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Cameron Villone joined Siemens in August 2023 through the Atlas New 
Graduate Program. Cameron graduated from Rochester Institute of 
Technology with a Masters Degree in Electrical Engineering focusing on 
Robotics, Embedded Systems, and Computer Vision. Cameron has held 
previous student roles at General Motors and Texas Instruments. Cameron 
started his Siemens journey by working as a product marketer for 
Siemens’s low power solution, PowerPro. Cameron then grew to his 
current role as part of the product management team as an HLS 
Technologist for Catapult AI/NN.
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Giuseppe Di Guglielmo is a Senior Engineer at Fermilab focused on 
system-level design and AI/ML hardware acceleration. He develops 
intelligent, ultra-low-latency detectors for harsh environments, including 
ML-enabled, radiation-resistant chips for the LHC and quantum hardware 
for cryogenic systems. With a Ph.D. in Computer Science and over a 
decade of experience in high-level synthesis for ASIC/FPGA design, he 
previously held research roles at Columbia University and Tokyo 
University. He is an active contributor to open-source projects like ESP and 
hls4ml.



Why Customized 
Accelerators?



Inferencing Will Be Everywhere

AI can make embedded devices: 
• More capable

• More secure

• Safer

• Faster
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Higher specialization/Lower energy

Deploying AI in the Edge Systems
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The Cloud A Gateway The Edge

Higher Latency/Lower development costs

CPU GPU TPU/NPU Edge TPU FPGA or ASIC

Highest performance and efficiency are 

achieved with specialized ASIC 
implementation running on the edge
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Pros Cons Pros Cons Pros Cons
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More and More Models
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Yolo v1 – v8

ResNet

MobileNet

Many Many More….

• DenseNet

• AlexNet

• EfficientNet

• SqueezeNet

• VGG

• Inception

• ResNeXt

• More and More…..



Model Size of Best ImageNet Algorithm
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Models have increased in computational load by >100X in 5 years
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Inference Execution
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Complexity Drives Need for Customization
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Slow                                                                        Performance                                      Fast            
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As neural networks increase 

in size and complexity, 

designs will be forced to 

move to faster and more 

efficient platforms



Drivers for ASIC Inferencing on the Edge
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PrivacyLatency Security

Performance Efficiency

Drivers to the edge:

• Latency
• Security
• Privacy

Drivers to ASIC:

• Performance
• Efficiency



Inferencing on the Edge

• As AI algorithms get more complex, processors, software and off the shelf accelerators will 

struggle to meet design requirements

• Technology trends are driving edge inferencing to be done on device

• Designing a bespoke accelerator can deliver the highest performance and efficiency

• High-Level Synthesis delivers the fastest path from machine learning framework to RTL

13

High-Level 

Synthesis



What is 
High-Level Synthesis?



What is High-Level Synthesis (HLS)?
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C/C++ or SystemC

Synthesizable RTL

Automated path from C/C++ or SystemC 

into technology optimized synthesizable RTL

High-Level

Synthesis



Generate Synthesizable RTL from C++
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Optimized for a specific target technology or 
FPGA device

Output in either VHDL or Verilog

HLS

Addition operator

Addition operator

Clock and reset



Analysis of C++ Descriptions
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High-Level Synthesis analyzes the data dependencies between operations in the algorithm

Analysis produces a Data Flow Graph (DFG) 

Each node on the DFG represents an operation in the algorithm 

Connections between nodes represent data dependencies and indicate order of operations

void accumulate(int a, int b,

int c, int d, 

int &dout){

int t1,t2;

t1   = a  + b;

t2   = t1 + c;

dout = t2 + d;

}

+
a

b

+c

t1

+d

t2

dout



Analysis of C++ Descriptions
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High-Level Synthesis analyzes the data dependencies between operations in the algorithm

Analysis produces a Data Flow Graph (DFG) 

Each node on the DFG represents an operation in the algorithm 

Connections between nodes represent data dependencies and indicate order of operations

void accumulate(int a, int b,

int c, int d, 

int &dout){

int t1,t2;

t1   = a  + b;

t2   = t1 + c;

dout = t2 + d;

}

+
a

b

+
c

t1

+d

dout



Parallelism
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Parallelism is introduced using loop transformations
• Unrolling and pipelining

Unrolling drive parallelism 

Pipelining also increases throughput and Fmax
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data_t MAC (

data_t data_in[4],

coef_t coef_in[4]

) {

accu_t acc = 0 ;

for (int i=0;i<4;i++) {

acc += data_in[i] * coef_in[i] ;

}

return acc ;

}
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Loop Unrolling
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Partially Unrolled - 2x

Fully Unrolled - 4x

Loop styles

• “for...” 

