FERMILAB-SLIDES--25-0097-ETD

. v

Even Higher-Level

Synthesis

An Exploration of Al Hardware Accelerators using HLS4ML

6 \

TO SYSTEMS .
SPONSOREDBY CGEEm/A Sl a

{- -
--.,,,-’

This manuscript has been authored by FermiForward Discovery Group, LLC under Contract No. 89243024CSC000002 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Cameron Villone
HLS Technologist — Siemens EDA

Cameron Villone joined Siemens in August 2023 through the Atlas New
Graduate Program. Cameron graduated from Rochester Institute of
Technology with a Masters Degree in Electrical Engineering focusing on
Robotics, Embedded Systems, and Computer Vision. Cameron has held
previous student roles at General Motors and Texas Instruments. Cameron
started his Siemens journey by working as a product marketer for
Siemens’s low power solution, PowerPro. Cameron then grew to his
current role as part of the product management team as an HLS
Technologist for Catapult AI/NN.

SIEMENS

Giuseppe
Di Guglielmo

Senior ASIC Engineer — Fermilab

Giuseppe Di Guglielmo is a Senior Engineer at Fermilab focused on
system-level design and Al/ML hardware acceleration. He develops
intelligent, ultra-low-latency detectors for harsh environments, including
ML-enabled, radiation-resistant chips for the LHC and quantum hardware
for cryogenic systems. With a Ph.D. in Computer Science and over a
decade of experience in high-level synthesis for ASIC/FPGA design, he
previously held research roles at Columbia University and Tokyo
University. He is an active contributor to open-source projects like ESP and
hls4ml.

2= Fermilab

Why Customized

Accelerators?

S

TO SYSTEMS I
SPONSOREDBY CGEMA %}8&1

Inferencing Will Be Everywhere

Al can make embedded devices:
* More capable
 More secure

o Safer
 Faster AI@ED(EQ

Al/Edge

(.' A o Automotive
?f‘/_; 39

Deploying Al in the Edge Systems

o . . .
o ., Highest performance and efficiency are
= achieved with specialized ASIC
: implementation running on the edge
The Cloud A Gateway
3
T

TPU/NPU Edge TPU FPGA or ASIC

Higher specialization/Lower energy

7
S

\1‘

Hardware vs Software

Pure Software
Implementation

Software with generic
hardware accelerator

Software with bespoke
hardware accelerator

Pros

Very Flexible

Easy to update

Cons

Performance
and Timing
issues for real-
time
applications

Pros

Retains
Moderate
Flexibility

Cons

Relies on
standard HW

Power
consumption
and timing
issues-

Pros

Very Low power
and predictable
timing

Cons

Requires
development of
custom
hardware

Fixed to a
limited set of
network
architectures

More and More Models

Many Many More....

e DenseNet
 AlexNet
» EfficientNet

Yolov] —v8 MobileNet
Reshe I + SqueezeNet

SoftMax, two

— olila
131 Cony 33 Conv G Coy 33 Cony 33 Comy Avg. Classification
64 Filter,

vy 64 Filier 128 Filler 256 Filler 512 Filer Poaling vulpuls . VG G

N\ RN | et
« ResNeXt

33 Cony 33 Cony 3x3 Conv 3x3 Conv
Ind»

Image 64 Filter 128 Filter 236 Filter 512 Filter Fea

w

Dactien * More and More.....

ResNet

Model Size of Best ImageNet Algorithm

Model Compute Load

10000

1000

a 100
Q9
b
©
el
o

10

1
\(\(\@\Q’

SERGER

))
W W .
QN R

S 9 Q Q Q Q Q Q N N N N N N Vv SV
RSN VNN G VA G R\ N LN LN IR NN
NS ; A QY Y Y N ; A QY N YN N R RO

RS Q)
N NN
\ S A

\'\q’
EONEA

(. Models have increased in computational load by >100X in 5 years

Inference Execution

Can run any
inference

]

<High Energy Efficiency Low Energ)>

@ Runs limited set of

inferences

]

Performance

Fast >

10

Complexity Drives Need for Customization

<High Energy Efficiency Low Energ)>

As neural networks increase
in size and complexity,
designs will be forced to
move to faster and more
efficient platforms

Performance

Fast >

11

Drivers for ASIC Inferencing on the Edge

Drivers to the edge:
- Latency
- Security
- Privacy

Drivers to ASIC:
- Performance
- Efficiency

Lo

1TE

Inferencing on the Edge

As Al algorithms get more complex, processors, software and off the shelf accelerators will
struggle to meet design requirements

Technology trends are driving edge inferencing to be done on device
Designing a bespoke accelerator can deliver the highest performance and efficiency

High-Level Synthesis delivers the fastest path from machine learning framework to RTL

High-Level . B ﬁ; _
S nthGS'S | B PR TELD | Fj TOD.1)
y :n!;_pm}fm TN .1-0-:| - m:r

13

What is

High-Level Synthesis?

S

TO SYSTEMS I
SPONSOREDBY CGEMA %}8&1

What is High-Level Synthesis (HLS)?

361 void copy_to_regs(hw_cat_type #dst, index_type dst_offset, raw_memory_line #src, index_type src_offset, index_type size A
‘ utomate a rom ++ Oor system
// read out of internal memories to an array of registers
// #*should* make it easy for catapult to pipeline access to internal memories
]]]]

into technol timiz nthesizable RTL
index_type n; y y
static const index_type stride = STRIDE;
count = @; o
while (count < size) {

n = stride;

if ((size - count) < stride) n = size - count; // mis-aligned at the end of transfer

read_line(dst, dst_offset, src, src_offset, n);

count += n; o

src_offset += n;

dst_offset += n;
} H

¥ t g [31:0] timer_value;
reg 131581 rd_reg;
' rasp_out
ready_gen #(1) rg (clock, resetn, ce, trans, ready_out)i

C/C++ or SystemC

2 honasasal;

resetn) begi

High-Level
Synthesis |

“Synthesizable RTL

@
15

Generate Synthesizable RTL from C++

Optimized for a specific target technology or
FPGA device

Output in either VHDL or Verilog

MOl add(int a, int b, int &dout){
dout = a + b; HLS

}

/ Addition operator
a'rsc dat(31°0) [ym——oat ‘“a‘—l ace

T \Z(31:0) eql 5)
] + reg(dout rsci.idat)
b -rsc dat(31:0) [L7 |
— D(310)

16
17
18
19
20
21

23
24
25
26
27
28
29
30
31
32
33
34

36
37
38
39
48
41

ces_in

ccs_in ———DRs(31.0)
clk[> p-clk
rst[> Rs(0:0) ces_out

reg(32,1,0,0,1)

Z(31:0) {>doutrse dat(31:0)

module add core (
clk, rst, a_rsc_dat, b_rsc_dat, dout_rsc_dat

)i
input clk;
input rst;
input [31:8] a_rsc_dat; = Clock and reset

input [31:8] b_rsc_dat;
output [31:0] dout rsc dat;

