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Following the construction introduced by Antoniadis and Savvidy in Refs. [1–3], we study metric-
independent topological invariants on a (2n + 1)-dimensional space–time. These invariants allow us 
to show that Chamseddine’s even-dimensional topological gravity corresponds to a Chern–Simons–
Antoniadis–Savvidy form. Starting from this result, more general four-dimensional topological gravity 
actions are explicitly constructed.
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1. Introduction

In Refs. [4–6] A.H. Chamseddine constructed topological actions 
for gravity in all dimensions. He found in the odd-dimensional
case the action given by S(2n+1) = k 

∫
M2n+1

L(2n+1)

ChS (A) where 

L(2n+1)

ChS (A) corresponds to a (2n + 1)-Chern–Simons form. All the 
dynamical fields are components of an algebra-valued, one-form 
gauge connection A = A A

μT A ⊗ dxμ , and the (2n + 1)-Lagrangian
form is given by [7]

L(2n+1)

ChS (A) = (n + 1)

1∫
0

dt
〈
A

(
tdA + t2 A2

)n〉
. (1)

Under off-shell gauge transformations, L(2n+1)

ChS (A) only changes 
by a closed form, and therefore the theory is described as ‘quasi-
invariant’ in the literature. Perhaps the best-known example of this 
kind of theories is three-dimensional gravity,

L(3)
G (A) = 1

2
εabc

(
Rab + 2

3�2
eaeb

)
ec, (2)

because of the famous quantization of the system due to Witten 
[8,9]. However, the construction can be performed in every odd 
dimension, and to be extended to the case of superalgebras. In 
higher odd dimensions, the theory has a very complex dynamics, 
with propagating degrees of freedom (although the proof of renor-
malizability hasn’t been extended to this case). In the last decades, 
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these kinds of systems have been thoroughly studied; see for in-
stance Refs. [10–15] and a comprehensive review in Ref. [16].

In the even-dimensional case, a similar construction using as 
only field a 1-form gauge connection is not possible. As a matter 
of fact it is necessary to use in addition to the gauge field A, at 
least a 0-form multiplet φ in the fundamental representation of 
the gauge group. It is because the n-product of the field strength 〈
F n

〉
is a group invariant 2n-form, but also it is a topological invari-

ant density which doesn’t provide equations of motion. But when 
the scalar field φa in the fundamental representation is included, 
it is possible to construct a 2n-dimensional action as

S(2n) [A, φ] = k

∫
M2n

εa1....a2n+1 φa1 F a2a3 · · · F a2na2n+1 , (3)

where F = dA + A A. This action (even-dimensional topologi-
cal gravity) was obtained by Chamseddine in [4] from an odd-
dimensional Chern–Simons Lagrangian using a dimensional reduc-
tion method. This kind of action principles have attracted some 
attention recently. They can provide interesting cosmological dy-
namics, with non-vanishing torsion (see Ref. [17]).

Besides Chamseddine’s dimensional reduction, topological grav-
ity has other deep links with Chern–Simons forms. For instance, in 
Ref. [18] it was found that even-dimensional topological gravity ac-
tion arises from odd-dimensional Chern–Simons gravity using non-
linear realizations of the Poincaré group ISO (d − 1,1). The field φa

was identified with the coset field associated with the non-linear 
realizations of the group.

Further explorations were developed in Ref. [19]. There it was 
shown that even-dimensional topological gravity actions, invariant 
under the Poincaré group, correspond (up to a multiplicative con-
stant) to a gauged Wess–Zumino–Witten term (see also Ref. [20]).
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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In the current article, we will analyze the relationship between 
Chamseddine’s even-dimensional topological gravity and a partic-
ular case of Chern–Simons structures developed by Antoniadis and 
Savvidy in Refs. [1,2].

The plan of the article is as follows. In Section 2, a short re-
view on Chern–Simons–Antoniadis–Savvidy forms is presented. In 
Section 3 the relationship between this construction and Chamsed-
dine’s even-dimensional topological gravity is presented. In Sec-
tion 4 some examples of the construction are studied for the case 
of AdS, conformal and so(D − 1, 1) ⊕ so(D − 1, 2) algebras [21,22].

2. The Chern–Simons–Antoniadis–Savvidy forms

In this section, we briefly review some examples of the 
Antoniadis–Savvidy generalization of Chern–Simons polynomials 
including algebra-valued, higher-order gauge fields.