• “while...”

• “do ... while”

Loop unrolling provides a way to 
explore several micro-
architectures for a given design

Loops can be fully or partially 
unrolled



Loop Pipelining
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• A single stage pipeline, i.e. no pipelining, has no overlap 
between loop executions

• Results in data being written every 4 clock cycles

• With no overlap, the resources (the adder) can be shared 
between all C-Steps

Pipelining with II=2 Pipelining with II=1



Pipelining or Loop Unrolling
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What is the optimal architecture? What makes the      
most sense for your design?

Considerations:

• Data arrival and departure rates
• Do not create more compute capacity than the communication 

channels can support

• Throughput vs. latency
• Is it lower latency or greater throughput more important 

• Performance vs. area
• Smaller usually means slower 

• HLS can give the data needed to make these decisions
• Gantt Chart

• Reports



Modeling Arbitrary Precision

Hardware design requires being able to specify any bit-width for variables, 
registers, etc.

Need to model true hardware behavior and precision to meet specification and 
save power/area

• Not limited to power-of-two bit-widths (1, 8, 16, 32, 64 bits)

• Integer, fixed-point, and floating-point support

Algorithmic C (AC) data types are C++ classes defined to provide storage for 
precise hardware mapping in HLS
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Saturating Math
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62.5    0 1 1 1 1 1 1 . 1 0 0 
+ 2.0   1 0 . 0 0 0
----------------------------------------------

- 1.5 1 1 1 1 1 0 1 . 1 0 0

62.5       0 1 1 1 1 1 1 . 1 0 0 
+ 2.0      1 0 . 0 0 0

-----------------------------------

63.875   0 1 1 1 1 1 1 . 1 1 1

Overflow:

Saturation:

Close to correct



Smaller is Better
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Operand Size vs Multiplier Area

Integer Floating Point

A one-bit integer multiplier is an 

“and” gate



Data Sizes and Operators
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Source: Nvidia DAC2017

Adder: floating 

point is 37X 

bigger than 

integerMult: floating 

point is 2.2X 

bigger than 

integer

Adder: 32-bit 

is 3.8 X bigger 

than 8-bit
Mult: 32-bit is 

12 X bigger 

than 8-bit



Energy and Operators
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Source: Nvidia DAC2017

Adder: floating 

point uses 9X 

energy vs. 

integer

Mult: floating 

point uses 1.2X 

energy vs. 

integer

Adder: 32-bit 

uses 3 X energy 

vs. 8-bit

Mult: 32-bit uses 

15.5 X energy vs. 

8-bit
32-bit data read 

uses 170X more 

energy than a 

multiplication



Benefits of High-Level Synthesis
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Synthesizable RTL

High-Level

Synthesis

High-Level Synthesis can help make this process easier, quicker, and flexible

Exploration through design constraints and synthesis settings, not manual re-

coding

• Evaluate more options than possible with a manual RTL design process

• Automated path from C/C++ or SystemC into technology optimized 

synthesizable RTL

Custom Hardware



Introduction to 
HLS4ML



History of AI/ML Designs w/HLS
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Customers have been using HLS for AI/ML designs since 2017

Mostly for Convolutional Neural Networks customized in ASIC for Inferencing at the edge

Manually optimized bit-widths for lowest area and power

Manually designed custom C++ IP for HLS and adjusted constraints to meet PPA target

Mixture of pure dataflow layer connections and PE-Array architectures

             

        

   

     

             
            

                
           



Meeting designers where they are
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Motivation

• A Python env is the de facto standard development platform for AI/ML neural network models

• Generating an efficient hardware implementation from a Python model is tedious and error-prone

• Validation of the accuracy and PPA at the end is often too late

• Recent advances have allowed quantized-aware training using the Python model…

• … but those precision details must be manually (re)coded into HDL model

Python

Training



HLS4ML

Introduction
• Provide and efficient and fast translation of machine learning models from open-source 

packages for training machine learning algorithms to High-Level Synthesis

Inspiration
• Originally inspired by the CERN Large Hadron Collider (LHC)

• ML applications have proven extremely useful for large dataset analysis. 