/ Interconnect Declarations
wire [31:0] a_rsci_idat;
wire [31:0] b_rsci_idat;
req [31:0] dout rsci idat;
wire [32:0] nl_dout rsci_idat;

always @(posedge clk) begin
it { rst) begin

dout _rsci_idat <= 32'b0; Addition operator
end
else begin
dout rscl idat == nl_dout_rsci idat[31:8];
end
anda

assign nl_dout rsci idat = a_rsci_idat + b_rsci_idat;
endmodule 16

Analysis of C++ Descriptions

High-Level Synthesis analyzes the data dependencies between operations in the algorithm
Analysis produces a Data Flow Graph (DFG)

Each node on the DFG represents an operation in the algorithm

Connections between nodes represent data dependencies and indicate order of operations

accumulate (a, b, a— » t1
c, d, b
&dout) {

tl,t2; ’ t2
tl a + b; C —»

t2

tl + c; L
dout t2 + d; dout
o } d—

17

Analysis of C++ Descriptions

High-Level Synthesis analyzes the data dependencies between operations in the algorithm
Analysis produces a Data Flow Graph (DFG)

Each node on the DFG represents an operation in the algorithm

Connections between nodes represent data dependencies and indicate order of operations

accumulate (a, b, a—» t1
c d,

&dout) {
. -
tl,t2; dout
tl a + b; c — >
t2 tl + c;
t2 + d; d —

dout
'a }

Parallelism

Parallelism is introduced using loop transformations
* Unrolling and pipelining

Unrolling drive parallelism
Pipelining also increases throughput and F_,

data t MAC (
data t data in[4],

coef t coef in[4] g
) ©
) £

accu_t acc =0 ; '§
<

for (int i=0;i<4;i++) {
acc += data in[i] * coef in[i] ;

}

return acc ;

Constraints

/\

Hfll

v

d] [
T ¢

-

Loop Unrolling

Two iterations >
per clock

Four iterations
per clock

suoljesa)|

suonesay|

W N 2| O

OJIM‘A o

Clock Cycles -

din[31:0]

ACCUM loop in first .
din[95:64] -

call of the main loop

din[127:96]

ACCUM loop in secon d
call of the main loop

1-bit

D—D
din[63:31]

Reg

Counter

Partially Unrolled - 2x
Clock Cycles -
ACCUM | in fi)
call of theor22ilr?|:;;S; din[31:0]
din[63:31]
din[95:64]
din[127:96]

ACCUM loop in second

= call of the main loop

Fully Unrolled - 4x

©)

Reg

dout[31:0]

dout[31:0]

Loop styles

unsigned int sum_fn (int d[4])
{

for... unsigned int sum = 0;

“While...” for (inti=0; i<4; i++) sum +=d[i];
return sum;

‘do ... while” 3}

Loop unrolling provides a way to
explore several micro-
architectures for a given design

Loops can be fully or partially
unrolled

20

Loop Pipelining

A single stage pipeline, i.e. no pipelining, has no overlap
between loop executions

Results in data being written every 4 clock cycles

With no overlap, the resources (the adder) can be shared
between all C-Steps

@
b—=

— 2
a—T t1 c -—>@_
b— 4

~dout

~dout

11

o= -l

E@ﬂ’dout
t2 a’
e O g
>dout d_:@_, dout

I
.

1
P
$=
9

d—

(. Pipelining with 11=2 Pipelining with 11=1

Pipelining or Loop Unrolling

What is the optimal architecture? What makes the
most sense for your design?

Considerations:

* Data arrival and departure rates

* Do not create more compute capacity than the communication
channels can support

* Throughput vs. latency
* |sitlower latency or greater throughput more important

* Performance vs. area
 Smaller usually means slower

* HLS can give the data needed to make these decisions
* Gantt Chart
* Reports

¢

22

Modeling Arbitrary Precision

Hardware design requires being able to specify any bit-width for variables,
registers, etc.

Need to model true hardware behavior and precision to meet specification and
save power/area

* Not limited to power-of-two bit-widths (1, 8, 16, 32, 64 bits)
* Integer, fixed-point, and floating-point support

Algorithmic C (AC) data types are C++ classes defined to provide storage for
precise hardware mapping in HLS

¢

23

Saturating Math

<ac_fixed.h>
pi = 3.14;
OFFSET = 0.2;
main () {
fstream fptr;

fptr.open (M“tmp.txt”, fstream::out);:
ac_fixed<7,1, ,AC_TRN,AC_SAT> x[128];

(i=0;1<128;1i++) {
fptr << x[i] <<endl;

}
fptr.close();

¢

%[i] = OFFSET + 0.98*sin(2*pi*i/() ~
i 1

Overflow ‘ ‘

\
‘Il
\

Saturation]

Overflow:

62.5 0111111.100
+2.0 10.000

15 1111101.100
“EALLY WRON G!
Saturation:

625 0111111.100
+ 2.0 10.000

63.875 0111111.111

Close to correct N

Smaller is Better

14000
12000
10000
8000
6000
4000
2000

Operand Size vs Multiplier Area

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Integer —Floating Point

A—
C
B_
A one-bit integer multiplier is an
“and’ gate

Data Sizes and Operators

Cost of Operations

Relative Energy Cost

Relative Area Cost

Area (um?)

36
67

137
1360
4184

282
3495
1640
7700

Operation: Energy (pJ)
8b Add 0.03
16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.4
32b FP Mult 3.7
32b SRAM Read (8KB) S
32b DRAM Read 640

N/A

N/A

S

100 1000 10000

1 10 100

1000

Source: Nvidia DAC2017

4)
Adder: floating

point is 37X

Mult: floating
point is 2.2X

bigger than

intonor

\
Adder: 32-bit

Mult: 32-bit is
12 X bigger
than 8-bit

T

Energy and Operators

o\

Adder: 32-bit
uses 3 X energy
vs. 8-bit
Cost of Operati
Relgti -
Operation: Energy (pJ)
8b Add 0.03
16b Add 0.05 32-bit data read
32b Add 0.1 uses 170X more
16b FP Add 0.4 energy than a
T e ltiplication
8b Mult 0.2 e
32b Mult 3.1 ' /ik A
16b FP Mult y 51 1640
32b FP Mult 3.7 7700 |
32b SRAM Read (8KB) 5 N/A
32b DRAM Read 640 N/A
| 10 100 1000 10000 1 10 100 1000

Source: Nvidia DAC2017

Benefits of High-Level Synthesis

b %

High-Level Synthesis can help make this process easier, quicker, and flexible

Exploration through design constraints and synthesis settings, not manual re-

coding

« Evaluate more options than possible with a manual RTL design process

e Automated path from C/C++ or SystemC into technology optimized
synthesizable RTL

[

'Y

High-Level

Synthesis

=Miii—

Synthesizable RTL Custom Hardware

Introduction to
HLS4ML

TO SYSTEMS

¢

SPONSORED BY GEE@A %8&

History of AI/ML Designs w/HLS

Customers have been using HLS for Al/ML designs since 2017

Mostly for Convolutional Neural Networks customized in ASIC for Inferencing at the edge
Manually optimized bit-widths for lowest area and power

Manually designed custom C++ IP for HLS and adjusted constraints to meet PPA target
Mixture of pure dataflow layer connections and PE-Array architectures

