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Global optimization of quantum dynamics with AlphaZero

deep exploration

Mogens Dalgaard’, Felix Motzoi', Jens Jakob Serensen' and Jacob Sherson'

While a large number of algorithms for optimizing quantum dynamics for different objectives have been developed, a common
limitation is the reliance on good initial guesses, being either random or based on heuristics and intuitions. Here we implement a
tabula rasa deep quantum exploration version of the Deepmind AlphaZero algorithm for systematically averting this limitation.
AlphaZero employs a deep neural network in conjunction with deep lookahead in a guided tree search, which allows for predictive
hidden-variable approximation of the quantum parameter landscape. To emphasize transferability, we apply and benchmark the
algorithm on three classes of control problems using only a single common set of algorithmic hyperparameters. AlphaZero
achieves substantial improvements in both the quality and quantity of good solution clusters compared to earlier methods. It is
able to spontaneously learn unexpected hidden structure and global symmetry in the solutions, going beyond even human

heuristics.
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Recent progress on technologies with quantum speedup focuses
largely on optimizing dynamical quantum cost functionals via a
set of external classical parameters. Such research includes
quantum variational eigensolvers,’ annealers,? simulators,>* circuit
optimization,>® optimal control theory,”® and Boltzmann
machines.'® The minimized functional could be for example the
energy of a simulated system, or the distance to a quantum
computational gate.

A shared algorithmic feature is domain knowledge about where
to search, such as near the Hartree-Fock Ansatz for variational
eigensolvers, or in the analytical gradient direction. An open
question in optimization research is how much this specialized
approach can be supplanted by a problem-agnostic methodology:
One which does not require expert knowledge, avoiding both the
overhead in human labor'" and the potential for local, suboptimal
trapping.'>'* In other words, an autonomous machine learning
approach has the potential to plan its solutions strategically.

It has been argued that, due to the inherent smoothness of
unitary quantum physics,'> local exploitation of quantum
dynamics can be sufficient for efficiently finding good solutions.'®
Local search has been especially successful in the well-established
field of Quantum Optimal Control Theory (QOCT), enjoying a half
century of continued progress in NMR,"” quantum chemistry,”'®
and spectroscopy.'® This has culminated in Hessian extraction
approaches?® that generally outperform other local methods.?'"*?

Yet, similar to classical NP-complete problems,”® quantum
functionals can suffer a phase transition®* from easier to “needle
in a haystack” instances that require global exploration of
parameters.

Mounting evidence has shown that imposing significant
constraints in the dynamics may lead to such complexity,''#*2¢
especially as QOCT has veered into high-precision quantum
computation,? circuit compilation,”® and architecture design.? It
is therefore crucial to balance resources for exploitation of
smooth, local quantum landscapes with state-of-the-art classical
methods for domain-agnostic exploration.

In the literature, optimization of dynamically evolving systems is
characterized by a lookahead-depth, i.e. how far into the future
one plans current actions. A shallow depth may broaden
exploration, a strategy typically found in Reinforcement Learning
(RL).>° This has been powerfully combined with Deep Neural
Networks (DNN)*'~3° and applied recently to quantum systems.>*~*3
Unfortunately, single-step lookaheads are inherently local and
thus require a slower learning rate, with no performance gain
found over full-depth, domain-specialized (Hessian approxima-
tion) methods in QOCT. Other full-depth methods have also had
mixed success, e.g. Genetic Algorithms***> and Differential
Evolution,®® but they typically require careful fine-tuning since
they are based on ad hoc heuristics rather than being
mathematically rooted.

A recent stunning breakthrough has been due to the AlphaZero
class of algorithms.***® AlphaZero has already effectively out-
classed all adversaries in the games of Go, Chess, Shogu, and
Starcraft. The key to the success of AlphaZero was the
combination of a Monte Carlo tree search with a one-step
lookahead DNN. As a result, the lookahead information from far
down the tree dramatically increases the trained DNN precision,
and together they compound to produce much more focused and
heuristic-free exploration.

Here, we implement and benchmark a QOCT version of
AlphaZero for optimizing quantum dynamics. We characterize
improvements in learning and exploration compared to traditional
methods. We find a crossover from difficult problems where
AlphaZero learning alone is ideal and those where a combination
of deep exploration and quantum-specialized exploitation is
optimal. We show this leads to a dramatic increase in both the
quality and quantity of good solution clusters. Our AlphaZero
implementation retains the tabula rasa character of ref. *’ in two
important respects. Firstly, it efficiently learns to solve three
different optimization problem classes using the same algorithmic
hyperparameters. Secondly, we demonstrate that AlphaZero is
able to identify quantum-specific heuristics in the form of hidden
symmetries without the need for expert knowledge.
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Overview of circuit schematic and the AlphaZero algorithm. a Circuit-QED architecture consisting of two qubits (colored boxes)

mounted on either side of a transmission line resonator. The first qubit is directly driven at the resonance frequency of the second one for a
cross-resonance gate. An example of a piecewise-constant pulse is depicted below the setup. b The schematics of a Monte Carlo tree search.
Here the nodes are depicted as pulse sequences and the edges as lines. A single search consists of a forward propagation, expansion, and a
back-pass (see text). During the expansion phase, the corresponding state (unitary) is fed as input to the neural network. The edges are
initialized using the probabilities p from the neural network and the back-pass uses the value v also given by the neural network. ¢ The neural
network architecture used in AlphaZero. The network takes the state (unitary with N = 4) encountered in the tree search, as input and outputs
probabilities for selecting individual actions p = {p,..p,,, ... } and an estimate of the final score (fidelity) v.