• Taking data offline will allow for data to be calculated faster along with sorting data for storage

• Lower Latency, Realtime Detections

32



HLS4ML 

Solution:

• ASIC and FPGAs have specialized 
architecture compared to CPUs and 
GPUs

• Specialized hardware is always able to 
help with design constraints

• Specialized hardware tend to have 
lower-power and faster results.

33



Frontends & Backends
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Vivado/Vitis

oneAPICatapult

Quartus

Symbolic Expression

VivadoAccelerator



The Full Flow
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C/C++

Synthesizable RTL

High-Level

Synthesis

Python



An Example



MNIST Dataset
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The MNIST dataset is included in several popular 
machine learning packages

Contains 70,000 images:

• Images are 28 x 28 pixels

• Pixels are 8-bit greyscale (1 color plane)

Typically separated training and validation: 

• 60,000 images for training 

• 10,000 images for verification



MNIST Neural Network
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Conv2d

Dense Softmax

P(0) = 0.001

P(1) = 0.000

P(2) = 0.993

...

20 images

Batch 
Norm

20 images

10 vectors



Accelerator Development
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Profile the execution to determine functions that need acceleration

Convolution and dense layers consume 99.5% of the computational load (excluding test overhead)

These will benefit from acceleration

* System performance and power 

measured for 64-bit Rocket Core RISC-V
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Feature and Weight Quantization
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Quantized Aware trainingPost Training Quantization

Pre-Trained 

Model

Calibration

Dataset

Calibration/Tuning

Quantization

PTQ Quantized Model

Pre-Trained 

Model

Full

Dataset

QAT Quantized Model

Quantization

Retraining/Tuning



Higher levels of abstraction
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Catapult AI NN has a simplified Python API for configuring the project and generating the RTL
• Use config_for_dataflow to configure the project – using only the model and dataset variables

• Use generate_dataflow to generate the Catapult HLS C++ model, C++ testbench and build 
scripts

• Use build to generate the RTL

# Configure the project – passing in the TF model, test dataset and reference output

config_ccs = catapult_ai_nn.config_for_dataflow(model=model, x_test=x_test, y_test=y_test, num_samples=50, tech='asic',

asiclibs='saed32rvt_tt0p78v125c_beh’, clock_period=10, io_type='io_stream’)

# Generate the C++ HLS model

hls_model_ccs = catapult_ai_nn.generate_dataflow(model=model,config_ccs=config_ccs)

# Use Catapult Ultra to generate the RTL (batch mode)

Hls_model_ccs.build()

This example is available using the Catapult AI/NN Frontend for HLS4ML



Reports
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Layer Report:

• HLS4ML Layer Summary – report shows python description of each layer

• nnet layer results – report shows PPA for each network layer

Layer Name    Layer Class       Input Type        Input Shape       Output Type       Output Shape

------------ ------------- ------------------- ------------- ------------------- --------------

conv2d1        Conv2D      ac_fixed<8,1,true>    [14][14][1]   ac_fixed<16,6,true>    [4][4][5] 

relu1          relu ac_fixed<16,6,true>    [4][4][5]    ac_fixed<16,6,true>    [4][4][5]

flatten1       Reshape     ac_fixed<16,6,true>    [4][4][5]    ac_fixed<16,6,true>       [80]

dense1         Dense      ac_fixed<16,6,true>      [80]       ac_fixed<16,6,true>       [10] 

softmax1       Softmax ac_fixed<16,6,true>      [10]       ac_fixed<16,6,true>       [10]

Weight Type           Bias Type

------------------- -------------------

ac_fixed<16,6,true>  ac_fixed<16,6,true>

ac_fixed<16,6,true>  ac_fixed<16,6,true>

This report is available using the Catapult AI/NN Frontend for HLS4ML



Understanding Precision
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High-water mark of data and intermediate 
values showed range of values was -37 to 56

• Float32 (+/-1038 is excessive)

Sensitivity analysis performed across varying 
fixed-point representations



Value Range Analysis
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For this example, a fixed-point precision of ac_fixed<16,6> resulted in 3 
numerically different results compared to the floating-point Python output (after 
quantization)

This tool is available using the Catapult AI/NN Frontend for HLS4ML



Customization
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Measuring the accuracy of this model shows a slight improvement

Does the accuracy increase of 0.0001 warrant and increase in size?

