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Abstract

The idea that we live in a higher-dimensional space was first introduced almost

100 years ago. In the past two decades many extra-dimensional models have been

proposed in order to solve fundamental problems of nature such as the hierarchy

problem. Most of them need exploration via non-perturbative approaches and

Lattice Gauge Theory provides a tool for doing this.

In this thesis, we make attempts to find a non-perturbative way to localize gauge

fields that arise from five-dimensional SU(2) gauge theories on 3-branes. In 1984,

it was proposed that the phase diagram of anisotropic extra-dimensional lattice

gauge theories inherits a new phase, called the “layered” phase, where the gauge

fields behave as four-dimensional ones. This was shown for the abelian case,

but the existence of this new phase for the simplest non-abelian group, SU(2),

was still in doubt. We investigated this system in large volumes using Monte

Carlo simulations and we could not find a second order phase transition from a

five-dimensional to a continuous four-dimensional theory when all directions were

kept large. This made the model unattractive for further exploration as nothing

suggests that a non-trivial fixed point could exist.

The above investigation was done in a flat background metric. We extended the

previous work by putting our theory into a slice of AdS5 space, usually called the

warped background. The motivation for this is that our SU(2) theory looks like

the gauge-sector of the Randall-Sundrum model, which does not have a concrete

solution to the problem of localization of the gauge fields on a 3-brane. We

carried out our investigation using the Mean-Field Approach and we present

novel results for the phase diagram and measurements of important observables.
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In our implementation we have a finite extent of the extra dimension and one

layer (or 3-brane) on each extra-dimensional coordinate. At weak coupling, we

observed that each layer decouples one at a time in the transition to the fully

layered phase of the system, forming a mixed phase, whereas there is a strong and

sharp transition between the fully layered and the strong-coupling phase. Within

the mixed phase, close to the transition into the layered phase, we found evidence

that the system is four-dimensional acquiring a Yukawa mass and resembling a

Higgs-like phase. The mixed phase grows as the curvature increases suggesting

that for an infinite extra dimension the entire weak-coupling phase is mixed.
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Lay Summary

There are four known fundamental interactions of nature: the electromagnetic,

the nuclear weak, the nuclear strong and the gravitational interactions. The

Standard Model (SM) of particle physics is the theory that concerns the first

three and it includes all known elementary particles, that is the fermions (quarks

and leptons), the gauge bosons and the Higgs boson. Even though experiments at

the Large Hadron Collider (LHC) confirmed the existence of all the SM particles,

there are still some unanswered questions in nature, for example if there is a

Grand Unified Theory (GUT) and why gravity is much weaker than the other

forces.

Many solutions to these problems have been proposed over the years and a

noticeable class of solutions is the one that involves the introduction of extra

dimensions, i.e. the proposal that the universe consists of more than the usual

four dimensions (time and the three spatial ones), but the extra dimensions are

hidden from the observed world via different mechanisms, a procedure called

dimensional reduction.

A very powerful tool to explore models when the analytical methods fail, is called

the lattice, that is a space-time grid. In this thesis we explore two different five-

dimensional models on a lattice using computer simulations and semi-analytical

methods, one having the extra dimension in a flat space, as the one we live on,

and the other having the extra dimension in a curved space.

By simulating the first model on powerful computers, we look for a four-

dimensional theory arising from the five-dimensional one when the extra dimen-

sion is large, but we could not find evidence of it up to the point that the available

computer resources allowed us to look at.
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The previous studies of models with the extra dimension embedded in a curved

spacetime are limited to mostly analytical calculations. In this work, we provide

novel results of the model with semi-analytical methods, which open up the

possibility that the presence of the curved space breaks a symmetry associated

with the system and a mass is generated, a result which is unexpected and opens

up the possibility of further investigation of the model especially using computer

simulations.
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Chapter 1

Introduction

The observed world that we live in seems to be accurately described by the

Standard Model (SM). However, the aforementioned includes only the three out of

the four fundamental forces in nature, failing to include gravity in its prescription.

The ultimate goal in theoretical physics is to find a Grand Unified Theory (GUT)

that will unify gravity with the strong and electroweak forces.

The idea of unifying gravity with the electromagnetic force ages back to the 1920s,

when first Kaluza and Klein introduced a five-dimensional gauge theory out of

which they tried to decouple the four-dimensional gauge fields from the extra-

dimensional gauge field, that would give the electromagnetic potential [1, 2]. This

was the first attempt to unify the known forces of nature at that time, that is

electromagnetism and gravity.

Kaluza and Klein independently realized that the connection coefficient of

general relativity (GR) and the field strength tensor of electromagnetism had

a very similar form. As a consequence, Maxwell’s equations and Einstein’s field

equations for GR have similar features. Therefore, they imposed some changes to

the four-dimensional theory that was known in order to be able to have a theory

that contains both GR and the electromagnetic potential. They introduced an

extra dimension, changing the topology of the spacetime to M4 × S1, and they

extended the four-dimensional metric, gµν , to a five-dimensional tensor, gMN . By

the specific choice of topology, the “cylinder condition” could be introduced,

i.e. the derivatives of the extra dimension can be neglected. With this, the
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connection coefficient

Γµνλ = gµρΓ
ρ
νλ =

1

2
(∂λgµν + ∂νgµλ − ∂µgνλ) (1.1)

can be written as

Γµν5 =
1

2
(∂νgµ5 − ∂µgν5) (1.2)

which gives the field strength tensor if we identify Aµ = 1
2
αgµ5, where α is the

coupling constant between gravity and electromagnetism.

From a quantum mechanical point of view, the compactification of the extra

dimension, i.e. the periodicity, could associate its momentum with the de Broglie

wavelength. From the five-dimensional geodesic hypothesis we can identify the

velocity, and therefore the momentum along the extra dimension, with the electric

charge. For the latter, there is a maximum wavelength which was found to be

of order ∼ 10−32m. This value enhanced their claim that the extra dimension is

hidden from the four-dimensional world as it is very small. Kaluza’s and Klein’s

idea is associated with what we call nowadays “compact extra dimensions” and we

will come back to this when we talk about dimensional reduction later on.

Since then, many theorists have proposed models in which our four-dimensional

world lives in a higher-dimensional spacetime. These models try to describe a

GUT or at least to attack some of the problems which appear in current models

that describe our world. One of these unsolved problems of nature is the gauge

coupling unification, that is the issue that the gauge couplings of strong and

electroweak forces do not have a single value at all scales in the current observed

theory. For a successful GUT we require these coupling to have the same value at

a large energy scale. Secondly, the fact that our observed subatomic physics are

seen at the electroweak scale, mEW ∼ 103 GeV, whereas gravity is strong at the

Planck scale MPl ∼ 1019 GeV is one of the biggest problems in theoretical physics.

This dispersion of the two scales, that are considered the two fundamental scales

in nature, is called the hierarchy problem and we will see later in this chapter

that many models were built with their main goal to give a solution to this.

Lastly, more problems that are unsolved by the SM are those of the cosmological

constant problem, dark matter and the strong CP (charge-parity) problem.
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1.1. Dimensional Reduction

1.1 Dimensional Reduction

The elegancy with which extra-dimensional models can solve the above problems

contributed in their popularity. However, the observed world is four-dimensional

and therefore we need to find ways to dimensionally reduce the proposed models

to four-dimensional ones that describe accurately the physics that we measure at

current accelerators. This is achieved by mainly two scenarios: compactification

and localization. The former is related to the Kaluza-Klein idea and the latter is

based on the brane-world scenario that will be explained below.

1.1.1 Kaluza-Klein compactification

We have explained earlier the idea of Kaluza and Klein to introduce an extra

dimension to unify gravity with electromagnetism. The Kaluza-Klein picture has

been extended to any number of dimensions, with the extra ones envisioned as

being compact and small. As a toy model to illustrate dimensional reduction using

the Kaluza-Klein method, we consider the scalar field theory in five dimensions

with the usual Lagrangian

S =
1

2

∫
d4x

∫ 2πR

0

dy
(
∂MΦ(xµ, y)∂MΦ(xµ, y)−m2Φ(xµ, y)2

)
. (1.3)

The scalar field can go through the standard Fourier decomposition to separate

the extra dimensions from the usual four-dimensional ones (as a tower of states)

and it is usually called Kaluza-Klein (KK) decomposition

Φ(xµ, y) =
∞∑
n=0

ωn(y)φn(xµ). (1.4)

After separating the variables, we know that for our theory to be dimensionally

reduced we require the four-dimensional fields φn to satisfy the four-dimensional

Klein-Gordon equation

(∂µ∂µ +m2
n)φn = 0. (1.5)
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1.1. Dimensional Reduction

By requiring the extra dimension to live on a circle with a small radius, R, one

finds that the field Φ(xµ, y) can be written in the form

Φ(xµ, y) =
1√
2πR

φ0 +
∞∑
n=1

1√
πR

[
φn(xµ) cos

(ny
R

)
+ φ′n(xµ) sin

(ny
R

)]
. (1.6)

Going back to the action, we can perform the extra dimensional integral and this

leaves us with

S =
1

2

∫
d4x

[
∂µφ0∂

µφ0 −m2φ2
0 +

∞∑
n=1

(
∂µφn∂

µφn −
(
m2 +

n2

R2

)
φ2
n

)
+
∞∑
n=1

(
∂µφ

′
n∂

µφ′n −
(
m2 +

n2

R2

)
φ′n

2
)]
. (1.7)

Now, it is clear that we recover the standard four-dimensional Lagrangian from

the first two terms while the rest of them give a doubly degenerate spectrum, i.e.

a tower of excited states, the so-called Kaluza-Klein (KK) modes, which are

considered to be too heavy to be detected in experiments.

The same procedure as above can be applied to any extra dimensional theory

out of which the corresponding four-dimensional action is recovered from the

zero KK-mode, whereas the excited KK modes are decoupled from the theory by

having masses on the compactification scale. The aforementioned does not imply

necessarily that they live on a compact sphere. Other topologies are also allowed

and indeed investigated especially in string theory models.

1.1.2 Localization - Non-compact extra dimensions

Until the 1980s, extra dimensions were used purely as a tool. This, however,

changed in the early 1980s when people started building models where extra

dimensions were seen as constituents of the universe. Firstly, Akama [3] and

Rubakov and Shaposhnikov [4] independently, envisaged that the familiar four-

dimensional world is trapped inside a topological defect, that is the SM particles

can propagate freely along the three spatial directions but are confined in the

extra dimensions, inside which the topological defect lives.

In particular, Akama considered a six-dimensional spacetime with a charged Higgs
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1.1. Dimensional Reduction

field coupled to a U(1) gauge field with these fields creating a vortex, outside

which fields are suppressed. He also showed that GR is valid in the dimensionally

reduced spacetime.

On the other hand, Rubakov and Shaposhnikov, in their famous paper “Do we live

inside a Domain Wall?”, considered a five-dimensional bulk with a real scalar field

that was responsible for creating a Domain Wall (DW). In their toy model, they

could show that ordinary four-dimensional scalar fields and fermions, could be

trapped inside the wall. The mechanism for showing this is called “localization”

and it is an alternative dimensional reduction process to compactification when

extra dimensions are considered large or even infinite.

In general, one can show that a field can be localized following a standard

procedure. First, we write the field that we want to localize as a product of

a field that depends only on the usual four dimensions and a field that depends

on the extra dimensions (separation of variables). Then, we look at the classical

equations of motion that arise from the action and, by requiring that the field

which depends on the ordinary four dimensions satisfies its Standard Model

properties (four dimensional equation of motion, chirality etc.), we try to find

a solution for the field that depends only on the extra dimensions. This will

give a non-trivial topology which might be possible to accommodate the four

dimensional fields. To elucidate this idea of localization, we present it for the

fermionic field as proposed in Rubakov’s and Shaposhnikov’s paper, where the

topological defect that traps the field is considered to be a Domain Wall [4]. The

fermionic action is given by

S5D,Ψ =

∫
d5xΨ̄

(
iΓM∂M − hφDW

)
Ψ (1.8)

where M contains the usual four dimensions (µ = 0, 1, 2, 3) and the extra

dimension, denoted as M = 5 and the gamma matrices are the usual four-

dimensional Dirac matrices given by Γµ = γµ and Γ5 = iγ5. The 5D equation of

motion (Dirac equation) reads as

(iΓM∂M − hφDW
)
Ψ = 0. (1.9)
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1.1. Dimensional Reduction

By separation of variables the fermionic field can be written as

Ψ(xµ, y) = ψ(xµ)χ(y). (1.10)

We impose the conditions that arise from the Standard Model on ψ(xµ), i.e. that

it satisfies the massless Dirac equation

iγµ∂µψ = 0 (1.11)

and it is a left-handed fermionic field

γ5ψ = ψ. (1.12)

Solving the differential equation, one can show that the field χ(y) has a solution

given by

χ(y) =
[

cosh
(√λ

2
vy
)]−h√ 2

λ
(1.13)

where the h is the strength of the coupling between the DW and the fermions

and λ and v are parameters of the potential of the scalar field that creates the

topological defect. This particular solution shows that the field χ(y) has a peak

in the center where the four-dimensional field can be localized.

Notwithstanding the aforementioned it should be noted, without further details,

how these ideas of compactification and localization apply to superstring theory

and M-theory. The ten-dimensional superstring theory was first shown to be

a consistent theory by Green and Schwarz who realized that for the specific

choice of Yang-Mills gauge groups SO(32) or E8 × E8 and for ten-dimensional

supergravity, there is a full anomaly cancellation [5]. This theory has a

redundant six-dimensional space that has to be hidden from the observed world.

Kaluza-Klein idea is used to produce a lower-dimensional subspace and by

Antoniades’s work [6], the KK excited states from the extra dimensions gained

phenomenological interest as he proposed that the compact extra dimensions

could be of much larger size than that of the original KK proposal. This would

mean that in a collider of the order of a few TeVs we could be able to detect

them.

A breakthrough discovery for extra-dimensional models and string theory was
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1.2. Gauge Field Localization Problem

made by Dai, Leigh and Polchinski [7]. This was the discovery of Dirichlet-

branes (D-branes), which can be visualized as a string in higher dimensions. The

idea behind them is that the strings that propagate in the bulk hit these D-branes

losing a number of degrees of freedom keeping only those that allow them to move

freely on the D-branes, i.e. they become localized on them. In their proposal, D2-

branes were used, where the number two corresponds to the degrees of freedom

that the brane has. For example, in this model the branes can be considered as

a two-dimensional surface and this is the reason that they are usually visualised

as walls, usually referred to as “fundamental” walls.

In the two aforementioned discoveries, compactification and localization are used

independently. In the M-theory, discovered by Witten and Horava [8] and

then investigated further by them and others [9, 10], which is a theory that

inherits eleven spacetime dimensions, dimensional reduction is achieved by both

compactification and localization. First, six out of the ten spatial dimensions are

hidden using KK compactification and then D3-branes are used in the remaining

five-dimensional spacetime to localize the familiar low-energy physics inside them,

while gravity is allowed to propagate in the extra dimensions. Therefore, we

recover the SM particles that live in a four-dimensional spacetime but also the

known four-dimensional GR laws that are satisfied on the brane.

1.2 Gauge Field Localization Problem

The theories mentioned above that use localization to dimensionally reduce the

system to the familiar low-energy regime are often called “brane-world scenarios”.

The Domain-Wall approach, mentioned at the beginning of the localization

section, provides a mechanism to localize scalar and fermionic fields and Witten’s

M-Theory localizes gravity on the D3-branes. However, the most challenging

problem is to find a mechanism to localize gauge fields, mostly inside a topological

defect.

To illustrate the problem that arises, let us think of a five-dimensional U(1) gauge

theory that couples to a scalar field that creates the topological defect (DW). The

presence of this scalar field breaks the gauge symmetry in the bulk and thus the

gauge field becomes massive outside the domain-wall. Moreover, the scalar field is
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1.2. Gauge Field Localization Problem

zero in the middle, where the defect is located, which means that the gauge field

inside the DW is massless as the gauge symmetry is unbroken. The presence of the

Higgs phase in the bulk, that is the development of a vacuum expectation value,

creates a superconducting medium. For the U(1) gauge theory, we want to recover

electromagnetism, therefore we are seeking a massless gauge field localized on the

DW. However, this is not the case here as, due to Meissner effect, magnetic fields

are excluded from the bulk but instead are confined to the defect, forcing electric

fields to end in the bulk as the superconducting bulk attracts them. In other

words electric charge is screened. This is the “gauge field localization problem”

and, although there were a few proposals to resolve this issue, its solution is still

elusive.

The localization of non-abelian gauge fields is also not possible because of

violation of charge universality [11]. The problem arises when one considers four-

dimensional effective interactions of the zero modes of charged particles with the

gauge fields which depend on their wave functions along the extra dimensions.

For example, the interactions with the fermionic zero modes will involve integrals

like ∫
dyψ†0(y)A(y)ψ0(y) (1.14)

From Section 1.1.2, we know that these wave functions depend on different

parameters of the system which will result in different values of the above

integral and thus the gauge charges of the four-dimensional theory will not be

universal.

1.2.1 Dvali-Shifman mechanism

The most well-known solution to the gauge field localization problem that

preserved charge universality was given by Dvali and Shifman in [12]. The

basic idea behind this mechanism is that the Higgs phase that creates the

superconductor in the bulk should be replaced by a confined phase, that creates

a dual-superconductor. This is achieved when one considers a Lagrangian with a

non-abelian gauge symmetry which inherits asymptotic freedom. Of course, other

modifications should be done in the Lagrangian to reach spontaneously symmetry

breaking in the desired regions.
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1.2. Gauge Field Localization Problem

The Lagrangian that Dvali and Shifman considered has an SU(2) gauge field

coupled to fermions, the real scalar field, φ, that is responsible for creating the

DW configuration discussed in [4] and, in addition to this, another scalar field,

χ, in the adjoint representation of SU(2). The form of the Lagrangian is the

following

L =− 1

2g2
TrFMNFMN + Ψ̄ΓMDMΨ− hφΨ̄Ψ

+
1

2
(DMχ)†DMχ−

1

2
λ′(χ2 + κ2 − v2 + φ2)2

+
1

2
∂Mφ∂Mφ−

1

2
λ(φ2 − v2)2 (1.15)

where κ, v, λ′ and λ are real parameters and the condition κ2 − v2 < 0 is

imposed.

Using exactly the same idea as Rubakov’s and Shaposhnikov’s, the real scalar

field acquires the values φ = ±v when the Z2 symmetry is spontaneously broken,

and the DW profile is created. In the presence of the DW, the potential of the

field χ in the bulk is stable, that is the SU(2) symmetry is preserved and no SSB

takes place. However, looking at the position of the wall where the value of the

real scalar field, φ, is close to zero, χ becomes tachyonic leading to spontaneous

SU(2) symmetry breaking down to U(1).

This modification of the starting gauge group of the theory, to be a non-

abelian gauge group, solves the problem that was discussed before, that is the

massless photon cannot be localized inside the DW. Using the Dvali-Shifman (DS)

mechanism, this is no longer true as the bulk behaves as a dual superconductor

which attracts magnetic field lines, in contrast to a superconductor. This makes

possible long-range electric field lines to be present inside the DW and not be

screened to the bulk as shown in Figure 1.1. Confinement in the bulk also ensures

charge universality. Even though this is a very powerful mechanism for gauge field

localization, since the bulk is in a confined phase, non-perturbative field theory

is required to explore the physics of the gauge sector outside the DW.
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Higgs	
  phase

Higgs	
  phase

Confined	
  phase

Confined	
  phase

DW
DW

Figure 1.1: A schematic illustration of the solution to the gauge field localization
problem of U(1) with the DS mechanism. In both figures the region in the
middle is the domain wall and the rest is the bulk. The black dot placed in
the middle of the DW in both figures is a test electric charge and the lines are
the associated electric field lines. In the left figure, the gauge field localization
problem is shown where, due to the breaking of the gauge symmetry, the bulk
behaves as a superconductor (Higgs phase) and due to Meissner effect the electric
field lines are screened to the bulk. In the right figure the solution to this problem
is shown when the DS mechanism is applied. The non-abelian nature of the
gauge group causes the appearance of a confined phase and not a Higgs phase
and consequently a dual-superconductor is created. Therefore, long-range electric
fields lines exist and they are not screened to the bulk.

1.3 Well-known extra-dimensional models

At the end of the 20th century there was a big boost in the formulation of

new models which use extra dimensions to solve one or more of the problems

that were stated above. After experimental results from the LHC and other

collider experiments, and especially after the discovery of a Higgs-like particle,

the number of extra-dimensional models that give possible candidates for a theory

that describes our universe, has been limited and the existing ones have gained

some bounds on their validity. The most important ones which are still under

investigation, either in their original form or with modifications, are the the
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1.3. Well-known extra-dimensional models

Gauge-Higgs Unification (GHU) idea [13, 14], the Arkani-Hamed-Dimopoulos-

Dvali (ADD) model [15] and the Randall-Sundrum models (RS1 and RS2) [16, 17].

Each of these will be addressed below, briefly.

1.3.1 Gauge-Higgs Unification

The Higgs mechanism, even if it successfully gives mass to all the SM fields, has

the disadvantage that its potential is put into the SM Lagrangian arbitrarily. The

idea of Gauge-Higgs Unification gives a possible solution to this, by considering

the SM Lagrangian embedded in an extended spacetime instead of the ordinary

four-dimensional one, without a scalar field to begin with. The gauge fields along

the extra dimensions can be seen as ordinary four-dimensional scalar fields. This

new idea was first proposed by [18] and [13].

Hosotani started with a theory with gauge fields and massless fermions on a

manifold with topology Md × S1, i.e. with an extra dimension compactified

on a circle, with radius R. By making the analogy of the theory to finite

temperature theories, with T ∼ 1
R

, he was able to show that, due to the presence

of adjoint fermions, independently of the number of fermionic flavors, the gauge

symmetry is broken and the gauge field along the extra dimension is destabilized,

corresponding to a scalar field in the adjoint representation, giving dynamically

mass to the fermions. This mechanism is called the Hosotani Mechanism that

introduces the dynamical electroweak spontaneous symmetry breaking.

It is obvious though, that the model that Hosotani proposed cannot be a correct

extension of the SM, as the four-dimensional scalar field which is associated with

the extra-dimensional gauge field belongs to the adjoint representation and not

to the fundamental as the observed scalar field, the Higgs boson. What one has

to do to overcome this problem is to enlarge the group of the gauge symmetry,

G, and find a way to break it down to the desired SU(2)L × U(1)Y .

One way of achieving this, is to replace the topology of the system from M4×S1 to

M4×S1/Z2, i.e. the extra dimension is an orbifold. The Hosotani Mechanism was

investigated on a Z2-orbifold by [14], providing a realistic GHU scenario out of it.

The details of the orbifold set-up are not given in this thesis, however we state the

main achievements from the above work. The models under consideration were
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1.3. Well-known extra-dimensional models

five-dimensional SU(2) and SU(3) gauge theories coupled to fermions. As long as

the inverse of the radius of the circle was close to the energies of the electroweak

scale, they could show that, by assigning non-trivial Z2-parity matrices, they

could not only break the gauge symmetry spontaneously but also break the

chiral symmetry. This means that the zero-mode fermions could acquire mass

dynamically.

During the last decade, the GHU scenarios started being investigated using lattice

techniques after the orbifold geometry was formulated on the lattice in [19].

Using the aforementioned formulation, using both Monte Carlo and mean-field

calculations, SSB could be shown to occur in pure SU(2) Yang-Mills theories when

the symmetry was broken at the fixed points of the orbifold, giving rise to a mass

spectrum which is consistent with the SM [20–24]. From the same studies, there

is evidence of localization of gauge fields on the orbifold boundaries, as the phase

diagram shows a Higgs-layered phase. Non-perturbative studies for the Hosotani

Mechanism using the SU(3) Yang-Mills theory, were also performed [25, 26].

1.3.2 Arkani-Hamed-Dimopoulos-Dvali model

In 1998, Arkani-Hamed, Dimopoulos and Dvali, proposed a new model that would

solve the hierarchy problem [15]. The main idea of their model was based on the

idea that everyone until that year, had been making the wrong assumption that

there are two fundamental scales in nature, i.e. the electroweak scale mew and the

Planck scale Mpl. Instead, they proposed the existence of only one fundamental

scale, MF , which is identified with the electroweak scale, mew ∼ 1TeV, where

gauge interactions and gravity are unified. Therefore, they abandoned the idea

that gravity is unchanged from the scale that it is measured (1cm) up to the

Planck Scale. To support this new idea, they extended the current manifold,

in which it is believed that we live, to a R1,3 × Mn manifold, where R1,3 is

the usual pseudo-Riemannian manifold, i.e. our usual Minkowski spacetime and

Mn is a compact manifold of n extra spatial dimensions with radius, R. The

extra compact dimensions are responsible for weakening gravity as it propagates

through them.

The main achievement of these extra compact dimensions is that gravity gets
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1.3. Well-known extra-dimensional models

weaker as it propagates through them. In order to find the relation between Mpl

and the fundamental energy scale, MF , we consider the gravitational potential

that two charges feel when they are at distances much larger that the radius of

the extra dimensions, r � R. By Gauss law, we get

V (r) ∼ m1m2

M
(2+n)
F

1

Rnr
. (1.16)

Now, comparing it with the standard 1/r potential, we can easily find the

relation

M2
pl = M2+n

F Rn (1.17)

and considering, for example, only two extra dimensions, we can estimate the

radius of the latter to be R ∼ 0.1 − 1mm. The wide acceptance of this new

model and the eagerness of many theorists to work on modifications and further

phenomenological tests that come out of it, are mainly because of the fact that

the prediction of the size of the radius of the compact extra dimensions made the

latter detectable in future experiments. Even though there are still no indications

of extra-dimensions from the current collider experiments, the model has not been

excluded.

Even if an extra-dimensional graviton propagates in the bulk, the SM particles

should be localized on a four-dimensional submanifold, that would be our

observed world. In the original paper, they consider a six-dimensional SU(4) ×
SU(2)×SU(2) model with a charged U(1) scalar field which is responsible for the

formation of the vortex inside which the observed low-energy physics is localized.

Fermions and scalars are localized in a straight-forward way using the standard

procedure described in Section 1.1.2. Localization of gauge fields, on the throat

of the vortex suffers for the problem discussed in Section 1.2 and therefore they

use a mechanism analogous to the DS mechanism to overcome it.

The final remark for this model is that even if it solves the original hierarchy

problem, it introduces another hierarchy problem between the length scale of the

fundamental scale, i.e. the electroweak scale which is of order 10−16mm and the

radius of the extra dimensions, R ∼ 1mm.
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1.3.3 Randall-Sundrum models

In 1999, Randall and Sundrum provided an alternative solution to the Hierarchy

problem using only one extra dimension by deducing an exponential relation

between the weak and the Planck scales, as a consequence of a background metric

that depends on the extra dimension, usually referred to as the RS1 model [16].

Using the same set-up, in a more cosmologically motivated work, they introduced

the RS2 model where they could localize four-dimensional gravity to the observed

universe [17].

Let us first, introduce the set-up for RS models. We start with a five-dimensional

spacetime M4 × S1/Z2, that is the extra dimension, y, is of a finite extent 2L5,

periodic and obeys the orbifold condition (xµ,−y) = (xµ, y). Moreover, we

consider as fundamental constituents of the theory two 3-branes located at y = 0

and y = L5. It is important to notice that these branes are not generated by the

topology of the system, as in models mentioned before, but instead they are put in

by hand as a starting ingredient of the model and thus it is favorable to be called

3-branes and not Domain Walls. The full action of the system will be given by

the sum of the gravitational action in the bulk and the four-dimensional actions

of the two branes and, following the discussion in [27], Randall and Sundrum

wrote down the following terms for the five-dimensional action

Sbulk =

∫
d4x

∫ L5

−L5

dy
√
−G
(
2M3

FR− Λ
)

(1.18)

S1 =

∫
d4x
√
−g(1)

(
L1 − V1

)
(1.19)

S2 =

∫
d4x
√
−g(2)

(
L2 − V2

)
(1.20)

where R is the five-dimensional Ricci scalar, Λ a cosmological constant, MF

the five-dimensional fundamental energy scale equivalent to the Planck scale

and the four-dimensional metric on the 3-branes is given by evaluating the five-

dimensional one at the position of the corresponding brane, i.e. g
(1)
µν = GMN(xµ, 0)

and g
(2)
µν = GMN(xµ, L5). To determine the exact form of the metric of the

spacetime we use concepts of GR. In the 3-brane actions we include separate

terms of the vacuum energy V1, V2, where the Lagrangian is kept in a general form

as it contains the SM fields that should be localized on one of the 3-branes.
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By making an ansatz of the background metric to be

ds2 = e−2σ(y)ηµνdx
µdxν + dy2 (1.21)

the five-dimensional Einstein’s equations can be solved to determine the function

of the fifth dimension, σ(y), to be

σ = |y|

√
−Λ

24M3
F

. (1.22)

This leads to the conclusion that the space along the fifth dimension should be

anti-de Sitter as for σ to make sense, a negative cosmological constant is required.

More details about this are given in Appendix A.

By defining k2 ≡ −Λ
24M3 the metric becomes

ds2 = e−2k|y|ηµνdx
µdxν + dy2 (1.23)

which is sometimes referred to as the warped metric since e−2k|y| is called the

“warp” factor.

By considering four-dimensional fluctuations, hµν(x), about the Minkowski metric

one can get an effective four-dimensional version of GR. By substituting the

warped metric of Eq. (1.23) with the above fluctuations into Eq. (1.18), we

get

Seff,4D ∼
∫
d4x

∫ L5

−L5

dy
√
−g(x)2M3

F e−2k|y|R(4D)

=

∫
d4x

2M3
F

k

(
1− e−2kL5

)
R(4D) (1.24)

where R(4D) is the Ricci scalar in four dimensions and in the second line we

performed the integral over the fifth dimension. We can compare this effective

action with the Einstein-Hilbert action for four-dimensional GR

SE−H ∼
∫
d4x
√
−g2M2

PlR (1.25)
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1.3. Well-known extra-dimensional models

to see the effect of the warp factor on the Planck scale. This is given by

M2
pl =

M3
F

k

(
1− e−2kL5

)
. (1.26)

It is obvious that in the limit in which kL5 is taken to be large, there is only a

negligible modification to the Planck scale.

In the RS1 model, the observed four-dimensional world is considered to be the

brane that is placed at y = L5. To demonstrate how the hierarchy problem is

solved we consider the Lagrangian density in Eq. (1.20) to be

L2 = gµν(2)∂µφ
†∂νφ− λ

(
φ†φ− v2

)2
(1.27)

where v is the dimensionful parameter of the model, and here it is the Planck

scale. The action then becomes

S2 ∼
∫
d4xe−4kL5

√
−g(x)

(
e2kL5gµν∂µφ

†∂νφ− λ
(
φ†φ− v2

)2
)
. (1.28)

In order to have a quantized theory with a spectrum, we need to have a canonical

kinetic term which is achieved by rescaling the scalar fields, φ = ekL5φ′. Then we

get

S2 ∼
∫
d4x
√
−g(x)

(
gµν∂µφ

′†∂νφ
′ − λ

(
φ′†φ′ − (ve−kL5)2

)2
)
. (1.29)

Now, we can see that the dimensionful parameter is exponentially suppressed

from v to ve−kL5 , and thus it can get the natural value of the electroweak scale,

mew ∼ TeV, for values of kL5 ∼ 35.

Even if RS2 focuses on the localization of gravity on a 3-brane which is not

so relevant to this thesis, we give the main idea of it just for completeness of

the discussion on the RS models. The whole set-up of the model is the same as

above with the only difference being that the brane that is considered as the four-

dimensional world is considered to be the one that is placed at y = 0. The main

focus of [16] was to show that by determining the behaviour of the five-dimensional

perturbations along the extra dimension in the presence of the warped metric, i.e.

hMN(xµ, y), one can identify them as the usual four-dimensional perturbations

of GR. The process of localizing gravity is similar to the one that we used
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1.4. Present Work and Thesis Outline

for localizing the other fields, that is one performs a KK decomposition to the

perturbations, hMN as

hMN(xµ, y) =
∑
n

hnµν(x
µ)χn(y). (1.30)

We require four-dimensional perturbations to satisfy the wave equation i.e.

∂σ∂σh
n
µν(x

µ) = −m2
nh

n
µν(x

µ) (1.31)

and from this the extra-dimensional profile of the modes χn can be determined.

After some redefinitions of the modes and defining the extra-dimensional

coordinate in terms of z using

k|z| = ek|y| − 1 (1.32)

which is consistent with a conformally flat metric, one can show, with systematic

work, that the extra-dimensional perturbation modes obey a Schrödinger-like

equation with potential of the form

V (z) =
15

4

k2

(1 + k|z|)2
−

3k
(
δ(z)− δ(z − Lz)

)
1 + k|z|

. (1.33)

The shape of this potential, which looks like a volcano, enhances the trapping of

gravity at the position of the brane, z = 0. In other words, the wavefunction of

the graviton zero-mode has a peak around the position of the brane on which we

live on (visible brane) and therefore it is localized on it.

1.4 Present Work and Thesis Outline

In this thesis, we investigate five-dimensional gauge theories on the lattice,

focusing in particular on the SU(2) anisotropic lattice gauge theory. The main

motivation for this, is the need to find a non-perturbative way to localize gauge

fields on four-dimensional branes. As the gauge field localization problem appears

in both flat and warped spacetime, we implement studies for both spacetime

geometries. We are particularly interested in finding a non-trivial UV fixed
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1.4. Present Work and Thesis Outline

point at which the five-dimensional theory can be dimensionally reduced to a

four-dimensional one, in the case where the extra dimension is not compactified.

Therefore, we investigate the phase structure of the five-dimensional anisotropic

SU(2) Yang-Mills theory to search for such a fixed point.

This thesis is structured as following: In Chapter 2 we give details of the non-

perturbative way we chose to investigate our systems, that is Lattice Gauge

Theories. At the end of the Chapter we describe the two specific methods

for Lattice Gauge Theories investigations that are used here. In Chapter 3

and Chapter 4 we present the details of the exploration of the phase diagram

of the five-dimensional anisotropic SU(2) model in flat and warped spacetime,

respectively. Finally, our conclusions and an outlook of our work are presented

in Chapter 5.
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Chapter 2

Lattice Gauge Theories

In particle physics, theories with strong dynamics, such as Quantum Chromody-

namics (QCD), cannot be investigated using perturbation theory at low energy

scales, as at these scales the coupling becomes strong and perturbative analysis

is not possible anymore. The need to investigate these theories with strong

coupling forced researchers to develop non-perturbative ways that would allow

their exploration. A very powerful tool that allows their investigation is the lattice

that is widely used for particle physics and condensed matter theories.

The idea behind Lattice Gauge Theories (LGTs) as a non-perturbative tool, is

the discretization of spacetime. The discretization of time in the path integral

formulation is well-known, in which one takes the limit of the discretization

parameter of time, usually referred to as ε, to zero and recovers the continuum

spacetime. In contrast, in Lattice Theories, the whole spacetime is discretized

and the world can be seen as a hypercubic lattice, with a lattice spacing, a.

The advantage of using LGTs in the investigation of quantum field theories is

twofold. Not only can one investigate a theory in its strongly coupled region but

also, the Euclidean quantum field theory associated with it comes with a natural

cutoff/regulator which is related to the inverse of the lattice spacing. Even though

simulations of theories are allowed at strong coupling, the discretization does not

come without cost as one not only has to force the lattice spacing to go to zero

to recover the continuum, but also has to deal with the fact that the simulations

are done in a finite volume which might have an effect on the extracted physics

of the theories.
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2.1. QFT on the lattice - Lattice discretization

In the following chapter, we use a toy model of a scalar field theory to introduce

concepts that we use to construct the pure Yang-Mills (YM) theory on the lattice

and useful observables associated with it. Then we briefly present how fermions

can be formulated on the lattice followed by an introduction to the anisotropic

LGTs. Furthermore, we discuss the phase structure of LGTs and how one can go

from the discretized version to the continuum theory that describes the observed

world. Towards the end, methods of investigating these theories are discussed.

This Chapter is based on the material of [28–31].

It is also worth mentioning the convention that is used from now on in this thesis.

In all equations, the Greek letters run from 0 to 3 and they correspond to the

usual four-dimensional spacetime coordinates, with the 0th direction identified as

the temporal direction (sometimes denoted by T or τ as well). Capital Roman

letters are used to include extra dimensions as well. To say, in the case of a

five-dimensional spacetime M,N = 0, 1, 2, 3, 5. Finally the small Roman letters,

usually i, j, are used only for the three spatial directions.

2.1 QFT on the lattice - Lattice discretiza-

tion

This thesis focuses on studies of gauge field theories. In order to see how gauge

fields, and consequently gauge theories, can be formulated on a lattice from their

Euclidean continuum formulation, we first consider a toy model of a theory with

N complex scalar fields. The Euclidean scalar action reads as

SE =

∫
d4x
[
∂µφ

†(x)∂µφ(x) +m2|φ(x)|2
]
. (2.1)

The integral on a lattice grid can be replaced by a sum over all lattice points

as ∫
d4x→ a4

∑
n

(2.2)
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2.1. QFT on the lattice - Lattice discretization

and the partial derivatives by the discretized forward derivative, ∆
(f)
µ (or any

other discretized form of a derivative)

∆(f)
µ φ(n) =

φ(n+ aµ̂)− φ(n)

a
. (2.3)

Using the above, Eq.(2.1) takes the following discretized form

S
(φ)
latt = 8a2

∑
n

φ†(n)φ(n)− 2a2
∑
µ;n

φ†(n+ aµ̂)φ(n) + a4
∑
n

m2|φ(n)|2

= 8a2
∑
n

φ†(n)φ(n)− 2a2
∑
〈n′n〉

φ†(n′)φ(n) + a4
∑
n

m2|φ(n)|2 (2.4)

where 〈n′n〉 denotes the sum of nearest-neighbouring sites.