RESULTS

Unified quantum exploration algorithm

In this work, we seek to obtain pulse sequences that can unitarily
steer a quantum system towards given desired dynamics. For our
purposes, we quantify this task through the state-averaged
overlap fidelity F(U(t)) with respect to a target unitary Utargets
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Here, U(t) denotes the time-evolution operator of the system,
which solves the Schrodinger equation. We fix for concreteness
our physical architeture as superconducting circuit QED,* being
both a highly tunable and potentially scalable architecture, with
potential near-term applications.>® The system is chosen to be a
resonator-coupled two-transmon system, as depicted in Fig. 1a.
Here the transmon qubits are mounted on either side of a linear
resonator and we drive the first qubit with an external control Q,
which could be a piecewice constant pulse as depicted in the
bottom of the figure. The system dynamics are governed by the
Hamiltonian®"

FI(t) = Dbl by + J(bib; + bib) + Q(t)(B! + by), P)
where b; is the qubit-lowering operator for transmon j, and the
external control Q(t) is shaped by the optimization algorithm to
maximize (1), with Utarget = v/ZX being a standard entangling gate

(see Methods). Utarget with single-qubit gates form a universal gate
set, e.g., for quantum computation on a surface code circuit-QED
layout. We fix the parameters to be within typical experimental
values (see e.g. refs °*3) for the qubit-qubit coupling J/2m = 5
MHz and the detuning A/2m = 0.35 GHZ.

We consider three optimization classes to test a unified
AlphaZero algorithm and benchmark it against both domain-
specialized and domain-agnostic algorithms. These three corre-
spond to control parameters Q(t) that are digital, i.e. taken from a
discrete set of possibilities; that can vary continuously as a
function of continuous but highly filtered controls; and lastly,
piecewise-constant controls, which is standard in the QOCT
approximation.

Within the RL framework, an autonomous agent must interact
with an environment that at each time step t inhabits a state s;.
Here we choose the unitary U(t) to represent this state. The agent
then alters the unitary at each time step t by applying an action a,
(here Q(t)) that transforms the unitary U(t) — U(t + At). For
instance if the task is to create a piecewise-constant pulse
sequence as depicted in Fig. 1a., the different actions would
correspond to a finite set of predefined pulse amplitudes. This is
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unlike standard QOCT, where the amplitudes are allowed to vary
continuously. In the following, we will refer to the generation of an
entire pulse sequence as an episode.

The purpose of the agent is to maximize an expected score z at
the end of an episode, which we choose to be the fidelity
z=F(U(T)). Here T denotes the final time. This is done by
implementing a probabilistic policy m(s;) = (7a,, Tay, ... ), Which
maps states s; to probabilities of applying actions, i.e.
Mg, = Pr(gjls;). The agent attempts to improve the policy by
gradually updating it with respect to the experience it gains.

Figure 1b, c illustrate the tree search and the neural network for
AlphaZero, respectively. The unitary found in the tree search is
used as input for the neural network. The upper output of the
neural network approximates the present policy for a given input
state, i.e. p, ~ mq. Meanwhile, the lower output provides a value
function which estimates the expected final reward, that is
v(st) ~ F(T). In our work, we have found that providing
AlphaZero with complete information of the physical system in
form of the unitary to benefit its performance, though this may
scale poorly for systems with larger Hilbert spaces.

Both functions use only information about the current state and
suffer from being lower-dimensional approximations of extremely
high-dimensional state and action spaces. The insight of the
AlphaZero algorithm is to supplement the predictive power of the
value function v(s¢) with retrodictive information coming from
future action decisions in a Monte Carlo search tree. The tree
depicted in Fig. 1b consists of nodes, which represent states (here
depicted as pulses) and edges, which are state-action pairs
(depicted as lines). At each branch in the tree, the algorithm
chooses actions based on a combination of those with the highest
expected reward and the highest uncertainty, a measure of which
edges remain unexplored. Whenever new states (called leaf-
nodes) are explored, the neural network is used to estimate the
value of that node, and the information is propagated backward in
the tree to the root node. The forward and backward traversals of
the tree are described in greater detail in Methods. For the
interested reader we have also provided a step-by-step walk-
through of the algorithm in the Supplementary Materials.

