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Abstract

We focus on supersymmetric gauge theories with eight superchrages in spacetime dimensions
d = 3,4,5,6. These theories have very rich vacuum structures so our focus will be on their
moduli spaces of vacua. For d =,4,5,6, we look at the Higgs branch moduli space. The
usual story is that the Higgs branch is a classical object that can be easily computed from
its Lagrangian. However, non-perturbative contributions can enhance the Higgs branch and a
classical description no longer works. In 6d N = (1,0) and 5d N = (1,0), these contributions
originate from tensionless BPS-strings and massless gauge instantons respectively as we tune
gauge coupling(s) to infinity. For 4d N' = 2 theories, many gauge theories, and in particular
superconformal field theories (SCFTs), do not even have a Lagrangian description. We offer
a unifying solution to these problems in the form of magnetic quivers. These are 3d N = 4
gauge theories whose Coulomb branch is the same as the Higgs branch of the higher dimensional
theories. Using brane systems of Dy — Dy o — NS5, with the possible inclusion of Oy orientifold
planes, we show how the magnetic quivers of these theories can be extracted. Then, a) using
the monopole formula we study the moduli space as an algebraic variety by computing its
Hilbert series and b) using the new concept of Quiver subtraction we extract the phase diagram
(Hasse diagram) of these moduli spaces. Examples we explore include 5d SQCD theories at UV
fixed point, 4d rank one SCFTs, class S theories, S-fold theories etc. For the second outcome
of the thesis, we focus on new features of gauge theories with orthosymplectic gauge groups
such as discrete subgroups and non-simply laced edges, leading to a general classification of
such theories. For the final outcome, we study gauge theories with a mixture of unitary and
special unitary gauge groups which lead to a slew of new gauge theories related by 3d mirror

symmetry.
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logarithm of the Highest Weight Generating function (HWG) is given. . . . . .

The quivers in this table are the intersection between the different components
in region [.For k > 2, the Coulomb branch is the closure of the nilpotent orbit
O[Q(Nf—2)714} The intersection is trivial for k < 2.The global symmetry group Gg
and the plethystic logarithm of the Highest weight generating function HWG

are given in each case. . . . . . .. Lo

Magnetic quivers at infinite coupling. The 5d N' = 1 duality between “Theory SU”
and “Theory Sp” has been observed in [17], also [18]. The wiggly link denotes
a charge 2 hypermultiplet. The “Magnetic quiver OSp” and “Magnetic Quiver
U” are obtained in [3]. For k = 0, the moduli spaces are free hypermultiplets
transforming as spinors of the global symmetry. The “Magnetic quiver OSp” for
Eg 76 can be obtained from class S [19,20]. . . . . . .. ... ... L.

The Coulomb branches of orthosymplectic quivers are products of two copies of
the minimal nilpotent orbits closures of exceptional algebras ¢, for n =4,... 8.

The numbers coloured in red represent gauge nodes that are overbalanced.

The extended infinite families of the orthosymplectic quivers in Table 4.10. The
Coulomb branch of the forked orthosymplectic quivers on the left are the same
as the Coulomb branch of product theories on the right. The numbers coloured

in red represent gauge nodes that are overbalanced. . . . . . . .. ... ..
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5.1

5.2

5.3

5.4

9.9

5.6

5.7

Left: List of the seven singular Coulomb branch geometries at rank 1. These are
freely generated, and [u] is the scaling dimension of the generator. Right: List of
4d N = 2 rank 1 SCFTs (IR-free theories are omitted). Each entry represents one
theory, labeled by its flavor symmetry. In the rest of the paper, for conciseness we
ignore the discrete Zs in the naming of the theories. The symbol ys signals the
existence of a chiral deformation parameter of scaling dimension §. The magnetic
quivers for the theories of the Z; column involve k-laced edges. The theory in
blue is N' = 4 SYM with gauge group SU(2). Theories in green are N' = 3 S-fold
theories [21]. . . . . . .

The magnetic quivers of 4d N' = 2 rank 1 theories with enhanced Coulomb
branches (labeled by their global symmetry). . . . . . . .. ... ... ... ...

Higgs branch Hilbert series of the 4d N' = 2 SCFTs (labeled by their global
symmetry) as well as the refined plethystic logarithm (PL). . . . . . .. ... ..

Magnetic quivers of 5d N = 1 theories. In the case of n = 2, folding these theories
reproduces the magnetic quivers of 4d N’ = 2 theories of Table 5.8. We provide
the dimension of both the Higgs branch H(Q') and the Coulomb branch C(Q') of
the unfolded magnetic quivers. The HWGs are given in [22, 1]. The prime in the
label of the last family is to distinguish it from the fourth family. . . . . . . ..

General quiver families obtained by folding the legs in the magnetic quivers @' in
Table 5.4. In the case of n = 2 these families correspond to the magnetic quivers
of 4d N = 2 rank 1 theories with enhanced Coulomb branch. For n > 1 the
families are labelled by their global symmetry. For n = 1 the magnetic quivers
describe rank 1 theories without enhanced Coulomb branch, and for n = 0 each
of the moduli spaces is some H' for a suitable /. The dimensions and the HWGs

of the Coulomb branches of the magnetic quivers C(Q) are provided. . . . . . . .

The n = 1 and n = 0 members of the general Families of Table 5.5, where the
Coulomb branches are closures of minimal nilpotent orbits and freely generated
theories respectively. The n = 1 cases correspond to rank 1 theories without
enhanced Coulomb branch. Notice that the global symmetry here does not match

the labelling of the family. . . . . . . . . ... .. .. oL

The n = 1 case of these families correspond to the magnetic quivers of 4d N = 2
rank 1 theories whose Higgs branch are H/Z;, orbifolds for k = 2,3, 4,6.
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2.8

2.9

5.10

5.11

0.12

5.13

5.14

5.15

The magnetic quivers of 4d N' = 2 rank r S-fold theories. The Higgs branch
dimension of Sg )e is (6r+¢)(A7—1), which matches the Coulomb branch dimension
of the magnetic quiver. The folding parameter ¢ also indicates the multiplicity of
the non-simply laced edge. The global symmetry of the magnetic quiver displays
the expected enhancement for » = 1 [23]. Recall that a U(1) is ungauged on a
long node for all the quivers. . . . . . . .. . ... ... ... ... ... . ...
Coulomb branch Hilbert series and plethystic logarithm for the magnetic quivers
of Sg ?2) theories in Table 5.8. The unrefined monopole formula can be evaluated
exactly for all but two cases. The unrefined PL confirms the dimension of the
global symmetry. . . . . .. Lo
Refined plethystic logarithm of the Hilbert series for the magnetic quivers of the
«Sg ?2) theories in Table 5.8. In abuse of notation, [...]q denotes the G-character
of a representation with Dynkin labels [...]. Moreover, ¢ and b label U(1) charges.
The Sg )z theories with their magnetic quivers. The global symmetry is independent
of r. The dimension of the Higgs branch of Sg )ﬁ is equal to the dimension of the
Higgs branch of Sg)z Recall that a U(1) is ungauged on a long node of all the
QUIVETS.  © v v v v v e e e e e e
The orthosymplectic quivers on the left have Coulomb branches that are closures
of exceptional algebras FE,, for n = 8,7,6,5,4. Red nodes with an index k& denote
SO(k) groups while blue nodes with index 2k denote USp(2k) groups. Folding
these quivers along the identical legs gives the non-simply laced orthosymplectic
quivers on the right. The Coulomb branches of these theories are given as well.
In all the quivers here, there is an overall Z, which is ungauged, see [2] for more
details. . . . . . L
Generalised families of F,, orthosymplectic quivers of those in Table 5.12. The
orthosymplectic quivers before folding are magnetic quivers of certain 5d N =1
SQCD theories at infinite gauge coupling. The subscript next to the gauge group
is the Chern-Simons level. For the F5_ o family, the Coulomb branch of the
magnetic quiver is only one of the two cones in the Higgs branch of the 5d theory.
The global symmetry is given for k > 1 and k > [ + 1, it enhances for k =1 or
k=141 asshown in Table 5.12. . . . . . . .. .. .. ... .. ...
The non-simply laced orthosymplectic quiver families and the unitary quiver
family which have the same Coulomb branches. The highest weight generating
function (HWG) is presented in the form of a plethystic logarithm (PL). The
fugacities correspond to the global symmetry given in the last column of Table
5.13, with ¢ denoting a u(1) factor and v denoting an su(2) factor when present.

The Dynkin classification of orthosymplectic quivers. . . . . . . . ... ... ..
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0.16

5.17

6.1

6.2

6.3

6.4

Representative examples of ABC D-Dynkin type orthosymplectic quivers and
their Coulomb branch moduli spaces. @° denotes the closure of a nilpotent orbit

closure of the Lie algebra g. The subscript ,,;, denotes the minimal orbit.

The k = 0 members of the E, x E, family of Table 4.11 for 4 < n < 8. These
quivers are magnetic quivers for free hypermultiplets such that Coulomb branches

are flat spaces. The Coulomb branch Hilbert series are given by PE [2(n — 3) ¢].

The left column shows extensions of the T(SU(4)) quiver with different combi-
nations of U/SU nodes. The middle column shows their respective magnetic
quivers, which in this particular case are in fact 3d mirrors. These magnetic
quivers are derived from 5d brane webs, which yield quivers with all unitary gauge
nodes. The right column shows the maximal decompositions of the brane webs
into subwebs, with the necessary locking imposed. Note that the two magnetic
quivers in blue cells and the three magnetic quivers in yellow cells are identical:
this shows that Higgs branches for the family of theories considered in this table
depends only on partitions of 4. This is reflected in the next three tables by

merging the corresponding cells. . . . . . . . . ..o

Extensions of the T'(SU(4)) quiver are shown with different combinations of
U/SU nodes, along with their Higgs and Coulomb branch unrefined Hilbert series.
These correspond to the Coulomb and Higgs branch Hilbert series, respectively,
of their mirror quivers shown in Table 6.1. For brevity, unrefined Hilbert series
are shown. Under the appropriate fugacity maps, this correspondence extends to

refined Hilbert series. . . . . . . . . . . . .

Extensions of the T'(SU(4)) quiver are shown with different combinations of
U/SU nodes, along with their Higgs and Coulomb branch global symmetry.
Notice that the ranks of the global symmetries always add to 6. . . . . . . . ..

The first row displays the electric theory and the four corresponding magnetic
quivers. The next few rows show how the magnetic quivers change as the SU
nodes in the electric theory are turned into U nodes. We observe how distinct
subdivisions of the brane web (and hence their magnetic quivers) become identical
when some of the SU nodes are turned to U nodes. The light blue colored box

indicates the same magnetic quiver. . . . . . . .. ... L0
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quiver. Notice that h,; = H", hy 2 = ¢y, hos = cga, hn1 = ap, hyn2 = ac,, and

hog = aga. . . . . . . e 252
Hasse diagrams of 6d SCFTs: SU(N) with N + 8 fundamentals and one 2nd rank

antisymmetric. Note that the two diagrams differ only at the bottom. . . . . . 255
Hasse diagrams of 6d SCFTs: Sp(k) family and Go theory. . . . . . ... .. .. 257
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Components of H,, for 0 = |k| < N, — % Component II is present for Ny > N, 259
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Components of H, for 1 = |k| = N, — % ..................... 261
Component of H for 3 = k| = N, — % ....................... 261

The component of Hy, for 0 = |k| = N, — % Note that for Ny = 2 there is no
eg nor e7 elementary slice, as expected for the SU(2) theory with 4 flavours. For
Ny = 3 there is no e; elementary slice. Also note that since the quiver has an
Zo automorphism symmetry, there is branching into two eg transitions. As a

consequence, the non-Abelian part of the global symmetry is Ay, ;1 x Ay X Ay 262
3
2
Ny > N,., which means % > |k| — 1, and Component III is present for Ny > 1 . 263
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Introduction

When Paul Dirac wrote down his equation that describes a quantum theory of electrons
[26], he opened the door to the rich and prosperous subject that is quantum field theory.
Throughout the decades, QFT became a household name and a focal point of the theoretical
physics community. To underscore how precisely field theories prediction match experimental
results, Feynman made the famous analogy that it is akin to the thickness of a single strand of
hair when measuring the distance between New York and Los Angeles [27].

Perturbative expansions using Feynman diagrams, which have remarkable success with
theories such as QED, proved to be instrumental in arriving at such precise results. However,
with the inclusion of non-Abelian gauge groups, quantum field theories become significantly
more complicated. Non-perturbative effects such as confinement and chiral symmetry breaking
makes QCD a difficult problem to tackle. Dealing with non-perturbative effects is one of the
main objectives of high energy physics today. In fact, the strand of hair analogy made above
was referring to the ¢ — 2 muon moment measurement at CERN in the 1970s [28]. A much
more recent and precise measurement from Fermilab [29] hints at a discrepancy between the
experimental data and predictions by the standard model. The result could be due to beyond
standard model effects but it could also be the uncertainty in the theoretical computation. In
particular, the non-perturbative contributions from the hadronic vacuum polarization process
prove to be very difficult to compute and choosing a different lattice QCD model can in fact
reconcile the experimental data with the standard model [30]. This, again, underpins the
importance of understanding non-perturbative physics if wish to understand our universe.

Non-perturbative effects often arise at strongly coupled regions in the theory where per-

turbative methods fail. String theory offers a solution to dealing with strongly coupled theory
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through various sets of dualities (S-duality, T-duality, U-duality). A theory that is a strongly
coupled can be dualized to a theory that is weakly coupled where perturbative methods are
applicable. Supersymmetric gauge theories realized using string/brane construction also enjoy
such dualities. This, along with many other properties such as useful constraints imposed by
supersymmetry, is what make SUSY gauge theories such a desirable object to study and the
main focus of this thesis.

Given a supersymmetric gauge theory, one can compute many interesting properties.
Traditionally, one would compute path integrals and correlation functions as with any other
quantum field theory. In four dimensions, the maximal amount of supersymmetry one can have
for a gauge theory is 16 supercharges (or 4d N = 4). These theories are super Yang-Mills
theories (SYM) where the number of supersymmetry is highly constraining and the field content
is entirely determined by the gauge group. Studies of such theories began in the early days of
supersymmetry and continues today, where techniques field theorists are familiar with such as
computing scattering amplitudes with Feynman diagrams are still commonly used. However,
the lack of matter fields (other than those transforming in the adjoint) creates incentive for one
to study theories with lower amount of supersymmetry. With 8 supercharges, matter fields can
now transform in bifundamental representations between different gauge groups. However, as
the field content becomes richer, traditional methods become less effective. In fact, even writing
down the Lagrangian becomes a tedious task.

Perhaps, rather than including every field in the gauge theory, one can focus on the
simplest fields: scalars. At first sight, scalar fields seem uninteresting and do not lead to exotic
behaviors such as quark confinement, asymptotic freedom, chiral symmetry breaking etc. In the
standard model, we have a single scalar field (Higgs boson). Before symmetry breaking, the
geometry of the moduli space of vacua is just S! which doesn’t look too interesting. However,
for supersymmetric gauge theories with 8 supercharges, the field content is comprised of vector
multiplets and hypermultiplets and in d = 3,4, 5,6, most of these multiplets contain scalar
fields. As a result, the geometry of the moduli space of vacua, defined by all configurations

of scalar fields where the scalar potential vanishes, can be very rich and an interesting object
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to study!. Furthermore, scalar fields are responsible for the Englert-Brout-Higgs-Guralnik-
Hagen-Kibble mechanism or Higgs mechanism for short. As the Higgs boson acquires a VEV of
125 GeV, the Higgs mechanism kicks in and the electroweak gauge symmetry is broken from
SU(2) x U(1) = U(1)diag- When there are more gauge groups and scalar fields, the Higgs
mechanism become richer as well, with the possibility to partially Higgs the theory into multiple
subgroups.

In the 90s, more focus had been diverted to studying the moduli spaces of vacua. In 8
supercharges, this is divided into the Higgs branch, Coulomb branch and mixed branch. The
Coulomb branch receives quantum corrections and is notoriously difficult to study. Traditionally,
the Coulomb branch was studied by computing the prepotential which in turn gives the metric
of the moduli space. Such techniques are very effective when studying Coulomb branches of 5d
theories and had subsequently been used to classify 5d theories with non-trivial superconformal
fixed points. However, a 5d N = 1 Coulomb branch is a real manifold and much simpler
than its lower dimensional counterparts. A 4d N' = 2 Coulomb branch is a special Kahler
manifold that has a more complicated structure. The seminal work of Seiberg and Witten
[32, 33] developed the Seiberg-Witten curve which studies this Coulomb branch by computing the
quantum prepotential in the IR fixed point. In 3d N = 4, however, the Coulomb branch becomes
a hyperKahler manifold and previous techniques become less effective and new approaches are
needed.

On the other hand, the Higgs branch is a classical object due to non-renormalization
theorems [34]. If the Lagrangian of the theory is known, the Higgs branch can be easily
constructed and studied as a hyperKahler quotient. However, this is not the case in 5d and
6d where non-perturbative contributions can arise in the UV fixed point which enhance the
Higgs branch. Furthermore, in 4d, most of the SCFTs do not have a Lagrangian description.
For these reasons, the Higgs branches of many interesting d = 4,5, 6 theories cannot be studied

using a hyperKahler quotient and once again, new approaches are needed.

!The reason we stopped at 6d is because it is the maximal dimension that you can have a theory with
8 supercharges. Furthermore, when studying SCFTs, it is also the maximal dimension where you can have
conformal extension of super Poincaré algebra [31]. One can also discuss theories in d < 2 but this will not be in
the scope of this thesis.
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In the last few decades, there have been much developments in understanding moduli

spaces. Some of the developments that are more relevant to this thesis are as follows:

e First of all, rather than writing down the Lagrangian of a SUSY gauge theory explicitly, we
use concise diagrams called quivers instead. For theories with eight supercharges, a quiver
gauge theory consists of nodes which represent gauge groups, squares which represent
flavor groups and edges which represent matter fields [35]. In terms of the supermultiplets
in the theory, the vector multiplets always transform under the adjoint representation of
the gauge groups and the hypermultiplets transform under bifundamental representation
of the two adjacent gauge/flavor groups it is connected to. In eight supercharges, the
superpotential is fixed and can be read off from the quiver straightforwardly when it is
rewritten in a four supercharge notation with directed arrows. As we will be dealing
with theories with several gauge/flavor groups, it is ideal to express them using a quiver

notation.

e Rather than focusing on the metric of moduli spaces, we view the moduli spaces as
algebraic varieties and compute relevant generating functions. In particular, we focus on
the Hilbert series which counts holomorphic functions on the moduli space. Since the scalar
fields that parameterize our moduli spaces are chiral operators, one can equivalently study
the moduli space as the ring of chiral operators, or chiral ring. Then, the Hilbert series
will be counting gauge invariant chiral operators graded by their conformal dimension.
The Hilbert series HS(¢) is expressed in terms of a counting fugacity t. However, it can
be refined where the irreducible representations of the operators transforming under the
global symmetry group is specified. A refined Hilbert series can be concisely encoded in a

different generating function called highest weight generating function (HWG).

e The classical Higgs branch of d = 3,4, 5, 6 theories with eight supercharges are hyperKahler

quotients and can be computed using the Molien-Weyl formula.

e The Coulomb branch Hilbert series of 3d A/ = 4 can be computed directly? using the

2This is an important distinction as in the past they are usually computed indirectly by computing the Higgs
branch Hilbert series of the 3d mirror dual.
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monopole formula developed in the seminal paper [36]. This is an essential development
and will be the main tool we use throughout this thesis. Furthermore, it turns the 3d
N = 4 Coulomb branch, which used to be a difficult object to study, into something that

we can easily extract non-trivial information from.

Following the development in [37], brane systems were developed as a means to study
gauge theories and their moduli spaces. The original D3-D5-NS5 model to study 3d N = 4
theories was subsequently extended to d = 4,5, 6 dimensions with a set of D, — D, 1o — NS5
branes. Furthermore, it was shown in [37] that performing 3d mirror symmetry in the
brane system is just taking the S-dual followed by a rotation of coordinates, allowing us
to readily create mirror pairs. As we will see later, this identification also allows us to
identify the Higgs branch of higher dimensional theories with the Coulomb branch of 3d
N = 4 theories. The possible inclusion of orientifold planes also extends the gauge theories
represented by brane systems from unitary/special unitary gauge groups to (special)

orthogonal and symplectic gauge groups as well [38, 39, 40].

Depending on the arrangement of the branes, a brane system can describe the Higgs
branch phase, Coulomb branch phase or the mixed branch phase of the moduli space. If
one start with the Higgs branch phase and starts opening up directions corresponding
to Coulomb branch moduli, the brane system will under go a phase transition into a
more singular loci in the Higgs branch. If the transition is minimal then it is called a
Kraft-Procesi transitions [41, 42]. These phase transitions are related to the pattern of
partial Higgsing of the gauge theory. Constructing Hasse diagrams which encode such
Higgsing pattern is important to help understand the geometric structure of the moduli

space [43, 10].

These cumulative knowledge led to the central theme of this thesis: Magnetic Quivers.

A magnetic quiver is a 3d N = 4 quiver gauge theory whose Coulomb branch is the same as the

Higgs branch of the corresponding electric quiver which is a d = 3,4, 5,6 theory with eight

supercharges. We seek out these magnetic quivers because 3d N/ = 4 Coulomb branches are

now very accessible owing to developments in the last decade. This ‘duality’ allows us to study
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the Higgs branch of electric quivers both at the superconformal fixed point and away from it
even if they cannot be constructed as hyperKahler quotients. Once the magnetic quiver of a
theory is obtained, one can a) define the moduli space as an algebraic variety by computing the
Hilbert series using the monopole formula and b) study the Hasse diagram using an algorithm
called Quiver subtraction.

The new approach to supersymmetric gauge theories is to redirect the focus to the Higgs
branch and the new tool of execution is the magnetic quiver. Throughout this thesis, we use
magnetic quivers to extract much more useful information about complicated and exotic gauge
theories and SCFTs than traditional methods which often just give the dimension and global
symmetry of the moduli space.

The current stage of this program is still at the data collection. We will leave a more in
depth analysis of the generating functions and Hasse diagrams we gathered for future work.
Nevertheless, even at this phase we had already found many interesting new phenomenons

whilst at the same time confirming conjectures in the literature.

Prelude Brief introduction to the tools we will be using in this thesis such as quivers, Hilbert

series, highest weight generating function.

Chapter 1: We explore how the field content and moduli spaces of SUSY gauge theories with

eight supercharges vary in each dimension from three to six.
Chapter 2: We introduce the concept of magnetic quivers and the motivation to study them.

Chapter 3: The purpose of this chapter is to construct brane systems that describe gauge theo-
ries in d = 3,4, 5,6. This include gauge theories with unitary/special unitary gauge groups
and, upon including orientifold planes, gauge theories with (special) orthogonal /symplectic
gauge groups as well. Once the brane system is constructed, we then show how the

magnetic quivers can be extracted from them.
The remaining chapter describes gauge theories in d = 3,4, 5 and their magnetic quivers.

Chapter 4: The focus is on 5d N = 1 gauge theories. The first part looks at SQCD theories

with special unitary gauge groups. The magnetic quivers for these theories were already
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derived in the literature. Instead, we provide the highest weight generating functions

(HWGs) which fully encode the Hilbert series of the moduli spaces.

The second part, we focus on SQCD theories with symplectic gauge group. The correspond-
ing magnetic quivers are orthosymplectic (contains (special) orthogonal and symplectic
gauge groups). Interestingly, for these theories there exists of a (Z)gi,s subgroup and the
choice of whether or not to gauge this subgroup will change the moduli space. We show
that only by decoupling this subgroup do we can the magnetic quiver that corresponds to

5d theories at the UV superconformal fixed point.

We also study a duality between unitary and orthosymplectic 3d N' = 4 quivers by
computing topological twisted indices, superconformal indices and including extended

operators (Wilson lines).

Chapter 5: This chapter discusses magnetic quivers of 4d A/ = 2 theories. The first part
focuses on the magnetic quivers of rank one 4d SCFTs. All these rank one theories were
classified in the literature, and using a Bottom-Up procedure, we were asble to obtain their
magnetic quivers. These magnetic quivers are then extended into two different infinite

families, the latter are magnetic quivers of a class of SCFTs called S-fold theories.

The second part looks at folding orthosymplectic magnetic quivers we obtained in Chapter
4. This marks the first appearance of non-simply laced orthosymplectic quivers. We

discuss some of its properties and relations to 4d N = 2 theories.

The third part looks at the magnetic quiver of class S theories. This vast landscape
of SCFTs produces magnetic quivers that are star-shaped. We find infinite families of

star-shaped quivers whose Coulomb branch displays a product structure.

Interlude chapter: Orthosymplectic quivers have been a main player in this thesis. This chapter

aims to group together all the orthosymplectic quivers discussed in previous chapters
into a Dynkin classification. The unique features of ABCD-Dynkin type orthosymplectic

quivers are discussed.

Chapter 6: This chapter focuses on 3d N = 4 theories only. In this case, many of the magnetic
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quivers are also the 3d mirror dual. We studied all linear type quivers with a mixture
of unitary and special unitary gauge groups and their 3d mirrors/magnetic quivers. The
results in this chapter greatly expands the known landscape of 3d mirror pairs in the

literature.

Chapter 7: This chapter looks at Hasse diagrams which detail the phase transitions in the
moduli space. We investigate how the pattern of partial Higgsing of d = 3,4, 5,6 gauge
theories can be obtained through a quiver subtraction algorithm on the magnetic quiver.

The Hasse diagrams of the magnetic quivers in the previous chapters are then listed.
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Prelude

Given a gauge theory, what do we compute? Rather than looking at path integrals,
correlation functions or indices, we will be looking at a set of generating functions. To be
specific, we compute the Hilbert series and highest weight generating function associated with
a given moduli space of vacua of the gauge theory. These tools are ubiquitous in this thesis
and is therefore appropriate to have a prelude chapter discussing some of the basics of these

combinatorial tools. Readers that are familiar with these concepts can skip this section.

Hilbert Series

The Hilbert series counts holomorphic functions on the moduli space of vacua M and is
parameterized by the counting fugacity® ¢. This is equivalent to counting gauge invariant chiral
operators in the chiral ring (see [45] for a review). In general, it is a rational function that

takes the form:

HSum(t) = dZmdtd = % (1)

where my is the Hilbert function and Q(t) is a polynomial [46]. When written as a Taylor
expanded infinite series, the coefficient mgy gives the number of linearly independent homogeneous
polynomials at degree d. The dimension of M is given by the order of the pole at t — 1. As we
shall see later on, the expression for (Q(t) is in general a very complicated polynomial. We refer
readers to [46] for a more detailed introduction on Hilbert series in relation to quiver gauge
theories and [47] for a more mathematical introduction.

In this paper, we will use the Hilbert series as a generating function for counting gauge

invariant chiral operators that parameterize the moduli space of vacua and grade them according

3From a statistical mechanics point of view, this fugacity can be seen as the chemical potential [44].

37



to their quantum numbers. For unrefined Hilbert series, these quantum numbers are the R-
charges associated with the R-symmetry groups. We can then interpret the Hilbert function my
as the number of linearly independent chiral operators of R-charge d. Once we computed the
Hilbert series, we can define the moduli space as an algebraic variety* and extract the generators
and the relations between. One important observation is that for all the Hilbert series in this
thesis, Q(t) is palindromic which means the moduli space is a Calabi-Yau variety °. This is

consistent with the expectation that the moduli spaces are all hyperKahler cones.

Highest Weight Generating function (HWG)

A refined Hilbert series includes more fugacities that capture other quantum numbers in
the theory such as topological charges. For our purposes, the refined Hilbert series can always
be mapped into the form HS(x;,t) where x; are characters of irreducible representations of
the global symmetry group of the moduli space Ggiopa. We can always express the refined (or
unrefined) Hilbert series as a rational function. From here on, we will refer to Hilbert series
expressed in rational form as ezxact, as oppose to its Taylor expanded form. For gauge theories
with several gauge groups, however, the exact refined Hilbert series is a very long expression
that is difficult to even write down. In [49], a new generating function was introduced called
the highest weight generating function HWG(u;,t) which easily encapsulates the exact refined
Hilbert series HS(x;, t).

If we Taylor expand HS(x;,t), at each order in ¢ the characters can be grouped together
into Dynkin labels of irreducible representations [nq, ..., ”r]Gglobal 6 of the global symmetry group
Gglobal With rank 7. The novelty of HWG is that it rewrites the Dynkin labels in terms of y;,

which we call the highest weight fugacities:

[n17 Tt nT]Gglobal A H/’L?l (2>
i=1

4We very briefly review algebraic variety in Appendix D.
By virtue of Stanley’s theorem [48].

5ng, ..., Nr)Gona 1abels the highest weights within an irrep and since we can always identify an irrep by its
highest weights, the Dynkin label uniquely identifies the irrep.
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[50]. We make clear this correspondence through a simple example with Ggiobas = SU(5):

[n17 Nna, N3, n4]SU(5) <~ M?lﬂgzﬂgs ILLZ4 . (3>
Explicitly, [3,2,1,6]sy(s) corresponds to Wi sl ete. As it turns out, this simple repackaging
allows a complicated expression HS(z;,t) to be expressed in a much more compact form.
Furthermore, we will see many examples in this thesis where an infinite number of gauge theories
that belongs to the same family can be expressed by a single general HWG. A more in-depth

look into the structure of HWG can be found in [49].

Plethystic Program

Now that we have a way of counting gauge invariant chiral operators in the moduli space,
we introduce some tools to extract the number of generators and the relations between them.
These tools are part of the plethystic program [51, 44].

We first introduce the Plethystic Exponential (PE) of some function f(¢q, s, ....,t,) with
variables tq,to, ..., t,:

L f(th kR
PE[f(t1,t2, ..., tn)] := exp(%%) (4)

1

The PE gives symmetric products of the variables and plays a key role in computing the Higgs
branch Hilbert series [11, 52, 53]. For our purposes, we will only be using PE as a way of
simplifying our expressions.

The plethystic exponential (PE) has an inverse function called the Plethystic Logarithm
(PL):

_S ) gt )

PL[f(t1,to,....tn) = PE Y [f(t1,ta, ..., 1n)] p
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where (k) is the Mébius function given as:

0 k has repeated prime factors
p(k) =91 k=1 (6)

(—1)™ ks a product of n distinct primes

\

If f(ty,ts,...,t,) is a Hilbert series for the moduli space, then by taking the PL we get the
defining equation of the moduli space [44]. By viewing the moduli space as an algebraic variety,
we can uniquely define it by identifying the generators and relations” [54]. The first few positive
terms are the generators of the moduli space whereas the first few negative terms are the
relations.

If the PL is a finite series (i.e terminates), the moduli space is a complete intersection.
Gauge theories whose moduli space of vacua is a complete intersection has many interesting
properties such as its connection to closures of maximal nilpotent orbits [55, 56] and Slodowy
slices [57]. However, most of the moduli spaces that we will be studying in this thesis have non
terminating PLs where higher order terms are dominated by higher syzygies® that obscures the

generators and relations.

"We follow the assumption that there exists a one-to-one correspondence between the Hilbert series of the
moduli space and the generators and relations that defines the algebraic variety. This statement has not been
proven to the best of our knowledge. But from all the cases we observed, by taking the plethystic logarithm of
the Hilbert series, we can uniquely identify the algebraic variety. And vice-versa, by giving the generators and
relations of the algebraic variety, we can obtain the Hilbert series using tools such as Maclaulay?2.

8 Also known as relations of relations.
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Chapter 1

Supersymmetric Gauge Theories

In this chapter, we will review some basics about supersymmetric gauge theories in
d=3,4,5,6 with eight supercharges as well as different techniques to study their moduli spaces.
This is not at all a comprehensive study of the rich physics occurring in each of these dimensions.
Instead, using SU(2) with 4 flavors as a particular example, we see how its Higgs branch and

Coulomb branch changes in different dimensions.

1.1 Quiver gauge theories

In this thesis, rather than writing down the Lagrangian of a supersymmetric gauge theory
explicitly, it will be encoded inside a Quiver diagram.

Quivers take different forms depending on the number of supercharges. Since we are
interested in theories with eight supercharges, the quivers are made of circles, squares and
edges connecting them which encode the gauge symmetries, flavor symmetries and matter fields
in the theory respectively [35]. The different fields in these theories are contained in vector
multiplets and hypermultiplets whose field content are different depending on the dimension

d.
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CHAPTER 1. SUPERSYMMETRIC GAUGE THEORIES

For example, a U(2) gauge theory with four flavors is given by the following quiver diagram:

Flavor groups

SU(4) J

Bifundamentals ——

ve) (’\

Gauge groups (1.1)

Importantly, the quiver diagram encodes the different representations the gauge and matter
fields transform under. The vector multiplets transform under the adjoint representation of
U(2) and the hypermultiplets transform under the bifundamental representation of U(2) and

the flavor group SU(4) .

Superpotential

For theories with eight supercharges, the superpotential of the theory is fixed. To extract it,
one should rewrite the quiver in four supercharges notation. An undirected line that represented
a bifundamental hypermultiplet is now two arrows pointing in opposite directions representing
a fundamental chiral and an anti-fundamental chiral multiplet. The vector multiplet also
decomposes into a vector multiplet and an adjoint chiral multiplet. The same quiver above now

takes the form:
Flavor groups

SU(4)
[] <—/
chiral —
and anti-chiral 8 (,—\

U(2) Gauge groups
Adjoint chiral

—

(1.2)

The superpotential is then given by:

W = Tr(Af®iB'7) (1.3)
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CHAPTER 1. SUPERSYMMETRIC GAUGE THEORIES

where A%, B¥# and <I>§ are the fields associated with the chiral, anti-chiral and adjoint chiral
multiplets respectively. 7,7 = 1,2 are indices for the U(2) gauge group whereas «, 8 = 1,2, 3,4
are indices for the SU(4) flavor group. We will very rarely discuss quivers in four supercharges

notation but in general they are useful in studying the Higgs branch of the theory.

Orthosymplectic quivers

Whilst most quiver gauge theories found in the literature are restricted to quivers with
unitary gauge groups, the study of quivers made of (special) orthogonal and symplectic gauge
groups has proven to be very fruitful as well. These quivers are colloquially called orthosymplectic
quivers [38] and will be featured prominently in this thesis. A signature property is the alternating
sequence of (special) orthogonal and symplectic groups.

For example, a USp(2) gauge theory with SO(8) fundamental flavor symmetry takes the

following form 1:

Flavor groups

Gauge groups (1.4)

The line in the quiver consists of 8 half-hypers® transforming in pseudo-real fundamental

representation of USp(2)gauge X SO(8)favor -

Here, we use the compact symplectic group Sp(n) (or equivalently USp(2n) ) which is defined as the
intersection of SU(n) and Sp(2n,C). USp(2n) is often used to be consistent with the usage of SO(2n) and
SO(2n+1). To prevent confusion of notation, it is understood that SU(2) = Sp(1) = USp(2).

2In the previous case of U(2), the bifundamental representations are complex and therefore the line represents
full hypers. Thus, if we have Ny even number of half-hypers, we can equivalently call them Ny /2 full hypers.
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CHAPTER 1. SUPERSYMMETRIC GAUGE THEORIES

Quiver notations

We will henceforth adopt the following color coding for the gauge and flavor groups for the

rest of the thesis:

> @
~Hl
G
)
®)
S
2

=@
=l
[@p]
o
E

Special unitary gauge nodes (which we will see later on) will be explicitly labelled.

1.2 Three-dimension (3d N = 4)

Moduli spaces of vacua of gauge theories differs greatly in different dimensions. This is due
to different number of scalar fields in the vector and hypermultiplets as well as the R-symmetry
group. In the remainder of this chapter, we will always identify these three objects before diving

into the moduli space itself.

R-symmetry

For 3d N/ = 4 theories, the R-symmetry is SU(2); x SU(2)g.?

Vector multiplet (A, ¢’, spinors)

Contains a gauge field A, with u = 0,1,2, three real scalar fields ¢* with ¢ = 1,2,3 and
(Majorana) spinors. The three scalar fields transform under the [2]sy(a), [0lsu(2), representation.

Thus, the scalar fields transform under the adjoint representation of SU(2)., but trivially under

3The best way to arrive at this symmetry group is to dimension reduce from 6d A" = (1,0) theories. The
SU(2)r, is the double cover of the rotational group that rotates the three coordinates that are compactified. The
SU(2) g symmetry is simply the same R-symmetry that rotates the supercharges in 6d [58].

44



CHAPTER 1. SUPERSYMMETRIC GAUGE THEORIES

Hypermultiplet (g, !, spinors)

Contains the complex scalar ¢, its complex conjugate ¢' and (Majorana) spinors. The
complex scalars transform under [0]gy(z), [1]su(2), of the R-symmetry group. In other words,

they transform trivially under SU(2), and as a doublet under SU(2)g.

1.2.1 Coulomb branch (Monopole operators)

The moduli space of vacua is parametrized by scalar fields. The Coulomb branch is
parameterized by the scalar fields ¢* with non-zero VEV living in the vector multiplet, which
transform under the adjoint representation of the gauge group. As they transform non-trivially
under SU(2)y, this is the R-symmetry subgroup that acts on the Coulomb branch. Let us
first focus on the classical Coulomb branch of a gauge theory with gauge group GG. The scalar

potential from the real scalar fields takes the following form:

"= %Zw, ik (1.6)

i<j

with ¢ being the gauge coupling. At the supersymmetric vacuum state, the scalar potential
needs to vanish which occurs whenever the scalar fields commutes. This is equivalent to saying
that the scalar fields take values in the Cartan subalgebra of the gauge group GG. At generic
VEVs, Higgs mechanism will break the gauge group G to its maximal torus U(1)" where r is the
rank of G. This gives rise to r photons which can be dualized to r real scalar fields, and, along
with the 3r real scalar from ¢°, the Coulomb branch carries 4r degrees of freedom. Equivalently,
the 4r real degrees of freedom can be viewed as r quaterionic degrees of freedom. The Coulomb
branch is then a hyperKahler manifold with SU(2);, action. For a general 3d N = 4 quiver, the
quaterionic dimension of the Coulomb branch is the sum of the ranks of the gauge group (since

this give the number of scalars in the vector multiplets).

The Coulomb branch of 3d NV = 4 SUSY gauge theories is notoriously difficult to study
as it is not protected against quantum corrections. More traditional approaches include comput-

ing the one-loop Coulomb branch metric by integrating out massive fields which are only reliable
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at weakly coupled regions. It will be ideal to come up with a method in computing the Coulomb
branch that also gives the exact answer in the strongly coupled IR fix points. Furthermore,
the procedure mentioned above in dualizing photons (obtained from taking the Hodge dual)
to get real scalars is only known when G is completely broken into abelian subgroups U(1)".
For less generic VEVs, G is broken to a non-Abelian subgroup H C G and it is not known how
to dualize the non-Abelian vector multiplets [36]. To deal with these problemsome features

effectively, a modern approach is developed using the idea of monopole operators.

Dressed monopole operators

In modern QFT, one not only looks at traditional local operators that are ordered but
at disorder operators as well. For our purpose, the disorder operators we are interested in are
t’Hooft monopole operators [59]. These monopole operators V;,,(x) can be defined by specifying
the singularity of the fields in the Euclidean path integral at the insertion point x. Using
spherical coordinates (r,6,1), the gauge field AL and scalar field ¢ have the following singular

boundary conditions as r — 0:

Ay ~ %(il — cosf)d)

" (1.7)
7 2r

where m is the magnetic charge obtained by integrating over the S? that encloses the singularity.
AL are the gauge connection 1-form in the northern and southern patched of the S?. The
boundary conditions enforces we are dealing with supersymmetric %—BPS monopole operators.

Importantly, m is also an element of the Lie algebra of the gauge group G of our theory.

Dirac quantization condition [60]:

MM = 1g (1.8)

ensures that the magnetic charges live in the weight lattice I'gv of the GNO (Langlands) dual
group of G [61]. Since we are interested in gauge invariant operators, the lattice of charges we
choose from is given by the quotient T'gv /Wgv where Wgv is the Weyl group of GV.

Now that we introduced the monopole operators, how is it related to the Coulomb branch?
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It turns out, if we decompose the 3d N = 4 vector multiplet (A, ¢*, ¢?, %, spinors) into 3d
N = 2 multiplets, we will get a N' = 2 vector multiplet and an A/ = 2 adjoint chiral multiplet.
The vector multiplet contains a gauge field which can be dualized to a scalar field A and real
scalar ¢! = o which contribute to parameterizing the Coulomb branch. The above definition
of the monopole operator and the boundary conditions basically replaces the 3d N = 2 vector
multiplet with the set of monopole operators V,,. These monopole operators are called bare
monopole operators. As for the N = 2 adjoint chiral multiplet, it contains two real scalar fields
which can be complexified to ® = (¢?, ¢®) and serves to dress the bare monopole operator. In
summary, the resulting dressed monopole operator becomes the object that parameterizes the

Coulomb branch. This is schematically summarized in the diagram below:

Moduli space of

Coulomb branch
dressed monopole operators

AN = 2 ——— Bare monopole operator
/ vector multiplet (Vi) \

Dressed monopole operator

3N =2 — Dressing factors /

adjoint chiral multiplet
! P (@ = (62 ¢%))

3dN =4
vector multiplet

(1.9)
Therefore, the Coulomb branch is equivalent to the moduli space of dressed monopole operators.

An excellent review on monopole operators can be found in [45].

Monopole formula

By identifying dressed monopole operators as the objects that parameterizes the Coulomb
branch, the next step is to enumerate them using a generating function. The boundary conditions
allows the monopole operators to be treated as N/ = 2 chiral multiplets. As a result, they will
populate the chiral ring and can be counted using a Hilbert series HS(¢). Here, t is the counting
fugacity whose power gives the R-charge! of the monopole operators. The R-charge A(m) of the

bare monopole operator of magnetic charge m for a gauge theory G with Ny hypermultiplets in

4The R-charge is given by the U(1)¢ Cartan subgroup of the SU(2);, R-symmetry subgroup that acts on the
Coulomb branch.
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the representation R; is given in [62] which we reproduce here:

Am) == 3 Jatm) + 53 3 Ini(m)| (1.10)

OéEA+ =1 peER;

where « are the roots of the algebra g = Lie(G) of which only the positive roots A are selected.
The first term are contributions from the vector multiplets transforming under the adjoint
representation of G. The second term are contribution from the Ny hypermultiplets where p
are the weights of the representation R;.

The R-charge is defined by the UV U(1)¢ R-symmetry but in the case where A(m) > 1,
the value coincides with the IR superconformal R-symmetry as well, which is also the conformal
dimension of the monopole operators. Theories where all monopole operators follow this
condition are called good for A(m) > 3 and ugly for A(m) = 3 [62]. If A(m) < 3, the R-charges
in the UV do not coincide with those in the IR and one obtains a divergent Hilbert series. In
this paper, we will mainly be focusing on good quiver gauge theories.

With the R-charge grading of the bare monopole operators identified, we turn our attention
to the contributions from the complex scalar field ® = (¢?, ¢) in the dressing factors. Generic
magnetic fluxes will break the gauge group G to its maximal torus. In particular, the contribution
when all magnetic charges are inequivalent and larger than zero, the dressing factor Py for a

rank r gauge group contributes:

1

Pg(mz%mj>0,t):m

(1.11)

However, particular configurations of magnetic charges m can also break G to a subgroup H,,.

In general, the dressing factor Pg(m,t) is given by:

r

1

i=1

where d;(m) is the Casimir invariant of G. The classical dressing factor for classical gauge
groups is written explicitly in Appendix A of [36].

Putting the pieces together, the Coulomb branch Hilbert series of a G gauge theory with
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Ny hypermultiplets is given by:

HS(t) = Y 2" Pg(m,t) (1.13)
melqgv /Weav
where, as mentioned earlier, we are interested in gauge invariant operators so the magnetic
charges are summed over the lattice I'gv /Wgv.

To summarize, the Hilbert series enumerates gauge invariant dressed monopole operators
graded by their R-charge. The generating function gives the Hilbert series of the Coulomb
branch chiral ring, from which the generators and relations that defines the moduli space as an
algebraic variety can be extracted.

The formula for A(m) and T'gv /Wgv for classical groups are detailed in Appendix A.

Refinement

The Hilbert series can be further refined by detailing how the operators transform under
irreducible representations of the Coulomb branch global symmetry group Ggionai. This can be
obtained from the monopole formula by assigning fugacities z to non-simply connected gauge
groups G which counts the charges of U(1)r topological symmetries. The refined monopole

formula then takes the form:

HS(t) = ). 2"*20Pg(m,t) (1.14)

mel v /Weav
The z fugacities are simple root fugacities of the algebra g which can be converted to fundamental
weight fugacities x using the Cartan matrix of g. The fugacities x are then used to construct
the characters of the irreducible representations. As a result, if the Hilbert series is expanded
perturbatively as a Taylor series, the coefficients at each order of ¢ can be grouped together as

irreps of Ggiopal-
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Example: G = U(2) with N; = 4 flavors

Let us study the Coulomb branch Hilbert series of a U(2) gauge group with 4 fundamental

flavors. The R-charge is given as the follows:
4
A(ml,mg) :—|m1—m2\+§(lm1]+]m2|) (115)

where my, my are the magnetic charges for U(2). The magnetic lattice I'gv /Wev is given by
my and msy taking integer values whilst satisfying oo > m; > my > —o0. The Hilbert series

computed by the monopole formula gives:

HS(t) _ Z tQ(*\m1*M2|+2(|m1\+|m2|))PU(2) (mh ma, t)
co>m1 >mo>—00 (116)
1+ 1%+ 2t* 416 + ¢8
(1 £2)i(1 1 2)2

This moduli space is known in the mathematics literature as the Slodowy slice Sy 22y = S22) NN
Where S(y2 is the Slodowy slice transverse to the nilpotent orbit Ofggj‘) and N is the nilpotent

cone of su(4).

Nilpotent orbits

Nilpotent orbits are very interesting objects and can be found commonly in algebraic
geometry and representation theory literature. However, for this thesis, we will very rarely
discuss Slodowy slices and nilpotent orbits. Therefore, for our purposes we will just view them
as labels to help us identify our moduli spaces. We provide a very brief introduction to nilpotent
orbits in Appendix D. For more details on Slodowy slices and nilpotent orbits, we direct the
reader to [63].

We do, however, discuss minimal nilpotent orbit closures 6ilin very often. In physics, these

geometric spaces are equivalent to one-g instanton moduli spaces.
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G = SU(2) with N; =4

The difference between a U(n) and SU(n) gauge theory in the monopole formula is that
the magnetic charges for SU(n) satisfies an additional condition that Y ; m; = 0. Such an
action is analogous to ridding of a U(1) degree of freedom®. The simplest way of executing such
an operation is to first compute a quiver with all gauge groups unitary and then introduce an

n; j

additional term ZJ-Z"J m” to the U(n;) nodes that you wish to convert to SU(n;). In our case,
we go back to (1.16) and add the addition term 2™ *™2. Now, the operators inside HSgy(2)(?)
will be the operators in HSy(9)(2,t) where my + my = 0, which is equivalent to the terms whose
coefficient does not contain z. Computationally, this is equivalent to taking the residue over z:

HSsu(2)( 7{ 22 HSyo) (2, 1) (1 — £2)

271
1—t'?
T (I—t)2(1 — 5)

(1.17)

where the additional (1 — #?) is required to correct the classical factors by ensuring ¢* + ¢* = 0.
As we will see in the next subsection, this procedure can also be interpreted as taking a
hyperKéhler quotient over the U(1)7 topological symmetry [36]. The Coulomb branch Hilbert
series shows the moduli space is C?/T'p, where I'p, = Dicy is the discrete subgroup of SU(2)
that is associated with D, = Lie(SO(8)) by the McKay correspondence [64].

In Appendix A, we make some very important comments about computational complexity

and the monopole formula.

Coulomb branch global symmetry

In the IR fixed point, the 3d N' = 4 Coulomb branch global symmetry can be enhanced to
some non-Abelian group Ggionar due to bare monopole operators. A powerful set of results in

[62] shows that one can immediately read off the algebra of the global symmetry group ggiobal

SHowever, one needs to be careful that U(n)/U(1) = SU(n)/Z, so the difference is not exactly a U(1). In
the monopole formula, turning an U(n) to an SU(n) gauge group corresponds to setting Y .-, m; = 0 whereas
decoupling a U(1) corresponds to setting the last magnetic charge m,, = 0. The subtle difference between them
is an overall discrete factor Z,,. This is important when dealing with framed vs unframed quivers later on and is
source of much confusion in the literature.

51



CHAPTER 1. SUPERSYMMETRIC GAUGE THEORIES

by computing the balance of gauge groups °.

A U(k) gauge group is balanced if the flavour from the neighbouring nodes is Ny = 2k. The
balanced nodes form the Dynkin diagram of h which is a subalgebra of ggioba1. In most cases where
all the gauge nodes are balanced with n nodes overbalanced, one finds that ggiona = [ [, hs x u(1)"
which considers all balanced subset of nodes that are connected and form Dynkin diagrams b;.
If the unitary quiver is unframed/flavorless, then an overall u(1) factor needs to be removed
from the global symmetry.

The same idea can be carried on for orthosymplectic quivers. In [62], the balance conditions
for (special) orthogonal and symplectic gauge groups with Ny fundamental hypermultiplets (i.e.

2Ny half-hypermultiplets) are given which we reproduce here:

SO(2k) : Ny = 2k — 1,
SO(2k +1) : Ny = 2k, (1.18)

USp(2k) : Ny = 2k + 1.

It has been shown in [62] that a linear chain of n balanced orthosymplectic gauge nodes gives a
global symmetry of so(n + 1). The above is true regardless of the gauge groups being O or SO.
A balanced SO(2) gauge group is always assumed to be connected to a USp(0) gauge group
which does not affect Coulomb branch computations but is required in order to read off the
correct global symmetry. On the other hand USp(0) nodes should not be attached to O(2).
For non-linear or non-simply laced orthosymplectic quivers, the global symmetry is different
and discussed in detail in Chapter 5.4.1. Furthermore, as will be discussed in Chapter 4, if
unframed /flavorless orthosymplectic quivers are discussed, the global symmetry might be further
enhanced.

The importance of being able to read off the Coulomb branch global symmetry directly
from the quiver cannot be overstated. It serves as a first order check that our monopole formula

gives the correct Coulomb branch Hilbert series. Furthermore, if we wish to construct a quiver

60ne does observe, however, that more complicated quivers such as moduli space of k-instantons [65] and
some non-simply laced unitary quivers [7] have factors in ggiobar Which cannot be read off from the balance of
gauge groups. In such cases, the best way to obtain the global symmetry group is an explicit computation of the
Hilbert series to order t* which reveals the dimension of the global symmetry group.
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with a certain Ggobal in mind, the balance of the gauge node will severely constrain the possible
forms the quiver can take. Such constraints often allow us to make classifications of families of

quivers.