It is known that the path integral in Euclidean quantum field theory can be seen

as a partition function with Boltzmann weight factor e−S
(φ)
E which relates the

quantum field theory to statistical systems. However, in the case of Euclidean

path integrals one deals with divergent integrals as they are integrals over an

infinite number of field configurations. The discretization of the spacetime

provides a regulator for free and thus the functional integral of the theory on

a four-dimensional lattice becomes a well-defined integral; a multiple integral

over all values of the field at all lattice points given by

Z =

∫ +∞

−∞

∏
n

dReφ(n)dImφ(n)e−S
(φ)
latt . (2.5)

where dReφ(n)dImφ(n) is the measure of the functional integral.

Before discussing further how one deals with a discretized action to compute

observables and relate them back to continuum physics, let us look at the

symmetries of the kinetic term of the latticized scalar action. If we consider global

gauge transformations, φ → φ′(n) = Ωφ(n), it is trivial to see that the action is

invariant as the transformation matrix Ω has no coordinate dependence. However,

it is easily seen that it loses its gauge symmetry under local transformations,

φ→ φ′(n) = Ω(n)φ(n), as the second term transforms as

φ†(n′)φ(n)→ φ†(n′)Ω†(n′)Ω(n)φ(n). (2.6)
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2.1. QFT on the lattice - Lattice discretization

and Ω†(n′)Ω(n) is not equal to 1 anymore.

Inspired by GR, we can introduce an analogue to the parallel transporter, i.e. a

matrix U ∈ SU(N) that maps a field from a vector space Vx to a vector space

Vy where x and y are two spacetime points connected by a continuous curve Cyx.
Under local gauge transformations, the parallel transporter satisfies the following

relation

U ′(Cyx) = Ω(y)U(Cyx)Ω†(x). (2.7)

Having Eq.(2.7) in mind, we can see that if we introduce a matrix U(n′, n) in our

discretized version of the scalar field action, with the curve being the smallest

possible distance between point n and n′ on the lattice, which is the lattice

spacing, a, we can recover local gauge invariance as the second part of the kinetic

term transforms as

φ†(n′)U(n′, n)φ(n)→ φ†(n′)Ω†(n′)Ω(n′)U(n, n′)Ω†(n)Ω(n)φ(n). (2.8)

This parallel transporter on the lattice is called the link variable and satisfies all

the properties of the parallel transporter with U(n′, n) = U †(n, n′), being the most

important. Also, it is useful to note that the link variable is usually called Uµ(n)

which corresponds to the oriented link that connects the site at position n to the

one at n+ aµ̂ and thus U †µ(n) will correspond to the opposite orientation.

Requiring the fields to have a local gauge symmetry, the newly introduced link

variables have to be included in the action. However, in the naive continuum

limit, the continuous action of Eq. (2.1) is not recovered anymore, but instead an

action in which scalar fields are coupled to gauge fields can be obtained. In other

words, we promote the partial derivatives of the action to the covariant ones. We

define the lattice covariant derivative to be

Dµφ(n) =
U †µ(n)φ(n+ aµ̂)− φ(n)

a
(2.9)

so the action can be written as

S
(φ)
latt = a4

∑
n;µ

(Dµφ(n))†(Dµφ(n)) + a4
∑
n

m2|φ(n)|2. (2.10)
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2.1. QFT on the lattice - Lattice discretization

The link variables are matrices of SU(N), therefore they can be related to the

gauge fields Aµ(x). From standard Group theory we know that an element of a

special unitary group can be written as

U = exp(iωaTa) (2.11)

where ωa are real variables and Ta are the generators of the Lie algebra of the

group. We also know that a gauge field associated with an SU(N) group can be

written as

Aµ(x) = −igAaµ(x)Ta (2.12)

therefore we can write the link variables in terms of the gauge fields, i.e.

Uµ(n) = exp
(
− igaAbµ(n)Tb

)
. (2.13)

With this connection between the link variables and the gauge fields, one can

easily check that the lattice covariant derivative becomes the usual covariant

derivative that we use in the continuum.

2.1.1 Pure lattice gauge theory - The Wilson action

Starting from a toy model of a scalar field theory, the link variables associated

with the gauge fields were introduced. Wilson in 1974 [32], formulated an SU(N)

lattice action which leads to the pure Yang-Mills action in the naive continuum

limit. He first introduced the smallest closed loop that one can define on a lattice

out of the link variables, that is the plaquette given by

Uµν(n) = Uµ(n)Uν(n+ aµ̂)U †µ(n+ aν̂)U †ν(n) (2.14)

and then defined the pure lattice gauge action on the lattice, the so-called Wilson

action, to be

SW [U ] =
∑
n

∑
1≤µ<ν≤4

β
[
1− 1

2Tr1

(
TrUµν(n) + TrU †µν(n)

)]
(2.15)
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2.1. QFT on the lattice - Lattice discretization

and specifically for SU(N) groups to be

SW [U ] =
∑
n

∑
1≤µ<ν≤4

β
[
1− 1

N
ReTrUµν(n)

]
. (2.16)

Using Eq.(2.13) one can easily show that

Uµν(n) = exp(−iga2Fµν(n) +O(a3)). (2.17)

Plugging it back into Eq.(2.16) one shows that, due to asymmetry of Fµν(n) and

since we cannot have gauge invariant operators of O(a5), the action up to order

O(a6) becomes

SW [U ] = β
∑
n

∑
µ,ν

[g2a4

4N
Tr(Fµν(n)2) +O(a6)

]
(2.18)

which is identified with the pure Yang-Mills action if one defines

β =
2N

g2
. (2.19)

2.1.2 Observables

Out of the ingredients of a LGT, we can construct gauge invariant observables.

Here we present the most commonly used in the exploration of pure LGTs.

• The plaquette

It was mentioned above that the trace of the plaquette is gauge invariant.

Therefore, an observable that is measured is the internal energy of the

plaquette, given by the mean value of its trace. This is analogous to the

statistical systems, with β ∼ 1/T .

U ∼ ∂(lnZ(β))

∂β
. (2.20)

So, varying the lattice coupling, β, is analogous to thermal changes of the

system and the behaviour of the internal energy close to phase transitions

give signals of either first-order transition, if there is a discontinuity, or a
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2.1. QFT on the lattice - Lattice discretization

continuous one.

• Wilson loop - Static quark potential

The Wilson loop is a closed loop made out of link variables. It can be

formed along only two directions or along more than two and they are

distinguished into planar or non-planar, respectively. In the following

discussion we consider only planar-rectangular Wilson loops, along a spatial

and a temporal direction. We define the Wilson line along direction µ to be

l(r)µ (n) =
r−1∏
k=0

Uµ(n+ kaµ̂) (2.21)

where r is the length of the line and n is the starting point of the line. A

Wilson loop is then given by

WL = Tr
[
l
(r)
j (n0)l

(t)
0 (n0 + raµ̂)l

†(r)
j (n0 + ta0̂)l

†(t)
0 (n0)

]
(2.22)

where, j, denotes one of the spatial directions and 0 the temporal direction.

If we consider a two-dimensional lattice with t0 and r0 the temporal and

spatial starting positions respectively we can define the Wilson lines as

l
(r)
S (t0, r0) =

r−1∏
k=0

Us(t0, r0 + ak) (2.23)

l
(nt)
T (t0, r0) =

nt−1∏
k=0

Ut(t0 + ak, r0) (2.24)

and the last equation is also called the temporal transporter. Then the

Wilson loop is given by

WL = Tr
[
l
(r)
S (t0, r0)l

(nt)
T (t0, r0 + r)l

†(r)
S (t0 + nt, r0)l

†(nt)
T (t0, r0)

]
. (2.25)

where t0 + nt is less than the whole lattice extent along the temporal

direction, NT and similar for r0 + r.

The expectation value of the Wilson loop is related to the static potential

of a quark-antiquark pair, V (r). To show exactly how this relation holds,

one has to go to the axial gauge, i.e. set UT = 1. Then Eq.(2.25), starting
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2.1. QFT on the lattice - Lattice discretization

from t0 = 0 reads as

WL = Tr
[
l
(r)
S (0, r0)l

†(r)
S (nt, r0)

]
. (2.26)

This expectation value is nothing else but the Euclidean correlator of two

Wilson lines located at different timeslices. From Euclidean field theory it

is well-known that

lim
T→∞
〈O2(t)O1(0)〉T =

∑
n

〈0|l̂(r)S (r0)|n〉〈n|l̂†(r)S (r0)|0〉e−tEn . (2.27)

where En is the energy state relative to the ground state. The lowest energy

state, E1, corresponds to the static quark-antiquark pair potential, V (r) so

we conclude

〈WL〉 ∼ e−tV (r) = e−antV (r). (2.28)

At short distances (r → 0), the QCD quark-anti-quark potential is

analogous to the QED potential and using perturbative calculations one

can show that it appears to be Coulomb-like, proportional to αs, i.e. the

QCD running coupling as shown in Eq. (2.29).

V (r) = −4

3

αs
r

+ c. (2.29)

In the limit r → ∞, QCD is considered to be a string model. Analogous

to the electric field lines between two electric charges, one can think that

the color field lines hold together a quark- anti-quark pair. The strong

self-interaction of the gluons pulls the line together to form a string. In

this limit the potential, due to confinement, must increase indefinitely and

thus it rises linearly with the distance. Lüscher et al. in [33] showed

that quantum fluctuations of the string give rise to an attractive effective

Coulomb potential, which is a universal term in four dimensions. Thus, the

potential form at r →∞ reads as

V (r) = σr − π

12r
+ c (2.30)

where σ is the string tension and the second term is called the Lüscher term.
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2.1. QFT on the lattice - Lattice discretization

• Polyakov Loop

Another gauge-invariant quantity of pure LGTs is the Polyakov loop which

is defined as a Wilson line covering all lattice points in that direction. In

the temporal direction one can define it as

PT (~n) = Tr
[NT−1∏

j=0

U0(j, ~n)
]
. (2.31)

In spite of the fact that the expectation value of the Polyakov loop itself

is an important observable when exploring the phase diagram of a theory,

the expectation value of two Polyakov loops located at two different spatial

points of a distance, r = a|~m−~n|, can also give an estimate of the potential

as the Wilson loop

〈PT (~m)P†T (~n)〉 ∼ e−aNTV (r). (2.32)

2.1.3 Discrete symmetries of the Wilson action

After the discretization of spacetime, the known continuous spacetime symmetries

like translational and rotational symmetries are broken. However, one can define

discrete symmetries that are used in order to construct useful quantities for

investigations of systems on the lattice.

The first symmetry to discuss is the charge conjugation, usually denoted as C.
Charge conjugation, is responsible for changing the sign of the quantum properties

of a particle in order to transform it to its anti-particle. The charge conjugation

on the link variables acts as

Uµ(n)C = Uµ(n)∗ =
(
Uµ(n)†

)T
. (2.33)

We can easily check that this means that a gauge field Aµ(n) will become

−Aµ(n)T , i.e. the gauge coupling changes sign, as one would expect for the

antiparticle.

The next symmetry to consider is parity, denoted by P . Parity transformation

is the one under which the sign of a spatial coordinate is flipped. On the gauge
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links this is given by

Uj(n0, ~n)P = Uj(n0,−~n− ĵ)† for j = 1, 2, 3 (2.34)

U0(n0, ~n)P = U0(n0,−~n). (2.35)

In the usual Minkowski spacetime, we know that a fundamental symmetry in na-

ture is the so-called CPT -symmetry. T denotes the time-reversal transformation,

i.e. a reflection in the temporal coordinate. On the lattice this is realized as the

product of three Euclidean reflections, i.e. E1E2E3 where we define

Uµ(n)Eµ = Uµ(Rµ(n)) (2.36)

Uν(n)Eµ = Uν(Rµ(n)− ν̂)† (2.37)

where Rµ(n) is the four-vector n with all components reflected except in the

direction µ.

2.2 Fermions on the lattice

Fermions are fundamental constituents of the SM and their investigation is of high

importance. The fact that QCD is a strongly coupled theory involving fermions

and gauge fields highlights the importance of finding methods to investigate

fermionic fields on the lattice. As a starting point we discretize the Euclidean

action of the aforementioned fields given by

S
(f)
E =

∫
d4xψ̄(x)

(
γµ∂µ +m

)
ψ(x). (2.38)

Using the central discretized derivative the action for free fermions on the lattice

reads as

S
(f)
lat = a4

∑
n

ψ̄(n)
[∑

µ

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a
+mψ(n)

]
. (2.39)

If we want this fermionic action to be invariant under local gauge transformations,

similar arguments as in the scalar field theory in Section 2.1 apply and we can

see that the fermionic action corresponding to the continuum action of QCD, in
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which the fermionic fields are coupled to gauge fields via the covariant derivative,

is given by

S
(f)
lat [ψ̄, ψ, U ] = a4

∑
n

ψ̄(n)
[∑

µ

γµ
Uµ(n)ψ(n+ µ̂)− U †µ(n− µ̂)ψ(n− µ̂)

2a
+mψ(n)

]
.

(2.40)

The above action can be written as

S
(f)
lat [ψ̄, ψ, U ] = a4

∑
n,m

ψ̄(n)D(n,m)ψ(m) (2.41)

where the Dirac operator is given by

D(n,m) =
∑
µ

γµ
Uµ(n)δn+µ̂,m − U †µ(n− µ̂)δn−µ̂,m

2a
+mδn,m. (2.42)

The path integral of QCD, which is the desired calculable quantity to extract

physics, is given by

ZQCD =

∫
DU

∫
Dψ̄Dψe−SQCD

=

∫ ∏
l

dUl

∫ ∏
i

dψ̄idψie
−SW [U ]−S(f)

lat

=

∫ ∏
l

dUle
−SW [U ]det(−D[U]) (2.43)

where going from the second line to the third we have performed a Gaussian

integral over Grassmann variables.

An interesting quantity that we want to measure is the fermion propagator. This

is given by the inverse of the Dirac operator given in Eq. (2.42). In order to invert
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it we go into momentum space as shown in Eq.(2.44).

D̃(p, q) =
1

N4

∑
n,m

e−ip·naeiq·ma
(∑

µ

γµ
Uµ(n)δn+µ̂,m − U †µ(n− µ̂)δn−µ̂,m

2a
+mδn,m

)
=

1

N4

∑
n

e−ip·na
(∑

µ

γµ
Uµ(n)eiq·(n+µ̂)a − U †µ(n− µ̂)eiq·(n−µ̂)a

2a
+meiq·na

)
=

1

N4

∑
n

e−i(p−q)·na
(∑

µ

γµ
Uµ(n)eiqµ̂a − U †µ(n− µ̂)e−iqµ̂a

2a
+m1

)
. (2.44)

Imposing the trivial gauge, i.e. setting all gauge fields to 1, the Dirac operator

in momentum space is

D̃(p, q) =
1

N4

∑
n

e−i(p−q)·na
(∑

µ

γµ
eiqµ̂a − e−iqµ̂a

2a
+m1

)
= δp,q

(
m1 +

i

a

∑
µ

γµ sin(pµa)
)

≡ δp,qD̃(p). (2.45)

To get the fermion propagator, the only thing that is left is to invert it to get

D̃(p)−1 =
m1− i

a

∑
µ γµ sin(pµa)

m2 +
∑

µ
sin(pµa)2

a2

. (2.46)

In the naive continuum limit this recovers the free fermion propagator in

Euclidean spacetime which is given by

G(p)−1 =
m− ip/
p2 +m2

. (2.47)

For simplicity we consider the free massless propagator which in the continuum

has a pole at p = 0. In Lattice Gauge theories, the momentum space is

restricted to the first Brillouin zone with periodic boundary conditions, i.e.

pµ ∈ (−π/a, π/a]. Therefore in addition to the physical p = (0, 0, 0, 0) pole,

15 more values of p that involve zeroes and π/a give rise to unphysical poles

that need to be removed. This is known as the doubling problem. Of course one

can show the existence of the unphysical poles for the massive propagator using
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2.2. Fermions on the lattice

complex analysis by illustrating that the energy is equal to the mass not only at

the rest frame but at other points as well that can be visualized as corners of the

Brillouin zone in the four-dimensional plane.

A solution to this problem was proposed by Wilson, who introduced a new term

in the Dirac operator that could be considered as an effective mass that vanishes

in the naive continuum limit as in Eq. (2.48)

D̃(p) = m1 +
i

a

∑
µ

γµ sin(pµa) + 1
1

a

∑
µ

(
1− cos(pµa)

)
(2.48)

so that the inverse reads as

D̃(p)−1 =

(
m+ 1

a

∑
µ

(
1− cos(pµa)

))
1− i

a

∑
µ γµ sin(pµa)(

m+ 1
a

∑
µ

(
1− cos(pµa)

))2

+
∑

µ
sin(pµa)2

a2

. (2.49)

With this modification, the unwanted poles become heavy, as the extra term gives

an “effective” contribution to the mass proportional to 1/a. Lastly, one wants

to go back to the coordinate space, where the Wilson-Dirac operator is given

by

DW (n,m) =
(
m+

4

a

)
δn,m −

1

2a

±4∑
µ=±1

(1− γµ)Uµ(n)δn+µ̂,m (2.50)

where the definiton γ−µ ≡ −γµ is used.

In 1981, Nielsen and Ninomiya [34–36] proved a no-go theorem according to which

it is impossible to construct a lattice fermion action that inherits all the following

simultaneously:

• it is local

• it has the correct continuum limit

• it is free from doublers

• it implements chiral symmetry, i.e. {D, γ5} = 0

This is consistent with Wilson fermions, as in order to remove the doublers one

has to give up chirality.

This thesis mostly focuses on pure SU(2) gauge theory on the lattice. However,
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2.3. Anisotropic Lattice Gauge Theories

Wilson fermions appear in a formalism that we give at the end of Chapter 4.

Therefore, we do not mention other types of fermions that are formulated on the

lattice as they are irrelevant to this thesis.

2.3 Anisotropic Lattice Gauge Theories

The investigation of QCD at non-zero temperature was the major force driving

the development of anisotropic LGTs. The main reason is that the temperature,

T , is related to the lattice spacing and the extent of the temporal direction as

T = 1/(Nτa), which means that the maximum temperature that can be reached is

given by the inverse lattice spacing with only one lattice point along the temporal

direction. Introducing an asymmetry between the spatial and the temporal lattice

spacings, as and aτ respectively given by the asymmetry parameter

ξ =
as
aτ

(2.51)

one can have a smaller aτ or more lattice points giving a higher temperature.

For the formulation of the anisotropic action, we consider two lattice couplings,

one for the spatial and one for the temporal plaquettes, βs and βτ respectively,

such that the anisotropic Wilson action is read as

SG[Us, Uτ ] = βs
∑
n

∑
1≤i<j≤3

[
1− 1

N
ReTrUij

]
+βτ

∑
n

∑
i

[
1− 1

N
ReTrU0i

]
(2.52)

or by introducing the anisotropy parameter, γ, we can write it as

SG[Us, Uτ ] =
β

γ

∑
n

∑
1≤i<j≤3

[
1− 1

N
ReTrUij

]
+βγ

∑
n

∑
i

[
1− 1

N
ReTrU0i

]
(2.53)

with

β =
√
βsβτ γ =

√
βτ
βs
. (2.54)

In order to go back to the naive continuum action, one can use the connection

between the plaquettes and the field strength tensors as in Eq.(2.17), which read
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2.4. Phase structure of LGTs

as

Uij(n) = exp(−ig0a
2
sFij(n)) U0i(n) = exp(−ig0asaτF0i(n)) (2.55)

where g0 is the bare gauge coupling of the starting theory. Then the continuum

action can be related to the lattice version of it by identifying

βs =
2N

g2
0

1

ξ
βτ =

2N

g2
0

ξ. (2.56)

However, the dynamics of the system are expected to change the coupling along

the temporal and the spatial direction and thus the true definitions of the lattice

couplings are given by

βs =
2N

g2
s(g0, ξ)

1

ξ
βτ =

2N

g2
τ (g0, ξ)

ξ (2.57)

where g2
s = g2

τ = g2
0 for ξ = 1, as proposed in [37, 38]. In other words, the

lattice spacing in temporal and spatial directions changes dynamically. In [38],

it was illustrated how one can relate βs and βτ to the parameters β(or g2
0) and

the asymmetry parameter ξ as

ξβs =
2N

g2
0

+ 2Ncs(ξ) +O(g2
0)

1

ξ
βτ =

2N

g2
0

+ 2Ncτ (ξ) +O(g2
0)

where the functions cτ and cs should be determined using non-perturbative

approaches. More about anisotropic lattice gauge theories will be discussed in

Chapter 3, in the context of extra-dimensional models.

2.4 Phase structure of LGTs

Putting QFT on a lattice can be seen as investigating the theory in an analogous

way to a statistical system. In particular, one expects to be able to investigate the

phase structure of a specific LGT. This investigation can be done by measuring

order parameters of the system at different values of the relevant couplings.

These are observables that show a different behaviour in different phases, so one

can determine the nature of the system in the various regions of the parameter
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2.4. Phase structure of LGTs

space.

In the determination of phase transitions, a very important issue is the order

of the aforementioned. The discretization of spacetime sometimes shows a

phase transition which is not physically continuous but a lattice artefact instead,

forbidding us from taking the continuum limit. These phase transitions are called

bulk or first-order phase transitions. Higher-order phase transitions, usually of

second order, allow us to take the continuum limit since they are characterized

by a divergent correlation length and universal behaviour.

2.4.1 Phases of pure LGTs

The phase structure of Abelian and non-Abelian gauge theories have been

explored extensively over the past years. The usual phases that appear in the

phase diagrams are three. First, there is the confining phase, or strong-coupling

phase that appears at small values of β, i.e. large values of the gauge coupling.

This is the phase that is blind to perturbation theory as it occurs at strong

coupling. For large values of β, and consequently small values of the gauge

coupling, the deconfining phase exists. This phase is also called weak-coupling

phase or Coulombic, as one expects a Coulombic behaviour in the static quark-

antiquark potential. The last phase that exists in gauge theories is the Higgs

phase, which usually appears if there is spontaneous gauge symmetry breaking.

Most of the times this phase is implemented on the lattice by coupling the gauge

fields to scalars by hand.

When one deals with an anisotropic gauge theory in a higher-dimensional

spacetime, a new phase appears, which is called the layered phase, first proposed

by Fu and Nielsen [39]. In this phase, the usual four-dimensional spacetime

is in a deconfining phase, whereas the extra dimensions exhibit confinement.

This takes us to the idea of branes or layers, as in this phase the ordinary four-

dimensional world can be seen to exist on a layer embedded in extra dimensions

but being blind to it. Hunting this new phase in five-dimensional non-abelian

gauge theories is one of the main purposes of this thesis, and we leave the details

of it to Chapter 3.
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2.4. Phase structure of LGTs

2.4.2 Order parameters and their behaviour

The order parameters of pure LGTs are given by the observables that were defined

in Sect. 2.1.2. Let us take a closer look at each of them and their behaviour in

different phases.

Firstly, we consider the plaquette. As it was already mentioned before, the

expectation value of it is related to the thermodynamic quantity of the specific

internal energy of a statistical system. If it inherits a discontinuity, then it signals

a first-order phase transition. On the other hand, if it is continuous but its

first derivative is discontinuous at the critical point, then it signals a second,

or a higher-order, phase transition and the lattice theory possesses a continuum

limit.

Furthermore, the Polyakov loop plays an important role in the investigation of

phase structures. We have mentioned above that the correlator of two temporal

Polyakov loops at spatial coordinates ~n and ~m is related to the static quark-

antiquark potential (Eq. (2.32)). Here, we define the correlator in terms of the

free energy and the lattice coupling β.

〈PT (~m)P†T (~n)〉 ∼ e−βFqq̄ . (2.58)

If the distance between the two point charges tends to infinity the correlator can

be considered as

〈PT (~m)P†T (~n)〉 = |〈PT 〉|2. (2.59)

So, one can see that if 〈PT 〉 = 0, at very large spatial separation, the free energy

increases and therefore the system is in a confining phase. On the other hand if

〈PT 〉 6= 0, at large distances the free energy approaches a constant value which

signals deconfinement.

Lastly, the Wilson loop serves as a good order parameter as well. We have already

seen that it is related to the static quark-antiquark potential which gives a hint

that from it, and therefore from the potential, one can see if the system is in

a strong-coupling or a weak-coupling phase. In particular, if the potential rises

linearly with the distance, there is a strong indication of confinement, whereas

if it behaves as 1/r in four dimensions it gives a signal of Coulombic behaviour.
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2.5. The Continuum Limit

Directly from the Wilson loop one can say that the system is in the confined

phase if it exhibits the area law, i.e.

lim
L,R→∞

〈WL〉 ∼ c e−σ
′RT (2.60)

and in the deconfined phase if it exhibits the perimeter law, i.e.

lim
L,R→∞

〈WL〉 ∼ c e−ρ(R+T ). (2.61)

2.5 The Continuum Limit

In everything that has been mentioned so far, we referred to the naive continuum

limit, that is by requiring a → 0 the discretized version of an action reveals

a corresponding classical action in the continuum. This is the equivalent of

removing the cut-off of a theory in standard QFT. However, taking the true

continuum limit is much more complicated than that.

The most crucial thing when taking the continuum limit is to be able to identify

a continuous phase transition in our system. For this, a divergent correlation

length at a critical point or region is essential. As in statistical systems, a critical

point, and thus a continuum field theory, can be found only when the correlation

length goes to infinity. The latter is defined as the inverse of a scalar mass. On

the lattice this mass is measured in lattice units, i.e. as am, so when taking a→ 0

the mass is finite. Equivalently, the lattice correlation length is defined as ξa−1

which diverges in the a→ 0 limit.

The correlation length depends on the bare parameters of a statistical system.

Considering the pure lattice gauge action, the only bare parameter is the lattice

coupling, β. Therefore, we can say that a critical point exists at βcr and for a

continuum limit to exist we require

ξlat(βcr)→∞ (2.62)

So far the limit a → 0 was mentioned. However, before taking this limit, we

need to consider the infinite volume limit or the so-called thermodynamic limit.
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Everything is simulated in a finite box of volume V = L4 = a4N4. If one

attempts to take the lattice spacing to zero then the volume also goes to zero

unless N is taken to infinity. In actual calculations, one can overcome the issue

of infinite volume limit by requiring the physical system to remain constant over

measurements of an observable. That is if the number of sites, N , is increased

then the lattice spacing should be decreased to ensure that V remains constant

and large compared to the physical scale of interest. By taking measurements at

different values of N , one can extrapolate to N →∞ to reach the thermodynamic

limit.

Changing N in numerical simulations is straightforward, however changing the

lattice spacing is more involved. One desires to take the continuum limit in the

context of measuring observables on the lattice that will be able to give the value

of a physical quantity. Observables on the lattice depend on the bare parameters

of the system, which for the pure Wilson action is only the lattice coupling β (or

g0). Moreover, the bare parameters have an explicit dependence on the lattice

spacing. As soon as one determines the relation between the two, observables at

different bare parameter values can be measured on a lattice of a constant physical

volume, as now the lattice spacing can be determined from the parameters of the

system. Then scaling analysis can be performed, that is to extrapolate to a→ 0

to determine the physical value of the desired quantity.

2.6 Methods for LGT exploration

As mentioned above, LGTs are Euclidean quantum field theories which have an

exact matching with statistical systems. This allows quantum field theories to

be investigated using methods that are used in statistical-spin systems. Some of

these methods are the strong-coupling expansion, the Mean-Field approach and

Monte Carlo numerical simulations. The latter two are the methods used in this

thesis so more details about them are given below.
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2.6. Methods for LGT exploration

2.6.1 Monte Carlo simulations

With the development of new supercomputers and the increase in computing

resources in particle physics, Monte Carlo algorithms are the main way to generate

configurations that are used to measure useful quantities since they are more

trustworthy as they are mostly blind to the value of the coupling of a gauge

theory. This applies when the system has a well-defined path integral, which

is not hindered by the sign problem, analogous to the partition function of a

statistical system with a Boltzmann distribution function

P (s) = e−βH[s]. (2.63)

Different Monte Carlo algorithms have been developed for LGTs over the years

but they all inherit some fundamental properties that we describe briefly below.

The project presented in Chapter 3 has been implemented using a specific Monte

Carlo algorithm, called the Kennedy-Pendleton Heat-Bath algorithm [40].

The desired quantities that one wants to evaluate are usually expectation values

of observables that involve the path integral, which, for large lattices, corresponds

to a huge sum of configurations that is impossible to be performed analytically.

However, one can compute such an integral approximately with the average over

a finite number of points in a probability distribution function, which for LGTs

is the analogous Boltzmann distribution function. For example, the expectation

value of an observable O is evaluated using

〈O〉 = lim
N→∞

1

N

N∑
n=1

O[Un] (2.64)

where the gauge field configurations are generated such that they have the largest

contribution to the path integral, i.e. with probability distribution density

ρ(U) =

∏
l dUle

−S[U ]∫ ∏
l dUle

−S[U ]
. (2.65)

This process is called importance sampling. One is restricted to the finite number

of configurations that the available computing resources can give and this leads

to statistical errors in the measurements.
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In order to sample these configurations, one starts either from a unit or a random

one, and then builds a Markov chain, that is a sequence of configurations that

each depends on the previous one. Each of these configurations occurs with a

probability weight of e−S[U ]. The probability to go from a configuration U to a

configuration U ′ is given by the transition probability w(U ′|U) that satisfies∑
U ′

w(U ′|U) = 1 (2.66)

0 ≤ w(U ′|U) ≤ 1 (2.67)

which ensures that all configurations can be reached and one can say that the

algorithm is ergodic. In order to have a system being in equilibrium, we desire a

fixed probability distribution, that is to satisfy∑
U

w(U ′|U)e−S[U ] = e−S[U ′]. (2.68)

This arises from the idea that once equilibrium is reached, one expects that

probabilities of reaching to or leaving from one configuration must be the same,

that is ∑
U

w(U ′|U)e−S[U ] =
∑
U

w(U |U ′)e−S[U ′]. (2.69)

The above condition is necessary for our algorithm to obtain correct results. A

solution to the above is called the detailed balance condition and is given by

e−S[U ]w(U ′|U) = e−S[U ′]w(U |U ′). (2.70)

So, once this condition is satisfied it is ensured that the configurations are sampled

with the correct weight in the Markov chain.

2.6.2 Mean-Field approach

The Mean-Field approximation is well known in statistical-spin systems for

evaluating the partition function and it has been adapted such that it can be

used for LGTs. A very powerful way to investigate a system using the Mean

Field approach is the so-called saddle-point method, which can be thought of as
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an expansion of the integrand of the partition function around a point, which

corresponds to the mean field. The idea behind it is to add a random external

field, that can absorb constraints on the measure of the integrand such that

the final expression of the partition function will be a regular integral over

unconstrained variables. The approximation of the integral at the mean-field

values is seen as the classical solution and one can obtain corrections to it by

considering fluctuations of the mean field. Below, we show how this works for

LGTs based on a detailed analysis of this method in [41] and [42].

In a pure LGT, the path integral that one wants to evaluate is given by

Z =

∫
DUe−SW [U ] (2.71)

where the link-variables are SU(N) matrices, therefore the integral is constrained

on group elements. In order to go into a flat measure, we use an identity to replace

the constrained matrices U with the unconstrained N×N complex matrices V by

inserting the integral of a delta function in Eq. (2.71). Then, the delta function

is written in its exponential representation and we get

Z =

∫
DUe−SW [U ]

=

∫
DUDV δ(V − U)e−SW [V ]

=

∫
DU

∫
DV

∫
DHe

1
N
ReTr(H(U−V ))e−SW [V ]

=

∫
DV

∫
DHe−Seff [V,H] (2.72)

where the integral in the last line involves flat measures and regular integrand.

The effective action is given by

Seff [V,H] = SW [V ] +
∑
l

u(Hl) +
∑
l

1

N
Re(HlVl). (2.73)

where the function u(H) can be thought of as the test free energy per gauge field

given by

e−u(H) =

∫
DUe

1
N
ReTr(UH) (2.74)
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and it is the only term in the effective action that has a dependence on the gauge

group of the theory.

The idea of the saddle-point method is to find the points where this effective action

has saddle points which behave as minima, and are called mean-field values or

background values. These are considered to be uniform in all directions and are

assumed to be proportional to the identity matrix, i.e:

V → V̄ 1N H → H̄1N . (2.75)

To find saddle-point equations we take derivatives of Seff and we evaluate them

at H̄1N and V̄ 1N . So at zero’th order approximation we get

∂Seff

∂V

∣∣∣∣
V̄ ,H̄

= 0⇒ H̄ = −∂SW [V ]

∂V

∣∣∣∣
V̄

(2.76)

and
∂Seff

∂H

∣∣∣∣
V̄ ,H̄

= 0⇒ V̄ = −∂u(H)

∂H

∣∣∣∣
V̄ ,H̄

. (2.77)

Finally, the free energy at zero’th order can be written as

F (0) = − 1

N
lnZ(0) = − 1

N
lnZ[V̄ , H̄] =

Seff [V̄ , H̄]

N
(2.78)

where N denotes the total number of lattice points, i.e. LT × L3
S for a four-

dimensional space.

This thesis focuses on investigations of the SU(2) gauge group so it is worth

showing the approximation of the path integral for the gauge action for this

specific group using the Mean-Field approach. First we parametrize the SU(2)

gauge links as

Uµ(n) = uαµ(n)σα = u0µ(n)1 + iuAµ(n)σA (2.79)

where σA (A = 1, 2, 3) are the Pauli matrices and Einstein summation is

assumed. The group properties imply that uαµ are real numbers and they satisfy

uαµuαµ = 1. As in the general SU(N) case, the path integral is approximated

at tree level with integrals over unconstrained 2× 2 complex matrices V and H
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that can be parametrized as

Vµ(n) = v0µ(n)1 + i
∑
A

vAµ(n)σA, vα ∈ C

Hµ(n) = h0µ(n)1− i
∑
A

hAµ(n)σA, hα ∈ C. (2.80)

With this parametrization we repeat the procedure of the general case SU(N) to

get the effective action. The identity inserted in the path integral in Eq. (2.72)

is now equivalent to

1 =
∏
n

∏
µ

∏
α

∫
dRevαdImvαδ[(Revα)− uα]δ(Imvα)

=
∏
n;µ;α

∫ +i∞

−i∞

dRehαdImhα
(2πi)2

dRevαdImvα exp[−(Rehα)(uα − Revα)− ImhαImvα]

(2.81)

Thus, the effective action can be read as

Seff = −β
2

∑
n

∑
µ<ν

ReTrVµν(n) +
∑
n

∑
µ

(
u(hµ(n)

)
+
∑
α

hαµ(n)vαµ(n) (2.82)

where Vµν(n) is the unconstrained equivalent to the plaquette and both hα and

vα are real.

The final step to determine the saddle-point equations and their solutions is to

evaluate the only group integral that appears in the second term of Eq. (2.82). To

do this we use character expansions as given in Appendix B and we find that

u
(
hαµ
)

= − ln
[ 2

ρµ
I1(ρµ)

]
(2.83)

where

ρµ =
√

(Reh0)2 + (RehA)2. (2.84)

and I1 is the modified Bessel function of the first kind of order 1.

Considering again the matrices to be set to a constant value proportional to the
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identity, the field values that minimize the action are given by

∂Seff
∂vα

∣∣∣∣
v̄0,h̄0

= −2
β

2

∑
n

∑
µ<ν

4v̄3
0 +

∑
n

∑
µ

h̄0 = 0

⇒ β
d(d− 1)

2
4v̄3

0 = dh̄0

⇒ h̄0 = 2β(d− 1)v̄3
0 (2.85)

and

∂Seff
∂hα

∣∣∣∣
v̄0,h̄0

=
∑
n

∑
µ

∂u(hαµ)

∂hα

∣∣∣∣
h̄0

+
∑
n

∑
µ

v̄0 = 0

⇒ v̄0 =
I2(h̄0)

I1(h̄0)
. (2.86)

Generally, from these equations one can determine the phase diagram of the

SU(2) gauge theory. The separation of phases is given by determining whether

the above equations inherit a trivial solution (v0 = h0 = 0) or whether they have

a non-trivial solution. The trivial solution occurs in the strong-coupling phase in

contrast to the non-trivial one that occurs in the weak-coupling phase.

2.6.2.1 Gauge fixing

As this method gives an approximation to the path integral, by considering

corrections to the solutions of the saddle-point equations, one can estimate the

next-to-leading order action. Consequently, first-order corrections can be added

to the free energy and its investigation can give a more accurate idea of the

phase diagram and whether the mean values for the fields determined are the

true minima of the system or not. Before proceeding into the discussion of the

first-order corrections of the free energy we need to discuss gauge fixing.

When one uses numerical methods to estimate the path integral of a LGT, gauge

fixing is not necessary but it is not forbidden either and Creutz was the first one

to propose a choice of the gauge called the maximal tree [43]. Using this choice

one is able to set some of the link variables to the identity leaving them out of the

integration of the gauge fields, as long as they do not form a closed loop. This
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gauge choice has no equivalent in the continuum.

On the other hand, in the Mean-Field approach, which is an analytical method,

it is essential to fix the gauge otherwise we face infinities caused by the local

gauge transformations of the mean-field values obtained when trying to compute

corrections to the path integral. Over the years, higher-order corrections in the

Mean-Field approach were computed [44–46] and different choices of the gauge

were proposed depending on the model investigated. Here, we only mention two

cases that are more relevant to our work.

Very often, the gauge is fixed using the axial gauge in which one sets all the

links along the temporal direction to 1. This is analogous to the temporal gauge

in the continuum, where we set A4(x) = 0. Even though, usually, axial gauge

corresponds to fixing the temporal direction, there is also the possibility of setting

the link variables along any other direction to unity. This is the most well-known

way to fix the gauge in U(1) models.

