, α2, α1) is the DOZZ three

point function [104, 105]. In the 1D limit, we need to take two α’s to be real and

proportional to αi = b`i with `i finite and the other four of the form αj = Q
2

+ ibkj

with kj finite. Specifically, we will choose

α1 = `1b, α2 =
Q

2
+ ibk2, αs =

Q

2
+ ibks,

α3 = `3b, α4 =
Q

2
+ ibk4, αt =

Q

2
+ ibkt.

For the application to the Schwarzian theory, we must further take the classical limit

of the quantum 6j-symbols

{ `1 k2 ks

`3 k4 kt

}
≡ lim

b→0
2πb3

{ α1 α2 αs

α3 α4 αt

}
b
. (3.3.7)

Returning to equation (3.3.3) and using the above formulas, we are now obtain

an explicit expression for the large z limit of . The conformal block in the right hand

side again becomes trivial since z′ = 1/z → 0. The answer can be written as (see

Appendix 3.6)

FOTO
Ps [ 2

1
3
4 ](τ) =

∫
dPt e

−τP 2
t /b

2

RPsPt

[
2
1

3
4

]

(3.3.8)

=

∫
dk2

t sinh 2πkt e
−k2t τ

∣∣∣∣
Γ(`1 + ik4 ± ikt)Γ(`3 + ik2 ± ikt)
Γ(`1 + ik2 ± iks)Γ(`3 + ik4 ± iks)

∣∣∣∣
{ `1 k2 ks

`3 k4 kt

}
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with the 6j-symbol as defined via (3.3.7). Note that in the 1D limit the dimensions

of the operators that appear in the phase factor in equation (3.3.5) are all equal to

c
24

+O(1/c). The phase factor thus becomes trivial.

To obtain the out-of-time-ordered four point function we make the above substi-

tution inside of the integral expression (3.3.2). This leads to the final expression given

in equation (3.2.3), where we define the Schwarzian R-matrix via

Rkskt

[
k4
k1

`2
`1

]
=
{ `1 k1 ks

`2 k4 kt

}
. (3.3.9)

With this definition, the R-matrix is naturally a unitary operator relative to the

spectral measure dµ(k).

3.3.1 Schwarzian 6j-symbols

In this section we present the explicit expression for the Schwarzian limit of the

6j-symbols of the Virasoro CFT. A general expression for this quantity at finite

c, and its relation with the monodromy of the 2D conformal blocks, was found by

B. Ponsot and J. Teschner in [75]. For our purpose, we need to take the large c

limit outlined above. Details of the calculation are given in Appendix 3.6. After

some straightforward algebra, one arrives at the somewhat daunting looking integral

expression (3.6.17). The integral can be done by the method of residues. The final

result can be organized in the following symmetric expression

{ `1 k2 ks

`3 k4 kt

}
=
√

Γ(`1 ± ik2 ± iks)Γ(`3 ± ik2 ± ikt)Γ(`1 ± ik4 ± ikt)Γ(`3 ± ik4 ± iks)

×W(ks, kt; `1 + ik4, `1 − ik4, `3 − ik2, `3 + ik2), (3.3.10)
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where we define Γ(x± y ± z) as a shorthand for the product of the gamma function

with four combinations of signs. The function that appears in the right hand side is a

rescaled version of the Wilson function introduced by W. Groenevelt [78,79]. The orig-

inal function introduced in [78,79] is denoted by W(α, β; a, b, c, d) = φα(β; a, b, c, 1−d)

and it is proportional to a generalized hypergeometric function 7F6 evaluated at z = 1

whose coefficients depend on α, β, a, b, c and d.

Given that the above expression was obtained as a limit of the quantum 6j-symbol,

it is natural to suspect that the result can be interpreted as a classical 6j-symbol.

The above indeed matches with the 6j-symbol associated to the Lie algebra su(1, 1)

found by W. Groenevelt [78, 79]. The heavy operators with label ki correspond to

the principal unitary series representations of su(1, 1), while the light operators `i

correspond to the discrete series.3 The expression (3.3.9) enjoys tetrahedral symmetry

that acts by permutations on the six spin labels.4 In addition, the 6j-symbols satisfy

the unitarity condition

∫
dksρ(ks)

{ `1 k2 ks

`3 k4 kt

}†{ `1 k2 ks

`3 k4 kt′

}
=

1

ρ(kt)
δ(kt− kt′), (3.3.11)

with ρ(k) = 2k sinh(2πk), which underscores the proposed holographic interpreta-

tion of the R-matrix (3.3.9) as describing a gravitational scattering amplitude in the

bulk. This unitarity condition is also responsible for the crossing symmetry of the 2D

Liouville four point function [75].

Wilson functions also appeared recently as a fusion matrix of conformal blocks

in a toy-model CFT with SL(2,R) symmetry [108] [109]. It would be interesting to

understand how these two approaches are related.

3Note that even though SU(1, 1) and SL(2,R) are isomorphic, their tensor categories are different
and they have different 6j-symbols.

4The classical 6j-symbol of any Lie group can indeed be written as the expectation value of six
Wilson lines, glued together into a tetrahedron, of the corresponding 2D BF-gauge theory.
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3.3.2 Gravitational Scattering and Chaos

In this section we will present evidence that our following proposal of the full gravi-

tational S-matrix in the Jackiw-Teitelboim model

R−Matrix ↔ Gravitational S−matrix (3.3.12)

is correct. This is done in detail in [52]. In [52] we show how time ordered correlators

coincide with free propagation in the bulk when one takes the semiclassical limit of `

fixed and C large.

In particular the Fourier-space amplitudes of time-ordered correlators correspond

to bulk-to-boundary propagators of free fields in AdS2. This is true for an arbitrary

correlator as long as it is time-ordered. Changes in E(k) are related to energies as

measured by an asymptotic observer. This is true in the Jackiw-Teitelboim approxi-

mation of dilaton-gravity. Fields only interact through the Schwarzian gravitational

dressing which is suppressed for large C.

For example take the two-point function. The exact answer was given in equation

(3.1.13). After labeling the integration variables as k2
2 = E and k2

1 = E + ω the

real-time two-point function can be written in the form

G±` (t) ∼
∫
dEρ(E)e−βE

∫
dωeiωt |AE(ω, `)|2, (3.3.13)

where we include in the amplitude AE the density of states ρ(E+ω) and the gamma

functions coming from the OPE coefficients in equation (3.1.5). If we take ω � E

then |AE(ω, `)|2 ∼ Γ
(
`± i ω

2
√
E

)
. This amplitude AE(ω, `) is the Fourier transform of

a bulk-to-boundary propagator.

As we reviewed in the introduction, OTOC are highly sensitive to gravitational

interactions through shockwaves. Therefore we expect to see the semiclassical S-
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matrix emerge for these quantities. We will focus on this quantity in the following

sections.

We have shown that the characteristic behavior of the OTO correlation function

is governed by an R-matrix in the form of a 6j-symbol. This R-matrix is a unitary

matrix, that incorporates the gravitational bulk scattering amplitude in momentum

space. In this section we summarize how one can extract the characteristic Lyapunov

exponent from the R-matrix. Our discussion here closely follows the derivation given

in section 1 of [74] for case of AdS3/CFT2.

The R-matrix depends on six parameters, `1, `3, k2, k4, ks and kt. Following [74],

let us label the four momenta as follows

k2 = M, ks = M + α,

(3.3.14)

k4 = M + ω, kt = M + β .

We will assume that we are in the regime M � α, β, ω � `1, `3. So to isolate the

leading order behavior, we will set `1 = `3 = 0. In this notation, the explicit integral

formula for the R-matrix takes the form

Rαβ =

∫

C

du

2π

Γ(u)Γ(iα− u)Γ(i(α−ω)− u)Γ(u− i(α+ β −ω))

Γ(u− iα)Γ(u− iα+ iω)
Γ(u− 2iM2α)Γ(u+ 2iMβ+ω−α)

×
√

Γ(−iα)Γ(iβ)Γ(i(ω−α))Γ(−i(ω− β))

Γ(iα)Γ(−iβ)Γ(−i(ω−α))Γ(i(ω− β))

√
Γ(2iMα)Γ(−2iMβ)Γ(2iMα+ω)Γ(−2iMβ+ω)

Γ(−2iMα)Γ(2iMβ)Γ(−2iMα+ω)Γ(2iMβ+ω)

(3.3.15)

where 2iMα = 2iM + iα, etc.

How do we extract physical information from this expression for Rαβ? Since

in the Schwarzian QM, it represents an exchange property of the momentum space

amplitude, it is useful to label the operators by means of their momentum, or rather,

by means of the amount they shift the momentum of the state on which they act.
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Figure 3.7: The R-matrix describes the gravitational shockwave interaction between
an infalling and outgoing matter perturbation near a black hole horizon. The particle
trajectories divide the space-time into four regions.

Concretely, we can define the action of a momentum space operator Aω via the

algebraic rule

Aω |M〉 = γA(ω)
∣∣M + ω

〉
, (3.3.16)

where |M
〉

denotes an energy eigenstate with SL(2,R) spin j = −1
2
+iM, with γA(ω) =

γ`A(M,M+ω) the vertex function. This algebraic rule allows us to multiply operators

and keep track of the time dependence through the usual Schrödinger evolution. This

prescription works as long as the operators are time-ordered.

The R-matrix (3.3.15) prescribes what happens if we exchange two operators and

place them in out-of-time order. Schematically,

Bω−αAα |M〉 =
∑

β

Rαβ Aω−β Bβ |M〉. (3.3.17)

Here
∑

β is short-hand for
∫
dβρ(M+β) with ρ(M+β) = (M+β) sinh(2π(M+β)) the

spectral density of the intermediate state |M + β〉.

From the bulk perspective, this exchange algebra expresses the physical effect of

an ingoing perturbation created by Bω−α (the ‘butterfly’) on an outgoing signal A,

as indicated in Figure 3.7. To see the associated Lyapunov behavior, we need to

translate the scattering phase to the time domain. This is done via the standard

rules of geometric optics, which is justified since in the regime of interest, the phase
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of the R-matrix is rapidly changing with frequency. Focusing on this phase factor,

we write

Rαβ = eiIαβ . (3.3.18)

Next, we localize the operators A and B in time by considering them as wave-packets

with a given approximate frequency. In the leading order stationary phase approxi-

mation the exchange relation then takes the form

Bω−α(t1)Aα(t2) = eiIαβ Aω−β(t̃2)Bβ(t̃1), (3.3.19)

where the value of β, t̃2 and t̃1 on the right-hand side are fixed by the stationary

phase criterion. Let us introduce the time differences

tα = t2 − t1, tβ = t̃2 − t̃1. (3.3.20)

These time differences are linked through the frequency dependence of the scattering

phase Rαβ = eiIαβ via the Hamilton-Jacobi (geometric optics) equations

tα = −∂Iαβ
∂Eα

= − 1

2M

∂Iαβ
∂α

, tβ =
∂Iαβ
∂Eβ

=
1

2M

∂Iαβ
∂β

, (3.3.21)

which follow from the fact that both sides of the exchange relation (3.3.19) have the

same dependence on α and β.5

The prediction from bulk gravity is that the time delay t̃2 − t2 of the outgoing

signal A due to the perturbation B grows exponentially with the time separation

t2 − t1
t̃2 − t2 ∼ eλM(t2−t1), λM =

2π

βM

, (3.3.22)

5The phase Iαβ is the generating function of the canonical transformation between the initial and
final canonical variables (Eα, tα) and (Eβ , tβ).
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with βM the temperature of the black hole dual to the state |M
〉
. We have

S(M) = 2πM, E(M) = M2, βM =
π

M
, λM =

2π

βM

= 2M . (3.3.23)

Can we extract this from the exact expression (3.3.15) for the R-matrix?

We have thus far not been able to find a precise enough way to evaluate the

integral 3.3.15. So we will proceed by making a plausible assumption, in the form of

the following

Ansatz: in the semiclassical regime, (3.3.15) is dominated by the residue at u = 0.

The pole at u = 0 appears due to the Γ(u) factor in the integrand. The above

hypothesis is supported by several pieces of evidence. First, a naive application of

Stirling and the stationary phase approximation indeed points to the existence of a

saddle point near u = 0. Secondly, as we will see shortly, via this Ansatz we can make

contact with the semi-classical analysis of [74], which applies in the regime of large c

and large conformal dimensions ∆− c−1
24

of order c. We leave the further justification

of the above simplifying Ansatz for future study.

Evaluating the residue and approximating log
( Γ(i(2M+α))

Γ(−i(2M+α))

)
∼ 2iα log(2M), we find

that

R
(u=0)
αβ = e−i(α+β−ω)tM Γ(i(ω−α− β))

√
Γ(iα)Γ(iβ)Γ(−i(ω−α))Γ(−i(ω− β))

Γ(−iα)Γ(−iβ)Γ(i(ω−α))Γ(i(ω− β))

with tM ' log(2M). Now using Stirling gives

Iαβ ' α logα + β log β − (ω−α) log(ω−α)− (ω− β) log(ω− β)

− (α + β − ω) log
(
α + β − ω

)
− (α + β − ω)tR, (3.3.24)

which is identical to the formula for Iαβ derived in [74] from both 2+1D gravity

and from 2D Virasoro CFT. Using this expression for Iαβ and the geometric optics
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relations (3.3.21) we can now compute the time difference tβ as functions of α, ω, and

the time difference tα

tα − tR =
1

λM

log
( α + β − ω

2α(ω − α)

)
, tβ − tR =

1

λM

log
( α + β − ω

2β(ω − β)

)
, (3.3.25)

or equivalently [74]

β = ω − α + 2α(ω − α)eλM(tα−tR), (3.3.26)

α = ω − β + 2β(ω − β)eλM(tβ−tR). (3.3.27)

These two relations are identical to the ones derived for the shockwave scattering

process near a black hole in 2+1D AdS space-time [26], and also match with the ex-

pected behavior in the AdS2 Jackiw-Teitelboim model. Equation (3.3.26) determines

β and tβ as a function of α and the time difference tα = t2 − t1. One finds

t̃2 − t2 = − 1

λM

log
(ω − α

β

)
' 2α

λM

eλM(t2−t1−tR), (3.3.28)

which exhibits the expected maximal Lyapunov growth.

3.3.3 Semiclassical Limit of OTOC

In this section we will repeat the previous analysis at the level of the time dependence

of correlators. The OTO four-point function can be expressed in terms of this bulk

S-matrix and the asymptotic wave functions as reviewed in [52] and explained in [47].

The integrals can be computed explicitly, with the result [47] 6

〈V1W3V2W4〉
〈V1V2〉〈W3W4〉

= z−2`1U(2`1, 1 + 2`1 − 2`2, 1/z), (3.3.29)

6Even though it is not obvious from this expression one can verify using the properties of the
hypergeometric function U(a, b, z) that the right hand side is invariant under `1 ↔ `2.
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where we define the cross-ratio

z =
iβ

16πC

eπ(t3+t4−t1−t2)/β

sinh πt12
β

sinh πt34
β

. (3.3.30)

If we make the choice of the insertions times similar to [47], explicitly t1 = −iβ
2
,

t2 = 0, t3 = t − iβ
4

and t4 = t + iβ
4
, then the cross-ratio becomes z = β

16πC
e

2π
β
t. The

shockwave calculation is valid for t > 0 large with this combination z held fixed.

The result 3.3.29 captures all the physics contained in the shockwave S-matrix. The

Lyapunov behavior is a small part of it (only its small z limit). Unfortunately due to

technical reasons a result analogous to 3.3.29 cannot be obtained in higher dimensions.

In this section we will derive the semiclassical limit of the OTOC reproducing

(3.3.29) directly from the 2d picture. We will consider units in which C = 1/2. Since

the dimensionless coupling is 2πC/β the semiclassical limit is equivalent to taking

β → 0 in these units. This match implies that the semiclassical limit of the R-matrix

coincides with the Dray-’t Hooft S-matrix. Schematically we deduced

R(C →∞) ≈ SDray−′tHooft (3.3.31)

since they generate the same OTOC. The left hand side is written in terms of ki’s

which match with the Dray-’t Hooft S-matrix written in terms of energies measured

by asymptotic observers. A detailed version of this relation was derived in [52].

In the 2d picture, the inverse temperature β of the Schwarzian gives the distance

between the ZZ branes. Taking β → 0 in the Schwarzian means sending the distance

between the ZZ-branes to zero faster than the size of the circle in the extra dimension.

Namely, β goes to 0 faster than q → 1, where q = e2πiτ denoted the q-modulus of the

2d annulus. In this limit the Schwarzian becomes equivalent to Liouville between two

infinite ZZ-branes, namely on a strip of width β instead of an annulus.
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The upshot of the previous argument is that we can reproduce the semiclassical

Schwarzian correlators from local operators between two infinite ZZ-branes. The Li-

ouville one-point function, which corresponds to the Schwarzian two-point function,

is easy to compute exactly from the 2d CFT perspective, since the system can be

mapped to the upper-half-plane by a conformal transformation. The answer imme-

diately has the required form

〈V 〉strip =

(
π

β sin πτ
β

)2`

, (3.3.32)

where ` corresponds to the conformal dimension of the Liouville operator. This can

be related to the real time answer by analytic continuation.

Now we compute the Liouville 2pt function/Schwarzian 4pt function using this

approach. Again, we can map the infinite strip to the upper-half plane, and we take

the positions of the two local vertex operator insertions to be z1 and z3, while the

images of these operators will be denoted by z2 and z4 (even though they should

strictly be given by z∗1 and z∗3 we will allow them to be generic). The two-point

function can be written in two equivalent ways. First, we can take the OPE between

the two insertions and between the two images, obtaining

〈
V1V2W3W4

〉
〈
V1V2

〉〈
W3W4

〉 =

∫
dP ΨZZ(P )CVWP F

(
V
W

V
W , P, η

)
, (3.3.33)

where η = z13z24
z14z23

is the cross-ratio, ΨZZ is the ZZ-brane wavefunction, CVWP repre-

sents the Liouville OPE coefficient between the operators V , W and an intermediate

channel operator with Liouville momentum P . F(P, η) denotes the conformal block

in this channel. Another representation of this correlation function can be obtained

by performing the OPE between an operator and its image. In this case it was shown

that only the vacuum block appears (see section 6 of [88] and also [61] for a different

perspective on this result). Defining the new cross ratio via x = 1− η and using the
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exponential map zi = e
2π
β
τi , the ZZ identity gives

〈V1V2W3W4〉
〈V1V2〉〈W3W4〉

= x2∆VF
(
V
V
W
W , vac, x

)
, x = −

sinh πt12
β

sinh πt34
β

sinh πt32
β

sinh πt41
β

. (3.3.34)

For fixed t1, . . . , t4 ∼ O(1) and c→∞, the cross-ratio is finite and the vacuum block

becomes trivial, implying that 〈V1V2W3W4〉 ∼ 〈V1V2〉〈W3W4〉. For the time-ordered

four-point function this is the final answer.

The out-of-time ordered four-point function is equal to the vacuum block evaluated

on the second sheet. It turns out this indeed exactly reproduces the shockwave calcu-

lation. The vacuum block on the second sheet is found by performing a monodromy

operation on the block. As observed in [110], this monodromy remains non-trivial in

the combined x → 0 and c → ∞ limit, with the product cx is held fixed and finite.

The exact formula for the identity block in this limit was found to be [110]

〈V1W3V2W4〉
〈V1V2〉〈W3W4〉

= lim
c→∞,cx fixed

x2∆VF2ndsheet

(
V
V
W
W , vac, x

)

(3.3.35)

= z−2`1U(2`1, 1 + 2`1 − 2`2, 1/z),

where the right hand side involves the cross ratio z defined in equation (3.3.30). Here

we used the precise relation between the Virasoro central charge c and the Schwarzian

coupling 2πC/β. This matches exactly with the shockwave calculation in equation

(3.3.29).

3.4 Geometric Interpretation

In this section we will review and summarize the semiclassical computation of cor-

relators, its geometric interpretation and connection to backreaction in AdS2. We

consider large C and large ` in order to understand backreaction. One approach is

to go back to the Jackiw-Teitelboim model [45,47,48] and rephrase the path integral
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as describing a particle in a magnetic field [80] (see also [107] and [111]). Instead we

will start from the exact correlators of [51], take their semiclassical limit and explain

how to interpret them as backreaction on the geometry.

For simplicity we focus on the two-point function for operators of dimension `.

By semiclassical limit we mean both large C and large ` with `/C fixed. The exact

two-point function from [51] can be written in two equivalent ways

〈O(τ)O(0)〉 =

∫ ∏

i=1,2

dkiρ(ki) e
− k21

2C
τ− k22

2C
(β−τ) Γ(`± ik1 ± ik2)

Γ(2`)
, (3.4.1)

=

∫ ∏

i=1,2

dkidθi e
−I(ki,θi,τ,`), (3.4.2)

where the action is given by

I(ki, θi, τ, `) =
∑

i=1,2

(
k2
i

2C
τi + θiki − log ρ(ki)

)
+ ` log

(
cos

θ1

2
+ cos

θ2

2

)2

+ I0(`),

(3.4.3)

and we defined τ1 = τ and τ2 = β − τ and the density of states ρ(k) = 2k sinh 2πk.

This second way of expressing the two-point function will be very useful below. We

will refer to I(ki, θi) as the action associated to the two-point function with values ki

and θi. At this point this gives an exact expression computing the two-point function,

up to an unimportant normalization factor I0 which appears as a constant term in

the action.

What happens in the semiclassical limit for large C? In this case the integrals

over ki and θi become dominated by a saddle-point approximation. This happens for

ki/C ∼ O(1) and θi ∼ O(1) since the action becomes I ∼ O(C). This allows one to

use saddle-point in this limit. Due to this scaling we define the semiclassical action

Is.c. as

I(ki, θi) = CIs.c.(ki, θi). (3.4.4)
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Figure 3.8: Geometric minimization problem. The gray circle is euclidean AdS2. The
blue line is the cut-off boundary of AdS. X and Y correspond to the insertions of
the two-point function. We separate the boundary in two arcs of length L1, L2 and
enclosing area A1,A2.

In this limit the action simplifies to

CIs.c.(ki, θi, τ, `) =
∑

i=1,2

(
k2
i

2C
τi + (θi − 2π)ki

)
+` log

(
cos

θ1

2
+ cos

θ2

2

)2

+I0. (3.4.5)

we see from this expression that we also need to require ` ∼ O(C) in order to get a

non-trivial answer. The saddle-point equations given by ∂kiIs.c. = ∂θiIs.c. = 0 simplify

for i = 1, 2 to
ki
C
τi = 2π − θi, (3.4.6)

ki

sin θi
2

=
`

cos θ1
2

+ cos θ2
2

. (3.4.7)

Following [111] this can be given a geometric meaning. In this work the authors show

that the calculation of the two-point function is equivalent to the geometric problem

of minimizing an action proportional to the sum of the area enclosed by the boundary

curve and an extra term

` log coshD, (3.4.8)

where D is the geodesic distance between the insertions of the two-point function.
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The minimization can be done in steps. First one can minimize both halves of the

boundary curve independently and get two arcs of a circle. We show this configuration

in Figure 3.8. Then the minimization is done with respect to the opening angle and

its area. This is manifest in our formula (3.4.5). The variables θ1 and θ2 correspond

to the opening angle of both circles while k1 and k2 are proportional to the radius of

curvature of each arc. Moreover the first four terms in (3.4.5) are proportional to the

total area inside the boundary curve while the term proportional to ` corresponds

to the geodesic length between the boundary insertions. It would be interesting to

derive this result from a purely geometric perspective.

For concreteness one can check this with an example. If `/C is fixed but much

smaller than one then the solutions is k1 ∼ k2 = 2πC/β and θ1 = 2π τ
β
, θ2 = 2π β−τ

β
.

This is consistent with the two-point function not affecting the geometry and com-

puting simply the renormalized geodesic distance between the points in AdS. On the

other hand for `/C fixed and large k1 ∼ 2πC/τ , k2 ∼ 2πC/(β − τ) and 2π− θi ≈ 2π.

In this limit the points X and Y become close and the boundary turns into two

full circles touching at a point, as in Figure 7 of [112]. A similar geometrical anal-

ysis can be done for an arbitrary time-ordered correlator and the generalization is

straightforward.

3.5 Concluding Remarks

In section 3.1.1 we described how to perform an analytic continuation that takes our

finite temperature two-point function to the thermofield double state. Moreover, as

explained in section 3.2, the OTO correlators are built up from insertions of the R-

matrix, which have a holographic interpretation in terms of gravitational scattering.

In section 3.3.2 we give some evidence of the Lyapunov behavior of the OTO correlator

when t & β. For even larger times t � C, starting from equation (3.2.3) we can

deduce a power-law decay as ∼ t−6 consistent with the results of [71, 72].
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In [51] we have also constructed a new type of observables that respect the

SL(2,R) symmetry. Their correlators can be found exactly through a Knizhnik-

Zamolodchikov equation approach. Since they do not seem to play a role in SYK we

will not review this here but refer the reader to Appendix D of [51].

To conclude, we mention some other possible generalizations of the formalism

presented in this chapter. It would be interesting to extend our analysis of correlation

functions to the supersymmetric cases beyond N = 1. The N = 2 theory has an

abelian R-symmetry making it a non-trivial extension. N = 2 Liouville theory is also

related to 2D black holes through an FZZ-like duality. The N = 4 case would also be

instructive, as it would correspond to an SYK-like model with non-abelian symmetry.

Another natural generalization is to study the generalized Schwarzian theory that

arises by taking the 1D limit of 2D Toda theory (see for example [113]), which has

an extended symmetry algebra, and to construct the corresponding generalized SYK

model and Jackiw-Teitelboim theory that would have this extended Schwarzian model

as its low energy description. Likewise, it would be interesting to understand whether

the methods of this chapter can be applied to the 2D Schwarzian theory proposed

in [53].

3.6 Appendix: 2d CFT Fusion Matrix

First we will present some definitions and properties of special functions appearing

recurrently in Liouville theory, both in the DOZZ formula for the OPE coefficients

and in the fusion matrix.

All special function are built upon a deformed version of the Gamma function

Γb(x) ≡ Γ2(x|b, b−1)

Γ2(Q/2|b, b−1)
, (3.6.1)

93



where Γ2(z|ε1, ε2) is the Barnes double gamma function. This function is uniquely

defined by the properties under a shift in b or b−1 of its argument. We are interested

in the b→ 0 limit. In this regime one can approximate this function by

Γb(bx) → (2πb3)
1
2

(x− 1
2

)Γ(x), (3.6.2)

Γb(Q− bx) → (2πb)−
1
2(x− 1

2). (3.6.3)

These approximations can be used to obtain the Schwarzian limit of the DOZZ for-

mula, reproducing the results in the main text.