New Data

Trained Model

‘M Trained Model XX
Optimized for W

H/W Performance

attheedge ‘
b |

Meeting designers where they are

Motivation

* A Python env is the de facto standard development platform for Al/ML neural network models

* Generating an efficient hardware implementation from a Python model is tedious and error-prone
* Validation of the accuracy and PPA at the end is often too late

* Recent advances have allowed quantized-aware training using the Python model...
* ... butthose precision details must be manually (re)coded into HDL model

test loss, test acc = model.evaluate(x test, y test)

print(f"Test Accuracy: {test acc}")

313/313 [=——=ece——seseeeeceesse==e===] - 15 2ms/step - loss: 0.0858 - accuracy: 6.9723
Test Accuracy: ©.9722999930381775

‘M‘ o ‘M‘ 1) ‘PYT&RCH I akeras| | €) ONNX|
(: W W @ python’

31

HLS4ML hils 4 ml

Introduction

* Provide and efficient and fast translation of machine learning models from open-source
packages for training machine learning algorithms to High-Level Synthesis

Inspiration
 Oiriginally inspired by the CERN Large Hadron Collider (LHC) A
« ML applications have proven extremely useful for large dataset analysis.
« Taking data offline will allow for data to be calculated faster along with sorting data for storage
» Lower Latency, Realtime Detections

[.
‘:\\\) @

HLS4ML

Keras
TensorFlow
PyTorch

compressed
model

Usual machine learning
software workflow

¢

‘:{‘x

' il

hils

HLS

conversion

4 mi

it

Co-processing kernel

\

tune configuratio
precision
reuse/pipeline

/

Custom firmware
design

Solution:

ASIC and FPGAs have specialized
architecture compared to CPUs and
GPUs

Specialized hardware is always able to
help with design constraints

Specialized hardware tend to have
lower-power and faster results.

33

Frontends & Backends

O
.F = @hlsg

4 m I Quartus Vivado/Vitis

Symbolic Expression

VivadoAccelerator

_ > Catapult oneAPI

o)

The Full Flow

@ MNIST CHN definition s
= - 7
s s
Can be modified to increase or decrease nuaber of layer, number of channels &
& supported layers are Conv2D, Dense, and Flatten. Suppoted kernel sizes are &
83, 5, and 7, square kernels only "
" "
def mnist_model(

create model

model = Sequantiall)

model .add(Input (shape=(28, 28,111

model.add(ConvzD(26, (5,5), use_bias=True, paddin sctivation='relu'))

model .add(MaxPaoling20 pool_size=(2,2))1
was 50

model.adg(ConvaD(1, (3,3), use bias=True, paddi
model. add(MaxPooling2Diponl size=(2,2))}
model.add(Flatten())

gmade].add(Dense (588, use_bias=True, kernel initializers'normel', activatior
model.add(Dense(2e, use_bias=Trus, kernel i activation
model.add(Densal18, use_bias=True, kernel_
Compile model
model . compile(los
raturn model

activation="relu'))

categorical_crassentropy’, optimize

Python

361 void copy_to_regs (hw_cat_type #dst, index_type dst_offset, raw_memory_line xsrc, index_type src_offset, index_type size)
362 {
363 // read out of internal memories to an array of registers
364 // xshouldx make it easy for catapult to pipeline access to internal memories
365
366 index_type count;
367 index_type n;
368
369 static const index_type stride = STRIDE;
70
371 count = @;
3712 while (count < size) {
373 n = stride;
374 if ((size - count) < stride) n = size - count; // mis-aligned at the end of transfel
375 read_line (dst, dst_offset, src, src_offset, n);
376 count n;
a7 src_offset += n;
378 dst_offset += n;
379 }
380)
—

C/C++

High-Level
Synthesis

«

input 131181 write data,
put [31:01 read_data,
Burput [aiml” resi;
»:
reg (31:0) ar_value)
reg (3110]
ready_gen #(1) ra (clock, resetn,
szxion ready ready_out;
pinlon Faug resp_out
aluays @(posedge clock or negedge
it (resetn == 1'8O) begin
timer_v 32 nowononaR;
slways @(posedge clock or negedgs
Af (resetn == 1'b8) begi

atue;

ce, trans, ready_out):

resatn) bagin

resetn)

Synthesizable RTL

An Example

TO SYSTEMS

¢

SPONSORED BY GFE[B)A g} 3

MNIST Dataset

¢

The MNIST dataset is included in several popular
machine learning packages

Contains 70,000 images:
* Images are 28 x 28 pixels

* Pixels are 8-bit greyscale (1 color plane)

Typically separated training and validation:
* 60,000 images for training
* 10,000 images for verification

37

MNIST Neural Network

»»%»»%

20 images 20 images
o 10 vectors
Lo

P(0) = 0.001
P(1) = 0.000
P(2) = 0.993

Accelerator Development

Software Profile

O\

* System performance and power
measured for 64-bit Rocket Core RISC-V

Profile the execution to determine functions that need acceleration

1995.00 ms
1995.00 ms
1962.00 ms
1962.00 ms
1962.00 ms
1752.00 ms
1682.00 ms
1678.00 ms
1677.00 ms
922.00 ms
738.00 ms
35.00 ms
17.00 ms
15.00 ms

Weight
100.0%

100.0%
100.0%
100.0%
100.0%
55.3%
44 2%
0.5%

Self Weight

33.00 ms
Os

Os
210.00 ms
70.00 ms
4.00 ms
1.00 ms
18.00 ms
922.00 ms
738.00 ms
3.00 ms
2.00 ms
15.0 ms

Symbol Name
mnist(85781)
Main Thread Ox1af672
start
main (int, char *)
test_mnist(int, float*, float*)
sw_inference (float*, float *, float*)
load_image(int, float*)
load_weights(int, float*)
sw_auto_infer(int, float *, float*)

dense_sw(float*, float*, float *, float*, int, int, int, int)
conv2d_sw(float*, float*, float*, float*, float*, int, int, int, int, int, int)

softmax(int, float*)
check_results(int, float*, float*)
exit()

Convolution and dense layers consume 99.5% of the computational load (excluding test overhead)
These will benefit from acceleration

39

Feature and Weight Quantization

Post Training Quantization Quantized Aware training

Pre-Trained Calibration Pre-Trained
Model Dataset /r:> Model

Calibration/Tuning

PTQ Quantized Model QAT Quantized Model

Full
Dataset

Quantization

Lo

Higher levels of abstraction

Catapult Al NN has a simplified Python API for configuring the project and generating the RTL
* Useconfig for dataflow to configure the project — using only the model and dataset variables

* Use generate dataflow to generate the Catapult HLS C++ model, C++ testbench and build
scripts

* Use build to generate the RTL

Configure the project - passing in the TF model, test dataset and reference output
config ccs = catapult ai nn.config for dataflow(model-model, x test=x_test, y test=y_test, num samples=50, tech='asic',
asiclibs='saed32rvt ttOp78v125c beh’, clock period=10, io type='io stream’)

Generate the C++ HLS model
hls model ccs = catapult ai nn.generate_dataflow (model=model,config ccs=config ccs)

