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Abstract.  The development of quantum algorithms is facilitated by quantum circuit
designs. A floating-point number can represent a wide range of values and is extremely
useful in digital signal processing. A quantum circuit model to implement the floating-point
division problem using the Newton-Raphson division algorithm is proposed in this paper.
The proposed division circuit offers a significant savings in T-gates and qubits used in the
circuit design when correlated with the state of art works proposed on fast division
algorithms. The qubits savings are estimated around 17% and 20%, T-count savings are
around 59.03% and 20.31%. Similarly, T-depth savings is estimated around 77.45% and
24.33% over the existing works.
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1. Introduction

The ability of quantum computing to solve many problems that traditional computing devices
cannot handle is demonstrated by Shor’s algorithm [1]. Quantum circuits have numerous
applications in quantum signal processing [2, 3, 4] quantum optics [5, 6, 7], and guantum
thermodynamics [8, 9]. Quantum circuits are reversible by virtue of their equal number of
inputs and outputs. Ancillary inputs are said to be excess inputs and excess outputs are said
to be garbage outputs [10, 11]. As qubits are highly fragile and unstable, they are prone to
noise errors and their states might collapse due to the effect of the noise information [12,13,14].
Researchers prefer to use fault-tolerant quantum circuits and error correction codes to eliminate
the effect of error on quantum circuits. Clifford+T quantum gates are a class of fault-tolerant
gates used to build quantum circuits that have shown significant resistance to noise sources
[15,16]. Table 1 contains a list of Clifford+T gates along with their corresponding symbols.
Clifford+T gates do not include the Toffoli (CCNOT) gate, which is essential in the realization
of arithmetic circuits. As a result, researchers have concentrated their efforts on realizing the
critical CCNOT gate realization using Clifford+T gates [16-19]. T-gate implementation is
overpriced when compared to other quantum gates, and it is estimated to be hundreds of times
more expensive than the Hadamard gate, which produces superposition on qubits [19].

Table 1. Fault tolerant Quantum Clifford+T gates

S.no Quantum Gate Symbol
1 Pauli-X © OnNX
2 Hadamard H
3 T gate T
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4 Conjugate transpose of T or T! T!
5 Phase or S gate S
6 Conjugate transpose of S or St St
7 Controlled Not (CNOT) gate
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Figure 1. Resource optimized implementation of CCNOT (Toffoli) gate using T gates

Figure 1 shows the T-count optimized realization of Toffoli gate with a T-gate count of 7 and the
number of T-gate layers as 3. This decomposition is considered to be an optimized Toffoli
implementation for realizing logical operations [20].
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Figure 2. Resource optimized decomposition of CCNOT(Toffoli) gate to implement logical
AND operation

Figure 2 depicts Gidney's proposal for a T-count optimized realization of the Toffoli gate with
a T-gate count of 4 and a total of 2 T-gate layers [21]. It is well understood that quantum circuits
do not produce any garbage outputs. If the circuit is built, it must run backwards in the
Uncomputation section after the required outputs have been copied [14,15]. The T-count of the
entire quantum circuit is calculated by adding the total number of T-gates used in the computing
and uncomputing sections of the quantum circuit. Because three T-gates are eliminated when
pairing, the T-count is found to be 8 whenever a CCNOT gate is paired as a combination in the
computing and uncomputing section [20,21]. The benefit of Gidney's adder is that the
Uncomputation section of the Toffoli operation does not use any T-gate components, so the T-
gate count of Gidney's structure does not increase when the garbage outputs.

2. Related works

Quantum circuits for solving integer problems received major interest in the literature [13,17-19,22]
whereas, problems that employ floating-point numbers has received less attention in literature [23-
25]. Many scientific, information and communication technology, fields rely on floating-point
division. In this paper, Newton-Raphson algorithm is employed to construct a division circuit to
handle floating-point inputs. The algorithmic procedure to find the quotient of floating-point
dividend and divisor is presented in Algorithm 1. The top-level overview of the quantum circuit
model built to execute division operations on floating-point inputs is shown in Figure 1. The
exponent difference between the dividend and divisor exponents is found using the quantum
subtractor block. The division operation is done on the fractional part of the inputs. Finally, a
normalization unit is used to normalize the result.
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Algorithm 1 Algorithm to perform division on floating-point nhumbers
Dividend AsAeAm and Divisor BsBeBwm
Result RsReRwm

RS: AS @ Bs
I E = Ex - Ey
IM = Mx/My

ReRm = Normalize (lg, Im)

3. Proposed Quantum Circuit for Division using Newton-Raphson division
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Figure 3. Quantum Circuit to Perform Floating-point division

There are two types of binary division algorithms: slow and fast division methods. SRT
division, Restoringand Non-restoring division algorithms are slow division algorithms as they
are digit by digit recurrence algorithms. The fast division algorithms are Goldschmidt division and
Newton- Raphson division, as their number of iterations is O (log n) [25]. For computing one
iterative process, the Newton-Raphson convergence time is much faster. Newton-Raphson division
algorithm first finds the reciprocal of the divisor using an initial proximity. The accurate reciprocal
of the divisor is calculated by an iterative formula for log n times. Then the reciprocal is
multipliedwith the dividend to find the quotient. The algorithm to find the perform division on two
integers is shown in Algorithm 2.