Finally, in the integral formula for the fusion matrix the relevant combination of

Γb is called the double-sine function and defined by Sb(x) ≡ Γb(x)
Γb(Q−x)

. The following

limit will be useful below. If we keep x fixed and take b→ 0 the following limit

Sb(bx) ≈ (2πb2)x−
1
2 Γ(x). (3.6.4)

These and more results can be found in [114]. In the next section of this appendix we

will use these approximate expressions to obtain the Schwarzian limit of the fusion

matrix.

Now we will compute the fusion matrix. A formula for the 6j-symbols of

Uq(sl(2,R)), derived in [77], is given by

{ α1 α2 αs

α3 α4 αt

}
b

= ∆(αs, α2, α1)∆(α4, α3, αs)∆(αt, α3, α2)∆(α4, αt, α1)

×
∫

C
duSb(u− α12s)Sb(u− αs34)Sb(u− α23t) (3.6.5)

Sb(u− α1t4)Sb(α1234 − u)Sb(αst13 − u)Sb(αst24 − u)Sb(2Q− u)

where, following the notations of [77] we defined the following normalization factors

∆(α3, α2, α1) ≡
(

Sb(α1 + α2 + α3 −Q)

Sb(α1 + α2 − αs)Sb(α1 + αs − α2)Sb(α2 + αs − α1)

)1/2

. (3.6.6)
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The integral is defined for the cases in which all αk ∈ Q
2

+ iR. The contour C

approaches 2Q+ iR at infinity and passes the real axis in the interval (3Q/2, 2Q). In

order to take the Schwarzian limit we need an analytic continuation of this formula.

Unfortunately, although this representation makes the symmetries of the 6j-symbol

manifest, it does not allow for a natural evaluation in the Schwarzian limit. Instead

we will start a representation that does not have the symmetry manifest but makes

the analytic continuation straightforward

{ α1 α2 αs

α3 α4 αt

}
b

=
M(αs, α2, α1)M(ᾱ4, α3, αs)

M(αt, α3, α2)M(ᾱ4, αt, α1)

{ α1 α2 αs

α3 ᾱ4 αt

}an

b
(3.6.7)

with ᾱ4 ≡ Q− α4. The prefactors are defined as

M(α3, α2, α1) =

(
Sb(α1 + α2 − α3)Sb(α1 + α2 + α3 −Q)

Sb(α1 + α3 − α2)Sb(α2 + α3 − α1)

)1/2

, (3.6.8)

and following [76] we use the following integral representation of the asymmetric

6j-symbol

{ α1 α2 αs

α3 ᾱ4 αt

}an

b
≡ Sb(α2 + αs − α1)Sb(αt + α1 − α4)

Sb(α2 + αt − α3)Sb(αs + α3 − α4)

∫ i∞

−i∞
ds

4∏

i=1

Sb(Ui + s)

Sb(Vi + s)
(3.6.9)

where the Ui and Vi factors are defined as

U1 = αs + α1 − α2 V1 = 2Q+ αs − αt − α2 − α4

U2 = Q+ αs − α1 − α2 V2 = Q+ αs + αt − α2 − α4

U3 = αs + α3 − α4 V3 = 2αs

U4 = Q+ αs − α3 − α4 V4 = Q. (3.6.10)

In the limit we are interested in, which we refer to as the Schwarzian limit, we choose

the following set of parameters
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α1 = `1b, α2 =
Q

2
+ ibk2, αs =

Q

2
+ ibks

α3 = `3b, α4 =
Q

2
+ ibk4, αt =

Q

2
+ ibkt

It is important to make this identification in this order since otherwise the b → 0

limit will be ill-defined. One can check that all the pre-factors have a well-defined

b → 0 limit, by using the identities of the previous appendix involving double sine

functions. Having done this, the only non-trivial aspect of the calculation is the

integral appearing in the definition, which we denote by

I(j1, k2, j3, k4; k2, kt) ≡
∫ i∞

−i∞

ds

2πi
4π2b3

4∏

i=1

Sb(Ui + s)

Sb(Vi + s)
. (3.6.11)

In the Schwarzian limit the integrand becomes

4π2b4

4∏

i=1

Sb(Ui + s)

Sb(Vi + s)
=

Γ(s+ i[kt − ks + k2 + k4])Γ(s− i[ks + kt − k2 − k4])

Γ(s+ j1 − i(ks − k2))Γ(s+ j3 − i(ks − k4))

Γ(s− 2iks)Γ(s)Γ(j1 + i(ks − k2)− s)Γ(j3 + i(ks − k4)− s)

Before writing down the answer for this integral, let’s consider the most general

case and solve the following problem

I =

∫ +i∞

−i∞

ds

2πi

Γ(a1 + s)Γ(a2 + s)Γ(a3 + s)Γ(a4 + s)

Γ(b1 + s)Γ(b2 + s)
Γ(A− s)Γ(B − s). (3.6.12)

This can be computed by the method of residues. The integral is done over the

imaginary axis, and we take a contour that leaves the poles of Γ(A− s) and Γ(B− s)

to the right, and all the other poles to the left. For the integral relevant for the

computation of the 6j-symbols this is the proper contour to take. If we close the

contour to the right and pick up only the poles of Γ(A−s) and Γ(B−s), this integral
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is given by

I =
Γ(B − A)

∏4
i=1 Γ(A+ ai)

Γ(A+ b1)Γ(A+ b2)
4F3

[ A+ a1 A+ a2 A+ a3 A+ a4

A+ b1 A+ b2 1 +A−B
; 1
]

+ (A↔ B).

(3.6.13)

For the particular choice of parameters that appear in the 6j-symbol integral it is

instructive to recognize this sum of hypergeometric functions as a Wilson function.

This function was introduced in [78,79] and is defined as

W(α, β; a, b, c, d) ≡
Γ(d− a) 4F3

[ a+ iβ a− iβ ã+ iα ã− iα
a+ b a+ c 1 + a− d

; 1
]

Γ(a+ b)Γ(a+ c)Γ(d± iβ)Γ(d̃± iα)
+ (a↔ d),

(3.6.14)

where d̃ = (b + c + d− a)/2 and ã = (a + b + c− d)/2. As seen from the definition,

this is not the most general sum of hypergeometric functions and it requires a specific

relation between its parameters. It is explained in [78, 79] that the Wilson function

can also be written as a single 7F6 hypergeometric function evaluated at z = 1, which

makes some non-trivial symmetries of its parameters more transparent.

If we use the general integral result given in equation (3.6.13), and evaluate for

the particular parameters of equation (3.6.12), to apply it to the Schwarzian limit of

the 6j-symbol, then we obtain the final answer for the integral as

I = Γ(d± iβ)Γ(d̃± iα)Γ(a± iβ)Γ(ã± iα) W(α, β; a, b, c, d), (3.6.15)

with the identification of α→ ks, β → kt and

a = j1 + ik4, b = j1 − ik4, c = j3 − ik2, (3.6.16)

d = j3 + ik2, ã = j1 − ik2, d̃ = j3 − ik4.
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After including the prefactors we can use this formula for the integral to derive the

final expression of the 6j-symbols of Liouville theory in the Schwarzian limit, equation

(3.3.10). This says that the 6j-symbol is proportional to the Wilson function. Using

(3.3.10), let’s see how the symmetries of the 6j-symbols are recovered.

• The Wilson function is symmetric in all the last four arguments. This means

there is a symmetry k4 → −k4 and k2 → −k2. This symmetry is preserved by

the prefactor.

• Exchange j1 ↔ j3 together with k2 ↔ k4, which is also preserved by the pref-

actor. This is equivalent to the relation
{ α1 α2 αs

α3 α4 αt

}
=
{ α3 α4 αs

α1 α2 αt

}
.

• In [78, 79] another relation is proven, referred to as duality of the Wilson func-

tion,

W(ks, kt; j1+ik4, j1−ik4, j3−ik2, j3+ik2) = W(k2, k4; j1+ikt, j1−ikt, j3−iks, j3+iks).

This is also preserved by the prefactor and implies
{ α1 α2 αs

α3 α4 αt

}
=
{ α1 αs α2

α3 αt α4

}
.

• Finally, one can also exchange in both the Wilson function and the prefactor

ks ↔ kt together with k2 ↔ k4, namely

W(ks, kt; j1+ik4, j1−ik4, j3−ik2, j3+ik2) = W(kt, ks; j1+ik2, j1−ik2, j3−ik4, j3+ik4),

which implies
{ α1 α2 αs

α3 α4 αt

}
=
{ α1 α4 αt

α3 α2 αs

}
.

At the level of the Wilson function, the unitarity of the 6j-symbols has already been

proven by Groenevelt. After including the right prefactors, the 6j-symbol generates

an integral transformation equivalent to what he denotes as a Wilson transform of

type 1.
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To conclude this appendix, we give an integral expression of the 6j-symbol which

will be useful in the main text (here ka±b = ka ± kb, etc)

{ `1 k2 ks

`3 k4 kt

}
=

√
Γ(`1 + ik2 ± iks)Γ(`3 − ik2 ± ikt)Γ(`1 − ik4 ± ikt)Γ(`3 + ik4 ± iks)
Γ(`1 − ik2 ± iks)Γ(`3 + ik2 ± ikt)Γ(`1 + ik4 ± ikt)Γ(`3 − ik4 ± iks)

×
i∞∫

−i∞

du

2πi

Γ(u)Γ(u−2iks)Γ(u+ik2+4−s+t)Γ(u−iks+t−2−4)Γ(`1+iks−2−u)Γ(`3+iks−4−u)

Γ(u+`1−iks−2)Γ(u+`3−iks−4)
.

(3.6.17)
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Chapter 4

Generalizations of the SYK Model

In previous chapters we have analyzed in a lot of detail the IR dynamics of the SYK

quantum mechanical model. In this chapter and the next we will study to what

extent we can generalize the lessons from the previous chapters to two dimensional

field theories.

We will present a solvable field theory in two dimensions which has an IR descrip-

tion based on the breaking of conformal symmetry, just as the SYK model. We will

also analyze to what extent the dynamics of the IR mode is related to gravity in 3D

and controls the quantum chaos of the theory. In order to do this we will need to start

from UV fermions with an unusual action. This can be thought of as a topological

version of the Ising model, as explained in the main text.

In the rest of this section we will give an overview of the results presented in this

chapter. In sections 4.1 and 4.2 we will define the model and find a close resemblance

of its spectrum with SYK. In section 4.3 we will analyze the IR mode of this theory

and how it emerges from gravity in AdS3.

To begin, we will analyze the pattern of scale invariance in the SYK model and

the interplay between the UV and the IR. The SYK model of φi with {ψi, ψj} = δij
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with i = 1, . . . , N is specified by the 1D action

SSYK =

∫
dt
(∑

i

i
2ψi∂tψi − i

q
2

∑

i1,..,iq

Ji1...iqψi1 . . . ψiq

)
(4.0.1)

Here Ji1...jq denotes a set of gaussian random couplings. We can split (4.0.1) as

S = SUV+SIR. Note that both terms exhibit reparametrization invariance, but that ψ

transforms as a scalar in the UV, but has scale dimension ∆ = 1/q in the IR. The SYK

model exhibits approximate conformal symmetry in the IR, and has been proposed to

give a holographic description of a 2D black hole space-time. The link with the gravity

dual finds support in the fact that both sides give rise to an effective 1D Goldstone

mode whose action is described by the Schwarzian derivative [31,42,46–48,63,64,66].

In this chapter we propose a 2D QFT generalization1 of the SYK model (4.0.1),

which we argue preserves most of the desired features. In particular, via the same

reasoning that applies to 1D case, we will argue that the 2D model appears to exhibit

conformal symmetry in the IR and gives rise to an emergent Goldstone mode asso-

ciated with broken 2D reparametrization invariance. We find that the same effective

action of the Goldstone mode can also be derived from the 3D AdS gravity action,

viewed as a functional of the boundary metric. These results indicate that our 2D

model flows in the IR to a holographic 2D CFT, and may thus provide new insight

into the dynamical mechanism that underlies AdS3/CFT2 duality.

4.1 The 2D model

In this section, we will give two characterizations of our 2D model. First we introduce

the model via its Lagrangian, and then we present a Hamiltonian formulation. We

give some special attention to the UV limit of our model.

1Proposals for 2D generalizations of SYK with a discretized spatial dimension are given in [115–
117].
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4.1.1 Lagrangian formulation

A näıve attempt to generalize the SYK model to 2D is to promote the ψ variables

to 2D Majorana fermions with a standard kinetic term i
2
ψ/∂ψ. This choice assigns

canonical scale dimension [ψ] = 1/2. The interaction term then has dimension q/2,

which is at best marginal. In the 1D action (4.0.1), on the other hand, the UV term

assigns ψ scale dimension [ψ] = 0, so the interaction term is relevant and the model

is strongly coupled in the IR.

To write the 2D generalization of (4.0.1) we introduce fermionic variables ψi+ and

ψi− with i = 1, ..., N . One can think of ψ+ and ψ− as the two chiral components

of a 2D Majorana fermion. However, to preserve the essential features of the SYK

dynamics, we replace the usual fermion kinetic term by the UV term in the following

2D action

S = SUV + SIR

SUV =
∑

i

∫
d2x εµνψi+∂µψ

i
+ ψ

i
−∂νψ

i
− (4.1.1)

S IR =
∑

i1,...,jq

∫
d2x Ji1 . . . jq ψ

i1
− . . . ψ

iq
− ψ

j1
+ . . . ψ

jq
+

where Ji1...jq denote a set of gaussian random couplings with

〈
(Ji1...jq)

2
〉

=
J2 (q−1)!q!

N2q−1
(no sum) . (4.1.2)

The unconventional kinetic term2 in SUV is chosen such that ψ has canonical scale

dimension [ψ]
UV

= 0. The couplings in SIR thus have dimension [J ] = 2. The

interaction term is therefore relevant and dominates the IR dynamics.

The total action defines a proper relativistic QFT, but does not come with a fixed

light cone. Both terms in (4.1.1) do not depend on a choice of metric: the UV term is

2The quartic kinetic term in (4.1.1) can be viewed as a fermionic cousin of the Nambu-Goto
action. It is also similar to the fermionic Wess-Zumino term that appears in the Green-Schwarz
superstring action [118].
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topological, whereas the IR term only requires a choice of integration measure. SUV is

reparametrization invariant if ψ± transform as scalars, while SIR has reparametriza-

tion symmetry provided the fermions transform as ψia(x) →
∣∣det ∂x̃µ

∂xν

∣∣1/2q ψ′ai(x̃(x)).

The fact that the UV and IR transformation laws are different is a first hint that

the model may give rise to an effective Goldstone mode associated with broken

reparametrization symmetry. The UV and IR action still share area preserving dif-

feomorphisms as a common symmetry group.

Note that the quartic kinetic term involves a diagonal pairing between the chiral

partners ψi+ and ψi−, but the IR interaction term does not. The action (4.1.1) is

invariant under local Lorentz transformations ψi± → λ±1ψi±. For the UV action,

these can act independently on each sector. We will treat the overall local Lorentz

invariance as a gauge symmetry.

The quartic kinetic term is a central new ingredient of our proposal. So it is

important to understand its physical role and consequences. We have seen some of

its desirable properties. Some apparent drawbacks are that it obscures the form of

the anti-commutation relations and does not produce a standard fermion propagator.

To gain some further insight, let us take a closer look at the theory defined by SUV

just by itself.

4.1.2 UV limit: Topological Ising CFT

The UV theory splits up into N decoupled topological theories with a single pair of

chiral Majorana fermions each. Let us focus on one of these UV sectors. A non-

linear fermionic action similar to SUV with N = 1 was recently considered in [119] in

the context of a proposed topological theory of Majorana edge modes of a px + ipy

superconductor.3

3A similar topological fermionic model has also been considered by D. Haldane (private commu-
nication).
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By introducing Hubbard-Stratonovich variables e±µ we can rewrite the UV action

as

S =
1

2

∫
d2x εµν

(
eaµ ψa∂νψa − εabe

a
µ e

b
ν

)
. (4.1.3)

with a = ±. This action is manifestly reparametrization and local Lorentz invariant.

We can think of the eaµ variable as a Cartan zweibein, that parametrizes a dynamical

2D metric and local Lorentz frame. For fixed eaµ, the action (4.1.3) has a conventional

fermion kinetic term. Integrating out eaµ gives back the quartic action.

Let us take a brief look at the classical theory. The equations of motion of (4.1.3)

imply

εµνe+
µ ψ+∂νψ+ = 0, e+

µ = ψ−∂µψ−,

(4.1.4)

εµνe−µψ−∂νψ− = 0, e−µ = ψ+∂µψ+.

Locally we can introduce two scalar fields X± such that

e+
µ = eϕ+∂µX

+, e−µ = eϕ−∂µX
−. (4.1.5)

We can then solve the equation of motion (4.1.4) by setting ψ−(X−) and ψ+(X+). So

for a moment it looks like ψ− and ψ+ behave like a pair of chiral fermions that prop-

agate along two independent light-cone directions specified by X− and X+. However,

from (4.1.4) and (4.1.5) we also deduce that

εµν∂µX
+∂νX

− = 0 (4.1.6)

which can only be solved if the two light-cone directions in fact coincide. So the

UV model (4.1.3) does not have true propagating modes. As we will argue below, it

describes a topological field theory.
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Introducing a dynamical 2D metric via gµν = ηabe
a
µe
b
ν , assembling ψ+ and ψ− into

a two component fermion, and performing a simple field rescaling ψ̃ = g1/8ψ, we may

further rewrite (4.1.3) as a standard action of a 2D Majorana fermion coupled to 2D

gravity

S =

∫ √
g
( i

2 ψ̃
/∇ψ̃ − 1

)
. (4.1.7)

This rewriting of SUV is closely analogous to the procedure that recasts the Nambu-

Goto action into that of a free boson coupled to 2D gravity. Minimal models coupled

to 2D gravity have been studied extensively, starting with KPZ [120]. Our treatment

will need to be somewhat different. In the end, we want to be able to add the IR action

in (4.1.1) as an interaction term. Since the interaction term is invariant only under

area preserving diffeomorphisms, we are not allowed to treat the full diffeomorphism

group as a gauge symmetry of the UV theory. So instead of viewing the model as a

gravitational theory, we will treat it as a topological CFT with local gauge invariant

observables [121–124].

Equations (4.1.3) and (4.1.7) describe a 2D Ising CFT with gauged Virasoro sym-

metry. The gauging projects out all Virasoro descendent and leaves only three local

observables given by the dressed primary operators: the unit operator 1, the spin

field σ and

ε(x) = ψ+(x)ψ−(x). (4.1.8)

We will call this theory the topological Ising CFT. It is the simplest example of a

topological RCFT. Some relevant properties of topological RCFTs are summarized

in the appendix. For the purpose of our main discussion here, it is sufficient to note

that:

• In Euclidean signature, the correlation functions of local observables are indepen-

dent of positions of the operators. They equal an integer, given by the number of

independent chiral conformal blocks associated with the corresponding CFT corre-
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  Figure 4.1: In a topological CFT, local operators are attached to two Wilson lines
that connect to past null infinity. Whether two operators are space-like or time-
like separated is a topological distinction, encoded via the relative ordering of the
asymptotic end-points x±1 and x±2 of the respective Wilson lines. The bulk has no
fixed metric.

lation function [124].

• The three gauge invariant local observables ε, σ and 1 all have scale dimension zero.

The operator algebra forms a commutative, associative ring isomorphic to the Ising

fusion rules

1× 1 = 1, 1× σ = σ, 1×ε = ε, ε×ε = 1, ε× σ = σ, σ × σ = 1 +ε.

• In Minkowski space, TCFT correlation functions acquire non-trivial position de-

pendence due to operator ordering. This dependence reflects the monodromy of

the chiral conformal blocks, or equivalently, the topological braid properties of the

chiral CFT operators.

Let us elaborate this last point. Just like in an ordinary RCFT, local observables in

a topological RCFT can be factorized into a sum of chiral components. The properties

of these chiral components are made most manifest by formulating the TCFT as a

gauged WZW model [124]. In this formulation, the chiral operators are attached to

a Wilson line of a flat gauge field that stretches out to the corresponding (past or

future) null infinity. The Wilson lines encode the topological braid properties of the

chiral operators of the CFT.
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Hence local operators in a TCFT look as indicated in Figure 4.1. The space-

time position of a local operator is labeled by the locations x+
i and x−i where the

Wilson lines attach to past null infinity. Since null infinity of 2D Minkowski space-

time is one-dimensional, time ordering again becomes topological. The 2D light-cone

thus also becomes a topological notion, that divides 2D space-time into four regions.

Correspondingly, for each pair of operators we can distinguish four types of relative

separations: past, future, left and right. Thanks to the presence of the Wilson lines,

these four are all topologically distinct.

Specializing to the simplest example: for the 2-point function of two ε operators

in the topological Ising model, the prescription outlined above and in the appendix

reduces to

〈
Tε(1)ε(2)

〉
TCFT

=





〈ψ+(1)ψ+(2)〉〈ψ−(1)ψ−(2)〉 = 1 F

〈ψ+(2)ψ+(1)〉〈ψ−(1)ψ−(2)〉 = −1 R

〈ψ+(1)ψ+(2)〉〈ψ−(2)ψ−(1)〉 = −1 L

〈ψ+(2)ψ+(1)〉〈ψ−(2)ψ−(1)〉 = 1 P

2

that f± = e�±dX± and, after a simple field rescaling,
write the fermion kinetic term as  �

+@� 
i
+ +  �@+ �.

The HS variables fa
µ thus specify a dynamical light-cone

direction. Finally, we note that the action (2) has a gauge
symmetry under local rescalings  i

± ! �±1 i
±.

Schwinger-Dyson equations

F(x1, x2) =
1

N2

X

i,j

h i
+(x1) 

j
�(x1) 

i
+(x2) 

j
�(x2)i

(5)
= G+(x1, x2)G�(x1, x2)

Ga(x1, x2) =
1

N

X

i

h i
a(x1) 

i
a(x2)i, (6)

S

N
=
X

a=±
log Pf(fa^ d � ⌃a) +

Z
f+^ f�

(7)

� 1

2

Z Z �
⌃aGa � J2

q
(G+)q(G�)q

�

⌃+(x) = J2G+(x)q�1G�(x)q (8)

⌃�(x) = J2G�(x)q�1G+(x)q (9)

�
✏µ⌫f+

µ @⌫G+ � ⌃+⇤ G+

�
(x) = �2(x)

(10)�
✏µ⌫f�

µ @⌫G� � ⌃�⇤ G�
�
(x) = �2(x)

fa
µ(x) =

@Ga(x, y)

@yµ

��
y!x

, (11)

Conformal limit

At this point the picture is very similar to the SYK
model in terms of diagrams. We can sum these water-
melon diagrams by writing a self-consistency equation for
the propagators and the self energy

G+(k)⌃+(k) = �1 (12)

G�(k)⌃�(k) = �1. (13)

The corrections are higher order in N or in 1/µ. This is
the analogue of the large J limit of the SYK model.

Two-point function

G+(x) = b
sgn(x+)

|x+|�+s|x�|��s
, (14)

G�(x) = b
sgn(x�)

|x+|��s|x�|�+s
, (15)

⌃+(x) = J b2q�1 sgn(x+)

|x+|2���s|x�|2��+s
, (16)

⌃�(x) = J b2q�1 sgn(x�)

|x+|2��+s|x�|2���s
, (17)

We find that � = 1/q.

J2b2q =
((1 ��)2 � s2)

4⇡2 cot
�
⇡
2 (� + s)

�
tan
�
⇡
2 (�� s)

� . (18)

Four-point function

For the four-point function we have four di↵erent
choices now, which are

Fab(x1 .. x4) =
1

N2

X

i,j

h i
a(x1) 

i
a(x2) 

j
b(x3) 

j
b(x4)i

F (0)
ab =

�
�Ga(x13)Ga(x24) + Ga(x14)Ga(x23)

�
�ab. (19)

The iterative procedure gives the following expression

F (n+1) = K ⇤ F (n) (20)

F =
1

1 � K⇤ F (0). (21)

where the kernel is given by

Kab(x1 .. x4) = �J2(q � �ab)Ga(x13)Ga(x24)Lab(x34)

(22)
Lab(x) =

G+(x)q G�(x)q

Ga(x)Gb(x)

Kab = � 1

↵ab
K+

ab(x
+
i )K�

ab(x
�
i ) (23)

K�
++ =

1

|x�
13|�� |x�

24|�� |x�
34|2�2�� (24)

K�
+� =

sgn(x�
34)

|x�
13|�� |x�

24|�� |x�
34|2�2�

(25)

K+
++ =

sgn(x+
13) sgn(x+

24)

|x+
13|�+ |x+

24|�+ |x+
34|2�2�+

(26)

K+
+� =

sgn(x+
13) sgn(x+

24) sgn(x+
34)

|x+
13|�+ |x+

24|�+ |x+
34|2�2�

(27)

F

R

P

L

The four outcomes correspond to four different operator orderings. Here we intro-

duced the double time ordering symbol T = P+P−, where P± denotes the time or-

dering symbol that orders the operators according to increasing light-cone time ±x±.

We can abbreviate the above table as

〈
Tε(x1)ε(x2)

〉
TCFT

= sgn(x+
12) sgn(x−12) (4.1.9)

Here the 2D location x = (x+, x−) of each operator is defined via the position of the

end-points of the Wilson lines, as indicated in Figure 4.1. The formula (4.1.9) should

be compared with the formula 〈Tψ(τ1)ψ(τ2)〉 = sgn(τ12) for the 2-point function of
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a single free Majorana fermion.4 It forms the basis for the rest of our story. In

Appendix 4.6 we sketch how the above result (4.1.9) for the two-point function can

be derived from the UV Lagrangian via a functional integral.

More generally, applying the TCFT rules to the n-point function gives that

〈
Tε(1)ε(2) ... ε(n)

〉
TCFT

=





(−1)#(1,2,...,n) n even

0 n odd
(4.1.10)

where #(1, 2, ..., n) counts the number of times a pair of operators needs to cross each

other’s light cone in order to rearrange all operators to be space-like separated. Note

that, since ε and 1 have a unique OPE channel, at most one single chiral conformal

block contributes for each n-point function. So the value of the Euclidean n point

function is simply equal to 1.