Use Catapult Ultra to generate the RTL (batch mode)
Hls model ccs.build()

¢

This example is available using the Catapult AI/NN Frontend for HLS4ML

41

Reports

Layer Report:
« HLS4ML Layer Summary — report shows python description of each layer
* nnet layer results — report shows PPA for each network layer

Layer Name Layer Class Input Type Input Shape Output Type Output Shape
conv2dl Conv2D ac_fixed<8, 1, true> [14]1[14][1] ac_ fixed<lo, 6, true> [4][4] [5]
relul relu ac_fixed<l6, 6, true> (4] 4] [5] ac_ fixed<lo, 6, true> [4][4] [5]
flattenl Reshape ac_fixed<lo6, 6, true> [4]1[4] [5] ac_fixed<lo, 6, true> [80]
densel Dense ac_fixed<lo6, 6, true> [80] ac_fixed<lo, 6, true> [10]
softmaxl Softmax ac fixed<l6,6,true> [10] ac fixed<lo6,6,true> [10]

Weight Type Bias Type
This report is available using the Catapult AI/NN Frontend for HLS4ML o

ac_fixed<16,6,true> ac fixed<l6,6,true>

ac fixed<l6,6,true> ac fixed<l6,6,true>

¢

42

Understanding Precision

100

920

80

70

60

50

40

30

20

10

le

15

14

13

Accuracy vs Integer Bits

12 11 10 9 8 7 6

—Fixed Point Saturating Fixed Point

5

4

3

¢

High-water mark of data and intermediate
values showed range of values was -37 to 56

Float32 (+/-1038 is excessive)

Sensitivity analysis performed across varying
fixed-point representations

43

Value Range Analysis

For this example, a fixed-point precision of ac_fixed<16,6> resulted in 3
numerically different results compared to the floating-point Python output (after

guantization)

catapult_ai nn.run_testbench(hls_model ccs,0.005)

Weights directory: ./firmware/weights
Test Feature Data: ./tb _data/th _input features.dat
Test Predictions : ./tb datastb output predictions.dat
Processing input ©
Predictions
B0 1.5-85 9.2e-05 0 le-06 O 0.99989 le-06 le-06
Quantized predictions
000060006 .9990234375 @ 0

Ref ©.885848 Ref(quantized) .8857421875 DUT ©.879883 <- MISMATCH
Ref ©.379353 Ref(quantized) .37890625 DUT ©.366211 <- MISMATCH
Ref ©.616644 Ref(quantized) .6162109375 DUT ©.628906 <- MISMATCH

INFO: Saved inference results to file: tb_data/csim_results.log

Error: A total of 3 differences detected between golden Python prediction and C++ pred
iction using threshold of €.805

(This tool is available using the Catapult AI/NN Frontend for HLS4ML
@

from sklearn.metrics import accuracy_score
print('Python Model Accuracy : {}'.format(accuracy_score
print('C++ Model Accuracy : {}'.format(accuracy score

313/313 [==] - 85 98Bus/step
Python Model Accuracy : 0.9576
C++ Model Accuracy : 0.9497

44

Customization

g R T 7 . , T _ 2 , 4 ~ , .
v the 7 Hole = togtr Aatasetr and refercnce optrput
the 1F model, Test datasel and relference ou CoUut

Add refinements by layer

Configure the project — passing in t

config ccs = catapult ai nn.config for dataflow (model=model, x test=x test, y test=y test, num samples=50, tech='asic',
asiclibs="saed32rvt ttOp78vlZ25c beh', clock period=10, io type='io stream')

Refinements per layer — Precision

config ccs['HLSConfig'] ['LayerName']['inputl']['Precision'] = 'ac_fixed<8,1, true>'

Measuring the accuracy of this model shows a slight improvement

Python Model Accuracy : 0.9576

Python Model Accuracy : 0.9576
C++ Model Accuracy : 0.9498

C++ Model Accuracy : 0.9497

AREA SCORE: 70125 AREA SCORE: 72275

Does the accuracy increase of 0.0001 warrant and increase in size?

G 45

b %

4
r i

Rethinking the Approach - QAT

Going back to the Python model, you can use QKeras to model the quantization affects at the
interfaces of the layers during training

Note that even though QKeras is applying quantization at the interfaces (feature, weights and
biases), the internal math operations are still performed as double precision whereas the fixed-
point C++ model will use bit-precise fixed-point operations

—
7
B— 50 — HEEEEER
2
I
" E E " R N R RGN
"
.
I
=
o
HEEEHEEHEE
_ BEEEEEBEE

Ny Feature Extraction Classification

46

Transferring Your Network

model = Sequential ()
model .add (layers. Input (shape=(Fw,Fw, 1), name='inputl'))
model .add (layers.Conv2D (filters=5,

kernel size=5, strides=3, name='conv2dl'))
model .add (layers.BatchNormalization (name="batchnorml'))
model .add (layers.Activation('relu', name='relul'))
model .add (layers.Flatten (name="'flattenl'))
model .add (layers.Dense (10, name='densel'))
model .add (layers.Activation('softmax', name='softmaxl'))

=

Transferring Your Network

model = Sequential ()

model .add (layers. Input (shape=(Fw,Fw, 1), name='inputl'))

model .add (QConv2D (filters=5, kernel size=5, strides=3,
kernel quantizer=quantized bits(8, 1, 1, alpha=l),
bias quantizer=quantized bits(8, 1, alpha=l),
name="'conv2dl"'))

model .add (layers.BatchNormalization (name="batchnorml'))

model .add (layers.Activation('relu', name='relul'))

model .add (layers.Flatten (name="'flattenl'))

model .add (QDense (
units=10,
kernel quantizer=quantized bits(8, 1, alpha=1l),
bias quantizer=quantized bits(8, 1, alpha=l),
kernel regularizer=tf.keras.regularizers.L1lL2(0.0001),
activity regularizer=tf.keras.regularizers.L2(0.0001),
name="'densel',

))

model .add (layers.Activation('softmax', name='softmaxl'))

Yy

Model Accuracy — Quantizer Bits

Fractional Bits

o)

0.9512

0.958 C_ 0.915)

7
0.9537
0.9552

0.952
0.957

0.9549

6
0.9583
0.9569
0.9556
0.9565
0.9519
0.9553
0.9559

Integer Bit
5 4
0.9509 0.953
0.9576 0.9552
0.9496
0.9532 0.952
0.9605 0.9539
0.951 0.9513
0.9576 0.9555

3
0.9421
0.9459
0.9495
0.9405
0.9492
0.9515
0.9501

2
0.907
0.941

0.9469
0.9238
0.9344
0.9408
0.9413

49

Design Exploration and Optimizing

Conv 2D Model Area— u? Bias bits Weight bits
5x5 filter Accuracy In ROM In ROM
8int 5p 0.9608 133255 65 1625 Discover the optimal design
7int 4p 0.9567 115933 55 1375 * Make informed choices
7int 2p 0.915 99520 45 1125 » Find the smallest design with an optimal
4int 6p 0.9579 99550 50 1250 accuracy
Oint 3p 0.8202 37591 15 375
Key Points Dense Model Area— u? Bias bit Weight bits
10 Ch Accuracy In ROM In ROM
* As the number of bits decrease 8int 5p 0.9608 813888 130 10400
the size decreases 7int 4p 0.9567 703025 110 8800
* The less bits moving through 7int 2p 0.915 597973 90 7200
ROM the less energy used 4int 6p 0.9579 596609 100 8000