Algorithm 2 Newton-Raphson algorithm to compute division
Dividend Ny and Divisor Dy

Quotient Qr

Assign N =length of input qubits

Assign Xi = 1/Dy

for i=1tolog N

Xi+1 = Xi(2_ D* Xi)

end

Qr = Ny * Xjogn

The high-level overview of the quantum division circuit on IEEE-754 standard input is shown
in Figure 3. Each iteration of a Newton-Raphson division circuit employs two quantum multipliers
and one quantum subtractor unit. The reciprocal approximation is observed withthe help of a
lookup table that computes the initial guess, which serves as the seed for the calculation. The
iteration begins with a quantum multiplier that calculates Dx = X; after the
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Figure 4. High level overview of integer division quantum circuit using Newton-Raphson
algorithm

initial guess is made. In the algorithm, the quantum subtractor unit performs the subtraction process
and generates the factor 2-Dx*X;. By locating the next factor Xi.1 the second quantum multiplier
aids in iteration execution. Finally, the quotient is calculated from the result of a multiplier unit
wherein, the multiplier calculates the product of Xjogn with the numerator Ny of the division
circuit. The proposed division circuit is constructed using Clifford+T gates applicable for
guantum systems.
4. Resource Estimation of Proposed Newton-Raphson Division Circuit
The Newton-Raphson division algorithm is applied on the given floating-point dividend and divisor
and the resource utilized for the proposed design is shown in Equation 1. The subtractor and
multiplier circuits are crucial components of Newton-Raphson division. The proposed circuitmodel
makes use of the multiplier and subtractor designs found in [23]. The authors of the aforementioned
work proposed quantum circuit designs for floating-point division circuits using three different
approaches. The three approaches include two classes of numerical repeat (i.e. slow) division
algorithms and one class of less iteration involved fast solving algorithm, namely the Goldschmidt
(GSCH) algorithm. However, the authors did not address the quantum circuit model for the other
category of fast division algorithm, Newton-Raphson division algorithm.
Resource —count = Resource — countit.multiplier+5*subtractor 1)
Figure 4 shows the Top-level overview of quantum circuit model utilizing Newton-Raphson
division algorithm for an input length of 32 qubits floating-point number. From the quantum circuit
model, it is clear that after the initial guess is made each iterative process employs a quantum
floating-point subtractor and floating-point multiplication circuit. After the final iteration one more
multiplicative block is employed to calculate the quotient of the proposed division circuit model.
The proposed design utilizes Craig Gidney’s T-count efficient adder [21,25] and the resource
estimation is made as shown in Equation 1. The proposed division circuit model is compared with
other existing quantum circuit model, which used Goldschmidt division circuits, a type of fast
division algorithm [25], and the resource used is shown in Table 2. Table 3 shows that the proposed
division circuit uses fewer resources and saves significantly on the qubits, T-depth, and T-
count. The qubits savings are estimated around 17%, 20%, T-count savings are around 59.03%
and 20.31% , Similarly, T-depth savings is estimated around 77.45% and 24.33% over the existing works
on GSCH division algorithm in [25] and [27] respectively.
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Table 2. Resource assessment of the proposed Newton-Raphson division

circuit
Module T-depth Ancilla T-count
Quantum Vedic multiplier [25] 13032 17856 71424
Subtractor [25] 410 5170 19825
Quantum LZD [25] 46 178 408
Shift circuit [26] 2 620 1687
Exponent adjustment 16 8 32
Copy circuit Nil 128 Nil
Restoration circuit Nil 32 Nil
Total 13506 23992 93376

Table 3. Comparison of proposed Newton-Raphson division quantum circuits with the existent designs

Designs Qubits T-Count T-depth
GSCH divider 1 [25] 29074  2,27,920 59,916
GSCH divider 2 [27] 30,008 1,17,187 17850

Proposed Newton-Raphson divider 23996 93376 13506

5. Conclusion

A new design for quantum floating-point division is proposed in this paper using the Newton-
Raphson algorithm. The proposed quantum circuit saves more T-counts than the existing work. The
proposed design may be better suited for designing any quantum algorithm that employs floating-
point division, where the main solicitude is expected to be lower T-cost.
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