The expression (4.1.10) can be rewritten in somewhat more familiar form as follows

〈
Tε(x1) ... ε(xn)

〉
TCFT

= Pf
(
sgn(x+

ij)
)

Pf
(
sgn(x−ij)

)
. (4.1.11)

A proof of the equality between (4.1.10) and (4.1.11) is given in Appendix A. We see

that the non-chiral n-point functions factorize into a product of two chiral factors.

This factorization property allows us to define the n-point functions of the chiral

Majorana fermions as

〈
Tψ±(x1) ... ψ±(xn)

〉
TCFT

= Pf
(
sgn(x±ij)

)
(4.1.12)

It is natural to refer to the chiral fields ψ+(x+) and ψ−(x−) as ‘topological 2D

Majorana-Weyl fermions’. They arise from the topological Ising model after per-

forming a chiral projection.

4The vacuum two-point function of free 1D Majorana fermions remains unchanged at finite tem-
perature [31,42]. The same property holds true for the vacuum two-point function in our topological
UV theory. This statement would not be true for 2D Majorana fermions with the usual kinetic term.
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Our 2D model (4.1.1) in fact makes essential use of a chiral projection of this kind.

Each term in the interaction Lagrangian in (4.1.1) contains an equal number of left-

and right chiral fermions, but the pairing can be off diagonal. In other words, the

interaction term is built up from general fermion bi-linears ψi+ψ
j
−. To allow for such

operators with i 6= j, while preserving locality, we need to perform an analog of the

GSO projection familiar from superstring theory. The complete UV theory is defined

by taking a tensor product of N topological Ising models, and then performing a chiral

projection that allows us to act with general fermion bi-linears ψi+ψ
j
−. Similar to the

GSO projection, this eliminates the non-chiral spin operators σi of each individual

topological Ising model from the UV spectrum. The resulting theory then remains

local.

4.1.3 Hamiltonian formulation

We would like to verify that the 2D action (4.1.1) defines a unitary QFT. The Hamil-

tonian formulation is usually most well adapted for this purpose. So let us write

x = (x, t) and identify the Hilbert space H of states defined on a constant time-

slice. We should then check that there are no negative norm states and that the

Hamiltonian generates a unitary time evolution. The formalism of matrix product

states [125,126] will turn out to be helpful.

In many interesting quantum many body systems, the wave function |Ψ〉 depends

in a non-trivial way on the spatial ordering of the quasi-particles. A matrix product

state (MPS) representation of a quantum state encodes this spatial dependence by

means of an auxiliary quantum system [125, 126]. To define this auxiliary quantum

system for our setting, we introduce two collections of N Majorana fermions with

anti-commutation relations

{ψi±(x), ψj±(y)} = δij, {ψi+(x), ψj−(y)} = 0, (4.1.13)
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with i, j = 1, .., N . Note that the anti-commutator does not depend on the locations

x and y. So we can simply set ψi±(x) = ψi± with {ψi±, ψj±} = δij acting on a 2× 2N/2

dimensional auxiliary Hilbert space. The role of the position x is to keep track of

spatial operator ordering within the matrix product state, in the same way that time

t can be used to keep track of time ordering for a free 1D Majorana fermion.

States in the Hilbert space H = H+ ⊗H− are given by a sum of factorized states

|ΨI
+〉|ΨJ

−〉 where I and J represent a multi-index, e.g. I = {i1, ..., ip} labeling the

internal quantum numbers of the chiral Majorana particles. Each factor |ΨI
±〉 is

represented by a many body wave function in the form of a matrix product state

Ψ
i1...ip
± (x±i1 , ... , x

±
ip

) =
〈
n±
∣∣P± ψip± (x±ip) . . . ψ

i1
± (x±i1)

∣∣0
〉

(4.1.14)

where |n±〉 is short-hand for the unique fermion number eigen state that gives a non-

zero overlap. Here P± denotes the path ordering symbol that places the operators in

spatial order with position x±k increasing from left to right for Ψ− and from right to

left for Ψ+. Alternatively, we can write the MPS wave function as a 1D path integral

Ψ
i1...ip
± (x±i1 , ... , x

±
ip

) =

∫
[dψi±] e±

∑
i

∫
dx± i

2ψ
i
±∂±ψ

i
± ψ

ip
± (x±ip) . . . ψ

i1
± (x±i1)

Note that this functional integral is reparametrization invariant in x±, and that ΨI
±

is a piece-wise constant function of the positions x±ik . In the case that all ψi’s have

the same index, it reduces to the Pfaffian expression (4.1.12).

This MPS representation provide a natural basis for the energy eigen states of

the UV theory described by the quartic Lagrangian (4.1.1) or its HS representation

(4.1.3). Due to the reparametrization symmetry, the states only depend on the spatial

ordering of the fermionic fields. Moreover, since the Hamiltonian of the UV theory

identically vanishes, all MPS states automatically have zero energy.
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The Hamiltonian of the full interacting model is defined as a linear mapping on

the MPS wave functions. It is given by a pure interaction term H = Ĥint(t) =

−
∫
dx L̂int(x, t) with

L̂int(x, t) =
∑

i1,..,jq

Ji1...jq ψ̂
i1
+ (x, t) . . . ψ̂

jq
− (x, t) (4.1.15)

the same interaction term as in (4.1.1), and where ψ̂ i
±(x±) with x± = x±t now denote

operators that insert ψi±(x±) into the corresponding chiral MPS wave function. Here

we reintroduced the time dependence as prescribed by the interaction picture. Note,

however, that the free Hamiltonian H identically vanishes. The t dependence is

therefore spurious, except for its effect on operator ordering. The dependence on the

two light cone coordinates x± arises due to the intrinsic path-ordering of the matrix

product states.

Integrating the Schrödinger equation produces a double lightcone-time ordering

prescription

T exp
(
−i

∫
dt Ĥint(t)

)
= T exp

(
i

∫
dx+

∫
dx−L̂int(x

+, x−)

)
(4.1.16)

where T ≡ P+P− puts all operators in order of increasing light cone time, both along

the x+ and −x− direction. In this way, through the use of the matrix product state

formalism, we have made contact with the TCFT prescription outlined in the previous

subsection.

The last remaining task is to provide an inner product on H. It seems reasonable

to assume that it can be defined such that the states |ΨI
±〉 form an orthonormal basis

of the respective chiral Hilbert spaces H±. In principle one should be able to derive

this inner product from the path-integral formulation, starting from the action (4.1.1),

or vice versa, derive the path-integral and the action (4.1.1) from the Hamiltonian

formalism outlined here. We leave this problem for future study.
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4.2 Schwinger-Dyson equations

Now that we have introduced the 2D model, we would like to analyze its large N

dynamics. The factors of N in (4.1.2) are chosen so that the model admits a regular

large N limit. We would like to analyze the low point correlation functions of the

2D model, working to leading order in 1/N . Throughout, we will assume that the

standard SYK analysis applies to our 2D model. In particular, we assume that we

can use the replica method to take the disorder average, and that the model does not

undergo a spin glass transition.

4.2.1 SD equations at large N

The simplest non-trivial correlation function with a regular large N limit is

F(x1, x2) =
1

N2

∑

i,j

〈
ψi+(x1)ψj−(x1)ψi+(x2)ψj−(x2)

〉

At leading order in 1/N , it factorizes as

F(x1, x2) = G+(x1, x2)G−(x1, x2) (4.2.1)

We can identify G±(x1, x2) with the dressed fermionic two point functions

G±(x1, x2) =
1

N

∑

i

〈
ψi±(x1)ψi±(x2)

〉
, (4.2.2)

with the understanding that each should always appear in the local combination

(5.3.10).

To compute the two point functions, we can try to follow the standard SYK

procedure and sum all relevant leading order diagrams. We start by writing the UV

action in the Hubbard-Stratonovich form (4.1.3) by introducing a total of N Cartan
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frames e±i , one for each of the N sectors. It is not difficult to see, however, that by

restricting ourselves to observables of the type (4.2.1) and (4.2.2), defined as equal

weighted sums over all N sectors, that only the collective field

e± =
1

N

∑

i

e±i (4.2.3)

participates in the large N dynamics. More precisely, if we split each frame variable

as e±i = e± + ẽ±i , the deviation ẽ± will decouple in correlation functions of averaged

observables. This property follows from the fact that the interaction term between

frame variables and ψi± is linear in e±i , and that the fermion propagator lines involve

a uniform sum over i. So the frame variables always couple via

=(""""""""""""")"1 +

=(""""""""""""") "1 +

2

that f± = e�±dX± and, after a simple field rescaling,
write the fermion kinetic term as  �

+@� 
i
+ +  �@+ �.

The HS variables fa
µ thus specify a dynamical light-cone

direction. Finally, we note that the action (2) has a gauge
symmetry under local rescalings  i

± ! �±1 i
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Schwinger-Dyson equations

F(x1, x2) =
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N2
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i,j
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+(x1) 

j
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+(x2) 

j
�(x2)i

(5)
= G+(x1, x2)G�(x1, x2)

Ga(x1, x2) =
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⌃+(x) = J2G+(x)q�1G�(x)q (8)
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fa
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Conformal limit

At this point the picture is very similar to the SYK
model in terms of diagrams. We can sum these water-
melon diagrams by writing a self-consistency equation for
the propagators and the self energy

G+(k)⌃+(k) = �1 (12)

G�(k)⌃�(k) = �1. (13)

The corrections are higher order in N or in 1/µ. This is
the analogue of the large J limit of the SYK model.

Two-point function

G+(x) = b
sgn(x+)

|x+|�+s|x�|��s
, (14)

G�(x) = b
sgn(x�)

|x+|��s|x�|�+s
, (15)

⌃+(x) = J b2q�1 sgn(x+)

|x+|2���s|x�|2��+s
, (16)

⌃�(x) = J b2q�1 sgn(x�)

|x+|2��+s|x�|2���s
, (17)

We find that � = 1/q.
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�
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2 (�� s)

� . (18)
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For the computation of large N correlation functions, we can thus replace the frame

variables by their large N average (4.2.3) and use the following effective form of the

UV action

SUV =
1

2

∫
d2x εµν

(∑

i,a

eaµ ψ
i
a∂νψ

i
a −Ne+

µ e
−
ν

)
. (4.2.4)

Notice that there is now an explicit factor of N in front of the last term.

We now proceed to apply the same large N logic as in 1D. We write the per-

turbation series for fixed e as a sum of ‘iterated melon’ diagrams [31, 41, 42]. The

fermions then have a standard kinetic term and propagator. At the end, we integrate

out e, which diagrammatically amounts to connecting all ψ+ and ψ− lines by an e

propagator
〈
e+
µ (x1) e−ν (x2)

〉
=

1

N
εµνδ(x12). (4.2.5)

Note that each Wick contraction e+ e− produces a factor of 1/N .
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A slight problem with the procedure just outlined, however, is that the ψ prop-

agators are singular at e = 0, which is the point around which we wish to define

the perturbation series. So whenever the e-line connects to a ψ propagator, the ψ

propagator in fact collapses to a point. This is not surprising, since we are in fact

trying to write a perturbative expansion for an action (4.1.1) without any quadratic

term.

A more practical approach is to recast the model in terms of bosonic bi-local

dynamical mean fields, given by the two-point function G±(x1, x2) and self-energies

Σ±(x1, x2).5 After performing the disorder average and integrating out the fermions,

one obtains the following effective action

S/N = −
∑

a=±
log Pf(εµνeaµ∂ν − Σa)−

∫
εµνe+

µ e
−
ν

(4.2.6)

+
1

2

∫ ∫ (
ΣaGa −

J2

q
(G+)q(G−)q

)

This effective action looks quite similar to the dynamical mean field action of the 1D

SYK model [31, 42, 127]. The key new features are the doubling of the number of

fields and the presence of the frame variable ea.

Since the action has an overall factor of N , the Schwinger-Dyson equations for

G± and Σ± reduce in the large N limit to the following saddle point equations

Σ±(x12) = J2G±(x12)q−1G∓(x12)q, (4.2.7)

(
εµνe±µ ∂νG± − Σ± ∗ G±

)
(x12) = δ2(x12), (4.2.8)

e±µ (x1) =
∂G∓(x12)

∂xµ2

∣∣∣
x2→x1

. (4.2.9)

5Here and in the following we use the same symbols for the dynamical fields as for the on-shell
solutions.
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Figure 4.2: Diagrammatic representation of the SD equations (4.2.7), (4.2.8) and
(4.2.9) for q = 2.
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=

= + + +

(4.2.10)

where each line with a blob represents a dressed propagator G±(x12) of the chiral

Majorana fermion. The color of the blob represents whether it is a ψ+ (blue) or a ψ−

(grey).

The SD equations for q = 2 are then depicted as in Figure 4.2. The left-hand side

denotes each inverse propagator, while the first term on the right-hand side denotes

the self-energy. The second term is the contribution from the dynamical kinetic term,

which takes the form of a tadpole diagram attached via an e propagator.
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4.2.2 Conformal limit

Continuing the standard SYK logic, we first focus on the IR limit. The interaction

term then dominates and, working to leading order in β2J , we can drop the UV term.

The SD equation (4.2.8) then truncates to

(
G± ∗ Σ±

)
(x12) = −δ(x12). (4.2.11)

In momentum space (and assuming translation invariance) this further simplifies to

G±(k)Σ±(k) = −1. (4.2.12)

We will solve equations (4.2.7) and (4.2.11) via a scaling Ansatz momentarily.

Equations (4.2.7)-(4.2.11) are diffeomorphism invariant, and as in the 1D model,

this points to a zero mode of the linearized SD equations. In the following sub-

section, we will exhibit this zero mode by studying the four point function. As a

quick preparation, consider a change in G± that corresponds to a reparametrization

(x+, x−)→ (x+ + ε+, x− + ε−). In the IR limit this is still a solution of SD equations

if we take the Green function and self energy to transform accordingly. The variation

of equation (4.2.11) gives the conditions

δG± ∗ Σ± +G± ∗ δΣ± = 0. (4.2.13)

We can take the product on the right by (Σ±)−1 = G± to isolate δG± and use the

expression for Σ± in terms of G± in the second term to eliminate the self energy from

the equation. The above equation then takes the form, c.f. [31] [42]

(δab −Kab) ∗ δεGb = 0. (4.2.14)
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where Kab is the integration kernel

Kab (x1...x4) = −J2(q − δab)Ga(x13)Ga(x24)Lab(x34)

(4.2.15)

Lab (x) =
G+(x)q G−(x)q

Ga(x)Gb(x)

This shows that the eigenvalues of the kernel are 1 when evaluated at reparametriza-

tions of the conformal answer. Below we will make this formal conclusion explicit.

Two-point function

We will now study the SD equations, following the approach of [39, 40]. In the IR

regime, we adopt the following scaling Ansatz for the dressed propagators and self

energies

G±(x) = b
sgn(x±)

|x+|∆±s |x−|∆∓s
(4.2.16)

Σ±(x) = J2 b2q−1 sgn(x±)

|x+|2−∆∓s |x−|2−∆±s

with b some constant. Here ∆ and s denote the sum and difference of the left-

and right scale dimensions. In the following, we will sometimes use the notation

∆± = ∆ ± s. The sign functions in (4.2.16) implement Fermi statistics, and match

with 2-point function of the UV theory. The IR Ansatz breaks the diffeomorphism

invariance of the IR theory. A new feature of the 2D model, relative to the 1D case,

is that the sign and scaling functions specify a choice of light-cone direction and a

signal propagation speed.

The Ansatz (4.2.16) solves the SD equations (4.2.7) and (4.2.11) provided that

∆ = 1/q and

J2b2q =
((1−∆)2 − s2)

4π2 cot
(
π
2
(∆ + s)

)
tan
(
π
2
(∆− s)

) ≡ α2
sq. (4.2.17)
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K++ = q−2q K+− = q−1 q−1

K−+ = q−2qK−− =q−1q−1

Figure 4.3: Diagrammatic definition of the kernel that gives the four-fermion corre-
lation function. Here each line represents multiple dressed propagators, with multi-
plicity as indicated.

The value of the spin s is not determined by the SD equations.6 For generality, we

will treat s as a free parameter. The most reasonable and consistent choice is to set

s = ∆. We will call this the chiral limit, as it preserves the property that ψ+ and ψ−

depend only on one light cone coordinate. Note, however, that the s → ∆ limit has

to be taken together with a J →∞ limit, while keeping b fixed.

Four-point function

Next we study the following four types of four-point functions

Fab(x1 ... x4) =
1

N2

∑

i,j

〈ψia(x1)ψia(x2)ψjb(x3)ψjb(x4)〉

with a, b = ±. Like the two-point functions, these have to be thought of a part

of a locally left-right symmetric correlation function. The 1/N corrections to these

four point functions can be computed with the help of the kernel Kab introduced in

(4.2.15).

To leading order in 1/N , we have

F (0)
ab =

(
−Ga(x13)Ga(x24) +Ga(x14)Ga(x23)

)
δab. (4.2.18)

6 A similar issue appears in [94] for the supersymmetric SYK model.
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As explained in [31,41,42], the 1/N corrections to Fab are found by summing up the

n-th order contributions F (n)
ab defined via the recursive formula

F (n+1)
ab =

∑

c

Kac ∗ F (n)
cb (4.2.19)

where Kab denotes the kernel (4.2.15) and ∗ denotes the double convolution product

defined by identifying and integrating over the last two coordinates of Kab and the

first two coordinates in F (n)
cb . The diagrammatic form of the matrix elements of the

kernel is depicted in Figure 5.1.

The iterative procedure gives the following expression

F =
1

1−K∗ F
(0). (4.2.20)

where we have absorbed the matrix product into the definition of ∗. Inserting the

conformal Ansatz (4.2.16) into (4.2.15) gives the factorized expression

Kab = − 1

αab
K+
ab(x

+
i )K−ab(x

−
i ) (4.2.21)

1

αab
= (q − δab)α2

sq (4.2.22)

with αsq defined in equation (4.2.17).

Two representative examples of the chiral kernels are

K−++ =
1

|x−13|∆−|x−24|∆− |x−34|2−2∆−
(4.2.23)

K+
++ =

sgn(x+
13) sgn(x+

24)

|x+
13|∆+|x+

24|∆+ |x+
34|2−2∆+

(4.2.24)

with ∆± = ∆ ± s. The action of K±ab on the four point functions can be computed

with the standard SYK technique, by decomposing each Fab in terms of eigenfunctions
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of the conformal Casimir [30, 31, 41, 42]. These eigenfunctions are given by the three

point functions of the fermion with an operator of some given left and right conformal

dimension (h, h̄). A novel feature of our model is that the eigenvalues of the kernels

are given by two different types of integrals. One type of integral looks SYK-like
∫
dx1dx2K

+
++(0, 1, x1, x2)sgn(x12)|x12|h−∆+. We denote the corresponding eigenvalue

by k∆+(h). The other type of integral looks like
∫
dx1dx2K

−
++(0, 1, x1, x2)|x12|h−∆− .

We denote the corresponding eigenvalue by k̃∆−(h). When acting on an eigenstate

the kernel then takes the form

Kab =
1

αab




k∆+(h) k̃∆−(h̄) q
q−1

k̃∆−(h)k∆+(h̄)

q
q−1

k̃∆−(h)k∆+(h̄) k̃∆−(h)k∆+(h̄)


 (4.2.25)

The kernel Kab gives useful information about the spectrum. As a first consistency

check, let us act with K on an eigenmode with conformal dimension (h, h̄) = (2, 0).

This mode corresponds to the stress tensor, and is expected to describe the effective

Goldstone mode associated with broken reparametrization invariance. We find that

Kab
∣∣
h = 2

h̄ = 0

=




(−1+∆)(∆+s)
∆(2−∆−s)

−∆−s
∆(2−∆−s)

−∆+s
∆(2−∆+s)

(−1+∆)(∆−s)
∆(2−∆+s)


 (4.2.26)

which manifestly satisfies det(1 −K) = 0. Hence the intermediate states with scale

dimension (2, 0) and (0, 2) appear as poles in the conformal strong coupling limit of

the expression (4.2.20).

In Figure 4.4 we have plotted det(1 −K) for chiral intermediate states with left

scale dimension h with h̄ = 0. For illustration, we also included the case s = 1/2

given by the dashed magenta graph. The blue graph corresponds to s = ∆ = 1/q,

which is the chiral limit with ∆−= 0. In both cases we have set q = 4. We see the

expected symmetry between h and 1 − h. For s = 1/2, there are additional zeroes
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Figure 4.4: Plot of det(1−K) as a function of the left scale dimension h with h̄ = 0.
The dashed magenta plot corresponds to ∆ = 1/4 and s = 1/2, and the blue plot to
∆ = s = 1/4.

at h = 0 and 1, which indicates the possible presence of a spin one current, c.f. [94].

The spectrum of zeroes of the s = ∆ = 1/4 case, on the other hand, looks identical

to that of the SYK model. This theory is a plausible candidate for a 2D QFT with

maximal chaos. The explicit formula for det(1−K) for h̄ = 0, s = ∆ = 1/q is

det(1−K) = 1 +
π2(q − 2)(q − 1) csc(2π

q
)

qΓ(2
q
)2
(
sin(πh) + sin(2π

q
)
)
Γ(2− 2

q
−h)Γ(1− 2

q
+h)

which coincides with the expression for 1−K in the SYK model [31,41,42]. We leave

a detailed calculation of the four-point function and the spectrum of states for future

work.

4.3 Effective action of the Goldstone mode

We would like to exhibit the effective action of the reparametrization mode. In prin-

ciple, we could try to follow the procedure used in [30,31,42], compute the correction

to the kernel Kab that follows from including the UV term of the action (4.1.1), and

use this to find the linearized action of the zero modes. We reserve this calculation

for a future project. Here we will instead make a short-cut, which appears justified
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in the case that q is small enough so that an expansion in ε = 1 − 2/q is valid [64].

Note that in our model, the q = 2 system is still an interacting QFT.

4.3.1 Double Schwarzian action

We start from the dynamical mean field action (4.2.6), and perform the redefinition

Σ±new = Σ±old− εµνe±µ ∂ν . This redefinition moves all the e± dependence into a separate

UV term

S/N = SUV + SIR

SIR = −
∑

a=±
log Pf(Σa) + 1

2

∫ ∫ (
ΣaGa − 1

qJ
2 (G+)q(G−)q

)
(4.3.1)

SUV =
1

2

∫
d2x εµνεab

(
eaµG

b
ν − eaµebν

)
(4.3.2)

Here we defined

Ga
µ(x1) = εab

∂Gb(x12)

∂xµ2

∣∣∣
x2→x1

(4.3.3)

The IR term is the same as before, and leads to the conformal and reparametrization

invariant equations of motion (4.2.7) and (4.2.11). However, because Σa is the shifted

variable, equation (4.2.11) is now exact, and equation (4.2.7) receives a subleading

correction due to the presence of the UV term (4.3.2). An exact treatment of the

consequences of this correction term could be accessible in the large q limit [42]. We

will instead look at the regime q = 2/(1− ε) with ε small, and restrict our attention

to the chiral limit s = 1/q.

The total bosonic action (4.3.1) has the same invariances as the original fermionic

action (4.1.1), namely (i) area preserving diffeomorphisms, and (ii) local Lorentz

transformations. These symmetries are shared by the UV and IR terms in the action

and we will treat both as gauge symmetries. The IR action is also invariant under
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local conformal transformations7

(u, v)→ (x+(u), x−(v)). (4.3.4)

This conformal symmetry is broken in two separate ways. Picking a particular con-

formal IR solution of the SD equations spontaneously breaks the local conformal

invariance to the global conformal group. This leads to the presence of a Goldstone

mode, parametrized by the conformal transformation (x+(u), x−(v)). Moreover, the

UV action is not invariant under the same local conformal transformation rule as the

IR action. So it induces a non-trivial effective action for the Goldstone mode.

To get the leading order form of the effective action of the Goldstone mode, we

perform a local conformal transformation on the IR propagator. It transforms as

G±(u, v, ũ, ṽ) = [x′+x
′
+]∆+ [x′−x̃

′
−]∆− G±

(
x±, x̃±

)
(4.3.5)

with (x±, x̃±) =
(
x+(u), x−(v), x+(ũ), x−(ṽ)

)
and x′+ = ∂ux+(u), etc. In the chiral

limit ∆−→ 0 and ∆+ = ∆ = 1/q = 1
2
(1 − ε), the dressed propagator behaves in the

conformal regime as G±(x, x̃) = b1−ε
|x±−x̃±|1−ε . We can now use this expression, transform

it via (4.3.5), plug it into the UV action (4.3.2), and extract the dependence on x+(u)

and x−(v).

The conformal propagator diverges in the coincident limit. This divergence is

expected to be removed by the UV modification. A more practical method is to

take the coincident limit while subtracting the singular contribution in the (u, v)

coordinates. Working to leading order in ε and using that

∂u



√
x′(u)x′(ũ)

|x(u)− x(ũ)|
−

1

|u− ũ|



∣∣∣∣∣ũ = u

=
1

12

{
x, u
}

(4.3.6)

7In the rest of this subsection, we temporarily move the upper ± index on x± to a lower index.
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with {x, u} = x′′′
x′ −3

2

(
x′′
x′
)2

the Schwarzian derivative, we find that the effective action

of the reparametrization modes takes the form

SUV

N
=

b

12

∫
dudv

(
e+
v

{
x+, u

}
+ e−u

{
x−, v

})
−
∫
εµνe+

µ e
−
ν (4.3.7)

After integrating out e±, we obtain

SUV

N
=

αS
J

∫
dudv

{
x+, u

}{
x−, v

}
. (4.3.8)

Applying the ε expansion method of [64] gives that

αS =
αsq
144

(
1− 2ε2) + O(ε4) (4.3.9)

with αsq defined in (4.2.17). The effective action (4.3.8) is a functional on the group

of the 2D conformal transformations. It generalizes the Schwarzian action for the

reparametrization mode of the SYK model. We expect that, by generalizing the

analytic and numerical analysis of [42] to the 2D model, it should be possible to

compute the pre-coefficient αS for general values of q.

4.3.2 Free energy and spectral density

By considering the transformation of the Schwarzian derivative under conformal map-

pings, we can extract useful information about the behavior of the theory on a circle

and at finite temperature. At finite temperature, the effective action (4.3.8) receives

additional terms

αS
J

∫
dudv

(
T−−{x+, u}+ T++{x−, v} + T++T−−

)

T++ =
π2

β2
+

(x′+)2, T−− =
π2

β2
−

(x′−)2, (4.3.10)
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with β± the left- and right-moving inverse temperature. This term is subdominant at

low temperature, but becomes important at distance scales of order the thermal wave

length. If we take, say, the left moving high temperature limit, we obtain a single

Schwarzian action for the right-movers. This suggests that the 2D model reduces to

the 1D SYK model by performing a DLCQ limit.

