
Even Higher-Level
Synthesis

An Exploration of AI Hardware Accelerators using HLS4ML

FERMILAB-SLIDES--25-0097-ETD

This manuscript has been authored by FermiForward Discovery Group, LLC under Contract No. 89243024CSC000002 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Cameron Villone
HLS Technologist – Siemens EDA

2

Cameron Villone joined Siemens in August 2023 through the Atlas New
Graduate Program. Cameron graduated from Rochester Institute of
Technology with a Masters Degree in Electrical Engineering focusing on
Robotics, Embedded Systems, and Computer Vision. Cameron has held
previous student roles at General Motors and Texas Instruments. Cameron
started his Siemens journey by working as a product marketer for
Siemens’s low power solution, PowerPro. Cameron then grew to his
current role as part of the product management team as an HLS
Technologist for Catapult AI/NN.

Giuseppe
Di Guglielmo
Senior ASIC Engineer – Fermilab

3

Giuseppe Di Guglielmo is a Senior Engineer at Fermilab focused on
system-level design and AI/ML hardware acceleration. He develops
intelligent, ultra-low-latency detectors for harsh environments, including
ML-enabled, radiation-resistant chips for the LHC and quantum hardware
for cryogenic systems. With a Ph.D. in Computer Science and over a
decade of experience in high-level synthesis for ASIC/FPGA design, he
previously held research roles at Columbia University and Tokyo
University. He is an active contributor to open-source projects like ESP and
hls4ml.

Why Customized
Accelerators?

Inferencing Will Be Everywhere

AI can make embedded devices:
• More capable

• More secure

• Safer

• Faster

5

Higher specialization/Lower energy

Deploying AI in the Edge Systems

6

The Cloud A Gateway The Edge

Higher Latency/Lower development costs

CPU GPU TPU/NPU Edge TPU FPGA or ASIC

Highest performance and efficiency are

achieved with specialized ASIC
implementation running on the edge

W
h
e
re

H
o
w

Pros Cons Pros Cons Pros Cons

Very Flexible Performance

and Timing

issues for real-

time

applications

Retains

Moderate

Flexibility

Relies on

standard HW

Very Low power

and predictable

timing

Requires

development of

custom

hardware

Easy to update Power

consumption

and timing

issues-

Fixed to a

limited set of

network

architectures

Pure Software

Implementation

Software with generic

hardware accelerator

Software with bespoke

hardware accelerator

Hardware vs Software

7

More and More Models

8

Yolo v1 – v8

ResNet

MobileNet

Many Many More….

• DenseNet

• AlexNet

• EfficientNet

• SqueezeNet

• VGG

• Inception

• ResNeXt

• More and More…..

Model Size of Best ImageNet Algorithm

9
Models have increased in computational load by >100X in 5 years

1

10

100

1000

10000

Model Compute Load

g
ig

a
-f

lo
p
s

Inference Execution

10

Slow Performance Fast

H
ig

h
 E

n
e

rg
y

E

ff
ic

ie
n
c
y

 L

o
w

 E
n

e
rg

y

CPU

GPU

TPU/

NPU

Custom

Can run any

inference

Runs limited set of

inferences

Complexity Drives Need for Customization

11

Slow Performance Fast

H
ig

h
 E

n
e

rg
y

E

ff
ic

ie
n
c
y

 L

o
w

 E
n

e
rg

y

CPU

GPU

TPU/

NPU

Custom
As neural networks increase

in size and complexity,

designs will be forced to

move to faster and more

efficient platforms

Drivers for ASIC Inferencing on the Edge

12

PrivacyLatency Security

Performance Efficiency

Drivers to the edge:

• Latency
• Security
• Privacy

Drivers to ASIC:

• Performance
• Efficiency

Inferencing on the Edge

• As AI algorithms get more complex, processors, software and off the shelf accelerators will

struggle to meet design requirements

• Technology trends are driving edge inferencing to be done on device

• Designing a bespoke accelerator can deliver the highest performance and efficiency

• High-Level Synthesis delivers the fastest path from machine learning framework to RTL

13

High-Level

Synthesis

What is
High-Level Synthesis?

What is High-Level Synthesis (HLS)?