(. Oint 3p 0.8202 200393 30 2400
50

Meeting designers where they are

Ease of Use and Optimization

High-Performance C++ IP Libraries for
better hardware

Enhanced analysis and reporting

Complete low-power design w/power
estimation and optimization

Integrated Value-Range Analysis
(VRA) for detection of
quantization/overflow in C++

C++ Testbench options to measure
numerical differences vs Python

¢

~

// defines.h - layer-precision
typedef ac_ fixed<6,l,true> weight2 t;
typedef ac fixed<lé, 6, true> layerZ t;

S wZ2.h - weights
weightZ t w2[1024] = {-0.1230,
-0.1875, ...};

S myproject.cpp - network model

vold myproject () {
nnet::dense<layerZ t>(...};
nnet: :relu<layerd t>(...);

This example is available using the Catapult AI/NN Frontend for HLS4ML

51

How can we use
HLS4ML to make

our lives easier

S

TO SYSTEMS I
SPONSOREDBY CGEMA %}8&1

What is hisdml?

* hlsdml is a Python package for machine learning inference as custom hardware
* Translate traditional open-source ML models into an HLS project

SIEMENS EDA

. :
Easy to install Catapult® Synthesis
. .
plip install hlsdml Release Notes
* Open source e sost 202

Support for HLS4ML flow (beta)

* Community
* Research laboratories, universities, and companies

https://github.com/fastmachinelearning/hls4ml
https://fastmachinelearning.org/hls4ml

Co-design with his4ml

Co-design = development loop between algorithm design, data collection, training, and hardware

implementation
* Large design search space

* Scientists and engineers with different expertise

" Domain scientist L Data scientist

Constraints, ...

ML engineer

ML engineer
(HW engineer)

(ML engineer)
HW engineer

HW engineer

Clock frequency, his4ml directives for parallelization, ...

ML hyperparameters, quantization bits, ...

ML hyperpararﬁeters

Q DATA COLLECTION Q
- & PROCESSING ”

|

QUANTIZATION

AWARE TRAINING

Accuracy, MSE, ...

Estimated resource, area, latency, ... =

Y

Resource, area, latency, ...

:> INTEGRATION §
n SYN & PNR 5

his4ml origins

* High energy physics
* Large Hadron Collider (LHC) at CERN
* Extreme collision frequency of 40 MHz — extreme data rates O(100 TB/s)

* Most collision “events” don’t produce interesting physics
* “Triggering” = filter events to reduce data rates to manageable levels

FPGA
‘z(lr (\6
N &° £
© 5 &
< £
R o

his4ml has grown

* To alarge variety of scientific applications

51014_ | | l T | T 7]
* Low latencies (ms — ns) % T LHC sensor Fast ML for Science
. Q benchmark task
* High throughput O(100TB/s) B FHCHITATT 5he
m = po—
®* ... including teaching material S
Qubit Readout
100} .

EIC trigger — Plasma control
LHC trigger

+
DUNE readout

108 X-ray diffraction N
Neuro

+
+
1061 Magnet quench Internet-of-things N
Beam control
—
1041 n
102 | | | ! |

|
10° 1077 10° 10°° 101 10! 103 10°

Computation time [s]

Neural leaming for control, Insti f neuroinformatics, ETH Zurich

https://docs.google.com/presentation/d/1ASwMpwnfXRI0TIVfsxasc75QRh2LREV4y0GAEWMxddQ/edit

his4ml community

GitHub

@Watch 54 «~ Qs9 Fork 375 - Starred 1.1k -

Welcome to his4ml's documentation! 0 Edit on GitHub

Welcome to hls4ml's documentation!

his 4 ml

niz4nl is a Python package for machine learning inference in FPGAs. We create firmware
implementations of machine learning algorithms using high level synthesis language (HLS). We
translate traditional open-source machine learning package models into HLS that can be configured

for vour use-case!

[T] README Z

hls4ml-tutorial: Tutorial notebooks for hls4ml

IB jupyter [book

e-commit enabled | @ launch binder

style black

There are several ways to run the tutorial notebooks:
Online

€ launch ' binder

= Google Scholar hisami

* Articles

¥ slack

1 general

77 v [\ Get Notifications for All Messages v

About Members 973 Integrations

470 Active Users

Settings

Fast Machine Learning

L

How to do ultrafast
Deep Neural Network
inference on FPGAs

FAST MACHINE
LEARNING %
FOR SCIENCE
Aol Event Hoste by

REGISTERAND e
MORE INFORMATION
i findico cer che/miz020 (g3

@ smu

“fe hls 4 ml

Fast Machine Learning for Science

Workshop

Co-located with 2023 |nternational Conference on Computer-Aided Desigh (ICCAD).
Date: November 2, 2023

About 703 results (0.04 sec)

his4ml architecture

\1‘

Converts from ML frameworks
Internal representation

Configuration to tune latency vs. resources, bit precision
* | his4dml knobs | << | HLS knobs |

Optimizers, e.g. merging layers
Backends to HLS tools

nnet_utils = C++ library of ML functionalities optimized for HLS

l' .OONNX'

W Model converter “\

Utilities

Configuration

v

l

v B

L N

Optimizers

Backend
Project writer \

Catapult HLS [Lj
SIEMENS | ”

JVimis gl

hils4ml supports Catapult HLS

Model Development Model Conversion H|gh Level Synthesis RTL Synthesis
« Optimization » Parallelism Micro-Architecture « Timing Closure
+ Quantization - BRAM Loc * Memory Opt * Gate Netlist/
+ Training + /O Style + Pipelining Bitstream
* C++ Model - PPA
Generation « ASIC or FPGA target

[d¢| pYTirCH
QKerasl@ D NN X

m |,Catapult HLS |

C++ Model

+ Code Coverage

(100-1000x faster than .cccverage

RTL coverage)

ASIC RTL

®

bitstream

01001010
11010010
10001111
11110100

FPGA RTL

RTL Coverage
UVM Support

Pre-HLS Validation | CDesignChecker sc\,e"fy uesta Post HLS Validation
+ Static Checks C vs RTL Simulation

.CFormaI Apps

his4ml — Parallelization

Trade-off between latency and resource usage determined by the parallelization of the logic in each layer

ReuseFactor = number of times a multiplier is used to do a computation

mult

mult

mult

YYYY

mult

mult

mult

mult

Fully parallel

reuse = 1
use 4 multipliers 1 time each

reuse = 2
use 2 multipliers 2 time each

reuse = 4 Fully serial '

use 1 multiplier 4 times

A More resources,
Higher throughput,
Lower latency

Fewer resources,
Lower throughput,
Higher latency

Design space exploration via reuse factor

* ReuseFactor=1,2,4

* Other configurations (ignore for now)
* Streaming Input, On-chip Weights, 32nm ASIC, 10ns Clock, Latency mode