In order to clarify ideas, let us consider the gauge invariant 
(2n + 3)-form given by

�2n+3 = 〈F n H〉, (4)

where H = dB + [A, B] is the 3-form ‘field-strength’ tensor for the 
generalized gauge field 2-form B . By direct computation of the 
derivative we can see that �2n+3 is a closed form: d�2n+3 = 0. 
According to the Poincaré lemma, this implies that �2n+3 can be 
locally written as an exterior differential of a certain (2n + 2)-form. 
This potential (2n + 2)-form is given by [2], (see also [23])

�2n+3 = 〈F n H〉 = dC(2n+2)

ChSAS , (5)

where the (2n + 2)-form C(2n+2)

ChSAS is given explicitly by

C
(2n+2)

ChSAS (A, B) =
1∫

0

dt〈A F n−1
t Ht + · · · + F n−1

t AHt + F n
t B〉. (6)

From eq. (6), we have for the case n = 1

C
(4)

ChSAS =
1∫

0

dt〈A Ft + Ft B〉 = 〈F B〉. (7)

It seems remarkably similar to the original expression for 
Chamseddine topological gravity, although in the eq. (7) case B
is a 2-form. This is not an accident; in Section 3 it will be shown 
that topological gravity [4] does correspond to a 2n-dimensional 
Chern–Simons–Antoniadis–Savvidy (ChSAS) form.

Depending on the dimensionality, it is possible to construct 
other invariants, with a richer structure. For instance, in Refs. [3]
and [24] the invariants �2n+6 and �2n+8 are constructed as

�2n+6 = 〈F n H6〉 + n〈F n−1 H2
4〉 = dC2n+5

ChSAS,

and

�2n+8 = 〈F n H8〉+3n〈F n−1 H4 H6〉+n(n−1)〈F n−2 H3
4〉 = dC2n+7

ChSAS,

respectively.

3. Topological gravity and ChSAS invariants

In this section we analyze the case of 0-forms in the context 
of the Antoniadis–Savvidy construction and its relationship with 
Chamseddine’s even-dimensional topological gravity.

Following the same procedure from Refs. [2,3,24], it is possible 
to construct the invariant (2n + 1)-form density

�2n+1 = 〈F n H1〉, (8)
where H1 = Dφ = dφ + [A, φ] is a 1-form ‘field-strength’ tensor 
for the 0-form ‘generalized gauge field’ φ. Since �2n+1 is a closed 
form, d�2n+1 = 0, from the Poincaré lemma we know that locally 
must exist a potential 2n-form

�2n+1 = 〈F n H1〉 = dC(2n)

ChSAS. (9)

The 2-form and 1-form ‘curvatures’ satisfy the Bianchi identi-
ties,

DF = 0, DH + [φ, F ] = 0, (10)

and under gauge transformations behave as

δF = D(δA), δH1 = D(δφ) + [δA, φ] . (11)

Using (11) we find

δ�2n+1 = d〈δA F n−1 H1 + · · · + F n−1δAH1 + F nδφ〉. (12)

Following Ref. [25], we introduce a one-parameter family of po-
tentials and strengths through the parameter t , 0 ≤ t ≤ 1, At = t A, 
Ft = t F + (t2 − t)A2, φt = tφ, H1t = t H1 + (t2 − t)[A, φ], and from 
eq. (12), we find

δ〈F n
t H1t〉 = d〈δAt F n−1

t H1t + · · · + F n−1
t δAt H1t + F n

t δφt〉. (13)

Since δ = (∂/∂t)δt and δAt = δt A, δφt = δtφ we get

�2n+1 = 〈F n H1〉 = dC2n
ChSAS,

where the 2n-form C2n
ChSAS, is a Chern–Simons–Antoniadis–Savvidy 

form given by

C
(2n)

ChSAS (A, φ) =
1∫

0

dt〈A F n−1
t H1t + · · · + F n−1

t AH1t + F n
t φ〉

= 〈F nφ〉. (14)

In Refs. [4–6] A.H. Chamseddine found that to construct even-
dimensional topological actions for gravity it is necessary to use, 
in addition to the gauge fields, a scalar multiplet φa in the fun-
damental representation of the gauge group and that for even-
dimensional spaces there is no natural geometric candidate such 
as the Chern–Simons form. The gauge group is ISO(2n − 1, 1) or 
SO(2n, 1) or SO(2n − 1, 2). To form a group invariant 2n-form, the 
n-product of the field strength is not enough, but will require in 
addition a scalar field φa in the fundamental representation.