Add refinements by layer

AREA SCORE: 72275AREA SCORE: 70125



Rethinking the Approach - QAT
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Going back to the Python model, you can use QKeras to model the quantization affects at the 
interfaces of the layers during training

Note that even though QKeras is applying quantization at the interfaces (feature, weights and 
biases), the internal math operations are still performed as double precision whereas the fixed-
point C++ model will use bit-precise fixed-point operations 



Transferring Your Network
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model = Sequential()

model.add(layers.Input(shape=(Fw,Fw, 1), name='input1'))

model.add(layers.Conv2D(filters=5, 

kernel_size=5, strides=3, name='conv2d1'))

model.add(layers.BatchNormalization(name='batchnorm1'))

model.add(layers.Activation('relu', name='relu1'))

model.add(layers.Flatten(name='flatten1'))

model.add(layers.Dense(10, name='dense1'))

model.add(layers.Activation('softmax', name='softmax1'))



model = Sequential()

model.add(layers.Input(shape=(Fw,Fw, 1), name='input1'))

model.add(QConv2D(filters=5, kernel_size=5, strides=3,

kernel_quantizer=quantized_bits(8, 1, 1, alpha=1),

bias_quantizer=quantized_bits(8, 1, alpha=1),

name='conv2d1'))

model.add(layers.BatchNormalization(name='batchnorm1'))

model.add(layers.Activation('relu', name='relu1'))

model.add(layers.Flatten(name='flatten1'))

model.add(QDense(

units=10,

kernel_quantizer=quantized_bits(8, 1, alpha=1),

bias_quantizer=quantized_bits(8, 1, alpha=1),

kernel_regularizer=tf.keras.regularizers.L1L2(0.0001),

activity_regularizer=tf.keras.regularizers.L2(0.0001),

name='dense1',

))

model.add(layers.Activation('softmax', name='softmax1'))

Transferring Your Network

48



8 7 6 5 4 3 2 1 0
8 0.9557 0.9537 0.9583 0.9509 0.953 0.9421 0.907 0.8966 0.098
7 0.9565 0.9552 0.9569 0.9576 0.9552 0.9459 0.941 0.9308 0.098
6 0.9497 0.952 0.9556 0.9496 0.9579 0.9495 0.9469 0.9133 0.2298
5 0.9608 0.957 0.9565 0.9532 0.952 0.9405 0.9238 0.9211 0.098
4 0.9537 0.9567 0.9519 0.9605 0.9539 0.9492 0.9344 0.9016 0.5703
3 0.9512 0.9549 0.9553 0.951 0.9513 0.9515 0.9408 0.9212 0.8202
2 0.953 0.915 0.9559 0.9576 0.9555 0.9501 0.9413 0.9099 0.7048

Model Accuracy – Quantizer Bits
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Design Exploration and Optimizing
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Discover the optimal design

• Make informed choices

• Find the smallest design with an optimal 

accuracy

Key Points

• As the number of bits decrease 

the size decreases

• The less bits moving through 
ROM the less energy used

7x20 filter
Conv 2D

5x5 filter

Model

Accuracy

Area – u2 Bias bits

In ROM

Weight bits

In ROM

8int 5p 0.9608 133255 65 1625

7int 4p 0.9567 115933 55 1375

7int 2p 0.915 99520 45 1125

4int 6p 0.9579 99550 50 1250

0int 3p 0.8202 37591 15 375

Dense

10 Ch

Model

Accuracy

Area – u2 Bias bit

In ROM

Weight bits

In ROM

8int 5p 0.9608 813888 130 10400

7int 4p 0.9567 703025 110 8800

7int 2p 0.915 597973 90 7200

4int 6p 0.9579 596609 100 8000

0int 3p 0.8202 200393 30 2400



Meeting designers where they are
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Ease of Use and Optimization

• High-Performance C++ IP Libraries for 
better hardware

• Enhanced analysis and reporting

• Complete low-power design w/power 
estimation and optimization

• Integrated Value-Range Analysis 
(VRA) for detection of 
quantization/overflow in C++