Equation (4.3.8) captures the explicit breaking of conformal invariance of the IR

theory due to UV term in (4.1.1). Its form as a product of two chiral Schwarzian

derivatives, as well as the finite temperature correction term (4.3.10), indicates that

the leading order correction to the IR conformal field theory takes the form of an

irrelevant T T̄ deformation, given by the product of the left- and right-moving stress

tensors [128–131].

To test this interpretation, let us consider the model on a cylinder with circum-

ference L = 2π.8 The conformal mapping from the plane to the cylinder induces

a negative Casimir energy, which can be taken into account by setting {x+, u} =

{x−, v} =−1/2 in equations (4.3.8)-(4.3.10). Now consider the contribution of the ef-

fective action of the Goldstone mode to the free energy at finite temperature. Setting

β± = β, we find that

−βF ⊃ −NαS
J

∫ 2π

0

dx

∫ β

0

dt
(
−1

2
+
π2

β2

)2

(4.3.11)

=
2πNαS

4J

(
−β +

4π2

β
− 4π4

β3

)
.

We wish to compare this result with the free energy of a CFT of central charge

c with a T T̄ deformation. The energy spectrum and thermodynamics of this class

of theories was studied in detail in [128–130], and a holographic interpretation9 has

8So all dimensionful quantities are measured in units of the cylinder radius.
9The holographic dual of the T T̄ deformation proposed in [131] is closely similar to the candidate

AdS2 dual interpretation of the 1D SYK model developed in [46–48], built on the earlier work [45].
In both cases, the boundary of the AdS space-time is moved into the bulk. On the CFT side, this
represents an explicit breaking on conformal invariance and gives rise to an associated dynamical
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recently been proposed in [131]. Using the results of [128] [131], one finds that the

free energy of a deformed CFT with action SCFT +
∫
µT T̄ has the following small

temperature expansion

−βFCFT+µTT̄ = −cβ
12

+
π2c

3β
− π3µc2

72β3
+ ... (4.3.12)

The first two terms are the standard CFT expression for the Casimir energy and

specific heat. Comparing the expressions (4.3.11) and (4.3.12) suggests that the IR

limit of our model is a 2D CFT with central charge c, and that the leading deviation

on conformal invariance is given by a T T̄ interaction with coupling µ, with c and µ

given by

c

24π
=
NαS
4J

, µ =
24π

c
=

4J

NαS
. (4.3.13)

This reciprocal relation between c and µ precisely agrees with the relationship derived

from the holographic dictionary proposed in [131].

By performing an inverse Laplace transform of the partition function Z(β) = e−βF

with respect to β, we can extract the spectral density as a function of the energy E:

ρ(E) ∝ exp

(
2π

√
cE

3

(
1 − 3E

2c
+ ...

))
(4.3.14)

The leading term is the Cardy formula10 and the subleading term reflects the explicit

breaking of conformal symmetry. This formula precisely matches with the low energy

expansion of the exact equation of state EL− µ
4
E2 = 3

2πc
S2 relating the energy and

the entropy S = log ρ(E) of the T T̄ deformed CFT [131], provided we set L = 2π

and µ as in (4.3.13).

pseudo-Goldstone mode. We will make the AdS3 interpretation of the action (4.3.8) more explicit
in the next subsection.

10Here E is defined such that the CFT ground state has negative Casimir energy E/L = −c/12.
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4.3.3 Relation with AdS3 gravity

The double Schwarzian action (4.3.8) can be related to the 3D AdS gravity action as

follows.

In the above derivation we identified the effective Goldstone degree of freedom

with the group of ‘passive’ conformal reparametrizations (4.3.4). To match with

the gravity side, it is convenient to represent the Goldstone mode as an ‘active’ 2D

conformal transformation

(x+, x−)→
(
U(x+), V (x−)

)
(4.3.15)

defined as the inverse mapping of (4.3.4). In terms of (U , V ), the effective action

(4.3.8) reads

S[U , V ]

αSN/J
=

∫
d2x S+(U)S−(V ), (4.3.16)

where S+(U) and S−(V ) are defined via

S+(U) ∂+U = {U , x+}, S−(V ) ∂−V = {V , x−}. (4.3.17)

We will now show that the effective action (4.3.16) is equal to the 3D gravity

action

S[U , V ] = Sgrav[U , V ] (4.3.18)

evaluated on a suitable classical solution of 3D gravity defined on a AdS3 space-time

with finite radial cut-off, specified as follows. Let B denote the boundary of the

cut-off AdS3 space-time. We define the Einstein action via

Sgrav =
1

16πGN

∫ √
g
(
R− 2Λ

)
+

1

8πGN

∫

B

(K + 1)
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where, besides the usual extrinsic curvature term K, we included a boundary cos-

mological constant identical to the standard counter term used in holographic renor-

malization. The classical solution associated with (U , V ) is defined via the boundary

condition that the pull back of the 3D bulk metric to B is a flat 2D metric given by

ds2|B = dUdV = U ′(x+)V ′(x−)dx+dx−. (4.3.19)

The holographic identification (4.3.18) holds if we identify the bulk Newton constant

as

1

16πGN

=
NαS
4J

. (4.3.20)

Equation (4.3.18) looks a little surprising at first. One might think that, since the

gravity action is reparametrization invariant, it should be independent of U(x+) and

V (x−). Recall, however, that the Lagrangian changes by a total derivative under an

active diffeomorphism, and that 2D conformal transformations necessarily extend all

the way to null infinity. A helpful way to visualize the asymptotic region is by mapping

the 2D space-time onto a Penrose diagram. The conformal transformations are then

analogous to the BMS group. Once we choose a preferred reference coordinate system,

the dependence of the action on U(x+) and V (x−) becomes finite and computable.

The holographic identification (4.3.18) can be derived in various ways. One is

direct computation. Another route is to show that the action (4.3.16) satisfies the

Hamilton-Jacobi equation that governs the radial evolution of a classical action in 3D

gravity. An instructive derivation goes via the following three basic steps.

First we reintroduce the frame variables e± and rewrite (4.3.16) as the minimum

over e± of ∫
d2x
(
e−−S+(U)+ e+

+S−(V )− εµνe+
µ e
−
ν

)
(4.3.21)
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Next we introduce the background zweibein

E+
µ dx

µ = dU , E−µ dx
µ = dV (4.3.22)

and make use of the relationship between the Polyakov-Liouville action (viewed as a

functional of the zweibein)

SL[E ] =
1

8π

∫
R�−1R, gµν = ηabE

a
µE

b
ν (4.3.23)

and the Schwarzian derivative to write

S[U , V ]

αSN/J
= min

e

(
SL

(
E + e

)
−
∫
εµνe+

µ e
−
ν

)
. (4.3.24)

Here we used that, in the linearized approximation, SL[E + e] =
∫

(e−− S+(U) +

e+
+ S−(V )). Note that the Polyakov action vanishes for the flat metric (4.3.22) and

that {U , x} = −1
2
(φ′)2 + φ′′ with φ = logU ′.

Since the Polyakov action arises by integrating out a 2D CFT, the identity (4.3.24)

is yet another indication that the IR theory describes a 2D CFT in a fluctuating metric

gµν = ηab(E
a
µ + eaµ)(Eb

ν + ebν). Integrating out the metric fluctuations first produces a

CFT with a T T̄ deformation.

The third and final step in the derivation of (4.3.18) uses an (underappreciated)

result of Freidel that establishes a direct transformation between the 3D Einstein

action evaluated on a classical background and the Polyakov action evaluated on the

boundary metric [132]

Sgrav[E ] = min
e

(
SL

(
E + e

)
−
∫
εµνe+

µ e
−
ν

)
(4.3.25)
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Here Sgrav(E) is the classical bulk gravity action with boundary conditions gµν =

ηabE
a
µE

b
ν . The formula (4.3.25) forms the basis of the holographic interpretation

of the T T̄ deformed theory proposed in [131]. In our context, it provides the link

between 3D gravity and the choice of kinetic term in our proposed 2D analog of the

SYK model. A detailed derivation of the relation (4.3.25) can be found in [132].

4.4 Conclusion

We have proposed a 2D QFT generalization of the SYK model, consisting of N

Majorana fermions with a random non-linear interaction. While the quartic kinetic

term of our action (4.1.1) looks somewhat unconventional, it can be rewritten as

in (4.1.3) as a conventional quadratic kinetic term coupled to a dynamical metric.

The total action is invariant under area preserving diffeomorphisms and local Lorentz

transformations. We treat both invariances as gauge symmetries.

We have presented evidence that the model exhibits conformal symmetry in the IR,

and that the low energy dynamics is dominated by an emergent Goldstone-like mode

associated with the breaking of conformal reparametrization symmetry. Just as in

SYK, this symmetry breaking is introduced by the fact that UV action assigns a lower

scale dimension [ψ]UV = 0 to the Majorana fermions than the relevant interaction

term, which prescribes that [ψ]IR = 1/q. Some questions that need further study

are: Is there a principle that fixes the IR value of the spin s, or is it an adjustable

parameter? What do the Hilbert space, energy spectrum, partition function and

correlation functions look like?

The motivation for our study is to find new examples of strongly coupled 2D

QFTs with potential gravity duals and to elucidate the role of the reparametrization

mode in the holographic dictionary. While our model still needs to be put on firmer

footing, there are encouraging signs that it is well defined and exhibits the hallmarks

of a holographic dual to AdS3 gravity. In particular, it seems plausible that the
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conformal symmetry is non-linearly realized in terms of the reparametrization mode.

In [54] we have shown that this uniquely dictates the commutation relations of the

Goldstone modes and implies maximal Lyapunov growth of out-of-time ordered cor-

relation functions. In view of the results of [54] [74] and the discussion in section

4.3.3, we expect that the effective theory of the reparametrization mode should be

closely related to Liouville theory. A natural route towards making this relationship

concrete is to postpone the integral over Hubbard-Stratonovich variable e± and to

extract its effective action by making use of equation (4.3.24).

Finally, it is natural to speculate whether a similar approach could lead to pro-

posed generalizations of the SYK model to higher dimensions. The UV action has an

obvious reparametrization invariant generalization

εab...fεµν...σψa∂µψaψb∂νψb ... ψf∂σψf .

Adding a ψqD interaction term would again be a relevant deformation, and the two

terms combined would be invariant under volume preserving diffeomorphisms. How-

ever, it seems premature to pursue this generalization without first obtaining a better

understanding of the landscape of lower dimensional examples.

4.5 Appendix: Topological RCFT

What is a topological RCFT? A rational CFT is a CFT with an infinite chiral algebra

ĝ ⊃ Vir and a finite set of primary fields Oi. For minimal models, ĝ equals the

Virasoro algebra. A topological RCFT is defined by gauging the chiral algebra ĝ. This

projects the operator content to the set of primary fields, and removes all position

dependence of the Euclidean correlation functions of local operators. All known

RCFT can be represented as coset WZW models, and all known topological RCFTs
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can be formulated as fully gauged WZW models. The topological Ising model is a

gauged su(2)k coset with k = 2.

In Euclidean space, the four-point correlation function of local operators Oi =

Oi(xi) in a TCFT are specified via the following simple rule [122–124]

〈
O1O2O3O4

〉
TCFT

= dim
(
H1234

)
,

where H1234 denotes the linear vector space spanned by the chiral conformal blocks

Fa(1234) = 1 4

2 3

1 4

3 2

b

a

associated with the corresponding CFT correlation function. This rule satisfies all

axioms of 2D TQFT [121]. For gauged WZW models, the above prescription naturally

follows from the identification of H1234 with the Hilbert space of a 3D Chern-Simons

theory in the presence of four Wilson lines. Schematically

Fa(1234) = W1(1)W2(2)W3(3)W4(4)|0〉CS. (4.5.1)

The CS functional integral on R2 × S1 reduces to the TCFT amplitude on R2 and

takes the form of a sum of inner products between the left and right chiral conformal

blocks [122–124]

〈
O1O2O3O4

〉
TCFT

=
∑

a

〈Fa|Fa〉 = trH1234

(
1
)
.

Here we used the conventional RCFT normalization of conformal blocks, for which

the fusion and braid operations are represented as unitary matrices. In this unitary

basis, the OPE coefficients are all given by integer fusion coefficients Nijk. The local
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observables thus form a commutative, associative ring isomorphic to the fusion algebra

Oi ×Oj =
∑

k

NijkOk. (4.5.2)

In Minkowski space-time, operator ordering plays a non-trivial role. Local

operators in an RCFT decompose as a sum of factorized terms O(x+, x−) =
∑

s V+
s (x+)V−s (x−). The V±s are known as chiral vertex operators. Chiral vertex

operators of the same chirality satisfy non-trivial braiding relations, and can be

thought of as end points of light-like Wilson lines. Whenever a Vj passes through

the light-cone of another Vk, the corresponding chiral conformal block undergoes a

non-trivial monodromy. E.g.

Fa(1234) =
∑

b

R ε
abFb(1324) or

1 4

2 3

1 4

3 2

b

a

=
∑

b

R ε
ab

1 4

2 3

1 4

3 2

b

a
Here Rab is known as the R-matrix and ε = ±1. This choice of sign indicates that

the braiding move depends on orientation. The ordering of chiral vertex operators is

encoded via the end-point of the corresponding Wilson lines, as indicated in Figure

4.1.

In non-chiral correlation functions, the above monodromy produces a discontinuity

when operators pass through each others light-cone. The monodromy of the left- and

right-light cone have opposite orientation, so the total monodromy cancels out when

two operators pass through both of each other’s light-cones. Hence the Euclidean

correlation functions are single valued and the non-chiral CFT thus remains local.

The same chiral decomposition and dependence on operator ordering holds true

in a topological RCFT. The TCFT correlation functions thus acquire a non-trivial

position dependence

〈
O1O2O3O4

〉
TCFT

=
∑

a,b

〈Fa|R ε
ab|Fb〉 = trH1234(R)
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where R ε
ab is the R-matrix that implements the braiding operation that re-arranges all

operators into space-like separated positions. The above discussion easily generalizes

to higher n-point functions.

Applying this general prescription to the special case of the n point functions of

the operators ε(x) = ψ+(x)ψ−(x) gives the result (4.1.10). The relevant R matrix in

this case is simply equal to the (−1) factor that implements Fermi statistics. The

equality between (4.1.10) and (4.1.11) then follows directly by applying the definition

of the Pfaffian

Pf(M) =
1

2nn!
εi1j1i2j2...injnMi1j1Mi2j2 ...Minjn (4.5.3)

for the case that Mij = sgn(xij) (with x = x±). One can make a permutation of

the n points such that they are in order of increasing x. This can be recast as a

permutation of the indices that gives an overall factor of (−1)P where P is the parity

of the permutation. Then the value is fixed by the Pfaffian when the points are

ordered such that x1 < x2 < ... < xn. This gives a factor of (−1)n/2. Since n is even,

the total factor is equal to 1 for the product (4.1.11) of the left- and right-Pfaffian.

4.6 Appendix: Two point function from path integral

In this appendix we sketch a formal path integral derivation of the UV correlation

function given in equation (4.1.11) starting from the Lagrangian formulation of the

theory (4.1.3). In the main text we argued that the natural gauge invariant observ-

ables of this theory are products of the form ε(x) = ψ+(x)ψ−(x). For simplicity we

will focus on the two-point function
〈
ε̄(x) ε(0)

〉
of a slightly modified theory, in which
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the fermionic variables ψ± are both replaced by complex fermions

S =
1

2

∫
d2x εµν

(
eaµ ψ̄a∂νψa − εabe

a
µ e

b
ν

)
,

(4.6.1)

=
1

2

∫
d2x

(
e+ ∧ ψ̄+dψ+ + e− ∧ ψ̄−dψ− − e+ ∧ e−

)
.

The generalization of the calculation outlined below to general n-point functions of

the theory with real fermions is more involved but straightforward.

We will compute the two-point function
〈
ε̄(x) ε(0)

〉
by performing the path inte-

gral in steps: we first do the path integral over the fermions with fixed e± and then

we integrate over the HS variable e±

〈
ε̄(x) ε(0)

〉
= N−1

∫
[de±] e

i
2

∫
e+∧ e−〈ψ̄+(x)ψ+(0)

〉
e+

〈
ψ−(x)ψ̄−(0)

〉
e− . (4.6.2)

Here N is a normalization factor. Next we make use of the reparametrization sym-

metry of the action (4.6.1) to choose a gauge in which e± = e±± dx±. We will call

this the light-cone gauge, as it fixes the dynamical light-cone to align with the x±

coordinate axes. In this gauge, the coordinate system x = (x+, x−) is linked to the

frame variable e± and this in particular means that the seemingly local operator ε(x)

is in fact non-local when expressed as covariant observable.

The fermion propagator in the light-cone gauge is given by

〈
ψ̄+(x)ψ+(0)

〉
e+

〈
ψ−(x)ψ̄−(0)

〉
e− =

δ(x+)

e+
+(x)

sgn(x−)× δ(x−)

e−−(0)
sgn(x+)

=
δ2(x)

e+
+(x)e−−(0)

× sgn(x+) sgn(x−). (4.6.3)

This looks like an unpractical observable, since it involves the inverse of the frame

fields. We can put it in a more manageable form via a Schwinger parametrization

1
e++

=
∫∞

0
dλ+e−λ

+e++ . Inserting this and performing the gaussian path integral over

135



the HS fields gives

N−1

∫
[de±] e

i
2

∫
e+∧ e− δ2(x)

e+
+(x)e−−(0)

= N−1

∫ ∞

0

dλ+dλ−e
1
2
λ+λ−δ(2)(x)δ(2)(x),

=
2

N

∫ ∞

0

dλ+

λ+

∫ ∞

0

dλ−
∂

∂λ−
e

1
2
λ+λ−δ(2)(x),

=
2

N

∫ ∞

0

dλ+

λ+
= 1. (4.6.4)

In the first line we performed the integral over the HS field, using the fact that the

propagator gives a contact term 〈e+
+(x)e−−(0)〉 = −iδ(2)(x). In the second line we

rewrote the delta function as a derivative with respect to λ−, which allows us to

integrate by parts and evaluate at λ− = 0. This cancels all spacetime dependence

of the correlation function (4.6.4), yielding a divergent constant which we choose to

cancel out by the overall normalization constant N . We thus obtain

〈
ε̄(x) ε(0)

〉
= sgn(x+) sgn(x−). (4.6.5)

This is the TCFT correlator quoted in the main text. It takes the form of the product

of two 1D propagators. Note that the cancellation of the delta-function factors is

essentially enforced by the fact that ε(x) has canonical scaling dimension equal to

zero.

The above derivation of the two point function from the four-fermion UV action

(4.1.1) is admittedly somewhat formal and should be supplemented with the right

iε’s to make each step well-defined.

The generalization to n-point function requires a bit more effort, but a combination

of fermi statistics, Wick’s theorem and dimensional analysis essentially prescribes that

the final result must take the form (4.1.11).
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We leave a more complete and careful path-integral derivation of the result (4.1.11)

to future work but we hope this preliminary calculation clarifies the topological nature

of the UV theory.
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Chapter 5

Conformal Symmetry and

Quantum Chaos

In the previous chapter we have proposed a 2D field theoretic version of the SYK

model. The IR mode of this model controls the thermodynamics, thermalization,

quasi-normal modes and chaos exponent of the theory. In this chapter we will be

more general, go beyond SYK-like proposals, and extend these ideas to 2D CFTs.

Since conformal symmetry is always broken by an anomaly (we have in mind large

c) we would like to find a universal theory describing this Goldstone-like mode in 2D.

This would not mean that any CFT is maximally chaotic but rather that theories with

an IR dynamics dominated by this mode saturate the chaos bound. We will study to

what extent this theory controls the chaos exponent and saturates the chaos bound.

We will also analyze properties of Ruelle resonances (quasi-normal mode frequencies)

and relate these time scales to the location of singularities in OPE coefficients. We

also define a toy model using discrete Liouville theory that shares both features. In

the following section we begin by giving a summary and overview of results.
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5.1 Overview

As reviewed in the introduction, characteristics of chaotic systems, such as Lyapunov

behavior, scrambling and Ruelle resonances, can be effectively isolated by studying

out-of-time ordered correlation functions [30,31,41,62,133–136]. Many body quantum

chaos is interesting in its own right, but usually hard to quantify. Identifying simple

models or general mechanisms that exhibit aspects of quantum chaos is therefore a

worthwhile goal. In this chapter we make three interrelated observations that may

help 1) identify a new class of toy models in the form of a simple lattice model built out

of parafermionic spin variables 2) clarify the relationship between maximal quantum

chaos and the non-linear realization of conformal symmetry at finite temperature, 3)

relate the spectrum of Ruelle resonances to analytic properties of OPE coefficients in

the CFT. We now briefly describe each of the three components of our story.

1) A discrete model of many body quantum chaos

Useful many body systems that may exhibit chaos are quantum spin chains and

matrix models. Another interesting example is the SYK model, which is solvable

at strong coupling, maximally chaotic, and exhibits emergent conformal symmetry

at low energies [31]. Our model of interest combines ingredients and properties of

both examples, with the added feature that its Lyapunov behavior can be exhibited

via weakly coupled effective field theory. The model described below is a minor

specialization of the class of integrable lattice models introduced by Faddeev, Kashaev

and Volkov [137–141].

The model is assembled from a collection of ZN parafermionic operators fn, labeled

by an integer 1 ≤ n ≤ L with L some large odd integer. We identify fL+1 ≡ f 1, so

the integers n label points on a 1D periodic lattice. The fn satisfy the algebra

f 2n±1f 2n = q2 f 2n f 2n±1, q = eiπ/N, (5.1.1)
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Figure 5.1: The discrete model is defined on a rhombic lattice. We indicated the
center (σ, τ) of the diamond (σ ± 1, τ ± 1). The equation of motion (5.1.3) expresses
the variable at the top of the diamond in terms of the other three.

while [fn, fm] = 0 for |m−n| ≥ 2. This parafermion algebra can be realized on a finite

dimensional Hilbert space H = V1 ⊗ V2 ⊗ ... ⊗ VL with Vn an N -dimensional vector

space attached to the link between site n and n + 1, on which fn and fn+1 act via

appropriate clock and shift matrices. In the end, we imagine taking the continuum

limit L→∞. The integer N is assumed to be large but finite. As we will see shortly,

N will be proportional to the central charge of the low energy effective CFT.

The time-evolution is discrete and specified as follows [137–139]. We relabel the

variables fn by means of two integers fσ,τ with σ + τ = even, via f 2r,0 = f 2r and

f 2r+1,1 = f 2r+1. The relabeled variables specify the initial condition of the model.

The time evolution will generate a discrete, cylindrical 1+1-D space time formed by a

rhombic lattice. The time evolution proceeds via a local propagation rule [137–139].

We can focus on a single diamons shaped lattice cell

en ≡ fσ,τ+1 , es ≡ fσ,τ−1 , ew ≡ fσ−1,τ , ee ≡ fσ+1,τ . (5.1.2)

The evolution equation of the model reads

enes =
ewee

(1 + ew)(1 + ee)
(5.1.3)
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Equation (5.1.3) is the simplest example of a Y-system. It specifies the variable en at

the top of the diamond shaped lattice cell in terms of the other three variables ee, ew

and es, see Figure (5.1). The Y-system (5.1.3) defines an integrable lattice model,

that can be recognized as a discretized version of 2D hyperbolic geometry [137–139].

The exchange relation (5.1.1) amounts to a quantization of this hyperbolic geometry.1

The lattice model is a well defined quantum system, albeit one with a discrete

time evolution. The model has been constructed [137–139] so that in the large L

and IR limit, it describes a 2D continuum CFT with a non-linearly realized confor-

mal symmetry with central charge c = 1 + 6(b + b−1)2 with b2 = 1/N. As we will

explain, this CFT exhibits maximal Lyapunov behavior, and an infinite set of Ruelle

resonances matching the quasi-normal frequencies of the BTZ black hole [142].

It may seem surprising that an integrable model can display properties character-

istic of many body quantum chaos. To address this potential worry, one could choose

to perturb the system away from integrability. One could add disorder e.g. by using

the freedom of normalization of the fn to set fn
† fn = κn1

N×N
, with κn random real

numbers picked from a narrow probability distribution centered around κn = κ. Al-

ternatively, one could add frustration e.g. by including a next-to-neighbor interaction

in the time step rule (5.1.2) and (5.1.3) via

fσ,τ+1 fσ,τ−1 = (1 + εf−1
σ+3,τ )(1 + εf−1

σ−3,τ )/(1 + f−1
σ+1,τ )(1 + f−1

σ−1,τ ). (5.1.4)

Since the features of quantum chaos will already become apparent in the unperturbed

model, we will instead focus on this idealized case, while ignoring the role of exact

integrability. Indeed, we can note that there are other systems, such as N = 4 SYM

theory at large N , that are believed to be both integrable and chaotic. We will return

to this point in the concluding section.

1In some way, one may view the model as a many body analogue of a hyperbolic billiard.
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2) Lyapunov from Goldstone

A central part of our reasoning consists of a new physical derivation of the Lya-

punov behavior of an irrational CFT at finite temperature. The idea is as follows.

1+1-D CFTs are characterized by an infinite conformal symmetry group, given by

reparametrizations of the lightcone coordinates u and v

(u, v) → (ξ(u), η(v)) (5.1.5)

This conformal symmetry is broken by the conformal anomaly and by the presence of

a finite energy density at finite temperature (and by the UV-cut-off). For a CFT with

a dense asymptotic energy spectrum, it is then natural to expect that the conformal

symmetry is non-linearly realized in terms of a light Goldstone mode.

This motivates us to consider the effective field theory of the relevant Goldstone

excitation, described by the chiral field ξ(u) in (5.1.5) that parameterizes the confor-

mal group. The effective Lagrangian is uniquely fixed by symmetries, and given by

the geometric action of the Virasoro group [70]. In section 5.2, we will use this insight

to derive the commutation relations of the Goldstone fields ξ(u) and η(v). We will

find that the thermal expectation value of the commutators squared

〈
[ξ(u), ξ(0)]2

〉
∼ eλu,

〈
[η(v), η(0)]2

〉
∼ eλv, (5.1.6)

initially grow exponentially with the time separation, with a temperature dependent

Lyapunov exponent λ = 2π/β. In fact, we will derive the somewhat more precise

result that, inside a thermal expectation value, the commutator between two generic
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local operators takes the form2

[
W (t1), V (t2)

]
' εeλt12∂t1W (t1)∂t2V (t2) (5.1.7)

with ε some constant proportional to 1/c. This result, which holds for time-like

separations in the intermediate range c� λt12 � 1, matches with the bulk interpre-

tation of the commutator as resulting from a near horizon gravitational shockwave

interaction [15,26].