1.2.2 Higgs branch

The Higgs branch is parameterized by scalar fields with non-zero VEV that lives in the
hypermultiplet. For 3d N' = 4 theory, this is parameterized by the two complex scalars ¢, .
This means there are four real scalar fields that parameterizes the moduli space and therefore
the manifold is once again hyperKahler. Unlike the Coulomb branch, the Higgs branch in 3d is
a classical object since it is protected from quantum corrections due to non-renormalization
theorems [34]. For Lagrangian theories, the Higgs branch can be straightforwardly studied by

taking the hyperKéahler quotient.

Free theory

First, consider a theory with 8 free hypermultiplets. Pictorially, one can represent this with

the following quiver:

(1.19)

The Higgs branch is then the space of constant scalar fields which in this case is H®. The Higgs

branch Hilbert series is given by the plethystic exponential (PE) of the free fields:

HS(t) = PE[8¢] =

R (1.20)

The Hilbert series only has terms in the denominator, indicating the chiral ring is freely generated,

i.e there are 8 generators and no relations between them.
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SU(2) with N; =4

Now, we turn to our canonical example of SU(2) gauge theory with 4 flavors. By gauging
the SU(2) in our free theory in (1.19), the scalar potential V (g, ", ¢'=1?% = 0, A = 0) becomes
non-zero in general (as a reminder we are focusing on the Higgs branch where VEV of scalar
fields in the vector multiplet are set to zero). To get the vacuum state V' = 0, one require the

F-term and D-term to vanish. The F-term is given by

ow
F—term = 5 (1.21)

where W is the superpotential. Since we are focusing on the Higgs branch, the non-trivial F-term
equations are those where the derivatives are taken with respect to the scalar fields ® = (¢?, ¢3)
in the 3d A/ = 2 adjoint chiral multiplet. Thus, the F-term equations only have ¢, §' terms.

Written in four supercharges, the different 3d N = 2 fields for our quiver are labelled as follows:

U

—~

)

=5

Co—=0
K

[<H

(jﬁ J

@)
-
—
A\
N~—

(1.22)

The superpotential is:

W = Tr(¢®%q"7) (1.23)

where ¢%, ¢° 7 are the complex scalar fields in the hypermultiplet transforming in the fundamental
(anti-fundamental) of SU(2) and anti-fundamental (fundamental) of U(4) with i,7 = 1,2 as
gauge indices and «, 8 = 1,...,4 as flavour indices. <I>§ gives the scalar fields in the adjoint
chiral. The superpotential can be read off by following the arrows and taking a full loop from
the flavour node and back to itself. Taking the derivative, the non-vanishing F-term that is

relevant to us on the Higgs branch is then:

¢’q"" =0 (1.24)
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Next, we consider only gauge invariant operators. This, along with ensuring the D-terms vanish,
translates to quotienting by the complexified gauge group G®. In summary, the Higgs branch of
SU(2) with 4 flavors is given by:

{space of constant scalars q&, q° ! | ¢#¢° = 0}
SU(2)c

Higgs branchgy(2)—j) = (1.25)

To define the Higgs branch as an algebraic variety, one can first write down gauge invariant
generators in the theory and then use F-terms to impose relations between them. This procedure
works well when the quiver is simple, but for more complicated cases it is best to compute the
Higgs branch Hilbert series and then extract the generators and relations using plethystics.

The complex dimension of the Higgs branch is given by the number of scalars in the hypers
minus the twice dimension of all the gauge groups. For example, an SQCD theory of SU(N,)
with Ny flavors has 2/N. /Ny complex scalars in the hypers. Imposing F-term equations imposes
N2 — 1 relations and imposing D-term equations and gauge invariance imposes another N2 — 1
relations. Therefore the complex dimension is given by 2N.N; — 2(N? — 1). Equivalently, the
quaterionic dimension is N.N; — (N2 —1).

The Higgs branch global symmetry is also its flavour symmetry.

Molien-Weyl formula

When computing the Higgs branch Hilbert series, the steps above can be translated into

different operations in the Molien-Weyl formula.

1. The first step is to study all possible constant field configurations whilst keeping track of
the representations they transform under the gauge group. For our SU(2) with 4 flavors

theory, we have:

1.1 1 1 1 1
PE| (e +-)(—+—+—+)t+(x+ )y +v2+ys +ya)t
T Y1 Y2 Y3 Y4 x
1
= T T T T 1 1 1 1 (126)
(=) (1= 2t)(1 = 201 = ) (1 — -1 — 5 -0)(1 = o -8)(1 = S -t)
1

U= ) (1 — 2t (1 — ayst) (1 — oyat) (1 — Z0)(1— 20)(1 - B)(1 - 2¢)
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where z is the fundamental weight fugacity of SU(2) gauge group and y; are the fugacities
of U(4) flavour group. By keeping y; fugacities, we are computing the refined Higgs branch
Hilbert series. One can of course set y; = 1 to compute the unrefined Higgs branch Hilbert

series, which is significantly less taxing to compute.

2. The second step is to set the F-term conditions. This is achieved by multiplying the first

term with the adjoint representation of the gauge group SU(2):

1.1 1 1 1 1 1
F(z,y;,t) = PE| (z4+=)(—+—+—+—)t+(2+=) (y1+yat+ys+ya)t | x (1—t*) (1—2t*) (1——¢?
(@90 8) = PE[ (o4 )ttt et yt] < (1) (L-at) (L)
(1.27)
Note that the R-charge of the superpotential is 2 whereas those in the chiral and anti-chiral

are 1.

3. Finally, quotienting out SU(2)¢ is given by taking the following residue integral:

HSsu(2)—[4 (i, t) = j{ dpsu)F (2, y:, ) (1.28)
SU2)

where djigy(2) is the Haar measure. The exact refined Hilbert series is quite a complicated

expression, hence we unrefine them by taking HSgy(2)—(4(y; = 1,t) which yields:

(1+%)(1 + 17¢* 4 48¢* + 17t° + ¢¥)
HSsv@)—j(yi = 1,t) = (T (1.29)

50(8)

This is the Hilbert series that describes the space O, ° which is the closure of the minimal

nilpotent orbit of s0(8) . Equivalently, this is the one-SO(8) instanton moduli space.

1.3 Four-dimension (4d N = 2)

We turn our attention to 4d theories. From a historic point of view, the topic of N' = 2
is better studied with a plethora of papers in the literature. However, from a gauge theoretic
point of view, these theories are often more complicated where the majority of 4d N = 2

superconformal field theories (SCFTs) do not have known Lagrangian descriptions. Once again,
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we begin by describing the supermultiplets in this dimension.

R-symmetry

For 4d N' = 2 theories, the R-symmetry is U(1), x SU(2)z.”

Vector multiplet (4,, ®, spinors)

Contains a gauge field A, with ¢ =0,1,2,3 ®, one complex scalar field ® and (Majorana)
spinors. The complex scalar field transforms under the gyn), [0]sv(2), representation of the

R-symmetry group where ¢ is the U(1) charge.

Hypermultiplet (¢, ¢, spinors )

Contains a complex scalar ¢ and its complex conjugate ' and (Majorana) spinors. The
complex scalars transform under [0]y ), [1]sv(2), of the R-symmetry group. In other words, they
transform trivially under U(1), and as a doublet under SU(2)p.

One noticeable feature is that the hypermultiplet content remains the same as in 3d N = 4
whilst the vector multiplet is different; it has one fewer real scalar field and the gauge field can
no longer be dualized to a scalar. As a result, the Higgs branch remains a hyperKéhler manifold
whereas the Coulomb branch is a Kahler manifold. In fact, additional structures due to N' = 2
SUSY makes the Coulomb branch a (rigid) special Kéhler manifold. The complex dimension of

the Coulomb branch of a 4d N' = 2 theory is the sum of the ranks of the gauge groups.

1.3.1 Coulomb branch

Unlike in three dimensions, dressed monopole operators no longer describes the Coulomb
branch of 4d theories. Alas, we will use the old ways. To understand the geometry of the
Coulomb branch, the traditional approach is to study its metric. The metric can be obtained
from the prepotential F(a;) where a; are the entries in the scalar field ® = diag(a,...,a,) for

a gauge group of rank r. The prepotential in the UV is a holomorphic function and can be

"The best way to arrive at this symmetry group is to dimension reduce from 6d A" = (1,0) theories. The
SO(2),. =2 U(1), is the double cover of the rotational group that rotates the two coordinates that are compactified.

8The on shell degree of freedom is given by the fundamental representation of the SO(2) little group.
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easily determined if the Lagrangian is known. In the IR, however, the prepotential takes a more

complicated form:
F(a;) ~ 75" a;a; + (one — loop corrections) + (instanton corrections) (1.30)

where 7YV is the complexified gauge coupling in the UV. The second term is the perturbative
one-loop corrections to the metric. The main difficulty in computing the prepotential comes
from the final term which are non-perturbative contributions from instantons. Computing the
contributions from the instantons was made systematic from the seminal paper of [32, 33] which
introduced the concept of Seiberg-Witten curves.

The prepotential can be determined by the IR gauge coupling 7% through the relation:

IR _ 82}_(%)

Tij N 8ai6aj <131>

The complexified gauge coupling in turn is determined by defining certain 1-cycles (A;,B;) on

the curve. Using rank 1 theories as an example where ¢, 7 = 1:

5’aD
= —— 1.32
T 5a (1.32)
where
1 1
—— ¢ A —— A 1.33
“Ton S YT o (1.33)

and A is some 1-form called the Seiberg-Witten differential. To sum up, once the Seiberg-
Witten curve and differential are defined, the gauge coupling can be found using (1.32). Then,
integrating twice will return the prepotential which defines the Coulomb branch metric.

To study SCF'TSs, one can start by finding the SW curve corresponding to the UV Lagrangian
and identify neighbourhoods around singular points where the curve exhibits scale invariance.
Alternatively, one can immediately write down the SW curve for the IR theory and look for
scale invariance to identify non-trivial SCFTs. Such approach has the advantage of identifying
4d N = 2 SCFTs that do not have a known Lagrangian description. Methods like this are

instrumental in identifying families of SCFTs such as the list of rank 1 theories in [66]. For more

38



CHAPTER 1. SUPERSYMMETRIC GAUGE THEORIES

details on 4d SCFTs and Seiberg-Witten curves, one can look at some excellent reviews [67, 68].

SU(2)with N; = 4

Once again, let us use SU(2) theory with Ny = 4 as our example. Since there are twice as
many flavors as colours, this theory has vanishing beta function and is superconformal. This is
one of the special cases in 4d where the theory is both Lagrangian and an SCFT?. This example
is explored in the original Seiberg-Witten paper [33]'°. Since the beta function vanishes, we
have:

R =70V (1.34)

The Coulomb branch is defined by a prepotential that is just %TUVCL2

. This may seem unin-
teresting at first sight but performing S dualities and gaugings on the subgroups of the SO(8)
flavour group lead to an incredible zoo of SCFTs that goes under the name class S theory [70].

Even though we will not discuss this further, we do look at many class S theories in Chapter 5.

Coulomb branch generating function

In the previous subsection we see the Coulomb branch can be studied by computing its
Hilbert series. This counts holomorphic functions on the moduli space, or equivalently, gauge
invariant chiral operators in the chiral ring. In general, the Coulomb branch chiral ring for 3d
N = 4 theories is made of generators which satisfy a certain set of relations. As a result, the
Hilbert series is not freely generated (this is indicated by non-trivial terms in the numerator of
the Hilbert series). On the other hand, the Coulomb branch chiral ring for 4d N'=2 SCFTs
are generically freely generated [71]. However, they may not be freely generated when discrete
actions are taken into account [72]. For cases studied in this paper, we will only look at freely
generated Coulomb branch chiral ring for 4d N' = 2 SCFTs where one can define the chiral
ring fully by specifying the generators. For instance, the Coulomb branch of the SU(2) with

Ny = 4 at the superconformal fix point, also known as the D, theory, is generated by a single

9Another set of Lagrangian theories are those that are free in the UV but has a non-trivial IR fixed point
with emergent symmetries.

10And also reproduced using instanton counting in [69].
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operator with conformal dimension A = 2. Here the conformal dimension is given by the U(1),
charge. For freely generated theories, the number of A = 2 generators also indicates the complex
dimension of the Coulomb branch. A single generator means the complex dimension is 1 and
equivalently, this means the theory is a rank 1 SCFT.

Such computations make it much easier to analyse the Coulomb branch of 4d theories,
especially when the Higgs branch is complicated. Many attempts had been made to extract
as much information about the theory as one can just by studying the Coulomb branch. For
example, if the spectrum contains non-integer conformal dimension operators, then the theory

is an Argyres-Douglas theory [73].

1.3.2 Higgs branch

The hypermultiplet for 3d N'= 4 and 4d N = 2 theories both contain two complex scalars
and their Higgs branches are classical and protected from quantum corrections. This is important
as the classical Higgs branch remains the same in d = 3,4,5,6.!' As a result, the Higgs branch

for this theory is the same as before: Higgs‘é%(z)f[‘l] = 550(8)

In general, most 4d A" = 2 SCFTs do not have known Lagrangian description, which makes
the hyperKéahler quotient construction unfeasible. As a result, we can no longer study the Higgs
branch using the Molien-Weyl formula and a new method is needed to systematically extract

the Higgs branch. The development of such a method is focus of this thesis and in the context

of 4d theories this is explored in section 5.

1.4 Five dimension (5d N = 1)

It was often argued that 5d N' = 1 gauge theories are non-renormalizable due to the
gauge coupling having negative mass dimension. The gauge theories then flow to some free
theories and there are no interesting fixed points. This all changed from the seminal paper
[74] where non-trivial interacting UV fixed points were found for 5d theories. This lead to

a great deal of interest in studying 5d SCFTs including many attempts in classifying them

"UHowever, we shall see in the next subsection how quantum corrections can arise in the form of massless
instantons in 5d A/ = 1 and tensionless strings in 6d A" = (1,0) which corrects the Higgs branch
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[75, 76, 77, 78, 79, 80, 81, 82]. Furthermore, new techniques such as brane webs are developed
to study them which we will discuss in Section 3.

One particular feature that arise in 5d is the existence of a conserved current:

JW =Tr* (FAF) (1.35)

which gives rise to a U(1); global symmetry. The label I indicates the symmetry is related to
the gauge instantons that we are familiar with in 4d by solving self-dual Yang-Mills equations.
In 5d, instantons (codimensional 4 objects) are particles and we will name the particles that are
charged under this U(1); as instanton operators. Crucially, the mass of an instanton operator is

inversely proportional to the gauge coupling g:

mp o< — (1.36)

This means at the UV fixed point where g — oo, the instantons become massless and contribute
to enhance the global symmetry.
R-symmetry

For 5d A = 1 theories, the R-symmetry is SU(2)g.

Vector multiplet (4,,®, spinors)

Contains a gauge field A, with =0, 1,2, 3,4, one real scalar field ¢ and (Dirac) spinors.
The real scalar field transforms trivially under the R-symmetry.
Hypermultiplet (¢, G', spinors)

Contains the complex scalar ¢ and its complex conjugate ' and (Dirac) spinors. The

complex scalars transform under SU(2)g of the R-symmetry group.
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1.4.1 Coulomb branch

The Coulomb branch for 5d gauge theories is now parameterized by a single real scalar and

takes a particularly simple form. For a gauge group G with N; flavors, the Coulomb branch is:

RT’
Wea

Coulomb(G),[Nf} = (1.37)

where r is the rank of the gauge group and Wg is the Weyl group. The manifold is now real
and the real dimension of the Coulomb branch is once again the sum of the ranks of the gauge
groups. The Coulomb branch metric can again be obtained from the prepotential and thus the
effective gauge coupling can be obtained as well. The prepotential can be easily computed by
studying brane webs [16, 83].

Now, to say a few words about using the Coulomb branch to classify 5d N’ = 1 theories with
non-trivial superconformal fixed point. This is done by ensuring the effective gauge coupling
does not become singular at a finite point in the moduli space which translates to ensuring the
Coulomb branch metric is non-negative throughout the Coulomb branch. This condition, in
turn, translates to the prepotential being a concave function. Using this as a starting point,
attempts were made in [75] to classify 5d SCFTs. A more recent study [76] however shows that
such constraints are too strong and a new set of rules were introduced. This includes excluding
regions in the Coulomb branch where monopole string tensions are negative. Some of these
excluded regions have negative Coulomb branch metric and therefore were previously discarded
in [75] but since they are no longer part of the physical Coulomb branch, such a theory has a
non-trivial UV fixed point. In particular, this result allows quiver gauge theories (with two or

more gauge groups) to become SCFTs in the UV.

SU(2) with 4 flavors

Going back to our example, the SU(2) with 4 flavour theory the Coulomb branch is simply
R/Zy = R* and it can be shown that the Coulomb branch metric is non-negative. There exists

a superconformal fixed point.
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1.4.2 Higgs branch (Instanton corrections)

The Higgs branch intersects the Coulomb branch along the Weyl chambers of the Coulomb
branch where some or all of the VEVs of the real scalar fields are set to zero. As shown previously,
the instanton masses are inversely proportional to the gauge coupling squared. Therefore, at
the UV fixed point the instantons becomes massless and enhances the Higgs branch. This
non-perturbative quantum correction to the Higgs branch distinguishes the 5d N = 1 theories
from 4d N = 2 and 3d N = 4 theories where the Higgs branch is always classical. Furthermore,
due to these massless instantons, the Higgs branch no longer has a known construction as a
hyperKahler quotient. This means our Molien-Weyl formula no longer works and a new method
will be needed to systematically extract the Higgs branch. This will form the main content of

Section 4.

SU(2) with 4 flavors

Back to our favourite example. The classical Higgs branch of this theory has SO(8) x U(1);
global symmetry. As shown by the Coulomb branch metric being non-negative, this theory has
a UV fixed point. In the fixed point, the instantons becomes massless and this global symmetry
is enhanced to E5 = SO(10). As a result, the Higgs branch is enhanced as well from the classical

—=50(8)
min

Higgs branch (which is the same in 4d and 3d ) of O

Higgs sy = = o (1.38)

Stating it in an equivalent way, the one-SO(8) instanton moduli space is enhanced to one-SO(10)

instanton moduli space.

1.5 Six dimension (6d N = (1,0))

To be complete, we will briefly discuss 6d N' = (1,0) even though they are not a main

focus of this thesis. The novelty that arises in 6d is the existence of tensionless BPS-strings.
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R-symmetry

For 6d N = (1,0) theories, the R-symmetry is SU(2)x.

Vector multiplet (A4, spinors)

Contains a gauge field A, with ;1 =0,1,2,3,4,5 and Weyl spinors. There are no real scalar
fields.

Hypermultiplet (¢, G, spinors)

Contains a complex scalar ¢ and its complex conjugate ¢' and Weyl spinors. The complex

scalars transform under SU(2)g of the R-symmetry group.

Tensor multiplet (B, ¢, spinors)

There is a tensor field B, a real scalar field and (Weyl) spinors. The gauge coupling is
inversely proportional to the VEV of this real scalar field (which is also the tension of the

BPS-string), thus making it a dynamical object.

Higgs branch and Tensor branch (Tensionless strings)

Due to the absence of scalar fields in the vector multiplet, there are no Coulomb branches
in 6d. However, the tensor branch of 6d theories are often referred to as the “Coulomb branch”
since after dimensional reduction, the tensor multiplet becomes vector multiplets and the tensor
branch becomes part of the Coulomb branch of the lower dimensional theories. For 6d theories
with several gauge groups, massless degrees of freedom arises from tensionless BPS-strings
whenever a gauge coupling is tuned to infinity. This enhances the Higgs branch and when all

the gauge couplings are tuned to infinity, we have an 6d SCFT!2.

120f course, like in 5d, an arbitrary gauge theory usually do not have superconformal fixed point. For a
classification of 6d SCFTs , see [84].

64



CHAPTER 1. SUPERSYMMETRIC GAUGE THEORIES

SU(2) with 4 flavors

For SU(2) with 4 flavors, the moduli space changes at the origin of the tensor branch where

the gauge coupling is tuned to infinity. Interestingly, the global symmetry group becomes smaller

to 550(7)

min n.min

SO(8) — SO(7) as first predicted in [85]. The moduli space is also shrinks from o

[86, 87, 88]. This is the result of the identification of a Z, symmetry and only operators invariant

under this symmetry remains. The Higgs branch dimension remains the same at dimyg = 5.

1.6 Other dimensions

One can go to lower dimensions such as 2d N' = (4,4) theories. Here, the “Coulomb branch”
is parameterized by scalars in the vector multiplets which has a generalized Kéahler potential that
can be studied using non-linear o models [89]. Similarly, there is a “Higgs branch” parameterized
by scalars in the hypermultiplets and is a hyperKahler manifold. For more information, we
direct readers to [90] for a review. Although interesting, we will not discuss these and lower

dimensional theories in this thesis.
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Magnetic Quivers

With some background and examples covered in the previous chapter, we are now ready to

star the main player of this thesis — Magnetic Quivers.

2.1 3d mirror symmetry

Before introducing magnetic quivers, we need to cover a crucial phenomenon that appears in
3d N = 4 theories: three dimensional mirror symmetry. As shown in the previous section, the R-
symmetry group in 3d N = 4 is SU(2), x SU(2) g with the SU(2), acting on the Coulomb branch
and SU(2)g acting on the Higgs branch. Furthermore, both moduli spaces are parameterized by
four real scalars and are therefore hyperKahler manifolds. This presents a unique opportunity
where the two moduli spaces can be put on equal footing. In the pioneering work of [91], a
relationship is established between two 3d N = 4 theories T4 and T which are said to be 3d
mirror pairs if:

Coulomb(T4) = Higgs(7s) (2.1)

Higgs(T4) = Coulomb(75)

Since then, many 3d mirror pairs have been found in the literature. For example, the 3d mirror

pair of the following theories are known:

e Quivers taking the form of affine Dynkin diagrams (sunshine quivers) whose Coulomb
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branches are G instantons on ALE spaces for classical group G [92].

e Quivers taking the form of finite Dynkin diagrams whose Coulomb branches are slices of

the affine Grassmanian. [93]

e T7(@) theories (linear quivers) for G = SU(n), SO(2n + 1), USp(2n), USp(2n) [62].

p

e 4d N =2 class S theories compactified on a circle (no quiver description in general) [94].

This list is by no means complete but it does cover quite a significant portion of known 3d
mirror pairs in the literature. In fact, we will greatly expand the known 3d mirror pairs in the

literature in section [9].

Why is it important?

The motivation to study 3d mirror symmetry is the same as the motivation to study any
other dualities in string theory that certain properties are much simpler to compute in the dual
theory than in the original. For example, a theory living in a strongly coupled region can be
studied by performing S-duality and looking at the weakly coupled region of the dual theory
where perturbative computation is applicable. Similarly, 3d mirror symmetry is historically
developed to study the Coulomb branches of 3d theories. This is because the Coulomb branch
is affected by quantum corrections and notoriously difficult to compute. On the other hand, the
Higgs branch in 3d is a classical object and can be straightforwardly computed as a hyperKéhler
quotient. Therefore, the Coulomb branch of theories can be studied by looking at the Higgs
branch of the 3d mirror. The process of finding said 3d mirror can be done efficiently using

brane systems as we will see in the next chapter.

2.2 Magnetic Quiver

The concept of magnetic quivers is a spiritual extension of the 3d mirror symmetry. Once
again, the key is the identification of moduli spaces, in particular a Higgs branch with a Coulomb
branch. The main difference is that rather than staying in 3d A = 4, it applies equally well to
4d N =2 ,5d N =1and 6d N = (1,0) theories. An issue immediately arises: whilst the Higgs
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branch in all these dimensions are parameterized by four real scalars and therefore hyperKahler,
the Coulomb branch is drastically different in different dimensions due to the different number
of real scalar fields in the vector multiplets. So the idea of a higher d mirror symmetry does

not seem to make sense!

. Indeed, we are only interested in the Higgs branch of theories in
d =4,5,6, not the Coulomb branch. So what do we compare the Higgs branches of these higher
dimensional theories to? These are matched with Coulomb branches of 3d N = 4 theories which

are also hyperKahler! The 3d theory is called the magnetic quiver of the corresponding higher

dimensional theory. The definition is as follow:

The magnetic quiver of a d dimensional gauge theory 74 with 8 supercharges is defined

as a 3d N = 4 gauge theory that satisfies:

Higgs?=340(T,) = Coulomb>®V=*(Magnetic Quiver) (2.2)

We then refer to T4 as the electric quiver. In some of the chapters when d = 4,5, 6, we also
refer to the electric quiver as ‘higher dimensional theory’ .

As discussed in the previous section, the Higgs branch is protected against quantum
corrections and the classical Higgs branch of a gauge theory is the same in d = 3,4, 5,6. However,
the Higgs branch can receive non-perturbative corrections in 5d from massless instantons and
6d from tensionless BPS strings. As a result, the Higgs branches of these theories are no longer
hyperKahler quotients and become difficult to study whenever some or all gauge couplings
are tuned to infinity. Although such corrections do not exist for the Higgs branch in 4d, the
issue there is that the majority of SCFTs do not have Lagrangian descriptions and also lacks
an effective description as a quiver gauge theory. Once again, this prevents us from using the
hyperKahler quotient as a means to study the Higgs branch.

Solving these difficulties is precisely the purpose of the magnetic quiver. As we shall see
in the next chapter, there exists brane constructions for the 5d and 6d gauge theories both at
the superconformal fixed point and away from it. From the brane construction, we extract a

3d N = 4 theory, which is our magnetic quiver, in a manner very similar to how one extracts

LAlthough some work are done on 4d extension of mirror symmetry [95, 95]. But we will not discuss those
further
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mirror quivers in 3d. For 4d theories, we can extract the magnetic quiver through a process
called folding of magnetic quivers of 5d theories.

In the last few years many techniques such as the monopole formula, and as we shall see
later on, quiver subtraction which were developed specifically to study the Coulomb branch
of 3d N' = 4 theories. Now, we can use all of these tools to study the Coulomb branch of
the magnetic quiver and hence indirectly study the Higgs branch of the corresponding higher

dimensional theory. This is the main purpose of the magnetic quiver.

Role of the monopole formula

In ths author’s opinion, it is justifiable to say that the monopole formula makes the 3d
Coulomb branch just as easy to study as the Higgs branch. If not, easier. Of course, one can
argue that the monopole formula only computes the Hilbert series which does not necessarily
uniquely identify the Coulomb branch moduli space. However, from experience, unless one
purposely construct a model where this mismatch happens, the Hilbert series we computed were
always be able to uniquely identify the Coulomb branch. This extends the Hilbert series from a
tool used to study moduli spaces as algebraic varieties to a way of testing newly conjectured 3d
mirror pairs or electric-magnetic quiver pairs by matching their Hilbert series. In the past, 3d
mirror pairs were conjectured based on counting the dimension of the moduli space, specifying
global symmetries and matching mass and FI parameters which are not accurate as there is
large degeneracy in theories sharing the same quantities. Computing the Hilbert series, even
perturbatively, on the other hand is a significantly more non-trivial check. For example, it is
extremely unlikely that two Taylor expanded Hilbert series HS;(¢), HS2(¢) that are the same to
order t?° describe two different moduli spaces.

The invention of magnetic quivers really propels the usefulness and efficiency of the
monopole formula beyond 3d N = 4 theories. With these new ideas, we were successful in
studying the Higgs branch of various theories in d = 4,5, 6 such as all known rank 1 4d SCFTs,
Argyres-Douglas theories, the entirety of 5d SQCD theories with fundamental hypers at UV
fixed points, 6d SCFTs corresponding to F theory constructions with —1 curves etc. In the

remainder of this thesis, we will first go through how to extract the magnetic quivers from brane
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set ups and then study the magnetic quivers of theories in various dimensions case by case.

Union of several hyperKahler cones

As we will see in Chapter 4 and 6, the Higgs branch of electric quivers can be the union of

several hyperKahler cones. For such a case, the definition is amended as follows:

The magnetic quiver of a d dimensional gauge theory 74 with 8 supercharges is defined

as a 3d N = 4 gauge theory that satisfies:

Higgs?=34%6(T,) = U Coulomb®®V=*(Magnetic Quiver); (2.3)

)

where each hyperKéhler cone in 74 corresponds to a single magnetic quiver.

70



Chapter 3

Brane Dynamics and Magnetic Quivers

Branes form an inseparable part of string theory. Some of the more common branes in the

literature include:
o IIA: F1,NS5, Dy246s
e IIB: F1, NS5, D1 3579, (p, q)-bbranes, [p, ¢|7-branes
e M-theory: M2, M5, M9, M-wave

where the red coloured branes will play major roles in this thesis. To study low dimensional
physics, one usually starts with ten or eleven-dimensional theories and perform specific com-
patifications. This, however, will not be the route we take. Instead, we will be studying gauge
theories by looking at brane systems with different branes ending on each other. Consider a
D3-D5-NS5 brane system. Our 3d N/ = 4 quiver gauge theories will live on the D3 branes
which are the dynamical objects. On the other hand, the D5 and NS5 branes are non-dynamical
objects whose positions will parameterize various parameters in the gauge theory such as mass
parameters, FI parameters and gauge couplings. The branes we look at are 1/2-BPS branes
and therefore break half the supersymmetry. However, our brane systems have branes ending
on each other in such a way that another half of the supersymmetry is broken, giving us eight

supercharges in the end (since we usually work in ITA or IIB).
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Orientifold planes

In addition to branes, we will also be including orientifold planes in our brane systems.
These are generalizations of orbifolds and are defined by a Zy orbifold along with an orientation
reversal on the strings in the transverse direction to the plane. The presence of orientifold planes
breaks half the supersymmetry. The way we add orientifold planes to our brane systems will
still preserve eight supercharges in the end. For d < 5 there exists four types of orientifolds:
Of. 0y, Of. O, [39].

O; , O, are planes with positive and negative tensions respectively. Orientifold planes are
non-dynamical objects and their presence means we can now have 1/2-D,, and 1/2-NS5 branes.
é}, évp— can be viewed as a bound state of O, O;“ and a 1/2-D,, brane stuck on it. From string
theory perspective, there is a tight connection between stacks of branes and the gauge group
of the gauge theory. For example, a stack of k£ D, branes gives a SU(k) SYM living on the
worldvolume of the D, branes. This can be understood as the different ways strings can be
stretched from one brane to another which is k2. This gives a U(k) gauge group but an overall
U(1) decouples in order to fix the centre of mass of the brane system, giving an SU(k) and k% — 1
degrees of freedom instead. Similarly, in the presence of orientifold planes, 2k stacks of 1/2-D,,
branes give rise to a gauge theory with a rank £ gauge group. The algebra of the gauge group
can be straightforwardly read off which depends on the type of orientifold plane!. A summary

of the four orientifold planes, their charges and respective algebra are given in Table 3.2.

Table 3.1: Table detailing the charges of the orientifold planes and their gauge algebra. The third
column looks at 2k 1/2 D), branes parallel to the orientifold planes whereas the fourth column looks at
2N 1/2 Dy, branes perpendicular to the orientifold planes.

Charge | Gauge algebra | Flavour algebra (perpendicular)
O, | -2 s0(2k) usp(2N)
O, | 3—22°] s0(2k+1) usp(2N)
Of | 2r° usp(2k) 50(2N)
Of | 2> usp(2k) 50(2N)

! Crucially, the global structure of the group cannot be read off directly. For example, one cannot distinguish
between SO and O gauge group from the brane system. Clarifying the difference is a point of active research
with several attempts made in the literature. See [52, 56, 72] in the context of quiver gauge theories.
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Our strategy
The use of brane systems to find magnetic quivers is as follows:

1. Given the electric quiver, draw the corresponding brane system that describes its Coulomb
branch. Such constructions are known in the literature for gauge theories in d = 3,4,5,6

with eight supercharges.

2. Since we are only interested in the Higgs branch of these theories, the next step is to
transition from the Coulomb branch phase to the Higgs branch phase by setting the masses

of the hypermultiplets connected to flavour nodes to be zero.

3. Reading off the magnetic quiver. The degrees of freedom in the Higgs branch phase can
be encoded as the degrees of freedom of the Coulomb branch of a 3d N’ = 4 magnetic

quiver. The details of this step will be the main focus of this chapter.

3.1 Three-dimension (D3-D5-NS5)

We will start with brane systems for 3d N = 4 quiver gauge theories. The branes that will
be involved are D3, D5 and NS5 branes in a Type IIB setting and the span of their spacetime
dimensions are given in Table 3.2. Our gauge theory will live on the worldvolume of the D3
branes which has the correct 2 + 1 spacetime dimension as the D3 branes are always suspended

between the five branes.

Table 3.2: Span of the spacetime dimensions of the different branes and orientifold planes.

1’0 l’l LL’2 TL’S .Z‘4 $5 .736 .137 SL’S 1’9
D3 | x| x | x X
D5 | x | X | x | X | x| X
NS5 | x | x | x X | X | X
03 | x| x| x X

Coulomb branch

Consider once again U(2) with 4 flavors. The quiver and the corresponding brane system is

as follows:
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SU(4)
Coulomb branch phase E
U(2)
o XXX X
ERE
D3
G

NS5 (3.1)

where the spacetime direction of the branes are indicated by the coordinate system. Vertical
lines are NS5 branes, crosses (meaning the branes extends into the page) are D5 branes and
horizontal lines are D3 branes. All the branes span z%%? directions so we did not include them
explicitly in the diagram. Let us explain how this brane system corresponds to the quiver.
The different supermultiplets in our gauge theory come from F1 strings stretching between the

different branes. In particular:

XX AKX
P

Vector multiplet

(3.2)

where the different ways the F1 string stretches between the same stack of D3 branes give rise
to four vector multiplets transforming under the adjoint representation of the U(2) gauge group.
When the two D3 branes coincide, the gauge symmetry is enhanced to U(2) and when separated
it breaks to U(1) x U(1). A crucial point here is that the D3 branes are suspended between the
NS5 branes and their positions along the NS5 branes parameterizes the VEV of the scalars in
the vector multiplet. This is why this brane system represents the Coulomb branch phase. As
the D3 branes are free to move along the NSbs, they contribute to dynamical degrees of freedom

and hence a gauge group.
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Hypermultiplets originate from F1 stretching between the D3 and D5 branes:

XXX

F1

Hypermultiplet (3.3)

The eight hypermultiplets transform under the bifundamental representation of [1, 0, 0]sua)[1]u(a).-
The D5 branes are infinitely more massive than the D3 branes and therefore are non-dynamical
objects and contribute as flavour groups. The flavour symmetry is SU(4) when all four D5 branes
coincide. Although not necessary, we can perform whats called a Hanany-Witten transition which
creates new D3 branes when the D5 branes pass through the NS5s. The moduli spaces always
remain the same before and after such transitions [37]. We often conduct such a manoeuvre as
it makes it easier for us to read off the 3d mirror. Pulling the D5 branes out of the NS5 branes

brings us to the following set up:

N N

XX XX ransition >%
HW t t

D3 brane creation

mhype{

(3.4)

In the centre we see freely moving D3 branes and on the sides we have non-dynamical (frozen)
D3 branes because they are suspended between a D5 and NS5 brane which extends in perpen-
dicular directions. As a result, we have hypers connecting a gauge group and a flavour group.
Furthermore, the vertical distance (in z™*?) from the D3 branes suspended between the NS5s
to the D3 branes suspended between the NS5 and D5 parameterizes the (bare) mass parameters
of the hypermultiplets m; where ¢ = 1,...,8. This is important later on when we move to the

Higgs branch.
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Higgs branch

Now that we have a brane system that describes the Coulomb branch of U(2) with 4 flavors,
we would like to move to the Higgs branch phase. The first step is to set the hypermultiplet
mass parameters m; to zero . This is achieved by putting them at the same height as the D3

branes suspended between the NS5s:

Higgs branch phase (3.5)

Despite the spacings in the drawing, this is how we will draw coincidence branes. In this
phase, the D3 branes can actually be suspended between the D5 branes which extends into the
page. The positions of D3 branes along D5 branes parameterizes the VEV of the scalars in the
hypermultiplet. Therefore their positions parameterizes the Higgs branch! To make this picture
more obvious, we can rotate the image at some angle and see the position of the D3 branes at a

generic position in the brane set up.

Higgs phase (3.6)

where the dotted lines are D5 and the vertical lines are NS5. Now that we brought the brane

system to the Higgs branch phase, we can proceed to find the 3d mirror pair.
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3.1.1 3d mirror

3d mirror symmetry was first demonstrated using brane systems in [37]. Starting with the

Higgs branch phase, we first take the S-dual:

using the fact that NS5 and D5 branes are exchanged under S-duality whereas D3 branes are
invariant. We use a circle and a cross on the NS5 branes just to differentiate the notation from
D5 branes but they both extends into the paper. The final step is to reorient the diagram to
get our familiar Coulomb branch phase brane set up, but this time for the Coulomb branch of

the 3d mirror:

3,4,5

789 NS5
(3.9)

From the Coulomb branch phase, we can straightforwardly read off the 3d mirror quiver and it

1S:

(3.9)
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which is the correct 3d mirror pair of U(2) with 4 flavors. The quickest and best way to check
that these two theories are indeed 3d mirror pairs is to compute the Coulomb branch and Higgs
branch Hilbert series on both sides and compare them. One important thing to note is that
after we arrived at the Higgs branch phase, the process of doing S-duality and changing the
orientation of the coordinates is a fairly trivial process. In the sense that from (3.5) we can
straightforwardly read off the 3d mirror. This is important later on because magnetic quivers
of higher dimensional theories are not obtained by doing any S-dualities but instead they are
directly read off from the Higgs branch phase.

For 3d N = 4 theories, the brane set up allows us to construct quivers with unitary gauge
groups but not special unitary gauge groups. This remains quite a mystery and its resolution is

discussed in chapter 6.

3.1.2 Imserting O3 planes

Now we would like to insert some O, orientifold planes. For 3d gauge theories we will be
using O3 planes which were studied in great detail in [40] and later on extended in [62]. One
important feature about O, planes is that they change from one form to the other when passing
through NS5 and D,, branes. For O3 planes, we give the details in Table 3.3 as well as our

convention in drawing them in brane systems [40].

Table 3.3: O3 planes as they passes through D5 and NS5 branes. S-dual of the O3 planes. We also
write down the convention for writing the O8 planes in our brane set up.

Passing NS5 | Passing D5 | S-dual Convention
03~ O3+ 03~ 03~ (No line)
03~ O3+ 03~ 03" —— (Solid line)
O3+ 03~ O3+ 03— | e (Dotted line)
O3+ 03~ 03~ o3+ | ----- (Dashed line)

Let’s turn to our canonical example of SU(2) = USp(2) gauge theory with 4 full hypers (or
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8 half-hypers). The brane set up for the Coulomb branch takes the following form:

03~ 03" 03~

Coulomb branch phase (3.10)

Remember that the O3 plane comes with a Zs orbifold action on the transverse direction to the
brane. Therefore, everything above the brane is reflected below it. As a result, the horizontal
line now represents a 1/2-D3 brane whereas the crosses represents 1/2-D5 brane. Eight 1/2-D5

branes then contributes to eight half-hypers or equivalently four full hypers as required.

Higgs branch phase

Following the same procedure as before we arrive at the following Higgs branch phase:

03— 03~ 03~ 03+ 03" 03+ 03~ 03~ 03~

Higgs branch phase

(3.11)
Here, we moved the eight 1/2-D5 branes towards the O3 plane where they recombine and then
splitted again into half branes moving parallel along the O3 plane. We then moved them out of
the NS5 branes resulting in D3 branes being created whilst being careful on how the O3 planes

changes type as they passes through the D5 branes. We didn’t move the last two 1/2-D5 branes

79



CHAPTER 3. BRANE DYNAMICS AND MAGNETIC QUIVERS

out because in this configuration it is easier to read off the 3d mirror after taking the S-dual.
Furthermore, the process of brane creation in the presence of O3 planes is non-trivial as one
needs to make sure the resulting configuration remains supersymmetric. This is done by making

sure the linking numbers are invariant and this is outlined in detail in [40].

3d mirror

Taking the 3d mirror and using the S-duals of O3 planes listed in Table 3.3, we arrive at

the following brane set up (where we also oriented the coordinates as before):

03+ 03~ 03+ 03+ 03— 03+ 0341 03~ 03+

Coulomb branch phase

(3.12)
Reading off the 3d mirror gives:
O(1) O(1)
@ @ @
SO(2) USp(2) SO(3) USp(2) SO(2) (3.13)

where the 1/2-D3 branes between the 1/2-D5 and 1/2-NS5 on the left /right side of the diagram
are stuck and hence contribute flavour degrees of freedom. As a reminder, the brane system can
only tell us the algebra of the gauge groups so here we computed the Coulomb branch Hilbert
series (which are sensitive to discrete factors such as O vs SO) in order to identify the global
structure of the gauge groups [96, 56]. We see that even though the strategy in finding the 3d
mirror is the same, orthosymplectic quivers whose brane systems require orientifold planes are

more difficult to deal with.
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3.2 Four-dimension (D4-D6-NS5)

Extending the brane systems to 4d N' = 2, one should expect D4 branes being the dynamical
object suspending between D6 branes and NS5 branes in a Type ITA setting. Such brane systems
were constructed in [97] and used to describe SQCD theories in 4d. The spacetime span of the

different branes are given in Table 3.4.

Table 3.4: Span of the spacetime dimensions of the different branes.

2l at (2?2 2t |2 | 2| 2" | 2] 2P
D4 | x | x| x| x X
D6 | X | X | X | X | x| %X X
NS5 | x | x | x | % X | %

One feature that arises when D4 branes ends on NS5 branes is that due to quantum effects
(i.e when the gauge coupling is non-zero), the NS5 branes are not fixed at a particular value
of 2%, In fact, the end point of the D4 brane behaves like a charge and creates a dimple that

bends the NS5 brane logarithmically according to:

25 = l,glog(|v — al) (3.14)

where v is the complex coordinate z® + iz and a is the coordinate of the D4 brane [97].
and g, are the string length and string coupling respectively. Such complications are not
surprising which capture the intricate nature of the Coulomb branch of 4d N = 2 theories.
Logarithmic bending makes it tricky to draw the brane system and go to the Higgs branch
phase. Furthermore, since we know that the Higgs branch of 4d N' = 2 gauge theories are the
same as that of a 3d N = 4 theory with the same gauge theoretic content, it is not necessary to
go through the trouble of constructing a D4-D6-NS5 system when we can get the same result
from a D3-D5-NS5 system. Ultimately, many SCEF'Ts in 4d do not have a Lagrangian description
which prevents us from drawing such a brane set up. For such cases, alternative descriptions
such as compatifications from 6d N = (2,0) theories in class S constructions or compatifications
from 5d N = 1 theories which do have brane set ups will be more helpful. Nevertheless, the

4d brane system does reveal an important feature: the logarithmic bending means an overall
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U(1) degree of freedom of the gauge group is frozen. Therefore, instead of getting U(n) gauge
groups in the 4d brane system, we will be getting only SU(n) gauge groups. We shall see that

this feature carries to Hd brane systems as well.

3.3 Five dimension (Brane webs)

In this thesis, much of the topics revolve around 5d N' = 1 gauge theories. These are
theories living on the worldvolume of 5-branes in Type IIB where both D5 and NS5 branes are
now dynamical objects. Previously, we saw when a D4 brane ends on an NS5 brane, the end
point acts like a charged object causing the NS5 brane to bend logarithmically. Now, we have a
D5 brane ending on an NS5 brane, which are equally massive, where the end point leads to a
linear Coulomb like interaction and the NS5 brane bends linearly. In fact, the bent brane can

be interpreted as a bound state denoted as a (1, 1) 5-brane:

NS5 (1,1) 5-brane

NS5

(3.15)

The position z° is given by:

R %(|m5 —al +2°) (3.16)

where a is the 2% location of the D5 brane ending from the left. This was first observed in
the seminal paper [16]. As a result, the Coulomb branch phase of the brane set up consists of
a web-like brane system which is denoted appropriately as brane webs. Brane web prove to
be an invaluable tool in studying 5d gauge theories. Using the convention that the complex
coupling (or axiodilaton) is 7 = i, we have the (1,1) 5-brane bending at an 45 degree angle,
consistent with the conventions used in [16] and the papers that followed. Continuing the idea

of constructing a D, — D,;2 — NS5 brane system, we will now include D7 branes. Under the
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SL(2,Z) S-duality, one can rotate the D7 brane to the bound state [p, ¢] 7-brane where a [0, 1]
7-brane is often called a NS7 brane. They are not really required when studying the Coulomb
branch of 5d theories but are absolutely essential when describing the Higgs branch. These
7-branes and their spacetime span are detailed in Table 3.5.

Table 3.5: Span of the spacetime dimensions of the different branes. A (p,q) 5-brane is a line of slope
tan(a) = qra/(p + qm1) in the x%5 plane where the axiodilaton is T = 11 + 2. In the following, the
brane webs are drawn with T =i so that tan(a) = q/p as consistent with the convention in [16].

.I’O I‘l .TQ ZES {[‘4 {ES IL'6 ZL’7 1'8 1}9
D5 X | X | X | X | X X
NS5 X | X | x| x| x| X
(p,q) b-brane | X | X | X | X | X | «
[p,q] T-brane | x | X | x | X | X X | x| x
05 X | X | X | x| x| X

Coulomb branch
Now, we look at our favourite example of SU(2) with 4 flavors. The brane system for the

Coulomb branch phase takes the following form:

[0, 1] 7-brane
Coulomb branch phase
P O O

(1.1) 5-brane

O—— — () [1,0] 7-brane

NS5

oO—— 0O

D5

7,8,9

(3.17)
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where the circles represents [p, ¢] 7-branes and extend into the paper. We choose this convention
rather than crosses or circle with crosses to distinguish from the NS5 and D5 branes in 3d
brane systems. They should also not be confused with gauge nodes?. The Coulomb branch is
parameterized by a single real scalar field the vector multiplet and has real dimension 1. In
3d case, we see that the position of D3 branes moving along the NS5 branes as parameterizing
the VEV of the scalar field and thus the Coulomb branch. Here, when we move the D5 branes
along the NS5 branes, it also locally deforms the web whilst keeping the asymptotic external
legs the same. Pictorially, we have:

[0, 1] 7-brane
Coulomb branch phase

% M [1,0] 7-brane
. - |
D5

(3.18)
The Coulomb branch degree of freedom is now the shrinking and embiggening of the polygon/faces
in the middle. When there are more gauge groups, the counting of the number of polygon /faces
determines the real Coulomb branch dimension. Just like the 4d case, the freezing of the external
leg means that an overall U(1) degree of freedom is frozen and the gauge group is SU(2) rather
than U(2). This means that using brane web constructions, we only know how to build 5d

electric quivers with special unitary gauge groups. Whats powerful about the brane web set up

20ne must admit that this choice of convention in the literature was a poor one.
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is that the relative distance between the branes also parameterizes many important parameters

in the theory:

Coulomb branch phase
P O O
O—r —O
o—o 0O

(3.19)

where ¢ is the VEV of the real scalar field that parameterizes the Coulomb branch, m; is the
bare mass of the instantons, g is the gauge coupling, m; is the bare mass of the hypers. Under
certain normalization, ¢ can also be thought of as the mass of the W-boson of the SQCD theory
obtained from stretching a fundamental string between the two D5 in the polygon. The gauge
instanton originates from fundamental strings stretched between the vertical NS5 branes. The
area of the polygon is the tension of the monopole string. These important information can be
used to directly compute the prepotential for the Coulomb branch of the theory, making the
process as easy as drawing the brane web and measuring lengths/areas. This idea is extended
to whats called the “complete prepotential” which includes not just the usual perturbative
effects in [75] but non-perturbative contributions (massless instantons) as well as shown in [83].
Furthermore, studying the Coulomb branch using brane webs can help in the classification of 5d

gauge theories with superconformal fixed points [76]. Even though there are a lot of interesting
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features in the Coulomb branch phase, we will return our attention to the Higgs branch.