In the manner described above, the predictive nature of the
network is able to inform choices in the tree while the retrodictive
information coming back in time is able to give better estimates of
the state values already explored, which are then used to train the
network, i.e. update the network parameters in order to improve
its predictions. The training occurs after each completed episode.
This reinforcing mechanism is thus able to globally learn about the
parameter landscape by choosing the most promising branches
while effectively culling the vast majority of the rest. The result is
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Fig. 2 Optimization in the digital case (SFQ). a Illustration of how a SFQ pulse train can be encoded into a bit string, with bits displayed
above the figure and gate number below. The figure also contains a zoom-in that depicts the exact shape of a single pulse. b The best
obtained infidelity (1 — F) at each gate duration for different discrete optimization algorithms. Each algorithm had 50 h wall time for each
gate duration. ¢ A comparison between the infidelities obtained by AlphaZero and the GA at 60 ns. For AlphaZero, each dot represents the
infidelity obtained at the end of a unique episode, i.e. generation of an entire pulse-sequence, while for the GA each dot represents the

highest scoring member in the population after each iteration.

neither an exhaustive sampling at full depth, which would yield
the true landscape albeit at a computationally untenable cost, nor
is it an exhaustive sampling at shallow depth, which would require
a prohibitively slow learning rate for information from the full
depth of the tree to propagate back. Instead, AlphaZero
intelligently balances the depth and the breadth of the search
below each node. While the hidden-variable approximation given
by the neural network and MC tree are certainly not exhaustive
and cannot find solutions with exponentially small footprint, it is
nonetheless able to discover patterns and learn an effective global
policy strategy that produces robust, heterogeneous classes of
promising solutions. In our implementation we restrict AlphaZero
such that it can only find new unique solutions, which is done by
cutting off branches in the tree that have previously been fully
explored. Hence, each solution found by AlphaZero is different
from any previously found solution.

In what follows we apply the algorithm with a unified set of
algorithmic parameters (hyperparameters) to three optimization
classes: discrete, continuous, and continous with strong con-
straints. We have found these hyperparameters by fine-tuning
them with respect to the continuous problem. The three problem
types accentuate different optimization strategies. In the discrete
optimization case, we show how AlphaZero stands up against
other domain-agnostic methods (where the gradient is not
defined) and compare their abilities to learn structures in the
parameters. For the constrained continuous pulses, we validate
the hypothesis that the analytical gradient, while computable, is
highly inefficient and indeed unable to find near global solutions
that are at least as good as those found by AlphaZero. Finally, in
the continuous-valued piecewise-constant case, we show the
balance between state-of-the-art physics-specialized and agnostic
AlphaZero approaches. We show that the combination of
exploration and exploitation is able to produce new clusters of
high-quality solutions that are otherwise highly unlikely to be
found, while learning hidden problem symmetry.

Digital gate sequences

As a first application with AlphaZero, we demonstrate optimal
control using Single Flux Quantum (SFQ) pulses.*>**>> The aim is
to control the quantum system by using a pulse train that consists
of individual, very short pulses typically in the pico-second scale.
This technology originated as way of utilizing superconductors for
large-scale, ultrafast, digital, classical computing.®® At each time
slice there either is a pulse or not, which implies that the unitary
evolution is governed by two unitaries U, and Uy. Hence, the pulse
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train can be stored as a digital bit string with 0 and 1 denoting no
pulse and a single pulse respectively. SFQ devices are interesting
candidates for quantum computation since they potentially allow
for ultrafast gate operations as well as scalable quantum
hardware.>> We model the pulses as At 2.0 ps Gaussian

t-At/2)2
functions Q(t) = \/g—m s , Where 7 0.25 ps
a = 2i1/1000. The pulse is depicted to the right in Fig. 2a.

The optimization task is to find the input string that maximizes
the fidelity functional (1). The current approach for this type
optimization is to apply a genetic algorithm (GA)**°”%, Besides
GA and AlphaZero, we also compare a conventional algorithms,
stochastic descent (SD) as in ref. * SD is a time-local, greedy
optimizer that changes the pulse at a randomly chosen time if this
results in an increasing fidelity.

Our unified AlphaZero algorithm has an action space of 60 for
the neural network, and thus we group together binary SFQ action
choices of multiple time steps. For this purpose, we take larger
steps in time, and the 60 action choices are given using bit strings
from a randomly chosen basis (see Methods). We benchmark the
different algorithms by using equal wall-time simulations. For all
simulations presented in this paper, we used a wall-time of 50 h
on an Intel Xeon X5650 CPU (2.7 GHz) processor. Similar to ref. *°
we use a population size of 70 with a mutation probability of 0.001
for the GA (see Methods). In the Supplementary Material, we
provide an alternative analysis of the wall time consumption
needed to reach a predefined infidelity.

The results are plotted in Fig. 2b. Amongst conventional
approaches, we see the SD algorithm performs slightly better
than the GA. We attribute this to the fact that the SD algorithm is a
greedy exploitation algorithm, while the GA is an exploration
algorithm performing random permutations. As with many
exploration algorithms, learning can be quite slow. We emphasize
that AlphaZero contains a deep lookahead tree search, which we
found crucial to the success of our RL implementation (having
originally tested a simpler RL algorithm, Deep Q-Network (DQN),*'
on a less complicated problem). We see in Fig. 2b that AlphaZero
indeed performs dramatically better than the greedy approach,
with up to over an order of magnitude improvement in the low
error regime. Interestingly, AlphaZero's solutions begin to
fluctuate in the low infidelity regime. We attribute this to the
neural network’s incapability of distinguishing between different
unitaries belonging to the very low infidelity regime. However,
AlphaZero still maintains a systematic improvement over the
other algorithms.