15

C/C++ or SystemC

Synthesizable RTL

Automated path from C/C++ or SystemC

into technology optimized synthesizable RTL

High-Level

Synthesis

Generate Synthesizable RTL from C++

16

Optimized for a specific target technology or
FPGA device

Output in either VHDL or Verilog

HLS

Addition operator

Addition operator

Clock and reset

Analysis of C++ Descriptions

17

High-Level Synthesis analyzes the data dependencies between operations in the algorithm

Analysis produces a Data Flow Graph (DFG)

Each node on the DFG represents an operation in the algorithm

Connections between nodes represent data dependencies and indicate order of operations

void accumulate(int a, int b,

int c, int d,

int &dout){

int t1,t2;

t1 = a + b;

t2 = t1 + c;

dout = t2 + d;

}

+
a

b

+c

t1

+d

t2

dout

Analysis of C++ Descriptions

18

High-Level Synthesis analyzes the data dependencies between operations in the algorithm

Analysis produces a Data Flow Graph (DFG)

Each node on the DFG represents an operation in the algorithm

Connections between nodes represent data dependencies and indicate order of operations

void accumulate(int a, int b,

int c, int d,

int &dout){

int t1,t2;

t1 = a + b;

t2 = t1 + c;

dout = t2 + d;

}

+
a

b

+
c

t1

+d

dout

Parallelism

19

Parallelism is introduced using loop transformations
• Unrolling and pipelining

Unrolling drive parallelism

Pipelining also increases throughput and Fmax

A
rc

h
it

e
c

tu
re

C
o

n
s

tr
a
in

ts

data_t MAC (

data_t data_in[4],

coef_t coef_in[4]

) {

accu_t acc = 0 ;

for (int i=0;i<4;i++) {

acc += data_in[i] * coef_in[i] ;

}

return acc ;

}

+x

+

x

x

x

x

+

+

Loop Unrolling

20

Partially Unrolled - 2x

Fully Unrolled - 4x

Loop styles

• “for...”

• “while...”

• “do ... while”

Loop unrolling provides a way to
explore several micro-
architectures for a given design

Loops can be fully or partially
unrolled

Loop Pipelining

21

• A single stage pipeline, i.e. no pipelining, has no overlap
between loop executions

• Results in data being written every 4 clock cycles

• With no overlap, the resources (the adder) can be shared
between all C-Steps

Pipelining with II=2 Pipelining with II=1

Pipelining or Loop Unrolling

22

What is the optimal architecture? What makes the
most sense for your design?

Considerations:

• Data arrival and departure rates
• Do not create more compute capacity than the communication

channels can support

• Throughput vs. latency
• Is it lower latency or greater throughput more important

• Performance vs. area
• Smaller usually means slower

• HLS can give the data needed to make these decisions
• Gantt Chart

• Reports

Modeling Arbitrary Precision

Hardware design requires being able to specify any bit-width for variables,
registers, etc.

Need to model true hardware behavior and precision to meet specification and
save power/area

• Not limited to power-of-two bit-widths (1, 8, 16, 32, 64 bits)

• Integer, fixed-point, and floating-point support

Algorithmic C (AC) data types are C++ classes defined to provide storage for
precise hardware mapping in HLS

23

Saturating Math

24

62.5 0 1 1 1 1 1 1 . 1 0 0
+ 2.0 1 0 . 0 0 0
--

- 1.5 1 1 1 1 1 0 1 . 1 0 0

62.5 0 1 1 1 1 1 1 . 1 0 0
+ 2.0 1 0 . 0 0 0

63.875 0 1 1 1 1 1 1 . 1 1 1

Overflow:

Saturation:

Close to correct

Smaller is Better

25

0

2000

4000

6000

8000

10000

12000

14000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Operand Size vs Multiplier Area

Integer Floating Point

A one-bit integer multiplier is an

“and” gate

Data Sizes and Operators

26
Source: Nvidia DAC2017

Adder: floating

point is 37X

bigger than

integerMult: floating

point is 2.2X

bigger than

integer

Adder: 32-bit

is 3.8 X bigger

than 8-bit
Mult: 32-bit is

12 X bigger

than 8-bit

Energy and Operators

27
Source: Nvidia DAC2017

Adder: floating

point uses 9X

energy vs.

integer

Mult: floating

point uses 1.2X

energy vs.