3.3.1 Higgs branch

To enter the Higgs branch we once again set the masses of the hypers to be zero. Now, the

importance of the 7-branes comes in as the various 5-branes will now be suspended between the

7-branes which extends in z7%°:

Higgs branch phase [0, 1] 7-brane
O O
D7
O—=Q O—CO
D5
zd NS5
O O
2789
6
. (3.20)

The 5-branes (in this case they are just D5 and NS5 but in general it can be (p,q) 5-branes
stretching between the 7-branes) moving along the 7-branes gives VEV to the scalar fields in
the hypers, hence parameterizing the Higgs branch. Remember the Higgs branch in 5d N =1
is also parameterized by 4 real scalar fields and manifold is hyperKéhler just like in 3d N = 4.
Now that we see the similarities with 3d, one might wonder if other properties such as 3d mirror
symmetry can be applied here. Note that in the previous section on 3d theories, we mentioned
briefly that once we arrived at the Higgs branch phase we can straightforwardly read off the 3d
mirror. Of course, physically we still do an S-dual and reorientation but with practice, one can
skip that step on pen and paper. This convenience in calculation turns into something more
physical now that we are in 5d. First of all, it is not clear what will happen when one takes the
S-dual especially in the presence of all the bound states. The fact that the web diagram is now
2-dimensional also complicates matters and even if the result is the Coulomb branch of some 5d
gauge theory, it is not what we desire as the moduli space is not hyperKéahler and hence cant

be used to describe the Higgs branch of the original theory. Instead, what we do is something
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much simpler. We look at the Higgs branch phase and conjecture a 3d N' = 4 magnetic quiver
whose Coulomb branch is the same as the Higgs branch of the 5d theory. The first step of
determining the gauge groups of the magnetic quiver is easy as they can be read off from the
stacks of 5-branes. In our example, we have two separate D5 branes, a stack of two coincident
D5 branes and two separate NS5 branes which contributes U(1)? x U(2) x U(1)? gauge groups
respectively. However, in more complicated examples we will have generic (p, ¢) 5-branes and
one need to maximally divide the brane web into subwebs which are free to move along the
7-branes a single piece. Each such subweb corresponds to a U(1) degree of freedom whilst a
k identical subwebs stacked together will give U(k) degree of freedom. To obtain the edges
that connects the different gauge groups in the quiver, we have to compute something called
intersection number®. In 3d brane system with D3-D5-NS5 branes, the object that stretches
between the D-branes are F1 strings which give rise to hypermultiplets. Doing some S and T
dualities, one can envision that in the brane web set up, the objects are D3 branes which are
stretched between the various 5-branes. However, due to bound states of (p, ¢) 5-branes, there
can be multiple intersection points between 5-branes which requires one D3 brane stretched
between each point. The stable intersection between (p, ¢) and (p/, ¢') 5-branes is given by the

absolute value of the determinant:

Stab Intersection = Abs P (3.21)

On top of what was mentioned, when two subwebs intersect, there can be multiple stable
intersection points, all of which are needed to be summed up. The resulting value is the
multiplicity of edges between the two gauge groups. So far we have only seem edges with
multiplicity 1, hence they are given by a single line. When 7-branes are present, the edge

multiplicity formula is amended so that two subwebs ending on the same 7-brane on opposite

3The idea originates from tropical geometry. By viewing the subwebs as tropical curves, the stable intersection
between different tropical curves is then our intersection number.
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(same) sides contributes +1(—1) to the multiplicity:
Edge Multiplicity = Stab Intersection + Z X — Z Y (3.22)

where X; and Y; are the combinations of two 5-branes in different subwebs ending on a 7-brane
on opposite and same side respectively. Applying this rule to our current example, the stable
intersection between the single D5 and stack of two D5 branes on the left side of the brane
system is 0 but they end on the D7 on opposite side and thus have edge multiplicity 1. Similarly
for the stack of two D5s and the single D5 on the right side. The stable intersection between
the NS5 and stack of two Dbs is 1 as well, hence there is an edge with multiplicity 1 connecting

them. Overall, the magnetic quiver is:

O O U@ ud)

Magnetic Quiver
—o e

O—— O—CO

O O
(3.23)
where we color coded the different subwebs on the left and their corresponding gauge groups on
the right (the color is just to distinguish the nodes, all gauge groups here are unitary). The
resulting magnetic quiver is also known as the affine Dynkin quiver of D, whose Coulomb branch
is the expected one-SO(8) instanton moduli space (or equivalently, the minimal nilpotent orbit

50(8)

closure O, ). The algorithm of reading off the magnetic quivers from 5d brane webs discussed

above is given in [25] where more examples and detailed explanations can be found.
Commented on unframed/flavorless unitary magnetic quivers

Here, we make a comment on the magnetic quiver we found. Contrary to previous examples,
this unitary quiver (quiver with only unitary gauge groups) does not have any explicit flavor

group. If we were to compute the Coulomb branch Hilbert series of this quiver as it is, we will
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find that the result diverges. This is because, a quiver with only unitary gauge groups does not
have its center of mass fixed, resulting in infinite configurations with the same A(m). This can
be seen from the Higgs branch phase of the brane web where the center of mass of the subwebs
moving along the 7-branes are not fixed. In the previous set ups of D3-D5-NS5 systems, the
center masses are fixed in the Higgs branch phase due to the infinitely more massive NS5 branes
which acts as flavor groups in the 3d mirror quiver. In the 5d brane system, we do not have
such analogue (it would correspond to the appearance of 7-branes that are not connected to any
of the 5-branes). To fix this U(1) center of mass in the magnetic quiver, all we have to do is
quotient out a diagonal U(1) subgroup. The simplest way to do so is just turn one of the U(1)

gauge group into a flavor group:

O S O Quotient by U (12diag O S O
U() U@ u@) U(l) U2 U@

(3.24)
This can be done in any of the U(1) gauge groups®. It can also be done on the U(2), which we
label as a ‘squircle’ and will be useful later on when dealing with unframed/flavorless magnetic

quivers where there are no U(1) gauge groups.

3.3.2 Infinite coupling limit

So far we study the low energy effective theory at some finite gauge coupling. This can be
seen from the brane webs where there is a finite horizontal distance between the NSbs. This
distance is identified with the mass of the instantons and inversly proportional to the gauge

coupling squared. Thus, to go to the infinite coupling limit (UV superconformal fixed point),

4This seem trivial in this example due to the symmetry of the quiver. However, it works even when ungauging
different U(1) gauge groups results in inequivalent quivers and the Coulomb branch will still be the same. One
can even consider an equivalence class of such quivers. However, other quantities such as one-form symmetries
can vary depending on which gauge node the U(1) is ungauged [4]
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we need to collide the two NS5 branes:

Higgs branch phase

O O -
g — o0
O—=C o—0 —— O0—=Q O—=0O
O O O
—
TTL()—S%

(3.25)
In this limit, the instantons become massless and contribute to the Higgs branch. The global
symmetry is now enhanced from SO(8) to SO(10). The magnetic quiver obtained from this new

configuration is:

U

—~

1) U

—~

1)

O
O—0O
O—O
O

U(l) U@2) U

—~
[\)
N~—
—~
[\
~—

u@) (3.26)

This 3d N' = 4 magnetic quiver is also known as the affine Dynkin quiver of D5 and whose
Coulomb branch is the one-SO(10) instanton moduli space (or equivalently the minimal nilpotent
orbit closure 650(10))

min

. This is consistent with the Higgs branch prediction in [74] and we fulfilled

the magnetic quiver definition that:
] d7 oo
H1ggngi2)_[4] = Coulomb®*(3.26) (3.27)

Chern-Simons levels

The classical Higgs branches are not affected by Chern-Simons (CS) level of the gauge
group, which we show explicitly in [11]. However, at infinite coupling limit, the CS level is

important and need to be specified, in particular not all CS levels give UV fixed point. For
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our case of SU(2) with 4 flavors, the CS levels is k = 0. For general SQCD theories with only
fundamental matter fields and have non-trival UV fixed points, the theories and their CS levels
and corresponding magnetic quivers are all detailed in [25]. When additional matterfields such
as those transforming in the anti-symmetric representation of the gauge group are included,

their magnetic quivers are given in [98].

Comment on magnetic quiver and compatification

One common question about the magnetic quiver program is whether the procedure is
the same as doing compatification of the 5d theory to 3d and then finding the 3d mirror. The
answer is no. The reasoning is that the magnetic quiver is obtained directly from the Higgs
branch phase of the higher dimensional theory and compatification is not involved in any of the
steps. Furthermore, we make no comment on whether the Coulomb branch of the 5d theory
compactified to 3d will be the same as the Higgs branch of the magnetic quiver in order to
satisfy the 3d mirror relation. There are examples, which we shall see later on, that this is
indeed true. But in general, we will not make such a statement nor will we explicitly perform
any compatification to 3d. Another point is that the Higgs branch of many higher dimensional
theories at superconformal fixed points is the union of several hyperKahler cones. On the
otherhand, the Coulomb branch of any 3d N' = 4 gauge theory is conjectured to be only a single
hyperKéhler cone [99]. So it is not clear how to make a one-to-one correspondence in the case

of 3d mirror symmetry.

Comment on finite coupling limit

In the previous section, we are actually studing the classical Higgs branch rather than the
Higgs branch at finite gauge coupling. The crucial difference is the existence of a gaugino bilinear
(this is a glueball superfield which is a chiral superfield biliniear in the gaugino superfield) [100].
This contributes a discrete sector Zs (fat points in the language of algebraic geometry) to the
Higgs branch. Unfortunately, such phenomenons are not sensitive from the brane set up but
do affect the chiral ring by adding new singlet generator S that squares to zero. For example,

the classical Higgs branch of SU(2) with N; flavors is given by the one-SO(2Ny) instanton
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moduli space. But at finite gauge coupling, the inclusion of the gaugino bilinear makes the
moduli space one-SO(2Ny) instanton U Z,. In terms of the Hilbert series, the difference is just
HSgnite = HSclassical + t2. This phenomenon is studied in early works such as [101] and in the
current context in [100]. For the purpose of the thesis, we ignore the contribution of the gaugino
bilinear when discussing the Higgs branch at finite coupling so the object we are really talking

about is the classical Higgs branch.

3.3.3 Imserting O5 planes

The results from this subsection comes from our paper [3]. After obtaining the magnetic
quivers from brane webs in the previous section, the next question is what happens when we add
orientifold planes. We wish to explore 5d theories that give rise to orthosymplectic magnetic
quivers, therefore the orientifold planes to add are O5 planes. The spacetime span of the O5
planes are detailed in Table 3.5. Like the addition of O3 planes in 3d, the addition of O5 planes
come with many subtleties. Using the same example but exploting the fact that SU(2) = Sp(1),

we look at the brane web of Sp(1) with 8 half-hypers:

(3.28)

where all the 5-branes and 7-branes are now 1/2 5-branes and 1/2 7-branes due to the presence
of the oreintifold planes. We use the same convention for drawing O5 planes as in Table 3.3.
The bending of branes in 5d brane webs is necessary due to charge conservation. Since O)

planes also carry charges as shown in Table 3.2, their presence will casuse the branes to bend
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accordingly as well.

Monodromy lines

Whenever there are 7-branes present, there are also monodromy cuts generated by them.
We indicate this as red dotted lines coming out of the 7-branes. For a [p,q] 7-brane, the
associated monodromy matrix is:

l—pg p°
My g = (3.29)

—¢* 1+pg

The importance of these monodromy cuts occurs when 5-branes passes through them. Given a

(a, b, )5-brane, the action of the monodromy matrix changes it to a (a’,’) 5-brane:

a 1—pg p? a
- (3.30)

4 —¢> 14pg b

This can happen often as we go from finite coupling to infinite coupling in the Higgs phase.
Its presence in the Coulomb branch phase also generate interesting phenomenons such as tha
Tao diagrams in [18] that describes 5d theories with 6d UV fixed points. In the example of
the previous section, we did not label the monodromy cuts as they do not interfere with our
results, although for more complicated 5d SQCD theories, one needs to pay attention to their
presence. For the monodromy cuts originating from the 7-branes, we always have the freedom to
rotate them in any direction we want. Normally, they are rotated to not intersect with 5-branes
or other monodromy cuts. For 5d theories with O5 planes, another complication arises. In
[102] it was argued on the grounds of charge conservation that an 05 plane must always be
accompanied by an half-monodromy line, which we indicate by red dotted lines along the O5

planes. For more details on this feature we refer readers to [102, 103, 3]
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Higgs branch phase

Now, we enter the Higgs phase. As we set the masses of the hypers to zero, various 1/2
5-branes and their reflections across the O5 plane will now coincide and then split along the
orientifold planes. This procedure is the same as for O3 planes. Taking care of the monodromy
cuts, the various possible splitting for the different types of O5 planes are given in [104]. The

resulting Higgs branch brane set up gives:

where we labeled the multiplicity of the 1/2 D5 branes. To make the appearance of the magnetic
quiver clearer, we move the two bended (1, 1)5-branes outwards across the 7-branes until they

reach a configuration where they are connected to D7 branes and are no longer dynamical:

[1,—1] [1,1]

The non-dynamical (1,1) 5-branes on the left and right will now each contribute a half-

hypermultiplet to the magnetic quiver. Following the same procedure as above such as computing
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the stable intersection number, we arrive at the following orthosymplectic magnetic quiver:

SO(2) USp(2) SO(3) USp(2) SO(2) (3.33)

which is the same as in (3.13). This is a consistency check as the classical Higgs branch should

be the same in 3d and in 5d.

Infinite coupling limit

Once again, we now go towards the infinite coupling limit. The gauge coupling is given by

the horizontal distance between the two (1,1) 5-branes, pushing them together gives us:

1,-1 1]
: 11 2 11 :
< @ == (3.34)

M@/\)

The ‘cross’ in the middle now form a subweb that is free to move along the 7-branes. Most of

)

the brane set up is easy to identify with gauge nodes in the magnetic quiver. However, the ‘cross
in the middle requires some conjecturing. We know the algebra of the gauge group associated
with branes stretching parallel and perpendicular of the orientifold plane as shown in Table 3.2.
However, here we have branes that are at a 45 degree angle to the orientifold! Through some
trials and errors, we were able to identify and further conjecture that 5-branes that are neither

parallel nor perpendicular but at an angle to the O5 plane will contribute to a U(1) gauge node
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in the magnetic quiver. The resulting magnetic quiver is then:

(3.35)

This unitary-orthosymplectic magnetic quiver made its first appearence in our paper [3] and it
turns out they occur ubiquitously as magnetic quivers of 5d SCFTs as shown in [3] as well as

subsequent works [105, 106, 8, 5, 107].

Unitary quivers and orthosymplectic counterparts

Now we have the magnetic quivers at finite coupling both as unitary quiver (3.23) and
orthosymplectic quiver (3.33). We also have magnetic quivers at infinite coupling both as unitary
quiver (3.26) and unitary-orthosymplectic quiver (3.35). One may wonder just how similar these
two theories are. It turns out, they not only have the same Coulomb branches but the same
Higgs branches as well. Furthermore, the superconformal index (which contains field theoretic
information beyond moduli spaces) and other properties are computed as well and shown to be
the same [4]. These provide evidences that these theories might be dual to each other. We will

explore this in more detail in chapter 4.

3.4 Six dimension (D6-D8-NS5)

For completeness, let us discuss 6d gauge theories that lives on the D6 branes of a D6-DS8-
NS5 brane system in ITA. However, we will rarely look at these theories in this thesis. The
spacetime span of the branes is given Table 3.6.

Higgs and Tensor branch

Note that in Table 3.6 all the spacetime span of the NS5 brane is already included in the

span of the D6 branes. This means there is no sense for the D6 branes to ‘move along’ the NS5
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Table 3.6: Span of the spacetime dimensions of the different branes.

20t [ 2?3t 2?2t 2" | 2] 2P
D6 | x | X | x | X | x| X
NS5 | x | x | x| x| X
06 | x | X | X | x| x
D8 | x | x| X | x| X X | X | x

branes, hence showing there is no Coulomb branch as expected. There is, however, a tensor
branch. The scalar in the tensor multiplet is parameterized by a scalar field that is inversly
proportional to the gauge coupling. The gauge coupling is again the horizontal distance between
the two NS5 branes and hence when the spacing becomes zero, we reach the origin of the tensor
branch. The scalar field VEV is also proportional to the tension of the BPS string, hence at
the origin they become tensionless and new massless states can arise. When there are multiple
gauge groups, one can study the Higgs branch at different phases of the tensor branch where
some or all of the BPS string becomes tensionless. Such investigation is the focus of [108, 109].

The steps in extracting unitary magnetic quivers for 6d theories are given in [108].

SU(2) with 4 flavors

Let us construct the theory of SU(2) with 4 flavors:

D8

D6
(<) (X

NS5

(3.36)
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where now the horizontal D6 brane and NS5 branes are the dynamical objects. To enter the

Higgs branch, we break the D6 branes along the D8 branes and lift the NS5 branes out:

Higgs branch phase (infinite coupling) Magnetic quiver
NS5
Q @ | QP
= O\/O
O O O
u@) U@ ud)

(3.37)

The D6 branes moving along the D8 branes (vertical) thus parametrizes the Higgs branch of
the 6d theory. When reading off the magnetic quiver, we treat both D6 and NS5 branes as

dynamical objects and we get the expected affine D, Dynkin quiver.

Going to infinite gauge coupling

To go to the infinite coupling limit, we once again pull the two NS5 branes together.

Higgs branch phase (infinite coupling) Magnetic quiver

NS5
?U@)

O O
Ul) U@ U

D8

&)
D6 )

(3.38)

The resulting NS5 branes are on top of each other which we treate as a U(2) with matter fields
in the adjoint representation (loop) in the magnetic quiver [88]. The coincident NS5 branes
means there is a gauging of the Z, discrete symmetry of the two NS5 when they are separate
[86]. As a result of the Zy projection, the Higgs branch moduli space actually shrinks from
0" to O°) which is the next to minimal nilpotent orbit of so(7). For this case, there are

min n.min

no new tensionless strings that contributes to enhancing the Higgs branch. The Higgs branch
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dimension remains the same.

3.4.1 OG6 planes

The theory of SU(2) with 4 flavors in the F-theory construction is a theory on —2 self-
intersection curves. Such construction comes from D6-D8-NS5 systems without orientifolds. To
include orientifolds, we need to look at theories on —1 self-intersection curves. The steps in
extracting orthosymplectic magnetic quivers for 6d theories are given in [109]. The simplest
theory that is non-trivial in the finite coupling limit is Sp(1) with 10 flavors (or 20 half-hypers).

The brane system takes the following form:

5 1 NS5 5
<><> ........ (><)
D6
06~ oli 06~ (339)

We also use the same convention for the O6 planes as before and detailed in Table 3.3. The z
label means there are x full D6 branes or equivalently 2z 1/2 D6 branes due to the presence of
the orientifold plane. The D6 branes on the two sides are semi-infinite and hence can be viewed
as flavors, giving us 20 half-hypers in total. We didn’t add the D8 branes in this diagram to
avoid cluttering the brane set up.

In order to enter the Higgs branch phase, we need to attach all the 20 semi-infinite 1/2
D6 branes with 20 1/2 D8 branes (analagous to the 7-branes in 5d system and 5-branes in 3d

system). After setting the masses of the hypers to be zero, we obtain the following brane system:

D8

(3.40)
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The magnetic quiver reads:

0(1) O(1)

o o O e O O 6 ¢ o ¢ ¢ o o
SO(2) USp(2) SO(3) USp(2) SO(3) USp(2) SO(3) USp(2) SO(3) USp(2) SO(3) USp(2) SO(3) USp(2) SO(3) USp(2) SO(2)

(3.41)
Since the gauge coupling is finite, we are dealing with the classical Higgs branch and therefore
the magnetic quiver is the same for the Higgs branch of Sp(1) with 10 flavors in d = 3,4, 5, 6.
The moduli space is the one-SO(20) instanton moduli space. The 1/2 NS5 branes at the two ends
are connected to the D8 branes through a D6 brane and hence frozen in place and contribute
as flavor charges rather than dynamical degrees of freedom. The algebra of the gauge groups
are identified by the brane system and the global structure is obtained through explicit checks
using the Coulomb branch Hilbert series. The global structure of the flavor group of O(1) is
written because SO(1) is trivial, and not because our computation are sensitive to the global

structure of the flavour groups.

Infinite coupling

Now we go to the infinite coupling limit by once again coinciding the NS5 branes. The

NS5 branes stuck on the O6 plane will coincide and move out of the orientifold:

0y

0 1 1 2 2 3 3 4 4 5 4 4 3 3 2 2 1 1 0

-

(3.42)
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The magnetic quiver will now have gauge groups of higher ranks since pulling the NS5 branes

inwards causes D6 brane creation:

(3.43)
The Coulomb branch of this magnetic quiver does not have a simple analogue in the maths

literature.
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Chapter 4

Five dimensional SUSY gauge theories

In this chapter we delve into 5d N' = 1 gauge theories, with the focus on SQCD theories
(i.e a single gauge group G with fundamental flavors). In particular, we look at G = SU(NV,)
and G = Sp(N,).

4.1 SU(N.) SQCD Quivers

Based on our paper [1]

We start with 5d N' = 1 SQCD theories with G = SU(N,), N; flavors and £ (Chern-Simons)
levels. We will call this 5d quiver gauge theory the electric quiver. Our focus will be on the
Higgs branch of the electric quiver at infinite gauge coupling H2? which is often the union of
several hyperKéhler cones. Each cone has the description as the Coulomb branch of a 3d N = 4
magnetic quiver. We can equivalently view the cone as the moduli space of dressed monopole
operators [25]. Therefore, to analyse H, of the electric quiver, we compute the Coulomb branch
Hilbert series (or equivalently, enumerate dressed monopole operators and grade them by their

quantum numbers) of the corresponding magnetic quivers using the monopole formula.

Chern-Simons level

A brief comment on the Chern-Simons level. The prepotential that defines the 5d Coulomb
branch contains a classical Chern-Simons level k. Due to gauge invariance, the Chern-Simons

level is quantized to be integer or half-integer and as shown in [75, 76]. The Coulomb branch
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therefore differs depending on the Chern-Simons level and only some of them have UV fixed
points as classified in [76] for SQCD theories of classical gauge group. Therefore, for our
SQCD theories, we require three parameters (N., Ny, k) to define the theory. The classical
Chern-Simons level is associated with third order Casimir factors in the prepotential which is
absent for G = Sp(NN.), so there is no need to specify « in those cases.

The magnetic quivers were already obtained in [25]. The new results we present here are
the explicit derivations of the refined Coulomb branch Hilbert series (in the form of a highest
weight generating functions (HWG) for these theories. The computations are based on an
unpublished work [1] although some of the results were subsequently published in our other
works [11, 3].

It has been conjectured in [110] that 5d NV = 1 SQCD theories obeying the bound
|k| < N, — % + 2 have UV fix points for generic N.. In [25], this bound is further divided into

four regions’:

1) 8| <N, — ¥

2) |nl = N.— ¢
3) 6| =N, — 2 11
4) |k| = N, — N 42
In this section, we will focus on the corresponding magnetic quivers and their HWG in

regions 1,2,3 and 4.

General procedure

We are interested in computing the HWG for these Coulomb branches because they are a
simple generating function that captures the exact Coulomb branch Hilbert series refined by

representations of the global symmetry group. Furthermore, a given family of theories often

'For small N, there can be more regions such as |x| = N, — % + 3 and N, = 3 [76, 77]. The magnetic
quivers in this region are well known and the Coulomb branch are two Ey, instanton moduli spaces as explained
in [25).
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have very similar HWGs that can be generalized into one general expression. The steps in

finding the HWGs are as follows:

1. Compute the refined Hilbert series HS(z;,¢) using the monopole formula. The refinement
is achieved by including fugacities z; with ¢ = 1,...,r which are simple root fugacities of

the global symmetry group Gz of rank r.

2. Use a fugacity map to map the simple root fugacities z; to fundamental weight fugacities
y;. The latter can then be readily converted to Dynkin labels [...]s, and then to highest
weight fugacities p;. The computations done so far will likely be perturbative. Rewrite

the perturbative Hilbert series using p; to obtain HWGpe (144, ).

3. Take the plethystic logarithm (PL) of HWGyer(p;,t). If the PL terminates, take the
plethystic exponential (PE) of the result. This will be the HWGeyaet (144, ) in a rational
form which contains all the information of the refined Hilbert series and hence the chiral

ring.

Edge multiplicity

One of the novelties of 5d N'= 1 SQCD theories is that they are defined by three terms:
N¢, N. and k. Therefore, it is natural that some of the families of magnetic quivers require
three parameters to define them as well. It turns out a new feature of these magnetic quivers is
edge multiplicities®. These are multiplicities on the edge that connects the gauge nodes. For

example:
o]

Oo———0O
n m (4.1)

where two gauges nodes U(n) and U(m) are connected with an edge of multiplicity v (representing
vnm hypermultiplets transforming in the bifundamental representation of the neighbouring
gauge groups).

In terms of Coulomb branch Hilbert series, edge multiplicities only change the conformal

dimension A in the monopole formula. Furthermore, since the multiplicities are on the edges,

2We differentiate this with the term “bonds” which we usually use to refer to non-simply laced quiver diagrams
with a direction on it, see [65].
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only contributions from the hypermultiplets Apypers are changed. For the quiver in (4.1), Apypers

is given as:

U n m
Anypers(r, M) = +§ Z Z [ —m; (4.2)
v

In the following sections, we first look at regions 1, 2 and 3 where the magnetic quivers all
have SU global symmetries. We categorize the new® magnetic quivers with multiplicities into
two families: Trapezium family and Pyramid family due to their resemblance. In region 4, the
global symmetry is SO and the new magnetic quivers with multiplicities can be categorized
into two new families: Truck family and Kite family.

The remaining magnetic quivers are well known. Their Coulomb branch are either closures
of nilpotent orbits, product of closures of nilpotent orbits and C?/Z, or those already computed

in [111].

4.1.1 Trapezium Family

The Trapezium family in Figure 4.1 is parameterized by three parameters and covers all
the new magnetic quivers with edge multiplicities found in region 1 and 3.

This family of quivers is parameterized by v which is the multiplicity of edges between the
two unbalanced U(1) nodes (cyan), n which is the rank of the repeated unitary gauge groups in
the middle and Ny — 1 which is the length of the base of the quiver. In regions 1 and 3, these
three parameters are all functions of N., Ny and k.

Let us compute the refined Hilbert series HS(z;, t) where z; are simple root fugacities of Gp.
We can determine G by looking at the subsets of balanced* nodes corresponding to a Dynkin
diagram. The first step is to decouple an overall U(1) gauge group® which (for simplicity) we

choose to be one of the two unbalanced U(1) gauge groups connected by v edges. This gives

3New in the sense that they first appear in [25]
4See section 1.2 for a reminder on the definition of balanced and unbalanced.

5For a quiver with only unitary gauge nodes, we have an infinite number of solutions to the conformal
dimension A = 0 hence the Hilbert series will be divergent. Decoupling an overall U(1) is equivalent to ‘fixing a
centre of mass’ in the perspective of brane configurations.
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N;=1

Figure 4.1: Trapezium family of quivers. The base of the quiver have Ny — 1 balanced gauge nodes.
There are two unbalanced U(1) gauge node (cyan) with v edges between them. The global symmetry is
SU(Ny) x U(1).

us the resulting quiver in Figure 4.2. Here, we used the fact that v edges to a U(1) flavour
node is equivalent to a single edge to a U(v) flavour node. As a result, the Ny — 1 balanced
unitary gauge groups correspond to the Dynkin diagram of Ay, ;. The remaining U(1), which
is unbalanced, just contributes U(1) to the global symmetry. Hence, the global symmetry is
SU(Ny) x U(1).5

Now that we have the global symmetry group, we need to map the simple root fugacities
of the global symmetry group to the fundamental weight fugacities so that we can express the
latter in terms of Dynkin labels. We assign the simple root fugacities z1, 29, ..., 2n, -1 to the
gauge nodes that make up the Dynkin diagram of Ay, ;. Our ordering starts by assigning 2
to the left most node all the way to zy, 1 at the rightmost node. We then assign h to be the
fugacity of U(1). We assign y1, %2, ..., yn,;—1 to be the fundamental weight fugacities for SU(Ny)
and ¢ for U(1). The fugacity mapping is a non-trivial task as we cannot simply apply the
Cartan matrix due to the extra U(1) factor in the global symmetry. Using the Cartan matrix
and ensuring the fugacities form characters of irreducible representations of the global symmetry

group, we find the following fugacity map:

2 2

YN;—1
k1= &7 Zg = ﬁa R ! , h==. (4'3>
Y2 Y1ys YNy—2 q

Once we obtained the Taylor expanded Hilbert series in terms of fundamental weight

fugacities, it is a trivial task to repackage them in terms of highest weight fugacities y; for

6Alternatively, we can look at the balanced /unbalanced gauge nodes in the quiver before ungauging and in
the end take out a U(1) factor to remove the centre of mass giving: (SU(Ny) x U(1) x U(1))/U(1). Which is
equivalent to the expression above.
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O—Q—--o- O m OO —O0—0
1 2 n—1 n n n n-—1 2 1

NyT

Figure 4.2: Trapezium family of quivers but with an overall U(1) ungauged. There is one unbalanced
U(1) gauge node (cyan).

SU(Ny) and ¢ for U(1). At each order of ¢, the coefficients are now expressed as irreducible
representations of G in terms of highest weight fugacities.

In order to get the generating function, we need to compute the plethystic logarithm (PL)
of the above Taylor series. Note, this is the PL of the HWG, and not of the Hilbert series. If
the PL terminates, we simply translate the result to a HWG where the positive terms in the
PL contributes to the denominator and negative terms to the numerator of the HWG. All the
quiver families in this paper have terminating PLs for the HWG?. We list several quivers in this
family along with their HWG in Appendix B.

Using these results, we find the general form of the HWG for the Trapezium quiver family

to be:

1- ,un:ufon t2(n+n)

(1= 2)(1 = ung £7)(1 = L gmee)
q i

HWG (1, 4,1) = (4.4)

1(1 — Hifbnp—il*)

If we start from the HWG, it is trivial to obtain the unrefined Hilbert series in a Taylor
expanded form. However, finding the exact unrefined Hilbert series is highly non-trivial,
especially when G is large. Therefore, for several members of the Trapezium quiver family, we
compute the exact unrefined Hilbert series in Table Tables B.1 to B.17 of Appendix B.

Even though the unrefined Hilbert series contains less information than the refined Hilbert

series, it is still a very useful object. Usually, by showing that the exact (as a rational function)

"This is the same analysis for when dealing with quivers whose moduli space is a complete intersection (i.e
the PL of the Hilbert series terminates). For PL of HWG, we can think of this as the HWG wvariety having a
complete intersection.
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unrefined Coulomb branch Hilbert series of two quivers are the same is enough to show they
have the same Coulomb branch. If two Coulomb branches differ by a discrete group, we can also
divide the volumes of the two Coulomb branches (defined to be the residues of the unrefined

Hilbert series at the pole ¢t = 1) to obtain the order of the discrete group.

4.1.2 Pyramid Quiver Family

The next family of quivers with multiplicities is the Pyramid quiver family as shown in
Figure 4.3. Just like the Trapezium family, this quiver family is parameterized by Ny, n and v.
Magnetic quivers with multiplicities found in region 2 are all members of this family.

Before looking at the global symmetry group, we once again ungauge one of the two
unbalanced U(1) gauge groups (cyan) giving Figure 4.4. The Ny — 1 balanced unitary gauge
nodes on the base of the pyramid quiver form a balanced subset which resembles the Dynkin
diagram of Ay, ;. Therefore, a subgroup of the global symmetry group is SU(Ny). Unlike the
Trapezium quivers, the Pyramid quivers also have a balanced U(1) gauge node on top of the
pyramid. This corresponds to the Dynkin diagram of A, and therefore contributes a SU(2)
factor to the global symmetry. Upon ungauging, the final contribution to the global symmetry
group is the U(1) unbalanced gauge node (cyan) which contributes a U(1) global symmetry.
Therefore, the overall global symmetry is G = SU(Ny) x SU(2) x U(1).

As before, the next step is to compute the refined Hilbert series. We assigned the fugacities
21, %2, .-, N1 to the Ny — 1 balanced gauge nodes at the base of the pyramid (starting from
the left most node to the right most node), h for the fugacity of unbalanced U(1) gauge node
(cyan) and w for the balanced U(1) gauge node on top of the pyramid. These are the simple root
fugacities for Gr. We need to find the fugacity map to yi, s, ..., yn, -1, ¥, ¢, the fundamental
weight fugacities of Gy where y; are the fugacities for SU(Ny), x for SU(2) and ¢ for U(1).

The fugacity map is given by:

2 2 y27
o, % Nl =g =1 (4.5)

21 ) 2 — ) ceny ZNf—l = )
Y2 Y1Ys YN;—2 TYN;—1

Once we get the refined Hilbert series (in a Taylor expanded form) in terms of fundamental
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R S
n

N;<1

Figure 4.3: Pyramid quiver family. There are Ny —1 balanced gauge nodes at the base of the pyramid.
There are v edges between the two unbalanced U(1) gauge nodes (cyan) in the middle. The overall
global symmetry is SU(Ny) x SU(2) x U(1).

1 1
+—-o0
1 0
T—=01
O—O—------- O O—— O -O0—0O
n—1 n n n 9 1
Ny=1

Figure 4.4: Pyramid family of quivers with an overall U(1) ungauged. There is one unbalanced U(1)
gauge node (cyan).

weight fugacities of G, we can obtain the HWG by computing its PL. The resulting HWG for

the Pyramid quiver family is:

|V TTI )

(1= 2)(1 = v22)(1 = vpng tH7+)(1 -

HWG(M’L’ v, q, t) = V,Ufon tl—‘rn-‘rb)

=1

(1 — pipinv,—it*)
(4.6)

n

As with the Trapezium family, we listed several members of the Pyramid quiver family
along with their HWG, unrefined Hilbert series in the appendix.
With the Trapezium quiver family and Pyramid quiver family, we can now write down the

HWG for all the magnetic quivers in region 1, 2 and 3.

4.1.3 Kite family

In region 4, the magnetic quivers have balanced subset of nodes with a D-Type Dynkin

diagram instead of A-type. The first new family of quivers is the Kite family shown in Figure
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4.5.

When dealing with the Trapezium and Pyramid family of quivers we defined the ‘length’
of the quiver as the number of nodes at its base. This is because their base forms a Dynkin
diagram for Ay, ;. For the Kite (and later on the Truck) family of quivers, we look for subset
of nodes that form a D-type Dynkin diagram which is non-linear. Therefore, we will not define
the notion of a ‘length’ in these two families.

The quiver family is determined by the parameters n and v. To determine the global
symmetry, and subsequently compute the Hilbert series, we ungauge one of the unbalanced U(1)
gauge nodes (cyan) located at the ‘top’ of the kite. The resulting quiver is in Figure 4.6. Now,
we see clearly the Dynkin diagram of Dy, and an unbalanced U(1) gauge node attached to one
of its two legs. The global symmetry is therefore Gp = SO(4n) x U(1).

As usual, we proceed to compute the refined Hilbert series by first assigning the simple
root fugacities to the gauge nodes. We assign z1, .., 29, for the gauge nodes that form the D,
Dynkin diagram starting with z; on the left most node. For the two spinor nodes, we assign
Zon—1 to the U(n — 1) node and zy, to the U(n) node and h for the unbalanced U(1) gauge node.

The fugacity map to the fundamental weights y; is given as:

2 2 2 2 2
N Y5 . Yan—2 Yo Yoy, h— q
/1= 2= fp—2 = ————_  Rn-1— 2 = T

Y2 B ylyS, Yon—3Y2n—1Y2n Yon—2 Yon—2 B Yon '
(4.7)

The fugacity map allows us to write the refined Hilbert series in terms of highest weight fugacities.

Following the same procedure as above, we obtain the HWG for the Kite quiver family:

1 — 2 t2n+2u
HWG (i, t) = i — (4.8)
(1= 2)(1 = g, ) (1 = g 747) (1 = B2 40 T] (1= o)
=1

4.1.4 Truck quiver family

The fourth and last new family of magnetic quivers with multiplicities is the Truck quiver
family shown in Figure 4.7. Members of this family of quivers can once again be found in region
4.

The Truck quivers are parameterized by v which is the multiplicity of edges between the
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n—1

1 2 2n—3 2n—2

Figure 4.5: Kite family of quivers where v is the multiplicity of edges between the two unbalanced
U(1) gauge nodes (cyan).

n—1 1 v
O—0O—-------- —O T T
1 2 n—3 2n—2 n 1

Figure 4.6: Kite quiver family with an overall U(1) ungauged. There is one unbalanced U (1) gauge
node (cyan).

two unbalanced U(1) gauge nodes (cyan) and n. We ungauge one of the unbalanced U(1) nodes
giving us the quiver in Figure 4.8. We can now identify the subset of balanced gauge nodes
with the Dynkin diagram of Do, .

The balanced Dy, ; Dynkin diagram shows the subgroup of the global symmetry is
SO(4n + 2). The remaining component is the unbalanced U(1) gauge group which contributes
U(1) to the global symmetry. Therefore, Gy = SO(4n + 2) x U(1).

To compute the refined Hilbert series, we assign the fugacities zq, ..., 29, 20,41 for the
balanced gauge nodes that form the Dynkin diagram for D,, ;. We assign z, to the n gauge
node connected to a U(1) flavor node and z9,.; to the gauge node that is connected to the
unbalanced U(1) gauge node. We assign h to the fugacity of the unbalanced U(1) gauge node.
We perform the fugacity mapping to yi, ..., yon1 which are the fundamental weight fugacities of

SO(4n + 2) and ¢ the fundamental weight fugacity map of U(1). The fugacity map is:

2 2 2 2 2
Y Y Yon— Y Y q
B=, =, Zgpg = —Eml gy = 2 Zon+1 = —2n+17 h = .
Y2 Y193 Yon—2Y2nY2n+1 Yon—1 Yon—1 Yon+1
(4.9)

Now that we have the refined Hilbert series we can follow the same procedure as the
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—O
1 2 =22 -1 n 1

Figure 4.7: Truck quiver family where v is the multiplicity of edges between the two unbalanced U(1)
gauge nodes (cyan).

n 1 Y
O—O—--emese —O
1 2 M—2m—1 n 1

Figure 4.8: Truck quiver family with an overall U(1) ungauged. There is one unbalanced U(1) gauge
node (cyan).

previous quiver families. We obtain the HWG for the Truck family:

1 — ponpigny t27F2°

(4.10)

n—1

(1 =2)(1 = ponpions1 t2")(1 — pong ") (1 — % o) T puoit®
=1

1=

With the HWG of the Kite quiver family and Truck quiver family, we can now write down the

HWG for all the magnetic quivers in region 4.

4.2 Magnetic quivers for different regions

4.2.1 First region: || < N, — %

In the following sections, we take the magnetic quivers outlined in [25] and write down
their respective HWG (Highest weight generating function).

For k > 0, there are several components for the Higgs branch I, II, IIT (here we adopt
the same notation as in [25]). The first component is present for cases where |k| < % and
the magnetic quiver is given in the first line of Table 4.1. These are exactly members of the
Trapezium family of quivers we outlined in Section 4.1.1.

Component II is present for Ny > N, and x > 0. It also belongs to the Trapezium quiver

family but with v and n taking different values compared to component I. The length of the

quiver remains the same as Ny — 1. This component is now parameterized only by Ny and
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N, and therefore independent of the Chern-Simons level k. The global symmetry group is
SU(Ny) x U(1).

The highest weight generating function for component I and II are given in (4.4) but with
n and v defined as functions of Ny, N. and k.

The quivers for component III is present only when |x| > 1/2. Furthermore, the quivers
differ depending on whether Ny is odd or even. In both cases, their Coulomb branches are
closures of nilpotent orbits of Ay, ; with height two. This is obvious once we ungauge the
unbalanced U(1) node on the upper part of the two diagrams. The general HWG for this class

of quivers is very straightforward and given in [112] as:

n

1
HWGge = . 4.11
Height 2 g (1 . ,uiﬂ’Nf—itm) ( )
where n is the rank of the repeated gauge nodes towards the centre of the quiver.
For Ny even, the partition ® for the nilpotent orbit is [2,2,2...,2] = [2V//2] where we used
the exponent form for the partition. The HWG is:
Ng/2 .
HWG ~, /2, = . (4.12)
S E (1 — pipanv,—it*)
For N; odd, the partition would be [2,2,2...,2,1] = [20/=1/2 1] and the HWG is
(Ny—1)/2 1
HWG, (~v;-1)2 ; = - (4.13)
[2WNr=1/2 4 E (1 — papin,—it%)

If we wish to compare our Hilbert series with the Higgs branch of the original 5d electric
SQCD quiver, we need to take the union of all the cones (components). In terms of Hilbert series
(and HWG), we do this by adding the Hilbert series (and HWG) of the respective cones and
subtracting the intersections between them. The intersections between the different components
can be represented as quivers and are given in Table 4.2. We note that the Coulomb branch of

the intersections are all closures of nilpotent orbits of height 2. We will see that this pattern

8The entries in the partition are the sizes of Jordan blocks when representing the nilpotent matrix in Jordan
normal form.
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persists in other regions as well where the intersections are nilpotent orbits (or the product of

nilpotent orbits with C2/Z,).
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Table 4.1: Different phases of 3d Coulomb branch quivers that correspond to the 5d Higgs branch at infinite coupling. The SQCD theories subject to
the condition |k| < N, — % Phase I exists for % > |k|. Phase II exists for Ny > N.. The third component exists for Ny > 2 and |k| > %.For all
the quivers, the length (the base of the quiver) is Ny — 1. The global symmetry and the plethystic logarithm of the Highest Weight Generating function
(HWG) is given.

Quiver :
Phase RS [r=1 =0 Global Symmetry PLIHWG(u;,t)]
Ny/2—|xl 0
/M,Ufoit !
1=1
+ 1+ fny ot
I SU(Ny) xU(Q1) | & Mw—Nf/z/qth
/’L|m\7Nf/2lu’|n\fo/2t2N
N.—Ny _
Do Hifhy, -t
=1
+ v /gt
- ,LLfoNc,UthQNC
1
SU(N gk 4
IIT (Ny even) O ee -0 (Ny) > pipin, it
1 2 2 1 i=1
I11 (N odd) SU(Ny) (NEWW 121
= 7 foz
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Table 4.2: The quivers in this table are the intersection between the different components in region 1. The global symmetry group Gr and the

plethystic logarithm of the Highest weight generating function HW G are given in each case.

Phase K > % k=0
Quiver
OO
NIl b2 N
Gr
PLHWG]
1
Quiver
A A R R VA
I[N III 2 2 2
Gp SU(Ny)
Ny /2—|k] N
PLHWG] pifbn,—it™
i=1
Quiver
IT N 111,
I NIINIII Gr
PLIHWG] > Hipin, Nt
i=1
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4.2.2 Second region: |k| = N, — %

The equation that defines the second region means we can define all the quivers with just
two variables (such as Ny and ). The magnetic quivers that correspond to different components
of the Higgs branch of 5d electric quiver at different « is given in Table 4.3. We also present
their global symmetries and HWG (Highest weight generating function). At any value of Ny,
there are only two components I and III.

Component [ is defined for |k| < % When |k| > 1, the magnetic quivers belongs to the
Pyramid family of quivers defined in section 4.1.2 with Gy = SU(Ny) x SU(2) x U(1). The
HWG is exactly that of equation 4.6. When x = 0, the brane webs tells us the magnetic quiver
looks different with a global symmetry enhanced to Gp = SU(Ny) x SU(2) x SU(2) instead
[25]. The HWG of this quiver is given in [22].

The other component is III. When Ny is even and greater than zero and |x| > 1, the
Coulomb branch of the quivers in III are the closure of the [2"/2] nilpotent orbit of A Ny—1 times
C?/Z,. This is made clear once we ungauge the unbalanced U(1) gauge node. This effectively
breaks it into two quivers as can be seen in Figure 4.9.

As a result, the moduli space is the product of the two moduli spaces and the Hilbert series

1s:

N¢/2 1 1
— _ ,>< 4.14
[2Nf/2]XCQ/Z2 E (1 o Ni/LNf—it21> 1— V2t2 ( )

where we denote the highest weight fugacity v for SU(2) and p,; for SU(Ny).

At k = 1, the Coulomb branch of the magnetic quiver is just the closure of the nilpotent
orbit [2V/2]. And this component does not exist for k < 1°

When Ny odd and greater than zero, the process is very similar. For |s| > % the Coulomb
branch is the closure of the [2N7~1/2 1] nilpotent orbit of Ay,_; times C?/Z;. We can once

again see this by ungauging the unbalanced U(1) gauge node (cyan) in Figure 4.10.

9Here we used a simple property of HWG. Consider the product of two moduli spaces M 4 and Mpg. Now,
for the HWG of M 4, with global symmetry G 4, we assign the highest weight fugacities p;. Similarly, for
Mp, with global symmetry Gpg, we assign v;. It then follows that the HWG of the product moduli space
is HWG A, xmp (1, v, t) = HWG A, (1, t) X HWG A4, (v,t). This is because we kept the fugacities of the two
individual factors in the total global symmetry group Gr = G4 X G separate. The same applies for the
product of any number of moduli spaces. Note, the resulting Hilbert series will be incorrect if we use the same
fugacity. Therefore, we always assign a different highest weight fugacity for each contributing factor in the global
symmetry group.
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1
O—11
1 1 2
ungauge U (1) 2
O—0----——----0—0
12 N 2 1
1 2 =L 2 1

2

Figure 4.9: We ungauge the unbalanced U(1) gauge node (cyan) in the quiver on the left, effectively
breaking it into a quiver whose Coulomb branch is the closure of the nilpotent orbit of [2Nf/2] and a
quiver whose Coulomb branch is C?/Zy. The moduli space of the quiver on the left is therefore the
product 6[2Nf/2] x C?/Zs.

O—L1]
1 2

1
1
ungauge U (1
1 -0—0
— 2 1

) 1 1
O—0O-
1 9 Nf2 Nf271
O—0O- - -O0—0O
12 B 2 1

Figure 4.10: We ungauge the unbalanced U(1) gauge node (cyan) on the left, effectively breaking the
quiver into a quiver whose Coulomb branch is the closure of the nilpotent orbit of [Q(Nf_l)/Q, 1] and a
quiver whose Coulomb branch is C?/Zy. The Coulomb branch of the quiver on the left is therefore the
product 6[2(1\7/;71)/2’1] x C%/Zs

The HWG is:
(Ny—1)/2 1 1
WG _ . 4.15
[Z(Nf 1)/2,1]><(CQ/Z2 E (1 _ /M,U/foitm) 1 — 242 ( )

For k = 1, the Coulomb branch of the magnetic quivers is just the closure of the nilpotent
orbit of [2(Ns=1/2 1]. This component does not exist for || < 1.

The intersections are given in Table 4.4 and since there are only two components for |k| > 1,
there is only one intersection to consider: between I and III. For Ny even, the Coulomb branch
of the intersection at |x| > 1 is the product of the closure of the nilpotent orbit [2MVs/2=Ixl 12I]]
of Ay,—1 and C?/Z,. For |k| = 1, we no longer have the balanced U(1) gauge node on top of

the quiver, and the Coulomb branch is simply the closure of [2V7/27I8l 12Il] orbit of Ay, 1.
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Similarly, for Ny odd, the Coulomb branch is the product of the closure of the nilpotent
orbit [2(Nr=D/2=Isl 12841 of Ay 1 and C?/Z,. And [20Vr=D/27I8 120551 for |k] = 1.

Component III does not exist for |x| < 1, and hence the intersection is trivial.
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Table 4.3: 5d SQCD theories subject to the condition |k| = N, — % Phase I exists for % > |k|. Phase III ezists for Ny > 1 and || > 1. For all
the quivers, the length (the base of the quiver) is Ny — 1. The global symmetry and the plethystic logarithm of the Highest Weight Generating function
(HWG) is given.

Phase k>1 K= % k=20
Quiver
I I I 12 X2
Gr SU(Ny) x SU(2) x U(1) SU(Ny) x SU(2) x SU(2)
N2 '
Ng/2-Ix] D0 Hift, -t A VS
. 421 2 242 Ny /2+]|x] 1=1
PLIHWG] i=1 MMNfﬂt LR VMNf/Q?‘H‘qt * + V1V2MNf/2th/2 +
VM\H\—Nf/2/qth/2-HK‘ - V2/J/Nf/2—\l€\IU’|K|—Nf/2t2(Nf/2+IRD Vll/?:uNfﬂth/Q+2
2.,2,,2
— ViV by, ot
1
1 1
Quiver None
O—Qi ——-O—0 Mﬁ&f --0—0
Ny /2 _ N; /2 _
PLHWG] ui,uNf_ith + %2 > uiuNf_itzl -
i=1 1=1
1
Quiver None
O~ O W2 w29
1 1 / 1
[II(odd) 2 2
WNy-1)/2 , Ng—1)/2 '
PLHWG] DR T S Ve Do Myt _
i=1 i=1
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Table 4.4: The quivers in this table are the intersection between the different components in region one. The intersection for k < % are trivial. The
global symmetry group Gr and the plethystic logarithm of the Highest weight generating function HWG are given in each case.

Phase k>1 I<d>% H:%‘RZO
1
1
Quiver
TN O TN O N OO OO0 - e .
LA 7 I8l S = Isl F = Il M Ikl S = Il S i
GF SU(Nf) XSU(Q) SU(Nf) -
Ny/2—|x| N - (Ny=2)/2—|x] 0
PL[HWG] Yo it vt Yo HiphN,—it” -
=1 1=1
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4.2.3 Third region: |k| = N, — % +1

The magnetic quivers in the third region shows a strong resemblance to those in the first
region. However, there are only up to two components rather than three. The quivers are given
in Table 4.5 along with their global symmetry and HWG.

Component I exists for |k| < % + 1. For || > 1, the quivers belong to the Trapezium
quiver family. The key difference with region 1 is that the quivers all have lengths N (counting
the number of nodes at the base of the quiver) rather than Ny —1. Hence, the subset of balanced
nodes gives the Dynkin Diagram for Ay,. The global symmetry is therefore SU(Ny + 1) x U(1)
(since we still have the unbalanced U(1) gauge node).

For |k| = %, the global symmetry is enhanced to SU(N; + 1) x SU(2). For |x| = 0 the
global symmetry is enhanced to SU(Ny + 2). The HWG for these two quivers are given in [22]
which we reproduced in Table 4.5.

Component III exists for Ny > 1 and |x| > % The shape of magnetic quivers depends on
whether Ny is even or odd. They all have length Ny, giving a global symmetry of SU(Ny + 1).
For N; even, the Coulomb branch is the closure of the nilpotent orbit [27/ 2.1] of An,. For
Ny odd, the Coulomb branch is the closure of the nilpotent orbit of [2(V~1D/2 1], For |x| < 32,
component III does not exist.

For |x| > 2, the Coulomb branch of the intersection between I and III is the closure of
the nilpotent orbit [2V7/2=IkIHL 12I81=2] for N; even and [2(WVr=D/2=Ikl+1 12IK-1] for N; odd. For

k] < 2, the intersection is trivial as component III is absent.
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Table 4.5: 5d SQCD theories subject to the condition |k| < N, — % + 1. Phase I exists for % > |k| = 1. The component III exists for Ny > 1 and
|| > %.For all the quivers, the length (the base of the quiver) is Ny — 1. The global symmetry and the plethystic logarithm of the Highest Weight
Generating function (HWG) is given.

Phase /£>% ‘ Ii:% k=1 k=0
Lol —1 1
. 2
Quiver
OOy, R . O—0 | OO OO Fds OO0
I 12 F—|kl+1FE sl +15F - |sl+1 2 1 1 2 1 2 == 2 1
Gr SUN;+1) xU(1) SU(Ns+1) x SU(2) SU(Nys +2)
Np4D/2 '
N¢/2—|k|+1 Mi/—LNf+1—it2Z+t4 (Np)/2
24 2 =1 ]
PLHWG] = N+ Ni+|x| (Np+1)/2 i:zll (Np—2)/2
USR] + g @t — V2t T A fnygey 2t
Mm—1//JNf—|n\+1t2(Nf+|HD + I/,LZL(N i1yt V2 + M(Nf+2)/2t(zvf+z)/z
— M(Nf+1)/2th+3
1
Quiver | A 77777 None
Ty Ty
[II(even) 2 2
Gr SU(Ny+1) -
Ny /2 ‘
PLHWG] > ui,uNf,itQZ -
i=1
1
Quiver None
O—0 N OO
ITI(odd) b2 = 21
Gr SU(Ny+1) _
(Nf+1)/2 )
PL[HWG] Z ,Uz‘,Ufoitm _
i=1
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Table 4.6: The quivers in this table are the intersection between the different components in region one. The intersection for k < % are trivial. The
global symmetry group Gr and the plethystic logarithm of the Highest weight generating function HWG are given in each case.