Furthermore, any other choice of gauge that is used in the continuum can be used

on the lattice as long as one finds the corresponding discretized expressions. In

this thesis the gauge fixing procedure that is followed is based on the Faddeev-

Popov method used in the continuum [47], in which a generalized Lorenz gauge

condition is used

G(A) = ∂µA
a
µ(x)− ωa(x) (2.87)

where ωa accounts for a Gaussian weight over which we perform the Gaussian

integral. Using this trick, we get an extra term in our Euclidean Lagrangian that

reads as

Lgf =
(∂µAµ)2

2ξ
(2.88)

where ξ is a real number that arises from the Gaussian integral. Usually it is set

to 1 and this is called the Feynman gauge. For the non-abelian gauge theories,

the Faddeev-Popov method gives rise to a determinant in the path integral that

can be written as an integral over ghosts, i.e.

det(∂µDµ) =

∫
DcDc̄ e

∫
d4xc̄(∂µDµ)c. (2.89)

The Wilson action now will have an extra contribution from the gauge fixing term
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and it will be given by

SG[U ]′ = SG[U ] + Sgf [U ] (2.90)

where

Sgf [U ] =
1

2ξ

∑
µ

∑
n

Tr
[
Uµ(n)− Uµ(n− µ̂)

]2

. (2.91)

2.6.2.2 First-order corrections

First-order corrections to the approximation of the path integral, and conse-

quently to the Free Energy, can be found by evaluating second-order derivatives

of the action, that is its Gaussian fluctuations around the mean-field values. To

achieve this we add corrections to each mean-field value and, in particular, for

SU(2) we get

Vµ(n) = v̄ + vµ(n) ; vµ(n) = vµ0(n)1 + ivµA(n)σA

Hµ(n) = h̄+ hµ(n) ; hµ(n) = hµ0(n)1 + ihµA(n, n5)σA

(2.92)

From the usual Taylor expansion we get

Seff = S
(0)
eff

∣∣
v̄,h̄

+
1

2

(∂2Seff

∂V 2

∣∣∣∣
v̄,h̄

v2 + 2
∂2Seff

∂H∂V

∣∣∣∣
v̄,h̄

hv +
∂2Seff

∂H2

∣∣∣∣
v̄,h̄

h2
)

≡ S
(0)
eff [v̄, h̄] + S(2)[v, h]. (2.93)

The second derivatives can be seen as propagators between the corresponding

fields and we write them as

∂2Seff

∂H2

∣∣∣∣
v̄,h̄

≡ ∆(hh)

∂2Seff

∂H∂V

∣∣∣∣
v̄,h̄

≡ ∆(hv)

∂2Seff

∂V 2

∣∣∣∣
v̄,h̄

≡ ∆(vv) + ∆(gf) (2.94)

where ∆(gf) arises from the gauge fixing term which is taken into account in the

effective action as discussed in the previous section.

45



2.6. Methods for LGT exploration

To approximate the path integral to first order, we rewrite it as

Z(1) = e−S
(0)
eff [v̄,h̄]

∫
DvDhe−S

2[v,h] (2.95)

and performing the Gaussian integral one finds it to be

Z(1) = e−S
(0)
eff [v̄,h̄]

[∏
α

det
(

∆(hh)
(
(∆(vv) + ∆(gf))−∆(vh)∆(hh)(−1)

∆(hv)
))]−1/2

≡ e−S
(0)
eff [v̄,h̄]

[∏
α

det
(
∆(hh)K

)]−1/2

. (2.96)

As a final remark we say that one has to include the Faddeev-Popov determinant,

DFP , as well and thus the partition function defined above is modified to be

Z(1) = e−S
(0)
eff [v̄,h̄]

[
det
(
∆(hh)K

)]−1/2

DFP

≡ e−S
(0)
eff [v̄,h̄] · z. (2.97)

Having all the above, it is trivial to show that the free energy to first order can

be expressed as

F (1) = F (0) +
1

2N
ln
[∏

α

det(∆(hh)K)D−2
FP

]
. (2.98)

More on the determination of first-order corrections will be addressed in Chapter 4

and Appendix C.
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Chapter 3

Anisotropic 5D Yang-Mills

theory in flat spacetime

Most of the LGTs studies are performed in the observed four dimensions as

the main motivation is a better understanding of the strong-coupling region of

the SM (QCD) or to look for signals for beyond the Standard Model physics.

However, extra-dimensional model building enhanced the application of LGTs to

explorations of models with more than four dimensions.

It is known that higher-dimensional non-abelian theories are perturbatively non-

renormalizable, therefore one has to impose a cutoff, Λ, to define an effective

theory out of which low-energy physics can be extracted. As mentioned in

Chapter 2, on the lattice this comes for free, as the inverse of the lattice spacing

serves as the cutoff, allowing extra-dimensional models to be investigated. In

this thesis the theory of interest is the one that involves the simplest non-abelian

gauge group with one extra dimension, i.e. the five-dimensional SU(2) gauge

theory. In this Chapter we will present a brief summary of what was the status

of the phase diagram of the aforementioned model before our study, the set-up

of the model with some details of the implementation and the results that lead

to the current phase diagram. The details of the study presented here have been

published in a refereed journal paper [48] and a conference proceeding [49].
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3.1. The phase structure of the model from the Literature

3.1 The phase structure of the model from the

Literature

3.1.1 Dimensional Reduction via compactification

The first study of the phase diagram of the five-dimensional SU(2) YM model

was done by Creutz in 1979, who found that there is a bulk phase transition

between the strong-coupling and the five-dimensional Coulombic phase, which

was not a very exciting result as the theory does not have a continuum limit and

the transition is just a lattice artefact [50]. In later years, the same model was

investigated with some modifications in the action that might have revealed the

existence of a non-trivial fixed point. In particular, in 1992 Kawai et al. explored

the phase diagram of the five-dimensional pure SU(2) gauge theory using a mixed

fundamental-adjoint action [51]. Unfortunately, they also showed no evidence of

the existence of a continuum limit.

In 2001, Ejiri et al. made a new modification in the model to look for the existence

of a continuum limit in the theory: they imposed an anisotropy between the lattice

couplings in the four dimensions and the fifth dimension [52]. Everything that

is discussed in Section 2.3 can be applied in this modified model by making the

appropriate changes such that the temporal direction is replaced by the fifth one.

More details on the set-up of the model will be given in Section 3.2.

The five-dimensional anisotropic SU(2) gauge theory when all directions are kept

large shows a bulk phase transition. However, the idea in [52] is to compactify the

extra dimension on a circle, which, by the arguments in [53, 54] one expects to see

a dimensionally reduced phase, which is always present at least in the region where

a5 < a4. The presence of a continuous transition in the aforementioned study was

the driving force for further studies on the phase structure of this model when the

extra dimension is compactified on S1, in the region where the lattice coupling

along the extra dimension is larger than that along the four dimensions, i.e.

γ > 1 [55, 56]. By further exploration at various anisotropy values and different

sizes of the extra dimension and by finite-size scaling studies, it became clear

that the five-dimensional YM theory can be reduced to a four-dimensional YM
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theory via compactification. According to the Svetitsky-Yaffe conjecture a (d+1)-

dimensional SU(N) gauge theory (with ZN the centre symmetry of the group) with

a continuous deconfinement transition and a d-dimensional spin model with a ZN

symmetry belong to the same universality class [57]. From the above statement

it is clear that by matching the critical exponents of the gauge theory in the

dimensionally reduced phase with those of a four-dimensional Ising model one can

conclude that the compact phase describes a four-dimensional YM theory.

Lastly, a study was presented in [58] in which a dimensionally reduced phase is

shown to exist in the region γ < 1, i.e. for a5 > a4. In this region, the investigation

was performed when the temporal or the extra dimension was compactified and

scaling analysis showed a clear signal that the model becomes a four-dimensional

YM theory as in the case of γ > 1. However, in this region there are some upper

and lower bounds on the size of each direction for each value of γ in order for

this compact phase to appear. The first upper bound appears in the case where

the four-dimensional theory is present as the result of the compactification of the

temporal direction. In this case the extent of the latter should be less than an

extent in the other directions, Lmin
S (γ). The second bound is given for the case

where the dimensionally reduced phase is the result of the compactification of

the fifth direction. For this, it is essential to have L5 < Lmin
5 (γ) but also all the

other directions should have an extent larger than Lmin
S (γ). Finally, the signal of

the bulk phase transition, which is present when no “proper” compactification

is imposed in any of the directions, can only be clearly seen if the size of all

directions exceeds a minimum value which increases as γ gets lower.

The phase diagram of the five-dimensional anisotropic SU(2) gauge theory when

dimensionally reduced phases are sought via a compactification mechanism is

shown in Figure 3.1 as taken from Ref. [56].

3.1.2 Layered phase idea

Dimensional reduction in the above discussion is achieved by compactification.

In Chapter 1 we have introduced another mechanism via which theories can

be dimensionally reduced: localization. However, the failure of having a viable

mechanism for the localization of gauge fields in extra-dimensional models
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Figure 3.1: The phase diagram of the five-dimensional anisotropic SU(2) YM
model when dimensional reduction is achieved via compactification of the extra
dimension. The red points show the bulk phase transition in the absence of
compactification and the rest are lines of second order transitions showing the
dimensionally reduced phase. The figure was taken from Ref. [56] which uses
results from [52] denoted as “Ejiri” and [58] denoted as “Knechtli”.

suggests the need of a non-perturbative way for accomplishing this. The first

study to attain this came from Fu and Nielsen [39]. They proposed that when

there is a D-dimensional lattice, a d-dimensional layered phase (D = n+d) can be

formed if the nearest-neighbour gauge couplings of the d-dimensional sublattice

are different from those in the other n dimensions. Then, particles and gauge

fields can travel within the d-dimensional layer phase, but they exhibit a kind

of confinement when they try to propagate in any of the n extra dimensions.

Their study was done using the Mean-Field approach for the abelian group U(1)

and they showed the existence of a layered phase in (4+1) dimensions. It is

important to notice that the new phase still holds even after computing first-

order corrections to the mean-field solutions. Fu and Nielsen calculated further

quantities to study the properties of this layered phase and it seems that it behaves

as a four-dimensional one [59].
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In 1992, Kaplan in [60] starting from a five-dimensional theory with a topological

defect serving as a domain wall, was able to construct fermions which live in

four dimensions that possess exact chiral symmetry, the so-called DW fermions.

This new formulation for lattice fermions was very promising as it would allow

us to escape from the notorious Nielsen-Ninomiya no-go theorem. Despite the

fact that the fifth dimension is just a mathematical trick in Kaplan’s formalism,

people started being suspicious for the connection between Kaplan’s localization

of fermions and the layered phase proposed by Fu and Nielsen: it might have

been possible that the extra dimension is not just a tool but instead it gains a

physical interpretation.

Studies were carried out to confirm the findings of [39] using both analytical

and numerical non-perturbative methods [61–63]. It was shown that the

five-dimensional U(1) theory undergoes dimensional reduction via localization

admitting a continuum limit. The pure gauge-theory was also coupled to Wilson

fermions and they could show that in the layered phase the usual four-dimensional

Wilson propagator is recovered and thus it loses its chirality. This is in contrast

to the result that in the weak-coupling phase a chiral zero-mode can be localized.

Another important outcome of these studies was that the presence of fermions

does not change the order of the transitions. All the above suggest that for a

chiral layer to exist, one should not just set the extra-dimensional coupling to

zero but instead choose it to be close to a transition point [64]. As in this thesis

all results are presented in the absence of fermions, we do not discuss these issues

further.

This new point of view for the significance of the existence of a layered phase

motivated further explorations of the phase diagram of the five-dimensional

compact U(1) model. Measurements of more observables and studies of the

scaling properties at larger volumes provide strong evidence that the transition

from the Coulombic phase to the layered phase is of second order allowing a

continuum limit to be taken [65–67]. More specific, measurements of the potential

in the layered phase suggest that it behaves inversely proportional to the distance,

that is it has a four-dimensional Coulombic behaviour.

The success of defining a layered phase for U(1) intrigued people to investigate

whether this new phase appears for non-abelian gauge groups as well, and in
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particular for the simplest non-abelian group SU(2). The idea of a dimensionally

reduced phase for SU(2) was investigated using the Mean-Field approach [68]. In

this study, the claim is the existence of this new phase, at which the static-quark

potential has exactly a four-dimensional behaviour which means that the planes

transverse to the extra dimension are decoupled from each other. Studies of the

finite-size scaling properties of the system show that there is a second order phase

transition, however it is not clear if this is true as the Mean-Field approximation

can hide the correct order of the transition, so Monte Carlo simulations had to

be performed.

Actually, the first Monte Carlo study appeared soon after Fu and Nielsen’s

proposal, providing evidence of the existence of this phase in six dimensions but

not in five dimensions [69]. However, the lattice volumes used were too small.

More recent studies using Monte Carlo techniques suggest the existence of a non-

trivial fixed point at which one can define a four-dimensional gauge theory arising

from the dimensional reduction of a five-dimensional SU(2) YM theory [70, 71].

Specifically, in [71] they claim that there is an end point of the first-order phase

transition, which separates the confining from the weak-coupling phase and it

is shown in Figure 3.1 with red points, at which the transition becomes second

order. The drawback of this study is the use of small lattices that might hide

true physics if finite-size effects are dominant. In this region of the weak-coupling

phase, one would expect to have a new phase, the layered phase, where the

five-dimensional theory can be visualized as four-dimensional layers embedded in

the extra dimension on which the ordinary SM matter is recovered. If a five-

dimensional SU(2) gauge theory reduces to four dimensions, it results to a four-

dimensional SU(2) gauge theory with a Higgs in the adjoint representation, that

is the Georgi-Glashow model. The phase diagram of this model consists of a

confined and a Higgs-Coulomb phase. One expects that the static potential will

show characteristics of these phases. In [68], in the deconfined phase approaching

the transition into the layered phase they observe a four-dimensional Coulombic

behaviour in the static quark-antiquark potential instead of a five-dimensional one

that is observed in the weak-coupling regime. In additon, as in this model a Higgs

mechanism is not in action, one expects that at large distances the potential will

rise linearly with distance, i.e. it will have a non-vanishing string tension.

In the study presented here, we extend the work of [71] to larger lattices to
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see if we can still find hints that the theory might possess a continuum limit.

The motivation for this came mostly from [58] in which they set some lower

bounds on the size of each direction in order for the bulk phase transition to

be seen, which indicates that the lattice volumes used in the previous Monte

Carlo simulations [71], were too small to show the correct order of the phase

transition.

3.2 The set-up of five-dimensional anisotropic

LGTs

3.2.1 Anisotropic Action

The theory of interest is the anisotropic SU(2) YM gauge theory in five

dimensions, whose action in the continuum is given by

SE =

∫
d4x

∫
dy

1

2g2
5

TrF 2
MN (3.1)

where M,N = 1 . . . 5 and FMN = ∂MAN − ∂NAM + i[AM , AN ] with AM =

g5A
a
MT

a. The discretized version of this action when one imposes an anisotropy

between the extra-dimensional plaquette and the ordinary four-dimensional

plaquettes becomes

S = β4

∑
n

∑
1≤µ<ν≤4

(
1− 1

2
Tr Uµν(n)

)
+ β5

∑
n

∑
1≤µ≤4

(
1− 1

2
Tr Uµ5(n)

)
µ,ν=1...4

(3.2)

where Uµν(n) represents the oriented plaquette along spacetime directions given

by

Uµν(n) = Uµ(n)Uν(n+ µ̂a4)U †µ(n+ ν̂a4)U †ν(n) (3.3)

and Uµ5(n) represents the plaquette formed when one of the directions is the

extra-dimensional one, given by

Uµ5(n) = Uµ(x)U5(n+ µ̂a4)U †µ(n+ 5̂a5)U †5(x). (3.4)
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where Uµ(n) = exp
(
ig5a4Aµ(n)

)
and U5(n) = exp

(
ig5a5A5(n)

)
are the gauge

links, a4 is the lattice spacing in the usual spacetime directions and a5 is the

lattice spacing in the extra direction. The sums are performed over all the lattice

points, i.e. n = (n0, ~n, n5) and x = an. This is analogous to the anisotropic

action defined in Section 2.3 with the difference that now the temporal direction

is indistinguishable from the spatial directions and the extra dimension takes

the place of the temporal direction in the anisotropic action. The anisotropy

parameter on the lattice is characterized by γ which is defined as

γ =

√
β5

β4

(3.5)

and at tree level this is given by

γ =
a4

a5

. (3.6)

Another useful quantity that we define in terms of the two lattice couplings is β

given by

β =
√
β4β5. (3.7)

Recovering naively the continuum limit we get

β4 =
4a5

g2
5

and β5 =
4a2

4

a5g2
5

. (3.8)

3.2.2 Observables

In order to investigate the phase diagram of the model we use the following

observables:

• Average Plaquette along the extra dimension, P̂5

〈P̂5〉 =
〈 1

4V Nc

∑
n

∑
µ

Tr(Uµ5(n))
〉

(3.9)

and its susceptibility

χP̂5
= V

(
〈P̂ 2

5 〉 − 〈P̂5〉2
)

(3.10)
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where V is the lattice volume given by V = LT ×L3
S×L5, with LT , LS and

L5 the size of the temporal, spatial and extra dimension respectively.

• Temporal Polyakov Loop. This can be measured on the whole lattice given

by

PolyT =
LT
NcV

∣∣∣∣∑
~n,n5

Tr

(LT−1)∏
n0=0

UT (n)

∣∣∣∣. (3.11)

Since in the layered phase each layer is uncorrelated, the Polyakov loop may

be measured in one layer and so we also compute

PolyT (n5) =
1

NcL3
S

∣∣∣∣∑
~n

Tr

(LT−1)∏
n0=0

UT (n)|n5

∣∣∣∣. (3.12)

We define the Polyakov loop susceptibilities as

χPolyT
=

V

LT

〈(
Poly2

T − 〈PolyT 〉2
)〉

(3.13)

χPolyT
(n5) = L3

S

〈(
PolyT (n5)2 − 〈PolyT (n5)〉2

)〉
. (3.14)

The expected behaviour of the plaquette for a first-order phase transition is to

show hysteresis in the expectation value and a divergence in the susceptibility

at the critical point. The temporal Polyakov loop is expected to have a zero

expectation value in the strong-coupling phase, i.e. to fluctuate around zero and

a non-zero expectation value in the five-dimensional Coulombic phase, i.e. to

show a two-peak structure.

3.3 Results from Lattice Simulations

Our model was implemented on the lattice, using the Kennedy-Pendleton Heat-

Bath algorithm [40] combined with overrelaxation updates [72]. Specifically,

we took one heat-bath measurement every LS/2 overrelaxation steps. The

autocorrelation that arises was taken into account in our analysis. The number

of measurements varied between 100,000 and 200,000 at each set of points in

our parameter space (β4, β5) that were investigated. Measurements were taken

55



3.3. Results from Lattice Simulations

 0

 1

 2

 3

 4

 5

 0.5  1  1.5  2  2.5  3

β
5

β4

Layered
Phase

Confining Phase
(Strong-coupling)

5D Coulombic Phase
(Weak-coupling)

γ=1

Figure 3.2: A sketch of the phase diagram of the anisotropic SU(2) YM model.
The dashed blue line denotes the isotropic case γ = 1. The region above this line
was previously investigated in [52, 55, 56] and the region below in [58, 71]. The
dashed-dotted green line appears when the extra dimension is compactified [52,
56, 58]. When no compactification is involved, there is a bulk phase transition
which is shown in the figure as a red solid line. It was shown to exist up to
β4 = 2.50 in [58]. In this work we extend the range of this line up to β4 = 2.60
with no evidence that this line will not continue for larger values of β4. For
β4 > 2.60 the idea of the existence of the layered phase arises.

starting from either random SU(2) matrices (hot configurations) or by setting all

the SU(2) matrices to the identity matrix (cold configurations). Simulations were

carried out at the lattice volumes of 165, 204×8 and 244×8. The former was the

largest investigated by Farakos and Vrentzos [71] and was included in our study

to provide a check of our code. The bigger volumes were used to investigate the

order of the transition, since, as already mentioned, [58] showed that there is a

minimum size of the spatial/temporal and the extra direction in order to see a

clear first-order phase transition. We reduced the size of the extra dimension to

L5 = 8 to save compute time, but since the lattice spacing in the extra dimension

is much larger for high β4 values than the lattice spacing in the other directions

56



3.3. Results from Lattice Simulations

(as shown in [58]), the system remains five dimensional and no compactification

is imposed.
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Figure 3.3: The susceptibility of the plaquette in the extra dimension, P̂5 for
V = 165 keeping β4 fixed at 2.60 and varying β5. The critical point is the point
at which the susceptibility gains its maximum value.

First, we did a scan in the parameter space (β4, β5) using small lattices to identify

the first-order phase transition that was shown in previous work up to β5 = 2.50.

The phase diagram of the model is shown schematically in Fig. 3.2. The layered

phase was previously claimed to exist at large β4 and small β5, as shown. Our

point of interest is β4 = 2.60 on the line of transition, which was claimed to be the

critical point at which the transition changes from first to second order in [71].

The critical point in β5 was found by implementing the model on a lattice of

volume 165. At this volume we were able to do a wide scan by investigating a

sufficient number of different β5 to identify the critical point. Even though it does

not show any clear evidence of first-order phase transition in terms of a two-state

signal, by looking at the susceptibility it looks like it has a divergence at the

critical point (Fig. 3.3). The critical β5 point was found to be β5 = 0.8437(5)

which agrees within error with the value found in [71].
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Figure 3.4: The histograms for the plaquette in the extra dimension for V =
204 × 8, fixed β4 = 2.60 and for two different values of β5: β5 = 0.843(top) and
β5 = 0.8445(bottom) are shown on the left. We can see that the peak moves
towards the right as we go to higher values of β5. The corresponding histograms
for the temporal Polaykov loop are shown on the right. We can see that for
β5 = 0.843 it has a zero expectation value whereas for β5 = 0.8445 it shows a
two-peak structure.

For the investigation of the phase transition on the larger lattices we focused on

the critical region which was estimated to be between β5 = 0.843 and β5 = 0.8445,

based on the critical value found for the 165 lattice. As it can be seen from

Fig. 3.4, the plaquette moves to the right as we go to higher values of β5 and the

temporal Polyakov loop is zero for the point β5 = 0.843, which is in the confining

phase and has a two-peak structure for the point β5 = 0.8445, which is in the

deconfining phase, as expected. We also checked how the temporal Polyakov

loop is distributed when all the n5-slices are considered independently (Eq. 3.12)

and we could see that each fluctuates around zero. Also, we confirmed that the

critical point was included in this region by observing that, for one point that

lies in between these values, either a clear two-state signal or large fluctuations

between two values in the average value of the plaquette were present, as can be
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seen in Fig. 3.5 and 3.6.
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Figure 3.5: Histograms of the average plaquette in the extra dimension, P̂5

starting from both cold and hot configurations for V = 204 × 8, β4 = 2.60 and
β5 = 0.8435. We can see that since this point is very close to the critical one,
the plaquette fluctuates between the two vacua and thus the distribution is not
Gaussian anymore.

The points that were investigated are β5 = 0.843, 0.8435, 0.844, 0.8445. For the

lattice volume of 204 × 8, we cannot distinguish the two states, since by starting

either from hot or cold configurations, the expectation of the plaquette is the

same. However, as shown in Fig. 3.5, the distribution is not Gaussian. This is

the first hint of the existence of a first-order phase transition. The larger volume

of 244 × 8 shows an apparent two-state signal as can be seen from the histogram

in Fig. 3.6. The overlap that appears between the histograms starting from hot

or cold configurations is due to the fact that the two vacua of the potential energy

are not so deep and thus the system fluctuates between them. For a check, we

implemented one single point (β5 = 0.844) on a 324 × 8 lattice and we can see

in Fig. 3.7 that the two states are now separated by a wide gap, and there is

no evidence of tunnelling from one to the other, i.e. it stays in the phase in
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which it first equilibrated, depending on the initial configuration. This is also an

indication that the extrapolation to the thermodynamic limit must be based on

sufficiently large lattices.
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Figure 3.6: Histograms of the average plaquette in the extra dimension, P̂5

starting from both cold and hot configurations for V = 244 × 8, β4 = 2.60 and
β5 = 0.8435. Here, we can see that the distributions, starting from either cold or
hot, build up as two Gaussian distributions, one for each vacuum that the system
equilibrates to.

We note that the pseudo-critical point was not estimated precisely, because

reweighting techniques were not trustworthy for the large volumes and ensemble

sizes that were used in this work due to limited statistics.

The code was written using QDP++ [73] and run on GPUs using QDP-JIT [74].

An estimate of the compute time required for the investigation of a single point

on an NVIDIA Tesla C2070 Computing Processor (GPU) for the volumes used

in this work for a set of 100,000 measurements with LS/2 overrelaxation steps

and a heatbath update each time is shown in Table 3.1. The single point of

V = 324 × 8 would have taken two months on GPUs and so it was simulated
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Figure 3.7: Histograms of the average plaquette in the extra dimension, P̂5

starting from both cold and hot configurations for V = 324 × 8, β4 = 2.60 and
β5 = 0.844. It is clear that a first-order phase transition is present since starting
from different configurations, the system equilibrates in different states with no
tunnelling between them.

using IBM BlueGene/Q in Edinburgh.

Lattice Volume Compute time (hours)
16× 16× 16× 16× 16 190
20× 20× 20× 20× 8 250
24× 24× 24× 24× 8 620

Table 3.1: Estimated compute time required on an NVIDIA Tesla C2070
Computing Processor for 100,000 measurements for a single point in the
parameter space (β4, β5).
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3.4 Discussion and Outlook

In this work, we extended the Monte Carlo investigation of the phase diagram

of the anisotropic SU(2) Yang- Mills model in five dimensions when the lattice

spacing in the extra dimension is larger than that in the four other dimensions

(γ < 1). We showed that, up to β4 = 2.60, there is no evidence of a second-

order phase transition, whereas a clear two-state signal in the average plaquette

favours a first-order phase transition. Based on this result, we can claim that

the bulk first-order phase transition between the confining and the deconfining

phase continues at least up to β4 = 2.60 and up to this point the continuum limit

cannot be taken. Therefore, the possibility of the existence of a UV fixed point

and a dimensionally reduced five-dimensional effective field theory remains open.

Even though, based on this work, we cannot exclude a second-order transition

at higher β4, nothing in our study suggests that continuing this investigation on

even bigger lattices would be worthwhile.

As a final remark for this project, it is worth mentioning that no measurements of

any other observables were performed in the region where the proposed layered

phase would exist. From the Mean-Field approximation results in [68], it was

suggested that the static quark potential in a region very close to the layered

phase becomes four-dimensional. Despite that we are not very optimistic for

the existence of a non-trivial fixed point that would define a continuum four-

dimensional field theory at the transition from the Coulombic to the layered

phase, nothing in our study excludes the existence of a dimensionally reduced

phase in the relevant region as an effective theory.
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Chapter 4

Anisotropic 5D Yang-Mills

theory in a warped background

As we have seen in Chapter 3, the phase diagram of non-abelian extra-dimensional

gauge theories has been extensively explored in a flat background. One, though,

can change the metric of the theory to be dependent on the extra dimensions. The

driving force that leads to this modification is that in five dimensions this is the

gauge-sector of the Randall-Sundrum model that has previously been introduced

in Section 1.3.3 the action of which is

SAdS5 =

∫
d4x

∫
dy
[ 1

4g2
5

F 2
µν +

1

2g2
5

f(y)F 2
µ5

]
(4.1)

where the only difference from Eq. (3.1) is the warp factor f(y) that appears in

front of the field strength tensor that involves the extra dimension. This warp

factor is given by f(y) = e−2k|y| as defined in the metric in Eq. 1.23. We call this

action SAdS5 as the extra dimension is in a slice of the AdS5 spacetime and its

discretized version imposing an anisotropy is given by

SAdS5 = β4

∑
4D

(
1−1

2
ReTrUµν(n, n5)

)
+β5

∑
5D

(
1−1

2
ReTrf(n5)Uµ5(n, n5)

)
(4.2)
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or

SAdS5 =
β

γ

∑
4D

(
1− 1

2
ReTrUµν(n, n5)

)
+ βγ

∑
5D

(
1− 1

2
ReTrf(n5)Uµ5(n, n5)

)
(4.3)

using the relations of β4 and β5 with β and γ as defined in Chapter 3.

This idea is not new. A previous study attempted to investigate the abelian

gauge-sector of the RS model in connection with the layered phase that appears

in higher-dimensional anisotropic gauge theories with the anisotropy arising from

the warp factor [65]. As mentioned in the previous Chapter, the main idea behind

it is to find a way to localize gauge fields on 3-branes, which might arise non-

perturbatively by the presence of the layered phase in the phase diagram of the

anisotropic gauge theory. For the case of non-abelian gauge theories with extra-

dimensional dependent coupling, an effort to localize massless and massive modes

was made in [75] but only for (2+1)-dimensional systems and in the specific work

the idea of the layered phase has not been used at all.

Our work focuses on the investigation of the phase structure of the anisotropic

five-dimensional SU(2) theory with an extra-dimensional dependent lattice

coupling along the plaquettes that involve the extra dimensions. This warp

factor in our lattice action though, is anticipated to have an effect on the

lattice spacing leading to large finite-size effects. This suggests that the correct

investigation of the system using Monte Carlo simulations will be computationally

expensive, and as we have no previous studies to guide us to specific regions of

our parameter space, the first exploration was decided to be undertaken using

the Mean-Field approach. One of course might doubt the validity of the results

of this method as in four dimensions it does not produce the correct results

of the phase transition. The Mean-Field approximation produces a first order

phase transition [41] whereas Monte Carlo simulations show a crossover [50].

However, as the former can be seen as an 1/d expansion, it is expected to be more

accurate for higher-dimensional systems. The decision to approach our problem

using Mean-Field techniques was inspired by recent work of Irges, Knechtli and

collaborators [23, 68], who developed further this way of approximating path

integrals in LGTs which have been well established and discussed in [41, 42].

This opened up a new path in the investigation of non-abelian extra-dimensional
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4.1. Formalism using Mean-Field approach

models on the lattice, as their results show that for higher-dimensional systems

the method provides qualitatively correct results.

4.1 Formalism using Mean-Field approach

4.1.1 Saddle-point equations

To approximate the path integral of the current action we repeat the procedure

that we have followed in Section 2.6.2 to find the saddle-point equations with

a few modifications. First, as we are looking for this new phase in the phase

diagram, the layered phase, we consider the link variables along the ordinary

four dimensions and along the extra dimension to have a different value that

minimizes the action (mean-field value). Furthermore, the lattice coupling along

the extra-dimensional plaquettes will need to be multiplied by the warp factor,

which we keep as a general function of n5 called f(n5).

Following the lines of Fu and Nielsen [39], who derived the saddle-point equations

for a flat anisotropic U(1) theory, one can easily apply a similar method for the

flat anisotropic SU(2) theory in five dimensions, the effective action of which

reads as

Seff = SG[Vµ, V5] +
∑
n

[∑
µ

u[Hµ(n)] + u5[H5(n)]

+
∑
α

hαµ(n)vαµ(n) +
∑
α

h5(n)v5(n)

]
(4.4)

where n runs over all coordinates in five dimensions. Then the saddle point

equations are given by

v̄4 = −u(h̄4)′

v̄5 = −u(h̄5)′

h̄4 = 6
β

γ
v̄3

4 + 2βγv̄4v̄
2
5

h̄5 = 8βγv̄2
4 v̄5 (4.5)
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4.1. Formalism using Mean-Field approach

In the above we explicitly separated the coordinates in the usual four dimensions

from those in the extra dimension. The Mean-Field approach procedure for the

curved-space case is exactly the same as the one described above. So applying it

to this system we find the effective action to be

Seff = SAdS5 [Vµ, V5] +
∑
n;n5

[∑
µ

u[Hµ(n, n5)] + u5[H5(n, n5)]

+
∑
α

hαµ(n, n5)vαµ(n, n5) +
∑
α

hα5(n, n5)vα5(n, n5)

]
. (4.6)

In order to make this to look like SG[Vµ, V5] we do a scale transformation of

the fields that involve the extra dimension, whereas the fields in the usual four

dimensions remain the same.

Uµ(n, n5) = U ′µ(n, n5)⇒ Uµν(n, n5) = U ′µν(n, n5)

Uµ(n, n5) =
√
f(n5)U ′µ(n, n5)⇒ Uµ5(n, n5) = f(n5)U ′µ5(n, n5) (4.7)

such that

SAdS5 [V ′µ, V
′

5 ] = SG[Vµ, V5] (4.8)

where the four-dimensional plaquette and the plaquette extended in the extra

dimension are given by

V ′µν(n, n5) = V ′µ(n, n5)V ′ν(n+ µ̂, n5)V ′†µ (n+ ν̂, n5)V ′†ν (n, n5) (4.9)

V ′µ5(n, n5) = V ′µ(n, n5)V ′5(n+ µ̂, n5)V ′†µ (n, n5 + a5)V ′†5 (n, n5). (4.10)

Looking at the effective action in Eq. (4.6) we see that we also need to rescale H5

as

H5(n, n5) =
1√
f(n5)

H ′5(n, n5) (4.11)

so that we get

hα5(n, n5)vα5(n, n5) = h′α5
(n, n5)v′α5(n, n5). (4.12)

Rescaling the external field in the fifth dimension though, changes slightly the

term u5[H5(n, n5)] that becomes

e−u5[H′
5(n,n5)] =

∫
SU(2)

DUe
1
2

ReTr(UH′
5)
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4.1. Formalism using Mean-Field approach

=

∫
SU(2)

DUe
1
2

√
f(n5)ReTr(UH5). (4.13)

The extra factor that involves the warp factor does not affect the nature of the

group integral so it can be evaluated as usual using character expansions with

the only difference that now the result will depend on the extra dimension.

u5(H ′5) = − ln

(
2

ρ5(n5)
√
f(n5)

I1

(
ρ5(n5)

√
f(n5)

))
(4.14)

where

ρ5(n5) =

√[
Re(h50(n5))

]2
+
∑
A

[
Re(h5A(n5))

]2
. (4.15)

Next the saddle-point solutions are determined by setting the fields to a

background value which, in contrast to the flat case, has an extra-dimensional

dependence, i.e.

Vµ(n, n5) = v̄4(n5)1 Hµ(n, n5) = h̄4(n5)1

V5(n, n5) = v̄5(n5)1 H5(n, n5) = h̄5(n5)1 (4.16)

This leads to the saddle-point equations given by

v̄4(n5) = u4(h̄4(n5), n5)′ =
I2(h̄4(n5))

I1(h̄4(n5))

v̄5(n5) = u5(h̄5(n5), n5)′ =
I2(
√
f(n5)h̄5(n5))

I1(
√
f(n5)h̄5(n5))

h̄4(n5) = 6
β

γ
v̄3

4(n5) + βγv̄2
5(n5)v̄4(n5 + a5) + βγv̄2

5(n5 − a5)v̄4(n5 − a5)

h̄5(n5) = 8βγv̄5(n5)v̄4(n5)v̄4(n5 + a5) (4.17)

and the free energy at zero’th order which can be written as

F (0) =
Seff [V̄ , H̄]

N(4)

=
∑
n5

[
− 6

β

γ
v̄4(n5)4 − 4βγv̄4(n5)v̄2

5(n5)v̄4(n5 + a5)

+ 4u4(h̄4(n5), n5) + u5(h̄5(n5), n5) + 4h̄4(n5)v̄4(n5) + h̄5(n5)v̄5(n5)

]
(4.18)
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4.1. Formalism using Mean-Field approach

where N(4) is the volume in the four-dimensional space given by TL3, where T

and L are the lattice sizes along the temporal and spatial directions, respectively.

From now on, when 1 is added or subtracted from n5, it will mean that we

add/subtract one lattice unit in the extra dimension and we do not write a5

explicitly.

4.1.2 First-order corrections

As already mentioned in Section 2.6.2, the solutions to the saddle-point equations

should be checked to see if the point is stable or not. This can only be achieved

by computing first-order corrections to the free energy following the method

described in Section 2.6.2.2. The necessary modifications in our case is to define

the fluctuations of the background values to be

Vµ(n, n5) = v̄4(n5) + vµ(n, n5) ; vµ(n, n5) = vµ0(n, n5) + ivµA(n, n5)σA

V5(n, n5) = v̄5(n5) + v5(n, n5) ; v5(n, n5) = v50(n, n5) + iv5A(n, n5)σA

Hµ(n, n5) = h̄4(n5) + hµ(n, n5) ; hµ(n, n5) = hµ0(n, n5)− ihµA(n, n5)σA

H5(n, n5) = h̄5(n5) + h5(n, n5) ; h5(n, n5) = h50(n, n5)− ih5A(n, n5)σA

(4.19)

and the effective action can now be written as

Seff = S
(0)
eff

∣∣
V̄ ,H̄

+
1

2

(∂2Seff

∂V 2
4

∣∣∣∣
V̄ ,H̄

v2
4 +

∂2Seff

∂V 2
5

∣∣∣∣
V̄ ,H̄

v2
5 +

∂2Seff

∂H2
4

∣∣∣∣
V̄ ,H̄

h2
4 +

∂2Seff

∂H2
5

∣∣∣∣
V̄ ,H̄

h2
5

+
∂2Seff

∂V4∂V5

∣∣∣∣
V̄ ,H̄

v4v5 +
∂2Seff

∂V5∂V4

∣∣∣∣
V̄ ,H̄

v5v4 + 2
∂2Seff

∂H4∂V4

∣∣∣∣
V̄ ,H̄

h4v4 + 2
∂2Seff

∂H5∂V5

∣∣∣∣
V̄ ,H̄

h5v5

)
(4.20)

where by the subscript “4” and “5” we imply derivatives along only the

four-dimensional space and along the extra dimension respectively, by V̄ , H̄

we mean that the partial derivatives are evaluated at the background values(
v̄4(n5), v̄5(n5), h̄4(n5), h̄5(n5)

)
and the missing terms in the expansion give zero

contribution, thus they were omitted. Also, we again denote the corrections to

the action as S(2)[v, h].
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4.1. Formalism using Mean-Field approach

In this case we define the propagators to be

∂2Seff

∂V 2
4

∣∣∣∣
V̄ ,H̄

≡ ∆
(vv)
44 + ∆

(gf)
44

∂2Seff

∂V 2
5

∣∣∣∣
V̄ ,H̄

≡ ∆
(vv)
55 + ∆

(gf)
55

∂2Seff

∂V4∂V5

∣∣∣∣
V̄ ,H̄

≡ ∆
(vv)
45 + ∆

(gf)
45

∂2Seff

∂V5∂V4

∣∣∣∣
V̄ ,H̄

≡ ∆
(vv)
54 + ∆

(gf)
54

∂2Seff

∂H2
4

∣∣∣∣
V̄ ,H̄

≡ ∆
(hh)
44

∂2Seff

∂H2
5

∣∣∣∣
V̄ ,H̄

≡ ∆
(hh)
55

∂2Seff

∂H4∂V4

∣∣∣∣
V̄ ,H̄

≡ ∆
(hv)
44

∂2Seff

∂H5∂V5

∣∣∣∣
V̄ ,H̄

≡ ∆
(hv)
55 (4.21)

where ∆(gf) arises from the gauge fixing term. In the particular case we choose

to use the Lorenz gauge and taking into account the anisotropy we define the

discretized version of the gauge-fixing action to be

Sgf =
1

2ξ

∑
n

∑
n5

∑
A

[∑
µ

fµA(n, n5) + γf5A(n, n5)
]2

(4.22)

where

fµA(n, n5) = vµA(n, n5)− vµA(n− µ̂, n5) (4.23)

and

f5A(n, n5) = v5A(n, n5)− v5A(n, n5 − 1). (4.24)

It is important to notice that gauge fixing is imposed only to the directions

α = A = 1, 2, 3 as the local gauge transformations evaluated at the background

for α = 0 result to zero, and therefore no zero modes arise in that direction

which means that no gauge fixing is required (see Eq. (C.48)). As discussed in

Section 2.6.2.2 a Faddeev-Popov determinant arises in our formulation when we

fix the gauge and the free energy at first order is given by Eq. (2.98) where in

this case, the propagators are the ones defined above. It is also worth mentioning

that the propagators can be seen as two large matrices given by

∆(vv) + ∆(gf) =
∑
p′,p′′

∑
n′

5,n
′′
5

(
∆

(vv)
44 + ∆

(gf)
44 ∆

(vv)
45 + ∆

(gf)
45

∆
(vv)
54 + ∆

(gf)
54 ∆

(vv)
55 + ∆

(gf)
55

)
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and

∆(hh) =
∑
p′,p′′

∑
n′

5,n
′′
5

(
∆

(hh)
44 0

0 ∆
(hh)
55

)

∆
(hv)
44 and ∆

(hv)
55 are found to be equal to the identity.