integer

Adder: 32-bit

uses 3 X energy

vs. 8-bit

Mult: 32-bit uses

15.5 X energy vs.

8-bit
32-bit data read

uses 170X more

energy than a

multiplication

Benefits of High-Level Synthesis

28

Synthesizable RTL

High-Level

Synthesis

High-Level Synthesis can help make this process easier, quicker, and flexible

Exploration through design constraints and synthesis settings, not manual re-

coding

• Evaluate more options than possible with a manual RTL design process

• Automated path from C/C++ or SystemC into technology optimized

synthesizable RTL

Custom Hardware

Introduction to
HLS4ML

History of AI/ML Designs w/HLS

30

Customers have been using HLS for AI/ML designs since 2017

Mostly for Convolutional Neural Networks customized in ASIC for Inferencing at the edge

Manually optimized bit-widths for lowest area and power

Manually designed custom C++ IP for HLS and adjusted constraints to meet PPA target

Mixture of pure dataflow layer connections and PE-Array architectures

Meeting designers where they are

31

Motivation

• A Python env is the de facto standard development platform for AI/ML neural network models

• Generating an efficient hardware implementation from a Python model is tedious and error-prone

• Validation of the accuracy and PPA at the end is often too late

• Recent advances have allowed quantized-aware training using the Python model…

• … but those precision details must be manually (re)coded into HDL model

Python

Training

HLS4ML

Introduction
• Provide and efficient and fast translation of machine learning models from open-source

packages for training machine learning algorithms to High-Level Synthesis

Inspiration
• Originally inspired by the CERN Large Hadron Collider (LHC)

• ML applications have proven extremely useful for large dataset analysis.

• Taking data offline will allow for data to be calculated faster along with sorting data for storage

• Lower Latency, Realtime Detections

32

HLS4ML

Solution:

• ASIC and FPGAs have specialized
architecture compared to CPUs and
GPUs

• Specialized hardware is always able to
help with design constraints

• Specialized hardware tend to have
lower-power and faster results.

33

Frontends & Backends

34

Vivado/Vitis

oneAPICatapult

Quartus

Symbolic Expression

VivadoAccelerator

The Full Flow

35

C/C++

Synthesizable RTL

High-Level

Synthesis

Python

An Example

MNIST Dataset

37

The MNIST dataset is included in several popular
machine learning packages

Contains 70,000 images:

• Images are 28 x 28 pixels

• Pixels are 8-bit greyscale (1 color plane)

Typically separated training and validation:

• 60,000 images for training

• 10,000 images for verification

MNIST Neural Network

38

Conv2d

Dense Softmax

P(0) = 0.001

P(1) = 0.000

P(2) = 0.993

...

20 images

Batch
Norm

20 images

10 vectors

Accelerator Development

39

Profile the execution to determine functions that need acceleration

Convolution and dense layers consume 99.5% of the computational load (excluding test overhead)

These will benefit from acceleration

* System performance and power

measured for 64-bit Rocket Core RISC-V

S
o

ft
w

a
re

 P
ro

fi
le

Feature and Weight Quantization

40

Quantized Aware trainingPost Training Quantization

Pre-Trained

Model

Calibration

Dataset

Calibration/Tuning

Quantization

PTQ Quantized Model

Pre-Trained

Model

Full

Dataset

QAT Quantized Model

Quantization

Retraining/Tuning

Higher levels of abstraction

41

Catapult AI NN has a simplified Python API for configuring the project and generating the RTL
• Use config_for_dataflow to configure the project – using only the model and dataset variables

• Use generate_dataflow to generate the Catapult HLS C++ model, C++ testbench and build
scripts

• Use build to generate the RTL

Configure the project – passing in the TF model, test dataset and reference output

config_ccs = catapult_ai_nn.config_for_dataflow(model=model, x_test=x_test, y_test=y_test, num_samples=50, tech='asic',

asiclibs='saed32rvt_tt0p78v125c_beh’, clock_period=10, io_type='io_stream’)

Generate the C++ HLS model

hls_model_ccs = catapult_ai_nn.generate_dataflow(model=model,config_ccs=config_ccs)

Use Catapult Ultra to generate the RTL (batch mode)

Hls_model_ccs.build()

This example is available using the Catapult AI/NN Frontend for HLS4ML

Reports

42

Layer Report:

• HLS4ML Layer Summary – report shows python description of each layer

• nnet layer results – report shows PPA for each network layer

Layer Name Layer Class Input Type Input Shape Output Type Output Shape

------------ ------------- ------------------- ------------- ------------------- --------------

conv2d1 Conv2D ac_fixed<8,1,true> [14][14][1] ac_fixed<16,6,true> [4][4][5]

relu1 relu ac_fixed<16,6,true> [4][4][5] ac_fixed<16,6,true> [4][4][5]

flatten1 Reshape ac_fixed<16,6,true> [4][4][5] ac_fixed<16,6,true> [80]

dense1 Dense ac_fixed<16,6,true> [80] ac_fixed<16,6,true> [10]

softmax1 Softmax ac_fixed<16,6,true> [10] ac_fixed<16,6,true> [10]

Weight Type Bias Type

------------------- -------------------

ac_fixed<16,6,true> ac_fixed<16,6,true>

ac_fixed<16,6,true> ac_fixed<16,6,true>

This report is available using the Catapult AI/NN Frontend for HLS4ML

Understanding Precision

43

High-water mark of data and intermediate
values showed range of values was -37 to 56

• Float32 (+/-1038 is excessive)

Sensitivity analysis performed across varying
fixed-point representations

Value Range Analysis

44

For this example, a fixed-point precision of ac_fixed<16,6> resulted in 3
numerically different results compared to the floating-point Python output (after
quantization)

This tool is available using the Catapult AI/NN Frontend for HLS4ML

Customization

45

Measuring the accuracy of this model shows a slight improvement

Does the accuracy increase of 0.0001 warrant and increase in size?

Add refinements by layer

AREA SCORE: 72275AREA SCORE: 70125

Rethinking the Approach - QAT

46

Going back to the Python model, you can use QKeras to model the quantization affects at the
interfaces of the layers during training

Note that even though QKeras is applying quantization at the interfaces (feature, weights and
biases), the internal math operations are still performed as double precision whereas the fixed-
point C++ model will use bit-precise fixed-point operations

Transferring Your Network

47

model = Sequential()

model.add(layers.Input(shape=(Fw,Fw, 1), name='input1'))

model.add(layers.Conv2D(filters=5,

kernel_size=5, strides=3, name='conv2d1'))

model.add(layers.BatchNormalization(name='batchnorm1'))

model.add(layers.Activation('relu', name='relu1'))

model.add(layers.Flatten(name='flatten1'))

model.add(layers.Dense(10, name='dense1'))

model.add(layers.Activation('softmax', name='softmax1'))

model = Sequential()

model.add(layers.Input(shape=(Fw,Fw, 1), name='input1'))

model.add(QConv2D(filters=5, kernel_size=5, strides=3,

kernel_quantizer=quantized_bits(8, 1, 1, alpha=1),

bias_quantizer=quantized_bits(8, 1, alpha=1),

name='conv2d1'))

model.add(layers.BatchNormalization(name='batchnorm1'))

model.add(layers.Activation('relu', name='relu1'))

model.add(layers.Flatten(name='flatten1'))

model.add(QDense(

units=10,

kernel_quantizer=quantized_bits(8, 1, alpha=1),

bias_quantizer=quantized_bits(8, 1, alpha=1),

kernel_regularizer=tf.keras.regularizers.L1L2(0.0001),

activity_regularizer=tf.keras.regularizers.L2(0.0001),

name='dense1',

))

model.add(layers.Activation('softmax', name='softmax1'))

Transferring Your Network

48

8 7 6 5 4 3 2 1 0
8 0.9557 0.9537 0.9583 0.9509 0.953 0.9421 0.907 0.8966 0.098
7 0.9565 0.9552 0.9569 0.9576 0.9552 0.9459 0.941 0.9308 0.098
6 0.9497 0.952 0.9556 0.9496 0.9579 0.9495 0.9469 0.9133 0.2298
5 0.9608 0.957 0.9565 0.9532 0.952 0.9405 0.9238 0.9211 0.098
4 0.9537 0.9567 0.9519 0.9605 0.9539 0.9492 0.9344 0.9016 0.5703
3 0.9512 0.9549 0.9553 0.951 0.9513 0.9515 0.9408 0.9212 0.8202
2 0.953 0.915 0.9559 0.9576 0.9555 0.9501 0.9413 0.9099 0.7048