• C++ Testbench options to measure 
numerical differences vs Python

This example is available using the Catapult AI/NN Frontend for HLS4ML



How can we use 
HLS4ML to make 
our lives easier



• hls4ml is a Python package for machine learning inference as custom hardware

• Translate traditional open-source ML models into an HLS project

• Easy to install

• pip install hls4ml

• Open source

• https://github.com/fastmachinelearning/hls4ml

• https://fastmachinelearning.org/hls4ml

• Community

• Research laboratories, universities, and companies

What is hls4ml?

https://github.com/fastmachinelearning/hls4ml
https://fastmachinelearning.org/hls4ml


• Co-design = development loop between algorithm design, data collection, training, and hardware 
implementation

• Large design search space

• Scientists and engineers with different expertise

54

Co-design with hls4ml



• High energy physics

• Large Hadron Collider (LHC) at CERN

• Extreme collision frequency of 40 MHz → extreme data rates O(100 TB/s)

• Most collision “events” don’t produce interesting physics

• “Triggering” = filter events to reduce data rates to manageable levels

55

hls4ml origins



• To a large variety of scientific applications

• Low latencies (ms → ns)

• High throughput O(100TB/s)

• … including teaching material

56

hls4ml has grown

Neural learning for control, Institute of neuroinformatics, ETH Zurich

https://docs.google.com/presentation/d/1ASwMpwnfXRI0TIVfsxasc75QRh2LREV4y0GAEWMxddQ/edit


57

hls4ml community



• Converts from ML frameworks

• Internal representation

• Configuration to tune latency vs. resources, bit precision

• | hls4ml knobs | << | HLS knobs |

• Optimizers, e.g. merging layers

• Backends to HLS tools

• nnet_utils = C++ library of ML functionalities optimized for HLS

58

hls4ml architecture



59

hls4ml supports Catapult HLS



• Trade-off between latency and resource usage determined by the parallelization of the logic in each layer

• ReuseFactor = number of times a multiplier is used to do a computation

60

hls4ml – Parallelization



• ReuseFactor = 1, 2, 4

• Other configurations (ignore for now)

• Streaming Input, On-chip Weights, 32nm ASIC, 10ns Clock, Latency mode

61

Design space exploration via reuse factor



• As “customary” in custom hardware, we use quantized representation

• Floating-point computation is too resource intensive

• Precision = fixed point types

• ac_fixed, Algorithmic C Datatypes

• https://github.com/hlslibs/ac_types

• Operations are integer ops, but we can represent fractional values

• But we have to make sure we’ve used the correct data types!

• Post training quantization

• Quantization aware training

62

hls4ml – Quantization

1.1 computing’s energy problem (and what we can do about it), M. Horowitz 2014 High-performance hardware for machine learning, W. Dally 2015

https://github.com/hlslibs/ac_types
https://ieeexplore.ieee.org/document/6757323
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf


• Post-training quantization (PTQ) = turning weights from float to fixed (or other quantized format)

63

Design space exploration via (post-
training) quantization

Fast inference of deep neural networks in FPGAs for particle physics, J. Duarte et al. 2018

https://arxiv.org/abs/1804.06913


• QAT improves on PTQ

• Taking into account quantization numerics and 
learning around them

• More compact bit representation → Reduction area, 
power, and latency

• QKeras https://github.com/google/qkeras, Brevitas
https://github.com/Xilinx/brevitas

• Easy to use, e.g. drop-in replacements for Keras
layers

• Dense → QDense

• Conv2D → QConv2D

64

Quantization-aware training (QAT)

Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors, C.N. Coelho et al. 2021

https://github.com/google/qkeras
https://github.com/Xilinx/brevitas
https://www.nature.com/articles/s42256%E2%80%93021-00356-5.


