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Abstract. A propagation of the electromagnetic wave in the background of de-Sitter space has been
investigated. An exact analytical solutions of Maxwell vacuum equations for the electromagnetic fields and
vector potential in de-Sitter spacetime has been presented. It is explicitly shown that the six components of
the electromagnetic fields and/or the four components of the vector potential can be expanded in terms of the
spherical harmonics with only two radial functions, respectively. It is also shown that the two radial profile
functions are satisfied the Schrodinger-like wave equation with Eckart-like potential and/or Legendre equation.
The radial dependence of the radial wave function and propagation of the wave has be produced as in 2D and
3D graphs.
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I. INTRODUCTION

According to the principal of the fundamental of physics, there are four fundamental interactions in nature, namely, electro-
magnetic, gravitational, weak, and strong interactions. Among them, theory of the electromagnetic interaction is well described
and a well-formulated theory. A great deal of attention has been paid to the study of the electromagnetic field theory from both
classical and quantum points of view, in the last few centuries. One has to emphasize that the theory of the electromagnetic
fields is described by the Maxwell field equations which are the second-order partial differential equations (PDE)s. In most
realistic situations, it is sufficiently complicated to obtain an exact analytical solution to Maxwell’s equations. Basic idea about
the theory of the electromagnetic field can be found in the textbook in electrodynamics and electrostatics [1H13]. The study of
electromagnetic fields has occupied an outstanding position in the physical literature because its solution has been of ultimate
importance for the development of our understanding of nature. On the other hand, the application of the electromagnetic field is
a very wide range. One of the branches of this theory is the study of electromagnetic wave which we are interested in this paper.
The frequency range of the electromagnetic waves start from radio wave to gamma ray depending on their energies. Particularly,
the light-ray (photon) is also electromagnetic wave in visible band. On the other hand the electric field of the axially-symmetric
uniformly charged ring is quite common problem in classical electrostatics.

In general, the electromagnetic waves propagate in four-dimensional space in which spatial coordinates (x, y, z) including
time, ¢ and it is governed by Maxwell vacuum equations which are PDE for the six components of the electromagnetic fields
E = (E,,Ey, E.) and B = (B,, By, B,) or the four components of the vector potential A, = (A;, A, Ay, A ). The relations
between the electromagnetic fields and vector potential read, E = —V A; + JA /0t and B = V - A, where V is the nabla
operator. Finally, electromagnetic wave equation can be expressed as [[L1}[12]

0’E 0’B
2E _ — 2B _ — 1
\% ETl 0, \Y% 92 0, (1)
or
0%’A 0%A
2p 28 24, A _ )
v S =0, ViA— St =0, 2)

* Corresponding author: bturimov @astrin.uz

15


mailto:bturimov@astrin.uz

Vol. 4, Issue 3, (2024) 20240014 Journal of Fundamental and Applied Research

where nabla square in Cartesian coordinates is defined as
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3)

The curved spacetime due to the presence of source of strong gravity strongly affects the structure and properties of the
electromagnetic field. Consequently, the electromagnetic wave propagation becomes sensitive to the background gravity and
spacetime curvature. The general Relativity proposed by Albert Einstein in 1916 proposed that the spacetime curvature strongly
depends on the gravity. The Maxwell equations, initially prpsed in flat spacetime, can be now modified to the case of curved
spacetime background using the definition of covariant derivations. Among the big number of the solutions of the Einstein
field equations for the curved spacetime the de-Sitter spacetime attracts special interest of the modern astrophysicists. De-Sitter
spacetime is the special cosmological solution of the Einstein equations which contains the non-zero cosmological constant. The
current cosmological and astrophysical observations confirm the existence of the dark energy and dark matter in the Universe.
Particularly, dark energy is responsible for the repulsive gravitational force dominated in the Universe in cosmological scale.
The cosmological constant appearing in the solution of de-Sitter spacetime corresponds to dark energy and investigation of the
properties of this solution is very important task of the modern cosmology and astrophysics. In this paper we are interested to
consider the background de-Sitter spacetime in order to study the electromagnetic field equation.