and

npj Quantum Information (2020) 6



npj

M. Dalgaard et al.

4

AlphaZero and GA are both learning algorithms in the sense
that they utilize previous obtained solutions in order to form new
ones. We compare the learning curves for the two algorithms in
Fig. 2c, where we have plotted the infidelity as a function of wall
time at 60 ns. For AlphaZero, we use the infidelity after each
episode, where each data point is unique. For GA, we use the best
performing solution in the population after each iteration. Since
GA is a relatively greedy algorithm it performs very well initially,
but fails to explore the larger solution space as the members in
the population converge upon a single class of solution and the
learning curve flattens out. In contrast, AlphaZero keeps a high
level of exploration that ultimately allows it to reach a very large
number of different high-fidelity solutions.

Constrained analog pulses

A common challenge within quantum optimization is achieving
realistic and efficient controls when experimental limitations
constrain the underlying dynamics. Such constraints become very
important when high precision is required, e.g. for very high-
fidelity operation of quantum technologies. Here, we consider
standard constraints on duration, bandwidth, and maximum
energy. Such constraints can be expected to greatly increase the
computational cost of Hessian approximation-based solutions,
which are otherwise known to converge quickly'® and generally
outperform other greedy methods.>"** The workhorse algorithm
for this is GRAPE® with quasi-Newton?® and exact derivative®®
enhancements being crucial to the state of the art and its super-
linear convergence. Note that GRAPE, unlike AlphaZero, can
handle pulses that are continuous in amplitude.

We model the bandwidth constraints via a convolution with a
Gaussian filter function

~ 00 (t-t)?
Q(t) :/ e 2 Q(t')dt, 3)
—00
where Q(t) denotes the filtered control function. Figure 3a
illustrates the effect of this filter. Here, a piecewise-constant pulse
(dark blue) with amplitudes a;_4 is convoluted into a smooth
pulse (light orange) via Eq. (3). Throughout the remainder of this
paper, we constrain the pulse amplitude to lie between 0 and
Omax/27m = 1.0 GHz.

Most commonly, GRAPE is applied to piecewise-constant pulses,
but it can be modified to include filtering,>*%° as we also do here.
Each time-step is divided into a number of substeps (giving the
resolution) and the filtered pulse is then approximated as being
constant within each substep. This subdivision is depicted in Fig.
3a as light orange vertical lines. In order to obtain the gradient,
GRAPE calculates the time-evolution unitary using matrix expo-
nentiation at each substep.

Figure 3b shows the error (infidelity) between the exact and
discretized unitaries as a function of the resolution. If we seek
errors well below the desired gate error (1072), the resolution
should be well above a hundred. This significantly impedes the
performance of GRAPE for this type of problem, since it requires
considerably more matrix multiplications. A different strategy is to
limit the control to a set of discretized amplitudes whose
corresponding unitary can be calculated in advance and then
apply a discretized optimization algorithm such as AlphaZero. In
order to do so, we apply a two-action update strategy, where we
propagate from half the previous pulse to halfway into the next
one. So, if the previous action was a, and the next one as then the
unitary U, 3 would correspond to the shaded region in Fig. 3a.
Here we ignore negligible contributions from adjacent pulses. For
instance, calculating U, 3 would be independent of a; and a4. Here
we limit the amplitude to 60 different values (out of a continuous
set), hence this methods requires calculating 60? = 3600 unitaries,
which we do in the beginning of the simulation.
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Fig. 3 Optimization of constrained continuous pulses (Gaussian
filtering). a A piecewise-constant pulse (dark blue) convoluted by a
Gaussian filter (light orange). The vertical orange lines depict the
resolution, i.e. number of substeps per 4.0 ns. Here 0 = 0.7 ns. b The
infidelity (error) between the exact and the calculated unitary as a
function of its resolution. ¢ Comparison between AlphaZero and
GRAPE on the cross-resonance gate using Gaussian filtered pulses.
Each point represents the best obtained infidelity during a 50 h wall
time simulation at that specific gate duration.

In our comparison between AlphaZero and GRAPE, we choose
4.0 ns convoluted pulses using 0 = 0.7 ns. For GRAPE, we choose a
resolution of 200, i.e, every 40 ns interval is divided into
200 substeps. Figure 3c shows the results of an equal wall-time
simulation, where GRAPE was applied with random seeding. Here,
AlphaZero obtains a systematic improvement over its domain-
specialized counterpart. At 96 ns, AlphaZero outperforms GRAPE
with an improvement that is significantly above one order of
magnitude. Interestingly, both graphs show significant fluctua-
tions, which we attribute to the difficulty of the optimization task
itself caused by the highly constrained dynamics. This is likely
compounded by the random initialization of the neural network
which can effect the convergence properties of AlphaZero.
Despite these fluctuations, AlphaZero performs significantly better
in the regime of interest corresponding to infidelities below 1072