• hls4ml is a specialized compiler or transpiler

• Translate a high-level specification of a model a into HLS-ready code that implements the same algorithms

• User can choose

• Strategy for the implementation of the layers

• “Latency” for smaller model where likely the goal is high-parallelism, i.e. low reuse factor

• “Resource” for larger model and higher reuse factor

• IOType for the interfaces of layers and overall module

• “io_parallel” for data passed as arrays

• “io_stream” for data passed as latency-insensitive channels, e.g. ac_channels Algorithmic C Datatypes

65

hls4ml – Layer implementations and 
interfaces



• ReuseFactor : <integer value>
• Controls the level of parallelism – 1 is the most parallel (smallest latency), 2 is half that…

• Precision : <fixed-point data type>
• Global or per-layer option configuring the precision for feature, weight and bias values

• Strategy : “latency” or “resource”
• Selects different C++ architectures for the layer implementations

• IOType : “io_parallel” or “io_stream”
• Passes data either as arrays or latency-insensitive channels, e.g.

• Part : <FPGA part>
• Identifies the specific FPGA family/part is used in downstream RTL synthesis

• ClockPeriod : <period in ns>
• Specifies the clock period for HLS

66

hls4ml configuration in summary



• hls4ml instantiates and configures layers of a model in a data flow architecture

67

hls4ml – Heterogenous dataflow 
architecture

Applications and Techniques for Fast Machine Learning in Science, A. McCarn Deiana et al. 2022

https://www.frontiersin.org/articles/10.3389/fdata.2022.787421/full


68

hls4ml – Example



Applications



70

Survey of Big Data sizes in 2021

https://arxiv.org/abs/2202.07659



• Experiments at colliders typically have a silicon pixel 
detector at the center
• Concentric rings tiled with sensors

• Silicon sensors are depleted of charge carriers by 
high voltage

• When a charged particle from a collision passes 
through, it creates e/h pairs

• Charge is read out and transferred off-detector
• Charge cluster information is used for physics analysis 

offline

Silicon pixel detectors

Silicon Pixel Detector at CMS (LHC, CERN)

https://cms.cern/detector

https://cms.cern/detector


• Connecting the dots between charge collected in different pixel 
layers creates a particle track
• Detector should be low-mass so interactions in inactive material doesn’t 

disrupt this trajectory

• Solenoid magnet immerses the pixel detector in a magnetic-
field, causing tracks to curve

• Very curved → low transverse momentum (low-pT)

• Almost straight → high transverse momentum (high-pT)

• Reconstructing vertices is critical

• Secondary vertices help identify particles: long, short, medium 
lifetime?

72

Particle tracks and vertices



• LHC/CMS produces a lot of data

• New data every 25 ns (p-p collision)

• Physicists have to throw most of it away

• Physically and financially challenging

• Risk to throw away significant information

• Detector is continuously being sprayed with particles

• Need radiation tolerant on-detector electronics

• High voltage and low temperature requirements

• Up to -800 V, -35 C

73

Designing hardware for the LHC is challenging



• On-chip data filtering at rate (40 MHz)

• AI algorithms

• Reconfigurable algorithms

• Hybrid pixel detector

• Silicon sensor

• Pixelated ROIC

• Analog front-end + ADC

• AI in digital logic

74

Goal of the Smart Pixel team



• Inputs are cluster images projected onto y-axis and the 
associated y0

• Three output categories

• high-momentum (> 200 MeV)

• low-momentum, negatively charged

• low-momentum, positively charged

• Simulated dataset of 800,000 clusters

• Classical training and testing set split 80%-20%

• Tensorflow/Keras, 200 epochs for training, 20 epochs of early 
stopping, 1024 batch size, Adam optimizer
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Neural network classifier (filter)



• On-chip data reduction at BX rate
• R&D for phase III CMS experiments

• pp-collision 40 MHz

• Integration of the ML algorithm as digital logic with the 
analog front-end into the in the pixelated area

• Low-power 28nm CMOS

• Total power < 1 W/cm2

• Analog ~5 μW/pixel

• Digital ~1 μW/pixel

• Bandwidth saving
• 54.4% - 75.4%
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Filtering in ASIC at LHC

Smart pixel sensors: towards on-sensor filtering of pixel clusters with deep learning, J. Yoo et al. 2023

https://arxiv.org/abs/2310.02474


• Autoencoder (ML) on the detector front-end for data compression

• ASIC required due to radiation tolerance, handled through triple modular redundancy, and power requirements

• Reconfigurable ASIC to address: evolving LHC conditions (beam related), detector performance (noise, 
dead channels), and updated performance metric (resolution, new physics signatures)
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Data compression in ASIC at LHC

