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Abstract

We present a theoretical study of topological models hosting Majorana fermions which

are their own anti-particles, with relevant probes of quantum entanglement and exper-

imental protocols for quantum engineering in cQED. In the first part, by proximity

effects we address the topological superconducting wire systems, where Majorana

fermions emerge as zero-energy modes at the edges. By varying strengths of inter-

wire couplings and changing fluxes of orbital magnetic fields, we show an interplay

between topological p-wave superconductivity and quantum Hall states. For the re-

maining two parts of the thesis, we focus on Kitaev spin liquids that can be exactly

solved in a Majorana fermion representation. We present a solution for tunable square

and brickwall ladder systems. We introduce valence bond fluctuations to characterize

phase transitions between Abelian and non-Abelian phases, and find a general rela-

tion with the entanglement entropy. To simulate these many-body Majorana states,

we propose a driven superconducting box circuit with generalizations to coupled box

ensembles. There, a variety of models can be implemented including the toric code,

the random Ising chain as well as the SYK Majorana model.



Résumé

Nous présentons une étude théorique des modèles topologiques révélant des fermions

de Majorana qui sont leurs propres anti-particules, avec des sondes de l’intrication

quantique et des protocoles expérimentaux d’ingénierie quantique en cQED. Dans

la première partie, par des effets de proximité, nous abordons le supraconducteur

topologique dans des systèmes de fil, où les fermions de Majorana émergent comme

modes à énergie nulle sur les bords. En faisant varier les forces des couplages inter-

fils et l’évolution des flux dus aux champs magnétiques orbitaux, nous montrons

une interaction entre la supraconductivité topologique des ondes p et les états Hall

quantiques. Pour les deux autres parties de la thèse, nous nous concentrons sur les

liquides de spin de Kitaev qui peuvent être résolus exactement dans une représentation

de fermions de Majorana. Nous présentons une solution dans des géométries de

type échelle. Nous introduisons les fluctuations des liens de valence pour caractériser

les transitions de phase entre les phases abélienne et non abélienne, et trouver une

relation générale avec l’entropie d’enchevêtrement. Pour simuler ces états Majorana

à plusieurs corps, nous proposons un circuit en caisson supraconducteur puis des

généralisations pour des ensembles de bôıtes couplées. Là, une variété de modèles

peut être implémentée, y compris le code torique, la châıne d’Ising aléatoire ainsi que

le modèle SYK Majorana.
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Herviou.

Years ago, I met Silke Biermann from CPHT upon her summer research visit to

Peking University. By that time, I was an undergraduate student in Materials Chem-

istry. From Silke, I got to know Paris with its lively French academic environment.

After coming here, the flexibility of the system allowed me to try different fields from

High Energy Physics (Master) to Condensed Matter (PhD). It would have been im-

viii



possible without the generosity and vision of the professors I met: Hong Jiang, Yiqin

Gao, Baruch Rosenstein, Pascal Paganini, Antoine Georges, Alexandre Zabi, Jesper

Jacobsen, Nicolas Regnault and Slava Rychkov. I always feel lucky to be supported

by them in my pursuit of a path with multiple interests.

During my stay in CPHT, I would like to thank the company of colleagues for their

sharing of lunch and coffee time: Tal Goren, Philipp W Klein, Julian Legendre, Joel

Hutchinson and Hepeng Yao. I appreciate the administrative help of Fadila Debbou,

Malika Lang, Florence Auger in making my foreign life convenient and travels abroad

smooth. Danh Pham-Kim played the key figure in keeping hardwares and softwares

around me efficient. Also, I am impressed by the genuine efforts of our lab director
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Introduction

In the last decades, Majorana fermions have revived interests in the field of condensed

matter due to possible applications in quantum information as protected qubits [1–7]

and surface codes with Z2 variables [8–12]. On one hand, they emerge as Majorana

zero-energy modes (MZMs) at the topological defects (for instance, at the edges)

in a variety of topological systems with particle-hole symmetry. These are p-wave

superconductors, the superconducting analogues of quantum Hall phases [13–15]. On

the other hand, Majorana fermions are closely related to Z2 quantum spin liquids [16,

17]. The Kitaev spin model on the honeycomb lattice [18] represents an important

class of models in this category, and can be solved exactly in a Majorana fermion

representation. The model shows three gapped spin liquid phases and an intermediate

gapless phase which can be identified as a semi-metal of Majorana fermions.

The quest of topological phases initially started from the quantum Hall effect

[19, 20], and since then has evolved towards variants on the honeycomb lattice with

effectively a zero magnetic flux in a unit cell [21]. These quantum Hall systems are

characterized by a robust, unidirectional charge flow at the sample boundaries [22,

23], as well as by the emergence of fractional charges in the case of Laughlin states [24–

27]. Recently, one theoretical approach to study the connections between topological

superconductors and quantum Hall phases is to view two-dimensional systems as

arrays of coupled one-dimensional wires [28–30]. This so-called wires construction

approach comes with the benefit that it allows to investigate interaction effects (such

as fractionalization) [31–33] that go beyond mean-field theory, via the Luttinger liquid

paradigm [34, 35].
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The search for quantum spin liquids in the Mott regime [36–41], however, has

remained a great challenge in relation with the discovery of quantummaterials [42–50].

Quantum spin liquids show interesting topological and entanglement properties [51–

54] which can be used for applications in quantum information [55]. The Kitaev

honeycomb model [18] demonstrates the significance of Z2 gauge fields on the low-

energy properties. It is also important to mention exact constructions of chiral spin

liquids [56] and spin liquid states in ladder systems [57].

Starting from the low-dimensional analogues, one may envision to simulate Kitaev

spin liquids from constructing four-site Majorana boxes in circuit quantum electro-

dynamics (cQED) networks. Notably, a system of three transmons has been realized

recently [58], with possible applications in topological phases [59, 60]. These boxes

could be used in variable geometries from quantum impurity systems to tunable lad-

der and plaquette models. Ensembles of square-plaquette models have been realized

in ultra-cold atoms [61] to emulate an Anderson Resonating Valence Bond spin-liquid

state [38, 62], and have been shown theoretically to be related to d-wave superconduc-

tivity (superfluidity) in the Hubbard model close to the Mott state [63]. The design

of such Majorana boxes addresses challenging questions regarding the choice of cou-

plings. Experiments in superconducting cQED architectures [64] and in ultra-cold

atoms [65] report progress in engineering four-body interactions inspired by theoret-

ical efforts [66, 67].

In these contexts, the goals of this thesis are two folds: first, to explore the topolog-

ical and entanglement properties of Majorana fermions in topological superconducting

wires and Kitaev spin liquids; second, to design feasible physical platforms towards

the quantum engineering of many-body Majorana states.

In Chapter 1, we review a series of basic topological concepts starting from the

classification of topological phases for non-interacting fermions based on non-spatial

symmetries, to the illustration of central models hosting Majorana fermions: p-wave

superconductors in d = 1, 2 and the Kitaev honeycomb model. By bulk-boundary
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correspondence, the Majorana edge modes are protected by the bulk gap and their

properties can be further derived from topological invariants of the bulk via index

theorem. A summary of the potential experimental realizations of these topological

Majorana fermion models is given at the end of this chapter.

In Chapter 2, we go on to present a theoretical study of the interplay between topo-

logical p-wave superconductivity, orbital magnetic fields and quantum Hall phases in

coupled wire systems. First, related to the Paper 4, we analyze hybrid systems con-

sisting of a Kitaev chain coupled to a Luttinger liquid. By tuning the magnetic field

and the carrier density, we identify quantum Hall and charge density wave phases, as

well as regimes in which superconductivity is induced in the second chain by proxim-

ity effect. It allows us to consider two-dimensional systems made of weakly coupled

ladders. We manage to engineer a p + ip superconductor and fulfill a generalization

of the ⌫ = 1/2 fractional quantum Hall phase, following the previous work on the

two-leg spinful ladder [68]. The analytical findings will be compared with numerical

exact diagonalization.

In Chapter 3, related to the Paper 3, we introduce valence bond fluctuations to

characterize quantum spin liquids and the entanglement properties of them. Applying

analytical approaches, we find an identical scaling law between valence bond fluctu-

ations and entanglement entropy in the two-dimensional Kitaev spin model and in

one-dimensional chain analogues. We also show how these valence bond fluctuations

can locate, via the linear scaling prefactor, the quantum phase transitions between the

three gapped and the gapless Majorana semi-metal phases in the honeycomb model.

We then study the effect of a uniform magnetic field along the [111] direction opening

a gap in the intermediate phase which becomes topological. We still obtain a robust

signal to characterize the transitions towards the three gapped phases. Our analytical

results will be compared with density matrix renormalization (DMRG) simulations.

In Chapter 4, related to the Paper 1, we derive a generalized phase diagram for

the Kitaev square ladder system. As a reminiscence of the two-dimensional model,

xii



we identify three gapped spin liquid phases and one gapless phase that extends to a

plane. Based on unit cells of the ladder geometry, in the Paper 2, we design a driven

superconducting box with four spins-1/2 (qubits). Within one box or island, we

introduce a generalized nuclear magnetic resonance protocol to realize our models.

Coupling boxes allows us to realize Kitaev spin liquids in various geometries with

applications in the toric code. We show how to produce a Néel state of fluxes as a

result of the ⇡ flux ground state and address the role of local impurity fluxes leading

to random Ising models. We present an implementation of the Sachdev-Ye-Kitaev

Majorana model in coupled ladder systems. The comparison of the analytical results

with numerical simulations will be addressed, including time-average measurements

of spin correlation functions, together with the effects of dissipation.
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Chapter 1

Background

In this chapter, we give a general introduction to the emergence of Majorana fermions

and their basic properties in the context of condensed matter.

We begin in Sec. 1.1 with a brief review of classification theories for the fully gapped

system of non-interacting fermions [69, 70]. On the classification table, topological

classes with different non-spatial symmetries host intrinsic topological invariants. We

adopt the K-theory approach [71] to derive two complex symmetry classes. Then in

Sec. 1.2, allowing additional particle-hole symmetry, the real part of the classifica-

tion table covers a systematic identification of topological superconductors (TSCs)

in various dimensions. In contrast to its birth in particle physics, here a Majorana

fermion particle emerges as the gapless excitation of Bogoliubov quasiparticles and

is protected by the bulk gap. In order to obtain topological invariants, again we ap-

ply the K-homology method. Two important low-dimensional examples are followed:

the Kitaev p-wave superconducting chain [72] and the spinless p + ip chiral super-

conductors [14]. From the bulk-boundary correspondence, both models give rise to

Majorana zero-energy modes (MZMs) at topological point defects. Sec. 1.3 is dedi-

cated to a new type of topological states embedded in a Z2 gauge field - the Kitaev

spin liquids [18]. Remarkably, on the honeycomb geometry, the low-temperature en-

ergy spectrum can be exactly solved in the Majorana fermion representation. We

further explore excitations of vortices in different phases that obey either Abelian or

1



non-Abelian statistics. Experimental realizations of Majorana modes in three afore-

mentioned models are summarized in Sec. 1.4.

1.1 Topology in quantum matter

In the first section, we aim to present a simple mathematical formulation for the

tenfold classification of topological states in systems composed of non-interacting

fermions [69, 70]. We constrain ourselves to single-particle Hamiltonians that, at a

mean-field level, serve as effective descriptions of a wide variety of topological ma-

terials. Notable examples include spin-orbit-induced topological insulators [73–75],

topological superconductors [3, 76], superfluids [77], semimetals [78, 79] and nodal

superconductors [80, 81].

Historically, concepts of topology have been introduced to go beyond the Landau-

Ginzburg-Wilson framework [82, 83], where spontaneous symmetry breaking is em-

ployed to classify different phases of matter. In topological systems, however, symme-

tries play a drastically different role and are responsible for the absence of a local order

parameter. Meanwhile, when certain symmetries are present, topologically non-trivial

states cannot be adiabatically deformed to trivial states unless the system undergoes

a quantum phase transition. They are called symmetry protected topological (SPT)

phases [84] and reveal the short-range entanglement.

1.1.1 Tenfold classification with symmetries

Now, we focus on fermionic SPT phases classified by three non-spatial symmetries:

the time reversal (T ), particle-hole (P) and chiral (C) symmetries. Given a set of

complex fermion annihilation and creation operators satisfying the anti-commutation

relation { µ, 
†
⌫} = �µ⌫ , it is convenient to put them onto a d-dimensional lattice

and add internal degrees of freedom µ = (j, �). Here, j denotes the lattice site and

� indicates extra quantum numbers, for instance, the spins � = ±1/2. A matrix

notation is useful to manifest the linear transformations of fermionic operators under

2



different non-spatial symmetries,

T  µT
�1 = (UT )

⌫
µ  ⌫ , T iT �1 = �i,

P µP
�1 = (U⇤

P )
⌫

µ  
†
⌫ , (1.1)

C µC
�1 = (U⇤

C)
⌫

µ  
†
⌫ .

The matrix element U ⌫
µ is related to the symmetry operator U(= T ,P , C) acting

on the fermionic Fock space. We adopt the Einstein summation convention over

the repeated indices (⌫). To preserve the anti-commutation relation of fermionic

operators: U{ µ, 
†
⌫}U

�1 = �µ⌫ , from Eq. (1.1) the matrix U has to be unitary:

UU † = . Then, T becomes an anti-unitary operator and P unitary. Meanwhile, P

interchanges the particle and hole channels. C can be viewed as a combination of the

two operations above: C = T · P with UC = U⇤
PUT .

We go on to consider an arbitrary single-particle Hamiltonian that shares a second-

quantized form H =  †H =  †
µH

µ⌫ ⌫ . When the system is invariant under the

symmetry operation UHU�1 = H, one obtains

U †
TH

⇤UT = H, U †
PH

tUP = �H, U †
CHUC = �H. (1.2)

Without loss of generality, we assume TrH = TrUC = 0. For a Hermitian system,

the transformation rules in Eq. (1.2) take an alternative form in momentum space

T H(k)T �1 = H(�k),

PH(k)P�1 = �H(�k), (1.3)

CH(k)C�1 = �H(k).

Here, the Fourier transform is defined on the d-dimensional lattice with volume V =

Ld:  j(r) = 1/(
p
V )
P

k e
ikr j(k) and Hµ⌫(k) =

P
r e

�ikrHµ⌫(r).

From Schur’s lemma we can infer that two successive operations U2 produces

U⇤
TUT = ei✓T · , U⇤

PUP = ei✓P · , U2
C = ei✓C · . These phase factors are determined

as follows: first, the unitarity of the UT (P ) matrix indicates U t
T (P ) = ei✓T (P )UT (P ) and
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Figure 1.1: Eight-hour clock for the real symmetry classes labelled by index s. T , P
symmetries have the value ± along two axes. Adapted from Ref. [85].

e2i✓T (P ) = 1; second, a redefinition UC ! U 0
C = e�i✓C/2UC leads to (U 0

C)
2 = . Hence,

in the presence of symmetries the system satisfies

T 2 = ±1, P2 = ±1, C2 = 1. (1.4)

And we denote U2 = 0 when the given symmetry is absent. Since C = T ·P , there are

32 = 9 possibilities for the behaviours of the Hamiltonian under CPT transformations.

One more possibility arises when both time reversal and particle-hole symmetries

are missing but the chiral symmetry is present: T 2 = P2 = 0, C2 = 1. Fig. 1.1,

Table 1.1 and Table 1.2 show the tenfold symmetry classes [86–88] for fully gapped

non-interacting fermionic systems.

Table 1.1: Complex symmetry classes of tenfold way for non-interacting fermionic
Hamiltonians. Index � is called the topological dimension defined by � = d�D with
d the spatial dimension and D + 1 = d � ddefect the co-dimension of defects. The
case D = 0, � = d corresponds to a fully gapped bulk system. We also label the two
complex symmetry classes A and AIII by index s = 0, 1 respectively.

� T 2 P2 C2 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0

AIII 0 0 + 0 Z 0 Z 0 Z 0 Z
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Table 1.2: Real symmetry classes of tenfold way for non-interacting fermionic Hamil-
tonians. Index s stands for eight classes imbedded with T , P symmetries in Fig. 1.1.
K(s; d,D) represents the homomorphism ⇡D(Rd�s) = ⇡0(R��s).

(� � s) mod 8 0 1 2 3 4 5 6 7

K(s; d,D) Z 0 0 0 2Z 0 Z
(2)
2 Z

(1)
2

1.1.2 K-theory approach

From Table 1.1 and Table 1.2, the non-trivial topological phases of ten symmetry

classes are classified by a topological invariant of type Z, 2Z,Z
(1)
2 ,Z

(2)
2 in different

spatial dimensions. Next, we show a derivation of them using K-homology and Clif-

ford algebras [71].

Before proceeding to theoretical aspects, it may be useful to introduce the notion

of topological defects. In Table 1.1 and Table 1.2, two gapped phases with different

topological numbers cannot be connected to each other by continuous deformations.

Physically, on a d-dimensional lattice with a finite size, they are separated by an

interface that carries a gapless mode. Equivalently, it can be viewed as putting

a topological defect (of dimension ddefect) into a gapped bulk system. To encircle

the defect, the gapless mode then lives on a sphere SD. The spatial dimension of the

sphere can be easily read: D = d�ddefect�1 (e.g. a point defect on a two-dimensional

bulk surface is surrounded by a line). Now, the defect Hamiltonian can be expressed

as H(k, r), with (k, r) 2 BZd ⇥ MD. On the other hand, as we shall see later, the

topological dimension � which determines the classification of topological phases is

given by (d � D). Throughout the manuscript, we often encounter the most simple

case: a gapped bulk system in d-dimensions and the topological defect becomes its

boundary of a dimension ddefect = d � 1. The gapless edge mode appearing on the

interface between the system and its boundary, thus lives on a space with a fixed

dimension D = d � ddefect � 1 = 0. Then, the defect Hamiltonian becomes an edge

Hamiltonian H(k, r) = Hedge(k). Since (k, r) 2 BZd ⇥ M0, we have localized zero-
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energy edge modes in the one-dimensional topological system or one gapless edge

mode with fixed chirality in the two-dimensional topological system (see Table 1.5).

Meanwhile, in this case we get a topological dimension � = d�D = d. The formulation

of the defect Hamiltonian helps us to consider broader types of topological defects

and go to higher dimensions: for instance, in Section 1.2.3, we will address the point

defects inside the 2D p+ip superconductor that support Majorana zero-energy modes.

In general, the defect Hamiltonian takes a Dirac form (illustrated by specific ex-

amples afterwards),

H(k, r) = k~ · Γ~ +mΓ0(r). (1.5)

It can be derived from low-energy excitations around the gapless Dirac point k~0. Here,

k~ denotes the deviation of momentum from the gapless point. Γ~ , on the other hand,

become Dirac matrices with d components (one for each bulk dimension). They

satisfy the Clifford relation {Γµ,Γ⌫} = 2�µ⌫ . The second mass term in Eq. (1.5)

represents the contribution from the gap in the bulk. Γ0(r) should anticommute with

any component of Γ~ in the kinetic term. If different defect Hamiltonians can be

transformed into one another without closing the gap, they belong to the same class.

One thus reformulates the original classification problem into an algebraic one: to

identify the disconnected components that live on the intrinsic classifying space of a

given defect Hamiltonian.

It is convenient to apply the method of K-homology. The universality class in

Table 1.1 and Table 1.2 incorporates 2 types for complex Clifford algebras and 8

types for real Clifford algebras. All are re-labelled by index s (see also Fig. 1.1).

We denote their classifying spaces as Cq and Rq with q = d � s. The disconnected

components in a general manifold SD are given by homotopy groups ⇡D(Cq) and

⇡D(Rq). In the following, we illustrate a few bulk examples (D = 0) related to two

complex symmetry classes, the structures of which we encounter frequently hereafter.

The derivation of real symmetry classes is left to Section 1.2 and we will see Majorana
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fermion emerges naturally as the gapless boundary mode.

• Class A in d = 1,2. The first complex symmetry class A describes topological

band insulators without CPT symmetries. For d = 2, the most simple case

comes from a two-band model of Nambu spinors. Its Bloch Hamiltonian can be

expressed in terms of Pauli matrices

H(k) = R0(k) · +R~ (k) · �~ , Ψ(k) =

0
@ "(k)

 
†
#(k)

1
A , (1.6)

and with the convention �~ = (�x, �y, �z),

�x =

0
@0 1

1 0

1
A , �y =

0
@0 �i

i 0

1
A , �z =

0
@1 0

0 �1

1
A . (1.7)

Notably, the system has U(1) spin-rotation symmetry around z-axis. The en-

ergy spectrum reads ✏±(k) = R0(k) ± |R~ (k)|. We now choose a typical set of

parameters: R0(k) = 0, R~ (k) = (sin kx, sin ky,�µ/2�
P

µ=x,y cos kµ), and focus

on one of the Dirac points k~0 = (0, 0). The associated gap ✏±(k~0) = ±|µ/2 + 2|

closes at the chemical potential µ = �4. An expansion around k~0 then gives us

the desired form of the defect Hamiltonian

H(k, r) = kx�
x + ky�

y +m�z, (1.8)

with m = �(µ+4)/2 and (k, r) 2 BZ2 ⇥S0. The Pauli matrices can be viewed

as Clifford generators in Eq. (1.5). Separated by a gapless mode, two phases

with m > 0 and m < 0 are topologically distinct. More generally, let us enlarge

the Fock space and consider N copies of band insulators that are decoupled

from each other,

H(k, r) = kx�
x ⌦ N + ky�

y ⌦ N + �z ⌦M, Ψj(k) =

0
@ j,"(k)

 
†
j,#(k)

1
A , (1.9)

withM = diag(m1, . . . ,mN) and j = 1, . . . , N . The defect Hamiltonian respects

U(N) spin-rotation symmetry. Apparently, for mj 6= 0 the type of topological
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phases is determined by the sign of the effective mass. It is convenient to nor-

malize the masses by a unitary transformation: UMU † = diag( n,� N�n).

When n is fixed, there are only two types of phases with either positive or nega-

tive mass. The simply connected part is identified in this way as U(N)/(U(n)⇥

U(N � n)). Taking into account all possible values of n, the entire classifying

space of class A (s = 0) in d = 2 becomes

C2 =
[

0nN

U(N)

U(n)⇥ U(N � n)
, (1.10)

with disconnected components ⇡0(C2) = Z. We recover the integer topological

number in Table 1.1. For d = 1, a similar argument can be made by looking at

the defect Hamiltonian with one less dimension

H(k, r) = kx�
z ⌦ N +M. (1.11)

To obey the Clifford algebra, the mass generator satisfies {�z⌦ N ,M} = 0. M

can be an arbitrary superposition of �x and �y matrices. In the Nambu spinor

space, it takes the form

M =

0
@0 U †

U 0

1
A (1.12)

where matrix U is Hermitian and U 2 U(N). The classifying space then reads

C1 = U(N), (1.13)

with the homotopy group ⇡0(C1) = 0. Class A in d = 1 becomes a trivial phase.

• Class AIII in d = 0,1. The second complex symmetry class AIII is embedded

with chiral symmetry. From the transformation rules (1.4) and (1.2), one gets

U †
C = U�1

C = UC and the anti-commutation relation {H,UC} = 0. It means in

d = 0, the mass generator Γ0 in the defect Hamiltonian shares the same form

as the unitary matrix UC . It lives on the classifying space C1 = U(N) for class
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AIII (s = 1). The trivial topology ⇡0(C1) = 0 agrees with the classification

Table 1.1. Now we move to d = 1 and study the model of the Su-Schrieffer-

Heeger (SSH) chain. It captures the physics of trans-polyacetylene [89, 90]. The

single-particle lattice Hamiltonian takes the form

H =
X

j

t1a
†
jbj + t2b

†
jaj+1 + h.c., (1.14)

with real hopping amplitudes t1 = t(1+�), t2 = t(1��) and t > 0. The operator

a†j(b
†
j) creates one spinless fermion in the j-th unit cell of sublattice A(B). In

momentum space k 2]� ⇡, ⇡], the two-band Bloch Hamiltonian becomes

H(k) = R(k) · �~ , Ψ(k) =

0
@ak

bk

1
A , (1.15)

where R(k) = (t(1 � �) + t(1 + �) cos k, t(1 + �) sin k, 0). The chiral symmetry

(1.3) is manifest in the operator C = �z. From the energy dispersion ✏±(k) =

±t
p
2(1 + �2 + (1� �2) cos k), the gap closes at k0 = ⇡ when � = 0. Two phases

with � > 0 and � < 0 are topologically distinct. As before, we derive the defect

Hamiltonian of N decoupled SSH chains from an expansion around the gapless

point

H(k, r) = �t(1 + �)k�y ⌦ N � 2t�x ⌦M, (1.16)

where M = diag(�1, . . . , �N). The sign of the effective mass �j determines the

topology of the phase. For class AIII (s = 1) in d = 1, one obtains the same

classifying space as class A (s = 0) in d = 2: C0 ' C2 in Eq. (1.10). The

topological invariant becomes an integer ⇡0(C0) = Z. Furthermore, it reveals

Bott periodicity [91, 92] of the (mod 2) pattern in complex symmetry classes

(see also Table 1.1),

Cq+2 ' Cq, q = d� s. (1.17)

In general, Bott periodicity can be proven by solving an extension problem in

Clifford algebras [71, 93, 94]. Next, we elaborate on the case of complex symmetry
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classes. We leave the discussion of real symmetry classes to Section 1.2.1. By contrast,

there a different (mod 8) periodic pattern is revealed as shown in Table 1.2.

Proof of Eq. (1.17). For complex symmetry classes, the defect Hamiltonian (1.5)

is composed of Γ matrices that obey a complex Clifford algebra Clq̃. The index q̃

denotes the number of Γ matrices or equivalently, the number of Clifford generators

{eµ}. The anti-commutation relation is satisfied

{eµ, e⌫} = 2�µ⌫ , µ, ⌫ = 1, . . . , q̃. (1.18)

The algebra is complex in the sense that the vector space can now be represented by

these generators as {Cn1n2···e
n1
1 en2

2 · · · } with Cn1n2··· 2 C and nµ = 0, 1. First, let us

consider the effect of spatial dimension d and set s = 0 (class A). From the example

of 2D band insulators (1.9), the Clifford algebra is extended from Cld to Cld+1 with

the addition of the mass term mΓ0(r). Then, the number of different ways for this

extension ⇡0(Cd) becomes the number of topological phases. Each of them hosts a

non-equivalent mass. We now take into account the following relation in complex

Clifford algebra

Cld+2 ' Cld ⌦ C(2). (1.19)

Here, the complex algebra of 2 ⇥ 2 matrices C(2) can be ignored in the extension

procedure. An equivalence relation for the classifying space is obtained: Cd+2 ' Cd.

Now, one can add the chiral symmetry and take s = 1 (class AIII). In the example

of 1D SSH chains (1.16), the chiral symmetry operator (C = �z ⌦ N) plays the

same role as an extra Clifford generator: {H(k, r), C} = 0. Consequently, the vector

space (or the space dimension) is enlarged by one, and the extension problem turns

into Cld+1 ! Cld+2 or Cld�s+2 ! Cld�s+3. Combined with the relation (1.19), we

complete the proof of Bott periodicity (1.17) for complex symmetry classes.

In the end, if we allow arbitrary co-dimension for the topological defect (D 6= 0),

the new continuous map of finding topologically distinct phases becomes Map(SD, Cq).

10



Table 1.3: Topological invariants of the tenfold symmetry classification [69].

Type C2 = 0 C2 = 1

Z Chern number (Ch) Winding number (⌫)

Z
(1)
2 Chern-Simons (CS) Fu-Kane (FK)

Z
(2)
2 Fu-Kane (FK) Chern-Simons (CS)

Due to the fact Cq�1 ' Map(S1, Cq), one verifies

⇡D(Cq) = ⇡0(Cq�D) = ⇡0(C��s), (1.20)

where � = d�D stands for the topological dimension. It is worthwhile to note that

the same argument can be applied to real symmetry classes [95].

1.1.3 Topological invariants

Non-trivial topological phases in classification Table 1.1 and Table 1.2 are associated

with topological invariants that can be measured in experiments. Physically, topo-

logical invariants detect the adiabatic changes in wave functions when we move them

around the base manifold of the defect Hamiltonian. When the wave functions are

not smooth everywhere, an obstruction arises and leads to a nonzero topological in-

variant. Table 1.3 summarizes the case of strong topological invariants, for which the

phase space one considers is compactified: (k, r) 2 BZd ⇥MD ! Sd+D.

In this section, we cover the invariants related to the -classified topology.

• Chern number. One can start from a general defect Hamiltonian that holds N

bands with N�(N+) bands below (above) the Fermi level. The energy bands are

linked to a set of normalized eigenstates: H(k, r)|ũµ
±(k, r)i = ✏

µ
±(k, r)|ũ

µ
±(k, r)i

where µ|± = 1, . . . , N±. For convenience, we adopt a short-handed notation

for the occupied eigenfunctions: |uµ(k, r)i = |ũµ
�(k, r)i. The winding of them

around the base manifold can then be described by the Berry curvature

F = dA+A2, (1.21)
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built from the Berry connection

Aµ⌫(k, r) = huµ(k, r)|du⌫(k, r)i. (1.22)

In Table 1.3, topological number Z is characterized by the Chern number when

the chiral symmetry is absent

Chn =
1

n!

✓
i

2⇡

◆n Z

BZd⇥MD

Tr(Fn), (1.23)

with 2n = d+D. For a second-quantized defect Hamiltonian H(k, r), it is more

convenient to use an alternative expression in terms of Q matrix

Chn = � 1

22n+1n!

✓
i

2⇡

◆n Z

BZd⇥MD

Tr[Q(dQ)2n], (1.24)

where Q is a Hermitian matrix constructed from the spectral projector

Q(k, r) = � 2P (k, r), P (k, r) = |uµ(k, r)ihuµ(k, r)|. (1.25)

By definition, one verifies that Q(k, r)|ũµ
±(k, r)i = ±|ũµ

±(k, r)i. Hence, matrix

Q(k, r) shares the same set of eigenfunctions as H(k, r) with normalized eigen-

values ±1. The two share a similar matrix structure as well. For a two-band

insulator belonging to class A in d = 2 (1.6), one can extract Chern num-

bers from Eq. (1.24) and Eq. (1.25): Ch1 = 0 for µ < �4 and Ch1 = 1 for

�4 < µ < 0. Indeed, by varying the chemical potential the system goes from a

trivial phase to the topological regime and the gap closes at the critical point.

Experimentally, without an external magnetic field, the non-zero Chern num-

ber gives rise to an anomalous quantum Hall response that can be described by

a quantized Hall conductance �xy [21, 96]. We call 2D materials of this type

Chern insulators.

• Winding number. In the presence of chiral symmetry, Z-classified topology

is given by the winding number. First noticing TrUC = 0 and U2
C = 1, one can

always find a basis where UC is diagonalized with evenly distributed eigenvalues
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{±1}. Constrained by the chiral symmetry {H,UC} = 0, the energies of the

system come in pairs: ✏µ+ = �✏µ� and |ũµ
+i = UC |ũ

µ
�i. Meanwhile, the defect

Hamiltonian now shares a block off-diagonal form

H(k, r) =

0
@ 0 D(k, r)

D†(k, r) 0

1
A . (1.26)

The D(k, r) matrix has a dimension N� ⇥N� with N� = N+ = N/2. Accord-

ingly, the Q matrix in Eq. (1.25) inherits the structure of H(k, r)

Q(k, r) =

0
@ 0 q(k, r)

q†(k, r) 0

1
A . (1.27)

Due to the fact Q2 = N , q(k, r) 2 U(N�). When d+D = 2n+1, the homotopy

group for the classifying space becomes non-trivial: ⇡d+D(U(N�)) = Z. It can

be captured by the winding number in terms of Q(k, r) matrix

⌫2n+1[q] =

Z

BZd⇥MD

(�1)nn!

(2n+ 1)!

✓
i

2⇡

◆n+1

Tr[(q�1dq)2n+1]. (1.28)

Let us go back to 1D SSH chain (1.15) in Class AIII. One immediately iden-

tifies q(k, r) = [t(1 � �) + t(1 + �)e�ik]/|✏±(k)| and the winding number reads

⌫1 = i/(2⇡)
R
BZ

dkq�1@kq. For � > 0, ⌫1 = 1 and for � < 0, ⌫1 = 0. In the topo-

logical regime � > 0, the non-zero winding number is manifest in the physical

obversable - geometric Zak phase [97, 98], a Berry’s phase the particle picks up

after moving around the Brillouin zone.

For the remaining topological invariants in Table 1.3, Chern-Simons and Fu-Kane

invariants, we leave the discussion to Section 1.2. As mentioned before, we will

address the topological classification of real symmetry classes by changing into the

representation of real Majorana fermions.

1.2 Origin of Majorana fermions

In 1937, one year before his mysterious disappearance on the ship from Palermo to

Naples, Ettore Majorana proposed the Majorana representation of the Dirac equation
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for relativistic particles [99]. Since a spin-1/2 Majorana fermion is its own antiparticle,

he became the first to point out its influence on neutrino physics. Around twenty years

later, remarkably, the Majorana equation arose naturally in the Bardeen-Cooper-

Schrieffer (BCS) description of the superconducting order in solids [100–102]. Since

then, the search for Majorana fermions has blossomed in a broad range of fields,

including nuclear, particle and condensed matter physics [4].

Not only its wide stretch is impressive, in modern times realizing Majorana fermion

in topological quantum matter has been viewed as an important step towards future

fault-tolerant quantum computation [15]. Due to non-trivial topology in band struc-

tures, a Majorana particle manifests itself as a nonlocal zero-energy mode that is

robust against quantum decoherence. In the following, we present a short review on

the emergence of Majorana fermion in different contexts with a focus on uncovering its

topological nature in relation to topological superconductors [14, 72]. The appearance

of Majorana fermions in quantum spin liquids [18] will be covered in Section 1.3.

1.2.1 From particle physics to topological matter

In particle physics, Majorana fermions are embodied in a real symmetrical solution

to the Dirac equation [103]

(�µpµ �m)Ψ = 0. (1.29)

The four-momentum is defined as pµ = ⌘µ⌫p
⌫ = (i@t,�p~) with a Minkowski metric

⌘µ⌫ = (+1,�1,�1,�1). And we set ~ = c = 1. In the Weyl representation, the 4⇥ 4

Dirac matrices �µ take the form

�µ =

0
@ 0 �µ

�̃µ 0

1
A , �µ = ( ,��~ ), �̃µ = ( , �~ ). (1.30)

And they satisfy the Clifford algebra {�µ, �⌫} = 2�µ⌫ . Multiplying Eq. (1.29) from the

left with the operator (�⌫p⌫ +m), one recovers the energy-momentum relation for a

relativistic particle: E2 = p2+m2. It is more convenient to express the wave function
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in the basis of two-component chiral fields Ψ = ( L, R)
t, where  L and  R stand

for the left-handed (1
2
, 0) and right-handed (0, 1

2
) Weyl spinors. The Dirac equation

(1.29) is then transformed into a pair of coupled equations

0
@i@t + p~ · �~ �mD

�mD i@t � p~ · �~

1
A
0
@ L

 R

1
A = 0. (1.31)

Furthermore, by separating the time-dependent part from the wave function Ψ(t, x) =

e�iEtΦ(x), one can replace the differential operator: i@t ! E and take complex

conjugation of Eq. (1.31). Charge conjugation (c) symmetry or particle-hole (P)

symmetry immediately follows: there exists a solution Φc(x) with energy (�E). More

precisely, 1

Ψ
c(t, x) = e+iEt

Φ
c(x), Φ

c(x) = PΦ(x) = (�i�2) · Φ⇤(x). (1.32)

Starting from here, we can construct a real Majorana solution Ψ(t, x) that encodes

particle-antiparticle correspondence

Ψ
c(t, x) = Ψ(t, x). (1.33)

The effects are two folds. First, the time-dependence should vanish and Majorana

fermion becomes a zero-energy mode: E = 0. Meanwhile, one identifies:

0
@ 

c
L(x)

 c
R(x)

1
A =

0
@ i�y ⇤

R(x)

�i�y ⇤
L(x)

1
A =

0
@ L(x)

 R(x)

1
A . (1.34)

Substituting it into the Weyl representation (1.31), we obtain the decoupled Majorana

equation

(i@t � rp~ · �~ ) r(x)� irmr�
y ⇤

r(x) = 0, (1.35)

with the index r = +/� for R/L. Here, we allow different masses for two chiral

fields: mD ! mR/L. It is interesting to compare Majorana fermion with its Dirac

1The �2 matrix can be traced back to the operation: (p~ · �~ )⇤ = �y(p~ · �~ )�y.
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counterpart. Both are constructed from the same set of Weyl spinors and carry spin-

1/2. Yet, apart from the zero-energy constraint, Majorana fermion also has no charge.

It lies in the fact that the Majorana equation (1.35) breaks the global U(1) gauge

symmetry:  r(x) ! e�i↵ r(x). The coupling to an electromagnetic field is no longer

allowed: pµ ! pµ � qAµ. With a nonzero potential Aµ, one infers the charge should

be neutral: q = 0.

Going beyond a mathematical reformulation of the Dirac equation, Majorana

fermions have a deep impact on neutrino physics. In the well-known seesaw mecha-

nism [104–107], the mass term in the Lagrangian of a single-flavour neutrino (among

all three flavours) takes the form

Lm =
1

2

⇣
⌫̄cL ⌫̄R

⌘
0
@mL mD

mD mR

1
A
0
@⌫L
⌫cR

1
A . (1.36)

Here, ⌫
(c)
R/L stand for Weyl spinors (previously  

(c)
R/L in Eq. (1.34)) and antineutrinos

are described by ⌫̄ = ⌫†�0. The non-observation of ⌫R implies mR � (mL,mD).

Assuming mL ' 0, from the diagonalisation one gets an extra light neutrino ⌫e with

mass m⌫e ⇠ m2
D/mR. It agrees with experiments that neutrinos are much lighter than

charged Dirac leptons. It also gives us a hint that neutrinos in Lm (1.36) could be

Majorana particles. A direct evidence would arise from the neutrinoless double beta

decay process [108, 109]: N
ZA �! N�2

Z+2A + 2��. Being its own antiparticle ⌫̄e = ⌫e,

in the intermediate process the antineutrino must be absorbed by a neutron. Similar

processes can occur in proton decays [110] and it leads to a selection rule with respect

to the baryon and lepton numbers: ∆(B�L) = ±2. Supersymmetry further predicts

Majorana fermions as dark matter candidates [111], and it motivates on-going deep

underground experiments [112, 113] that are designed to detect weak interactions

among massive particles.

The concept of Majorana fermion was transferred from nuclear to condensed mat-

ter physics first by the establishment of theory on superconductivity [100–102]. To

describe the wave function of spin-1/2 electrons in solids, one can resort to a four-
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component Nambu spinor

Ψr =

0
BBBBBB@

c",r

c#,r

c†#,r

�c†",r

1
CCCCCCA

=

0
@ Ψr

i�yΨ⇤
r

1
A ⇠

0
@ΨR,r

Ψc
L,r

1
A , (1.37)

with r the site index. Here, the Nambu spinor Ψr becomes a Majorana field operator

(1.34). And the particle-hole symmetry can be easily verified: Ψc
r = (i�2)Ψ⇤

r = Ψr.

To understand the emergent superconducting order at the mean field level [4], the

BCS formalism postulates a Bogoliubov-de Gennes (BdG) Hamiltonian [114]:

HBdG /
Z

ddrΨ†
rHBdG(r)Ψr, HBdG(r) =

0
@h0(r) · N ∆(r) · N

∆⇤(r) · N ��yh⇤
0(r)�

y

1
A . (1.38)

While h0(r) contains the kinetic energy and the chemical potential, ∆(r) embodies

the effective pairing between two opposite spins on the same site. The pairing term

originates from the attractive interaction V n",rn#,r with V < 0, and physically changes

the total number of electrons by an even integer. The effect is in resemblance to the

double beta decay process (∆L = ±2). From the Majorana equation (1.35), we

further notice ∆(r) generates a mass for the Majorana particle.

Yet quite different from particle physics where Majorana fermion appears in weak

interactions, later it has been found that Majorana fermions with zero energy can

stay as robust boundary states in topological superconductors. The effective picture

is given by class D with only particle-hole symmetry, one of real symmetry classes

on the classification Table 1.2. For the remaining of this section, we move on to

elucidate the topological structure of this symmetry class and comment briefly on the

emergence of MZMs. Concrete examples will follow in Sections 1.2.2, 1.2.3 and 1.3.

As has been previously shown, the particle-hole constraint [115] can be incorpo-

rated naturally into a generic BdG Hamiltonian in the basis of Nambu spinors

H =
1

2
Ψ

†
µH

µ⌫
Ψ⌫ , Ψ

† = ( †
1, . . . , 

†
N , 1, . . . , N). (1.39)
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Here, ⌧↵ (↵ = x, y, z) a new set of Pauli matrices acts on the Nambu spinor space. And

Ψ† and Ψ are no longer independent from each other: Ψ† = (⌧xΨ)t. Substituting it

into Hamiltonian (1.39), we obtain H = (1/2)(⌧xΨ)tH(⌧xΨ)⇤ = �(1/2)Ψ†⌧xH t⌧xΨ+

(1/2)Tr(⌧xH⌧x). According to the transformation rule (1.2), the BdG Hamiltonian

is now endowed with intrinsic particle-hole symmetry (P = ⌧x)

⌧xH t⌧x = �H, Tr(⌧xH⌧x) = 0. (1.40)

With these two constraints, one can derive a compact BCS form

H =

0
@ ⇠ ∆

�∆⇤ �⇠t

1
A . (1.41)

Compared with Eq. (1.38), now the kinetic term ⇠ and the pairing term ∆ become

N ⇥ N matrices and satisfy: ⇠ = ⇠†,∆ = �∆t. Symmetry classes in classification

Table 1.2 are interpreted by real Clifford algebra. It is then natural to change into a

real Majorana basis (µ = 1, . . . , N)

�µ = Ψµ +Ψ
†
µ, �µ+N = �i(Ψµ �Ψ

†
µ), (1.42)

where �†µ = �µ and the anti-commutation relation {�µ, �⌫} = 2�µ⌫ is satisfied.2 The

Hamiltonian takes the new form in terms of a real anti-symmetric matrix

H =
i

4
�tµA

µ⌫�⌫ , (1.43)

with A⇤ = A and At = �A. It is always possible to find an orthogonal matrix S and

block diagonalize the Hamiltonian:

⌘ = S�1�, Q = S�1AS =

0
BBBBBBBBB@

0 ✏1

�✏1 0

0 ✏2

�✏2 0
. . .

1
CCCCCCCCCA

, (1.44)

2Unfortunately, we used the same notation for the Dirac matrices (1.30). Yet it is not difficult
to distinguish them according to the context.
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and

H = (i/2)
NX

µ=1

✏µ⌘2µ�1⌘2µ, (1.45)

with ✏µ � 0. When pairings are present in topological systems, MZMs can occur in

several forms. For instance, two boundary Majorana modes can be decoupled from

a chain, and it gives rise to a Z
(1)
2 topological invariant [72] in the bulk. A single

gapless Majorana mode can also be formed at the edge of a gapped two-dimensional

material that carries a nonzero Chern number [14, 18].

Hence, it is necessary to clarify the types of topological states in class D. For

simplicity, we consider the case ddefect = d� 1 such that � = d.

• Class D in d = 1,2. One starts from a generic defect Hamiltonian in d = 1

with a Dirac structure: H(k, r) = kΓ1+mΓ0(r). Consistent with the BCS form

(1.41), we choose a basis such that

H(k, r) = k⌧ z ⌦ N +mΓ0(r). (1.46)

The particle-hole symmetry is respected if PH(k, r)P�1 = �H(�k, r), and one

identifies P = K. Accordingly, Γ0(r) should anti-commute with both Γ1 and P .

From the hermiticity Γ⇤
0 = Γt

0 and (⌧↵)t = �⌧ y⌧↵⌧ y, there are two components

in the mass term:

Γ0(r) = ⌧ y ⌦∆1(r) + ⌧x ⌦ i∆2(r). (1.47)

Here, ∆1,2 are the real symmetric and anti-symmetric parts of the N⇥N matrix

∆ = ∆1 +∆2 and ∆t = ∆1 �∆2. Moreover, one notices the normalization of

Clifford generators {Γµ,Γ⌫} = 2�µ⌫ . It indicates N = (∆1)
2 � (∆2)

2 = ∆ ·∆t.

Therefore, ∆ is orthogonal. The classifying space of 1D defect Hamiltonian in

class D (s = 2) becomes

R(d�s) mod 8 = R7 = O(N), (1.48)
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with disconnected components ⇡0(O(N)) = Z
(1)
2 . From Table 1.3, it is charac-

terized by a Chern-Simons topological invariant.

Now we go to the case d = 2. One more Clifford generator should be added

to the kinetic term: H(k, r) = kxΓ1 + kyΓ2 + mΓ0(r). Similarly, by carefully

choosing the basis one can reach a simplified form of the defect Hamiltonian

H(k, r) = kx⌧
x ⌦ N + ky⌧

z ⌦ N +mΓ0(r), (1.49)

with P = K. Again, to meet the anti-commutation relations with Γ1,2 and P ,

the Dirac mass generator is constrained to one component

Γ0(r) = ⌧ y ⌦∆1(r), (1.50)

with ∆1(r) a real symmetric matrix. By analogy to 2D Chern insulators (1.9)

in complex symmetry class A, we can find an orthogonal matrix S 2 O(N)

such that the mass term is diagonalized: M = S�1∆1S = diag(m1, . . . ,mN).

Topologically distinct masses are fully determined by sgn(mi). The classifying

space is then expanded by a set of orthogonal matrices {S(n,N � n)} that are

different from each other in the number of positive eigenvectors (n) and the

number of negative eigenvectors (N � n). It follows

R0 =
[

0nN

O(N)

O(n)⇥O(N � n)
. (1.51)

Thus, the topological state of class D in d = 2 belongs to the type: ⇡0(R0) = Z.

In the absence of chiral symmetry, from Table 1.3 it is characterized by a nonzero

Chern number (1.24).

At the end of this section, for completeness we present a brief demonstration of

the Bott periodicity in classification Table 1.2 of real symmetry classes

Rq+8 ' Rq, q = d� s. (1.52)
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Similarly, it can be proven by solving the extension problem of real Clifford algebra

[69, 71].

Proof of Eq. (1.52). A set of elements {eµ=1,2,...,m+n} embedded with real coef-

ficients generates real Clifford algebra Clm,n. And it has the structure

{eµ, e⌫} = 0, µ 6= ⌫;

(eµ)
2 = sgn(µ�m+ ✏), ✏ = 0�. (1.53)

Formally, we address the matrix representation of {eµ} and Clm,n is then described by

m real anti-symmetric and n real symmetric matrices. Finding the topologically non-

equivalent masses is simplified to the search for the extension procedure of associated

real Clifford algebra. The type Clm,n ! Clm,n+1 is denoted by Rm,n. One can

establish the equality Rm,n = Rm�n from the isomorphism: Clm+1,n+1 ' Clm,n⌦R(2)

for Clm,n shares the same representation with Clm,n ⌦ R(2). As an example, we can

see how the extension problem works for class D. In the case d = 2, it is useful to

introduce another isomorphism Cl0,m+2 = Clm,0 ⌦ R(2), that is illustrated by

eµ = e0µ ⌦ (i⌧ y) (µ = 1, 2, . . . ,m), em+1 = ⌦ ⌧ z, em+2 = ⌦ ⌧x, (1.54)

with (e0µ)
2 = �1. From the two isomorphisms, the extension algebra Cl0,2 ! Cl1,2

one identifies in the defect Hamiltonian (1.49) with a mass term (1.50), is equivalent

to Cl0,0 ! Cl0,1. We successfully recover the classifying space R0 in Eq. (C.2). For

the case d = 1, the Dirac form of the defect Hamiltonian in Eq. (1.46) and Eq. (1.47)

is assigned a classifying space R�1 : Cl0,1 ! Cl0,2. Now, the Morita equivalence in

the real Clifford algebra can be employed

Clm+8,n ' Clm,n ⌦ R(16). (1.55)

It leads to R�1 = R7 : Cl8,1 ! Cl8,2. And the Bott periodicity (1.52) is validated.

If the topological defect mΓ0(r) lives in arbitrary dimension (r 2 SD, D 6= 0), the

same argument used for complex symmetry classes (1.20) can be applied. One obtains

21



the homotopy group for the classification problem

⇡D(Rd�s) = ⇡0(R��s), � = d�D, (1.56)

from the mapping Rq�1 = Map(S1,Rq) [95].