Phase ﬁ:%‘FL:l‘H:%‘Ii:O
Quiver
I A I b2 2 -
Gr SU(Ny+1) -
Nf/2—|/€|+1 _
PLHWG] S i, —it? -
=1
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4.2.4 Fourth region: |k| = N, — % +2

Region 4 can have up to two components depending on . The different components are
given in Table 4.7 along with their respective global symmetry and HWG. Unlike the previous
three regions, the magnetic quivers here have a SO subgroup in the global symmetry.

Component IV 1% exists when Ny is even and k > 2. There is an edge of multiplicity two
between the % node and the U(1) node and upon ungauging the U(1) node, we obtain a SU(2)
flavor node and the remaining quiver is balanced. The balanced quiver has the shape of the
Dynkin diagram of Dy,. In fact, this is one of the two components of the very even nilpotent
orbit [277], and the other component is given by the flavor node attached to the other spinor
node (after balancing). The HWG is given in [112]. For x < 2, this component does not exist.

Component V takes a different form depending on whether Ny is odd or even. For even Ny
and k > 1, the quiver belongs to the kite family outlined in Section 4.1.3 where n = N;/2 and
v = N, — Ny/2. For k =1, the U(1) subgroup in the global symmetry is enhanced to a SU(2).
The HWG is given in [111].

For Ny is odd and x > 1, the quiver belongs to the Truck family in section 4.1.4 where
n = N¢/2 and b = N, — (Ny — 1)/2. Since the quiver only exists for Ny odd, it does not appear
at k =1. For k = %, the global symmetry is enhanced to SO(2Ny + 2) and the corresponding
HWG is given in [111].

For k = 0, the theory has a 6d fix point [25].

Since component IV is only defined for x > 2, this is the only region where the intersection is
non-trivial. The intersections are given in Table 4.8. The intersection IV N V is the affine Dynkin
diagram of Dy, (which becomes the Dynkin diagram when we ungauge the U(1) attached to
the Ny — 2 node). The Coulomb branch is the closure of the [2(¥7=2) 14] orbit of SO(2N;). The

intersection for x < 2 is trivial.

10We use this label to be consistent with [25].
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Table 4.7: 5d SQCD theories subject to the condition |k| = N, — % + 2. Phase 1V exists for Ny > 2 and || > 2. Phase V(even) exists for
Nf >0 when K is ven and Ny > 2 when £ is odd. And Ny > 1 for V(odd). The global symmetry and the plethystic logarithm of the Highest Weight
Generating function (HWG) is given.

Phase K> 2 11:2‘ R:% ‘ k=1 ‘ m:%
N2
Quiver O—OQ—i—M
_ _ Ny
IV (Ny even) Loz Nyp=alyp=2 5t None
Gr SO(2Ny) _
N;/2—1 4
PLHWG] Z:ZI poit? + N?v,th ,
Quiver . ( O—O----
V(even) L2 Ny=sNy-2 g2 None
Gr SO(2Ny) x SU(2) -
N;/2-1 ‘
> pat? A
=1
PLHWG] ! N N -
MN 1V + KNG the + VuNf(tTf’l +t7f+1)
vyt — TR + i, 1V — PR N
Ny—1
]\f
Quiver Q_Q O—O----
V(odd) Vf*Wf—QVf None 12 Np—2N;—1 % g
Ny/2—1 Ny
. . i
PL[HWG] Z:l M?it% + t2 + ,UJNf,LLNf—lth 1 + . Z_Zl M2it +1
= N Ne—3 Ne+1
pny—1q Y+ py /gt — p pv, 1t + pnp (t )
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Table 4.8: The quivers in this table are the intersection between the different components in region I.For k > 2, the Coulomb branch is the closure of
the nilpotent orbit 0[2(Nf—2) 14] The intersection is trivial for k < 2.The global symmetry group Gr and the plethystic logarithm of the Highest weight

generating function HWG are given in each case.

Phase k<2
Quiver
IVnv -
Gr -
PL[HWG] ST pagit® -
1=1
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Closing remarks

The purpose of the magnetic quiver is to understand the Higgs branch moduli space of the
parent theory. One significant way of doing that is to study its chiral ring through computing
the Hilbert series. What we did in this section is the first step. The next step will be to use
the refined Hilbert series to explicitly write down the generators and relations that define the
Coulomb branch chiral ring of the magnetic quiver and hence the Higgs branch chiral ring of
the 5d theory. In terms of the Higgs branch chiral ring, one can go a step further to define it
by the matrices of the mesons, instantons and gaugino bilinears of the theory as achieved for
N, = 2 theories in [100]. However, even without doing so, the work here has already proven
useful as the Hilbert series is a unique signature that identifies the moduli space of the magnetic
quiver. So if we find a completely different magnetic quiver with the same Hilbert series, then
we know the 3d Coulomb branch of these two theories, and hence the Higgs branch of their
parent theories, are identical. This is discussed in the next section where magnetic quivers in

the fourth region have the same Coulomb branch as certain orthosymplectic quivers.

4.3 Sp(N.) SQCD theories

Now we turn our attention to 5d N/ = 1 theories with an Sp(N.) gauge group and Ny
fundamental flavors. The main focus will therefore be magnetic quivers that are unitary-

orthosymplectic (made of U(1), SO(even) and USp(even)).

4.3.1 Bottom-Up approach

Here, we discuss two approaches we take to obtain magnetic quivers. The first is a Top-
Down approach where we start by drawing the brane system of the 5d theory and then move to
the Higgs branch phase and read off the magnetic quivers as we did in the previous chapter.
This approach was used in [25] to obtain the magnetic quivers in the previous section. The

second is a Bottom-Up approach which we now introduce:

1. List all the properties of the 5d parent theory’s Higgs branch that you can find such as

global symmetry, dimension etc.
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2. Use these partial data to determine what the structure of the magnetic quiver should look
like. For example, the Higgs branch global symmetry G of the parent theory translates
to Gr Coulomb branch global symmetry of the magnetic quiver which is determined by
the set of balanced nodes [62]. The Higgs branch dimension of the parent theory is the
Coulomb branch dimension of the magnetic quiver which is the sum of the ranks of the
gauge groups in the magnetic quiver. Such properties are often quite constraining, and for

simple theories they often give accurate conjectures.

3. Once a magnetic quiver is conjectured, compute the Coulomb branch Hilbert series with

the monopole formula and see if it gives the expected moduli space.

In the last step, one may wonder: how do we know if the Hilbert series is correct since studying
this unknown moduli space is the whole point of developing magnetic quivers? The process
seems circular. As a result, this Bottom-Up approach is really only useful when we are dealing
with an infinite family of magnetic quivers such as the trapezium, pyramid, kite and truck
families in the previous section where the moduli space is known for the smallest member of
each family. For example, for SU(2) with N; flavors with N; < 7, we know that at the 5d
UV fixed point, the Higgs branch is the one-FEy,; instanton moduli space. For each Ny we
can then generate an infinite family which we call E,, families where 1 < n < 8 which is the
UV fixed point of Sp(N.) with Ny = N, + n — 2 flavors. Therefore, for a given £, family, we
can conjecture an infinite family of magnetic quivers parametrized by N.. For SQCD theories,
it seems the moduli spaces are surprisingly simple enough that an obvious pattern arises for
general N, . If the global symmetry and dimension of all the members of the family are
consistent with what to expect and if the 3d Coulomb branch of the N, = 1 case match the
expected one-Fy, 41 instanton moduli space then we have high confidence that the resulting

family of magnetic quivers is correct for all V..

HWWe apply the same tricks for 4d SCFTs later on where a similar analysis can get the desired set of families
of magnetic quivers
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Orthosymplectic quivers and one-F,, instanton

Let us take the one-FE, instantons as an example. Coulomb branches of unitary quivers
that describes these moduli spaces are well known [35] and takes the form of affine F,, Dynkin
diagrams.

For orthosymplectic quivers, this is less studied. The quivers are known for Eg7g. In

particular:

e Fs: A three-legged quiver [113] that is the 3d mirror to a class S theory with three Dy

untwisted punctures [114]

e F;: A three-legged quiver that is the 3d mirror to a S theory with three untwisted Dj
untwisted punctures [115]. This case is the same as three untwisted As punctures due to

the isomorphism of SU(4) = SO(6).

e Fi: A three-legged quiver that is the 3d mirror to a S theory with two twisted A3 punctures

and one untwisted Az puncture [20]

In general, the procedure in obtaining the 3d mirrors of class S theories compactified on a circle
is given in [113]. However, for n < 5, the orthosymplectic quivers are not known. Using a
hybrid of both the Top-Down approach of brane systems and the Bottom-Up approach, we were
able to find the corresponding quivers which contain new features that were not present in the

literature.

E5 = D5 and E4 = A4

We start with the one-Es5 instanton moduli space which is the same as the one-SO(10)
instanton. The Hilbert series is well known for this moduli space which allows us to quickly test
any conjectured magnetic quiver using the monopole formula. By studying the brane system of

SU(2) with 4 flavors at infinite coupling, we can guess most of the structure of the magnetic
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quiver:

o O o O
SO(2) USp(2) SO(4) USp(2) SO(2)

Es = D5 magnetic quiver

(4.16)

We recall the brane set up in (3.34) contains two (1, 1) 5-branes that are at an 45 degree angle
to the O5 plane and at the time we did not know the gauge group it corresponds to in the
magnetic quiver (question mark). The linear chain of nodes tells me the global symmetry is
SO(8) whereas we should expect SO(10) Coulomb branch symmetry. Hence, the final node
must enhance the symmetry somehow. From dimensional analysis, the remaining gauge group
must be a rank 1 gauge group, it can be U(1) = SO(2), Sp(1) or SO(3) and other groups that
differ by a discrete subgroup (e.g O(2)). The natural choice was an Sp(1) gauge group since we
expected an orthosymplectic quiver where the gauge groups are supposed to alternate between
symplectic and (special) orthogonal gauge groups to prevent bad quivers from forming [62].
Unfortunately, the Sp(1) gauge group has negative balance, a signature that the node and hence
the quiver is bad and the Hilbert series will diverge.

Using the computationally efficient monopole formula, we quickly exhausted all these
possibilities and found that the right choice is a U(1) gauge group connected to the central
SO(4) gauge group.

The question now is how do we interpret this in the monopole formula since it is first time
such a feature appeared'?. The vector multiplet contribution to the conformal dimension and
lattice of magnetic charges for the U(1) gauge group is the same as before and given in [36].
The only question is how to interpret the hypermultiplets between the U(1) and SO(4). In the
end, we find the correct description is to keep the hypermultiplet as if between an Sp(1) and
SO(4) but then only gauge the U(1) C Sp(1). In other words the hypermultiplet contribution

to the conformal dimension remains as Ag,1)—so(s) but the vector multiplet contribution and

12Unitary-orthosymplectic quivers did exist in [62] but the unitary gauge groups are connected to symplectic
gauge group. This is the first occurrence when the unitary gauge group connects to an (special) orthogonal

gauge group
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magnetic lattice is that of an U(1). Therefore, the magnetic quiver takes the form:

U(1)

o—© o0
SO(2) USp(2) SO(4) USp(2) SO(2)
Es = D5 magnetic quiver (4.17)

The Coulomb branch Hilbert series shows that this is indeed the one-SO(10) instanton moduli
space. And with this example, we started allowing the possibility of magnetic quivers being
unitary-orthosymplectic quivers.

Next, we can study the case of £y = A,. The expected moduli space is one-SU (5) instanton
moduli space, whose Hilbert series is also well known. From the brane system we expect the

following structure:

SO(2) USp(2) SO(2)

E; = A, magnetic quiver (4.18)

The missing gauge group is another rank 1 theory. This time, we tried replacing it with U(1)
but the resulting moduli space is still incorrect as checked by the monopole formula. The correct

answer in the end turns out to be a U(1) gauge group connected with a charge 2 hypermultiplet'3:

(4.19)

This marks the first appearance of a charge 2 hypermultiplet in study of orthosymplectic quivers.

131t is still up to debate whether it is actually a charge 2 hyper. Since a U(1) gauge group with matter field
transforming in the symmetric representation will give the same result. So far our tests are indifferent to either
of these so we will stick with charge 2 hypers for the rest of the thesis.
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There is an inherent difference between a charge 2 hyper and two charge one hypers even though
they contribute the same in the conformal dimension of the monopole formula. This is because
by choosing a charge 2 hyper, there is an overall Z, diagonal subgroup that we can decouple
from the quiver. We will now discuss in detail the importance of this discrete symmetry for

orthosymplectic quivers.

4.4 Diagonal Z, symmetry

Based on our paper [2].

If one directly applies the monopole formula to compute the Coulomb branch of un-
framed /flavorless orthosymplectic quivers such as any of the FE,, quivers, one will find that the
Hilbert series does not match the one-F,, instanton moduli space. In fact, the mismatch already
occurs at the first order which means the dimensional of the global symmetry group predicted
by the HS is already incorrect. This mismatch does not mean a limitation of the monopole
formula but rather our incorrect identification of the gauge groups. Take (4.17) for example,
whenever we label a gauge group we don’t just identify the algebra but the global structure
as well. However, if the quiver is made of only U(n), SO(2n), USp(2n) gauge groups, there is
actually a (Zs)4iag that acts trivially on the matter content of the theory. This is identical to
the common centre of the gauge groups. Whenever this happens, we can choose whether or not
to ungauge this Z,. This action will affect the magnetic lattices in the monopole formula from
which we sum over the magnetic charges [61]. In [2], we denote the choice of whether to ungauge
as the choice of choosing H = {1} (not to ungauge) or H = Zy (ungauge). This H is also the
zero-form symmetry associated with the quiver [116]. Such phenomenon were studied in early
works in the context of standard model gauge theory and spectrum of line operators [117]. In
our case, H = {1} means there are no zero-form symmetry but there is a Zy one-form symmetry

where the line operators can be charged under [116]. On the other hand, if we gauge'* this

Here we need to be careful what we call gauging and ungauging. Throughout this thesis, and in [2], we
refer to ungauging as quotienting out or decoupling a subgroup H from the gauge group G. On the other hand,
one-form symmetry groups are global symmetries, so if H is trivial then there is a non-trivial group H that is
the one-form symmetry.Then, gauging it will be the equivalent action of decoupling the subgroup H from the
gauge group G.
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one-form symmetry, we will have a non-trivial zero form symmetry H = Zs instead, which will

be the case for all our unframed/flavorless magnetic orthosymplectic quivers.

4.4.1 Magnetic lattice

We now present some more detailed analysis around this discrete subgroup.

A quiver Q can be seen as a way of encoding a representation ¢ : G — GL(V') of a group
G into a finite dimensional vector space V. We follow standard conventions, associating a group
to each vertex of the quiver, and a bifundamental representation to a link between two vertices.
Importantly, it is not enough to specify a Lie algebra at each vertex of the quiver; in general
several groups correspond to the same algebra, and give distinct gauge theories. Other kinds
of representations, beyond bifundamentals, are also allowed. For a given quiver Q with gauge
group G and symmetry group ker¢, there is a choice which 3d N' = 4 gauge theory one likes to
consider. For any normal subgroup H < ker¢, there exists a theory defined by a Lagrangian

with matter content represented by V' and with a gauge group Gy, where

G

G|, (4.20)

N
Q
T
]
T Q
N

as well as interactions dictated by supersymmetry. Given a quiver Q and the choice of H, we
define the Coulomb branch of the pair (Q, H), denoted Cy(Q) as being the Coulomb branch of
the 3d N = 4 gauge theory defined in the previous sentence. It is important to notice that this
is a definition of what we mean by the Coulomb branch of a quiver with a choice of group H.
Furthermore, the different choices of subgroups of ker¢ lead to an orbifold relation among the

Coulomb branches:

C
Cy(Q) = H[;Q) for any H < ker¢. (4.21a)
Alternatively, using the quotient Ny = k‘;‘b , one arrives at
C er
Cy(Q) = e/ +(Q) (4.21b)
Ny

Given a unitary quiver with nodes U(k), for instance, then each node has a subgroup Zj; which
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one can choose to ungauge or not. Hence, there exists multitude of different orbifold moduli
spaces that one can construct from a single quiver simply by choosing different nodes to ungauge

a discrete group.

Unframed orthosymplectic quivers — ker¢ = Z,

The Coulomb branch Hilbert series of orthosymplectic quivers had previously been studied
and computed in [118, 96, 56, 57, 119], where most of the Coulomb branches are either closures
of nilpotent orbits or their intersections with Slodowy slices. A ubiquitous feature of these
quivers is that they all contain flavor nodes!®. On the other hand, when we are dealing with
unframed /flavorless orthosymplectic quivers, G is a product of special orthogonal and symplectic
groups, and the representation ¢ is a direct sum of bifundamental representations. As a

consequence, we distinguish two situations:
o If there is at least one SO(2r + 1) node in the quiver, then ker¢ is trivial and Gy = G.

e If there is no node of type SO(2r + 1) in the quiver, then ker¢ = Z38, and we have two
choices for the gauge group. Gy13 = G, which is the product of orthosymplectic gauge
groups, and Gz, = G/ Z;“ag, which is the product of orthosymplectic groups divided by

diag
Z2 .

To see the effect on magnetic lattices, consider a product of two groups, SO(2r) and
USp(2k). The magnetic lattice for the product G = SO(2r) x USp(2k) is Z" @ Z*. For
SO(2r)/Zs x USp(2k)/Z, the magnetic lattice is

zu(z+;) e zku(m%)k

Finally, for (SO(2r) x USp(2k))/Z3*¢ where we quotient by a diagonal Z3* subgroup, we obtain

(4.22)

15We note that correct Coulomb branch Hilbert series computations of flavorless orthosymplectic quivers had
been given in [118]. However, the approach used the Hall-Littlewood formula [120] rather than the monopole
formula. As a result, it does not use the explicit magnetic lattice of the gauge groups (aside from the central
node of the three-legged theories).
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the magnetic lattice

r+k 1 T
=ZYU(Z+3) (4.23)

) ol

An interesting feature that arises is that we now also include integer-plus-half terms in the

VA=Yl

magnetic lattice.

As an illustration, we consider the simplest orthosymplectic quiver:

v

®— 0 (4.24)
2 2

For v > 3, the USp(2) node is not bad in the sense of [62] and hence the Coulomb branch Hilbert
series does not diverge. The presence of bad gauge nodes occurs frequently in constructing
orthosymplectic quivers which limits our ability to study its Coulomb branch.

We can now present the different choices of discrete quotients in terms of Hilbert series:

HS (80(2) X USp(2)> — HSp (4.25a)
SO(2
USp(2
HS (80(2) % ZIL( )) — HSZQ + HSZ@(Z+%) (425C>
SO(2)  USp(2)
s ( Ly 8 Ly = HSz HSZ@(Z‘*‘%)
+HSZ€B(Z+%) + HS(Z—l—%)Q (425(:1)
SO(2) x USp(2
S ( ( )thag p( )) = HSz +HSz, (4.25¢)
2
where the Hilbert series subscripts ASO@Y g A USP) explicitly denotes the lattice of the magnetic

charges of SO(2) and USp(2) respectively'®. The Hilbert series takes the form above because,
for example, if m takes all integers and n takes all positive integers and integers-plus-half, we

can decompose them into two separate Hilbert series. For the quiver (4.24) the gauge group is

16Note, this is the only time we explicitly label the Hilbert series with their respective magnetic charges. For
the rest of the chapter, we continue to use the notation HSz to denote the Hilbert series where all charges are
integer values and HSy 1 for half-plus-integer value charges and HS; 5, 1 for their sum.
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the quotient Gz, = % of G = SO(2) x USp(2) by the kernel Z$*¢. This means that
the Coulomb branch Hilbert series of (4.24) is given by (4.25¢). Note that the GNO dual of
G, is not a product of classical groups. The electric and magnetic lattices for the five cases of

equations (4.25) are represented in Figure 4.11.

Unframed unitary orthosymplectic quivers — ker¢p = Z,

Finally, we can consider quivers which contain both orthosymplectic gauge nodes and
unitary nodes, with or without charge 2 hypermultiplets. When this is the case, the same
analysis is valid, with ker¢ = Zgiag, and the magnetic lattice is a direct sum of a Z" component

and a (Z + %)T component. A myriad of examples is given in the remaining of this chapter.

Notation. The lattice (4.23), or its generalizations to arbitrary unframed orthosymplectic or
unitary orthosymplectic quivers, are relevant for the Coulomb branch Hilbert series computations
for the choice H = ker¢. To lighten the notation, the following convention is adopted. For the
choice H = ker¢, the Hilbert series HS(¢) can be decomposed as a sum of two pieces, which are
symbolically called HSz(t) and HS,, +%(t). For the choice H = {1}, the total Hilbert series is
just HSz(t).

4.4.2 Sums over magnetic sublattices

Above, we see how the magnetic lattice of Gz, can be split into the lattice containing
integer magnetic charges Z and the lattice containing magnetic charges shifted by a half, Z + %
This can be generalized to G, for some k where the lattice is the sum Uf:_ol (Z+%). The Hilbert

series can therefore be decomposed as:

HS(t) = > HS;. i (t) (4.26)

where HS,, i (t) is the Hilbert series obtained by summing magnetic lattices with Z —I—% magnetic
charges.

It is currently unknown how to compute the refined Hilbert series for orthosymplectic
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USp(2
USp(2) = SU(2) P2~ 50(3) USp(2) = SU(2)
® & @® ® ® ® ® ® ® O O O O O O
O O O O
® O] ® @] @] @] @] ® O O O O O O
@] @] @] @]
@ S0(2) ( SO(2) <
O O O O
® O] ® @] @] @] @] ® O O O O O O
@] @] @] @]
® (T} @® ® ® ® ® ® ®@ O O O O O O
(a) (v) (c)
USp(2
28 ~ 50(3)
® O O O O O O ® ® @] @] ®
O O O O O O O O @] (@) @] (@)
o O O O o O O O O ® ® O
O O O O O O O O @] @) @] @)
S0(2)  SO(2)xUSp(2)
( 7 < coker ¢ o~ S =R
O O O O O O O O @] (@) @] (@)
o O O O o O O O O ® ® O
O O O O O O O O @] @) @] @)
® O O O O O O @ ® @] @] ®
(d) (e)

Figure 4.11: In all the diagrams, the red dots show the weight lattice, and the black circles show the
dual lattice, which is the magnetic lattice involved in the monopole formula. The arrow denotes the
action of the Weyl group. a: The stars show the root lattice of USp(2). This notion does not extend to
the full group SO(2) x USp(2) because of the Abelian factor. We do not show the roots on the other
diagrams. b: USp(2) is replaced by SO(3). c¢: SO(2) is replaced by SO(2)/Zs ~ SO(2), which rescales
the weights. d: Combinations of the two Zo modifications of b and c. The weight lattice has index 4
compared to a. e: Finally this is the weight and coweight lattices for the quiver group.

quivers using the monopole formula. However, the refined Hilbert series can in some cases be
inferred from a unitary quiver counterpart, or alternatively, in many cases (including star shaped
orthosymplectic quivers), be computed using the Hall-Littlewood method [120]. An exact refined
Hilbert series can be concisely encapsulated in the form of a highest weight generating function
(HWG) [50]. The expression of the HWG follows the same decomposition as (4.26):

k—1

HWG (i, t) = > HWGy, & (i) (4.27)

=0
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Unframed unitary quivers — ker¢ = U(1)

Notice that our analysis can be equally well applied for an unframed quiver with only
unitary gauge groups. The common centre is H = U(1) and hence the diagonal subgroup to
decouple is a U(1)giag. When computing the monopole formula, this ungauging action can be

achieved in these three equivalent ways:
e If there are U(1) gauge groups, turn them into U(1) flavor groups.

e Take a non-Abelian U(k) with magnetic charges (my, ..., m) and set the last charge to

zero: (my,...,my =0)

e Since a U(k)/U(1) = SU(k)/Zy, we first turn an U(k) gauge group into SU(k), then take

a 7, diagonal quotient over all the gauge groups.

However, unlike the orthosymplectic cases, we cannot choose H = {1} since then the centre
of mass will not be fixed and the Hilbert series will diverge. H = {1} is possible in the
orthosymplectic case because in the brane system the orientifold plane already fixed the centre

of mass of the system and the Hilbert series will not diverge.

SCFTs and (Z3)diag

An interesting observation is that whenever we are looking at magnetic quivers of SCFTs,
such as 5d SQCD theories, 6d theories on —1 curves, 4d class S theories etc, they are almost
always unframed/flavorless. Furthermore, it is only when we ungauge this (Zs)giag one-form
symmetry that we obtain the correct Coulomb branch that describes the Higgs branch of these
SCFTs (this is true for all examples we have investigated). It remains interesting as to why this

must be the case and how does it tie to the story about higher-form symmetries and SCFTs.

4.5 Orthosymplectic magnetic quivers

Based on our paper [2].
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In this section we present the main results of our 5d magnetic quivers. They are obtained
using an hybrid of the Top-Down approach (extraction from brane webs) as well as Bottom-Up

approach (using partial data to constrain the form of the magnetic quiver).

Discrete 0 angles

Unlike the SU(N.,) case, we don’t have to worry about Chern-Simons levels for Sp gauge
groups. However, when there are no matter fields, there is a m,(Sp(N.)) = Zy discrete 6 angle
one can choose [75]. For N. = 1, this is important for differentiating F; and E, theories. This
can be extended to two infinite families for general N.. However, when there are fundamental

flavors, m4(Sp(N.)) is trivial and we don’t need to worry about discrete theta angles.

Even number of hypers

A related concept is the 5th homotopy group m5(Sp(N.)) = Zs. This has the consequence
that Sp(N.) with an odd number of half-hypers has a global anomaly that renders the theory
inconsistent. This is why our theories always have even number of half-hypers [75, 121]. This is

true not only in 5d but in other dimensions as well.

4.5.1 Rank 1 FE, theories

We start off with SU(2) with Ny =n —1,...,7 whose Higgs branch at the UV fixed point
is one-F,, instanton moduli space. The Coulomb branch of these magnetic quivers give the
correct moduli space when H = Z,. However, it is also important to provide the moduli space
when the choice is H = {1}. The result will be a Z, orbifold of the instanton moduli space
and we provide their Hilbert series as well. The Hilbert series are given both unrefined as well
as refined by representations of the global symmetry group (in the form of a highest weight

generating function).
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Eys quiver

We start with the orthosymplectic quiver whose Coulomb branch is the closure of the Ejg

(£
min*

minimal nilpotent orbit O

I (4.28)
oo @O 0 o ¢ o0 0 0 0 ©
2 2 4 4 6 6 6 6 4 4 2 2

The Coulomb branch Hilbert series is given in Figure 4.12 which matches the computation of
the one Ej instanton in [122]. In addition to the unrefined Hilbert series, the exact refined
Hilbert series is also given in the form of a highest weight generating function (HWG) [50].

In Figure 4.12, the first line shows the Hilbert series obtained by summing over the integer
lattice HSz(t). The resulting Hilbert series is that of a symplectic singularity with global
symmetry PSO(16). Note that the global symmetry is a strict subalgebra of the exceptional eg,
which is reflected in the decomposition of the 248 dimensional adjoint representation of eg into
the 120 dimensional adjoint and the 128 dimensional spinor of s0(16). The integers-plus-half
lattice HS;, 1 (t) adds precisely the missing s0(16) spinor at order t? in the Hilbert series, so
that the full result displays eg global symmetry. These facts can be deduced directly from the
HWGs, where ps stands for the s0(16) adjoint and ug for the spinor.

As can be read from the table, the HWG of the minimal eg nilpotent orbit, which is
PE[u7t?] in terms of eg fugacities, reads PE[(u2 + ug)t> + (1 + g + pg)t* + u6t%) in terms of
50(16) fugacities. A Z3 quotient can be performed, in which the Z3*® acts non-trivially on the
spinor terms pugt? and pgt?. As explained in [86], this is accounted for by replacing ugt? + gt
by pith + p2t® + p2t® — pdt'?) which gives exactly the HWG for the PSO(16) space from the
integer lattice.

In the following subsections, similar comments and observations can be made.
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Hilbert Series HWG
Pr16(t)
(1 —12)29(1 — ¢4)29 PE [pat? + (1 + pa + p3)t*
HSz(t) +(6 + p3)t® + pgt®
= 1+ 120¢* + 13560t* + 881205t —pat!?]

+39574360¢t% 4 1321374912¢1° + O (¢!2)
128t Pr12(t)
(1 —12)29(1 — t4)29

pst® PE[t? + pot® + (g + pd)t*

HS, 1(t
2O _ 12842 + 13440t + 88192018 ot” + 5]
+39568640¢% 4 1321402368t'° + O (¢'?)
(1+1%) Pse(t)
(1 —t2)58 PE[(p2 + ps)t?
HS(t) +(1 + pa + ps)tt
= 1+ 248t% + 27000t* + 1763125t° +p16t°]

+79143000¢5 + 2642777280410 + O (#12)

Figure 4.12: Hilbert series for the Eg magnetic quiver (4.28). The first line of the table provides the

Hilbert series when the GNO magnetic lattice is integer HSz(t), the second line shows the sum over the

integers-plus-half lattice HS, 1 (t) and the last line is their sum HS(t). The palindromic numerator
2

terms Pi(t) are very long expressions and given in Appendiz E in [2]. In the third column, we show
the HWG in terms of fugacities for so(16) (denoted p,...,us). Note that we pick the branching of

eg — 50(16) where (p17)es = (12 + 18)s0(16)-

E; quiver

We move on to the unitary-orthosymplectic quiver whose Coulomb branch is the closure of

e7
min*

the F; minimal nilpotent orbit O

2 (4.29)

where the white node represents a U(1) gauge group. As discussed earlier in the chapter, under
the diagonal Zgiag quotient, we take integer and integers-plus-half magnetic charges for the
unitary gauge groups as well.

The U(1) gauge node can equivalently be expressed as an SO(2) gauge node and this quiver
thereby acts as a bridge between different families of quivers. As an SO(2), it comes more
naturally from D-type punctures of 4d N/ = 2 class S theories. As U(1) it comes more naturally

from a brane construction with O5 planes [3]. The Coulomb branch Hilbert series is given in
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Figure 4.13, which matches the computation of the one E; instanton in [122], alongside with
the Hilbert series for the orbifold moduli space with global symmetry PSO(12) x PSU(2).
Eg quiver

The unitary-orthosymplectic quiver whose Coulomb branch is the closure of the Fg minimal

nilpotent orbit O, takes the following form:

1 2

f _ I (4.30)

o0 @ o0 @ o0 @ o0 0
2 2 4 4 4 2 2 2 2 4 4 4 2 2

Again, the U(1) gauge node can equivalently be expressed as an SO(2) gauge node. The Coulomb

branch Hilbert series is given in Figure 4.14 which matches the computation of the one Fj

instanton in [122], along side with the Hilbert series for the orbifold moduli space with global
symmetry SO(10) x U(1) .

E5 quiver

Using the isomorphism e5 = s0(10), the unitary-orthosymplectic quiver whose Coulomb

50(10)

branch is the closure of the s0(10) minimal nilpotent orbit O, .~ takes the following form:

1
(4.31)
o O o @
2 2 4 2 2

In this case, as opposed to equation (B.6), the U(1) node can not be replaced by an SO(2) node,
as the central node of the quiver is already of orthogonal type. Instead, one may view the U(1)

as gauging a subgroup of a USp(2) flavour symmetry. The Hilbert series is given in Figure 4.15

50(10)

and matches the moduli space of O [56], along side with the Hilbert series for the orbifold

min

moduli space with global symmetry PSO(8) x U(1) .
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Hilbert Series HWG
Pos(t
= t2)16$((1 )_ T PEl[(/u + 1/2);52 s
HSy,(¢) UL pa 2 bt
= 1+ 6912 + 3723t4 + 1194341 g+ 1)t
+262539018 + 4285789210 4 O (1'?) Vgt
6412 Pey(t)
2\17 a4\17
HS, 1 () S Hovt” PEIEE 15 4 pat”
T 642 4 364814 + 11916860 puat’ gt vt
+26233601° + 4285209610 4 O (1'?)
(1+1%) Paa(t)
(1—22)% PE[(u2 +v? + vpe)t®
HS(t) +(1 4 pa + vpe)tt
=1+ 133t + 7371¢* + 238602t° +udts — 12 pdtd]
+5248750t% 4 85709988t1° + O (¢'?)

Figure 4.13: Hilbert series for the E7 magnetic quiver (4.29). The first line of the table provides the
Hilbert series when the GNO magnetic lattice is integer HSz(t), the second line shows the sum over the
integers-plus-half lattice HSz+%(t) and the last line is their sum HS(t). The palindromic numerator
terms Py (t) are given in Appendiz E of [2]. In the third column, we show the HWG in terms of
fugacities for su(2) and so(12) (denoted v and p1, ..., ue respectively). Note that we pick the branching
of ez — su(2) x 50(12) where (p1)e; = (Vi + V> + 12)su(2) xso(12)

Hilbert Series HWG
Paa (t)
(1 —2)11(1 — ¢4t PE [pat? + t2
HSz(t) +(p3q® + p3q 0 + paps )t
= 1+ 46t + 1278¢* 4 22254¢5 —p3pdts]

+270798¢% + 2491731¢'0 + O (¢'2)
32¢2 Pao(t)
(1—t2)11(1—t4)11 )
HSy, 1 (2) 9942 1 11524 + 21504¢6 (1aq® + £5)t2 PE[t2 + piot® + i3ttt + Latt]
= 321* 4+ 1152t + t
+267168t5 + 2477376¢10 + O (¢12)
(1 +¢%) Pao(t)

PE [pat® + t2

HS (¢ .
) +(pagq® + psq )1

=1+ 78t% + 2430t* + 437585
+537966t° + 4969107t + O (¢'2)

Figure 4.14: Hilbert series for the Eg magnetic quiver (B.6G). The first line of the table provides the
Hilbert series when the GNO magnetic lattice is integer HSz(t), the second line shows the sum over the
integers-plus-half lattice Hsz+%(t) and the last line is their sum HS(t). The palindromic numerator
terms Py(t) are given in Appendiz E of [2]. In the third column, we show the HWGSs in terms of
fugacities for s0(10) (denoted py, ..., us) and u(1) (denoted q). Note that the q-charge is normalized,

such that the branching of eg — $0(10) x u(1) is (16)es — a2 (11)s0(10) + 4 (14)so(10) T 7+
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Hilbert Series HWG
( 1+ 22¢2 + 245t% + 1442¢5 + 5355¢8 + 1297810 >
+21919¢12 + 25900t'4 + ... palindrome. .. 4 t?8 PE [,u,gt2 4 42

_42\7 _4+4\7 _
1Sz (1) == + (g + )t
= 1 + 29t + 434t* + 40605 + 27384¢% + + pgtt — pgt®]

1443121 + O (')
1602 ( 1+ 14¢% + 91#* + 336t° + 819¢% + 136210 )

+1618t'2 + ... palindrome. .. + t?*

,u4(q2 + i)152 PE [t2 + /Lgtz

_42)\7 _ 44\T 2
HSy 1 () (1 -7 -t y +qu2q4t4]
= 16t% + 336t* + 3584t5 + 25536¢% + 138432¢10 4 ¢ 4
O (t12)
( 1+ 30¢% + 2017 + 394¢° + 201¢% + 30¢70 + 12 )
(1 —£2)14(1 + 2)1 PE[,thQ—{—tQ
HS(t) 9 4 6 g + (M4q2 +
= 1 + 45t + 770t* + 7644t° + 52920t° + pag2)2]

282744t1° + O (%)

Figure 4.15: Hilbert series for the Es magnetic quiver (4.31). The first line of the table provides the

Hilbert series when the GNO magnetic lattice is integer HSz(t), the second line shows the sum over the

integers-plus-half lattice HS; 1 (t) and the last line is their sum HS(t). In the third column, we show the
2

HWG in terms of fugacities for s0(8) (denoted 1, ..., ps) and u(l) (denoted q). Note that the q-charge
is normalized, such that the branching of $0(10) — s0(8) xu(1) is (15)so(10) — @ (111)s0(s) 0~ (13 )s0(s)-

E4 quiver

For the exceptional theory of Fj, the algebra has the isomorphism ¢4 = su(5). Hence, we

expect to find a quiver whose Coulomb branch is the closure of the su(5) minimal nilpotent
—su(5)

orbit O Here, there is another novel feature in the quiver, the existence of a charge 2

hypermultiplet between the U(1) gauge group and the U(1) flavor group. The quiver takes the

form:

(4.32)

2 2 2

where the wiggly line represents the charge 2 hypermultiplet. The Hilbert series is given in

su(5)

Figure 4.16 and matches the moduli space of O along side with the Hilbert series for the

min

orbifold moduli space with global symmetry SO(6) x U(1) .
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Hilbert Series HWG
1+ 12t% + 58t% + 124t% + 170¢® + .. . palindrome.. . . t'®
(1 =)t (1 — ) PE [ 3t + 2 )
HS (¢ +o(u2¢0 4 M3y
Wl 1162+ 12000 1 56060 + 199565 + ) (2” i o)
582410 4+ O (t12) p st }
8t2(1 + 6t2 + 17t + 22t5 + 17t% + 6¢10 + ¢12) ,
(1= 2)4(1 — t4) (Mlq5 + %) PE [Ml#?ﬂfz +¢2
HS;, 1(2) Fu2q0 “—%t‘l]
= 8t% 4 80t* + 440¢% + 1680¢° + 515210 + O (12) ! a"
1+ 16t% + 36t + 16t° 4 £°
HS (1) (1—1t2)® PE [m5u3t2 + 21t2 \
= 1 4 24¢2 + 200t + 1000t5 + 3675t + +(p1q° + )82 — papst’
10976t'° + O (12)

Figure 4.16: Hilbert series for the E4 magnetic quiver (4.32). The first line of the table provides the

Hilbert series when the GNO magnetic lattice is integer HSz(t), the second line shows the sum over the

integers-plus-half lattice HS, 1 (t) and the last line is their sum HS(t). In the third column, we show the
2

HWG in terms of fugacities for su(4) (denoted pu1, ..., us3) and u(l) (denoted q). Note that the q-charge

is normalized, such that the branching of su(5) — su(4) x u(1) is (u1)su(s) — ¢ (11)su(a) + ¢ 2.

E5 quiver

For the exceptional theory of Ej, the algebra has the isomorphism es = su(3) x su(2).

The moduli space is a union of two hyper-Kéhler cones, the closure of the su(3) minimal

s5u(3) —su(2

nilpotent orbit O, ;" and the closure of the su(2) orbit Omin). We therefore expect two unitary-

5u(3)

orthosymplectic quivers whose Coulomb branches are the two cones. The quiver for O, ;" cone
1s:
1
) (4.33)
2

(2)

where the wiggly line is a charge 2 hypermultiplet and the 6111 cone is the Coulomb branch of

an SO(2) gauge theory with 1 flavor'”. The Hilbert series is given in Figure 4.17 and matches

s5u(3)

the moduli space of O along side with the Hilbert series for the orbifold moduli space with

global symmetry Spin(3) x U(1) .
As discussed in Section 4.6, the exceptional theories can arise as the infinite coupling limit

of the Higgs branch of certain 5d N = 1 theories. For the E3 quiver, this is the Higgs branch

TFor this quiver, the flavor is a usual charge 1 hypermultiplet and therefore one does not need to ungauge an
overall Z,. Only the integer lattice needs to be summed.
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of USp(2) gauge theory with 2 flavors at infinite coupling. At finite coupling, the two cones

“A50(4) ~ 7A5u(2) | A5u(2)

are the same and the moduli space is their union Op, 5 = uo where we recall that

min min

—Asu(2

O

s5u(3

S C?/Z,. At infinite coupling, one of the two cones is enhanced to O ) whereas the

min min

. —Asu(2)
other cone remains as O

min *

E5 and F, quivers

s5u(2)

For the E, theory, the moduli space is O, ;. U {ee} = C2/Z, U {ee} [100]. The discrete

min
moduli space {ee} is generated by the gaugino bilinear S and our quivers, which ultimately arise

from brane configurations, are insensitive to it. The moduli space for F; is simply 5511(2)

min = C2/ZQ'

Therefore, for both Es and E; theories, we find a unitary-orthosymplectic quiver that has the

moduli space C?/Z,:

(4.34)

1
where the wiggly line is a charge 2 hypermultiplet. The Hilbert series is given in Figure 4.18
alongside with the Hilbert series for the orbifold moduli space C?/Z, with global symmetry
U(1).

E, and E, quivers

In [100], we note two more members of the exceptional family: E; and E;. The moduli
space for E, is {ee} and is generated by nilpotent elements that our quivers are not sensitive to.

For E, the moduli space is trivial.

4.6 5d E, families

Based on our paper [2].
Next, the general exceptional sequences FE, for —oo < n < 8 are analysed. Here the

negative label n may come as a surprise, but it comes as a natural extension when one studies

147



CHAPTER 4. FIVE DIMENSIONAL SUSY GAUGE THEORIES

Hilbert Series HWG
1+ 2t% 4 6t + 2t5 + {8
HSy(¢) (1—t2)*(1+1¢2)2
= 1+4t* 4+ 15t* + 32¢° + 65¢® 4+ 108t'° + O (¢'?)
WA —t+ )1+t +1%)

PE[p?t? + ¢
+1%(¢% + o)t — 't

(1—2)4(1 + 2)2 ,u,(q3 + q%)tQ PE [MQtQ + t?
HS, 1 (1) 20,6 14 _ 2,4
2 +12(q° + )t — pPtt]
= 4% + 12¢" + 3215 4 60t + 108t 4 O (¢'?) !
1+ 482 +t1 s . o
- PE|p“t* 4+t
HS (1) (1-1)7 LA

+u(q® + )t — Pt

= 1+8t2+ 271+ 64¢° + 125¢5 + 21610 4 O (¢'?)

5u(3) e3

Figure 4.17: Hilbert series for the E3 magnetic quiver (4.33), representing the O,,;." cone in O,,. .

The first line of the table provides the Hilbert series when the GNO magnetic lattice is integer HSz(t),

the second line shows the sum over the integers-plus-half lattice HS,_ 1(t) and the last line is their sum
2

HS(t). In the third column, we show the HWG in terms of fugacities for su(2) (denoted p) and u(1)
(denoted q). Note that the q-charge is normalized, such that the branching of su(3) — su(2) x u(1) is

(11)su@z) — T (1)su2) + @72

USp(2k) gauge theories with N; fundamental flavours'®. The relation is n = Ny — 2k + 3. The
index n labels the moduli space global symmetry for £ = 1 and is then used to denote the entire
sequence. Within each fixed n sequence, the members are distinguished by the rank & of the 5d
N =1 electric gauge group together with the restriction Ny < 2k + 5 for the existence of a 5d

fixed point [123].

4.6.1 E, sequences of 5d N =1 theories (H = ker¢ = Z3"¥)

The 3d A = 4 Coulomb branch of the E,, unitary-orthosymplectic quivers (with H = Z3%)

is the 5d A/ = 1 Higgs branch of USp(2k) gauge theory with N; flavors at infinite gauge coupling

E,, unitary-
M2 ( QIk N.f> =% orthosymplectic | (4.35)
quivers

for n = Ny — 2k + 3. The respective magnetic quivers are shown in Figure 4.19. For the
E, sequences with n < 4, we observe charge two hypermultiplets transforming under the
bifundamental of a U(1) gauge group and a U(l + 1) flavor group, with | = k — L%J In fact, for

n < 4 one can divide the exceptional F, families into two groups, one for n even such that the

18The notation here is that k = N..
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Hilbert Series HWG

1+t
HSz(t) | (L2 +1%) PE[? + (¢* + Z)t* — ]
=1+2 43t +3t5 4+ 58+ 5t 10+ O (1)

2t
HSZ-{-%(t) (1 — t2)2(1 + t2) (q + )t2 PE [t2 (q4 4 q%l)t[l _ t4]
= 2% 4 2" 4+ 41° + 4% + 6t'° + O (+1?)

(1+¢%)
HS(t) (1—122) PE[t? + (¢* + )t* — 1]
= 1+3t2+5t* 4+ 75+ 913+ 11410+ O (¢12)

Figure 4.18: Hilbert series for the Ey magnetic quiver (4.34). The first line of the table provides the

Hilbert series when the GNO magnetic lattice is integer HSz(t), the second line shows the sum over the

integers-plus-half lattice HS, 1 (t) and the last line is their sum HS(t). In the third column, we show
2

the HWG in terms of fugacities for u(1) (denoted q). Note that the q-charge is normalized such that
the branching of su(2) — u(1) is (1)su(2) = gt +qh

moduli space is a single cone and one for n odd where the moduli space is a union of two cones.

E4 o family. For n even, the families are Ey, Fs, Fy, E_o, E_4, .... The parameter [, intro-

duced above, characterizes the group F4_o;, where [+1 is the number of charge 2 hypermultiplets.

E5_o family. Similarly, the group where n is odd consists of Es3, Fy, F_1, E_3,... and we can
characterize them by Fs_ 5. Again, the number of charge 2 hypermultiplets equals [ 4+ 1. The
Higgs branch of USp(2k) gauge group with 2k — 2[ flavors at finite gauge coupling is 05;23k2,4l)
This is known in the literature as very even D-type orbits and the space is the union of two
identical hyper-Kahler cones. Each cone is given by the Coulomb branch of the flavoured
orthosymplectic quiver in Figure 4.20. The intersection between both cones is non-trivial and
equals a nilpotent orbit of type OJ§21§k214l2) 447 In the infinite coupling limit, one of the two cones
gets enhanced and is given by the Coulomb branch of the unitary-orthosymplectic quiver listed

in the last row of Figure 4.19. Importantly, the intersection between the two cones at infinite

coupling is the same as the intersection at finite coupling.

4.6.2 Rank 0 limit

When k£ = 1, the quiver families return the E,, theories. If we go further down to k = 0,

the resulting theories become free. This is clear from the electric quiver where the Higgs branch
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at infinite gauge coupling consists of free hypermultiplets. We tabulate all the non-trivial £ = 0
cases in Figure 4.21. Due to the fact that the moduli space is H', for some [, the global symmetry
is enhanced to USp(2l). The branching rule of the enhanced global symmetry is also tabulated.

These can be viewed as 5d rank zero theories.

4.6.3 Global symmetry

By studying the different highest weight fugacities that appear in the HWG, we can
determine exactly the global symmetry group and not just its algebra by looking at the HWG.

These are provided in Figure 4.19 and 4.22.

4.6.4 Dimension of 3d N = 4 Higgs branch

We now turn our attention to the Higgs branch of the families of 3d A" = 4 unitary-
orthosymplectic magnetic quivers in Figure 4.19. The quaterionic dimension of the Higgs branch
of all the quivers in the families is k. This is not surprising, as they are magnetic quivers for a
5d theory with rank k gauge group. This offers another non-trivial check for the existence of

charge 2 hypermultiplets in £y o and E3_ o which gives the correct Higgs branch dimension.

4.6.5 FE, sequences of 5d N =1 theories (H = {1})

Now, we can investigate the orthosymplectic quivers of the E,, sequences where the discrete
group is H = {1}. The Coulomb branches here are Z, orbifolds of those in Figure 4.19. The
HWGy of the orbifolds are easily obtained with the Zs action —1 on the spinors. The results

are tabulated in Figure 4.22.
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Figure 4.19: The unitary-orthosymplectic E,, families. The discrete group here is chosen to be H = ker¢ = Zdlag. We also provide the Hilbert series

in the form of Highest Weight Generating (HWG) functions where p;, v and q are the Dynkin fugacities of the (non-exceptional) global symmetry. In
the second row, the Za acts as —1 simultaneously on v and pogr4. The wiggly line represents a hypermultiplet of charge 2. The last two rows are the
E, o1 and E3_o(larger cone) families.

SHIMOHH.L DNV ASNS TVNOISNHINIA HAIA 7 HHLAVHD



CHAPTER 4. FIVE DIMENSIONAL SUSY GAUGE THEORIES

. : . Global
Family Orthosymplectic Quiver Symmetry PLHWG]
5 2 Rzl
321 oo FL - @@ | SO(4k — 4l) 2 it +
(smaller cone) 2 2 2k — 2 2 2 2 (2k—21
2k —20—2 2k—20—-2 Hap_21—1

Figure 4.20: The smaller cone of the Es_o family along with the global symmetry and HWG. The
HWG contains the spinor fugacity psx—oj—1 because the larger cone in Figure 4.19 contains the other
spinor fugacity pok—o1. This originates from the finite coupling case where the two cones are the same,
but the HWG for each of them carries one of the two spinor fugacities. Their union then contains both
spinors fugacities and the intersection contains neither spinors.
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. . . Global Hilbert )
Family k = 0 Orthosymplectic Quiver Symmetry Series Branching rules
2 1 [17 07 s 7O]u5p(32) -
Fg Q—.—H—I—.—.—.—. USp(32) (D
2 2 4 4 6 4 4 2 2 [07 07 07 07 O, 1]50(12)
2
9 1 [17 07 s ’O]usp(16) -
E5 USp(16) (1—1)i6
[07 0,0,1; 1]50(8)><5u(2)
2 2 4 2 2
! 1 [1707070]115;3(8) —
E6 USp(S) (1 _ t)S 1
2 2 2 (q[O, 1, O} + 5[07 0, 1})50(6)><u(1)
1
1 [L 0]u5p(4) -
ES USp(4) (1 _ t)4 1
2 (q + 6)[1]5u(2)><u(1)
1
1 ..
E, E USp(2) =L Trivial
1
1
1 . .
Es i USp(2) =E Trivial

1

Figure 4.21: The k = 0 limit of the family of E,, quivers in Figure 4.19. The choice of discrete group
is H = 7Zo. Forn < 3, the k = 0 limit is trivial. The last column lists the branching rules for the
fundamental representation of the USp global symmetry group of the free theory to the global symmetry
group in the k = 0 limit of Figure 4.19. Note the nice pattern of power of 2.
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Figure 4.22: The unitary-orthosymplectic E,, families. The discrete group here is chosen to be H = {1}. The Coulomb branches are Zo orbifolds
of those in Figure 4.19. We also provide the Hilbert series in the form of Highest Weight Generating (HWG) functions where p;, v and q are the
Dynkin fugacities of the (non-exceptional) global symmetry. The wiggly line represents a hypermultiplet of charge 2. The last two rows are the Ey_o

and Es_oi(larger cone) families.
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Duality between unitary and unitary-orthosymplectic magnetic quivers

Based on our work in [4]

For SQCD theories with Sp(N.) gauge group and non-trivial 5d fixed point, they each have
two equivalent choices of magnetic quivers: an unitary quiver and an unitary-orthosymplectic
quiver. The unitary quivers coincide with those in the fourth region in section 4.1 with
|k| = N, — % + 2 and are listed in Table 4.7. The unitary-orthosymplectic quivers are those we
just covered in the E, families. This phenomenon occurs due to a duality between SU(N, + 1)
theory with Ny flavors and k = N, + 3 — N;/2 and Sp(N,.) theory with N, flavors at the 5d
UV fixed point [17]. In terms of brane systems, the unitary quivers can be obtained using O7
planes as outlined in [3] and orthosymplectic quivers obtained using O5 planes as previously
demonstrated in section 3.3.3. As a result, the Higgs branches of the two theories at the fixed
point, and subsequently the Coulomb branch of the magnetic quivers, are the same. The two
sets of magnetic quivers are given in Table 4.9.