Layer Area atency talPw ynbw LeakPw
hnet::zeropad2d_cl<input_t,layer5_t,config5> 631 geg8 113 22 91
net::conv_2d_cl<layer5_t,layer2_t,config2> RF — I 158355 I I 842] 5787 688 5099
inet::normalize<layer? t,result t,configd> - 3924 196 434 34 400 Latency
increases by

Layer Area Latency TotalPwr DynPwr LeakPwr faCtor Of 2

net::zeropad2d_cl<input_t,layer5 t,config5> I 631 l | t(:] 108 17 91 Whlle area
hnet::conv_2d_cl<layer5_t,layer2 t,config2> RF — 2 49916 1682 6942 704 6238
nnet::normalize<layer?2 t,result t,configd> - 4924 391 421 20 401 decreases

accordingly

Layer Area Latency TotalPwr DynPwr LeakPwr
nnet: :zeropad2d cl<input t,layer5S config5> 631 868 102 11 92
hnet::conv_2d_cl<layer5_t,layer2_t, cor ig2> RF 4 I 40815 I | 3363] 5453 456 4997

416 40:

hnet::normalize<layer2_t,result_t,configd> 4942 781

SIEMENS

his4ml — Quantization

Relative Energy Cost Relative Area Cost
Operation: Energy (pJ) Area (um?)

8b Add 0.03 36
« y - . . 16b Add 005 M 67
* As “customary” in custom hardware, we use quantized representation i -
. 32b FP Add 0.9 _ 4184
[] - 8b Mult 0.2] 282
Floating-point computation is too resource intensive .. 22
® Precision = fixed point types T — 179
. . . 32b DRAM Read 640 S NIA

¢ aC_leGd, Algorlthmlc C Datatypes 1 10 100 1000 10000 110 100 1000

* https://github.com/hlslibs/ac_types

ac_fixed<width bits, integer bits,signed>

9101».41011101010_»

® But we have to make sure we've used the correct data types! _
- NP integer fractional
* Post training quantization E . =
. . - widt
* Quantization aware training

¢ Operations are integer ops, but we can represent fractional values

1.1 computing’s energy problem (and what we can do about it), M. Horowitz 2014 High-performance hardware for machine learning, W. Dally 2015

https://github.com/hlslibs/ac_types
https://ieeexplore.ieee.org/document/6757323
https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf

Design space exploration via (post-
training) quantization

* Post-training quantization (PTQ) = turning weights from float to fixed (or other quantized format)

Scan integer bits
Fractional bits fixed to 8

Fixed-point precision

hisaml Scan fractional bits
. Integer bits fixed to 6
1.0 hisdml
1
| Full performance ol
Q . . d
2 'l at 6 integer bits
P 0.8 ! 00
g : g Full performance
a < . .
& 07 : g o8- —at 8 fractional bits
2 . |
0.6 1 I —=— g tagger |
| —=#— g tagger |
. —=— w tagger ! ==
—s— ztagger ! -
' —=— ttagger ! ===
0.41— 1, . . .] } | =
<10,2> <15,7> <20,12> <25,17> <30,22> <35,27> <40,32> 1 Sl
3I)6> <3E;

East inference of deep neural networks in FPGAs for particle physics, J. Duarte et al. 2018

https://arxiv.org/abs/1804.06913

Quantization-aware training (QAT)

* QAT improves on PTQ Qm

* Taking into account quantization numerics and
learning around them

* More compact bit representation — Reduction area,
power, and latency

* QKeras https://github.com/google/gkeras, Brevitas
https://qgithub.com/Xilinx/brevitas

* [Easyto use, e.g. drop-in replacements for Keras

1044 — QKeras CPU
= (QKeras FPGA

== == Post-train quant.
1.02 -

1.00 - —

0.98 -

Ratio Model Accuracy / Baseline Accuracy

|ayers : at 6 b|tS
* Dense — QDense 0.96 - : :
e Conv2D — QConv2D I I
0.94 - I |
: I
| I
0.92 - ’ ,'
! |
0.90 — —
5 10 15

Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors, C.N. Coelho et al. 2021 Bitwidth

https://github.com/google/qkeras
https://github.com/Xilinx/brevitas
https://www.nature.com/articles/s42256%E2%80%93021-00356-5.

his4ml — Layer implementations and
interfaces

®* hls4ml is a specialized compiler or transpiler
* Translate a high-level specification of a model a into HLS-ready code that implements the same algorithms

® User can choose

* Strategy for the implementation of the layers

* “Latency” for smaller model where likely the goal is high-parallelism, i.e. low reuse factor

Strategy
* “Resource” for larger model and higher reuse factor
. I0Type
* I0Type for the interfaces of layers and overall module ”

* “io parallel” for data passed as arrays

® “io stream” for data passed as latency-insensitive channels, e.g. ac _channels Algorithmic C Datatypes

z':"_’/’
“de

his4dml configuration in summary

® ReuseFactor : <integer value>
* Controls the level of parallelism — 1 is the most parallel (smallest latency), 2 is half that...

® Precision : <fixed-point data type>
* Global or per-layer option configuring the precision for feature, weight and bias values

Strategy: “latency” or “resource”
* Selects different C++ architectures for the layer implementations

IOType : "io parallel” or“io stream”
* Passes data either as arrays or latency-insensitive channels, e.g.

®* Part:<FPGA part>
* Identifies the specific FPGA family/part is used in downstream RTL synthesis

® ClockPeriod: <period in ns>
* Specifies the clock period for HLS

‘:{‘x

66

hisdml — Heterogenous dataflow
architecture

* hlsdml instantiates and configures layers of a model in a data flow architecture

Dataflow architecture < spectrum I> DPU/MPE/SA
]
Dedicated quantization for each buffer and layer DRAM
_Dedicated Weights Buffers ... I
e J O e W ! D | DMA |

| Weight Buffer |

E Compute Array -
Matrix or Tensor Processing

4:- Dedicated Cor_ﬁ pute Architecture

|
Activation Functions/Pooling...

Dedicated Activation Buffers .

ad One size does not fit all
| Generate tailored hardware for a model

Q Few-bit weights and activations O Matrix of Processing Elements
O Map each layer to HLS description Q 8int arithmetic, etc.
J Connect with FIFOs/streams 1 "Decisions at run time"

1 Stay on-chip
- Higher energy efficiency and bandwidth
1 "Decisions are design time"

Applications and Techniques for Fast Machine Learning in Science, A. McCam Deiana et al, 2022

https://www.frontiersin.org/articles/10.3389/fdata.2022.787421/full

his4dml — Example

Configuration

Creation of a HLS model

Creation of a HLS project

Prediction

Synthesis

Il

from keras import Sequential
from keras.layers import Dense, Activation

model = Sequential()
model.add(Dense(64, input shape=(16,), name='fcl'))
model.add(Activation(activation='relu', name='relul'))
...
model.fit(X train, y train)
y = model.predict(X test)
import his4ml
config = hls4ml.utils.config from keras model(
model,
granularity="'name')
config['Model']['ReuseFactor'] = 2
config['Model']['Precision'] = 'ap fixed<l6,6>"
config['Model']['Strategy'] = 'Latency’
h1s4ml model = hls4ml.converters.convert from keras model(
model,
hls config = config,
io_type='io parallel’)
hls4ml model.compile()
y hls4ml = hls4ml model.predict(X test)

h1s4ml model.build(csim=True, synth=True)