Model Accuracy – Quantizer Bits

49

Integer Bit

F
ra

c
ti

o
n

a
l

B
it

s

Design Exploration and Optimizing

50

Discover the optimal design

• Make informed choices

• Find the smallest design with an optimal

accuracy

Key Points

• As the number of bits decrease

the size decreases

• The less bits moving through
ROM the less energy used

7x20 filter
Conv 2D

5x5 filter

Model

Accuracy

Area – u2 Bias bits

In ROM

Weight bits

In ROM

8int 5p 0.9608 133255 65 1625

7int 4p 0.9567 115933 55 1375

7int 2p 0.915 99520 45 1125

4int 6p 0.9579 99550 50 1250

0int 3p 0.8202 37591 15 375

Dense

10 Ch

Model

Accuracy

Area – u2 Bias bit

In ROM

Weight bits

In ROM

8int 5p 0.9608 813888 130 10400

7int 4p 0.9567 703025 110 8800

7int 2p 0.915 597973 90 7200

4int 6p 0.9579 596609 100 8000

0int 3p 0.8202 200393 30 2400

Meeting designers where they are

51

Ease of Use and Optimization

• High-Performance C++ IP Libraries for
better hardware

• Enhanced analysis and reporting

• Complete low-power design w/power
estimation and optimization

• Integrated Value-Range Analysis
(VRA) for detection of
quantization/overflow in C++

• C++ Testbench options to measure
numerical differences vs Python

This example is available using the Catapult AI/NN Frontend for HLS4ML

How can we use
HLS4ML to make
our lives easier

• hls4ml is a Python package for machine learning inference as custom hardware

• Translate traditional open-source ML models into an HLS project

• Easy to install

• pip install hls4ml

• Open source

• https://github.com/fastmachinelearning/hls4ml

• https://fastmachinelearning.org/hls4ml

• Community

• Research laboratories, universities, and companies

What is hls4ml?

https://github.com/fastmachinelearning/hls4ml
https://fastmachinelearning.org/hls4ml

• Co-design = development loop between algorithm design, data collection, training, and hardware
implementation

• Large design search space

• Scientists and engineers with different expertise

54

Co-design with hls4ml

• High energy physics

• Large Hadron Collider (LHC) at CERN

• Extreme collision frequency of 40 MHz → extreme data rates O(100 TB/s)

• Most collision “events” don’t produce interesting physics

• “Triggering” = filter events to reduce data rates to manageable levels

55

hls4ml origins

• To a large variety of scientific applications

• Low latencies (ms → ns)

• High throughput O(100TB/s)

• … including teaching material

56

hls4ml has grown

Neural learning for control, Institute of neuroinformatics, ETH Zurich

https://docs.google.com/presentation/d/1ASwMpwnfXRI0TIVfsxasc75QRh2LREV4y0GAEWMxddQ/edit

57

hls4ml community

• Converts from ML frameworks

• Internal representation

• Configuration to tune latency vs. resources, bit precision

• | hls4ml knobs | << | HLS knobs |

• Optimizers, e.g. merging layers

• Backends to HLS tools

• nnet_utils = C++ library of ML functionalities optimized for HLS

58

hls4ml architecture

59

hls4ml supports Catapult HLS

• Trade-off between latency and resource usage determined by the parallelization of the logic in each layer

• ReuseFactor = number of times a multiplier is used to do a computation

60

hls4ml – Parallelization

• ReuseFactor = 1, 2, 4

• Other configurations (ignore for now)

• Streaming Input, On-chip Weights, 32nm ASIC, 10ns Clock, Latency mode

61

Design space exploration via reuse factor

• As “customary” in custom hardware, we use quantized representation

• Floating-point computation is too resource intensive

• Precision = fixed point types

• ac_fixed, Algorithmic C Datatypes

• https://github.com/hlslibs/ac_types

• Operations are integer ops, but we can represent fractional values

• But we have to make sure we’ve used the correct data types!

• Post training quantization

• Quantization aware training

62

hls4ml – Quantization

1.1 computing’s energy problem (and what we can do about it), M. Horowitz 2014 High-performance hardware for machine learning, W. Dally 2015

https://github.com/hlslibs/ac_types
https://ieeexplore.ieee.org/document/6757323
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf

• Post-training quantization (PTQ) = turning weights from float to fixed (or other quantized format)

63

Design space exploration via (post-
training) quantization

Fast inference of deep neural networks in FPGAs for particle physics, J. Duarte et al. 2018

https://arxiv.org/abs/1804.06913

• QAT improves on PTQ

• Taking into account quantization numerics and
learning around them

• More compact bit representation → Reduction area,
power, and latency

• QKeras https://github.com/google/qkeras, Brevitas
https://github.com/Xilinx/brevitas

• Easy to use, e.g. drop-in replacements for Keras
layers

• Dense → QDense

• Conv2D → QConv2D

64

Quantization-aware training (QAT)

Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors, C.N. Coelho et al. 2021

https://github.com/google/qkeras
https://github.com/Xilinx/brevitas
https://www.nature.com/articles/s42256%E2%80%93021-00356-5.