In Ref. [18] it was shown that the action (3) can be obtained 
from the (2n + 1)-dimensional Chern–Simons gravity genuinely 
invariant under the Poincaré group with suitable boundary con-
ditions, and in Ref. [19] was found that it correspond (up to a 
multiplicative constant) to a gauged Wess–Zumino–Witten term 
for the Poincaré group case.

From Eq. (14) we can see that the Chern–Simons–Antoniadis–
Savvidy form C(2n)

ChSAS permit to construct even-dimensional topo-
logical actions for gravity for the ISO(2n − 1, 1) or SO(2n, 1) or 
SO(2n − 1, 2) gauge groups as well as another gauge groups such 
as the SO (D − 1,1)⊕ SO (D − 1,2) group from Ref. [21]. For exam-
ple, when the gauge group is the AdS group, the form C(2n)

ChSAS does 
corresponds to

〈F nφ〉 = εa1a2···a2n+1 F a1a2 · · · F a2n−1a2nφa2n+1 , (15)

which coincides with Chamseddine’s Lagrangian for even-dimen-
sional topological gravity from Ref. [4].

4. Topological gravity as four-dimensional 
Chern–Simons–Antoniadis–Savvidy form

In this Section we construct explicitly the four-dimensional ac-
tions for topological gravity for the AdS group, conformal group 
and SO (D − 1,1) ⊕ SO (D − 1,2) group.
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4.1. Topological gravity for AdS algebra

The conmutation relations of the five-dimensional AdS algebra

[ Jab, Jcd] = ηbc Jad + ηad Jbc − ηac Jbd − ηbd Jac,

[ Jab, Pc] = ηbc Pa − ηac Pb,

[Pa, Pb] = Jab,

where

ηab = diag (−,+,+,+,+) .

The connection A and the scalar field φ valued in the SO (4,2)

algebra are given by

A = A A
μT Adxμ = e + ω = 1

�
ea Pa + 1

2
ωab Jab,

φ = φA T A = ϕ + β = 1

�
ϕa Pa + 1

2
βab Jab.

From eq. (14), we have that C(4)

ChSAS for the AdS algebra is given 
by

S(4)

ChSAS =
∫

M4

〈F 2φ〉 =
∫

M4

εabcde F ab F cdφe, (16)

which coincides with the four-dimensional action for the four-
dimensional topological gravity found by Chamseddine in Ref. [4].

Since in this case the curvature can be write as

F = dA + A2 = T +R = 1

�
T a Pa + 1

2

(
Rab + 1

�2
eaeb

)
Jab,

we have that the Chern–Simons–Antoniadis–Savvidy form is given 
by C4

ChSAS = 〈(T +R) (T +R) (ϕ + β)〉, so that the corresponding 
Chern–Simons–Antoniadis–Savvidy action can be written explicitly 
as

S(4)

ChSAS = κ

4�

∫
εabcde

(
Rab Rcd + 2

�2
Rabeced + 1

�4
eaebeced

)
ϕe,

(17)

where, for simplicity we have considered the case T a = 0. This re-
sult is valid for a four-dimensional manifold which correspond to 
the boundary of the five-dimensional manifold where the invariant 
�5 is defined.

The fields ea and ωab , with a, b = 0, 1, 2, 3, 4, in (17) are one-
forms pulled baked in 4 dimensions. Using the decomposition 
ea = (

ei, e4
)
, ωab = (

ωi j,ωi4 = λei
)

with i = 0, 1, 2, 3, the cur-

vatures Rab and T a can be written as Rij = R̂ i j − λ2eie j , T i =
T̂ i + λeie4, Ri4 = λ 

(
dei + ωi

je j
) = λT̂ i , T 4 = de4 + λeiei , with 

R̂ i j = dωi j + ωi
kω

kj , T̂ i = dei + ωi
je j and we find

S(4)

