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Abstract

In this work we consider gravitomagnetic effects in the context of
the Kerr-Newman solution of the General Relativity theory. Firstly,
the gravitoelectric and gravitomagnetic fields are defined with the aid
of the expression of the gravitational force, which is a Lorentz-type force.
Then, as an application, we study the frame dragging effect, the light
deflection and the gravitomagnetic time delay, exhibiting the electric
charge contribution in each case and comparing the results obtained
with those predicted in the Kerr spacetime.
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1 Introduction

In the context of the General Relativity theory, using the weak field approxima-
tion and considering a material source with low rotating motion, we can work
in the gravitoelectromagnetic framework, a formal analogy with the electro-
dynamics. In this analogy, the rotation of a mass creates the gravitomagnetic
field, while the rest mass only generates the gravitoelectric field. Consequently,
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one defines the gravitomagnetic field in the setting of the Kerr metric, which
describes the curved spacetime geometry around a rotating mass [12]. In-
deed, the rotation of the Earth produces a gravitomagnetic field that causes
a precession in gyroscopes orbiting around the planet. This effect, called the
Lense-Thirring effect, was verified by the GP-B experiment with an accuracy of
19% [6]. In recent years, several aspects of gravitomagnetism have been stud-
ied, taking into account effects produced by the gravitational field of rotating
astronomical sources [13, 2, 10].

In this paper, we consider the spacetime of a rotating, electrically charged
body, which can represent a Kerr-Newman black hole [1, 11]. Initially, we de-
fine the gravitoelectric and gravitomagnetic fields in the Kerr-Newman space-
time, exhibiting their dependence in relation to the electric charge of the
source. To this end, we calculate the Lorentz-type gravitational force pro-
duced by the central body. Thereafter, we investigate gravitomagnetic effects
as frame dragging and gravitomagnetic time delay; also, we examine if the
gravitomagnetic field contributes to the light deflection. The results obtained
are compared with those predicted in the Kerr solution context.

The gravitoelectric and gravitomagnetic fields are defined in the next sec-
tion and the expressions are utilized in Section 3 to investigate the frame
dragging and light deflection. Then, in Section 4, the study of gravitomag-
netic time delay is developed. Finally, Section 5 is devoted to our conclusions.

2 Gravitoelectric and gravitomagnetic fields

Let us consider the Kerr-Newman metric, that describes the gravitational field

of a central mass M rotating with angular momentum
−→
j and electric charge

Q. The line element of Kerr-Newman, taking into account: (i) the weak field
approximation conditions

GM

c2r′
� 1 and

GQ2

c4r′2
� 1, (1)

where G is the gravitational constant and c is the speed of light in free space,
and (ii) a localized and slowly rotating source that satisfies the relation

j

cMr′
� 1, (2)

is given by [4]

ds2 = −c2
(

1− 2GM

c2r′
+
GQ2

c4r′2

)
dt2 +

(
1 +

2GM

c2r′
− GQ2

c4r′2

)
dr′2

+r′2(dθ2 + sen2θdϕ2)− 4Gj

c3r′2

(
1− Q2

2c2Mr′

)
senθ

× (r′senθdϕ) (cdt) . (3)
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It is useful to introduce the transformation r′ = r

(
1 +

GM

c2r
− GQ2

4c4r2

)
. Thus,

we obtain the expression of equation (3) in isotropic coordinates:

ds2 = −c2
(

1− 2GM

c2r
+
GQ2

c4r2

)
dt2 +

(
1 +

2GM

c2r
− GQ2

2c4r2

)
×[dr2 + r2(dθ2 + sen2θdϕ2)] − 4Gj

c3r2

(
1− Q2

2c2Mr

)
senθ

× (rsenθdϕ) (cdt) . (4)

In this way, for a Cartesian-like coordinate system xµ = (ct,−→r ) with −→r =
(x, y, z) and µ = 0, 1, 2, 3, we have the line element

ds2 = −c2
(

1− 2GM

c2r
+
GQ2

c4r2

)
dt2 +

(
1 +

2GM

c2r
− GQ2

2c4r2

)
δijdx

idxj

− 4

c2

(
1− Q2

2c2Mr

)(−→
A 0 · d−→x

)
(cdt) , (5)

being
−→
A 0 =

G

cr3
(
−→
j ×−→r ) and

−→
j = jẑ.