In the spherical coordinates ® = (¢,r, 0, ¢), de-Sitter spacetime can be described as
1
ds® = gagdxadx’@ = —fdt* + ?dr2 + 72 (d92 + sin? 9d¢)2) , 4

where f = 1 — r?/R?, R is the cosmological horizon of the spacetime related to the Hubble constant as R = 1/H with
H ~ 67.8km/s/Mpc.

This research paper is organized as follows. In Sect. |lI, we study Maxwell field equations in vacuum in the background of
de-Sitter space. In Sect. we present the general solution of the Maxwell equation for the electromagnetic wave. In Sect.
we present the exact analytical solution for radial wave equation. Finally, in Sect.[V] we summarize our results and give a future
outlook related to the present work.

Throughout the paper we use a space-like signature (—, +, +, +), a system of units in which G = ¢ = i = 1 and, we restore
these constants when obtaining results are needed to compare with observational data. Greek indices run from 0 to 3 and Latin
indices from 1 to 3.

II. MAXWELL VACUUM EQUATIONS

It is well known that when one studies fundamental problems or equations in curved spacetime, it is necessary to include
the general relativistic effect and/or the effects arises due to gravitational field. The pairs of Maxwell vacuum equations for the

electromagnetic fields (B, Bo B¢) and (E7, Ef E¢) in curved space are given as [14]
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while in de Sitter spacetime metric (4) the pair of Maxwell equations can rewritten as [[14]
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It must be pointed out that equations (I3)-(20) are the eight coupled partial differential equations (PDEs) for the six variables
E’and B, (i = r,0,¢). It seems to be difficult to get an analytical solutions of these equations for all components of the
electromagnetic fields, in particular, when the metric function, f, exists as shown in equations. However, there are several
techniques to reduce these equations in the form of usual wave equations. Our analyses show that one can obtain wave equation
for, at least, for radial component(s) of the electromagnetic fields.

Indeed, hereafter acting the time derivative operator 9/dt onto both side of equation and using the equations , ,
and (T3)), one get the following second order partial differential equation for the radial magnetic field:

* [0 2 f p

—B" = B* ~AqB". 21
orz” T r2or [far (B7) | + 29 @
Similarly, acting again the time derivative operator 9/t onto both side of the equation and taking into account equations
(15), (16), and (7)), one can get the second order partial differential equation for radial electric field

2
P o _ 10

i
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where Ag is the angular part of Laplacian operator satisfied the following equation
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AoYe, = |:SII1939 (blIleae) + s Q(W:| Yo = _E(Z + l)nm ) (23)
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here Y7, (0, ¢) is the spherical harmonics with given by the following multipole and azimuthal numbers, ¢ = 0, 1,2, ... and
|m| < ¢.

As we can see that equations (21)) and (22) are the same differential equations but for the different quantities which means that
the solutions of these equations should be very similar. We can immediately guess that the solutions of these equations must be
expressed in terms of the spherical harmonics and the general solutions can be expanded in the form of Fourier transform as

R N 1 .
{E",B"} = %Z / dwRy(r,w)Yem (0, p)e™ ™", (24)
m

where w is the frequency of the electromagnetic wave and Ry (r,w) is the radial part of the wave function.

At this point, at least, we have an idea about solutions of the radial equations of the electromagnetic wave. The next task is to
find the general solutions of the angular parts of electromagnetic fields. The details of the solutions of the electromagnetic wave
equations will be discussed in the next section[II}

III. GENERAL SOLUTIONS OF WAVE EQUATIONS

Now, we focus on the solutions of the radial and angular components of the electromagnetic wave. The general solutions of
the wave equations for each components of the electromagnetic fields can be given by [14]:

1 d 4
(tr)= 5= / S UenYime ™", (25)
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where r = (1,0, ¢) is the radius vector, Uy, = Uy, (r,w) and Vi, = Vi (1, w) are the radial wave functions, respectively.
Notice that the solutions ([25)-(30) are fully satisfied Maxwell vacuum equations (I3)-(20), and it is enough to find the radial
profile functions Uy, () and Vi, (r) by solving the radial equations.