We derive the expressions for the above two matrices, following closely the

discussion in [23], as the rescaling of the fields done in Eq. (4.7) and Eq. (4.11)

allow us to match up to some factors our derivations with those presented in

the aforementioned work. The full derivations and final expressions are given in

Appendix C.

Finally, even though we have fixed the gauge, there is an extra zero mode in the

propagators that arises from global gauge transformations when p = 0, called

the toron. This arises due to the toroidal geometry of the system and it causes

problems when trying to invert it. However, in the free energy, there is also

a zero mode that arises when all momenta are set to zero from the Faddeev-

Popov determinant. Therefore, one can regularize this term in the free energy, or

anywhere else that there is this zero over zero contribution due to torons, to get a

finite part. As the toron appears due to the geometry of the lattice, it is a finite-

size effect and thus the extracted finite part is negligible in the infinite-volume

limit. Hence, one can simply drop the p = 0 contribution [76, 77].

4.2 Observables

To investigate the physics of the system we define some observables on the layers.

We focus on a scalar mass and the static quark potential. These observables were

motivated by the studies presented in [68] and [23]. To derive the expressions we

follow closely the guidelines given in the aforementioned papers.

In standard QFT we know that the expectation value of an operator is given

by

〈O〉 =
1

Z

∫
DUO[U ] exp−SG[U ] . (4.25)
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In the Mean-Field approximation as discussed above we will get

〈O〉 =
1

Z

∫
DV

∫
DHO[V ] exp−Seff [V,H] (4.26)

In this approximation any observable can be written as a Taylor expansion about

the mean-field value given by

O[V ] = O[V̄ ] +
δO

δV

∣∣∣∣
V̄

v +
1

2

δ2O

δV 2

∣∣∣∣
V̄

v2 + . . . (4.27)

Combining the above we get

〈O〉 =
1

Z

∫
DV

∫
DH

(
O[V̄ ] +

δO

δV

∣∣∣∣
V̄

v +
1

2

δ2O

δV 2

∣∣∣∣
V̄

v2

)
e−Seff [V̄ ,H̄]e−S

(2)[v,h] (4.28)

where e−S
(2)[v,h] inherits the first-order corrections to the action as described in

Section 4.1.2. Using the definition of z as in Eq. (2.97) the correlation function

becomes

〈O〉 = O[V̄ ] +
1

2

δ2O

δvjδvi

∣∣∣∣
V̄

1

z

∫
DV

∫
DHvivje−S

(2)[v,h]

= O[V̄ ] +
1

2

δ2O

δvjδvi

∣∣∣∣
V̄

∆−1
ij

= O[V̄ ] +
1

2
Tr

(
δ2O

δV 2

∣∣∣∣
V̄

∆−1

)
(4.29)

where ∆ = −1 + ∆(hh)
(
∆(vv) + ∆(gf)

)
. So any observable can be measured by

adding its tree-level value (evaluated at the mean-field values) to corrections that

arise from the Gaussian fluctuations around this background.

4.2.1 Scalar mass

To extract masses the two-point function is used which is given by

C(t) = 〈O(t0 + t)O(t0)〉 − 〈O(t0 + t)〉〈O(t0)〉

= C(0)(t) + C(1)(t) + . . . (4.30)
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where C(0)(t) and C(1)(t) denotes the zeroth order and first order corrections to

the two point-function. It is known that the two-point function can be written

as a sum over the energy eigenvalues of the states i.e.

C(t) =
∑
λ

cλe
−Eλt. (4.31)

This means that in the large t behaviour the energy state that dominates is the

ground state which gives the mass (E0 = m). By this, it is easily seen that we

can measure the mass using

m = lim
t→∞

ln
C(t− 1)

C(t)
. (4.32)

The two-point function at first order, denoted by C(1)(t), can be found by applying

Eq. (4.29) in Eq. (4.30) and it is given by

C(1)(t) = O(t0 + t)[V̄ ]O(t0)[V̄ ] +
1

2
Tr

(
δ2(O(t0 + t)O(t0))

δV 2

∣∣∣∣
V̄

∆−1

)
−
[
O(t0 + t)[V̄ ] +

1

2
Tr

(
δ2O(t0 + t)

δV 2

∣∣∣∣
V̄

∆−1

)][
O(t0)[V̄ ] +

1

2
Tr

(
δ2O(t0)

δV 2

∣∣∣∣
V̄

∆−1

)]
=O(t0 + t)[V̄ ]O(t0)[V̄ ] +

1

2
Tr

[
δ

δV

(
O(t0 + t)

δO(t0)

δV
+O(t0)

δO(t0 + t)

δV

)∣∣∣∣
V̄

∆−1

]
−O(t0 + t)[V̄ ]O(t0)[V̄ ]− 1

2
Tr

(
O(t0 + t)

δ2O(t0)

δV 2

∣∣∣∣
V̄

∆−1

)
− 1

2
Tr

(
O(t0)

δ2O(t0 + t)

δV 2

∣∣∣∣
V̄

∆−1

)
=

1

2
Tr

[(
δO(t0 + t)

δV

δO(t0)

δV

∣∣∣∣
V̄

+
δO(t0)

δV

δO(t0 + t)

δV

∣∣∣∣
V̄

)
∆−1

]
. (4.33)

The observable to extract a scalar mass on each layer will be the Polyakov loop

along one of the spatial directions and by taking its trace it becomes gauge

invariant as required. It should be noted that this mass is a torelon, i.e. a

topological excitation winding around the toroidal lattice in the spatial direction

and not the Higgs mass that appears in the Gauge-Higgs Unification models. The

latter is extracted using the Polyakov loop along the extra dimension and not a
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spatial one. For the torelon the observable is given by

O(t, ~m,m5) = Tr
{
P1(t, ~m,m5)

}
= Tr

{ L−1∏
m1=0

Vµ(t, ~m,m5)

}

= Tr

{ L−1∏
m1=0

[
v̄4(m5)1 + v1α(t, ~m,m5)σα

]}
. (4.34)

The first order corrections to the correlation function as given in Eq. (4.33) is

shown diagramatically in Figure 4.1 which is nothing else but a single gauge boson

exchange.

t

n1

t0 +	
  t

t0

Figure 4.1: The schematic illustration of the first order mean-field corrections to
the correlation function out of which a scalar mass is extracted. This is just a
gauge boson exchange between two Polyakov loops at times t0 and t0 + t.

To find C(1)(t) we use the averaged version of the observable in the two-point

function, i.e.

O4(t;m5) =
1

T

∑
t0

1

L4

∑
~m′

23, ~m
′′
23

O(t0, ~m
′,m5)O(t0 + t, ~m′′,m5) (4.35)

where ~m23 = (m2,m3) and we get

C(1)(t;m5) =
1

2
Tr

{
4

(
P

(0)
1

)2

v4(m5)2
D(L)

(
n′1
)
D(L)

(
n′′1
)
δM ′,1δM ′′,1δa′,0δa′′,0δn′

5,m5
δn′′

5 ,m5

1

T

∑
t0

1

L4

∑
~m′

23, ~m
′′
23

(
δn′

0,t0+tδn′′
0 ,t0
δ~n′

23, ~m
′
23
δ~n′′

23, ~m
′′
23
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+ δn′
0,t0
δn′′

0 ,t0+tδ~n′
23, ~m

′′
23
δ~n′′

23, ~m
′
23

)
∆−1

}
(4.36)

where we have used the definitions

P
(0)
1 = v̄4(m5)L (4.37)

and

D(L)(n1) =
L−1∑
m1=0

δn1,m1 . (4.38)

This expression in momentum space is given by

C(1)(t;m5) =
4

N(4)

(
P

(0)
1

)2

v̄4(m5)2

∑
p′0

cos(p′0t)
∑
p′1

|D̃(L)
(
p′1
)
|2

∆̃−1
(
(p′0, p

′
1,~023,m5), 1, 0; (p′0, p

′
1,~023,m5), 1, 0

)
(4.39)

where

D̃(L)(p′1) =
L−1∑
m1=0

eip
′
1m1 . (4.40)

and N(4) is the volume of the four-dimensional subspace, i.e. TL3. The full

derivation of the expression for the correlation function from which the scalar

mass can be extracted is given in Appendix D.1. From this correlation function

the scalar mass on each layer n5 can be found.

4.2.2 Static quark-antiquark potential

The second quantity that we want to extract from our mean-field solutions is the

static potential on each four-dimensional layer, i.e. layers at a fixed m5. To get

this we will make use of the Wilson loop that extends only in the usual four-

dimensional space. For a planar Wilson loop along the temporal direction n0 and

spatial direction n1 we use the following definition

O
(t−r)
W (t0, ~m,m5) ≡ O

(t−r)
W (t0,m1, ~m23,m5)

=Tr
{
l(t)(t0, 0, ~m23,m5)l(r)(t0 + t, ~m23,m5)l(t)†(t0, r, ~m23,m5)l(r)†(t0, ~m23,m5)

}
(4.41)
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where

l(t)(t0,m1, ~m23,m5) =

t0+t−1∏
m0=t0

[
v̄4(m5)1 + v0α(m0,m1, ~m23,m5)σα

]
(4.42)

and

l(r)(m0, ~m23,m5) =
r−1∏
m1=0

[
v̄4(m5)1 + v1α(m0,m1, ~m23,m5)σα

]
(4.43)

with ~m23 = (m2,m3). As the spatial directions are indistinguishable one needs

to notice that the definition applies for all spatial directions by interchanging n1

with n2 or n3 and using n1 here is just a choice.

As a matter of fact the observable that is used is the Wilson loop averaged over

spacetime directions which leads to the expression

〈O(t−r)
W (t0,m1, ~m23,m5)〉

= Ō
(0)
W (m5) +

1

2

1

T

∑
t0

1

L2

∑
~m23

∑
(n′,M ′,α′)

(n′′,M ′′,α′′)

(
δ2O

(t−r)
W (t0,m1, ~m23,m5)

δvM ′′
α′′

(n′′)δvM ′
α′

(n′)

)
∆−1

1;2 (4.44)

that needs to be evaluated.

The expectation value of this observable at zero’th order is

Ō
(0)
W (m5) = 2v̄4(m5)2(t+r). (4.45)

According to Eq.(4.29), we want to compute

δ2OW

δv2

∣∣∣∣
V̄

=
δ2O

(t−r)
W (t0,m1, ~m23,m5)

δvM ′′
α′′

(n′′)δvM ′
α′

(n′)

∣∣∣∣
V̄

=Tr

{
δl(t)(t0, 0, ~m23,m5)

δvM ′
α′

(n′)
l(r)(t0 + t, ~m23,m5)

δl(t)†(t0, r, ~m23,m5)

δvM ′′
α′′

(n′′)
l(r)†(t0, ~m23,m5)

}∣∣∣∣
V̄

+Tr

{
δl(t)(t0, 0, ~m23,m5)

δvM ′′
α′′

(n′′)
l(r)(t0 + t, ~m23,m5)

δl(t)†(t0, r, ~m23,m5)

δvM ′
α′

(n′)
l(r)†(t0, ~m23,m5)

}∣∣∣∣
V̄

+Tr

{
δ2l(t)(t0, 0, ~m23,m5)

δvM ′′
α′′

(n′′)δvM ′
α′

(n′)
l(r)(t0 + t, ~m23,m5)l(t)†(t0, r, ~m23,m5)l(r)†(t0, ~m23,m5)

}∣∣∣∣
V̄
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+Tr

{
l(t)(t0, 0, ~m23,m5)l(r)(t0 + t, ~m23,m5)

δ2l(t)†(t0, r, ~m23,m5)

δvM ′′
α′′

(n′′)δvM ′
α′

(n′)
l(r)†(t0, ~m23,m5)

}∣∣∣∣
V̄

(4.46)

Diagramatically, the first-order corrections are shown in Figure 4.2. The first

two terms in Eq. (4.46) correspond to the left diagram, i.e. to a gauge boson

exchange and the last two terms correspond to the centre and right diagrams, i.e.

the self-energy and tadpole contributions.

Figure 4.2: The schematic illustration of the contributions to the first-order mean-
field corrections to the static potential. These are associated with the terms in
Eq. (4.46) that correspond to a gauge boson exchange(left), self-energy (centre)
and tadpole (right). This figure was taken from Ref. [68].

After each term of Eq. (4.46) is evaluated, the first-order corrections to the Wilson

loop in coordinate space read as

O
(1)
W =

1

2

1

T

∑
t0

1

L2

∑
~m23

Tr

{
2v̄4(m5)2(t+r)−2δM ′,0δM ′′,0δ~n′′

23, ~m23
δ~n′′

23, ~m23
δn′

5,m5
δn′′

5 ,m5[(
δα′,0δα′′,0 + δα′,Aδα′′,A

)(
δn′

1,0
δn′′

1 ,r
+ δn′

1,r
δn′′

1 ,0

)
(
δn′

0,t0
+ δn′

0,t0+1 + . . .+ δn′
0,t0+t−1

)(
δn′′

0 ,t0
+ δn′′

0 ,t0+1 + . . .+ δn′′
0 ,t0+t−1

)
+
(
δα′,0δα′′,0 − δα′,Aδα′′,A

)(
δn′

1,0
δn′′

1 ,0
+ δn′

1,r
δn′′

1 ,r

)(
δn′

0,t0

(
δn′′

0 ,t0+1 + δn′′
0 ,t0+2 + . . .+ δn′′

0 ,t0+t−1

)
+ δn′

0,t0+1

(
δn′′

0 ,t0
+ δn′′

0 ,t0+2 + . . .+ δn′′
0 ,t0+t−1

)
+ . . .

+ δn′
0,t0+t−1

(
δn′′

0 ,t0
+ δn′′

0 ,t0+1 + . . .+ δn′′
0 ,t0+t−2

))]
∆−1

}
. (4.47)
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In momentum space this is given by

O
(1)
W =

v̄4(m5)2(t+r)−2

N(4)

t2
∑

p′1,p
′
2,p

′
3

δp′0,0[(
2 cos(p′1r) + 2

)
∆̃−1

(
(0, p′1, ~p23,m5), 0, 0; (0, p′1, ~p23,m5), 0, 0

)
+ 3
(
2 cos(p′1r)− 2

)
∆̃−1

(
(0, p′1, ~p23,m5), 0, 1; (0, p′1, ~p23,m5), 0, 1

)]
.

(4.48)

The desired calculable quantity is the potential which is given by

〈OW 〉 = lim
t→∞

e−tV (r)

⇒V (r) = − lim
t→∞

1

t
ln〈OW 〉. (4.49)

Using Eq. (4.44) to write the expectation of the Wilson loop as its value at

tree level plus first-order corrections, we can derive an expression for the static

potential at a specific layer located at m5 as following

V (r;m5) = − lim
t→∞

1

t
ln
[
Ō

(0)
W (m5) + corrections

]
= − lim

t→∞

1

t
ln

[
Ō

(0)
W (m5)

(
1 +

corrections

Ō
(0)
W (m5)

)]
= − lim

t→∞

1

t
ln
(
2v̄4(m5)2(t+r)

)
− lim

t→∞

1

t
ln

(
1 +

corrections

Ō
(0)
W (m5)

)
= −2 ln v̄4(m5)− lim

t→∞

1

t

(
corrections

Ō
(0)
W (m5)

)
. (4.50)

Using the expression for the corrections given in Eq. (4.48) we can show that the

potential on four-dimensional layers can be expressed as

V (r;m5) =− 2 ln v̄4(m5)− 1

L3

1

v̄4(m5)2

∑
p′1,p

′
2,p

′
3

δp′0,0[(
2 cos(p′1r) + 2

)
∆̃−1

(
(0, p′1, ~p23,m5), 0, 0; (0, p′1, ~p23,m5), 0, 0

)
+ 3
(
2 cos(p′1r)− 2

)
∆̃−1

(
(0, p′1, ~p23,m5), 0, 1; (0, p′1, ~p23,m5), 0, 1

)]
(4.51)
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where we have used the fact that t must always be smaller than T in a finite

extent, thus as t→∞, T →∞ as well.

The details of the whole derivation are given in Appendix D.2

4.3 Implementation details

4.3.1 Solutions to the saddle-point equations

As the saddle point equations are a set of non-linear coupled equations, the

solutions to them were found numerically using a multi-dimensional version of

the secant method, called the Broyden’s Method [78]. As this is a method that

depends highly on the initial guesses of the solution, we ran the method 5000-

10000 times for each set of parameter values to make sure that we were getting a

correct solution. Sometimes we faced more than one solution to our equations and

thus we had to choose the true minimum of the system. To do this we estimated

the first-order corrections to the free energy to choose the stable solution. The

free energy was also used in the case where only one solution was present to

check that it was indeed the minimum. This procedure was followed in [68].

However, in our case we have a large number of coupled non-linear equations and

visualizing the free energy is hard. What we did was to investigate how it was

affected when one of the fields was changed when the rest were kept fixed at the

values of the minimum and repeat the process for all fields. Our strong evidence

that actually the values of the mean fields obtained are true minima was found

by indirect searches from measurements of the observables: when unstable points

are used, the observables do not have a consistent well-defined behaviour and this

was observed in two different cases.

4.3.2 Boundary Conditions

As in every finite system, one has to impose some boundary conditions on the

system. We choose to have periodic boundary conditions along the usual four

dimensions. For the fifth direction which has a limited finite extent, N5, we

implement the system using two different kinds of boundary conditions. First,
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we use Neumann Boundary Conditions, that we call NBC. By this, we mean that

we mirror all the fields from n5 = 0 to n5 = N5 − 1 to the negative n5 side and

we identify the fields v(−N5 + 1) = v(N5 − 1) and this is repeated periodically.

The schematic illustration of these boundary conditions is given in Figure 4.3.

This way of setting the boundary conditions seems more natural if one wants to

identify the system to the RS model as the latter is embedded in an orbifold.

n5-­‐4 -­‐3 -­‐2 -­‐1 0 1 2 3 4 5	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

e-­‐4k

e-­‐0k

e-­‐3k
e-­‐2k

e-­‐k e-­‐k

e-­‐2k

e-­‐3k

e-­‐4k

Figure 4.3: A schematic illustration of the Neumann Boundary Conditions along
the extra dimension for a system with N5 = 5. The green lines represent four-
dimensional layers embedded in the extra dimension. The extra-dimensional links
(red arrows) are multiplied by the warp factor (e−k|n5|) and thus the exponential
profile (AdS5-space) along the extra dimension is created which is shown by the
yellow dashed line. The system in the positive n5-direction is mirrored in the
negative direction and then the whole system is repeated periodically.

Another way of imposing boundary conditions in the extra direction is to have

some sort of Dirichlet Boundary Conditions, i.e. fixed boundary conditions that

we call DBC. We set the links to a constant value at the boundaries and we

choose this to be 1. We expect the layers at the boundaries to lose their physical

validity, however the physics in the middle should be independent of the chosen

boundary conditions.

Neither choice of the boundary conditions suggests that we explicitly break the

symmetry of the SU(2) group, which was the case in previous studies for the
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orbifold case [23]. In [19] it was shown that one can have an orbifold projection

Γ = TgR which satisfies

ΓUM(n, n5) = UM(n, n5) (4.52)

with the reflection property on the extra-dimensional link variables given by

RU5(n, n5) = U †5(n,−n5 − 1) (4.53)

and the transformation property under group conjugation by

TgUM(n, n5) = gUM(n, n5)g−1 (4.54)

By explicitly setting g = −iσ3 the gauge symmetry can be broken to a U(1)

symmetry at the boundaries.

4.4 The phase diagram

By finding the solutions to the saddle-point equations, a phase diagram of the

system could be obtained. As the parameter space of our system consists of four

parameters β, γ, k,N5, we decided to keep k fixed and get the (β, γ) phase diagram

for each layer. In Fig. 4.4, we present the phase diagram for fixed k = 0.10 for 8

layers.

The phase diagram was obtained by finding the solutions to saddle point equations

given in Eq. (4.17) for different values of (β, γ). The “critical” points were

determined by observing where there was a change in the behaviour of the

solutions. The phases were characterized as following:

• v4(n5) = 0, v5(n5) = 0 Strong-coupling phase (S)

• v4(n5) 6= 0, v5(n5) 6= 0 Deconfining phase (D)

• v4(n5) 6= 0, v5(n5) = 0 Layered phase (L)

As we have already mentioned above, the free energy at first order was used to

check the stability of the critical points and, as far as we could check, we believe

that those presented in this phase diagram are stable.
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Figure 4.4: The phase diagram obtained for each layer for fixed k = 0.10 using
Neumann boundary conditions (NBC). We observe three phases, the confining(S),
the deconfining(D) and the layered(L). However, there is a new phase that
appears, the mixed phase, in which some of the layers are in the layered phase
and some are in the deconfining phase. The width of the mixed phase increases
with increasing k.

It is clear that in our phase diagram the three phases described above are present

for all layers. Even though the transition to the confining phase seems to happen

at the same point for all layers, we observe that each layer goes from a weak-

coupling phase to the layered phase at different values of (β, γ). Therefore, we

observe an extra phase, a mixed phase, where some layers are in the weak-coupling

phase and some in the layered one, and this can be seen in Fig. 4.4 as the phase

between the orange and the red points. The last layer, n5 = 8, is the first one to

decouple and the first layer, n5 = 1, the last one.

In the flat case, there were also three different phases in the phase diagram

which were characterized as confining, five-dimensional Coulombic and layered.

In order to determine if the same phases with same characteristics are those that
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appear in the phase diagram of Fig. 4.4, further investigation is required for each

phase.

As a final remark, it is annotated that even though we chose to keep the value of

k constant for all our results, we performed a few tests to see the effect of k on

the phase diagram. We noticed, as expected, that the width of this mixed phase

depends highly on the value of k: the larger the curvature, the wider the mixed

phase.

4.5 Various checks of our formalism

4.5.1 Boundary Conditions

The first check is done on the observables of the static potential and the scalar

mass on each layer given by Eq. (4.51) and Eq. (4.32) respectively, for the two

different choices of the boundary conditions described in Section 4.3.2. We choose

three different points of the parameter space.

First we chose two points close to the phase transition, that is the transition

from the region where all layers are in the weak-coupling phase and the region

where one layer enters the layered phase. We first investigated the point β =

2.30, γ = 0.505, k = 0.10 for N5 = 8 which means 8 layers using DBC and 14

layers in NBC, that actually means that we get 8 unique layers in this case. The

way our system is implemented matches the layers n5 = 0 with n5 = 1, n5 = −1

with n5 = 2 and so on. We plotted the scalar mass and the static potential on

each layer to see the effect of the boundary conditions as shown in Fig. 4.5 and

Fig. 4.6 respectively. It is clear that the observables have the same behaviour

for the middle layers, that is the layers at n5 = 3, 4, 5, 6, whereas the behaviour

is different close to the boundaries, as expected. The scalar mass was obtained

by fitting a horizontal line to a plateau obtained when plotting Eq. (4.32) for

different values of t. The error is the one extracted from the fit.

The next point close to the transition was chosen to be β = 2.30, γ = 0.50, k =

0.10 with N5 = 7 unique layers (i.e. 12 layers using NBC). The measurements of

the scalar mass and the static potential at this point suggest that the agreement
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Figure 4.5: The lattice scalar mass on four-dimensional layers as measured using
8 layers with DBC and NBC. It is clear that there is good agreement between
the values for the middle layers, i.e. layers n5 = 3, 4, 5, 6.

holds when we discard two layers from the beginning and two from the end. This

is similar to the previous case. Unfortunately, we could not go to more layers to

do the matching using the NBC as our numerical recipe did not converge to a

solution.

Finally, we need to ensure that the same applies when we go to a point deep in the

deconfining phase. We chose the point β = 2.50, γ = 1.00, k = 0.10 for N5 = 8 to

repeat the process and the scalar mass comparison is shown in Fig. 4.7. For this

point, the results suggest that the matching holds for the layers at n5 = 2, 3, 4, 5,

i.e. the bulk is not affected from the boundary conditions which is the conclusion

obtained from the points discussed previously.

Neumann Boundary conditions (NBC) will be assumed to be used in the rest

of this Chapter unless otherwise stated. Also N5 will denote the number of the

unique layers only.
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Figure 4.6: The static quark potential on four-dimensional layers as measured
using 8 layers with DBC and NBC. It is clear that there is good agreement
between the values for the middle layers, i.e. layers n5 = 3, 4, 5, 6.

4.5.2 Gauge dependence on observables

Next, we checked the gauge fixing effect on the observables. For the Faddeev-

Popov gauge fixing that we have used in our calculations, we chose three different

values of the ξ gauge fixing parameter, ξ = 1, 10, 100, keeping the rest of the bare

parameters constant to β = 2.30, γ = 0.505, k = 0.10, N5 = 8. We performed this

on both the static potential and the scalar mass and it turns out that they are

gauge independent as one can see from the results of the latter in Fig. 4.8. From

now on we stick to the Feynman gauge, ξ = 1 for all calculations.

It is important to notice here that even though our results seem to be independent

of the choice of the gauge, the free energy is still highly dependent on ξ.
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Figure 4.7: The lattice mass on four-dimensional layers for N5 = 8 as measured
using DBC and NBC. It is clear that there is good agreement between the values
of the middle layers, i.e. layers n5 = 2, 3, 4, 5.

4.5.3 Four-dimensional volume dependence

The ultimate goal is to achieve measurements of our observables in their infinite-

volume limit. However, as we deal with a finite lattice, we measured the

observables for different four-dimensional volumes to see the effect of the volume

on our measurements. This was performed on lattices of sizes T = L =

64, 100, 200 and as one can see from Fig. 4.9, it seems that the scalar mass is

unaffected by the lattice size so we can say that from the measurements we get

its infinite-volume mass and for the rest of the measurements we stick to a lattice

extent of T = L = 64. The static potential shows a similar behaviour, however

as we can only match a certain amount of points for each volume, as shown in

Fig. 4.10, we need to be careful when considering it to be independent of the four-

dimensional volume. More on this issue will be discussed later in this Chapter.
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Figure 4.8: The lattice mass on four-dimensional layers for N5 = 8 as measured
imposing different choices of the gauge parameter, ξ. It is clear that observables
are independent of this choice.

4.6 Towards a physical interpretation

Having checked all the above, we focus on the physical interpretation of the

phase diagram obtained. To do this we make use of the scalar mass and the

static potential for each layer.

4.6.1 Scalar Mass

First, we chose a point close to the phase transition at which the last layer

n5 = 8 goes from the deconfining to the layered phase. This point was chosen

to be β = 2.30, γ = 0.505, k = 0.10. The lattice scalar mass with its error was

estimated as described in the previous section. The values obtained are actually

shown in Fig. 4.9. It seems that as we move towards larger values of n5 the lattice

86



4.6. Towards a physical interpretation

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 0  1  2  3  4  5  6  7  8  9

a
4
m

4

n
5

β = 2.30, γ = 0.505, k=0.10

T = L = 64

T = L = 100

T = L = 200

Figure 4.9: The lattice mass on four-dimensional layers for N5 = 8 as measured
imposing different volumes along the ordinary four-dimensional space. The
observables seem to be independent of the four-dimensional volume.

mass decreases. As this mass can be thought of as the inverse correlation length,

the fact that the mass remains large, even for the last layer, suggests there is a

first-order phase transition. However, this large mass might be a mean-field effect

that arises due to our formalism and the other layers contribute to the value of

the last layer that undergoes the phase transition. We cannot make a concrete

conclusion on this and further studies should be done. It is noted here that we

believe the point chosen is a stable point. Also, in the four-dimensional isotropic

case the transition point that the Mean-Field approach predicts is located at

βc ' 2.235 and thus we are beyond this point in our case.

The way to approach lines of constant physics is still unknown in the system

investigated here, so we tried “trivial” cases, at least to make sure that the

lattice mass is reduced as we approach the transition line. Indeed this is the

general case, within error, as it can be seen from Table 4.1.
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Figure 4.10: The static potential on four-dimensional layers for N5 = 8 as
measured when imposing different lattice sizes in the ordinary four-dimensional
space. The volumes T = L = 24, 32, 48 and 100 were used and we show here
the static potential for the layers at n5 = 1, 4, 8, i.e. the first layer, the last one
and one in the middle. It seems that it behaves the same independently of the
four-dimensional volume.

Furthermore, in order to estimate this scalar mass in physical units we followed a

procedure similar to the method defined in [79]. By taking the derivative of the

potential, we can obtain the physical dimensionless force which is given by

r̄2F (r̄) = r̄2V (r)− V (r − a4)

a4

, r̄ = r − a4

2
. (4.55)

Then we fix the value obtained to r2
0F (r0) = 0.025. This r0 is taken to be our

physical length. As we do not have a physical system out of which we can get the

value of r0 in any units of length, we keep calling it r0, i.e. a fixed scale. What

we did was to look at the plot of the force, extracted from the potential using

Eq. (4.55) for each layer, and find the value of r/a at which r2F (r) = 0.025. This
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β γ 1 2 3 4 5 6 7 8
2.40 0.515 ——– 3.39(4) 3.27(4) 3.11(9) 2.92(6) 2.75(9) 2.62(5) 2.59(3)
2.40 0.510 3.48(4) 3.26(4) 3.21(8) 3.10(6) 2.89(4) 2.73(2) 2.59(3) 2.57(2)
2.40 0.505 3.35(8) 3.21(5) 3.19(8) 3.04(2) 2.85(8) 2.70(1) 2.57(2) 2.55(9)
2.35 0.515 3.34(5) 3.22(4) 3.29(6) 3.00(6) 2.82(6) 2.68(1) 2.55(4) 2.51(5)
2.35 0.510 3.36(9) 3.34(3) 3.22(7) 2.95(4) 2.80(7) 2.65(4) 2.51(3) 2.49(2)
2.35 0.505 3.33(8) 3.17(4) 3.026(4) 2.931(5) 2.77(4) 2.62(1) 2.51(3) 2.48(4)
2.30 0.515 3.30(4) 3.15(4) 3.08(7) 2.90(5) 2.74(7) 2.60(2) 2.49(3) 2.46(3)
2.30 0.510 3.29(5) 3.13(8) 2.98(4) 2.86(6) 2.72(2) 2.56(3) 2.48(4) 2.45(1)
2.30 0.505 3.32(6) 3.10(5) 2.96(9) 2.84(3) 2.69(3) 2.55(3) 2.47(4) 2.39(3)

Table 4.1: The lattice mass a4m4 as measured directly from the fit to a plateau.
The missing masses are at points where the excited state masses were contributing
and not an obvious plateau could be obtained. It seems that as we go towards
smaller β and γ values, the mass is decreasing (within error) but not by a large
amount.

gives a determination of the lattice spacing along the ordinary four dimensions

in terms of a physical length, r0 for each layer as shown in Fig. 4.11. This is also

a check that the warped model works non-perturbatively as this is the behaviour

that was expected. As both the lattice scalar mass and the lattice spacing, a4,

decrease as we go to higher n5, if there is a continuum limit that can be taken in

the n5 direction, the scalar mass in physical units should remain constant. This

is not the case though, as the physical mass increases as we go further into n5

as shown in Fig. 4.12. This behaviour of the physical mass was also observed for

all the points given in Table 4.1. Unfortunately, we cannot really conclude any

physical interpretation for the scalar mass as it stands.

4.6.2 Static Potential

In the previous section, we have used the static potential in order to find

the dimensionless force and set a scale for our system. This procedure was

independent of the form of the potential. As previous explorations using the

Mean-Field approach showed that the order of the transition predicted by it might

be wrong, even though the above results suggest a first-order phase transition, it

is worth taking a closer look at the static potential to see if there is a change in

the behaviour of it at different points of the phase diagram.

The confining phase is blind to the Mean-Field approach so we focus on the other

two phases. In the flat case, as already mentioned, there was a phase close to
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Figure 4.11: The lattice spacing along the four dimensions in physical units, r0,
on each four-dimensional layer for β = 2.30, γ = 0.505, k = 0.10, N5 = 8.

the transition going from five-dimensional Coulombic to layered where the system

seemed to be dimensionally reduced to a four-dimensional one. The indication for

this was that the static potential measured fitted perfectly to a four-dimensional

Coulombic one. In the warped case, the goal is to see if this behaviour still holds

and if at least one of the layers behaves as a four-dimensional one.

Before proceeding to our results, we list in Table 4.2 the expected behaviour of

the static potential in different phases. The derivation for the form of the Yukawa

potential in five dimensions can be found in [21].

We first looked at the point β = 2.50, γ = 1.00, k = 0.10 which, by looking

at the phase diagram in Fig. 4.4, it is believed that it is deep into the pure

deconfining phase. We measured and fitted the potential on each layer to four-

dimensional and five-dimensional potentials and we looked at the degrees-of-

freedom adjusted goodness of fit, R2, for which values closer to 1 indicate a

better fit (Appendix E.2). The lattice sizes used were T = L = 32 and N5 = 8.
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Figure 4.12: The scalar mass in physical units, r0, on each four-dimensional layer
for β = 2.30, γ = 0.505, k = 0.10, N5 = 8. The errors were estimated using
standard error analysis techniques.

Type of potential
Functional
Behaviour

Phase

4D Coulombic a− b

r
4D Coulombic

4D Yukawa a− be−mY r

r
4D Higgs-like

5D Coulombic a− b

r2
5D Coulombic

5D Yukawa a− bK1(m
(5)
Y r)

r

5D Higgs-like

Confining Potential a+ br Strong-coupling

Table 4.2: The different functional behaviour of potentials in different phases.
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4.6. Towards a physical interpretation

For all layers a four-dimensional Coulombic potential can be excluded, but we

could not really see a big difference between the other three forms of the potential.

The adjusted R2 is most of the times a value very close to 1 for all three different

fits. We cannot really distinguish in which phase the system lives so we cannot

really conclude if it is in a five-dimensional phase or in a four-dimensional phase

where a Yukawa mass is observed, i.e. a four-dimensional Higgs-like phase. In

Fig. 4.13, the measured potential on the first layer with the four different fits can

be seen. A similar behaviour is observed for all the other layers and a choice of

them is shown in Appendix E in Fig. E.1-E.4.

n
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4D Yukawa

Figure 4.13: Fits to the mean-field points of the static potential for β = 2.50, γ =
1.00, k = 0.10, N5 = 8 using different five-dimensional and four-dimensional forms
of the potential.

It is worth mentioning that we have checked the behaviour of the potential for

the same values of β and γ in the flat case and it is in a very good agreement

with a five-dimensional Coulombic potential.

Furthermore, we looked at the potential at a point close to the transition line.

This point was chosen to be β = 2.30, γ = 0.505, k = 0.10 with an initial lattice
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4.6. Towards a physical interpretation

size of T = L = 32, N5 = 8. It looks like the potential behaves as a four-

dimensional Yukawa one for all layers. Also, it can be noticed that starting from

the first layer, n5 = 1 the five-dimensional Yukawa and Coulombic potentials

could also be fitted quite well. Going to larger values of n5 the fits to the two

aforementioned forms loose their goodness so, at least for the last layers, we

tend to believe that the potential behaves as a four-dimensional Yukawa one.

The MF calculated points with the four different potential-form fits are shown

in Figures 4.14 and 4.15 for the first and last layer respectively. The fitting

parameters for all layers can be found in Table E.1.
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Figure 4.14: Fits to the mean-field points of the static potential of the first layer
n5 = 1 using various potential forms for a lattice size of T = L = 32, N5 = 8 and
for β = 2.30, γ = 0.505, k = 0.10.