Once topological defects support potential MZMs, we can characterize the states

by topological invariants and further study interaction effects. Related aspects will

be covered in following sections based on models in integrable systems.

1.2.2 p-wave superconducting chain

Let us begin with the p-wave superconducting chain first proposed by Kitaev [72].

It is the most simple scenario of MZMs. The lattice Hamiltonian allows pairings

between spinless fermions on neighbouring sites

H = �µ
NX

j=1

c†jcj +
N�1X

j=1

⇣
�tc†jcj+1 +∆c†jc

†
j+1 + h.c.

⌘
. (1.57)

Here, cj/c
†
j annihilates/creates a spinless fermion on site j. We set the hopping

amplitude t to be real and the chemical potential µ uniform. The pairing parameter

∆ is also taken as real for any phase factor ∆ = |∆|ei✓ can be absorbed by the

gauge transformation c†j ! e�i✓/2c†j. The particle number conservation or the U(1)

symmetry is broken once ∆ 6= 0. The topology of the superconducting chain can

be analysed with periodic boundary conditions (PBCs) as well as open boundary

conditions (OBCs).

For PBCs, in momentum space one builds the BdG form

H =
1

2

X

k

Ψ
†
kH(k)Ψk, Ψk =

0
@ ck

c†�k

1
A , (1.58)

in terms of Pauli matrices

H(k) = h~ (k) · �~ = (�2t cos k � µ) · �z � 2∆ sin k · �y. (1.59)
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The lattice spacing is set to a = 1. The pairing term (�2∆ sin k) changes its sign

under k ! �k, so the model behaves as a p-wave superconductor. The Bloch Hamil-

tonian is restrained by the particle-hole symmetry: P = �xK, thus it belongs to the

real symmetry class D. As is shown in the energy spectrum E±(k) = ±|h~ (k)| = ±h =

±
p

(2t cos k + µ)2 + (2∆ sin k)2, the gap closes at k⇤ = 0, ⇡ if the chemical potential

satisfies µ = �2t,+2t. The topological phase falls into the regime |µ| < |2t| and is

characterized by the CS invariant of K(s = 2; d = 1, D = 0) = Z
(1)
2 type (referring

to Fig. 1.1, Table 1.2 and Table 1.3). Before addressing formally the topological in-

variant, we can first draw an intuitive picture from the BCS Hamiltonian [76]. The

eigenfunctions can be constructed explicitly

|ũ±(k)i =

0
@↵k

�k

1
A =

0
@hx � ihy

±h� hz

1
A ·

1p
2h(h⌥ hz)

, (1.60)

and we obtain a diagonalized HamiltonianH =
P

k E+a
†
kak with ak = hu+(k)|Ψ(k)i =

↵⇤
kck + �⇤

kc
†
�k. The ground state forbids the occupation of the fermionic particle

ak|GSi = 0, hence it is proportional to
Q

0<k<⇡(1+'(k)c
†
�kc

†
k)|0i. The wave-function

'(k) = �⇤
k/↵

⇤
k = (h�hz)/(hx+ihy) reveals a Cooper pair formed at opposite momenta.

The topological regime |µ| < |2t| corresponds to a weakly paired phase. From the

perspective of band structures, when |∆| ⌧ t, the lower band has a dispersion E� =

�2t cos k � µ. For µ < |2t|, the BCS pairing term �2i∆ sin(k)c†�kc
†
k + h.c. can open

a gap at the two Fermi points which are described by a linear spectrum and help

the Cooper pairs to develop [14]: in real space, they become loosely bound with

|'(r)| ⇠ |r|�1. Whereas when |µ| > |2t|, the gapless points disappear and the bulk

gap can no longer be formed. Thus, |'(r)| decays exponentially over the distance,

suggesting the strong pairing nature of a BEC-like condensate.

For a chain with open boundaries, it is more convenient to use the Majorana

fermions representation (1.42)

�A,j = c†j + cj, �B,j = i(c†j � cj), (1.61)
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Figure 1.2: Pairing of the Kitaev p-wave superconducting chain in the limit t = ∆ 6= 0,
µ = 0. Two MZMs appear at the edges of the chain and the ground state becomes
doubly degenerate. From Ref. [76].

and recast the Hamiltonian into the form

H = � i

2

X

j

[µ�A,j�B,j + (t+∆)�B,j�A,j+1 � (t�∆)�A,j�B,j+1] . (1.62)

In the topological regime |µ| < |2t|, we look at the special case t = ∆, µ = 0 where

only the second term remains. As shown in Fig. 1.2, it gives rise to nearest-neighbor

pairings of Majorana fermions in the bulk and on the edges, two modes �A,1 and �B,N

are decoupled from the rest of the chain. From the symmetry argument in Eq. (1.32)

and Eq. (1.33), the Majorana edge mode is self-conjugate and thus pinned at zero

energy E = 0. Switching on t 6= ∆, µ 6= 0, MZMs persist since the topology is

protected against any continuous deformation of the Hamiltonian that does not close

the bulk gap.3 Given an ensemble of chains, it is then promising to build robust

qubits out of these MZMs that are trapped at far ends.

To characterize topologically distinct phases more rigorously, we now resort to the

CS invariant [69]

CS2n�1[A] =
1

(n� 1)!

✓
i

2⇡

◆n Z

BZd⇥MD

Z 1

0

dtTr(AFn�1
t ) 2 1

2
Z, (1.63)

where 2n� 1 = d+D and Ft = tdA+ t2A2. For class D, the Z
(1)
2 topology is trivial

unless CS2n�1[A] takes the value of a half integer. It is rather important to point out

that CS2n�1 depends on the specific gauge chosen for the Berry connection (1.22). In

other words, considering the form of the eigenfunction |ũ�(k)i in Eq. (1.60) is not

3On the other hand, in realistic setups, as long as the length of the chain L = Na becomes large
enough compared to the superconducting coherence length (which remains finite in the topological
phase), the overlap of the wave-functions of two MZMs can be safely ignored.
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unique, the value of CS2n�1 is not fixed. A more well-defined quantity is given by the

U(1) gauge invariant Wilson loop

W2n�1 = exp(2⇡iCS2n�1[A]). (1.64)

In 1D, one can simplify the integral (1.63) by incorporating particle-hole symmetry

and analysing the matrix structure in real Majorana basis. First, it is easy to find

the following symmetry between Berry connections 4

Aµ⌫
� (k) = Aµ⌫

+ (�k). (1.65)

Accordingly,

CS1 =

✓
i

2⇡

◆Z ⇡

0

dkTr[A�(k) +A+(k)] =

✓
i

2⇡

◆Z ⇡

0

dkTrU †@kU. (1.66)

In the second equality, eigenfunctions are recast into a unitary matrix form: Uµ
↵ (k) =

uµ
↵(k) where ↵ = ± denotes the band index and µ = 1, 2 encodes the dimension of the

BdG Hamiltonian. From the Jacobi’s formula, TrU †@kU = @k ln(detU). One obtains

the gauge invariant Wilson loop (1.64) or equivalently the Majorana number 5

M = W1 =
detU(0)

detU(⇡)
= sgn(Pf[A(0)] Pf[A(⇡)]). (1.67)

Here, A(k) denotes the real anti-symmetric matrix representation of the Hamiltonian

in the Majorana basis (1.62). Owing to the
p
2 degeneracy of a single Majorana

mode, we adopt the Fourier transform: �j =
p
2N�1

P
k e

ikxj�k with �
†
k = ��k and

{�k, �k0} = �k,�k0 . It leads to

H =
i

2

X

k

Γ
t(k)A(k)Γ(�k), Γ(�k) =

0
@�A,�k

�B,�k

1
A (1.68)

4It can be deduced by noticing |u�(k)i and |u+(�k)i are related to each other through the
particle-hole transformation: |u+(�k)i = P|u�(k)i = �x|u⇤

�(�k)i, due to H(�k)P|u�(k)i =
�PH(k)|u�(k)i = E+(�k)P|u�(k)i.

5The final expression is related to a change of basis from Eqs. (1.42) to (1.44): Ψ
Λ�! �

S�1

��! ⌘.
Hence, M can be calculated with the orthogonal matrix S: M = [detS(0)] · [detS(⇡)]�1. Since
| detS(k)| = 1, M = ±1. Moreover, in Majorana representation (1.44) the Pfaffian of the off-

diagonal matrix Q = STAS takes a positive sign: Pf[Q] =
QN

µ=1 ✏µ = ✏1 > 0. It follows that

sgn(Pf[STAS]) = sgn(Pf[A] det[S]) = +1, thus validating Eq. (1.67).
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where

A(k) = 2i∆ sin k · �x � i(�2t cos k + µ) · �y. (1.69)

The Majorana number M = sgn(µ2 � 4t2) becomes (�1) in the topological phase

(|µ| < |2t|) and (+1) in the strong paired phase (|µ| > |2t|).

An alternative interpretation of the topological invariant can be made when one

imposes the time-reversal symmetry on the spinless fermion operators

T cjT
�1 = cj, T c†jT

�1 = c†j. (1.70)

In momentum space, one identifies T = K, C = �x such that the Hamiltonian (1.59)

respects all three symmetries (1.3). Since T 2 = P2 = 1, the p-wave superconducting

chain now belongs to class BDI of type Z characterized by a winding number ⌫ (see

Fig. 1.1, Table 1.2 and Table 1.3). As along as the system holds a weak supercon-

ducting order, that is to say, the energy scale of pairing lies much below all the others

(|∆| ⌧ |t|, |µ|), the Majorana number can be interpreted by the winding number [4]

M = (�1)⌫ . (1.71)

Similar to the SSH chain, one can calculate ⌫ from the definition (1.28) or equivalently

by counting the number of gapless Fermi points over the right half of the first Brillouin

zone ]0, ⇡] when ∆ = 0. 6 For the topological regime |µ| < |2t|, there is one gapless

point in the band structure with an energy dispersion (�2t cos k � µ). It leads to

⌫ = 1 and M = �1. In the strong paired phase |µ| > |2t|, ⌫ = 0,M = 1. The result

is consistent with our previous analysis of the CS invariant.

Next, we address briefly the interaction effects on MZMs [116, 117]. It gives an

ideal example how the ten-fold classification of non-interacting fermions collapses.

Consider an ensemble of time-reversal (TR) invariant Kitaev superconducting chains

(class BDI) that are placed in parallel with left and right boundaries. Depending

6The other half is retrieved by the particle-hole transformation (1.3) with P = �xK: hx,y(k) =
�hx,y(�k), hz(k) = hz(�k).
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Table 1.4: The Z8 classification of the BDI Majorana chains under the effects of
interactions (index ✏ = (�1)⌫). The last column shows the one-to-one correspondence
with respect to the Altland-Zirnbauer classes or the ten-fold way. More details can
be found in Ref. [116].

⌫ mod 8 0 1 2 3 4 5 6 7

✏ + � + � + � + �
a + + � � + + � �
T 2 + + + � � � � +

Cartan label AI BDI D DIII AII CII C CI

on the presence or absence of bulk gaps, there are Mf Majorana zero-energy modes

dangling at each end. It corresponds to a total winding number ⌫ = Mf . Inside

the Hilbert space of one chain, Majorana fermions come in pairs (�j,A, �j,B) by the

construction from cj and c†j (1.61). Apart from the time-reversal symmetry (1.70),

an extra symmetry emerges - the fermion number parity Gf =
QN

j=1(1 � 2nj) =
QN

j=1(�i�j,A�j,B), under which the spinless fermionic operators transform according

to

GfcjG
�1
f = �cj, Gfc

†
jG

�1
f = �c†j. (1.72)

Thus, [T ,Gf ] = 0 and T 2 = G2
f = 1. However, if we reconstruct along one boundary

the Hilbert space of complex fermions from an even number of MZMs which are no

longer paired to one another, the relation between the symmetry generators T and

Gf should be modified:

T Gf = aGfT , (1.73)

with a = ±1 and T 2 = ±1, G2
f = 1. Meanwhile, an odd number of MZMs involved lifts

the degeneracy of the ground state from 1 to 2. It results in eight different topological

invariants. For one-dimensional interacting systems, as shown in Table 1.4, the class

BDI collapses from Z to Z8.
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1.2.3 Spinless p+ ip superconductor

MZMs can also be realized in a spinless p+ ip superconductor in two dimensions, in

accordance with the bulk-edge correspondence [118, 119]. Depending on the geometry

of the defects, Table 1.5 lists the types of fermionic boundary modes related to the

set of symmetry classes that we encounter throughout the thesis. Index theorem

[120–124] allows one to count the number of edge modes from topological invariants

of the bulk. For instance, in the presence of chiral symmetry, the topological index

of a point defect in class Z is identical to the winding number

indZ = ⌫2d�1, (1.74)

with d the dimension of the bulk. In the BDI Majorana chain, it has been shown

that the Z-topological index is non-trivial in the topological phase (|µ| < |2t|) with

⌫ = 1. Besides, the emergent zero-energy Majorana bound states with fixed chirality

are robust against any chiral symmetric perturbations.

When the particle-hole symmetry is the only symmetry present (for instance, in

a p + ip superconductor), the point defect is then embedded with a Z
(1)
2 -topological

index. It determines the parity of MZMs around the defect and is related to the CS

invariant [85]

ind
(1)
Z2

= 2CS2d�1 mod 2. (1.75)

A non-trivial half-integer CS invariant thus gives rise to an odd number of MZMs.

They cannot be grouped into pairs all together and are gapped out with opposite

energies (±✏) under particle-hole symmetric perturbations.

To see the emergence of these protected MZMs, in the following we construct

explicitly a defect Hamiltonian for a p+ ip superconductor on a square lattice

H(k, r) = [�2t(cos kx + cos ky)� (µ(r)� 4t)]�z � 2∆(sin kx�
y � sin ky�

x). (1.76)

We adopt the same Nambu basis for spinless fermions as defined in Eq. (1.58) with

2D momentum k = (kx, ky). Along x̂ and ŷ directions, the strengths of the hopping
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Table 1.5: Topological defects in low dimensions with different symmetry classes.
The topological dimension of defects is denoted by ddefect = 0 for a point defect and
ddefect = 1 for a line defect. Adapted from Ref. [69].

ddefect Symmetry Topological classes Edge modes Sec.

0 AIII Z chiral Dirac at ✏ = 0 2.2.2

0 BDI Z chiral Majorana at ✏ = 0 1.2.2

0 D Z
(1)
2 Majorana at ✏ = 0 1.2.3

1 D Z gapless chiral Majorana 1.3.3

t and pairing ∆ terms share the same form as the p-wave superconducting chain

(1.57) except that on ŷ direction the pairing channel becomes imaginary (�i∆). In

our convention, when we expand the Hamiltonian (1.76) around k⇤ = (0, 0) with an

effective mass m = 1/(2t),

H(k, r) = h~ (k, r) · �~ =


k2

2m
� µ(r)

�
�z � 2∆(kx�

y � ky�
x), (1.77)

the off-diagonal term that produces the pair c�kck reads [�2i∆(kx + iky)], referring

to a px + ipy superconductor. The defect Hamiltonian (1.77) respects particle-hole

symmetry with P = �xK and belongs to class D.

For the moment, if we consider a uniform chemical potential µ(r) = µ in the

bulk, the topology can be clarified in a similar way as the 1D chain. Built from the

eigenfunctions (1.60), the ground state has the structure
Q

kx�0,ky�0(1+'(k)c
†
�kc

†
k)|0i

with a Cooper-pair wave-function '(k) = (h � hz)/(hx + ihy). When µ > 0, | (r)|

exhibits a power-law decay r�1 characteristic of a weak pairing phase, whereas when

µ < 0, | (r)| decays exponentially manifesting strongly bound Cooper pairs over the

space. The non-trivial topology falls into the former weakly paired regime. It is

convenient to evaluate the Chern number in terms of the unit vector n~ (k) = h~ (k)/h,

which represents a mapping or compactification from T 2 = BZ2 ⇥ M0 to S2. By

identifying Q(k) = n~ (k) ·�~ , the Chern number expression (1.24) can be rewritten into

Ch1 =
1

4⇡

Z
dk2

⇥
n~ · (@kxn~ ⇥ @kyn~ )

⇤
. (1.78)
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It is easy to check Ch1 = �1 for µ > 0 and Ch1 = 0 for µ < 0. 7

Next, to physically build the edge modes [14, 76, 125], we resort to the continuum

limit and confine our system onto a disk as depicted in Fig. 1.3a. The chemical

potential has a distribution

µ(r) :

(
> 0, R1 < r < R2;

< 0, otherwise.
(1.79)

The shaded green annulus region corresponds to the bulk that has a non-trivial Chern

number Ch1 = �1. When the radii of the inner circle R1 and the outer circle R2

become sufficiently large, the system can support two gapless chiral Majorana edge

modes with opposite chirality. For a finite-size system, however, these edge modes

always remain gapped. Instead of line defects, it is then reasonable to consider point

defects inside the system that can be created by quantum fluxes. In Fig. 1.3a, we

insert an l · Φ flux to the internal trivial region (r < R1) with l 2 Z and Φ = hc/2e

(h - Planck’s constant) one quantum of magnetic flux. It induces a vortex with a

superconducting pairing phase � = 2⇡l. Accordingly, in polar coordinates (r, ✓) the

pairing amplitude is changed from ∆ to ∆e�il✓.

By a change of variables, we can write down the Hamiltonian for the edge modes

Hedge =

Z
dr2

�∆e�i(l�1)✓ 

✓
@r +

i

r
@✓

◆
 + h.c.

�
� µ(r) † . (1.80)

If one is interested in low-energy excitations around k⇤ = (0, 0), the kinetic energy

k2/(2m) can be safely neglected. Before diagonalizing the edge Hamiltonian, it is

convenient to absorb the phase factor ✓ associated with the angular momentum by

a gauge transform:  ! e = e�i(l�1)✓/2 . Notably, for the new fermion field e the

boundary condition has been modified

e (✓ + 2⇡) = (�1)(l�1) e (✓). (1.81)

7One quick way is to look at the wrapping of n~ around the unit sphere S2 when |k| goes from
0 to 1. When |k| is fixed, nx and ny covers a circle on the sphere at a height nz. For µ > 0, by
increasing |k| the circle moves from the south pole to the north pole and sweeps the sphere exactly
once. In contrast, for µ < 0, the circle follows the trajectory: the north pole ! the equator ! the
north pole. It results in net zero contribution to the Chern number.
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(a) (b)

Figure 1.3: (a) Geometry of a px + ipy superconductor on a disk. The green annulus
with µ > 0 denotes the topological region (R1 < r < R2). When the value of the
magnetic flux threading the center region (r < R1) picks an odd multiple of flux
quantum Φ = hc/(2e), there arise two MZMs �1 and �2 trapped at the inner and
outer edges of the disk. (b) Energy spectrum of edge modes with integer angular
momentum n for the geometry of (a). From Ref. [76].

When l is odd, we keep the periodic boundary condition; otherwise, we tackle the anti-

periodic boundary condition. Bearing it in mind, we then find two sets of solutions for

Hedge = (1/2)
R
dreΨ†(r)H(r)eΨ(r). The new basis takes the form eΨ(r) = ( e r, e †

r)
t =

P
n
eΨn(r) and

eΨn(r) =

8
>>>>>><
>>>>>>:

ein✓e
R r
R1

dr0µ(r0)/(2∆)

 
1

1

!
, r ! R1;

ein✓e
�

R r
R2

dr0µ(r0)/(2∆)

 
i

�i

!
, r ! R2.

(1.82)

The energies of these edge wave-functions read

E|r!R1
=

2n∆

R1

, E|r!R2
= �2n∆

R2

. (1.83)

Without loss of generality, we assume ∆  0. The angular momentum n is subject

to the boundary requirement (1.81). When l is odd, under periodic boundary con-

dition, n takes integer values and the energy spectrum is plotted in Fig. 1.3b with

red (blue) dots denoting the inner (outer) edge. For a physical state, E � 0. We
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see immediately two degenerate zero-energy modes (purple dots) appearing at zero

angular momentum. They correspond to two MZMs �1 = eΨ0(R1) and �2 = eΨ0(R2)

localized at the edges (shown in Fig. 1.3a). Conversely, when l becomes even, n has to

take half-integer values to fulfil the anti-periodic boundary condition. The degenerate

modes then get separated from n = 0 to n = ±1/2 and acquire finite energy in the

spectrum. On the edges, only two gapped chiral Majorana modes can be observed.

The second scenario is consistent with the flux-free case l = 0.

The existence of MZMs in a p+ ip superconductor reveals a Z2 symmetry pattern

associated with the vorticity l. We proceed to obtain Z2-topological index from the

CS3 invariant (1.75). It complements our previous analysis on more general grounds

[18, 85, 125]. Consider an arbitrary Hamiltonian HC(k) of class D in d = 2 endowed

with non-zero Chern number C = Ch1. When exposed to a vortex of quantum fluxes,

the defect Hamiltonian can be described by

eH(k,�) =

0
@e�i�Mz/2HC(k)e

i�Mz/2 0

0 H�C(k)

1
A . (1.84)

Here, � = l ·tan�1(y/x) denotes the superconducting pairing phase that winds around

the vortex by l · 2⇡. Matrix Mz embodies the rotation around ẑ axis perpendicular

to the lattice. To make eH(k,�) invariant under the transform � ! � + 2⇡, a slight

modification of the matrix form is allowed

Mz =

0
@2 0

0 0

1
A = �z + 1. (1.85)

Meanwhile, in Eq. (1.84), a copy of the original Hamiltonian with opposite Chern

number is added. On the base manifold T 2 ⇥ S1, H�C(k) helps to cancel the weak

topologies from the non-zero Chern number. The latter preclude the possibility of a

global continuous basis being built for the CS invariant. By definition (1.63),

2CS3[ eH(k,�)] =

✓
i

2⇡

◆2 Z

BZ2⇥S1

Tr


eAd eA+

2

3
eA3

�
. (1.86)
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The Berry connection eA can be evaluated in the continuous gauge: |eu(k,�)i =

ei�Mz/2|eu(k)i. And |eu(k)i denotes a set of occupied states of the vortex-free Hamil-

tonian. Taking into account that eH(k,� = 0) hosts total zero Chern number, the

integral (1.86) can be simplified to 8

2CS3[ eH(k, r)] =

✓
i

2⇡

◆2 Z

BZ2⇥S1

(�i) Tr [F [HC(k)]] ^ d� = Ch1 ⇥ l. (1.87)

We get a topological index: ind
(1)
Z2

= Ch1 ⇥ l mod 2. For a px + ipy superconductor,

Ch1 = �1. The parity of the localized MZMs is then equal to the parity of the

vorticity l of quantum fluxes.

1.3 Kitaev spin liquids

In this section, we address a new type of topological states accompanied by an emer-

gent Ising gauge field - Kitaev spin liquids [18]. At low temperatures, the gauge field

is deconfined and takes the value 0 or 1 belonging to the group Z2.
9 The ground

state wave functions are captured by a matter Majorana field associated to an energy

spectrum which can be either gapped or gapless. Corresponding excitations exhibit

the mutual statistics of Abelian and non-Abelian anyons. Another important feature

of the model is revealed in the presence of a uniform magnetic field. The intermedi-

ate gapless phase becomes gapped and carries a non-zero spectral Chern number. It

gives rise to a gapless chiral Majorana edge mode with central charge c = 1/2 and is

responsible for a half-integer thermal Hall effect.

Historically, the concept of quantum spin liquids (QSLs) was first introduced by

Anderson in 1973 as a possible ground state for the spin-1/2 Heisenberg antiferro-

8It follows that eA = heu(k)|d|eu(k)i = eA0+ iQd� with eA0 the Berry connection of eH(k,� = 0) and
2Q = heu(k)|Mz|eu(k)i. Inside the integral, due to exactly opposite contributions from H±C(k) parts

that do not involve d� all vanish. It leads to Tr[· · · ] = (�i) Tr[2Q eF0 � d(Q eA0)] ^ d�. Here, the

Berry curvature reads eF0 = d eA0+( eA0)2. The total derivative in the trace can be further discarded.
Upon integration, by particle-hole symmetry Mz in Eq. (1.85) is equivalent to an identity matrix

in the subspace of HC(k). Hence, 2Q matrix projects eF0 onto F [HC(k)] the Berry curvature of the
original copy.

9We choose a different character to distinguish it from the type Z2 on the classification Table 1.2.
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magnet on a triangular lattice [62]. Similar to classical spin liquids in frustrated

magnets [16, 17], the system preserves spin rotational symmetry. But it also shows

long-range entanglement through resonating valence bonds (RVBs). Later, Anderson

brought the idea of RVB to life as a hidden mechanism for undoped high-Tc cuprate

superconductors [38]. If Anderson’s postulate is true, doping a QSL material with

electrically charged holes would induce superconductivity. Since then, intensive ef-

forts in the pursuit of QSLs in Mott insulators have been realized. The spins are

confined in periodic crystals and become quantum via short-ranged interactions. Al-

though Anderson’s initial hypothesis of a QSL ground state on the triangular lattice

remains hard to prove [126], in 2006 Kitaev found an exact solution to a Z2 QSL

on the honeycomb lattice. Symmetric Heisenberg exchanges are reduced to three

nearest-neighbour anisotropic Ising interactions. Most encouragingly, the model can

potentially describe a variety of quantum materials including iridates and ↵-RuCl3

[127–129]. In Section 1.4.2, we will give a short review of current theoretical and

experimental progresses on the material ↵-RuCl3.

1.3.1 Exact spectrum and phase diagram

We begin with the phase diagram of the spin-1/2 Kitaev honeycomb model. As

depicted in Fig. 1.4, the lattice Hamiltonian takes the form

H = �
X

hijiµ

Jµ�
µ
i �

µ
j , µ = x, y, z. (1.88)

Here, we assume three ferromagnetic Ising couplings Jµ > 0. The subscript hijiµ
represents two nearest-neighbour sites, forming a bond each assigned with one of the

three Ising interactions. Without loss of generality, for each bond hijiµ, we fix the

convention i 2 {1} that belongs to the odd sublattice and j 2 {2} the even sublattice.

The periodic boundary conditions are imposed on both x̂ and ŷ directions. The system

has N = NxNy plaquettes and 3N bonds.

The ground state can be solved in a redundant Majorana fermion representation
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Figure 1.4: Geometry of Kitaev honeycomb lattice. Each spin operator �µ
i is mapped

to three gauge (cµi ) and one matter (ci) Majorana fermions. We impose periodic
boundary conditions on x̂ and ŷ directions with a total number of plaquettes N =
NxNy. Dashed red rectangles (blue circles) on the boundaries denote equivalent sites
that belong to the odd (even) sublattice. Adapted from Ref. [16] and Ref. [130].

[18, 55]. Let us denote the two-dimensional physical spin space as L. A fermionic

parton construction

�
µ
j = icjc

µ
j (1.89)

would map each spin onto four Majorana fermions with the latter living in a four-

dimensional Fock space F. Implementing anti-commutation relations for Majorana

fermions {ci, cj} = 2�ij and {cµi , c
⌫
j} = 2�ij�µ⌫ , the SU(2) Lie algebra of spin operators

[�µ
i , �

⌫
j ] = 2i✏µ⌫⇢�⇢�ij is respected if and only if

Dj = cjc
x
j c

y
j c

z
j ⌘ 1. (1.90)

Apparently, (Dj)
2 = 1 and [Dj,H] = 0. The Dj operator can only take the value of

±1. It then defines a projector from the enlarged Fock space F to the physical space

L

P =
Y

j

1 +Dj

2
. (1.91)

By the mapping (1.89), the Hamiltonian turns into

H = i
X

hijiµ

Jµcicj · ûhijiµ , ûhijiµ = icµi c
µ
j . (1.92)
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To clarify different degrees of freedom, it is convenient to introduce two types of

complex bond fermions: one chosen on each z-bond and the other covering all three

bonds

 hijiz =
1

2
(ci + icj), �hijiµ =

1

2
(cµi � icµj ). (1.93)

Similar to the case of the p-wave superconducting chain (1.61), both of them are

constructed from a pair of Majorana fermions. The difference lies in the fact that

at low temperatures, the energy spectrum of the model is purely determined by the

matter fermion  hijiz . Gauge fermions �hijiµ remain in the ground state as a reflection

of the static Z2 gauge field.

Now, one can proceed to fix the gauge structure by identifying all non-dynamical

observables [130]. First, it is easy to notice (ûhijiµ)
2 = 1 and [ûhijiµ ,H] = 0. Operators

ûhijiµ = 1 � 2�†
hijiµ�hijiµ thus take the value +1 or �1 corresponding to the vacuum

or excited state of gauge fermions. Then based on them, a set of loop operators

{WL|L = p, x, y} that commute with the Hamiltonian

WL =
Y

hijiµ2L
�
µ
i �

µ
j = ±1 (1.94)

can be constructed

Wp = �x
1�

y
2�

z
3�

x
4�

y
5�

z
6 =

Y

hijiµ2p
ûhijiµ ,

Wx = ��z
1�

z
2 · · · �

z
2Nx

, Wy = ��y
2�

y
3�

x
4�

x
5 · · · �

y
2Ny�2�

y
2Ny�1�

x
2Ny

�x
1 . (1.95)

Here, subscripts L = p, x, y denote the loops that encircle hexagon plaquettes and

two edges along x̂ and ŷ directions (see Fig. 1.4). On one hand, taking into account

the global constraint
Q

p Wp = 1, in total {WL} contributes to (N +1) flux degrees of

freedom. The rest (2N�1) flux degrees of freedom that belong to gauge fermions � are

compensated by gauge transformations Dj. Since cµi = �hijiµ + �
†
hijiµ for i 2 {1} and

cµj = i(�hijiµ ��†
hijiµ) for j 2 {2}, each Dj operator changes the occupation number of

three associated gauge fermions or equivalently the sign of uhijiµ ’s. Consequently, the
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flux states of three neighbouring plaquettes are flipped by Dj from Wp to �Wp. It

should be noted that the global gauge transformationD =
Q

j Dj flips every plaquette

twice and leaves the flux pattern of the lattice unaffected. Therefore, one extra flux

degree of freedom should be subtracted from 2N Dj operators. On the other hand, if

one goes back to the physical space L hosting 2N spins, after the projection (1.91) all

Dj’s are frozen to +1. It means apart from (N + 1) independent loop operators WL,

the remaining (N�1) spin degrees of freedom are restored exclusively by bond matter

fermions  . One missing constraint on  can be found in the following argument:10 for

any physical state in L, the global gauge transformation satisfiesD = (�1)Nψ+Nχ ⌘ 1.

In other words, the total number of matter and gauge fermions (N + N�) should

always be even.

The advantage of the Majorana representation (1.89) is revealed in the ground

state configuration of the flux sector that is frozen to the 0-flux:

Wp =
Y

hijiµ2p
ûhijiµ = 1, 8p. (1.96)

And we call an excited plaquette (Wp = �1) the ⇡-flux. The conservation of the loop

operators can be proven by Lieb’s theorem using translational invariance [131]. If one

views the variables uhijiµ = ±1 as a Z2 gauge field, it is natural to interpret Wp as the

magnetic flux on a plaquette p. Lieb’s theorem then states that for a half-filled band

of electrons that hop on a bipartite lattice in dimension d with periodicity on at least

(d � 1) directions, the magnetic flux pattern for the minimal ground state energy is

fixed. The optimal configuration should be 0-flux per planar cell containing 2 (mod 4)

sites (e.g. the hexagonal lattice) and ⇡-flux per planar cell containing 0 (mod 4) sites

(e.g. the square and cubic lattices). For the Kitaev honeycomb model, the vortex-free

configuration (1.96) can also be verified by performing a perturbation theory in the

deep gapped phases (1.104) or by numerical computation of the energy spectrum on

10By definition (1.93), (�1)Nψ =
Q

i2{1}(1 � 2 †
hijiz

 hijiz ) =
Q

hijiz
(�icicj) and (�1)Nχ =Q

hijiµ
(icµi c

µ
j ).
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a finite-size lattice 11 for the gapless phase [18]. Later in Section 4.1, we will apply

Lieb’s theorem to solve the phase diagram of a generalized Kitaev square ladder where

a ⇡-flux phase is stablized in the ground state.

After identifying conserved loop variables Wp, we are now left with combined (N+

1) degrees of freedom in the matter sector  and the remaining flux sectors Wx,y. A

convenient way to fulfill 0-flux per plaquette is to set

ûhijiµ = uhijiµ = 1, 8i 2 {1}, µ = x, y, z. (1.97)

This artificial gauge choice respects translational symmetry and allows us to perform

Fourier transform of the quadratic Hamiltonian (1.92) in terms of matter Majorana

fermions c. One arrives at

H =
1

2

X

k

⇣
c1,�k, c2,�k

⌘
0
@ 0 if(k~)

�if ⇤(k~) 0

1
A
0
@c1,k

c2,k

1
A , (1.98)

with the function f(k~) = 2(Jxe
�ik~ ·n~1 + Jye

�ik~ ·n~2 + Jz). Equivalently, through the

mapping (1.93) one can go to the representation of bond matter fermions  hijiz .

From now on, we neglect the subscript hijiz in the matter sector. In the complex

bond fermion basis,

H =
1

2

X

k

Ψ
†
kH(k)Ψk, Ψk =

0
@  k

 
†
�k

1
A , (1.99)

the BdG Hamiltonian takes the form

H(k) = h~ (k) · ⌧~ = Re f(k~) · ⌧ z + Im f(k~) · ⌧ y. (1.100)

As is shown in Fig. 1.4, two unit vectors are chosen in coordinates of the xy-plane:

n~ 1 = (1/2,
p
3/2), n~ 2 = (�1/2,

p
3/2). In the absence of a magnetic field, the Hamil-

tonian respects time reversal and particle-hole symmetries: T = K, P = ⌧xK. From

11It is found in Ref.[18] that on a torus with Jx = Jy = Jz = 1/3, the vortex-free pattern produces
a ground state energy E0 = �1.5746 per unit cell. Adding an isolated vortex increases the energy
by an amount Evortex = 0.1536.
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(a) (b)

Figure 1.5: (a) Phase diagram of the Kitaev honeycomb model [55] with ferromagnetic

Ising couplings J~ = (Jx, Jy, Jz). Unless pointed out explicitly, throughout the text
we assume

P
µ Jµ = 1. (b) Bipartition of the honeycomb lattice into subregions A

and B [16]. An area law scaling of entanglement entropy in subsystem A persists
in all phases, mainly influenced by the domain wall contribution. The topological
entanglement entropy, a universal negative correction, comes from entangled gauge
flux pairs across the domain wall.

the energy spectrum E±(k) = ±|f(k~)|, one finds a gapless spin liquid B phase in the

following parameter regime

|Jµ|  |J⌫ |+ |J⇢|, (1.101)

where (µ, ⌫, ⇢) involve all permutations of (x, y, z). Otherwise, the phases become

gapped with a tendency to form dimers in alignment with the largest Ising coupling.

On the phase diagram drawn in Fig. 1.5a, they are denoted as Ax, Ay, Az. In par-

ticular, for these gapped spin liquid phases, there are four degenerate ground states

living on the base manifold T 2 = BZ2 ⇥ M0. It agrees with two types of topologi-

cally distinct loops on a torus. In principle, one can also diagonalize the Hamiltonian

directly in real space. In that case, the fourfold degeneracy is manifested in the flux

sector Wx,y = ±1.

We go on to elucidate the spin liquid nature of the ground state in all phases.

Formally, the wave function of QSLs can not be disentangled to a product state

under a finite set of local unitary transformations. To put it another way, there is
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long-range entanglement between two quantum spins [17]. One explicit approach to

quantify this property is to study the entanglement entropy. In Fig. 1.5b, a generic

quantum system is decomposed into two parts A[B. The entanglement in subsystem

A can be measured by the von Neumann entropy [132]

SA = �Tr⇢A ln ⇢A, (1.102)

where ⇢A = TrB⇢ represents the reduced density matrix of subregion A. For the

Kitaev honeycomb model, it has been found that the entanglement entropy consists

of two pieces arising from the gauge field (G) and the matter fermion sector (F ) [133]:

SA = SG + SF . Different contributions read

SG = (L� 1) ln 2, SF = ↵SL+O(1). (1.103)

Now we take the thermodynamic limit L ! 1, in the matter part O(1) ! 0 and only

the area law growth survives. For the Z2 gauge field, however, it further produces

a universal negative topological correction Stop = � ln 2. It is nothing but a direct

consequence of the long-range entanglement [16]. If the ground state can be reduced

to a disentangled product state, the area law contribution would completely vanish.

The entanglement entropy then becomes negative due to Stop. It is in contradiction

to the definition of entanglement entropy (1.102): SA � 0 with ⇢A 2 ]0, 1].

1.3.2 Abelian anyons in the gapped phases

Next, we can explore the excitations above the ground state configuration. The

emergent quasi-particles behave as Abelian and non-Abelian anyons in the gapped

and gapless phases [18]. Anyons are particles defined in (2+1)-dimensional quantum

systems with non-trivial mutual statistics [15, 134]. Suppose we move one particle

counterclockwise around the other, the total wave function would pick up a phase from

the winding of the trajectory:  (r1, r2) ! e2i✓ (r1, r2). In one or higher dimensions

[135, 136], the phase becomes topologically trivial: e2i✓ = 1. In two dimensions,
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Figure 1.6: (a) Dimers on the strong z-links form an effective spin lattice L0 (dashed
lines). After spin rotations (1.106) that break the translational symmetry, the effective
Hamiltonian is mapped to a two-dimensional toric code. In the original honeycomb
lattice L, excited vortices behave as e- and m-type of anyons and are assigned to the
hexagon plaquettes in even and odd rows. Adapted from Ref. [18]. (b) Illustration
of statistics of Abelian anyons in the toric code: self-exchange of two fermions ✏ and
double exchange of two bosons e and m. Both processes bring a ⇡-phase shift in
the wave function. (c) In three dimensions, the excitation of magnetic particles m
becomes a closed loop. Adapted from Ref. [16].

however, it can take an arbitrary value. When ✓ = 0 or ⇡, the particles carry the

statistics of bosons or fermions; otherwise, one obtains anyons with exchange phase 2✓

[134]. Distinct topological classes of the trajectories among N particles are described

by braid group BN . The multiplication of group elements can be commutative or not,

referring to the Abelian or non-Abelian nature.

Let us first illustrate the Abelian anyonic excitations in gapped phases. For simplic-

ity, we look at the deep Az phase with ferromagnetic Ising couplings Jz � (Jx, Jy) � 0.

At Jx = Jy = 0, the ground state becomes decoupled dimers covering all z-bonds.

It is then convenient to map the dimer configuration onto an effective spin space:

Υ|mmihijiz = |mihijiz with m =", #. Depicted in Fig. 1.6a, the effective spins reside

on the bonds of a dual rectangular lattice L0 expanded by unit vectors n~ 0
1 = n~ 1 � n~ 2

and n~ 0
2 = n~ 1 + n~ 2. When (Jx, Jy) > 0, the dimers start to resonate with each other.

These weak Ising couplings can be treated as small perturbations. In the physical

spin space, it leads to an effective Hamiltonian [18] that consists of loop operators
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(1.95):

H
(4)
eff = �(JxJy)

2

16J3
z

X

p

Wp. (1.104)

Indeed, to minimize the energy a vortex-free phase is favored: Wp = 1, 8p. It is

consistent with Lieb’s theorem. Interestingly, after the projection to the effective

spins

W 0
p = ΥWpΥ

�1 = �
y
left(p)�

y
right(p)�

z
up(p)�

z
down(p), (1.105)

one recovers the two-dimensional toric code [137]

H0
eff = �Keff

X

p2L
UW 0

pU
�1 = �Keff

"
X

s2L0

As +
X

p2L0

Bp

#
, (1.106)

with Keff = (JxJy)
2/(16J3

z ) > 0. Here, U stands for a set of successive spin rotations12

that helps realize the effective operators in the toric code:

As =
Y

i2s
�x
i , Bp =

Y

i2p
�z
i . (1.107)

In the dual lattice L0 shown in Fig. 1.6a, As acts on four effective spins surrounding the

vertex s and Bp selects its spin components on the bonds of the rectangular plaquette

p. The ground state of the effective Hamiltonian (1.106) favors As = Bp = +1.

Excitations that flip the signs of As’s and Bp’s are called electric charges (e) and

magnetic vortices (m) respectively. They are bosons and live on the even and odd

rows of the hexagonal plaquettes that belong to the original lattice L (see Fig. 1.6a).

On account of the global flux constraint
Q

p2odd Wp·
Q

p02evenWp0 = 1, the total number

of the excitations (Ne + Nm) should be even. Meanwhile, another global constraint

D = (�1)Nψ+Nχ = 1 translates into
Q

p2odd/evenWp =
Q

hijiz �
z
i �

z
j .

13 These global

12It is easy to check a natural choice of U in our setting would be U =
Q

j2? R1(j) ·Q
j2k R2(j)R3(j). Along the vertical direction (?) of the plaquette p 2 L0 (or the up and down

sides), for each spin we perform a rotation R1(j) = eiπσ
z
j /4. Switching to the remaining horizontal

direction (k, or the left and right sides), two rotations R2(j) = e�iπσx
j /4 and R3(j) = e�iπσy

j
/4 are

combined onto each spin. In this way, U explicitly breaks the translational symmetry.
13One notices

Q
p2odd Wp =

Q
p2even Wp = (�1)N

x
χ+Ny

χ and
Q

hijiz
�z
i �

z
j =

Q
hijiz

(iczi c
z
j )(�icicj) =

(�1)N
z
χ+Nψ .
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constraints ensure that anyonic excitations of e- and m-type are robust against local

perturbations [130].

Then, we can address the braiding rule between these quasiparticles. It is revealed

in the double exchange process drawn in Fig. 1.6b (right): moving one m-particle

around one e-particle acquires a negative sign in the wave function. Suppose we put

a pair of e and m particles on the neighboring plaquettes, denoted by the yellow

and blue hexagons in Fig. 1.4. To move m-particle (blue) upward, one starts with the

local operation �x
1 = ic1c

x
1 that reverses the signs of loop operators in two neighboring

plaquettes sharing the x-link. A trajectory of m-particle encircling e-particle can be

completed by operations �z
6�

y
5�

x
4�

z
3�

y
2�

x
1 , which is nothing but the loop operator Wp

associated with e-particle (yellow). As Wp = �1, the sign change in the wave function

is recovered. In addition, two anyons can be combined to form a different type of

anyon through the fusion channels [15]: �µ ⇥ �⌫ = N⇢
µ⌫�⇢. Non-Abelian anyons hold

multiple fusion channels, whereas for the Abelian anyons in the toric code there is

only one fusion channel. It follows [18]

e⇥m = ✏, e⇥ e = m⇥m = ✏⇥ ✏ = 1. (1.108)

Here, 1 stands for the vacuum state and ✏ represents a new composite particle from

the combination of e and m. It is easy to check ✏ becomes fermionic under self-

exchange depicted in Fig. 1.6b (left). Seeing as 4Keff ⌧ 2Jz in the honeycomb

model, the reverse process could happen upon thermalization: ✏ ! e + m. Excited

fermions in the superselection sector ✏ may decay into em-pairs with the help of

a zero-temperature bath. It provides one potential approach to implementing the

Abelian anyons [18]. Finally, it might be useful to compare with higher-dimensional

analogues, for instance, the 3D toric code [16]. On a cubic lattice, As acts on the

six bonds connected by the vertex s and Bp keeps the same form (1.107) involving

plaquettes in all three planes (xy, yz, zx). In this setting, while e-particle remains

pointlike, m-particle turns into a closed loop. As shown in Fig. 1.6c, the braiding
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between them still accumulates a ⇡-phase shift.

1.3.3 Non-Abelian anyons in the B phase with a magnetic
field

Excitations of vortices in the B spin liquid phase, however, are not well defined due to

the gapless spectrum of Majorana fermions. Intuitively, by analogy to the 2D Haldane

model [21], one can open the fermion gap by introducing a time reversal symmetry

breaking term. Starting from the gauge sector (1.97) initially chosen for the gapless

spectrum, we would like to derive an effective Hamiltonian for the matter sector with

the gauge field unchanged under small perturbations. We call the excitation of the

gauge sector a vison of which the energy scale is assumed to be much larger than

that of a matter Majorana fermion: ∆v � ∆f . In the Majorana representation, it

requires a little more attention to fix the gauge of the T operator. We would like to

show that the following transformation rule suffices [18]

T cjT
�1 = (�1)j · cj, T cµj T

�1 = (�1)j · cµj , (1.109)

where (�1)j = �/+ for j 2 {1}/{2} that belongs to the odd/even sublattices. First,

it allows a physical spin-1/2 to change its sign under T :

T �µ
j T

�1 = T (icjc
µ
j )T

�1 = ��µ
j . (1.110)

Then for the vortex-free gauge sector, the six-spin loop operator Wp and variables

uhijiµ = �icµi c
µ
j = +1 are all T -invariant. It implies that the spectral gap in the matter

sector will not be opened by any perturbation that respects time reversal symmetry.

In fact, the effective term that can induce a gap should come from the diagonal part in

Hamiltonian (1.98): icicj where i and j belong to the same bipartite lattice. Indeed,

it breaks time reversal symmetry with our convention (1.109): T icicjT
�1 = �icicj.

In the phase diagram of Fig. 1.5a, we now look at the most simple case for the B

phase: Jx = Jy = Jz = J . The effective interactions can be derived from an arbitrary
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external magnetic field

V =
X

j

hµ�
µ
j , (1.111)

with |hµ| ⌧ J, µ = x, y, z. Obviously, H
(1)
eff = 0. The pair of ⇡ fluxes it creates is

prohibited by the background of frozen Z2 vortices [138]. The surviving second order

term H
(2)
eff ⇠Phijiµ �(h2

µ/J)�
µ
i �

µ
j is T -invariant, leaving the spectrum gapless.14 The

leading order effective interaction comes from the T -breaking cubic terms

H
(3)
eff = �

X

hhikii
�
µ
i �

⌫
j �

⇢
k, (1.112)

where  ⇠ hxhyhz/J
2 and hhikii describes next-nearest neighbors i and k connected

by site j. The orientations of spins �µ
i and �⇢k follow the directions of Ising couplings

on bonds hijiµ and hjki⇢. And the third spin �⌫j satisfies ⌫ 6= µ 6= ⇢. It can be checked

that all intermediate ⇡ fluxes are annihilated under H
(3)
eff and the gauge sector remains

vortex-free. In the Majorana picture, the effective interaction (1.112) enters into the

BdG form (1.100) as

H(k) = Re f(k~) · ⌧ z + Im f(k~) · ⌧ y + g(k~) · ⌧x, (1.113)

with the function g(k~) = �4(sin(k~ · n~ 1) + sin[k~ · (n~ 2 � n~ 1)] � sin(k~ · n~ 2)). Since

T [g(k~) · ⌧x]T �1 = �g(�k~) · ⌧x, the time reversal symmetry is broken. The per-

turbed Hamiltonian falls into class D same as the spinless p + ip superconductor in

Section 1.2.3. The Z-classified bulk topology is captured by the first Chern num-

ber (1.78). Taking into account || ⌧ J , one can reach the defect Hamiltonian by

performing an expansion around two original Dirac points ±k~
⇤
= ⌥(4⇡/3, 0),

H(k, r)|
±k~

⇤ = R~ (k, r) · ⌧~ = �
p
3Jky · ⌧

y ±
p
3Jkx · ⌧

z ± 6
p
3(r) · ⌧x. (1.114)

Here, the range of the small momentum is defined as �k = (kx, ky) = k~ � (±k~
⇤
) and

|�k| 2 Ω(0, 1). Clearly, the topologically distinct phases are characterized by the sign

14The Ising couplings in the energy spectrum E±(k) = ±|f(k~)| are slightly modified by the
perturbation: Jµ ! Jµ + ↵h2

µ/|J |. Under such smooth deformation of the topological Hamiltonian,
the gapless Dirac points are protected.
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of the mass term mΓ0(r) = ±6
p
3(r) · ⌧x. After a rotation of basis (⌧x, ⌧ y, ⌧ z) !

(⌧ 0z, ⌧ 0x, ⌧ 0y), not surprisingly the defect Hamiltonian shares a similar form with that

of the p+ ip superconductor (1.77):

H 0(k, r)|
±k~

⇤ = R~
0
(k, r) · ⌧ 0~ = ±

p
3 [6(r) · ⌧ 0z + J(kx · ⌧

0y ⌥ ky · ⌧
0x)] . (1.115)

In the same manner, one can count the Chern number of the bulk (r) =  straight-

forwardly 15

Ch1 = sgn() = ±1. (1.116)

In three gapped Abelian phases, the first Chern number remains zero.