Surprisingly, we found in [4] that the two sets of magnetic quivers agree more than just
their 3d N' = 4 Coulomb branch. In fact, the 3d N/ = 4 Higgs branch are the same as well. For
example, both the unitary and the orthosymplectic Higgs branch of the Eg quiver are C?/T'g,.
Also, the superconformal indices which we computed for N, = 1 cases are shown to match as
well (perturbatively up to the order we were able to compute). The details are in Appendix B.

In addition, we also computed expectation values of extended objects such as Wilson lines
using the topologically twisted indices. To be exact, these are twisted partition functions on
S x S? with a topological twist along the S%. A topological twist with the Cartan subgroup of
SU(2)g leads to an A-twisted index whereas a twist in the Cartan subgroup of SU(2), leads
to the B-twisted index. As a reminder, these are subgroups of our 3d N' = 4 R-symmetry
group SU(2) x SU(2)g. It was conjectured in [124] that the A twisted index and B-twisted
index computes the 3d N’ = 4 Coulomb branch Hilbert series and Higgs branch Hilbert series
respectively. For A-twisted index, one can employ techniques such as Bethe Ansatz summation
[125, 124], which we show to be consistent with computation from the monopole formula for
some SQED theories in [4]. For B-twisted index, the general formula applies to twisted functions

for S* x ¥ for some 2d Riemann surface, whereas the case of ¥ = 52, the twisted index is
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identical to our Molien-Weyl formula.
With the B-twisted index, we can also compute expectation value of the Wilson lines. The

B-twisted index with inclusion of Wilson lines is given as:

]{ 11 |Wic\ [QW] ve(2) 1] Zha() W(2) (4.36)

gauge maftter

where the contributions from a vector multiplet and a chiral multiplet are

ZB () =(t—t )M T (-2 (t -2t (4.37a)
aEA
z%t%
Zchlral( ) - H 1 — swt . (437b)
weR

We were able to find a non-trivial matching between the Wilson lines on the unitary quiver
and their unitary-orthosymplectic counterparts. The results of the matching and the twisted
indices are given in [4]. Another interesting detail is that when H = {1} for unframed/flavorless
orthosymplectic quivers, we find that the expectation value of Wilson lines vanishes. This is
consistent with known results that the presence of a Zy one-form symmetry means Wilson lines
in the fundamental representation will vanish. This shows the Zs subgroup we quotient from
the orthosymplectic quivers is indeed the one-form symmetry. This is an interesting find since
the Higgs branch Hilbert series is insensitive to the (Zs3)diag subgroup and will return the same
Hilbert series whether or not it is quotiented out. On the other hand, the B-twisted index for
Wilson lines are sensitive to this discrete group. This adds to our arsenal of tools that will help
us explore how discrete subgroups in gauge/global symmetries affect the moduli spaces of gauge
theories.

This duality offers a rich connection between unitary and orthosymplectic quivers. For
example, certain computations are much simpler when performed on orthosymplectic quivers
than their unitary counterparts. On the other hand Hilbert series refinement, which is notoriously
difficult for orthosymplectic quivers, is straightforward for unitary ones. One possible extension
in the future is to see if certain properties that are hidden in the unitary quiver of well known

theories (such as the £, Dynkin quivers) can be made apparent from their orthosymplectic
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counterparts. For instance, there is always a Zy outer automorphism for the E,, orthosymplectic
quivers but not present in the unitary ones. This useful property will make an appearance in a

later section.

4.7 Product theories and Forked quivers
(Sp(N.) SQCD theories)®

Based on our paper [5]

Another interesting phenomenon that arises for orthosymplectic quivers is that the Coulomb
branch of a single quiver can be the product of two moduli spaces. This multiplicity was first
observed in class S theories in [114] and further studied in [126, 127, 128]. In the context of
magnetic quivers of 5d theories, this was later studied in [106]. Following these results, we
discovered in [5] that a unique feature of orthosymplectic quivers that exhibits such products is
a balanced subset of nodes that forms a fork.

In a forked quiver'®, the set of gauge nodes are arranged in the shape of a D-type Dynkin
diagram. Forked quivers are non-linear quivers in the sense that the gauge groups are not
arranged in a single line. This is in contrast to the ABC-type orthosymplectic quivers, which are
a linear chain of gauge nodes. The Coulomb branch global symmetry of forked orthosymplectic
quivers has been conjectured in [62, Sec. 7.4]: For a balanced fork composed of m gauge nodes

(i.e. all gauge nodes are balanced)

Gglobal = SO(m) X SO(m) > T w (438)
m—2

the global symmetry is a product. If there is a balanced SO(2) gauge node, then the global

symmetry is enhanced to SO(m + 1) x SO(m + 1). This is verified through explicit Hilbert
series computations for multiple examples, and the rule (4.38) remains the same regardless of

the rank of the gauge groups as long as they are balanced. Even if the tail begins with Sp gauge

9This term is first used in [129].
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group or if the two bifurcated nodes are SO gauge groups, the global symmetry remains the
same. Furthermore, for unframed forked quivers, the integer-plus-half contributions can further
enhance the global symmetry such as to exceptional symmetries as we will see.

In order for the Coulomb branch of a quiver to be a product of Coulomb branches of two
theories, the global symmetry must be the product of (at least) two non-Abelian groups. This

allows to argue that quivers with such a feature are natural candidates for product theories.

E, x E, family

In [5], we list all possible orthosymplectic quivers with a balanced fork that satisfies a set
of conditions. Amongst them, are magnetic quivers of products of 5d SCFTs which we will now

discuss.

Product of rank 1 theories. The E, x E, orthosymplectic quivers whose Coulomb branches
are the product of two minimal nilpotent orbit closures of ¢, are displayed in Table 4.10. For
these quivers, integer-plus-half contributions enhances the Coulomb branch global symmetry.
When this enhancement happens, (4.38) no longer predicts the correct global symmetry and
explicit Hilbert series computations are required. For 4 < n < 8, the Coulomb branch Hilbert
series are computed and, upon taking the square root, are compared with the known Hilbert
series of @:fin. Details are provided in Table B.36.

For the n = 6,7,8 cases of Table 4.10, the orthosymplectic quivers can be understood
as class S theories with untwisted D4, Ds, and D; punctures, respectively. For n = 6, the
Eg x Eg orthosymplectic quiver already appeared in [19]. For n = 7, the orthosymplectic quiver

is derived in [106] using brane webs and O5 planes.

General product families. In the previous section, the E, orthosymplectic quivers have
been extended to infinite families for each n. The orthosymplectic quivers in Table 4.10 can
be extended in a similar fashion to the infinite families shown in Table 4.11. These magnetic
quivers describe the Higgs branches of two copies of 5d N =1 Sp(k) SQCD theories at the UV
fix point, see Section 4.7. For n < 8 and small k£, Coulomb branch Hilbert series have been

computed, see Table B.36, and compared against the results (after taking their products) in
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[2]. Also, the Coulomb branch dimension, computed directly from the quiver, is compared and
agreement is found for all the infinite sequences.

The dashed line here represents fundamental-fundamental hypermultiplets which have been
introduced in [105]. The appearing 5d ' =1 SQCD theories exhaust all Sp(m) gauge theories

with the allowed range 0 < Ny < 2m + 5 of fundamental flavours, with m > 1.

5 branes with O5-O7-ON planes

One can also construct the brane systems for these 5d product theories. It has been shown
in [62] that for 3d gauge theories, an intersection of O3 and O5 plane will also generate an
ON plane [39] (which is the S-dual of an O5 plane). We can apply the same idea to 5d brane
webs where the orientifolds are now an O5 and O7 plane with an ON at the intersection. The
results are detailed in [5] and from the brane webs one can straight away read off the forked
orthosymplectic magnetic quivers. There, we also discussed how the product structure arises in

the brane webs.
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Table 4.9: Magnetic quivers at infinite coupling. The 5d N = 1 duality between “Theory SU” and
“Theory Sp” has been observed in [17], also [18]. The wiggly link denotes a charge 2 hypermultiplet. The
“Magnetic quiver OSp” and “Magnetic Quiver U” are obtained in [3]. For k =0, the moduli spaces are
free hypermultiplets transforming as spinors of the global symmetry. The “Magnetic quiver OSp” for

Eg 76 can be obtained from class S [19, 20].

Family ‘ Theory SU ‘ Theory Sp ‘ Magnetic quiver U Magnetic quiver OSp
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Table 4.10: The Coulomb branches of orthosymplectic quivers are products of two copies of the
minimal nilpotent orbits closures of exceptional algebras ¢, for n =4,...,8. The numbers coloured in
red represent gauge nodes that are overbalanced.

Orthosymplectic quiver Coulomb branch
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min min

“A¢6 “A%6
Omin X Omin

—=50(10)  —=s0(10)

O X Omin

min

51(5)

— 5u(5)
i Omin

x O

min

161



CHAPTER 4. FIVE DIMENSIONAL SUSY GAUGE THEORIES

Table 4.11: The extended infinite families of the orthosymplectic quivers in Table 4.10. The Coulomb
branch of the forked orthosymplectic quivers on the left are the same as the Coulomb branch of product
theories on the right. The numbers coloured in red represent gauge nodes that are overbalanced.
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Chapter 5

Four dimensional gauge theories

In this chapter we look at 4d N' = 2 gauge theories, with a particular focus on SCFTs.
Since we are living in a four dimensional universe, 4d gauge theories had always received more
attention than theories in other dimensions. The usual approach to these theories is to study
the Lagrangian in the UV and flow to a strongly coupled fixed point in the IR. However, most
4d theories at the superconformal fixed point do not have Lagrangian descriptions and they
often lack a weakly coupled description as well. In this section, we will see examples of such
theories and outline how we can nevertheless extract the corresponding magnetic quivers.

The simplest 4d N = 2 SCFTs are SU(N.) gauge theories with Ny = 2N,. Here, the
beta function vanishes and we have a superconformal fix point. The theory has a Lagrangian
description and their Higgs branches are hyperKahler quotients. The geometry of the Higgs
branches are known as height two nilpotent orbit closures of su(2N.). However, unlike in
d = 3,5,6, many of the known 4d SCFTs are non-Lagrangian and do not have a known
effective quiver description. Examples include Argyres-Douglas theories, class S theories, S-folds
etc. 1 On the other hand, the lack of Lagrangian descriptions did not deter the progress in
understanding these SCFTs. Many powerful tools were developed to analyse these theories
including studying the Coulomb branch using Seiberg-Witten curves and counting the spectrum

of operators according to their scaling dimension. Another powerful tool is the superconformal

LOf course, some of these theories do have Lagrangian descriptions. In particular, some families of Argyres-
Douglas theories were shown to be described by quiver gauge theories with mixed unitary and special unitary
gauge groups.
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index which is a trace over the states in an SCFT in radial quantization. Furthermore, special
limits to the superconformal index such as the Macdonald index, Hall-Littlewood index and
Schur index are important on their own right, each computing a different spectrum of operators.
In particular, the Schur index allows one to study the vertex operator algebra (VOA) associated
with the SCFT. And, in some special cases such as class S theories with zero genus, the
Hall-Littlewood index also returns the Higgs branch Hilbert series which allows one to study
the chiral ring. These are of course only some of the tools used to study these theories, others
include compactification from 5d and 6d theories that we have more control over (for example
whats known in the literature as geometric engineering). Furthermore, one can compute and
match anomaly polynomials associated with the t"Hooft and Weyl anomalies in the theory that
are invariant under RG flows.

Over the decades, there were many papers written on the Coulomb branch of 4d SCFTs
whilst their Higgs branches were less frequented. This is unfortunate since the Higgs branch
is a very interesting object and has a rich structure as well (arguably much richer since the
geometry is hyperKéahler and their chiral ring are almost never freely generated). The lack of
study can be attributed to the absence of a hyperKéhler quotient construction since most of the
theories are non-Lagrangian. This again demonstrates the importance of the magnetic quiver as
they will help us crack open the Higgs branch of these SCFTs. The obvious question is then:
how do we construct such magnetic quivers?

This chapter is broken into two parts. The first part concerns magnetic quivers of rank one
4d SCFTs that were obtained through a) Bottom-Up approach as described in the previous
chapter and b) from folding magnetic quivers of 5d SCFTs. These magnetic quivers are then
generalized to infinite families. The second part focuses on the magnetic quiver of S-fold

theories.

5.1 Rank one 4d N =2 SCFTs

Based on our paper [6]

It had been conjectured that rank zero 4d N'=2 SCFTs do not exist [66], so the simplest
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theories we will start with are rank one SCFTs. Rank one here meaning the 4d Coulomb
branch has one complex dimension. Recently, there has been attempts [66, 130, 131, 132] to
classify all possible 4d rank one SCFTs. Some on the list are theories we are already familiar
with such as SU(2) with 4 flavors and FEg 73 Minahan-Nemeschansky theories [133]. The Higgs
branches of these theories are well known and the corresponding magnetic quivers are Dy,
Fg 7s affine Dynkin quivers with unitary gauge nodes respectively. There are also the rank
one Argyres-Douglas theories labelled by the global symmetry Ag, A, Ay [73] whose 3d mirrors
can be constructed using class S techniques [134]. Others on the list are less familiar and are
labelled by the Higgs branch global symmetry Gg. A brief introduction to these theories is
given in Appendix C.

The classification gives a list of 17 rank 1 N' =2 SCFTs (not counting IR-free theories).
The list of 17 SCFTs is presented in the right part of Table 5.1. Alternatively, the theories can
be obtained from Z; N = 2 S-fold constructions [135], from the compactification of (1,0) 6d
SCFTs with non-trivial global symmetry background [136], or from Z; twisted compactification

from 5d /=1 SCFTs, as explained in more detail in Section 5.13.

5.1.1 Magnetic quivers

In this section, the magnetic quivers Q of the 4d N’ = 2 rank 1 SCFTs are presented. The
3d N = 4 Coulomb branches of the magnetic quivers are equal to the Higgs branches of the
rank 1 SCFTs. Out of the 17 rank one theories, the magnetic quivers for 11 of them are already
known in the literature. This section serves to present the magnetic quivers for the remaining
6 as given in Table 5.8. These magnetic quivers are all unframed/flavorless non-simply laced
unitary quivers. Being unframed/flavorless means an overall U(1) gauge group needs to be
decoupled from the magnetic quiver as usual. However, since the theory is non-simply laced,
the resulting Coulomb branch will actually be different depending on whether we ungauge the
U(1) on a long node or short node (in the sense of long and short roots in Lie algebra). Long
nodes are the ones on the side where the non-simply laced edge points away from and short
nodes are the ones pointed towards at. For non-simply laced unitary quivers, we will always

ungauge on a long node. Ungauging on the short node does not give the right answer and one
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Table 5.1: Left: List of the seven singular Coulomb branch geometries at rank 1. These are freely
generated, and [u] is the scaling dimension of the generator. Right: List of Jd N =2 rank 1 SCFTs
(IR-free theories are omitted). Each entry represents one theory, labeled by its flavor symmetry. In
the rest of the paper, for conciseness we ignore the discrete Zs in the naming of the theories. The
symbol x5 signals the existence of a chiral deformation parameter of scaling dimension §. The magnetic
quivers for the theories of the Zj, column involve k-laced edges. The theory in blue is N' = 4 SYM with
gauge group SU(2). Theories in green are N = 3 S-fold theories [21].

Geometry K [u] H YA Ziy Zs Zy ZLg
17 6 Ey Cs As X7y Ay X 7o
IIr* 4 Er C3A1 AUy X Zo
A% 3 Eg CyUy 0
I 2 || Dsxo  Cixo
v % AQX%

11 1 A
17 g X4

can even argue whether it makes sense?. The gauge node we choose to ungauge is indicated by
a squircle (which is a gauge node inside a box). We indicate these features on the magnetic
quiver of the rank one Cj theory:

‘Squircle’ indicating the node
Non-simply laced edge we ungauge an overall U(1)

\

4 5 2

Ve

Short nodes Long nodes (5.1)

As shown in [137], ungauging on any long node will give the same Coulomb branch. Since we
always ungauge on a long node and those ungaugings always give the same result, later on in

the chapter we will drop the squircle notation with the ungauging implied.

2This was investigated in great detail in [137]. There is an exception of ungauging the U(1) gauge node on
the short side, thus turning it into a flavor node. Such an operation gives reasonable Coulomb branches because
this phenomenon can be equivalently obtained from ungauging a long U(1) node of a different quiver. This is
explored in Section 5.2.2. However, it is not clear if ungauging the U(1) on a non-Abelian node on the short side
makes sense.
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Bottom-Up approach

As discussed in the last chapter, the Bottom-Up approach is a very useful technique in
obtaining magnetic quivers. It basically use properties that you know from the parent theory
to constrain the structure of the magnetic quiver. For instance, a (), Higgs branch global
symmetry of the 4d SCFT means the magnetic quiver needs to have a balanced subquiver
with a non-simply laced edge of multiplicity two so that it takes the form of a C-type Dynkin
diagram. For A, global symmetry one can either look at simply-laced quivers that take the
shape of A-type Dynkin diagram, or at non-simply laced quivers which takes the form of twisted
A-type Dynkin diagrams. As it turns out, twisted A-type and D-type Dynkin diagrams make a
prominent appearance as subdiagrams of the magnetic quivers of 4d SCFTs. At first sight, the
inclusion of twisted Dynkin quivers might make things more complicated as it increases the
possible structures that the magnetic quiver can have. However, as all the rank one theories can
be obtained using Z; S fold constructions, we already know that these magnetic quivers contain
at least one non-simply laced edge with Z; multiplicity. The discrete group Z, associated with
each theory is given in Table 5.8. This puts a severe constraint on the shape of our magnetic
quiver.

On top of that, the Higgs branch dimension of the 4d SCFTs were already known in [131],
allowing for a restriction on possible ranks of the gauge groups in the magnetic quiver. Once a
candidate has been conjectured, we can quickly compute the Coulomb branch Hilbert series
and determine the set of generators of the chiral ring. This can then be compared with [136]
where the scaling dimension of the Higgs branch chiral ring generators of some of the 4d SCFTs
are listed. As it turns out, applying all the constraints above allows us to uniquely identify the
magnetic quivers for the rank one 4d SCFTs.

In addition to the Bottom-Up approach above, the magnetic quivers of the 4d N” = 2 theories
in question can also be obtained from magnetic quivers of 5d N’ = 1 theories compactified with
a Zy, twist. In this case one starts with the magnetic quiver )’ of the 5d theory, which contains
k identical simply-laced legs, and obtains the magnetic quiver @) of the 4d N = 2 theory by
folding the k legs of Q"
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Table 5.2: The magnetic quivers of 4d N = 2 rank 1 theories with enhanced Coulomb branches (labeled
by their global symmetry).

Rank 1 SCFT Magnetic quiver

Cs o—O—C :éD:
Cs % A, O—O=E0-0==0

ijl
CQXUl ; 5 .

A2 1 2 3

where Fj is the action of folding £k identical legs. Remarkably, most of the 5d theories in question
are all well known, simple theories. In some cases, the 5d origin of the 4d theories are already
known [138]. However, this is not known for all the rank one theories. Therefore, we still need
to rely on the bottom-up approach to fill in the blanks. Once the magnetic quivers that satisfy
all the constraints are constructed, one can then ‘unfold’ them to see which magnetic quiver of

5d theories do they originate from.

Hilbert series and chiral ring. The Coulomb branch Hilbert series and refined plethystic
logarithm (PL) of @ are given in Table 5.3. The refined PL encodes information on the generators
of the chiral ring and their relations [51]. The first few positive terms are representations of
the generators whereas the first few negative terms are the representations of the relations.
Higher order terms are often higher syzygies. The terms at order ¢? transform in the adjoint
representations of the global symmetry group [139].

The Cs, C5 x A, and Oy x U; magnetic quivers can be derived from 5d N' = 1 SQCD
magnetic quivers )’ through folding [22], as detailed in Section 5.13 below. Therefore, one can
expect that the highest order relations exist at order t*2# where Ap = 3/2 is the conformal
dimension of the baryonic/instanton generators, see for example [22, Sec. 2.2]. As a result, there

should be no relations beyond t°. This is consistent with the fact that there are no negative
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Table 5.3: Higgs branch Hilbert series of the 4d N =2 SCFTs (labeled by their global symmetry) as
well as the refined plethystic logarithm (PL).

P;zéllf,rl Hilbert series Refined PL[HS]
1+ 2t + 40t + 1943 + 1007t* + 4704t5 + 18683t% + 67030t7 + 2207008 + 657352t + 1796735¢1°
+4540442¢11 + 10610604¢12 + 23011366t1% + 46535540¢1* -+ 87887734¢1° + 155277056¢16 t2 1 [20000)
+257288236¢17 + 400453203¢13 + 585971786119 + 807195575¢20 + 1047954388t%! 3. [00001]
+1282842123t22 + 14814628861%% + 1615002952¢%* + 1662191888¢2° + - - - palindrome - - - + t°0 4 :
G (11021 +)B(1 +t +12)16 . 7{01000}
t° : —[10010
t6 : —[00200] — [20000] 4 [01000)
t2 : [000; 2] + [200; 0
1+ 2t + 17t 4 66> + 2054 + 572t° + 14156 + 2914¢7 + 5368¢° + 8874t + 12992¢1° 3. [ ! ]+ [200:0]
( +16856t11 4 19865¢12 + 21032t + 19865¢14 + 16856¢15 + 12992¢16 + 8874117 4 5368¢'8 ) % : [001; 2]
Cax A +2914¢19 + 1415t20 + 572621 + 205¢22 + 6623 + 1724 + 2425 + 126 t* = —[000; 0] — [010; 0]
37 (—1+ )61+ £)10(1 + ¢ + £2)8 5 : —[001; 2] — [001;0] — [110;2]
t6 1 —[000; 2] — [002; 0] — [020; 2]
— [200; 4] — [200; 0] + [010; 0]
t2 1 [00] + [20]
22 (1/q +q)[01]
Co x U (142t +8t2 +206% + 4161 + 625 + 8716 + 96t7 + 87¢% + 629 + 41410 + 2011 4 8¢12 4 2¢1% 414 ) 4. —[00] — [01]
X - -
2o 1T+ 08+ 051+t +2)8 £+ —(q+1/q)([01] + [20])
0 —(1+¢* +1/¢*)[00] + [01]
—[02] — [20]
2 : [101]
3 : [003] + [300]
t4: [030]
1 — ¢+ 1062 + 23t3 + 67t + 190t° + 5256 + 10537 + 22928 + 4167¢° + 729910 5. —[011] — [110]
( 11494211 17114;1‘2 + 23080t +29925¢1* + 35107¢15 ) 6 : —[000]—[022]—[101]—[111]—[202]
A +39221¢16 4 40320¢'7 + - - - palindrome + - - - + ¢34 [220]
3 _ 18 10 2)5 2)7 -
(=1+ B+ 801 +£2)°(1 + ¢+ ¢2) 7+ [001] — [003] + [100] — [112] — [122]
— [211] — [221] — [300]
8 : —[000]+[002]+[012]—[020]+[022]
—[040]+2[101] 4 [103]4-2[111] +[200]
+ [210] + [220] — [222] + [301]
21 2] +[0]
3 (g+1/9)[3
th qu + {/31[2)][0]
(1=t +t2)(1 + 262 + 4¢3 + 4t + 465 + 245 +18) 5.
Ay x U SRR e awE 2 =(g+1/9)1
(L +1)2(L+ ¢ +12) (95 —[0] = (14+1/g +0)[2] — [4
2 —(g+ )
5[0+ (2+ > + 3)[2] + [4]
q
22 [11]
4,
A (1432 4 31¢% + 5510 + 156t + 132610 + 156¢12 + 55¢14 4 31¢16 4 3¢18 4420 ) I;G ) [0?1]2'5' [4?2}1]
2 — 10 10 25 e
(1401 + )01 +#) 5+ —[00] + [01] — [04] + [10] — [11]
— [22] — [24] — [33] — [40] — [42]

terms in the PL at order t* and t®. At higher orders, negative terms re-emerge in the form of
higher syzygies, i.e. relations between relations [51]. As a result, for these three families, all the
generators and relations can be seen in Table 5.3.

In contrast, the As, A; x Uy, and A, rank 1 SCFTs originate from folding more complicated
magnetic quivers. For example, the A3 magnetic quiver comes from the folding of the T} theory
which has a diverse set of chiral ring relations [140]. Therefore, only some of the relations (up

to %) are listed in Table 5.3.
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5.1.2 (5 rank 1 SCFT

The global symmetry for this theory is C, the dimension of the Higgs branch is 16, and
there is a generator of the chiral ring at [00001]¢, and scaling dimension 3/2. These facts lead
to a guess for a magnetic quiver among the minimally unbalanced quivers of [141], where the
unbalanced node is attached to the last node. We recall that for a (not necessarily simply laced)
unitary quiver, the imbalance e of a given node is defined as the number of hypers attached to
that node, minus twice the rank of the gauge group. In case that the gauge node is on the long
side of a non simply laced edge, the number of hypers for that edge is counted with multiplicity.
Nodes with e = 0 are said to be balanced.

Luckily, the dimension of this moduli space is indeed 16 and the imbalance indeed leads
to a scaling dimension 3/2. As a general rule [22], a node with imbalance e gives rise to an
operator with SU(2)g spin 14 § which transforms in a representation of the global symmetry
given by the balanced node to which it is attached (the balanced nodes forming the Dynkin
diagram of the non-Abelian part of the global symmetry). This corresponds to an operator of
conformal dimension 2+ e in 4d. The Hilbert series for the C5 theory, see Table 5.3, is consistent
with the prediction in [136, Sec. 2.1] obtained by compactifying on a torus with a non-trivial
flavour background of the 6d N' = (1,0) SCFT, which is the UV completion of an SU(2) gauge

theory with 10 flavours.

5.1.3 (3 x A; rank 1 SCFT

The computation in Table 5.3 agrees with the Hilbert series computation in [138, Eq. (40)].
The approach is as follows: The Higgs branches of the 5d N’ = 1 theories T, and T3 have a
Zo symmetry that we can twist by. Both of the resulting Higgs branches, T2Z gristed and ng ?med,
have an SU(2) isometry subgroup. Hence, the diagonal SU(2) can be gauged such that the

fwisted Ziwisted

resulting Higgs branch, T2Z 2 Xsu2) 13 , becomes the Higgs branch of the C's x A; rank 1

SCFT. Consequently, the Higgs branch is given by the hyper-Kéhler quotient

1 (Cy x A, SCFT) = (’H (T2Z5W“°ed) x H (wa“‘» 1//SU(2). (5.3)
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One can equivalently perform this gauging process from the point of view of magnetic quivers.

The F>, folding of the magnetic quivers for the 5d N/ = 1 theories T and T3 proceeds as follows:

T, Ty 1
1 2
C A i ol H4 C =0
O—O—CO—0O——0O min
1 2 3 2 1

1 2 1
(5.4)

F2 J2
c| 00 -mw ¢ O—O0—10—0 |=0k,
1 2 1> 1 2 3 2 1 >

The folded theories, with the U(1) ungauged on a long node, have Coulomb branches H?
with Sp(3) global symmetry and the closure of the minimal nilpotent orbit of Fj respectively.
Following the prescription in [86], the gauging of an SU(2) subgroup of the Coulomb branch

global symmetry of the two magnetic quivers is performed as follows:

SU(2) SU(2
1

)
12 12 3 2 1

auge SU(2)

c 03%0—{};:(%() = H(Cs x A; SCFT)

which provides the magnetic quiver of the C3 x A; theory.
In the magnetic quiver of the C5 x A; theory, the U(2) node on the long side is the only
one which is not balanced. The imbalance is e = 1, corresponding to an operator at SU(2)g

spin 3/2 transforming in the adjoint of A; and in the representation [001] of C5. This operator
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can be read in the HWG given in Table 5.5. It is straightforward to make similar comments for

all the other quivers appearing in the next subsections.

5.1.4 (9 xU; rank 1 SCFT

For this case we note that the global symmetry is Cy x U; and there is a simple way of
getting the magnetic quiver by attaching two nodes of U(1) to the Cy quiver as in Table 5.8.
Nicely enough this guess verifies that the dimension is 4 and the two generators in the chiral
ring are in [01]¢, with scaling dimension 3/2 and U(1) charges £1, respectively. The Hilbert
series results of Table 5.3 agree with [142, Sec. 3.3] which obtain the rank 1 theory as the
class S theory of a sphere with a minimal untwisted As puncture and two maximal twisted A,

punctures connected with a cylinder with a Z, twist line.

5.1.5 Asrank 1 SCFT

For this case, the global symmetry and the Z3 twist lead to a very natural guess of folding
a theory that has an SU(4)? global symmetry. There is a very natural candidate for such a
theory. The so called T} theory. This leads to the guess as in Table 5.8. This guess is verified
by a set of consistency checks like the dimension of the Higgs branch, the generators in the
chiral ring, etc. The Hilbert series in Table 5.3 is consistent with the prediction of [143, Eq.
5.7] obtained by a class S construction of compactifying a Zj twisted D4 theory. Moreover, the
result also agrees with the prediction in [136, Sec. 2.2] obtained by compactifying on a torus
with a non-trivial flavour background of the 6d N = (1,0) SCFT, which is the UV completion

of an SU(3) gauge theory with 12 flavours.

5.1.6 Al X Ul rank 1 SCFT

The global symmetry of the Coulomb branch of a quiver can be read from the balance of
its nodes. The low rank of the global symmetry for this SCF'T places a very strong restriction
on the form of the quiver. The twist is Z3, implying that there should be a triply-laced edge.

These conditions make the magnetic quiver in Table 5.8 a very natural guess.
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In addition, we also conjecture an explicit construction of the Higgs branch using a hyper-
Kahler quotient. We check that these two independent descriptions of the Higgs branch are
consistent, by computing the Hilbert series in both cases and find perfect agreement.

The Higgs branch of the A; x U; SCFT is conjectured to be given by the hyper-Kahler

quotient:
(A, x U, SCFT) = (@2;“ x H? x C2 /ZQ> /1]/SU(2). (5.6)

Explicitly, we first take the refined Hilbert series HS@‘S;“ (21, z2,t), where xq, x9 are the fundamen-
tal weight fugacities of G5 and decompose it with respect to the branching Gy — SU(2) x SU(2).
The resulting Hilbert series is HS@'S;“ (y,z,t) where y and z are the weight fugacities of
SU(2) x SU(2) and is given in [144, Tab. 10]. The H? theory can be described by the Higgs
branch of [SU(2)] — [02] with Hilbert series HSg2(z2, ¢, t), where z is the fugacity for SU(2) and

q is the fugacity for O(2). The hyper-Kéhler quotient then takes the form:

HSA1><U1 (ya q, t) = %

d,uSU(Q)HS@gin (ya 2, t)HSHQ (Za q, t)HS(Cz/Zz (27 t)
SU(2) 2

(1= 2% (1 — %ﬂ) (1—1?) o

which is consistent with the result in Table 5.3. Following an analogous gluing process in (5.5),

one would expect:

52? H? C*/Zy

-— (5.8)

h Gauge SU(2)

1 2 1

Although exactly how to do this gluing process as an action on magnetic quivers is unclear.
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5.1.7 A; rank 1 SCFT

For this case we repeat the guess which is made for the A3 theory, with adaptation of the
details. The twist is Z4, implying that there should be 4 identical legs, each with an SU(3)
global symmetry. Folding this quiver leads to the magnetic quiver in Table 5.8. The Hilbert
series results of Table 5.3 are consistent with the prediction in [136, Sec. 2.3] obtained by
compactifying on a torus with a non-trivial flavor background of the 6d N = (1,0) SCFT,
which is the UV completion of an SU(4) gauge theory with 12 flavours in the fundamental

representation and one flavour in the antisymmetric representation.

5.1.8 H/Z; rank 1 SCFTs

For completeness, consider four more rank 1 theories whose Higgs branches are H/Zy
orbifolds with k& = 2,3,4,6. These give the blue and green theories in Table 5.1. The magnetic

quivers take the unified form:
o0 (5.9)
1 1

where k denotes the multiplicity of hypermultiplets. The Hilbert series is well known, see for

instance [36]:
1—t2
(1 =221 —trq)(1 —t*/q) -

The Coulomb branch global symmetry is SU(2) for & = 2 where the generators are all at order ¢

HS(5.9) = (5.10)

transforming as [2]4, and a singlet relation at order ¢*. The Coulomb branch global symmetry is
U(1) for k > 2, with a singlet generator at order ¢?, and ¢ + % generators at order t* satisfying a
singlet relation at order ¢**. These are consistent with the results in Table 5.1. The U(1) global
symmetry is a remnant of the accidental enhanced supersymmetry. The moduli space consists
of 3 complex scalars, with a starting SO(6) global symmetry. These are the 6 transverse scalars
to a D3 brane probe. Complexification breaks the symmetry to U(3), out of which SU(3) is an
R symmetry. We are left with a U(1) which is the symmetry that is observed for the orbifold
cases k = 3,4,6. The extra enhancement of symmetry for the case of k = 2 is a signal of the

additional enhancement of supersymmetry to 16 supercharges.
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Closing remarks

In this section, we looked at magnetic quivers of rank 1 SCFTs which were fully classified
in the literature. In some sense (such as the complexity of the Coulomb branch), these are the
simplest 4d SCFTs. The 4d Coulomb branches of these theories were well studied such as the
specturm of Coulomb branch operators and computing the Seiberg-Witten curves. Now, we
are able to fully describe their Higgs branch chiral ring as well by finding the corresponding
magnetic quivers. The explicit computation of the refined Hilbert series is a first and essential
step to fully defining the chiral ring in terms of generators and relations, which we will leave for

the future.

5.2 Higher rank magnetic quivers

Based on our paper [6] and [7]

Now that we have the magnetic quivers of the rank one theories, we can describe some
advantage of studying magnetic quivers. The 4d SCFTs by themselves lack a Lagrangian
description, making it difficult to draw a quiver for them. On the other hand, the corresponding
magnetic quivers are indeed Lagrangian theories. This means one can study their structure and
seek to generalize them into infinite families. These infinite families, we will argue, are magnetic
quivers of higher rank 4d SCFTs. In this section, we will generalize the rank one theories in two

direction.

e The first generalization work by unfolding the non-simply laced magnetic quivers and
see whether the resulting simply-laced quivers are known magnetic quivers of 5d SCFTs.
Magnetic quivers of 5d theories often form part of an infinite family. We then take the
infinite family and fold it back to an infinite family of non-simply laced magnetic quivers
where the n = 1 case is our rank one theories. As a result, the infinite family will have
different number of gauge nodes and the rank of the global symmetry group increases

linearly in n.

e The second generalization is to view the rank one SCFTs as S-fold constructions. The
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generalized S-fold families will have a fixed number of gauge nodes and the global symmetry

(except for lower rank cases) will be the same for the infinite family.

5.2.1 Compactification from 5d

The magnetic quivers for rank 1 theories can be derived by taking magnetic quivers of 5d
N =1 theories and folding them. The relevant 5d theories are summarized in Table 5.4 with
each of them extended to a general family. The folding of % legs of the magnetic quivers of the 5d
theories is directly related to the compatification of these 5d theories with a Zj twist discussed
in [138, 136]. The folded theories are listed in Table 5.5. We also provide the Higgs branch
dimension of the magnetic quivers and, where possible, the refined Hilbert series expressed as
a highest weight generating function (HWG)3[145]. For a given family the parametrisation is

chosen such that after folding:

— n = 0 one obtains a magnetic quiver for flat space H' for some [. The folded quivers are

given in Table 5.6.

— n = 1 one obtains a magnetic quiver for a rank 1 theory without enhanced Coulomb
branch, they are closures of minimal nilpotent orbits of some algebra. The folded quivers

are given in Table 5.6.

— n = 2 one obtains a magnetic quiver for a rank 1 theory with enhanced Coulomb branch,
which partially Higgses to the theory with the n = 1 magnetic quiver. These are the

quivers of main interest in this paper and are given in Table 5.8.

— n > 2 one obtains a magnetic quiver for a higher rank theory, which can be Higgsed to

the n = 2 and n = 1 case, and possibly other theories. These are tabulated in Table 5.5.

Before folding, all but one family of magnetic quivers are either star shaped quivers, such as T,

or those found in [25]. These are given in Table 5.4 and summarized as:

3The HWG here are expressed as a plethystic logarithm (PL) which allows one to express the rational function
in an elegant polynomial form. This PL of the HWG is not to be confused with the PL of the Hilbert series
where the positive and negative terms encode the generators and relations in the chiral ring.
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e The C, 3 family (n = 2 case gives the Cj rank 1 SCFT) comes from folding the E; family,
which are the magnetic quiver of 5d N' =1 SU(n + 1)y SQCD with 2n + 4 flavours.
The magnetic quivers here describe the Higgs branch of the 4d SCFTs generated by
compactifying the 5d SCFT lifts of these N' = 1 SQCD theories to 4d with a Z, twist. An
alternative construction is as the compactification of the 6d N/ = (1,0) SCFT completion
of the USp(2n — 2) gauge theory with 2n + 6 flavours on a torus with a non-trivial flavour
background. For n odd, these can be identified as class S theories associated with the
compactification of the D nis (2,0) theory on a sphere with two twisted maximal punctures
and one untwisted minimal puncture [136]. For n even, these can also be identified with

class S theories, though the identification is slightly more involved, see [136, Sec. 3.1.2].

e The C,,1 x Ay family (n = 2 case gives the C3 x A; rank 1 SCFT) comes from folding
the two long tails and two short tails of the magnetic quiver for 5d N =1 SU(n + 1),
SQCD with 2n + 2 flavours. The magnetic quivers here describe the Higgs branch of the
4d SCFTs generated by compactifying the 5d SCFT lifts of these N' =1 SQCD theories
to 4d with a Zs twist. For n odd, these can be identified as class S theories associated
with the compactification of the D ny3 (2,0) theory on a sphere with two twisted maximal
punctures and one untwisted puncture of type [n, 1%] [138]. For n = 4 the theory seems to

match [146, p. 53, #15] up to free hypermultiplets.

e The (), x U family (n = 2 case gives the Cy x U; rank 1 SCFT) comes from folding (the
two long tails) of the magnetic quiver of one of the two cones of the 5d N'=1 SU(n+ 1),
SQCD theory with 2n flavours. The magnetic quivers here describe the Higgs branch
of the 4d SCFTs generated by compactifying the 5d SCFT lifts of these N' =1 SQCD
theories to 4d with a Zs twist. For n even, these can be identified as class S theories named
R,,, that were introduced in [142]. These can be constructed by the compactification of
the A, (2,0) theory on a sphere with two twisted maximal punctures and one untwisted
minimal puncture. Alternatively, they can also be constructed by the compactification
of the Ay, (2,0) theory on a sphere with one twisted maximal puncture and one twisted

irregular puncture [147, 148].

177



CHAPTER 5. FOUR DIMENSIONAL GAUGE THEORIES

e The A, family (n = 2 case gives the A3 rank 1 SCFT) comes from folding the three
legs of a 7,15 theory. The magnetic quivers here describe the Higgs branch of the 4d
SCF'Ts generated by compactifying the 5d T}, theories to 4d with a Zs twist. There is
also an alternative construction involving the compactification of a family of 6d N" = (1,0)
SCFTs on a torus with a non-trivial flavour background. The exact description of these
SCFTs, in terms of, for instance, the low-energy gauge theory on the tensor branch, is

quite involved and can be found in [136, Sec. 3.2.2].

e The A, _; x Up family (n = 2 case gives the A; x U; rank 1 SCFT) comes from taking the
extension of the magnetic quiver of the 7T}, theory with a U(1) connected by a multiplicity
2 edge to the central U(n) node and folding the three long legs. The magnetic quivers
here describe the Higgs branch of the 4d SCFTs generated by compactifying particular 5d
SCF'Ts to 4d with a Z3 twist. The 5d SCF'Ts in question can be conveniently described as

the result of a Zs symmetric mass deformation of the 5d T,,,o SCFTs.

e The A,/ family (n = 2 case gives the Ay rank 1 SCFT) comes from folding all four legs of
the magnetic quiver for the Higgs branch of a class S theory defined by a sphere with four
maximal punctures. The magnetic quivers here describe the Higgs branch of the 4d SCFTs
generated by compactifying particular 5d SCFTs to 4d with a Z4 twist. The 5d SCFTs in
question are the UV completions of the 5d gauge theories made from a linear quiver of n
SU(n + 1) groups, connected via bifundamental hypers, without Chern-Simons terms and
with n + 1 fundamental hypers for both edge groups. These 5d SCFTs can be engineered
in string theory through the intersection of n + 1 D5-branes and n + 1 NS5-branes. In
order to read the magnetic quiver associated to this brane web, one should impose the Z,

invariance when decomposing the web into subwebs.

The Higgs branch dimension of the magnetic quivers dimyg(H(Q’)) listed in Table 5.4 gives
indication of the complexity of the moduli space. For dimensions linear in n, the HWG of the
Coulomb branch has a simple expression. For those quadratic in n, the HWG is complicated.

This is also reflected in the simplicity of the Hasse diagrams as we will discuss in Chapter 7.
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Orbifolds H/Z; for k = 2,3,4,6. Another pattern that emerges is the relation between
magnetic quivers before folding and 5d N' = 1 SQCD theories of SU(n + 1), with Ny flavours.
In the Zy column in Table 5.8, we start with the Cs theory with Ny = 2n + 4 and the flavor
reduces by 2 when we go to the next row for C5 x A; and another 2 for Cy x U;. Following
this, the C} X xo (which is the H/Zy orbifold) family should come as the magnetic quiver of the

n = 1 member of the family SU(n + 1)¢ with 2n — 2 flavours. The magnetic quiver of the 5d

v
1 1

N =1 theory takes the form:

The HWG reads

n+1
, 1
HWG(NH t) =PE [Z :ui,u2n727it21 + t2 + Hn—1 <q + a) thrl - Mi—lt%“] (512>

=1

and

dimgH(5.11) =n — 1. (5.13)

Folding the quiver (5.11) yields the general family of the H/Z, rank 1 theories is tabulated in
Table 5.7. Since the orbifold itself is a minimal nilpotent orbit, the n = 1 case gives our desired
H/Zs theory. For the remaining orbifolds H/Zy with k = 2, 3,4, 6, the general family of quiver
before folding will be (5.11) but with & multiplicity of hypermultiplets between the two U(1)
nodes and £ long legs from 1 to n — 1. The folded quivers are listed in Table 5.7. The n =1

cases reduces to the H/Z; orbifolds.

5.2.2 S-fold construction

The S-fold constructions we are interested in are worldvolume theories on D3 branes
probing Type IIB background called S-folds. This is a generalization of orientifolds from Z,
projection to Z, projection which also acts on the axio-dilaton by fixing it to a specific value.
Our construction also requires 7-branes to be present in the background. The 7-branes creates

a deficit angle A; and gauge algebra G as follows:
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G|0 A A Dy E¢ E; Eg

Az

6 4 3

The idea is to consider a Z, quotient of the Kodaira singularity (see Appendix C) which
describes the 7-branes in F-theory. In Type IIB this is implemented by performing a Z, quotient
of the plane transverse to the 7-branes, accompanied by a Zya, C SL(2,Z) quotient to preserve
supersymmetry. Furthermore, we take a Z, quotient of the C? along the 7-branes world-volume
but transverse to the D3 branes. The construction can be thought of as a generalization of the
N = 3 S-fold since it precisely reduces to the more supersymmetric background in the absence
of 7-branes (namely A; = 1).

Requiring Zya, to be a subgroup of SL(2,Z), we find that
(A7 =1,2,3,4 or 6 (5.14)

and we should further impose the compatibility between the 7-branes (which freezes the axio-
dilaton at a specific value) and the Z,a, quotient. We then easily conclude that?
e For / = 2 the allowed solutions are A; = %, 2, and 3.

e For / = 3 we can have A; = % and 2.

e For / = 4 only the 7-branes of type A,, namely A; = % is allowed.
The models with £ = 2, 3,4 come in two variants, depending on whether we include discrete flux
for the B-field in Type IIB or not. The models with discrete flux, the Sg: )f theories, have been
constructed in [135]. The rank of the theory is r, the number of probe D3 branes, and for r = 1
they coincide with the rank-1 theories we just studied. This is the infinite family we will focus

on in this section.
S-fold magnetic quivers

The Sg )e magnetic quivers were obtained using two inequivalent ways:

e A Bottom-Up approach by constraining the magnetic quiver using the global symmetry,

dimension of moduli space and multiplicity ¢ of the non-simply laced edge which is

4In principle also ¢ = 5,6 could be considered but we concentrate on the ¢ < 4 case in this thesis.
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determined by the Z, folds.

e Starting from 6d N' = (1,0) SCFTs, one compactify on a S* and perform mass deformations
to get to a 5d SCFT. A further compactification on a S* with Z, twist gives the 4d S-fold
theory. On the magnetic quiver side, the mass deformation becomes FI deformations
(rules on how to perform FI deformation on magnetic quivers is introduced in [7]) and
the twisted compactification is done by folding ¢ identical legs into a non-simply laced leg

with multiplicity ¢.

The magnetic quivers for of Sg )z are given in Table 5.8 and for rank r = 2 cases, the unrefined

Hilbert series and refined plethsytic logarithms are given in Table 5.9 and Table 5.10.

Discretely gauged theories

The Sg )e theories above has a discrete Z, global symmetry which one can consider gauging
to give a different SCF'T. We will call this discretely gauged version Sg )é We conjecture that
this can be understood at the level of magnetic quivers by changing where you ungauge the
overall U(1). It was conjectured in [137] that for a multiplicity ¢ non-simply laced edge, moving
from ungauging a U(1) on a long node to the short node results in a Z, orbifold in the moduli
space. For the S-fold theories, the choice of ungauging on the U(1) short node, gives us Sg )g
Note that the magnetic quivers of S((; )g always has a U(1) gauge group on the short side which
we can turn into a flavor node. To be consistent with our notation of only presenting unframed
quivers where a long node is ungauged, a U(1) flavor node on the short side of the quiver is

equivalent to replacing the original U(1) short node with a multiplicity ¢ non-simply laced edge
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pointing towards the rest of the quiver. For example, the Sgﬁ)g and its discrete quotient SDgG)Q :

St O—O0—0—O=00
Eg,2
1 14+7r 142r 14+3r 1+4r 2r

l Z, quotient

2 O0P=O0—O0—OLO0 = —0—O0—O<X00
6 17 17 1420 1430 1dr 2r L1 1201430 1+ Ar2r (55

where the Coulomb branch of the bottom left quiver with ungauging on any one of the long
nodes is equivalent to the Coulomb branch on the right. The magnetic quivers after discrete

gauging Sg )e are given in Table 5.11.

New rank one SCFTs?

If Sg )e is indeed a new set of 4d SCF'Ts then implications can be quite interesting. This
means that for » = 1, we have new rank one SCFTs that are beyond the classifications of
[131] 5. More arguments for the resulting theories being SCFTs are given in [7] from F-theory

constructions and by viewing S-fold theories as moduli space of 7 G instantons on C?/Z,.

SHowever, this might be expected as the authors of [137] told us their classification does not include discrete
quotients of the theories.
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Table 5.4: Magnetic quivers of 5d N = 1 theories. In the case of n = 2, folding these theories
reproduces the magnetic quivers of 4d N = 2 theories of Table 5.8. We provide the dimension of both
the Higgs branch H(Q') and the Coulomb branch C(Q') of the unfolded magnetic quivers. The HWGs
are given in [22, 1]. The prime in the label of the last family is to distinguish it from the fourth family.

Family Unfolded Magnetic quiver Q' dimg(H(Q")) dimy (C(Q")) PLHWG(C(Q")))
2
i k2 2 | 44
Chis o .. O n n? 4+ 6n+ 10 Z;m’u?”%_it +i
1 n+2 n+3 n+2 1 + H2n+6 (tn—H + tn+3)
b2 1 5 2i 2 2\42
> Hiftanto—it™ + (Vi + vt
C x A +9)+4 i=1
n+1 1 O . O n n(n ) 4 V11/2,Lt2n+2(tn+1 + tn+3)
1 1 — 2132, 12
S 2 | 42
Mo it? 12 +
Cn % Ul . - n n2 +1 Z; Mg fh2n—q Mn(q
1 1 + %)tnﬂ - M%tQ(nH)
Ant1 n(n;l) (14 n)(8+3n) Complicated
1 1
A,_1 xUp ! ! w n(?’g_l) Complicated
Ay’ O O n? n(2n + 3) Complicated
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Table 5.5: General quiver families obtained by folding the legs in the magnetic quivers Q' in Table
5.4. In the case of n = 2 these families correspond to the magnetic quivers of 4d N = 2 rank 1 theories
with enhanced Coulomb branch. For n > 1 the families are labelled by their global symmetry. Forn =1
the magnetic quivers describe rank 1 theories without enhanced Coulomb branch, and for n =0 each of
the moduli spaces is some H' for a suitable . The dimensions and the HWGs of the Coulomb branches
of the magnetic quivers C(Q) are provided.

Family Magnetic quiver @ dimy (C(Q)) PLHWG(C(Q)))
n+2 .
Crss O OROO e Ly 5 g )
i=1
o 29 4 2 +1
Al t“+1 t"
Coir % Ay (1} W (n+1)2(n+2) P ; [ e e A A TR

i=1
n+3 4,2 42046
+10) —vtun

n .
C. xU O ! n(n+1) +1 Z :uz?tm + t2 + Mn(q + %)thrl
" ! 1 n—1 n 1 2 =1 n+1)

O --- (n+2)(n+3) 1
1 n+1 n+2 2

Apax Uy O CEEO=0 ) Complicated

n—

A O .. @ (nt)nt2) 4 Complicated
1 n n+1

Table 5.6: Then =1 and n =0 members of the general Families of Table 5.5, where the Coulomb
branches are closures of minimal nilpotent orbits and freely generated theories respectively. The n =1
cases correspond to rank 1 theories without enhanced Coulomb branch. Notice that the global symmetry
here does mot match the labelling of the family.

Apta Complicated

Casen=1 Casen =20
Magnetic quiver Moduli space | Magnetic quiver Moduli space

Cris O—0—0=<-0 Oy O—O=0-0 H

Conx 4y | O=0-0==0 o O-0=>=0 e
L —<min !