All the above provide preliminary evidence that, as a Yukawa mass can be

obtained, the system close to the transition line is in a four-dimensional Higgs-like

phase and not in a Coulombic phase. We also observed that the extracted mass for

this point decreases for larger n5. Although this mass could, in principle, be found

by taking derivatives of the force, as done in [23], limitation of time restricted us
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Figure 4.15: Fits to the mean-field points of the static potential of the last layer
n5 = 8 using various potential forms for a lattice size of T = L = 32, N5 = 8 and
for β = 2.30, γ = 0.505, k = 0.10.

to small volumes which did not allow us to get a good value out of it and thus the

mass was only recorded as the relevant fitting parameter of the four-dimensional

Yukawa potential. The same conclusions on the behaviour of the potential were

observed for other lattice sizes as well (T = L = 24, 48, 100, N5 = 8). All fitting

parameters for all layers for T = L = 32 and T = L = 100 are given in Table E.1

and Table E.2 respectively. As a remark we state that we fitted the MF points to

the four-dimensional Yukawa potential excluding the first and second points and

the Yukawa mass agreed within error with the value extracted when all points

were included in the fit.

To ensure that the Yukawa mass is not the result of the finite extent of our system

and it will remain non-zero in the infinite-volume limit, we performed finite-size

scaling on the Yukawa mass by fitting it to

mY (L) = m
(inf)
Y +

c

L
. (4.56)
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Figure 4.16: The infinite-volume Yukawa mass in lattice spacing units on each
four-dimensional layer for β = 2.30, γ = 0.505, k = 0.10, N5 = 8. First a mass was
extracted from the fits of the measured potential to a four-dimensional Yukawa
potential form for sizes T = L = 24, 32, 48, 100 and then finite-size scaling analysis
was performed to get the infinite-volume mass. All error bars are tiny except for
the last layer.

Indeed we could get a finite value for the infinite-volume Yukawa mass, m
(inf)
Y on

each layer as shown in Fig. 4.16. This suggests that the suspicion that we had

from the fits that the system is in a Higgs-like phase and not in a Coulombic phase

is valid and not just a finite-size effect. The value of the Yukawa mass on the last

layer seemed to remain roughly constant for all volumes and hence there is a large

error bar when trying to do finite-size scaling to it. This might be due to the

boundary conditions and therefore we do not reach any conclusions considering

the last layer. As a further check, we set the curvature to zero and we measured

the potential at a point close to the phase transition (β = 2.30, γ = 0.2298) for

lattice sizes of T = L = 32, 48, 100, 200. Then by extracting the mass and doing a

finite-size scaling as above, we got the infinite-volume Yukawa mass to be a very

small number that can be considered to be zero which is what was expected in
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the flat case.
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Figure 4.17: The infinite-volume Yukawa mass in physical units, r0, on each
four-dimensional layer for β = 2.30, γ = 0.505, k = 0.10, N5 = 8 .

In lattice units the Yukawa mass seems to decrease with n5 as can be seen from

Fig. 4.16. To see its behaviour in physical units, we employ the unit of length

r0 defined in the previous section as shown in Fig. 4.17. It seems that for the

first four layers it increases, very slowly though, but then it decreases for n5 = 7.

This might be just an artefact and it has no physical meaning, or it might be

the case that actually for larger n5 the physical Yukawa mass will either decrease

or go to zero. Studies with more layers should be done in order to clarify the

situation.

In addition, the ratio of the infinite-volume Yukawa mass over the scalar mass

for each layer was taken as it can be seen in Fig. 4.18. It seems that the first four

layers might have a constant value, but then the ratio drops, suggesting that it

might go to zero for large n5.
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Figure 4.18: The infinite-volume Yukawa mass in physical units, r0, on each
four-dimensional layer for β = 2.30, γ = 0.505, k = 0.10, N5 = 8 .

4.7 Discussion and Outlook

As already mentioned in the previous section, the existence of a Yukawa mass

suggests the presence of a four-dimensional Higgs-like phase close to the line

of transition in the phase diagram. This phase suggests that some symmetry

breaking may be happening. In our case (with NBC) we have not explicitly

broken the gauge symmetry by our boundary conditions, as done in previous

investigations where a Higgs-like phase is the result of imposing certain boundary

conditions [23, 24]. To ensure the validity of the argument that the boundary

conditions do not affect the gauge symmetry of the model (which we checked

for DBC), further studies should be done with different choices of boundary

conditions, with and without explicit breaking of the symmetry to compare the

two cases. The only modification that we have done here from the flat case, where

we do not observe a Yukawa potential, is the introduction of the curvature.
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In this case, we expect that the warping breaks the symmetry everywhere in the

“deconfining phase” on our phase diagram, therefore a Higgs-like phase should be

present there. This was not clear from the form of the potential away from the

transition line but was not excluded either. So further studies are necessary in

order to clarify the nature of the phase in the weak-coupling regime. A possibility

is to study the behaviour of the Yukawa mass for different volumes and see if a

value in the infinite-volume limit can be extracted or not.

It is noteworthy that along the extra dimension we have a small extent of lattice

points which restricts the region of the “mixed” phase to a small width. One

though, could think of the pure deconfining phase as a finite-size effect of the fifth

direction. This would suggest that the system is actually in a four-dimensional

Higgs-like phase everywhere in the weak-coupling regime and the pure deconfining

phase is just a result of truncating the extra dimension. This also relates to the

observation that the mixed phase grows with curvature, k.

Going back to the question that motivated this project, i.e. if we can see a

dimensionally reduced phase close to the “layered” phase, we can claim that the

existence of a Yukawa mass close to this transition suggests the presence of a

four-dimensional Higgs-like phase. Of course, if there is a five-dimensional Higgs-

like phase away from the transition line, then we see dimensional reduction. If

not, then the system, by its formalism, due to the warping behaves as a four-

dimensional one everywhere outside the strong-coupling phase.

The fact that the Yukawa mass decreases as we go to larger n5 leaves open the

possibility that it can go to zero for very large n5. This would mean that the

system for large n5 will have a four-dimensional Coulombic behaviour as in the

flat case, which is expected from our formalism. Looking though, at the behaviour

of the Yukawa mass in physical units using both r0 and 1/m4 as the length scales,

it seems that the first four layers might be considered to have a constant value of

mY but, beyond the fourth layer, the data is messier and not definite conclusions

can be reached. Further explorations with more layers should be performed in

order to be able to say something concrete about it.

Another big question is whether this Higgs-like phase is physical, a lattice artefact

or a fake result of the Mean-Field approximation. Limitation of time for this

project did not allow additional studies but there are many possibilities to explore
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this model further. Doubts about the physical existence of this phase arise as

a consequence of Elitzur’s theorem [80], which excludes spontaneous breaking of

local gauge symmetries. However, we have no evidence of spontaneous symmetry

breaking but only of the existence of a Yukawa potential and it is not clear

whether Elitzur’s theorem applies to the warped geometry.

Also, nothing can be said for the layered phase at the moment. Studies using

Monte Carlo simulations are expected to show the true behaviour of the system

in this phase which might be four-dimensional Higgs-like or Coulombic. All in

all, the unforeseen result of this study, that is the existence of a four-dimensional

Higgs-like phase, opens up a wide range of different tests and explorations that

can be done, especially with numerical simulations to clarify the picture.

4.8 Theoretical set-up for future work

The investigation of the warp model on the lattice is still at its beginning. From

everything that was discussed above, it seems that there is a variety of different

studies that can be done in the pure gauge model. However, we live in a world with

fermions and a more realistic picture can be drawn when fermions are coupled

to the gauge fields. In this section we give a preliminary construction of Wilson

fermions on the lattice in a warped background.

4.8.1 Fermions in a warped background in the contin-

uum

As we deal with a curved background, we need to find relations between the

gamma matrices in the coordinate basis and in a non-coordinate one, but also the

modified covariant derivative that includes the spin connection, ∇M that accounts

for the curvature of the system. To do this, we use the mathematical framework

given in Appendix F where vielbeins and spin connections are introduced.

In the RS models, presented in Section 1.3.3, we defined the warped metric as

in Eq. (1.21). In this section we use f(y) ≡ e−2σ(y). The fermionic sector of the
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action in warped models can be expressed as

SF =

∫
d4xdy

√
−gΨ̄

(
iΓM∇M −m

)
Ψ (4.57)

where ΓM are the gamma matrices in the coordinate basis.

We first notice that the gamma matrices can be expressed in a non-coordinate

basis via

ΓM = eMaΓ
a. (4.58)

Then the action in Eq. (4.57) can also be written as

SF =

∫
d4xdy

√
−gΨ̄(x, y)

(
iΓaeMa∇M −m

)
Ψ(x, y)

=

∫
d4xdy

√
−gΨ̄(x, y)

(
iΓaeµ a∇µ + iΓae5

a∇5 −m
)
Ψ(x, y). (4.59)

Using Eq. (F.6), we can express the vielbeins as

eMa = gMNηabe
b

M and e a
M = gMNη

abeNb (4.60)

which lead to the following

e a
µ =

√
f(y)δaµ eµ a =

1√
f(y)

δµa

e a
5 = δa5 e5

a = δ5
a (4.61)

Using these, the gamma matrices in the coordinate space can be written in terms

of the local gamma matrices as

Γµ = eµ aΓ
a =

1√
f(y)

δµaΓa =
1√
f(y)

γµ

Γ5 = e5
aΓ

a = δ5
aΓ

a = γ5 (4.62)

where γµ and γ5 are the usual local Dirac matrices satisfying the Clifford algebra,

i.e.

{γM , γN} = 2ηMN1 (4.63)

where we use the convention ηMN = diag(−1, 1, 1, 1, 1).
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Next, we derive the spin connection that contributes to the covariant derivative,

the two different components of which are given by

∇µ = ∂µ +
1

2
Ωab
µ σab ∇5 = ∂5 +

1

2
Ωab

5 σab (4.64)

where σab are the generators of the Lorentz transformations in the spinor

representation given by σab = 1
4
[γa, γb]. After they are evaluated (Appendix F.2)

we find

Ωµ =
1

4

f(y)′√
f(y)

γµγ
5

Ω5 = 0. (4.65)

If we want to couple fermions to gauge fields, we must replace the partial

derivatives, ∂M with the standard covariant ones and in curved spacetime we

get

DM = ∂M + igAM + ΩM (4.66)

so in the fermionic action (Eq. (4.59)) we replace ∇M with DM .

4.8.2 Wilson fermions in a warped background

To construct this fermionic action on the lattice, we first need to go to Euclidean

spacetime and use the Euclidean Dirac matrices as in the standard four-

dimensional flat fermionic case. Vielbeins are unchanged under Wick rotation,

hence the action reads as

S
(f)
E =

∫
d4xdy

√
gΨ̄(x, y)

(
Γaeµ aDµ + Γae5

aD5 +m
)

Ψ(x, y). (4.67)

Examining further the kernel we can express it as

D = f(y)2

(
γµ√
f(y)

(
∂µ + igAµ +

1

4

f(y)′√
f(y)

γµγ
5
)

+ γ5(∂5 + igA5) +m

)
. (4.68)

The discretized version of this action, when a Wilson term is included as described
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in Section 2.2, can be expressed as

S
(f)
latt =

∑
n,n5
m,m5

Ψ(n, n5)Mn;m(U)Ψ(m,m5) (4.69)

where

Mn;m(U) = −f(n5)2

[∑
µ

γµ√
f(n5)

1

2

(
Uµ(n, n5)δn+µ̂,mδn5,m5 − U †µ(n− µ̂, n5)δn−µ̂,mδn5,m5

)
− γ5

2

(
U5(n, n5)δn,mδn5+1,m5 − U

†
5(n, n5 − 1)δn,mδn5−1,m5

)
+
(f(n5)′

f(n5)
γ5 +m

)
δn,mδn5,m5

+
∑
µ

1√
f(n5)

1

2

(
Uµ(n, n5)δn+µ̂,mδn5,m5 − 2δn,mδn5,m5

+ U †µ(n− µ̂, n5)δn−µ̂,mδn5,m5

)
+

1

2

(
U5(n, n5)δn,mδn5+1,m5 − 2δn,mδn5,m5 + U †5(n, n5 − 1)δn,mδn5−1,m5

)]
.

(4.70)

The partition function of fermions coupled to gauge fields, and consequently to

link variables on the lattice, can be expressed as Eq. (2.43) which can also be

expressed as

Z =

∫ ∏
l

DUl det
(
Mn;m(U)

)
=

∫ ∏
l

DUleTr lnMn;m(U). (4.71)

In the full system the action is given by

S = SW + S
(f)
latt = SW − Tr lnMn;m(U). (4.72)

Inspired by the work of [62] where fermions were coupled to the flat anisotropic

U(1) model and the investigation was carried out using the Mean-Field approach,

we try to demonstrate how this method works in our case in connection with the

formalism given in Section 4.1.
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4.8. Theoretical set-up for future work

Firstly, we realise that the procedure to find the saddle points is exactly the same

as before. The only modification is that we replace SAdS[Uµ, U5] with

S ′ = SAdS[Uµ, U5]− Tr lnMn;m(U) (4.73)

and the rest of Eq. (4.6) remains the same. The rescaling of the fields can

be done exactly in the same way as before and the new saddle-point equations

become

v̄4(n5) = u4(h̄4(n5), n5)′ =
I2(h̄4(n5))

I1(h̄4(n5))

v̄5(n5) = u5(h̄5(n5), n5)′ =
I2(
√
f(n5)h̄5(n5))

I1(
√
f(n5)h̄5(n5))

h̄4(n5) = 6
β

γ
v̄3

4(n5) + βγv̄2
5(n5)v̄4(n5 + a5) + βγv̄2

5(n5 − a5)v̄4(n5 − a5) + jµ(v̄4, v̄5)

h̄5(n5) = 8βγv̄5(n5)v̄4(n5)v̄4(n5 + a5) + j5(v̄4, v̄5) (4.74)

where jµ and j5 are the currents given by

jµ(v̄4, v̄5) =
∂

∂vµ
Tr lnMn;m(U)

∣∣∣∣
V̄

(4.75)

j5(v̄4, v̄5) =
∂

∂v5

Tr lnMn;m(U)

∣∣∣∣
V̄

(4.76)

To evaluate these, we need the modified Wilson-Dirac operator after the rescaling

of the fields which is given by

Mn;m(U) = −f(n5)2

[∑
µ

γµ√
f(n5)

1

2

(
Uµ(n, n5)δn+µ̂,mδn5,m5 − U †µ(n− µ̂, n5)δn−µ̂,mδn5,m5

)
− γ5

2

(U5(n, n5)√
f(n5)

δn,mδn5+1,m5 −
U †5(n, n5 − 1)√

f(n5 − 1)
δn,mδn5−1,m5

)
+
(f(n5)′

f(n5)
γ5 +m

)
δn,mδn5,m5

+
∑
µ

1√
f(n5)

1

2

(
Uµ(n, n5)δn+µ̂,mδn5,m5 − 2δn,mδn5,m5

+ U †µ(n− µ̂, n5)δn−µ̂,mδn5,m5

)
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4.8. Theoretical set-up for future work

+
1

2

(U5(n, n5)√
f(n5)

δn,mδn5+1,m5 − 2δn,mδn5,m5 +
U †5(n, n5 − 1)√

f(n5 − 1)
δn,mδn5−1,m5

)]
.

(4.77)

Let us first look at jµ. We need to find the derivative of M with respect to vµ.

This can be found to be

∂Mn,n5;m,m5

∂vµ(n′, n′5)
=

1

2
f(n5)3/2

(
1− γµ

)
δn′,nδn+µ̂,mδn′

5,n5
δn5,m5

+
1

2
f(n5)3/2

(
1 + γµ

)
δn′,n−µ̂δn−µ̂,mδn′

5,n5
δn5,m5 . (4.78)

Then using Eq. (4.75) we get

jµ(v̄4(n5), v̄5(n5)) = Tr
[1

2
f(n5)3/2

(
1− γµ

)
M̄−1

n,n5;n+µ̂,n5

]
+ Tr

[1

2
f(n5)3/2

(
1 + γµ

)
M̄−1

n+µ̂,n5;n,n5

]
. (4.79)

Employing a similar method and using Eq. (4.76) we get

j5(v̄4(n5), v̄5(n5)) = Tr
[1

2
f(n5)3/2

(
1− γ5

)
M̄−1

n,n5;n,n5+1

]
+ Tr

[1

2

f(n5)2√
f(n5 − 1)

(
1 + γ5

)
M̄−1

n,n5+1;n,n5

]
. (4.80)

To evaluate these currents, we can find expressions for the Wilson-Dirac operators

in momentum space. For this we go into momentum space in the usual four

dimensions but we keep the extra dimension in coordinate space as we have done

when computing first order corrections to the path integral approximation earlier

in this Chapter. The derivations of these can be found in Appendix F.3. Then

one has to invert them and evaluate the currents restricting the momenta to the

first Brillouin zone.

The effect of fermions on our mean-field values for the warped model investigated

in this Chapter is unknown. Here we have provided a starting point for their

implementation to see if and how the presence of fermions modifies the phase

diagram. We conclude with the remark that these calculations have not been

tested and thus numerical tests would be a potential direction for extending the

exploration of the phase structure of the SU(2) warped model.
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Chapter 5

Conclusions

The aim of this thesis has been to explore the phase structure of five-dimensional

anisotropic SU(2) Yang-Mills theory on the lattice in two different cases. Firstly,

the model was embedded in a flat background and Monte-Carlo numerical

simulations were carried out to extend the phase diagram in the case where all

directions were kept large in size. In this case, the main motivation was to find

if there is an end-point to the first-order phase transition that separates the five-

dimensional Coulombic phase from the confining phase, as previously claimed

by others. If this point exists then one can define a continuum four-dimensional

Yang-Mills theory at this point, an SU(2) gauge-Higgs model with the Higgs

being in the adjoint representation, and it can provide a way of localizing gauge

fields on four-dimensional layers. This would happen in the region where the

lattice coupling along the extra dimension is smaller than that in the usual four-

dimensional subspace. From our work, there is strong evidence that, up to the

point β4 = 2.60, a first-order transition exists between the strong-coupling and

the five-dimensional Coulombic phase and nothing suggests that an end-point

exists, giving rise to a four-dimensional continuum field theory. As finite-size

effects were proven to be dominant in the average plaquette, large volumes are

required to see a clear two-peak structure in it. So going to even larger values

of β4, to look for an end-point, would be computationally expensive and it was

decided not to explore the model further.

Next, the five-dimensional anisotropic SU(2) Yang-Mills theory was embedded in

a warped background, giving the gauge sector of the Randall-Sundrum models.
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The motivation for this was the need to find a way of localizing gauge fields in

these models and the so-called layered phase might provide a solution to this. In

this thesis, we presented a novel investigation of this model using the Mean-Field

approach. From the solutions to the saddle-point equations for a finite extra

dimension, a phase diagram could be obtained that has a strong-coupling phase,

a pure deconfining, a layered phase and a mixed phase where some layers are

in the deconfining phase and some in the layered one. From measurements of

the static potential on each layer, we have evidence that close to the transition

line between the deconfining and the mixed phase the system acquires a Yukawa

mass, signalling a four-dimensional Higgs-like phase. As we have not explicitly

broken the symmetry by any means, it seems that the appearance of this phase

arises from the warped geometry of our model. Away from the transition line and

deep into the weak-coupling phase, we could not reach definite conclusions on the

nature of the potential and further studies are needed to be performed.

In the region where a four-dimensional Yukawa potential was observed, the

extracted lattice Yukawa mass seems to be going to zero for larger n5. This

suggests that if a continuum limit can be taken in the extra-dimension, the

mass will go to zero, resulting to a four-dimensional Coulomb phase. The

static potential was measured only at relatively short distances and as discussed

in Chapter 3 further studies, especially at long distances, might show a non-

vanishing string tension as expected. The Yukawa mass in physical units, seems

to be almost constant for the first four layers, but for larger n5 our results do not

show a clear behaviour. Further exploration should be done with a larger extent

of the lattice along the extra dimension to clarify the situation.

There is a number of open questions requiring additional investigation to allow

concrete conclusions, but also to open up the possibility of extracting physics

that matches the observed world. These questions suggest a variety of research

directions that need to be pursued.

One such direction is, as already mentioned, to investigate the system at larger

extent of the lattice in the extra dimension, but also for different points in the

parameter space to see if its behaviour remains the same and how it is affected

at larger n5. The observation that the width of the mixed phase grows with the

curvature k suggests that for infinite extra dimension, the pure deconfining phase
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is absent.

Another possibility would be to perform Monte Carlo numerical simulations so

that the nature of all phases will be clarified and the order of the transitions will be

shown clearly. The unexpected Higgs-like phase that appears in the Mean-Field

approximation, suggests that actually Monte Carlo studies will be worthwhile,

although large lattices will be needed to avoid finite-size effects when the extra

dimension is large.

Furthermore, we have provided a framework for constructing fermions on the

lattice in a warped background. A very interesting potential direction would be

to couple the gauge fields to fermions to investigate their effect on the phase

diagram. Also, the possibility to find chiral four-dimensional layers makes this

extension of the work attractive.

Finally, one can explicitly break the symmetry by formulating the theory

in an orbifold geometry and compare the two cases. As a matter of fact

this last extension of our work might be the most appealing as the original

Randall-Sundrum model was formulated in the S1/Z2 space. Therefore, more

phenomenological implications might arise from the latter set-up.
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Appendix A

Further details for the

Randal-Sundrum model

In this appendix, we derive the Einstein tensor, GMN associated with the RS

metric given by

ds2 = e−2σ(y)ηµνdx
µdxν + dy2. (A.1)

The first and second derivatives with respect to the extra dimension are denoted

by ′ and ′′ respectively. To find GMN we first derive the Christoffel symbols, the

Ricci tensor and the Ricci scalar

A.1 Christoffel symbols

The Christoffel symbols are given by

ΓPMN =
1

2
gPR(∂MgNR + ∂NgRM − ∂RgMN) (A.2)

The only non-vanishing derivative terms are those that involve derivatives along

the extra dimension when acting on gµν , i.e. ∂5gµν . Therefore, the only non-

vanishing Christoffel symbols are the following:

Γνµ5 =
1

2
gνR
(
∂5gRµ

)
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A.2. Ricci tensor and Ricci scalar

=
1

2
e2σηνρ

(
− 2σ′e−2σηρµ

)
= −σ′δνµ (A.3)

and

Γ5
µν =

1

2
g5R
(
− ∂Rgµν

)
=

1

2
g55
(
− ∂5gµν

)
=

1

2
2σ′e−2σηµν

= σ′e−2σηµν . (A.4)

A.2 Ricci tensor and Ricci scalar

The Ricci tensor is given by

RMN = ∂PΓPMN − ∂NΓPMP + ΓPPQΓQMN − ΓPNQΓQMP . (A.5)

For the three different cases of MN we find

• Rµν = ∂5Γ5
µν + Γσσ5Γ5

µν − Γσν5Γ5
µσ − Γ5

νσΓσµ5

=
(
σ′′ − 2σ′

2)
e−2σηµν − 4σ′

2
e−2σηµν + σ′

2
e−2σηµν + σ′

2
e−2σηµν

=
(
σ′′ − 4σ′2

)
gµν (A.6)

• R55 = −∂5Γσ5σ − Γσ5ρΓ
ρ
5σ

= 4σ′′ − 4σ′2 (A.7)

• Rµ5 = 0 (A.8)

Then, the Ricci scalar is found to be

R = gMNRMN

= gµνRµν + g55R55

= 4(σ′′ − 4σ′2) + 4σ′′ − 4σ′2

= 8σ′′ − 20σ′2 (A.9)
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A.3. Einstein tensor

A.3 Einstein tensor

Combining all the above we find

Gµν = Rµν −
1

2
gµνR

=
(
6σ′2 − 3σ′′

)
gµν (A.10)

G55 = R55 −
1

2
g55R

= 6σ′2 (A.11)

The equations of motion (Einstein Equations) of an action

SE−H + SM =

∫
d4xdy

√
−G
(
2M3

FR− Λ
)

(A.12)

are given by

GMN =
1

4M3
F

TMN (A.13)

where one defines

TMN =
−2√
−G

δSM
δgMN

(A.14)

and thus

TMN = −ΛgMN . (A.15)

Then from the fifth component of the Einstein equation we get

G55 = 6σ′2 =
−Λ

4M3
F

⇒ σ′2 =
−Λ

24M3
F

(A.16)

which implies that a negative cosmological constant is needed for σ to be real.

The argument in Section 1.3.3 is that as the cosmological constant, Λ, is negative

the space along the extra direction should be anti-de Sitter. This statement arises

from the case of a conformally flat metric in any dimensions (AdSD metric), where

one can show that the cosmological constant is necessarily negative.

110



Appendix B

Character Expansions

By character expansion we can express u(H), given by Eq. (2.74), in terms of

Bessel functions. This is done as following

We define

u2(H) = eu(H) =

∫
DUe(1/2)ReTr(HU). (B.1)

For SU(2), we can parametrize the matrices H and U using the standard way of

doing this for complex 2× 2 matrices and we can write ReTr(HU) as

ReTr(HU) = 2[(Reh0)u0 + (RehA)uA]

= ReTr(U [Reh0 + i~σ · (Re~h)]. (B.2)

Now define a W ∈ SU(2) as

W = [Reh0 + i~σ · (Re~h)]/
√

(Reh0)2 + (RehA)2

= [Reh0 + i~σ · (Re~h)]/ρ. (B.3)

Then

ReTr(HU) = ρReTr(UW )

⇒ u2(H) =

∫
DUe(1/2)ReTr(HU) =

∫
SU(2)

DUe(ρ/2)ReTr(UW )
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=

∫
SU(2)

DUe(ρ/2)ReTr(U) (B.4)

due to the invariance of the Haar measure. Then we use character expansion to

write

e
ρ
2

ReTr(U) =
2

ρ

∑
ν

(2ν + 1)I2ν+1(ρ)χν(U) (B.5)

where I2ν+1(ρ) is the modified Bessel function of the first kind of order 2ν + 1

with argument ρ.

Knowing that

χνSU(2)
=

sin((ν + 1)θ)

sin θ
(B.6)

and using the orthonormality of characters we get

u2(H) =
2

ρ
I1(ρ). (B.7)
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Appendix C

First-order corrections to the

Mean-Field approach

In the following subsections, we derive the expressions for the propagators in

momentum space. In addition to these propagators, we also include a gauge fixing

term. To do this we use the following definition of the Fourier transformation for

the propagator ∆(n′, n′5,M
′, α′;n′′, n′′5,M

′′, α′′)

∆̃ =
1

TL3

∑
n′,n′′

eip
′n′

e−ip
′′n′′

ei
p′
M′
2

(1−δM′,5)e−i
p′′
M′′
2

(1−δM′′,5)(−i)δM′,5iδM′′,5
∂2S

∂v′M ′
α′
∂v′′M ′′

α′′

(C.1)

where we make use of the four-vector notation n = (n0, ~n) and similarly for

p. We also use the standard notation p̂µ = 2 sin(pµ/2). The extra factors of i

were added to the Fourier transformation for the direction that remains in the

coordinate space in order to ensure that the propagators remain real as proposed

in [81].

C.1 V field contribution

∆(vv) =
∂2

∂vα′(n′, n′5)∂vα′′(n′′, n′′5)

[∑
n,n5

SW [V4, V5]
]∣∣∣∣
v̄4,v̄5

(C.2)
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C.1. V field contribution

The partial differentiation is performed by replacing vα’s with vµα and v5α and

thus we get four terms. By replacing the links with their parametrization

according to Eq. (4.19) the plaquette along the four dimensions becomes

Vµν(n, n5) =
(
v̄4(n5) + vµ(n, n5)

)(
v̄4(n5) + vν(n+ µ̂, n5)

)(
v̄†4(n5) + v†µ(n+ ν, n5)

)(
v̄†4(n5) + v†ν(n, n5)

)
(C.3)

and the plaquette along the extra dimension

Vµ5(n, n5) =
(
v̄4(n5) + vµ(n, n5)

)(
v̄5(n5) + v5(n+ µ̂, n5)

)(
v̄†4(n5) + v†µ(n, n5 + 1)

)(
v̄†5(n5) + v†5(n, n5)

)
. (C.4)

As we stated in the introduction of first-order corrections, we are about to take

second derivatives of our action terms. The constant term of each link will

vanish when we differentiate it, so we are left with the second part. Also, in

the Mean-Field approach we decoupled the imaginary parts of vα and hα, so we

consider them here as real numbers, i.e. Vµ(n, n5) = vµ0(n, n5)1 + ivµAσ
A and

V †µ (n, n5) = vµ0(n, n5)1 − ivµAσ
A where vµ0(n, n5) and vµA(n, n5) are real and

similar arguments hold for the links along the fifth direction. The action that

contributes after taking the derivatives is given by

SW =− β

2γ

∑
µ,ν;n;n5

Tr
((
vµ0(n, n5)1 + ivµA(n, n5)σA

)
(
vν0(n+ µ̂, n5)1 + ivνB(n+ µ̂, n5)σB

)(
vµ0(n+ ν̂, n5)1− ivµC (n+ ν̂, n5)σC

)
(
vν0(n, n5)1− ivνD(n, n5)σD

))
(1− δµν)

− βγ

2

∑
µ,5;n;n5

Tr
((
vµ0(n, n5)1 + ivµA(n, n5)σA

)
(
v50(n+ µ̂, n5)1 + iv5B(n+ µ̂, n5)σB

)(
vµ0(n, n5 + 1)1− ivµC (n, n5 + 1)σC

)
(
v50(n, n5)1− iv5D(n, n5)σD

))
+ . . . (C.5)

Taking the trace of the above expression, there are only certain non-vanishing
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C.1. V field contribution

terms that contribute to the first order corrections which read as

SW =− β

γ

∑
µ,ν;n;n5

((1− δµ,ν)
2

(
vµ0(n, n5)vµ0(n+ ν̂, n5)vν0(n+ µ̂, n5)vν0(n, n5)

− vµ0(n, n5)vν0(n+ µ̂, n5)vµA(n+ ν̂, n5)vνA(n, n5)

+ vµ0(n, n5)vµ0(n+ ν̂, n5)vνA(n+ µ̂, n5)vνA(n, n5)

+ vµ0(n, n5)vν0(n, n5)vνA(n+ µ̂, n5)vµA(n+ ν̂, n5)

+ vµ0(n+ ν̂, n5)vν0(n+ µ̂, n5)vµA(n, n5)vνA(n, n5)

+ vν0(n, n5)vν0(n+ µ̂, n5)vµA(n, n5)vµA(n+ ν̂, n5)

− vµ0(n+ ν̂, n5)vν0(n, n5)vµA(n, n5)vνA(n+ µ̂, n5) + . . .
))

− βγ
∑
µ;n;n5

(
vµ0(n, n5)v50(n+ µ̂, n5)vµ0(n, n5 + 1)v50(n, n5)

− vµ0(n, n5)v50(n+ µ̂, n5)vµA(n, n5 + 1)v5A(n, n5)

+ vµ0(n, n5)v50(n, n5)vµA(n, n5 + 1)v5A(n+ µ̂, n5)

+ vµ0(n, n5)v5A(n+ µ̂, n5)vµ0(n, n5 + 1)v5A(n, n5)

+ vµA(n, n5)v50(n+ µ̂, n5)vµA(n, n5 + 1)v50(n, n5)

+ vµA(n, n5)v50(n+ µ̂, n5)vµ0(n, n5 + 1)v5A(n, n5)

− vµA(n, n5)v5A(n+ µ̂, n5)vµ0(n, n5 + 1)v50(n, n5) + . . .
)
. (C.6)

Now, we use these terms of the action to find the V-field contribution to the

propagator. The derivations are shown for all ∆
(vv)
44 , ∆

(vv)
45 , ∆

(vv)
54 and ∆

(vv)
55 . For

each of these we present final expressions for the cases of α′ = α′′ = 0 and

α′ = A′, α′′ = A′′ separately.

B.1.1 ∆
(vv)
44

We first consider the case α′ = 0, α′′ = 0

∂2SW
∂vσ0(n′, n′5)∂vρ0(n′′, n′′5)

=
∂

∂vσ0(n′, n′5)

[
− β

γ

∑
n,n5;µ,ν

(1− δµ,ν)
2

(
vµ0(n+ ν̂, n5)vν0(n+ µ̂, n5)vν0(n, n5)δn′′,nδn′′

5 ,n5
δρ,µ

+ vµ0(n, n5)vν0(n+ µ̂, n5)vν0(n, n5)δn′′,n+ν̂δn′′
5 ,n5

δρ,µ
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C.1. V field contribution

+ vµ0(n, n5)vµ0(n+ ν̂, n5)vν0(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δρ,ν

+ vµ0(n, n5)vµ0(n+ ν̂, n5)vν0(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δρ,ν

)
− βγ

∑
n,n5;µ

v50(n+ µ̂, n5)v50(n, n5)δρ,µ

(
vµ0(n, n5 + 1)δn′′,nδn′′

5 ,n5
+ vµ0(n, n5)δn′′,nδn′′

5 ,n5+1

)]
= − β

2γ

∑
n,n5;µ,ν

(1− δµ,ν)
[
vν0(n+ µ̂, n5)vν0(n, n5)δn′′,nδn′′

5 ,n5
δn′,n+ν̂δn′

5,n5
δρ,µδσ,µ

+ vµ0(n+ ν̂, n5)vν0(n, n5)δn′′,nδn′′
5 ,n5

δn′,n+µ̂δn′
5,n5

δρ,µδσ,ν

+ vµ0(n+ ν̂, n5)vν0(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δn′,nδn′
5,n5

δρ,µδσ,ν

+ vν0(n+ µ̂, n5)vν0(n, n5)δn′′,n+ν̂δn′′
5 ,n5

δn′,nδn′
5,n5

δρ,µδσ,µ

+ vµ0(n, n5)vν0(n, n5)δn′′,n+ν̂δn′′
5 ,n5

δn′,n+µ̂δn′
5,n5

δρ,µδσ,ν

+ vµ0(n, n5)vν0(n+ µ̂, n5)δn′′,n+ν̂δn′′
5 ,n5

δn′,nδn′
5,n5

δρ,µδσ,ν

+ vµ0(n+ ν̂, n5)vν0(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δn′,nδn′
5,n5

δρ,νδσ,µ

+ vµ0(n, n5)vν0(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δn′,n+ν̂δn′
5,n5

δρ,νδσ,µ

+ vµ0(n, n5)vµ0(n+ ν̂, n5)δn′′,n+µ̂δn′′
5 ,n5

δn′,nδn′
5,n5

δρ,νδσ,ν

+ vµ0(n+ ν̂, n5)vν0(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δn′,nδn′
5,n5

δρ,νδσ,µ

+ vµ0(n, n5)vν0(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δn′,n+ν̂δn′
5,n5

δρ,νδσ,µ

+ vµ0(n, n5)vµ0(n+ ν̂, n5)δn′′,nδn′′
5 ,n5

δn′,n+µ̂δn′
5,n5

δρ,νδσ,ν

]
− βγ

∑
n,n5;µ

v50(n+ µ̂, n5)v50(n, n5)δρ,µδσ,µ

(
δn′′,nδn′′

5 ,n5
δn′,nδn′

5,n5+1 + δn′′,nδn′′
5 ,n5+1δn′,nδn′

5,n5

)
= −β

γ

∑
n,n5;µ

[
(1− δρ,µ)δρσ

(
vµ0(n+ ρ̂, n5)vµ0(n, n5)δn′′,nδn′′

5 ,n5
δn′,n+µ̂δn′

5,n5

+ vµ0(n+ ρ̂, n5)vµ0(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δn′,nδn′
5,n5

)
+ (1− δρ,σ)

(
vρ0(n+ σ̂, n5)vσ0(n, n5)δn′′,nδn′′

5 ,n5
δn′,n+ρ̂δn′

5,n5

+ vρ0(n+ σ̂, n5)vσ0(n+ ρ̂, n5)δn′′,nδn′′
5 ,n5

δn′,nδn′
5,n5

+ vρ0(n, n5)vσ0(n, n5)δn′′,n+σ̂δn′′
5 ,n5

δn′,n+ρ̂δn′
5,n5

+ vρ0(n, n5)vσ0(n+ ρ̂, n5)δn′′,n+σ̂δn′′
5 ,n5

δn′,nδn′
5,n5

)]
− βγ

∑
n,n5

v50(n+ ρ̂, n5)v50(n, n5)δρ,σ

(
δn′′,nδn′′

5 ,n5
δn′,nδn′

5,n5+1 + δn′′,nδn′′
5 ,n5+1δn′,nδn′

5,n5

)
.