8’’ hexagonal silicon module

(1 out of ~27,000)

GF 65nm “ECON-D”

Metric / requirement Value

Rate 40 MHz

Total ionizing dose 200 Mrad

High energy hadron flux 107 cm2/s

Tech. node 65 nm LP CMOS

Power 48 mW

Energy / inf. 1.2 nJ

Area 2.88 mm2

Gates 780k

Latency 50 ns

A reconfigurable neural network ASIC for detector front-end data compression at the HL-LHC, G. Di Guglielmo et al. 2021

Using QKeras, hls4ml, and Catapult 

HLS

• reduced power by 50%, area by 80%, 

and achieved 2x better performance

reference solutions by optimizing 

compression and quantization

• Faster design cycle!

https://ieeexplore.ieee.org/abstract/document/9447722/
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More ASIC applications with hls4ml and Catapult HLS

• Data compression for X-ray 

microscopy (ptychography)

• Testing chip at GF 65nm
• Evaluation of algorithms
• PCA vs. Autoencoder

Up to 70x data compression at source with a 

20% increase in pixel area

• Quantum readout at cryogenic 

temperatures (4 Kelvin)

• Testing chip at GF 22nm

• SoC with ML accelerator

• Under testing

GF 65nm “SPROCKET”
“SPROCKET”

(testing board for ROCKET-chip family)

GF 22nm “CryoAI”

GF 22nm “CryoAI”

(wirebonded)



• Plasma instabilities when magnetic field lines 
become distorted

• μ-seconds constraints

• Confinement loss → damage to the reactor

• One of the major roadblocks preventing lasting 
thermonuclear fusion
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A recent application for FPGA: Plasma control

HBT-EP Tokamak at Columbia University

http://sites.apam.columbia.edu/HBT-EP

Real-Time Instability Tracking with Deep Learning on FPGAs in Magnetic Confinement Fusion Devices, R. Forelli et al. 2023

http://sites.apam.columbia.edu/HBT-EP
https://opg.optica.org/abstract.cfm?uri=DH-2023-HW4C.2


• Open source + community

• Python ML package

• Reads and optimizes ML networks

• Library of optimized HLS-ready ML functions

• Dataflow pipeline of hardened layers

• Easier design space explore for ML 
implementation

• Support of Catapult HLS

• Successful for both ASIC and FPGA 
applications
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hls4ml in summary



Thank you!



Breaking Down a Neural Network

83

# Create NN Model

model = Sequential(name='mnist_conv2d_ptq')

model.add(layers.Input(shape=(28,28, 1), name='input1'))

model.add(layers.Conv2D(filters=5, kernel_size=5, strides=3, 

name='conv2d1'))

model.add(layers.BatchNormalization(name='batchnorm1'))

model.add(layers.Activation('relu', name='relu1'))

model.add(layers.Flatten(name='flatten1'))

model.add(layers.Dense(10, name='dense1'))

model.add(layers.Activation('softmax', name='softmax1’))

# Compile and Train

model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(x_train, y_train, epochs=10)
# Measure the accuracy of the model
test_loss, test_acc = model.evaluate(x_test, y_test)
print(f"Test Accuracy: {test_acc}")



Headline for a 
section divider



Content Headline
Lorem ipsum dolor sit amet, consectetur 
adipiscing elit. Nullam at iaculis tortor. 
Donec in feugiat erat. Ut dapibus, quam 
quis suscipit condimentum, risus enim 
aliquam quam, eu convallis sapien enim 
a tellus. In hac habitasse platea dictumst. 
Nunc eu interdum odio. Proin porta felis 
vitae nibh lobortis auctor. Praesent ut orci 
ex. Pellentesque eu dui ex. Aenean ac 
ultricies massa. In blandit tortor 
elementum tortor ullamcorper venenatis.
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Content Page Headline

• Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam at iaculis tortor. 
Donec in feugiat erat. 

• Ut dapibus, quam quis suscipit condimentum, risus enim aliquam quam, eu 
convallis sapien enim a tellus. 

• In hac habitasse platea dictumst. Nunc eu interdum odio. Proin porta felis vitae 
nibh lobortis auctor. Praesent ut orci ex. Pellentesque eu dui ex. Aenean ac 
ultricies massa. In blandit tortor elementum tortor ullamcorper venenatis.
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