Co x Uy ?<i 1 oy i 1 H

Ant1 12 g 3 6’34 1 g 2 B

An1 x Uy =0 o | Trivial

A CE@ o g Trivial

Family
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Table 5.7: The n =1 case of these families correspond to the magnetic quivers of 4d N = 2 rank 1
theories whose Higgs branch are H/Zj orbifolds for k = 2,3,4,6.

Family

Magnetic quiver

Gglobal

PL(HWG)

H/Zs

H/Zs

H/Z4

H/Zg

1

B

B

n—2 n—1
n—2 n—1
n—2 n—1
n—2 n-—1

n—1 .

2 M A+ 4 (g +
Cn-1 xUp i:)in-&-l

q

—Hp_

Ap—o x Uy

Ap—o x Uy

Ap—2 x Uy

2n—+2
lt

Complicated

Complicated

Complicated

Table 5.8: The magnetic quivers of 4d N = 2 rank r S-fold theories. The Higgs branch dimension of
Sg’)g is (6r + £)(A7 — 1), which matches the Coulomb branch dimension of the magnetic quiver. The
folding parameter £ also indicates the multiplicity of the non-simply laced edge. The global symmetry of
the magnetic quiver displays the expected enhancement for r =1 [23]. Recall that a U(1) is ungauged
on a long node for all the quivers.

Global Symmetry

SCFT Magnetic quiver re 1 . (¢, A7) Dimension
sy, OTOO-O<O0 o o (23)  12r+4
Sy, ?ﬁ%{;%@ CoiAr C3Ar (2,2)  6r+2
sy, D= CiA U, GU o (2,2)  3r+1
Sh) ?ﬁﬁ AUy As (3,2)  6r+3
Sy, g%fj? LU, AU (3Y 0 2+t
sy, ?—g% AUy A (4,3 3r+2
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Table 5.9: Coulomb branch Hilbert series and plethystic logarithm for the magnetic quivers ofS r=2)

theories in Table 5.8. The unrefined monopole formula can be evaluated exactly for all but two cases.
The unrefined PL confirms the dimension of the global symmetry.

SCFT Hilbert Series PL[HS]
sy, 14 39¢2 + 10813 4 989t* + 45405 + O(t5) 39¢2 + 1083 + 209¢* + 328t + O[t]

1+t + 1162 + 4263 + 159tT + 5515 4 1829t6 + 558417 + 16155t° + 43955t7 + 11325010
+276689t11 4 643191¢12 + 1424394¢13 + 3012854¢14 + 6095898t1° + 11818736t16
42198761217 + 393064528 + 6759664410 + 111957432t20 + 17875767021 + 2753930632
40969525123 4 58898751524 4 818774420t25 4 110125565726 + 1433825259t27
+1807938114¢%8 + 220859557329 4 2614801861¢30 + 3001022474t3! + 333968506032

@ +3604301588¢33 1 377285250063 + 3830735670t + . .. palindrome + - - - + (7 16t2 + 423 + 68t* + 88t> — 58t6 — 692¢7
Da,2 (1—t)-1(1—2)5 (1 — )T (1 - t4)5 (1 — 5)S —2429¢% — 4572% — 204¢1° + O (1)
1+ 2t + 6t2 + 193 + 55t + 133t° + 303t + 6377 + 12585 + 2312t° + 398610
( +6422t11 + 9754412 4 13947413 + 18841t 4 2404715 + 2905916 + 33215¢17 + 35995¢18 + 36958¢1° )
5(2) +...palindrome + - - - + 3% 7t2 + 14t3 —+ 21t4 =+ 18t5 — 14t6 — 88137
42,2 (1—t)2(1 -2 (1 -8 (1—t4)* (1 p)° —211¢8 — 236t + 15710 + O (¢1)
S5, 14 912 + 2863 + 92t* + 338t% + O(19) 912 + 2813 4 47t4 + 8615 + O (1)
1—t+2t2 + 3 4+ 6t* + 6t5 + 13t0 + 187 + 32¢% 4 397 + 59¢10 + 70¢1!
( +93t12 + 101413 4 120614 + 120615 + 133¢16 4 120617 + 120¢18 + 101419 ) -
5@ 193120 4 70621 4 59L22 + 39123 + 32624 + 18t25 + 13126 4 6127 + 625 4 129 4 2430 — (31 4 132 2t2 + 613 + 8¢* + 10t° + 8t6 4 247
413 (1—1)(1— 3 (1 — 92 (1 —5) (1 — 16)2 (1 — t7) —17t8 — 42t° — 7210 4+ O (1)
1 — 2t 4 262 + 11¢4 — 1265 4 30t5 — 10t7 + 9418 — 30t° + 210410 — 8¢11
( +493t12 4+ 16t'3 + 908t1* + 166t1° + 1633t16 + 35617 4 2507¢!8 + 714419 4 357920 ) . X
S® 11074621 4 4520622 4 1422623 4 529324 4 1626¢25 + 5486¢26 . . . palindrome + - - - + 52 442 + 483 4+ 16t% + 1265 + 30t6 + 24¢7
Az.4 (1—1)2(1—2)3 (1 — 13)2 (1 — 43 (1 — 16)% (1 — 18)? +22t8 — 16¢% — 138¢0 + O (1)
7" 2)

Table 5.10: Refined plethystic logarithm of the Hilbert series for the magnetic quivers of the S
theories in Table 5.8. In abuse of notation, [...]q denotes the G-character of a representation wzth
Dynkin labels [...]. Moreover, ¢ and b label U(1) charges.

SCFT Refined PL[HS]
12 1 [2]4,[0000] ¢, + [0]4,[2000]c,

S, 8 :[1]4,10001]c, + [2]4,[1000]c,
tt: [4] 4,[0000] ¢, + [1]4,[0010]¢, + [2] 4,[2000]¢,
£ [2]A1 [O]Al [00]02 + [O]Al [2]A1 [00]02 + [O]Al [0]A1 [20]02

8(2) £ [1]141 [2]141 [01]02 + [2].41 [O]Al [10]02

Da,2 o [ ]A1[ ]Al [00]02 + [2]A1[2]A1 [00]02 + [4]141 [0]A1[00]02 + [2]141 [2]141[10]02 +

[2],41 [0]4, [20]c,
t2: 2], [0)cy +[0]4,[2]cy + [0]4, [0)cy

s¢,

(g + 1/(1)[ Ja, ey + 214, [y
g+ 1/Q)[ ] [O]Cl + [ ]Al[o]cl + [4]141 [O]Cl + [2]141 [2]01
o 21 [00] 4, + [11] 4,
SD4,3 £ qg [00]A2 + q7[01]A2 + q3 [03]142 + q_3[30]x42 + q_7[10]A2 + q_g[OO]A2
th: q6 [30]142 +q4 [20]142 +q2[10]A2 + [00]A2 + [11]142 +q72[01]A2 +q74[02]142 +q76[03]142
2.2
R
b+ A+ h b+ 42
@) % [O]Al + [2]141
Supa (@ +q70)
th: (146 +q7%)[0]a, + [2]a, + (0" + ¢ )44,

o~~~
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Table 5.11: The Sg)g theories with their magnetic quivers. The global symmetry is independent of

r. The dimension of the Higgs branch of Sg} is equal to the dimension of the Higgs branch of Sg)e.
Recall that a U(1) is ungauged on a long node of all the quivers.

SCFT Magnetic quiver Global Symmetry Dimension

3(r) Q#O—O—O@O

SEe2 17 Lir 152r143r Lidror Cady 12r +4
3(r) Q%O%O@%@

SD4,2 17 1+r 1+42r2r r Cy AL Ay 6r + 2

T

S,(LQQ 1 1 . ClAlUl 3r+1

() D=0
Spy3 17 14r 142r N43r A2Un 6r +3

St O=0=0 ULU,

Ay 3 1 14+r T

3(r) %@
SAQA 1 14+r SN+2r AlUl 3r+2

2r+1
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5.3 Folding orthosymplectic quivers

Based on our paper [§]

In the previous section, we looked at the presence of non-simply laced quivers which are
magnetic quivers of 4d SCFTs. In the literature, non-simply laced quivers were restricted
to theories with unitary gauge groups. Our paper [8] marks the first time non-simply laced
orthosymplectic quivers are investigated. These theories are obtained by folding simply-laced
orthosymplectic quivers with two or more identical legs to form a non-simply laced edge. The
resulting Coulomb branches are well defined and in many times give us surprising results. Some

of these quivers are also magnetic quivers of 4d SCFTs.

5.3.1 Monopole formula for non-simply laced orthosymplectic quivers

We first discuss how to compute the monopole formula for a non-simply laced orthosym-
plectic quiver. For the conformal dimension A(m) of the monopole formula, the additional
contribution coming from the multiplicity [ non-simply laced edge is treated in the same way as
the the non-simply laced edge in the unitary quiver as described in [65]. Basically, the magnetic
charge from the long node has a [ multiplicity factor in front of them in the conformal dimension.
The details are given in Appendix A.

For unframed non-simply laced orthosymplectic quivers, one needs to take into consideration
both changes to the conformal dimension as well as changes to the magnetic lattice due to the
choice of H (the zero-form symmetry we saw in previous chapter). Once again, we divide the
nodes of the non-simply laced quivers into long and short nodes. Denote by A the magnetic
lattice of the long nodes/gauge groups and by Ag the magnetic lattice of the short nodes/gauge
groups. A vector of magnetic charges m € A is represented as a pair m € (mp,mg) € Ay x Ag.
Let r;, denote the sum of the ranks of all long nodes and rg the sum of the ranks of all short
nodes. If the non-simply laced edge is even (i.e. with double, quadruple bond etc.), then the

magnetic lattice to be summed over is as follows:

Z'stE @ (Z+ L)re x z79) (5.16)
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In contrast, if the non-simply laced edge is odd (i.e. with triple, quintuple bond etc.), then the
magnetic lattice is:

Frstre D (Z + %)7’5+7’L (5.17)
If the non-simply laced orthosymplectic quiver is framed, then the Hilbert series sum is evaluated
only over the integer-valued magnetic charges, because the discrete group H is trivial, see [2].
Global symmetry

Building on the investigation of non-simply laced orthosymplectic quivers, the following

subsets of balanced nodes:

e 000 (518)

n — 1 nodes

ﬁH (5.19)

n — 1 nodes

both contribute an sl(n) factor to the global symmetry. When is a balanced SO(2) node, this is
enhanced to sl(n + 1). For unframed quivers, the contribution from half-plus-integer lattice can

further enhance this symmetry, such as to exceptional global symmetries as will see.

5.3.2 T, example

Since this is the first time such computation is made, we should find a set of examples
where we know what to expect from the Coulomb branch of the non-simply laced quiver.
The theory known as T} is constructed by gluing together quivers whose Coulomb branches

are closures of maximal nilpotent orbits of s[(4). Due to the isomorphism s[(4) = so(6), the
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following quivers have equivalent moduli spaces:

2
1 2
%2 4 (5.20)
3 4
-
1 2 3 4 3 2 1

2 2 4 4 6 4 4 2 2

Computation of the Coulomb branch Hilbert series of the orthosymplectic quiver is given in [2,
Fig.39] and is consistent with the unitary counterpart.

As a first step, one can fold two of the quiver legs which yields:

O-OO0OC0O00 — 000000000
1 2 3 473 2 1 2 2 4 4 674 4 2 2

(5.21)

Computation of the Coulomb branch Hilbert series of both quivers yields:

1+ 2142 4 6813 + 341t* + 1300t° + 4936t + 15988t7
+50242t8 + 142812t9 + 384411410 + 960772t + 2270650¢12
+5038840t'3 + 10601001¢'4 4 21083004t + 3986237716
+71590384¢17 + 12255381218 + 199944220t + 311642452t%°
+464078612t%! 4 661421665t%2 4 902317920¢23 + 1179751147t
+1478423752t%5 4 1777451140t%5 4 20500656247

+2269933494¢28 + 24124580482 + 2462182956¢3°

+palindromic + - - - 4 21¢58 4 50
(1= (1 =) (1 —)°

HSy (t) = HSos, () =
(5.22)

As a next step, one folds all three identical legs which yields

O>0-0-0 «—— 60 0 0@ (5.23)
4 3 2 1 6 4 4 2 2

The unitary quiver in (5.23) is a known member of the generalized rank 1 4d N/ = 2 sequence

studied earlier in the chapter. An explicit computation of the Coulomb branch Hilbert series of
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the both quivers in (5.23) yields

1 —t + 10t% + 23t% + 67t* + 190t° + 5255 + 1053t7
+22092¢8 + 41670 + 7299¢10 + 1149411 + 17114¢12 + 23080¢13
+29925¢1 + 35107415 + 3922116 4 40320¢17

+palindromic + - - - + 1032 — ¢33 4 ¢34
(T— (1 — 2)(1— B)I(1— 1P

HSy(t) = HSosp(t) = . (5.24)

The above examples reinforce the conjecture that folding orthosymplectic quivers yields valid
results, so one may proceed to fold quivers where the resulting Coulomb branches cannot easily

be determined from accidental isomorphisms.

5.3.3 Folding of E, theories

Previously we looked at the F, theories (theories whose Coulomb branch are one-E,
instanton moduli space), where the unitary quivers take the form of affine £, Dynkin diagrams
and the orthosymplectic quivers are given in Table 4.9. One interesting feature this set of
orthosymplectic quivers is that they all have a Z, symmetry, making them ideal candidates to
be folded into a non-simply laced quiver. Such symmetry is not always present in the unitary
counterpart.

Upon folding their identical legs, one obtains the following key results:

e First, folding orthosymplectic quivers, whose Coulomb branches are closures of E,, minimal
nilpotent orbits for 4 < n < 8, leads to non-simply laced orthosymplectic quivers, whose
Coulomb branches are also closures of minimal nilpotent orbits. Folding the Fg, F;, Eg,
Es = D5, By = Ay quivers, leads to non-simply laced orthosymplectic quivers, whose
Coulomb branches are closures of minimal orbits of E7, Fg, D5, Dy, D3 respectively. This

can be depicted as follows:

¢ N\ ¢ ¢ ¢ (5.25)

The red arrows denote orthosymplectic folding. Note that the top line corresponds to the
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standard exceptional sequence while the bottom line corresponds to a chain of inclusions of
associated affine Weyl groups studied in [149, 150]. The results for the rank 1 E,, theories
are given in Table 5.12.

e Second, each member of the E, family of orthosymplectic quivers can be generalized to
an infinite sequence of quivers, as shown in [2]. These quivers are magnetic quivers for
5d N' = 1 SQCD theories. Each of these families of quivers can be folded, producing
infinite sequences of non-simply laced orthosymplectic quivers. Some of these families are

magnetic quivers for 4d N = 2 theories.
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Table 5.12: The orthosymplectic quivers on the left have Coulomb branches that are closures of exceptional algebras E, for n =8,7,6,5,4. Red
nodes with an index k denote SO(k) groups while blue nodes with index 2k denote USp(2k) groups. Folding these quivers along the identical legs gives
the non-simply laced orthosymplectic quivers on the right. The Coulomb branches of these theories are given as well. In all the quivers here, there is
an overall Zy which is ungauged, see [2] for more details.

Before folding After folding
Orthosymplectic quiver Coulomb branch ‘ Orthosymplectic quiver Coulomb branch
2

Oppin = 6 o—ee-e—e O = ds
1 4 4 2 2
1
O = ds o e Omin = ds
1 4 2 2

! o = ay e Oh = ag
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We will now discuss these cases in more detail.

5.3.4 FE,, orbits

To begin with, consider the folding of orthosymplectic quivers whose Coulomb branches
are closures of E,, minimal nilpotent orbits: 5:;11 for n =4,5,6,7,8. Since the quivers are all
unframed, there is a non-trivial choice of the discrete group H C Zs that one can ungauge. For
all the quivers in this section, the Coulomb branches are defined by the choice H = Z, see [2]
for more details. The results are summarized in Table 5.12 along with the identification of the
Coulomb branch. Below, some observations for the individual cases are discussed in turn and

how they are compared with folding their unitary quiver counterparts.

Eg orbit. The unitary quiver whose Coulomb branch is the closure of the minimal Eg orbit
takes the form of the affine Dynkin diagram of Eg. The unitary quiver does not have any
identical legs and, therefore, cannot be folded. In contrast, the orthosymplectic quiver with the
same Coulomb branch is given in the first row of Table 5.12 and has two identical legs that one
can fold. Folding these identical legs gives a non-simply laced quiver, see Table 5.12, whose

Coulomb branch is the closure of the minimal E; orbit O, .

E; orbit. The unitary quiver whose Coulomb branch is the closure of the minimal E-; orbit

takes the form of the affine Dynkin diagram of E; and, hence, has two identical legs one can

fold. Folding them yields the non-simply laced unitary quiver whose Coulomb branch is O

¢6
The orthosymplectic quiver of E7 is provided in the second row of Table 5.12 and has two

identical legs. Folding these two legs also gives the non-simply laced orthosymplectic quiver

whose Coulomb branch is O'°

min*

Es orbit. The unitary quiver is the affine Eg Dynkin diagram which has three identical

legs. When two of the legs are folded, the resulting Coulomb branch is o [137].5 The

orthosymplectic quiver of Ej is listed in the third row of Table 5.12 and has only two identical

legs. Folding them results in the non-simply laced quiver whose Coulomb branch is @fﬁin ~ o1

min

Folding all three identical legs gives the minimal nilpotent orbit of s0(8) [6].
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The discrepancy is not necessarily a surprise since there are several different embeddings of Zs
in Fg.

To summarize, one reaches the surprising statement that folding orthosymplectic quivers
whose Coulomb branch are closures of the minimal Eg, F'7, Fg nilpotent orbits gives non-simply

laced quivers whose Coulomb branches are closures of the Fr, Fg, E5 = Dy orbits respectively.

E5 orbit. The unitary quiver is the affine D5 Dynkin diagram. Folding the pairs of identical

nodes on the two sides of the diagram produces a quiver with two non-simply laced edges

1 1
I OZ@—O;ZO (5.26)
1 2 2 1 1 2 1

The Coulomb branches of the quivers on the right are the minimal orbits of 550(8)

[6]. The

min

orthosymplectic quiver of Dj is listed in the fourth row of Table 5.12 (which is reproduced here):

1
f (5.27)
2 2 4 2 2

One can verify that the Coulomb branch of the folded orthosymplectic quiver is also 61:1(?.

As a comment, (5.26) has the D; Dynkin diagram on the left and the twisted affine Df)

Dynkin diagram on the right [151]. This pattern generalises to any n, meaning that the affine

50(2n)

D,, Dynkin quiver, whose Coulomb branch is O , can be folded to the twisted affine Dfi)l

min

Dyrnkin quiver, whose Coulomb branch is O e >

min

E, orbit. The unitary quiver is the affine A, Dynkin diagram, which after framing does not
have identical legs attached to a pivot node, and hence cannot be folded in the common way.
The orthosymplectic quiver with the same Coulomb branch is listed in the fifth row of Table
5.12, which does have two identical legs that one can fold. The wiggly line denotes a charge 2
hypermultiplet, see [3] for more details. The Coulomb branch of the folded non-simply laced

orthosymplectic quiver is 55[(4)

min *
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A feature of orthosymplectic quivers whose Coulomb branches are closures of exceptional
algebras is that they always have two identical legs one can fold. This reflection symmetry is

not always present in the unitary quiver counterparts.

Z, projection on representations

The results can be explained using representation theory. In [138], 5d A/ =1 theories are
compactified on a circle with Zy twist. First, one seeks to find a subgroup Hsq of the global
symmetry group Gsq of the bd SCFT such that Hsq = Hy X H; X Hy. In other words, Hsq must
contain two identical groups. Next, consider the Zy invariant part of H; x H;. This way, during
the compactification, the Z, acts diagonally and only representations invariant under this action
remain.

Consider the Fg quiver. Fg contains the following subgroup:
Es D SO(8)a x SO(8)5. (5.28)
The adjoint representation of Fg decomposes as:

(18) s —(111)s0(8)4 (11)s0(8)5 + (H2)s0(8)4 + (H2)50(8) 5 (5.20)

+ <N3)SO(8)A (N4)SO(8)B + <N4)SO(8)A (M?))SO(S)B

where (1;)ps, (1i)a, (u;)p are the highest weight fugacities of Fgs, SO(8)4, and SO(8)p

respectively. The Zs group acts on the adjoint representation as follows:

(12)so@)4 + (12)s0®)s = (H2)S0(8)ding
(#1)SO(S)A(M1)SO(S)B - (M%)SO(S)diag (5.30)

(Hs)SO(s)A(M)SO(s)B + (H4)s0(s)A(M3)SO(8)B — (Mg)SO(s)diag + (ﬂZ)SO(S)diag

Since SO(8)giag C SU(8) C E7, the irreducible representation after the projection precisely gives
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the adjoint representation for E7:

(p1) B = (K1k7)sue) + (Ka)sue) = (H2)soes) + (11)soes) + (143)sos) + (13)sos) (5.31)

where p;, k; are highest weight fugacities of F; and SU(8) respectively.

This process is beautifully encoded in the folding procedure. When given a quiver, the
balance of the gauge nodes determines the global symmetry group’. If one singles out a subset
of balanced nodes, then this subquiver gives a subgroup of the global symmetry. For the Fg

quiver, one natural branching to subgroups is to identify the identical legs:

e
O i
min 9
Balance gives 5O(8)4 global symmetry I Balance gives SO(8)p global symmetry
o0 0 0 0 O @00 0 0 0
P2 2 4 4 6 6 8 6 6 4 4 2 2
(5.32)
2

Balance gives SO(8)qiag global symmetry

For a unitary magnetic quiver of Eg, the quiver takes the form of the Eg affine Dynkin diagram
which does not have a natural SO(8) x SO(8) subgroup one can identify and fold. This is an
advantage of the FE,, orthosymplectic quivers in general which always has a natural Z, symmetry
one can fold.

One can repeat this procedure for the remaining F, families and the result reproduce the

global symmetry of the folded quivers.

"To be more precise, it gives the algebra of the global symmetry group.
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Table 5.13: Generalised families of E, orthosymplectic quivers of those in Table 5.12. The orthosymplectic quivers before folding are magnetic
quivers of certain 5d N' =1 SQCD theories at infinite gauge coupling. The subscript next to the gauge group is the Chern-Simons level. For the
E5 o family, the Coulomb branch of the magnetic quiver is only one of the two cones in the Higgs branch of the 5d theory. The global symmetry is
given for k> 1 and k > 1+ 1, it enhances for k=1 or k =141 as shown in Table 5.12.

Before folding

After folding

Family ‘ Magnetic quiver (infinite coupling) 5d quiver Global Symmetry ‘ Magnetic quiver Global Symmetry
2k +5
'—IQ—G 0
E; so0(4k +12) o oo oo su(2k + 6)
oo - N 2 2k+6 2k+4
2 2 2%k+42%k+62k+4 2 2 SUGT 1),
1 2k + 4
E; 2 so(4k + 8) @ su(2) Q—.—.>:& Q@@ su(2k+4)®su(2)
1 2 2%k+42%+2 4 2 2
- 2 2 2k+22%k+42%k+2 2 2 SU(k+1)x
e ) 2k +3
E s0(4k + 6) @ u(1 o oo u(2k +3
i oo - @ ( ) @ 1 2k+22k+2 ( )
2 2 2%+4+22%k+22%+2 2 2 SUGT 1),
3 i%
2k + 2
'—il—&
E, so(4k +4) @ u(l Q—% 1—.—. u(2k +2
P e—e R e +4) Sull) T il (26 +2)
2 2 2% 2k+2 2%k 2 2 SUG D)
v +2
[+1 2%k — 20+ 1
Ey o 1 so(4k — 4l +2) d u(l) W Q0@ u(2k — 20+ 1)
I+1 1 2k—22%-2 4 2 2
2 2 2k-oRk-2Wk-2 2 2 SUMk + Dz
I+1
- 2k — 21
1
Es_o E so(4k — A1) ®u(1) ZW AR u(2k — 21)
o O 9@ 2k —20 -2
2 2 2/(,‘ - 2l 2 2 SU(k+ 1)1(34_[)
2% —21—2 2% —2—
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Table 5.14: The non-simply laced orthosymplectic quiver families and the unitary quiver family which have the same Coulomb branches. The highest
weight generating function (HWG) is presented in the form of a plethystic logarithm (PL). The fugacities correspond to the global symmetry given in
the last column of Table 5.13, with q denoting a u(1) factor and v denoting an su(2) factor when present.

Magnetic quiver (orthosymplectic)

Magnetic quiver (unitary)

PLHWG]

® oo oo

2 2k¥6 2k+4 2

O i Y )

1 2 2k¥42k+2 4 2 2

O e e -0 0@

1 2k+2 2k+2

O 00 -0-0-e

1 2k+2

S SO

k+2k+3k+2

ol o

k+1k+2k+1

1 2 k kE+1 &k
LYERE.
o—0- -
1 2 k-1 k-1
k—1-1 k—1—-1
1 1

SR ittoksooit? A iy 4 4F9)

S Hitizgait® + V22 4t
F Ut (T tF3) — 22 2RO

Zf=1 fipiokz—it™ + 1% + (prs1q + paga/q)t" !

Zf:l fitlonro—it? + 12 4+ g (g + 1/q)thH

N it Miﬂ%_zlﬂ_it?i + 2 k
T T I YR P PR e

S i1 it? + 12
(g + 1/q)th Tt — g2 12+ 2
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5.3.5 FE, families and Magnetic quivers of 4d N = 2

In the previous section, a class of unitary magnetic quivers of 5d N'= 1 SQCD has been
folded to produce general sequences whose limiting cases are 4d A/ = 2 rank 1 theories. In cases
where the folding involves two identical legs, this procedure produces the Higgs branches of 5Hd
theories compactified on a circle with a Zy twist [138]. However, note that folding magnetic
quivers of 5d N = 1 theories does not always give rise to magnetic quivers of 4d N = 2 theories.

As seen in Table 4.9, some unitary magnetic quivers, which do not have identical legs, have
orthosymplectic counterparts that do have identical legs. The orthosymplectic quivers studied
here are examples like that where the unitary counterparts (tabulated in [3, Tab. 1]) lack this
symmetry. In this section, the generalized families of orthosymplectic quivers are considered
and folded. The results are summarized in Table 5.13.

Like the unitary quivers, one conjectures that some of the folded orthosymplectic quivers
are magnetic quivers of known 4d N = 2 theories. In other words, the Coulomb branch of these
folded orthosymplectic quivers are the Higgs branch of 4d N/ = 2 theories. To be concrete,
focus on the rank 1 cases in Table 5.12. After folding the Eg, E7, D5 orthosymplectic quivers,
the resulting Coulomb branches are minimal nilpotent orbit closures of E7, Eg, D, respectively.
These are Higgs branches of known 4d N' = 2 rank 1 theories. On the other hand, folding the
Eg, Ay orthosymplectic quivers give Coulomb branches that are minimal nilpotent orbit closures
of Ds, As respectively which are not the Higgs branches of known rank 1 4d theories [131].
It has been shown in [152], via anomaly matching on the Higgs branch, that D5, A3 minimal
nilpotent orbit closures (or equivalently, one-instanton moduli spaces) are excluded as Higgs
branches of rank 1 4d A/ = 2 theories. This shows only a subset of the folded orthosymplectic
quivers are actually magnetic quivers for 4d N = 2 theories.

Following this argument, one can generalize each E, non-simply laced orthosymplectic
quiver to infinite families as in Table 5.13 where the corresponding 5d theories are given as
well. The families obtained from folding the Ey, E7; and E5 = Dy families give rise to known 4d
N = 2 theories. These are all class S theories. For Eg and E; folded families, these are Sicilian
theories with A-type punctures (A-type 6d N' = (2,0) theories compactified on a sphere with 3

punctures) as studied in [115]. Using the parameterisation given in Table 5.14, the folded Ey
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family gives the [k + 3], [k + 3], [22, 1¥7!] Sicilian theory where punctures are labelled by their
partition data. The folded E; family gives [k + 2], [k + 2], [3,1*7!] Sicilian theory. Finally, the
E5 = Dj folded family is the magnetic quiver for the 4d N'=2 SCFT of SU(k + 1) with 2k + 2
flavours.

For the remaining three families in Table 5.14, the theories do not resemble magnetic
quivers of known 4d N = 2 theories. Nevertheless, they are magnetic quivers for 5d N/ = 1
theories. For the Fj folded family, the corresponding 5d theory is SU(k + 1)1; with 2k + 2
flavours at infinite gauge coupling. The F, o folded family is a magnetic quiver of one of the
two cones of the Higgs branch of the 5d SU(k + 1) 1 with 2k — 2/ + 1 flavours at infinite gauge
coupling. The E3_o folded family is a magnetic quiver of one of the two cones of the Higgs
branch of the 5d SU(k + 1)y with 2k — 2] + 1 flavours at infinite gauge coupling.

The HWGs in Table 5.14 can be obtained by taking the Coulomb branch HWG of the
magnetic quiver before folding, see [2], and applying appropriate Zs projections. Due to the
unitary counterpart, the HWGs that are equivalent to those of the folded quivers are already

computed in [122; 153, 22, 11].

5.4 Class S orthosymplectic quivers

Based on our paper [2]

The seminal paper of [70] opens the door to constructing arbitrary 4d N/ = 2 SCFTs
through gluing together elementary building blocks called fiztures [115] (or triskelions in [94]).
These theories are known as class S theories. The purpose of this section is to study the Higgs
branch of class S theories using magnetic quivers. Many of these magnetic quivers are unframed
orthosymplectic quivers, which is the focus of this section. Choosing H = Zs, we find their
Coulomb branch Hilbert series to be consistent with expectations on the Higgs branch of the
class S theory [115, 114]. This provides an explicit check of the 3d mirror symmetry claim
between class S theories on S! and star-shaped orthosymplectic quivers [113].

Class S theories are 6d N' = (2,0) theories with gauge algebra J compactified on a three-

punctured Riemann sphere. By computing the 3d N'= 4 Coulomb branch of the star-shaped
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magnetic quiver that is derived from the class S data along the lines proposed in [113], we

obtain the Higgs branch of the corresponding 4d class S theories:

Three-legged magnetic quiver

HA =C with T,,,(J), T, (J) , Tpu(J) | - (5.33)

)y +p2 )y~ P3

joined at central node J

where the quivers 7,(.J) are linear quivers whose structure is indicated by the partition p. More
detail can be found in [62]%.

So far in this thesis we have looked at several orthosymplectic quivers that corresponds
to class § theory with untwisted D,-type punctures. These are star shaped quivers with an
SO(2r) gauge group in the centre. As a set of different examples, we consider A,,._; twisted
fixtures, which have a central USp(2r) gauge group. Our paper [2] is the first time the magnetic

quivers of such fixtures appear in the literature.

Twisted A,qq fixtures

The quivers investigated here are known as A,. 1 twisted fixtures. These include two
twisted As,_; punctures and an untwisted As,_; puncture. The twisting map folds As,_; onto
C, via outer automorphism. As a result, when we study the three-legged magnetic quiver, the
two twisted Ag,_; punctures have USp(2r) flavor nodes, and the fixture acquires a J = USp(2r)
central gauge node. The untwisted puncture has a SU(2r) flavor node. During gluing, only
the USp(2r) C SU(2r) subgroup of the untwisted Ay, puncture is gauged®. This produces an
unitary-orthosymplectic quiver. For r = 2, the linear quivers corresponding to different twisted
punctures are tabulated in Figure 5.1 and for untwisted punctures in Figure 5.2.

The magnetic quivers are constructed by gluing such quivers. For example, the magnetic

quiver for the fixture containing two maximal Az twisted punctures 7(15y(USp(4)) and one

80ne important feature of T,(J) is that their 3d N = 4 Higgs branch are closures of the nilpotent orbit with

partition p of j = Lie(J) which we denote as @Jp

9This reproduces a similar procedure in [113] when treating twisted D,. punctures. The quiver corresponding
to twisted D, punctures have SO(2r — 1) flavor nodes whereas untwisted D, have SO(2r) flavor nodes. As a
result, when constructing the three-legged magnetic quiver, only the SO(2r — 1) C SO(2r) subgroup is gauged in
the untwisted puncture. We thank a discussion with Gabi Zafrir in coming out with this result.
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Orbit Dual Orbit Dual Slice Dual Slice Quiver
o dpv (o) Dimension Symmetry mve
(1% (5) 0 0 Trivial
(2%) (3,12) 1 SO(2) O B
2 4
(4) (1%) 4 SO(5) o O ¢ 1
2 2 4 4
Figure 5.1: T(USp(4)) linear quivers. These are used in twisted As fixtures. The quivers

Typy () (USP(4)) have non-diverging monopole formula. The partitions identify special orbits of USp(4)
and its GNO dual SO(5).

Orbit Dual Orbit Dual Slice Dual Slice Quiver
o dpv (o) Dimension Symmetry e
(1% (4) 0 0 Trivial
(27 12) (37 1) 1 U(1> O—D
1 4
(2%) (2%) 2 SU(2) O—
2 4
31 | (@1 3 SU@ XU | O—O—]
1 2 4
(4) (") 6 SU(4) O—O0—0_CO—1
1 2 3 4

Figure 5.2: T(SU(4)) linear quivers. These quivers correspond to untwisted As punctures. All the
quivers Ty, (o (SU(4)) = T,r(SU(4)) have non-diverging monopole formula;

maximal As untwisted puncture T(;5y(SU(4)) can be glued together in the following way:

T4 (SU(4))
1
9 1
Gluing
5 | Ghme 2 (5.34)
4 3
o O o N neo o o
5 5 4 1 4 4 92 9 2 2 4 4 4 2 2
Ty (USp(4)) Tus)(USp(4))
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where the quiver after gluing is the three-legged magnetic quiver.

We tabulate twisted fixtures of As in Figure 5.3. The global symmetries match those in
[154]. We only provide the algebra of the global symmetry group as we often do not have the
HWG required to precisely identify the group. With the monopole formula, we are unable to
refine a Hilbert series with (special) orthogonal and symplectic gauge nodes. However, when
there are unitary gauge nodes, we may be able to partially refine the Hilbert series by assigning
the usual root fugacities to the unitary gauge nodes. The lack of HWG here is in contrary to
previous orthosymplectic quivers where we were always able to find an unitary counterpart.

For A,, twisted punctures we obtain SO(2n 4 1) flavor nodes and therefore the central
node of our star-shaped magnetic quiver will be SO(2n + 1) [155, 156]. We will not look at this
family of quivers in this thesis.

The first row of Figure 5.3 is the Eg quiver already investigated in Section 4.5.1. The unitary-
orthosymplectic quiver in the second row has a non-simply laced unitary quiver counterpart
with the same Coulomb branch and is a member of the C,,,; x A; rank 1 4d N’ = 2 SCFT

sequence we saw in the previous section.
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. Global . . . Plethystic
Quiver Symmetry dimy(C) Hilbert Series Logarithm
4
1 (1+ £2) Pag(t) 78t — 651t +
(1—12)2 123766 —
¢ 11 296946t +
o0 © oo ©o = 1 + 78t 4 2430t* + 43758% + 7755189110 4
9 9 4 4 4 92 9 537966t + 4969107t'° + O (¢'?) 0 (112)
2 Pug(t)
usp(8) (1= 2241 1 2)2 39¢2 6+ 98t -
X 12 1086t° + 1545¢8 +
o 0 o o 0 ©o su(2) = 1 + 39t + 878t* + 1339615 + 67761¢10 1 O (+12)
9 9 4 4 4 92 9 152412t + 1370975¢1° + O (¢'?)
1
9
50(5)2 (1 = #)” Ps6,ea(t) 2412 4 3613 + 5614 +
x (1 =)7L —t3)18(1 —¢4)7(1 — ¢7)8 635 — 24316 —
2 su(2) 13 — 1 4 24 4 3685 & 35614 4 1176;57—235715180—
X 9325 + 436715 + 13272t7 + 461895 + 188t - 181210 +
G o o o u(1) 13746810 + 413087¢1° + O (¢12) O ()
2 2 4 4 4 2 2
1
O P1oo(t)
(1 — 2)10(1 — ¢4)10(1 — ¢6)12
Q2 s0(5)? = 143502 + T2 4 1124200 4 | 3¢ 0dt! 4
X 16 140062¢8+1453129¢10+12880215¢12+ 1827 — 3808t =
O 3 su(4) 004739711 1 680140044¢16 + | 777104+ O (1'?)
4172259667t'8 4 2322308422520 +
o & & 0 0 ¢ ©° O (t*?)
2 2 4 4 4 2 2

Figure 5.3: Magnetic quivers for twisted As fiztures. We show the subset of orthosymplectic quivers whose Coulomb branch is not bad. The choice
of the discrete group is H = ker(¢) = Zo. The palindromic numerator terms Py (t) are very long expressions and given in Appendiz E Figure 39 and

40 in [2].
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Untwisted D fixtures

The magnetic quiver of untwisted D-type fixtures are obtained by gluing together 7,(SO(2r))
quivers. The linear quivers 7,(SO(2r)) are listed in Figure 5.4 for » = 3. The magnetic quiver
for a fixture with three maximal D3 punctures is obtained by gluing three maximal legs of

7,(S0(6)) [94]:

T16)(SO(6))

Gluing

T(p‘»)(SO(G)) T(l“)(so((i)) (535)

We have already seen several examples of magnetic quivers of such class S fixtures in previous

sections.
Orbit Dual Orbit Dual Slice Dual Slice .
. . Quiver
o dpy (o) Dimension Symmetry
(1% (5,1) 0 ] Trivial

(2%,17) (3%) 1 SO(2) o B

2 6
(3,1%) (3,1%) 2 SO(3) e O B
2 2 6
(3?) (22,17) 3 USp(2) x SO(2) Bad quiver

(5.1) (1% 6 50(6) e o o o H

2 2 4 4 6

Figure 5.4: T(SO(6)) linear quivers. These are used in untwisted Ds fixtures. The quivers
Typy(0)(SO(6)) have non-diverging monopole formula; the bad quiver with zero conformal dimen-
sion is not shown. The partitions identify special orbits of SO(6).
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Bad orthosytmplectic quivers

We encounter an interesting phenomenon where the Higgs branch of the class S theory
is a single hyperKahler cone but nevertheless the corresponding magnetic quiver seems to be
bad in the sense that the Coulomb branch Hilbert series diverges. As a result, the quivers
listed here form a subset of an exhaustive list in [19] as we only list the magnetic quivers whose
monopole formula is convergent. Recently in [107] and their upcoming work, a proposal is made
to resolve the badness of these quivers and offer a convergent Hilbert series. It will be then be

very interesting to revisit these computations and see if they match the expectations in [19].

5.4.1 Class S and product theories

Based on our paper [5]

Class S theories are meant to be constructed using fundamental building blocks of three-
punctured spheres (fixtures). However, some of these building blocks are actually products of
two or more SCFTs. Therefore, it is important to find which of these fundamental building
blocks are not actually fundamental, but products of more fundamental SCFTs. Recalling from
[126, 127] that identifying product class S theories is based on a systematic search without a
clear smoking gun to look for. In Section 4.7 we saw that a unframed orthosymplectic quiver
with a balanced set of nodes in the shape of a D-type Dynkin diagram are suggestive that the
Coulomb branch is a product. And since many of these forked quivers are indeed magnetic
quivers of class S theories, studying these families of quivers might help in the classification of
class S theories that are products.

Under the condition that at least one of the leg be a chain of nodes ending on a balanced
SO(2) gauge group, we were able to classify all star-shaped orthosymplectic quivers whose
Coulomb branches are products. These results can then be reinterpreted as class S theories
using puncture data and then the statement translates to: all class S theories of classical algebra
with at least one maximal puncture, whose magnetic quivers are good, and are the product of
two SCF'Ts has been classified.

e The Fg x Eg family of Table 4.11 is primarily defined as set of class S theories for a
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three-puncture sphere with Dy 5 punctures. These theories factorise into two copies of

the Eg family that is understood as three-punctured sphere with Dy 3 punctures:

HA D =HM , (5.36)

where the partitions are the Nahm partitions of the nilpotent orbits, following the same
convention as [126, 127]'%. In particular, partition (1**) of D,, corresponds to the maximal
nilpotent orbit.

e The E; x E; family, see Table 4.11, is firstly defined by a three-punctured sphere with
Doy 3 punctures. The latter factorises into two copies of the so-called F; family that are

defined by D;. s punctures:

(2k 4

=HY : (5.37)

e The Eg x Eg family of Table 4.11 can be understood as the class S theory of a three-
punctured sphere with Doy o punctures. Again, it factorises into two copies of the FEj

family, defined by As,,1 punctures:

(2K +,

HA Vo =HM DA (5.38)

where the red partition denotes the B partitions of the twisted As,,1 punctures.
The rarity of such decomposable three-punctured spheres has been noted in [126], where examples
for Dy theories with N = 4 have been presented. In response to one of the observations in [126],

the results of this paper show that only when k& = 1 does the Coulomb branch carry exceptional

10This is not the same convention as we used in the previous subsection.
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global symmetry; whereas for £ > 1, the global symmetry is composed of classical groups.
For a four-punctured sphere with one maximal puncture, the only family that factorises is

the Fg x SO(16) family given by Doy, 1 punctures:

2k 2
4k
k+2 N 4 2 2
2k

The moduli space is the product of the Higgs branch of a class S theory with Dy, punctures

(5.39)

and the nilpotent orbit closure @f;gikﬁ; ),

1,3)

| = M x O 1y (5.40)

For five or more punctures, it can be shown that the fork cannot be balanced and, therefore, the
product structure does not appear. For class S theories without maximal punctures, we have
yet to find a single example where the theory factorizes. For bad star-shaped quivers, no further
analysis has been attempted in this work. Nonetheless, there are conjectures where product
theories can arise from bad theories; for examples, a different realization of the Eg X Eg theory

as a bad quiver has been given in [106].
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Interlude - Orthosymplectic program

Orthosymplectic quivers are much less studied in the literature compared to their unitary
counterparts. Part of the reason is that they are more difficult to study.

In brane systems, things are more complicated because orientifold planes are always
present which changes the dynamics of the branes non-trivially. However, it is precisely these
phenomenons that lead to interesting new physics. For example, intersecting orientifold planes
significantly complicates the brane system but leads to moduli spaces that are products. Such
phenomenons can never appear in brane systems that describe unitary quivers.

Another complication arises when one tries to compute partition functions such as supercon-
formal indices, topologically twisted indices, S? partition functions. Computations often takes
longer and there are many subtleties involving disconnected subgroups such as SO(n) vs O(n).
Computing S? partition functions is difficult due to lack of FI parameters for orthosymplectic
gauge groups.

The introduction of the monopole formula resolves much of the computational difficulty of
orthosymplectic quivers. Due to the Weyl action, a rank n (special) orthogonal or symplectic
gauge group requires fewer magnetic charges to be summed over compared to a U(n) gauge
group'!. However, an issue remains that the refinement of the monopole formula requires
the gauge group to be non-simply connected so that there is a topological symmetry that
the monopoles can be charged under. In the IR fixed point, the topological symmetries then
enhances to the Coulomb branch global symmetry of the theory. This makes things challenging

for orthosymplectic quivers since the Sp(n) gauge groups are simply connected whereas the

1 Of course, for the exact Hilbert series, the total magnetic charges to be summed over will always be infinity.
But if you are only computing a perturbative series to some order, the number of charges to be summed over is
finite.
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SO(n) gauge groups for n > 2 do not have a continuous topological symmetry for us to charge
under (the topological symmetry is Zy). As a result, one can at best partially refine the Hilbert
series, which is not enough to write down the HWG or write down the refined generators and
relations in the chiral ring'?. The refined Coulomb branch Hilbert series can be extracted by
other means such as computing the Higgs branch of its mirror or computing the refined Coulomb
branch Hilbert series of its unitary counterpart (if it exists). The latter is how we obtain all the
HWGs for the orthosymplectic quivers in the previous sections, which luckily all have unitary
counterparts.

Despite these difficulties, the fact that we can quickly compute the unrefined Hilbert series
of any good orthosymplectic quiver is already very powerful. The details in computing any
framed /flavoured orthosymplectic quivers were already given in the monopole formula paper
[36]. In our paper [2], we extend this to unframed /flavorless orthosymplectic quiver by requiring
the specification of H C (Z2)diag-

Now, not only do we know how to apply the monopole formula for orthosymplectic quivers
with different features (framed/unframed, non-simply laced, unitary-orthosymplectic etc), we can
also carry out computations very quickly. For example, the first ten orders of the Hilbert series
of a quiver with dimyg = 30 Coulomb branch will take less than 10 minutes with Mathematica.
A perturbative series to this order is normally more than enough to try to identify the Coulomb
branch with a known algebraic variety. With these tools under our belt, we set forth to classify
orthosymplectic quivers.

One way to systematically classify orthosymplectic quivers is to follow the early developments
of unitary quivers. For example, the ADE Dynkin classification of unitary quiver theories
describing the low-energy theories of D-branes probing an ADFE singularity C?/T 4pg [35, 157],
also known as McKay correspondence. The Dynkin type quivers are completed by unitary quivers
[65] in the shape of classical BC' type Dynkin diagrams and quivers in the shape of exceptional
G5, Fy; Dynkin diagrams. While the ADFE-type quivers admit a Lagrangian description, the

BC FG-type quivers do have a known Lagrangian. The Coulomb branch of a Dynkin quiver of

121t is still achievable with some guess work involved since the dimensions of the irreducible representations of
the global symmetry are known
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the Lie algebra g is the (reduced) one G-instanton moduli space, or equivalently, the minimal
nilpotent orbit closure of g [158, 159, 160]. The relationship between Coulomb branches and
moduli spaces of instantons was pointed out for ADE quivers in [91], see also [161, 162], and
for BCFG quivers in [65]. This classification yields a set of simple moduli spaces which are

ubiquitous in quiver gauge theories.

Table 5.15: The Dynkin classification of orthosymplectic quivers.

Dynkin type orthosymplectic quivers

e @000 0@

e @ 900 - 0@
Cre 6000 - 00

D-type - 9@

Dynkin-type classification. In this thesis, orthosymplectic quivers were explored in a similar
manner — aiming to develop a Dynkin classification of balanced orthosymplectic quivers, see

Tables 5.15 and 5.16:

e A-type orthosymplectic quivers, i.e. all edges are simply-laced and the gauge groups are
arranged in a linear chain, are well known [40, 62]. These quivers, when balanced, give
SO(n) Coulomb branch global symmetries which can be enhanced in unframed cases
by half-plus-integer contributions. Unframed cases such as the £, families were seen in
Chapter 4 which were magnetic quivers of 5d N’ =1 SCFTs. They can also be magnetic
quivers of 6d N = (1,0) SCFTs as shown in [163, 108, 109].

e B-type orthosymplectic quivers, i.e contains a balanced linear chain of nodes with a non-
simply laced edge, are studied in our paper [5]. The global symmetry is SO(n) x SO(n —1)

but can be enhanced in unframed cases. These are quivers whose moduli spaces can
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display a product structure. We obtain B-type quivers by folding the two prongs of the
fork in D-type orthosymplectic quivers, producing an outward pointing non-simply laced
edge. For B-type theories, we have yet to find examples where we are confident that they

are magnetic quivers of higher dimensional SCFTs!3.

e (-type orthosymplectic quivers, i.e contains a balanced linear chain of nodes with a
non-simply laced edge, are studied in our paper [8]. We differentiate these from B-type by
ensuring that the edge points towards the longer chain of the quiver whereas the direction
is opposite as B-type. The global symmetry is SU(n) but can be enhanced in unframed
cases. They can be obtained by folding A-type orthosymplectic quivers. This is shown
in Chapter 5 where folding the orthosymplectic magnetic quiver of a 5d SCFT can yield
magnetic quiver of a 4d SCF'T. This is the magnetic quiver operation corresponding to

compactifing 5d theory on a circle with a discrete twist'4 .

e D-type orthosymplectic quivers, i.e contains a balanced fork and is studied in our paper
[5]. The global symmetry is SO(n) x SO(n) and can be enhanced in unframed cases.
These are quivers whose moduli spaces can display a product structure. The product may
or may not be two identical moduli spaces. The D-type quivers are our forked quivers in
Chapter 4 and some examples are shown to be magnetic quivers of product of SCFTs in

d=4,5,6.

We find many examples where the resulting 3d N' = 4 Coulomb branches often describes the
Higgs branch of higher dimensional SCFTs. However, this does not mean that orthosymplectic
quivers that are not magnetic quivers of higher dimensional theories aren’t worth studying.
They can be interesting on their own right as 3d N’ = 4 theories, hence, the importance in a
classification.

For framed/flavoured orthosymplectic quivers, most of the interesting cases we know are

either T7(G) theories [62] where G = SO(n), Sp(n) or those whose Coulomb branch describes

13There are, however, some hints that the product involves a low energy 5d quiver gauge theory and another
5d theory whose coupling is tuned to infinity.

4 Note, not all folded quivers are magnetic quivers of 4d SCFTs as discussed in the previous chapter.
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slices of affine Grassmanian of type G as shown in [164]. The latter are actually unitary-
orthosymplectic quivers that are framed.

For unframed /flavorless orthosymplectic quivers, it is quite miraculous that we can construct
many infinite families of quivers of ABCD type that have simple moduli spaces . It is thus
unsurprising that these theories are associated to higher dimensional SCFTs whose low energy
description is a SQCD theory, rather than a multi-gauge group theory. Some of these results
are summarized in Table 5.16. One interesting feature here is that all the theories contains
a maximal chain which is a linear chain of balanced nodes that begins with SO(2). As a

consequence, such a chain always results in an increasing sequence of the form

il & o 0 (5.41)
2k 2k 2k—2 4 2 2
This is equivalent to a maximal puncture in class S language. Once we deviate from this
property, the resulting quivers often have less desirable Coulomb branches which we were unable

to match with other theories or are bad and the Hilbert series diverge.

Reverse engineering brane systems

Our approach so far is to find new quivers that describe known moduli spaces and see what
it teaches us rather than finding new moduli spaces. In some cases, it taught us something
about compatification <+ folding (such as B and C type), whereas other times it taught about
product theories (such as D-type). Knowing these properties allows us to reverse engineer the
brane systems that describe the quivers. In particular, knowing the moduli space of BC'D type
orthosymplectic magnetic quivers and their corresponding d = 3,4,5,6 SCFTs, allow us to
investigate the dynamics of Dy — Dgyo2 — NS5 brane systems in the presence of Oy — Q4.0 — ON
planes. This epitomizes the Bottom-Up approach. Now that we have a better understanding
of these new brane systems, we can apply the Top-Down approach to construct new magnetic

quivers with previously unknown moduli spaces.