(C.7)
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C.1. V field contribution

In momentum space we write this as

∆̃
(vv)−0
44 = −β

γ

1

TL3

∑
n′,n′′

∑
n,n5

eip
′n′

e−ip
′′n′′

eip
′
σ/2e−ip

′′
ρ/2δn′

5,n5
δn′′

5 ,n5

(
v̄4(n5)

)2

[∑
µ6=ρ

[(
δn′′,nδn′,n+µ̂ + δn′′,n+µ̂δn′,n

)
δρ,σ

]
+ (1− δρ,σ)

(
δn′′,nδn′,n+ρ̂ + δn′′,nδn′,n + δn′′+σ̂,nδn′,n+ρ̂ + δn′′+σ̂,nδn′,n

)]
− βγ 1

TL3

∑
n′,n′′

∑
n,n5

eip
′n′

e−ip
′′n′′

eip
′
σ/2e−ip

′′
ρ/2

[(
v̄5(n5)

)2
δρ,σδn′′,nδn′,n

(
δn′′

5 ,n5
δn′

5,n5+1 + δn′′
5 ,n5+1δn′

5,n5

)]
=− β

γ
δ

(4)
p′,p′′δn′′

5 ,n
′
5

(
v̄4(n′5)

)2
[∑
µ 6=ρ

δρ,σ
(
eip

′
µ + e−ip

′′
µ
)

+ (1− δρ,σ)
(
eip

′
σ/2eip

′
ρ/2 + eip

′
σ/2e−ip

′
ρ/2 + e−ip

′
σ/2eip

′
ρ/2 + e−ip

′
σ/2e−ip

′
ρ/2
)]

− βγδ(4)
p′,p′′δρ,σ

[(
v̄5(n′5 − 1)

)2
δn′′

5 ,n
′
5−1 +

(
v̄5(n′5)

)2
δn′′

5 ,n
′
5+1

]
=− β

γ
δ

(4)
p′,p′′δn′

5,n
′′
5

(
v̄4(n′5)

)2
[∑
µ 6=ρ

δρ,σ
(
2 cos(p′µ)

)
+ 4(1− δρ,σ) cos(p′ρ/2) cos(p′σ/2)

]
− βγδ(4)

p′,p′′δρ,σ

[(
v̄5(n′5 − 1)

)2
δn′′

5 ,n
′
5−1 +

(
v̄5(n′5)

)2
δn′′

5 ,n
′
5+1

]
. (C.8)

We then look at the case α′ = A′;α′′ = A′′

∂2SW
∂vσA′ (n′, n

′
5)∂vρA′′ (n′′, n

′′
5)

=
∂

∂vσA′ (n′, n
′
5)

[
− β

γ

∑
n,n5;µ,ν;A

(1− δµ,ν)
2

δA′′,A(
− vµ0(n, n5)vν0(n+ µ̂, n5)vµA(n+ ν̂, n5)δn′′,nδn′′

5 ,n5
δρ,ν

− vµ0(n, n5)vν0(n+ µ̂, n5)vνA(n, n5)δn′′,n+ν̂δn′′
5 ,n5

δρ,µ

+ vµ0(n, n5)vµ0(n+ ν̂, n5)vνA(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δρ,ν

+ vµ0(n, n5)vµ0(n+ ν̂, n5)vνA(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δρ,ν

+ vµ0(n, n5)vν0(n, n5)vµA(n+ ν̂, n5)δn′′,n+µ̂δn′′
5 ,n5

δρ,ν

+ vµ0(n, n5)vν0(n, n5)vνA(n+ µ̂, n5)δn′′,n+ν̂δn′′
5 ,n5

δρ,µ

+ vµ0(n+ ν̂, n5)vν0(n+ µ̂, n5)vµA(n, n5)δn′′,nδn′′
5 ,n5

δρ,ν
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C.1. V field contribution

+ vµ0(n+ ν̂, n5)vν0(n+ µ̂, n5)vνA(n, n5)δn′′,nδn′′
5 ,n5

δρ,µ

+ vν0(n, n5)vν0(n+ µ̂, n5)vµA(n, n5)δn′′,n+ν̂δn′′
5 ,n5

δρ,µ

+ vν0(n, n5)vν0(n+ µ̂, n5)vµA(n+ ν̂, n5)δn′′,nδn′′
5 ,n5

δρ,µ

− vµ0(n+ ν̂, n5)vν0(n, n5)vµA(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δρ,ν

− vµ0(n+ ν̂, n5)vν0(n, n5)vνA(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δρ,µ

)
− βγ

∑
n,n5;µ;A

δA′′,Aδρ,µ v50(n+ µ̂, n5)v50(n, n5)(
vµA(n, n5)δn′′,nδn′′

5 ,n5+1 + vµA(n, n5 + 1)δn′′,nδn′′
5 ,n5

)]
= − β

2γ

∑
n,n5;µ,ν;A

(1− δµ,ν)δA′,AδA′′,A

[
− vν0(n+ µ̂, n5)vµ0(n, n5)δn′′,nδn′′

5 ,n5
δn′,n+ν̂δn′

5,n5
δρ,νδσ,µ

− vν0(n+ µ̂, n5)vµ0(n, n5)δn′′,n+ν̂δn′′
5 ,n5

δn′,nδn′
5,n5

δρ,µδσ,ν

+ vµ0(n, n5)vµ0(n+ ν̂, n5)δn′′,n+µ̂δn′′
5 ,n5

δn′,nδn′
5,n5

δρ,νδσ,ν

+ vµ0(n, n5)vµ0(n+ ν̂, n5)δn′′,nδn′′
5 ,n5

δn′,n+µ̂δn′
5,n5

δρ,νδσ,ν

+ vµ0(n, n5)vν0(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δn′,n+ν̂δn′
5,n5

δρ,νδσ,µ

+ vµ0(n, n5)vν0(n, n5)δn′′,n+ν̂δn′′
5 ,n5

δn′,n+µ̂δn′
5,n5

δρ,µδσ,ν

+ vµ0(n+ ν̂, n5)vν0(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δn′,nδn′
5,n5

δρ,νδσ,µ

+ vµ0(n+ ν̂, n5)vν0(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δn′,nδn′
5,n5

δρ,µδσ,ν

+ vν0(n, n5)vν0(n+ µ̂, n5)δn′′,n+ν̂δn′′
5 ,n5

δn′,nδn′
5,n5

δρ,µδσ,µ

+ vν0(n, n5)vν0(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δn′,n+ν̂δn′
5,n5

δρ,µδσ,µ

− vµ0(n+ ν̂, n5)vν0(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δn′,nδn′
5,n5

δρ,νδσ,µ

− vµ0(n+ ν̂, n5)vν0(n, n5)δn′′,nδn′′
5 ,n5

δn′,n+µ̂δn′
5,n5

δρ,µδσ,ν

]
− βγ

∑
n,n5;µ;A

δA′,AδA′′,A′v50(n+ µ̂, n5)v50(n, n5)δρ,µδσ,µ(
δn′′,nδn′′

5 ,n5
δn′,nδn′

5,n5+1 + δn′′,nδn′′
5 ,n5+1δn′,nδn′

5,n5

)
= −β

γ
δA′,A′′

∑
n,n5

(
v̄4(n5)

)2
δn′

5,n5
δn′′

5 ,n5

[∑
µ

[
(1− δρ,µ)δρ,σ

(
δn′′,n+µ̂δn′,n + δn′′,nδn′,n+µ̂

)]
+ (1− δρ,σ)

(
− δn′′,n+σ̂δn′,n + δn′′,n+σ̂δn′,n+ρ̂ + δn′′,nδn′,n − δn′′,nδn′,n+ρ̂

)]
− βγδA′,A′′

∑
n,n5

δρ,σ
(
v̄5(n5)

)2
δn′,nδn′′,n

(
δn′′

5 ,n5
δn′

5,n5+1 + δn′′
5 ,n5+1δn′

5,n5

)
(C.9)

118



C.1. V field contribution

where in the last step we evaluated the expression at the mean-field values. In

momentum space it can be written as

∆̃
(vv)−A
44 = −β

γ

1

TL3
δA′,A′′

∑
n′,n′′

∑
n,n5

eip
′n′

e−ip
′′n′′

eip
′
σ/2e−ip

′′
ρ/2δn′

5,n5
δn′′

5 ,n5

(
v̄4(n5)

)2

[∑
µ6=ρ

[(
δn′′,nδn′,n+µ̂ + δn′′,n+µ̂δn′,n

)
δρ,σ

]
+ (1− δρ,σ)

(
− δn′′+σ̂,nδn′,n + δn′′+σ̂,nδn′,n+ρ̂ + δn′′,nδn′,n − δn′′,nδn′,n+ρ̂

)]
− βγ 1

TL3

∑
n′,n′′

∑
n,n5

eip
′n′

e−ip
′′n′′

eip
′
σ/2e−ip

′′
ρ/2

[(
v̄5(n5)

)2
δρ,σδn′′,nδn′,n

(
δn′′

5 ,n5
δn′

5,n5+1 + δn′′
5 ,n5+1δn′

5,n5

)]
=− β

γ
δ

(4)
p′,p′′δn′′

5 ,n
′
5

(
v̄4(n′5)

)2
[∑
µ6=ρ

δρ,σ
(
eip

′
µ + e−ip

′
µ
)

+ (1− δρ,σ)
(
− e−ip

′
σ/2e−ip

′
ρ/2 + e−ip

′
σ/2eip

′
ρ/2 + eip

′
σ/2e−ip

′
ρ/2 − eip

′
σ/2eip

′
ρ/2
)]

− βγδ(4)
p′,p′′δρ,σ

[(
v̄5(n′5 − 1)

)2
δn′′

5 ,n
′
5−1 +

(
v̄5(n′5)

)2
δn′′

5 ,n
′
5+1

]
=− β

γ
δ

(4)
p′,p′′δn′

5,n
′′
5

(
v̄4(n′5)

)2
[∑
µ6=ρ

δρ,σ
(
2 cos(p′µ)

)
+ 4(1− δρ,σ) sin(p′ρ/2) sin(p′σ/2)

]
− βγδ(4)

p′,p′′δρ,σ

[(
v̄5(n′5 − 1)

)2
δn′′

5 ,n
′
5−1 +

(
v̄5(n′5)

)2
δn′′

5 ,n
′
5+1

]
. (C.10)

B.1.2 ∆
(vv)
45

We first consider the contribution from α′ = 0, α′′ = 0

∂2SW
∂vρ0(n′, n′5)∂v50(n′′, n′′5)

=
∂

∂vρ0(n′, n′5)

[
− βγ

∑
n,n5;µ

δρ,µ

(
vµ0(n, n5)vµ0(n, n5 + 1)v50(n, n5)δn′′,n+µ̂δn′′

5 ,n5

+ vµ0(n, n5)vµ0(n, n5 + 1)v50(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

)]
= −βγ

∑
n,n5;µ

δρ,µ

[
vµ0(n, n5 + 1)v50(n, n5)δn′′,n+µ̂δn′′

5 ,n5
δn′,nδn′

5,n5
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C.1. V field contribution

+ vµ0(n, n5)v50(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δn′,nδn′
5,n5+1

+ vµ0(n, n5 + 1)v50(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δn′,nδn′
5,n5

+ vµ0(n, n5)v50(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δn′,nδn′
5,n5+1

]
. (C.11)

In momentum space this is given by

∆̃
(vv)−0
45 = −iβγ 1

TL3

∑
n,n5

ei(p
′−p′′)neip

′
ρ/2
∑
µ

δρ,µ

[
v̄4(n5 + 1)v̄5(n5)e−ip

′
µδn′

5,n5
δn′′

5 ,n5
+ v̄4(n5)v̄5(n5)e−ip

′′
µδn′

5,n5+1δn′′
5 ,n5

+ v̄4(n5 + 1)v̄5(n5)δn′
5,n5

δn′′
5 ,n5

+ v̄4(n5)v̄5(n5)δn′
5,n5+1δn′′

5 ,n5

]
= −iβγδ(4)

p′′,p′

[
v̄4(n′5 + 1)v̄5(n′5)δn′′

5 ,n
′
5
e−ip

′
ρ/2 + v̄4(n′5 − 1)v̄5(n′5 − 1)δn′′

5 ,n
′
5−1e−ip

′
ρ/2

+ v̄4(n′5 + 1)v̄5(n′5)δn′′
5 ,n

′
5
eip

′
ρ/2 + v̄4(n′5 − 1)v̄5(n′5 − 1)δn′′

5 ,n
′
5−1eip

′
ρ/2
]

= −iβγδ(4)
p′′,p′

[(
v̄4(n′5 + 1)v̄5(n′5)δn′′

5 ,n
′
5

+ v̄4(n′5 − 1)v̄5(n′5 − 1)δn′′
5 ,n

′
5−1

)
(
eip

′
ρ/2 + e−ip

′
ρ/2
)]

= −2iβγδ
(4)
p′′,p′ cos(p′ρ/2)

[
δn′′

5 ,n
′
5
v̄4(n′5 + 1)v̄5(n′5) + δn′′

5 ,n
′
5−1v̄4(n′5 − 1)v̄5(n′5 − 1)

]
.

(C.12)

For the case α′ = A′, α′′ = A′′ we have

∂2SW
∂vρA′ (n′, n

′
5)∂v5A′′ (n′′, n

′′
5)

=
∂

∂vρA′ (n′, n
′
5)

[
− βγ

∑
n,n5;µ;A

(
− vµ0(n, n5)v50(n+ µ̂, n5)vµA(n, n5 + 1)δn′′,nδn′′

5 ,n5
δA′′,A

+ vµ0(n, n5)v50(n, n5)vµA(n, n5 + 1)δn′′,n+µ̂δn′′
5 ,n5

δA′′,A

+ vµ0(n, n5 + 1)v50(n+ µ̂, n5)vµA(n, n5)δn′′,nδn′′
5 ,n5

δA′′,A

− vµ0(n, n5 + 1)v50(n, n5)vµA(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δA′′,A

)]
= −βγ

∑
n,n5;µ;A

δA′′,AδA′,Aδρ,µ

[
− vµ0(n, n5)v50(n+ µ̂, n5)δn′′,nδn′′

5 ,n5
δn′,nδn′

5,n5+1

+ vµ0(n, n5)v50(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δn′,nδn′
5,n5+1

+ vµ0(n, n5 + 1)v50(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δn′,nδn′
5,n5

− vµ0(n, n5 + 1)v50(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δn′,nδn′
5,n5

]
. (C.13)
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C.1. V field contribution

In momentum space this is written as

∆̃
(vv)−A
45 = −iβγδA′,A′′

1

TL3

∑
n,n5

ei(p
′−p′′)neip

′
ρ/2
∑
µ

δρ,µ

[
− v̄4(n5 + 1)v̄5(n5)e−ip

′′
µδn′

5,n5
δn′′

5 ,n5
+ v̄4(n5)v̄5(n5)e−ip

′′
µδn′

5,n5+1δn′′
5 ,n5

+ v̄4(n5 + 1)v̄5(n5)δn′
5,n5

δn′′
5 ,n5
− v̄4(n5)v̄5(n5)δn′

5,n5+1δn′′
5 ,n5

]
= −iβγδ(4)

p′′,p′δA′,A′′

[
− v̄4(n′5 + 1)v̄5(n′5)δn′′

5 ,n
′
5
e−ip

′
ρ/2

+ v̄4(n′5 − 1)v̄5(n′5 − 1)δn′′
5 ,n

′
5−1e−ip

′
ρ/2 + v̄4(n′5 + 1)v̄5(n′5)δn′′

5 ,n
′
5
eip

′
ρ/2

− v̄4(n′5 − 1)v̄5(n′5 − 1)δn′′
5 ,n

′
5−1eip

′
ρ/2
]

= −iβγδ(4)
p′′,p′δA′,A′′

[(
eip

′
ρ/2 − e−ip

′
ρ/2
)(

v̄4(n′5 + 1)v̄5(n′5)δn′′
5 ,n

′
5
− v̄4(n′5 − 1)v̄5(n′5 − 1)δn′′

5 ,n
′
5−1

)]
= 2βγδ

(4)
p′′,p′δA′,A′′ sin(p′ρ/2)

[
δn′′

5 ,n
′
5
v̄4(n′5 + 1)v̄5(n′5)− δn′′

5 ,n
′
5−1v̄4(n′5 − 1)v̄5(n′5 − 1)

]
.

(C.14)

B.1.3 ∆
(vv)
54

As before we look first at α′ = α′′ = 0 contribution

∂2SW
∂v50(n′, n′5)∂vρ0(n′′, n′′5)

=
∂

∂v50(n′, n′5)

[
− βγ

∑
n,n5;µ

(
v50(n+ µ̂, n5)v50(n, n5)vµ0(n, n5 + 1)δn′′,nδn′′

5 ,n5
δρ,µ

+ vµ0(n, n5)v50(n+ µ̂, n5)v50(n, n5)δn′′,nδn′′
5 ,n5+1δρ,µ

)]
= −βγ

∑
n,n5;µ

δρ,µ

[
vµ0(n, n5 + 1)v50(n+ µ̂, n5)δn′′,nδn′′

5 ,n5
δn′,nδn′

5,n5

+ vµ0(n, n5 + 1)v50(n, n5)δn′′,nδn′′
5 ,n5

δn′,n+µ̂δn′
5,n5

+ vµ0(n, n5)
(
v50(n+ µ̂, n5)δn′′,nδn′′

5 ,n5+1δn′,nδn′
5,n5

+ v50(n, n5)δn′′,nδn′′
5 ,n5+1δn′,n+µ̂δn′

5,n5

)]
. (C.15)
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C.1. V field contribution

In momentum space we get

∆̃
(vv)−0
54 = iβγ

1

TL3

∑
n,n5

ei(p
′−p′′)ne−ip

′′
ρ/2
∑
n5;µ

δρ,µ

[
v̄4(n5 + 1)v̄5(n5)δn′′

5 ,n5
δn′

5,n5
+ v̄4(n5 + 1)v̄5(n5)δn′′

5 ,n5
δn′

5,n5
eip

′
µ/2

+ v̄4(n5)v̄5(n5)δn′′
5 ,n5+1δn′

5,n5
+ v̄4(n5)v̄5(n5)δn′′

5 ,n5+1δn′
5,n5

eip
′
µ/2
]

= iβγδ
(4)
p′′,p′

(
v̄4(n′5 + 1)v̄5(n′5)δn′′

5 ,n
′
5

+ v̄4(n′5)v̄5(n′5)δn′′
5 ,n

′
5+1

)(
e−ip

′
ρ/2 + eip

′
ρ/2
)

=2iβγ cos(p′ρ/2)
(
v̄4(n′5 + 1)v̄5(n′5)δn′′

5 ,n
′
5

+ v̄4(n′5)v̄5(n′5)δn′′
5 ,n

′
5+1

)
. (C.16)

For α′ = A′, α′′ = A′′ we find

∂2SW
∂v5A′ (n′, n

′
5)∂vρ′′A(n′′, n′′5)

=
∂

∂v5A′ (n′, n
′
5)

[
− βγ

∑
n;n5;µ;A

δA′′,Aδρ,µ(
− v50(n+ µ̂, n5)vµ0(n, n5)v5A(n, n5)δn′′,nδn′′

5 ,n5+1

+ vµ0(n, n5)v50(n, n5)v5A(n+ µ̂, n5)δn′′,nδn′′
5 ,n5+1

+ v50(n+ µ̂, n5)vµ0(n, n5 + 1)v5A(n, n5)δn′′,nδn′′
5 ,n5

− v5A(n+ µ̂, n5)vµ0(n, n5 + 1)v50(n, n5)δn′′,nδn′′
5 ,n5

)]
= −βγ

∑
n;n5;µ′A

δρ,µδA′′,AδA′,A

[
− vµ0(n, n5)v50(n+ µ̂, n5)δn′′,nδn′′

5 ,n5+1δn′,nδn′
5,n5

+ vµ0(n, n5)v50(n, n5)δn′′,nδn′′
5 ,n5+1δn′,n+µ̂δn′

5,n5

+ vµ0(n, n5 + 1)v50(n+ µ̂, n5)δn′′,nδn′′
5 ,n5

δn′,nδn′
5,n5

− vµ0(n, n5 + 1)v50(n, n5)δn′′,nδn′′
5 ,n5

δn′,n+µ̂δn′
5,n5

]
. (C.17)

In momentum space this is given by

∆̃
(vv)−A
54 = iβγ

1

TL3

∑
n,n5

ei(p
′−p′′)ne−ip

′′
ρ/2δA′′,A′

∑
n5;µ

δρ,µ

[
v̄4(n5 + 1)v̄5(n5)δn′′

5 ,n5
δn′

5,n5
− v̄4(n5 + 1)v̄5(n5)δn′′

5 ,n5
δn′

5,n5
eip

′
µ/2

− v̄4(n5)v̄5(n5)δn′′
5 ,n5+1δn′

5,n5
+ v̄4(n5)v̄5(n5)δn′′

5 ,n5+1δn′
5,n5

eip
′
µ/2
]

= iβγδ
(4)
p′′,p′δA′′,A′

[
v̄4(n′5 + 1)v̄5(n′5)δn′′

5 ,n
′
5

(
e−ip

′
ρ/2 − eip

′
ρ/2
)
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C.1. V field contribution

+ v̄4(n′5)v̄5(n′5)δn′′
5 ,n

′
5+1

(
eip

′
ρ/2 − e−ip

′
ρ/2
)]

= 2βγδ
(4)
p′′,p′δA′′,A′ sin(p′ρ/2)

(
v̄4(n′5 + 1)v̄5(n′5)δn′′

5 ,n
′
5
− v̄4(n′5)v̄5(n′5)δn′′

5 ,n
′
5+1

)
.

(C.18)

B.1.4 ∆
(vv)
55

For α′ = 0, α′′ = 0 we find

∂2SW
∂v50(n′, n′5)∂v50(n′′, n′′5)

=
∂

∂v50(n′, n′5)

[
− βγ

∑
n;n5;µ

(
vµ0(n, n5)vµ0(n, n5 + 1)v50(n+ µ̂, n5)δn′′,nδn′′

5 ,n5

+ vµ0(n, n5)vµ0(n, n5 + 1)v50(n, n5)δn′′,n+µ̂δn′′
5 ,n5

)]
= −βγ

∑
n;n5;µ

[
vµ0(n, n5)vµ0(n, n5 + 1)δn′′,nδn′′

5 ,n5
δn′,n+µ̂δn′

5,n5

+ vµ0(n, n5)vµ0(n, n5 + 1)δn′′,n+µ̂δn′′
5 ,n5

δn′,nδn′
5,n5

]
. (C.19)

In momentum space this becomes

∆̃
(vv)−0
55 = −βγδ(4)

p′′,p′

∑
µ

[
v̄4(n′5)v̄4(n′5 + 1)

(
eip

′
µδn′′

5 ,n
′
5

+ e−ip
′′
µδn′′

5 ,n
′
5

)]
= −2βγv̄4(n′5)v̄4(n′5 + 1)δn′′

5 ,n
′
5

∑
µ

cos(p′µ). (C.20)

Finally, the contribution when α′ = A′, α′′ = A′′ is found to be

∂2SW
∂v5A′ (n′, n

′
5)∂v5A′′ (n′′, n

′′
5)

=
∂

∂v5A′ (n′, n
′
5)

[
− βγ

∑
n,n5;µ;A

(
vµ0(n, n5)vµ0(n, n5 + 1)v5A(n+ µ̂, n5)δn′′,nδn′′

5 ,n5
δA′′,A

+ vµ0(n, n5)vµ0(n, n5 + 1)v5A(n, n5)δn′′,n+µ̂δn′′
5 ,n5

δA′′,A′

)]
= −βγ

∑
n,n5;µ;A

δA′′,A′δA′,A

[
vµ0(n, n5)vµ0(n, n5 + 1)δn′′,nδn′′

5 ,n5
δn′,n+µ̂δn′

5,n5

+ vµ0(n, n5)vµ0(n, n5 + 1)δn′′,n+µ̂δn′′
5 ,n5

δn′,nδn′
5,n5

]
. (C.21)
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C.2. Auxiliary field contribution (H field)

In momentum space this becomes

∆̃
(vv)−A
55 = −βγδ(4)

p′′,p′δA′′,A′

∑
µ

[
v̄4(n′5)v̄4(n′5 + 1)

(
eip

′
µδn′′

5 ,n
′
5

+ e−ip
′′
µδn′′

5 ,n
′
5

)]
= −2βγδA′′,A′ v̄4(n′5)v̄4(n′5 + 1)δn′′

5 ,n
′
5

∑
µ

cos(p′µ). (C.22)

C.2 Auxiliary field contribution (H field)

Here we show the derivations of ∆
(hh)
44 and ∆

(hh)
55 . As for the case of ∆(vv) we derive

final expressions for the cases of α′ = α′′ = 0 and α′ = A′, α′′ = A′′ separately for

each term.

B.2.1 ∆
(hh)
44 considering M ′ = M ′′ = µ

The contribution to this kernel comes from equation

u4(Hµ(n, n5) = − ln
( 2

ρµ(n, n5)
I1(ρµ(n, n5))

)
(C.23)

where I1 is the modified bessel function of the first kind and ρµ is given by

ρµ(n, n5) =

√[
Re(hµ0(n, n5))

]2
+
∑
A

[
Re(hµA(n, n5))

]2
. (C.24)

Then we evaluate the second derivative as following

∂2S

∂hµ′
α′

(n′, n′5)∂hµ′′
α′′

(n′′, n′′5)

=
∂

∂hµ′
α′

(n′, n′5)

[∑
n,n5

δn,n′′δn5,n′′
5
δα,α′′δµ′′,µ

(
u4(ρµ(n, n5))′ + vα

)]
=
∑
n

δn′,n′′δn′,nδµ′,µ′′
∑
n5

δn5,n′′
5
δn5,n′

5
δα′,α′′

[
δα′,0

(
u4(ρµ(n, n5))′

ρµ(n, n5)

+ (1− δα′,0)
[u4(ρµ(n, n5))′

ρµ(n, n5)
+ ρµ(n, n5)

(u4(ρµ(n, n5))′

ρµ(n, n5)

)′]]
(C.25)
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C.2. Auxiliary field contribution (H field)

and in momentum space we get

∆̃
(hh)
44 =δ

(4)
p,p′′δµ′,µ′′δn′

5,n
′′
5
δα′,α′′

[
(1− δα′,0)

(
u4(ρµ(n′5))′

ρµ(n5)

+ δα′,0

[u4(ρµ(n′5))′

ρµ(n′5)
+ ρµ(n′5)

(u4(ρµ(n′5))′

ρµ(n′5)

)′]]∣∣∣∣
ρ4(n′

5)=h̄4(n′
5)

. (C.26)

For α′ = 0 and α′′ = 0

∆̃
(hh)−0
44 = δ

(4)
p′,p′′δn′′

5 ,n
′
5

[
− 2(

h̄4(n′5)
)2 − 1− 1

h̄4(n′5)

I0

(
h̄4(n′5)

)
I1

(
h̄4(n′5)

) +

(
I0

(
h̄4(n′5)

)
I1

(
h̄4(n′5)

))2]
.

(C.27)

For α′ = A′ and α′′ = A′′

∆̃
(hh)−A
44 = δ

(4)
p′,p′′δn′′

5 ,n
′
5

[
2(

h̄4(n′5)
)2 −

1

h̄4(n′5)

I0

(
h̄4(n′5)

)
I1

(
h̄4(n′5)

)]. (C.28)

B.2.2 ∆
(hh)
55 considering M ′ = M ′′ = 5

In this case we consider derivatives in the fifth direction. We recall that the

relevant part of the action contains the function u5 which is given in Eq. (4.14)

and we find ∆
(hh)
55 to be

∂2S

∂h5α′
(n′, n′5)∂h5α′′

(n′′, n′′5)

∣∣∣∣
ρ5(n5)=h̄5(n5)

=
∂

∂h5α′
(n′, n′5)

[∑
n

δn,n′′

∑
n5

δn5,n′′
5
δα,α′′

[
u5(ρ5(n, n5)

√
f(n5)

]′
+ v5α

]
=
∑
n

δn′,nδn′,n′′

∑
n5

δn5,n′′
5
δn5,n′

5
δα′,α′′

[
(1− δα′,0)

(
u5(ρ5(n5)

√
f(n5))′

ρ5(n5)
√
f(n5)

+ δα′,0

[ (u5(ρ5(n5))
)′

ρ5(n5)
√
f(n5)

+ ρ5

( (u5(ρ5(n5))
)′

ρ5(n5)
√
f(n5)

)′]]∣∣∣∣
ρ5(n5)=h̄5(n5)

. (C.29)
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C.3. Gauge fixing contribution

In momentum space this is given by

∆̃
(hh)
55 = δ

(4)
p,p′′δn′

5,n
′′
5
δα′,α′′

[
(1− δα′,0)

(
u5(ρ5(n′5)

√
f(n′5))′

ρ5(n′5)
√
f(n′5)

+ δα′,0

[u5(ρ5(n′5)
√
f(n′5))′

ρ5(n′5)
√
f(n′5)

+ ρ5

√
f(n′5)

(u5(ρ5(n′5)
√
f(n′5))′

ρ5(n′5)
√
f(n′5)

)′]]∣∣∣∣
ρ5(n′

5)=h̄5(n′
5)

.

(C.30)

By explicitly evaluating the derivatives of u5 we find the following expressions

considering separately the cases of α′ = α′′ = 0 and α′ = A;α = A′′.

For α′ = 0 and α′′ = 0 we have

∆̃
(hh)−0
55 = δ

(4)
p′,p′′δn′′

5 ,n
′
5

[
− 2(

h̄50(n′5)
)2 −

√
f(n′5)

h̄50(n′5)

I0

(
h̄50(n′5)

√
f(n′5)

)
I1

(
h̄50(n′5)

√
f(n′5)

)
− f(n′5) + f(n′5)

(
I0

(
h̄50(n′5)

√
f(n′5)

)
I1

(
h̄50(n′5)

√
f(n′5)

))2]
. (C.31)

For α′ = A′ and α′′ = A′′ we get

∆̃
(hh)−A
55 = δ

(4)
p′,p′′δn′′

5 ,n
′
5

[
2(

h̄50(n′5)
)2 −

√
f(n′5)

h̄50(n′5)

I0

(
h̄50(n′5)

√
f(n′5)

)
I1

(
h̄50(n′5)

√
f(n5)

)]. (C.32)

C.3 Gauge fixing contribution

We recall that the gauge-fixing action is given by Eq. (4.22). Depending on the

direction we have four different contributions in this kernel which are found to

be as following

B.3.1 ∆
(gf)
44 considering M ′ = σ,M ′′ = ρ

∆
(gf)
44 =

∂2Sgf
∂vσA′ (n′, n

′
5)∂vρA′′ (n′′, n

′′
5)
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C.3. Gauge fixing contribution

=
∂

∂vσA′ (n′′, n
′′
5)

∑
n,n5;µ

δρ,µ

[
1

ξ

∑
A

δA′′,A

(
δn′′,nδn′′

5 ,n5
− δn′′,n−µ̂δn′′

5 ,n5

)
[∑

µ

fµA(n, n5) + γf5A(n, n5)
]]

=
1

ξ
δA′,A′′

∑
n,n5

(
δn′′,nδn′′

5 ,n5
− δn′′,n−ρ̂δn′′

5 ,n5

)(
δn′,nδn′

5,n5
− δn′,n−σ̂δn′

5,n5

)
.

(C.33)

Thus,

∆̃
(gf)
44 =

1

ξ
δ

(4)
p′,p′′δA′,A′′eip

′
σ/2e−ip

′
ρ/2
[
1− e−ip

′
σ − eip

′
ρ + e−ip

′
σeip

′
ρ

]
δn′′

5 ,n
′
5

=
1

ξ
δ

(4)
p′,p′′δA′,A′′

[
− (2i sin(p′ρ/2)(2i sin(p′σ/2)

]
δn′′

5 ,n
′
5

=
1

ξ
p̂′ρp̂
′
σδ

(4)
p′,p′′δA′,A′′δn′′

5 ,n
′
5
. (C.34)

B.3.2 ∆
(gf)
45 considering M ′ = ρ,M ′′ = 5

∆
(gf)
45 =

∂2Sgf
∂vρA′ (n′, n

′
5)∂v5A′′ (n′′, n

′′
5)

=
∂

∂vρA′ (n′, n
′
5)

∑
n,n5;µ

[
γ

ξ

∑
A

δA.A′′
(
δn′′,nδn′′

5 ,n5
− δn′′,nδn′′

5 ,n5−1

)
[∑

µ

fµA(n, n5) + γf5A(n, n5)
]]

=
γ

ξ
δA′,A′′

∑
n,n5

δρ,µ

(
δn′′,nδn′′

5 ,n5
− δn′′,nδn′′

5 ,n5−1

)(
δn′,nδn′

5,n5
− δn′,n−µ̂δn′

5,n5

)
.

(C.35)

Therefore,

∆̃
(gf)
45 =

iγ

ξ
δ

(4)
p′,p′′δA′,A′′eip

′
ρ/2
(

1− e−ip
′
ρ

)∑
n5

[
δn′

5,n
′′
5
δn′

5,n5
− δn′

5,n5−1δn′′
5 ,n5+1

]
=
−γ
ξ
δ

(4)
p′,p′′ p̂

′
ρ′δA′,A′′

∑
n5

[
δn′

5,n
′′
5
δn′

5,n5
− δn′

5,n5−1δn′′
5 ,n5+1

]
. (C.36)
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C.3. Gauge fixing contribution

B.3.3 ∆
(gf)
54 considering M ′ = 5,M ′′ = ρ

∆
(gf)
54 =

∂2Sgf
∂v5A′ (n′, n

′
5)∂vρA′′ (n′′, n

′′
5)

=
∂

∂v5A′ (n′, n
′
5)

∑
n,n5;µ

δρ,µ

[
1

ξ

∑
A

δA.A′′

(
δn′′,nδn′′

5 ,n5
− δn′′,n−µ̂δn′′

5 ,n5

)
[∑

µ

fµA(n, n5) + γf5A(n, n5)
]]

=
γ

ξ
δA′,A′′

∑
n,n5

(
δn′′,nδn′′

5 ,n5
− δn′′,n−ρ̂δn′′

5 ,n5

)(
δn′,nδn′

5,n5
− δn′,nδn′

5,n5−1

)
.

(C.37)

Thus,

∆̃
(gf)
54 =

(−i)γ
ξ

δ
(4)
p′,p′′δA′,A′′e−ip

′
ρ/2
(

1− eip
′
ρ

)∑
n5

(
δn′

5,n
′′
5
δn′

5,n5
− δn′

5,n5−1δn′′
5 ,n5

)
=
−γ
ξ
δ

(4)
p′,p′′ p̂

′
ρδA′,A′′

∑
n5

(
δn′

5,n
′′
5
δn′

5,n5
− δn′

5,n5−1δn′′
5 ,n

′
5+1

)
. (C.38)

B.3.4 ∆
(gf)
55 considering M ′ = M ′′ = 5

∆
(gf)
55 =

∂2Sgf
∂v5A′ (n′, n

′
5)∂v5A′′ (n′′, n

′′
5)

=
∂

∂v5A′ (n′, n
′
5)

[
γ

ξ

∑
n

δn,n′′

∑
n5

∑
A

δA,A′′

(
δn5,n′′

5
− δn5−1,n′′

5

)
[∑

µ

fµA(n, n5) + γf5A(n, n5)
]]

=
γ2

ξ

∑
n

δn,n′′δn,n′δA′′,A′

∑
n5

(
δn5,n′′

5
− δn5−1,n′′

5

)(
δn5,n′

5
− δn5−1,n′

5

)
. (C.39)
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C.4. Faddeev-Popov Determinant

Thus,

∆̃
(gf)
55 =

γ2

ξ
δ

(4)
p′,p′′δA′,A′′

∑
n5

(
δn′

5,n
′′
5
δn5,n′

5
+δn′

5,n
′′
5
δn5−1,n′

5
−δn′

5+1,n′′
5
δn5−1,n′

5
−δn′

5−1,n′′
5
δn5,n′

5

)
.

(C.40)

C.4 Faddeev-Popov Determinant

For the free energy it is necessary to find the Faddeev-Popov determinant. We

know that the ghost action is given by

SFP =
∑
A′,A′′

∑
n′,n′′

∑
n′

5,n
′′
5

c̄A
′
(n′, n′5)MA′,n′,n′

5;A′′,n′′,n′′
5
cA

′′
(n′′, n′′5) (C.41)

where the ghost kernel is obtained summing over all directions

MA′,n′,n′
5;A′′,n′′,n′′

5
=
∑
µ

M(µ)

A′,n′,n′
5;A′′,n′′,n′′

5
+ γM(5)

A′,n′,n′
5;A′′,n′′,n′′

5
. (C.42)

To determine this ghost kernel, and therefore the Faddeev-Popov determinant, we

need to find the infinitesimal gauge transformations on the gauge fixing functions

given in Eq. (4.23) and Eq. (4.24) since

δfMA′ (n
′, n′5) =

∑
n′′;n′′

5 ;A′′

M(M)

A′,n′,n′
5;A′′,n′′,n′′

5
ωA

′′
(n′′, n′′5). (C.43)

To find these we first need to extract the gauge transformation rules on the links

of our system. We recall that, generally, links transform as

Uµ(n, n5)→ Ω(n, n5)Uµ(n, n5)Ω†(n+ µ̂, n5) (C.44)

U5(n, n5)→ Ω(n, n5)U5(n, n5)Ω†(n, n5 + 1) (C.45)

where Ω(n, n5) is a gauge transformation that can be parametrized as

Ω(n, n5) = eiω
A(n,n5)σA = 1 + iωA(n, n5)σA. (C.46)
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Then we determine the rules as following

δvµ0(n, n5) + iδvµA(n, n5)σA

= Ω(n, n5)
(
vµ0(n, n5) + ivµA(n, n5)σA

)
Ω†(n+ µ̂, n5)−

(
vµ0(n, n5) + ivµA(n, n5)σA

)
=
(
1 + iωB(n, n5)σB

)(
vµ0(n, n5) + ivµA(n, n5)σA

)(
1− iωC(n+ µ̂, n5)σC

)
−
(
vµ0(n, n5) + ivµA(n, n5)σA

)
= iωB(n, n5)σBvµ0(n, n5)− ωB(n, n5)σBvµA(n, n5)σA − ivµ0(n, n5)ωB(n+ µ̂, n5)σB

+ vµAω
B(n+ µ̂, n5)σAσB

= ivµ0(n, n5)σB
(
ωB(n, n5)− ωB(n+ µ̂)

)
+ vµA(n, n5)

(
ωB(n+ µ̂, n5)σAσB − ωB(n, n5)σBσA

)
= −ivµ0(n, n5)

(
ωA(n+ µ̂, n5)− ωA(n, n5)

)
σA

+ vµA(n, n5)
[
ωB(n+ µ̂, n5)(δABI + iεABCσC)− ωB(n, n5)(δBAI + iεBACσC)

]
= −ivµ0(n, n5)

(
ωA(n+ µ̂)− ωA(n, n5)

)
σA + vµA(n, n5)

(
ωA(n+ µ̂)− ωA(n, n5)

)
+ ivµC (n, n5)

[
ωB(n+ µ̂)εCBAσA − ωB(n, n5)εBCAσA

]
= vµA(n, n5)

(
ωA(n+ µ̂, n5)− ωA(n, n5)

)
+ i
[
− vµ0(n, n5)

(
ωA(n+ µ̂, n5)− ωA(n, n5)

)
− vµC (n, n5)εABC

(
ωB(n+ µ̂) + ωB(n, n5)

)]
σA. (C.47)

To sum up the gauge transformations of links along the usual four dimensions

read as

δvµ0(n, n5) =vµA(n, n5)
(
ωA(n+ µ̂, n5)− ωA(n, n5)

)
δvµC (n, n5) =− vµ0(n, n5)

(
ωC(n+ µ̂, n5)− ωC(n, n5)

)
− εABCvµB(n, n5)

(
ωA(n+ µ̂, n5) + ωA(n, n5)

)
(C.48)

and along the extra dimension as

δv50(n, n5) =v5A(n, n5)
(
ωA(n, n5 + 1)− ωA(n, n5)

)
δv5C (n, n5) =− v50(n, n5)

(
ωC(n, n5 + 1)− ωC(n, n5)

)
− εABCv5B(n, n5)

(
ωA(n, n5 + 1) + ωA(n, n5)

)
. (C.49)
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C.4. Faddeev-Popov Determinant

Now we apply the above transformations to Eq. (C.43) for directions along the

four-dimensional space and the fifth direction. We omit the terms that vanish

when they are evaluated at the mean-field background.