ChSAS =
∫ (

Lϕ4 +Lϕ i

)
,

where

Lϕ4 = κ

4�
εi jkm

(
R̂ i j R̂km + α R̂ i jekem + βeie jekem

)
ϕ,

Lϕ i = κ
(
λ2 − 1

)
λ�

εi jkm

(
R̂ i j + γ eie j

)
T̂ kϕm, (18)

with α = 2
l2

− 2λ2, β = 1
l4

− 2λ2

l2
, ϕ ≡ ϕ4, γ = 1

l2
− λ2 and where 

we have used the condition T a = 0. From this Lagrangian it is ap-
parent that neither the l −→ ∞ nor the l −→ 0 limit yields the 
Brans–Dicke term alone [26,27]. Rescaling κ properly, those limits 
will lead either to Gauss–Bonnet like term or to the cosmological 
like constant term by itself respectively (with T i = 0).
4.2. Topological gravity for conformal algebra

Let us consider the algebra Conf4 = so (4,2) expressed in terms 
of the canonical base

[Mab, Mcd] = ηbc Mad − ηbd Mac − ηac Mbd + ηad Mbc,

with the range of indexes a, b, c, d, . . . = 0, 1, 2, 3, 4, 5 and a 
Minkowskian metric left invariant for the group

ηab = diag (−1,+1,+1,+1,+1,−1) .

One of the symmetric invariant tensors of rank three of this 
algebra is provided by

〈
Mab Mcd Mef

〉 = εabcdef .

In order to separate pieces with different physical meaning 
from a four-dimensional point of view, let us perform the stan-
dard change of basis defined trough

J i j = Mij,

Ki = Mi4 + Mi5,

Pi = Mi4 − Mi5,

D = M45,

with the range of indexes i, j, k . . . = 0, 1, 2, 3

A = aD + 1

�
hi Ki + 1

�
ei P i + 1

2
ωi jhi j,

φ = 1

�
ϕD + vi Ki + ui P i + 1

2
β i jhi j .

So that when the gauge group is the conformal group, the 
Chern–Simons–Antoniadis–Savvidy action is given by

S(4)

ChSAS =
∫ (

Lϕ +Lv +Lβ +Lu
)
,

with

Lϕ = εi jkm

(
1

4�
R̂ i j R̂km + 2

�3
R̂ i jhkem + 4

�5
hih jekem

)
ϕ,

Lv = 2

�
εi jkm

[
R̂ i j + 4

�2
hie j

][
T̂ k − eka

]
vm,

Lβ = 1

�
εi jkm

{
1

2

[
R̂ i j + 4

�2
hie j

][
da − 2

�2
h f e f

]
− 1

�

[
DhiDh j

− T̂ i T̂ j + 2Dhi T̂ j + 2eiaDh j + 2hiaT̂ j
]}

βkm, (19)

Lu = −2

l
εi jkm

[
R̂ i j + 4

�2
hie j

][
Dhk + hka

]
um,

being R̂ i j the Lorentz curvature, T̂ i the torsion and D the standard 
Lorentz covariant derivative in the spin connection.

5. Topological gravity for so (D − 1,1) ⊕ so (D − 1,2) algebra

The so (D − 1,1) ⊕ so (D − 1,2) algebra was proposed in
Ref. [21]. This algebra was re-obtained in Ref. [22] from AdS alge-
bra using the so-called expansion procedure and in Ref. [28] from 
Maxwell algebra through a procedure known as deformation of 
algebras. The corresponding generators satisfy the following com-
mutation relations,
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[ Jab, Jcd] = ηbc Jad + ηad Jbc − ηac Jbd − ηbd Jac,

[ Jab, Pc] = ηbc Pa − ηac Pb, [Pa, Pb] = Zab,

[ Jab, Zcd] = ηbc Zad + ηad Zbc − ηac Zbd − ηbd Zac,

[Zab, Pc] = ηbc Pa − ηac Pb,

[Zab, Zcd] = ηbc Zad + ηad Zbc − ηac Zbd − ηbd Zac . (20)

In order to write down the Chern–Simons–Antoniadis–Savvidy
Lagrangian L(4)

ChSAS ≡ C
(4)

ChSAS (A, φ) = 〈
F 2φ

〉
for the so (D − 1,1) ⊕

so (D − 1,2) algebra, we start from the corresponding-valued two-
form curvature

F = 1

2
Rab Jab + 1

l

(
T a + ka

beb
)