From the bulk-boundary correspondence, we proceed to study the topological line

defect in Table 1.5, namely, the gapless chiral Majorana edge mode. In contrast to

the gapless chiral Dirac mode in integer quantum Hall (QH) fluids [22, 139–141],

the neutral particle cannot form an electric current at zero temperature. Yet at low

temperatures, the Majorana mode carries an anomalous energy current. It leads to

a quantized thermal Hall response [18, 142–144]. By analogy to the quantum Hall

effect (QHE) [19], we put the honeycomb lattice on the xy plane and analyse the

transverse thermal conductivity. Along the horizontal x direction, the forward prop-

agating matter fermion mode  k induces an energy current with positive momentum

k and positive energy ✏(k). The corresponding back propagating mode  �k then

gives an equal contribution to the current implied by the particle-hole symmetry:

✏(k) = �✏(�k). On the vertical y direction, the net energy current dIx is driven by

a transverse temperature difference dTy. The ratio of them defines the thermal Hall

15One should add contributions from two Dirac points. In the neighborhood of (±k~
⇤
), the mapping

from a torus to a sphere is described by unit vector n~ (k) = R~
0
(k)/R0. For 0 <  ⌧ J , when |�k|

increases from 0 to 1, the mapping n~ (k) around +k~
⇤
(�k~

⇤
) goes from the north (south) pole to

the equator, sweeping the upper (lower) hemisphere once. In total, one gets Ch1 = +1. Similarly,
Ch1 = �1 for  < 0.
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conductivity 16

xy =
dIx
dTy

= c�@T ·


2

Z

k>0

dk

2⇡

1

2
✏(k)h †

k kiv(k)
�
=
⇡

6
c�T, (1.117)

where the group velocity reads v(k) = @✏(k)/@k and the density operator obeys the

Fermi-Dirac distribution n(k) = h †
k ki = [1 + e(✏�µ)/T ]�1. Here, c� is a quantized

constant that describes the chiral central charge (or the net chirality) of our system

c� =
1

2
(# of forward Majoranas�# of backward Majoranas) =

1

2
Ch1. (1.118)

The factor 1/2 comes from the decomposition of one complex matter fermion into two

real Majorana fermions (1.93). By the bulk-edge correspondence, on broader grounds

c� is related to the Z-analytical index that characterizes the topological line defect

[69]

c� =
1

2
Chd�1[H(k, r)] 2 1

2
Z. (1.119)

It should be noted that for the Kitaev honeycomb model in two dimensions, the

chiral central charge c� = ±1/2 is relatively hard to be associated with normal bulk

observables, for instance two-spin correlators [18]. In Sec. 3.2, however, we show that

when reduced to one dimension, this half-integer value can be probed in bipartite

valence bond fluctuations [145] via a four-spin measurement.

Going back to the defect Hamiltonian (1.114), a finite bulk gap is guaranteed in

the B phase

∆E(k)|
±k~

⇤ = 2|R~ (k, r)| = 2
p
3(J2k2 + 362). (1.120)

The associated correlation length can be estimated from the complex solution of

∆E(k0) = 0: ⇠ = | Im k0|
�1 ⇠ |J3/(hxhyhz)|. Over a distance larger than ⇠, one

expects excitations in the bulk [18]. Each excited vortex associated with vorticity

l = 1 can be viewed as a topological point defect characterized by a Z
(1)
2 -analytical

16We have set ~ (Planck’s constant/2⇡) = kB (Boltzmann constant) = 1.
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index. Belonging to the same topological class as the spinless p+ ip superconductor,

the index theorem (3.14) derived in Sec. 1.2.3 reveals that

ind
(1)
Z2

= Ch1 ⇥ l mod 2 = 1. (1.121)

Each vortex carries an unpaired MZM. We denote such vortex as the superselection

sector �, along with the other two sectors 1 (vacuum) and ✏ (an excited fermion).

Together they constitute three different types of non-Abelian anyons or Ising anyons

[15]. Contrary to the Abelian anyons in the gapped phases (3.4), their fusion rules

host multiple channels

� ⇥ � = 1 + ✏, � ⇥ ✏ = �, ✏⇥ ✏ = 1. (1.122)

A full description of the non-Abelian braiding statistics involves the knowledge of

the F matrices (the unitary transformation between two bases or equivalently asso-

ciativity relations) and the Rµ⌫
⇢ matrices (the phase acquired under the exchange of

two particles µ, ⌫ that fuse to a third particle ⇢). More details about the algebraic

structures can be found in Ref. [18].

1.3.4 One-dimensional analogue

In this section, we reduce the dimensionality of Kitaev spin liquids to one, as depicted

in Fig. 1.7 (top) and address the quantum chain or wire model [146, 147]. The phase

diagram corresponds to the bottom line in Fig. 1.5a with Jz = 0, Jx = J1 > 0, Jy =

J2 > 0. After a mapping to Majorana fermions, the matter sector has a similar

topological structure as a p-wave superconducting chain. However, the edge modes

now differ and become two spin-1/2 complex fermions.

The lattice Hamiltonian of the Kitaev spin chain takes the form

H =
X

j=2m�1

�J1�
x
j �

x
j+1 � J2�

y
j+1�

y
j+2. (1.123)

With this convention, the sum runs over odd sites only, such that 1  m  M

is an integer and M denotes the total number of unit cells. Applying the Jordan-
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Figure 1.7: (Top) Kitaev spin-1/2 chain with alternating ferromagnetic Ising cou-
plings XYXY · · · , the strengths of which are described by parameters J1 for x direc-
tion and J2 for y direction. (Middle) Alternative representation of Majorana fermions
from the mapping (1.126). (Bottom) Dual lattice of complex bond fermions by the
construction (1.129).

Wigner transformation, one can map quantum spins-1/2 that satisfy Lie algebra

[�x
j , �

y
j ] = 2i�z

j onto spinless fermionic operators:

�+
j = a†j ·

Y

i<j

(��z
i ),

��
j = aj ·

Y

i<j

(��z
i ), (1.124)

�z
j = 2a†jaj � 1.

At each site, �z
j takes the value of occupancy 1 for |"jiz and 0 for |#jiz. The Hamil-

tonian (1.123) then reads

H =
X

j=2m�1

�J1(a
†
j � aj)(a

†
j+1 + aj+1) + J2(a

†
j+1 + aj+1)(a

†
j+2 � aj+2). (1.125)

At this stage, a direct Fourier transform of the spinless Hamiltonian does not work.

By analogy to the Kitaev honeycomb model, one can employ Z2 symmetry and remove

the degeneracy of the ground state by moving to the Majorana representation:

cj = i(a†j � aj), dj = a†j + aj, j = 2m� 1;

cj = a†j + aj, dj = i(a†j � aj), j = 2m. (1.126)

Correspondingly,

H = i
X

j=2m�1

(J1cjcj+1 � J2cj+1cj+2). (1.127)
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The key point is that in this basis all the dMajorana fermions decouple from the chain

shown in Fig. 1.7 (middle), and encode the double-degeneracy of the (spin) ground

state on a given bond of nearest neighbors. A d Majorana fermion contributes to a

(ln 2)/2 entropy by analogy to the two-channel Kondo model [148, 149]. Going to 1D

k-space of the c matter Majorana fermions, we obtain the Bloch form (1.98) with the

complex function

f(k) = 2(J1 + J2e
�2ik). (1.128)

The lattice spacing l has been set to unity 1. To solve the energy spectrum, it is

again convenient to introduce complex bond fermions that live on x-bonds:

 m =
1

2
(c2m�1 + ic2m) . (1.129)

Shown in Fig. 1.7 (bottom),  form a dual lattice with site index m = 1, . . . ,M . In

the basis Ψ† = ( †
k, �k), the BdG Hamiltonian H(k) of the Kitaev spin chain then

shares the same form as that of the honeycomb model (see Eq. (1.99) and Eq. (1.100))

with two eigenvalues

E±
k = ±2

q
J2
1 + J2

2 + 2J1J2 cos(2k). (1.130)

A gap is revealed if J1 6= J2. Otherwise, when J1 = J2 the gap closes at kF = ⇡/2

and the chain on the dual lattice results in a critical gapless theory of free fermions

with central charge c = 1.

To uncover the edge modes in the topological phase, we can re-express the Hamil-

tonian (1.127) in terms of bond fermions on the dual lattice

H =
MX

m=1

�J1
�
1� 2 †

m m

�
+ J2

⇣
 †
m m+1 +  †

m 
†
m+1 + h.c.

⌘
. (1.131)

Bond fermions behave as a p-wave superconducting chain (1.57) and one identifies

immediately

µ = �2J1, t = �J2, ∆ = J2. (1.132)
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In the topological regime J1 < J2 (or |µ| < |2t|), there are two MZMs �1, �2M localized

at the ends of the dual lattice. Especially, when J1 = 0 they become c1 and c2M .

Yet in the presence of free d gauge Majorana fermions in the original spin space

(see Fig. 1.7, middle), these MZMs can not be separated from the bulk. Together

{�1, d1}, {�2M , d2M} recombine and form one quantum spin-1/2 on each end. From

this perspective, one foresees the challenges of probing chiral Majorana edge state and

bulk anyons in the Kitaev honeycomb model. Interaction effects within and between

the gauge and matter sectors need to be taken into account. Promising approaches

are reviewed in Section 1.4.2.

The exact solution of the Kitaev spin chain allows us to derive an analytical ex-

pression of bipartite valence bond fluctuations in Section 3.2 and probe central charge

c = 1 at the quantum critical point. Furthermore, in Section 4.1 we apply the Jordan-

Wigner string to a Kitaev spin ladder and obtain a new phase diagram. The gener-

alized ladder model can be viewed as coupling two Kitaev spin chains via alternating

ZZ 0 Ising exchanges on the rungs.

1.4 Applications

In this section, we review some recent experimental and theoretical developments in

the search of Majorana fermions in condensed matter systems. Various concepts and

techniques find origins in quantum Hall physics [15]. While the exact solutions of

the Kitaev superconducting wire and Kitaev spin liquids navigate future research to

the discovery of novel topological quantum materials [150], the engineered systems

with artificial gauge fields in cold-atoms and quantum circuits have also become

promising candidates for the simulation of non-Abelian topological phases. Alongside

the physical realization, we also discuss briefly about braiding statistics and potential

applications in quantum computation.
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1.4.1 Motivation from quantum Hall physics

It has been known from the 80s and 90s that systems exhibiting the fractional quan-

tum Hall effect [151, 152] host anyons as emergent quasiparticles. When a 2D elec-

tron gas (2DEG) is subject to a strong magnetic field B, a gap is opened between

a degenerate ground state and excited states. While the longitudinal conductivity

vanishes, the Hall conductivity becomes quantized: �xy = ⌫e2/h. Here, the fill-

ing factor ⌫ = nΦ0/B associated with the electron density n and the flux quantum

Φ0 = hc/e, can be an integer or a fraction. Remarkably, quasiparticle excitations

from a fractional quantum Hall state carry fractional charges and behave as anyons.

The direct observation of the Abelian anyonic braiding statistics [153] is reported for

the ⌫ = 1/3 Laughlin state [24] using an electronic Fabry-Perot interferometer [154].

In the experiment, a 2DEG in a GaAs/AlGaAs heterostructure gives rise to localized

quasiparticles with fractional charge e/3 in the bulk. A current is then inserted and

carried by the chiral edge state of the material at ⌫ = 1/3. Under the influence of

backscattering with quantum point contacts (QPC), a closed loop can be completed

by backscattered quasiparticles effectuating the braiding process depicted in Fig. 1.6b

(right). It leads to a jump in the Aharonov-Bohm phase 2∆✓ = 2⇡ ⇥ (0.31 ± 0.04),

in agreement with the theoretical prediction for the Abelian anyon ✓ = ⇡/3. This

statistical angle has also been verified in anyon collision experiments through the

measurement of current correlations [155].

Another interesting filling factor occurs at ⌫ = 5/2 and supports non-Abelian any-

onic excitations with fractional charge e/4 [13]. The trial Moore-Read Pfaffian wave

function, exact ground state of a repulsive three-body interaction, can be viewed as the

quantum Hall analogue of the p+ip superconductor [14, 156]. At low temperatures, in

the GaAs/AlGaAs heterostructure at ⌫ = 5/2, one then realizes a BCS state formed

by composite fermions. Although such a state is found to be fragile and the temper-

ature required extremely low ⇠ 20 mK [15], a half-integer value of the thermal Hall
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conductance [157] has been observed: xy = (2.5)0T with 0 = ⇡2k2
B/(3h)

17, thus

revealing the non-Abelian nature. Other platforms that exhibit even-denominator

fractional quantum Hall states and potentially host Majorana quasiparticles include

the superfluid phase of low-temperature He3 reached at high pressure [14] and more

recently the bilayer graphene [158].

Alternative probes of the fractional charges of anyons come from dynamical pro-

cesses, for instance, the measurement of the photo-assisted shot noise (PASN) [159–

161]. At the QPC, a reflected ⌫ = 2/5 inner chiral edge state gives rise to anyons

with charge q. When the contacts are irradiated by microwaves, a singularity can be

identified in PASN at the frequency fJ that follows a Josephson relation fJ = qV/h.

Here, V denotes the DC voltage. Depending on whether the inner chiral edge state

is fully or weakly reflected, emergent anyons carrying fractional charges q = e/3 and

q = e/5 have been observed [162]. The real-time Ramsey interferometry can also be

applied to a Hall sample with a QPC: the fractional charge of the associated edge

states is revealed in the interference pattern of the current noise brought by the tun-

neling of particles (either fractional quasiparticles or electrons) during two distinct

short pulses [163]. Once the QPC is placed at the middle of the Hall sample with a

weak link18, bipartite charge fluctuations in time can be read from the current noise as

well, and from them one is able to reconstruct the real-space entanglement spectrum

together with the Rényi entropies [164].

1.4.2 Topological quantum materials

In the last decade, there has been a rapid development in the experimental realization

of MZMs [76, 165, 166] based on the theoretical models of 1D and 2D topological

superconductors in Sec. 1.2.2 and Sec. 1.2.3.

On one hand, the Kitaev p-wave superconducting chain can be engineered from

a variety of heterostructures: for instance, 1D semi-conducting nanowires [167–169],

170 = ⇡/6 under the same convention as Eq. (1.117) in the Kitaev honeycomb model.
18It refers to a strong gate voltage that only allows the weak tunneling of electrons.
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edges of 2D topological insulators [170] or 3D topological insulator nanowires [171] on

the surface of conventional s-wave superconductors. Proximity effects induce effective

p-wave superconducting pairings in the quasi-one-dimensional bulk. The transition

from spin-1/2 electrons to spinless fermions is achieved with the help of spin-orbit

couplings and the introduction of time-reversal symmetry breaking terms.

On the other hand, to engineer the spinless p + ip chiral superconductors, same

principles can be applied to the topological insulator-superconductor heterostructures

[172–174] while taking into account additional complexity arising from hybridization

at the interface with the parent s-wave superconductor [175, 176]. One can also re-

place the topological insulator with semiconductor-based devices [177, 178], or more

conventionally, may resort to material realizations in doped topological insulators

[179], iron-based superconductors [180] and transition metal dichalcogenides (MX2)

[181, 182]. Among the latter, many are nodal topological superconductors with strong

Rashba spin-orbit coupling (SOC) (e.g., NbSe2, TaS2). Driven by an in-plane mag-

netic field, six pairs of nodal points connected by Majorana flat bands are predicted

along Γ-M lines of the Brillouin zone [183]. These nodal points are protected by

chiral symmetry against local disorder. The hidden mechanism of the formation of

Majorana flat bands is similar to that of a p+ ip superconductor [184]. RG analysis

further shows that NbSe2 favours a chiral superconducting phase with Chern number

6 when both Rashba SOC and spin-triplet interactions are sufficiently large [185]. It

is relevant to point out that the crystal structure of MX2, two hexagonal chalcogen

layers sandwiching transition metal atoms, provides the unique opportunity to form

superconductor-normal junctions between the layers, and make Majorana fermions

engineering more feasible [150].

Meanwhile, the coupled-wire construction [28–30] shows a promising alternative

path towards the p+ ip superconductivity [186, 187], which is one of the main focuses

of Chapter 2. There, the orbital magnetic field effects are introduced to help engineer

the ip pairing channel in weakly coupled ladders. Alternatively, one can also consider
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two arrays of semi-conducting quantum wires each coated on one side with a thin

s-wave superconducting layer. Stacking them with a twisted angle ⇡/2 is found to

support a fully gapped chiral p+ip superconducting phase with vortex defects hosting

MZMs [188]. In fact, the aforementioned routes can be combined in full-shell nanowire

systems (with a semiconductor at the core surrounded by a superconducting shell)

[189]: the MZMs located at the ends of a wire are shown to be stabilized by the

flux-induced winding of the superconducting phase.

Once MZMs are synthesized, we are able to explore non-Abelian braiding statis-

tics [15, 190]. A simple physical picture [178, 191] can be grasped through a p + ip

superconductor with four vortices, each carrying an unpaired Majorana mode. Ar-

tificially, we construct two complex fermions  1 and  2 from the Majorana pairs:

 1 = (�1 + i�2)/2,  2 = (�3 + i�4)/2. Starting from the initial state |n1, n2i with

the number operator nj =  
†
j j, one can perform a braiding that results in a clock-

wise exchange of two Majorana fermions �i and �j: �i ! ��j, �j ! �i. Here,

the extra minus sign agrees with fermion statistics. It is equivalent to build a uni-

tary operator Uij = (1 + �i�j)/
p
2 such that Uij�i/jU

�1
ij = ⌥�j/i. Depending on

the order of exchanges, the final state of the vortices differs. The total wave func-

tion may acquire a phase shift U12|n1, n2i = ei⇡(1�2n1)/4|n1, n2i or go under rotation

U23|n1, n2i = [|n1, n2i + iei⇡n1 |1 � n1, 1 � n2i]/
p
2. Although such features of non-

Abelian statistics from MZMs are not rich enough [15], with sufficient implementa-

tions more realistic Majorana surface codes [10, 11, 192] are proposed and partially

pave the way for universal quantum computation.

The Kitaev honeycomb model in Sec. 1.3 is another exciting future candidate plat-

form towards fault-tolerant quantum computation [18, 55]. Efforts have been focused

on the search of related quantum materials that embody the physics of frustrated

magnets [17, 50, 127–129, 193–198]. The most fruitful one comes from the material

↵-RuCl3 with potentially dominant FM Kitaev couplings shown by ab-initio and spin-

wave studies [199–201]. Significant experimental progress on ↵-RuCl3 has been made
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in recent measurements of Raman [202] and neutron [203] scatterings, nuclear mag-

netic resonance [204], and thermal transport [205–207]. The observation of the half-

integer thermal Hall effect from transverse thermal conductivity xy = (0.5)⇥ (⇡T/6)

(1.117) remains intriguing due to small Hall angles (xy/xx ⇠ 10�3) [207]. It can

be partially explained by taking into account the couplings to phonons [208, 209]

and the effects of disorder from site dilution [210]. Besides, materials in this cate-

gory favor a magnetic ordering at low temperatures owing to Heisenberg interactions

[193]. Numerical simulations [211, 212] also reveal that when introducing an exter-

nal magnetic field, AFM symmetric-anisotropic Γ-interactions may drive the system

into an intermediate Kitaev spin liquid phase. Naturally, to better distinguish the

topologically non-trivial phases, novel protocols are to be designed from theoretical

perspectives. Notable developments have been made in the computation of dynamical

spin correlations [213–218] as well as the entanglement entropy [133, 216]. In Chap-

ter 3, we propose a relevant entanglement probe based on valence bond fluctuations

[145]. In addition, one may consider the ↵-RuCl3/graphene heterostructures [219,

220]. Due to charge transfer, the ↵-RuCl3 monolayer becomes electron doped and

the Kitaev interactions are found to be enhanced by strain from ab-initio calculations

[221] . Experimental signatures further show anomalous quantum oscillations of the

bilayer structure at low temperatures [220]. This phenomenon can be captured by an

effective Kitaev-Kondo model [222], and might be interpreted as an indirect evidence

of fractionalized excitations in Kitaev spin liquids since the formerly excited neutral

Majorana quasiparticles now acquire charge through hybridisation with the graphene

Dirac band.

When 2D Kitaev materials approximately enter the spin liquid regime, one ad-

dresses a more challenging question of braiding Ising non-Abelian anyons. A recent

proposal [223] introduces superconducting circuits at the interface between a Kitaev

material and a ⌫ = 1 integer quantum Hall system such that an injected electron

along the ⌫ = 1 edge is converted to an emergent chiral Majorana boundary mode
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in the spin liquid, arising from the effect of fermion condensation due to strong in-

terface interactions. It offers a counterpart of traditional transport probes designed

for fractional quantum Hall states. By analogy to the Fabry-Perot interferometer, for

instance, adding a constriction to the Kitaev material leads to non-trivial braidings

between the incident emergent Majorana edge mode and bulk quasiparticles (1.122)

of type (1, �, ✏), and in turn leaves out distinct signatures in electrical conductances.

Three types of bulk excitations can also be detected by a variation, the time-domain

anyon interferometry [224] that exploits rich dynamics coming from time-dependent

couplings of the chiral Majorana edge state to two ancillary spins.

1.4.3 Engineered systems with artificial gauge fields

With the rapid development of artificial gauge fields in quantum simulation [225,

226], more flexibility and tunability can be achieved by realizing Kitaev spin liquids

in engineered systems, such as ultracold atoms [227–229] and quantum circuits [230,

231].

In 3D optical lattices comprising cold atoms, a honeycomb lattice on the x-y plane

can be formed after the suppression of spin exchanges along the vertical z direction via

potential barriers [232–234]. Three in-plane spin-dependent trapping potentials from

collisions of atoms during the second-order tunneling processes then help stabilize

the anisotropic nearest-neighbour Ising interactions [227]. Based on this experimen-

tal scheme, the creation and braiding of non-Abelian anyons can be carried out in

principle [229]. Meanwhile, larger Kitaev couplings are possible with polar molecules

trapped in stacked triangular lattices under combined effects of microwave excitation,

dipole-dipole interaction and spin-rotation exchanges [228].

For the cQED architectures, starting from new phase diagram of a two-leg Kitaev

spin ladder [147], in Chapter 4 we present a driven superconducting box circuit as

building blocks towards the simulation of Kitaev spin liquids and exotic many-body

Majorana states. One can also build a Cooper-pair box that resembles a spin-1/2
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out of MZMs from an array of three superconducting nanowires when the charging

energy becomes strong [231]. Extended to two dimensions, such boxes are shown to

be useful for the construction of the Kitaev model on a decorated honeycomb lattice

[56], of which the underlying chiral spin liquid phase (Ch1 = ±1) is expected to bear

similar non-Abelian anyonic vortex excitations.

In the end, it is worthwhile to mention that to ensure universal quantum com-

putation, a non-Abelian topological phase supporting Fibonacci anyons is required

[15]. It can be found in the Levin-Wen honeycomb model [235, 236] where all spins-

1/2 sit on the links of the lattice and are afflicted to a set of generalized toric code

operators (1.107): As acting on three spins adjacent to vertex s and Bp on twelve

spins surrounding hexagonal plaquette p. Similar to the Kitaev honeycomb model,

it is exactly solvable via string-net condensation and shares the advantage that the

topological regime of interest resides deep in the phase diagram, far away from neigh-

bouring broken symmetry phases. Quantum circuits can be constructed accordingly

for the non-Abelian Fibonacci code [237].
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Chapter 2

Coupled wires construction from
spinless fermions

In this chapter, we study a multi-wires system in the low-energy subspace, where each

wire is described by a topological p-wave superconductor [72]. We address the inter-

play between intrawire and interwire tunneling and superconducting pairing terms,

including orbital magnetic field effects. Such orbital magnetic field effects have been

realized in coupled nanowires [238] through the application of a magnetic field perpen-

dicular to the plane of the wires. Similar efforts are underway in cold-atom systems

[226, 239, 240], where quantum Hall phases have been observed in ladder geome-

tries [241, 242]. The possibility of engineering fractional quantum Hall phases in

these ladders has stimulated a vigorous research activity, focused on both bosonic

and fermionic systems [68, 243–248]. Orbital magnetic field effects have also started

to attract some theoretical interest in the case of two coupled Kitaev chains [31, 249].

Here, we present new phenomena in hybrid systems made of two asymmetric wires,

and then we build two-dimensional topological models with chiral edge modes from

coupled-ladder systems in the presence of magnetic fields.

We start by studying the bonding-antibonding band representation of two coupled

wires, which allows us to access the strong-tunneling limit [63, 250] between the wires.

Afterwards, we introduce hybrid (spinless) systems coupling a chain of free fermions

with a Kitaev chain and study the effect of Andreev processes. An Andreev process
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allows the transfer of a Cooper pair from a superconducting system into a normal

metal (here the other wire). Such a process leads to superconducting correlations in

the normal wire. In the case of spin-1/2 fermions, Andreev processes have already

been shown to influence the properties of cuprate superconductors near the Mott

insulating regime [251]. They also give rise to a fractional quantum Hall phase at

filling factor ⌫ = 1/2 in the case of hybrid spin-1/2 wire systems [68].

In the later part of this work, we apply the wire construction method [29, 30]

to engineer, in coupled-ladder geometries, an ipx + py superconductor with spinless

fermions [14] as well as a fractional quantum Hall state at ⌫ = 1/2 [68, 244] for spin-

1/2 fermions [68]. The p + ip superconducting proposal could be implemented, e.g.

with two different Peierls phases acting on the intrawire and interwire hopping terms

[226, 239]. It has been recently shown that one can also realize a topological (px±ipy)

superconductor on the honeycomb lattice with Rashba spin-orbit interaction, as a

result of the interplay of geometric phase and electron correlation [252].

The organization of the chapter is as follows. In Sec. 2.1, we introduce the model

with the different flux situations to be studied. In Sec. 2.2, we introduce magnetic

flux effects and analyse the case of hybrid systems, with one wire being a topological

p-wave superconductor and the other wire a free fermion model or a Luttinger liquid,

taking into account the physics of Andreev processes [253]. In Sec. 2.3, we first show

how magnetic field effects can turn the one-dimensional topological superconductor

into a two-dimensional topological p + ip superconductor by coupling the ladders to

the same (s-wave) superconducting reservoir [70]. We then discuss a realization of a

⌫ = 1/2 Laughlin phase in coupled (hybrid) ladders comprising spin-1/2 fermions, in

the presence of a uniform magnetic field.

2.1 Model and definitions

We begin by illustrating the building block of our coupled wire construction: a flux-

assisted two-leg ladder system of spinless fermions, captured by the Hamiltonian (see
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Fig. 2.1a)

H = Hk +H? +H∆ +H∆0 , (2.1)

which includes tunneling terms along and between the wires

Hk = �
X

j

X

↵=1,2

[µc†↵(j)c↵(j) + te�i⇣a/2c†1(j)c1(j + 1) + tei⇣a/2c†2(j)c2(j + 1) + H.c.],

H? = �
X

j

t?e
i�xjc†1(j)c2(j) + H.c., (2.2)

as well as pairing interactions induced by the proximity to the superconducting (su-

perfluid) reservoir

H∆ =
X

↵=1,2

X

j

∆↵c
†
↵(j)c

†
↵(j + 1) + H.c.,

H∆0 =
X

j

∆0c
†
1(j)c

†
2(j) + H.c.. (2.3)

We denote the lattice spacings of the wires as a and a0 for the horizontal x and vertical

y directions. For a square ladder, a0 = a. The positions of the sites along each wire

are denoted as xj = ja, where j = 1, ...,M . The total length of one wire becomes

L = Ma. The operator c†↵(j) creates a spinless fermion on site j of the wire ↵. Here,

µ stands for the global chemical potential. For symmetric and decoupled (or weakly-

coupled) wires, this condition will then ensure that the Fermi wave vectors in the two

wires satisfy k1
F = k2

F , but we will also address cases (when specified hereafter) with

asymmetric wires where k1
F 6= k2

F . The intrawire and interwire pairing amplitudes are

denoted ∆1,2 and ∆0, respectively. Here, the phase associated with the pairing terms

is fixed by the properties of the superconducting (superfluid) reservoir. In Sec. 2.3.1,

we will also include a diagonal term ∆0(c
†
1(j)c

†
2(j + 1) + c†2(j)c

†
1(j + 1) +H.c.), which

will play an important role for the realization of the p+ ip superconducting phase.
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(a)

(b) (c)

Figure 2.1: (a) Two-leg ladder lattice comprising spinless fermions; we introduce the
different flux situations discussed in the article through � and ⇣ such that the total
flux per plaquette is Φtot = (� � ⇣) assuming a = a0 = 1. (b) Band structure in the
absence of magnetic field and superconductivity. The blue and grey curves correspond
to the bonding (+) and antibonding (�) bands [63]. A gap of the order of 2t? is
opened by the interwire tunneling term. Varying the chemical potential, the dashed
lines denote the Fermi levels which host different numbers of gapless Fermi points.
(c) Band structure with flux insertion and opening of a gap in the crossing region
between the two bands. The lowest bonding band now mixes fermionic states with
different chiralities (corresponding to left movers in the first wire with a wavevector
�k1

F and to right movers in the second wire with a wavevector +k2
F ).
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Even though we do not write the Coulomb interaction in the Hamiltonian, we shall

comment hereafter on the stability of the physics towards interaction effects. The

stability of the topological superconducting phases and the possibility to realize cor-

related and Mott phases in the presence of Coulomb interactions or nearest-neighbor

interactions have been discussed, for instance, for the Kitaev chain in Refs. [254, 255]

and for two coupled wires (when t? = 0) in Ref. [31].

Below, for simplicity we assume that t and t? are real. The orbital effects of mag-

netic fields are included by multiplying t and t? by phase factors e±i⇣a/2 and e±i�xj ,

respectively (see Fig. 2.1a). The effect of the magnetic field on the superconducting

order parameter can be safely neglected when the 3D reservoir (e.g. s-wave super-

conductor) is sufficiently large. We define the Peierls phases for a unit charge q = 1

and we set ~ = 1. Furthermore, we introduce the quantity

Φtot = �� ⇣. (2.4)

This quantity has the dimension of a wave vector. The flux per plaquette or square

unit cell is defined as (�� ⇣)a. Therefore, Φtot can also be seen as the total flux in a

unit cell or plaquette with a = a0 = 1. 1

When � 6= 0 and ⇣ = 0, this situation will correspond to the case of a uniform

magnetic field Bz = �/a0 applied along z direction and a vector potential gauge

Ay = +xj�/a
0 along y. In that case, one can also perform a gauge transformation to

absorb the effect of the induced fluxes (or phases) onto a boost of the wave vector k

for each wire, resulting in Fig. 2.1c.

When � and ⇣ are both non-zero, this situation will allow us to engineer the p+ ip

superconductor in Sec. 2.3.1. In Fig. 2.1a, this corresponds to a vector potential

specified by the components Ax = �(�1)yj/a
0 ⇣

2
and Ay = xj�/a

0, with yj = 0 for the

lower wire and yj = a0 for the upper wire. This choice of vector potential corresponds

1In reality, this requirement can be loosened: for instance, on a double quantum-wire sample, the
quantum tunnelling with orbital magnetic field effects occurs when the interwire distance a0 reaches
10� 40 µm [238].
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to a magnetic field perpendicular to the plane of the wires,

Bz = @xAy � @yAx =
�

a0
� ⇣⇡

2a0
sin(⇡y/a0), (2.5)

and reproduces a net flux Φtot = � � ⇣ in a square unit cell. Formally, to regularize

properly the function Ax and ensure that @Ax/@y is real (as it should be), we can use

the form Ax = �1/2(ei⇡y/a
0

+ e�i⇡y/a0) ⇣
2
which reproduces Ax = �(�1)y/a

0 ⇣

2
for y = yj

and produces the second term �⇣⇡/(2a0) sin(⇡y/a0) in the magnetic field in Eq. (2.5).

To realize the p + ip superconductor in coupled-ladder geometries (see Sec. 2.3.1),

we require that the vector potentials and the magnetic field(s) are indeed periodic if

we change y ! y + 2a0. In addition, the magnetic field Bz must be staggered if we

change y ! y+a0, therefore we will also assume in Sec. 2.3.1 that � takes a staggered

(periodic) step-like form {�;��} associated to two successive square cells in the y

direction.

The particular situation in which � = ⇣ = ⇡/a, of interest here, admits two physical

interpretations in the absence of the superconducting pairing. On the one hand, the

system is equivalent to a model of two wires with imaginary hopping terms ±it or

band dispersions ⌥2t sin(ka) in Fig. 2.1c, with an alternating transverse hopping term

t?(�1)j. On the other hand, because the total net flux is zero in a given unit (square)

cell, the band structure of the two-wire system is also analogous to the one in Fig. 2.1b

after gauge transformation, with a uniform transverse hopping term t?
2.

Below, we introduce four cases of interest, which will be addressed throughout this

chapter.

In the first case, we consider that orbital magnetic fields are vanishing, ⇣ = � = 0.

The band structure of two wires is characterized by the bonding (+) and antibonding

2The “local” gauge transformation on the fermionic operators takes the form c1(j) ! eiχxj/2c1(j)
and c2(j) ! e�iχxj/2c2(j) in Eq. (2.2). This situation also corresponds to the case where Ax = 0
and Ay = �x/a0 � ⇣⇡/(2a0) sin(⇡y/a0)x. We check that transporting one particle from the upper

to the lower wire (vertically) produces a (zero) phase
R a0=a

0
Aydy = 0 accompanying the transverse

hopping term t? when ⇣ = �.
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(-) fermion operators [250]

c±(j) =
1p
2
[c1(j)± c2(j)] . (2.6)

If we neglect the superconducting terms ∆i, the non-interacting part can be diago-

nalized as

H0 = Hk +H? =
X

�=±

X

k

⇠k,�c
†
�(k)c�(k), (2.7)

with an energy dispersion

⇠k,± = �2t cos(ka)⌥ t? � µ. (2.8)

In Eq. (2.7), we have used the Fourier transform c↵(j) = (1/
p
M)

P
k e

ikxjc↵(k), with

k = 2⇡n/(Ma) and n = �M/2,�M/2+1, . . . , 0, . . . ,M/2�1 (if we assume M even).

The energy spectrum of the two bands is shown in Fig. 2.1b. The Fermi wave vectors

for the bonding and antibonding bands are kF,± = (1/a) arccos[(±t?+µ)/(�2t)]. We

will include the effect of pairing terms at the Fermi points of this band structure,

which is justified if the pairing amplitudes satisfy ∆i ⌧ (t, t?) with i = 0, 1, 2. In

Sec. 2.2, we will use a complementary approach in the wire basis addressing the

weak-coupling limit. If we turn on the pairing interactions in this strong-tunneling

limit, one can envision phase transitions towards SPT phases with 4 and 2 Majorana

zero-energy modes (MZM) by shifting the chemical potential [249]. It can be viewed

as a Lifshitz transition, i.e. induced by a change of the Fermi surface topology

or by a change of the number of Fermi points from 4 to 2. The associated Van

Hove singularity in the density of states can be observed, for instance, through local

compressibility measurements. Our collaborators V. Perrin, A. Petrescu and I. Garate

have tested numerically the stability of the Majorana fermions and the structure of

induced pairing terms at low-energy in the strong-coupling region [187].

The second case of interest corresponds to ⇣ = 0 and � 6= 0. In Sec. 2.2, we further

set∆2 = ∆0 = 0 which implies a hybrid system composed of a Kitaev superconducting
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wire and a free fermion wire. The phase associated to the vertical tunneling terms

can be absorbed through the local transformation

c1(j) = ei�xj/2c̃1(j), c2(j) = e�i�xj/2c̃2(j). (2.9)

The effect of the flux insertion Φtot = � is then equivalent to a shift (boost) of the

momentum of the two energy bands:

⇠k,1̃ = �2t cos[(k + �/2)a]� µ,

⇠k,2̃ = �2t cos[(k � �/2)a]� µ. (2.10)

Within these definitions, the two bands cross when ⇠k,1̃ = ⇠k,2̃, meaning at the wave

vector k = k0 = 0 in the new basis associated to Fig. 2.1c, which then makes the

effect of a uniform interwire hopping term relevant in this region. In fact, in the

strong-coupling limit, t? is only relevant at the band crossing point k0, resulting in

[238]

H? = �t?
X

k

c̃†1(k)c̃2(k) + h.c.

' �t?(c̃
†
+(k0)c̃+(k0)� c̃†�(k0)c̃�(k0)), (2.11)

which then splits the energies of the bonding and antibonding bands at the crossing

point k0 = 0 accordingly. In the original frame, this corresponds to have k1
F + k2

F =

±Φtot at the crossing point such that a gap 2t? can be opened, as shown in Fig. 2.1c.

When the Fermi level is between the upper and lower bands, the two gapless modes

form an edge state falling into the category of an Abelian quantum Hall phase provided

that ∆i ⌧ t?.

In the weak-coupling limit, on the other hand, we find a superconducting topo-

logical phase at flux Φtot = ⇡. When adjusting the densities of the wires such that

(k1
F + k2

F ) = ⇡/a, Andreev processes between the two wires stabilise superconductiv-

ity in the two wires similarly to the case of zero magnetic flux. The system shows

4 Majorana fermions via proximity effect. At ⇡ flux, in the strong-tunneling limit,
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the lowest (bonding) band which now mixes the two wire states at the Fermi points

can be fully filled and can therefore open a gap in the single-particle spectrum when

the upper band is empty. This situation, which is analogous to a band insulator,

gives rise to a charge density wave in the wire basis associated to long-range order

with one particle on each rung. We show below that this charge density wave state

forms phase-coherent particle-hole pairs along the wires which then survive even if

the transverse hopping term t? becomes comparable (slightly larger) to the pairing

channel amplitudes.

The third case is ⇣ = � = ⇡/a, our starting point towards implementing a p + ip

superconductor in coupled-ladder geometries via the ∆0 (interwire) pairing channel.

Due to the ±it hopping terms in the two wires, the time-reversal symmetry and

the chiral symmetry are not present, but particle-hole symmetry is preserved. The

transverse hopping term t?(�1)j now becomes real, and this will then ensure the

stability of Majorana modes at zero energy even if t? 6= 0. In Sec. 2.3.1, we perform

the local gauge transformation to map the band structure onto the one of Fig. 2.1b,

similar to the one in the absence of magnetic fields, and then we show how the

interwire pairing term ∆0 can give rise to a purely imaginary ipx channel for the

bonding fermions in a two-leg ladder architecture. Coupling pairs of wires or ladders

together, then we realize a py channel through the same superconducting (s-wave)

reservoir, assuming that the Bz magnetic field in Eq. (2.5) is uniform in the x direction

and staggered in the y direction (which implies that � generates a step function

changing of sign on each successive plaquette in y direction).

The fourth case is analogous to the second ⇣ = 0,� 6= 0 with spinful fermions. In

Ref. [68], Karyn and A. Petrescu have shown the possibility to realize a fractional

quantum Hall phase at filling factor ⌫ = 1/2 in hybrid systems. In Sec. 2.3.2, we

generalize the analysis in coupled-ladder geometries with a uniform magnetic field

showing how the chiral edge mode becomes more protected towards backscattering

effects (when the bulk becomes larger).
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The last two cases place us on track to search for topological phases in quasi-

one-dimensional systems by coupling flux-assisted two-leg ladders through vertical

tunnelings. This is the subject of the analysis performed in Sec. 2.3.

2.2 Hybrid two-leg ladder: Andreev mechanism

In this section, we consider a hybrid system consisting of one Kitaev superconducting

wire and a wire of free fermions. In Fig. 2.2a, we depict the situation corresponding

to the second case discussed in Sec. 2.1. The model is described by

Hhybrid = H(⇣ = 0,� 6= 0,∆2 = ∆0 = 0,∆1 = ∆). (2.12)

The precise goals below are as follows: first, we study the evolution of the topological

superconducting phases in the presence of a gap anisotropy and study the weak-

coupling limit. In addition, we study possible quantum phase transitions under a

uniform magnetic flux. The schematic phase diagram is plotted in Fig. 2.2b and

Fig. 2.2c for different flux conditions. When ±�a = ⇡, in the weak coupling limit

p-wave superconductivity is induced in the free fermion wire. Deviating slightly from

the ±�a = ⇡ situation, we analyze the Meissner and Majorana currents in the bulk

and at the boundaries, respectively. We also address Abelian quantum Hall phases

for particular relations between magnetic flux and densities in the wires and describe

properties of the charge density wave state in real space when the bonding band is

fully filled, occuring at ±�a = ⇡ in the strong-tunneling limit.
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(a)

(b)

(c)

Figure 2.2: (a) Hybrid system comprising a topological superconducting Kitaev p-
wave chain and a chain of free fermions. (b) and (c) Phase diagrams for K = 1 and
for densities in the wires such that (k1

F +k2
F )a = ±�a = ⇡ and (k1

F +k2
F )a = ±�a 6= ⇡.

For the superconducting phase in blue, the condition on ki
F ensures the occurrence of

4 MZM until the charge density wave transition. The dashed lines refer to quantum
phase transitions.

69



To acquire a physical understanding of the system’s properties in real space (such

as induced currents) when applying a magnetic field and to generalize the results when

t? ⌧ ∆, we now switch to the bosonization picture or Luttinger liquid description

[34, 35, 256, 257] in the wire basis. This allows us to include higher-order processes in

the tunnel-coupling description. The approach below specifically addresses the limit

t � t? � ∆, such that we can apply the continuum limit in the x direction parallel

to the wires. Assuming the continuum limit  ↵(x) = c↵(j)/
p
a with x = xj = ja, a

fermionic operator can be written in terms of bosonic fields �↵ and ✓↵:

 ↵(x) =  ↵R(x) +  ↵L(x),

 ↵r (x) =
U↵
rp
2⇡a

eirk
α
F xe�i[r�α(x)�✓α(x)]. (2.13)

The index r = +1(�1) is taken for r = R(L), i.e. for the right (left) moving

particle. Formally, ↵ = 1, 2 or +,� can embody the wire or band basis. In this

section, we switch to the bonding and anti-bonding basis (2.6). The Klein factors U↵
r

enforce the Fermi statistics and satisfy the relations: U †
r,↵ = Ur,↵, {UR,↵, UL,↵} = 0.

For convenience, it is sufficient to set UR,↵UL,↵ = i and all others to unity Ur,↵Ur0,↵0 =

1. The bosonic fields satisfy the commutation relation

[�↵(x), ✓�(x
0)] = i

⇡

2
�↵�Sign(x

0 � x). (2.14)

In the bosonization picture (2.13), the kinetic term along the wires in Hhybrid takes

the form

Hk = H+
0 +H�

0 ,

H±
0 =

v±

2⇡

Z
dx


K±(r✓±)2 + 1

K±
(r�±)2

�
, (2.15)

with the rotated fields ✓± = (✓1 ± ✓2)/
p
2 and �± = (�1 ± �2)/

p
2. These modes can

be understood as symmetric and anti-symmetric superpositions of bosonic fields in

the wire basis. The sound velocities and Luttinger liquid parameters satisfy v±K± =

vK = vF , where the Fermi velocity takes the form vF = 2ta sin(kFa) if we linearize
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the band structure of each wire close to each Fermi point, and in this formula kF refers

either to k1
F or k2

F . For simplicity, we assume that the two wires have (almost) the

same velocity. If we neglect the effect of the Coulomb interaction or nearest-neighbor

interaction parallel to the chain Vk, then formally K = 1. If we take into account

this interaction, then this would adiabatically renormalize K to a value smaller than

1, according to v±/K± = v/K ⇡ v + 2Vka/⇡. Below, we assume that K ! 1, for

simplicity.

The interwire hopping term takes the form

H? = �2t?
⇡a

Z
dx cos(

p
2✓� � �x)[cos((k1

F + k2
F )x�

p
2�+) + cos[(k1

F � k2
F )x�

p
2��)].

(2.16)

The conservation of the total number of particles in the system at t? = 0 and t? 6= 0

implies the equality k1
F + k2

F = kF,+ + kF,� in accordance with Luttinger’s theorem.

The pairing term in wire 1 takes the form

H∆ = �2∆

⇡a

Z
dx sin(k1

Fa) cos(2✓1). (2.17)

Furthermore, we choose densities in the wires ki
F 6= ⇡/(2a), such that intrawire insu-

lating transitions do not occur, since they have been well studied [31, 254, 255]. Still,

we will show below that a charge density wave transition can occur in the system,

giving rise to an analogue of the rung-Mott insulator for which the total charge �+

and the superfluid phase difference ✓� are pinned [258]. The physics is adiabatically

linked to the half-filled situation where the lowest band is fully occupied and the

upper band is empty, implying kF,� = 0 and kF,+ = ⇡/a when t? > 2t. In the wire

basis, the half-filled condition at t? = 0 refers accordingly to (k1
F + k2

F ) = ⇡/a.

It should be noted here that in principle the effect of Coulomb interactions between

the wires [31] could give rise to an additional term proportional to V?
R
dx cos[2(�1�

�2)(x) � 2(k1
F � k2

F )x] in the wire basis. To be able to describe the topological

superconducting proximity effect induced by t?, we assume below that k1
F 6= k2

F such
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that the V? term averages to zero. Since V? is already a four-fermion operator,

higher-order contributions will likewise not be relevant.

Let us start with the case without flux insertion, � = 0. For general situations

where k1
F 6= k2

F , all the terms in Eq. (2.16) oscillate rapidly and average to zero. This

implies that one must include higher-order effects in t? in the weak-coupling regime

[68, 251, 253]. Appendix B presents a perturbative approach developed to build the

possible non-oscillating terms to higher order in t?.

In the weak-coupling limit t? ⌧ ∆ ⌧ t, to show the emergence of 4 MZM as soon

as t? 6= 0, we expand the partition function to second order and identify the effective

Hamiltonian

H
(2)
? = � 2t2?

⇡a∆

Z
dx cos(2

p
2✓�)

= �2∆̄2

⇡a

Z
dx cos(2✓2). (2.18)

This corresponds to an Andreev process where a Cooper pair is transported from wire

1 to wire 2. For the second equality, we use the fact that at energies smaller than ∆,

the charge field of wire 1 is pinned to a classical value hcos(2✓1)i ⇠ 1 implying ✓1 ⇠ 0,

due to the strong pairing H∆ term (4.57). Classically, to minimize energy (at zero

temperature) the superfluid phase ✓1 will be pinned at one minimum of the (periodic)

cosine potential � cos(2✓1). Each minimum ✓1 = 2n⇡ with n 2 Z is equivalent and

thus we can assume that the phase is pinned at ✓1 ⇠ 0, neglecting instanton effects

from one minimum to another. We then observe an effective induced superconducting

gap in the second wire: ∆̄2 ⇠ t2?/∆. Therefore in the weak tunneling region, the

superconducting phase shows 4 MZM for a large range of chemical potentials, roughly

when �2t < µ < 2t.

Formally, minima of the form ✓1 = (2n+ 1)⇡ are also allowed and correspond to a

twist of ⇡ in the definition of the fermionic operator in Eq. (2.13). In the Kitaev model

for the wire 1, this ⇡ phase shift is equivalent to the Z2 symmetry c1 ! �c1 in the

BCS Hamiltonian. A redefinition of the global phase by ⇡ of the fermionic operator
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associated with the wire 1 also corresponds to change t? ! �t? and ∆0 ! �∆0

in Eq. (2.1). This corresponds to the transformation c1 $ c2 in the Hamiltonian.

In the band picture, this ⇡-phase shift simply inverts the bonding and anti-bonding

bands. It is however important to recognize that the intra- and interwire pairing

terms would have a ⇡-phase shift of difference, which seems difficult to realize with a

unique (three-dimensional) superfluid reservoir.

In the regime t � t? � ∆, one can also generate a similar term

H
(2)
? = � 2t2?