Model training

his4dml

Applications

TO SYSTEMS

¢

SPONSORED BY GFE[B)A g} 3

urvey of Big Data sizes in 2021

log size (PB)

10M

71437 B e-mails sent from
2020-10 to 2021-09 (75 KB)

60307 B spam
e-mails(5 KB)

5.4k PBly

@

300 PBfy

720k hours/day
of video uploaded (1 GB)

100 T objects stored
in 53 up to 2021 (5 MB)

140 M hours/day

of streaming (1 GB)

3 YouTube

263 PBly

240k photos/min.
shared in 2021

(2 MB)

51.1k PBly

Dropbox

768/PBly
252 P

98.83 M new users
+ 1.17 M paid subs in 2020
(1 GB and 400 GB, respectively)

e

500 EB
(total) g

(=]

60 GB/s WLCG

transfers in 2018 HL-LHC real
1.9k PBly data expected in 2026
65k photos/min.
shared in 2021 LHC real 1200 PBYY
(2 MB) data in 2018 800 PBly

i HL-LHC Monte Carlo
[@ - : data expected in 2026

Bly % 240PBly

160 PB/y
—
68 PEly 62PB/y 30+ Mwebpages LHC Monte Carlo
el data in 2018 ® Luca Clissa (2022)
player

Silicon pixel detectors

* Experiments at colliders typically have a silicon pixel
detector at the center
* Concentric rings tiled with sensors

e Silicon sensors are depleted of charge carriers by
high voltage

* When a charged particle from a collision passes
through, it creates e/h pairs

* Charge is read out and transferred off-detector

* Charge cluster information is used for physics analysis
offline

F. Y
@ ;)
v ®

V>0

https://cms.cern/detector

Particle tracks and vertices

* Connecting the dots between charge collected in different pixel
layers creates a particle track

®* Detector should be low-mass so interactions in inactive material doesn’t
disrupt this trajectory

* Solenoid magnet immerses the pixel detector in a magnetic-
field, causing tracks to curve

* Very curved — low transverse momentum (low-py)
* Almost straight — high transverse momentum (high-p)

* Reconstructing vertices is critical

* Secondary vertices help identify particles: long, short, medium
lifetime?

72

Designing hardware for the LHC is challenging

* LHC/CMS produces a lot of data
* New data every 25 ns (p-p collision)

* Physicists have to throw most of it away
* Physically and financially challenging
* Risk to throw away significant information

* Detector is continuously being sprayed with particles
* Need radiation tolerant on-detector electronics

* High voltage and low temperature requirements
e Upto-800V,-35C

1 MHz

P

Buffer

High
Level 1 Leeel
Trigger Trigger ==

l 1 MHz
Buffer

12 ps latency

Goal of the Smart Pixel team

* On-chip data filtering at rate (40 MHz)

e Al algorithms m—’ ﬁ
clusters

* Reconfigurable algorithms |
AlonAsic High prclusters

* Hybrid pixel detector HH 1 MHz l
* Silicon sensor !

* Pixelated ROIC
* Analog front-end + ADC Rest of 22 MHz |
* Alin digital logic CMS 1 I
40 MHz , Buffer 1 MHz

High

Level
Trigger

Lo

Neural network classifier (filter)

* Inputs are cluster images projected onto y-axis and the

associated y,
* Three output categories /L
* high-momentum (> 200 MeV) "B

* low-momentum, negatively charged J
* |low-momentum, positively charged ,‘
* Simulated dataset of 800,000 clusters @
* Classical training and testing set split 80%-20%
* Tensorflow/Keras, 200 epochs for training, 20 epochs of early [NN Classifier]
stopping, 1024 batch size, Adam optimizer [+

{

{high—pT, |0W—pT_, Iow—pn}

z':"_’/'
“deo

Filtering in ASIC at LHC

* On-chip data reduction at BX rate
* R&D for phase lll CMS experiments
* pp-collision 40 MHz

* Integration of the ML algorithm as digital logic with the @

analog front-end into the in the pixelated area

ML Classifier

* Low-power 28nm CMOS
* Total power < 1 W/cm?2

his4ml
Catapult HLS @

{high-p, , low-p_, low-p_}

* Analog ~5 uUW/pixel

* Digital ~1 yW/pixel

Bandwidth saving

1 ‘_.-"/

silicon

* 54.4%-75.4%

digital

il
logic) -
A D)(

|

analog
front-end

7

pixels

\ sensor

ROIC
pixels

https://arxiv.org/abs/2310.02474

Data compression in ASIC at LHC

* Autoencoder (ML) on the detector front-end for data compression
* ASIC required due to radiation tolerance, handled through triple modular redundancy, and power requirements

* Reconfigurable ASIC to address: evolving LHC conditions (beam related), detector performance (noise,
dead channels), and updated performance metric (resolution, new physics signatures)

8" hexagonal silicon module Metric / requirement Value
(1 ot of =27.000) Rate 40 MHz Using QKeras, hls4ml, and Catapult
Total ionizing dose 200 Mrad HLS
High energy hadron flux 10" cm?/s * reduced power by 50%, area by 80%,
Tech. node 65 nm LP CMOS and achieved 2x better performance
Power 48 MW reference .solutions by qptimizing
Eneray / inf. 190 compression and quantization
» Faster design cycle!
Area 2.88 mm?
Gates 780k
Latency 50 ns

‘r ._”;j;j; A reconfigurable neural network ASIC for detector front-end data compression at the HL -l HC. G. Di Guglielmo et al. 2021
o,

https://ieeexplore.ieee.org/abstract/document/9447722/

More ASIC applications with his4ml and Catapult HLS

* Data compression for X-ray » Quantum readout at cryogenic
microscopy (ptychography) temperatures (4 Kelvin)

» Testing chip at GF 65nm » Testing chip at GF 22nm

- Evaluation of algorithms e SoC with ML accelerator

» PCA vs. Autoencoder
Up to 70x data compression at source with a

« Under testing

A recent application for FPGA: Plasma control

* Plasma instabilities when magnetic field lines
become distorted

®* u-seconds constraints

* Confinement loss — damage to the reactor

http://sites.apam.columbia.edu/HBT-EP

* One of the major roadblocks preventing lasting
thermonuclear fusion

Shot 114467 Camera 1

Model Name PPCF23 Baseline QAT+Pruning Optimized

Image Resolution 128 x 64 128 x 64 32x32

Conv layer filters {8,8,16)} {8,8,16} {16,16,24}

Dense layer widths {256,64} {256,64) (42,64}

Total parameters 362,730 362,730 12,910 U

Parameter precision PTQ, 18 bits QAT, 8 bits QAT, 7 bits 5 {4 dominant Ldominant . cun res)
Sparsity none 80% 50% g = n . B
Bit Operations 6.74e13 X 4.52e11 é 51 P, e .