The role of the modes u → ξ(u) and v → η(v) play the same role as the pseudo-

Goldstone mode t → f(t) appearing in the IR effective description of quantum me-

chanical models like SYK. In this case the conformal symmetry is both spontaneously

and explicitly broken.

3) Ruelle resonances as poles in OPE coefficients

A main characteristic of a chaotic system is that it thermalizes: out of time ordered

correlation functions decay to zero at late times. The approach toward equilibrium is

governed by Ruelle resonances [143]. They appear as poles in the Fourier transform of

the thermal two-point function, or in systems that obey the eigenstate thermalization

hypothesis (ETH) [144–148], the matrix element between two excited states with total

energy M

G(ω) =

∫
dt 〈M |O(t)O(0)|M〉 eiωt (5.1.8)

The Ruelle resonances of holographic 2D CFTs are well studied [142, 149]. As

argued in [150], the matrix element reduces (for small t) to the thermal 2-point

function. Its Fourier transform G(ω) has poles at resonant frequencies

ω = −4πi

β
(n+ h), (5.1.9)

2Here for simplicity we only consider the time dependence of the correlator. In general, the left-
and right-moving sectors each may have their own temperature and Lyapunov exponents λl,r =
2π/βl,r.
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that coincide with the quasi-normal modes of the BTZ black hole [142]. By factorizing

the matrix element (5.1.8) in the intermediate channel, we can write

G(ω) =
∑

|i〉∈HCFT

δ(M +ω−Ei)
∣∣〈M |O|i〉|2 (5.1.10)

= ρ(M +ω) |〈M |O |M +ω 〉
∣∣2 (5.1.11)

where we used that in the Cardy regime, we can replace the spectral density ρ(E) =
∑
|i〉 δ(E−Ei) by a continuous distribution, and label the CFT states by their energy.

We learn that the Ruelle resonances dictate the analytic structure of the matrix

element of a light operator O between two highly excited states. This indicates that

the resonances must show up as poles in the OPE coefficient of a light operator and

two heavy operators. Or in AdS-dual terms, the quasi-normal modes should show up

as poles in the absorption and emission amplitudes of wave perturbations by a BTZ

black hole.

In section 5.4 we will show that the analytic continuation of the OPE coefficients of

the continuum limit of our model indeed has poles located at the expected frequencies

(5.1.9). This supports the statement that the continuum limit of the model is ergodic.

5.2 Lyapunov from Goldstone

Consider an irrational 2D CFT with central charge c� 1 with an asymptotic density

of states given by the Cardy formula, and with a sparse low energy spectrum. We

place the CFT on a circle, parameterized by a periodic coordinate x with period 2π.

We introduce light-cone coordinates (u, v) = (t− x, t+ x).
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Consider a finite energy state with a constant expectation value for, say, the left-

moving energy momentum tensor

〈
T (u)

〉
= L0 �

c

12
(5.2.1)

In this regime, we can associate to the state a finite inverse temperature β
2π

=
√

c
24L0

.

Let us perform a general conformal transformation (5.1.5). We require that

ξ(u+ 2π) = ξ(u) + 2π (5.2.2)

The expectation value of the energy momentum tensor transforms non-trivially

〈
T (u)

〉
= L0 ξ

′2(u) +
c

12
Sξ(u) (5.2.3)

with Sξ the Schwarzian derivative

Sξ(u) =
1

2

(ξ′′(u)

ξ′(u)

)2

−
(ξ′′(u)

ξ′(u)

)′
(5.2.4)

The spontaneous breaking of conformal symmetry is displayed via the ξ-dependence

of this expectation value. Indeed, we can compare the relation (5.2.3) with the ex-

pression for the energy-momentum tensor of a fluid. The first term is analogous to the

usual kinetic energy 1
2
ρv2, whereas the second term in (5.2.3) is the familiar vacuum

contribution due to the conformal anomaly. It has a well-known physical explanation

in terms of the Hawking-Unruh effect: the coordinate change from u to ξ(u) reshuffles

the positive frequency (annihilation) and negative frequency (creation) modes, and

thus alters the notion of the vacuum state.

Our physical assumption is that, for irrational CFTs at large c and in the Cardy

regime, it becomes accurate to treat the coordinate transformation ξ(u) as a Gold-
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stone field, in terms of which the conformal symmetry is non-linearly realized. Adopt-

ing this logic, we thus promote ξ(u) to an operator, that acts within the Hilbert sub-

space spanned by all states with energy density close to L0, and their descendants.

Within this subspace, we can remove the expectation value in (5.2.3) and elevate the

equality in (5.2.3) to an operator identity

T (u) = L0ξ
′2(u) +

c

12
Sξ(u). (5.2.5)

As we will see shortly, the expression (5.2.5) for the energy-momentum tensor in terms

of ξ(u) is familiar from the geometric quantization of Diff(S1), the group of (chiral)

conformal transformations in 2D.

A cautious reader may view equation (5.2.5) simply as a (in)convenient parame-

terization of the energy momentum tensor T (u). However, another way to state our

assumption is that the symmetry parameter ξ(u) acts as a genuine local quantum field

that creates and annihilates local physical excitations. Given that ξ(u) is a scalar and

T (u) is the generator of conformal transformations, we know that3

[
T (u1), ξ(u2)

]
= ~ ξ′(u2)δ(u12) ~ ≡ 6

c
(5.2.6)

[
T (u1), T (u2)

]
= −~(T (u1) + T (u2))δ′(u12) +

~
2
δ′′′(u12). (5.2.7)

The emergence of a light Goldstone mode at finite temperature can be explained as

a physical consequence of the fact that an irrational CFT in the Cardy regime has

an extremely dense energy spectrum.

3Here we absorb a factor of ~ ≡ 6/c in the definition of T (u). This is a customary step, that
exhibits the fact that the commutation relations (5.2.6) and (5.2.7) become semi-classical at large c.
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Equations (5.2.6) and (5.2.7) become semi-classical in the large c limit. From

equation (5.2.1) we see that the field ξ(u) has expectation value

〈
ξ(u)

〉
= u (5.2.8)

So semi-classically, we can think of the Goldstone field as: ξ(u) = u + small fluctua-

tions.

We are now ready to state the main technical result of this section:

The three relations (5.2.5), (5.2.6) and (5.2.7) uniquely determine the commutation

relation of the Goldstone field ξ(u), and are sufficient to derive the Lyapunov growth

of commutators.

Working to leading order in 1/c, one finds that [151] [92,93]

[
ξ(u1), ξ(u2)

]
=

ε(u12)

L0

+
sinh(λτ(u1, u2))

L0 sinhπλ
(5.2.9)

τ(u1, u2) = ξ(u1)− ξ(u2)− πε(u12), λ =

√
24L0

c
(5.2.10)

with ε(x) the stair step function, defined via ε′(x) = 2δ(x) with δ(x) the periodic

delta-function: ε(x) = 2n+1 for x ∈ (2πn, 2π(n+1)). The same argument and deriva-

tion goes through for the right-movers. So we also have a right-moving Goldstone

mode η(v) = v + small fluctuations, that satisfies the analogous commutation rela-

tion (5.2.9).4 The left- and right-moving Goldstone fields commute [ξ(u), η(v)] = 0.

A detailed derivation of equation (5.2.9) and (5.2.10) can be found in [151] [92,93].

Here we give a short summary. The constituent relation (5.2.5) between the energy-

4For simplicity we will assume that the left and right movers have the same temperature.
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momentum tensor and the field ξ(u) can be decomposed as

T (u) = ϕ′2(u)− 2ϕ′′(u), (5.2.11)

ϕ(u) =
λ

2
ξ(u) +

1

2
log
(
λξ′(u)

)
. (5.2.12)

The commutation relations (5.2.6) and (5.2.7) then follow from the free field commu-

tator

[ϕ(u1), ϕ(u2)] = ~ ε(u12), (5.2.13)

with ~ = 6/c. So our task has been simplified: all we need to do is use relation (5.2.12)

to solve of ξ(u) in terms of ϕ(u), and use the chain rule to deduce the commutator

of ξ(u1) and ξ(u2) from the free field commutator (5.2.13) of ϕ.

The free field ϕ(u) is periodic up to a shift

ϕ(u+ 2π) = ϕ(u) + πλ. (5.2.14)

Using this fact, equation (5.2.12) integrates to [92]

ξ(u) =
1

λ
log

( ∫ 2π

0

dy
e2ϕ(u+y)−λπ

sinhπλ

)
(5.2.15)

With this relation and equation (5.2.13) in hand, it is now a relatively straightforward

calculation to derive the result (5.2.9) and (5.2.10).

Let us turn to the physical consequences of equations (5.2.9) and (5.2.10). We

observe that λ is equal to the maximal Lyapunov exponent λ = 2π/β. We will assume

that λ � 1, i.e. the thermal wave length is very short compared to the size of the

spatial circle. The second term in the commutator (5.2.9), and its right-mover counter

part, thus grows exponentially with the coordinate differences u12 and v12 over the
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range

β � |u12| < 2π, β � |v12| < 2π. (5.2.16)

We will restrict our attention to this coordinate range. In this regime, equation

(5.2.9) implies that the commutator between two local functions f̂(u2) ≡ f(ξ(u2))

and ĝ ≡ g(ξ(u1)) of the Goldstone fields satisfy

[f̂(u1), ĝ(u2)] ' eλ(|u12|−2π) f̂ ′(u1) ĝ′(u2). (5.2.17)

Here we used equation (5.2.8) to replace ξ(u) → u on the r.h.s. We would like to

translate equation (5.2.17) into a statement about the commutator between local

CFT operators.

Consider some local CFT operator O(u, v). Under the conformal transformation

(5.1.5) it transforms as

O(u, v)→ ξ′(u)hlη′(v)hrO
(
ξ(u), η(v)

)
(5.2.18)

Hence local operators are indeed non-trivial functions of the dynamical Goldstone

fields.

It is logical to take this observation one step further, and, similarly as we did for

the energy-momentum tensor, assume that local operators O(u, v) can be represented

as c-number valued functions of the operator valued fields ξ(u) and η(v) and their

derivatives. The collection of these functions is determined by the spectrum and

operator algebra of the CFT. Their form is constrained by the locality requirement

that space-like separated operators commute. This condition is very restrictive: it
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prescribes that primary local operators are all of the form [92,93,152–154]

Oh(u, v) =
(
f(u, v)

)h
, (5.2.19)

f(u, v) =
λ2ξ′(u)η′(v)

4 sinh2
(
λ
2
(ξ(u)− η(v))

) . (5.2.20)

Equations (5.2.9) and (5.2.10) can then be used to compute the commutation relations

between time-like separated operators, as follows.

The accepted test for Lyapunov growth of the commutator between two local

operators W and V is to compute the expectation value

〈
Wε(u, v)

[
W (u, v), V (0, 0)

]
Vε(0, 0)

〉
(5.2.21)

where the subscript ε indicates a small displacement. This expectation value is equal

to the difference between a time ordered and an out-of-time-ordered (OTO) correla-

tion function. The OTO correlation function is obtained via analytic continuation of

the time ordered correlation functions, where one circles, say, the coordinate u around

the origin. This operation amounts to analytic continuation of the left-moving con-

formal blocks to the second Riemann sheet. Of course, we could also choose to do the

analytic continuation using the coordinate v. This would have given the same final

result.

The full-circle-monodromy M of a conformal block is the square M = R2 of

half-circle-monodromy known as the R-operation. The R-operator, acting on the left

conformal blocks, re-orders the left-moving parts of the operators W and V . In the

linearized regime, i.e. to leading order in 1/c, we can write R ' 1 − r with r the

perturbative operation that takes the commutator between the left-moving parts of W

and V . The full-circle-monodromy is M ' R2 = 1−2r and thus the full commutator

inside (5.2.21) is equal to acting with (1−M) = 2r on the two operators W and V .
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From equation (5.2.17) we then deduce that

[
W (u1, v1), V (u2, v2)

]
' 2eλ(u12−u0) ∂u1W (u1, v1)∂u2V (u2, v2) (5.2.22)

This result, which holds for time like separation in the regime (5.2.16), displays the

maximal Lyapunov behavior and the linearized gravitational effect of an early incom-

ing perturbation (created by V ) on the arrival time of the outgoing signal (detected

by W ).

We end with a brief comment on the extension to higher orders. As indicated by

the description of the monodromy moves, one expects that the commutator (5.2.22)

exponentiates to a non-perturbative exchange relation. Fourier transforming the left-

moving coordinate via Wα(v) =
∫
du eiαuW (u, v), this exchange algebra is expected

to take the following form

Wα(v1)Vω−α(v2) =
∑

β

Mα
β Vβ(v2)Wω−β(v1). (5.2.23)

If we assume that the bulk interaction is dominated by gravity, then AdS/CFT makes

a precise prediction for the monodromy matrix Mα
β [74]. The prediction precisely

matches with the monodromy matrix of Liouville CFT [74].

5.3 A Chaotic Lattice Model

In this section, we will connect the FKV lattice model, defined by equations (5.1.1),

(5.1.2) and (5.1.3), with the above effective CFT derivation of Lyapunov behavior.

The motivation for studying the lattice model is two-fold. First, the geometric

theory of the Goldstone fields ξ(u) and η(v) is an effective theory, that only becomes

accurate at finite temperature and long distance scales. Like all effective field theories,

it does not define a fully consistent CFT by itself, nor does it have a unique UV
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completion. There are two ways in which one can try to embed an effective field

theory into a self-consistent quantum system: a) look for an explicit UV completion,

or b) introduce an explicit UV regulator. Approach b) is more practical.

A second motivation is that one can hope that the lattice model, by virtue of

being more well defined, may allow for more explicit dynamical understanding of the

underlying mechanism for chaos. Indeed, it turns out that the lattice Liouville model

can be formulated in a way that preserves the geometric appeal of the continuum

theory [137–139]

The Y-system (5.1.3) and the expression (5.2.19) of local operators in terms of

the function (5.2.20) both have a direct connection with hyperbolic geometry. To see

this, we first note that the 1+1-D metric defined by

ds2 = f(u, v)dudv =
λ2dξdη

(
2 sinh(λ

2
(ξ − η))

)2 (5.3.1)

describes a hyperbolic space-time with constant negative curvature. The authors

of [137–139] gave a beautiful discretized description of this 2D hyperbolic metric as

follows.

We can write equation (5.3.1) as

f(u, v) =
1

∆2

(
eλξ(u+∆) − eλξ(u−∆)

)(
eλη(v+∆) − eλη(v−∆)

)
(
eλξ(u+∆) − eλη(v+∆)

)(
eλξ(u−∆) − eλη(v−∆)

) (5.3.2)

with ∆ an infinitesimal coordinate shift. Note that this expression for f(u, v) looks

like a cross-ratio. So it is invariant under Möbius transformations. Now consider the

values of f(u, v) in four nearby points, separated by null shifts ∆

fσ,τ−1 = f(u, v) , fσ+1,τ = f(u+ ∆, v) ,

(5.3.3)

fσ−1,τ = f(u, v+ ∆) , fσ,τ+1 = f(u+ ∆, v+ ∆) .
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These four cross-ratios depend on six functions eλξ(u), eλξ(u±∆), eλη(v), and eλη(v±∆),

but thanks to the Möbius invariance, only three of the six functions are independent.

Therefore, the four cross-rations (5.1.2) satisfy one relation [137–139]. Putting ∆ = 1,

it reads

fσ,τ+1 fσ,τ−1 =
fσ+1,τ fσ−1,τ

(1 + fσ+1,τ )(1 + fσ−1,τ )
. (5.3.4)

This confirms that the equation of motion of the FKV lattice model is a discretization

of the hyperbolic metric (5.3.1). The parafermionic algebra

fnfn±1 = q2 fn+1fn (5.3.5)

defines a quantization of the space of discretized hyperbolic metrics.

Our new observation is that this lattice model can serve as a useful prototype of

quantum chaos. The most direct way to substantiate this claim would be compute

an out-of-time ordered four-point function of local operators

〈
fσ,τ+t+1

[
fσ,τ+t−1, fσ,τ+1

]
fσ,τ−1

〉
β

(5.3.6)

at finite temperature, as a function of the time difference t. While this would in

principle be doable, we will leave this task to future work. Instead we will cut the

computation short, by banking on the results of [137–139, 141] that show that the

above lattice model in the large L limit approaches continuum Liouville CFT. To-

gether with the result of the previous section, this is sufficient to demonstrate that

the continuum limit of the lattice model displays maximal Lyapunov behavior.
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For completeness, let us display a few more elements of the dictionary. Working

to leading order at large N

eϕ
+
n eϕ

+
m = eϕ

+
m eϕ

+
n q2εnm eϕ(u2)eϕ(u1) = eϕ(u1)eϕ(u2)e~ε(u12)

eϕ
+
n+L = e2πλ eϕ

+
n eϕ(u+4π) = e2πλeϕ(u) (5.3.7)

L
2π
eϕ

+
n = e

λ
2
ξn− eλ2 ξn−1 eϕ(u) = ∂ue

λ
2
ξ(u)

The right column lists the formulas (5.2.13), (5.2.14) and (5.2.12) that were used to

derive the commutation relation (5.2.9) of the left-moving Goldstone variable ξ(u).

The left column is the lattice version of the same set of relations, with εnm the dis-

cretized stair-step function. We can write a parallel set of formulas that represent

the right-moving modes ϕ(v) and η(v) in terms of lattice variables ϕ−n and ηn.

Lattice variables ϕ±n that satisfy the exchange relation in (5.3.7) are obtained

from the local operators fn in two steps [137–139] [141]. First we define two mutually

commuting sets of chiral operators w±n via

w+
n = q f 2n+1f−1

2n+2, w−n = q f 2n+1f−1
2n . (5.3.8)

These satisfy the algebra w±n w±m = q±2ωmn w±mw±n , with ωmn = sgn(m−n)δ|m−n|,1. The

chiral variables ϕ±n are then defined as

ϕ±n =
∑

m

εnm log w±m, ϕ±n+L = ϕ±n + 2πλ, 2πλ = 1
L

L∑

n=1

log w±n . (5.3.9)

At the initial time τ = 0, we can recover the single valued local parafermionic opera-

tors f 2n from the non-local chiral variables via

f 2n = eϕ
−
n eϕ

+
n (5.3.10)
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This is the lattice version of the relation e2φ(u,v) = eϕ(u)+ϕ(v) that expresses a non-chiral

free field vertex operator into the product of the two chiral vertex operators. We note,

however, that the time evolution (5.3.4) does not amount to free field propagation.

Among many other non-trivial results, [137–139] and [141] give an explicit con-

struction of a unitary time evolution operator U that implements the time step (5.3.4)

fσ,τ+1 = U† fσ,τ−1 U. (5.3.11)

This time evolution does not preserve the chiral factorization (5.3.10). However, it is

shown that there exists a Bäcklund operator B that solves the time evolution via

fσ,τ = B−1e
ϕ+

1
2(σ−τ)e

ϕ−1
2(σ+τ) B (5.3.12)

This Bäcklund operation is causal but highly non-local, and no explicit representation

of B is known at present. Indeed, as exemplified by this equation, all non-trivial

dynamics of the Liouville lattice model is encoded in the way in which the two chiral

sectors get mixed and become entangled under the time evolution step (5.3.4). Our

results are evidence that this mixing and entangling is happening in a maximally

efficient way.

Our argument that the lattice model exhibits maximal Lyapunov growth is a copy

of the effective CFT derivation presented in section 5.2. The three relations in the

left column of equation (5.3.7) specify the commutation relations of the ξn variables,

in the same way as the right column fixes the commutator algebra of ξ(u). The

commutator algebra is expected to approach the continuum result (5.2.9) in the large

L limit. Our working assumption is that the exact solution (5.3.12) of the lattice

model leads to an expression of the local operators fσ,τ in terms of the chiral modes

ξn and ηn that mirrors formula (5.3.2). Via the same reasoning as in section 5.2, this
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expression can then be used to verify that the lattice model is local and to establish

that the OTO four point function (5.3.6) grows exponentially with time.

5.4 Ruelle Resonances

In this section we will expand on the topic of Ruelle resonances, which provide another

signature of chaos and ergodicity. We will briefly review these concepts and then use

the intuition for large c irrational conformal field theories to translate the knowledge

about these resonances into concrete CFT data. We will introduce a notion of OPE

coefficients (of light operators between heavy states) as analytic functions of energy.

We will see that the presence of Ruelle resonances, in combination with the conformal

bootstrap and AdS/CFT, impose stringent constraints on the form of these analytic

OPE functions. We will then verify that the known OPE coefficients of the effective

CFT of section 5.2 and the continuum limit of the lattice model of section 5.3 satisfy

all these physical requirements.

4.1 Ruelle resonances in CFT

Ruelle resonances are poles in the Fourier transform of linear response functions

that govern thermalization, the decay process towards thermal equilibrium after a

quench. Consider a small perturbation produced by a local operator Ob(x) to the

Hamiltonian

δH =

∫
J(x)Ob(x). (5.4.1)

Here J(x) is an external source. Then one can study how this perturbation influences

the time evolution of the expectation value of some other operator 〈Oa(0)〉, which for

convenience we place at x = 0. By expanding the evolution operator to linear order

δ〈Oa(0)〉 =

∫
dx′Gret

ab (x′)J(x′), (5.4.2)
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where Gret
ab (x) = θ(t)〈[Oa(x),Ob(0)]〉 (with t = time component of x) is the retarded

Green’s function. Gret
ab (x) may be expressed in terms of two point functions as

Gret
ab (x) = θ(t)

(
G+

ab(x)−G−ab(x)
)
, (5.4.3)

with G+
ab(x) = 〈Oa(x)Ob(0)〉 the time ordered two point function and G−ab(x) =

〈Ob(0)Oa(x)〉 the out-of-time-ordered two point function. Equation (5.4.2) is the

basis of linear response theory, from which one can deduce transport properties such

as the Kubo formula. Response functions are usually analyzed in the frequency

domain. The Ruelle resonances appear as poles in the complex frequency plane.

The imaginary part of the location of the poles determines the relaxation time. The

leading behavior in δ〈Ob〉(t) is governed the viscous hydrodynamical mode with the

smallest imaginary part.

We are interested in studying this response function in a pure state microcanonical

ensemble, defined by some highly excited CFT state |M〉 with a large scale dimension

M � c
12

, so deep in the Cardy regime. The two-point functions of interest are given

by the matrix elements of the two light operators Oa and Ob between two heavy

states

G+
ab(u, v) = 〈M |Oa(u, v)Ob(0)|M〉

(5.4.4)

G−ab(u, v) = 〈M |Ob(0)Oa(u, v)|M〉

For 2D CFTs at large c, it has been argued in [150] that the matrix elements (5.4.4)

are dominated by the identity conformal block (which for G+(u, v) is given by the

term with h = 0 on the left in Figure 5.2.) For large c, this identity block is well
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approximated by the thermal 2-point function on an infinite 1D space

G±ab(u, v) ' δab

(
π/β

sinh
(
π
β
(u± iε)

)
)2h(

π/β

sinh
(
π
β
(v± iε)

)
)2h

. (5.4.5)

with β = π
√
c/6M . This is a useful result, that supports both the ETH and the dual

identification of the two point function as the boundary-to-boundary propagator of a

bulk field in a BTZ black hole background.

The validity of equations (5.4.5) is somewhat limited, however. It only holds

for spatial separations that are small compared to the size of the spatial circle, and

for the OTO two-point function, the time difference must be short compared to the

scrambling time, since otherwise one enters the Lyapunov regime. On the gravity side,

the perturbation Ob creates an incoming wave that may collide with the outgoing

wave detected by Oa, and thereby substantially affect its future trajectory. This

gravitational effect will show up as a modification of the OTO two-point function

G−(u, v), and was studied in section 5.2. Here we will focus on the late time behavior

of the time ordered 2-point function G+(u, v).

The incoming wave deforms the black hole horizon state. The subsequent ring

down of the black hole towards equilibrium is the dual of the thermalization process

of the CFT. Both processes are governed by an infinite set of resonances. On the

gravity side, these resonances are the quasi-normal modes. These can be analyzed

perturbatively, by considering small fluctuations of fields propagating in the neigh-

borhood of the black hole horizon. These resonant quasi-normal frequencies are an

infinite series of complex numbers, labeled by a non-negative integer n via [142]

ω = ±k − i4π
β

(n+ h). (5.4.6)

with k is the momentum of the infalling mode and h the conformal dimension of the

fluctuating field. This result was derived using the Poincaré patch, corresponding
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with a CFT on an infinite line, and with vanishing Dirichlet boundary conditions at

infinity [142].5 It is reasonable to assume that the result generalizes to black holes in

global AdS, with a periodic spatial boundary, by replacing the momentum k by an

integer angular momentum `.

In the CFT, the quasi-normal modes manifest themselves as Ruelle resonances,

that appear as poles in the Fourier transform of the retarded thermal Green’s function

(5.4.3)

Gret
ab (ω, `) =

∫
du

∫
dv ei

1
2

(ω+`)uei
1
2

(ω−`)v Gret
ab (u, v), (5.4.7)

which via equation (5.4.5) yields a spectrum that matches with the gravity prediction

(5.4.6). Our goal in this section is to use the presence of these Ruelle poles to extract

useful information about the OPE coefficients of the CFT. Earlier papers with results

that overlap with this section are [150,155].

4.2 Resonances and OPE coefficients

As a preparation, let us look at the different conformal block expansions of the

matrix elements (5.4.4), as shown schematically in Figure (5.2). We temporarily

rotate to euclidean signature and set (u, v) = (z, z). The first equal sign of these

identities represents the crossing symmetry relation

Gab(z) =
∑

ω

CaMM+ωCM+ω
Mb

∣∣F
M+ω

[
M M
a b

]
(z)
∣∣2 =

∑

h

C h
MM Cahb

∣∣Fh

[
M a
M b

]
(1− z)

∣∣2

(5.4.8)

where Fh
[

M M
a b

]
(z) represents the Virasoro block shown on the left in Figure (5.2).