⇡aΛ

Z
dx cos(2

p
2✓�). (2.19)

The energy cutoff Λ depends on the short time and short distance considered in

the virtual processes (see more details in Appendix B). The original pairing term

in wire 1 can be estimated as hcos(2✓1)i ⇠ ∆/Λ, when evaluating the effect of

the pairing term at low energy perturbatively in ∆. More precisely, we calculate

hcos(2✓1(x))i = Tr[e��H cos(2✓1(x))] to first order in ∆ leading to hcos(2✓1(x))i ⇠

∆
R �!+1
1/Λ

d⌧hcos(2✓1(x, ⌧)) cos(2✓1(x, 0))i, where ⌧ represents the imaginary time and

h...i means an average on the quadratic Luttinger theory of the correlation func-

tion at the position x. Remembering that hcos(2✓1(x, ⌧)) cos(2✓1(x, 0))i ⇠ (Λ⌧)�2,

we check that hcos(2✓1)i ⇠ ∆/Λ. The H
(2)
? term then gives a contribution in ⇠

(t2?/Λ)hcos(2✓1)i
R
dx cos(2✓2). Starting from a Gaussian Luttinger theory, we have

the equality he2i✓1(x)i = he�2i✓1(x)i = e�2h✓21(x)i, implying that only the product of co-

sine functions contributes. A gap is induced in wire 2 and its amplitude now evolves

as ∆̄2 ⇠ t2?∆/Λ2 ⇠ ∆. This argument can also be checked applying the arguments in

the bonding-antibonding representation in Sec. 2.1. The term ∆1 in the band basis

gives a term such as ∆1 sin(k
1
Fa)(c

†
+(k)c

†
+(�k) + c†�(k)c

†
�(k)), which induces a contri-

bution ∆1 sin(k
1
Fa)c

†
2(k)c

†
2(�k) with ∆1 = ∆. This confirms the preceding argument

that the induced superconducting gap in wire 2 becomes equal to the superconducting

gap in wire 1 in the strong-coupling limit. Bosonization arguments apply as long as

the energy spectrum is linear, implying that k1
F is not too close to zero and therefore
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that sin(k1
Fa) ⇠ 1, which then validates the equivalence with Eq. (2.19). If we con-

sider the regime close to the bottom of a band, then one must rely on the band basis

arguments showing that the induced gap in wire 2 is ∆ sin(k1
Fa).

To identify the number of Majorana fermions in this regime, we resort to the

band-structure arguments of the preceding section. The proximity effect gives rise

to 4 MZM, 2 MZM or 0 MZM depending on the value of µ. Our collaborators V.

Perrin, A. Petrescu and I. Garate have checked numerically that when approaching the

bottom of the lowest band, close to the strong-paired phase transition, the proximity

effect becomes fragile as ∆ sin(k1
Fa) becomes very small [187].

2.2.1 At ⇡ flux

For non-zero values of the magnetic field with � 6= 0, one must adjust the densities or

the Fermi wave-vectors in the two wires in Eq. (2.16) to produce a proximity effect,

e.g. to make the tunneling term t? or higher-order contributions relevant. Here, we

study the situation with ⇡-flux per plaquette. We assume that (k1
F + k2

F )a = ⇡ such

that the following commensuration relation is satisfied

a
⇥
(k1

F + k2
F )⌥ �

⇤
= 0 mod 2⇡, (2.20)

with �a = ±⇡. This corresponds to a half-filled ladder with one particle per rung.

The interwire hopping term (2.16) becomes

H? = �2t?
⇡a

Z
dx cos(

p
2✓�) cos(

p
2�+), (2.21)

modulo an oscillatory term. In the strong-coupling limit, both modes ✓� and �+

are pinned to the classical values: ✓� ⇠ 0, �+ ⇠ 0. The pinning of the mode �+

suppresses fluctuations in the total density (or total charge) on a given rung. The

system shows a(k1
F + k2

F )/⇡ = 1 particle and 1 hole per rung. Adding a particle or a

hole at a given rung costs an energy, and the system shows a long-range charge order

associated to the channel �+. Each rung is equivalent with one another, leading to a

uniform charge density wave order with an effective wave vector q = (k1
F+k2

F⌥�) = 0.
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Essentially, when t? � ∆ and more precisely t? > 2t, in the bonding and antibond-

ing representation of Fig. 2.1c, the lowest band becomes filled and adding one more

particle in the antibonding band costs an energy of the order of t?. The bosoniza-

tion argument above suggests that this conclusion remains in fact correct even when

t? < t, but with t? � ∆, due to renormalization group arguments. Indeed, t? is

a relevant perturbation associated to the kinetic terms H±
0 , and therefore will grow

under the renormalization scheme to values larger than t. More precisely, defining the

dimensionless quantities ∆̃ = ∆/Λ⇤ and t̃? = t?/Λ
⇤ with Λ⇤ being the high-energy

cutoff (which can be taken to be larger than t since the total bandwidth for a given

wire is 4t), the invariance of the partition function to second-order in t̃? ⌧ 1 and

∆̃ ⌧ 1 leads to the following two equations:

dt̃?
dl

=

✓
2� K+

2
� 1

2K�

◆
t̃?,

d∆̃

dl
=

✓
2� 1

2K+

� 1

2K�

◆
∆̃, (2.22)

where l = � log(Λ⇤/E) and E corresponds to the energy scale of interest. This renor-

malization procedure is detailed in Appendix C. It can also be seen as an integration

of modes at short distances with typical lengths between ~v/Λ⇤ ⇠ a (with ~ = 1) and

L = ~v/E, corresponding to an integration of blocks in real space and a redefinition

of the lattice spacing as L. For free fermions, setting K+ = K� = 1, we check that

both t̃? and ∆̃ flow to strong couplings. If we assume free fermions (K+ = K� = 1)

or weakly-interacting fermions (K+ < 1, K� < 1) and if we consider the limit where

t? � ∆, then we confirm that the term t̃? will flow to strong coupling faster than

the term ∆̃. In this case, the low-energy physics will be strongly associated with the

properties of Eq. (2.21) and the ground state is a charge density wave.

For free fermions, our results are also in agreement with a filled lowest bonding

band. Excitations above the charge gap corresponding to transferring a particle in

the anti-bonding band then are accompanied with a phase change of ⇡ associated to

the fermion operator c2 (from Eq. (2.6)), which is equivalent to ✓1 � ✓2 + �a = ±⇡
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in the presence of the magnetic field. Another manner to understand the pinning

of the phase ✓� is through the condition that at each site j (or each wave-vector k)

the charge density wave formation implies hc̃†1c̃1i + hc̃†2c̃2i = 1 or k1
F + k2

F = ⇡/a =

kF,+ + kF,�. If we consider the strong-coupling fixed point of the renormalization

group arguments then this corresponds to a situation with a large t̃? ⇠ 1 and with

a fully occupied lowest band, i.e. with kF,+ = ⇡/a and kF,� = 0. From the equality

hc̃†+c̃+i = 1 = 1
2
(hc̃†1c̃1i+ hc̃†2c̃2i) + 1

2
(hc̃†1c̃2i+ hc̃†2c̃1i), we then infer hc̃†1c̃2i+ hc̃†2c̃1i = 1

on each rung of the ladder system. In the continuum limit, phase coherence takes

place between a particle ( 1
R)

† and a hole  2
L . This constraint is naturally fulfilled

through the pinning conditions of �+ and ✓� in H?. Here, ✓� can be seen as the

phase associated to the bosonic particle-hole pair wavefunction, and there is then a

global phase coherence for the particle-hole pairs.

We also observe that the ±⇡ magnetic flux suppresses the effect of the supercon-

ducting term ∆1 when t? � ∆, since at low energy cos(2✓1) = cos(
p
2(✓++ ✓�)) and

hei
p
2✓+i ⇠ 0 due to the pinning of the dual mode �+, and the quantum uncertainty

principle resulting from commutation rules between �+ and ✓+.

In the wire or chain representation, the system is analogous to the rung-Mott

insulator [258, 259] of the ladder system. In the rung-Mott state of hard-core bosons,

the Josephson effect produced the pinning of the phase ✓�. We name the phase found

here Charge Density Wave (CDW) in the phase diagram of Fig. 2.2b associated to

the long-range correlations of the field �+ in the wire basis. This state of matter is

driven here by the t? term (rather than the interaction term), and is also related to

a filled band insulator when t? ⇠ 2t.

For the weak coupling regime t?  ∆, ∆̃ now flows first to the strong-coupling

regime assuming moderate repulsive interactions (K+, K� > 1/2); therefore, we have

✓1 ⇠ 0 and its dual mode �1 becomes fast oscillating inside cos(
p
2�+) = cos(�1+�2).

H? is then irrelevant to the first order. To the second order in perturbation, however,

we still find an effective term reminiscent of an Andreev process between wires where
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a Cooper pair is transported from wire 1 to wire 2, then triggering a superconducting

gap in the free fermion wire (see Fig. 2.3 and more details in Appendix B)

H
(2)
? = � 2t2?

⇡a∆

Z
dx cos(2

p
2✓� � 2�x)

= � 2t2?
⇡a∆

Z
dx cos(2✓2). (2.23)

In the last equality, we regard 2�x as multiples of 2⇡ and ✓1 is pinned to zero for

large ∆. Similar to the 0-flux case, the induced gap takes the form ∆̄2 = t2?/∆. To

minimize classically the energy in H
(2)
? , we obtain the pinning condition

hcos(2
p
2✓� � 2�x)i = 1. (2.24)

This phase is referred to as the p-wave SC phase in the phase diagram of Fig. 2.2b.

Here, the phase reveals 4 MZM until the occurrence of the CDW order transition.

Together, the conditions k1
F + k2

F = ⇡/a and � = ⇡ imply that the chemical potential

will take a value where the 4 MZM phase occurs. At the transition between the CDW

and the 4 MZM topological phase, the modes �+ and ✓+ should become gapless, since

in the CDW phase the system tends to favor the pinning of the mode �+ and in the

superconducting phase, both ✓1 and ✓2 are pinned, implying consequently that both

✓� and ✓+ are pinned. Hence, a Luttinger liquid is expected in the vicinity of the

transition line (dashed line in Fig. 2.2b) separating the CDW and the 4 MZM phases.

Below, we study the Meissner and Majorana currents that originate when a� de-

viates slightly from ±⇡. It is interesting to comment that the argument below would

also be applicable for the 4 MZM topological superconducting phase close to the zero

flux situation. We define and measure the Meissner-Majorana current at the edge by

a small disturbance in fluxes ∆�, as in Fig. 2.3. From Eq. (2.24), we obtain

e� = �+∆�, hr✓�(x)i = ∆�/
p
2. (2.25)

It is relevant to observe that ∆� acting on the ✓� mode in Eq. (2.15) plays a similar

role as a chemical potential�µ̃r✓�(x) on a band insulator with µ̃ = ∆�v�K�/(
p
2⇡).
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Figure 2.3: Weakly coupled hybrid wires in the presence of a uniform magnetic field
with Φtot = �a = ±⇡. The condition k1

F + k2
F ⌥ � = 0 allows us to make Andreev

terms flowing to strong couplings close to Φtot = ⌥⇡, similarly as the situation at
zero net flux. A Meissner current formed by the Cooper pairs and proportional to ∆�

is formed within each plaquette under a small flux deviation from Φtot = �a = ±⇡,
and the bulk transverse current effectively averages to zero as described through the
vertical dashed lines. The induced parallel flow screens the effect of the perturbation
∆�. The conservation of the Meissner current close to the boundaries is ensured
through Andreev processes shown at rungs (1, 2) and (L� 3, L� 2) which have flown
to the strong-coupling limit. In addition, at the sites 0 and L � 1, similar to the
Josephson junction with Majorana fermions [76, 172, 262], the presence of gapless
Majorana modes allows for a (perturbative) current proportional to t?. We then find
a Majorana current in orange satisfying the property hjM,2!1(0)i = �hjM,2!1(L�1)i,
where 2 and 1 refer to the wire indices. The choice of vector potentials at the first and
last rungs are fixed such that the Peierls phase for an electron or Majorana fermion
is half of that of a Cooper pair.

Therefore, the topological proximity effect takes place as long as |µ̃| < ∆̄2. For

|µ̃| = ∆̄2, by analogy to the commensurate-incommensurate transition [260], the

pinning of ✓� should be suppressed, and the system effectively behaves as if there

is a chain of free fermions and a topological superconducting wire with 2MZM in

Fig. 2.2c. Next, we develop a linear-response analysis in ∆� for the ladder system

along the lines of Ref. [261]. In particular, we address the Majorana particle current

at the boundaries of the system with 4 MZM, building an analogy with the topological

Josephson junction [172, 262].

To evaluate the Meissner and Majorana currents, we employ the Heisenberg equa-

tion of motion for the density operator d(n1 � n2)/dt = i[Hhybrid, n1 � n2] with ~ = 1

and with n1(x) � n2(x) = �
p
2@x��/⇡ (modulo a global background charge). Inte-
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grating the continuity equation
R
dx[@(n1 � n2)/@t +r · j(x)] = 0, then we identify

the parallel (intrawire) current (density) jk and the interwire (vertical) current j?

associated respectively to H�
0 and H?.

The perpendicular current associated with a unit charge q = 1 takes the form:

j?(x) = �4t?
⇡

sin(
p
2✓�) cos(

p
2�+). (2.26)

If we apply the pinning condition found above h✓�(x)i = ∆�x/
p
2, we observe that

the vertical current which was formally zero when ∆� = 0 now gives an oscilla-

tory response with the space variable x in the continuum limit. We check that
R
dxhj?(x)i = 0, as an indication that circulating Meissner currents still take place

if we assume a small deviation from ⇡ flux. Below, we assume that the left and right

boundaries of the sample are located at x = 0 and x = L� 1 as in Fig. 2.3. Since we

have fixed a0 = a = 1, the variable L� 1 here will also denote the position of the last

site.

To evaluate the parallel current from Eq. (2.15), it is important to mention that

the charge operator has been defined as n1(x)�n2(x) = �
p
2@x��/⇡ for a unit charge

q = 1. To define the current associated to Cooper pairs, we shall then multiply this

operator by q = 2, which then results in:

jk(x) = �2
p
2vK

⇡
r✓�(x). (2.27)

In the bulk, a Meissner current with charge q = 2 is then formed. From Eq. (2.25),

we obtain:

hjk(x)i = �2
p
2vK

⇡
hr✓�(x)i = �2vK∆�

⇡
, (2.28)

which screens the effect of the magnetic flux variation; see Fig. 2.3. The continuity

of the bulk Meissner current hjki = �2vK∆�/⇡ close to the two boundaries in the

vertical direction (at sites j = 1, 2 and sites j = L�3, L�2 formally) is ensured by the

Andreev processes, which have flowed to the strong-coupling limit. Once ∆�a 6= 0,
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in addition to the normal Meissner current formed by the bulk Cooper pairs, the

hopping term at the two edges also induces an edge Majorana fermion current. The

Majorana responses at sites 0 and L� 1 will be proportional to the perturbation t?.

Based on the analysis of Sec. 1.2.2, we introduce the four MZM operators according

to the convention in Eq. (1.61):{�1B(0), �
2
B(0), �

1
A(L� 1), �2A(L� 1)} . To describe the

effect of ∆� symmetrically on the Majorana fermions in the first and last (orange)

unit cells in Fig. 2.3, we define a vector potential of the form A?(0) = A?,2!1 =

(∆�a)/(2a0) at the first rung (and effectively zero vector potentials in the other seg-

ments of the first cell) associated to a unit charge q = 1; the symbol 2 ! 1 means

going from (lower) wire 2 to (upper) wire 1. The associated Peierls phase at j = 0 for

the Majorana fermions then takes the form A?(0)a
0 = ∆�a/2. In the last unit cell,

we may define A?(L� 1) = A?,2!1 = �A?(0) (and effectively zero vector potentials

in the other segments of the last cell). In this geometry of parallel wires, the operator

c†1c2 then turns into �1B(0)�
2
B(0)/4, which results in

H?(0) =
t?
2
sin

✓
∆�a

2

◆
i�1B(0)�

2
B(0)

⇡ t?a

4
∆�i�1B(0)�

2
B(0). (2.29)

When ∆�a = 0, H?(0) is zero, reflecting that the phase with 4-Majorana edge modes

is protected against a ⇡-flux since the hopping term t?e
i�xj = t?(�1)j becomes real

and the presence of time-reversal symmetry indicates that in this case t? should not

hybridize the MZM.

At the left boundary of the system, the Majorana current is denoted as hjM(0)i =

hjM,2!1(0)i and is defined as hjM(0)i = @hH?(0)i/@(aA?,2!1(0)) = 2@hH?(0)i/@(a∆�),

which results in:

hjM(0)i = (t?/2)hi�1B(0)�2B(0)i. (2.30)

In the ⇡-flux configuration, [i�1B(0)�
2
B(0),Hhybrid] = 0, the parity operator i�1B(0)�

2
B(0)

associated to these two MZM is equally likely to take an expectation value ±1. Then,
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hi�1B(0)�2B(0)i = 0 on average and accordingly hjM(0)i. As soon as one switches on

∆�a = 0+, to minimize the energy, the parity operator hi�1B(0)�2B(0)i is locked to

�1, producing a response hjM(0)i = (t?/2). Here, the Majorana current satisfies

hjM(0)i = �hjM(L � 1)i where jM(L � 1) = jM,2!1. This relation can be derived

from the boundary term

H?(L� 1) ⇡ �t?a

4
∆�i�1A(L� 1)�2A(L� 1). (2.31)

By symmetry between the two wires’ boundaries, we have the relations �1A(L� 1) $

�2B(0) and �2A(L � 1) $ �1B(0), ensuring that hH?(0)i = hH?(L � 1)i. The identi-

fication hjM(0)i = �hjM(L � 1)i comes from the vector potential A?,2!1(L � 1) =

�A?,2!1(0) = �(∆�a)/2a0, as shown in Fig. 2.3. When writing Eq. (2.31), we have

assumed that t?(�1)j takes the same values at j = 0 and j = L�1 implying that L�1

is even; an odd value of L�1 would lead to the same physical result and would just flip

the value of hi�2A(L�1)�1A(L�1)i at the boundary to satisfy hH?(0)i = hH?(L�1)i.

This shows that the physics remains the same independently of the relative parity

between the two pairs of Majorana fermions at the boundaries.

If we change ∆� ! �∆�, all the currents should flip their signs. The energy

conservation of hH?i is related to a flip of the parity operator formed by the two

Majorana fermions at one boundary. There is then a jump of size t? associated with

the edge MZM current when changing the sign of ∆� close to ⇡-flux per plaquette.

This situation is therefore very similar to a Josephson junction with a resonant level

which can be realized with a double-dot charge qubit and which shows a similar

‘jump’ in the superconducting Josephson response for a ⇡ phase shift [263]. The

resonant level here is formed at ⇡ flux per plaquette through the two values of the

expectation value of the parity operator i�1B(0)�
2
B(0) = ±1 at the boundary. Fig. 2.3

illustrates the formation of the composite Meissner-Majorana current. It enables us

to detect the 4-Majorana edge mode through the measurement of the vertical current

at the two boundaries. Physically, to measure the Majorana current, one can resort

81



to a setting similar to the one suggested in Ref. [264], where an analogy between

Majorana fermions and a resonant level was also addressed.

2.2.2 At arbitrary flux

We can also consider, in general, any configuration allowed by Eq. (3.34):

a
⇥
(k1

F + k2
F )�m�

⇤
= 0 mod 2⇡, (2.32)

with m odd and �a 6= ±⇡. Adjusting the densities in the two wires, one can then

reach quantum Hall plateaux for specific values of the magnetic field. As before, one

can safely drop out fast oscillating terms, such as /
R
dx cos(· · ·⌥ 2�x) in H? (2.16),

and reach for m = 1

H? = � t?
⇡a

Z
dx cos[

p
2(✓� �m�+)]. (2.33)

In the strong-coupling limit, t? � ∆, the form of the interwire hopping term H?

(2.33) satisfies the classification of a ⌫ = 1/m Laughlin state (with m odd) and

integer quantum Hall effect when ⌫ = 1 [28, 29]. We show below that in that case the

intrawire pairing term ∆ flows to zero according to renormalization group arguments.

In the case of m = 1, the quantum Hall phase can be achieved for free fermions, as

experimentally confirmed in ultra-cold atoms [241], and we check that the hopping

term is relevant in that case for K = 1 under the renormalization group procedure.

Long-range Coulomb forces resulting in K ⌧ 1/2 can also stabilize the fractional

quantum Hall state at ⌫ = 1/3 by making the tunneling term in Eq. (2.33) relevant

for m = 3, as numerically observed [245, 246]. In that case, one must include higher

harmonics contributions to the definition of the fermion operator in Eq. (2.13) to

obtain Eq. (2.33) for the same density-flux constraint as in Eq. (2.32) [245].

The relevance of the hopping term t? here pins the mode (✓��m�+) to zero, which

can be interpreted as a (bulk) gapped mode by analogy to a two-dimensional system.

A ladder system is described by four bosonic fields, which implies that two modes are
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still gapless. The latter describe the two chiral edge modes of the ladder system. To

properly describe the system and the edge states, it is convenient to introduce four

chiral fields [68, 244]

�↵r =
✓↵

m
+ r�↵, (2.34)

with ↵ = 1, 2 representing the wire index and now r = +1/�1 denoting the left/right

moving particles in agreement with Eq. (2.13). The chiral bosonic fields satisfy the

commutation relation

[�↵r (x),�
�
p (x

0)] = ir
⇡

m
�rp�↵�Sign(x

0 � x). (2.35)

New modes can be constructed from �↵r which capture the properties of the gapped

bulk states (✓,�)

(
� = (��1

�1 + �2
+1)/2,

✓ = (�1
�1 + �2

+1)/2,
(2.36)

and gapless edge states (✓0,�0)

(
�0 = (��2

�1 + �1
+1)/2,

✓0 = (�2
�1 + �1

+1)/2.
(2.37)

The commutation relation reads:

[�(x),m✓(x0)] = i(⇡/2)Sign(x0 � x), (2.38)

and the same for the gapless modes (�0, ✓0). The bulk gapped mode is now related to

the field �. When t? � ∆, correspondingly, the bulk mode � is pinned to a classical

value since

H? = � t?
⇡a

Z
dx cos(2m�). (2.39)

A gap is opened in the bulk as previously shown in Fig. 2.1c. In Appendix D and

Eq. (D.11), we check that the two gapless modes which produce a chiral Luttinger

theory are L(x) = �1
+1(x) = ✓0(x)+�0(x) and R(x) = �2

�1(x) = ✓0(x)��0(x). Starting
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from free fermions and K = 1, the edge Luttinger parameters are Ke = 1, ve = v.

We thus realize an Abelian quantum Hall phase at filling factor ⌫ = 1/m = 1 in the

presence of an arbitrary uniform flux. If we change the direction of the magnetic

field, which is equivalent to change m ! �m in Eq. (2.32), we obtain similar results

by inverting the left and right-moving particles’ definitions in Eq. (2.34).

The two gapless modes are, furthermore, protected against a small intrawire pair-

ing. Indeed, we can rewrite H∆ as

H∆ = � ∆

⇡a

Z
dxei[2m✓+

p
2(✓�+m��)] +H.c.. (2.40)

Since � is pinned to a classical value minimizing the cosine potential term, then

the dual mode ✓ oscillates rapidly: hei✓(x)e�i✓(0)i / e�x/⇠ with a correlation length ⇠

proportional to 1/t?. Therefore, H∆ flows to zero for large t?. For the observables,

the integer Laughlin state is revealed in the edge current. A direct calculation of the

parallel and perpendicular currents defined in Sec. 2.2.1 for a unit charge q = 1 leads

to

hj?(x)i = �2t?
⇡

hsin(2m�)i = 0,

hjk(x)i = �
p
2vK

⇡
hr✓�(x)i. (2.41)

Choosing an alternative gauge for the magnetic vector potential

A? = 0,

I
A~ · dl~ =

�
A1

k � A2
k
�
a = �a, (2.42)

we rewrite the quadratic contribution to the action for the � bosonic field, as

S[��, ✓�] =
v

2⇡

Z
dxd⌧


1

K

�
r���2 +K

⇣
r✓� + A�

k

⌘2�
, (2.43)

where A�
k = (A1

k � A2
k)/

p
2. To extremize the action @S/@✓� = 0, it requires

hr✓�(x)i = �A�
k . The edge current of the integer Laughlin state for a unit charge

q = 1 and for free electrons K = 1 hence becomes

hjk(x)i =
vK�

⇡
. (2.44)
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Figure 2.4: Edge current for a unit charge q = 1 in the Abelian quantum Hall state
(⌫ = 1) when t? � ∆. An arbitrary uniform magnetic flux is applied on each
plaquette.

It follows the same direction as the vector potential produced by the magnetic flux

(shown in Fig. 2.4).

In the presence of Coulomb interactions, as shown in Appendix D, backscattering

effects occur for K 6= 1 when integrating out the bulk (gapped) mode on the two-leg

ladder system, and as a result the charge at the edges will be adiabatically deformed

[68, 238, 244]. In contrast, the bulk polarization in a Thouless pump geometry [265] is

stable under Coulomb interactions as shown in Appendix E, reflecting the Zak phase,

and measuring ⌫. Similar arguments apply to the Laughlin phase ⌫ = 1/3 stabilized

with long-range Coulomb interactions [245, 246]. The charge at the edges in these

ladder systems could be measured accurately [162, 238, 244, 266–268].

The quantum Hall phase at ⌫ = 1 occurs when t? � ∆. In the weak-coupling

limit t?  ∆, for an arbitrary flux, both the first order (2.33) and the second order

(2.23) contributions of t? are irrelevant from renormalization group arguments since

the superfluid mode ✓1 is now pinned. In Appendix B, we find that the most relevant

term is

H
(4)
? = � t4?

3⇡a∆3

Z
dx cos[2(✓2(x+ 2a)� ✓2(x)) + 4�a],

/ e4i�ac†2(x� a)c†2(x)c2(x+ a)c2(x+ 2a) +H.c.. (2.45)

The constraint on the phases

✓2(x+ 2a)� ✓2(x) = �2�a, (2.46)

helps to form a local current formed by the Cooper pairs within three adjacent pla-
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quettes and using Eq. (2.28), this leads to

hjk(x)iplaquette = �2vK�

⇡
. (2.47)

Deviating from the ⇡-flux substantially in the weak-coupling region, an arbitrary flux

breaks the time reversal symmetry T and destabilizes the proximity effect. Conse-

quently, there is no induced superconducting gap in the free fermion wire. Still, two

Majorana edge modes persist in the original Kitaev superconducting wire. The pro-

tection against orbital magnetic effects in this weak-coupling region could be useful

for applications in quantum computation and engineering of Majorana fermions with

magnetic fluxes [269].

Fig. 2.2b and Fig. 2.2c show the phase diagrams for the cases of ⇡ flux per plaquette

at half filling and arbitrary fluxes, when adjusting the densities in the wires such that

the proximity effect can effectively takes place. In the strong-coupling limit, on the

other hand, one is able to distinguish the CDW and Abelian quantum Hall states from

the responses of Thouless pump [265]. We refer the reader to Appendix E, where a

proposal for the measurement is raised and the stability of the bulk polarization under

Coulomb interactions is also discussed.

2.3 Weakly coupled ladders

In this section, we present two proposals to realize two-dimensional topological phases

using multiple coupled wires or coupled ladders, corresponding to the third and fourth

cases of Sec. 2.1.

First, we design a p+ip superconductor [14] starting from the bonding-antibonding

band representation of a pair of wires — “ladder geometry” — and generalizing the

analysis to coupled ladder systems. The advantage of fabricating weakly coupled

ladder systems compared to symmetrically coupled wires is that one can control the

range of the p-wave superconducting channel in both directions, namely x and y,

when projecting a pair of wires or the ladder system onto the lowest bonding band.
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Here, a pair of wires with appropriate Peierls phases ⇣ and � will generate an ipx

superconducting channel, and coupling weakly the ladders together will provide the

py channel. If we would consider instead only strongly coupled wires or symmetrically

coupled wires, then the projection onto the lowest band would result in long-range

pairing terms in the direction perpendicular to the wires, through the tunneling term

t?. However, the effective two-dimensional model projected onto the lowest band basis

would be of the same class as a topological px superconductor (with two Fermi points).

Other proposals coupling quantum wires have suggested the possible engineering of ip

channels through bath or reservoir engineering [30, 270–272] by analogy to the two-

dimensional case [14]. It is also important to mention that for spins-1/2 fermions,

similar ladder constructions allow us to reproduce d-wave superconductivity, D-Mott

and pseudogap physics, relevant to cuprate superconductors [63, 273, 274].

Second, we address the case of coupled spinful or spin-1/2 ladder systems. We start

by giving a brief review of the previous result obtained by Karyn and A. Petrescu [68]

on the two-leg ladder, where a Cooper pair Laughlin state is formed at filling ⌫ = 1/2.

In the presence of a uniform magnetic field and long-range repulsive interactions,

we then show explicitly how the coupled wire system can form a single bulk fluid

with chiral modes at the edges now carrying a charge in agreement with the two-

dimensional bulk-edge correspondence [25].

2.3.1 A spinless p+ ip superconductor

In the first subsection, we present our proposal to engineer the p+ ip superconductor

in coupled ladder geometries, referring to the third case of study in Sec. 2.1. Depicted

in Fig. 2.5 (left), our building block is a blue ladder comprising two strongly-coupled

wires labeled by ↵ = 2l � 1, 2l where l is an integer. The flux attachment which will

be responsible for the ipx channel is shown in Fig. 2.5 (right top).

First, we re-analyze a block, say with ↵ = 1, 2, for the case with ⇣ = �. The kinetic
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Figure 2.5: (Left) Coupled ladder construction for a p+ip superconductor. A building
block is formed in blue with two strongly-coupled wires. The blue ladders then couple
together via the pink regions. While the pairing terms denoted by grey arrows (both
intra- and interwire) are suppressed in the strong coupling limit, the pairings denoted
by red and green arrows (interwire only) are responsible for the ipx and py channels;
(Right) Flux attachment in each square plaquette with ⇣a = �a = ⇡. In each square
unit cell, the total net flux is zero. Peierls phases take opposite values within two
successive plaquettes in y direction for the same hopping process.

part of the Hamiltonian is described by Hk and H? in Eq. (2.2) with

⇣ = �, Φtotal = 0. (2.48)

As discussed in Sec. 2.1, we assume here that the vector potentials related to ⇣ and

� are engineered, for instance, in ultra-cold atom systems. In solid-state nanowires,

this can also be realized through a space-dependent magnetic field Bz = �/a0 �

⇣⇡/(2a0) sin(⇡y/a0). Since the total flux per plaquette is zero, we can rewrite the

band structure as the one of Fig. 2.1b, in the absence of magnetic flux, performing a

proper gauge transformation similar to Eq. (2.9). The pairing terms will be modified

accordingly, then providing the required physics, namely an ipx channel, after fixing

the value of � = ⇣ = ⇡/a. Coupling weakly the ladders together, we realize a py

channel. There are two key properties to this proposal. First, the magnetic field

Bz will be staggered in y direction implying that � also takes opposite values in

two successive plaquettes in y direction with the requirement that Φtot = 0 in all

88



plaquettes. Here, � represents a periodic staggered step-like function in y direction.

Therefore, induced Zeeman effects at the position of the wires will be small and

controllable through another magnetic field Bx along x direction (which is important

to induce the proximitized p-wave pairing potentials [275]). Second, the choice � =

⇣ = ⇡/a leads to imaginary hopping terms ±it along the wires, which break chiral

symmetry and time-reversal symmetry while preserving particle-hole symmetry. This

then allows for a wire-construction of a topological phase of class D, e.g. a two-

dimensional p + ip superconductor [70]. The transverse hopping term of the form

t?(�1)j is real, therefore ensuring that Majorana modes can occur at zero energy.

Below, we provide two physical understandings of the results when using equivalent

low-energy theories related to Fig. 2.1b and Fig. 2.1c.

Performing the gauge transformation (2.9),

c1(j) = ei�xj/2ec1(j), c2(j) = e�i�xj/2ec2(j), (2.49)

we can define the new basis for the bonding (+) and anti-bonding (�) fermions

ec±(j) = [ec1(j)± ec2(j)]/
p
2. (2.50)

The two-band model in Eq. (2.7) and Eq. (2.8) is recovered with the band structure

shown in Fig. 2.1b. A gap of scale (2t?) is opened between “+/�” bands. Below, we

fix the chemical potential µ such that the + band becomes partially filled and the �

band remains empty. We then project a pair of wires, the blue ladder system, onto

the lowest bonding band pair basis:

H0,+ = �
X

kx

[2t cos(kxa) + t? + µ]ec†+(kx)ec+(kx). (2.51)

In the strong coupling limit t? � ∆i, the phase ⇣ is important to suppress the

intrawire pairing. The intrawire pairing term ∆1 = ∆2 = ∆ becomes

H∆ = i∆
X

kx

sin(kxa) cos(⇣/2a)ec†+(kx)ec†+(�kx) + H.c.. (2.52)
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Below, we set � = ⇣ = ⇡a, such that this contribution becomes zero. The interwire

contribution ∆0 involving a given rung also vanishes between nearest (N) neighbors

when projecting onto the lowest band:

0 = H∆0,N = ∆0

X

j

c†1(j)c
†
2(j) + H.c.

=
∆0

4

X

kx

{ec†+(kx),ec†+(�kx)}+H.c., (2.53)

but survives between next-nearest (NN) neighbors

H∆0,NN = ∆0

X

j

c†1(j)c
†
2(j + 1) + H.c.

= e∆
X

kx

i sin(kxa)ec†+(kx)ec†+(�kx) + H.c., (2.54)

with e∆ = (∆0e
i�a/2)/2. Adding a term ∆0

P
j c

†
2(j)c

†
1(j + 1) + H.c. would result in

an identical contribution in the bonding band basis. In the equations above, we have

ignored all irrelevant terms involving the “� ” band. Once we fix the flux value

�a = ⇡, e∆ = i∆0/2, (2.55)

we engineer a purely imaginary ipx channel for the bonding fermions in each blue

building block ↵ = 2l � 1, 2l. The pair of strongly-coupled wires then effectively

behaves as a topological ipx superconductor with two Majorana zero modes, one at

each boundary.

Now, we couple the blue building blocks or ladders along the y direction by the

tunneling amplitude t0? (corresponding to the pink blocks in Fig. 2.5, left) with a

reversed flux unit � ! �� depicted in Fig. 2.5 (right bottom). The magnetic field

Bz = �/a0� ⇣⇡/(2a0) sin(⇡y/a0) then becomes staggered in the y direction. To realize

the ipx+ py superconductor (or px± ipy superconductor modulo gauge redefinitions),

the magnetic field Bz must be uniform in the x direction but staggered in the y

direction.
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Formally, this construction is correct as long as t0? ⌧ t?, such that the bonding-

antibonding band representation of a two-coupled wire model remains valid. Through

a pink region, we obtain the Hamiltonian:

H0
? = �t0?

M 0/2X

l=1

e�i�xc†2l(x)c2l+1(x) + H.c.,

H0
∆0,N

= ∆0

M 0/2X

l=1

c†2l(x)c
†
2l+1(x) + H.c. (2.56)

For the coupled wire system, the gauge transformation (2.49) can be generalized as

c2l�1(j) = ei�xj/2ec2l�1(j), c2l(j) = e�i�xj/2ec2l(j), (2.57)

which leads to

H0
? = �t0?

X

ky

cos(kya
0)ec†+(ky)ec+(ky),

H0
∆0,N

=
∆0

2

X

ky

i sin(kya
0)ec†+(ky)ec†+(�ky) + H.c.. (2.58)

Thus we can implement a purely real py channel for the bonding fermions, assuming

that t0? ⌧ (t?, t). The relative phase between the ipx and py channel is locked through

the gauge transformation (2.57).

Next, we define two-dimensional fermion operators ec+(k) = ec+(kx, ky). The goal

is to study the phase diagram and edge state properties associated with the system.

To that end, it is convenient to switch to the Majorana fermion representation,

ec+(k) =
1

2
(�1(k) + i�2(k)) . (2.59)

Similar to Ref. [30], for simplicity we set the lattice spacing a = a0 = 1 and we

concentrate on the regime with low densities around k ' (0, 0), where we have

H+ ' H0,+ +H∆0,NN +H0
? +H0

∆0,N

= �1

4

X

k

�T (�k)H+(k)�(k), (2.60)
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with �T (�k) = (�1(�k), �2(�k)) and

H+(k) = ukx⌧
z + [✏0 +

k2
x

2m
+ T2 cos(ky)]⌧

y +R2 sin(ky)⌧
x. (2.61)

Here ⌧ i (i = x, y, z) denote Pauli matrices and effective parameters are given by

u = ∆0, m = 1/(2t). The three parameters locating the phase transitions read

✏0 = �2t� t? � µ, T2 = �t0?, R2 = �∆0. (2.62)

The phase diagram of H+ (2.61) is carefully studied in Ref. [30], and we adjust the

discussion for the Majorana zero modes at a boundary to our situation. By tuning µ,

✏0 goes from a large negative value to a large positive value (with respect to±|T2|), and

this produces two phase transitions from an anisotropic topological superconducting

phase to the trivial strong paired state through the occurrence of an intermediate

topological two-dimensional Moore-Read Particle-Hole phase [13].

A large (positive) ✏0 � |T2| value hinders the occurrence of MZM from energetics

point of view in the trivial strong-paired phase. The chemical potential is located

below the bottom of the lowest band. When ✏0 = +t0? = +|T2|, we enter into the

intermediate topological phase. The energy spectrum becomes gapless in the two-

dimensional sense with the lowest energy eigenvalue �∆0

p
k2
x + k2

y close to kx =

ky = 0. A two-dimensional gapless Majorana mode flows around the sample, as a

chiral edge mode. The physics is then related to the neutral sector of a Moore-Read

Particle-Hole Pfaffian phase [13] with an effective px � ipy channel for R2 < 0. By

changing the sign of � = ⇣ by �⇡, we flip the sign of R2, and the intermediate

region now becomes the Pfaffian phase [13]. Changing the sign of R2 will change

the velocity (direction) of propagation of the Majorana mode. In fact, as long as

|✏0|  |T2| [30], the system stabilizes one gapless chiral Majorana fermion. Increasing

the chemical potential further, this results in (very) negative values of ✏0  �|T2|

and therefore low-energy modes move away from kx = ky = 0. Modes in the y

direction associated to the R2 sin(ky)⌧
x term now cost a finite energy and the system
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becomes anisotropic. This parameter regime is adiabatically linked to N decoupled

ipx topological superconductors with 2N MZM. In our geometry, the 2N gapless

Majorana modes should be protected against real ∆0 and t0? terms in Eq. (2.58),

meaning that the Majorana fermions of each chain should remain decoupled from

those in other chains.

For completeness, we provide an alternative understanding of the emergence of a

purely ipx channel using the band structure of Fig. 2.1c. As mentioned in Sec. 2.1,

the ⇣a = ±⇡ phase on the two wires produces equivalently purely imaginary hopping

terms ±it for the two wires, then modifying the band structure of free fermions as

⌥2t sin(kxa). When t? = 0, these two bands cross at kx = k0 = 0 with the indices 1

and 2 in Fig. 2.1c switched. Furthermore, in Eq. (2.2), the perpendicular tunneling

term t? becomes modified as t?(�1)j. By Fourier transform, we then conclude that

for this situation, the tunneling term t? does not open a gap at the crossing point,

i.e. at k0 = 0. If we also Fourier transform the ∆0 channel in Eq. (2.54) including

the effect of the phases ⇣a = ±⇡ for the two wires, then the wave-vectors (of the

two wires) in Fig. 2.1c are modified as kx ! kx ± ⇣/2, and around the crossing point

k0 = 0, the ∆0 NN-neighbor channel can indeed produce a term, as:

∆0

M

X

j

X

kx,k0x

ec†1(k0
x)ec†2(kx)ei(kx+k0x)jaeik

0
xaei

aζ
2 +H.c.. (2.63)

When kx = �k0
x = 0, the pairing term vanishes. Then, we confirm that the induced

gap at the Fermi energy takes the form e∆ = (∆0e
i⇣a/2)/2 with here ⇣ = � = ⇡/a.

We also check that the N-neighbor ∆0 channel vanishes in the low-energy subspace

due to anti-commutation rules between fermionic operators ∆0ec†1(0)ec†2(0) + H.c ⇡ 0.

To proceed and understand the correspondence with Eq. (2.61), we remind that the

mapping onto Fig. 2.1c is applicable as long as one assumes to be close to the band

crossing point. Taking into account the momentum boost k ! k± ⇣/2 with ⇣ = ⇡/a,

this corresponds to the case where each wire is half-filled. In the corresponding

Fig. 2.1b this implies that the lowest band is now close to the full filling, which
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corresponds to change �2t ! +2t for the lowest bonding band compared to the case

studied before where the (lowest) band is almost empty. One must therefore re-adapt

in the arguments that ✏0 now becomes +2t � µ � t?; when the lowest band is filled

then this means that kF,+ = ⇡/a. Then, to make the correspondence with Eq. (2.61)

complete, one can then re-identify the fermionic operators ec1(k) and ec2(k) close to

the crossing point k0 with the left-moving and right-moving branches of the lowest

band operator ec+(k). From Fig. 2.1, one can then apply the same arguments as in

Eq. (2.61), modulo the fact that one re-defines ✏0 = 2t� t? � µ.

When fixing the total flux per plaquette Φtot = � � ⇣ = 0 and changing (de-

creasing) adiabatically the value of � = ⇣ from ⇡/a, i.e. decreasing slightly the

value of the magnetic field Bz, we observe that the transformation (2.57) remains

applicable. Then, this produces additional real channels to the ipx superconducting

channel coming from Eq. (2.52) and Eq. (2.54), resulting in a i(px � ip0x) channel,

whereas the py channel remains identical. A superconducting channel of the form

(px � ip0x) (defined modulo the gobal phase ⇡/2) should then slightly move progres-

sively the 2N Majorana fermions in the anisotropic phase away from zero energy. On

the other hand, the two-dimensional chiral gapless edge mode seems to survive in the

Moore-Read phase. More precisely, entering this phase from the strong-paired phase

which means that ✏0 = +t0? = +|T2|, the lowest energy eigenvalue turns slightly into

�(u2k2
x +(R2ky + vkx)

2)1/2, where v is proportional to ��∆0 and �� = ⇡/a�� (with

a = 1). Therefore, when fixing either kx 6= 0, ky = 0 or kx = 0, ky 6= 0, the energy

spectrum still allows for a linear gapless Majorana mode.

It is instructive to briefly address the limiting case where Bz = 0. In that case, all

the channels px and py are real. In the low-energy description of Eq. (2.61) we have

u = 0 and the last term R2 describes all the superconducting terms ∆̃ sin ky+∆̃̃ sin kx,

where ∆̃ = �∆0, and now ∆̃̃ takes into account all the intra-ladder pairing terms

∆̃̃ ⇠ �∆. Assuming that ∆̃ ⇠ ∆̃̃, we can redefine the R2 contribution as 2∆̃ sin((kx+

ky)/2) cos((ky � kx)/2). The superconducting pairing term can be then re-written in
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(a) (b)

Figure 2.6: (a) Weakly coupled spinful (spin-1/2) wires with a flux configuration
Φtot = �a = (k1

F + k2
F )a. The dashed arrows represent the interactions between

fermions with different spins; (b) Formation of Cooper pair Laughlin state at ⌫ = 1/2,
where the chiral edge currents move in opposite direction compared to those in the
Meissner effect.

terms of the wave-vectors k0 = (kx + ky)/2 and k00 = (ky � kx)/2, which implies

that in that case gapless excitations defined around k0 = 0 will correspond to nodal

quasiparticles in the bulk propagating between a + and � p-wave lobe, associated

with zeroes of the superconducting term.

2.3.2 Generalization to spinful fermions

With arbitrary fluxes discussed in Sec. 2.2.2, another interesting comparison can be

made with the case of spinful or spin-1/2 fermions. Karyn and A. Petrescu have

previously shown in Ref. [68], for a spin-1/2 system, that the attractive Hubbard

interaction and the long-range repulsive interwire interaction help stabilize a ladder

generalization of a Cooper pair Laughlin state at ⌫ = 1/2. The attractive channel

allows us to realize a Luther-Emery model [276] with Cooper pairs or bosons, and the

long-range repulsive interaction then realizes the hard-core boson regime. An essential

difference with the spinless situation is that here we take into account the spin-charge

separation phenomenon of the Luttinger liquid. Therefore, as for a Luther-Emery

liquid, the Cooper pairs are realized through a gap in the spin channel in the two

wires. The two charge fields are still free in the wires, allowing more tunability

to realize a Laughlin state at ⌫ = 1/2 of hard-core bosons from the charge sector.
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The filling factor ⌫ = 1/2 reflecting the charges of quasiparticles in the bulk can

be accessed through Thouless pump measurements. The main difference with the

Meissner effect is that the edge current now flows in opposite direction, as shown in

Fig. 2.6b compared to Fig. 2.3. Below, we first briefly review the main results and

then we will extend the building block to coupled-ladder systems referring then to

the fourth case of study in Sec. 2.1.

The key ingredients of the spinful ladder can be found in Fig. 2.6a. Four parts

enter into the Hamiltonian

Hspinful = Hk +H? + U + V . (2.64)

The intra- and interwire hopping terms Hk and H? keep the form of the spinless case

with the addition of the spin flavor s =", #: c↵(j) ! c↵,s(j). The flux configuration

also satisfies ⇣ = 0 and the constraint (2.32) for an arbitrary value of �. For the

interactions, we take into account the Hubbard and interwire Coulomb repulsion:

U =
X

j

X

↵=1,2

U↵n↵,"(j)n↵,#(j),

V = V?
X

j

X

s,s0=",#
n1,s(j)n2,s0(j), (2.65)

where n↵,s(j) = c†↵,s(j)c↵,s(j) denotes the particle number operator. For simplicity,

we consider two identical wires sharing the same attractive Hubbard interaction U =

U1 = U2 < 0 and a repulsive long-range interaction V? > 0 is added between the

wires. We consider the weak-coupling regime t? ⌧ (|U |, |V?|), where H? acts as a

small perturbation.

Applying bosonization techniques [34, 256], we introduce the spin (�) and charge

(⇢) degrees of freedom through the transformation

��(x) =
1p
2
(�"(x)� �#(x)),

�⇢(x) =
1p
2
(�"(x) + �#(x)), (2.66)
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and the same for the dual modes ✓�,⇢. The Hamiltonian then takes the form:

Hspinful = H� +H⇢ +H?,

H⇢ = H+
0,⇢ +H�

0,⇢,

H� =
X

↵=1,2

H↵
0,� +

U

2⇡2a

Z
dx cos(2

p
2�↵�),

H? = � t?
2⇡a

Z
dx
X

s=±1

X

r,r0=±1

ei�aeir
0(k1F+rk2F )x

⇥ e�ir0(�rρ+r0✓�ρ +s(�rσ+r0✓�σ )) +H.c.. (2.67)

Here, H±
0,⇢ and H↵

0,� with ↵ = 1, 2 take the Luttinger form. The Luttinger parameters

are defined as K� = K1
� = K2

� = (1 + u)�1/2, K±
⇢ = (1 � u ± v?)

�1/2, where u =

|U |a/(⇡v), v? = 2V?a/(⇡v). In the spin part, the attractive Hubbard interaction U

plays the same role as the pairing term H∆ for the spinless particles, resulting in the

pinning conditions for the spin modes (modulo ⇡/
p
2):

�� = �1
� = �2

� ⇠ 0. (2.68)

The Cooper pairs formed along each wire are protected by a spin gap ∆� which grows

exponentially fast at small U and then ∆� / |U | for strong interactions.

Below, we assume the flux condition 2(k1
F+k2

F )±2� = 0 following Ref. [68]. For the

energy scales smaller than∆�, the dual mode ✓�� = (✓1��✓2�)/
p
2, meanwhile, oscillates

rapidly in H? making the coupling term t? irrelevant to first order in perturbation

theory. The second order term gives the charge contribution

H
(2)
? = � t2?

∆�⇡a

Z
dx cos[2(✓�⇢ ± �+

⇢ )]. (2.69)

To study the motion of Cooper pairs, we notice that the corresponding creation

operator satisfies ( ↵�r," 
↵
r,#)

† ⇠ e�ir
p
2✓αρ . This implies a canonical transformation for

Cooper pairs on each wire:

Θ
↵
⇢ =

p
2✓↵⇢ , Φ

↵
⇢ = �↵⇢/

p
2,

H
(2)
? = � t2?

∆�⇡a

Z
dx cos[

p
2(Θ�

⇢ ± 2Φ+
⇢ )]. (2.70)
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Figure 2.7: (Left) Coupled spinful ladders with uniform flux attachment; the variable
J represents the ladder label and l = J + 1/2 in the middle of two successive ladders
will represent the modes formed by coupling ladders together. (Right) Formation
of a two-dimensional quantum Hall system with the filling factor ⌫ = 1/em = 1/2.
The two chiral edge states L1 and RN are now diagonal in the K-matrix structure
producing an SPT phase of Class A [277].

By analogy with spinless fermions [see Eq. (2.33)], a fractional Cooper pair Laughlin

state is observed at ⌫ = 1/(2m) = ±1/2 on the spinful ladder, as shown in Fig. 2.6b.

In the end, we comment that a relatively strong long-range repulsive interwire

interaction V? plays a vital role in driving the system towards a fractional quantum

Hall state [68].

Next, we continue to address the coupled spinful ladders based on the building

block. A two-dimensional fractional quantum Hall state at ⌫ = 1/2 can be built from

the Cooper pair Laughlin states formed on each ladder.