High speed cameras

Phase (deg)

§3 TRAL
5
Time (ms)

http://sites.apam.columbia.edu/HBT-EP
https://opg.optica.org/abstract.cfm?uri=DH-2023-HW4C.2

his4dml in summary

* Open source + community

* Python ML package

Reads and optimizes ML networks
Library of optimized HLS-ready ML functions
Dataflow pipeline of hardened layers

Easier design space explore for ML
implementation

Support of Catapult HLS

* Successful for both ASIC and FPGA
applications

Data rate [B/s]

—

o
=
~

—

o
o
|

1010_

108

108}

104

G-

DUNE readout

B

+ LHC sensor

. Plasma control

X-ray diffraction

Neuro
+

Magnet quench

Beam control

Fast ML for Science
benchmark tasks

Internet-of-things

|
10" 10" 10° 10°
Computation time [s]

80

Al Security

Systems

»TO SYSTEMS
SPONSORED BY

Breaking Down a Neural Network

Create NN Model

model = Sequential (name='mnist conv2d ptg')

model.add (layers.Input (shape=(28,28, 1), name='inputl'))

model.add (layers.Conv2D (filters=5, kernel size=5, strides=3,
name="'conv2dl'))

model.add (layers.BatchNormalization (name='batchnorml'))

model.add (layers.Activation('relu', name='relul'))

model.add (layers.Flatten (name="'flattenl'))

model.add (layers.Dense (10, name='densel'))

model.add (layers.Activation('softmax', name='softmaxl’))

Compile and Train

history = model.fit(x train, y train, epochs=10)

Measure the accuracy of the model

test loss, test acc = model.evaluate(x_test, y test)
print (f"Test Accuracy: {test acc}")

model.compile (optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])

83

Headline for a

section divider

S

TO SYSTEMS I
SPONSOREDBY CGEMA %}8&1

Content Headline

Lorem ipsum dolor sit amet, consectetur
adipiscing elit. Nullam at iaculis tortor.
Donec in feugiat erat. Ut dapibus, quam
quis suscipit condimentum, risus enim
aliquam quam, eu convallis sapien enim
a tellus. In hac habitasse platea dictumst.
Nunc eu interdum odio. Proin porta felis
vitae nibh lobortis auctor. Praesent ut orci
ex. Pellentesque eu dui ex. Aenean ac
ultricies massa. In blandit tortor
elementum tortor ullamcorper venenatis.

Content Page Headline

» Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam at iaculis tortor.
Donec in feugiat erat.

« Ut dapibus, qguam quis suscipit condimentum, risus enim aliquam quam, eu
convallis sapien enim a tellus.

* |[n hac habitasse platea dictumst. Nunc eu interdum odio. Proin porta felis vitae
nibh lobortis auctor. Praesent ut orci ex. Pellentesque eu dui ex. Aenean ac
ultricies massa. In blandit tortor elementum tortor ullamcorper venenatis.

¢

86

Headline Only

Speaker Name Speaker Name Speaker Name Speaker Name

Speaker Company and Speaker Company and Speaker Company and Speaker Company and
Title Title Title Title

> - -

Al Security

Systems

EDA

Design

»TO SYSTEMS
SPONSORED BY

	Default Section
	Slide 1: Even Higher-Level Synthesis
	Slide 2: Cameron Villone
	Slide 3: Giuseppe Di Guglielmo
	Slide 4: Why Customized Accelerators?
	Slide 5: Inferencing Will Be Everywhere
	Slide 6: Deploying AI in the Edge Systems
	Slide 7: Hardware vs Software
	Slide 8: More and More Models
	Slide 9: Model Size of Best ImageNet Algorithm
	Slide 10: Inference Execution
	Slide 11: Complexity Drives Need for Customization
	Slide 12: Drivers for ASIC Inferencing on the Edge
	Slide 13: Inferencing on the Edge
	Slide 14: What is High-Level Synthesis?
	Slide 15: What is High-Level Synthesis (HLS)?
	Slide 16: Generate Synthesizable RTL from C++
	Slide 17: Analysis of C++ Descriptions
	Slide 18: Analysis of C++ Descriptions
	Slide 19: Parallelism
	Slide 20: Loop Unrolling
	Slide 21: Loop Pipelining
	Slide 22: Pipelining or Loop Unrolling
	Slide 23: Modeling Arbitrary Precision
	Slide 24: Saturating Math
	Slide 25: Smaller is Better
	Slide 26: Data Sizes and Operators
	Slide 27: Energy and Operators
	Slide 28: Benefits of High-Level Synthesis
	Slide 29: Introduction to HLS4ML
	Slide 30: History of AI/ML Designs w/HLS
	Slide 31: Meeting designers where they are
	Slide 32: HLS4ML
	Slide 33: HLS4ML
	Slide 34: Frontends & Backends
	Slide 35: The Full Flow
	Slide 36: An Example
	Slide 37: MNIST Dataset
	Slide 38: MNIST Neural Network
	Slide 39: Accelerator Development
	Slide 40: Feature and Weight Quantization
	Slide 41: Higher levels of abstraction
	Slide 42: Reports
	Slide 43: Understanding Precision
	Slide 44: Value Range Analysis
	Slide 45: Customization
	Slide 46: Rethinking the Approach - QAT
	Slide 47: Transferring Your Network
	Slide 48: Transferring Your Network
	Slide 49: Model Accuracy – Quantizer Bits
	Slide 50: Design Exploration and Optimizing
	Slide 51: Meeting designers where they are
	Slide 52: How can we use HLS4ML to make our lives easier
	Slide 53: What is hls4ml?
	Slide 54: Co-design with hls4ml
	Slide 55: hls4ml origins
	Slide 56: hls4ml has grown
	Slide 57: hls4ml community
	Slide 58: hls4ml architecture
	Slide 59: hls4ml supports Catapult HLS
	Slide 60: hls4ml – Parallelization
	Slide 61: Design space exploration via reuse factor
	Slide 62: hls4ml – Quantization
	Slide 63: Design space exploration via (post-training) quantization
	Slide 64: Quantization-aware training (QAT)
	Slide 65: hls4ml – Layer implementations and interfaces
	Slide 66: hls4ml configuration in summary
	Slide 67: hls4ml – Heterogenous dataflow architecture
	Slide 68: hls4ml – Example
	Slide 69: Applications
	Slide 70: Survey of Big Data sizes in 2021
	Slide 71: Silicon pixel detectors
	Slide 72: Particle tracks and vertices
	Slide 73: Designing hardware for the LHC is challenging
	Slide 74: Goal of the Smart Pixel team
	Slide 75: Neural network classifier (filter)
	Slide 76: Filtering in ASIC at LHC
	Slide 77: Data compression in ASIC at LHC
	Slide 78: More ASIC applications with hls4ml and Catapult HLS
	Slide 79: A recent application for FPGA: Plasma control
	Slide 80: hls4ml in summary
	Slide 81

	Extra Slides
	Slide 83: Breaking Down a Neural Network
	Slide 84: Headline for a section divider
	Slide 85: Content Headline
	Slide 86: Content Page Headline
	Slide 87: Headline Only
	Slide 88
	Slide 89: Speaker Name
	Slide 90