Piecewise-constant analog pulses

So far, we have considered problems where gradient searches
have not been applicable (digital sequence) or where gradient
searches become inefficient (constrained analog pulses). For
specific tasks where highly specialized algorithms exist and are
known to perform relatively well, domain-agnostic algorithms
typically perform inadequately. Thus, to properly benchmark our
algorithm we have also considered the domain of piecewise-
constant pulses, a scenario where GRAPE typically performs
extremely well due to the presence of high-frequency compo-
nents and the limited number of matrix multiplications. In the
following we hence focus on picewise constant pulses where we
choose a single-step duration of 2 ns. In this scenario, we
characterize the performance of the exploitation and exploration
algorithms in terms of both the variety of solutions found and the
quality of the solutions. Here we also introduce a new RL
algorithm, named Q-learning. Q-learning was one of the first RL
algorithms developed, and applied recently to quantum
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control.?**” It is a tabular-based algorithm that applies one-step
updates in order to solve the optimal Bellman equation®’ (see
Methods). Here we apply an extended version that uses eligibility
traces and regular replays, similar to ref. 3’ Originally, we
attempted to apply Q-learning to digital gates (SFQ) pulses, but
ultimately the algorithm failed due to the very large search space,
where tabular-based methods are known to break down. This is
one reason why modern RL algorithms use deep neural networks
instead, motivating also our use of AlphaZero.

At first, we compare the algorithms already discussed, namely
Q-learning, Stochastic Descent, AlphaZero, and GRAPE. Figure 4a
shows GRAPE is able to outperform the other algorithms for
piecewise-constant pulses. However, AlphaZero still performs well
despite its limitation of only having amplitude-discretized
controls. To improve the AlphaZero algorithm further we conceive
a hybrid algorithm where GRAPE optimizes the solutions found by
AlphaZero. The hybrid algorithm, which is given the same wall-
time as the others, is also plotted in Fig. 4a. Here the hybrid
algorithm shows a significant improvement over GRAPE near 60 ns,

a
1072} 1
.Ei [ -
g —A—  Q-learn:
E 10-3 | —4— Stoch. Desc. |
—a— AlphaZero
—e— GRAPE
—a— AZ Hybrid
b 10*
0
E 10 :l\.—.\./.—_.:
2 107 -
&
h —2 | B
£ 10771 s A7 Hybrid
2 10-3| —— GRAPE |
w0 E E

54 56 58 60 62 64
Gate duration[ns]

Fig. 4 Optimization on continuous (piecewise-constant) pulses. a
An equal wall-time comparison between the various algorithms. The
AlphaZero (here abbreviated AZ) Hybrid is presented in the text. b
The fraction of successful solutions found by AlphaZero Hybrid and
the GRAPE algorithm.
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which we relate to the presence of a quantum speed limit (QSL)
where the optimization task becomes difficult due to induced
traps in the fidelity landscape.?>?*%¢ It is also worth noting that
the optimization curve flattens out and the two algorithms again
perform equally well when the pulse duration goes beyond 62 ns.
Interestingly, there is an entirely different time scale, beyond 200
ns (not plotted here), for reaching gate infidelities below 107%.

We also quantify the number of successful solutions found by
either GRAPE or the hybrid AlphaZero algorithm, which we define
as solutions having infidelities within four times the lowest
infidelity obtained. The fraction of successful solutions are plotted
in Fig. 4b. Here the improvement is even more substantial. At 60
ns, we find almost three orders of magnitude more successful
solutions compared to GRAPE with random seeding. The fact that
the GRAPE-curve dips around 60 ns seems to confirm our previous
statement about the QSL in the sense that this is a combinatorially
harder region to obtain relatively good solutions. We believe this
marks a transition into a combinatorially harder optimization
region in the control landscape similar to the glassy phase
transition studied in ref. ®* Having a large number of good
solutions is especially important because experimentally it may be
that some are better suited or some provide additional
advantages.

To further investigate the differences between the two
algorithms, we perform a clustering analysis of the obtained
solutions similar to ref. ' We compare the exploration of the
control parameter landscape using a two-dimensional embedding
provided by the t-SNE (t-Distributed Stochastic Neighbor Embed-
ding) visualization method.®®

The t-SNE algorithm represents a set of high-dimensional
vectors by a set of low-dimensional vectors, e.g. two dimensions
as used here. If the Euclidean distance between any pair of vectors
in the high-dimensional set is low (high) then the Euclidean
distance between the same pair in the low-dimensional set should
also be low (high). This allows one to visualize and investigate
clustering tendencies. Specifically, the distances are weighted by
the Student’s t-distribution whereby nearby points are strongly
favored. The algorithm then calculates joint probability distribu-
tions that any pair of vectors are “close” to each other both in the
high- and low -dimensional set, and then minimizes the Kullback-
Leibler divergence between the two distributions. See ref. °* for a
more detailed description.

We do a single t-SNE analysis at 60 ns, plotted in Fig. 5, which
we have separated for clarity into different figures for GRAPE (a),
AlphaZero i.e. Hybrid before optimization (b), and after optimiza-
tion (c). Here the color scale depicts the infidelity. We used a

Fig. 5 Two-dimensional representation of the final pulse vectors at 60 ns using the t-SNE algorithm. t-SNE is a visualization method that
here represents the final pulse vectors by a set of two-dimensional vectors, in such a way that if any two pulse vectors are close to each other
then the coordinates of their two-dimensional representations should be relatively close to each other as well. The color scale shows the
infidelity of the pulses. a GRAPE with random seeding, b AlphaZero, c The Hybrid, i.e. AlphaZero solutions after being optimized with GRAPE.