The general building block for the construction is shown in Fig. 2.7. Under the flux

constraint (2.32), the coupling on the rungs of the J-th ladder gives a Sine-Gordon

term (2.70) in the charge sector

HJ
? = �ev

Z
dx cos(

p
2✓�J � em

p
2�+

J ), (2.71)

where we introduce the charge fields as ✓�J = Θ
�
⇢,J , �

+
J = Φ

+
⇢,J with ev = t2?/(∆�⇡a)

and em = 2m = ±2. By analogy with the spinless case, one can build an edge theory

on each ladder in the new basis of Eqs. (2.34)-(2.37) with the substitution m ! em.
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Accordingly, the bulk modes (✓J , �J) generate a term

HJ
? = �ev

Z
dx cos(2em�J), (2.72)

then pinning each mode �J and producing a gap. The two edge modes on the J-th

ladder are identified as the chiral fields (see Fig. 2.7, right)

(
LJ = �

1,J
+1 = ✓0J + �0J ,

RJ = �
2,J
�1 = ✓0J � �0J ,

(2.73)

with �↵,Jr = ✓↵,J/em + r�↵,J and ↵ = 1, 2 representing the wire index inside each

ladder. In Fig. 2.7 (right), each ladder behaves as a small quantum Hall system

which gives rise to two low-energy chiral edge modes LJ and RJ . Neighboring chiral

edge modes belonging to two successive ladders can then be coupled through an

additional t0? term at low energy, smaller than the typical energy scale ∆̃ at which

the term ṽ has flown to strong couplings in each ladder. Here, ∆̃ can be estimated as

Λc(ṽ/v)
1/(2�2|m̃|K) with Λc ⇠ ∆�. As mentioned in the case of two-leg spinful ladder,

we require the introduction of long-range Coulomb forces (such that 2|m̃|K < 2) to

stabilize the relevance of this energy scale. To couple the left-moving mode LJ+1

of the ladder J + 1 with the right-moving mode RJ of the ladder J , this requires

momentum conservation during the tunnel process, and therefore this requires to

apply a magnetic field �0 = +� in the region centered at the position J + 1/2.

It is then possible to couple two edge modes between ladders taking into account

the effect of an additional intra-ladder magnetic flux �0 = � by analogy to the two-

dimensional quantum Hall effect, as depicted in Fig. 2.7 (left). Between the J-th and

(J + 1)-th ladders, the flux constraint then follows

a
⇥
(k1

F + k2
F )�m�0⇤ = 0 mod 2⇡. (2.74)

Through a recombination of the fields as in Fig. 2.7,
(
�̃J+1/2 = (�RJ + LJ+1)/2,

✓̃J+1/2 = (RJ + LJ+1)/2,
(2.75)
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for t0? ⌧ t?, the bulk and edge Hamiltonians take the form

Hbulk = H̃
0
[✓̃, �̃]�

X

l=J+1/2

Z
dxev0 cos(2em�̃l), (2.76)

Hedge =
ve

8⇡

Z
dx
⇥
ARR(rRN)

2 + ALL(rL1)
2
⇤
. (2.77)

The tunnel process ṽ0 = t0?
2/(∆̃⇡a) represents the backscattering process of fractional

charges m(2e) from one left-moving chiral edge to another right-moving edge. The

bulk quadratic Hamiltonian H̃
0
has the coupled form in ✓̃ and �̃

H̃
0
[✓̃, '̃] =

ve

8⇡

X

l=J+1/2

Z
dx(ARR + ALL)[(r✓̃l)2 + (r�̃l)

2]

+ ARL(r✓̃l�1 +r�̃l�1)(r✓̃l �r�̃l), (2.78)

with the non-zero backscattering term ARL = 2em2Ke � 2/Ke and the velocity ve

similar to the one introduced in Appendix D. We also identify ARR = ALL = em2Ke+

1/Ke and the new fields satisfy

[�̃l(x), @x0 ✓̃l0(x
0)] = i(⇡/m)�l,l0�x,x0 . (2.79)

By analogy with the arguments of two-leg spinful ladder, once the long-range repulsive

interactions are present between the ladders, ev0 in Hbulk becomes relevant. This leads

to a gapped bulk, corresponding to the pinning of the phases �̃l=J+1/2 ⇠ 0.

Since LJ = ✓̃l�1+ �̃l�1, RJ = ✓̃l� �̃l, two edge modes RN and L1 no longer entangle

with the bulk. The coupled wire system now forms a single bulk ⌫ = 1/2 fluid in

Fig. 2.7 (right). Since the edge mode theory for these modes is a chiral Luttinger

model with ARL = 0, the properties of the charge at these edges only depend on the

value of Ke. If we set ALR = 0 at an edge with the condition that m̃ = ±2, then we

check from Eq. (2.78) that the fractional charge Ke = 1/2 is now in agreement with

the bulk-edge correspondence. This phase which shows a perfectly diagonal structure

for the edges can be thought as an SPT phase of Class A in terms of the K-matrix

structure [277].
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Similar arguments could be applied for the reconstruction of the Abelian ⌫ = 1

and ⌫ = 1/3 quantum Hall states with wires and coupled ladder systems.
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Chapter 3

Valence bond fluctuations in
Kitaev spin models

In this chapter, we propose valence bond fluctuations as a probe of entanglement

properties in the ground state of the Kitaev spin model [18].

A valence bond (VB) [38] here corresponds to the spin-spin pairing between two

nearest neighbor electrons. Our first insight comes from the system of SU(2)-symmetric

quantum spins with resonating valence bonds (RVB) where we find the bond fluctua-

tions can be related to valence bond entropy of Einstein-Podolsky-Rosen (EPR) pairs

or Bell pairs [278]. Extending to the Kitaev spin liquids discussed in Sec. 1.3, in the

three gapped phases, the valence bonds between nearest neighbors form a crystalline

or dimer order [18]. Approaching the transition(s) to the gapless intermediate phase,

these bonds now resonate giving rise to gapless critical fluctuations, which in princi-

ple encode information on quantum phase transitions and entanglement properties.

Our calculations indeed reveal an identical scaling between valence bond fluctuations

and entanglement entropy in one-dimensional chain and two-dimensional honeycomb

lattice. These mathematical findings are compared with numerical calculations from

our collaborator K. Plekhanov, e.g. through the Density Matrix Renormalization

Group (DMRG). In one dimension, the gapless phase is reduced to a quantum crit-

ical point [146], which then develops into a plane for ladder systems [147]. In two

dimensions, in the absence of a magnetic field, the long-range valence bond corre-
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lations in space [279] share a similar scaling as the dynamical spin structure fac-

tor [213]. We include also the effects of a uniform magnetic field in the perturbative

regime, and discuss relevant consequences from the excitations of flux pairs [215] and

from the formation of U(1) gapless spin liquids once three Ising couplings become

anti-ferromagnetic (AFM) [280]. In the end, to make a closer link with quantum

materials, we give a comparison of valence bond fluctuations in the Néel state favored

by strong AFM Heisenberg exchanges. Our mathematical development of the lattice

summations are consistent with finite-size scaling results performed by K. Plekhanov.

3.1 Fluctuations as an entanglement probe

First, we begin with a brief review on the relation between bipartite fluctuations and

entanglement entropy in many-body Hamiltonians characterized by different symme-

tries [164, 281–283]. In Sec. 3.1.1, we define the general fluctuations on a bipartite

lattice, which from the information theory, provide a lower bound for the mutual

information related to entropy. We then remind in Sec. 3.1.2, an exact expression

for the entropy as a series expansion of even cumulants (with particle number or

spin fluctuations the leading order) for the U(1) charge conserved systems [281] and

an inequality between the two quantities emerging among the SU(2) quantum spins

described by resonating valence bonds.

Generalizing these works to Kitaev spin liquids coupled to a gapped Z2 gauge field

represents our central motivation of this chapter. The difficulty lies in finding the

right observable encoding the long-range correlation of matter Majorana fermions in

the gapless phase, hence the entanglement properties. Fortunately, by analogy to the

RVB states in the three gapped phases, in Sec. 3.1.3 we verify that the valence bond

fluctuations represent non-vanishing lower bound for the entropy.
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3.1.1 Generalities

We decompose a generic quantum system into two parts A [ B. For the subsystem

A, the entanglement is measured by the von Neumann entropy [132]

SA = �Tr⇢A ln ⇢A, (3.1)

where ⇢A = TrB⇢ represents the reduced density matrix of sub-system A. Once given

two density matrices ⇢ and ⇢0, the distance between two states can be probed by the

relative entropy

S(⇢, ⇢0) = Tr [⇢(log ⇢� log ⇢0)] , (3.2)

with a norm bound [284]

S(⇢, ⇢0) � 1

2
||⇢� ⇢0||

2
. (3.3)

Here the norm stands for ||⇢|| = Tr
p
⇢†⇢ and we have assumed that Tr⇢ = Tr⇢0 =

1. Making an analogy with vectors, one may also write S(⇢, ⇢0) = S(⇢ k ⇢0). For

instance, for diagonal (density) matrices, each eigenvalue may refer to a coordinate

along one direction. On the other hand, to evaluate the fluctuations, we introduce

two measurements

FA =

* 
X

i2A
Qi

!2+

c

, (3.4)

FAB =

�����
X

i2A

X

j2B
hQiQjic

����� . (3.5)

Here, Q is a chosen operator for targeted systems: charge, particle number, one

spin or two spins on a valence bond and hQiQjic = hQiQji � hQiihQji denotes the

reduced correlation function. It is easy to notice while FA measures the fluctuations

in subsystem A, FAB covers the correlations between A and B. There is an equality

between the two quantities:

FAB =
1

2
|FA + FB � FA[B| . (3.6)
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An important finding so far established is to relate FAB with SA by mutual infor-

mation [285]

I(A,B) = SA + SB � SA[B. (3.7)

From the definition of relative entropy (3.2), the mutual information has an alternative

expression

I(A,B) = S(⇢A[B, ⇢A ⌦ ⇢B). (3.8)

Choosing any operator of the matrix form Q = QA ⌦ QB with QA the bounded

operator in region A and applying the Schwarz inequality ||⇢|| � Tr(⇢Q)/ ||Q|| to the

norm bound (3.3), one obtains [286]

I(A,B) � (hQAQBi � hQAihQBi)2

2 ||QA||
2 ||QB||

2 . (3.9)

The numerator recovers FAB. Correspondingly, for FAB 6= 0, we arrive at

I(A,B)

FAB

� cst. (3.10)

Although the lower bound between the bipartite fluctuations and the mutual infor-

mation is universal, it remains ambiguous what is the form of operator Q one should

choose for a given many-body system such that the fluctuations measured are non-

vanishing. A second inquiry would be: under which circumstances we could reach

the equality of (3.10) such that the fluctuations share the same scaling as the original

entropy.

3.1.2 Exact relations and inequalities

In this subsection, we give two known examples where one can relate entanglement

entropy directly to charge or spin fluctuations: first, noninteracting fermions with

conserved U(1) charge; second, SU(2) quantum spins with EPR pairs. We further

show for the SU(2)-symmetric RVB state, the bond correlator is also a good option

for operator Q.
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(a) Noninteracting fermions with conserved U(1) charge

Let us consider a system of non-interacting fermions with conserved total charge,

or more precisely total number of particles: N̂ tot| i = Ntot| i. At zero tempera-

ture, the ground state | i of the total system becomes pure. Basic properties of the

entanglement entropy then follow

• symmetric: SA = SB;

• subadditive: SA + SB � SA[B = 0.

Without any calculation, one can already see the similarities between charge fluc-

tuations and the entropy. If we take Q̂A = N̂A in FA (3.4), where N̂A represents

the number of particles in sub-region A, as a result of total charge conservation

N̂A�NA = �(N̂B�NB), the fluctuations also inherit the symmetric and sub-additive

characteristics

FA = FB, FA + FB = 2FA � 0. (3.11)

In fact, one can relate the two quantities more rigorously by the cumulant expansion

of entropy [281]

SA = lim
K!1

b(K+1)/2cX

n=1

↵2n(K)C2n. (3.12)

Here, the coefficients are all positive and related to the unsigned Stirling number of

the first kind: ↵n(K) = 2
PK

k=n�1 S1(k, n� 1)/(k!k). The cumulants Cn are given by

the generating function �(�) = hei�N̂Ai according to

Cn = (�i@�)
n ln�(�)|�=0 . (3.13)

By definition, one verifies FA = C2. For a Gaussian process, one can truncate the serie

withK = 1, but for non-Gaussian models one needs to check carefully the convergence

of the series with the appropriate number of cumulants [281]. As a comparison, if we

106



consider a Bell pair or an EPR pair, then this generally requires around 10 cumulants

to reproduce the ln 2 entropy. Although the equivalence of entropy and a complete set

of even cumulants (3.12) is unique to the systems with a mapping to non-interacting

fermions, the general relation between entropy and fluctuations (3.14) can be further

extended to the interacting one-dimensional (1D) critical systems that conserve total

charge, and can be described by a Gaussian model through conformal field theory

(CFT) or bosonization. In those cases, SA can also be truncated by a K = 1 upper-

bound. Thus one gets

SA

FA

' cst. (3.14)

The constant proves to encode rich information, for instance [281]

cst ·
3

⇡2
=

(
K, Luttinger liquids;

c/g, U(1) CFTs,
(3.15)

where similarly to Refs. [281, 287], we also introduce the letter K for the Luttinger

parameter and c represents the central charge in conformal field theory (CFT). Pa-

rameter g = ⇡v consists of the velocity v and compressibility  = @n/@µ.

(b) SU(2) quantum spins with EPR pairs

Intuitively, one may wonder what will happen when the system breaks U(1) charge

conservation and when the system becomes higher dimensional, such as two-dimensional.

Next, we give an example of the SU(2)-symmetric valence bond state [281]. Indeed,

a direct correspondence in terms of inequality similar to relation (3.14), subsists if

we replace FA with FAB, by analogy to mutual information (3.10). Furthermore,

we would like to extend the result of Ref. [281] and show how the two-spin fluctu-

ations and valence bond fluctuations capture different features of the entanglement

entropy. Here, by “two-spin fluctuations”, we refer to fluctuations associated to spin-

spin correlation functions. From Eq. (3.5), two-spin (TS) fluctuations and valence
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bond fluctuations between two subregions read:

FTS = FAB(Qi,↵ = �z
i,↵),

FVB = FAB(Qi = �z
i,1�

z
i,2). (3.16)

In this work, our aim is to show that the valence bond fluctuations are essential since

they provide relevant information both for SU(2) and Z2 quantum spin liquids.

We consider the two-dimensional Heisenberg antiferromagnetic (HAF) model where

arise two competing phases: a Néel state and a gapped VB state. In either configu-

ration, the valence-bond entropy has proven to exhibit distinct behaviors [278]:

SVB
2D HAF ⇠

(
ax ln x+ bx (Néel)

b0x (VB)
. (3.17)

Here x denotes the length of the boundary between two subsystems. This measure

can also accurately detect quantum phase transitions between Néel and RVB spin

phases in quasi-one dimensional ladder systems [288]. For the moment, we focus on

the fluctuations of the gapped VB state and will address the comparison with a Néel

state later in Sec. 3.5.

Suppose our system comprisesN sites on even and odd sublattices. Dimer coverings

between different sublattices sharing the form

|_ i(i,1)(j,2) =
1p
2
(| "i,1i| #j,2i � | #i,1i| "j,2i), (3.18)

minimize the energy from the antiferromagnetic Heisenberg interactions. The sub-

script (i,↵) describes the site on i-th unit cell of the {↵ = 1, 2} sublattice. A singlet

state |Φ0i can then be represented as a complex superposition of all possible dimer

or pairing configurations

|Φ0i =
X

p

�p|'pi,

|'pi =
Y

(i,1)(j,2)2p

|_ i(i,1)(j,2). (3.19)
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For a given global pairing distribution p, the product state goes over all local internal

dimers (i, 1)(j, 2).

The corresponding VB entanglement entropy (3.17) is defined as [278]

SVB(Φ0) =

P
p �pS

VB('p)P
p �p

. (3.20)

Formally, acting on the singlet state |Φ0i, the fluctuations and the VB entropy can

be obtained from the decomposition (3.19)

FTS/VB(Φ0) =
X

p

X

p0

�⇤p�p0F
TS/VB('p,'p0),

SVB(Φ0) = (ln 2) ·

P
p �pF

TS('p,'p)P
p �p

. (3.21)

Eq. (3.21) indicates in general there is no simple correspondence between FTS/VB and

SVB. Yet, we may try to simplify (3.21) as

FTS/VB(Φ0) :=
X

p

|�p|
2FTS/VB('p,'p). (3.22)

For FTS, the relation (3.22) is exact owing to the sublattice symmetry of two-spin

correlation functions. For FVB, it is a redefinition in the sense one counts the bond

fluctuations inside each pairing pattern with probability |�p|
2 and at the same time,

ignores the contributions from the overlaps of different pairing patterns. This redefi-

nition is crucial for FVB to resemble the behavior of the VB entanglement entropy.

On one hand, if the gapped VB state is composed of N -site singlets carrying equal

weights (�p = �), we can show the following inequality reminiscent of the lower bound

for mutual information (3.10)

SVB / ln 2 · n,

SVB

FTS + FVB
� ln 2. (3.23)

Here n denotes the number of singlets that the boundary crosses. Both relations

above take the equality “ = ” if the maximum resonating range N  4. As N ! 1,

the system approaches the gapless critical point.
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On the other hand, as soon as the singlet bonds decay exponentially with distance

(�p ⇠ e�r/⇠),

F
TS/VB
2D HAF = bTS/VB · x+O(x). (3.24)

A similar area law scaling is revealed in two types of fluctuations alongside the VB

entanglement entropy (3.17).

3.1.3 Generalization to Kitaev Z2 spin liquids

Valence bond states in SU(2) spin systems and Kitaev Z2 spin liquids may be dis-

tinguishable from the form of correlation functions. For the former, the two-spin

correlator follows an exponential decay in the gapped phase; for the latter, how-

ever, the static correlation between two spins becomes exactly zero beyond nearest

neighbors [138].

In fact, the Kitaev honeycomb model is solved in the Majorana representation with

one spin operator mapped onto the product of one matter and one gauge Majorana

fermions [18]. Once acting on the ground state embedded with a static Z2 gauge field,

the gauge Majorana fermion creates a pair of fluxes in two adjacent hexagons. It

renders two-spin fluctuations irrelevant, if given an arbitrary boundary (not assigned

on the same Ising links)

FTS
Kitaev,Z2

= 0. (3.25)

One should resort to the bond-bond operator [146]. Since the excitation of a flux

pair is annihilated simultaneously by the other spin on the same bond, valence bond

fluctuations always give a relevant lower bound regardless of the boundary position

SF

FVB
Kitaev,Z2

� cst. (3.26)

In the equation above, we have rescaled the mutual information by Fermi entropy

according to the area law of entanglement entropy [133].

110



Another observation comes consistently from the SU(2)-invariant Kitaev spin liq-

uids [289]: there, the two-spin operator can be expressed solely in terms of matter

Majorana fermions (preserving the gauge structure) and its correlation becomes non-

vanishing. Similar to the Heisenberg anti-ferromagnet (3.24), the spin and bond

fluctuations obey a linear growth in the gapped region

F
TS/VB
Kitaev, SU(2) = bTS/VB · x+O(x). (3.27)

We then conclude that both two-spin and valence bond fluctuations are appropriate

as relevant probes of the entanglement entropy for the SU(2) spin systems, whereas

for the Kitaev Z2 spin liquids only the valence bond fluctuations play a substantial

role.

Below, we address valence bond fluctuations both for one-dimensional and two-

dimensional Kitaev spin models. In Secs. 3.2 and 3.3, we prove how valence bond

fluctuations (3.26) develop the same scaling as the entanglement entropy both for the

one-dimensional chain and the honeycomb lattice.

3.2 Model on the chain

We start from the Kitaev spin chain depicted in Fig. 3.1a. In Section 1.3.4, it has been

shown that the model (1.123) is exactly solvable via Jordan-Wigner transformation

and a mapping to Majorana fermions. And the complex bond fermions (1.129) share a

similar topological structure as a p-wave superconducting chain (1.131). In particular,

from its energy spectrum (1.130) we check that the gap closes at kF = ⇡/2 when

J1 = J2 and that the chain on the dual lattice encodes a critical gapless theory of free

fermions with central charge c = 1. Here, we find its counterpart in the original spin

basis through the observable “valence bond correlator”.
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3.2.1 Valence bond correlator

Using definitions in Secs. 1.3.4 and 3.1.1, we introduce the bond-bond correlation

functions I(i, j) = hQiQjic, with

Qj = �x
j,1�

x
j,2 = �icj,1cj,2. (3.28)

It is important to underline that in Fig. 3.1a, we have chosen the strong bonds

associated to the J1 coupling, referring to the x spin Pauli operator in Qj.

As before, the site index (j,↵) represents the j-th unit cell of the sublattice ↵ =

{1, 2}. In the dual lattice, Qj relates to the density of bond fermions  †
j j. At the

gapless point, we get from Wick’s theorem

I(i, j) = I(|i� j|) =
1

⇡2

1

|i� j|2 � 1/4
, (3.29)

for i 6= j. As a comparison, the usual two-spin correlator in the Majorana represen-

tation turns into

h�z
i �

z
j i = (�1)i+j+1 hcidicjdji . (3.30)

Decoupled d Majorana fermions lead to hcidji = hdidji = 0. Applying Wick’s theo-

rem, h�z
i �

z
j i vanishes in all phases beyond nearest neighbors, and the same for h�x

i �
x
j i

and h�y
i �

y
j i which involve Jordan-Wigner strings formed by the pairings of c and d

Majorana fermions. Once the distance of two sites goes beyond the nearest neighbour

|i� j| > 1, one verifies

h�a
i �

a
j i = 0, a = x, y, z. (3.31)

Like the Kitaev honeycomb model, in its one-dimensional chain analogue, again the

two-spin operator does not encode the long-range correlation of the gapless Majorana

fermions.

Now deviating from the gapless point, from the bond-fermion model and from the

Ising symmetry of the spin chain, we predict that the correlation length ⇠ of the bond
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(a)

(b) (c)

Figure 3.1: (a) Bipartition of the Kitaev spin chain into subparts A and B. (b)
DMRG results for bipartite fluctuations as a function of the subsystem length lA = L
at the critical point: FAB = ↵ lnL + O(1) with ↵ = 0.95/⇡2. The entanglement
entropy is shown in the inset: S = (c/6) lnL + O(1) with central charge c = 0.49.
(c) Bipartite fluctuations as a function of ∆ = |J2 � J1| (here, (J1, J2) < 0 such
that the strong bonds occur on the x-link). The inset shows the correlation length
⇠ = 0.20⇥∆�⌫ with ⌫ = 0.94. For the gapped phase, we set Ltotal = 1000.

operator is proportional to the inverse of the gap ∆ = |J2 � J1|,

⇠ / ∆
�⌫ , ⌫ = 1. (3.32)

The valence bond correlations share the behavior

I(i, j) =

(
c1|i� j|�2, |i� j|  ⇠;

c2e
�|i�j|/⇠, otherwise.

(3.33)

Our collaborator K. Plekhanov performs numerical calculations based on DMRG

which verify these predictions with the associated critical exponent ⌫ = 0.94 ⇠ 1 in

the inset of Fig. 3.1c.
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3.2.2 Results on fluctuations

Below, we focus on FAB, which defines the fluctuations between two subsystems (3.5)

associated to bond-bond correlations (3.28). Here the valence bond fluctuations FAB

also appear as the effective non-vanishing lower bound for mutual information (3.10).

Fig. 3.1a depicts the bipartition we choose for the spin chain with subsystem lengths

lA = lB = Ltotal/2 = L. A direct lattice summation in Appendix F leads to

FAB =

(
(1/⇡2) ln lA + (1/⇡2) (� + ln 2� 1/2) , J1 = J2;

c1 ln ⇠ + c2e
�1 (2⇠2 � ⇠) +O (1) , |J1| > |J2|.

(3.34)

with � ' 0.57721 the Euler constant. On the contrary, FA always contains a higher

order scaling linear in lA.

Our findings (3.34) are confirmed by DMRG simulations from K. Plekhanov. At

the gapless point J1 = J2 shown in Fig. 3.1b, in FAB a logarithmic scaling is observed

with respect to the length of subregion A: FAB / ln lA. Roughly, one can identify this

term by taking the 1D integral of the bond correlation I(i, j) in Eq. (3.29). Moreover,

the pre-factor ↵/⇡2 is recovered with ↵ = 0.95. Here, the fact that ↵ reproduces

central charge c = 1 of the dual lattice, is in agreement with the free bond fermion

representation [290]. Fig. 3.1c further probes the gapped region. When |J1| � |J2|,

FAB goes to zero reflecting the crystallization of the dimers. Slowly closing the gap ∆,

near the phase transition point, |c1| � |c2|, the logarithmic behavior / ln ⇠ dominates

in FAB.

It is interesting to go beyond the lower bound and reveal the relation between

FAB and the original entanglement entropy. Deep in the gapped phase driven by

|J1| � |J2|, eigenstates are formed on strong x-links. SA vanishes accordingly when

the boundary is set on the weak y-link (see Fig. 3.1a). By increasing |J2|, long-range

entanglement emerges among the dimers, which is accompanied by a logarithmic

growth in entropy associated to the correlation length

SA / ln ⇠. (3.35)
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The same response is observed in valence bond fluctuations FAB of the gapped region.

Meanwhile, the entropy reaches its maximum when the gap closes at J1 = J2.

Suppose the critical chain is finite with open boundaries, the entropy is proven to

show the universal behaviour [148, 291]:

SA =
c

6
ln lA + 2g + s1, (3.36)

where g counts the boundary entropy and s1 stands for a non-universal constant. In

inset of Fig. 3.1b, from DMRG, the central charge extracted from the entropy (3.36)

reads: c = 0.49 ⇠ 1/2. It can be understood from the fact that after the Jordan-

Wigner transformation, half of the spin degrees of freedom are disentangled from the

Hamiltonian (1.88) by decoupling all d-Majorana fermions.

At the gapless point, both FAB and SA then share a logarithmic growth with

subsystem size typical of (critical) conformal field theories in one dimension. Related

to this finding, we would like to address the following comment: to evaluate the

valence bond fluctuations we diagonalize the spectrum in momentum space in the  

basis, whereas the entanglement entropy reflects the real space degrees of freedom on

the original lattice. This justifies why in our calculations the central charge c = 1

is revealed in the valence bond fluctuations, whereas the central charge c = 1/2 is

observed in the entanglement entropy.

We establish that in both the gapped and gapless phases of one-dimensional Kitaev

spin liquids, there is an identical scaling rule between the valence bond fluctuations

and the entanglement entropy

FAB ⇠ SA. (3.37)

3.3 Model on the honeycomb lattice

As discussed briefly in Sec. 3.1.3 and as will be described below, on the two-dimensional

honeycomb lattice, due to the protection of 0-flux configurations in the ground state,
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the two-spin correlator also vanishes beyond nearest neighbors in all phases [138].

The valence bond correlator, however, preserves flux pairs in neighboring plaque-

ttes and supports gapless fermion excitations. Although Ref. [279] finds numerically

that it exhibits a power-law decay in the gapless phase and an exponential decay in

gapped phases, the valence bond correlator itself does not locate precisely the phase

transition (see Fig. 3.2a). It motivates us to develop an approach of evaluating its

global fluctuations on a bipartite lattice. The enhanced features in fluctuations come

intrinsically from the spatial dependence and anisotropy of the local bond correlator.

We demonstrate below that the valence bond fluctuations and the entanglement

entropy allow us to locate quite accurately the phases and quantum phase transitions

in the two-dimensional Kitaev honeycomb model [18].

3.3.1 Valence bond correlator

For the honeycomb lattice, as previously reviewed in Sec. 1.3, we start from the

Hamiltonian H = �Phijiµ Jµ�
µ
i �

µ
j , under the perturbation V = �Pj hµ�

µ
j of a

uniform magnetic field along [111] direction. When |hµ| ⌧ |Jµ|, the cubic term (1.112)

in perturbation theory breaks time-reversal symmetry, and the effective Hamiltonian

can be simplified to Eq. (1.113) in the momentum space. Below, we study the effect

of  ⇠ hxhyhz/(JµJ⇢) in the perturbative regime where ⌧ Jx + Jy + Jz.

We choose to measure the valence bond correlator onto the z-links, as compared

to the x-links used for the one-dimensional chain in Sec. 3.2:

Qi = �z
i,1�

z
i,2 = �ici,1ci,2uhi1i2iz := �ici,1ci,2. (3.38)

Since any physical observable is independent of a specific gauge [138], in the last

equality, we can adapt our gauge choice for the gauge Majorana fermions. One thus

sees the bond correlator probes the matter Majorana fermions without disturbing the

gauge part.

On the contrary, as pointed out in Sec. 1.3, a single spin operator �z
j,1 = icj,1c

z
j,1
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influences the gauge structure [138]. From the construction of the bond gauge fermion

� = (czj,1 � iczj,2)/2, we find that the number operator N� = �†� = (1 � uhj1j2iz)/2

takes the value 1 and 0 depending on the gauge choice of uhj1j2iz = ±1. In either

gauge, �z
j,1 = icj,1(�

† +�) changes the occupation number of the bond gauge fermion

�. It is equivalent to flip the linking number uhj1j2iz to �uhj1j2iz and excite one ⇡-flux

pair in two neighbouring plaquettes. Therefore, the two-spin correlation is totally

suppressed by the static Z2 gauge background beyond nearest neighbours (the latter

case goes back to the measurement on a single bond).

Next, we focus on the local structure of the non-vanishing valence bond correlation.

From Wick’s theorem, one obtains a compact form from the spectrum (1.113)

I(i, j) = �
X

k~ ,q~

ei(k
~+q~)·(r~j�r~i)[g(k~)g(q~) + f(k~)⇤f(q~)]

N2
q
(⇠2

k~
+ |∆k~ |

2)(⇠2q~ + |∆q~ |2)
, (3.39)

with N the total number of lattice unit cells. And two auxiliary parameters read

⇠k~ = Ref(k~), ∆k~ = �g(k~) + iImf(k~). (3.40)

in terms of the f(k~) and g(k~) functions

f(k~) = 2(Jxe
�ik~ ·n~1 + Jye

�ik~ ·n~2 + Jz),

g(k~) = �4[sin(k~ · n~ 1) + sin(k~ · (n~ 2 � n~ 1)� sin(k~ · n~ 2)]. (3.41)

(a) Zero field

In the absence of magnetic field  = 0, I(i, j) has no singularities in the three gapped

Abelian phases, therefore this results in an exponential decay of I(i, j). In the inter-

mediate gapless semi-metal phase, singularities appear at two Dirac points ±k~
⇤
.

We first look at the behavior of bond correlations in the gapless region. A de-

tailed analysis of the asymptotic behavior of I(i, j) at long distances can be found

in Appendix G. Performing an expansion around the two Dirac points similar to the

px + ipy superconductor [292], we recover a power-law decay [279]

I(i, j) =
ec1
r4
, (3.42)
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and establish that the ec1 coefficient depends on the cutoff function t(Λ) and on the

anisotropic function Y (r~). More precisely,

ec1 = t2(Λ) · Y (r~),

Y (r~) = cos2(k~
⇤
· r~)� cos2(✓⇤). (3.43)

Here, ✓⇤ is the angle between the vectors r~ = r~i � r~j and k~
⇤
. The space variable r

refers to |r~i � r~j|.

We can start from the simplest case by making the directions of r~ and k~
⇤
per-

pendicular to each other: r~? = r~j � r~i = (j � i)(n~ 1 + n~ 2). The spatial oscillations

disappear in the bond correlator with Y (r~?) = 1. Checked via a finite-size scaling

method by K. Plekhanov, our analytic expression becomes consistent with the nu-

merical fitting results of Ref. [279]. Shown in Fig. 3.2a, it supports a smooth curve

of I(i, j) revealing the r�4 scaling in the gapless region (Jz < 0.5).

We can derive a more precise analysis. At the gapless point Jx = Jy = Jz = 1/3,

in Appendix G we obtain the expression for the cutoff function

t(Λ) =

p
3

2⇡

Z
Λ

0

J1(k)kdk, (3.44)

where inside the integral J1(k) denotes the Bessel function of the first kind. Here, the

cutoff Λ = ⇠r can be further approximated by setting the radius of the momentum

integration ⇠ = 1 and taking r ' rmax to be the total system size L = 100. Analyt-

ically, we obtain log |I(i, j)| = c1 � ↵ log |i � j| with c1 = log(ec1/9)|Λ=100 = �4.63,

↵ = 4. Here, “ log ” is equivalent to the natural logarithm with the base e. It recovers

well the numerical fitting result (see Fig. 3.2a): c1 = �4.60,↵ = 4.06.

It is important to stress that Ref. [279] has not pointed out the role of the anisotropic

Y -function. Once shifted to other directions Y (r~) 6= cst, c1 = log(| cos2(k~
⇤
· r~) �

cos2(✓⇤)|) � 4.63. Accordingly, as verified by Fig. 3.2b and Fig. 3.2b, the sampling

points of log |I(i, j)| along the non-perpenticular direction oscillate rapidly. We also

emphasize here the forms of c̃1 and the anisotropic Y -function in Eq. (3.43) remain
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true for the whole gapless region. Later, we will study these anisotropic effects on the

bipartite fluctuations in relation with Fig. 3.4.

For the gapped phase, on the other hand, from numerics I(i, j) follows an exponen-

tial decay with a fast decreasing correlation length shown in Fig. 3.2a (a). Meanwhile,

in Fig. 3.2b, one observes less anisotropy effects in the gapped region.

It may be relevant to mention that once the gapless intermediate phase is subject

to a magnetic field along the ẑ direction, an identical power-law behavior (including

the same angular dependence) emerges in the dynamical correlation function [213]:

g(t, r~) = h�z
r (t)�

z
0(0)i � h�z

0(0)i2

' 64h2
z

⇡2h2
0

r2(cos2(k~
⇤
· r~)� cos2(✓⇤))� 3(Jt)2 cos2(k~

⇤
· r~)

(r2 � 3(Jt)2)3
(3.45)

where hz is the strength of the magnetic field and the parameter h0 can be estimated

as h0 ⇠ J . We find at long distances and at a finite time,

t ⌧ r ! 1,
g(t, r~)

I(r~, = 0)
/ cst. (3.46)

Both observables are proportional to the density-density correlation function of the

bond fermions (1.93):  r =  hijiz =
1
2
(ci + icj).

(b) Small finite field

We further study the effects of a small uniform magnetic field on the bond correlation

in the intermediate phase. For simplicity, we take Jx = Jy = Jz = J = 1/3.

When 0 <  ⌧ J , a gap opens and the valence bond correlator in Fig. 3.2e now

reveals an exponential decay, similar to three gapped spin liquid phases. Yet its sign

changes from positive to negative when increasing the strength of the magnetic field

(see Fig. 3.2d. Consequently, in Fig. 3.2f we observe an enhancement in the amplitude

of bond correlation functions once the magnetic field is sufficiently large.

We find that this sign change originates from the competition between the Ising

interactions and the external magnetic field. For  6= 0, the valence bond correlator
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(3.39) can be expressed in an alternative form: I(i, j) = F (r~)2 �G(r~)2 with

F (r~) =
1

N

X

k

eik
~ ·r~ f(k)⇤p

⇠2k + |∆k|2
,

G(r~) =
1

N

X

k

eik
~ ·r~ g(k)p

⇠2k + |∆k|2
. (3.47)

While the Ising interactions give a positive contribution to the bond correlators, the

external magnetic field gives a negative one.

Changing the strength of the external magnetic field , it is verified that

Sign

✓
@I(i, j)

@

◆
= Sign(�), (3.48)

as @I(i, j) = 2[@F (r~) · F (r~)� @G(r~) ·G(r~)] and

@F (r~)

@
= � 1

N

X

k

eik
~ ·r~ f(k)⇤g(k)2

(⇠2k + |∆k|2)3/2
,

@G(r~)

@
=

1

N

X

k

eik
~ ·r~ g(k)|f(k)|2

(⇠2k + |∆k|2)3/2
. (3.49)

When  > 0, the derivative of I(i, j) is always negative.

The monotonically decreasing bond correlation function is expected to cross zero

around the point where the strengths of the Ising interactions and the magnetic field

are comparable. We can roughly estimate the crossover point by starting from a

relatively small  parameter. In this circumstance, I(i, j) is still governed by an

expansion |�k~ | 2 Ω(0, 1) around two original Dirac points ±k~
⇤
. The denominator in

Eq. (3.47) turns out to be

Ek =
q
⇠2k + |∆k|2 = 3

p
3||

p
1 + (�k)2. (3.50)

When the parameter � = J/(6) > 1,  < c = 0.055, the F (r~)2 term arising from

the Ising interactions is dominant and I(i, j) rau2016ps a positive sign. Otherwise

�⌧ 1, � c, then the �G(r~)2 term from the external magnetic field grows steadily

and has the tendency to drive I(i, j) negative. In accordance with the numerical

calculations shown in Fig. 3.2d and Fig. 3.2d, for different distances, all crossover

points where I(i, j) changes sign are located at  > c.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: (a), (b) and (c): valence bond correlation functions for different phases
in the pure Kitaev honeycomb model. The coupling constants are chosen according
to Jx = Jy,

P
a Ja = 1 and we take the total system size as N = L⇥ L = 100⇥ 100.

While the gapped phase (Jz > 0.5) exhibits an exponential decay in bond correlators:
log |I(i, j)| = c2 � |i � j|/⇠, the gapless intermediate phase (Jz  0.5) supports a
power-law decay: log |I(i, j)| = c1 � ↵ log |i � j|. The relative vector is set along
the direction d(i, j) = r~i � r~j: (a) d(i, j) = (i � j)(n~ 1 + n~ 2) = (0,

p
3(i � j)); (b)

d(i, j) = (i � j)n~ 1 = ((i � j)/2,
p
3(i � j)/2). (c) Anisotropy effects in the gapless

phase (Jx = Jy = Jz = 1/3). Valence bond correlator for the intermediate phase in
the presence of a uniform magnetic field [111]: (d) Sign change; (e) Exponential decay
for the finite field; (f) Absolute amplitude with varied magnetic strengths. Here we
present the case Jx = Jy = Jz = 1/3. The direction of the relative vector is chosen
on d(i, j) = (i� j)(n~ 1 + n~ 2). 121



3.3.2 Results on fluctuations

(a) Area law

Next, to gain some intuition on the behavior of bipartite fluctuations, in Appendix H

we perform analytically the lattice summation by assuming an isotropic form of I(i, j),

namely with Y (r~) = 1.

Given a bipartition on the honeycomb lattice represented in Fig. 3.3a, we first

derive a general scaling form for fluctuations within an arbitrary region Ω = lx ⇥ ly

I(r) / 1

r↵
, FΩ /

8
><
>:

L4, ↵ = 0;

L3, ↵ = 1;

L2, ↵ � 2,

(3.51)

with lx and ly of the same order as L.

For the Kitaev honeycomb model, from Sec. 3.3.1 we see the valence bond correlator

reveals a power law decay (↵ = 4) in the gapless phase and an exponential decay (↵ !

1) in the gapped phases. Therefore, in all phases FA shows the volume law: FA /

L2 = V . As usual, we can extract FAB from the equality (3.6): |FA[B � FA � FB| /2.

With a subsystem size A = B = (L/2) ⇥ L, it is noticeable that the volume term

vanishes after the subtraction, leading to an area law in FAB / L = A, where A

refers then to an area.

Meanwhile, under the Y -isotropic form assumption, we establish in Appendix H

the linear scaling factor of valence bond fluctuations in different phases:

FAB = ↵FL+O(lnL). (3.52)

In the gapless phase, we obtain ↵F = 3.84c̃1 where c̃1 denotes the constant coefficient

in the bond correlator (3.42) for a given set of Ja’s. In a gapped phase, we obtain

↵F / ⇠3 with ⇠ the correlation length. This approach then implies that with a

rapidly growing correlation length, ↵F must reach a maximum when undergoing a

quantum phase transition from a gapped phase into the gapless intermediate regime

(see Fig. 3.4a).
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(a) (b)

Figure 3.3: (a) Bipartition into two subsystems A and B. The parallelogram is formed
with unit vectors: n~ 1 = (1/2,

p
3/2), n~ 2 = (�1/2,

p
3/2). The bond observable is

chosen on each z-link (dashed box); (b) Scaling of FAB = ↵FL + O(lnL) in the
gapless intermediate phase Jx = Jy = Jz. We obtain numerically ↵F = 0.00449. The
inset shows the scaling of FA = ↵L2 + �L+O(lnL) with ↵ = 0.391, � = 0.0129..

Numerically, we check these results by the method of finite-size scaling which starts

from the anisotropic form (3.39) of the function I(i, j). The exact anisotropic nu-

merical calculations agree well with our previous Y -isotropic form approximation. In

Fig. 3.3b, we recover the linear scaling of FAB in the gapless phase (Jx = Jy = Jz).

The inset shows the scaling of FA, where the leading-order L2 term (0.391) is domi-

nated by the on-site bond fluctuations (0.362, from Eq. (H.13)). Since these on-site

contributions are later subtracted, FAB contains more information about the entan-

glement properties.

(b) Peak structure in linear scaling factor

Shown in Fig. 3.4a, we continue our study by extracting numerically the linear scaling

factor of valence bond fluctuations from different regimes of the phase diagram. A

peak structure centered at the quantum phase transition line is observed. While the

gapped region can be understood from the simultaneous evolution with the corre-

lation length (↵F / ⇠3), we check that the anisotropy effects in the Y -function are

responsible for the decrease of ↵F when the system goes deeper into the gapless phase.
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It is noted that after the double summation in FAB (3.5), the bond fluctuations

around the boundary (or domain wall) between two subsystems become the major

contribution. Therefore, we can focus on the short-range behavior of the anisotropic

factor Y (r~) in the bond correlator (3.43) along the direction perpendicular to the

boundary. Illustrated by Fig. 3.4b, at short distances, Y (r~) reaches the maximum

value when Jz evolves to the phase transition line. Consequently, the amplitude of

the linear scaling ↵F in FAB would drop when we decrease Jz in the gapless phase.

Fig. 3.4c also includes the development of the linear scaling factor ↵F with different

magnetic strengths. The signature of the peak structure in ↵F across the phase

transition line is robust against small fields (  0.10). By increasing , the gap

is enlarged. The anisotropic effects of the Y (r~) function originally dominant in the

gapless region become reduced significantly, thus making the cusp of ↵F more smooth.

Stronger magnetic field effects are discussed qualitatively in Sec. 3.4.

(c) Relation to Fermion entropy

Now, we address the behavior of the entanglement entropy in the Kitaev model. As

pointed out in Ref. [133], the total entanglement entropy of the Kitaev honeycomb

model consists of two pieces: the gauge field part SG = (L� 1) ln 2 and the fermionic

contribution

SF = ↵SL+O(1). (3.53)

Since the measurement of valence bond fluctuations preserves the Z2 gauge field

structure, FAB probes the entanglement properties of the fermion sector. Fortunately,

SF is responsible for all the essential differences between the Abelian and non-Abelian

phases.
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(a) (b)

(c) (d)

Figure 3.4: (a) Prefactor ↵F of the linear term in the bipartite fluctuations FAB

for the gapless intermediate phase (Jz  0.5) and the gapped phase with bonds
polarized in the z direction (Jz > 0.5) of the Kitaev honeycomb model. (b)
Anisotropic function Y (r~) in the gapless phase. The relative vector is set along
the direction of n~ 1 (perpendicular to the boundary between subsystems A and B):
r~ = r~j � r~i = d(j � i) = (j � i)n~ 1. Effects of a small uniform magnetic field on the
linear scaling factors of valence bond fluctuations and the Fermi entropy : (c) Pref-
actor ↵F in FAB; (d) Prefactor ↵S in SF . In four plots, the conventions for coupling
constants Jx = Jy and Jx+Jy +Jz = 1 are adopted. And the magnetic field strength
 varies in the range [0.00, 0.10]. The calculation of FAB is performed on a finite
lattice cluster Ω = A [ B = L ⇥ L with the total length L varying from 30 to 100.
For the finite-size scaling of SF , on the other hand, the length of the zigzag boundary
across x-links is taken as L = Nx 2 [40, 100].
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We then extract the linear factor ↵S from SF following the methods of Refs. [133,

293]. It is found that in a small magnetic field  = 0.01, the linear scaling factor ↵S

shares the same response as ↵F across the phase transition line shown in Fig. 3.4d.

On top of that, once the magnetic field strength is increased, the peak structure of ↵S

in Fermi entropy disappears slightly more quickly than the one in bond fluctuations.

In addition, it is relevant to observe that ↵S remains zero for Jz > 0.5. Another

interesting observation is that as a function of Jz, the magnitudes of ↵F and ↵S vary

approximately in the same range [0, 0.10].

To summarize, in two dimensions, we also find that valence bond fluctuations and

the entanglement entropy of the Fermi sector show the same area law scaling in all

phases:

FAB ⇠ SF . (3.54)

Moreover, their linear scaling factors act as signatures to characterize quantum phase

transitions between the Abelian and non-Abelian phases in the Kitaev honeycomb

model.

3.4 Influence of perturbations

In this section, we would like to make brief remarks about the effects of stronger

magnetic fields on the gapless phase of the Kitaev honeycomb model. Two scenarios

are presently discussed in the literature: one with excitations of flux pairs [204, 215],

and the other with a transition to another type of gapless spin liquid with U(1) sym-

metry [280]. We will propose possible responses from the valence bond fluctuations

respectively.
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3.4.1 Perturbed Kitaev QSLs with gauge-flux pairs

For the Kitaev materials in a gapless spin liquid state, two types of gaps have been

observed in the presence of a small tilted magnetic field [204]

∆ = ∆v +∆f . (3.55)

Here, ∆v denotes the gap from the creation of a pair of fluxes (or visons) and ∆f /

hxhyhz refers to the one induced by one matter Majorana fermion excitation. Our

previous analysis of Sec. 3.3 remains valid as long as ∆v � ∆f .

In Ref. [215], it was suggested that one can construct an exact perturbed ground

state with even number of virtual fluxes by a unitary mapping U from the unperturbed

state |'0i: |'i = U |'0i. The transformed spin operator takes the form [215]

U †�a
i U = iZcic

a
i + · · ·+ fa

ijkicjck + · · · , (3.56)

with Z = 1, f = 0 for the pure Kitaev model and Z < 1, f 6= 0 in the presence of per-

turbations. The nonzero f parameters open a Majorana fermion gap instantaneously.

One immediately notices for the valence bond operator Qi = �z
i,1�

z
i,2, that the

leading order contribution turns into

U †QiU = Z2(�ici,1ci,2) + (quartic terms). (3.57)

Concerning the gauge Majorana fermions cai , we have used the gauge convention form

uhi1i2iz = +1 and all others being zero, acting on the unperturbed state. The first

term in the transformed bond operator (3.57) has a rescaling factor Z2. It leads to

a r�4 decay in valence bond correlation I(i, j) = hQiQjic within the distance shorter

than the correlation length (r < ⇠). The second part contains products of four matter

Majorana fermions, which then result in much faster decays in bond correlations, for

instance r�6 and r�8 over short distances.

Neglecting these higher order corrections arising from the f -decomposition and

taking into account the general scaling rule on honeycomb lattice (3.51), we establish
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that the valence bond fluctuations still show an area law

FVB
AB,perturbed = ↵F ,perturbed · L+O(lnL), (3.58)

The linear scaling factor is rescaled according to

↵F ,perturbed ' Z4↵F ,0, (3.59)

where ↵F ,0 denotes the prefactor of the linear term reminiscent of the zero-flux Kitaev

spin liquids. Based on Sec. 3.3.2, we thus find

↵F ,0 / ⇠3f / ∆
�3
f . (3.60)

With excitations of flux pairs, the linear scaling factor now combines two pieces of

information: the vison gap ∆v determining the amplitude of Z4 and the Majorana

fermion gap ∆f coming into play through ↵F ,0.

It may be relevant to mention that the two-spin fluctuations become already

nonzero in the perturbed limit. From Eq. (3.56), one gets contributions from the

f -sector of Majorana fermions. Accompanied by an exponential decay in the spin-

spin correlation, we obtain

FTS
AB,perturbed = ↵TS

F · L+O(lnL), (3.61)

where

↵TS
F / (f z)2 ·∆�3

f . (3.62)

When ∆v � ∆f , no excitation of fluxes is allowed. When f z ! 0, ↵TS
F ! 0, we check

the result of vanishing two-spin fluctuations in the solvable limit (3.25).