A. The four-vector potential

Before move on further, it is also interesting to find the expressions for the four-vector potential of the electromagnetic fields,
ie. Ay = (A4, Ay, Ag, Ay), it is better to introduce the electromagnetic field tensor, Fiog = 0, Ag — 0gA,, and on the other
hand, the components of the tensor can be expressed as

0 —~E7 —VFrE® —\/frsingE?
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and
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Using the general solutions (23)-(30) and after performing simple algebraic manipulations, the solution of the vector potential
are
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IV. EXACT SOLUTION FOR RADIAL FUNCTION

Here we discuss the exact analytical solution for the radial function. In the previous section, we showed that the general
solution of Maxwell equations for the electromagnetic fields can be expressed in term of two radial functions Uy, (r) and
Vim (7). Substituting the the general solutions (25)-(30) into wave equations and (22), one can obtain the following the
second order ordinary differential equations

a (.0 S -

Since the equation is the second order differential equation, one can get two solutions with two constants of the integration. As
one can see that the equations for functions Uy, and V;,, are the same, that is why the solutions will be equivalent to each other
and for simplicity we consider the solution for the function Uy,. Before move on further, let us consider wave motion in a flat

space. It is easy to check that the solution of the equation (42)), in a flat space i.e. f = 1 can be expressed in terms of the Bessel
functions:

Upn(r,w) = /17 {clJH% (wr) + CQYEJF% (wr)} , (43)

where ¢, co are the constants of the integration, respectively.

A. Hyperbolic function as solution of wave equation

Hereafter introducing new variable = /R and performing simple algebraic manipulations wave equation (42) reduces to

or T

(1—2%)— 0 ((1 - x2)8gem> +WRP—(1—z )W; Yt =0, (44)
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B. Jacobi function as solution of wave equation

Hereafter introducing new variable z,

oo [HIR_ [ e/ 1

f 1—-r2/R2 2

We obtain the following Schrodinger-like equation

Hereafter introducing new variable y = R/r, we obtain the associated Legendre equation as

(82+w2 ((l+1)

sinh? 2z

C. Legendre function as solution of wave equation

The solution is given by Up, (z) = Comn Q5T (2).
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1. Radial dependence of the profile functions Uz, (1) and Vi, (7).
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V. CONCLUSIONS

(45)

(46)

(47)

In the present research paper, we have studied the propagation of the electromagnetic wave on a cosmological scale. We
derived the Maxwell vacuum equations for the electromagnetic fields in the background de Sitter spacetime. For simplicity,
we investigated the Maxwell vacuum equations for the six components of the electromagnetic field in de Sitter spacetime. Our
results can be summarized as follows: The explicit form of the general solution for the electromagnetic wave has been obtained
in the de Sitter spacetime. Three different types of solutions for the radial wave equations have been derived. Additionally, the
luminosity of the electromagnetic wave has been determined.

These solutions provide important insights into the behavior of electromagnetic waves in an expanding universe. In particular,
the varying nature of the electromagnetic field components and their dependence on the cosmological parameters offer potential
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applications in cosmological observations, especially in understanding the propagation of light from distant sources across an
expanding space. Moreover, the different types of solutions obtained may shed light on the complex interactions between
electromagnetic radiation and the curved spacetime, with implications for high-energy astrophysics and cosmology.

The study of the luminosity of the electromagnetic wave in the de Sitter background also opens up avenues for exploring
the redshift effects and the impact of cosmic expansion on the observed intensity of radiation. Future work could extend these
findings by considering more complex spacetime geometries, such as those with matter content, or by applying these results
to specific astrophysical scenarios, such as the propagation of radiation from early universe sources like quasars or gamma-ray
bursts.

Ultimately, this research contributes to the broader understanding of wave propagation in curved spacetime, providing the-
oretical groundwork that may support observational cosmology and help in the development of more accurate models of light
propagation across cosmological distances.
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