• hls4ml is a specialized compiler or transpiler

• Translate a high-level specification of a model a into HLS-ready code that implements the same algorithms

• User can choose

• Strategy for the implementation of the layers

• “Latency” for smaller model where likely the goal is high-parallelism, i.e. low reuse factor

• “Resource” for larger model and higher reuse factor

• IOType for the interfaces of layers and overall module

• “io_parallel” for data passed as arrays

• “io_stream” for data passed as latency-insensitive channels, e.g. ac_channels Algorithmic C Datatypes

65

hls4ml – Layer implementations and
interfaces

• ReuseFactor : <integer value>
• Controls the level of parallelism – 1 is the most parallel (smallest latency), 2 is half that…

• Precision : <fixed-point data type>
• Global or per-layer option configuring the precision for feature, weight and bias values

• Strategy : “latency” or “resource”
• Selects different C++ architectures for the layer implementations

• IOType : “io_parallel” or “io_stream”
• Passes data either as arrays or latency-insensitive channels, e.g.

• Part : <FPGA part>
• Identifies the specific FPGA family/part is used in downstream RTL synthesis

• ClockPeriod : <period in ns>
• Specifies the clock period for HLS

66

hls4ml configuration in summary

• hls4ml instantiates and configures layers of a model in a data flow architecture

67

hls4ml – Heterogenous dataflow
architecture

Applications and Techniques for Fast Machine Learning in Science, A. McCarn Deiana et al. 2022

https://www.frontiersin.org/articles/10.3389/fdata.2022.787421/full

68

hls4ml – Example

Applications

70

Survey of Big Data sizes in 2021

https://arxiv.org/abs/2202.07659

• Experiments at colliders typically have a silicon pixel
detector at the center
• Concentric rings tiled with sensors

• Silicon sensors are depleted of charge carriers by
high voltage

• When a charged particle from a collision passes
through, it creates e/h pairs

• Charge is read out and transferred off-detector
• Charge cluster information is used for physics analysis

offline

Silicon pixel detectors

Silicon Pixel Detector at CMS (LHC, CERN)

https://cms.cern/detector

https://cms.cern/detector

• Connecting the dots between charge collected in different pixel
layers creates a particle track
• Detector should be low-mass so interactions in inactive material doesn’t

disrupt this trajectory

• Solenoid magnet immerses the pixel detector in a magnetic-
field, causing tracks to curve

• Very curved → low transverse momentum (low-pT)

• Almost straight → high transverse momentum (high-pT)

• Reconstructing vertices is critical

• Secondary vertices help identify particles: long, short, medium
lifetime?

72

Particle tracks and vertices

• LHC/CMS produces a lot of data

• New data every 25 ns (p-p collision)

• Physicists have to throw most of it away

• Physically and financially challenging

• Risk to throw away significant information

• Detector is continuously being sprayed with particles

• Need radiation tolerant on-detector electronics

• High voltage and low temperature requirements

• Up to -800 V, -35 C

73

Designing hardware for the LHC is challenging

• On-chip data filtering at rate (40 MHz)

• AI algorithms

• Reconfigurable algorithms

• Hybrid pixel detector

• Silicon sensor

• Pixelated ROIC

• Analog front-end + ADC

• AI in digital logic

74

Goal of the Smart Pixel team

• Inputs are cluster images projected onto y-axis and the
associated y0

• Three output categories

• high-momentum (> 200 MeV)

• low-momentum, negatively charged

• low-momentum, positively charged

• Simulated dataset of 800,000 clusters

• Classical training and testing set split 80%-20%

• Tensorflow/Keras, 200 epochs for training, 20 epochs of early
stopping, 1024 batch size, Adam optimizer

75

Neural network classifier (filter)

• On-chip data reduction at BX rate
• R&D for phase III CMS experiments

• pp-collision 40 MHz

• Integration of the ML algorithm as digital logic with the
analog front-end into the in the pixelated area