3.4.2 Transition to U(1) gapless spin liquids

If one continues to increase the strength of the uniform magnetic field, from numerical

simulations [280], while the Kitaev ferromagnet produces a trivial polarized phase
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(PL), the Kitaev antiferromagnet might give rise to an intermediate phase supporting

U(1) gapless spin liquids (GSL).

In the PL phase, there is no correlation between two subsystems and both the

two-spin and valence bond fluctuations vanish

F
TS/VB
AB,PL = 0. (3.63)

For the GSL phase in the Kitaev antiferromagnet, one can assume a gapless spinon

Fermi surface coupled to a U(1) gauge field. In an effective picture of complex

Abrikosov fermions [280], a spin operator is mapped onto the product of fermions

2S~ = f †
↵�~↵�f�, with spin index ↵, � =", # and a U(1) symmetry f †

↵ ! ei✓f †
↵. From

this perspective, the spin and bond correlations follow power-law decays (r�4, r�8

respectively) in the gapless phase. We predict that an “enhancement” might be ob-

served in the prefactor of the area-law bipartitie fluctuations

F
TS/VB
AB,GSL = ↵

TS/VB
F ,GSL · L+O(lnL). (3.64)

The existence of a similar peak structure in ↵F between the gapped Kitaev spin

liquids and U(1) gapless spin liquids is possible and can be tested numerically in the

future.

3.5 Comparison with the Néel phase

In this final section, a comparison with the Néel state supported by antiferromagnetic

Heisenberg interactions will give us additional insights with regard to the application

in quantum materials.

In the end, to make a closer link with quantum materials, it is perhaps useful to

compare the obtained behavior of bond-bond correlation functions from the ones of

the two-dimensional Heisenberg model, i.e., of a Néel ordered phase subject to spin-

wave excitations. When antiferromagnetic Heisenberg interactions are dominant, the

modified spin-wave theory predicts that a staggered magnetic field is required to

stabilize the Néel state at zero temperature for finite lattices [287, 294].
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Performing a spin-wave analysis in Appendix I, then we find that the same valence

bond correlation shows:

I(i, j) = c0 + c1r
�1 (3.65)

with c0 = 0.131 and c1 = 0.141.

As a result, the bipartite fluctuations now follow a volume square law:

FAB / L4, (3.66)

arising from the non-vanishing long-range correlation of c0. Measuring the precise

leading order scalings then allows to probe the phase, Kitaev spin liquid versus Néel

state, of a two-dimensional quantum material. We emphasize here that the entan-

glement entropy of the Néel state still reveals an area law [287], as in the Kitaev

spin model. The violation of the lower bound (3.10) originates from the finite-size

regularization procedure taken in the modified spin-wave theory.
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Chapter 4

Quantum spin liquids in ladder
models and Majorana box
engineering in cQED

In this chapter, we design a Majorana box starting from a superconducting four-site

circuit [58, 295, 296] with the goal to engineer quantum spin liquids and many-body

Majorana states. Starting with four transmon qubits, we present a Nuclear Magnetic

Resonance (NMR) double-period protocol to realize the box. We study the quantum

dynamics in time to implement the required protocols and to detect the Z2 gauge

fields through spin variables.

Within our framework, a lattice system can then be built by coupling a number

of boxes, forming then coupled-ladder models in the same spirit as our coupled wire

construction of the spinless p + ip superconductor in Sec. 2.3.1. Coupled boxes in

this chapter, however, could allow us to encode spin-1/2 degrees of freedom and re-

build the Kitaev Z2 quantum spin model of the honeycomb lattice[18], in ladder

systems [56, 146, 147, 297–299] with potential applications in the toric code [137] and

other surface codes [300]. These models have stimulated the discovery of quantum

materials [127, 194, 204, 301–303] as well as the design of ultra-cold atoms [227,

304] and other superconducting architectures [305–307]. It is important to mention

other proposals of Majorana boxes related to topological superconducting wires [8,

10–12] and topological superconductors [9]. Realizing a pure four-body Majorana
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fermion coupling also allows us to emulate the Sachdev-Ye-Kitaev (SYK) model [308–

310] with coupled boxes as elaborated below. The SYK model, which involves a

(long-range and disordered) coupling between four Majorana fermions, has attracted

attention theoretically in high-energy [311–313] and low-energy physics [314–316] due

to possible black-hole gravity holographic correspondence [310] and link to quantum

chaos [317]. Only a few realizations of the SYK Majorana model have been discussed

so far [314–316]. SYK spin models could also bring light on quantum glasses [309].

This chapter is organized as follows. In Sec. 4.1, we review the generalized phase di-

agram of the Kitaev square ladder in collaboration with A. Soret. In Sec. 4.2, we show

how to engineer the Hamiltonian of a single plaquette from the same ladder geometry

with superconducting circuits, as an introduction of our main algorithm. In Sec. 4.3,

we give a short summary of numerical tests on the time-dependent Hamiltonian that

is performed by our collaborator L. Henriet, including the detuning stability, dissipa-

tion effects, measurements of gauge fields and the presence of disorders. We address

in Sec. 4.4 the constraints on the experimental parameters of our dynamical protocol.

In Sec. 4.5, we discuss applications for an ensemble of coupled boxes, such as the

realization of Kitaev spin models and the emergence of Néel (Ising-like) order for the

gauge fields, probe of Majorana physics and quantum phase transitions through local

measurements, as well as relations with Wen’s toric code [318] and possible SYK loop

models.

4.1 Phase diagram of a two-leg Kitaev spin ladder

We start with a review of our phase diagram for a generalized two-leg Kitaev spin

ladder (see Fig. 4.1). On horizontal bonds, there are XYXY alternating Ising inter-

actions with coupling constants J1 and J2. For the vertical bonds, we allow ZZ 0ZZ 0

couplings with strengths J3 and J4. We note that the square type ladder has been

addressed in several works [146, 297, 319]. In our framework, however, by setting

J4 = 0 and J3 6= 0 we realize a brickwall ladder geometry, which is reminiscent of the
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honeycomb ribbons and has not been addressed so far, to the best of our knowledge.

In the brickwall ladder, we show that the gapless B phase of Fig. 4.1c is reduced to

a line.

In Fig. 4.1a, the two-leg ladder can be viewed as two spin chains coupled by the

vertical Ising exchanges. Without loss of generality, we set l as the distance between

two connected vertices (lattice spacing) and assume 2M sites on each chain. The sites

are then labelled by two integers (j,↵) with the site index j = 1, 2, . . . , 2M and the

row index ↵ 2 {1, 2}. The Hamiltonian of the system reads :

H = H1 +H2 +HI , (4.1)

where

H1 =
X

j=2m�1

J1�
x
j,1�

x
j+1,1 + J2�

y
j+1,1�

y
j+2,1

H2 =
X

j=2m�1

J1�
x
j+1,2�

x
j+2,2 + J2�

y
j,2�

y
j+1,2

HI =
X

j=2m�1

J3�
z
j,1�

z
j,2 + J4�

z
j+1,1�

z
j+1,2, (4.2)

with (J1, J2, J3, J4) < 0 being the ferromagnetic coupling constants.

By analogy to the Kitaev spin chain in Sec. 1.3.4, we can write the Hamiltonian

(4.1) in terms of fermionic operators, using the Jordan-Wigner transformation. One

can show that the emergent Hamiltonian is independent of the chosen string path [147]

(see Fig. 4.2 (right top) for different string configurations). Following an arbitrary

string, we define

8
<
:

��
j,↵ = aj,↵e

i⇡
P

{i,α}2string a†i,αai,α

�+
j,↵ = a†j,↵e

i⇡
P

{i,α}2string a†i,αai,α
↵ 2 {1, 2}. (4.3)

8
<
:

�x
j,↵ = �+

j,↵ + ��
j,↵ = (a†j,↵ + aj,↵)e

i⇡
P

i<j a
†
i,αai,α

�
y
j,↵ = 1

i
(�+

j,↵ � ��
j,↵) = i(a†j,↵ � aj,↵)e

i⇡
P

i<j a
†
i,αai,α ,

(4.4)
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(a) (b)

(c)

Figure 4.1: (a) Geometry of a square ladder: distinct ZZ 0 Ising couplings with
strengths J3 and J4 are assigned alternatively on vertical bonds. (b) In ladder geome-
tries, one can define Z2 gauge fields by analogy with the Kitaev honeycomb model
[18]. By Lieb’s theorem [131], the flux operator Pd = D1,3D2,4 is fixed to +1 for
Ji < 0, corresponding to a ⇡-flux configuration. (c) Generalized phase diagram for
the quantum ladder. The gapless B spin liquid phase is located on the plane where
J3J4 = (J1 � J2)

2.

and introduce the Majorana fermion representation:

cj,↵ =

8
<
:

i(a†j,↵ � aj,↵) , j + ↵ = 2m

a†j,↵ + aj,↵ , j + ↵ = 2m� 1
(4.5)

dj,↵ =

8
<
:

a†j,↵ + aj,↵ , j + ↵ = 2m

i(a†j,↵ � aj,↵) , j + ↵ = 2m� 1
(4.6)

In this construction, the Hamiltonian takes the form :

H = �i
X

j=2m�1

[J1cj,1cj+1,1 � J2cj+1,1cj+2,1

+ J1cj+1,2cj+2,2 � J2cj,2cj+1,2

+ J3Dj,1cj,1cj,2 + J4Dj+1,1cj+1,1cj+1,2], (4.7)
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where Dj,↵ depends only on the dj,↵ operators on a vertical bond through Dj,↵ =

(�i)dj,↵dj,↵+1.

Here, Dj,↵ commutes with the Hamiltonian and can take classical values ±1 as

the gauge variables ûhijiµ of the Kitaev honeycomb model [18]. To fix the gauges

of Dj,↵, we can then make a precise connection with the approach by Kitaev in two

dimensions, where the spin operators in the expanded space are decomposed in terms

of Majorana fermions cµj and cj:

�↵j = icjc
µ
j µ 2 {x, y, z}. (4.8)

Defining uj,k = icµj c
µ
k such that �µ

j �
µ
k = �iuj,kcjck, and the Hamiltonian acquires the

general form :

H =
�i

2

X

hj,ki
Jj,kuj,kcjck, (4.9)

where the sum is performed over nearest neighbors hj, ki. Within this notation hj, ki

gives a factor 2 when summing over j and k since uj,k = �uk,j.

Now, let us make an explicit connection with Hamiltonian (4.7) obtained from

the Jordan-Wigner string. For convenience, in a unit cell of four sites, we label the

individual sites by index � = 1, 2, 3, 4 depicted by Fig. 4.1b. By analogy to the 2D

case (1.95), the loop operator on this single square plaquette can be constructed as

Wp = u1,2u2,4u4,3u3,1, (4.10)

in a counterclockwise direction. These four gauge variables can be identified in

Eq. (4.7) straightforwardly: u1,2 = u3,4 = +1 and u3,1 = �D1,3, u2,4 = D2,4. It

leads to Wp = �D1,3D2,4. From Lieb’s theorem [131], when the Ising couplings share

the same sign, in contrast to the 0-flux ground state of the hexagon plaquettes (with

all Wp’s fixed to +1), the square plaquettes select a ⇡-flux configuration for the Z2

gauge field (with all Wp’s fixed to �1). In the ground state, we then obtain conserved

quantities in terms of the flux operator,

Pd = D1,3D2,4 = d1d2d3d4 = +1. (4.11)
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Artificially, we can fix D1,3 = D2,4 = +1 in Hamiltonian (4.7). And we will see below

that the energy spectrum (4.13) is invariant under the transformation J3 ! �J3 and

J4 ! �J4. Moving to the momentum space by Fourier transform, the Hamiltonian

can be diagonalized conveniently in the basis of matter Majorana fermions c:

H = �i
X

k

XT

0
BBBBBB@

0 ↵ � 0

�↵⇤ 0 0 �

��⇤ 0 0 �↵⇤

0 ��⇤ ↵ 0

1
CCCCCCA

| {z }
M

X (4.12)

with ↵ = J1e
�ikl + J2e

ikl, � = J3e
�il, � = J4e

�il and XT = (ck,1, ck,2, ck,3, ck,4).

The energy spectrum reads

✏(k) = ±

s
A(k)

2
±

p
A(k)2 � 4B(k)

2
, (4.13)

with

A(k) = 2

✓
J2
1 + J2

2 + 2J1J2 cos(2kl) +
J2
3 + J2

4

2

◆

and

B(k) = (J2
1 + J2

2 + 2J1J2 cos(2kl))
2 + 2J3J4(2J1J2 + (J2

1 + J2
2 ) cos(2kl)) + J2

3J
2
4 .

We shall now study the phase diagram of the system. In a four-parameter space,

(J1, J2, J3, J4), the spectrum is gapless if there exists a mode k such that ✏(k) = 0. It

is important to notice that ✏(k) = 0 is equivalent to B(k) = 0. This equality results

in the location of the gapless phase B in the phase diagram of Fig. 4.1c, for the

generalized ladder with distinct J3 and J4 couplings. We also insist on the fact that

the gapless B phase is reduced to two transition lines for the square ladder studied

in Ref. [146] where J3 = J4, as we also reproduce.

The emergence of the gapless B phase in the generalized phase diagram of Fig. 4.1c

can also be understood from a dual mapping, using the notations of Ref. [146]. The
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Figure 4.2: (Left) Two-dimensional lattice built from coupled boxes with Z2 symme-
try: XYXY alternating Ising couplings along horizontal bonds and ZZ 0ZZ 0 couplings
on vertical bonds. (Right top) Different configurations of Jordan-Wigner strings for
one unit cell. (Right bottom) Majorana representation: J1, J2, J3(J4) denote respec-
tively the X, Y and Z coupling constants. When |J1|, |J2| � |J3|, |J4|, c Majorana
particles are gapped at high energies and the d Majorana fermions describe the state
of gauge fields in each unit cell or square plaquette.

Hamiltonian can be indeed re-written as [320]

H =
X

j

J1⌧
x
2j�2⌧

x
2j � J2⌧

y
2j�2⌧

y
2j + J3⌧

z
4j + J4⌧

z
4j+2. (4.14)

The fact that the odd sites do not enter in the mapping reflects the macroscopic

degeneracies of the different phases. Using the change of variable 2j � 2 ! j � 1

and 2j ! j, then we obtain a spin-1/2 XY chain with alternating transverse fields.

The Hamiltonian is solved exactly using the Jordan-Wigner transformation and one

recovers a gapless spectrum when J3J4 = (J1 � J2)
2 which corresponds to B(k) = 0.

4.2 Algorithm on an island

Before proceeding to the engineering side of the circuit network, it is useful to reinforce

the notion of flux states arising from the ladder geometry of Sec. 4.1. On a general

lattice of Fig. 4.2, a unit cell of four sites is depicted as the blue box. Lattice of this

type holds a class of exactly solvable models for quantum spin liquids. By setting

Z 0 = 0, the brick-wall lattice recovers the Kitaev honeycomb model. Multi-leg ladders
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can then be addressed, as well as the passage from one to two dimensions, or higher-

dimensional lattices.

For a square of four sites, in Sec. 4.1 we have derived the Hamiltonian in the

Majorana presentation (4.7)

HK = J1�
x
1�

x
2 + J2�

y
3�

y
4 + J3�

z
1�

z
3 + J4�

z
2�

z
4

= �iJ1c1c2 + iJ2c3c4 � iJ3D1,3c1c3 � iJ4D2,4c2c4 (4.15)

with D1,3 = �id1d3 and D2,4 = �id2d4. In our cQED networks, the couplings J1

and J2 are ferromagnetic (or J1, J2 < 0), and the couplings J3 and J4 are adjustable

couplings through the fluxes Φ3 and Φ4 in Fig. 4.3a. On a square unit cell, the

associated flux operator has been defined as

Pd = d1d2d3d4 = D1,3D2,4. (4.16)

This flux operator acting on a unit square cell, and encoded with the d-Majorana Z2

variables, in our representation intervenes through the product of parity operators of

two d-Majorana fermions forming the vertical bonds.

The limit of weak vertical bonds |J1|, |J2| � |J3|, |J4| (see Fig. 4.2 Right bottom)

is of particular interest to us. The c-Majorana fermions are gapped describing the

formation of valence bonds in the spin language between sites 1 and 2, and 3 and

4, respectively. In addition, �ic1c2 = +1 and ic3c4 = +1 such that we can define

the operator Pc = c1c2c3c4 = +1. The d-Majorana particles will be coupled in

a 4-body coupling, as in the SYK model. More precisely, the leading-order term in

the perturbation theory gives �J3J4/(|J1|+ |J2|)�
z
1�

z
2�

z
3�

z
4 = �J3J4/(|J1|+ |J2|)PdPc

with Pc = 1. If J3J4 > 0,Pd = 1 corresponds to the ⇡-flux configuration in a square

unit cell, in agreement with the Lieb’s theorem [131]; otherwise Pd = �1 relates to

the 0 flux.

Below, we show how to detect the gauge fields, at the level of one box and a few

boxes. It is also relevant to note that by assembling boxes, one can then build a spin
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model, which turns out to be a quantum spin liquid with a ⇡-flux ground state. A

staggered flux order has also been suggested for high-Tc cuprates [321–323]. Recent

efforts in quantum materials report the observation of orbital loop currents in Mott

materials with spin-orbit coupling [324] by analogy with cuprates [325]. Here, we can

tune parameters in the spin system and adjust the ground state to have such a ⇡ flux.

The coupled-ladder geometry then presents some tunability.

4.2.1 Physics of a box

First, we introduce the physical structure of one box in Fig. 4.3. Within a cell of

four sites shown in Fig. 4.3a, we denote the superconducting phases as '̂j (j = 1, 4 2

{A}; j = 2, 3 2 {B}). One box can be decomposed into three parts: the on-site

transmon, the local NMR device and the inter-site couplings. Fig. 4.3b shows the

internal structure of each site. We build a transmon qubit on the site j via sets of

capacitances and Josephson junctions {Cq,A, EJq,A} and {Cq,B, EJq,B}, of which the

resonance (plasma) frequencies will be adjusted accordingly. The qubit Hamiltonian

reads:

Hq,j =
Cq,j�

2
0

2
'̇̂2
j � EJq ,j cos '̂j, (4.17)

where �0 = ~/(2e) denotes the rescaled quantum of flux and EJq ,j represents the

Josephson energy of the internal junction.

In Fig. 4.3c, we then connect each node j to an inductance L0
j and a capacitance

C 0
j followed by an AC source of voltage, generating a time-dependent NMR field

HNMR,j = EL0,j

�
'0
j � '̂j

�2
+

C 0�2
0

2

⇣
'̇0
j � '̇̂j

⌘2
+ EVAC ,j. (4.18)

The main purpose of this field is to cancel the local magnetic field in the rotating

frame, as we will show later. Time dependence of HNMR,j is encoded in parameters '0
j

and '̇0
j which satisfy the relations: �0'̇

0
j = �VAC,j = �V0,j sin (!jt) ,'

0
j =

R
dt '̇0

j =

V0,j cos (!jt) /(�0!j). We choose to apply this NMR device because it preserves the
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Z2 symmetry of the Hamiltonian. This protocol is then distinct from the protocol

used in Ref. [58] for the 3-qubit system.

For the interaction part, as can be seen from 4.3a, horizontal bonds of the box are

coupled by an inductance L and a capacitance C to engineer respectively X and Y

couplings. The corresponding interaction Hamiltonians take the form

HL = EL ('̂2 � '̂1)
2 , HC =

C�2
0

2

⇣
'̇̂4 � '̇̂3

⌘2
(4.19)

with EL = �2
0/(2L).

Realizing pure Z couplings on vertical bonds can be achieved through SQUIDs.

The SQUIDs (with characteristic Josephson energies EJ,3 and EJ,4) are controlled

via applied magnetic fields Φ3 and Φ4, and we add auxiliary inductances L̃3 and L̃4

to compensate additional X couplings from junctions. For instance, on the vertical

bond (1, 3), the interaction energy of the SQUID has the form

HS,3 = �EJ,3 cos ('̂1 � '̂3) , (4.20)

while the auxiliary inductance L̃3 contributes to

HL̃,3 = EL̃ ('̂1 � '̂3)
2 , (4.21)

with EL̃ = �2
0/(2L̃). We study perturbations arising from vertical bonds in Sec. 4.3.

The total Hamiltonian can now be written as

H =
4X

j=1

Hq,j +HNMR,j +HL +HC +HS +HL̃. (4.22)

4.2.2 Quantized Hamiltonian

We start from the quantization [296] of the transmon qubit Hamiltonian Hq,j, which

behaves as harmonic oscillators with anharmonicity from Josephson junctions. Ex-

panding the nonlinear cosine potential in Eq. (4.17) to the fourth order and choosing

the bosonic representation: ['̂j, ⇡̂l] = i~�j,l, '̂j = (b†j+bj)/�j, '̂̇j = (b†j�bj)(�e�j)/(i�0Cq,j)

with conjugate momentum ⇡̂j = �2
0Cq,j '̇̂j, we reach
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(a)

(b)

(c)

Figure 4.3: (a) We engineer X and Y Ising couplings through inductance L and ca-
pacitance C on horizontal bonds, Z couplings with SQUIDs and auxiliary inductances
L̃ on vertical bonds; (b) (Left) Structure of on-site transmon qubits: composed of
two Josephson junctions and a capacitance in parallel; (b) (Right) Spectrum of trans-
mon qubits realized with the two lowest levels; (c) Structure of the generalized NMR
device: producing a circularly polarized driven field. Different colors of qubits (grey
and white) and NMR fields (dark blue and light blue) indicate two distinct sets of
frequency patterns for sublattices A and B.
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Hq,j = �EJq,j + ~!q,j

✓
b†jbj +

1

2

◆
� ECq,j

12

⇣
b†j + bj

⌘4
. (4.23)

Here we assume the system in the large �j = (EJq,j/(2ECq,j
))1/4 limit. ECq,j

=

e2/(2Cq,j) depicts the charging energy associated with the transfer of a single elec-

tron. !q,j =
p
8ECq,j

EJq,j/~ is known as the Josephson plasma frequency (⇠ GHz

corresponding to T ⇠ 0.1 K).

As shown in Fig. 4.3b (right), we denote the eigenstates of a pure harmonic os-

cillator as |nji. Taking into account the leading-order correction from the quartic

term in Eq. (4.23), the spectrum of a transmon is modified into En,j = �EJq ,j +

~!q,j (nj + 1/2)� ECq ,j

�
6n2

j + 6nj + 3
�
/12. The gap is decreasing between two suc-

cessive energy levels: ∆En,j = En+1,j � En,j = ~!q,j � ECq ,j (nj + 1). If we restrict

the state of each transmon j to the two lowest energy levels |0ij the quantum vacuum

and |1ij the state with one excited quantum, a qubit will be formed. As transitions

to higher levels are forbidden, bj become hard-core bosons obeying bnj = (b†j)
n = 0

for any n � 2. It allows an exact mapping to the spin-1/2 states for an individual

site: |0ij $ |#ij , |1ij $ |"ij , b
†
j $ �+

j , bj $ ��
j with |#ij and |"ij polarized along z

direction. In the spin space,

�x
j = b†j + bj, �

y
j =

1

i
(b†j � bj), �z

j = 2b†jbj � 1. (4.24)

Eigenvalues of �z
j are well fixed to ±1 since we restrict ourselves to the subspace

where b†b = 0 or 1. Now, the effective Hamiltonian of a transmon qubit acts as a

strong local magnetic field

Hq,j ' ∆E0,jb
†
jbj = ✏q,j�

z
j , (4.25)

where ✏q,j = ∆E0,j/2 = (~!q,j �ECq ,j)/2 characterizes the transition energy from |0ij
to |1ij. In the absence of an AC driving source, the spin system would be polarized

meaning that all the transmon systems would be in the quantum vacuum.
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Through this quantization procedure, the NMR field is transformed into

HNMR,j =� ~!L0,j

2
cos(!jt)�

x
j �

~!C0,j

2
sin(!jt)�

y
j

+ (✏L0,j + ✏C0,j) �
z
j ,

(4.26)

with the fast-oscillating terms EL0,j('
0
j)

2, C 0(�0'̇
0
j)

2/2 and EVAC ,j dropped out. For

simplicity, all coefficients are listed in Table 4.2. Furthermore, we impose

!L0,j = !C0,j = !1,j (4.27)

to generate a circularly polarized field. The stability in the presence of a small

detuning from this condition will be discussed in Eq. (4.60).

On the horizontal bonds, the interaction Hamiltonians become

HL = ✏L,A�
z
1 + ✏L,B�

z
2 + J1�

x
1�

x
2 ,

HC = ✏C,B�
z
3 + ✏C,A�

z
4 + J2�

y
3�

y
4 , (4.28)

where J1 < 0 and J2 < 0.

A more detailed analysis is needed for the vertical bonds. In the large �j limit,

'̂j can be viewed as a small quantum variable. We are allowed to ignore higher

order contributions of the cosine potential in Eq. (4.20). To the fourth order, HS,3 =

�EJ,3(1� ('̂1 � '̂3)
2/2! + ('̂1 � '̂3)

4/4! + · · · ). The quadratic terms give arise to an

effective X coupling '̂1'̂3 ⇠ �x
1�

x
3 and a magnetic field '̂2

1 ⇠ �z
1, '̂

2
3 ⇠ �z

3. For the

quartic contribution, the only effective term '̂2
1'̂

2
3 produces a Z coupling �z

1�
z
3. Thus,

HS,3 = J3�
z
1�

z
3 + Jx

3 �
x
1�

x
3 + ✏J,1�

z
1 + ✏J,3�

z
3, (4.29)

where J3, J
x
3 / �EJ,3. Both the signs and amplitudes of vertical couplings can be

adjusted by the flux Φ3 inside the SQUID as EJ,3 ⇠ cos(Φ3/(2�0)).

At the same time, the auxiliary inductance L̃3 gives a negative X coupling

HL̃,3 = J̃
x

3�
x
1�

x
3 + ✏L̃,A�

z
1 + ✏L̃,B�

z
3. (4.30)
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We can then reduce the vertical X couplings to zero:

Jx
3 + J̃

x

3 = 0, (4.31)

with the phase Φ3/(2�0) 2 [⇡/2 + 2n⇡, 3⇡/2 + 2n⇡[ , n 2 Z for a positive Jx
3 . It is the

same case with bond (2, 4).

Combined with the local �z
j field of the transmon qubit, the total effective Hamil-

tonian of the box becomes

H = HK +HC(t), (4.32)

HK = Jx
1 �

x
1�

x
2 + J2�

y
3�

y
4 + J3�

z
1�

z
3 + J4�

z
2�

z
4,

HC(t) =
X

j

~!0,j

2
�z
j �

~!1,j

2

�
cos (!jt) �

x
j + sin (!jt) �

y
j

�
.

The time-dependent Hamiltonian HC(t) here is distinct from the capacitive Hamil-

tonian HC introduced above in the intermediate steps of the reasoning. Generally,

~!0,j/2= ✏j = ✏q,j + ✏L0,j + ✏C0,j + ✏L,j + ✏C,j + ✏J,j + ✏L̃,j. The main contribution to !0,j

arises from the qubit transition energy ✏q,j. Other minor terms may vary depending

on the geometries (e.g. isolated boxes or infinite lattices) and the dynamic processes

(e.g. changing the sign of J4 couplings). But we can always form two different fre-

quency patterns {!0,A,!0,B} from the beginning and treat the potential deviations

as small local detunings (as will be discussed in Sec. 4.3). Meanwhile, !1,j can be

adjusted by parameters L0
j, C

0
j and VAC,j such that it is comparable to !0,j.

4.2.3 Generalized NMR protocol

In this section, we illustrate the core idea of our algorithm. The aim is to find a

unitary transformation U(t) =
Q

j Uj(t) =
Q

j e
iFj(t) from H = HK +HC to G such

that in the new gauge, the local magnetic field �z
j in HC vanishes and no additional

spin couplings other than the Kitaev type emerge. We denote  (t) and �(t) as the

eigenstates ofH and G that are related by the transform �(t) = U(t) (t). Meanwhile,

�(t) satisfy the Schrödinger equation G�(t) = i@t�(t). It is easy to check that after
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the gauge transformation, G = GC + UHKU
�1 where GC = (i@tU)U�1 + UHCU

�1.

Our requirements can be interpreted as(
GC = 0,

G = UHKU
�1 = H0

K .
(4.33)

Here, H0
K takes a similar Kitaev form (4.15) with renormalized coupling constants

J 0
⌫ .

First, we introduce new variable ⌧j = !jt and present the derivation of some

useful mathematical formulas for our dynamical protocol. Spin operators commute

on different sites, so do Fj(⌧j). It enables us to suppress site index j for the moment,

and focus on the single spin problem:

HC(⌧) = !0Sz � !1 (cos ⌧Sx + sin ⌧Sy) ,

GC = eiFHCe
�iF + i!

�
@⌧e

iF
�
e�iF . (4.34)

Applying the Baker-Campbell-Hausdorff formula,

eiFHCe
�iF = HC + i [F,HC ] +

i2

2!
[F, [F,HC ]]

+
i3

3!
[F, [F, [F,HC ]]] + · · · ,

�
@⌧e

iF
�
e�iF = @⌧

 1X

n=0

(iF )n

n!

!
e�iF

= i@⌧F +
i2

2!
[F, @⌧F ] +

i3

3!
[F, [F, @⌧F ]] + · · · .

(4.35)

F (⌧) can be taken as a linear function of Si (i = x, y, z):

F (⌧) = l(⌧)Sx +m(⌧)Sy + n(⌧)Sz. (4.36)

Due to the closed SU(2) algebra for spin-1/2: [Si, Sj] = i✏ijkSk, GC is also linear in

Si. Moreover, an arbitrary linear function Q (Si) satisfy

[F, [F, [F,Q]]] = ↵2 [F,Q] , ↵2 = l2 +m2 + n2. (4.37)

It allows to group the infinite series in GC (4.35) into a finite form

GC = HC +
sin↵

↵
i [F,HC ] +

cos↵� 1

↵2
[F, [F,HC ]]

+ ~!

✓
�@⌧F +

cos↵� 1

↵2
i [F, @⌧F ]� sin↵� ↵

↵3
[F, [F, @⌧F ]]

◆
.

(4.38)
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Figure 4.4: Sketch of different rotating frames. (a): In the normal NMR protocol.
Two magnetic fields are generated along x and z axes. The field (�!1Sx) hinders the
formation of the spin liquid phases. (b): In our generalized NMR protocol assisted

by the AC driving device. First three rotations in U = eiF (⌧) = U
(1)
x U

(1)
y U

(1)
z · · · are

drawn here with U
(1)
x in colour blue, U

(1)
y in green and U

(1)
z in orange. The infinite

series of rotations in U result in an effective magnetic field (�!0Sz) with vanishing
components in x and y directions.

In the same manner, a single local spin operator Si takes the following expression in

the rotating frame

eiFSie
�iF = Si +

sin↵

↵
i [F, Si] +

cos↵� 1

↵2
[F, [F, Si]] . (4.39)

In order to find a suitable form of F (⌧) that fulfils our two requirements (4.33), we

try with the normal NMR protocol (⇠ O(!)):

F (⌧) = ⌧Sz, U = ei⌧Sz . (4.40)

It is equivalent to setting a rotating frame around z axis with a time-dependent angle

✓ = ⌧ = !t shown in Fig. 4.4a. Plugging F (⌧) into the expression of GC (4.38), we

get two local magnetic fields along z and x directions:

GC = (!0 � !)Sz � !1Sx. (4.41)

Although the original Sz field can be compensated by tuning ! = !0, the new Sx

field will always remain. It removes the macroscopic degeneracies of the spin liquid
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ground states in the gapped phases. For instance, in the Ax phase of our Majorana

box (4.15) with J1 ⌧ J2,3,4 < 0, the emergent magnetic field �!1Sx (!1 > 0) creates

an energy gap ∆ = 4 |!1| between two RVB states |+1+2ix and |�1�2ix for the

upper horizontal bond. When coupling the boxes to form a 2D lattice L as depicted

in Fig. 4.2 (left), the system then selects a single ground state
Q

i2L |+iix with zero

entanglement entropy. So the normal NMR protocol does not work for the simulation

of Kitaev spin liquids.

When the driving frequency ! is large, an alternative unitary transformation can

be built from the Floquet theory [326–329]. F (⌧) is assumed to be of smaller order

⇠ O(!�1) compared with the NMR condition (⇠ O(!), in Eq. (4.40)). It allows us

to solve GC perturbatively by expansions:

GC =
1X

n=0

1

!n
G

(n)
C , F (⌧) =

1X

n=1

1

!n
F (n). (4.42)

From (4.34) - (4.35), the leading order takes the form

G
(0)
C = HC � @⌧F

(1),

G
(1)
C = i

⇥
F (1), HC

⇤
� @⌧F

(2) � i

2

⇥
F (1), @⌧F

(1)
⇤
. (4.43)

The fact that G
(0)
C and G

(1)
C are both time-independent leads to

GC =

✓
!0 �

!2
1

2!
+O(!�2)

◆
Sz, (4.44)

F (⌧) =
⇣
�!1

!
+
!0!1

!2
+O(!�3)

⌘
(sin ⌧Sx � cos ⌧Sy) . (4.45)

Here, the high-frequency Floquet protocol generates a magnetic field along z direction

and can be viewed as infinitely successive rotations of the frame around x, y and z

axes shown in Fig. 4.4b:

U = eiF (⌧) = eic1(⌧)Sxeic2(⌧)Syeic3(⌧)Sz · · · = U (1)
x U (1)

y U (1)
z U (2)

x U (2)
y U (2)

z · · · .

In the perturbation series (4.44), we are able to adjust the frequency of the AC voltage

! such that GC = 0. To the first order O(!�1), we find the requirement !1 =
p
2!0!.
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Then !1 should be comparable to !0. From Table 4.2, it can be realized by tuning

parameters L0, C 0 and VAC .

However, the Floquet approach is not applicable to small values of !. Fortunately,

we find an exact transformation in a similar form as the Floquet construction (4.45):

F (⌧) = ↵ [sin(⌧)Sx � cos(⌧)Sy] . (4.46)

Here, the value of ↵ is to be determined later. Moving to the basis of Pauli matri-

ces, Fj(⌧j) = (↵j/2)
�
sin ⌧j�

x
j � cos ⌧j�

y
j

�
. From Eq. (4.38), we derive explicitly the

expression of GC :

GC =
~

2

4X

j=1

(!0,j cos↵j + !1,j sin↵j � !j cos↵j + !j) �
z
j

� (!1,j cos↵j � !0,j sin↵j + !j sin↵j)
�
cos ⌧j�

x
j + sin ⌧j�

y
j

�
. (4.47)

The second time-dependent term vanishes as long as

cos↵j = �(!0,j � !j)/
q
!2
1,j + (!0,j � !j)

2,

tan↵j = !1,j/(!0,j � !j). (4.48)

GC then becomes a time-independent effective magnetic field polarized on z direction

only:

GC =
X

j

~

2

✓
!j �

q
w2

1,j + (!0,j � !j)
2

◆
�z
j . (4.49)

If the frequencies of the AC voltages satisfy

!j =
!2
1,j + !2

0,j

2!0,j

, GC = 0. (4.50)

Next, to meet our second requirement (4.33), we go on to analyze the remaining

part UHKU
�1 in the effective Hamiltonian G. Constructed from spin operators,

Uj(t) commute between different sites. For the ⌫-link (⌫ = x, y, z), U�⌫A�
⌫
BU

�1 =

(UA�
⌫
AU

�1
A )(UB�

⌫
BU

�1
B ). In the rotating frame, from Eq. (4.39) spin operators on site
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j undergo the following gauge transformation:

Uj�
x
jU

�1
j =

�
1 + cos2(⌧j)(cos↵j � 1)

�
�x
j

+
cos↵j � 1

2
sin(2⌧j)�

y
j � sin↵j cos(⌧j)�

z
j ,

Uj�
y
jU

�1
j =

�
1 + sin2(⌧j)(cos↵j � 1)

�
�
y
j

+
cos↵j � 1

2
sin(2⌧j)�

x
j � sin↵j sin(⌧j)�

z
j ,

Uj�
z
jU

�1
j = cos↵j�

z
j + sin↵j cos(⌧j)�

x
j + sin↵j sin(⌧j)�

y
j .

(4.51)

We denote hf(t)iT as the time average (1/T )
R T

0
f(t)dt. Averaging over a long

timescale

T = NTA = TB, Tj = 2⇡/!j, N � 2, N 2 Z, (4.52)

most of the time-dependent terms in the product (UA�
⌫
AU

�1
A )(UB�

⌫
BU

�1
B ) will vanish.

However, terms such as
⌦
cos2(⌧A/B)

↵
T
=
⌦
sin2(⌧A/B)

↵
T
= 1/2, hcos2(⌧A) cos2(⌧B)iT =

⌦
sin2(⌧A) sin

2(⌧B)
↵
T
= 1/4 survive. By imposing different frequency patterns (N 6= 1)

for sublattices A and B, we ensure that only Kitaev couplings are non-vanishing after

the rotation

hGiT =
⌦
UHKU

�1
↵
T
= H0

K , J 0
⌫ = r⌫J⌫ . (4.53)

The parameters r⌫ (⌫ = x, y, z) are listed in Table 4.1 for quick reference.

In the end, it is important to emphasize that compared with the normal NMR pro-

tocol (4.40) and the high-frequency Floquet approach (4.45), our generalized NMR

protocol (4.46)-(4.50) fulfils the central requirements of the experimental scheme

(4.33) for all values of driving frequencies {!j}.
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Table 4.1: Parameters for generalized NMR protocol

Parameter Relation

↵ arctan(2!0!1/(!
2
0 � !2

1))

rx, ry cos2 (↵A/2) cos
2 (↵B/2)

rz cos↵A cos↵B

u cos↵A � 1

v cos↵B � 1

r1 u2v2/64 + (u2v + uv2 + u2 + v2)/8

+uv + u+ v + 1

r2 u2v2/64

r3 u2v2/64 + (uv2 + v2)/8

r4 u2v2/64 + (u2v + u2)/8

4.2.4 Measuring flux states through multi-channels

Within a single box, we define four types of ‘loop’ operators in the rotating frame

associated with Hamiltonian G (4.53):

Pc = �x
1�

x
2�

y
3�

y
4 = c1c2c3c4,

Pd = �
y
1�

y
2�

x
3�

x
4 = d1d2d3d4,

Pe = �
y
1�

x
2�

y
3�

x
4 = �d1c2c3d4,

Pf = �x
1�

y
2�

x
3�

y
4 = �c1d2d3c4.

(4.54)

These operators will be important in the detection of Z2 gauge fluxes. In particular,

in the limit of strong horizontal bonds, as mentioned in the beginning of this section

(see argument below Eq. (4.15)) we predict Pc = c1c2c3c4 = +1. In our Majorana

representation, they become four-body Majorana couplings. Meanwhile, the flux

operator Pd = +1 corresponds to the ⇡-flux configuration while Pd = �1 relates

to the 0 flux. The NMR protocol thus enables us to measure experimentally the

flux states encoded in Z2 gauge fields. We denote hUPU�1iT = hhPii as the time-
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averaged measurement (over the large Floquet period) in the original spin space.

From Eq. (4.51), the unitary transformation to the rotating frame entangles these

four loop operators
0
BBBBBB@

hhPdii
hhPcii
hhPeii
hhPfii

1
CCCCCCA

=

0
BBBBBB@

r1 r2 r3 r4

r2 r1 r4 r3

r3 r4 r1 r2

r4 r3 r2 r1

1
CCCCCCA

0
BBBBBB@

Pd

Pc

Pe

Pf

1
CCCCCCA

. (4.55)

The coefficients read

r1 =
⌦�
1 + sin2(⌧A)u

�
·
�
1 + sin2(⌧B)v

�
·

�
1 + cos2(⌧B)v

�
·
�
1 + cos2(⌧A)u

�↵
T
,

r2 =
u2v2

16

⌦
sin2(2⌧A) sin

2(2⌧B)
↵
T
,

r3 =
v2

4

⌦
sin2(2⌧B) ·

�
1 + sin2(⌧A)u

�
·
�
1 + cos2(⌧A)u

�↵
T
,

r4 =
u2

4

⌦
sin2(2⌧A) ·

�
1 + sin2(⌧B)v

�
·
�
1 + cos2(⌧B)v

�↵
T
,

(4.56)

where u = cos↵A � 1, v = cos↵B � 1. The time-averaged values of ri’s are given

in Table 4.1. In particular, the flux operator can be measured directly from the

observables in the original frame by the inverse of the matrix (4.55). For instance,

Pd =
1

D
(r̃1hhPdii+ r̃2hhPcii+ r̃3hhPeii+ r̃4hhPfii) , (4.57)

where D =
P4

m=1 r
4
m�2

P
m<m0 r2mr

2
m0+8

Q4
m=1 rm and r̃m = rm

⇣
r2m �

P
m0 6=m r2m0

⌘
+

2
Q

m0 6=m rm0 . An expression can be obtained for Pc in the same manner.

4.3 Summary of numerical tests

In this section, we summarize the numerical tests performed by our collaborator L.

Henriet, that are important for the understanding of the strengths and limitations of

our algorithms.

Our protocol (valid to any order in 1/!j) is tested numerically by solving the time-

dependent Hamiltonian with a diagonalization and the time-averaged observables
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hh�z
j ii and hh�z

j�
z
l ii are evaluated. The results are almost identical for different integer

values N = 3, 5, 7 in the choice of the double frequencies (4.52). Here, hhfii =

hhfi(t)iT denotes the time averaged quantity (1/T )
R T

0
Tr(⇢(t)f) with ⇢(t) being the

density matrix of the system and T = 2⇡/!min with (!min = !B). Therefore, T

corresponds to the larger Floquet period.

The calculation of spin observables averaged in time under the Hamiltonian H

agrees with the calculation in the rotating frame with the Hamiltonian G. Fig. 4.5a

shows results in the particular limit of strong vertical bonds with antiferromagnetic

couplings J3 = J4 � |J1| = |J2|. hh�z
j ii = 0 since on each site a spin can be

polarized in the | + zi and |� zi direction equally. We check that hh�x
j ii and hh�y

j ii

are zero. In Fig. 4.5a, two-spin correlator hh�z
1�

z
3ii takes the anticipated value close

to �1 ⇥ rz = �0.11 (due to the large J3 coupling in the rotating frame). The flux

variables through the 4-body spin operators can also be detected directly and agree

with the mathematical predictions in Sec. 4.2.4. Fig. 4.5a shows in the regime of

weak vertical bonds, Pc ⇠ Pd ⇠ 1. These two quantities are obtained from the

measurement of four separate channels hhP⇠ii (⇠ = c, d, e, f) based on formulas (4.54)

and (4.55) and correspond to the precise engineering of the ⇡-flux configuration.

Next, we address the effects of detuning. So far, we have three steps of fine tunings

throughout our proposal:

(i) The cancellation of vertical X couplings;

(ii) The engineering of a circularly polarized NMR field in Hamiltonian (4.32);

(iii) The cancellation of local magnetic field in the rotation frame.

The prerequisite (i) is important for the realization of Kitaev Hamiltonians. We show

later that such perturbations can be useful to produce local flux impurities, at a

perturbation level. For (i), the condition for the parameters from Eq. (4.31) becomes

EeL,m = �EJ,m/2, m = 3, 4. (4.58)
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This can be reached by tuning the phases Φ3,Φ4. We will discuss this point more

carefully in the later part of section. For (ii), we impose !1,j = !L0,j = !C0,j in terms

of parameters (see Table 4.2 in Sec. 4.4). We discuss below perturbation effects from

that condition. Now for the algorithm (iii), we consider a small deviation in the

frequency pattern !j ! e!j = !j + �!j. The Hamiltonian of the NMR field becomes

HNMR(t) = �
4X

j=1

~!1,j

2
(cos(e!jt)�

x
j + sin(e!jt)�

y
j )

+
~!1,j

2

�!j

!j

cos(e!jt)�
x
j . (4.59)

The third term comes from the change in !L0,j while !C0,j remains unchanged in

relation with Eq. (4.32). More details on the parameters of the box are given in

Sec. 4.4. We can study the consequences of the detuned Hamiltonian (4.59) in the

rotating frame. Firstly, the variable e↵j characterizing the unitary transformation has

a small shift:

cos e↵j ' cos↵j +
cos↵j(1� cos2 ↵j)

1� !0,j/!j

�!j

!j

,

sin e↵j ' sin↵j �
cos2 ↵j

1� !0,j/!j

�!j

!j

.

(4.60)

When �!j ⌧ !j, we can assume cos e↵j ' cos↵j, sin e↵j ' sin↵j. The effective

Hamiltonian GC in Eq. (4.49) takes the form accordingly

GC '
X

j

~!0,j

2!j

�!j�
z
j . (4.61)

In our numerical simulation !0 ⇠ !, GC becomes sensitive under detuning. To analyze

the consequence of the extra third term in the Hamiltonian (4.59), we go back to the

general unitary transform (4.51) and after time average

⌧⌧
~!1,j

2

�!j

!j

cos(e!jt)�
x
j

��
' ~

4

✓
2!0,j

!j

�
!2
0,j

!2
j

◆
�!j�

z
j , (4.62)

where we keep the initial large time period T (!) unchanged and hcos2(e!jt)iT '

1/2+O(�!j). In the end, combining Eq. (4.61) and Eq. (4.62) we expect the detuning
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!j + �!j on each site would create a non-zero effective magnetic field:

eHz =
X

j

!0,j

!j

✓
1� !0,j

4!j

◆
~�!j�

z
j . (4.63)

The pre-factor cannot be zero, otherwise !2
1,j < 0 by the relation (4.50): 2!j!0,j =

!2
1,j + !2

0,j. The gapped phase is protected to the first order perturbation under eHz.

To second order O(�!/|J1|), effective couplings �
z
1�

z
2 and �

z
3�

z
4 are generated but quite

small. For the gapless phase (e.g. in the Kitaev honeycomb model), the magnetic field

is polarized purely along z direction without a gap opening. The above effects are

tested numerically by simultaneously detuning four sites or a single site. All physical

observables (especially Pd) are supposed to be stable via a small detuning. When

�!j is comparable to !j, we could detect large fluctuations. Fig. 4.5b demonstrates

the effect of detuning the driving frequency of the site 2 on the gauge-field four-body

operator Pd. Small errors of the order of 3% are gained for more than 14 time periods

if the detuning is of the order of 5%.

It is also important to characterize the influence of losses and dephasing on the

dynamical protocols. � and Γ denote respectively the dephasing and loss rates of

the qubit in the Lindblad-type master equation. Independent losses and dephasing

are imposed on each site, with the same strength. As can be seen in Fig. 4.5c, the

presence of losses and dephasing destroys the quantization of both Pd (yellow) and

Pc (red) at the level of one box. When simulating the proper Hamiltonian in an

experiment, one should therefore perform all measurements within a timescale ⌧mes

set by these characteristic rates, ⌧mes ⌧ 1/�, 1/Γ. It is relevant to note the similar

role � and Γ in these measurements.

At the end of this section, we analyze the effects of non-zero verticalX couplings on

single-box systems, arising from Josephson junctions. In the limit of strong horizontal

bonds, the ground state is highly degenerate: |GSi = |↵↵ix,(1,2) ⌦ |��iy,(3,4) , (↵, �) =

±1. From perturbation theory, interactions on the vertical bonds contribute to H
(2)
eff =

�J3J4/(|J1|+ |J2|) (�
z
1�

z
2�

z
3�

z
4)eff � Jx

3 J
x
4 /|J2| (�

x
1�

x
2�

x
3�

x
4 )eff. Strong J1 links ensure
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that h�x
1�

x
2 i = 1. Thus,

H(2) = � J3J4
|J1|+ |J2|

h�z
1�

z
2�

z
3�

z
4i �

Jx
3 J

x
4

|J2|
h�x

3�
x
4 i . (4.64)

In the Majorana basis,

h�z
1�

z
2�

z
3�

z
4i = PcPd = Pd, h�x

3�
x
4 i = �id3d4, (4.65)

where we have taken into account Pc = h�x
1�

x
2�

y
3�

y
4i = 1. Once we add an additional

inductance eL3 between sites 1 and 3 and turn off the vertical X coupling such that

Jx
3 + eJx

3 = 0 (we have Φ3 fixed and J3 > 0), the contribution from Jx
4 vanishes and we

check that �x
2�

x
4 becomes an irrelevant operator to any higher order in perturbation

theory. The gapped phases of Kitaev type spin models are therefore fully protected

against local Jx
4 noises. This point is crucial to the flux engineering later in Sec. 4.5.2.

Furthermore, we gain the flexibility of tuning the Φ4 phase, which is useful to engineer

local defects with 0 flux in a unit cell.