We start with links along a µ direction

δfµA′ =
∑

n′;n′
5;A′

δvµ′A(n′, n′5)− δvµ′A(n′ − µ̂, n′5)

=
∑

n′;n′
5;A′

[
− vµ0(n′, n′5)

(
ωA

′
(n′ + µ̂, n′5)− ωA′

(n′, n′5)
)

+ vµ0(n′ − µ̂, n′5)
(
ωA

′
(n′, n′5)− ωA′

(n′ − µ̂, n′5)
)]

=
∑

n′;n′
5;A′

δA
′,A′′

δn′
5,n

′′
5

[
− vµ0(n′, n′5)

(
δn′+µ̂,n′′ − δn′,n′′

)
+ vµ0(n′ − µ̂, n′5)

(
δn′,n′′ − δn′−µ̂,n′′

)]
ωA

′′
(n′′, n′′5)

=
∑

n′,n′
5;A′

δA
′,A′′

δn′
5,n

′′
5
v̄4(n′5)

(
2δn′,n′′ − δn′+µ̂,n′′ − δn′−µ̂,n′′

)
ωA

′′
(n′′, n′′5)

(C.50)

where in the last line we evaluated the expression in the mean-field background.

In momentum space this is given by

δ̃fµA′ =
∑
n′

5;A′

δA
′,A′′

δn′
5,n

′′
5
v̄4(n′5)δ

(4)
p′,p′′ p̂

′2
µω

A′′
(n′′, n′′5). (C.51)

Therefore,

M(µ)

A′,p′,n′
5;A′′,p′′,n′′

5
=
∑
n′

5;A′

δA
′,A′′

δn′
5,n

′′
5
v̄4(n′5)δ

(4)
p′,p′′ p̂

′2
µ. (C.52)

The same is repeated for links along the extra dimension

δf5A′ =
∑

n′;n′
5;A′

δv5′A
(n′, n′5)− δv5′A

(n′, n′5 − 1)

=
∑

n′;n′
5;A′

[
− v50(n′, n′5)

(
ωA

′
(n′, n′5 + 1)− ωA′

(n′, n′5)
)

+ v50(n′, n′5 − 1)
(
ωA

′
(n′, n′5)− ωA′

(n′, n′5 − 1)
)]
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=
∑

n′;n′
5;A′

δA
′,A′′

δn′,n′′

[
− v50(n′, n′5)

(
δn′

5+1,n′′
5
− δn′

5,n
′′
5

)
+ v50(n′, n′5 − 1)

(
δn′

5,n
′′
5
− δn′

5−1,n′′
5

)]
ωA

′′
(n′′, n′′5)

=
∑

n′;n′
5;A′

δA
′,A′′

δn′,n′′

[
δn′

5,n
′′
5

(
v̄5(n′5) + v̄5(n′5 − 1)

)
− v̄5(n′5)δn′

5+1,n′′
5

− v̄5(n′5 − 1)δn′
5−1,n′′

5

]
ωA

′′
(n′′, n′′5). (C.53)

As before, in the last line we evaluated the expression at the mean-field values.

In momentum space this is given by

δ̃f5A′ =
∑
n′

5;A′

δA
′,A′′

δ
(4)
p′,p′′

[
δn′

5,n
′′
5

(
v̄5(n′5) + v̄5(n′5 − 1)

)
− v̄5(n′5)δn′

5+1,n′′
5
− v̄5(n′5 − 1)δn′

5−1,n′′
5

]
ωA

′′
(n′′, n′′5).

(C.54)

Therefore,

M(5)

A′,p′,n′
5;A′′,p′′,n′′

5
=
∑
n′

5;A′

δA
′,A′′

δ
(4)
p′,p′′

[
δn′

5,n
′′
5

(
v̄50(n′5) + v̄50(n′5 − 1)

)
− v̄50(n′5)δn′

5+1,n′′
5
− v̄50(n′5 − 1)δn′

5−1,n′′
5

]
.

(C.55)

Finally, putting everything together, the Faddeev-Popov determinant that needs

to be included in the first-order corrections to the free energy is given by

D̃FP = det
[
MA′,p′,n′

5;A′′,p′′,n′′
5

]
= det

[∑
µ

M(µ)

A′,p′,n′
5;A′′,p′′,n′′

5
+ γM(5)

A′,p′,n′
5;A′′,p′′,n′′

5

]
.

(C.56)
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Appendix D

Derivations of expressions for

observables in the Mean-Field

Approach

Here, we fill in the gaps in the full derivation of the expressions stated in

Section 4.2.

Before looking at each observable in detail we use a common feature for all of

them which is the property that

Tr
(
O∆

)
= Tr

(
Õ∆̃

)
(D.1)

The argument goes as following: ∆ can be taken to be ∆̃ in Fourier space, by

applying Parseval’s theorem and using the property that the delta function is an

even function.

We start with an expression that looks like∑
x

f(x)g(x) (D.2)

and we go to momentum space

∑
x

f(x)g(x) =
∑
x

∑
p′,p′′

1

N
eip

′xf̃(p′)eip
′′xg̃(p′′)
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D.1. Scalar Mass

=
∑
p′,p′′

1

N
f̃(p′)g̃(p′′)

∑
x

eix(p′′+p′)

=
∑
p′,p′′

f̃(p′)g̃(p′′)δp′,−p′′

=
∑
p′

f̃(p′)g̃(−p′). (D.3)

According to this if g̃(−p′) is an even function then we can say that g̃(−p′) = g̃(p′)

and equivalently for our functions we can say that

Tr
(
O∆

)
= Tr

(
Õ∆̃

)
(D.4)

as our observables O are delta functions that are even functions.

D.1 Scalar Mass

In order to get Eq. (4.36) we first need to find the first derivative of the observable

with respect to one link which is found to be

δTr{P1(m0,m1, ~m23,m5)}
δvMα(n0, n1, ~n23, n5)

= 2δn0,m0δ~n23, ~m23δn5,m5δM,1δα,0

L−1∑
m1=0

δn1,m1

(
v̄5(m5)

)L−1

= 2
P

(0)
1

v̄4(m5)
D(L)(n1)δn0,m0δ~n23, ~m23δn5,m5δM,1δα,0 (D.5)

where P
(0)
1 and D(L)(n1) are the quantities defined in Eq. (4.37) and Eq. (4.38)

respectively. The factor 2 comes from the trace of the identity matrix and the

last delta function comes from the fact that for α = A the trace vanishes.

From Eq. (4.33) it is clear that we need to evaluate the expression

A =
δTr{P1(t0 + t,m′1, ~m

′
23,m5)}

δvM ′
α′

(n′0, n
′
1, ~n

′
23, n

′
5)

δTr{P1(t0,m
′′
1, ~m

′′
23,m5)}

δvM ′′
α′′

(n′′0, n
′′
1, ~n

′′
23, n

′′
5)

(D.6)

which can be easily determined using Eq. (D.5) and it can be shown to be

A =
(

2
P

(0)
1

v̄4(m5)
D(L)(n′1)δn′

0,t0+tδ~n′
23, ~m

′
23
δn′

5,m5
δM ′,1δα′,0

)
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(
2
P

(0)
1

v̄4(m5)
D(L)(n′′1)δn′′

0 ,t0
δ~n′′

23, ~m
′′
23
δn′′

5 ,m5
δM ′′,1δα′′,0

)
=4

(
P

(0)
1

)2

v̄4(m5)2
D(L)(n′1)D(L)(n′′1)δM ′,1δM ′′,1δα′,0δα′′,0δn′

5,m5
δn′′

5 ,m5
δn′

0,t0+tδn′′
0 ,t0
δ~n′

23, ~m
′
23
δ~n′′

23, ~m
′′
23
.

(D.7)

Considering the full expression in Eq. (4.33) and by taking the averaged version

of the observable as in Eq. (D.7) we find the two-point function at first order to

be

C(1)(t;m5) =
1

2
Tr

{
1

T

∑
t0

1

L4

∑
~m′

23, ~m
′′
23

4

(
P

(0)
1

)2

v̄4(m5)2

[
D(L)

(
n′1
)
D(L)

(
n′′1
)
δM ′,1δM ′′,1δa′,0δa′′,0

δn′
5,m5

δn′′
5 ,m5

δn′
0,t0+tδn′′

0 ,t0
δ~n′

23, ~m
′
23
δ~n′′

23, ~m
′′
23

+D(L)
(
n′′1
)
D(L)

(
n′1
)
δM ′,1δM ′′,1δa′,0δa′′,0

δn′
5,m5

δn′′
5 ,m5

δn′
0,t0
δn′′

0 ,t0+tδ~n′
23, ~m

′′
23
δ~n′′

23, ~m
′
23

]
∆−1

}
=

1

2
Tr

{
4

(
P

(0)
1

)2

v̄4(m5)2
D(L)

(
n′1
)
D(L)

(
n′′1
)
δM ′,1δM ′′,1δa′,0δa′′,0δn′

5,m5
δn′′

5 ,m5

1

T

∑
t0

1

L4

∑
~m′

23, ~m
′′
23

(
δn′

0,t0+tδn′′
0 ,t0
δ~n′

23, ~m
′
23
δ~n′′

23, ~m
′′
23

+ δn′
0,t0
δn′′

0 ,t0+tδ~n′
23, ~m

′′
23
δ~n′′

23, ~m
′
23

)
∆−1

}
.

(D.8)

This expression in momentum space is given by

C(1)(t;m5) =
1

2
Tr

{
4

(
P

(0)
1

)2

v̄4(m5)2

1

TL3

∑
n′,n′′

eip
′
0n

′
0e−ip

′′
0n

′′
0 eip

′
1n

′
1e−ip

′′
1n

′′
1 ei~p

′
23~n

′
23e−i~p

′′
23~n

′′
23

D(L)
(
n′1
)
D(L)

(
n′′1
)
δM ′,1δM ′′,1δa′,0δa′′,0δn′

5,m5
δn′′

5 ,m5

1

T

∑
t0

1

L4

∑
~m′

23, ~m
′′
23(

δn′
0,t0+tδn′′

0 ,t0
δ~n′

23, ~m
′
23
δ~n′′

23, ~m
′′
23

+ δn′
0,t0
δn′′

0 ,t0+tδ~n′
23, ~m

′′
23
δ~n′′

23, ~m
′
23

)
∆̃−1

}
=

1

2
Tr

{
4

1

TL3

(
P

(0)
1

)2

v̄4(m5)2
δM ′,1δM ′′,1δa′,0δa′′,0δn′

5,m5
δn′′

5 ,m5

∑
n′

1,n
′′
1

eip
′
1n

′
1e−ip

′′
1n

′′
1

D(L)
(
n′1
)
D(L)

(
n′′1
)[ 1

T

∑
t0

1

L4

∑
~m′

23, ~m
′′
23

∑
n′

0,n
′′
0

∑
~n′

23,~n
′′
23

eip
′
0n

′
0e−ip

′′
0n

′′
0 ei~p

′
23~n

′
23e−i~p

′′
23~n

′′
23

(
δn′

0,t0+tδn′′
0 ,t0
δ~n′

23, ~m
′
23
δ~n′′

23, ~m
′′
23

+ δn′
0,t0
δn′′

0 ,t0+tδ~n′
23, ~m

′′
23
δ~n′′

23, ~m
′
23

)]
∆̃−1

}
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=
1

2
Tr

{
4

1

N(4)

(
P

(0)
1

)2

v̄4(m5)2
δM ′,1δM ′′,1δa′,0δa′′,0δn′

5,m5
δn′′

5 ,m5
D(L)

(
p′1
)
D(L)

(
-p′′1
)

1

T

∑
t0

1

L4

∑
~m′

23, ~m
′′
23

(
eip

′
0(t0+t)e−ip

′′
0 t0ei~p

′
23 ~m

′
23e−i~p

′′
23 ~m

′′
23

+ eip
′
0t0e−ip

′′
0 (t0+t)ei~p

′
23 ~m

′′
23e−i~p

′′
23 ~m

′
23

)
∆̃−1

}
=

1

2
Tr

{
4

1

N(4)

(
P

(0)
1

)2

v̄4(m5)2
δM ′,1δM ′′,1δa′,0δa′′,0δn′

5,m5
δn′′

5 ,m5
D(L)

(
p′1
)
D(L)

(
-p′′1
)

1

T

∑
t0

1

L4

∑
~m′

23, ~m
′′
23

(
ei(p

′
0−p′′0 )t0eip

′
0tei~p

′
23 ~m

′
23e−i~p

′′
23 ~m

′′
23

+ ei(p
′
0−p′′0 )t0e−ip

′′
0 tei~p

′
23 ~m

′′
23e−i~p

′′
23 ~m

′
23

)
∆̃−1

}
=

1

2
Tr

{
4

1

N(4)

(
P

(0)
1

)2

v̄4(m5)2
δM ′,1δM ′′,1δa′,0δa′′,0δn′

5,m5
δn′′

5 ,m5
D(L)

(
p′1
)
D(L)

(
-p′′1
)

(
δp′0,p′′0 eip

′
0tδ~p′23,0

δ~p′′23,0
+ δp′0,p′′0 e−ip

′′
0 tδ~p′23,0

δ~p′′23,0

)
K̃−1

}
=

4

N(4)

(
P

(0)
1

)2

v̄4(m5)2

∑
p′0

cos(p′0t)∑
p′1

|D̃L
(
p′1
)
|2∆̃−1

(
(p′0, p

′
1,~023,m5), 1, 0; (p′0, p

′
1,~023,m5), 1, 0

)
(D.9)

where D̃L
(
p′1
)

is defined in Eq. (4.40).

D.2 Static Potential

In order to find the first-order corrections to the Wilson loop as given in Eq. (4.46)

and consequently to be able to measure the static quark-antiquark potential, we

first need to calculate the first and second derivative of the temporal line defined in

Eq. (4.42) with respect to the matrix V . Before showing the resultant derivatives,

we define the functions G(t′) and G ′(t′; t′′) to be

G(t′) =

t0+t−1∏
m0=t0

(
v̄4(m5)1+v0α(m0,m1, ~m23,m5)σα

)(
v̄4(m5)1+v0α(t′,m1, ~m23,m5)σα

)−1

(D.10)
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D.2. Static Potential

G ′(t′; t′′) =

t0+t−1∏
m0=t0

(
v̄4(m5)1 + v0α(m0,m1, ~m23,m5)σα

)
(
v̄4(m5)1 + v0α(t′,m1, ~m23,m5)σα

)−1(
v̄4(m5)1 + v0α(t′′,m1, ~m23,m5)σα

)−1
.

(D.11)

When they are evaluated at the mean-field values we get

G(t′)
∣∣
V̄

= v̄4(m5)t−1 (D.12)

G(t′; t′′)
∣∣
V̄

= v̄4(m5)t−2. (D.13)

The first derivative is calculated to be

δl(t)(t0, r, ~m23,m5)

δvMα(n)
=

(
δv00(t0, r, ~m23,m5)1

δvMα(n)
+
iδv0A(t0, r, ~m23,m5)σA

δvMα(n)

)
G(t0)

+

(
δv00(t0 + 1, r, ~m23,m5)1

δvMα(n)
+
iδv0A(t0 + 1, r, ~m23,m5)σA

δvMα(n)

)
G(t0 + 1) + . . .

+

(
δv00(t0 + t− 1, r, ~m23,m5)1

δvMα(n)
+
iδv0A(t0 + t− 1, r, ~m23,m5)σA

δvMα(n)

)
G(t0 + t− 1)

= δM,0δn1,rδ~n23, ~m23δn5,m5

[(
δα,0δn0,t0 + iσAδα,Aδn0,t0

)
G(t0)

+
(
δα,0δn0,t0+1 + iσAδα,Aδn0,t0+1

)
G(t0 + 1) + . . .

+
(
δα,0δn0,t0+t−1 + iσAδα,Aδn0,t0+t−1

)
G(t0 + t− 1)

]
= δM,0δn1,rδ~n23, ~m23δn5,m5

(
δα,0 + iδα,Aσ

A
)[
δn0,t0G(t0) + δn0,t0+1G(t0 + 1) + . . .

+ δn0,t0+t−1G(t0 + t− 1)
]
. (D.14)

Similarly, the first derivative l(t)†(t0, r, ~m23,m5) is given by

δl(t)†(t0, r, ~m23,m5)

δvMα(n)
= δM,0δn1,rδ~n23, ~m23δn5,m5

(
δα,0 − iδα,AσA

)
[
δn0,t0G(t0) + δn0,t0+1G(t0 + 1) + . . .+ δn0,t0+t−1G(t0 + t− 1)

]
.

(D.15)

137



D.2. Static Potential

The second derivative of the temporal line is found to be

δ2l(t)(t0, r, ~m23,m5)

δvM ′′
α′′

(n′′)δvM ′
α′

(n′)
= δM ′,0δn′

1,r
δ~n′

23, ~m23
δn′

5,m5

(
δα′,01 + iδα′,Aσ

A
)[
δn′

0,t0
δM ′′,0δn′′

1 ,r

δ~n′′
23, ~m23

δn′′
5 ,m5

(
δα′′,01 + iδα′′,Bσ

B
)[
δn′′

0 ,t0+1G ′(t0; t0 + 1) + δn′′
0 ,t0+2G ′(t0; t0 + 2) + . . .

+ δn′′
0 ,t0+t−1G ′(t0; t0 + t− 1)

]
+ δn′

0,t0+1δM ′′,0δn′′
1 ,r
δ~n′′

23, ~m23
δn′′

5 ,m5

(
δα′′,01 + iδα′′,Bσ

B
)[

δn′′
0 ,t0
G ′(t0 + 1; t0) + δn′′

0 ,t0+2G ′(t0 + 1; t0 + 2) + . . .+ δn′′
0 ,t0+t−1G ′(t0 + 1; t0 + t− 1)

]
+ . . .+ δn′

0,t0+t−1δM ′′,0δn′′
1 ,r
δ~n′′

23, ~m23
δn′′

5 ,m5

(
δα′′,01 + iδα′′,Bσ

B
)[
δn′′

0 ,t0
G ′(t0 + t− 1; t0)

+ δn′′
0 ,t0+1G ′(t0 + t− 1; t0 + 1) + . . .+ δn′′

0 ,t0+t−2G ′(t0 + t− 1; t0 + t− 2)
]]

= δM ′,0δM ′′,0δn′
1,r
δn′′

1 ,r
δ~n′

23, ~m23
δ~n′′

23, ~m23
δn′

5,m5
δn′′

5 ,m5

(
δα′,01 + iδα′,Aσ

A
)(
δα′′,01 + iδα′′,Bσ

B
)[

δn′
0,t0

(
δn′′

0 ,t0+1G ′(t0; t0 + 1) + δn′′
0 ,t0+2G ′(t0; t0 + 2) + . . .+ δn′′

0 ,t0+t−1G ′(t0; t0 + t− 1)
)

+ δn′
0,t0+1

(
δn′′

0 ,t0
G ′(t0 + 1; t0) + δn′′

0 ,t0+2G ′(t0 + 1; t0 + 2) + . . .

+ δn′′
0 ,t0+t−1G ′(t0 + 1; t0 + t− 1)

)
+ . . .+ δn′

0,t0+t−1

(
δn′′

0 ,t0
G ′(t0 + t− 1; t0)

+ δn′′
0 ,t0+1G ′(t0 + t− 1; t0 + t) + . . .+ δn′′

0 ,t0+t−2G ′(t0 + t− 1; t0 + t− 2)
)]
.

(D.16)

Using similar arguments we can say that

δ2l(t)†(t0, r, ~m23,m5)

δvM ′′
α′′

(n′′)δvM ′
α′

(n′)
= δM ′,0δM ′′,0δn′

1,r
δn′′

1 ,r
δ~n′

23, ~m23
δ~n′′

23, ~m23
δn′

5,m5
δn′′

5 ,m5

(
δα′,01− iδα′,Aσ

A
)(
δα′′,01− iδα′′,Bσ

B
)[
δn′

0,t0

(
δn′′

0 ,t0+1G ′(t0; t0 + 1)

+ δn′′
0 ,t0+2G ′(t0; t0 + 2) + . . .+ δn′′

0 ,t0+t−1G ′(t0; t0 + t− 1)
)

+ δn′
0,t0+1

(
δn′′

0 ,t0
G ′(t0 + 1; t0) + δn′′

0 ,t0+2G ′(t0 + 1; t0 + 2) + . . .

+ δn′′
0 ,t0+t−1G ′(t0 + 1; t0 + t− 1)

)
+ . . .+ δn′

0,t0+t−1

(
δn′′

0 ,t0
G ′(t0 + t− 1; t0)

+ δn′′
0 ,t0+1G ′(t0 + t− 1; t0 + t) + . . .+ δn′′

0 ,t0+t−2G ′(t0 + t− 1; t0 + t− 2)
)]
.

(D.17)

It is clear now that we have all the derivatives that appear in Eq.(4.46) so we can
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evaluate the whole expression. In fact, for our convenience we evaluate lines one

by one calling them L1 − L4. So we have

L1 =Tr

{
δM ′,0δn′

1,0
δ~n′

23, ~m23
δn′

5,m5

(
δα′,01 + iδα′,Aσ

A
)(
δn′

0,t0
G(t0) + δn′

0,t0+1G(t0 + 1)

+ . . .+ δn′
0,t0+t−1G(t0 + t− 1)

)
l(r)(t0 + t, ~m23,m5)

δM ′′,0δn′′
1 ,r
δ~n′′

23, ~m23
δn′′

5 ,m5

(
δα′′,01− iδα′′,Bσ

B
)(
δn′′

0 ,t0
G(t0) + δn′′

0 ,t0+1G(t0 + 1)

+ . . .+ δn′′
0 ,t0+t−1G(t0 + t− 1)

)
l(r)†(t0, ~m23,m5)

}∣∣∣∣
V̄

=2v̄4(m5)2(t+r)−2δM ′,0δM ′′,0δn′
1,0
δn′′

1 ,r
δ~n′′

23, ~m23
δ~n′′

23, ~m23
δn′

5,m5
δn′′

5 ,m5(
δα′,0δα′′,0 + δα′,Aδα′′,A

)(
δn′

0,t0
+ δn′

0,t0+1 + . . .+ δn′
0,t0+t−1

)(
δn′′

0 ,t0
+ δn′′

0 ,t0+1 + . . .+ δn′′
0 ,t0+t−1

)
. (D.18)

Similarly, the second line in Eq.(4.46) is given by

L2 =2v̄4(m5)2(t+r)−2δM ′,0δM ′′,0δn′
1,r
δn′′

1 ,0
δ~n′′

23, ~m23
δ~n′′

23, ~m23
δn′

5,m5
δn′′

5 ,m5(
δα′,0δα′′,0 + δα′,Aδα′′,A

)(
δn′′

0 ,t0
+ δn′′

0 ,t0+1 + . . .+ δn′′
0 ,t0+t−1

)(
δn′

0,t0
+ δn′

0,t0+1 + . . .+ δn′
0,t0+t−1

)
. (D.19)

Using the second derivative in Eq. (D.16) the third line reads as

L3 =Tr

{
δM ′,0δM ′′,0δn′

1,0
δn′′

1 ,0
δ~n′′

23, ~m23
δ~n′′

23, ~m23
δn′

5,m5
δn′′

5 ,m5

(
δα′,01 + iδα′,Aσ

A
)

(
δα′,01 + iδα′,Bσ

B
)[
δn′

0,t0

(
δn′′

0 ,t0+1G ′(t0; t0 + 1) + δn′′
0 ,t0+2G ′(t0; t0 + 2) + . . .

+ δn′′
0 ,t0+t−1G ′(t0; t0 + t− 1)

)
+ δn′

0,t0+1

(
δn′′

0 ,t0
G ′(t0 + 1; t0)

+ δn′′
0 ,t0+2G ′(t0 + 1; t0 + 2) + . . .+ δn′′

0 ,t0+t−1G ′(t0 + 1; t0 + t− 1)
)

+ . . .

+ δn′
0,t0+t−1

(
δn′′

0 ,t0
G ′(t0 + t− 1; t0) + δn′′

0 ,t0+1G ′(t0 + t− 1; t0 + t)

+ . . .+ δn′′
0 ,t0+t−2G ′(t0 + t− 1; t0 + t− 2)

)]
l(r)(t0 + t, ~m23,m5)

l(t)†(t0, r, ~m23,m5)l(r)†(t0, ~m23,m5)

}∣∣∣∣
V̄

=2v̄4(m5)2(t+r)−2δM ′,0δM ′′,0δn′
1,0
δn′′

1 ,0
δ~n′′

23, ~m23
δ~n′′

23, ~m23
δn′

5,m5
δn′′

5 ,m5
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(
δα′,0δα′′,0 − δα′,Aδα′′,A

)(
δn′

0,t0

(
δn′′

0 ,t0+1 + δn′′
0 ,t0+2 + . . .+ δn′′

0 ,t0+t−1

)
+ δn′

0,t0+1

(
δn′′

0 ,t0
+ δn′′

0 ,t0+2 + . . .+ δn′′
0 ,t0+t−1

)
+ . . .

+ δn′
0,t0+t−1

(
δn′′

0 ,t0
+ δn′′

0 ,t0+1 + . . .+ δn′′
0 ,t0+t−2

))
. (D.20)

Using similar arguments

L4 =2v̄4(m5)2(t+r)−2δM ′,0δM ′′,0δn′
1,r
δn′′

1 ,r
δ~n′′

23, ~m23
δ~n′′

23, ~m23
δn′

5,m5
δn′′

5 ,m5(
δα′,0δα′′,0 − δα′,Aδα′′,A

)(
δn′

0,t0

(
δn′′

0 ,t0+1 + δn′′
0 ,t0+2 + . . .+ δn′′

0 ,t0+t−1

)
+ δn′

0,t0+1

(
δn′′

0 ,t0
+ δn′′

0 ,t0+2 + . . .+ δn′′
0 ,t0+t−1

)
+ . . .

+ δn′
0,t0+t−1

(
δn′′

0 ,t0
+ δn′′

0 ,t0+1 + . . .+ δn′′
0 ,t0+t−2

))
. (D.21)

Putting everything together, according to Eq. (4.44) with the observable under

consideration to be the averaged Wilson loop, the first-order corrections to the

latter in coordinate space are given by

O
(1)
W =

1

2

1

T

∑
t0

1

L2

∑
~m23

Tr

{
2v̄4(m5)2(t+r)−2δM ′,0δM ′′,0δ~n′′

23, ~m23
δ~n′′

23, ~m23
δn′

5,m5
δn′′

5 ,m5[(
δα′,0δα′′,0 + δα′,Aδα′′,A

)(
δn′

1,0
δn′′

1 ,r
+ δn′

1,r
δn′′

1 ,0

)
(
δn′

0,t0
+ δn′

0,t0+1 + . . .+ δn′
0,t0+t−1

)(
δn′′

0 ,t0
+ δn′′

0 ,t0+1 + . . .+ δn′′
0 ,t0+t−1

)
+
(
δα′,0δα′′,0 − δα′,Aδα′′,A

)(
δn′

1,0
δn′′

1 ,0
+ δn′

1,r
δn′′

1 ,r

)(
δn′

0,t0

(
δn′′

0 ,t0+1 + δn′′
0 ,t0+2 + . . .+ δn′′

0 ,t0+t−1

)
+ δn′

0,t0+1

(
δn′′

0 ,t0
+ δn′′

0 ,t0+2 + . . .+ δn′′
0 ,t0+t−1

)
+ . . .

+ δn′
0,t0+t−1

(
δn′′

0 ,t0
+ δn′′

0 ,t0+1 + . . .+ δn′′
0 ,t0+t−2

))]
∆−1

}
. (D.22)

In momentum space this is found to be

O
(1)
W =

1

T

∑
t0

1

L2

∑
~m23

Tr

{
v̄4(m5)2(t+r)−2δM ′,0δM ′′,0δ~n′′

23, ~m23
δ~n′′

23, ~m23
δn′

5,m5
δn′′

5 ,m5

1

TL3

∑
n′

0,n
′′
0

eip
′
0n

′
0e−ip

′′
0n

′′
0

∑
n′

1,n
′′
1

eip
′
1n

′
1e−ip

′′
1n

′′
1

∑
~n′

23,~n
′′
23

ei~p
′
23~n

′
23e−i~p

′′
23~n

′′
23
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[(
δα′,0δα′′,0 + δα′,Aδα′′,A

)(
δn′

1,0
δn′′

1 ,r
+ δn′

1,r
δn′′

1 ,0

)
(
δn′

0,t0
+ δn′

0,t0+1 + . . .+ δn′
0,t0+t−1

)(
δn′′

0 ,t0
+ δn′′

0 ,t0+1 + . . .+ δn′′
0 ,t0+t−1

)
+
(
δα′,0δα′′,0 − δα′,Aδα′′,A

)(
δn′

1,0
δn′′

1 ,0
+ δn′

1,r
δn′′

1 ,r

)(
δn′

0,t0

(
δn′′

0 ,t0+1 + δn′′
0 ,t0+2 + . . .+ δn′′

0 ,t0+t−1

)
+ δn′

0,t0+1

(
δn′′

0 ,t0
+ δn′′

0 ,t0+2 + . . .+ δn′′
0 ,t0+t−1

)
+ . . .

+ δn′
0,t0+t−1

(
δn′′

0 ,t0
+ δn′′

0 ,t0+1 + . . .+ δn′′
0 ,t0+t−2

)]
∆̃−1

}
=
v̄4(m5)2(t+r)−2

N(4)

Tr

{
δM ′,0δM ′′,0δn′

5,m5
δn′′

5 ,m5

1

L2

∑
~m23

ei~p
′
23 ~m

′
23e−i~p

′′
23 ~m

′′
23

1

T

∑
t0

[(
δα′,0δα′′,0 + δα′,Aδα′′,A

)(
eip

′
10e−ip

′′
1 r + eip

′
1re−ip

′′
1 0
)

(
eip

′
0t0 + eip

′
0(t0+1) + . . .+ eip

′
0(t0+t−1)

)(
e−ip

′′
0 t0 + e−ip

′′
0 (t0+1) + . . .+ e−ip

′′
0 (t0+t−1)

)
+
(
δα′,0δα′′,0 − δα′,Aδα′′,A

)(
eip

′
10e−ip

′′
1 0 + eip

′
1re−ip

′′
1 r
)[

eip
′
0t0
(
e−ip

′′
0 (t0+1) + e−ip

′′
0 (t0+2) + . . .+ e−ip

′′
0 (t0+t−1)

)
+ eip

′
0(t0+1)

(
e−ip

′′
0 t0 + e−ip

′′
0 (t0+2) + . . .+ e−ip

′′
0 (t0+t−1)

)
+ . . .

+ eip
′
0(t0+t−1)

(
e−ip

′′
0 t0 + e−ip

′′
0 (t0+1) + . . .+ e−ip

′′
0 (t0+t−2)

)]]
∆̃−1

}
=
v̄4(m5)2(t+r)−2

N(4)

Tr

{
δM ′,0δM ′′,0δn′

5,m5
δn′′

5 ,m5
δ~p′23,~p

′′
23

[(
δα′,0δα′′,0 + δα′,Aδα′′,A

)
(
eip

′
10e−ip

′′
1 r + eip

′
1re−ip

′′
1 0
) 1

T

∑
t0

(
ei(p

′
0−p′′0 )t0

(
1 + e−ip

′′
0 + . . .+ e−ip

′′
0 (t−1)

)
+ ei(p

′
0−p′′0 )t0

(
eip

′
0 + eip

′
0e−ip

′′
0 + . . .+ eip

′
0e−ip

′′
0 (t−1)

)
+ . . .

+ ei(p
′
0−p′′0 )t0

(
eip

′
0(t−1) + eip

′
0(t−1)e−ip

′′
0 + . . .+ eip

′
0(t−1)e−ip

′′
0 (t−1)

))
+
(
δα′,0δα′′,0 − δα′,Aδα′′,A

)(
eip

′
10e−ip

′′
1 0 + eip

′
1re−ip

′′
1 r
)

1

T

∑
t0

(
ei(p

′
0−p′′0 )t0

(
e−ip

′′
0 + e−i2p

′′
0 + . . .+ e−ip

′′
0 (t−1)

)
+ ei(p

′
0−p′′0 )t0

(
eip

′
0 + eip

′
0e−i2p

′′
0 + . . .+ eip

′
0e−ip

′′
0 (t−1)

)
+ . . .

+ ei(p
′
0−p′′0 )t0

(
eip

′
0(t−1) + eip

′
0(t−1)e−ip

′′
0 + . . .+ eip

′
0(t−1)e−ip

′′
0 (t−2)

))]
∆̃−1

}
=
v̄4(m5)2(t+r)−2

N(4)

Tr

{
δM ′,0δM ′′,0δn′

5,m5
δn′′

5 ,m5
δ~p′23,~p

′′
23
δp′0,p′′0 δp′1,p′′1
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[
2 cos(p1r)

(
δα′,0δα′′,0 + δα′,Aδα′′,A

)(
1 + e−ip

′
0 + . . .+ e−ip

′
0(t−1) + eip

′
0 + 1 + . . .

+ e−ip
′
0(t−2) + . . .+ eip

′
0(t−1) + eip

′
0(t−2) + . . .+ 1

)
+ 2
(
δα′,0δα′′,0 − δα′,Aδα′′,A

)(
e−ip

′
0 + e−i2p

′
0 + . . .+ e−ip

′
0(t−1) + eip

′
0 + e−ip

′
0 + . . .

+ e−ip
′
0(t−2) + . . .+ eip

′
0(t−1) + eip

′
0(t−2) + . . .+ eip

′
0
)]

∆̃−1

}
. (D.23)

The above equation has two main products that are added together, one in lines

2-3 and the other in lines 4-5. To find a neat expression for the Wilson loop as

t→∞, we take a closer look at the temporal term of each product. By inspection,

it is clear that the first termporal term, f1(t) and the second temporal term f2(t)

can be written as

f1(t) = t+ 2
t−1∑
n=1

(t− n) cos(np′0) (D.24)

f2(t) = 2
t−1∑
n=1

(t− n) cos(np′0). (D.25)

We recall two formulas from basic algebra as given below

N∑
n=1

cos(an) =
cos
(a(N+1)

2

)
sin
(
aN
2

)
sin a

2

(D.26)

N∑
n=1

sin(an) =
cos a

2
− cos

(
(N + 1

2
)a
)

2 sin a
2

(D.27)

and taking the derivative of Eq. (D.27) with respect to a we can find

N∑
n=1

n cos(an) = −1

4
+

(
N + 1

2

)
2

sin
(
a(N + 1

2
)
)

sin a
2

−
cos a

2

4 sin2 a
2

(
cos

a

2
−cos

(
(N+

1

2
)a
))
.

(D.28)

Using the above expressions the temporal terms can be written as

f1(t) =

(
1− cos(tp′0)

)
2 sin2 p′0

2

(D.29)

and

f2(t) =

(
1− cos(tp′0)

)
2 sin2 p′0

2

− t. (D.30)
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In Chapter 4 we discussed that the static potential can be extracted from the

Wilson loop when the limit t → ∞ is taken. Therefore, we are interested in the

values of the temporal terms in this specific limit. The function f1(t) is a periodic

function with a period of 2π and it shows a peak at the origin which is given by

t2 in the large t limit. Hence, in this limit we can express both f1(t) and f2(t) as

t2δp0′,0.

Putting everything together, we can say that the first-order corrections of the

Wilson loop in the limit t→∞ can be written as

O
(1)
W =

v̄4(m5)2(t+r)−2

N(4)

Tr

{
δM ′,0δM ′′,0δn′

5,m5
δn′′

5 ,m5
δ~p′23,~p

′′
23
δp′0,0δp′0,p′′0 δp′1,p′′1[

2 cos(p1r)t
2
(
δα′,0δα′′,0 + δα′,Aδα′′,A

)
+ 2t2

(
δα′,0δα′′,0 − δα′,Aδα′′,A

)]
∆̃−1

}
=
v̄4(m5)2(t+r)−2

N(4)

t2
∑

p′1,p
′
2,p

′
3

δp′0,0[(
2 cos(p′1r) + 2

)
∆̃−1

(
(0, p′1, ~p23,m5), 0, 0; (0, p′1, ~p23,m5), 0, 0

)
+ 3
(
2 cos(p′1r)− 2

)
∆̃−1

(
(0, p′1, ~p23,m5), 0, 1; (0, p′1, ~p23,m5), 0, 1

)]
.

(D.31)
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Appendix E

Further results from the warped

model

E.1 Fits of the measured static potential to

different functional forms

In the figures below we show the fits of the static potential for different layers for

β = 2.50, γ = 1.00, k = 0.10 and N5 = 8.
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Figure E.1: Fits to the static potential for β = 2.50, γ = 1.00, k = 0.10 and
N5 = 8 using various potential forms for n5 = 2.
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n
4

2 4 6 8 10 12 14 16

a
4
V

4

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

n
5
=4

MF points
5D Coulomb
5D Yukawa
4D Coulomb
4D Yukawa

Figure E.2: Fits to the static potential for β = 2.50, γ = 1.00, k = 0.10 and
N5 = 8 using various potential forms for n5 = 4.
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Figure E.3: Fits to the static potential for β = 2.50, γ = 1.00, k = 0.10 and
N5 = 8 using various potential forms for n5 = 6.
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Figure E.4: Fits to the static potential for β = 2.50, γ = 1.00, k = 0.10 and
N5 = 8 using various potential forms for n5 = 8.

E.2 Fitting parameters of the potential

The values of the fitting parameters for different functional forms of the potential

as given in Table 4.2 are shown here. R2(adj) is the adjusted to degrees of freedom

determining the goodness of the fit. R2 is found by

R2 = 1− RSS

SST
(E.1)

where RSS is called the residual sum of squares and it measures the deviation of

the response values from the fit to the response values, i.e.