• Low-power 28nm CMOS

• Total power < 1 W/cm2

• Analog ~5 μW/pixel

• Digital ~1 μW/pixel

• Bandwidth saving
• 54.4% - 75.4%

76

Filtering in ASIC at LHC

Smart pixel sensors: towards on-sensor filtering of pixel clusters with deep learning, J. Yoo et al. 2023

https://arxiv.org/abs/2310.02474

• Autoencoder (ML) on the detector front-end for data compression

• ASIC required due to radiation tolerance, handled through triple modular redundancy, and power requirements

• Reconfigurable ASIC to address: evolving LHC conditions (beam related), detector performance (noise,
dead channels), and updated performance metric (resolution, new physics signatures)

77

Data compression in ASIC at LHC

8’’ hexagonal silicon module

(1 out of ~27,000)

GF 65nm “ECON-D”

Metric / requirement Value

Rate 40 MHz

Total ionizing dose 200 Mrad

High energy hadron flux 107 cm2/s

Tech. node 65 nm LP CMOS

Power 48 mW

Energy / inf. 1.2 nJ

Area 2.88 mm2

Gates 780k

Latency 50 ns

A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC, G. Di Guglielmo et al. 2021

Using QKeras, hls4ml, and Catapult

HLS

• reduced power by 50%, area by 80%,

and achieved 2x better performance

reference solutions by optimizing

compression and quantization

• Faster design cycle!

https://ieeexplore.ieee.org/abstract/document/9447722/

78

More ASIC applications with hls4ml and Catapult HLS

• Data compression for X-ray

microscopy (ptychography)

• Testing chip at GF 65nm
• Evaluation of algorithms
• PCA vs. Autoencoder

Up to 70x data compression at source with a

20% increase in pixel area

• Quantum readout at cryogenic

temperatures (4 Kelvin)

• Testing chip at GF 22nm

• SoC with ML accelerator

• Under testing

GF 65nm “SPROCKET”
“SPROCKET”

(testing board for ROCKET-chip family)

GF 22nm “CryoAI”

GF 22nm “CryoAI”

(wirebonded)

• Plasma instabilities when magnetic field lines
become distorted

• μ-seconds constraints

• Confinement loss → damage to the reactor

• One of the major roadblocks preventing lasting
thermonuclear fusion

79

A recent application for FPGA: Plasma control

HBT-EP Tokamak at Columbia University

http://sites.apam.columbia.edu/HBT-EP

Real-Time Instability Tracking with Deep Learning on FPGAs in Magnetic Confinement Fusion Devices, R. Forelli et al. 2023

http://sites.apam.columbia.edu/HBT-EP
https://opg.optica.org/abstract.cfm?uri=DH-2023-HW4C.2

• Open source + community

• Python ML package

• Reads and optimizes ML networks

• Library of optimized HLS-ready ML functions

• Dataflow pipeline of hardened layers

• Easier design space explore for ML
implementation

• Support of Catapult HLS

• Successful for both ASIC and FPGA
applications

80

hls4ml in summary

Thank you!

Breaking Down a Neural Network

83

Create NN Model

model = Sequential(name='mnist_conv2d_ptq')

model.add(layers.Input(shape=(28,28, 1), name='input1'))

model.add(layers.Conv2D(filters=5, kernel_size=5, strides=3,

name='conv2d1'))

model.add(layers.BatchNormalization(name='batchnorm1'))

model.add(layers.Activation('relu', name='relu1'))

model.add(layers.Flatten(name='flatten1'))

model.add(layers.Dense(10, name='dense1'))

model.add(layers.Activation('softmax', name='softmax1’))

Compile and Train

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(x_train, y_train, epochs=10)
Measure the accuracy of the model
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test Accuracy: {test_acc}")

Headline for a
section divider

Content Headline
Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nullam at iaculis tortor.
Donec in feugiat erat. Ut dapibus, quam
quis suscipit condimentum, risus enim
aliquam quam, eu convallis sapien enim
a tellus. In hac habitasse platea dictumst.
Nunc eu interdum odio. Proin porta felis
vitae nibh lobortis auctor. Praesent ut orci
ex. Pellentesque eu dui ex. Aenean ac
ultricies massa. In blandit tortor
elementum tortor ullamcorper venenatis.

85

Content Page Headline

• Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam at iaculis tortor.
Donec in feugiat erat.

• Ut dapibus, quam quis suscipit condimentum, risus enim aliquam quam, eu
convallis sapien enim a tellus.

• In hac habitasse platea dictumst. Nunc eu interdum odio. Proin porta felis vitae
nibh lobortis auctor. Praesent ut orci ex. Pellentesque eu dui ex. Aenean ac
ultricies massa. In blandit tortor elementum tortor ullamcorper venenatis.