Suppose we deviate from the condition in Eq. (4.31), and study some effects of Jx
3

and Jx
4 . To second-order in Jx

3 J
x
4 , we then engineer a term in the Hamiltonian, which

is equivalent to add a small inductance between the sites 3 and 4: �Hk = �J1�
x
3�

x
4 =

�i�J1d3d4, where �J1 is proportional to Jx
3 J

x
4 . Tuning progressively the flux Φ4 in

time would change the sign of Jx
4 from positive to negative. Then this allows us to

locally change the flux in a square cell from ⇡ to 0 and have also a time control on the

local gauge fields. Next we discuss this protocol in more detail. In this protocol, we

flip the sign of the parity operator �id3d4 in time. The time-control on local fluxes

is illustrated in Fig. 4.5d, where Pd is progressively changed from +1 to -1 while Pc

remains roughly constant.
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(a)
(b)

(c) (d)

Figure 4.5: (a) Time evolution of hh�z
j ii (blue) and hh�z

1�
z
3ii (green) (dashed lines);

and of the fluxes Pd (yellow) and Pc (red) (solid lines) averaged over the longest
period 2⇡/!min with !min = !A/N = !B and N = 3. The NMR frequency pattern is
selected on each site as !1,j =

p
2!0,j, !j = 3!0,j/2. These initial frequency conditions

remain the same in plots (b)-(d). The top panel corresponds to weak vertical bonds
|J1| = |J2| = 0.4~!B, |J3| = |J4| = 0.045|J1|, while the bottom panel deals with the
regime of strong vertical bonds J3/✏3 = J4/✏4 = 0.8. (b) Detuning effects in �!2 of
the driving frequency !2. Average error on Pd (averaged over time) induced by this
detuning, as a function of both �!2 and the adimensional time !mint/2⇡. This plot
corresponds to the weak vertical bonds configuration of (a). (c) Time evolution of the
fluxes Pd (yellow) and Pc (red) in dissipative processes. Here, we have taken weak
vertical bonds |J1| = |J2| = 0.4~!B, |J3| = |J4| = 0.045|J1|. Losses and dephasing,
with rates Γ = 5 10�3!B and � = 5 10�3!B, lead to a monotonous exponential
decay of the fluxes Pd and Pc from their initial quantized value +1 to zero. (d)
Time evolution of Pd (yellow) and Pc (red) under a parity flip. Here, weak vertical
bonds are taken |J1| = |J2| = 0.4~!B, and 2|J3| = |Jx

3 | = 0.1|J1|. A sinusoidal
variation of 2J4 = Jx

4 is applied between the range ±0.1|J1|. An additional small field
hy�

y
3 is implemented with hy = 0.08J1. These numerical plots are provided by our

collaborator L. Henriet.
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4.4 Comments on experimental parameters

Our dynamical protocols simulated numerically in Sec. 4.3 are designed to study spin

observables and detect Z2 gauge fields. Therefore, it is important to analyze the

constraints in terms of experimental parameters. For simplicity, here we suppress the

site index j.

From Table 4.2, the limit of weak vertical bonds |J1|, J2| � |J3|, |J4| requires

�� 1 � s, s�2 ⇠ 1, EL, EC � EJ,3, EJ,4. The main contribution to the magnetic field

�z comes from the transition frequency of the qubit ~!q � EL, EC , EJ , EL̃, EL0 , EC0 .

To cancel this local field, we engineer a circularly polarized field and impose !1 =

!L0 = !C0 giving rise to 4EL0 = s0�2~! with ~! � EL0 ,�� 1 � s0, 1 � s0�2.

We further choose a particular combination of frequencies in numerics from Eq. (4.50):

!1 =
p
2!0, ! = 3!0/2. It results in V0 = 3

p
2�0~!

2
0�/(8EL0). Since !0 � EL0 ,� �

1, both the amplitude V0 and frequency ! of the AC driving device should be large.

Additionally, it is also noted that inside the NMR, the plasma frequency !P is much

smaller compared to !: !P ⇠ 1/
p
L0C 0 ⇠

p
EL0/C 0 ⌧ ! ⇠ !0 ⇠ !q ⇠

p
EJq/Cq,

which leads to EL0/EJq ⌧ s0 ⌧ 1. It is consistent with our limit of large �� 1.

4.5 Application with coupled-box ensembles

4.5.1 Quantum spin liquids, Majorana states, Probes

In the two-dimensional lattice of Fig. 4.2, once a box unit cell is built up one can

construct more complex geometries with J4 6= 0 for square ladders [147], J4 = 0 for

brick-wall ladders [147] and their equivalents in two dimensions, the Kitaev honey-

comb model [18]. In addition, the Kitaev spin chain can be mapped to the transverse

field Ising model and the two-leg square ladders have the dual of the XY chain in

alternating transverse fields [146, 147]. Spin-spin correlation functions could reveal

the short-ranged entanglement in gapped phases [58]. Here, we discuss how the NMR

device can be used to detect Majorana physics and quantum phase transitions in
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Table 4.2: Parameters for box circuit

Parameter Relation Parameter Relation

�
�
EJq/(2ECq

)
�1/4

J1 �2EL/(�A�B)

s C/Cq J2 �2ECsAsB�A�B

!q

p
8ECq

EJq/~ J3 �EJ,3/(2�A�B)
2

!L0 4EL0V0/(~�0�!) J4 �EJ,4/(2�A�B)
2

!C0 2V0es
0�/~ Jx

3 �EJ,3/(�A�B)

✏q
�
~!q � ECq

�
/2 Jx

4 �EJ,4/(�A�B)

✏L EL/�
2 J̃

x

3 �2EL̃,3/(�A�B)

✏C EC(s�)
2 J̃

x

4 �2EL̃,4/(�A�B)

✏J �EJ,?/(2�
2) J 0

⌫ r⌫J⌫

* Notation of subscripts: A for sites {1, 4}, B for sites {2, 3}, ⌫ = x, y, z.

Kitaev spin models.

Let us assume the quantum phase transition with decoupled (zig-zag) chains in the

two-dimensional honeycomb lattice model, J3 = J4 = 0. In Fig. 4.6a, the quantum

phase transition occurs when �J2 = J1 for the upper chain. At the quantum phase

transition, the Hamiltonian can be written in terms of Dirac fermions in the contin-

uous limit by recombining c2m�1 and c2m along the chain. The continuum model is a

one-dimensional fermion Dirac model of  (x) and  †(x) operators and spin-spin cor-

relation functions show power-law decay. Entanglement entropy measurements could

be done to check the conformal field theory at the critical point [147, 330]. To probe

the quantum critical fluctuations in the chain, one can weakly couple this chain to

a spin-1/2 impurity S~ described by a transmon qubit, or another spinless fermion,

that also reveals two Majorana fermions c and d, such that Sz = icd, Sx = c and

Sy = d. Adding a small coupling between this chain and the site (either capacitive

or inductive depending on the coupling which involves the Majorana fermions c1 and

c2 in the chain), then one can engineer a small coupling i↵cc1, where ↵ ⌧ J1. By
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Figure 4.6: (a) Two coupled boxes in the limit of large J1 and J2; (b)-(c) Space of four
effective spins formed by strong J1 and J2 links; While non-zero J4 and J40 reproduce
Ising couplings (b), suppressing J4 and J40 would lead to a four-body Hamiltonian (c)
related to Wen’s toric code.

analogy to the two-channel Kondo model at the Emery-Kivelson line [331–333], we

identify a coupling term / i↵c( (0) +  †(0)). The fermion c will entangle with the

chain and the Majorana fermion d will remain free. A signature of this free remnant

Majorana fermion is a (ln 2)/2 entropy as well as a logarithmic magnetic susceptibility

�imp = @hSzi/@h / lnh, in contrast to a linear behavior for the one-channel Kondo

model [331–333]. With the NMR device attached to the spin-1/2 impurity, one could

control the field strength hSz by detuning the on-site frequency ! from Eq. (4.63) and

measure the logarithmic growth of the susceptibility reflecting the Majorana physics

as well as quantum critical fluctuations in the chain. The gapped phases of the Kitaev

model in ladder geometries also reveal edge mode excitations [147]. The NMR device

could also probe in that case the susceptibility at low fields to detect these modes.

These results do not probe non-Abelian statistics [13, 191], but still would give some

response of Majorana fermions.

Boxes in the limit of strong vertical bonds could give rise to spin-1 quantum im-

purity physics [334].

4.5.2 Z2 gauge fields and Néel order of fluxes

Now we discuss a peculiar limit of coupled-box systems, where inside each box all c

Majorana fermions are gapped due to the large J1 and J2 couplings (shown in Fig. 4.2
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Right bottom). By coupling two boxes in the way of Fig. 4.6a with Jx
3 = 0 and J3 > 0,

we are able to realize a Néel state of d-Majorana gauge fields.

One can perform the perturbation theory in the spin space. A system of two

coupled boxes in Fig. 4.6a consists of the interaction terms:

H0 = J1 (�
x
1�

x
2 + �x

10�
x
20) + J2 (�

x
3�

x
4 + �x

30�
x
40) ,

V = �H? + �Hk,

�H? = J3 (�
z
1�

z
3 + �z

10�
z
30) + (J4�

z
2�

z
4 + J40�

z
20�

z
40) ,

�Hk = �J2�
y
2�

y
10 + �J1�

x
4�

x
30 . (4.66)

Here (J1, J2) ⌧ �1, (�J1, �J2, J3, J
x
3 ) ! (0�, 0�, 0+, 0) and J4, J40 can be controlled

around 0± by the phases Φ4,Φ40 . We notice in Sec. 4.3 when suppressing the vertical

X couplings on J3 bonds, (Jx
4 �

x
2�

x
4 + Jx

40�
x
20�

x
40) become irrelevant operators in any

order of perturbation (see Eq. (4.64)), thus we have ignored them in �H?.

The ground state ofH0 is constructed by four effective spins: |↵↵ix,(1,2)⌦|��iy,(3,4)⌦

|��ix,(10,20) ⌦ |��iy,(30,40) (↵, �, �, � = ±1). We introduce a map Υ: Υ |↵i = |↵↵i and

find H
(0)
eff = 2 (J1 + J2), H

(1)
eff = Υ†VΥ = 0, H

(3)
eff = Υ†V G0

0V G0
0VΥ = 0 where

G0
0(E) = ((E �H0)

�1)
0
. Non-zero contributions arise from the second and fourth

orders

H
(2)
eff =Υ

†V G0
0VΥ = cst� J3J4

|J1|+ |J2|
h�z

1�
z
2�

z
3�

z
4ieff �

J3J40

|J1|+ |J2|
h�z

10�
z
20�

z
30�

z
40ieff ,

H
(4)
eff =Υ

†V G0
0V G0

0V G0
0VΥ

=cst� 1

2(|J1|+ |J2|)3
�
J3J4(J

2
3 + J2

40) h�z
1�

z
2�

z
3�

z
4ieff

+2J2
3J4J40 h�z

1�
z
3�

z
2�

z
4�

z
10�

z
30�

z
20�

z
40ieff + J3J40(J

2
3 + J2

4 ) h�z
10�

z
20�

z
30�

z
40ieff

�

� �J1�J2
2(|J1|+ |J2|)3

�
5J3J40 h�z

1�
z
3�

z
20�

z
40�

y
2�

y
10�

x
4�

x
30ieff

+ J3J4 h�z
2�

z
4�

z
10�

z
30�

y
2�

y
10�

x
4�

x
30ieff + J2

3 h�z
1�

z
3�

z
10�

z
30�

y
2�

y
10�

x
4�

x
30ieff

+J4J40 h�z
2�

z
4�

z
20�

z
40�

y
2�

y
10�

x
4�

x
30ieff

�
.

(4.67)
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Moving to the Majorana representation, we find

H
(2)
eff = cst� J3

|J1|+ |J2|
(J4P1 + J40P3) ,

H
(4)
eff = cst� J3

2(|J1|+ |J2|)3
�
2J3J4J40P1P3 + J4(J

2
3 + J2

40)P1 + J40(J
2
3 + J2

4 )P3

�

� �J1�J2
2(|J1|+ |J2|)3

�
5J3J40Pg123 + J3J4P2 + J2

3Pf12 + J4J40Pf23
�
,

(4.68)

where Pµ describes the four-body d-Majorana coupling on the vertices of box µ =

1, 2, 3 (in Fig. 4.6a, µ = 2 denotes an induced box in the middle). More precisely, P1 =

d1d2d3d4, P2 = d2d10d4d30 , P3 = d10d20d30d40 ,Pf12 = P1P2 = d1d10d3d30 , Pf23 =

P2P3 = d2d20d4d40 ,Pg123 = P1P2P3 = d1d20d3d40 . To minimize the energy, fluxes

within each box can be uniquely fixed by the signs of J4 and J40 . From the discussion

of Sec. 4.3, we infer that when Jx
3 = 0, non-zero Jx

4 and Jx
40 couplings are allowed and

do not enter into effective terms in any order of perturbation. Thus, the flexibility

on the signs of J4 and Jx
40 is virtually guaranteed. In Table 4.3, we list all possible

orderings of three gauge fields for two coupled boxes.

In large networks, one could couple more boxes in the same way and build square

ladders. When all products of J3J4 are kept positive, the emergent ⇡-flux ground

state leading to the Néel order of Z2 gauge fields is in agreement with Lieb’s theorem.

The Néel order could reveal a finite critical temperature in the case of long-range

coupling between boxes, by analogy with the Ising model (see Sec. 4.5.4 below). By

tuning the signs of J4 one is able to create impurities of 0 fluxes in the static Z2 gauge

fields: a pair of fluxes in the bulk or a single flux on the boundary. Another proposal

to engineer many-body phases of fluxes in ladder systems has been done recently [68,

335]. Small ladder spin systems generally reveal rich dynamics due to Mott physics

and gauge fields [336]. From Eq. (4.64) and Eq. (4.65), a small non-zero Jx
3 on the

vertical J3-links would fix the parity of two Majorana pairs �id3d4 and �id30d40 , and

would then help in deciding between the two possible ordered ground states with 0

or ⇡ order.
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Table 4.3: Ordering of gauge fields for two coupled boxes

(sgn[J4], sgn[J40 ]) (P1,P2,P3,Pf12,Pf23,Pg123) flux

(+,+) (+1,+1,+1,+1,+1,+1) ⇡ ⇡ ⇡

(�,�) (�1,�1,�1,+1,+1,+1) 0 0 0

(+,�) (+1,+1,�1,+1,�1,�1) ⇡ ⇡ 0

(�,+) (�1,�1,+1,+1,�1,�1) 0 0 ⇡

4.5.3 Towards Wen’s toric code

Here we show how to implement Wen’s two-dimensional toric code [318] with our

coupled-box clusters. In Fig. 4.6a if we set J4 = J40 = 0, only one term remains in

the perturbation (4.67):

H
(4)
eff = g h�z

1�
z
3�

z
10�

z
30�

y
2�

y
10�

x
4�

x
30ieff = gF̂ , (4.69)

with g = ��J1�J2J2
3/[2(|J1| + |J2|)

3] < 0. Meanwhile, as Jx
4 and Jx

40 vanish together

local Jx
3 noises do not contribute to H

(4)
eff . Recalling that Υ† maps each strong bond

into one effective 1/2-spin (see Fig. 4.6c ): |↵↵ix,(1,2) ! |↵ix,D, |��ix,(10,20) ! |�ix,C ,

|��iy,(3,4) ! |�iy,A, |��iy,(30,40) ! |�iy,B, in a loop of four effective spins we obtain,

F̂ = h�z
1�

y
2�

z
3�

x
4�

x
10�

y
30ieff = ⌧xA⌧

y
B⌧

x
C⌧

y
D, (4.70)

where ⌧ ⌫(⌫ = x, y, z) are spin operators acting on the effective space (see Fig. 4.6c).

Based on this minimal cell with zero J4 and J40 , we can then build the two-dimensional

lattices of coupled brick-wall ladders shown in Fig. 4.7a and reach the Hamiltonian

of Wen’s toric code in Fig. 4.7b:

H = g
X

i

F̂ i, F̂ i = ⌧xi ⌧
y
i+â⌧

x
i+â+b̂

⌧
y

i+b̂
, (4.71)

where i = (ia, ib) denotes the square lattice sites. As each F̂ i commutes with each

other, it is an exactly solvable model with the ground state configuration Fi = +1, 8i

for g < 0.
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(a) (b)

Figure 4.7: (a) Brickwall ladders with coupling parameters |J1|, |J2| �
|�J1|, |�J2|, |J3|; (b) Wen’s toric code manifested in effective spin space.

The excitations could be engineered in two ways. On one hand, in the effective

spin space the local magnetic field �x
i or �y

i acting on the strong x or y bond (which

could be achieved by an inductive or capacitive coupling to a small DC constant

bias voltage as before) becomes the local operation X̂ or Ŷ which flips the spin on a

single site. It creates a diagonal pair of excitations with two corresponding loop-qubit

states changing from +1 to �1. On the other hand, picking up a single vertical bond

labelled as J30 and changing its sign to �J30 via Φ30 could introduce a neighboring pair

of excitations (during the process the non-zero X coupling on this isolated vertical

bond remains irrelevant). One can also relate Wen’s toric code to Kitaev’s toric code

by moving spins from square lattice sites to the edges of a dual square lattice and

performing unitary rotations.

4.5.4 SYK loop model and Random Ising models

For the original SYK model with quenched disorder, the Hamiltonian has the form:

H =
1

4!

NX

i,j,k,l=1

Jijkldidjdkdl, (4.72)

where the couplings obey Gaussian distribution P (Jijkl) ⇠ exp
�
�N3J2

ijkl/12J
2
�
:

J2
ijkl = 3!J2/N3, Jijkl = 0. The SYK model is found to be maximally chaotic and

share the same Lyapunov exponent of a black hole in Einstein gravity [310].
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By coupling two chains with strong x-links and y-links by weak z-links shown in

Fig. 4.8a, we find two interesting limits to build up the effective Hamiltonian. We

define x = (|J1|+ |J2|)
�1 as a small number and therefore quantify the weak couplings

through: {|J3|, |J4|} = O(xs), {|�J1|, |�J2|} = O(xt), s, t 2 N
+.

When s  t, we can restrict the system to the second-order perturbation in

Eq. (4.68) and reach an effective Hamiltonian O(x2s+1):

H
(2)
eff =

NX

m,n=1

Jmnd(2m�1,1)d(2m,1)d(2n�1,2)d(2n,2), (4.73)

where subscript (j,↵) denotes the site on the j-th column of Chain ↵ = 1, 2 and Jmn =

�J3J4,mn/(|J1|+ |J2|). The coupling constants Jmn are random variables with a Gaus-

sian distribution ensured by the adjustability of Φ4,mn: P (Jmn) ⇠ exp (�NJ2
mn/2J

2).
⇥
id(2m�1,↵)d(2m,↵), Heff

⇤
= 0 and (id(2m�1,↵)d(2m,↵))

2 = 1 imply that id(2m�1,↵)d(2m,↵) is

a good quantum number with the value ±1. We arrive at the following map:

H
(2)
eff =

NX

m,n=1

Jmn⌧
z
(m,1)⌧

z
(n,2), (4.74)

where ⌧ z(m,↵) = id(2m�1,↵)d(2m,↵). This gives rise to a one-dimensional Ising model (e.g.

the zigzag path formed by orange loops and half of blue loops shown in Fig. 4.8b) with

long-range random interactions (for example, green loops). Following the mapping to

effective spin space as in Sec. 4.5.3, we can get the same result and take into account

higher order corrections. Back to two coupled boxes in Fig. 4.6a, from Eq. (4.67)

and Eq. (4.68)) we find P1 = h�z
1�

z
2�

z
3�

z
4ieff = ⌧ zD⌧

z
A,P3 = h�z

10�
z
20�

z
30�

z
40ieff = ⌧ zC⌧

z
B,

which recovers the classical Ising couplings shown in Fig. 4.6b. Quantum corrections

arise from the fourth-order perturbation with the terms: P1P3 = ⌧ zA⌧
z
B⌧

z
C⌧

z
D,Pg123 =

⌧xA⌧
x
B⌧

y
C⌧

y
D,P2 = ⌧

y
A⌧

y
B⌧

x
C⌧

x
D,Pf12 = ⌧xA⌧

y
B⌧

x
C⌧

y
D,Pf23 = ⌧

y
A⌧

x
B⌧

y
C⌧

x
D. Noises from non-zero

X couplings on vertical bonds would produce a small magnetic field along z direction

on sites A and B, as the effective interactions h�x
3�

x
4 i ⇠ ⌧ zA, h�x

30�
x
40i ⇠ ⌧ zB.

When s > t, we can drop out the terms⇠ O(x4s+3) in the fourth-order perturbation
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(a)

(b)

Figure 4.8: (a) Proposal to approximate the SYK model. The blue and green boxes
describe longer-range couplings; (b) Mapping to the long-ranged Ising model.

of Eq. (4.68) and the effective Hamiltonian has the form O(x2s+2t+3):

H
(4)
eff =

NX

m,n=1

4X

l=1

JmnlP
mnl
d , (4.75)

with coefficients Jmn1 = � �J1�J2J2
3

2(|J1|+|J2|)3
, Jmn2 = �5�J1�J2J3J4,(m+1)n

2(|J1|+|J2|)3
, Jmn3 = � �J1�J2J3J4,mn

2(|J1|+|J2|)3
,

Jmn4 = � �J1�J2J4,mnJ4,(m+1)n

2(|J1|+|J2|)3
. Here Pmnl

d is the loop operator which denotes the 4-

body couplings between d-Majoranas living on the vertices of “tilted” boxes: Pmnl
d =

d(2m�1,1)d(2m+l,1)d(2n�1,2)d(2n+l,2)(l = 1, 2), Pmn3
d = d(2m,1)d(2m+1,1)d(2n,2)d(2n+1,2), P

mn4
d =

d(2m,1)d(2m+2,1)d(2n,2)d(2n+2,2). This model could reveal glassy phases of the Ising model

and quantum corrections could be controlled through effective fourth-order correc-

tions, which can be studied in the future. An analogue of the Anderson-Edwards

[337] order parameter could be measured as well as echo spin measurements [338].

Links with many-body localization phenomena could also occur [283].
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Chapter 5

Conclusion and outlook

In this thesis, we have studied the effect of orbital magnetic fields on topological su-

perconducting quantum wire systems. We have shown in Chapter 2, the occurrence

of topological superconducting phases with two or four Majorana fermions per ladder

as well as quantum Hall phases by tuning the magnetic flux and densities at the cross-

ing points of the band structure. The adjustment of the chemical potential at the

crossing region is a key ingredient to realize the appropriate low-energy physics. We

have also studied Andreev processes and the induction of topological superconduc-

tivity in these quantum wire networks. Then, we have engineered a p+ ip topological

superconducting state in weakly coupled ladder systems, projecting the low-energy

physics on the (partially filled) lowest bonding band for each ladder, i.e., or a pair

of two-strongly-coupled wires. Chiral effects are introduced here through the appli-

cation of a space-dependent magnetic field perpendicular to the plane of the wires.

A natural question that arises in this context is the 2D generalization of our model

to the strong coupling limit where two vertical couplings become equal (t0? = t?).

Topological phase transitions might occur in intermediate coupling regimes. One can

also include the diagonal hopping terms in each square plaquette and go beyond the

one-band model of the p+ ip superconductor. For instance, a related recent proposal

[339] has built the links with the extended Harper-Hofstadter model with total half-

flux quanta per plaquette. In the presence of a small px pairing term, a robust chiral
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superconducting phase with Chern number 2 has been found there. Our coupled-

wires platform allows more flexibility on pairing channels, flux patterns and coupling

strengths inside and between the ladders. It is expected to support an even richer

phase diagram with diagonal hoppings. Meanwhile, we have also shown how the

presence of superconductivity and preformed pairs can stabilize a two-dimensional

⌫ = 1/2 Laughlin quantum Hall phase in hybrid spin-1/2 systems, as a result of An-

dreev processes in the Luther-Emery description of a superconducting quantum wire.

Similar fractional quantum Hall states can be constructed in bosonic coupled wires

or quantum spin systems as well [29, 68, 244]. Besides, due to the analogy between

p-wave superconductors, quantum Ising spin chains [340, 341] and Z2 Kitaev quan-

tum spin liquids [18] (the links are revealed in Chapter 1 and Chapter 4 explicitly),

one may anticipate further applicability of these findings in other interacting systems

[342]. From the experimental perspective, we have illustrated a scheme to implement

the orbital magnetic fields required in the coupled wire construction. It remains to

test the feasibility of our proposal in realistic systems such as nanowires and cold

atoms.

In Chapter 3, we have found a general relation between the valence bond fluc-

tuations and the entanglement entropy of the Kitaev spin model in one and two

dimensions. Valence bond fluctuations appear as a relevant tool to identify phases

and phase transitions of Majorana magnetic quantum systems. One of the remaining

challenges is the construction of similar observables to probe topological entangle-

ment entropy, the universal negative constant arising from gauge Majorana fermions.

Most likely, one has to resort to dynamical observables and consider vortex excita-

tions above the ground state configurations under the influence of interactions [215].

Promising theoretical approaches include projected symmetry groups [343–347]. Ap-

plication to three-dimensional systems [195, 348] can also be studied in the future.

In Chapter 4, we have suggested a superconducting toolbox starting from spin

degrees of freedom (qubits) to study the formation of Z2 quantum spin liquids and
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many-body Majorana states. The idea is motivated by the phase diagram of a gen-

eralized Kitaev square ladder where based on a Majorana fermion representation, we

have predicted a plane of gapless (bulk) excitations, connecting three gapped spin

liquid phases. Spin correlations can be measured with current technology [58, 330].

In lattices of multiple boxes, quantum spin liquid states are associated with a Néel

order of gauge fields making analogies with Ising models. These Ising models can

be disordered by engineering local fluxes and one could realize various glassy phases

in relation with the SYK Majorana model. As for other practical applications, we

have built relations with Wen’s toric code in brickwall ladders. We also note another

proposal to engineer four-body Ising interactions with Josephson junctions [349]. It is

encouraging to see that the occurrence of orbital loop currents in Mott insulators [324,

325] has now been observed and realizing anistropic spin coupling constants in two

dimensions and different spin phases is also possible in cold atoms [350]. With robust

experimental platforms built, one may envision the braiding of Majorana fermions as

the first step towards fault-tolerant quantum computation. In driven Floquet systems

out of equilibrium, Majorana braiding with topological protection has been proposed

theoretically for a single wire [351]. We can pursue operations alike in our coupled-

box ensembles. In the meantime, we have tested the stability of our algorithm against

local detuning, disorder and dissipation with the time-evolution of a four-site Majo-

rana box. It is important to extend the current numerical results to a larger system

size. There, the ground state properties of quantum spin liquids can be probed by

time-averaged measurement of entanglement entropy [133, 216], as well as dynamical

spin correlations (over a fixed longer time interval) [213–218].

In the following, we list other open questions related to the thesis that may require

future exploration.

• We have shown via bosonization formalism that the emergent Majorana zero

modes in two weakly coupled asymmetric wires are protected against weak
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Coulomb interactions both inside and between the wires. In terms of mod-

erate interactions, for a single Kitaev superconducting chain, the presence of

a repulsive Coulomb interaction Vk
P

j(2c
†
jcj � 1)(2c†j+1cj+1 � 1) is shown to

reduce the bulk gap [352], but at the same time broaden the window of the

chemical potential that supports MZMs [353]. Further increasing the strength

of the interaction [354] gives rise to an incommensurate CDW state (Vk/t > 1)

and finally a Mott insulating phase (Vk � t). Similar phenomena [31] can

be observed in two interacting Kitaev chains coupled by a repulsive Coulomb

interaction V?
P

j(2c
†
j,1cj,1 � 1)(2c†j+1,2cj+1,2 � 1): the intermediate phase that

connects the topological regime with 4 MZMs and the Mott insulator becomes

a gapless state that resembles double critical Ising (DCI) models. On the other

hand, from DMRG calculations, moderate disorder can also help stabilize the

topological order on a single superconducting wire [355]. In the future, the roles

of strong Coulomb interactions and the local disorder on our two coupled wires

and the multi-wire networks can be explored in more detail.

• Once we introduce spin-1/2 degrees of freedom to our coupled wire networks,

it is promising to approximate 2D time-reversal-invariant topological super-

conductors [356] that support a Majorana Kramers pair at the boundary. By

proximity effects, relevant proposal has been postulated successfully using a 2D

semiconducting layer with large Rashba spin-orbit couplings on top of a nodeless

s± wave iron-based superconductor [357].

• Encouraging progress has been made recently in the symmetry resolved entan-

glement spectroscopy [358–361]. One can resolve distinct contributions from

the reduced density matrices of the subsystem, each associated with a possible

value of the conserved quantity arising from the symmetry. Various techniques

including the form factor bootstrap [362] and the generalized Fisher-Hartwig

conjecture [363], are shown to be highly efficient to extract the subleading
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terms in Z2-symmetry resolved von Neumann entropy S(±), up to O(L�1).

The Z2 Kitaev QSLs feature the fractionalization of a spin-1/2 into gauge

and matter Majorana fermions at low energies. It is thus feasible to employ

the same idea to the hidden symmetry in the matter fermion sector. In 1D,

the bond fermions  behave as a p-wave superconducting chain on the dual

lattice (1.131). The conserved quantity becomes the fermion number parity:

(�1)Q = ±1 with Q =
PM

m=1  
†
m m. Translated back to the original spin

space, (�1)Q =
QM

m=1(�ic2m�1c2m) = (�1)M
P2M

j=1 �
x
j = ∆x. The expecta-

tion value of the hidden string order parameter h∆xi vanishes in the topolog-

ically non-trivial regime J1 < J2 [146]. It agrees with the degeneracy verified

in the entanglement spectra of the even (+) and odd (�) parity sector [363]:

limM!1 S(+)�S(�) = 0. Both can be explained by the appearance of the spin-

1/2 zero-energy modes at the edges of the entanglement Hamiltonian. For the

Kitaev honeycomb model, similar hidden symmetries in the matter sector can

be identified: e.g. ∆⌫,i =
Q

j2@iL, �
⌫
j with ⌫ 2 {x, y, z} and i = h, v denoting the

Ising coupling that covers one of the boundaries of the periodic lattice @iL on

the horizontal (h) and vertical (v) directions respectively1. Then it is possible

to generalize related approaches to higher dimensions [364]. The subleading

terms obtained in the symmetry-resolved entanglement entropy might lead to a

better understanding of the topology of the two-dimensional integrable model.

• Doping the Kitaev-Heisenberg model has shown to give rise to topological su-

perconductivity [347]. The motion of slow holes has also been studied systemat-

ically in the gapped phases of Kitaev honeycomb model [130]. It remains to see

the occurrence of chiral superconductivity in the doped Kitaev ladder systems

from the formation of resonating valence bond states.

• It might be challenging to study analytically the Kitaev honeycomb model be-

1In Fig. 1.4, one may choose ∆x(y),h =
P

j2∂hL
�
x(y)
j , ∆z,v =

P
j2∂vL

�z
j .
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yond the integrable limit [215], yet it may offer extra insights when one goes to

lower dimension. For instance, the Kitaev-Gamma chain is shown to stablize

an ermergent SU(2)1 phase from the RG analysis [365]. Combining multiple

numerical techniques (ED, finite-size and infinite DMRGs) [366], the phase di-

agram of the Kitaev-Gamma model is mapped out on the ladder geometry in

the gapped spin liquid regime (Ji = J, i = 1, · · · , 4). In an immediate uniform

magnetic field, the flux per square plaquette changes from ⇡ to zero. There, a

highly entangled chiral phase with staggered chirality and no magnetic ordering

has been found and is speculated to be closely related to the 2D limit. In search

for more exotic symmetry protected phases, we can start from the gapless spin

liquid regime of our generalized ladder with J4 = 0 (see the phase diagram in

Fig. 4.1c). One may explore analytically the effects of a magnetic field, the

formation of chiral Majorana fermion edge modes and the evolution of the vi-

son gap in a hexagonal plaquette when the Kitaev and Gamma interactions are

competing with each other.

• It is interesting to study the non-Hermitian analogues of Kitaev spin liquids [367]

and extend the planar geometry to more exotic ones - for instance, doubled lay-

ers with twist angles [368]. From a broader perspective, originally postulated in

particle physics, the topological models of Majorana fermions continue to carry

strong links with high energy physics. Apart from the SYK model, emergent

supersymmetry has also become a common feature of the Majorana-Hubbard

model that can be built on various geometries [255, 369–374]. Potential experi-

mental realizations of these models can be sought after in cQED and ultracold

atoms.

171



Appendix A

Résumé en français

Au cours des dernières décennies, les fermions de Majorana ont ravivé l’intérêt pour le

champ de la matière condensée en raison d’applications possibles dans l’information

quantique en tant que qubits protégés [1–7] et codes de surface avec des variables

Z2 [8–12]. D’une part, ils émergent en tant que modes fermioniques d’énergie nulle

de Majorana (MZM) au niveau des défauts topologiques (par exemple, aux bords)

dans une variété de systèmes topologiques avec une symétrie particule-trou. Ce sont

des supraconducteurs à onde p, les analogues supraconducteurs des phases de Hall

quantique [13–15]. D’autre part, les fermions de Majorana sont étroitement liés aux

liquides de spin quantique Z2 [16, 17]. Le modèle de spin de Kitaev sur le réseau en

nid d’abeille [18] représente une classe importante de modèles dans cette catégorie,

et peut être résolu exactement dans une représentation de fermions de Majorana. Le

modèle montre trois phases liquides de spin espacées et une phase intermédiaire qui

peut être identifiée comme un semi-métal des fermions de Majorana.

La quête des phases topologiques a commencé par l’effet Hall quantique [19, 20],

et puis a évolué vers des variantes sur le réseau en nid d’abeilles avec effectivement

un flux magnétique nul dans une cellule unitaire [21]. Ces systèmes de Hall quan-

tique sont caractérisés par un flux de charge robuste et unidirectionnel aux limites de

l’échantillon [22, 23], ainsi que par l’émergence de charges fractionnaires dans le cas

des états de Laughlin [24–27]. Récemment, une approche théorique pour étudier les
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connexions entre les supraconducteurs topologiques et les phases de Hall quantique

consiste à voir les systèmes bidimensionnels comme des réseaux de fils unidimen-

sionnels couplés [28–30]. Cette approche dite de construction filaire a l’avantage de

permettre d’étudier les effets d’interaction (comme le fractionnement) [31–33] qui

vont au-delà de la théorie du champ moyen, via le paradigme liquide de Luttinger

[34, 35].

La recherche de liquides de spin quantique dans le régime de Mott [36–41] est cepen-

dant restée un grand défi en relation avec la découverte de matériaux quantiques

[42–50]. Les liquides de spin quantique présentent des propriétés topologiques et

d’intrication intéressantes [51–54] qui sont utilisées pour des applications en informa-

tion quantique [55]. Le modèle en nid d’abeilles de Kitaev [18] démontre l’importance

des champs de jauge Z2 sur les propriétés de basse énergie. Il est également important

de mentionner les constructions exactes de liquides de spin chiraux [56] et les états

de liquide de spin dans les systèmes en échelle [57].

En partant des analogues de faible dimension, on peut envisager de simuler les liq-

uides de spin de Kitaev à partir de la construction de bôıtes Majorana à quatre sites

dans des réseaux d’électrodynamique quantique de circuit (cQED). Notamment, un

système de trois transmons a été réalisé récemment [58], avec des applications possi-

bles dans les phases topologiques [59, 60]. Ces bôıtes pourraient être utilisées dans des

géométries variables allant des systèmes d’impuretés quantiques aux modèles d’échelle

accordables et de plaquettes. Des ensembles de modèles de plaquettes carrées ont été

réalisés dans des atomes ultrafroids [61] pour émuler un état liquide de spin Anderson

Resonating Valence Bond [38, 62], et ont été montrés théoriquement comme étant liés

à la superconductivité d’onde d (superfluidité) dans le modèle de Hubbard proche de

l’état de Mott [63]. La conception de ces bôıtes de Majorana répond à des questions

difficiles concernant le choix des appariements. Des expériences dans des architec-

tures supraconductrices cQED [64] et dans des atomes ultrafroids [65] rapportent des

progrès dans l’ingénierie des interactions à quatre corps inspirées d’efforts théoriques
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[66, 67].

Dans ces contextes, les objectifs de cette thèse sont de deux ordres: en premier, ex-

plorer les propriétés topologiques et d’enchevêtrement des fermions de Majorana dans

les fils supraconducteurs topologiques et les liquides de spin de Kitaev; deuxièmement,

concevoir des plates-formes physiques réalisables pour l’ingénierie quantique d’états

Majorana à plusieurs corps.

Dans le chapitre 1, nous passons en revue une série de concepts topologiques de base

à partir de la classification des phases topologiques pour les fermions non interactifs

basée sur des symétries non spatiales, avec l’illustration de modeles centraux révélant

des fermions de Majorana: des supraconducteurs d’onde p en d = 1, 2 et le modèle

en nid d’abeille de Kitaev. Par correspondance, les modes de bord de Majorana sont

protégés par l’écart de masse et leurs propriétés peuvent être dérivées d’invariants

topologiques via le théorème d’indice. Un résumé des réalisations expérimentales

potentielles de ces modèles topologiques de fermions de Majorana est donné à la fin

de ce chapitre.

Dans le chapitre 2, nous présentons une étude théorique de l’interaction entre

la supraconductivité topologique de l’onde p, les champs magnétiques orbitaux et

les phases de Hall quantiques dans les systèmes à fils couplés. Nous analysons des

systèmes hybrides constitués d’une châıne Kitaev couplée à un liquide Luttinger. En

accordant le champ magnétique et la densité des porteurs, nous identifions les phases

de Hall quantique et d’onde de densité de charge, ainsi que les régimes dans lesquels

la supraconductivité est induite dans la deuxième châıne par effet de proximité. Cela

nous permet d’envisager des systèmes bidimensionnels constitués d’échelles faiblement

couplées. Nous parvenons à concevoir un supraconducteur p + ip et à réaliser une

généralisation de la phase de Hall quantique fractionnaire ⌫ = 1/2, à la suite des

travaux précédents sur l’échelle tournante à deux pattes [68].

Au chapitre 3, nous introduisons les fluctuations des liaisons de valence pour car-

actériser les liquides de spin quantique et leurs propriétés d’enchevêtrement. En
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appliquant des approches analytiques, nous trouvons une loi d’échelle identique en-

tre les fluctuations des liaisons de valence et l’entropie d’intrication dans le modèle

de spin de Kitaev à deux dimensions et dans les analogues de châınes unidimen-

sionnelles. Nous montrons également comment ces fluctuations de liaison de valence

peuvent localiser, via le préfacteur de mise à l’échelle linéaire, les transitions de phase

quantique entre les trois phases semi-métalliques Majorana espacées et sans lacunes

dans le modèle en nid d’abeille. Nous étudions ensuite l’effet d’un champ magnétique

uniforme selon la direction [111] ouvrant un intervalle dans la phase intermédiaire

qui devient topologique. On obtient toujours un signal robuste pour caractériser les

transitions vers les trois phases espacées. Des comparisons de notre travail analytique

avec une etude DMRG sera effectuee.

Au chapitre 4, nous dérivons un diagramme de phase généralisé pour le système

d’échelle carrée de Kitaev. Comme une réminiscence du modèle bidimensionnel, nous

identifions trois phases liquides de spin espacées et une phase sans intervalle qui

s’étend jusqu’à un plan. Sur la base des cellules unitaires de la géométrie de l’échelle,

nous concevons une bôıte supraconductrice avec quatre spins-1/2 (qubits). Au sein

d’une bôıte ou d’un ı̂lot, nous introduisons un protocole de résonance magnétique

nucléaire généralisé pour réaliser nos modèles. Les bôıtes de couplage nous permettent

de réaliser des liquides de spin Kitaev dans diverses géométries avec des applications

dans le code torique. Nous montrons comment produire un état de flux Néel à la

suite de l’état fondamental du flux ⇡ et abordons le rôle des flux d’impuretés locales

conduisant à des modèles d’Ising aléatoires. Nous présentons une implémentation du

modèle Sachdev-Ye-Kitaev Majorana dans des systèmes d’échelle couplés. Notre tra-

vail analytique sera ensuite comparé avec des simulations numériques sur les mesures

temporelles moyennes, les correlations de spin et de flux, et l’effet de la dissipation.
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Appendix B

Perturbative treatment of H?

Here, we give more detail on the derivations of the Andreev processes in Sec. 2.2.

To find the relevant contribution from t?, we can develop perturbation theory [68,

251, 253] for the hybrid wire Hamiltonian H0 = H1+H2+H∆ with a weak interwire

coupling V = H?. Here, H1 + H2 refers to the quadratic part (Luttinger liquid

contribution) of the Hamiltonian in each wire 1 and 2 respectively, the Hamiltonian

density operator V (x) = H?(x) reads,

V (x) = � t?
2⇡a

nh
ei(

p
2✓�(x)��x) + e�i(

p
2✓�(x)��x)

i

⇥
h
ei((k

1
F+k2F )x�

p
2�+(x)) + e�i((k1F+k2F )x�

p
2�+(x))

i

+
h
ei(

p
2✓�(x)��x) + e�i(

p
2✓�(x)��x)

i

⇥
h
ei((k

1
F�k2F )x�

p
2��(x)) + e�i((k1F�k2F )x�

p
2��(x))

io
. (B.1)

To the n-th leading order, the effective Hamiltonian reads

Heff = H0 + V (n). (B.2)

For any observable A, the expectation value under Heff takes the form

hAiH0+V = hAiHeff
+O(V n), (B.3)
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where

hAiH0+V =
Tr
⇥
e�

R
dxd⌧(H0+V )A

⇤

Tr
⇥
e�

R
dxd⌧(H0+V )

⇤

=

"
hAiH0 +

1X

n=1

(�1)n

n!

⌧✓Z
V

◆n

A

�

H0

#

⇥
"
1 +

1X

n=1

(�1)n

n!

⌧✓Z
V

◆n�

H0

#�1

(B.4)

with the notation
R
V =

R
dxd⌧V (x, ⌧). As the mode ✓1 is pinned in Eq. (4.57), its

dual field �1 oscillates rapidly and renders all terms involving �+ and �� irrelevant.

Thus
✓Z

V

◆n

= 0, n = odd. (B.5)

We can keep the even order terms

hAiH0+V = hAiH0
+
X

k=2,4

1

k!

*✓Z
V

◆k

A

+

H0

� 1

k!

*✓Z
V

◆k
+

H0

hAiH0
+O

"✓Z
V

◆6
#
. (B.6)

B.1 Second order contribution to the ⇡-flux

For the integral at the second order perturbation theory level, it is more convenient

to switch to the relative and center-of-mass coordinates,

x = (x1 + x2)/2, x0 = x1 � x2,

⌧ = (⌧1 + ⌧2)/2, ⌧ 0 = ⌧1 � ⌧2. (B.7)

Further, we introduce polar coordinates for the relative distances x0 and ⌧ 0,

d12 =
p
(x0)2 + v2(⌧ 0)2, (B.8)

and consider the virtual processes

|x0| = |x1 � x2|  ⇠ = v/∆,

|⌧ 0| = |⌧1 � ⌧2|  ∆
�1. (B.9)
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Then

Z
dx0d⌧ 0 =

Z
2⇡

v
d12d(d12). (B.10)

Correspondingly,

Z
dx1d⌧1dx2d⌧2V (x1, ⌧1)V (x2, ⌧2)

'2⇡a

v
(⇠ � a)

Z
dxd⌧V (x, ⌧)V (x+ a, ⌧)

'2⇡a

∆

Z
dxd⌧V 2(x, ⌧)

=
4t2?
⇡a∆

Z
dxd⌧

h
cos(2

p
2✓� � 2�x) + cos(2k2

Fx� 2�2)

+ cos(2
p
2✓� � 2�x) cos(2k2

Fx� 2�2)
i
. (B.11)

We have dropped out fast-oscillating terms which involve �1 fields together with other

constant terms.

For the situation of two wires such that k2
F 6= ⇡/(2a), but with the ⇡-flux gauge

choice �a = ⇡, we obtain
✓Z

V

◆2

=
4t2?
⇡a∆

Z
dxd⌧ cos(2✓2), (B.12)

and in the last equality, ✓1 is pinned to zero and we regard 2�x as multiples of 2⇡.

On the other hand, when ∆ � t?,
*✓Z

V

◆2
+

H0

=

Z
dx1dx2d⌧1d⌧2 hV (x1, ⌧1)V (x2, ⌧2)iH0

=

✓
2⇡

v

◆Z
dxd⌧d12d(d12)R(d12)e

�d12/⇠

'
✓
2⇡

v

◆
a(⇠ � a)R(a)

Z
dxd⌧ · 1

'
✓
2⇡a

∆

◆
R(a)(L�) ⇠ 0, (B.13)

where R(r) denotes a power-law decreasing function. Therefore, the second order

contribution reads

H
(2)
? = �1

2

✓Z
V

◆2

= � 2t2?
⇡a∆

Z
dxd⌧ cos(2✓2). (B.14)
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This reproduces Eq. (2.23) in Sec. 2.2, and the proximity effect since hcos(2✓2)i now

acquires a finite value, implying the pinning of the mode ✓2 in wire 2 and the opening

of a superconducting gap due to the presence of Andreev processes, coupling wire 1

and 2.

B.2 Fourth-order contribution to the arbitrary flux

Away from half-filling, under our gauge choice (2.32) for the flux, the second order

term vanishes

2�x = ±2(k1
F + k2

F )x 6= ±2⇡n,

✓Z
V

◆2

= 0. (B.15)

Now if we go to the fourth order, in the same way as in Eq. (B.7) by changing the

basis twice: (i) from (x3, ⌧3, x4, ⌧4) to (x̄, ⌧̄ , x̄0, ⌧̄ 0); (ii) from (x, ⌧ , x̄, ⌧̄) to (X, ⌘,

X 0, ⌘0), we reach
✓Z

V

◆4

=

✓
2⇡a

∆

◆2 Z
dxd⌧dād⌧̄V 2(x, ⌧)V 2(x̄, ⌧̄)

'
✓
2⇡a

∆

◆2
2⇡ · 2a

v
(⇠ � 2a)

Z
dXd⌘V 2(X, ⌘)V 2(X + 2a, ⌘)

' 8t4?
⇡a∆3

Z
dxd⌧ cos

h
2
p
2(✓�(x)� ✓�(x+ 2a)) + 4�a

i
. (B.16)

In the second equality, we notice the relative distance |X 0| = |x� x̄| = |x1+x2�x3�

x4|/2 2 [2a, ⇠]. Meanwhile,
*✓Z

V

◆4
+

H0

'
✓
2⇡a

∆

◆2 Z
dxd⌧dx̄d⌧̄hV 2(x, ⌧)V 2(ā, ⌧̄)iH0

= 2

✓
2⇡a

∆

◆3

R(2a)(L�) ⇠ 0. (B.17)

Taken into account the pinned mode ✓1(x) ⇠ 0, we find in the effective Hamiltonian

Heff, that the leading-order contribution from t? becomes

H
(4)
? = � t4?

3⇡a∆3

Z
dx cos[2(✓2(x+ 2a)� ✓2(x)) + 4�a]. (B.18)
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Appendix C

Renormalization group analysis

In this section, we would like to derive the renormalization flow equations (2.22) in

Sec. 2.2.1.

C.1 RG equations for a general interacting Hamil-

tonian

For simplicity, we start from a general form of interacting Hamiltonians [256]

H = H0 +H0,

H0 =
v

2⇡

Z
dx


K(r✓)2 + 1

K
(r�)2

�
,

H0 =
g

a2

Z
dx cos(m

p
2✓),

where g denotes the bare coupling strength and a - the lattice spacing. We take m as

an arbitrary coefficient tailored to different perturbations. In the final flow equations

we obtain, the same arguments from the ✓ field are valid for the � field under an

exchange: K�1 ! K.

The essence of the renormalization procedure is manifest in the fact - the low-energy

properties of the system stay unaffected while changing the cutoff (a ! a0 = a+ da).

To see the consequences, let us consider a physical observable, the correlation function

R(r1 � r2) = hein
p
2✓(r1)e�in

p
2✓(r2)iH = hAiH0+H0
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with n an arbitrary coefficient. Based on our previous perturbation analysis, one

finds a nonzero second-order contribution from H0

R(r1 � r2) = hAiH0
+

1

2!

*✓Z
H0
◆2

A

+

H0

� 1

2!

*✓Z
H0
◆2
+

H0

hAiH0
.