Pa

+ 1

2

(
Dωkab + ka

ckcb + 1

l2
eaeb

)
Zab, (21)

and the 0-form

φ = 1

2
φef Jef + 1

l
φe Pe + 1

2
hef Zef . (22)

Using the invariant tensor for the so (D − 1,1) ⊕ so (D − 1,2)

algebra [29]

〈 Jab Jcd Pe〉 = 4

3
α1l3εabcde,

〈Zab Zcd Pe〉 = 4

3
α1l3εabcde, (23)

〈 Jab Zcd Pe〉 = 4

3
α1l3εabcde,

where α1 is an arbitrary constant of dimensions [length]−3, we 
find

L(4)

ChSAS (A, φ) = α1l2

3
εabcde Rab Rcdφe + 2α1

3
εabcde Rabecedφe

+ α1

3l2
εabcdeeaebecedφe,

where (i) Rab = dωab + ωa
cω

cd , with a, b, c, d = 0, 1, 2, 3, 4, (ii) ea

and ωab are one-forms pulled baked in 4 dimensions, (iii) we have 
considered, for simplicity, kab = 0 and T a = 0.

Using the same decomposition from Section 4, ea = (
ei, e4

)
, 

ωab = (
ωi j,ωi4 = λei

)
, φa = (

φi, φ4
)

with i = 0, 1, 2, 3 and rotat-
ing the basis in such way that in each point of space the field φa

has components φ4 = φ and φi = 0, we find

L(4)

ChSAS (A, φ) = α1

3
φεi jkm

{
l2 R̂ i j R̂km + α̃ R̂ i jekem + β̃eie jekem

}
,

(24)

with α̃ = 2 
(
2 − λ2l2

)
, β̃ = 4

l2
− 4λ2 + λ4l2. This Lagrangian corre-

spond to the Brans–Dicke Lagrangian with cosmological term for 
small value of l2.

6. Concluding remarks

In Refs. [1–3] the idea of using forms of higher degree as 
non-abelian gauge fields was used to construct gauge invariant 
Lagrangian forms which are independent of the metric. In the 
present work we use the formalism introduced by Antoniadis 
and Savvidy to construct metric-independent topological invari-
ant on (2n + 1)-dimensional space–time. This construction allow 
us to find a ‘Chern–Simons–Antoniadis–Savvidy’ form in 2n di-
mensions given by Eq. (14). This equation permits reobtain the 
even-dimensional topological actions for gravity from Refs. [4–6]
and to construct topological gravities for another gauge groups 
such us SO (D − 1,1) ⊕ SO (D − 1,2) group from Ref. [21]. These 
results together with those of Ref. [19] allow us to conjecture that, 
at least for the case where the gauge group is the Poincaré group, 
the gauged Wess–Zumino–Witten term corresponds to a Chern–
Simons–Antoniadis–Savvidy form.

The actions (18), (19), and (24) can be understood as a gener-
alization of the action (6) from Ref. [17]. In this context the tor-
sion free condition on the 4-dimensional torsion is not valid. This 
fact has the consequence that the torsion becomes a new source 
for the metric curvature, which can give rise to very interesting 
cosmological solutions different from the known four-dimensional 
Friedmann–Robertson–Walker solutions. A detailed study, for a 
particular case of the Lagrangian (18) (case ϕn = 0) can be found 
in Refs. [17] and [30].

Acknowledgements

This work was supported in part by FONDECYT grants 1130653 
and 1150719 from the Government of Chile. Two of the authors 
(P.C., S.S.) were supported by grants 21100119 and 21140490 from 
CONICYT (National Commission for Scientific and Technological Re-
search, spanish initials) and from Universidad de Concepción, Chile.

References

[1] G. Savvidy, Phys. Lett. B 694 (2010) 65.
[2] I. Antoniadis, G. Savvidy, Eur. Phys. J. C 72 (2012) 2140.
[3] S. Konitopoulos, G. Savvidy, J. Math. Phys. 55 (2014) 06234.
[4] A.H. Chamseddine, Nucl. Phys. B 346 (1990) 213.
[5] A.H. Chamseddine, Phys. Lett. B 233 (1989) 291.
[6] A.H. Chamseddine, Nucl. Phys. B 340 (1990) 505.
[7] M. Nakahara, Geometry, Topology and Physics, Graduate Student Series in 

Physics, IOP, Bristol, UK, 2003.
[8] E. Witten, Nucl. Phys. B 311 (1988) 46–78.
[9] E. Witten, Nucl. Phys. B 323 (1989) 113–140.