86

Headline Only

87

88

Speaker Name
Speaker Company and

Title

89

Speaker Company and
Title

Speaker Name
Speaker Company and

Title

Speaker Name
Speaker Company and

Title

Speaker Name

	Default Section
	Slide 1: Even Higher-Level Synthesis
	Slide 2: Cameron Villone
	Slide 3: Giuseppe Di Guglielmo
	Slide 4: Why Customized Accelerators?
	Slide 5: Inferencing Will Be Everywhere
	Slide 6: Deploying AI in the Edge Systems
	Slide 7: Hardware vs Software
	Slide 8: More and More Models
	Slide 9: Model Size of Best ImageNet Algorithm
	Slide 10: Inference Execution
	Slide 11: Complexity Drives Need for Customization
	Slide 12: Drivers for ASIC Inferencing on the Edge
	Slide 13: Inferencing on the Edge
	Slide 14: What is High-Level Synthesis?
	Slide 15: What is High-Level Synthesis (HLS)?
	Slide 16: Generate Synthesizable RTL from C++
	Slide 17: Analysis of C++ Descriptions
	Slide 18: Analysis of C++ Descriptions
	Slide 19: Parallelism
	Slide 20: Loop Unrolling
	Slide 21: Loop Pipelining
	Slide 22: Pipelining or Loop Unrolling
	Slide 23: Modeling Arbitrary Precision
	Slide 24: Saturating Math
	Slide 25: Smaller is Better
	Slide 26: Data Sizes and Operators
	Slide 27: Energy and Operators
	Slide 28: Benefits of High-Level Synthesis
	Slide 29: Introduction to HLS4ML
	Slide 30: History of AI/ML Designs w/HLS
	Slide 31: Meeting designers where they are
	Slide 32: HLS4ML
	Slide 33: HLS4ML
	Slide 34: Frontends & Backends
	Slide 35: The Full Flow
	Slide 36: An Example
	Slide 37: MNIST Dataset
	Slide 38: MNIST Neural Network
	Slide 39: Accelerator Development
	Slide 40: Feature and Weight Quantization
	Slide 41: Higher levels of abstraction
	Slide 42: Reports
	Slide 43: Understanding Precision
	Slide 44: Value Range Analysis
	Slide 45: Customization
	Slide 46: Rethinking the Approach - QAT
	Slide 47: Transferring Your Network
	Slide 48: Transferring Your Network
	Slide 49: Model Accuracy – Quantizer Bits
	Slide 50: Design Exploration and Optimizing
	Slide 51: Meeting designers where they are
	Slide 52: How can we use HLS4ML to make our lives easier
	Slide 53: What is hls4ml?
	Slide 54: Co-design with hls4ml
	Slide 55: hls4ml origins
	Slide 56: hls4ml has grown
	Slide 57: hls4ml community
	Slide 58: hls4ml architecture
	Slide 59: hls4ml supports Catapult HLS
	Slide 60: hls4ml – Parallelization
	Slide 61: Design space exploration via reuse factor
	Slide 62: hls4ml – Quantization
	Slide 63: Design space exploration via (post-training) quantization
	Slide 64: Quantization-aware training (QAT)
	Slide 65: hls4ml – Layer implementations and interfaces
	Slide 66: hls4ml configuration in summary
	Slide 67: hls4ml – Heterogenous dataflow architecture
	Slide 68: hls4ml – Example
	Slide 69: Applications
	Slide 70: Survey of Big Data sizes in 2021
	Slide 71: Silicon pixel detectors
	Slide 72: Particle tracks and vertices
	Slide 73: Designing hardware for the LHC is challenging
	Slide 74: Goal of the Smart Pixel team
	Slide 75: Neural network classifier (filter)
	Slide 76: Filtering in ASIC at LHC
	Slide 77: Data compression in ASIC at LHC
	Slide 78: More ASIC applications with hls4ml and Catapult HLS
	Slide 79: A recent application for FPGA: Plasma control
	Slide 80: hls4ml in summary
	Slide 81

	Extra Slides
	Slide 83: Breaking Down a Neural Network
	Slide 84: Headline for a section divider
	Slide 85: Content Headline
	Slide 86: Content Page Headline
	Slide 87: Headline Only
	Slide 88
	Slide 89: Speaker Name
	Slide 90