We see that crossing symmetry relates the ‘t-channel block’ with heavy intermediate

5Notice that this Dirichlet boundary condition eliminates all gravitational excitations correspond-
ing to the Virasoro descendants in the CFT. This restriction will become relevant later.
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M

M

∑
h

h
a

b

=
∑
ω

M+ω

M

M

a

b

=
∑
ω′

M+ω′

M

M

b

a

Figure 5.2: Diagrammatical representation of crossing symmetry and the exchange
algebra of the CFT correlation function of two heavy operators, labeled by M , and
two light ones, labeled by a and b.

channel (labeled by M+ ω) to the ‘s-channel block’ with a light intermediate channel

(labeled by h).

The second relation in Figure (5.2) is the exchange algebra relation,

∑

ω

CaMM+ωCM+ω
Mb

∣∣F
M+ω

[
M M
a b

]
(z)
∣∣2 =

∑

ω′

CbMM+ω′C
M+ω′
Ma

∣∣F
M+ω′

[
M M
b a

]
(1/z)

∣∣2, (5.4.9)

that imposes locality in the Euclidean region. In Lorentzian language, it implies that

the R-matrix Rω,ω′ that relates the chiral time-ordered conformal block (labeled by M

+ω) to the out-of-time-ordered conformal block (labeled by M+ω′) is an appropriate

unitary transformation, so that in the euclidean region, it cancels out between the

left- and right-movers of the complete CFT four-point function. After rotating to

Lorentz signature, the R-matrix does show up in a non-trivial way, in the relation

between the time-ordered Green’s function G+
ab(u, v) and the OTO Green’s function

G−ab(u, v) [74].

We wish to extract information regarding the Fourier transform of Gab from its ex-

pansion (5.4.8) in conformal blocks, in the channel shown in the middle of Figure (5.2).

This is not directly possible, since no explicit expression for the Virasoro conformal

blocks is known. So let us take a step back and write the crossing symmetry formula

as a sum over primary operators and descendants. Let γωn denote the n-th coefficient
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of the Laurent expansion of the Virasoro conformal block F
M+ω

[
M M
a b

]
(z). From now

on we focus on the diagonal part of the two point function Gab(u, v) = G(u, v)δab. It

has the following expansion

G(u, v) =
∑

|i〉
Gωi,L(u)Gωi,R(v) (5.4.10)

GωL(u) =
∑

nL

CaMM+ωL
γωLnL e

i(ωL+nL)u (5.4.11)

and a similar formula holds for GωR(v). Here |i〉 runs over all conformal primary

states of the CFT in the neighborhood of the high energy state |M〉. In the sum we

allowed all states with different left- and right conformal dimension (∆i,L,∆i,R) =

(M + ωi,L,M + ωi,R).

We want to take the Fourier transform (5.4.7) with respect to both light-cone

coordinates. It is useful to introduce the spectral density of CFT primary states

ρ(ωL, ωR) =
∑

|i〉
δ(M + ωL −∆i,L)δ(M + ωR −∆i,R). (5.4.12)

We then have

Gret(ω, `) =

∫
dω′

2π

G(ω′, `)

ω′ − ω − iε (5.4.13)

G(ω, `) =
∑

nL,nR

CaMM+ωL−nLCaMM+ωR−nR γ
ωL
nL

γωRnR ρ(ωL− nL, ωR − nR), (5.4.14)

with ωL = 1
2
(ω + `) and ωR = 1

2
(ω − `). For a given CFT, Gret(ω, `) contains exact

information about the spectrum of primary fields, in the form of a dense set of poles

along the real axis, with residues equal to the corresponding OPE coefficient. The

Ruelle resonances appear as a series of poles in Gret(ω, `) located off the real axis.

161



Based on equation (5.4.5) and the results of [150] and [142], we expect that their

location should match with the quasi-normal frequencies (5.4.6).

The spectrum of an irrational CFT at large c becomes very dense in the Cardy

regime. In this type of situation, it is customary to treat the spectrum as a continuum

with spectral density given by the Cardy formula, and elevate the OPE coefficients

to continuous functions of the conformal weights. The Ruelle resonances are then

expected to arise as poles in the analytic continuation of the OPE coefficients.6

Let us summarize. The OPE coefficients between light and heavy operators satisfy

several non-trivial compatibility conditions: they solve the CFT bootstrap equations

(5.4.8) and (5.4.9), and must be compatible with the known location (5.4.6) of the

Ruelle resonances. The question is: do these conditions uniquely fix the form of the

OPE coefficients, in the universal high energy regime in which the CFT spectrum is

governed by the Cardy formula? Do we know of any solutions to these conditions?

4.3 Ruelle from Liouville

The answer to the last question is affirmative: Liouville theory solves both condi-

tions. The bootstrap program of Liouville CFT is by now on firm footing [76]. Our

new observation is that the OPE coefficients of Liouville CFT, given by the famous

DOZZ formula [104, 105], indeed exhibit a series of poles that precisely match with

the quasi-normal frequencies (5.4.6) of the BTZ black hole. This observation gives

extra support to the proposal that Liouville theory should be viewed as the effective

CFT that captures universal high energy behavior of holographic CFTs. As we will

discuss in the concluding section, this result also sheds light on whether the lattice

model of section 5.3 has ergodic dynamics or not.

Liouville CFT has a continuous spectrum labeled by the momentum variable α

via ∆α = α(Q− α) with c = 1 + 6Q2 and Q = b + b−1. In section 5.6 we review the

6Evidently, the Ruelle poles do not arise from the density of states. The Laurent coefficients γωn
are fixed by conformal symmetry and they only exhibit poles for frequencies associated to degenerate
states. The degenerate states appear at different locations than the quasi-normal modes.
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expression for the three point function C(α1, α2, α3) for a light operator, labeled by α1,

and two heavy operators, labeled by α2 and α3. Denoting the conformal dimensions

as ∆1 = h, ∆2 = M and ∆3 = M+ω, the corresponding Liouville momenta are

α1 ' bh, α3 − α2 ' i
ω

2
√

M
= ib

β

4π
ω (5.4.15)

where β = 2π/b
√

M is the inverse temperature associated with the state M .

The DOZZ three-point function C(α1, α2, α3) has a rich pole structure. As ex-

plained in Appendix 5.6, the series of poles that are relevant to our physical situation

are located at

α1 + α3 − α2 = nb, n ∈ Z, (5.4.16)

which via equations (5.4.15) and (5.4.16) tells us that ChMM+ω has poles at

ω = −i4π
β

(n+ h). (5.4.17)

Plugging this into (5.4.14), and doing the integral (5.4.13), we learn that the retarded

Green’s function Gret(ω, `) has poles for

ω = −`+ 2nL − i
4π

β
(n+ h),

n ∈ N. (5.4.18)

ω = `+ 2nR − i
4π

β
(n+ h).

These are the Ruelle resonances that govern the thermalization dynamics of Liouville

CFT. Notice that relative to the list (5.4.6) of BTZ quasi-normal modes, the series

(5.4.18) reveals additional poles shifted by the excitation numbers nL and nR of the

left- and right-moving Virasoro descendants. These additional poles arise because

in our CFT calculation, we did not exclude the possibility that the incoming wave
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created by Oa also excites boundary gravitons. If we ignore the energy stored in the

boundary gravitons, we recover the expected BTZ result (5.4.6).

5.5 Conclusions

In this chapter we have made three observations that clarify the geometric origin of

chaotic behavior in irrational 2D CFTs. We argued that in holographic CFTs at

finite temperature, conformal symmetry is non-linearly realized by means of univer-

sal Goldstone-like fields ξ(u) and η(v), that describe the near-horizon gravitational

dynamics of the dual theory. The effective field theory is weakly coupled and its

maximal Lyapunov behavior can be demonstrated at the semi-classical level.

We used this insight to propose a new toy model for quantum chaos in the form of

the FKV lattice model, with an integrable equation of motion given by a Y-system.

Integrability may seem unhelpful for generating ergodic behavior. Indeed, integrable

systems are seen as prototypical counter-examples for the ETH: their single state mi-

crocanonical ensemble is understood to be described by the generalized Gibbs ensem-

ble (GGE), which has many chemical potentials, one for each conserved quantity [156].

However, this reasoning assumes that the state that defines the microcanonical en-

semble is an (approximate) eigenstate of many or all conserved quantities. Instead,

if we choose an energy eigenstate that otherwise is a random linear superposition of

eigenstates of all other conserved quantities, then the usual ETH can still apply. The

conserved quantities in the FKV lattice model are highly non-local, and with respect

to local observables the dynamics still looks random and thermalizing. As discussed

in the introduction, this random dynamics can be reinforced by introducing some

degree of disorder.

Indeed the discrete model seems particularly useful for studying propagation of

entanglement, and even though the continuum limit is expected to be described by

a CFT, the entanglement propagation generated by the Y-system rule (5.1.3) is non-
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ballistic and mixes left- and right-moving signals. Our conjecture that the lattice

dynamics is ergodic is further supported by the fact that the continuum limit of

the model is expected to be described by Liouville theory, which via the observation

of section 5.4 has Ruelle resonances that prescribe the approach towards thermal

equilibrium.

Of course, underlying all three observations in this chapter, is the idea that the

bulk gravitational dynamics of holographic 2D CFTs is accurately captured by 2D

Liouville CFT [74]. This emergent Liouville field can be viewed as encoding the

dynamical interplay between geometric entanglement and energy flow. This interpre-

tation combines the idea of kinematic space [90,157], that the entanglement entropy

S(u, v) of an interval [u, v] between two space-like separated points x = u and x = v

describes a metric on a 2D hyperbolic space via

ds2 = ∂u∂vS(u, v)dudv, (5.5.1)

with the first law of entanglement thermodynamics

δS(u, v) = δK(u, v) =

∫ v

u

dxP[u,v](x)δT00(x) (5.5.2)

with P[u,v](x) the conformal Killing vector associated with the Rindler Hamiltonian

K(u, v) of the interval [u, v]. Equation (5.5.2) can be integrated into an expression

for the energy-momentum tensor Tαβ in terms of the entanglement entropy S(u, v),

which looks exactly like the Liouville energy momentum tensor, via the identification

φ(u, v) = S(u, v) (5.5.3)

of the Liouville field with the entanglement entropy. Note that both quantities de-

fine locally constant curvature metrics, and both transform inhomogeneously under
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coordinate transformations. Hence the dynamics of kinematic space seems intimately

connected with the emergence of an effective Liouville field in holographic 2D CFT.

5.6 Appendix: DOZZ three point function

In this appendix we summarize the DOZZ formula for the OPE coefficients of Liouville

theory [104,105]. A nice review can be found in [158]. After introducing the formula

we will study its analytic properties which are relevant for the application we consider

in the main text.

The DOZZ formula computes the OPE coefficients between three primary opera-

tors of Liouville theory. These operators are labeled by a complex parameter α and

can be written in terms of the Liouville field ϕ(z, z) in the following way

Vαj(z, z) = e2αjϕ(z,z), j = 1, 2, 3. (5.6.1)

The dimension of the state in term of its label is ∆α = ∆α = α(Q−α). As usual the

central charge is c = 1+6Q2 and Q = b+ 1
b
, where b is a positive real parameter. The

semiclassical limit c� 1 corresponds to b� 1. That is the limit we are interested in,

although the result for Liouville theory is supposed to be valid more generally. Now

we can state the DOZZ formula which for generic α1,2,3 and b is given by

C(α1, α2, α3) =

[
πµγ(b2)b2−2b2

](Q−∑i αi)/b
Υ0Υb(2α1)Υb(2α2)Υb(2α3)

Υb(
∑

i αi −Q)Υb(α1 + α2 − α3)Υb(α1 − α3 − α2)Υb(α2 + α3 − α1)
,

(5.6.2)

where µ is the cosmological constant, γ(x) ≡ Γ(x)/Γ(1−x) and Υ0 = dΥb(x)
dx

∣∣
0
. Υb(x)

is an entire function. It is usually defined by analytic continuation of an integral

representation valid for 0 < Re(x) < Q which can be found in [104,105]. Here we will

not need more information about this function other that its zeros since it gives the

position of the poles in the DOZZ formula in terms of the α’s. Specifically, they are
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located at

x = −m
b
− bn, x =

m′ + 1

b
+ b(n′ + 1), m,m′, n, n′ ∈ Z+. (5.6.3)

Looking at the formula (5.6.2) we see all the poles are located in terms of the labels

α at

α1 + α2 + α3 −Q = −m
b
− bn, or

m′ + 1

b
+ (b+ 1)n′, (5.6.4)

α1 + α2 − α3 = −m
b
− bn, or

m′ + 1

b
+ (b+ 1)n′, (5.6.5)

α1 − α2 + α3 = −m
b
− bn, or

m′ + 1

b
+ (b+ 1)n′, (5.6.6)

α2 + α3 − α1 = −m
b
− bn, or

m′ + 1

b
+ (b+ 1)n′. (5.6.7)

These are all the poles of the OPE coefficients. Now we will use the semiclassical

limit to identify the poles that are physically relevant for the discussion in the main

text, i.e. the ones that survive the b → 0 limit. The external operators that we

are interested in are such that one is light, α1, two are heavy, α2 and α3, and the

difference between the two heavy operators is small. This means we fix the scaling

with b in the b→ 0 limit such that α1 ∼ b, α2 ∼ α3 ∼ b−1 and α3 − α2 ∼ b. Then it

is clear that the relevant poles to retain are the ones in equation (5.6.5) and (5.6.6)

for only n non zero. These two sets of poles for n > 0 can be combined into a single

formula

α1 + α3 − α2 = bn, n ∈ Z, (5.6.8)

where now n runs over all the integers. We see this has the right scaling since both

the left and right hand side scale as b in the semiclassical limit. All the rest of the

poles disappear in the heavy-heavy-light limit we are interested in here.
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Chapter 6

Interference Effects

In the introduction we explained the relation between black holes, quantum chaos and

gravitational shockwaves. We have studied these features for quantum mechanics and

CFTs in the previous chapters.

In this chapter we will study a different aspect of shockwaves solutions. We will

consider bulk theories in AdSD and study (without black holes) the effect of higher

derivative terms in the action. In [159] the authors showed that the constrain of a

positive time delay (equivalent to the averaged null energy condition) puts constrains

on purely gravitational terms like S ∼
∫
R2 or S ∼

∫
R3. In this chapter we will

study an interference effect of shockwaves that will allow us to put constrains on

non-minimal coupling between matter and gravity such as S = α
∫
φW 2. These

shockwaves not only produce a time delay but also has a probability of inducing a

transition φ → g, where g indicates the graviton. The nature of this shockwave is

explained in section 6.8. The bounds we obtain on this coupling α can be found in

section 6.6. For a general theory roughly α . R2
AdS. If we furthermore assume a local

bulk theory one can easily improve this to α . `2
str

1.

1The string length `2str gives the scale of the lowest mass higher spin field in the bulk. If the bulk
theory is local then `s � RAdS.
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Besides the application for local bulk physics, this can be turn around and obtain

general bounds for an arbitrary CFTs. This is done by relating a non-local version

of the shockwave with a conformal collider experiment where one measures the inte-

grated energy at infinity [160]. The coupling of S ∼
∫
φW 2 is related to CTTO and

we will put bounds on this OPE coefficient in general theories.

To make the presentation as clear as possible we start from this point of view in

sections 6.3, 6.4 and 6.5, and later focus on the bulk interpretation described in the

previous paragraph. We leave some applications to de-Sitter and inflation to section

6.7.

6.1 Introduction

We consider the conformal collider physics experiment discussed in [160]. In that

setup, we produce a localized excitation by acting with a smeared operator near the

origin of spacetime. Then we measure the energy flux at infinity per unit angle.

Requiring that the energy flux is positive imposes constraints on the three-point

function coefficients. This method was used to constrain three-point functions of the

stress tensor in [160–162].

In this chapter we use this same method to constrain the three-point functions of

two stress tensors and another operator 〈TTO〉. The new idea consists of creating

the initial state by a linear combination of a stress tensor operator and the opera-

tor O. The three-point function 〈TTO〉 appears as a kind of interference term in

the expression for the energy. Requiring that the total contribution to the energy

flux is positive imposes a non-trivial upper bound on the absolute magnitude of this

three-point correlator. We apply these ideas to general scalar operators O as well as

conserved currents with spin one, J , where we use it to put bounds on the gravita-

tional anomaly in d = 4 CFTs. Because the bound arises from quantum mechanical

interference effects, these bounds are stronger than those obtained in states created
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by a single primary local operator and its descendants (though the resulting bounds

involve more OPE coefficients).

This energy flux at infinity is given by an integral of the stress tensor. On the

boundary of Minkowski space this integral is simply the average null energy E =
∫
dx−T−−. We review this in section 6.2. Physically, we expect that this energy should

be positive for all angles. Recently, the average null energy condition was proven

using entanglement entropy methods [163] as well as reflection positivity euclidean

methods [164]. When we create a localized state using the stress tensor, this energy

distribution is completely determined by the three-point function of the stress tensor.

Two of the insertions correspond to the insertions creating the state in the bra and

the ket. The third corresponds to the one measuring the energy flux at infinity. The

resulting bounds could also be obtained by requiring standard reflection positivity of

the euclidean theory [165, 166]. However, the conformal collider calculations provide

an efficient way to extract the results.

One of our main results is a sum rule constraining the OPE coefficients of scalar

primary operators O with the energy-momentum tensor T . In spacetime dimensions

d ≥ 4 there is a single OPE coefficient controlling the 〈TTO〉 three-point function.

We find that this data is constrained as

∑

Scalar Primaries Oi
|CTTOi|2 f(∆i) ≤ NB , (6.1.1)

where NB is one of the three OPE coefficients in 〈TTT 〉 (the one occurring in a theory

of free bosons), and the non-negative function f(∆) is given explicitly by

f(∆) =
(d− 1)3dπ2dΓ

(
d
2

)
Γ(d+ 1)Γ(∆)Γ

(
∆− d−2

2

)

(d− 2)2Γ
(

∆
2

+ 2
)4

Γ
(
d+∆

2

)2
Γ
(
d− ∆

2

)2 . (6.1.2)

This function arises by doing the integrals involved in smearing the operator as well

as in computing the energy flux. We derive this bound in detail in section 6.3,
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and discuss some simple physical consequences such as its interpretation in free field

theories, large N holographic systems, and general implications for the asymptotics

of OPE coefficients.

In section 6.4 we consider analogous results in spacetime dimension three. This

case is special because the three-point functions of interest admit both parity pre-

serving and parity violating structures. The bounds we find generalize those recently

obtained in [167]. We apply our results to large N Chern-Simons matter theories, and

further use them to obtain predictions on OPE coefficients CTTO for scalars in the

Ising model using the recent results of the conformal bootstrap [168]. For instance,

we find that operator ε has an OPE coefficient constrained as

|CTTε| ≤ 1.751|CTT :φ2:| , (6.1.3)

where the right-hand side is the value in the free scalar theory based on the field φ.

In section 6.5 we consider bounds in four-dimensional CFTs with a global sym-

metry current J . We apply the same techniques to obtain universal constraints on

the gravitational anomaly of the current J.

In section 6.6 we show that the 〈TTO〉 correlator can be generated from a gravity

theory in AdSd+1 through a higher derivative term,
∫
φW 2, in the bulk effective

action. We match the coefficient of this term to the CTTO coefficient in the boundary

theory by performing the same collider experiment in the bulk, where it involves

propagation through a shock wave. One interesting feature of this presentation is

that the resulting bound is independent of the mass of φ. Thus, the ∆ dependence

of (6.1.1) is purely kinematic and results from translating the boundary three-point

function coefficient to a bulk interaction. We use our AdS presentation to show that

α′ corrections satisfy the bound.
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In section 6.7 we extrapolate the bounds we obtained in AdS to “quasi bounds” on

the coefficients of the effective action in de Sitter space. We call them “quasi-bounds”

because, unfortunately, for de-Sitter we do not know how to prove a sharp bound. We

can think of these as a good indication for where the bulk effective theory should break

down. We apply these “quasi-bounds” to constrain the amplitude of chiral gravity

waves, and to constrain the violations of the inflationary “consistency condition” for

the two-point function. Both of these effects arise from higher curvature couplings of

the form φW 2 or φWW ∗.

6.2 ANEC and the Conformal Collider

6.2.1 The Average Null Energy Condition

The null energy condition is a central assumption in many classical theorems of general

relativity. These results allow us to exclude unphysical spacetimes where causality

violation, naked singularities, or other physical pathologies occur [169].

If we move beyond classical field theory, these results appear to be in doubt.

Quantum effects lead to fluctuations that prohibit any local operator from having a

positive expectation value in every state [170]. (We review these ideas in Appendix A

of [56].) In particular the local energy density and other components of the energy-

momentum tensor have negative expectation value in some states.

Deeper investigation reveals a potential resolution. While components of the

energy-momentum tensor are pointwise non-positive, a weaker hypothesis, the so-

called average null energy condition, is often sufficient to enforce causal behavior [171].

This condition states that the integral along a complete null geodesic of the null en-

ergy density is a positive definite operator

E =

∫ ∞

−∞
dx− T−− ≥ 0 . (6.2.1)
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Recently there has been significant interest in understanding the average null en-

ergy condition (6.2.1) in the context of local quantum field theories. In [164], an

argument was given establishing (6.2.1) in conformal field theories by examining the

constraints of causality on the light-cone operator product expansion. In [163], an al-

ternative argument was given linking the average null energy operator to entanglement

entropy, then establishing positivity using strong subadditivity. These information

theoretic methods have also been extended to obtain new inequalities strengthening

(6.2.1) [172].

Given that the average null energy in quantum field theory is now a theorem, it

is interesting to take it as input and use it to constrain conformal field theory data.

6.2.2 The Conformal Collider

An efficient way to extract consequences of the average null energy condition in CFTs

is to use the conformal collider setup of [160]. This technique is closely related to deep

inelastic scattering experiments in conformal field theory [160,173]. As we review, in

the context of AdS/CFT these bounds arise from demanding causality of the bulk

theory in a shockwave background.

The specific physical problem of interest is to create a disturbance in a conformal

field theory and then to measure the correlation of energy deposited at various angles

at future null infinity (see Figure 6.1).

The states in which we measure the energy are obtained by acting with local

operators O(x) on the Lorentzian vacuum |0〉. We further give these states definite

timelike momentum q.2 Thus we examine the state

|O(q, λ)〉 = N
∫
ddx e−iqt λ · O(x)|0〉 , (6.2.2)

2For technical reasons it is sometimes useful to create a localized wavepacket instead of an exact
momentum eigenstate. This subtlety will not affect our discussion.
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(a)
i+

i0

J +

(b)

Figure 6.1: In the conformal collider experiment (a), the energy created by a localized
excitation (blue) is measured far away by a calorimeter (red). (b) For a CFT, this is
equivalent to measuring the energy at null infinity J +.

where λ is a polarization tensor accounting for the possible spin of O, and N is a

normalization factor defined such that (6.2.2) has unit norm.

We now measure the energy at null infinity in this state. In d dimensions null

infinity is a sphere Sd−2 and we parameterize it by a unit vector n.

〈E(n)〉λ·O = lim
r→∞

rd−2

∫ ∞

−∞
dx− 〈O(q, λ)|T−−(x−, rn)|O(q, λ)〉 . (6.2.3)

The average null energy condition implies that the resulting function is non-negative

as a function of the direction n.

Since we are working in a conformal field theory this energy expectation value may

be explicitly evaluated. Indeed the object being integrated in (6.2.3) is a three-point

function 〈OTO〉 in Lorentzian signature with a prescribed operator ordering. Thus,

the result of (6.2.3) is an explicit function of OPE coefficients.

External States Created by T

Let us review the essential details of this calculation in the case where the external

state is created by an energy momentum tensor. In general in d ≥ 4 spacetime dimen-

sions, the three-point function of energy-momentum tensors may be parameterized in
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terms of three independent coefficients

〈TTT 〉 = NB〈TTT 〉B +NF 〈TTT 〉F +NV 〈TTT 〉V , (6.2.4)

where the various B,F, V structures are those that arise in a theory of respectively

free bosons, fermions, or (d−2)/2 forms.3 Our conventions are such that for free fields,

NB counts the number of real scalars, NF the total number of fermionic degrees of

freedom (e.g. it is 2bd/2c for a Dirac fermion), and NV counts the number of degrees of

freedom in a (d− 2)/2 form (for a single such field this number is Γ(d− 1)/Γ(d/2)2).

A single linear combination of these coefficients is fixed by the conformal Ward

identity, and related to the two-point function coefficient CT of energy momentum

tensors

CT =
1

Ω2
d−1

(
d

d− 1
NB +

d

2
NF +

d2

2
NV

)
. (6.2.5)

where Ωn is the area of a sphere Sn.4 As another point of reference let us briefly

specialize to the case of four-dimensional theories. In that case, the coefficients of

the three-point function are related to conformal anomalies a, c that parameterize the

trace of the energy-momentum tensor in a general metric background

〈T µµ 〉[g] =
c

16π2
W 2 − a

16π2
E2 , (6.2.6)

where W is the Weyl tensor and E is the Euler density. The coefficient c is propor-

tional to CT , while

a =
1

1440
(4NB + 11NF + 124NV ) . (6.2.7)

Returning to case of general dimensions we now investigate the null energy oper-

ator using these three-point functions. It is useful to organize the calculation using

3In odd d there is no free field associated to the structure parameterized by NV , but nevertheless
there is still a structure. See [162,174] for details.

4 Ωn−1 = 2πn/2/Γ(n/2).
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the relevant symmetries, which are rotations on the null Sd−2. In addition, the three-

point function of T ’s is parity invariant.5 It follows that the most general expression

for the null energy is

〈E(n)〉λ·T =
q

Ωd−2

[
1 + t2

(
λ∗ijλikn

jnk

|λ|2 − 1

d− 1

)
+ t4

(
λ∗ijλkln

injnknl

|λ|2 − 2

d2 − 1

)]
,

(6.2.8)

where the constants have been fixed so that the total energy of the state is q, and t2

and t4 are computable functions of NB, NF , NV .

A useful way to understand the answer is to view the vector n as fixed and to

decompose the states (parameterized by their polarizations) under the remaining

symmetry group SO(d − 2). For example, the polarization that has spin zero under

rotations around the ~n axis is

λ0
ij ∝

(
ninj −

δij
(d− 1)

)
(6.2.9)

In a similar way we can write polarization tensors that have spin one and spin two

under rotation around the ~n axis. The energy flux in the direction n is the same for

every state in a fixed SO(d − 2) representation, and we denote them by qTi/Ωd−2.