0One way that we identify a simple moduli space is that the whole family can be expressed by a general
HWG taking the form PE[P(u;,t)] where P(u;,t) is a polynomial in the fugacities p;,t
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Beyond classical Dynkin type

Table 5.16: Representative examples of ABC D-Dynkin type orthosymplectic quivers and their Coulomb
branch moduli spaces. O denotes the closure of a nilpotent orbit closure of the Lie algebra g. The
subscript min denotes the minimal orbit.

Orthosymplectic quiver Framed Unframed
—D —E,
Balanced A-type Oins €8 [40] O, e.g. [3]
AP AB @flfljn X 65141n7 651(; X 551?1’17 5i?n X 6377
Balanced B-type O x0O —F,  —B, —B —D
Ohin X 0, O x O
Balanced C-type @iin, e.g. [8] @EEEG’D&D%A{S, e.g. [§]
AP —AD 651?11 X 651?n7 @f’l?n X 6ii5n7 @fjn X 61)87
Balanced D-type O x0O — P —F —B —B
Omin X Omim O x0

So far, we explored examples of all the classical Dynkin-type orthosymplectic quivers. In
an upcoming work [165], we intend to study exceptional Dynkin type orthosymplectic quivers
as well.

Furthermore, the balancing conditions of orthosymplectic quivers is different than that of
unitary quivers, meaning it is possible to construct balanced quivers beyond Dynkin types'¢. So
far, all known examples beyond Dynkin type are either bad quivers or free theories [13]. For
example, take the k& = 0 members of the F,, families where 4 < n < 8. These are free theories
of 24 free hypermultiplets; thus, the Coulomb branch is H2" ", Similarly, for the E, x E,
family, the theories are 2”3 free hypermultiplets. The results are summarised in Table 5.17.
Notice that all the nodes are balanced, and for n = 6,7, 8 the balanced set of nodes do not form
a Dynkin diagram of any finite algebra. For n = 8 case, the Dynkin diagram of F;5 seems to

arise! The discussion of balanced Dynkin diagrams beyond finite type is left for future work.

16This is impossible for unitary quivers as a fully balanced quiver can either be a finite or (twisted) affine
Dynkin quiver depending on whether the quiver is framed or unframed.
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Table 5.17: The k =0 members of the E, x E, family of Table 4.11 for 4 < n < 8. These quivers
are magnetic quivers for free hypermultiplets such that Coulomb branches are flat spaces. The Coulomb
branch Hilbert series are given by PE [2(n — 3) t].

Family Orthosymplectic quiver Coulomb branch

Fx I H32

2
B H16
2 2 4 4 6 4 4 2 2
1
Es 2 H?
1 2 4 2 2

1

B H*
2 2

1

E4 ,/i H2
1

Concluding remarks

Unitary quivers and special unitary quivers have been studied intensively in the last
few decades. Now that we have the right tools (such as the monopole formula) and right
understanding (such as presence of discrete one-form symmetries of unframed quivers that you

need to ungauge), the time is ripe to explore the landscape of orthosymplectic quivers.
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Chapter 6

Three dimensional gauge theories

Based on our paper [9]

In this chapter we focus only on 3d N' = 4 gauge theories. If the Higgs branch of the 3d
N = 4 electric theory! is a single hyperKéahler cone, then the corresponding magnetic quiver
is also the 3d mirror. However, if the Higgs branch is a union of several hyperKéahler cones,
which we will see examples of, then the magnetic quiver is no longer a 3d mirror. The indication
of when there is a 3d mirror duality or the more general electric-magnetic quiver duality is
summarized in Figure 6.1 for SQCD theories.

This chapter will be divided into two parts, both of which focuses on electric quivers with
a mizture of unitary and special unitary gauge groups. The first part deal with 3d mirror pairs
and the second part look at cases where there are several magnetic quivers corresponding to the
same electric theory. These dual pairs are constructed through 5d brane webs and applying the
fact that the classical Higgs branch is the same in 3d and in 5d.? This procedure is algorithmized

in our Mathematica code that accompanied the paper.

1Just a reminder that the electric quivers in the previous chapters are often referred to as ‘higher dimensional
theory’.

2Tn this chapter, we only look at the classical Higgs branch so there are no instanton corrections, unlike in
the previous chapters.
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Linear U/SU

All Ny > 2N,
Only U Only SU

All N; > 2N,—1

At least one Ny < 2N.—1

Figure 6.1: Venn diagram of the different types of quivers discussed in this paper. N. stands for the
gauge rank of a node in the quiver, while Ny stands for the number of hypermultiplets connected to it.
The circle represents all linear quivers with unitary and special unitary gauge groups, and arbitrary
numbers of flavors. In the left blue region, where all gauge groups are unitary, magnetic quivers can be
computed using D3-D5-NS5 systems (One can also use (fully) locked brane webs), while in the right
blue region, where all the gauge groups are special unitary, one can use 5-brane webs. In the generic
(middle) region, brane webs with lockings are needed. In the top region, all gauge groups have enough
matter to ensure that the magnetic quiver is a 3d mirror theory. Below this, in the middle stripe, the
same applies up to free hypermultiplets if only one gauge node has Ny = 2N, — 1; if two gauge nodes
or more satisfy this equality, the situation is more complex. In the last region, a collection of effects
can happen: the Higgs branch can contain one cone or more, and the Higgs ring can possibly contain
nilpotent elements, see [11].
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6.1 3d mirror of Mixed U & SU quivers

Brane set ups with D3-D5-NS5 branes produce 3d N = 4 gauge theories with unitary gauge
groups. In the presence of O3 planes, this extends to gauge theories with (special) orthogonal
and symplectic gauge groups. The lack of a natural brane construction for quivers with special
unitary gauge groups is quite unsatisfying and makes it hard to find the 3d mirror of such
quivers.

A partial resolution to this is given in [166, 167, 86, 168, 169] for cases where all the unitary
gauge groups are replaced by special unitary gauge groups. We will take a different approach in
chapter paper by first considering the electric quiver as a 5d N’ = 1 theory. As discussed in
detail in Chapter 3, a 5d N = 1 gauge theories can be described using a brane web configuration
consisting of (p, ¢)5-branes are stretched between [p, ¢|7-branes. Our quiver theories are now
effective field theories living on the world volume of the 5-branes. With the asymptotic locations
of the external legs of the brane webs fixed, a U(1) factor decouples from each of the unitary
gauge groups, thus yielding low energy effective theories with special unitary gauge groups.
Therefore, using the brane web construction, we can find the magnetic quiver corresponding to
any linear quiver with only special unitary gauge groups.

Now, in 3d N = 4, both the Coulomb branch and Higgs branch are hyperKahler manifolds.
This obviously does not extend to 5d N' = 1 and therefore we do not expect mirror symmetry to
hold in 5d either. However, due to the hyperKéahler construction of the classical Higgs branch,
it is immune to quantum corrections and remains the same d = 3,4, 5,6. Therefore, the Higgs
branch of the electric quiver is the same either 5d N' =1 or 3d N’ = 4 theory. Motivated by this
fact, we conjecture that the same linear quiver with only special unitary gauge groups but as a
3d theory is mirror dual to the magnetic quiver. This is checked by an explicit computation of
Coulomb branch and Higgs branch Hilbert series of both quivers. One can think of the the trip
to Hd as a detour so that we can use brane web configuration to find the 3d mirror pairs.

In this paper, we will extend the brane web procedure in [25] to electric quivers containing
a mizture of unitary gauge groups and special unitary gauge groups. The prescription turns out

to be remarkably simple and systematic. This procedure can be easily generalized to finding
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the 3d mirror quiver of any quiver that is linear. This includes the T} (SU(n)) quiver theories
introduced in [62] with any of the unitary gauge groups replaced by special unitary gauge groups.
Furthermore, it also extends to linear quivers that are ‘bad’. Where possible, the results are

checked by explicit computations of Higgs branch and Coulomb branch Hilbert series.

6.1.1 Web locking: first examples

In this section, we introduce the concept of brane locking on a family of basic examples,
which are all good 3d N' = 4 quiver theories (in the sense described in the introduction), which
means Ny > 2N, for every gauge node. For this kind of theory, brane locking provides 3d N = 4
mirror pairs. We confirm these findings using Hilbert series computations for the Higgs and
Coulomb branches of both quivers in the pair. More general quivers will be dealt with later on,
using the same principles.

The traditional way of computing a 3d A/ = 4 mirror of a linear quiver with unitary gauge
groups makes use of brane set ups with D3, D5 and NS5 branes and S-duality. Let us start with

a T'(SU(4)) quiver. Utilizing brane set ups, one finds that this theory is 3d self mirror:

3d mirror

J—0—O0O—O0 O—O—O—1] (6.1)

This can be checked through explicit Coulomb branch and Higgs branch Hilbert series computa-
tions as shown in Table 6.2.
We now want to know what happens if we replace all the unitary gauge nodes with special

unitary gauge nodes:

[ O O O (6.2)

In 3d, we do not have a brane system for such a quiver, as stacks of D3 branes stretched between
5-branes only give rise to unitary gauge groups. However we can construct a brane configuration

in 5d using brane webs [170, 171, 172]. With the basics of brane systems explained in Chapter
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3, the brane web of this theory is as follows:

(6.3)

where nodes represent 7-branes and lines represent 5-branes (specifically, horizontal lines are
D5 branes, vertical lines are NS5 branes, and lines at an angle here are (1, —1) 5-branes.) The
coordinate system we adopted here are the same as in Chapter 3. The stretching and contracting
of the polygons represent moduli of the Coulomb branch. For the case above we see three

polygons and hence the Coulomb branch has real dimension 3.

Going to the Higgs branch

As outlined in Chapter 3, we can go to the Higgs branch by first setting all the masses

(given by the vertical distance between the D7 branes) to zero. The resulting configuration is:

O O ?
(6.4)

NN

This diagram can be made clearer by pulling the fourth 7-brane from the left all the way to the

right. The process involves several brane creations and annihilations [37]. As a result, (1, —1)
branes become NS5 branes after passing through the monodromy cuts originating from the

7-branes:

O ) ( @) (6-5)
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8

The Higgs branch moduli correspond to brane segments moving in the z7, 2%, 2° directions.

Getting the magnetic quiver

Following the algorithm in [25], which we also described in Chapter 3, we first do a maximal

decomposition into subwebs that are free to move with respect to each together:

@) O @) O
O ] T (66>

o o O O

We now read off the magnetic quiver where each subweb represents a unitary gauge node with
rank given by the number of coincident branes. The multiplicity of hypermultiplets between the
gauge nodes are then given by the intersection number between each pair of subwebs. For the
current example, each pair of subwebs intersect at most once, so the edges in the quiver have

multiplicity at most one. The resulting magnetic quiver is:

where the coloured nodes correspond to the different subwebs in (6.6). In this chapter, all
the gauge groups in the magnetic quivers are unitary, and as usual a diagonal U(1) should be
ungauged. (6.7) reproduces results computed in [168, 169].

Now, (6.7) is only the magnetic quiver for (6.2) when the gauge couplings of the special
unitary gauge groups are all finite. Crucially, at finite gauge coupling, the Higgs branch of the
5d quiver is classical and thus the same in 3 — 6 dimensions. This allows us to establish the
following relationship:

HO e (6.2) = H31(6.2) = C3(6.7) (6.8)

classical

The right equality of (6.8) is now an equality amongst 3d N' = 4 theories. This motivates us to
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conjecture that the two quivers form a 3d mirror pair:

C34(6.2) = H3(6.7) (6.9)

This is checked explicitly through Hilbert series computations in Table 6.2.

Changing SU(3) to U(3)

Now, consider gauging the SU(3) node to a U(3):

O—O (6.10)

The Higgs branch of this quiver is now a subspace of the Higgs branch of (6.2). To demonstrate
this gauging process in the brane set up, we introduce the notion of locking. Two subwebs are
locked if they are forced to move together. The gauging of SU(3) to U(3) then translates to
locking the two left most NS5 branes (coloured in blue). On the other hand, the two remaining

NS5 branes (in red and olive) are still free to move independently.

O O O O
S — (6.11)

O O O O

Physically, the explanation for locking is that separating the NS5 branes in the 27, 2%, 2° direction
corresponds to moving on the baryonic branches of the 5d theory; as a consequence, preventing
the NS5 from moving apart is equivalent to removing one of the baryonic branches, removing a
baryonic U(1) global symmetry by gauging it, therefore producing the Higgs branch of a theory
with a unitary gauge group. Indeed, the Higgs branches of an SU(3) gauge theory and the Higgs
branch of a U(3) gauge theory share the same mesonic branch, and the only difference is that

the SU(3) theory has a baryonic branch in addition. We can read off the magnetic quiver from

!i i‘ .1 (6.12)

(6.11):
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One of the U(1) nodes is now connected to the U(3) node with an edge of multiplicity two,
which simply means there are twice as many hypermultiplets. This is because the intersection
number between the blue subweb and orange subweb is two. Edge multiplicity naturally arises
when studying magnetic quivers [25, 173]. Once again, the Coulomb branch and Higgs branch
computation shows that, at least on the level of Hilbert series, (6.11) and (6.12) are indeed

mirror pairs.

Changing SU(3) to U(3) and SU(1) to U(1)

Let’s see what happens if we gauge the baryonic U(1)s associated to both the SU(3) and
SU(1) nodes:

J—C—0—0 (6.13)

In the brane set up, this is equivalent to locking both the pair of branes on the left (blue)

and on the right (green):

o — A (6.14)

Now, amongst the NS5 branes, there are only two pieces (rather than three in (6.11)) that move

independently. Looking at the intersection numbers, one quickly obtains the magnetic quiver:

!§ ?’ (6.15)

where the edges of both U(1)s connecting the U(3) have multiplicity two. The unrefined Coulomb
and Higgs branch Hilbert series are presented in Table 6.2 and is consistent with the conjecture

that they are 3d mirror pairs.
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Summary

We summarize all the different combinations of U / SU nodes for T'(SU(4)) theories in
Table 6.1, along with their unrefined Coulomb and Higgs branch Hilbert series in Table 6.2 and
global symmetries in Table 6.3. As is clear from the magnetic quivers in Table 6.1 and 3d mirror
symmetry, the Higgs and Coulomb branches of these quivers only depend on the partition of 4

which defines the locking (see the coloured cells in the second column).

6.1.2 Linear quivers with nodes of non-negative balance

Good linear quivers with all nodes U go under the name 77 (SU(n)) theories. Each unitary
gauge group is either balanced or overbalanced. 3d mirror symmetry for these theories was
studied in [62] using the classic NS5-D3-D5 HW brane system. If we take the NS5-D3-D5 brane
system for any T7(SU(n)) and we go to the Higgs phase (i.e. all D3 branes are suspended
between D5 branes, and any D3 branes stuck between a D5 and a NS5 are annihilated by a HW
transition) then all the NS5 branes have no D3 branes ending on them.? T-dualizing this system
to a brane web, we obtain the brane system of the electric quiver with all U nodes replaced by
SU. The NS5 branes present in this system have no D5 branes ending on them, which means
the only 5-branes are NS5 and D5. This greatly simplifies obtaining the magnetic quiver for any
choice of locking, i.e. any choice of U and SU nodes in the electric quiver. We proceed with

some examples.

T(SU(n)) theories

The T'(SU(n)) family has a single SU(n) flavor group and is 3d self mirror. This makes it
the simplest example to see how the different arrangements of U/SU have on the mirror. The

n = 4 case is already studied in detail in Section 6.1.1. When all the gauge nodes are unitary,

3Note that we can only reach such a Higgs phase, when there is complete Higgsing. Otherwise there are
always some D3 branes suspended between NS5 branes.
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Table 6.1: The left column shows extensions of the T(SU(4)) quiver with different combinations of
U/SU nodes. The middle column shows their respective magnetic quivers, which in this particular case
are in fact 3d mirrors. These magnetic quivers are derived from 5d brane webs, which yield quivers
with all unitary gauge nodes. The right column shows the mazximal decompositions of the brane webs
into subwebs, with the necessary locking imposed. Note that the two magnetic quivers in blue cells and
the three magnetic quivers in yellow cells are identical: this shows that Higgs branches for the family
of theories considered in this table depends only on partitions of 4. This is reflected in the next three
tables by merging the corresponding cells.

Electric Quiver Magnetic Quiver Brane web
O O O O
[ O O—O0—C=
4 UE) uR v | 1 g 3 g | O
O O O O
1
O O O 0
[ 0 f 5 _
4 SUB) U©Q) U@ —
? 2 3 ? R
1
O O O O
O O % 5 _
4 U(3) U2 Su) —
<1> 2 3 <1> © © © ©
1
O O O 0
O] O
4 U(3) SU©2) U(1) O — =0
. ; ; . O O O O
1
1 O O O O
] O
4 SU@B) SUE2) U@1) O — =0
O O O O
1 3 3 1
1
1 O O O O
] O
4 SUB) U@ Su@l) O — =0
O O O O O O
1 2 3 1
1
1 O O O O
] O
4 U@B) SU@) Su@) O — =0
O O O O O O
1 2 3 1
1 1
1 O O O 0
O] O
4 SU(3) SU@2) Su(1) O — =0
O O O O O O
1 2 3 1
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Table 6.2: Extensions of the T(SU(4)) quiver are shown with different combinations of U/SU nodes, along with their Higgs and Coulomb branch
unrefined Hilbert series. These correspond to the Coulomb and Higgs branch Hilbert series, respectively, of their mirror quivers shown in Table 6.1.
For brevity, unrefined Hilbert series are shown. Under the appropriate fugacity maps, this correspondence extends to refined Hilbert series.

Electric Quiver

Higgs branch unrefined Hilbert Series

Coulomb branch unrefined Hilbert Series

] O (1 -1 -1 1% 1 -1 -1 1%
2)\15 2)15
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the quiver is balanced and the theory is self-dual:

3d mirror

O—0—0 -+ O—1 O ~
U1 UR) UB) Umn-1) n U(1l) Un-1) U@B) U@2) UQ)

As before, we first turn all the gauge nodes from U to SU. In this case, the 3d mirror obtained

from the brane web takes the following form:

U(1)
3d mirror u) U(n—1)
O0—0—0 - O—0 n -1 0—0—0
SU(1SU(2SU(@B) SU(r—1) n u) U@3) U(2) U(1)
U(1)

(6.17)
which appeared in [168]. Comparing (6.16) and (6.17) we see that the only difference in the
mirror quivers is the U(n — 1) connected to a U(1) with n links exploded into a bouquet of n
U(1)s. Regardless of the choice of U/SU groups, the U(XV;) gauge nodes with 1 < N; <n — 1,
in the mirror theory remain the same because they correspond to D5 branes in the brane web
and not NS5 branes, hence are not affected by locking. When all gauge nodes are SU, the brane
web has n independent (unlocked) NS5 branes, each corresponding to a U(1) in the bouquet.

Starting from (6.17), we then turn some of the SU into U. The only change to the 3d mirror
is in the U(1) bouquet which is connected to the U(n — 1) node. The number of U(1) nodes in
the new bouquet and the multiplicity of the edges connected to the U(n — 1) can be determined
solely from the different ways the NS5 branes are locked. To illustrate this, it is sufficient to

draw an incomplete brane diagram with only NS5 branes. When all the gauge groups are SU,
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the NS5 branes are unlocked and is denoted by different colours:

(6.18)

where S stand for special unitary group in the electric quiver. For n — 1 balanced nodes in the
electric quiver, there are n NS5 branes in the brane web. The dictionary between the figure
and the electric quiver is as follows. For adjacent NS5s with different/same colour, a D brane
stretched between them has a special unitary/unitary gauge group, respectively. Changing the
gauge groups in the original quiver from special unitary to unitary is equivalent to setting the
adjacent branes to the same colour. The adjacent branes are locked, hence corresponding to a
single U(1) node in the bouquet of the mirror quiver. The multiplicity of the edge is then the
number of NS5 branes that move together. This is because in the full brane web, this number is
the intersection number between the locked NS5s and the D5 branes.

The changes in the mirror quiver are dictated solely by the arrangement of U/SU nodes in
the electric quiver. The ranks of the gauge and flavor groups are irrelevant here. For example,
if the electric quiver has a USUSUU structure (where U/S stand for unitary/special unitary

group, respectively), then the NS5 branes takes the form:

(6.19)
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The mirror quiver has the following bouquet:

(6.20)

where the rest of the quiver remains the same. Notice that the order of the links with multiplicities
(triple, double, double) in (6.20) is in reverse to the multiplicities read from (6.19). This order
reversal is just to be consistent with the way the brane webs are drawn throughout this paper
and in the Mathematica code. The reverse order does not make a difference here since all gauge
nodes are balanced. However, this becomes important below when there are overbalanced nodes.

We can illustrate this with T'(SU(7)) with a particular choice of U/SU:

O O O O O L]
U(1) SU@2) U@B) SU@W UB) Ul6) 7
1

— \
3d mirror

For T'(SU(n)) theories, we can easily write down the prescription for any general U/SU

(6.21)

O

O O O O
4 3 2 1

combination:
a;—1 as—1 ag—1 a1 —1 a, —1
— —_— —_— —_—A —_—
O—0------ O—0—0------ 0—0—0------ 00 -- 000 - O—{]
U U U S U U S U U S U S U U 0
(6.22)

where a; — 1 counts the number of unitary nodes in between neighbouring special unitary nodes

such that
Z a; =n (6.23)

and the gauge node starts with (U or SU)(1), (U or SU)(2),..., (U or SU)(n — 1). The mirror
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quiver takes the following form:

(6.24)

Linear quiver where all gauge nodes are balanced

A linear quiver where all k gauge nodes are unitary and balanced has a 3d mirror with only
one SU(k + 1) flavor node. Written as an unframed quiver, this means there is a U(1) gauge
group connected to one of the other gauge groups with £+ 1 links. This is because the Coulomb
branch global symmetry of an electric theory with & consecutive balanced nodes is SU(k + 1).
The Higgs branch global symmetry of the mirror theory is SU(k + 1) as well, which translates
to a single flavor node*. If k unitary gauge nodes are replaced with special unitary nodes, then
the single flavor node in the mirror will become a bouquet of k£ U(1)s with multiplicities a; such
that Zf a; = n. The procedure described above in this subsection can then be straightforwardly
applied to any linear quiver where all gauge nodes are balanced. For example, consider the

following balanced quiver and its mirror:

3 3 1
6
O O O O O O O O
uE)  UE)  UE)  UB U)o 1 2 3 2 1
(6.25)

4Recall, the global symmetry of the Coulomb branch can be read off from the number of balanced nodes in
the quiver. The global symmetry of the Higgs branch is the same as the flavor symmetry.
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and when all gauge nodes are SU®:

3 3 111 11 1
O O O O O @, O O
SU(3) SU(3) SU@) SU@3) SUG) .23 21

3d mirror

(6.26)
An arbitrary selection of U/SU gives a bouquet of U(1)s connected to the U(3) with links of

different multiplicities. For instance,

; ; . 1 1 1
R P R P

One or more overbalanced nodes

As mentioned above, for good linear quivers the different combinations of U/SU only affect
the way U(1) bouquets behave in the mirror. When all gauge nodes are balanced, there is
only a single bouquet. When there are one or more overbalanced gauge nodes then there are
more bouquets in the mirror. For the remainder of this subsection, it is sufficient just to focus
on the different kinds of bouquets that can arise under different combinations of U/SU and
balanced /overbalanced nodes.

A good linear quiver with only unitary gauge nodes with one or more being overbalanced,
has a mirror quiver with more than one flavor node. Written as an unframed quiver, this means
the U(1) node connects to several other gauge nodes. Let us start with a linear theory with
gauge nodes USUSUU where the cyan node is overbalanced. Once again, the rank of the gauge

nodes and the flavor nodes do not affect the results. The configuration of NS5 branes takes the

5The quiver on the right is also the 3d mirror of the A, class S theory with 2 maximal and 6 minimal
punctures
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form:

(6.28)

v s U S U U
It is now important to pay attention to the interval between the two blue NS branes. This is
now an additional information beyond the colour coding of the NS5s that needs to be taken
into consideration. The number of gauge nodes in the mirror theory that have U(1) bouquets is
u + 1 where u is the number of overbalanced nodes in the electric quiver. Here, we have two
bouquets in the mirror quiver. The novelty compared to the all balanced case is that the U(1)
nodes in the bouquet may have edges connected to more than one gauge node. For (6.28) the

mirror quiver always has the following bouquets:

(6.29)

Depending on the ranks of the gauge groups and flavor groups in the electric theory, there can
be many gauge nodes between the two unmarked nodes in (6.29) but they will not have any
links to the three U(1)s. In other words, they won’t have any U(1) bouquets irrespective of the
U/SU combination in the electric quiver.

Next up, we place two unbalanced unitary nodes next to each other. For a quiver with

USUUUU, the NS5 configuration is:

(6.30)

v s U U U U

Following the same set of rules, there are three gauge nodes in the mirror with bouquets. The
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mirror quiver has the structure:

(6.31)

Unbalanced special unitary gauge group

If we look at USSSUU where the overbalanced node is now special unitary, the NSb5s read:

(6.32)

v s s S U U

Like before, the special unitary node means the nearby NS5 branes will move independently

from each other, yielding a mirror quiver with the following bouquets:

(6.33)

Therefore, an unbalanced special unitary node results in the two U(1) nodes being connected to

two separate gauge nodes.

Generalization

In general, the procedure of finding the mirror pair of a good linear quiver is the following:

1. Set all the gauge nodes in the electric quiver to be unitary. This is now a 77 (SU(n))

quiver whose mirror quiver is T7?(SU(n)) and can be easily obtained following [62, 96].

2. Switch all the U nodes in the electric quiver to SU which translates to exploding all the

U(N;) flavor nodes in the mirror into bouquets of NV; U(1)s.
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3. Identify which gauge groups in the electric quiver are overbalanced.

4. Draw the incomplete brane configurations introduced above with only NS5 branes and
alter the bouquets depending on the U/SU and balanced/overbalanced conditions outlined

above. This reproduces the mirror quiver of the mixed U/SU electric theory.

Reverse algorithm

Note, the procedure above is completely included in a general algorithm detailed in our
paper [9]. Nevertheless, working with only linear electric quivers that are good allows us
to simplify the algorithm immensely using incomplete brane configurations with only NS5s.
Another advantage is that the algorithm for a good linear quiver can be reversed: given a quiver,

one can decide whether it is the mirror of a good linear quiver, and if so we can find it.

1. The reverse algorithm only works if all the gauge groups are either balanced or overbalanced
(we are now talking about the mirror quiver but this still needs to be true). Look for a set
of U(1) gauge nodes, each not connected to any other in that set, such that ungauging all
of them (i.e turning U(1) gauge groups into U(1) flavors) produces a framed linear quiver
with only multiplicity 1 links. If this is not possible, i.e. (a) the remaining gauge groups
do not form a linear quiver, or (b) there are multiple links between the remaining gauge

groups, then there is no mirror that is a good linear quiver and the algorithm stops here. ©

2. Whenever multiple U(1) flavor nodes are attached to a single gauge node they should be

aggregated into a single U (k) flavor, taking account of linking multiplicities.

3. The resulting quiver will be a linear chain of unitary gauge nodes with flavors. If it is
a good linear quiver, then it is a T?(SU(n)) theory. The mirror theory T (SU(n)) is
straightforward to obtain once the quiver is expressed using partitions (n, p, o). T7(SU(n))

is identical to the desired electric quiver under the reverse algorithm, but with all its

STf there are links between two U(1)s with multiplicity & > 0, then ungauging both of them gives rise to
k

L LE] 1, If such a feature arises when creating a linear quiver, the electric quiver will be an ugly/bad quiver
and the reverse algorithm will not work. Another way to think about this is that the information contained in
the links between the U(1)s is lost after the ungauging.
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gauge groups set to unitary. Therefore, the next step is to figure out which arrangement of

U/SU nodes in T} (SU(n)) will reproduce our mirror quiver under the forward algorithm.

4. Return to the mirror quiver in the beginning but highlight the gauge nodes that form
the linear chain in step 1. The U(1)s attached to this chain will be the bouquets. This
brings the quiver into a familiar form which we see throughout the paper. By studying
how the bouquets connect to the rest of the quiver, we can reconstruct the incomplete
brane diagram where the number of NSbs is equal to the total number of links to the
U(1)s in the bouquets. With the incomplete brane diagram, we can now identify which
of the gauge groups in the electric quiver are unitary or special unitary. Replacing the

electric quiver in step 3 with the correct U/SU arrangement recovers the electric quiver.

We demonstrate this with the following example:

) o U )
5 2 4

4 (6.34)

Step 1-2: Ungauge the U(1)s until we have a linear quiver without links with multiplicity:
2 4
E E
4 4

Step 3. (6.35) is a linear quiver where all gauge nodes are unitary and are either balanced or

3

-

3

o O— =
v O— 1=

(6.35)

overbalanced and thus a T?(SU(N)) theory. The 3d mirror (which can be obtained either by

following [62, 96] or using the Mathematica code) is:
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Step 4: From the structure of the four bouquets in (6.34), we read off the following incomplete

brane diagram with only NSbs:

u S U U U U s v uvu uUu v U S U U U U (6.37)

This information specifies the U/SU nodes in (6.36) that makes it the electric quiver of (6.34):

U(1)SU(2)U(3) U(4) U(3) U(2)SU(2)U(3) U(4) U(5) U(5) U(6)SU(5)U(4) U(3) U(2) U(1) (6.39)

As a consistency check, the position of the overbalanced nodes (cyan) predicted in (6.37) matches
with those in (6.38). (6.38) is indeed the 3d mirror of (6.34) which can now be checked by

putting it as an input in the Mathematica code for the forward algorithm.

6.1.3 Some underbalanced nodes and several Magnetic quivers

The Higgs branch of a 3d A/ = 4 quiver where all gauge nodes are either balanced or
overbalanced is a single cone. If one or more gauge groups are underbalanced, the Higgs branch
could be the union of several cones as first observed for SQCD in [34]. As a result, we have one
magnetic quiver for each of the cones. The concept of 3d mirror pairs is ill defined in this case
and we will therefore only speak of magnetic quivers.

The multitude of hyper-Kahler cones and hence magnetic quivers come from inequivalent
choices of maximal decomposition of our brane web into subwebs [25]. Consider the following

quiver:

(6.39)

SU(5) SU(5)
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We see that both gauge nodes are underbalanced. When drawing the brane web, choose a

convention that move all the D7 branes to the left:

[0,1] 3,1] 5.1]
:1:2:4: :8I8ﬁ5 /O (6.40)
0,1] [0,1] [0,1]

The brane web has four inequivalent maximal decompositions, each giving rise to a magnetic
quiver, listed in the first row of Table 6.4. (This statement, and subsequent statements in this
section, can be obtained immediately using the attached code). An immediate observation is
that the subwebs associated with NS5s now have non-trivial intersection number between them.
In other words, the bouquets of U(1) nodes in the magnetic quiver can now have edges between
them, which is something we do not observe in good linear quivers where all nodes are balanced
or overbalanced.

The next step is to turn the SU(5)s into U(5)s by locking the branes. In contrast to good
quivers where locking makes minor changes to the magnetic quivers, for bad quivers it can also
leave the magnetic quiver unchanged or it can change the structure drastically.

As already stated in this section, for a good linear quiver there is always a set of HW
transitions such that there is an unbound state of D5 and NS5 branes. As a corollary, the
NS5 branes move independently from each other. If the electric quiver contains underbalanced
nodes, this no longer holds and there may be bound states one cannot get rid of. This, in
return, can allow for more than one maximal decomposition with some of the 5-branes forced
to move together. Note, we are not doing any locking here, but this is a natural feature of a
maximal decomposition of a brane web, even when all the gauge nodes in the electric quiver are
SU. In particular, for an SQCD electric quiver, the hyper-Kéhler cone where all the NS5 move
independently from each other is called the baryonic branch. If some of the NS5 move together,
it is the mesonic branch. In Table 6.4, the baryonic cone is given by Magnetic Quiver 4 in

the first row. The remaining magnetic quivers all have some or all of the NS5 branes moving
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together. As a result, if the NS5 branes that are already moving together are locked when going
from SU to U, the resulting magnetic quiver will stay the same. For example, Magnetic Quiver
1 remains the same when the second SU(5) in the electric quiver is turned to U(5).

In the case of good linear quivers, we have seen that changing nodes in the electric quiver
from SU to U simply translates to merging some of the U(1)s in the bouquet. For a quiver with
bad nodes, the s-rule plays a crucial role which can result in a complete change to the structure
of the magnetic quiver. For example, Magnetic Quiver 3 changes drastically when the second
SU(5) in the electric quiver is changed to U(5).

When all the SU nodes are changed to U in the electric quiver, all four magnetic quivers
become identical. In other words, the four hyper-Kéahler cones coalesce into a single cone. This
is expected as the Higgs branch of a bad quiver with only unitary gauge nodes should be a
single hyper-Kéhler cone as observed in [173]. This is shown in the fourth line of Table 6.4. As
a consistency check, the Higgs branch of any linear bad quiver with only unitary gauge nodes is
equivalent to the Higgs branch of a good quiver. The good quiver can be obtained through a
set of operations outlined in [174]. Basically, assuming vanishing FI parameters, a bad node of
U(k) with Ny flavor is replaced with U(|Ny/2]). This process is repeated until all gauge nodes

are good. For our electric quiver, the following equivalence in Higgs branches hold:

UG)  UG) U2 U@

where the right side is the known 3d mirror of the good theory in the middle.

For good linear quivers with different combinations of U/SU nodes, we can check the
conjectured mirror pairs through explicit Hilbert series computations. For electric quivers with
bad nodes, however, computational difficulties prevent us from doing the same explicit checks.
Nevertheless, we find consistency when comparing to the magnetic quivers found using other

methods.
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Table 6.3: Extensions of the T(SU(4)) quiver are shown with different combinations of U/SU nodes,
along with their Higgs and Coulomb branch global symmetry. Notice that the ranks of the global
symmetries always add to 6.

Electric Quiver Higgs branch global symmetry | Coulomb branch global symmetry
[} ‘ O A3 A3
4 UB) U@ U
[} O
4 SUB) U@ U
0 O As3Uq Ay
4 UB) U@ Sud)
[} O
P s A3t Ay
[} O
4 SU@B) SU@ U
[ O
4 SUB) U@ suQ) AsU1U, Ay
[ O
4 UEB) SU@) su@)
] O
4 SU@B) SU@2) Su@) A3U1 U1 Ul
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Table 6.4: The first row displays the electric theory and the four corresponding magnetic quivers. The next few rows show how the magnetic quivers
change as the SU nodes in the electric theory are turned into U nodes. We observe how distinct subdivisions of the brane web (and hence their
magnetic quivers) become identical when some of the SU nodes are turned to U nodes. The light blue colored box indicates the same magnetic quiver.

Electric Quiver | Magnetic Quiver 1 | Magnetic Quiver 2 | Magnetic Quiver 3 | Magnetic Quiver 4
2 3
3
1 1 . 1 1
8 2 3 &2
CD:CD:() 1 1 1 1
SU(5) SU(5) 11 1 1 2 2 1 1 5
9 3
1
8 2 2
C——0
SU()  U(5) 1 1 1 1 2 2 1
2 3
1
22 7 1
U() SU(5) 1 2 2 1 L. 1
2 3
1
0—2@%@
UG)  UB) 1 2 2 1
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Argyres-Douglas theories

The Higgs branch of certain Argyres-Douglas (AD) theories has been argued to coincide
with the Higgs branch of U/SU linear quivers where one or more nodes have negative balance
[116, 175, 176, 177]. The above algorithm can then be applied to find their magnetic quivers.
The results are consistent with the those given in [116, 175, 176, 177], which use different

techniques.

Mathematica algorithm

One of the most useful outcome of [9] is the Mathematica algorithm that comes with it.
This algorithm takes any linear quiver with any mixture of U & SU gauge groups and outputs
the 3d mirror/magnetic quiver(s). The algorithm is extremely efficient, for example a long linear
quiver with Higgs branch dimension dimyg(Higgs) ~ 50 will take less than one second to output
the 3d mirror/magnetic quiver(s). Naturally, if one is only interested in quivers with unitary
gauge groups or quivers with only special unitary gauge groups, the algorithm will also output

their 3d mirror/magnetic quiver(s).

Extension to non-linear U & SU quivers

Ongoing work in [178] repeats the above procedure but for electric quivers of BCD type
Dynkin quivers with mixed U & SU groups. This exercise greatly expands the literature of
known 3d mirror pairs. One may wonder if this procedure can be repeated for any of the known
3d pairs. For example, quivers corresponding to k-instanton moduli spaces on ALE spaces whose

mirrors are known as sunshine quivers [92].
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Chapter 7

Hasse diagrams

Based on our paper [10]

Our goal is to study the Higgs branch of electric quivers in d = 3,4, 5,6 using magnetic
quivers. So far, the focus has been on computing the Hilbert series, identifying the geometry
of the moduli space and studying its chiral ring. In this chapter, we discuss a very different
method of studying the Higgs branch: by focusing on its Hasse diagram. Put simply, the Hasse
diagram studies the different phases of the Higgs branch where new massless states arise.

Hasse diagram basics

Let us look at the Hasse diagram of a simple set {a,b}. The Hasse diagram takes subspaces

that are partially ordered by inclusion of their closures and arrange them into a tree like diagram:

{a, b}

{b} {a}
) (7.1)

The node at the top of the diagram represents the full set whilst the node at the bottom is the

empty /trivial set.
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7.1 Hasse diagram of moduli spaces

Higgs branches have the property that they are symplectic singularities'. As such, they
have a natural foliation into symplectic leaves induced by the symplectic form. These leaves
are then related to each other by transverse slices. In the Higgs branch Hasse diagram, the
symplectic leaves are the nodes/dots and the transverse slice between two leaves are the line(s)
between them.

The physics encoded in the Hasse diagram is the pattern of partial Higgsing. In Higgs
mechanism, scalar fields acquire VEVs which cause gauge bosons to become massive, thus
breaking the gauge group into a subgroup. If the gauge group is fully broken, then we say there
is complete Higgsing. However, it is possible that there aren’t enough scalar fields in the hypers
to fully break the gauge group, such theories are said to have incomplete Higgsing. Theories
with incomplete Higgsing are closely related to the bad theories we mentioned in the previous
chapter.

Rather than turning on the VEVs of all scalars in the hypers at the same time, one can
also turn on some of the scalars to break the gauge group G into a subgroup H such that
G D H D Hpaxproken- Such a process is called partial Higgsing. The Hasse diagram encodes all

possible H that the gauge group can be broken into.

7.1.1 Example with SU(3) with 6 flavors

Let us study the classical Higgs branch of G = SU(3) with 6 flavors which is the same
in d = 3,4,5,6. The Hasse diagram can be obtained using representation theory arguments
with the different fields transforming in irreducible representations of SU(3). The irreps are
expressed using Dynkin labels [...]q.

For this theory, we have 18 hypers and thus 36 complex scalars transforming in 6 x

([1,0]su(s) + [0, 1] s (3)) and gauge bosons transforming in the [1, 1]sy sy irrep.

We provide a brief introduction to symplectic singularities in Appendix E.
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Breaking SU(3) — SU(2)

One of the subgroups is SU(2) C SU(3). To see what happens if we break into this
subgroup, we need to project the irreps above into SU(2) irreps. The 36 complex scalars in the

hypers decomposes as

6([1, 0] su(3) [0, 1]sues) = 6x([Usv@+0]sv@ +sue+0lsve@) = 12x[1]sv@+12x[0lsu@)
(7.2)
The gauge bosons transform in the adjoint representation of the gauge group which decomposes

as:

(1, su@) = x(2lsuee) + 2[sue) + 0lsue) (7.3)

Like before, the adjoint representation of [2]sy(2) are assigned to the gauge bosons of the broken
group SU(2) whereas the remaining gauge bosons eats the scalar fields to become massive. The
process is analogous to Higgs mechanism in electroweak theory. The gauge bosons and the

scalars fields that are eaten must be in the same irreps.

12 x [A]su@) +12 x [0]sue) — 2 % ([2[sve) + 0lsue) = 8[suwe) + 10[0lsue) (7.4)

where the factor of two comes from integration over complexified gauge group and imposing
F-term conditions. From the scalar fields that remains, we see 16 complex scalars transforming

in 8 % [1]gy(2) and 10 complex scalar fields which transforms trivially.

Breaking to other subgroups of SU(3)

Other subgroups include SU(2) x U(1), U(1) x U(1) and U(1). Repeating the analysis
above, one will find that the irreps of the gauge bosons that acquires mass cannot be matched

with the irreps from the scalars. Hence, partial Higgsing to these subgroups are not allowed.

Breaking from SU(2) to {1}

The SU(2) gauge group can then be completely broken to the trivial group where 6 of the

16 complex scalar fields will give mass to the W bosons. The 10 complex scalars remains that
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does not transform under irreps of any group.

The Hasse diagram is:

Hasse diagram  Effective theory

®10 {1} — 4 —
g 6
SU(2)
®5 —
- SU(3)
®0 — (7.5)

Let us explain this diagram in more detail. The Higgs branch of the theories on the right is
given by the transverse slice between the top node and the node at the bottom of the bracket.
For example, the largest Higgs branch (SU(3) with 6 flavors) is the transverse slice between the
top node and the bottom node. In other words, this is the slice between the full space and the
trivial space. The Higgs branches of other theories are subspaces of this Higgs branch, hence
the slice is taken from the top node to some other node above the bottom node.

When conducting partial Higgsing from SU(3) with 6 flavors to SU(2) with 4 flavors, the
Higgs branch is now the slice between the top node and the middle node. The leftover transverse
space between the bottom node and the middle node has 5 quaterionic dimension (10 complex)
and is parameterized by the 10 complex scalar fields that transform as singlets in (7.4).

When the SU(2) with 4 flavor theory is Higgsed to a trivial theory, the Higgs branch is
trivial, indicated by the transverse slice between the top node and itself. The 10 complex scalars
parameterizes the 5 quaterionic dimensional transverse space between the top node and the
middle node.

To sum up, the Hasse diagram shows the pattern of partial Higgsing and the dimension of

the Higgs branch of the broken theories.
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7.2 Hasse diagrams from magnetic quivers

Higgs branch Hasse diagrams can be obtained using representation theory techniques as we
have just seen. However, there are other methods of obtaining them as well. Since the Higgs
branch of the electric quiver is the same as the Coulomb branch of the magnetic quiver, their
Hasse diagrams must be the same as well. The Coulomb branch Hasse diagram can be obtained
using brane systems and applying Kraft-Procesi transitions [42], or through an algorithm called

quiver subtraction pioneered in[43].

Transverse slices

A crucial property of our Hasse diagrams is that the transverse slices in the Higgs branch
are symplectic singularities as well. The transverse slice between two adjacent leaves is called
an elementary slice. It is an ongoing challenge in the mathematics community to classify all
possible elementary slices for symplectic singularities. As physicists, the challenge is then for
us to find a 3d N = 4 quiver whose Coulomb branch (which is also a symplectic singularity)

corresponds to these elementary slices.

7.2.1 Hasse diagram from Brane systems

The classical Higgs branch of SU(3) with 6 flavors can be studied using brane webs as
shown on the top left corner of Figure 7.1. For this example we are only interested in the
classical Higgs branch so the gauge coupling (spacing between the NS5s) is kept finite. The brane
system is that of the Higgs branch phase. In this phase, you select the minimal set of subwebs
that allows you to subsequently open up a 5d Coulomb branch direction?. For brane webs, a
Coulomb branch moduli corresponds to opening up a polygon that can shrink or expand freely.
This is the green piece in the figure. The resulting magnetic quiver can then be read off where
the green piece is treated as a single subweb moving along the 7-branes, hence contributing a
U(1) degree of freedom. Doing a second transition, we see that in order to open up the second

moduli in the Coulomb branch, the entire brane web need to be merged into a single web. As a

2This was first done in 3d brane systems in [42] and then for 5d and 6d brane systems in [10].
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result, the Higgs branch becomes trivial and the magnetic quiver is trivial as well. Knowing the
magnetic quivers after each transition, we can write down the 3d ANV = 4 Coulomb branch Hasse
diagram, which is equivalent to the Higgs branch Hasse diagram of our original theory.

Before doing that, let us discuss a point that is often a source of confusion. The 3d N = 4
Coulomb branch of the magnetic quiver corresponds to the closure of a symplectic leaf L,
meaning the transverse space between £ and the bottom/trivial leaf. This distinguishes with
how we study the Higgs branch which is given by the slice between £ and the top leaf. This
important distinction is why this brane manoeuvre is a partial un-Higgsing procedure where
the gauge symmetry is enhanced rather than broken in each step. In the central column of the
figure, we begin at a generic point on the Higgs branch where the gauge group is completely
broken and the theory is trivial. Then, by doing one minimal transition, we reach a particular
singular loci on the Higgs branch and the gauge theory is enhanced to SU(2) with 4 flavors.
Another minimal transition and we obtain the SU(3) theory with 6 flavors. A minimal transition
(which goes from a leaf to its adjacent leaf in the Hasse diagram) is called a Kraft-Procesi (KP)
transition and more details can be found in [42, 179)].

In terms of the magnetic quivers, on the top right corner we have the magnetic quiver whose
Coulomb branch is the closure of the top leaf in the Hasse diagram (7.5) with 10 quaterionic
dimensions. After a KP transition, we reach the magnetic quiver whose Coulomb branch is the
closure of the middle leaf with 5 quaterionic dimensions. And finally, after a second transition we
have the trivial magnetic quiver corresponding to the trivial leaf with 0 quaterionic dimensions.
Thus, the three magnetic quivers at different steps of the partial-unhiggsing reproduces the

Hasse diagram.
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Figure 7.1: Depiction of the different 5-brane webs in the gauge enhancements up to SU(3) with 6 fundamentals. The methods developed in [25]
allow us to read magnetic quivers for the closure of all symplectic leaves in the Higgs branch as well as the transverse slices. This process can be
translated into an operation between the magnetic quivers, called quiver subtraction. Coloured branes are assumed to be on different positions along
the 7-branes.
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7.2.2 Hasse diagram from Quiver subtraction

Enough familiarity with the Kraft-Procesi transitions in brane systems leads one to realize
the same transitions can be performed directly on the magnetic quiver. This leads to the Quiver
Subtraction algorithm. The detailed algorithm is given in [43, 10] which we outline in the steps

below. Note the algorithm is only for unitary magnetic quivers.

1. Find the magnetic quiver to your electric quiver and make sure it is unframed. If you are
given a framed unitary quiver, you can unframe it by gauging all the flavor nodes with a

single diagonal U(1).

2. Write down all the balances of the gauge groups. For a U(k) gauge group connected to
U(n;) gauge nodes with edges of multiplicity /; and a U(m) flavor node, the balance is

3. The KP transitions in brane systems now corresponds to subtracting quivers whose
Coulomb branches are elementary slices. Figure 7.1 shows all known 3d N = 4 quivers
whose Coulomb branch corresponds to an elementary slice. Find a subquiver in the
magnetic quiver that has the same shape as one of the elementary slice quivers. Align the
elementary slice quiver node for node and subtract the ranks of the gauge groups. This is
allowed as long as the resulting gauge group has non-negative rank. In Figure 7.1, this is

the subtraction of the affine D, Dynkin quiver from the magnetic quiver.

4. After subtraction, write down the balance of all the gauge groups again. Identify all gauge
nodes whose balance changed during the subtraction. Introduce a new U(1) gauge group
to the quiver whose function is to rebalance the gauge nodes so that they are the same as
before subtraction. This is done by connecting all gauge groups whose balance changed
by z; with an x; multiplicity edge to the new U(1). In our example, after subtracting the
affine Dy, the only nodes whose balances changed are the two blue U(1) nodes, each with
r1 = x5 = 1. Hence, each of them is connected to the new U(1) (green) with a multiplicity

1 edge.

5. Repeat step (3)-(4) for any other elementary slices that you can subtract. Each different
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choice causes a new branching of the Hasse diagram. In our example, there are no new

branchings.

6. After you obtain a new 3d N = 4 quiver after subtraction, repeat (2)-(5) until there is no

quiver left.

Each magnetic quiver corresponds to a node in the Hasse diagram. The elementary slice quivers

you subtract are the transverse space (lines) between adjacent nodes in the diagram.

Summary of elementary slices

The known elementary slices and their associated 3d N/ = 4 quivers are given in Table
7.1. We know this table is not complete as there are many other slices, some even non-normal,
that are identified in the mathematics literature such as [180]. However, the quivers for those
slices are not known. Furthermore, there can also be elementary slice quivers with matter fields
in the adjoint representation. For example, the slice k, that appears when performing quiver

subtraction for S-fold theory is denoted as:

where n is the multiplicity of the non-simply laced edge. For n = 2, this slice is studied above
where the Coulomb branch is a; X a;. For n > 2, the Coulomb branch global symmetry is A;. It
is not yet clear what the Coulomb branch Hasse diagram of (7.6) is, and there is the possibility
that it can be a new elementary slice.

The search of new elementary slices is currently ongoing and one can either look for evidence
in the mathematical literature, or by find quivers where a new elementary slice is required in
order for one to proceed with quiver subtraction. The latter is used to find a few of the slices in

Table 7.1.
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Table 7.1: Most up-to-date, but incomplete list of unitary quivers without loops for elementary slices usable in the quiver subtraction algorithm. In
each case we provide two quivers, a framed version and an equivalent unframed version, where a U(1) should be ungauged on the long node. For ay,
bn, cn, dp, acy, hy . and Bn,k there are n gauge nodes in the framed quiver and n + 1 gauge nodes in the unframed quiver. Notice that h,; = H",
hn,2 = Cn, h2,3 = Cg2, hn,l = Qn, hn,2 = acy,, and h2,3 = ags.
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Advantage of Quiver Subtraction

The partial Higgsing procedure where we used representation theory is limited to Higgs
branches of theories which have quiver descriptions. In particular, most of the 4d, 5d and 6d
SCFTs do not belong in this category. On the other hand, the brane systems and magnetic
quivers for these SCFTs are known so we can perform KP transitions or quiver subtractions
to obtain their Hasse diagrams. This is the main advantage of our tools and was only made
possible because we know the magnetic quivers. Furthermore, it can deal with more than just
SCFTs as one can look at 5d or 6d gauge theories where only some of the gauge couplings are
tuned to infinity. For example, the magnetic quivers of 5d and 6d theories at different coupling
limits and their Hasse diagrams were obtained in [3, 109].

The quiver subtraction algorithm has two further advantages over brane systems as a) it is
much easier to execute which leads us to the develop a Mathematica algorithm that automates
the process and b) in many cases, such as class S theories, the brane systems are not known
but we can still perform quiver subtraction. In fact, the short coming of brane systems occurs

whenever we deviate significantly from linear unitary quivers (such as T} theory).