In the latter case, some example high-fidelity pulses are shown.
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Fig. 6 Asymmetry of solutions. The figure depicts the infidelity
(1 — F) as a function of the asymmetry measure (4) at 60 ns for: a
Random seeds (plotted in red-yellow scale) followed by an
optimization with GRAPE (plotted in blue-green scale) and b
AlphaZero solution (plotted in red-yellow scale) followed by an
optimization with GRAPE (i.e. the Hybrid algorithm, plotted in blue-
green scale). The color scale depicts the iteration of the algorithm.

perplexity of 30 (a paramater t-SNE uses that estimates how many
nearest neighbors each point has), which we found gave
reasonable clustering-plots.

Strikingly, the two algorithms seem to prefer entirely different
portions of the landscape. GRAPE mostly finds solutions clustered
to the left in the t-SNE representation, but its high performing
solutions are actually clustered to the right. Interestingly,
AlphaZero primarily finds solutions in the right region, which
implies that AlphaZero has identified an underlying basic generic
structure of good solutions. When all the AlphaZero solutions are
optimized this leads to a large quantity of high performing
solutions that inhabit the same region in the t-SNE representation.

We also see that the hybrid solutions naturally cluster towards
some general basins of attraction. This suggests that AlphaZero
has not converged on a single class but multiple different classes
of solutions with different underlying physics. Some pulses from
different clusters are depicted, showing some resemblance to
typical bang-bang sequences. The different clustering that occurs
demonstrates that a global exploration has indeed taken place,
effectively finding different classes of solutions in different parts of
the landscape.

We further test the hypothesis that AlphaZero has found
underlying structure that supersedes a shallow heuristic search.
Note that the solutions seem to have at least some symmetry with
respect to a reflection around the center of the time-axis. In fact,
this symmetry already exists in the control problem. Since the
Hamiltonian is real and the target its own transpose, the fidelity is
unchanged if the pulse sequence is reversed i.e.
.7'—(01,02, :QthoN) = ]‘—(QN,QN,M 702701). This prop-
erty defines a discrete 7, symmetry similar to what was studied
in ref. ¢4

However, it is not a priori clear that satisfying this symmetry is a
good control strategy. We quantify the degree of time-asymmetry
in the pulses via the measure
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where C = 0 implies pulses that are completely palindromic, i.e.
symmetric with respect to reversion of the sequence.

We plot in Fig. 6 the infidelity and the asymmetry for the two
algorithms, i.e. in (a) we plot random seeds and the same seeds
optimized by GRAPE; in (b) we plot the AlphaZero solutions and
the same solutions further optimized by GRAPE, which is the
Hybrid algorithm.

Here the color scale depicts the iteration number. The first thing
to notice is that high-fidelity solutions tend to maintain this
symmetry. The second feature is that GRAPE often only partially
satisfies this symmetry. In contrast, AlphaZero learns over its
training to increasingly prefer this symmetry, moving towards the
bottom left of the plot. After post-optimization using GRAPE, the
solutions improve significantly in infidelity and move ever further
to the bottom left emphasizing this trend. Note that we are not
arguing that C =0 is optimal, but merely that increasing the
symmetry to some extent seems preferable. We conclude that
AlphaZero has identified this underlying symmetry specific to the
problem instance we have chosen. Naturally, hard-coding such
heuristics would not only be inefficient, but for many problems
finding symmetries is nontrivial. Using deep learning, AlphaZero is
able to learn these hidden symmetries without the need for
human intervention. We therefore expect that AlphaZero's ability
to learn hidden problem structures generalizes to other problems
as well.

DISCUSSION

From our three examples, we conclude that the AlphaZero
methodology of combining neural network and guided tree
search reinforces global information about good solutions that
can also mark a significant algorithmic advantage for quantum
optimization. This is true for specific problems, but especially
when comparing across a range of problems. None of the other
algorithms we have considered are able to do well on all three
problems, be it with heuristic, machine learning or domain-
specialized approaches.

The three problems considered marked different optimization
tasks, but AlphaZero is able to find high-fidelity solutions with a
single set of algorithmic hyperparameters. This suggests that
learning the control landscape can be performed with minimal
expert knowledge about the physical problem.

This conclusion is further enforced by the realization that
hidden symmetries in the dynamics can be effectively learned by
AlphaZero during its training. Such unexpected symmetries are
not trivial to find for many Hamiltonians and would require
significant human intervention even where they can be found.
More over, hard-coding such heuristics into optimization algo-
rithms can have many pitfalls, limiting broad exploration and
potentially leading to suboptimal trapping in the optimization
landscape.