Changing variables from
R
=
R
dxd⌧ to

R
d2r/v with r = (x, y) and y = v⌧ , we get

R(r1 � r2)

= hein
p
2✓(r1)e�in

p
2✓(r2)iH0 +

1

2

⇣ g

2a2v

⌘2 X

✏1,✏2=±

Z
d2r0d2r00

h
hein

p
2✓(r1)e�in

p
2✓(r2)

ei✏1m
p
2✓(r1)e�i✏2m

p
2✓(r2)iH0 � hein

p
2✓(r1)e�in

p
2✓(r2)iH0hei✏1m

p
2✓(r1)e�i✏2m

p
2✓(r2)iH0

i
.

Applying the Debye-Waller relation for the functional integral and the elemental

correlations from bosonization [256],

hT⌧e
P

j i(Aj�(rj)+Bj✓(rj))i = e�
1
2
hTτ [

P
j i(Aj�(rj)+Bj✓(rj))]

2i,

h[�(r)� �(0)]2i = KF1(r), h[✓(r)� ✓(0)]2i = K�1F1(r), h�(r)✓(0)i = 1

2
F2(r),

with

F1(r) =
1

2
log


x2 + (u|⌧ |+ a)2

a2

�
, F2(r) = �iArg[ya + ix], ya = v⌧ + aSign(⌧),

(C.1)

one arrives at

R(r1 � r2) = e�n2K�1F1(r1�r2)

"
1 +

g2

8a4v2

X

✏1=±

Z
d2r0d2r00e�m2K�1F1(r0�r00)

⇣
e✏1mnK�1[F1(r1�r0)�F1(r1�r00)�(r1!r2)] � 1

⌘i
. (C.2)

In the equation above, it is easy to check the terms for ✏1 = �✏2 cancel with each

other. From Eq. (C.1), inside the integral one can evaluate

e�m2K�1F1(r0�r00) =

✓
a

r0 � r00

◆m2K�1

,

and notice the major contribution arises from small relative distance r0 � r00. It is

thus convenient to introduce new variables encoding the center of mass and relative

181



coordinates,
(

R = (r0 + r00)/2

r = r0 � r00
.

We proceed by taking into account

F1(r1 � r0)� F1(r1 � r00) ' r ·rRF1(r1 �R), for small r.

Moreover, from the Taylor expansion of the exponential in Eq. (C.2), the first order

term O(r) vanishes after the summation over ✏1 = ±. The second order term O(r2)

gives

R(r1 � r2) ' e�n2K�1F1(r1�r2)

"
1 +

(gmn)2

8a4(vK)2

Z
d2Rd2r

X

i,j=x,y

e�m2K�1F1(r)rirj

rRi
[F1(r1 �Ri)� F1(r2 �Ri)]rRj

[F1(r1 �Rj)� F1(r2 �Rj)]
⇤
.

The rotation invariance in r = (x, y) allows us to keep only the terms i = j. For i 6= j,

a change of variable x ! �x or y ! �y would cancel the original contribution. Also,

the general relation
R
d2r r2/2 =

R
d2rx2 =

R
d2ry2 holds true when the integral acts

on an arbitrary function f(|r|). Therefore,

R(r1 � r2)e
n2K�1F1(r1�r2)

= 1� (gmn)2

16a4(vK)2

Z
d2Rd2rr2e�m2K�1F1(r)[F1(r1 �R)� F1(r2 �R)]

(r2
X +r2

Y )[F1(r1 �R)� F1(r2 �R)].

Once R � a, r2
RF1(R) = r2

R log(R/a) = 2⇡�(R). We obtain the expression of the

correlation function

R(r1 � r2) = e�n2K�1F1(r1�r2)


1 +

1

2

⇣gmn⇡

vK

⌘2
F1(r1 � r2)

Z 1

↵

dr

r

⇣r
a

⌘3�m2K�1
�
.

Restoring the exponential, we find the effective Luttinger parameter

1

Keff

=
1

K
� y2

2K2

Z 1

a

dr

a

⇣r
a

⌘3�m2K�1

, (C.3)

where y denotes the rescaled coupling strength y = mg⇡/v.
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Changing the cutoff from a = a0e
l to a0 = a+da = a(1+dl), the effective Luttinger

parameter should keep the same form, namely

1

Keff(a0)
=

1

K(a0)
� y2(a0)

2K2(a0)

Z 1

a0

dr

a0

⇣ r

a0

⌘3�m2K�1(a0)

. (C.4)

On the other hand, one can rewrite the integral inside K�1
eff (a) (C.3) as

1

Keff(a)
=

1

K(a)
� y2(a)

2K2(a)

Z a+da

a

dr

a

⇣r
a

⌘3�m2K�1(a)

+

Z 1

a0

dr

a0

⇣ r

a0

⌘3�m2K�1(a)
✓
a0

a

◆4�m2K�1(a)
#
. (C.5)

Comparing Eq. (C.4) and Eq. (C.5) and imposing

1

Keff(a)
=

1

Keff(a0)
,

we identify the following renormalization flow equations for K and y in terms of new

variable l:

d

dl

1

K(l)
= � y2(l)

2K2(l)
,

d

dl
y(l) '

✓
2� m2

2K(l)

◆
y(l). (C.6)

While the first equation is exact for K, the second equation is only perturbative for y

as we take the approximation K(a) ' K(a0) during the derivation. From Eq. (C.1),

performing K�1 ! K would give a flow equation for the � field.

C.2 Scaling dimensions of t? and ∆

In the same manner, we can write down the renormalization equations for t? and ∆

in hybrid wire systems in Sec. 2.2.1.

In the strong coupling limit ∆  t? < t, the inter-wire tunneling term t? enters

into the effective Hamiltonian via a second-order process

H? = � g

a2

Z
dx cos(m

p
2✓�) cos(m

p
2�+),
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where g = 2t?a/⇡ and m = 1. In the non-interacting Hamiltonian H0 = H+
0 +H�

0 ,

H±
0 =

v±
2⇡

Z
dx


K±(r✓±)2 +

1

K±

(r�±)2
�
,

(✓+,�+) and (✓�,��) act as two pairs of decoupled and independent fields: h�+(r)✓�(0)i =

0. One can thus define a new correlation function,

R(r1 � r2) = hein
p
2�+(r1)ein

p
2✓�(r1)e�in

p
2�+(r2)e�in

p
2✓�(r2)iH,

and safely drop out the correlators between two different rotated fields. Choosing the

dimensionless quantities as usual

t̃? = y =
mg⇡

v±
=

t?
Λ⇤ , Λ

⇤ =
v±

2a
, (C.7)

we can directly apply the results of Eq. (C.6) and arrive at the flow equation for t̃?:

dt̃?
dl

=

✓
2� K+

2
� 1

2K�

◆
t̃?. (C.8)

Similarly, the pairing term

H∆ = �2∆

⇡a

Z
dx sin(k1

Fa) cos(2✓1) = � g

a2

Z
dx cos[m

p
2(✓+ + ✓�)],

with g = 2∆a sin(k1
Fa)/⇡ and m = 1, corresponds to the flow equation

d∆̃

dl
=

✓
2� 1

2K+

� 1

2K�

◆
∆̃, (C.9)

with ∆̃ = ∆/Λ⇤. Here, Λ⇤ = v±/[2a sin(k1
Fa)] denotes the high-energy cutoff. For

non-interacting fermions K± = K = 1, v±K± = (vF,1 + vF,2)K/2 = ta[sin(k1
Fa) +

sin(k2
Fa)], Λ

⇤ ' t. For interacting fermions K± < 1, v± > v, Λ⇤ > t.

The scaling dimensions of two terms read

�t? =
K+

2
+

1

2K�
, �∆ =

1

2K+

+
1

2K�
.

Only if � < 2, the associated term can be relevant. In the non-interacting limit of

free fermions we currently consider (K+ = K� = 1), the two channels have the same
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scaling dimension �t? = �∆. It renders that the transition of the superconducting

phase and the charge density wave state takes place at t?/∆ = 1. In the weakly

interacting case (K± < 1), the transition point will be slightly shifted. We see that

for the region where t? � ∆, t̃? will flow to the strong coupling faster than ∆̃. The

low-energy physics is still governed by t? and the system behaves as a CDW.
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Appendix D

Edge theory at filling ⌫ = 1

Here, we study the effective edge theory in the quantum Hall phase found in Sec. 2.2.2,

in the case of two wires or a two-leg ladder implying that the two edges are not fully

separated from the bulk. We then perform an integration on the bulk (gapped) degrees

of freedom to build the edge theory. The form of the interwire tunneling Hamiltonian

H? (2.33) satisfies the classification of the edge theory at the filling ⌫ = 1/m [68,

244]. Below, we briefly review the construction approach.

The effective edge Hamiltonian can be built in the Luttinger liquid form

H = H+
0 +H�

0 +H?, (D.1)

where H±
0 is given in Eq. (2.15) and H? in Eq. (2.33). We are then able to integrate

out the other bulk mode ✓ in the action

S[✓±,�±] =
1

2⇡

X

↵=±

Z
dxd⌧

h
vK(r✓↵)2 + v

K
(r�↵)2 + 2i@⌧�

↵r✓↵
i
. (D.2)

Changing the basis from [✓+,�+, ✓�,��] to [✓,�, ✓0,�0] via Eqs. (2.34), (2.36) and

(2.37), we get

X

↵=±

(r✓↵)2 =m2

2

⇥
(r✓)2 + 2r✓0r✓ + (r�)2 � 2r�0r�+ (r✓0)2 + (r�0)2

⇤
,

X

↵=±

(r�↵)2 =1

2

⇥
(r✓)2 � 2r✓0r✓ + (r�)2 + 2r�0r�+ (r✓0)2 + (r�0)2

⇤
. (D.3)

As the bulk mode � is pinned, we can safely drop out all terms involving r�. In the
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total action (D.2), the bulk ✓ mode contributes to

S[✓] =

Z
dxd⌧

v

2⇡

⇥
G(r✓)2 + Fr✓0r✓

⇤
+

i

⇡
@⌧�r✓, (D.4)

with

G =
1

2

✓
m2K +

1

K

◆
, F = m2K � 1

K
. (D.5)

We define a general Fourier transform with periodicity on [0, L] (L-length of the wire),

f(r) =
1

Ω

X

q

fqe
iqr, (D.6)

where Ω = �L, � = 1/T , r = (x, v⌧), q = (k,!n/v) and qr = kx � !n⌧ . !n =

2⇡n/�(n 2 N) denote the Matsubara frequencies for bosons. S[✓] can then be trans-

formed into the momentum space

S[✓] =
X

q


ik!n

⇡
�q✓

⇤
q

�
+

v

2⇡

X

q

k2(G✓⇤q✓q + F ✓0q
⇤
✓q). (D.7)

Integrating out ✓, we get the edge Hamiltonian

He =
ve

2⇡

Z
dx


Ke(mr✓0)2 + 1

Ke
(r�0)2

�
, (D.8)

with the Luttinger parameters

veKe =
v

m2

✓
G� F 2

4G

◆
=

v

2


(K +

1

m2K
)� (K � 1

m2K
)2

(K + 1
m2K

)

�
,

ve

Ke
= vG =

v

2

✓
m2K +

1

K

◆
. (D.9)

Therefore, when K = 1 and m = ±1,

Ke =
2

m2 + 1
= 1, ve = v. (D.10)

In terms of edge chiral fields, L(x) = �1
+1(x) = ✓0 + �0, R(x) = �2

�1(x) = ✓0 � �0,

He =
v

8⇡

Z
dx
⇥
ARR(rR)2 + ALL(rL)2 + ARL(rR)(rL)

⇤
. (D.11)
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The backscattering term vanishes: ARL = 2m2Ke � 2/Ke = 0 and ARR = ALL =

m2Ke + 1/Ke. In the end,

He =
v

4⇡

Z
dx
⇥
(rR)2 + (rL)2

⇤
, (D.12)

we reach a quantum Hall phase at ⌫ = 1/m = ±1 in the presence of an arbitrary

uniform magnetic flux.
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Appendix E

Thouless pump

E.1 Thin-torus geometry

One approach to probe the quantum Hall phase is the detection of the bulk polar-

ization through the Thouless pump [243, 265]. We can now gap out the edge mode

by mapping the two-wire system to a thin torus, shown in Fig. E.1. We add to the

field operators two Aharonov-Bohm phases ✓x, ✓y along the torus with the periodicity

Lx = L, Ly = 2. The torus Hamiltonian reads

H(✓y) = �t?
X

j

h
c†1(j)c2(j)e

i(a�j+✓y/2) + h.c.
i

�t0?
X

j

h
c†2(j)c1(j)e

i(a�j+✓y/2) + h.c.
i

�t
X

j

h
c†1(j)c1(j + 1)e�i✓x/L + c†2(j)c2(j + 1)e�i✓x/L + h.c.

i

+∆

X

j

h
c†1(j)c

†
1(j + 1)ei✓x(2j+1)/L + h.c.

i
. (E.1)

The condition ✓x = ✓y = 0 and t0? = 0 gives back the original Hamiltonian. In

the following analysis, for simplicity we take t0? = t?. In the bosonization picture,

accordingly, the hopping term between two wires becomes

H?(✓y) =� 4t?
⇡a

Z
dx cos(�x+ ✓y/2) cos(

p
2✓�)

⇥ cos[(k1
F + k2

F )x�
p
2�+]. (E.2)
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Figure E.1: Thin-torus lattice with ✓x,y.

E.2 Bulk polarization

Under the gauge choice (2.32) for the arbitrary flux,

H?(✓y) = �2t?
⇡a

Z
dx cos(

p
2✓�) cos(✓y/2 +m

p
2�+), (E.3)

with m = ±1. In this geometry, the two modes ✓� and �+ are pinned separately.

Therefore, from Eq. (2.37), we obtain that the edge mode �0 = (✓�/m + �+)/
p
2 is

indeed gapped out in this geometry. The variation of ✓y enters into the original bulk

mode � = (�✓�/m + �+)/
p
2 = �✓y/(4m). By changing ✓y periodically, one can

probe the bulk polarization. During the process, one mode ✓� remains pinned and

the magnetization current in the bulk stays fully suppressed: hjk(x)i / hr✓�i = 0.

For the other mode �+, when ✓y = 0, �+ ⇠ 0. A charge gap is formed in the total

charge response and the system behaves as a charge density wave (CDW).

On an experimental setup [243], in order to induce a variation in ✓y, one can

exert a constant force around the smaller perimeter ŷ of the torus (see Fig. E.1) and

adiabatically reach twisted boundary conditions: F / @t✓y. When ✓y goes from 0 to

2⇡, one charge e is transported along the wires,

Z L

0

dx∆(n1(x) + n2(x)) =
1

m

∆✓y

2⇡
=

1

m
= ⌫ = ±1. (E.4)

It gives rise to a quantized Hall current perpendicular to the force

IH = e⌫!, (E.5)
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where ! denotes the frequency of variation. In Eq. (E.5), one identifies the filling

factor with Chern number, which manifests the Zak phase on the thin-torus geometry

⌫ =�
Z 2⇡

0

d✓y

Z

BZ

d✓x
2⇡

Ω✓x✓y

=

Z 2⇡

0

d✓y@✓y

Z

BZ

d✓x
2⇡

A(✓x)

=

Z 2⇡

0

d✓y
2⇡

@✓y'Zak(✓y). (E.6)

Here we use the fact that the Berry connection A(✓y) is periodic in ✓x. In the Berry

curvature Ω✓x✓y = @✓xA(✓y)� @✓yA(✓x), the first term thus vanishes.

Meanwhile, the Zak phase can also be interpreted through the electric polarization

[375]. From macroscopic electrostatics, one relates the polarization density P (r~) to

the charge density ⇢(r~) through r · P (r~) = �⇢(r~). Combined with the continuity

equation @t⇢(r~) +r · j~(r~) = 0, we obtain

r ·
⇣
@tP (r~)� j~(r~)

⌘
= 0, ∆P =

Z T

0

dtj~
0
. (E.7)

The second equation is valid up to a divergence-free part. It is given by the magnetic

current in the bulk, which is identically zero due to the pinned mode ✓�. j~
0
represents

the adiabatic current induced by the variation in external potentials [376] and is

related to the total velocity by

j~
0
= en0v(r~) = e

1

L

X

r~

v(r~) = e

Z

BZ

dq

2⇡
v(q),

v(q) =
@✏(q)

~@q
� Ωqt. (E.8)

For completness, in this formula, we have restored the Planck constant ~. One im-

mediately sees, after the integration, the normal group velocity @✏(q)/(~@q) van-

ishes. The anomalous velocity, on the other hand, comes from the Berry curvature

Ωµ⌫ =
@

@RµA⌫(R)� @
@RνAµ(R) in the parameter space R = (q, t). Explicitly,

Ωqt = i

⌧
@u

@q

����
@u

@t

�
�
⌧
@u

@t

����
@u

@q

��
, (E.9)
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with |u(q, t)i defined in the Bloch form of the instantaneous eigenstates | q(x, t)i =

eiqx|u(q, t)i. Now Ωqt gives non-zero contribution to the difference of the polarization

∆P = �e

Z T

0

dt

Z

BZ

dq

2⇡
Ωqt. (E.10)

On the torus, in one period we can perform a change of variables from dtdq to d✓yd✓x.

It follows

∆P =e

Z 2⇡

0

d✓y@✓y

Z

BZ

d✓x
2⇡

A(✓x)

=
e

2⇡
['Zak(✓y = 2⇡)� 'Zak(✓y = 0)]. (E.11)

Along the wires, we conclude P = lxe'Zak/(2⇡) where lx is the number of magnetic

unit cells we measure on the x~ direction. Upon the time period T , when ✓y changes

from 0 to 2⇡, the Zak phase in Eq. (E.6) goes continuously from 0 to 2⇡⌫ and a

quantized change in polarization density P/e = lx⌫ = ±lx can be observed.

Another way to prove Eq. (E.11) is to re-express the anomalous velocity in Eq. (E.8)

in two dimensions ✓~ = (✓x, ✓y):

v~(✓x, ✓y)anom. = �@✓
~

@t
⇥
�
@✓~ ⇥A(✓x, ✓y)

�
. (E.12)

Applying a ⇥ (b ⇥ c) = b(a · c) � c(a · b) and ✓y = 2⇡t/T , the anomalous velocity

along the x direction reads

v(✓x)anom. = �2⇡

T

⇥
@✓xA(✓y)� @✓yA(✓x)

⇤
. (E.13)

Correspondingly, the difference in polarization

∆P = � e

2⇡

Z T

0

dt

Z

BZ

d✓xv(✓x)anom. (E.14)

gives back Eq. (E.11) after a change of the variable from dt to Td✓y/(2⇡).

E.3 Comparison with the ⇡-flux and stability un-

der Coulomb interactions

Switching to the ⇡-flux configuration, the strong tunneling Hamiltonian (2.21) pins

two modes together, ✓�, �+. The edge mode �0 = (✓�/m + �+)/
p
2 is now gapped
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out from the beginning. The system turns into a charge density wave (CDW). If we

perform the same Thouless pump measurement in the torus geometry (E.2)

H?(✓y) = �2t?
⇡a

Z
dx cos(

p
2✓�)[cos(✓y/2 +

p
2�+) + cos(✓y/2�

p
2�+)]. (E.15)

As soon as ✓y is varied by an external force, the responses in the �+ mode differ

in signs and cancel with each other. No charge pumping would occur in the charge

density wave state formed by the ⇡-flux.

Here, we comment briefly on the effects of Coulomb interactions on the Thouless

pump at filling factor ⌫ = 1, including both contributions parallel and perpendicular

to the wires. The parameters in the Luttinger Hamiltonian are then modified as

v±K± = vK, v±/K± = v/K ± (aV?)/⇡. During the charge pumping, however, the

velocity of the parallel current remains unaffected:

rejk(x) = �@t[n1(x) + n2(x)],

ejk(x) = �v+K+
p
2

⇡
r✓+(x) = �vK

p
2

⇡
r✓+(x). (E.16)

Under Coulomb interactions, we find the bulk is still stable in the Thouless pump

measurement, and pumping effects are effectively described through Eq. (E.4).
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Appendix F

Lattice summation on Kitaev spin
chain

Here, we give a mathematical proof of Eq. (3.34).

For the critical Kitaev spin chain at the gapless point J1 = J2, we first evaluate

the bipartite fluctuation within subregion A:

FA =
X

i,j2A
I(i, j) =

X

i,j2A
I(|i� j|). (F.1)

The bond correlation depends only on the difference of two variables. One can thus

convert the double sum into a single sum through

X

i,j2A
I(|i� j|) = I(0)lA + 2

lAX

k=1

(lA � k)I(k). (F.2)

From the expression (3.29) of I(k): 1/[⇡2(k2� 1/4)] for k 6= 0; 1� 4/⇡2 for k = 0, we

get

lAX

k=1

I(k) =
4

⇡2

lAX

k=1

1

4k2 � 1

=
2

⇡2

✓
1� 1

2lA + 1

◆
=

2

⇡2
+O(l�1

A ), (F.3)
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lAX

k=1

kI(k) =
1

⇡2

lAX

k=1

2k

✓
1

2k � 1
� 1

2k + 1

◆

=
1

⇡2

2lAX

k=1

✓
k + 1

k
� k � 1

k

◆
�k �

lA
2lA + 1

=
2

⇡2

2lAX

k=1

�k

k
� lA

2lA + 1
, (F.4)

with �k = 1 for k = odd and �k = 0 for k = even. It is convenient to re-express the

finite sum in terms of the difference of two infinite sums

2lAX

k=1

�k

k
=

1X

k=1

�k

k
� �k+2lA

k + 2lA

=
1X

k=1

✓
1

k
� 1

2k

◆
�
✓

1

k + 2lA
� 1

2k + 2lA

◆
. (F.5)

In the second equality, we have also used the relation: (odd terms) = (all terms) �

(even terms). Now we can apply the properties of the digamma function, which shares

the series representation related to the Euler’s constant � ' 0.57721, as well as the

asymptotic expansion

 (x) = �� +
1X

k=1

✓
1

k
� 1

k + x� 1

◆
,

 (x ! 1) = ln x� 1

2x
� 1

12x2
+O(x�4). (F.6)

Therefore,

2lAX

k=1

�k

k
=  (2lA + 1) + � � 1

2
( (lA + 1) + �)

=
1

2
ln lA +

�

2
+ ln 2 +O(l�1

A ). (F.7)

For a bipartition lA = lB = L/2, we then get the critical scaling of FA and at the

same time, FAB from their relation (3.6)

FA = lA � 2

⇡2
ln lA � 2

⇡2

✓
� + 2 ln 2� 1

2

◆
+O(l�1

A ),

FAB =
1

⇡2
ln lA +

1

⇡2

✓
� + ln 2� 1

2

◆
+O(l�1

A ). (F.8)
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We continue to study the gapped phase of the Kitaev spin chain with negative

exchanges such that |J1| > |J2|, such that the strong bonds occur on the x-links. In

Eq. (3.32) and Eq. (3.33), we predict that the bond correlator behaves as I(i, j) =

c1|i � j|�2 for |i � j|  ⇠ and I(i, j) = c2e
�|i�j|/⇠ for |i � j| > ⇠, with a correlation

length ⇠ ⇠ |J2 � J1|
�1. For 1 < ⇠ < lA = lB = L/2, the valence bond fluctuations

between two subregions become

FAB =

L/2X

i=1

LX

j=L/2+1

I(i, j)

=

⇠X

k=1

k
c1
k2

+

L/2X

k=⇠+1

kc2e
� k

ξ +
LX

k=L/2+1

(L� k) c2e
� k

ξ . (F.9)

Approximating the single summation by an integral and supposing ⇠ ⌧ L, one obtains

FAB = c1 ln ⇠ + c2e
�1
�
2⇠2 � ⇠

�
+O (1) . (F.10)
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Appendix G

Asymptotic form of bond
correlator in the B phase

Here, we derive the power-law behavior of bond correlation functions in the interme-

diate gapless spin liquid phase of the Kitaev honeycomb model. We assume a simple

case where three Ising couplings share the same strength: Jx = Jy = Jz = J .

When  = 0, the valence bond correlator (3.39) can be re-expressed as the product

of two sums

I(i, j) = �h�ici,1cj,2ih�icj,1ci,2i,

h�ici,1cj,2i =
1

N

X

k~

eik
~ ·(r~j�r~i)

f(k)⇤

|f(k)|
,

h�icj,1ci,2i =
1

N

X

q~

e�iq~·(r~j�r~i)
f(q)⇤

|f(q)|
. (G.1)

The main contribution comes from the two Dirac points±k~
⇤
= ±(k⇤

x, k
⇤
y) = ⌥(4⇡/3, 0)

which satisfy |f(±k~
⇤
)| = 0. It allows us to approximate the summation by an expan-

sion around each Dirac point within a small radius ⇠: k~ 2 Ω(±k~
⇤
, ⇠).

For the first sum in Eq. (G.1), around one Dirac point k~
⇤
= (�4⇡/3, 0) we get

f(k~)⇤

|f(k~)|
= � cos ✓0 + i sin ✓0. (G.2)

Here ✓0 is the angle between the relative vector around the Dirac cone �k~ = k~�k~
⇤
and

the x axis. It is clear to see that I(i, j) is anisotropic. To simplify the exponential,
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we denote the direction of the two unit cells as r~ = r~j � r~i = (r cos ✓⇤, r sin ✓⇤) with

✓⇤ the angle between vectors r~ and k~
⇤
. Then,

eik
~ ·(r~j�r~i) = eik

~⇤·r~ei�k
~ ·r~ = eik

~⇤·r~ei�kr cos ✓, (G.3)

with ✓ the relative angle between �k~ and r~j � r~i.

Now we can evaluate the summation by taking the continuum limit

h�ici,1cj,2ik~⇤ =
(�1)

(2⇡)2
·

p
3

2

Z ⇠

0

kdk

Z 2⇡

0

eikr cos ✓

⇥ ei(k
~⇤·r~�✓⇤)(cos ✓ + i sin ✓)d✓. (G.4)

The factor 2 comes from the contribution of two Dirac points. The other factor
p
3/2

originates from a change of basis from dk1dk2 in the Brillouin zone (with unit vectors

n~ 1 and n~ 2) to dkxdky. We have also used the relation ✓ + ✓0 = ✓⇤.

Via a change of variables k0 = kr, one reaches

h�ici,1cj,2ik~⇤ = �
p
3

8⇡2
ei(k

~⇤·r~�✓⇤)
Z

Λ

0

kdk

r2

Z 2⇡

0

cos ✓eik cos ✓d✓

= �t(Λ)

2r2
iei(k

~⇤·r~�✓⇤), (G.5)

where t(Λ) =
p
3/(2⇡) ·

R
Λ

0
J1(k)kdk with a cutoff Λ = ⇠r and inside the integral

J1(k) denotes the Bessel function of the first kind.

A similar expansion around the other Dirac point �k~
⇤
= (4⇡/3, 0) would give an

additional phase factor ei(�k~
⇤
·r~�(⇡�✓⇤)). Thus, the total contribution reads

h�ici,1cj,2i = h�ici,1cj,2ik~⇤ + h�ici,1cj,2i�k~
⇤

=
t(Λ)

r2
sin(k~

⇤
· r~ � ✓⇤). (G.6)

For the second sum in Eq. (G.1), we only need to change r~ to �r~ and adjust the

relative angle from ✓⇤ to ✓⇤ � ⇡:

h�icj,1ci,2i =
t(Λ)

r2
sin(k~

⇤
· r~ + ✓⇤). (G.7)
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Combining Eqs. (G.1), (G.6) and (G.7), we then recover the r�4 scaling of the

bond correlator in the gapless phase [279]:

I(i, j) =
ec1
r4
. (G.8)

Furthermore, from our calculations the amplitude ec1 retrieves an anisotropic factor

Y (r~):

ec1 = t2(Λ) · Y (r~),

Y (r~) = cos2(k~
⇤
· r~)� cos2(✓⇤). (G.9)

One can also verify that the forms of c̃1 and of the anisotropic Y -function in Eq. (G.9)

are valid for the whole gapless region.
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Appendix H

Bipartite fluctuations on
honeycomb geometry

We evaluate here the bipartite fluctuations on the honeycomb lattice, involving the

lattice summation.

H.1 General scaling rule

Consider a bipartition on the honeycomb lattice shown in Fig. 3.3a. The parallelogram

is expanded by two unit vectors n~ 1 = (1/2,
p
3/2) and n~ 2 = (�1/2,

p
3/2) with a total

size Ω = lx⇥ly and the subsystems are chosen as A = B = (lx/2)⇥ly = (L/2)⇥L. For

convenience, we adopt new coordinates r~ = xn~ 1+yn~ 2 : x = 1, 2, . . . , lx, y = 1, 2, . . . , ly.

The summation in the bipartite fluctuations can then be re-expressed into

FΩ =
X

r~,r~02Ω

I(r~ 0 � r~) =
lxX

x,x0=1

lyX

y,y0=1

I(x0 � x, y0 � y). (H.1)

To derive general scaling arguments in a ‘simple’ way, we only consider the case

where I(r~) is an isotropic function of the distance |r~| =
p

x2 + xy + y2. By analogy

to Eq. (F.2), a relation between the double and single sums can be established

lxX

x,x0=1

I(x0 � x, y)

= lxI(0, y) +
lxX

x=1

(lx � x) [I(x, y) + I(�x, y)] (H.2)
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and the same for
Ply

y,y0=1 I(x, y
0 � y). Then the bipartite fluctuation function can be

grouped into four parts:

FΩ = lxlyI1 + lxI2 + IyI3 + I4, (H.3)

with

I1 = I(0, 0) + 2
lxX

x=1

I(x, 0) + 2

lyX

y=1

I(0, y)

+ 2
lxX

x=1

lyX

y=1

[I(x, y) + I(�x, y)] ,

I2 = �2

lyX

y=1

yI(0, y)� 2
lxX

x=1

lyX

y=1

y [I(x, y) + I(�x, y)] ,

I3 = �2
lxX

x=1

xI(x, 0)� 2
lxX

x=1

lyX

y=1

x [I(x, y) + I(�x, y)] ,

I4 = 2
lxX

x=1

lyX

y=1

xy [I(x, y) + I(�x, y)] . (H.4)

The dominant scaling terms in FΩ depend on the particular form of I(r). Suppose

a general case where I(r) / r�↵ and lx, ly are of the same order as L:

I1 ⇠ O(1) +O(
1

L↵�1
) +O(

1

L↵�2
),

I2, I3 ⇠ O(1) +O(
1

L↵�2
) +O(

1

L↵�3
),

I4 ⇠ O(1) +O(
1

L↵�4
), (H.5)

where O(1/L0) ⇠ O(lnL). The leading-order scaling in FΩ becomes

I(r) / 1

r↵
, FΩ /

8
><
>:

L4, ↵ = 0;

L3, ↵ = 1;

L2, ↵ � 2.

(H.6)

When I(r) / e�r/⇠, ↵ ! 1, FΩ still show the volume law: FΩ / L2 = V . Besides,

after the subtraction: |FA[B � FA � FB| /2, while the higher order terms L4 and L3
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survive in FAB , the square term L2 always vanishes, which leads to an area law in

FAB / L = A.

To evaluate FAB more precisely, we are going to study next-leading order terms in

FΩ case by case.

H.2 Kitaev model: the gapless phase

For the gapless phase of the Kitaev honeycomb model, first we consider an isotropic

form of the valence bond correlator in Eq. (3.42)

I(x, y) =
c̃1

(x2 + xy + y2)2
, (H.7)

where c̃1 is a constant for a given Jz 2 [0, 0.50] in our convention.

As ↵ = 4, from the general scaling rule in Eq. (H.5) we get Ii(i = 1, 2, 3) / O(1)

and I4 / O(lnL). In particular, due to the convergence of the lattice summations in

Ii(i = 1, 2, 3) in Eq. (H.4), we can introduce a cutoff lx = ly = Λ = 103 to approximate

these pre-factors:

I1 ' I(0, 0) + 2
ΛX

x=1

I(x, 0) + 2
ΛX

y=1

I(0, y)

+ 2
ΛX

x=1

ΛX

y=1

[I(x, y) + I(�x, y)]

= I(0) + 7.32ec1,

I2 = I3 ' �2
ΛX

y=1

yI(0, y)� 2
ΛX

x=1

ΛX

y=1

y [I(x, y) + I(�x, y)]

= �7.68ec1. (H.8)

Here I(0) denotes the on-site contribution and has the value

I(0) = 1� hQii2. (H.9)

hQii = h�z
i1
�z
i2
i represents the integral over the Brillouin zone:

hQii = (2⇡)�2

Z ⇡

�⇡

Z ⇡

�⇡
dk1k2 cos ✓(k1, k2), (H.10)
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with cos ✓(k1, k2) = a/
p
a2 + b2 and f(k) = a + bi = Jxe

ik1 + Jye
ik2 + Jz. Combined

with the general expression of FΩ in Eq. (H.3), we arrive at

FA = ↵L2 + �L+O(lnL),

FAB = ↵FL+O(lnL), (H.11)

where

↵ = I1/2 = I(0)/2 + 3.66c̃1,

� = 3I2/2 = �11.5c̃1,

↵F = |I2|/2 = 3.84ec1. (H.12)

In the special case Jx = Jy = Jz = 1/3, we have

hQii ' 0.525, I(0)/2 ' 0.362. (H.13)

As indicated by the inset of Fig. 3.3b, the pre-factor of the L2 term in FA takes the

value ↵ = 0.391 close to I(0)/2. We conclude that the major contribution to FA

comes from the on-site interactions.

H.3 Kitaev model: the gapped phases

In the gapped phases, the bond correlation function decays exponentially and there

is less anisotropy observed in Fig. 3.2b. We can safely start with an isotropic form

I(x, y) = c2e
�
p

x2+xy+y2/⇠. (H.14)

For ↵ = 1 in Eq. (H.5), all of the amplitudes Ii(i = 1, 2, 3, 4) / O(1). Yet we

can still relate them to the powers of the finite correlation length ⇠. The following

assumption is taken

⇠ ⇠ L1/p, p � 5, (H.15)
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such that when n < 5,

L/⇠ ! 1, 1/⇠ ! 0, ⇠n < L. (H.16)

Back to Eq. (H.4), we can then replace the summations on the lattice with integrals

lxX

x=1

I(x, 0) = c2⇠

Z lx/⇠

1/⇠

dxe�x = c2⇠

Z 1

0

dxe�x = c2⇠,

lyX

y=1

yI(0, y) = c2⇠
2

Z 1

0

ye�y = c2⇠
2,

lxX

x=1

lyX

y=1

[I(x, y) + I(�x, y)] = 3.63c2⇠
2

= c2⇠
2

Z 1

0

Z 1

0

dxdy
⇣
e�

p
x2+xy+y2 + e�

p
x2�xy+y2

⌘
,

lxX

x=1

lyX

y=1

y [I(x, y) + I(�x, y)] = 5.33c2⇠
3

= c2⇠
3

Z 1

0

Z 1

0

dxdy
⇣
e�

p
x2+xy+y2 + e�

p
x2�xy+y2

⌘
y,

lxX

x=1

lyX

y=1

xy [I(x, y) + I(�x, y)] = 10.4c2⇠
4

= c2⇠
4

Z 1

0

Z 1

0

dxdy
⇣
e�

p
x2+xy+y2 + e�

p
x2�xy+y2

⌘
xy. (H.17)

The pre-factors now read

I1 = I(0) + 7.26c2⇠
2 + 4c2⇠,

I2 = I3 = �10.7c2⇠
3 � 2c2⇠

2,

I4 = 20.8c2⇠
4. (H.18)

Correspondingly, the bipartite fluctuations share the quadratic and linear forms

respectively

FA = ↵L2 + �L+O(1),

FAB = ↵FL+O(1), (H.19)
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with

↵ = I1/2 / ⇠2,

� = 3I2/2 / ⇠3,

↵F = |I2|/2 / ⇠3. (H.20)

It indicates that in gapped phases, ↵F increases at the transition towards the inter-

mediate gapless phase.
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Appendix I

Heisenberg antiferromagnet on
honeycomb lattice

First, we give a review of the modified spin-wave theory on a two-dimensional Heisen-

berg antiferromagnet. We then analyze the asymptotic behavior of the two-spin cor-

relation function on the honeycomb lattice. Later, a closed form of the valence bond

correlator is derived and the r�1 scaling is verified both analytically and numerically.

I.1 Modified spin-wave theory

For an antiferromagnetic Heisenberg model on the honeycomb lattice, we can reach

the Néel state by applying a staggered magnetic field [287, 294].

The Hamiltonian reads

Ĥ =
J

2

X

r~,�~

Ŝr~ · Ŝr~+�~ � h
X

r~

(�1)|r~|Ŝ
z

r~ . (I.1)

Two sets of sublattices {1, 2} are differentiated by (�1)|r~| = 1 for r~ 2 1 and (�1)|r~| =

�1 for r~ 2 2. Vectors �~ connect each site to its nearest neighbors, with the total

number of nearest neighbor sites denoted by z. The introduction of the staggered

field breaks the O(3) spin-rotational symmetry and helps to repair the divergence in

Green functions arising from the zero mode (or the Goldstone mode).

In the modified spin-wave theory [294], one can map spin operators to bosonic

operators: r~ 2 1, S+
r =

p
2S � a†rar ar, S

�
r = a†r

p
2S � a†rar, S

z
r = S � a†rar; r~ 2 2,
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S+
r = b†r

p
2S � b†rbr, S

�
r =

p
2S � b†rbr br, S

z
r = �

�
S � b†rbr

�
with [ar, a

†
r0 ] = [br, b

†
r0 ] =

�r,r0 . Expansion around large S then gives the Hamiltonian of the order O(S2) and

O(S).

Combining Fourier transform and Bogoliubov transformation, it is straightforward

to obtain single-particle expectation values

ha†r~ar~i = hb†r~br~i = �1

2
�r~,r~0 + f

�
r~ � r~ 0

�
,

ha†r~b
†

r~0
i = har~br~0i = g

�
r~ � r~ 0

�
, (I.2)

with

f (r~) =
1

N

X

k~

cos(k~ · r~)
1p

1� (⌘�k)2
,

g (r~) =
1

N

X

k~

cos(k~ · r~)
(�⌘�k)p
1� (⌘�k)2

, (I.3)

and others all vanish. Here, N denotes the total number of lattice sites. ⌘ and �k are

functions depending on the geometry of the lattice

⌘ =

✓
1 +

h

zJS

◆�1

,

�k =
1

z

X

�~

cos(k~ · �~). (I.4)

Let us take a closer look at a finite honeycomb lattice. The geometric function

reads

�k =
1

3

h
cos (ky/

p
3) + 2 cos (kx/2) cos(

p
3ky/6)

i
. (I.5)

When h ! 0, ⌘ ! 1, there exists one zero mode k~0 = (0, 0) making f(r~) and g(r~)

divergent.

Following Ref. [294], one repairs the divergence by adjusting the strength h of the

local staggered magnetic field such that the magnetization becomes zero

hSz
r i = (�1)|r~| (S � hnri) = 0 () f(0~) = S + 1/2. (I.6)
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It is noted that only the zero mode is regularized by h 6= 0 and the sum over the

remaining region can be safely approximated by a finite integral at h = 0. One arrives

at

f(0~) =
1

N

1p
1� ⌘2

+
1

2

Z
dk~

(2⇡)2
1p

1� �2k
= m0 + 0.754. (I.7)

Taking S = 1/2 in Eq. (I.6), we get

m0 =
1

N

1p
1� ⌘2

= 0.246. (I.8)

In the same manner,

g(0~) =
1

N

(�⌘)p
1� ⌘2

+
1

2

Z
dk~

(2⇡)2
(��k)p
1� �2k

' �0.692. (I.9)

I.2 Asymptotic behavior of spin-spin correlation

Now, we can evaluate the behavior of the two-spin correlation function. From Wick’s

theorem, it differs between sites

hSz
r~S

z
r~0i � hSz

r~ ihSz
r~0i

=

8
><
>:

1/4, r~ = r~ 0;

f 2(r~ � r~ 0)/3, r~ 6= r~ 0 and r~, r~ 0 2 same sublattice;

�g2(r~ � r~ 0)/3, otherwise.

(I.10)

To restore the spin-rotational symmetry at zero magnetic field, we have introduced

an extra factor 1/3 to Eq. (I.10).

At large distances, an expansion of f(r~) around k~0 = (0, 0) within radius ⇠ leads

to

f(r~) ' m0 +
1

2
·

p
3

2

Z ⇠

0

kdk

(2⇡)2

Z 2⇡

0

d✓
eikr cos ✓

k/
p
3
. (I.11)

Once we take r ! 1,

f(r~) = c0 +
c1
r
, (I.12)
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with c0 = m0 ' 0.246, c1 = 3/(8⇡) ' 0.119.

Since the approximation (�⌘�k) ' �1 is still valid for k~ 2 Ω (0, ⇠), one finds over

a long distance

g(r~) = �f(r~). (I.13)

The two-spin correlation function then reveal a power-law r�1 decay with alternating

signs on the same and different sublattices.

I.3 Closed form of the valence bond correlator

Next, we study the response of valence bond correlation functions in the Néel state.

We adopt the same definition as the Kitaev honeycomb model

I(i, j) = hQiQji � hQiihQji, Qi = Sz
i1
Sz
i2
. (I.14)

The bond index hi1i2i denotes two sites in the i-th unit cell of the sublattice {1}

and {2}. In the modified spin-wave theory, Sz
i1

= 1/2 � a†iai, S
z
i,2 = �(1/2 � b†ibi).

Reassembling different terms, we reach

16I(i, j)

=
X

k,l=1,2

hn̂km̂li+ [2 (hn̂1n̂2i+ hm̂1m̂2i)� hn̂1n̂2i hm̂1m̂2i]

�
X

k=1,2

[hn̂km̂1m̂2i+ hn̂1n̂2m̂ki] + hn̂1n̂2m̂1m̂2i � 4. (I.15)

To simplify the notation, we have introduced a new set of number operators

n̂1 = 2a†iai, n̂2 = 2b†ibi,

m̂1 = 2a†jaj, m̂2 = 2b†jbj. (I.16)

First, taking into account ha†iaii = hb†ibii = �1/2 + f(0~) = 1/2, the single-particle

expectation values become

hn̂1i = hn̂2i = hm̂1i = hm̂2i = 1. (I.17)
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.

Then, Wick’s theorem can be applied to calculate the remaining terms involving

(2,3,4)-particle expectation values. Before proceeding, from Eq. (I.3) we identify three

useful functions

i 6= j,

f = f(|r~i � r~j|) = ha†iaji = hb†ibji = ha†jaii = hb†jbii;

g = g(|r~i � r~j|) = ha†ib†ji = haibji = ha†jb†ii = hajbii;

i = j,

g0 = ha†ib†ii = haibii = �0.692. (I.18)

All the other terms like ha†ia†ji and ha†ibji vanish in the ground state. Two-particle

expectation values then read

hn̂1m̂1i = 1 + 4f 2 = hn̂2m̂2i,

hn̂1m̂2i = 1 + 4g2 = hn̂2m̂1i,

hn̂1n̂2i = 1 + 4g20 = hm̂1m̂2i. (I.19)

The three-particle expectation value takes the form

hn̂1m̂1m̂2i = 1 + 4g20 + 4(f 2 + g2) + 16g0fg. (I.20)

The summation is invariant under the exchange of (i $ j). Combined with the

sublattice symmetries, we have

hn̂1m̂1m̂2i = hn̂1n̂2m̂1i = hn̂1n̂2m̂2i = hn̂2m̂1m̂2i. (I.21)

For the four-particle expectation value, we verify

hn̂1n̂2m̂1m̂2i =
⇥
(1 + 4g20) + 4(f 2 + g2)

⇤2
+ 64g0fg. (I.22)

Therefore, we arrive at a closed form of the bond-bond correlators

I(i, j) = 2g20(f
2 + g2) + (f 2 + g2)2. (I.23)
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Considering the asymptotic behaviors of f(r~) and g(r~) functions in Eq. (I.12) and

Eq. (I.13), we establish

I(i, j) = c0 +
c1
r
+O(r�2), (I.24)

where c0 = 4m2
0(g

2
0 +m2

0) ' 0.131 and c1 = m0(3g
2
0 + 6m2

0)/⇡ ' 0.141.

In the end, we find for the Néel state supported by strong antiferromagnetic Heisen-

berg exchanges, that the valence bond correlator gives a signature of the r�1 scaling

accompanied by a non-vanishing constant from finite-size effects (the regularization

of the zero mode). This is clearly distinct from the pure r�4 scaling in the gapless

Kitaev spin liquid phase.
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“Many-body quantum electrodynamics networks: Non-equilibrium condensed
matter physics with light”, Comptes Rendus Physique, vol. 17, no. 8, pp. 808–
835, 2016.

[61] S. Nascimbene, Y.-A. Chen, M. Atala, M. Aidelsburger, S. Trotzky, B. Paredes,
and I. Bloch, “Experimental realization of plaquette resonating valence-bond
states with ultracold atoms in optical superlattices”, Physical Review Letters,
vol. 108, no. 20, p. 205 301, 2012.

[62] P. W. Anderson, “Resonating valence bonds: A new kind of insulator?”, Ma-
terials Research Bulletin, vol. 8, no. 2, pp. 153–160, 1973.

[63] K. Le Hur and T. M. Rice, “Superconductivity close to the Mott state: From
condensed-matter systems to superfluidity in optical lattices”, Annals of Physics,
vol. 324, no. 7, pp. 1452–1515, 2009.

[64] Y.-P. Zhong, D. Xu, P. Wang, C. Song, Q. J. Guo, W. X. Liu, K. Xu, B. X. Xia,
C.-Y. Lu, S. Han, et al., “Emulating anyonic fractional statistical behavior in
a superconducting quantum circuit”, Physical Review Letters, vol. 117, no. 11,
p. 110 501, 2016.

[65] H.-N. Dai, B. Yang, A. Reingruber, H. Sun, X.-F. Xu, Y.-A. Chen, Z.-S. Yuan,
and J.-W. Pan, “Observation of four-body ring-exchange interactions and any-
onic fractional statistics”, arXiv:1602.05709, 2016.
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Titre : Modèles topologiques de Majorana fermions et nouvelles applications
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Résumé : Dans cette thèse, nous présentons une

étude théorique des modèles topologiques révélant

des fermions de Majorana qui sont leurs propres anti-

particules, avec des sondes de l’intrication quantique

et des protocoles expérimentaux d’ingénierie quan-

tique en cQED.

Dans la première partie, par des effets de proxi-

mité, nous abordons le supraconducteur topologique

dans des systèmes de fil, où les fermions de Ma-

jorana émergent comme modes à énergie nulle sur

les bords. En faisant varier les forces des cou-

plages inter-fils et l’évolution des flux dus aux champs

magnétiques orbitaux, nous montrons une interaction

entre la supraconductivité topologique des ondes p et

les états Hall quantiques.

Pour les deux autres parties de la thèse, nous

nous concentrons sur les liquides de spin de Ki-

taev qui peuvent être résolus exactement dans

une représentation de fermions de Majorana. Nous

présentons une solution dans des géométries de

type échelle. Nous introduisons les fluctuations des

liens de valence pour caractériser les transitions de

phase entre les phases abélienne et non abélienne,

et trouver une relation générale avec l’entropie d’en-

chevêtrement. Pour simuler ces états Majorana à plu-

sieurs corps, nous proposons un circuit en caisson

supraconducteur puis des généralisations pour des

ensembles de boı̂tes couplées. Là, une variété de

modèles peut être implémentée, y compris le code to-

rique, la chaı̂ne d’Ising aléatoire ainsi que le modèle

SYK Majorana.

Title : Topological Majorana fermions models and new applications

Keywords : Topological superconductivity, quantum spin liquids, Majorana fermions, entanglement, quantum

engineering

Abstract : In this thesis, we present a theoretical

study of topological models hosting Majorana fer-

mions which are their own anti-particles, with relevant

probes of quantum entanglement and experimental

protocols for quantum engineering in cQED.

In the first part, by proximity effects we address the

topological superconducting wire systems, where Ma-

jorana fermions emerge as zero-energy modes at the

edges. By varying strengths of inter-wire couplings

and changing fluxes of orbital magnetic fields, we

show an interplay between topological p-wave super-

conductivity and quantum Hall states.

For the remaining two parts of the thesis, we focus on

Kitaev spin liquids that can be exactly solved in a Ma-

jorana fermion representation. We present a solution

for tunable square and brickwall ladder systems. We

introduce valence bond fluctuations to characterize

phase transitions between Abelian and non-Abelian

phases, and find a general relation with the entangle-

ment entropy. To simulate these many-body Majorana

states, we propose a driven superconducting box cir-

cuit with generalizations to coupled box ensembles.

There, a variety of models can be implemented inclu-

ding the toric code, the random Ising chain as well as

the SYK Majorana model.
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