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Abstract.   The development of quantum algorithms is facilitated by quantum circuit 

designs. A floating-point number can represent a wide range of values and is extremely 

useful in digital signal processing. A quantum circuit model to implement the floating-point 

division problem using the Newton-Raphson division algorithm is proposed in this paper. 

The proposed division circuit offers a significant savings in T-gates and qubits used in the 

circuit design when correlated with the state of art works proposed on fast division 

algorithms. The qubits savings are estimated around 17% and 20%, T-count savings are 

around 59.03% and 20.31%. Similarly, T-depth savings is estimated around 77.45% and 

24.33% over the existing works. 
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1. Introduction 

The ability of quantum computing to solve many problems that traditional computing devices 
cannot handle is demonstrated by Shor’s algorithm [1]. Quantum circuits have numerous 
applications in quantum signal processing [2, 3, 4] quantum optics [5, 6, 7], and quantum 
thermodynamics [8, 9].   Quantum circuits are reversible by virtue of their equal number of  
inputs and outputs. Ancillary inputs are said to be excess inputs and excess outputs are said 
to be garbage outputs [10, 11].  As qubits are highly fragile and unstable, they are prone to 
noise errors and their states might collapse due to the effect of the noise information [12,13,14].  
Researchers prefer to use fault-tolerant quantum circuits and error correction codes to eliminate 
the effect of error on quantum circuits. Clifford+T quantum gates are a class of fault -tolerant 
gates used to build quantum circuits that have shown significant resistance to noise sources 
[15,16]. Table 1 contains a list of Clifford+T gates along with their corresponding symbols. 
Clifford+T gates do not include the Toffoli (CCNOT) gate, which is essential in the realization 
of arithmetic circuits. As a result, researchers have concentrated their efforts on realizing the 
critical CCNOT gate realization using Clifford+T gates [16-19]. T-gate implementation is 
overpriced when compared to other quantum gates, and it is estimated to be hundreds of times 
more expensive than the Hadamard gate, which produces superposition on qubits [19].  
 

Table 1. Fault tolerant Quantum Clifford+T gates 

 

S.no Quantum Gate Symbol 

1 Pauli-X (Or) X 

2 Hadamard H 

3 T gate T 
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4 Conjugate transpose of T or TƗ TƗ 

5 Phase or S gate S 

6 Conjugate transpose of S or SƗ SƗ 

7 Controlled Not (CNOT) gate 
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Figure 1 . Resource optimized implementation of CCNOT(Toffoli) gate using T gates 

Figure 1 shows the T-count optimized realization of Toffoli gate with a T-gate count of 7 and the 

number of T-gate layers as 3. This decomposition is considered to be an optimized Toffoli 

implementation for realizing logical operations [20].  

 

 

 

Figure 2. Resource optimized decomposition of CCNOT(Toffoli) gate to implement logical 

AND operation 

 

Figure 2 depicts Gidney's proposal for a T-count optimized realization of the Toffoli gate with 

a T-gate count of 4 and a total of 2 T-gate layers [21]. It is well understood that quantum circuits 

do not produce any garbage outputs. If the circuit is built, it must run backwards in the 

Uncomputation section after the required outputs have been copied [14,15]. The T-count of the 

entire quantum circuit is calculated by adding the total number of T-gates used in the computing 

and uncomputing sections of the quantum circuit. Because three T-gates are eliminated when 

pairing, the T-count is found to be 8 whenever a CCNOT gate is paired as a combination in the 

computing and uncomputing section [20,21]. The benefit of Gidney's adder is that the 

Uncomputation section of the Toffoli operation does not use any T-gate components, so the T-

gate count of Gidney's structure does not increase when the garbage outputs. 

2. Related works 
Quantum circuits for solving integer problems received major interest in the literature [13,17-19,22] 
whereas, problems that employ floating-point numbers   has received less attention in literature [23-
25]. Many scientific, information and communication technology, fields rely on floating-point 
division. In this paper, Newton-Raphson algorithm is employed to construct a division circuit to    
handle floating-point inputs. The algorithmic procedure to find the quotient of floating-point 
dividend and divisor is presented in Algorithm 1. The top-level overview of the quantum circuit 
model built to execute division operations on floating-point inputs is shown in Figure 1. The 
exponent difference between the dividend and divisor exponents is found using the quantum 
subtractor block. The division operation is done on the fractional part of the inputs. Finally, a  
normalization unit is used to normalize the result. 
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Algorithm 1 Algorithm to perform division on floating-point numbers 

Dividend ASAEAM and Divisor BSBEBM 
 Result RSRERM 

RS= As      Bs 
IE = Ex − Ey 
IM = Mx/My 

RERM = Normalize (IE, IM ) 
 

 

3. Proposed Quantum Circuit for Division using Newton-Raphson division 

 

 

Figure 3 . Quantum Circuit to Perform Floating-point division 
 

There are two types of binary division algorithms: slow and fast division methods. SRT 
division,  Restoring and Non-restoring division algorithms are slow division algorithms as they 
are digit by digit recurrence algorithms. The fast division algorithms are Goldschmidt division and 
Newton- Raphson division, as their number of iterations is O (log n) [25]. For computing one 
iterative process, the Newton-Raphson convergence time is much faster. Newton-Raphson division 
algorithm first finds the reciprocal of the divisor using an initial proximity. The accurate reciprocal 
of the divisor is calculated by an iterative formula for log n times. Then the reciprocal is 
multiplied with the dividend to find the quotient. The algorithm to find the perform division on two 
integers is shown in Algorithm 2. 