Nonetheless, because the deep exploration methodology is by
design agnostic to expert knowledge, it is most powerful when
combined with specialized knowledge about locally exploiting
promising seeds, leveraging the vast body of literature about local
quantum optimization. This tradeoff between exploitation and
exploration is a common trend in reinforcement learning and
optimization in general. For example, in AlphaZero's chess
matches with its competing Al, Stockfish,®® the latter was trained
with sophisticated domain knowledge and thus was generally
acknowledged as outperforming in the final moves of games.
Combining the domain-agnostic exploration of the former with
the domain-specialized exploitation of the latter seems like a
common sense solution, as we have done here in the quantum
dynamics case. An even tighter integration of the two approaches
that examines the tradeoffs during different learning stages may
also be promising. Alternatively, one could also also relax the
tabula rasa character of the learning to enhance the exploration
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abilities using specialized knowledge. Supervised learning can in
principle speed up the initial learning phase, perhaps most
seemlessly when integrated with other broad exploration
strategies, for instance crowd sourcing.'"

In this work we have considered digital, constrained, and
underconstrained optimization of controlled quantum dynamics
in the context of the design and execution of physical quantum-
mechanical devices. This choice was deliberately made because
the most advanced algorithms exist in this field owing to half a
century of dedicated research. That being said, many of the more
abstract and potentially groundbreaking dynamics algorithms,
including those used in the design of digital sequences of
quantum circuits or for analog evolutions in annealers and
variational eigensolvers, can be seen as direct analogs of the
algorithmic framework illustrated here.

METHODS
Reinforcement Learning

A general RL setup consists of an environment and an agent. At each time
step t, the environment is characterized by a state s;. Given s;, the agent
selects an action a; that changes the environment to a new state s;..
Based on this change the agent receives a feedback signal called a reward,
rer1 € R. The agent must learn how to maximize the sum of rewards it
receives during an episode. This is done by implementing a policy 7, which
is a mapping from all states of the environment to probabilities of selecting
possible actions Pr(a|s) = p,(s). The state-value function describes the
quality of a given policy

w@)—ﬂ%[E:rrs—54, 5)

>t

which is simply the expected sum of future reward staring from state s and
subsequently following the policy 1. Given two policies 77 and 7’ we say
that m > 7' if vu(s) > vy (s) for all states s.

The task considered here is to a construct a pulse sequence, which
realizes a target unitary. At each time step, the agent must select an action
that updates the unitary representing the state of the system. At each time
step, the reward is zero except at the last step where it is simply the fidelity
given by Eq. (1).

AlphaZero implementation

AlphaZero is a policy improvement algorithm that combines a neural
network with a Monte Carlo Tree Search (MCTS) as depicted in Fig. 1b,
c.”“® The neural network maps from states to policies p = (p;,p,, ... )
and values v. The MCTS, guided by the neural network, also computes a
policy m that the actions are drawn from. At each time step, the policy m is
stored in a replay buffer, i.e. database. At the end of an episode, the final
score z =y _r; is also stored in the buffer. Training of the neural network
uses data drawn uniformly at random from the replay buffer in order to let
the network predictions (p, v) approach the stored data (m, z). This is done
by minimizing the loss function

1(8) = (z—v)* —n'log p + /|6, (6)

where the last term denotes L2 regularization with respect to the network
parameters 6. The training of the neural network occurs after each
completed episode.

A MCTS is a way of looking several steps ahead by only visiting a small
subset of possible future states. The tree is built by nodes (states)
connected to each other by edges (state-action pairs). Each edge has four
numbers associated with it: The number of visits N(s, a), the total action
value W(s,a), the mean action value Q(s,a), and a prior probability of
selecting set edge P(s, a). Starting from the root node (initial state), a single
tree search moves through the tree by selecting actions according to
a, = argmax,(Q(s¢, a) + U(st, a)), where U(s;,a) denotes an uncertainty
given by

U(s, a) = cpuctP(s,a)~ 2 NS, b). @)

N(s,a)

Here cpue denotes a parameter determining the level of exploration. If a
terminal node or a leaf node (i.e. a not-previously-visited state) is
encountered, the search stops. The tree is expanded in the latter case by
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adding the node and initializing its edges as N(s,a) = W(s,a) = Q(s,a) =
0 and P(s,a) = p,, where p, is given by the neural network. The rest of the
tree is updated by using the state-value v in a backwards pass through all
the visited edges since the root node according to N(s,a) < N(s,a) + 1,
W(s,a) < W(s,a) +v, and Q(s,a) < W(s,a)/N(s,a). After a pre-set
number of such searches have been conducted, an actual policy is
calculated according to

N(so,a)"/™
ZbN(Soab)m’

where sy is the root state and T denotes a parameter controlling the level of
exploration, which is annealed during the simulations. The action in drawn
from the policy and the rest of the tree is reused for subsequent searches
during the episode.

For all tasks presented in this paper we used the same algorithmic
parameters. The learning rate was 0.01, cpuee = 1.0, and T was hyperbo-
lically annealed from 1.0 using an annealing rate of 0.001. After T was
annealed below a value of 0.90 we switched to deterministic policies by
setting the largest policy value to one and the others zero. The neural
network was a simple feed forward network where the hidden nodes
consisted of four layers. Each layer contained 400 nodes followed by batch
normalization and a rectified linear unit. The neural network parameters
were initialized at random.