RSS =
∑
i

(yfiti − yi)2 (E.2)

and SST is the sum of squares of the response values about their mean, i.e.

SST =
∑
i

(yi − ȳ)2. (E.3)

The adjusted R2 takes into account the number of fitting parameters, d, and the

number of measurements, n, and gives a better estimation of the goodness of the
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E.2. Fitting parameters of the potential

fit. In particular it multiplies the ratio RSS/SST by the factor (n−1)/(n−d−1).

Layer Type of potential a b mY R2(adj)
n5 = 1 5D Coulombic 0.3041 0.04644 - 0.9902

5D Yukawa 0.304 0.002648 0.0568 0.9889
4D Coulombic 0.3094 0.04726 - 0.9622

4D Yukawa 0.3042 0.06752 0.3943 0.999

n5 = 2 5D Coulombic 0.3067 0.04745 - 0.9894
5D Yukawa 0.3065 0.004111 0.0860 0.9874

4D Coulombic 0.3122 0.04833 - 0.9636
4D Yukawa 0.3069 0.06837 0.3854 0.999

n5 = 3 5D Coulombic 0.3099 0.04879 - 0.9881
5D Yukawa 0.3097 0.00399 0.0811 0.9861

4D Coulombic 0.3156 0.04978 - 0.9658
4D Yukawa 0.3102 0.06931 0.3712 0.9999

n5 = 4 5D Coulombic 0.314 0.05005 - 0.9861
5D Yukawa 0.3139 0.002075 0.04096 0.9847

4D Coulombic 0.3199 0.05171 - 0.9689
4D Yukawa 0.3143 0.07043 0.3516 0.9999

n5 = 5 5D Coulombic 0.3191 0.05299 - 0.9829
5D Yukawa 0.3191 0.002066 0.03898 0.9813

4D Coulombic 0.3254 0.05439 - 0.9732
4D Yukawa 0.3197 0.07182 0.3237 0.9999

n5 = 6 5D Coulombic 0.3261 0.05661 - 0.9771
5D Yukawa 0.3261 0.002005 0.03539 0.975

4D Coulombic 0.3329 0.05845 - 0.9796
4D Yukawa 0.327 0.07358 0.2806 0.9999

n5 = 7 5D Coulombic 0.3364 0.06296 - 0.9625
5D Yukawa 0.3364 0.001004 0.01594 0.9595

4D Coulombic 0.3441 0.06579 - 0.9903
4D Yukawa 0.3383 0.07587 0.1991 0.9999

n5 = 8 5D Coulombic 0.3357 0.0621 - 0.9667
5D Yukawa 0.3357 0.00161 0.02591 0.964

4D Coulombic 0.3432 0.06467 - 0.9873
4D Yukawa 0.3372 0.07649 0.2231 0.9999

Table E.1: Fitting parameters for β = 2.30, γ = 0.505, k = 0.10 for T = L = 32,
N5 = 8.
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E.2. Fitting parameters of the potential

Layer Type of potential a b mY R2(adj)
n5 = 1 5D Coulombic 0.3045 0.04707 - 0.9903

5D Yukawa 0.3044 0.0041 0.08615 0.9884
4D Coulombic 0.3067 0.04188 - 0.9281

4D Yukawa 0.3045 0.06593 0.3648 0.9995

n5 = 2 5D Coulombic 0.3071 0.04812 - 0.9895
5D Yukawa 0.3071 0.00192 0.03984 0.9888

4D Coulombic 0.3094 0.04287 - 0.9297
4D Yukawa 0.3072 0.06669 0.3553 0.9995

n5 = 3 5D Coulombic 0.3104 0.04954 - 0.9881
5D Yukawa 0.3104 0.001831 0.03691 0.9874

4D Coulombic 0.3128 0.04424 - 0.9327
4D Yukawa 0.3105 0.06777 0.3431 0.9996

n5 = 4 5D Coulombic 0.3146 0.05144 - 0.986
5D Yukawa 0.3145 0.002669 0.05164 0.9848

4D Coulombic 0.3171 0.04609 - 0.9371
4D Yukawa 0.3147 0.0689 0.3239 0.9996

n5 = 5 5D Coulombic 0.3199 0.03905 - 0.9815
5D Yukawa 0.3199 0.002177 0.03898 0.9813

4D Coulombic 0.3225 0.04871 - 0.9435
4D Yukawa 0.3201 0.0702 0.2955 0.9996

n5 = 6 5D Coulombic 0.3272 0.05811 - 0.9757
5D Yukawa 0.3271 0.001402 0.0241 0.9749

4D Coulombic 0.3306 0.05278 - 0.9535
4D Yukawa 0.3274 0.07211 0.2546 0.9997

n5 = 7 5D Coulombic 0.3382 0.06547 - 0.9581
5D Yukawa 0.3382 0.001068 0.0163 0.9595

4D Coulombic 0.3415 0.06056 - 0.9723
4D Yukawa 0.3388 0.0748 0.1789 0.9998

n5 = 8 5D Coulombic 0.3369 0.06379 - 0.9576
5D Yukawa 0.3369 0.001886 0.02953 0.9657

4D Coulombic 0.3401 0.05837 - 0.9793
4D Yukawa 0.3373 0.07642 0.2214 0.9999

Table E.2: Fitting parameters for β = 2.30, γ = 0.505, k = 0.10 for T = L = 100,
N5 = 8.
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Appendix F

Mathematical Framework for

fermions in a warped

background

F.1 Vielbeins

This section is based on [82]. From standard Differential Geometry, we know that

a differential basis for a tangent space Tp is spanned by

êM = ∂M (F.1)

and we can write any vector in this basis as V = V M êM . Similarly, for a cotangent

space, T ∗p we have a differential basis that can be written as

êM = dxM (F.2)

and they are usually referred to as the coordinate basis as they depend on the

position.

In a curved manifold, it is desired to define a basis which is independent of the

coordinates. This basis is usually called local or non-coordinate basis and is

spanned by basis vector êa such that they obey the signature of the manifold,
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F.2. Spin Connections

i.e.

êa · êb = ηab. (F.3)

With same arguments a similar non-coordinate basis can be defined for the

cotangent space. Now, one can relate the coordinate and non-coordinate bases

using

êM(x) = e a
M (x)êa (F.4)

where the matrix e a
M (x) is called the vielbein and it is an invertible matrix. We

use capital Roman letters, M,N,P..., to denote the components in the coordinate

space and small latin, a, b, c... for components in the local space. The vielbeins

have the following orthonormality conditions

eMa(x)e a
N (x) = δMN e a

M (x)eMb(x) = δa b (F.5)

and satisfy

gMN(x) = e a
M e a

N ηab. (F.6)

One uses vielbeins to transform components of vectors expressed in coordinate

basis to the non-coordinate basis and vice versa. For example,

V M = eMaV
a and V a = e a

M V M . (F.7)

Finally, we can use the general coordinate-dependent metric, gMN to raise or

lower coordinate space indices (M,N,P...) and the Minkowski metric, ηMN to do

this on non-coordinate space indices (a, b, c...).

F.2 Spin Connections

In standard GR, we know that affine connections are introduced to absorb the

effect of the curvature of a manifold when trying to look at a local point. The

aforementioned are objects that depend on the coordinates. The equivalent in

non-coordinate space is given by the spin connection, ΩM . In the case of fermions,

which are spinors of the Lorentz group, the spin connection can be found using
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F.2. Spin Connections

Ωab
Mσab with σab = 1

4
[γa, γb] and it is defined as

Ωab
Mσab =

(1

2
eNa(∂Me

b
N−∂NebM)−1

2
eNb(∂Me

a
N−∂NeaM)−1

2
ePaeQb(∂P eQC−∂QePc)ecM

)
σab

(F.8)

F.2.1 Derivations of spin connections for the warped

case

The full derivations for Ωab
µ σab and Ωab

5 σab are given here.

Ωab
µ γaγb =

(1

2
eNa(∂µe

b
N − ∂Nebµ)− 1

2
eNb(∂µe

a
N − ∂Neaµ)

− 1

2
ePaeQb(∂P eQc − ∂QePc)ecµ

)
γaγb

=
(
− 1

2
e5a∂5e

b
µ +

1

2
e5b∂5e

a
µ −

1

2
e5aeνb(∂5eνc)e

c
µ +

1

2
eνae5b(∂5eνc)e

c
µ

)
γaγb

=
(1

2

f(y)′

2
√
f(y)

(
e5bδaµ − e5aδbµ

)
− 1

2
ηade5

dη
beeνe(∂5ηcfe

f
ν)e

c
µ +

1

2
ηadeνdη

bee5
e(∂5ηcfe

f
ν)e

c
µ

)
γaγb

=
( f(y)′

4
√
f(y)

(
ηbce5

cδ
a
µ − ηace5

cδ
b
µ

)
− 1

2

f(y)′

2
√
f(y)

(
ηadδ5

dη
be δνe√

f(y)
ηcfδ

f
ν e

c
µ − ηad

δνd√
f(y)

ηbeδ5
eηcfδ

f
ν e

c
µ

))
γaγb

=
f(y)′

4
√
f(y)

(
δaµγaγ

cδ5
c − δbµγcγbδbµ

)
+

f(y)′

4
√
f(y)

ηcfδ
f
ν δ

c
µ

(
γdδνdγ

eδ5
e − γdδ5

dγ
eδνe
)

=
f(y)′

2
√
f(y)

γµγ
5 +

f(y)′

2
√
f(y)

γµγ
5

=
f(y)′√
f(y)

γµγ
5. (F.9)

The same term arises from evaluating Ωab
µ γbγa with the opposite sign, therefore

we can conclude that

Ωµ ≡
1

2
Ωab
µ σab =

1

4

f(y)′√
f(y)

γµγ
5 (F.10)
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F.3. Dirac operators in momentum space

where γµ and γ5 are the usual gamma matrices in Minkowski spacetime.

Ωab
5 γaγb =

(
1

2
eNa(∂5e

b
N − ∂Neb5)− 1

2
eNb(∂5e

a
N − ∂Nea5)

− 1

2

(
e5aeµb(∂5eµc)e

c
5 − eµae5b(∂5eµc)e

c
5

))
γaγb

=
(1

2

(
eµa∂5e

b
µ − eµb∂5e

a
µ

)
− 1

2
e5aeµb(∂5eµc)e

c
5 +

1

2
eµae5b(∂5eµc)e

c
5

)
γaγb

=
(1

2
eµc η

ca f(y)′

2
√
f(y)

δbµ −
1

2
eµc η

bc f(y)′

2
√
f(y)

δaµ

− 1

2
ηade5

dη
beeµe (∂5ηcfe

f
µ)ec5 +

1

2
ηadeµdη

bee5
e(∂5ηcfe

f
µ)ec5

)
γaγb

=
f(y)′

4f(y)

(
δµc η

caδbµ − δµc ηbcδaµ
)
γaγb

− 1

2

f(y)′

2
√
f(y)

(
ηadδ5

dη
be δµe√

f(y)
ηcfδ

f
µe

c
5 + ηad

δµd√
f(y)

ηbeδ5
eηcfδ

f
µe

c
5

)
γaγb

=
f(y)′

4f(y)
(γµγµ − γµγµ)− f(y)′

4f(y)

(
− η5µγ

5γµ + η5µγ
µγ5
)

=0 (F.11)

Therefore, Ωab
5 σab = 0.

F.3 Dirac operators in momentum space

Here, we show the procedure for going from coordinate space to Fourier

space for the four different Wilson-Dirac operators, evaluated at the mean-field

background, the inverse of which appears in the expressions of the currents in

Eq.(4.79) and Eq(4.80). The Wilson-Dirac operator Mn,n5;n+µ̂,n5 in momentum

space is given by

M̃(1)
p′,n5;p′′,n5

=
∑
n

eip
′ne−ip

′′ne−ip
′′
µf(n5)2

[
−
∑
µ

γµ√
f(n5)

1

2
v̄4(n5)

(
eip

′
µ − e−ip

′
µ
)
δn5,n5

− γ5

2

( v̄5(n5)√
f(n5)

δn5+1,n5 −
v̄5(n5 − 1)√
f(n5 − 1)

δn5−1,n5

)
+
(f(n5)′

f(n5)
γ5 +m

)
δn5,n5
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F.3. Dirac operators in momentum space

+
∑
µ

1

2
√
f(n5)

(
v̄4(n5)eip

′
µ − 2 + v̄4(n5)e−ip

′
µ
)
δn5,n5

)
+

1

2

( v̄5(n5)√
f(n5)

δn5+1,n5 − 2δn5,n5 +
v̄5(n5 − 1)√
f(n5 − 1)

δn5−1,n5

)]
= δ

(4)
p′,p′′e

−ip′µ

[
−
∑
µ

iγµf(n5)3/2v̄4(n5) sin(p′µ)δn5,n5

− γ5

2

(
v̄5(n5)f(n5)3/2δn5+1,n5 −

v̄5(n5 − 1)f(n5)2√
f(n5 − 1)

δn5−1,n5

)
+
(
f(n5)′f(n5)γ5 +m− 4f(n5)3/2

)
δn5,n5

+ f(n5)3/2v̄4(n5)
∑
µ

cos(p′µ)δn5,n5

+
1

2

(
v̄5(n5)f(n5)3/2δn5+1,n5 − 2f(n5)2δn5,n5 +

v̄5(n5 − 1)f(n5)2√
f(n5 − 1)

δn5−1,n5

)]
= δ

(4)
p′,p′′e

−ip′µ

[
v̄4(n5)f(n5)3/2

∑
µ

(
− iγµ sin(p′µ) + cos(p′µ)

)
δn5,n5

+
v̄5(n5)f(n5)3/2

2
(−γ5 + 1)δn5+1,n5 −

v̄5(n5 − 1)f(n5)2

2
√
f(n5 − 1)

(γ5 + 1)δn5−1,n5

)
+
(
f(n5)′f(n5)γ5 +m− 4f(n5)3/2 − f(n5)2

)
δn5,n5

]
(F.12)

and similarly for Mn+µ̂,n5;n,n5 we find

M̃(2)
p′,n5;p′′,n5

= δ
(4)
p′,p′′e

ip′µ

[
v̄4(n5)f(n5)3/2

∑
µ

(
− iγµ sin(p′µ) + cos(p′µ)

)
δn5,n5

+
v̄5(n5)f(n5)3/2

2
(−γ5 + 1)δn5+1,n5 −

v̄5(n5 − 1)f(n5)2

2
√
f(n5 − 1)

(γ5 + 1)δn5−1,n5

)
+
(
f(n5)′f(n5)γ5 − 4f(n5)3/2 + (m− 1)f(n5)2

)
δn5,n5

]
(F.13)

We also find Mn,n5;n,n5+1 in momentum space to be

Mp′,n5;p′′,n5+1 =
∑
n

eip
′ne−ip

′′n

[
−
∑
µ

γµf(n5)3/2 1

2
v̄4(n5)

(
eip

′
µ − e−ip

′
µ
)
δn5,n5+1

− γ5

2

(
v̄5(n5)f(n5)3/2δn5+1,n5+1 −

v̄5(n5 − 1)f(n5)2√
f(n5 − 1)

δn5−1,n5+1

)
+
(
f(n5)′f(n5)γ5 +mf(n5)2

)
δn5,n5+1
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+
∑
µ

f(n5)3/2

2

(
v̄4(n5)eip

′
µ − 2 + v̄4(n5)e−ip

′
µ
)
δn5,n5+1

)
+
f(n5)2

2

( v̄5(n5)√
f(n5)

δn5+1,n5+1 − 2δn5,n5+1 +
v̄5(n5 − 1)√
f(n5 − 1)

δn5−1,n5+1

)]
= δ

(4)
p′,p′′

[
−
∑
µ

iγµf(n5)3/2v̄4(n5) sin(p′µ)δn5,n5+1

− γ5

2

(
v̄5(n5)f(n5)3/2δn5+1,n5+1 −

v̄5(n5 − 1)f(n5)2√
f(n5 − 1)

δn5−1,n5+1

)
+
(
f(n5)′f(n5)γ5 +mf(n5)2 − 4f(n5)3/2

)
δn5,n5+1

+ f(n5)3/2v̄4(n5)
∑
µ

cos(p′µ)δn5,n5+1

+
f(n5)2

2

( v̄5(n5)√
f(n5)

δn5+1,n5+1 − 2δn5,n5+1 +
v̄5(n5 − 1)

2
√
f(n5 − 1)

δn5−1,n5+1

)]
= δ

(4)
p′,p′′

[
v̄4(n5)f(n5)3/2

∑
µ

(
− iγµ sin(p′µ) + cos(p′µ)

)
δn5,n5+1

+
v̄5(n5)f(n5)3/2

2
(−γ5 + 1)δn5+1,n5+1 −

v̄5(n5 − 1)f(n5)2

2
√
f(n5 − 1)

(γ5 + 1)δn5−1,n5+1

)
+
(
f(n5)′f(n5)γ5 − 4f(n5)3/2 + (m− 1)f(n5)2

)
δn5,n5+1

]
(F.14)

and similarly,

Mp′,n5+1;p′′,n5 = δ
(4)
p′,p′′

[
v̄4(n5)f(n5)3/2

∑
µ

(
− iγµ sin(p′µ) + cos(p′µ)

)
δn5+1,n5

+
v̄5(n5)f(n5)3/2

2
(−γ5 + 1)δn5+2,n5 −

v̄5(n5 − 1)f(n5)2

2
√
f(n5 − 1)

(γ5 + 1)δn5,n5

)
+
(
f(n5)′f(n5)γ5 − 4f(n5)3/2 + (m− 1)f(n5)2

)
δn5+1,n5

]
(F.15)

154



Bibliography

[1] T. Kaluza, On the Problem of Unity in Physics,
Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1921 (1921) 966–972.

[2] O. Klein, Quantum Theory and Five-Dimensional Theory of Relativity. (In
German and English), Z.Phys. 37 (1926) 895–906.

[3] K. Akama, An Early Proposal of ’Brane World’, Lect.Notes Phys. 176 (1982)
267–271, [hep-th/0001113].

[4] V. Rubakov and M. Shaposhnikov, Do We Live Inside a Domain Wall?,
Phys.Lett. B125 (1983) 136–138.

[5] M. B. Green and J. H. Schwarz, Anomaly Cancellation in Supersymmetric D=10
Gauge Theory and Superstring Theory, Phys.Lett. B149 (1984) 117–122.

[6] I. Antoniadis, A Possible new dimension at a few TeV, Phys.Lett. B246 (1990)
377–384.

[7] J. Dai, R. Leigh, and J. Polchinski, New Connections Between String Theories,
Mod.Phys.Lett. A4 (1989) 2073–2083.

[8] P. Horava and E. Witten, Heterotic and type I string dynamics from
eleven-dimensions, Nucl.Phys. B460 (1996) 506–524, [hep-th/9510209].

[9] P. Horava and E. Witten, Eleven-dimensional supergravity on a manifold with
boundary, Nucl. Phys. B475 (1996) 94–114, [hep-th/9603142].

[10] A. Lukas, B. A. Ovrut, K. S. Stelle, and D. Waldram, The Universe as a domain
wall, Phys. Rev. D59 (1999) 086001, [hep-th/9803235].

[11] V. A. Rubakov, Large and infinite extra dimensions: An Introduction, Phys. Usp.
44 (2001) 871–893, [hep-ph/0104152]. [Usp. Fiz. Nauk171,913(2001)].

[12] G. Dvali and M. A. Shifman, Domain walls in strongly coupled theories,
Phys.Lett. B396 (1997) 64–69, [hep-th/9612128].

[13] Y. Hosotani, Dynamical Mass Generation by Compact Extra Dimensions,
Phys.Lett. B126 (1983) 309.

[14] M. Kubo, C. Lim, and H. Yamashita, The Hosotani mechanism in bulk gauge

155

http://xxx.lanl.gov/abs/hep-th/0001113
http://xxx.lanl.gov/abs/hep-th/9510209
http://xxx.lanl.gov/abs/hep-th/9603142
http://xxx.lanl.gov/abs/hep-th/9803235
http://xxx.lanl.gov/abs/hep-ph/0104152
http://xxx.lanl.gov/abs/hep-th/9612128


BIBLIOGRAPHY

theories with an orbifold extra space S**1 / Z(2), Mod.Phys.Lett. A17 (2002)
2249–2264, [hep-ph/0111327].

[15] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phenomenology, astrophysics
and cosmology of theories with submillimeter dimensions and TeV scale quantum
gravity, Phys.Rev. D59 (1999) 086004, [hep-ph/9807344].

[16] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra
dimension, Phys.Rev.Lett. 83 (1999) 3370–3373, [hep-ph/9905221].

[17] L. Randall and R. Sundrum, An Alternative to compactification, Phys.Rev.Lett.
83 (1999) 4690–4693, [hep-th/9906064].

[18] N. Manton, A New Six-Dimensional Approach to the Weinberg-Salam Model,
Nucl.Phys. B158 (1979) 141.

[19] N. Irges and F. Knechtli, Non-perturbative definition of five-dimensional gauge
theories on the R**4 x S**1/Z(2) orbifold, Nucl. Phys. B719 (2005) 121–139,
[hep-lat/0411018].

[20] N. Irges and F. Knechtli, Non-perturbative mass spectrum of an
extra-dimensional orbifold, hep-lat/0604006.

[21] N. Irges and F. Knechtli, Lattice gauge theory approach to spontaneous symmetry
breaking from an extra dimension, Nucl. Phys. B775 (2007) 283–311,
[hep-lat/0609045].

[22] N. Irges, F. Knechtli, and K. Yoneyama, Higgs mechanism near the 5d bulk phase
transition, Phys. Lett. B722 (2013) 378–383, [arXiv:1212.5514].

[23] N. Irges, F. Knechtli, and K. Yoneyama, Mean-Field Gauge Interactions in Five
Dimensions II. The Orbifold, Nucl. Phys. B865 (2012) 541–567,
[arXiv:1206.4907].

[24] M. Alberti, N. Irges, F. Knechtli, and G. Moir, Five-Dimensional Gauge-Higgs
Unification: A Standard Model-Like Spectrum, JHEP 09 (2015) 159,
[arXiv:1506.0603].

[25] G. Cossu, H. Hatanaka, Y. Hosotani, and J.-I. Noaki, Polyakov loops and the
Hosotani mechanism on the lattice, Phys. Rev. D89 (2014), no. 9 094509,
[arXiv:1309.4198].

[26] J. E. Hetrick, Lattice Investigations of the Hosotani Mechanism of Spontaneous
Symmetry Breaking, PoS LATTICE2013 (2014) 102.

[27] R. Sundrum, Effective field theory for a three-brane universe, Phys.Rev. D59
(1999) 085009, [hep-ph/9805471].

[28] I. Montvay and G. Munster, Quantum fields on a lattice, .

[29] H. Rothe, Lattice gauge theories: An Introduction, World Sci.Lect.Notes Phys.
74 (2005) 1–605.

156

http://xxx.lanl.gov/abs/hep-ph/0111327
http://xxx.lanl.gov/abs/hep-ph/9807344
http://xxx.lanl.gov/abs/hep-ph/9905221
http://xxx.lanl.gov/abs/hep-th/9906064
http://xxx.lanl.gov/abs/hep-lat/0411018
http://xxx.lanl.gov/abs/hep-lat/0604006
http://xxx.lanl.gov/abs/hep-lat/0609045
http://xxx.lanl.gov/abs/1212.5514
http://xxx.lanl.gov/abs/1206.4907
http://xxx.lanl.gov/abs/1506.0603
http://xxx.lanl.gov/abs/1309.4198
http://xxx.lanl.gov/abs/hep-ph/9805471


BIBLIOGRAPHY

[30] C. Gattringer and C. B. Lang, Quantum chromodynamics on the lattice,
Lect.Notes Phys. 788 (2010) 1–343.

[31] M. Creutz, QUARKS, GLUONS AND LATTICES, .

[32] K. G. Wilson, Confinement of Quarks, Phys.Rev. D10 (1974) 2445–2459.

[33] M. Luscher, K. Symanzik, and P. Weisz, Anomalies of the Free Loop Wave
Equation in the WKB Approximation, Nucl. Phys. B173 (1980) 365.

[34] H. B. Nielsen and M. Ninomiya, No Go Theorem for Regularizing Chiral
Fermions, Phys. Lett. B105 (1981) 219.

[35] H. B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 1. Proof by
Homotopy Theory, Nucl. Phys. B185 (1981) 20. [Erratum: Nucl.
Phys.B195,541(1982)].

[36] H. B. Nielsen and M. Ninomiya, Absence of Neutrinos on a Lattice. 2. Intuitive
Topological Proof, Nucl. Phys. B193 (1981) 173.

[37] A. Hasenfratz and P. Hasenfratz, The Scales of Euclidean and Hamiltonian
Lattice QCD, Nucl. Phys. B193 (1981) 210.

[38] F. Karsch, SU(N) Gauge Theory Couplings on Asymmetric Lattices, Nucl. Phys.
B205 (1982) 285–300.

[39] Y. Fu and H. B. Nielsen, A Layer Phase in a Nonisotropic U(1) Lattice Gauge
theory: Dimensional Reduction a new way, Nucl.Phys. B236 (1984) 167.

[40] A. Kennedy and B. Pendleton, Improved heatbath method for Monte Carlo
calculations in lattice gauge theories, Phys.Lett. B156 (1985) 393–399.

[41] J.-M. Drouffe and J.-B. Zuber, Strong Coupling and Mean Field Methods in
Lattice Gauge Theories, Phys.Rept. 102 (1983) 1.

[42] C. Itzykson and J. M. Drouffe, STATISTICAL FIELD THEORY. VOL. 1:
FROM BROWNIAN MOTION TO RENORMALIZATION AND LATTICE
GAUGE THEORY. 1989.

[43] M. Creutz, Gauge Fixing, the Transfer Matrix, and Confinement on a Lattice,
Phys. Rev. D15 (1977) 1128.

[44] W. Ruhl, The Mean Field Perturbation Theory of Lattice Gauge Models With
Covariant Gauge Fixing, Z. Phys. C18 (1983) 207.

[45] H. Flyvbjerg, P. Mansfield, and B. Soderberg, HIGH PRECISION MEAN
FIELD RESULTS FOR LATTICE GAUGE THEORIES, Nucl. Phys. B240
(1984) 171.

[46] B. E. Lautrup and W. Ruhl, HIGHER ORDER MEAN FIELD EXPANSIONS
FOR LATTICE GAUGE THEORIES, Z. Phys. C23 (1984) 49.

157



BIBLIOGRAPHY

[47] L. D. Faddeev and V. N. Popov, Feynman Diagrams for the Yang-Mills Field,
Phys. Lett. B25 (1967) 29–30.

[48] L. Del Debbio, R. D. Kenway, E. Lambrou, and E. Rinaldi, The transition to a
layered phase in the anisotropic five-dimensional SU(2) Yang-Mills theory,
Phys.Lett. B724 (2013), no. 1-3 133–137, [arXiv:1305.0752].

[49] L. Del Debbio, R. D. Kenway, E. Lambrou, and E. Rinaldi, Searching for a
continuum 4D field theory arising from a 5D non-abelian gauge theory, PoS
LATTICE2013 (2014) 107, [arXiv:1309.6249].

[50] M. Creutz, Confinement and the Critical Dimensionality of Space-Time,
Phys.Rev.Lett. 43 (1979) 553–556.

[51] H. Kawai, M. Nio, and Y. Okamoto, On existence of nonrenormalizable field
theory: Pure SU(2) lattice gauge theory in five-dimensions, Prog. Theor. Phys.
88 (1992) 341–350.

[52] S. Ejiri, J. Kubo, and M. Murata, A Study on the nonperturbative existence of
Yang-Mills theories with large extra dimensions, Phys.Rev. D62 (2000) 105025,
[hep-ph/0006217].

[53] S. Chandrasekharan and U. J. Wiese, Quantum link models: A Discrete approach
to gauge theories, Nucl. Phys. B492 (1997) 455–474, [hep-lat/9609042].

[54] R. Brower, S. Chandrasekharan, and U. J. Wiese, QCD as a quantum link model,
Phys. Rev. D60 (1999) 094502, [hep-th/9704106].

[55] P. de Forcrand, A. Kurkela, and M. Panero, The phase diagram of Yang-Mills
theory with a compact extra dimension, JHEP 1006 (2010) 050,
[arXiv:1003.4643].

[56] L. Del Debbio, A. Hart, and E. Rinaldi, Light scalars in strongly-coupled
extra-dimensional theories, JHEP 1207 (2012) 178, [arXiv:1203.2116].

[57] B. Svetitsky and L. G. Yaffe, Critical Behavior at Finite Temperature
Confinement Transitions, Nucl. Phys. B210 (1982) 423.

[58] F. Knechtli, M. Luz, and A. Rago, On the phase structure of five-dimensional
SU(2) gauge theories with anisotropic couplings, Nucl.Phys. B856 (2012) 74–94,
[arXiv:1110.4210].

[59] Y. K. Fu and H. B. Nielsen, Some Properties of the Layer Phase, Nucl. Phys.
B254 (1985) 127.

[60] D. B. Kaplan, A Method for simulating chiral fermions on the lattice, Phys. Lett.
B288 (1992) 342–347, [hep-lat/9206013].

[61] C. P. Korthals-Altes, S. Nicolis, and J. Prades, Chiral defect fermions and the
layered phase, Phys. Lett. B316 (1993) 339–344, [hep-lat/9306017].

158

http://xxx.lanl.gov/abs/1305.0752
http://xxx.lanl.gov/abs/1309.6249
http://xxx.lanl.gov/abs/hep-ph/0006217
http://xxx.lanl.gov/abs/hep-lat/9609042
http://xxx.lanl.gov/abs/hep-th/9704106
http://xxx.lanl.gov/abs/1003.4643
http://xxx.lanl.gov/abs/1203.2116
http://xxx.lanl.gov/abs/1110.4210
http://xxx.lanl.gov/abs/hep-lat/9206013
http://xxx.lanl.gov/abs/hep-lat/9306017


BIBLIOGRAPHY

[62] A. Hulsebos, C. P. Korthals-Altes, and S. Nicolis, Gauge theories with a layered
phase, Nucl. Phys. B450 (1995) 437–451, [hep-th/9406003].

[63] A. Hulsebos, Anisotropic gauge theories: A Numerical study of the Fu-Nielsen
model, Nucl. Phys. Proc. Suppl. 42 (1995) 618–620, [hep-lat/9412031].

[64] S. Nicolis, Layered Phase Investigations, PoS LAT2007 (2007) 273,
[arXiv:0710.1714].

[65] P. Dimopoulos, K. Farakos, A. Kehagias, and G. Koutsoumbas, Lattice evidence
for gauge field localization on a brane, Nucl.Phys. B617 (2001) 237–252,
[hep-th/0007079].

[66] P. Dimopoulos, K. Farakos, and S. Vrentzos, The 4-D Layer Phase as a Gauge
Field Localization: Extensive Study of the 5-D Anisotropic U(1) Gauge Model on
the Lattice, Phys.Rev. D74 (2006) 094506, [hep-lat/0607033].

[67] K. Farakos and S. Vrentzos, Establishment of the Coulomb law in the layer phase
of a pure U(1) lattice gauge theory, Phys.Rev. D77 (2008) 094511,
[arXiv:0801.3722].

[68] N. Irges and F. Knechtli, Mean-Field Gauge Interactions in Five Dimensions I.
The Torus, Nucl.Phys. B822 (2009) 1–44, [arXiv:0905.2757].

[69] D. Berman and E. Rabinovici, Layer Phases in Unisotropic Lattice Gauge
Theories, Phys. Lett. B157 (1985) 292.

[70] M. Murata and H. So, Five-dimensional lattice gauge theory as multilayer world,
hep-lat/0306003.

[71] K. Farakos and S. Vrentzos, Exploration of the phase diagram of 5d anisotropic
SU(2) gauge theory, Nucl.Phys. B862 (2012) 633–649, [arXiv:1007.4442].

[72] M. Creutz, Overrelaxation and Monte Carlo simulation, Phys.Rev. D36 (1987)
515.

[73] SciDAC Collaboration, LHPC Collaboration, UKQCD Collaboration
Collaboration, R. G. Edwards and B. Joo, The Chroma software system for
lattice QCD, Nucl.Phys.Proc.Suppl. 140 (2005) 832, [hep-lat/0409003].

[74] F. Winter, Accelerating QDP++ using GPUs, PoS LATTICE2011 (2011) 050,
[arXiv:1105.2279].

[75] M. Laine, H. B. Meyer, K. Rummukainen, and M. Shaposhnikov, Localization
and mass generation for nonAbelian gauge fields, JHEP 01 (2003) 068,
[hep-ph/0211149].

[76] A. Coste, A. Gonzalez-Arroyo, J. Jurkiewicz, and C. P. Korthals Altes, Zero
Momentum Contribution to Wilson Loops in Periodic Boxes, Nucl. Phys. B262
(1985) 67.

159

http://xxx.lanl.gov/abs/hep-th/9406003
http://xxx.lanl.gov/abs/hep-lat/9412031
http://xxx.lanl.gov/abs/0710.1714
http://xxx.lanl.gov/abs/hep-th/0007079
http://xxx.lanl.gov/abs/hep-lat/0607033
http://xxx.lanl.gov/abs/0801.3722
http://xxx.lanl.gov/abs/0905.2757
http://xxx.lanl.gov/abs/hep-lat/0306003
http://xxx.lanl.gov/abs/1007.4442
http://xxx.lanl.gov/abs/hep-lat/0409003
http://xxx.lanl.gov/abs/1105.2279
http://xxx.lanl.gov/abs/hep-ph/0211149


BIBLIOGRAPHY

[77] B. Petersson and T. Reisz, Polyakov loop correlations at finite temperature, Nucl.
Phys. B353 (1991) 757–784.

[78] C. G. Broyden, A Class of Methods for Solving Nonlinear Simultaneous
Equations, Mathematics of Computation (American Mathematical Society) 19
(92) (1965) 577–593.

[79] R. Sommer, A New way to set the energy scale in lattice gauge theories and its
applications to the static force and alpha-s in SU(2) Yang-Mills theory, Nucl.
Phys. B411 (1994) 839–854, [hep-lat/9310022].

[80] S. Elitzur, Impossibility of Spontaneously Breaking Local Symmetries, Phys. Rev.
D12 (1975) 3978–3982.

[81] R. Narayanan and U. Wolff, Two loop computation of a running coupling lattice
Yang-Mills theory, Nucl. Phys. B444 (1995) 425–446, [hep-lat/9502021].

[82] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space. Cambridge
Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge, UK,
1984.

160

http://xxx.lanl.gov/abs/hep-lat/9310022
http://xxx.lanl.gov/abs/hep-lat/9502021


Publications

L. Del Debbio, R. D. Kenway, E. Lambrou, and E. Rinaldi,“The transition to

a layered phase in the anisotropic five-dimensional SU(2) Yang-Mills theory”,

Phys.Lett., vol. B724, no. 1-3, pp. 133-137, 2013.

L. Del Debbio, R. D. Kenway, E. Lambrou, and E. Rinaldi,“Searching for a

continuum 4D field theory arising from a 5D non-abelian gauge theory”, PoS,

vol. LATTICE2013, p. 107, 2014.

R. D. Kenway, E. Lambrou, “Five-dimensional gauge theories in a warped

background”, PoS, vol. LATTICE2015, p. 232, 2016.

161


	cover sheet
	thesis
	Abstract
	Lay Summary
	Declaration
	Acknowledgements
	Contents
	List of figures
	List of tables
	List of acronyms
	 Introduction
	Dimensional Reduction
	Kaluza-Klein compactification
	Localization - Non-compact extra dimensions

	Gauge Field Localization Problem
	Dvali-Shifman mechanism

	Well-known extra-dimensional models
	Gauge-Higgs Unification
	Arkani-Hamed-Dimopoulos-Dvali model
	Randall-Sundrum models

	Present Work and Thesis Outline

	Lattice Gauge Theories
	QFT on the lattice - Lattice discretization
	Pure lattice gauge theory - The Wilson action
	Observables
	Discrete symmetries of the Wilson action

	Fermions on the lattice
	Anisotropic Lattice Gauge Theories
	Phase structure of LGTs
	Phases of pure LGTs
	Order parameters and their behaviour

	The Continuum Limit
	Methods for LGT exploration
	Monte Carlo simulations
	Mean-Field approach
	Gauge fixing
	First-order corrections



	Anisotropic 5D Yang-Mills theory in flat spacetime 
	The phase structure of the model from the Literature
	Dimensional Reduction via compactification
	Layered phase idea

	The set-up of five-dimensional anisotropic LGTs
	Anisotropic Action
	Observables

	Results from Lattice Simulations
	Discussion and Outlook

	Anisotropic 5D Yang-Mills theory in a warped background
	Formalism using Mean-Field approach
	Saddle-point equations
	First-order corrections

	Observables
	Scalar mass
	Static quark-antiquark potential

	Implementation details
	Solutions to the saddle-point equations
	Boundary Conditions

	The phase diagram
	Various checks of our formalism
	Boundary Conditions
	Gauge dependence on observables
	Four-dimensional volume dependence

	Towards a physical interpretation
	Scalar Mass
	Static Potential

	Discussion and Outlook
	Theoretical set-up for future work
	Fermions in a warped background in the continuum
	Wilson fermions in a warped background


	Conclusions
	Further details for the Randal-Sundrum model
	Christoffel symbols
	Ricci tensor and Ricci scalar
	Einstein tensor

	Character Expansions
	First-order corrections to the Mean-Field approach
	V field contribution
	Auxiliary field contribution (H field)
	Gauge fixing contribution
	Faddeev-Popov Determinant

	Derivations of expressions for observables in the Mean-Field Approach 
	Scalar Mass
	Static Potential

	Further results from the warped model
	Fits of the measured static potential to different functional forms
	Fitting parameters of the potential

	Mathematical Framework for fermions in a warped background
	Vielbeins
	Spin Connections
	Derivations of spin connections for the warped case

	Dirac operators in momentum space

	Bibliography
	Publications