Explicitly carrying out the integrals gives:

T0 =

(
1− t2

d− 1
− 2t4
d2 − 1

)
+
d− 2

d− 1
(t2 + t4) = ρ0(d)

(
NB

CT

)
,

T1 =

(
1− t2

d− 1
− 2t4
d2 − 1

)
+
t2
2

= ρ1(d)

(
NF

CT

)
, (6.2.10)

T2 = 1− t2
d− 1

− 2t4
d2 − 1

= ρ2(d)

(
NV

CT

)
,

5In d = 3 the three-point function has a parity odd piece which we discuss in section 6.4.
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where the index labels the SO(d−2) charge and in the above ρi(d) is a positive func-

tion that depends only on the spacetime dimension (and not the OPE coefficients).

Their explicit form can be found in Appendix B of [56].

Additional symmetries imply constraints on the parameters above. In any super-

conformal field theory we have t4 = 0. For holographic CFTs dual to Einstein gravity

the parameters are t2 = t4 = 0, giving angle independent energy one-point functions

T0 = T1 = T2 = 1.

Returning to the general discussion, we can see from (6.2.10) that the average null

energy condition implies the inequalities

NB ≥ 0 , NF ≥ 0 , NV ≥ 0 . (6.2.11)

One significant remark concerning the bounds (6.2.11) is that they may clearly be

saturated in free field theories. Conversely, it has been argued [175] that any theory

that saturates the conformal collider bounds must be free. The fact that the bounds

may be saturated in actual CFTs illustrates that the conformal collider is an efficient

way of extracting the implications of the average null energy condition. Namely, we

could not possibly get a stronger bound, otherwise we would run into a contradiction

with free theories.

6.3 Bounds on TTO in d ≥ 4

We now turn to our main generalization of the conformal collider bounds reviewed

in section 6.2.2. We explore the consequences of the average null energy condition in

more general states than those created by a single primary operator. Specifically in

this section we will investigate states which are obtained by a linear combination of

primary operators. We will find that the average null energy condition in such states

yields new inequalities on OPE coefficients.
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In this section, the states we consider will be created by a linear combination of the

energy-momentum tensor and a general scalar hermitian operatorO. We parameterize

such a state in terms of normalized coefficients vi

|Ψ〉 = v1|T (q, λ)〉+ v2|O(q)〉 . (6.3.1)

The energy one-point function in the collider experiment is now a matrix

〈Ψ|E(n)|Ψ〉 = v†



〈T (q, λ)|E(n)|T (q, λ)〉 〈T (q, λ)|E(n)|O(q)〉

〈T (q, λ)|E(n)|O(q)〉∗ 〈O(q)|E(n)|O(q)〉


 v . (6.3.2)

The average null energy condition implies that this matrix is positive definite. This

is a stronger condition than requiring that the diagonal entries are positive and will

imply new inequalities on OPE coefficients.

The majority of the entries in this matrix have already been computed. For

instance, in section 6.2.2 we reviewed the portion of the matrix involving the energy

expectation value in states created by the energy momentum tensor. Even simpler

is the entry involving the expectation value in the scalar state which gives rise to a

uniform energy distribution

〈O(q)|E(n)|O(q)〉 =
q

Ωd−2

. (6.3.3)

It remains to determine the off-diagonal entries in the matrix. It is again useful

to organize the expected answer using the rotation group on the null sphere. Clearly

we have

〈T (q, λ)|E(n)|O(q)〉 ∼ λijn
inj . (6.3.4)
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Therefore, the only polarization of the energy momentum tensor that participates

in the non-trivial interference terms is the scalar T0 aligned along the axis n (see

equation (6.2.9)).

To extract this matrix element we require the three-point function 〈TTO〉. In all

d ≥ 4, the conservation constraints on T imply that this correlator is fixed in terms of

a single OPE coefficient CTTO. We set conventions for our normalization of this OPE

coefficient by examining a simple OPE channel. Specifically we restrict all operators

to a two-plane, spanned by complex coordinates z, z̄. Then the OPE is

Tzz(z)Tz̄z̄(0) ∼ CTTO
|z|2d−∆

O(0) . (6.3.5)

If we further assume that O is hermitian then the OPE coefficient CTTO is real.

Additional details of this correlator including the full d-dimensional Lorentz covariant

OPE and relation to the spinning correlator formalism of [176] are given in Appendix

B of [56].

Based on these remarks, we can in general parameterize the energy flux in the

direction n coming from the off-diagonal matrix element (6.3.4) as

〈T (q, λ0)|E(n)|O(q)〉 =
q

Ωd−2

(
CTTO√
CTCO

h(∆)

)
, (6.3.6)

where h(∆) is some universal function that may be extracted from the conformal

collider calculation, and the factors of CT and CO arise from normalizing the states.

The relevant portion of the energy matrix (6.3.2) is two-by-two and takes the form

q

Ωd−2




T0
CTTO√
CTCO

h(∆)

C∗TTO√
CTCO

h(∆) 1


 . (6.3.7)
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Positivity of this matrix therefore leads to the constraint

|CTTO|2
CTCO

|h(∆)|2 ≤ T0 . (6.3.8)

More generally we may instead consider the collider experiment in a state created

by T plus a general linear combination of primary scalar operators. Positivity of the

resulting energy matrix is then equivalent to the following sum rule

∑

Scalar Primaries Oi

|CTTOi |2
CTCO

|h(∆i)|2 ≤ T0 . (6.3.9)

The explicitly computation of the function h(∆) can be found in Appendix B of [56].

By combining the result with the expression (6.2.10), we may reexpress the bound as

∑

Scalar Primaries Oi

|CTTOi|2
CO

f(∆i) ≤ NB , (6.3.10)

where f(∆) is given as

f(∆) =
(d− 1)3dπ2dΓ

(
d
2

)
Γ(d+ 1)Γ(∆)Γ

(
∆− d−2

2

)

(d− 2)2Γ
(

∆
2

+ 2
)4

Γ
(
d+∆

2

)2
Γ
(
d− ∆

2

)2 . (6.3.11)

6.3.1 Analysis of the Bound

We now turn to an analysis of the consequences of the general bound (6.3.10). The

function f(∆) has a number of significant properties.

• Expanded near the unitarity bound we find a first order pole:

f

(
d− 2

2
+ x

)
∼ 1

x
. (6.3.12)
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Therefore in any family of theories, an operator O which is parametrically

becoming free (i.e. ∆ = (d−2)/2 +x with x tending to zero) must have |CTTO|

vanish at least as fast as
√
x.

• For large ∆ we find exponential growth

f(∆) ∼ 4∆

∆
7d
2

+4
. (6.3.13)

We may use this growth to approximate the sum in the bound for scalar op-

erators of large ∆. Indeed, let ρ(∆) denote the asymptotic density of scalar

primary operators. From convergence of the sum we then deduce that for large

∆ the spectral weighted OPE coefficients must decay exponentially fast

ρ(∆)
|CTTO|2
CO

≤ ∆
7d
2

+3

4∆
. (6.3.14)

These estimates agree with those implied by convergence of the OPE expansion

found in [177] for scalar operators.

• If ∆ is an even integer greater than or equal to 2d we find that f(∆) vanishes.

We can understand the necessity of this as follows. We can imagine a large N

CFT dual to weakly coupled theory of gravity. In such theories we can consider

the sequence of operators O =: TAB∂2nTAB :. At large N the dimensions of

these operators are fixed to ∆ = 2d+ 2n. Moreover, for these operators
C2
TTO
CO

is

of order C2
T . Thus, compatibility with the bound (6.3.10) for large CT , requires

that f(∆) vanishes at these locations.

The above argument does not explain why f(∆) has double zeros. But the

double zeros imply that the bound may be obeyed at subleading order, where
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we include the anomalous dimensions of these operators which scale as 1/CT ,

by truncating the sum on n.6

• The function f(∆) is non-zero for ∆ = d. Therefore the bound (6.3.10) may be

applied to marginal operators. In that context, it constrains the change in CT

at leading order in conformal perturbation theory.

6.3.2 Free Field Theories and Destructive Interference

Let us investigate the bound further in free field theories. These examples are inter-

esting because the bound (6.3.10) is saturated.

Consider first a theory of a free real boson φ in dimension d. There is a Z2

global symmetry under which φ is odd and the energy-momentum tensor T is even.

Therefore we need only consider scalars made from an even number of φ’s. Since the

explicit expression for T is quadratic in the free fields, the only possible scalars that

may contribute to the bound are : φ2 : and : φ4 :.

By a simple inspection of the Wick contractions we deduce that : φ4 : has vanishing

TTO correlation function7. Meanwhile : φ2 : has

|CTTO|2
CO

=
(d− 2)4Γ(d/2 + 1)4

8π2d(d− 1)4
. (6.3.15)

This exactly saturates the bound (6.3.10).

We can also consider the bound applied to free fields of different spin. In d = 4 the

theory of free fermions or free gauge bosons have vanishing NB. Therefore the bound

implies that for all scalar operators O either CTTO vanishes, or O has dimension

2d+ 2n for non-negative integer n.

6We thank E. Perlmutter for comments on this point.
7 The contractions imply that 〈TT : φ4 :〉 ∝ 〈T : φ2 :〉〈T : φ2 :〉, which is zero since two-point

functions of different operators vanish.
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It is straightforward to directly verify this prediction. For instance consider the

free vector. The gauge invariant field strength gives rise to two local operators F+
µν and

F−µν , which are respectively self-dual and anti-self-dual two-forms. Note that this free

field theory enjoys a continuous electromagnetic duality symmetry under which F±µν

rotate with opposite charge. The energy-momentum tensor Tµν is neutral under this

transformation, and hence a scalar operator O with non-vanishing CTTO must also

be neutral. If we recall that F+
µνF

−µν vanishes identically, then we see that the lowest

dimension neutral scalar operator is (F+
µνF

+µν)(F−αβF
−αβ). Since this has dimension

eight, the weight function f(∆) vanishes. Moreover all other scalar operators that

are neutral have larger even integer dimension. Thus, the bound is obeyed.

A more physical way to understand why the bound is saturated in the free scalar

theory is to visualize the state created by local operators.

Let us consider the action of an operator with non-zero energy but zero spatial

momentum. If the operator is a bilinear in the fields, such as the stress tensor in a

free theory, then it will create a pair of particles with back to back spatial momenta.

Of course, the operator creates a quantum mechanical superposition of states where

these momenta point in various directions. For a scalar bilinear operator we get an

s-wave superposition. For the stress tensor we get a superposition determined by the

polarization tensor.

As in previous sections, we measure the energy in the angular direction n and

hence can focus on the properties of the wavefunction for the pair of particles in that

particular direction. As in section 6.2.2 it is convenient to decompose the polarization

tensors of the operators according to their angular momentum around the n axis. We

can then easily check that a spin zero state T0 can be produced only in a theory of

scalars, a spin one state T1 can be produced only in a theory of fermions, and T2 only

in a theory of vectors (or d/2−1 forms), see Figures 6.2(a,b,c). This explains formula

6.2.10.
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+
T0

(a)

+
T1

1/2

1/2

(b)

+
T2

1

1

(c)

+
O

(d)

+
J1

1/2

1/2
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+
J0

φ1

φ2

(f)

Figure 6.2: We consider operators with zero spatial momentum that create a pair of
free particles. In (a,b,c) we consider a stress tensor operator. We decompose the stress
tensor according to the spin around that axis. (a) The spin zero state is obtained for
scalars, spin one for fermions (b) and spin two for vectors or self-dual forms (c). (d)
is the state produced by a scalar operator with can interfere with (a). (e) is produced
by a current with spin one along the observation axis and can interfere with (b). (f)
is a current with spin zero along the observation axis in a theory of scalars. It cannot
interfere with (a).

A scalar operator of the form O =: φ2 :, where φ is an elementary scalar, can also

produce a back to back combination of scalar particles, see Figure 6.2(d). Along the

direction of observation this combination has the same form as the one produced by T0,

in Figure 6.2(a). It is clear that we can make a quantum mechanical superposition so

that the wavefunction for the pair vanishes along that particular observation direction.

This saturates the bound because we get zero energy along that direction. For that

superposition of T and O the energy along other directions is still non-zero.

A similar argument helps us understand why we also saturate the 〈TTJ〉 correlator

bound in the four dimensional theory of a Weyl fermion (see section 6.5). In that

case we can make a superposition of the state T1 in Figure 6.2(b) with the state

J1 in 6.2(e). Notice that we are using that J couples to a chiral fermion. If there
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was another fermion with the same helicity but opposite charge, as it would be the

case for a vector-like current, then we would have an additional contribution to the

state created by the current that will have a relative minus sign compared to the

other charged particle pair. On the other hand, for the state created by the stress

tensor these two contributions have the same sign, therefore we cannot destructively

interfere them.

This highlights that the bound comes from a quantum mechanical interference

effect. We saturate the bound through a destructive interference effect that prevents

particles from going into a particular direction. It is important to note that this is an

interference for the pair of particles. For example, if we consider a theory of scalars

with a U(1) symmetry generated by a current J , then in a basis of real scalars the

current will create two different scalars, say φ1 and φ2. This cannot interfere with the

state created by the stress tensor where we have the same scalar for the two particles

indicated in Figure 6.2(a).

6.4 Bounds on TTO in d = 3

In this section we will consider the case of d = 3 separately. There are two reasons for

doing this. First, the stress-tensor three-point function has two parity even structures,

instead of three as in d ≥ 4, and has a parity odd piece which is special to d = 3.

Secondly, the correlation function 〈TTO〉 also has an extra parity odd structure

special to d = 3 [178].

First we consider external states created by the stress-tensor. We parametrize the

three-point function of energy-momentum tensors as

〈TTT 〉 = NB〈TTT 〉B +NF 〈TTT 〉F +Nodd〈TTT 〉odd , (6.4.1)
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where NB and NF already appeared in the d ≥ 4 case and Nodd parametrizes a new

structure. We use the same convention for the explicit expression for 〈TTT 〉odd as

in [167]8. In d ≥ 4 the energy one-point function of the collider experiment has a

SO(d−2) symmetry for the calorimeter direction n. The linearly independent tensor

polarizations are organized as scalar, vectors or tensors with respect to this symmetry.

In d = 3 the group becomes SO(1) and there are only two types of polarizations, which

we take as

λ0 =
1√
2




1 0

0 −1


 , λ1 =

1√
2




0 1

1 0


 . (6.4.2)

The collider energy one-point function for an arbitrary polarization has the structure

〈E(n)〉λ·T =
q

2π

[
1+t4

( |λijninj|2
|λ|2 − 1

4

)
+d4

εij(nin
mλjmλ

∗
kpn

knp + nin
mλ∗jmλkpn

knp)

2|λ|2

]
.

(6.4.3)

To obtain a bound on these parameters we can consider a state created by |Ψ〉 =

v1|T (q, λ0)〉+ v2|T (q, λ1)〉. The energy matrix becomes

〈Ψ|E(n)|Ψ〉 =
q

2π
v†




T0 Todd

Todd T1


 v , (6.4.4)

where T1 = 1−t4/4, T0 = 1+t4/4 and Todd = d4/4. These parameters were computed

in [167] in terms of the 〈TTT 〉 parameters NB, NF and Nodd obtaining

CTT1 =
3

16π2
NF , CTT0 =

3

16π2
NB , CTTodd =

3

16π2
Nodd . (6.4.5)

For supersymmetric CFTs t4 = 0 just as in the case d ≥ 4. Also, CFTs dual to

Einstein gravity have t4 = d4 = 0.

8 We identify our Nodd with their π4pT /3.
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The average null energy condition implies that the matrix (6.4.4) is positive def-

inite. This implies t4 and d4 lie inside a circle t24 + d2
4 ≤ 42, or equivalently NB ≥ 0,

NF ≥ 0, and N2
odd ≤ NBNF .

Now we will generalize this construction along the same lines as presented in

section 6.3. We will consider a superposition between stress tensor and a scalar

operator states

|Ψ〉 = v1|T (q, λ0)〉+ v2|T (q, λ1)〉+ v3|O(q)〉 . (6.4.6)

As anticipated above, for d = 3 the correlation function 〈TTO〉 is now determined

by two parameters

〈TTO〉 = Ceven
TTO〈TTO〉even + Codd

TTO〈TTO〉odd , (6.4.7)

where the even part is given by specializing the arbitrary d correlator d = 3, and our

choice of normalization for the odd part is given explicitly in Appendix B of [56]. We

can make our conventions for this latter term as in (6.3.5) in the following way. We

can define Codd
TTO by the following OPE

Tzz(z, z̄, y = 0)Tzy(0) ∼ Codd
TTO

z̄

4|z|O(0) , (6.4.8)

where the three spatial coordinates are (z, z̄, y).

Using this normalization, the energy one-point function is given in terms of a

three-by-three matrix as

〈Ψ|E(n)|Ψ〉 =
q

2π
v†




T0 Todd
Ceven
TTO√
CTCO

heven
3d (∆)

Todd T1
Codd
TTO√
CTCO

hodd
3d (∆)

Ceven
TTO

∗
√
CTCO

heven
3d (∆)

Codd
TTO

∗
√
CTCO

hodd
3d (∆) 1



v ,

(6.4.9)

187



where the functions heven
3d (∆) and hodd

3d (∆) can be obtained as

hodd
3d (∆) =

12
√

6π2
√

Γ(2∆− 1)

Γ(∆+1
2

)Γ(∆ + 3)

1

Γ(7−∆
2

)
, (6.4.10)

heven
3d (∆) =

12
√

6π2
√

Γ(2∆− 1)

Γ(2 + ∆
2

)Γ(∆ + 3)

1

Γ(3− ∆
2

)
. (6.4.11)

Demanding positive definiteness of the energy matrix gives several types of constraints

which involve the scalar OPE coefficients. Two of these bounds are easy to generalize

to an arbitrary number of scalar operators

∑

i

|Ceven
TTOi |2
COi

feven(∆i) ≤ NB ,
∑

i

|Codd
TTOi |2
COi

fodd(∆i) ≤ NF , (6.4.12)

where we defined fodd/even = |hodd/even
3d |2/3. We can consider the positivity of the

determinant of the 3 × 3 matrix. This gives an independent bound which together

with the bound on 〈TTT 〉 is sufficient for the positivity of the energy one-point

function

NB

|Ceven
TTOi|2feven(∆i)

CTCOi
+NF

|Codd
TTOi|2fodd(∆i)

CTCOi

−2Nodd

Re[Ceven
TTOi

√
feven(∆i)C

odd
TTOi

√
fodd(∆i)]

CTCOi
≤ NBNF −N2

odd .(6.4.13)

This bound can also be generalized to include an arbitrary number of scalar operators.

However, as opposed to the situation in section 6.3, the bounds involving different

number of operators are independent. Their expressions in this case become more

cumbersome and we will omit them here.

The (6.4.10) (6.4.11) have similar properties as the one appearing for the d ≥ 4

bound. Namely they diverge at the unitarity bound ∆ = 1/2 and have zeros at

6 + 2n (even) and 7 + 2n (odd) for integer n. The zeros in the even case were

explained by the existence of operators with two stress tensors in theories that are
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dual to weakly coupled gravity, see the last point in section 6.3.1. The odd ones

have the same explanation, except that now the scalar operators have the structure

εABCTAD∂
2n∂CTBD.

6.4.1 Chern-Simons Matter Theories

In this section we apply the bounds derived to large N Chern Simons theories at

level k coupled to fundamental matter. For definiteness we will consider fundamental

fermions. We will denote the ’t Hooft coupling by θ = πN/2k. The elements of the

energy matrix involving the stress tensor were computed in [167] using the explicit

large N expressions for the stress tensor three-point function [179]. The result is

T1 = 2 cos2 θ , T0 = 2 sin2 θ , Todd = 2 sin θ cos θ . (6.4.14)

Using the conventions in, for example, [180] we can compute the off-diagonal elements

involving stress-tensor mixed with a scalar operator. In the fermionic theory we

consider the scalar denoted by O ∼ ψψ̄ has dimension ∆ = 2. The final result for

the energy matrix is

〈Ψ|E(n)|Ψ〉 =
q

2π
v†




2 cos2 θ 2 sin θ cos θ
√

2 cos θ

2 sin θ cos θ 2 sin2 θ
√

2 sin θ
√

2 cos θ
√

2 sin θ 1



v . (6.4.15)

As a function of the ’t Hooft coupling, this matrix has the property that all the minors

have vanishing determinant. This implies saturation for all types of superposition of

states. For the case of the stress tensor this was noted in [167], but we find that this

is a more general feature for states where we also act with O.
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Figure 6.3: 3d Ising model allowed region for CTTε and CTTε′ .

Even though we do not have a concrete physical picture explaining this, we expect

a picture along the lines of section 6.3.2, where the interaction with the Chern-Simons

gauge field has the effect of replacing free bosons or fermions by “free anyons”.

This discussion can also be applied to the case of CS coupled to fundamental

bosons. From [179] we know that the energy matrix, given in terms of CFT three-point

functions, can be obtained from the fermionic theory by the replacement θ → θ + π
2

when we consider the operator O ∼ φ2 of dimension ∆ = 1. More generally we can

consider the answer (6.4.15) as giving the energy matrix of a large N theory with a

slightly broken higher spin symmetry parametrized by θ.

6.4.2 3d Ising Model

As another example, we can apply our bounds to obtain predictions for three-point

coefficients for the 3d Ising model. First let us parameterize the three-point coef-

ficients of the energy-momentum tensor. Since this theory is parity preserving the

coefficient Nodd in (6.4.1) is necessarily zero. The remaining two structures in 〈TTT 〉

have recently been computed numerically using the conformal bootstrap in [168,181].
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Explicitly9

NB ≈ .9334 , NF ≈ .0131 . (6.4.16)

The Ising model has a Z2 global symmetry under which T is even. Therefore only Z2

even scalars participate in the bound. The lightest Z2 even and parity even scalar is

the operator ε whose dimension is known

∆ε ≈ 1.4127 . (6.4.17)

Therefore, in a normalization where the two-point function coefficient of ε is one, we

can evaluate (6.4.12) and find the bound

|CTTε| ≤ .0088 = (1.751)Cfree , (6.4.18)

where in the last equation we normalized the answer by the expression (6.3.15) for

the value of the OPE coefficient in the free theory Cfree = |CTT :φ2:|/
√
C:φ2: . Note

that although : φ2 : saturates the bound in the free field theory, the dimension of ε

is larger than that of : φ2 : and hence the OPE coefficient CTTε may be larger than

CTT :φ2:.

We can obtain a stronger bound by including the operator ε′ of dimension ∆ε′ ≈

3.8303 in the sum of (6.4.12). Using the correct values for feven(∆) for these dimen-

sions and normalizing by the TT : φ2 : OPE we obtain the constraint

0.3267|CTTε|2 + 0.0063|CTTε′ |2 ≤ C2
free . (6.4.19)

9In making these estimates we use a value of θ ≈ .014. This is the central value of the calculation
of [168] based on expectations for the parity odd scalar gap.
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Since the operators ε and ε′ are hermitian their OPE coefficients are real and the

bound above defines the allowed region of OPE coefficients as the interior of an

ellipse shown in Figure 6.3.

6.5 Bounds on TTJ in d = 4

As a final example, we consider states created by a linear combination of the energy-

momentum tensor and a conserved vector current J in d = 4 spacetime dimensions. In

this case the three-point function 〈TTJ〉 is controlled by a single OPE coefficient CTTJ

and is parity violating. This three-point function is presented in detail in Appendix

B of [56].

One reason why this OPE coefficient is interesting is that it is equivalent to a non-

trivial mixed anomaly between the flavor symmetry generated by J and the Lorentz

symmetry generated by T [182]. In the presence of a background metric g, the current

J is not conserved but instead obeys [183–185]

〈∇µJµ〉[g] =
CTTJ
768π2

εµνρσRµνδγR
δγ

ρσ , (6.5.1)

where Rµνρσ is the Reimann tensor.

In the above, our normalization is such that the coefficient CTTJ may be expressed

as the net chirality of the charges of elementary Weyl fermions:

CTTJ =
∑

Left Weyl i

qi −
∑

Right Weyl j

qj . (6.5.2)

In particular, for the theory of a single Weyl fermion CTTJ is one. In an abstract CFT

without a Lagrangian presentation our normalization of the OPE coefficient is defined

as follows. Fix complex coordinates (z, w). Then the OPE of operators restricted to
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the w = 0 plane is

Tww(z)Tw̄w̄(0) ∼ CTTJ
4π6|z|6 (zJ z̄ − z̄Jz) . (6.5.3)

We will also need the three-point function 〈TJJ〉. This correlator is controlled by

two independent coefficients:

〈TJJ〉 = Q2
CB〈TJJ〉CB +Q2

WF 〈TJJ〉WF . (6.5.4)

Here the structures CB and WF are those found for the U(1) current in a theory of

free complex bosons (CB) or free Weyl fermions (WF ). In a free field theory, these

are expressed in terms of the charges of elementary fields as (see [174])

Q2
CB =

∑

complex scalars i

q2
i , Q2

WF =
∑

Weyl fermions i

q2
i . (6.5.5)

In general, a single linear combination of these OPE coefficients is fixed by the Ward

identity. We have

〈JJ〉 ∝ CJ ≡
1

3

(
Q2
CB + 2Q2

WF

)
. (6.5.6)

The two-point function coefficient CJ can also be interpreted as a conformal anomaly.

Indeed, in the presence of a non-trivial background gauge field that couples to J , the

energy-momentum tensor acquires an anomalous trace. In our conventions this is

〈T µµ 〉[A] =
CJ
4
FαβFαβ . (6.5.7)

We can bound the anomaly coefficient CTTJ using the same methods described in

earlier sections for scalar operators. We enforce positivity of the average null energy

operator E in the state |Ψ〉 created by a linear combination of T and J

|Ψ〉 = |T (q, λT )〉+ |J(q, λJ)〉. (6.5.8)
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The expectation values 〈E〉λT ·T and 〈E〉λJ ·J have been computed in [160]. The matrix

of energy expectation values in the states |Ψ〉 may again be decomposed in terms of

the SO(2) rotation symmetry about the vector n. The current operator J contributes

states of charge −1, 0, 1. As in the review of section 6.2.2 we may express the null

energy expectation value as (qJi/4π) where i is the SO(2) charge. One then finds

J±1 =
Q2
WF

CJ
. (6.5.9)

By repeating the collider calculation we find that the new off-diagonal matrix

element is given by

〈T (q, λT )|E(n)|J(q, λJ)〉 =
q

4π

(√
5

π4

CTTJ√
CTCJ

εijkλ
∗
T,imλJ,kn

mnj

)
. (6.5.10)

Note that this structure is parity odd as expected. There are other allowed parity

odd expressions in terms of λij and ni, but they do not arise in the null-energy matrix

element. An important feature of (6.5.10) is that only those states of SO(2) charge

±1 can mix with the energy-momentum tensor. In particular, this means that bound

will only involve the coefficient T1 defined in (6.2.10).