 

Algorithm 2 Newton-Raphson algorithm to compute division 
 

Dividend Nx and Divisor Dx 
Quotient Qr 
Assign N =length of input qubits 
Assign X1 = 1/Dx 
for i = 1 to log N 

Xi+1 = Xi(2 D Xi) 
end 

Qr = Nx ∗ XlogN 
 

 

The high-level overview of the quantum division circuit on IEEE-754 standard input is shown 
in Figure 3. Each iteration of a Newton-Raphson division circuit employs two quantum multipliers 
and one quantum subtractor unit. The reciprocal approximation is observed with the help of a 
lookup table that computes the initial guess, which serves as the seed for the calculation. The 
iteration begins with a quantum multiplier that calculates DX ∗ Xi after the 
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Figure 4. High level overview of integer division quantum circuit using Newton-Raphson 
algorithm 

 

initial guess is made. In the algorithm, the quantum subtractor unit performs the subtraction   process 
and generates the factor 2-DX*Xi. By locating the next factor Xi+1 the second quantum multiplier 
aids in iteration execution. Finally, the quotient is calculated from the result of a multiplier unit 
wherein, the multiplier calculates the product of Xlogn with the numerator Nx of the division 
circuit. The proposed division circuit is constructed using Clifford+T gates applicable for 
quantum systems.  

4. Resource Estimation of Proposed Newton-Raphson Division Circuit 

The Newton-Raphson division algorithm is applied on the given floating-point dividend and divisor 
and the resource utilized for the proposed design is shown in Equation 1. The subtractor and 
multiplier circuits are crucial components of Newton-Raphson division. The proposed circuit model 
makes use of the multiplier and subtractor designs found in [23]. The authors of the aforementioned 
work proposed quantum circuit designs for floating-point division circuits using three different 
approaches. The three approaches include two classes of numerical repeat (i.e. slow) division 
algorithms and one class of less iteration involved fast solving algorithm, namely the Goldschmidt 
(GSCH) algorithm. However, the authors did not address the quantum circuit model for the other 
category of fast division algorithm, Newton-Raphson division algorithm. 

Resource − count = Resource – count11∗multiplier+5*Subtractor (1) 
Figure 4 shows the Top-level overview of quantum circuit model utilizing Newton-Raphson 
division algorithm for an input length of 32 qubits floating-point number.  From the quantum circuit 
model, it is clear that after the initial guess is made each iterative process employs a quantum 
floating-point subtractor and floating-point multiplication circuit. After the final iteration one more 
multiplicative block is employed to calculate the quotient of the proposed division circuit model. 
The proposed design utilizes Craig Gidney’s T-count efficient adder [21,25] and the resource 
estimation is made as shown in Equation 1. The proposed division circuit model is compared with 
other existing quantum circuit model, which used Goldschmidt division circuits, a type of fast 
division algorithm [25], and the resource used is shown in Table 2. Table 3 shows that the proposed 
division circuit uses fewer resources and saves significantly on the qubits, T-depth, and T-
count.  The qubits savings are estimated around 17%, 20%, T-count savings are around 59.03% 
and 20.31% , Similarly, T-depth savings is estimated around 77.45% and 24.33% over the existing works 
on GSCH division algorithm in [25] and [27] respectively. 
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Table 2 . Resource assessment of the proposed Newton-Raphson division 

circuit 
Module T-depth Ancilla T-count 

Quantum Vedic multiplier [25] 13032 17856 71424 

Subtractor [25] 410 5170 19825 

Quantum LZD [25] 46 178 408 

Shift circuit [26] 2 620 1687 

Exponent adjustment 16 8 32 

Copy circuit Nil 128 Nil 

Restoration circuit Nil 32 Nil 

Total 13506 23992 93376 

 

Table 3 . Comparison of proposed Newton-Raphson division quantum circuits with the existent designs 

 

Designs Qubits T-Count T-depth 

GSCH divider 1 [25] 29074 2,27,920 59,916 

GSCH divider 2 [27] 30,008 1,17,187 17850 

Proposed Newton-Raphson divider 23996 93376 13506 

 

5. Conclusion 

A new design for quantum floating-point division is proposed in this paper using the Newton- 
Raphson algorithm. The proposed quantum circuit saves more T-counts than the existing work. The 
proposed design may be better suited for designing any quantum algorithm that employs floating-
point division, where the main solicitude is expected to be lower T-cost. 
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