[10] S. Deser, R. Jackiw, S. Templeton, Ann. Phys. 140 (1982) 372–411.
[11] A. Achúcarro, P.K. Townsend, Phys. Lett. B 180 (1986) 89–92.
[12] M. Bañados, R. Troncoso, J. Zanelli, Phys. Rev. D 54 (1996) 2605–2611.
[13] R. Troncoso, J. Zanelli, Phys. Rev. D 58 (1998) 101703.
[14] J. Zanelli, Class. Quantum Gravity 29 (2012) 133001.
[15] F. Izaurieta, E. Rodríguez, P. Salgado, Lett. Math. Phys. 80 (2007) 127–138.
[16] J. Zanelli, Lecture notes on Chern–Simons (super-)gravities, arXiv:hep-th/

0502193.
[17] A. Toloza, J. Zanelli, Class. Quantum Gravity 30 (2013) 135003.
[18] N. Merino, A. Perez, P. Salgado, Phys. Lett. B 681 (2009) 85.
[19] P. Salgado, P. Salgado-Rebolledo, O. Valdivia, Phys. Lett. B 728 (2014) 99.
[20] S. Salgado, F. Izaurieta, N. González, G. Rubio, Phys. Lett. B 732 (2014) 255–262.
[21] D.V. Soroka, V.A. Soroka, Phys. Lett. B 607 (2005) 302.
[22] J. Díaz, O. Fierro, F. Izaurieta, N. Merino, E. Rodriguez, P. Salgado, O. Valdivia, 

J. Phys. A, Math. Theor. 45 (2012) 255207.
[23] F. Izaurieta, I. Muñoz, P. Salgado, Phys. Lett. B 750 (2015) 39.
[24] I. Antoniadis, G. Savvidy, Int. J. Mod. Phys. A 29 (2014) 1450027.
[25] B. Zumino, in: Chiral Anomalies and Differential Geometry, Lectures given at 

Les Houches, August 1983.
[26] S. Weinberg, Gravitation and Cosmology, J. Wiley, 1972.
[27] L. Castellani, R. D’Auria, P. Fre, Supergravity and Superstrings, vol. 1, World Sci-

entific, 1991.
[28] J. Gomis, K. Kamimura, J. Lukierski, J. High Energy Phys. 08 (2009) 039.
[29] P. Salgado, S. Salgado, Phys. Lett. B 728 (2014) 5.
[30] A. Toloza, J. Zanelli, AIP Conf. Proc. 1471 (2012) 16.

http://refhub.elsevier.com/S0370-2693(15)00781-9/bib7361767636s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib7361767637s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib7361767639s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib6368616D31s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib6368616D32s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib6368616D33s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib6E616B61s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib6E616B61s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib57697474656E3838s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib57697474656E3839s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib44657365723832s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib41636875636172726F3836s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib42616E61646F733936s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib54726F6E636F736F3938s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib5A616E656C6C693132s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib497A6175726965746132303037s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib5A616E656C6C6932303035s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib5A616E656C6C6932303035s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib546F6C6F7A6132303133s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib73616C6731s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib73616C6732s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib5353616C6732303134s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib736F7231s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib666965s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib666965s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib73616C6733s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib7361767638s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib626431s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib626432s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib626432s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib676F6D6973s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib73616C6734s1
http://refhub.elsevier.com/S0370-2693(15)00781-9/bib746F6Cs1

	Topological gravity and Chern-Simons forms in d=4
	1 Introduction
	2 The Chern-Simons-Antoniadis-Savvidy forms
	3 Topological gravity and ChSAS invariants
	4 Topological gravity as four-dimensional Chern-Simons-Antoniadis-Savvidy form
	4.1 Topological gravity for AdS algebra
	4.2 Topological gravity for conformal algebra

	5 Topological gravity for so( D-1,1) ⊕so( D-1,2)  algebra
	6 Concluding remarks
	Acknowledgements
	References