The equation (5) can be written as

ds2 = −c2
(

1− 2Φ1

c2

)
dt2 +

(
1 +

2Φ2

c2

)
δijdx

idxj − 4

c

(−→
A · d−→x

)
dt, (6)

where we define

Φ1 =
GM

r
− GQ2

2c2r2
, (7)

Φ2 =
GM

r
− GQ2

4c2r2
, (8)

−→
A =

(
1− Q2

2c2Mr

)
−→
A 0. (9)

To first order in Φ1, Φ2 and
−→
A , the Lagrangian for the motion of a test

particle of mass m is

L = −mcds/dt = −mc2
(

1− v2

c2

)1/2

+mγΦ1 +mγ
v2

c2
Φ2 − 2m

γ

c
−→v ·
−→
A, (10)

where γ = 1/
√

1− v2/c2. Considering that in the presence of a weak gravita-
tional field the particle has a small velocity (v2/c2 � 1) [9], one finds

L = −mc2
(

1− v2

c2

)1/2

+mΦ1 −
2m

c
−→v ·
−→
A. (11)
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This equation is analogous to the electromagnetic case [7], so that the gravi-

tational force
−→
F = d−→p /dt, with −→p = γm−→v , takes the form

−→
F = −m

−→
E − 2m

−→v
c
×
−→
B , (12)

where the gravitoelectric field
−→
E and the gravitomagnetic field

−→
B are expressed

by
−→
E = −∇Φ1 =

(
GM

r2
− GQ2

c2r3

)
r̂, (13)

−→
B = ∇×

−→
A =

−→
B 0 −

Q2

2c2Mr

[
G

c

(
4r̂(r̂ · −→j )− 2

−→
j

r3

)]
, (14)

being
−→
B 0 = ∇×

−→
A 0 =

G

cr3

[
3r̂(r̂ · −→j )−−→j

]
(15)

the usual gravitomagnetic field of a rotating mass [4]. If
−→
j = 0, we have

that the contribution for gravitational effects is only due to the gravitoelec-
tric field, given by (13), corresponding to the Reissner-Nordström spacetime
[3]. On the other hand, equation (14) explicitly shows the dependence of the
gravitomagnetic field with the electrical charge of the rotating mass.

3 Frame dragging and light deflection

Now, considering (14), we can obtain the following expression to the angular
velocity of precession of gyroscopes relative to distant stars [4]

−→
Ω =

−→
B

c
=
−→
Ω 0 −

Q2

2c2Mr

[
G

c2

(
4r̂(r̂ · −→j )− 2

−→
j

r3

)]
, (16)

with
−→
Ω 0 =

−→
B 0

c
. This precession is equivalent to a dragging of inertial frames

caused by the gravitomagnetic field. The result obtained shows the electric
charge contribution to the gravitational effect of frame dragging [14].

An expression for the light deflection angle by a Kerr-Newman mass in the

equatorial plane, which considers higher order terms of M ,
−→
j and Q2, was

recently calculated by Chakraborty and Sen [3, equation (34)]. From their
formula, we can apply the approximations of weak field and slow rotation of
the source. In this case, the deflection angle stays

α =
1

c2
[(3π − 4) Φ1(R)− (3π − 8)Φ2(R)] , (17)
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where Φ1(R) and Φ2(R) are the gravitoelectric potentials defined by (7) and
(8), being R the distance of closest approach. Therefore, taking into account
the approximations adopted, the gravitomagnetic field does not influence the
light deflection phenomenon.

4 Gravitomagnetic time delay

Let us consider a ray of electromagnetic radiation that propagates from a
point P1 : (ct1, ~r1) to a point P2 : (ct2, ~r2) in the spacetime given by (6), where
gµν = ηµν +hµν and ηµν = diag(−1, 1, 1, 1) is the Minkowski metric. The total
time spent by the ray in the path is [5]∫ t2

t1

dt =
1

c

∫ P2

P1

| d~r | + 1

2c

∫ P2

P1

hµνk
µkνdl, (18)

where kµ = (1, k̂), k̂ is the constant unit propagation vector of the signal

and dl =| d~r |= (δijdx
idxj)

1/2
denotes the Euclidean length element along the

straight line that joins P1 to P2. In turn, the gravitational time delay is defined
as

∆ =
1

2c

∫ P2

P1

hµνk
µkνdl (19)

and the gravitomagnetic time delay is expressed by

∆B =
1

c

∫ P2

P1

h0ik
0kidl. (20)

Using (6), we have

∆B =
1

c

∫ P2

P1

[
− 2

c2

(
1− Q2

2c2Mr

)
−→
A 0

]
· d−→r , (21)

with k̂dl = d−→r . One can now write that

∆B = − 2

c3

∫ P2

P1

−→
A 0 · d−→r +

Q2

c5M

∫ P2

P1

−→
A 0

r
· d−→r . (22)

The above equation exhibits explicitly the dependence of the gravitomagnetic
time delay with the electric charge. On the other hand, if Q = 0 we recover the
known expression in the Kerr spacetime [5]. It is interesting to note that the
gravitomagnetic time delay could have a noticeable participation in the gravi-
tational lensing delay of extragalactic sources, so that should be considered in
the analysis of observational data [8].
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5 Conclusion

We study the gravitoelectromagnetic formalism in the context of the Kerr-
Newman spacetime. In this sense, the expression of the gravitational force
was obtained and, then, we define the gravitomagnetic field, which includes
the electric charge contribution for gravitational effects. In sequence, we exam-
ine some gravitomagnetic effects, such as frame dragging and gravitomagnetic
time delay, exhibiting the electric charge terms in each case. In the particular
case of light deflection, we verify that only gravitoelectric potentials affect the
deflection angle.
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