Explicitly choosing appropriate polarization tensors we then find that positivity

of the null energy matrix E leads to a single constraint on these OPE coefficients:

C2
TTJ ≤ Q2

WFNWF , (6.5.11)

where NWF = NF/2 counts the effective number of Weyl Fermions in the 〈TTT 〉

correlation function. This bound is saturated in the free field theory of Weyl fermions.

This can be understood using the interference argument described in section 6.3.2.
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6.5.1 Supersymmetry and the R-Current

As in our analysis of scalar operators, we can generalize these results to states created

by multiple currents. This is particularly interesting in the case of supersymmetric

theories.

In supersymmetric theories, there is always a current JR contained in the same

supermultiplet as T . In particular, since it resides in a different multiplet it can

be distinguished from an ordinary flavor current JF . We would like to improve our

bound on the trace anomaly of JF to account for the fact that the R-current JR

always exists. In order to do this we consider the state created by

|Ψ〉 = v1|T (q, λT )〉+ v2|JR(q, λJ)〉+ v3|JF (q, λJ)〉 . (6.5.12)

The new ingredient appearing in the calculation of the energy matrix corresponding to

this state involves the three-point function 〈TJRJF 〉. Using superconformal invariance

we can fix this correlator completely. Since the details are not very illuminating we will

outline the procedure. The number of parity even structures, two of them, coincides

with the ones appearing in 〈TJJ〉, namely relaxing permutation symmetry does not

add new structures [176]. Moreover, using supersymmetric Ward identities [186] one

can check that no parity odd structure is allowed for 〈TJRJF 〉.10 Out of the two OPE

coefficients characterizing 〈TJRJF 〉, a linear combination of them is related to the

two-point function 〈JRJF 〉, which vanishes due to superconformal invariance. This

leaves 〈TJRJF 〉 fixed by a single OPE coefficient. Finally, since JR lies in the same

multiplet as the stress tensor we can relate this number to CTTF , the mixed anomaly

generated by the flavor current.

Combining the results outlined in the previous paragraph, and the fact that there

is no new structure involved in the collider calculation, it is straightforward to obtain

10This is not true for a three-point function of a stress tensor and two different conserved currents
〈TJ1J2〉 in a generic theory.
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the off-diagonal matrix element

〈JR(q, λJ)|E|JF (q, λJ)〉 =
q

4π

(√
20

3π4

CTTF√
CTCF

)
, (6.5.13)

where we chose n = (1, 0, 0) and λJ = (0, 1, i) for definiteness.

We can express parameters related to theR-current in terms of a and c = CTπ
4/40.

The two-point function is related to CT by a supersymmetry Ward identity as CR =

16
3
c. Its mixed anomaly is also fixed by supersymmetry to CTTR = 16(c− a). Finally

the energy one-point function is given by JR±1 = a
c

[160, 166]. Supersymmetry also

fixes this parameter for flavor currents as JF±1 = 1. Taking these facts into account

allows us to write down the energy matrix as a function only of a, c, CTTF and CF .

We obtain

〈Ψ|E|Ψ〉 =
q

4π
v†




2c−a
c

√
3 c−a

c
1√
2c

CTTF√
CF√

3 c−a
c

a
c

1√
6c

CTTF√
CF

1√
2c

CTTF√
CF

1√
6c

CTTF√
CF

1



v , (6.5.14)

where for definiteness we have chosen λJ = (0, 1, i) and a tensor polarization with the

same SO(2) spin.

Enforcing the positivity of this matrix yields several constraints. The leading

two-by-two minor involving states |T (q, λT )〉+ |JR(q, λJ)〉 gives the bound

1

2
≤ a

c
≤ 3

2
, (6.5.15)

which coincides with those derived in [160]. This bound is saturated by a free chiral

multiplet, a
c

= 1
2
, or a free vector multiplet, a

c
= 3

2
.

To constrain the gravitational anomaly coefficient we evaluate the determinant of

the full three-by-three matrix (6.5.14). This gives the following bound on the mixed
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anomaly for a flavor current

(
a

c
− 1

2

)(
36c− 24a− C2

TTF

CF

)
≥ 0 . (6.5.16)

For a free chiral multiplet the bound is automatically saturated, since the first term

in the left hand side vanishes independently of CTTF . Therefore we will assume that

a
c
> 1

2
. Then we obtain the following bound

C2
TTF

12CF
≤ 3c− 2a , (6.5.17)

which is stronger than the one derived in the previous section, without the use of

supersymmetry. Note also that this is consistent with the free vector multiplet. In

that case the right-hand-side vanishes, but there are also no flavor currents.

To conclude this section, we can mention some contexts where such bound on

the mixed anomaly is relevant. First of all, when we consider holographic CFT this

anomaly is related to a 5d Chern-Simons term of the form
∫
A ∧ R ∧ R, where A is

the gauge field dual to the current J (we will see in the next section how our bounds

translate to bounds on the gravity couplings for the case of TTO).

Finally, in the context of hydrodynamics and transport, quantum anomalies induce

a special type of transport coefficients, see [187] and, in particular, for the mixed

anomaly [188–190]. The coefficient bounded in this section CTTJ , is related to the

mixed anomaly recently observed experimentally in Weyl semimetals [191]. In the

linear response regime, the mixed anomaly produces an energy current ~j given by

[188–190]

~j = 24CTTJT
2 ~B , (6.5.18)
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where we denote the temperature by T and the system is placed in a fixed magnetic

field ~B. This allows us to translate our results into concrete bounds for transport

coefficients.

6.6 Bounds on Coefficients of the AdS Effective Action

If the d dimensional boundary theory has an AdSd+1 dual, then we would like to

translate the bounds on CTTO to bounds on the coefficients of the bulk effective

action. We are imagining that the theory has a large N expansion. Then, to leading

order, the bulk is given by a collection of free fields propagating on the AdS metric.

The simplest interactions correspond to bulk three-point interactions. These lead to

three-point functions in the boundary theory. For the case of gravitons we have a

three-point interaction coming from the Einstein Lagrangian, but it is also necessary

to include higher derivative terms, of the form W 2 and W 3, in order to get the most

general structures for the tensor three-point function. It is possible to match the

coefficients of the new structures to the coefficients of these higher derivative terms

in the Lagrangian [160,162].

Here we consider the same problem for the case of the 〈TTO〉 correlator. The

first observation is that in Einstein gravity this correlator is zero, since the action

of any field, expanded around the minimum of its potential has an action without a

linear term in the scalar field. Notice that this also implies that a massive scalar field

cannot not decay into two gravitons. However, we can write the higher derivative

term

S = Md−1
pl α

∫
dd+1x

√
gχW 2 (6.6.1)
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in the action, where we normalized the χ field to be dimensionless.11 This term enables

the field χ to decay into two gravitons. In flat space there is only one structure for

the on shell three-point function between a scalar and two gravitons, except in four

dimensions where there is also a parity odd one, as we discuss later. Therefore the

vertex (6.6.1) represents the general interaction that we can have in the theory. There

can be other ways to write it which give the same three-point function as (6.6.1). It

is possible to check that (6.6.1) gives rise to a 〈TTO〉 three-point function with the

coefficient

CTTO
√
f(∆)√

CT
=

8
√

2d(d− 1)πd/2√
d+ 1Γ(d/2)

α

R2
AdS

. (6.6.2)

At first sight, it seems surprising that the function f(∆) appearing here is the same

as the one that appears in the bound (6.3.10). This means that the ∆ dependence

disappears when we express the bound in terms of α. This is easy to understand

when we derive (6.6.2) as follows.

First we notice that integrating the stress tensor along a null line, as in the def-

inition of the energy measurement E =
∫
dx−T−−(x−, x+ = 0, ~y = 0), we produce a

shock wave in the bulk that is localized at x+ = 0. We can then imagine scattering a

superposition of χ and a graviton through this shock wave. This leads to a time delay

that is given by a matrix mixing the graviton and the scalar. An important point is

that the propagation through the shock wave is given by integrating the wave equa-

tion in a small interval before and after x+ = 0. Only the shock wave contributes to

this short integral over x+, but the scalar mass term does not contribute. Therefore

the time delay matrix is independent of the mass of the scalar. We can determine the

precise coefficient in (6.6.2) by doing this explicit computation for Einstein gravity

plus (6.6.1). We then get a bound on α by requiring that the time delay is positive.

11 Here Mpl is the reduced Planck mass in d+ 1 dimensions, defined so that the Einstein term is

S =
Md−1

pl

2

∫
dd+1x

√
gR. Similarly, the action of the scalar field is S =

Md−1
pl

2

∫
[(∇χ)2 −m2χ2].
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Comparing this to the bound (6.3.10) we fix the coefficient to the one in (6.6.2). We

explain this in more detail in Appendix 6.8.

This same shock wave method enables one to set even stricter bounds on α if one

assumes that there is a gap to the higher spin particles,12 as was discussed in [159]

for the case of the graviton higher derivative interactions. A similar analysis can be

done for the 5d Chern-Simons term coupling dual to the mixed anomaly [192].

In string theory, we expect that α is the order of α′, the inverse string tension. If

gravity is a good approximation, α′ � R2, then we find that the bound on (6.6.2) is

far from being saturated. The bound is saturated only as the string length becomes of

the order of the radius of AdS. In particular, this implies that the bound is satisfied,

and far from being saturated, for the Konishi operator of N = 4 super Yang Mills

at strong coupling. This operator is the lightest non-protected single trace operator

which has a dimension growing like ∆ ∝ λ1/4 at strong coupling, λ� 1.

In the four dimensional case, we can also have a parity odd correlator with a

corresponding coupling. In flat space this is related to the fact that the three-point

functions with ++ or −− graviton helicities are Lorentz invariant by themselves.

(The −+ graviton helicities are forbidden by angular momentum conservation). We

can then write the action as

S = M2
pl

∫
d4x
√
g

[
1

2
(R− 2Λ) +

1

2
[(∇χ)2 −m2χ2] +

∫
αeχW

2 + αoχWW ∗
]
,(6.6.3)

where as above we have defined χ to be dimensionless.13 In this normalization αi

has dimensions of length squared. They can be related to the coefficients of the

three-point function as

Ceven
TTOheven(∆)√

CT
=

24√
2

αe
R2
AdS4

,
Codd
TTOhodd(∆)√

CT
=

24√
2

αo
R2
AdS4

. (6.6.4)

12We thank E. Perlmutter and D. Meltzer for discussions on this issue.
13 We also define (W ∗)µνρσ = 1

2εµνδγW
δγ
ρσ.
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The bounds in this case then read

√
α2
e + α2

o

R2
AdS4

≤ 1

12
√

2
, (6.6.5)

in the case that there are no purely gravitational corrections to Einstein gravity. Of

course, if there are three-point functions that lead to corrections to Einstein gravity,

then the bound is corrected to those given in section 6.4.

6.7 Constraints for de-Sitter and Inflation

The physics of inflation might be our very best window into very high energy physics.

The standard inflationary theory starts with a scalar field coupled to the Einstein

action and includes all two (or less) derivative interactions. The universe undergoes a

period of expansion that is governed by a nearly de-Sitter solution, characterized by

a Hubble scale H that is nearly constant. The effective coupling of the gravitational

sector is of order H/Mpl which is very small, less than 10−5. However, it is possible

that there are corrections to the two derivative action due to the presence of a light

string scale. The value of the string tension could be fairly low H2 . T . When

the string tension becomes comparable to the Hubble scale, we expect significant

corrections to the two derivative action. We do not have an explicit scenario where

this happens. However, a similar situation happens in AdS space when we consider

a gravity dual of a not so strongly coupled large N theory. Therefore it is natural

to question whether something similar could happen in inflation and we can look

for signatures of such a low string scale. It is important to find signatures that are

as model independent as possible. Specially nice signatures are those that have a

non-vanishing contribution in the de-Sitter approximation. These are not strongly

suppressed by slow roll factors. In addition, their form is strongly constrained by the

de-Sitter isometries. An example of such contributions are the three-point functions
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of gravity fluctuations, where the higher derivative corrections were discussed in [193].

Another interesting case are the couplings of the form fe(χ)W 2 or f0(χ)WW ∗. These

two couplings are particularly interesting because their effects are visible at the two-

point function level.

Let us discuss first the parity odd coupling, which leads to chiral gravity waves

[194,195]. Namely, we have different gravity wave two-point functions, hhL, hhR, for

the left and right handed circularly polarization. We can define the asymmetry A as

A ≡ hhL − hhR
hhL + hhR

= 4π
ḟo(χ)

H
H2 = ±4π

√
2ε

(
∂f

∂χ

)
H2 , χ =

φ

Mpl

, (6.7.1)

where χ is defined to be dimensionless and φ is the inflaton with canonical normal-

ization. (The ± comes from going from χ̇ to
√
ε, since the derivative of the scalar

can have either sign). If we were in AdS4 we would have a sharp bound on the

coefficients via the condition (6.6.5), after we identify αo = ∂f
∂χ

. It is reasonable to

think that in the de-Sitter case too, there will be trouble is the bound is violated. Of

course, we know that even near-saturation of the bound implies that the field theory

approximation is breaking down.

In the de-Sitter case we do not have a sharp derivation of a bound from boundary

theory reasoning. We do not have an analog of the null energy condition, discussed

in section 6.4, for the boundary theory, since the boundary theory is purely spacelike.

It would be nice to have a sharp derivation of a de-Sitter version of the bound. In

de-Sitter, we can talk of a “quasi-bound”, which we get by simply applying the same

bound on the coefficients of the action that we had in anti-de-Sitter. This quasi-bound

should be viewed simply as an educated guess, including numerical coefficients, for the

validity of bulk effective theory. A near saturation of these quasi-bounds is a strong

indication of a light string scale which could also have other manifestations such as

indirect evidence of higher spin massive particles, etc [196]. In summary, in de-Sitter
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also we have a quasi-bound on the coefficients similar to (6.6.5), with 1/RAdS → H

√(
∂fe
∂χ

)2

+

(
∂fo
∂χ

)2

=
√
α2
e + α2

o ≤
H2

12
√

2
. (6.7.2)

This bound, then implies a quasi-bound on the asymmetry (6.7.1) of the form

|A| ≤ 4π

12

√
ε . (6.7.3)

The allowed values by this quasi-bound seem to be smaller than the smallest possible

measurable value from the CMB B-modes as analyzed in [197]. Conversely, this

means that if chiral gravity waves through E-B mode correlators are measured, then

we would need a higher derivative coupling with a coefficient so large that it violates

(6.7.2).

Let us turn now to a discussion of the parity even coupling. This coupling gives

rise to a violation of the consistency condition for the two-point function [198], even

in the case that the speed of sound is close to one,

−8
nt
r

= 1 + 8H2Hdtfe
(dtχ)2

= 1± 8H2 αe√
2ε

, (6.7.4)

where we assumed that the speed of sound for the scalar is close to one. Here nt is the

tensor spectral index and r the tensor to scalar ratio conventionally defined. Then

the bound we had in (6.7.2) translates into the following constraint on the violation

of the consistency condition

∣∣∣−8
nt
r
− 1
∣∣∣ ≤ 1

3
√
ε
. (6.7.5)

Finally we will comment on Scalar-Tensor-Tensor Three-Point Functions. The

φW 2 higher derivative coupling between the scalar and the graviton also give rise
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to new contributions to the scalar-tensor-tensor three-point function. This is a con-

tribution, that is non-vanishing in the de-Sitter limit. More precisely, if we can

approximate ∂χfe(χ(t)) by a constant, then we get a contribution even in de-Sitter

space. The standard Einstein gravity contribution, [199], is suppressed by a slow roll

factor
√
ε, if we assume that ∂χf is of order one. Of course, our bound constrains the

size of this three-point function because it is constraining the size of the coefficient

αe ∼ ∂χfe(χ(t)).

The three-point function for the parity odd coupling fo(χ)WW ∗ was computed in

[200], where it was found to be proportional to ∂2
χf . One might have naively expected

a de-Sitter invariant contribution proportional to α0 = ∂χf0, when we approximate

this by a constant. The explicit computation by [200] shows that there is no such

contribution. This seems surprising at first sight because this parity odd coupling

does indeed give a non-vanishing contribution to the three-point function in the AdS4

case. The reason it vanishes in de-Sitter is that it gives a contribution to the de-Sitter

wavefunction that is a pure phase, which disappears when we take the absolute value

squared of the wavefunction. The same happens with the W 2W ∗ parity violating

graviton three-point coupling [201]. The correlator proportional to ∂2
χf found in [200]

has an extra factor of φ̇ and is not expected to be de-Sitter invariant (though we did

not check this explicitly).

It should be noted that the correction to the two-point function consistency con-

dition (6.7.4) has the right form so that the consistency condition involving the soft

limit of the three-point function [199, 202] is obeyed, though we have not explicitly

checked the precise numerical coefficients. A similar remark applies in the parity odd

case; the correction to the two-point function (6.7.1) is such that the soft limit of the

three-point function in [200] obeys the consistency condition.
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6.8 Appendix: Computing the Bound in the Gravity Theory

In this appendix we relate the OPE coefficient CTTO to a coefficient, α, in the AdSD

effective action

S =
MD−2

pl

2

[∫ √
g(R− 2Λ) + (∇χ)2 −m2χ2 + 2αχW 2

]
, (6.8.1)

where D is the dimension of AdSD and Λ = − (D−1)(D−2)

2R2
AdS

. χ is defined to be dimen-

sionless and α has dimensions of length squared.

In principle we can compute the relation between α and CTTO by computing the

three point function between a scalar and the graviton produced by this cubic term

in the Lagrangian, using Witten diagrams. Instead, we will follow a different route.

We will directly compute the energy correlator in gravity and derive a bound on α by

demanding its positivity. We then relate α and CTTO by demanding that this gravity

bound, in terms of α, matches the bound we obtained in terms of CTTO in the field

theory analysis.

We will rely on [160, 162] where the energy correlators were computed in gravity.

An important point is that the insertion of T−− corresponds to a shock wave localized

in a null plane. Furthermore, an operator insertion at the origin with definite energy-

momentum gives rise to an excitation that crosses this null plane at a localized point.

For this reason the computation of the bound boils down to analyzing the propagation

of an excitation through a suitable gravitational shock wave in flat space. The AdSD

space is only relevant for determining the transverse profile of the shock wave, as we

will see below.

For these reasons we consider a shock wave of the form

ds2 = ds2
flat + (dx+)2δ(x+)h(y) , ds2

flat = −dx+dx− + dy2 . (6.8.2)
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Adding gravitons we get

ds2 = ds2
flat + (dx+)2δ(x+)h(y) + dxµdxνζµζνe

ip.xG(p) + h.c., (6.8.3)

with ζ2 = 0, ζµpµ = 0. Note that the graviton polarization is ζµν = ζµζν , and is

normalized to one ζ.ζ̄ = 1. We can think of G(p) and Ḡ(p) as complex numbers,

which in the quantum theory will be related to a and a†. Inserting (6.8.3) into (6.8.1)

we can derive the quadratic and cubic interaction terms.

S =
MD−2

pl

2

∫
dx+dx−dD−2y

{[
p+p− + δ(x+)p2

−h
] [
G(p)Ḡ(p) + 4p−p+χ(p)χ̄(p)

]
+

+8p2
−αζ

ij∂i∂jhδ(x
+)G(p)χ̄(p) + c.c.

}
, (6.8.4)

where we only wrote the terms relevant for our computation, ignoring transverse

derivatives in the kinetic terms. Momentarily setting the scalar field to zero, we see

that we have the following equation for the graviton as it crosses the shock wave

∆hµν ≡ hµν |x+=0+ − hµν |x+=0− = ip−hhµν . (6.8.5)

Exponentiating this, hµν(x
+ = 0+) = eip−hhµν(x

+ = 0−), we see that the time delay

is simply given by h. This is as expected from (6.8.2) since we can shift x− by h

and make the term involving h disappear if we ignore its y dependence. So far, we

considered the computation in flat space. An insertion of the null energy integrated

along a ray in the boundary theory gives rise to a shockwave in AdSD which is localized

on a null direction. Its dependence on the transverse directions is the following. The

transverse space is an HD−2. This is easy to see in embedding coordinates where AdSD

is W̃+W̃−+W µWν = −1 (setting RAdSD = 1). The null plane is W̃+ = 0. It contains

the null direction parametrized by W̃− as well as the transverse space W µWµ = −1.

The profile of the wave is proportional to h ∝ (W 0 − W ini)2−D [160, 162], with a
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positive coefficient. Here ~ni is a vector on the sphere at infinity in the boundary

Minkowski space. For (6.8.4) we need the derivatives at W i = 0, which are given by

h→ h , ∂i∂jh = [(constant)δij + (D − 2)(D − 1)ninj]h
1

R2
AdSD

, (6.8.6)

where the constant does not matter because the graviton is traceless. If we take a

localized shockwave instead then the result is the same replacing R2
AdS → b, with b

being the shockwave impact parameter.

The relevant component of the graviton is the one with polarization along ni. This

has the expression

ζij =

√
D − 2

D − 3

[
ninj − δij

D − 2

]
. (6.8.7)

The expression for the time delay acting on a superposition of a graviton and a scalar

is now a matrix proportional to




1 γ

γ 1


 , γ ≡ 4(D − 1)

√
(D − 3)(D − 2)

α

R2
AdSD

, (6.8.8)

where the matrix is acting on a two dimensional space where one direction is the

scalar and the other is the graviton with polarization (6.8.7). The unitarity bound

comes from the restriction that the eigenvalues are non-negative, or |γ| ≤ 1, which is

|α|
R2
AdSD

≤ 1

4(D − 1)
√

(D − 3)(D − 2)
=

1

4d
√

(d− 2)(d− 1)
, (6.8.9)

where d is the dimension of the boundary. Comparing this with the bound obtained

in (6.3.8), with the non-Einstein-gravity structures set to zero, we obtain (6.6.2). Of

course, once we get the proportionality constant between α and CTTO for the Einstein

gravity case, the same constant holds also if we add the purely gravitational higher
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derivative terms that generate the other tensor structures for 〈TTT 〉. We could add

them to this computation, but we expect to reproduce the bounds we got in the

general field theory analysis.

In the special case of the four dimensional theory, we actually have two couplings

(6.6.3). This leads to a new interaction term in (6.8.4) of the form

αζ ij∂i∂jh→ αeζ
ij∂i∂jh+ αoζ

ilεlj∂i∂jh , (6.8.10)

where now εij is the two dimensional epsilon symbol. This means that the scalar can

now mix with the other graviton polarization component besides (6.8.7). Namely,

defining (6.8.7) as ζ⊕, it can also mix with ζ ij⊗ ≡ εilζ lj⊕ . Now the time delay is a a

three by three matrix




1 γ β

γ 1 0

β 0 1




, γ ≡ 12
√

2
αe

R2
AdS4

, β ≡ 12
√

2
αo

R2
AdS4

, (6.8.11)

where the rows and columns correspond to the scalar and the two graviton polar-

izations. Now the bound is (6.6.5). Comparing this to (6.4.13), after setting the

non-Einstein-gravity structures to zero, we get the precise mapping to the CTTO co-

efficients (6.6.4).
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Chapter 7

Conclusions

In this thesis we have studied several aspects of quantum chaos and near horizon

scattering in black holes, related by gauge/gravity duality.

A lot of progress has been done after the discovery of holographic quantum me-

chanical systems such as the SYK model. These systems are characterized as being

described in the IR by a pseudo-Goldstone mode that controls the breaking of con-

formal symmetry. This mode is directly related to the gravitational mode of dilaton

gravity in (nearly) AdS2. This connection explains the thermodynamics and chaos of

SYK at low temperatures.

One of the results in this thesis, explained in chapter 2, has been to solve the

Schwarzian/JT-gravity theory by finding the exact correlators (both time and out-of-

time ordered). On the QM side this is interesting since exact answers for OTOC in

non-trivial theories (specially maximally chaotic) are generally non tractable. More-

over this gives a solution to the Jackiw-Teitelboim model for quantum gravity. Of

course this is still an expansion around large extremal entropy and is not useful to

decide questions sensitive to the fine grained details of the black hole spectrum like

the information paradox, but its still some progress.
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As a by-product of this in chapter 3 we found a non-perturbative generalization

of the Dray-’t Hooft S-matrix describing scattering near the black hole horizon. This

is an interesting situation to study as we have explained in the Introduction. Even in

the semiclassical analysis there are more to shockwaves than the Lyapunov exponent.

In the eikonal approximation one can compute OTOC beyond the t > β limit. In

higher dimensions this is technically complicated but in near AdS2 one can use it as

a toy model for the more realistic situations.

It would be interesting to understand the fine-grained details of the spectrum

responsible for the unitarization of the black hole evaporation. One option is to do

numerics on the SYK model but the most interesting outcome would be understnading

general lessons that could be applied to higher dimensions.

Another important open question is to identify a (possibly) string theory construc-

tion from which to derive the dual of the SYK model. Some evidence points into the

belief that this should be a theory of strings in 2D, and not a reduction from higher

dimensions. This would also help clarify the resolution of the information paradox in

this simplified setting.

Other interesting question in holography for which NAdS2/NCFT1 might be help-

ful is to understand in which sense entanglement between disconnected QM systems

creates the space time region connecting them. This is related to the belief that

gravity and spacetime are closely connected to quantum information.

In chapters 4 and 5 we have extended some lessons from SYK to two dimensions.

We have argued that a natural candidate for the theory describing the breaking of

conformal symmetry is the theory of coadjoint orbits of the Virasoro group. This

theory also controls the chaos exponent and gives maximal chaos. We have also

found ways to create 2D field theories which share several of the prominent features

with SYK.
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Finally another interesting connection is between shockwaves and the recently

proved averaged null energy condition (ANEC). In chapter 6 we have studied aspects

of this connection in the context of the conformal collider. This produced mostly

interesting bounds on general CFTs. For holographic CFTs this puts severe constrains

on the low energy effective action for string theory. This would be interesting to study

further and moreover if it has some connection with black holes and quantum chaos.
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