Both the policy and the value head of the neural network consisted of a
single hidden layer as well, where the policy head ended in a sigmoid-layer
with same dimension as the action space and the value head ended in a
single linear node. The L2 regularization parameter was ¢ = 0.001 and we
used stochastic gradient descent (SGD) for training the network. Similar to
the AlphaZero paper®” we achieve more exploration by adding Dirichlet
noise to the search probabilites for the root nodes
P(s,a) = (1 — €)p, + €n,, where n ~ Dir (0.03) and e = 0.25.

8

m(also) =

GA implementation

A genetic algorithm (GA) works by iteratively updating a population of
solutions, which are bit strings.””*® A GA generates new solutions based on
the old population via processes inspired by biological evolution, namely
crossover and mutations, which respectively combine two parent solutions
by choosing elements from each parent at random and flip individual bits
at random. If any improved solutions are found, these replace the worst
ones in the population. Similar to ref, *> we used a population size of 70
and a mutation probability of 0.001. At each iteration we would select
2x 30 parent solutions.

Q-learning implementation
Similar to Eq. (5) one can define an action-value function

> rels=sv,a= 01/} : ©)

t'>t

G(s,a) = En

which is the expected reward if we choose action a from state s and then
follow the policy m.3° Q-learning is a tabular-based RL algorithm, which
approximates the optimal action-value function i.e. the action-value
function for the optimal policy mop: = max, v4(s). The approximation
Q(s,a) is initialized at random and subsequently updated according to

Q(st, ar) < Q(st, ar) +afreer + max Q(st11,ars1) — Q(s, ar)], (10)

where a denotes the learning rate. Similar to ref. 2* we choose our state to
be a tuple of time and control s = (t,Q). The learning rate was a = 0.01
and we followed an epsilon-greedy strategy with linear annealing of
epsilon.*® We also implemented eligibility traces and regular replays of the
best encountered episode similar to ref. 3’

Cross-resonance gate

The cross-resonance (CR) gate is currently the standard fixed-
frequency qubit entangling gate used on transmon systems. Its main
advantage is avoiding the overhead associated with magnetic (flux) tuning of
the frequency,®®”° which can be a leading cause of dephasing. As illustrated
in Fig. 1a, the physical setup we optimize includes two fixed-frequency qubits
that are coupled to each other via a transmission line resonator. The
transmons’® may be modeled as anharmonically spaced Duffing oscillators,”’

51,67,68
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resulting in an extended Jaynes-Cummings model Hamiltonian

c AR AT P PR £ pt

H= 2122((»] jbj+5’ bj(bjby — 1) + wala+ g;(bja+ bja') + Q) (b + by) ).
j=1.

an

where b:,z(bm) and a'(a) are the transmon and cavity creation (annihilation)
operators respectively. Here w; #w, is the transmon resonance frequency,
61, denotes the anharmonicity, w, denotes the cavity resonance, and g, , the
transmon-cavity coupling. The transmons are directly driven by external
control parameters Q(t), increasing the controllability compared to earlier
architectures that drive through the common cavity. The transition of the
second qubit is then driven resonantly through the control line of the first.%
This model may be significantly simplified using the method in ref. *'
After adiabatic elimination of the cavity and block diagonalization into the
qubit subspace, the authors derive an equivalent equation (Eq. (3.3)),
which is the same as our Eq. (2). Here we seek to replicate the unitary

1T —i 0 0

UIarget = eXp(*iEXZ) = L o 00 (12)
4 V210 o 1 i
0o 0 i 1

which is a v/ZX gate since [/Ztarget = ZX up to a global phase. To see that

the natural gate that is produced from this Hamiltonian is a v/ZX gate, a
(Schrieffer-Wolff) perturbative expansion shows®® that the leading
coefficients in the effective driving terms are given by

Hy = Q(t) {x1+%zx+m/x}, (13)

where Z and X are Pauli matrices acting on the respective qubits, / is the
identity, and m is a hand-tuned crosstalk parameter. The single-qubit terms
and higher order terms (not shown) must be decoupled in the control
optimization in order to correctly implement the CR gate, preventing a
simple analytic solution.

Digital pulses
For each time step, the evolution of the system is governed by either one
of two unitaries Uy and U;, which respectively corresponds to the
amplitude being zero or not.”> We calculate these unitaries in advance by
solving the Schrédinger equation numerically. The entire pulse sequence
can be encoded as a bit string as illustrated to the left in Fig. 2a and the
corresponding unitary can be calculated as U(T) = H;L Ub] where
b; €[0,1]. Pulse durations in the nano-second scale require
10* — 10° steps. )60
For AlphaZero we create 60 unitaries {U "},_; by drawing a bit string
6,69, ... bl at random, where b}’) € [0, 1], which we then multiply
U(') = Hfﬁ?(/b(,). In order to obtain pulse sequences that have both high
7

and low concentrations of bj@ = 0 we anneal the probability Pr (bjm =0)
linearly from one (i = 1) to zero (i = 60). The 60 unitaries constitute the
action space and the unitary is now calculated as U(t) = Ht,gtl:l(a"). The 60
actions allows us to use the same neural network architecture as for

piecewise constant and filtered pulses which have the same input space
dimension.
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