Orthosymplectic quiver subtraction

Quiver subtraction for orthosymplectic quivers are not yet fully developed. This is due
to more complicated balancing condition and the fact that gauge nodes can change between
SO(even) and SO(odd) before and after subtraction. For simpler cases, the correct Hasse
diagram (since we know their unitary counterparts) have been extracted using orthosymplectic

quiver subtraction in [163, §].

Global symmetry

One can read off the Coulomb branch global symmetry of the 3d quiver (and equivalently
the Higgs branch global symmetry of the electric quiver) from the elementary slice(s) with
algebra g; connected to the bottom leaf/node. The non-Abelian global symmetry is then [], g;.
Unfortunately, our current construction is unable to reveal the Abelian groups in the global

symmetry. In our searches, we did find one case where we cannot read off even the correct
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non-Abelian symmetry, this is the magnetic quiver corresponding to C3 x A; 4d SCFT and
the infinite family associated with it. This shows that one needs to take care when identifying
the global symmetry solely based on the Hasse diagram. On the other hand, a Hilbert series
computation at order #? will always reveal the global symmetry group if refined and its dimension

if unrefined.

7.3 Examples

We can now take the magnetic quivers we studied in the previous chapters and compute

their Hasse diagrams.

7.3.1 6d theories

So far in the thesis, we only lightly touched upon the topic of 6d N' = (1,0) SCFTs, however
many of their magnetic quivers are known in previous [163, 108, 109] and here we present some
of them with their Hasse diagram.

Cancellation of gauge anomalies imposes strong restrictions on the gauge groups and
matter contents, giving a list of allowed theories [181]. This list has been reproduced from
F-theory constructions [84]. The theories can be labelled by their rank, which by definition is
the dimension of the tensor branch. Theories of rank 1 can be realized on complex curves P!
with negative self-intersection. See, for instance, [182] for a review.

In this section, no attempt is made to compute the Hasse diagrams for the Higgs branches
of all these theories. Instead, focus is placed on a few examples as a proof of concept. Theories
realized on so-called —1 curves experience a small Fg instanton transition at the origin of the
tensor branch, see [183] and also [184, 185, 186, 187]. This transition implies a jump by 29
quaterionic dimensions of the Higgs branch between a generic point and the origin of the tensor
branch. (Higgs branches at the origin of the tensor branch have been addressed recently in
[188, 189, 163].) In the Hasse diagram this is expected to be manifested by a presence of an eg

transition on the top of the Hasse diagram which describes the classical Higgs branch.
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Table 7.2: Hasse diagrams of 6d SCFTs:

SU(N

) with N + 8 fundamentals and one 2nd rank

antisymmetric. Note that the two diagrams differ only at the bottom.

6d SCFT

SU(2k) with N=2k+8 and A?

SU(2k+1) with N=2k+9 and A*

Magnetic quiver

(‘Dk+3
0o—0—:++— O — O —O
1 2 2k+-6 k+4 3

0 k+3

|
— O — O
2k:+7 k+5 3

Hasse diagram

2k2 4+ 15k + 30

€8
dyo
a1l
dy2
a11
dia a12
A, ais

% 2k% + 17k + 38

a1

di2
a1
d14 a12
a13

doks
G2k47
a2k+8
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As an illustration, we first consider two infinite families of rank one theories on a —1 curve.

These are the following:

e The 6d SU(N) gauge theory with N + 8 fundamental hypermultiplets and a 2nd rank
antisymmetric hypermultiplet, denoted by A?. The Hasse diagrams for this theory is
given in Table 7.2, using the magnetic quiver of [108, Sec. 3.6.2] for SU(2k) and of [108,
Sec. 3.6.4] for SU(2k + 1). Note that the Hasse diagram of the SU(N;) theory is entirely
included into the Hasse diagram of the SU(/N;) provided N; < N,. This means that one
can Higgs the SU(N,) theory with Ny 4+ 8 fundamentals and one A? to the SU(N;) theory
with exactly N; + 8 fundamentals and one A2. Alternatively, this can be checked directly

by decomposing the representations, see for instance [85, Fig. 5].

e The Sp(k) with N = 4k + 16 fundamental 6d half-hypermultiplets, with magnetic quivers
derived in [108, Sec. 3.6.1 and 3.6.3]. The Hasse diagram for this family of theories is
given in Table 7.3. Again, theories defined by various k-values display Hasse diagrams

included into one another.

As a consistency check, the global symmetry of the theories is reproduced by the bottom part

of the diagrams as discussed in the previous section.

7.3.2 5d theories

For 5d theories, we look at the SQCD theories at infinite gauge coupling as discussed in
the Section 4.1 of Chapter 4. The orthosymplectic quivers in that chapter has the same Hasse
diagram as their unitary counterparts in Section 4.1 which is given by Table 7.17 to Table 7.21.

The Hasse diagram of all the magnetic quivers are as follows.
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Table 7.3: Hasse diagrams of 6d SCEFTs: Sp(k) family and Gy theory.

6d SCFT

Sp(k) with N = 4k + 16 flavours

G5 with 7 flavours

Magnetic quiver

<|3k+3
0O—0—:-+— O — O —O
1 2 2k+6 k+4 2

Not known

Hasse diagram

® 2k2 + 15k + 29
€g

d2k+8

) @ ---

Table 7.4: Components of Hoo for% < |k] < N. — %, part 1. Component I is present for % > |k,
Component 11 is present for Ny > N.. The three dots denote a

chain of balanced gauge nodes.

Phase Quiver Hasse diagram
°
AN,%ﬂk\fl
°
N as|r.
1 Ne——L+[k| 1 2[k[+1
@) o
°
/ N
| o — o — — o - —o @2|k|+3
1 N N 1
Sl < K] o
Vv s .
Ny—1 :
°
aN;—1 i
°
AaN.—N;-1
°
1 2N.—N; 1 @2Ne=Ny+1
@)
°
/ N
IT O—+++— O — ... — O —:::—0 42N.—Ny+3
1 Nj—N, Nj—N, 1 o
N 7
Vv
Ny—1 :
AN;—1 I
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Table 7.5: Components of Heo for % < |k| < N, — %, part 2. Component III is present for Ny > 2.
The three dots denote a chain of balanced gauge nodes.

Phase Quiver Hasse diagram
[
ai
1
@) as
I
IIT (N even) o—o o o—o
12 Ny 2 1
ER
A ~~ v} .
Nj—1
aN;—1
[ ]
[
a2
1 [ ]
°© a
4
7\
III(Nded) o0 —2o0O cee— O fe) cee — 0O 0o o
1 2 Ny-—1 Np-1 2 1 ]
2 2
-~ >
Nj—1
aNy—1

Table 7.6: Components of Hoo for % = |k| < N, — % Component I appears for Ny > 1, Component
II appears for Ny > N..

Phase Quiver Hasse diagram
°
ANC—Nf2+1
°
N
1 Ne——f+3 1 @2
O O
°
AN /
I o — o — o .. —o0 aq
1 Np-1 Np-1 1
2 2 ®
~ TV 7 .
Nj—1 :
°
aAN;—1
°
°
AaN,—N;—1
°
1 2N.—N; 1 @2Ne—Ny+1
0O ——
°
/ N
11 O — - o — ... — © —o | @2N.—Ny+3
1 Ny—N, Nf—N, 1
A >y .
vV
Nf*l N
°
aNy—1 i
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N .
Table 7.7: Components of Hoo for 0 =|k| < N, — Tf Component 11 is present for Ny > N,
. Hasse diagram, | Hasse diagram,
Phase Quiver N o Net? N — N2
e F =5 c— 7
° °
ANC—¥—1
o a2
ai
N [ [ ]
1 Ne——L 1
o o as as
AN /
I 0—o0— — o — —0o0—o0 ° [}
12 N 2 1
- as a5
~ g ° °
Ny—1
aNy—1 I aN;—1 T
)
®
AN, ~N;—1
[
A2N.—Njs+1
[
A2N.—N;+3
®
1 2N.—Nj 1
O O a
11 o — — o — — o - —o °®
1 Ny—N, N;—N, 1
NS o
vV
Nj—1
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Table 7.8: Components of Hoo for 1 < |k| = N, — % Component I is present for Ny > N, which

Ny

means == > |k|, and Component III appears for Ny > 1.

Phase Quiver Hasse diagram
[ J
1 Agj| -2
o
/N
1 20kl-1 1 ar
o o a
/ . 2|k|+1
I o — — (o] — — o — — 0
1 Ny Ny 1 ai | Q2)k|{1
- Ikl —-—|k|
NS ~ .
Ny—1 :
w aNf__l
ai
Nﬁ
a
o1 ai ai
l
i a
III (N even 0—0—+++— 0 —+++—0—0
( ! ) 1 2 Ny 2 1 ai | as
N
N -~ , )
Ny—1 :
w O,Nf_]
ai
Nll
a2
1
ﬁ % az
o
2N as
III (N odd 0—0— — o — o — —o0—o0
( ! ) 1 2 Ny—1 Ny-1 2 1 aq ay
2 2
N TV 4 .
Nf—l N
.ﬁ aN;—1
ai
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Table 7.9: Components of Hoo for 1 = |k| = N, — %

Phase Quiver Hasse diagram
as
a4 \
1
@)

ai | as
/N \.
10—01
/ AN as
I 0—o0— - -
1 2 ay as
p) p) p) \
NG - J
Nf—l .
ay

[ J
‘ aNy—1
[ J
a
[ J
as
1
o) [ J
I
IIT (N even) O—0—:++— O —0—o0 as
12 Ny 2 1
' o
A >y
Vv .
Nf*l .
aNf.,l I
. L — Ny
Table 7.10: Component of Hoo for 5 = |k| = No — .
Phase Quiver Hasse diagram
a4
ds \
1
o ai ay
/N \
10 o1
\ | ag
I 0—0—+++— O — O —+-+—0—0
1 2 Np-1 Np—1 2 1 ai | ae
3 3 \
A >y
Vv
Nf*l .
w aN;—1
ai
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Table 7.11: The component of Hoo for 0 = |k| = N, — % Note that for Ny = 2 there is no eg nor ez
elementary slice, as expected for the SU(2) theory with 4 flavours. For Ny = 3 there is no er elementary
slice. Also note that since the quiver has an Zo automorphism symmetry, there is branching into two
eg transitions. As a consequence, the non-Abelian part of the global symmetry is An,—1 x Ay X Aj.

Phase Quiver Hasse diagram

1 2 1
0— 0 —0
\
I 0—0—+++— 0 —+++—0—0 ag ag
12 Ny 2 1 a1
2
v
Ny—1
. ag
aiy/ a1
[
a
ay
ANy —1
ax
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Table 7.12: Components of Heo for % < |k| = N, — % + 1. Component I is present for Ny > N,
which means % > |k| — 1, and Component III is present for Ny > 1

Phase Quiver Hasse diagram
N
Agjk|-3
°
1 20kl-2 1 @21k|
O O
°
/ AN
I O — o0 — o — — o — .. — 0 A2|k|42
N N
1 L |kl+1 L —lkl+1 ! °
NG >
vV
Nf .
°
aNf
®
°
a2
°
1 a4
o
°
VRN
I (Ny even) 0—0—+++— 0 — 0 —++-—0—0 as
12 N; Ny 2 1
A & °
2 2
~ TV .
Ny :
°
aNf
°
[
ai
°
1 “
o °
ll
III (Ny odd) 0—0—+++— O —::+—0—0 as
12 Nyt1 2 1
A °
N TV 7 .
Ny :
°
aNf
°
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Table 7.13: The component of Hoo for % = |k| =N, — % + 1.

Phase Quiver Hasse diagram
°
Q4
°
1 1 as
o — O
°
/ N
I 0—0—+++— 0 — O — O —::+—0—0 az
1 2 Ny—1 Ny—1 Ny—1 2 1
2 2 2 L
N
—
Ny

aNf i

Table 7.14: The component of Ho for 1 =1|k| = N, — % + 1.

Phase Quiver Hasse diagram
°
ds
°
ag
1 1
o o °
\ |
1 o — — 0 — 0 — —o0 as
1 Ny Ny 1
= 3 °
. g
Vv
Ny

aNf I

Table 7.15: The component of Hoo for % = |k| = N, — % + 1.

Phase Quiver Hasse diagram
€6
er
ay a;
o1
\
o2 Qg
\
I 0—0—++— O —++—0—0
12 Njpt1 2 1
2 gy 1
\ - -
Vv
Ny

a
aNf
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Table 7.16: The component of Hoo for 0 =|k| = N, — % + 1.

Phase Quiver Hasse diagram
°
er
°
ag
2
) °
|
I, O— 0O —¢+te— QO —ee+e—0—0 ail
1 2 Ne+2
f2 2 1 ®
TV .
Nf—i-l .
°
a/Nf-‘rl i
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Table 7.17: Components of Hoo for 2 < |k| = N, — % +2. Component 1V is present for Ny > 2 with
Ny even. Component V (N even) is present for Ny > 0 if k is even and is present for Ny > 2 if k is
odd. Component V (Ny odd) is present for Ny > 1.

Phase Quiver Hasse diagram
°
Ay
°
Ny—2 dy
2
N °
|
IV (Ny even) 0O—0—:i— 0 — 0 — 0 =0 de
12 Nj=3 o N2 Nl s
i, |
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| /NN Ne—3L ; .
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Table 7.18: The component of Hoo for 2 = |k| = N, — % +2.

. Hasse  dia-
Phase Quiver
gram
[
ds
°
de
Np—2 ®
r .
o o ds
| \
V (Nyeven) | o—0o—---— o — 0 — 0 —o0 [
12 Nj—3 Nyj—2 Ny 1 d
o 10
°
i, |
°

Table 7.19: The component of Hoo for % = |k| =N, — % + 2.

Phase

Quiver Hasse diagram

V (Ny odd) 0—o—--

N
€6
°
dr

Table 7.20: The component of Hoo for 1 =|k| = N, — Ny,

2

Phase Quiver Hasse diagram
er
€s \
Nf—2 ay d8
5 \_
/ | d1o
V' (Nfeven) | o—o—.--— — 6 — 6 —0—0
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Table 7.21: The component of Hoo for % = |k| = N.— % + 2.

Phase Quiver Hasse diagram
°
es
°
N.f;l dio
o °
|
V' (Ny odd) 0o—0—++— 0 — 0 — 0 —o di2
12 Nj—2  Nj—1  Ny+t 2 .

de+1
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7.3.3 4d theories

The Hasse diagrams of the rank one SCFTs we studied in Chapter 5 are given in Table
7.22 to Table 7.26. For their extension to infinite families, only the extension of Cs, Cy x Ay,

C,, x Uy and H/Z, has simple Hasse diagrams which we give in Table 7.27.

Complexity in Hasse diagram and HWG

One important observation here is that the families with simple Hasse diagrams also have
simple HWGs. In particular, if the Hasse diagram for the general family is known, the general
HWG is known as well. This once again ties us to the notion of simplicity when it comes to

moduli spaces, and makes drawing the Hasse diagram a test of such simplicity.

S-fold theories

When discussing moduli spaces, two common objects often arise in the literature. k-
instanton moduli spaces and Higgs branch of SQCD theories. Both spaces are well studied.
However, from our analysis, we see that instanton moduli spaces has a significantly more
complicated moduli spaces, both in terms of the HWG and the Hasse diagrams, compared to
SQCD theories. The moduli spaces of S-fold theories are closely related to instanton moduli
spaces, where within the same infinite family, the number of gauge nodes in the magnetic quiver
does not change but their rank increases. We do not have the general Hasse diagram for the
infinite family of these theories, but as a show of its complexity, we provide the r = 2 cases of

Sg)g theory in Figure 7.2.

Quiver subtraction for non-simply laced quivers

In general, the quiver subtraction rules for non-simply laced quivers is the same as for
simply laced. In chapter 5, we saw that for Sg)z theories, there are two equivalent sets of
magnetic quivers: one with a flavor node on the short side and the other an unframed version.
As mentioned in the quiver subtraction rules, it is important to use the unframed version as

otherwise the algorithm will miss several symplectic leaves in the Hasse diagram.
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Table 7.22: Cs theory. Hasse diagram for the Higgs branch of the 4d N = 2 rank 1 theory. To the
right of the Hasse diagram are the magnetic quivers for the closures of the leaves and to the left are
magnetic quivers for the slices. This Hasse diagram is already explored in [10, 24].

Hasse diagram for the
Higgs branch of the 4d theory

There is an additional caveat in the quiver subtraction algorithm for a non-simply laced
quiver with [ multiplicity edge. If one of the short nodes needs rebalancing after subtraction,
the short node needs to be connected to the U(1) node (which as discussed above, is a new node
added to rebalance all the other nodes) with a non-simply laced edge of multiplicity [ pointing
outward of the U(1).

Another interesting phenomenon that arises when dealing with S-fold magnetic quivers
and quivers of k-instanton moduli spaces is that you can often subtract two or more of the same
quiver at the same set of nodes. If this happens for &’ successive times, then the rebalanced
node in the end would be a U(k) node with hypers transforming in the adjoint representation.

This was first discussed in [7] and studied in more detail in [15].

Folded orthosymplectic quivers

The Coulomb branch of folded orthosymplectic quivers discussed in Chapter 5 have been
identified as magnetic quivers of both 5d and 4d SCFTs. The Hasse diagrams of the unitary
counterparts of the F,, folded quivers are given in the 5d section above and we will not repeat it
here. However, the quiver subtraction of orthosymplectic quivers is studied for these cases in [§]

and the Hasse diagrams obtained are consistent with the unitary counterparts.
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Table 7.23: C3 x Ay theory. Hasse diagram for the Higgs branch of the 4d N = 2 rank 1 theory. To
the right of the Hasse diagram are the magnetic quivers for the closures of the leaves and to the left are
magnetic quivers for the slices.

Hasse diagram for the
Higgs branch of the 4d theory

i O=E-0=0 ,

S 30

Class S Hasse diagrams

Class S Hasse diagrams can be obtained using the same methods as above. However, most
of them do not have infinite families that can be nicely expressed in a single general Hasse
diagram as in 5d or 6d examples above. Therefore, the best method is to study them is on a

case by case basis which can be done efficiently using our Mathematica code.

7.3.4 3d theories

For mixed U and SU quivers in chapter 6, the Hasse diagrams are quite involved as well.
We look at the Hasse diagram of the T'(SU(4)) quiver with various choices of unitary and special
unitary nodes specified by the partition {...}. The same notation and colouring are used in

Table 6.1.

271



CHAPTER 7. HASSE DIAGRAMS

Table 7.24: A3 theory. Hasse diagram for the Higgs branch of the 4d N = 2 rank 1 theory. To the
right of the Hasse diagram are the magnetic quivers for the closures of the leaves and to the left are
magnetic quivers for the slices.

Hasse diagram for the
Higgs branch of the 4d theory

o O—C==m
1 2 3 1

Table 7.25: Ay x Uy theory. Hasse diagram for the Higgs branch of the 4d N = 2 rank 1 theory. To
the right of the Hasse diagram are the magnetic quivers for the closures of the leaves and to the left are
magnetic quivers for the slices.

Hasse diagram for the
Higgs branch of the 4d theory

A O—0
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Table 7.26: As theory. Hasse diagram for the Higgs branch of the 4d N = 2 rank 1 theory. To the
right of the Hasse diagram are the magnetic quivers for the closures of the leaves and to the left are
magnetic quivers for the slices.

Hasse diagram for the
Higgs branch of the 4d theory

1 2

Table 7.27: Hasse diagrams for the first three families of quivers in Table 5.5, and for the generalised
H/Zs family of quivers in Table 5.7.

On+3 Gn—l—l X Al On X U1 H H/ZQ

[
€6
® [ [
a2 Al
Cs . .
C2 A,
o
[ [
Ce C3 Ca

Cn Cn—1

Cn+3
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(@ 84, (e) S, ) S,

Figure 7.2: Proposed Hasse diagram for Sél)z theories.
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Table 7.28: Hasse diagrams of symplectic leaves (black dots) for the Higgs branches of theories shown in Tables 6.1, 6.3 and 6.2. The elementary
slices between adjacent leaves are labeled A, for the Klein singularity C?/Zy 1 and ay, (respectively d,,) for the closure of the minimal nilpotent orbit
of sl(n+1,C) (resp. s0(2n,C)). The partition refers to hypers connecting the U(3) node and the bouquet of U(1) nodes in the second column of Table
6.1, as indicated by the colouring of the cells.
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Conclusion

The focus of this thesis is to study supersymmetric gauge theories from a new perspective.
The new perspective is that rather than studying very detailed properties of simple gauge
theories, we use magnetic quivers to study very simple properties — moduli space of vacua —
of very complicated gauge theories.

Given a supersymmetric gauge theory with eight supercharges, we studied their moduli
spaces of vacua in d = 3,4,5,6 dimensions with a particular focus on their Higgs branch.
However, the Higgs branch can receive non-perturbative instanton/tensionless string corrections
in d = 5,6. Whereas in d = 4, most of the interesting theories are non-Lagrangian. This means
a hyperKahler quotient construction is not known for these theories and a new direction is
needed to study them. The magnetic quiver is a unifying approach that allows us to study the
Higgs branch of all these gauge theories. In this thesis, we extracted the magnetic quivers and
studied the chiral ring by computing the Hilbert series. The goals we achieved are two fold:

1) We created a large database of magnetic quivers, Hilbert series, Hasse diagrams, thus
unveiling detailed properties of the Higgs branch of popular gauge theories in the literature
such as rank one 4d SCFTs, class S theories, Argyres-Douglas theories, S-folds, 5d SQCDs, 6d
SCFTs etc. These computations will lay the foundation for future research. For example, if one
finds a new gauge theory or SCF'T and knows some of its properties such as global symmetry,
moduli space dimension etc, they can then try to match it with one of our magnetic quivers
in the database. If the result matched, the Hilbert series and Hasse diagram of its magnetic
quiver will be readily available which provide a lot more non-trivial information about that
gauge theory/ SCFT.

2) With the magnetic quivers at hand, we had already obtained non-trivial results about
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the corresponding electric quivers as follows:

e The magnetic quivers for 5d SQCD theories at superconformal fixed point were known
in the literature. We found that each one of the infinite families of magnetic quivers can
be expressed by a general HWG and Hasse diagram. This is an indication of simplicity
of these moduli spaces. Whenever a new idea occurs, one would always test them on
the simplest set of theories they can think of. In terms of moduli spaces, the literature
often favours the moduli spaces of k-instantons as the simplest moduli spaces to study.
However, we will now argue that the moduli spaces related to SQCD theories of gauge

group GG with arbitrary rank k& are the simplest non-trivial theories to study.

In our paper [11], which was not discussed in this thesis, we find that 3d N =4 SQCD
theories have nilpotent operators in the chiral ring when the number of flavors are too
small. Such features were also explored in 4d N' = 2 theories (see [190]). It will be

interesting to see if such features appear for 5d SQCD theories as well®.

e 4d N = 2 SCFTs were often studied through compatification of 5d A/ =1 SCFTs on S*.
The compatification can also include a Zj topological twist. We are now able to perform
the same procedure on the magnetic quivers of 5d SCF'Ts through folding Z; identical
legs to give the magnetic quiver of 4d N'= 2 SCFTs. One future exercise is to take all
known magnetic quivers of 5d SCFT's with identical legs and fold them to see if we get

can get magnetic quivers of any new 4d SCFTs.

e The majority of 4d SCFTs in the literature are S theories whose magnetic quivers take
the shape of star-shaped quivers. By investigating all rank one SCFTs and S-fold theories,
we find that non-simply laced quivers are ubiquitous as magnetic quivers of 4d theories as
well. Extending this observation to higher ranks may allow us to use the non-simply laced

magnetic quivers as a starting point to produce a whole new zoo of 4d SCFTs.

e Orthosymplectic quivers had always been less studied than their unitary counterpart. In

this thesis, we highlighted subtle issues involving orthosymplectic quivers, such as the

3In addition to the nilpotent element S from the gaugino superfield which we already know.
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existence of a (Z)giag subgroup when quivers are made of U(n), SO(2n) and USp(2n)
gauge groups and are unframed/flavorless. Identifying this discrete subgroup and correctly
modifying the magnetic lattice of the monopole formula allowed us to find orthosymplectic

magnetic quivers corresponding to various 4d, 5d and 6d SCFTs.

e We also made a Dynkin classification of orthosymplectic quivers where a systematic study
of BCD type orthosymplectic quivers appear for the first time in the literature. The fact
that these quivers yield interesting results: C-type (non-simply laced) orthosymplectic
quivers are magnetic quivers of 4d SCFTs and D-type (forked) quivers have Coulomb
branches that are products, shows that they are objects worth studying now that we have

the right tools to study them.

e We also completely answered the question: what are the 3d mirrors of quivers containing a
mixture of unitary and special unitary gauge groups. The brane locking mechanism, along
with our Mathematica code, can be applied to any linear quivers with mixed U & SU
gauge groups. The output will either be the 3d mirror or the magnetic quiver depending

on whether the linear quiver is good/ugly/bad.

e We obtained Hasse diagrams for a myriad of Higgs branches in this thesis. There are
other approaches in obtaining Hasse diagrams in the literature as well such as using
vertex operator algebra (VOA) [191]. Tt will be important to compare Higgs branch Hasse

diagrams, whenever possible, with others to see if we get consistent results.

Future outlooks

The obvious next steps are a) take the Hilbert series and reconstruct the generators and
relations that define chiral rings and b) take the Hasse diagrams and study the pattern of partial
Higgsing of different theories and how one theory can be Higgsed to the other.

Here, we give three additional future prospects that follows the work in this thesis.

e So far we always take a magnetic quiver and derive the corresponding Hasse diagram using
quiver subtraction. But perhaps one can reverse the order and start “building” Hasse

diagrams from the bottom-up. For example, if we study gauge theories whose Higgs branch
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has a single non-Abelian global symmetry SU(n), then we know the slice between the
trivial leaf and the first non-trivial leaf is an elementary slice with a,_;. Now, we can ask
the question: what are the possible slices that we can add to this first slice. In other words,
we are growing the Hasse diagram one slice at a time to see all possible slices that can be
added. The answer is not an infinite number of slices, because arbitrarily adding slices
through quiver addition will easily change the global symmetry of the magnetic quiver and
hence the bottom slice. So in order make sure the global symmetry is SU(n) upon adding
slices, it turns out only a very finite classes of elementary slices can be added. This can be
an interesting way in classifying 3d N' = 4 gauge theories based on the number of slices
in the Hasse diagram. For instance, one can go through and classify all possible Hasse
diagrams with two slices. In fact, the Hasse diagram of rank one SCFTs in d = 4,5,6
all seem to have very few number of slices, so perhaps such a classification can help in

classifying all possible lower rank SCFTs in various dimensions!

One interesting observation we found in this thesis is that simple Hasse diagrams (for
example, with no bifurcations) leads to simple HWG. Perhaps, coupled with the previous
proposal, one can also construct new HWGs based on the Hasse diagrams. This is a
plausible goal since the HWG for elementary slices are all known. The non-trivial step here
is that the Hasse diagrams we drew does not uniquely identify a moduli space. However,
with some additional labellings in the Hasse diagram, this can become possible. If the
Hasse diagram <+ HWG correspondence can be made, then we can obtain the refined
Hilbert series of arbitrarily complicated moduli spaces as long as the Hasse diagram is

known. The latter is a much simpler computation using our Mathematica code.

e In terms of orthosymplectic quivers, they are starting to play a more and more important
role in understanding gauge theories in different dimensions. There are also evidences of
theories which only has a orthosymplectic magnetic quiver and not a unitary one (e.g
G, with 5 flavors at infinite coupling in 5d [192])*. Furthermore, there is a wide range of

discrete factors beyond our (Zs)giag such as SO(2n) vs O(2n) vs Spin(2n) etc. The interplay

40f course, by construction one can create many such examples by looking at class S theories with (un)twisted
D-type punctures or twisted A-type punctures
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of discrete factors is tightly related to the recent explosion of activities around higher-form
symmetries, 2-groups and non-invertible symmetries. Some of the recent works that are
more relevant to the work in this thesis can be found in [193, 194, 195, 196, 197, 198]. 1
believe orthosymplectic quivers can play an important role in understanding these features

in gauge theories.

e Finally, after extending the number of known 3d mirror pairs in the literature, one can ask
how far can we push forward in systematically deriving 3d mirror pairs. One extension
is to take all known 3d mirror pairs with unitary gauge groups and turn some or all of
them into special unitary and ask whats their 3d mirror. However, pretty much all known
quivers in the literature that has a 3d mirror pair has gauge groups linked together to
form a finite or affine Dynkin quiver. The question is then if we deviate from a Dynkin
type quiver significantly, such as a star-shaped quiver, can we find a Lagrangian (quiver
gauge theory) 3d mirror dual? I would argue that this can’t be done as long as we are
able to subtract a Eg ;g affine Dynkin diagram from the quiver. However, this should be

tested further which may explain the lack of such mirror pairs in the literature.
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Appendix A

Monopole formula cheat sheet

In this section, we provide some very useful information to compute the monopole formula.

The monopole formula contains three main ingredients:
e Conformal dimension A
e Magnetic lattice to sum over the magnetic charges I'gv /Wgv
e Classical (dressing) factors Pg

We will now provide the conformal dimension and magnetic lattice for all classical gauge groups.
For the dressing factors this is already done in great detail in Appendix A of the original paper

[36] and we will not repeat it here.

A.1 Conformal dimension

The contribution to the conformal dimension comes from the vector multiplets and the
hypermultiplets. The results for classical gauge groups are provided in Figure A.1.

In [65], the conformal dimension for quivers with non-simply laced edges was proposed.
For a [ multiplicity edge from G; to Gs, the vector multiplet contribution to the conformal
dimension remains the same and given in Figure A.1 but the hypermultiplet contribution has
an additional [ factor in front of the magnetic charges of GG;. The details for different classical

gauge groups is given in Figure A.2.
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Group Avec
U(r) — D e Imi = myl
SO(2r) — > ici(Ims +my| + [m; —my))
O(2r) — > ici(Ims +my| + [m; —my))
SO@2r +1) | =32 (Ims +my| + [mi —my|) = 370, [l
USp(2r) | =3 i(Ima +myl + [mi —my|) — 2370, |my]

(a) The contribution of vector multiplets for various gauge groups.

Representation Anyp
SO(2r),, x USp(2k),, bifundamental
SO(27),, x U(k),, bifundamental
U(r),, x USp(2k),, bifundamental 12 (e —myl + [ng +myl)
SO(2r + 1), x USp(2k),, bifundamental | 335 37 (Ing — my| + |ns +my|) + 2328 |nyl

»>
2

7=
—

(b) The contribution of hypermultiplets in bifundamental representations.

Representation Avec + Anyp
SO(2r),, with antisymmetric A? 0
USp(2k),, with antisymmetric A —23°F  |my
U(k),, with [ charge 2 hypermultiplets | I S35 [m;] — qu. |m; — m|

(¢) The combined contribution of the vector and hypermultiplets for special representations.

Figure A.1: Contributions to the conformal dimension A that appear in the monopole formula. (a)
summarizes the vector multiplet contributions, (b) collects the hypermultiplet contributions, and (c)
provides the combined parts for certain special representations. Note in particular that a bifundamental
of SO(2r)m x U(k),, contributes exactly the same as a bifundamental of SO(2r),, x USp(2k),, and of
USp(2r)m, x U(k)n, as required by the fact that U(k) should be seen as a subgroup of USp(2k).

A.2 Magnetic lattice

For a gauge group G or rank r, we label the magnetic charges by mq, ..., m,. The following
are the lattices of their GNO dual GV group quotiented out by their respective Weyl action
ng / ng .

U(r)

The magnetic lattice sums over magnetic charges that obey : (co > m; > mg > -+ >
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k !
Acage = 5 2 2 [bmy; —my;

i=17=1

c
=

) U@

kol
Acdge = % 21 Zl(|b My — Mol + [bmy; +mayl)
= ‘7:

%@

USp(2k) SO(20)

k1
edge = % Zl Zl(|b myi — m2,j’ + ’b my; + m2,j’)
i=1j=

%@

SO(2k) USp(2l)

k l k
Acage = 5 > D ([bmyg —moj| + [bmy; +maj|) + 5 D0 [bmal
i=1j=1 =1

%@

USp(2k) SO(2l + 1)

%@

k1 l

Acdge = 5 > 2 (|0 ma; — maj| + [0 ma; +majl) + 5 3 [mayl
i=1j=1 7j=1

SO(2k +1) USp(20)

Figure A.2: The contribution of the edges to the conformal dimension Acgge is given for the two-node
quivers on the left. The magnetic charges for the left nodes are denoted by {m1;} and for the right node
by {ms ;}. The non-simply laced edge has multiplicity b, which then appears as a multiplicative factor
for the m1 ; magnetic charges. The contribution of the vector multiplets is not affected by non-simply
laced edges.

SU(r)

The magnetic lattice sums over magnetic charges that obey : (co > m; > mgy

v
Vv

m, > —oo) and Y. m; = 0.

SO(2r)

The magnetic lattice sums over magnetic charges that obey : (oo > my > mgy

v
v

Im,| > 0).
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SO(2r+1)

v

The magnetic lattice sums over magnetic charges that obey : (co > mq > my > ---

m, > 0).

O(2r)

The magnetic lattice sums over magnetic charges that obey : (co > my > my > ---

v

my > 0).

O@2r+1)

In [56], we argue that the lattice for O(2r + 1) is the same as that of SO(2r + 1). However,
a lack of examples in the literature where we know the gauge group needs to be one or the other

makes it difficult to test this conjecture.

USp(2r)

The magnetic lattice sums over magnetic charges that obey : (o0 > m; > mg > -+ >
my > 0).

The above results are the magnetic lattices for each gauge group. However, as we have seen
in Section 4.4, when a quiver is unframed /flavorless, there is often a diagonal subgroup that one

can ungauge. This ungauging will affect the magnetic lattice as well.

Unframed unitary quiver, H = U(1)

An overall U(1) must be ungauged which can be done on any of the unitary gauge groups.
We often put a ‘squircle’ around the chosen gauge node. For a U(r) gauge group with a U(1)

ungauged, the magnetic lattice is then (oo > my > mg > --+ > m,_y > 0) with m, = 0.

Unframed quiver with one SU(k) node and rest are unitary nodes, H = Z;

The presence of a single SU (k) gauge node means there is now a Zj; one-form symmetry
in the quiver. If we do not quotient out the Z; from the gauge groups, the magnetic lattice A

is obtained using the results above. If we choose to quotient out this Z;, the magnetic lattice
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will now be a sum over k lattices. Each lattice is the same as A but with magnetic charges
shifted by Ay = A+b/k, b =0, ..., k— 1. If the unframed quiver contains several special unitary
gauge groups SU(k;), i = 1,..., z, then the one-form symmetry is Zgcq(x, ... ) and the magnetic

lattice is split into ged(kq, .. ., k,) pieces.

Unframed quiver with U(k), SO(2k), USp(2k) nodes, H = Z,.

Following the same line of thought above, the magnetic lattice is split into an integer lattice

A and an integer-plus-half lattice A + % This is discussed in more detail in Section 4.4.

A.3 Computational complexity and the Gluing technique

When one talks about various computational methods, a comparison shouldn’t just be
based on what one can compute, but also on the complexity of the computation. For example,
computing the 3d N = 4 superconformal index tells us a lot about the spectrum of operators in
an SCF'T but such a computation for a quiver with multiple gauge groups, even perturbatively,
will be extremely difficult. For example, the superconformal index for 3d N' = 4 Eg Dynkin
quiver up to ¢'° , where ¢ is the fugacity in the superconformal index that always has a positive
power in a Taylor expansion, will take at least a few days to compute. Throughout this thesis,
we see many examples whose Coulomb branch dimensions greatly exceeds that of the Eg quiver,
but nevertheless we can make efficient Coulomb branch Hilbert series computations using the

monopole formula.

Perturbative computation

The first advantage of the monopole formula is the perturbative Hilbert series. When
computing the monopole formula, one in principle sum over all the magnetic charges in an
infinite lattice as shown above. The resulting Hilbert series can then be expressed as a rational
function whose palindromic numerator is an indication that the moduli space is hyperKéahler.
However, summing over infinite magnetic charges is difficult when your function contain absolute

values, which is the case for our conformal dimension A(m). As a result, Mathematica has a
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hard time doing the computation for a quiver with more than one gauge group. A way out
is to devise an algorithm that splits A(m) into different chambers/fans of magnetic charges
which will always result in A(m) being positive even without taking the absolute values. This is
done to a certain degree in [144, 199] but only for small number of gauge groups. A remarkable
Mathematica code developed by our collaborator Rudolph Kalveks was able to make this process
efficient for several gauge groups with low ranks. However, even though it was able to generate
all the Hilbert series of the magnetic quivers to the rank 1 SCFTs in Chapter 5, any larger
quiver would take longer than a day to compute. When a computation increases to several days,
it is also limited by the physical memory of the computer.

This is where the advantage of a perturbative computation comes in. Rather than summing
the magnetic charges to infinity, we set a limit m — gg where gg is a cut-off. Then, the magnetic
charges summed over is a finite sum and Mathematica will output the Hilbert series up to t299.
It may come as a surprise that magnetic charges of gg + 1 and above does not contribute to
the Hilbert series up to 299 but we found this to be true for simply-laced quivers with classical
gauge groups. If there is a non-simply laced edge of multiplicity /, then the magnetic charges on
the short nodes needs to be summed to [ X gg whereas the charges on the long nodes remains
as gg. In summary, we were able to compute the monopole formula at a cut-off and obtain the

perturbative Hilbert series that is always correct up to (twice) that cut-off.

Gluing technique

Another essential technique is the gluing technique. Such a technique had already been
applied to the Molien-Weyl integral by taking hyperKahler quotients over gauge groups one at a
time. It was also used in the Hall-Littlewood formula where the Hilbert series (with background
charges n; of the flavor group G) for three T,(G) legs were computed first and then the diagonal
subgroup G of the three flavor groups are gauged together by summing over the background
magnetic charges n; [118].

This gluing process can be applied straightforwardly for the monopole formula as well!

Consider the following quiver of 7'(SU(4)) with the magnetic charges labelled on top of each
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node:
C1
Ca b
aq
C3 by
[HO—C0O—=0
SU4)U(3) U(2) U(1) (A1)
1. Compute the subquiver:
g; a;
1O
U(2) U(1)
HSl(t, by, b2) _ i‘q: +2(Au)—f2) (a1,b1,bz)+AU<1)(a1))PU(1)(al)
“ (A.2)

where the Ay 1)_[g (a1, by, by) is the hypermultiplet contribution where by, by are not summed
over and treated instead as background magnetic charges of the U(2) flavor group. Ay1y(a1)
is the vector contribution (which is trivial in this case). Since we are doing a perturbative

computation, the cut-off is already set at gg.

2. Next, we gauge the U(2) flavor group but add an additional U(3) flavor group:

C1
@] bl
C2 by

U@3) U(2) u(1)

99
HSQ(t’ 017 027 63) — Z t2(AU(2)—[3](bl’b2’cl’02’03)+AU(2)(bl’b2))PU(2) (bla b2)H81<t, b17 bg)
b1>b2

(A.3)

In the equation, we take the previous Hilbert series and gauge the U(2) by summing over
b1, by. In addition, we include the U(3) flavor node with ¢y, ¢o, ¢3 being the background

magnetic charges.
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3. Finally, we gauge over the U(3) and add an SU(4) flavor node:

€1
C1
Co

[ —O—C0O——=0
SU4)U(3) U(2) U(1)

99
HS (t) = Z tz(AU(3)*[4](01702703)+AU(3) (01’62703))PU(3) (Cl, Co, Cg)HSQ (t, Cy, Co, Cg)

c1>c2>c3 (A4)

The summation now sums over the ¢y, co, c3 charges of U(3). Since the SU(4) remains
a flavor node, we will not assign anymore background magnetic charges to them. The

Coulomb branch Hilbert series up to order ¢299 is now obtained.

This is the gluing technique. It may seem trivial at first since the ordering in a summation is
always commutative (you can always sum over one set of magnetic charges before the other).
However, for computer softwares such as Mathematica, this is not so trivial. If we do not do
this summation step by step, Mathematica will assign values to all the magnetic charges before
evaluating them for the conformal dimension. Roughly, the number of magnetic charges to be
summed over is shortened from Ay X Ay@) X Ay) to Apay ® Aye) © Ays). For instance,
using the above method and an average computer!, the Coulomb branch Hilbert series to order
19 of an Fg Dynkin quiver, which has Coulomb branch dimension dimy = 29, should take less
than one minute.

This gluing technique allowed us to make high order perturbative computations for the
many complicated magnetic quivers seen throughout this thesis. It is only possible because of
the simplicity of the monopole formula. In fact, the computation really boils down to assigning
integer or half-plus-integer numbers to a piece-wise linear function! Such computation should
also be parallelizable, allowing efficient use of supercomputers and clusters to speed things

up even more. The usage of supercomputers also prevent Mathematica from crashing due to

memory issues and can allow the computation to go on for days or even weeks!

1Say, a 2015 Windows computer with i3 processor. Or equivalently, a 2022 Mac with state of the art M1
Processor.
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Hilbert series and other generating

functions

Based on our paper [1] and [4] In this appendix, we provide all the Coulomb branch Hilbert
series computations of the magnetic quivers provided in this thesis. The computations are
mostly unrefined and therefore the Hilbert series HS(#) is just parameterized by the counting

fugacity t.

B.1 SQCD quivers

The magnetic quivers corresponding to Section 4.1. The exact Hilbert series as well as

perturbative refined PL are given for various members of the Trapezium, Kite and Truck family.

B.1.1 Exact unrefined Hilbert series

Exact unrefined Hilbert series for the ‘Trapzeium’ family
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Table B.1: Exact unrefined Hilbert series for the m = 2 case in the ‘Trapezium’ family of quivers for
v=1,2,3

n | v | Unrefined Hilbert Series
1
1 -
1 S
5 1+ t?
(—1+t)4(1 +1)?
3 1—t++¢°
(—1+8)* (A +t+¢t?)

Table B.2: Exact unrefined Hilbert series for the m = 3 case in the ‘Trapezium’ family of quivers for
b=1,2,3

n|o Unrefined Hilbert Series
(14 ¢*) (148> +t%)
1
1 . (=1 +)5(1+1¢)5
5 14+t +6t7+93 15t +126° + 15t° + 9" + 65 + 9 + 10

(=14 )51+ t)* (1 +¢t+1¢2)°
1+ 6t% + 15t* + 18t° + 15¢° + 6tV - ¢12

(=14 0)5(1+1)% (1 +2)°

Table B.3: FExact unrefined Hilbert series for the m = 4,k = 1 case in the ‘Trapezium’ family of
quivers for v =1,2,3

nlo Unrefined Hilbert Series
1+ 16t% + 36t* + 16t° + 8
1
1 (—1+¢t)8(1+1¢)8

o | (14264 13t% + 2813 + 62t* + 88t° + 128t°% + 132¢7 + 128¢° + 88t + 62¢10 + 28+ +
1372 4 267 4 1) /(=1 4+ )31 + )51 + ¢ +£°)*
T+ 1267 + 46t* + 92¢° + 116t° + 92¢™° + 46t + 12t™ + ¢1°

(=14 031401 +2)*

Table B.4: FExact unrefined Hilbert series for the m = 4,k = 2 case in the ‘Trapezium’ family of
quivers for v =1,2,3

nijo Unrefined Hilbert Series
L (1+3t+ 1482 + 4113 + 104¢* + 207¢° 4 367t% + 540t + 684¢° 4 730t + 684¢'Y 4 540t +
5 367! + 207¢"3 + 104¢M 4 41615 4+ 146 + 3617+ ¢18) /(=1 + )1 + )3(1 + ¢ + %))

1+ 112 + 57t + 170¢° + 324¢°% + 398¢10 + 324¢2 + 170t + 57¢10 - 1118 + ¢

(=1 48001 + )10 (1 +¢2)°
(14 3t + 1412 + 343 + 83t +168t° + 3165 + 5317 + 841¢% +1202t° + 1632t 10 + 2052t +
5 242012 4+ 2652t + 2754t + 2652t1° 4+ 24206 4 2052¢17 + 1632¢18 + 120210 4 84120 +
531t 4 316122 + 16873 + 8312 + 34¢%° + 14¢%0 + 3t*" + ¢28) /((—1 + t)°(1 + £)3(1 +
t+ 2+ 134+ t4)5)
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Table B.5: Ezact unrefined Hilbert series for the m = 5,k = 1 case in the ‘Trapezium’ family of
quivers for v =1,2,3

n|o Unrefined Hilbert Series
. (14 ¢%) (1 4 2447 + 76t* + 24¢° + t°)
1 (=1 +1¢)10(1 4 ¢)10
5 (143t +23t2 + 661> + 185t 4 365¢° +665t° + 9507 + 1220¢% 4 1280t + 1220t1° 4+ 950¢ 1 +
665t'> + 365¢'% + 185t 4 66¢'° + 23¢'° + 3t'7 + #1%) /(=1 + £)"°(1 + 1)°(1 +t 4 t*)°
; 1+ 2027 + 115¢* + 340t° + 620¢% + 750t™ + 620t + 340t™ + 115t + 20¢™8 + %9
(=1 + 801+ )10 (1 +2)°

Table B.6: Ezact unrefined Hilbert series for the m = 5,k = 2 case in the ‘Trapezium’ family of
quivers for v =1,2,3

niv Unrefined Hilbert Series

(1 + 5t + 28¢* 4+ 113t + 396¢* + 1145¢t° 4 2895t° + 6296¢" + 12023¢° + 20153t” +
30040¢10 + 39761411 4 47035¢12 + 49670t 13 + 47035t + 39761¢1° + 30040t16 4- 2015317 +
12023t'8 + 6296t 4 2895¢%° + 1145¢2! 4 396¢*2 + 11373 + 28¢* + 5t2° + 120) /(-1 +
t)14(1 +t)12(1 +t+t2>7

(14 18¢% + 159¢* + 818t + 2711¢% + 6140¢'° + 9895¢2 4 11570¢ + 9895¢1¢ + 6140¢™ +
2711¢%° + 818122 + 159¢* 4 18120 + 28) /(=1 + )™ (1 + )" (1L + *)7

(145t + 28t2 + 100t + 331#% 4 924¢° + 2329¢% 4 5282¢7 + 11012¢% + 21089t + 3762410 +
62611t + 97850¢'2 4 14393813 + 200145t + 263356¢1° + 329025¢16 + 390530¢17 +
441100t + 474255t + 485950¢2°0 + 474255¢%1 + 441100¢22 + 390530¢23 + 329025t +
263356t%° + 200145¢%6 4 143938¢%7 4+ 97850t + 62611t + 37624t + 21089¢3! +
1101232 + 5282133 + 232934 4 9243 + 33136 + 10037 + 28438 4 537 + +19) /((—1 +
O+ )2A+t+ 2+ +tY7)

Table B.7: Ezact unrefined Hilbert series for the m = 6,k = 1 case in the ‘Trapezium’ family of
quivers for v =1,2,3

niv Unrefined Hilbert Series

1 4 36t + 225t* + 400t° + 225¢% + 36¢'10 + ¢12

' (—1+0)2(1+ 1)

(144t + 3612 + 130t + 445t + 1116¢° + 24895 + 4526t 7 + 7290t5 +10000¢° + 1224710 +
2 | 12960t + 1224712 + 100003 + 7290t + 4526¢'° + 2489¢16 + 1116¢17 + 445¢'8 +
130t + 36t%° + 421 + 22) /(=1 + )21 + )1°(1 + ¢ + #2)°

(1+ 30t + 246t 4 10105 + 2535¢° + 4272t10 4 5062t 12 + 42721 4 2535¢1° +1010¢1° +
2466%° + 30t*2 + *Y) /(=1 + )2 (1 + )" (1 + *)°
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Table B.8: FExact unrefined Hilbert series for the m = 6,k = 2 case in the ‘Trapezium’ family of
quivers for v =1,2,3

n|o Unrefined Hilbert Series
(14 7t + 4812 + 245t + 1091¢* + 4086¢° + 133825 + 38204¢" + 96585¢t° + 217249¢% +
43878410 4+798855¢11 41318069t 1241976404t 13+2702163¢14+33734771°+3852319¢ 10+
1| 4025730t + 3852319¢'8 + 3373477t + 2702163t%° + 1976404¢%' + 1318069t%% +
2 798855123 4 438784124 4 217249t%° + 96585t%¢ + 38204t%7 + 13382t% + 4086t%° +

1091430 4 245831 + 48432 + 7133 + 3Y) /(=1 + )1 + ) (1 + t + t*)°

(1+ 2712 + 363t* + 282710 + 14238¢5 + 49872t10 + 127390¢12 + 244479t + 359118¢16 +
407782118 + 359118t20 + 244479¢%% + 12739024 + 4987226 4 14238t + 282713 +
363132 + 2763 + 39 /(=1 + )13 (1 + )8 (1 + ¢*)°

(147t +48t%+224t3+944114-3381¢°+10823t° 431058t " +81213t5+194813t"+432962t 10+
896394t + 1739592t12 + 3178077t + 5488182t + 8986233t1° + 13991895t16 +
20762811¢'7 + 294230164 + 39881511¢ 4+ 51778977t + 64462347t + 77028096122 +
88406421t%497512231t24 4103403109t 2541054431126 +103403109¢>" +97512231¢ 28 +
88406421t2° + 7702809630 + 6446234731 4+ 5177897732 + 39881511133 + 2942301643+ +
20762811¢% + 1399189536 + 898623337 + 5488182t3% + 3178077t 4 1739592¢10 +
896394141 4 432962t42 + 194813¢43 + 8121344 + 31058¢%° + 1082346 4 3381447 4 944148 +
224110 4+ 48°%0 + T#5L 4 £52) /(=1 + OB (1 + )1+t + 2 + 3 + t1)?)

Table B.9: Ezact unrefined Hilbert series for the m = 6,k = 3 case in the ‘Trapezium’ family of
quivers for v =1,2,3

n|o Unrefined Hilbert Series
(14 2612 + 345t* 4 2835t° + 15863t + 63865t10 + 19204812 4 44228314 + 79376810 +
1] 1122615t +1259282¢%° + 112261522 + 793768t 4 442283120 + 1920488 4 63865t +
3 1586332 + 2835¢3* + 34536 + 26138 + #10) /(=1 + £)20(1 + )?°(1 + #3)1°

(1 + 8t + 5412 + 2643 + 1113t* + 4062t° + 132835 + 39404t7 + 107433t° + 27125417 +
639012t10 + 1411762t + 2938876¢12 + 578593413 + 1080782414 + 1920549815 +
32543067t10 452685460t 7 +81634614¢18 4121240970 +172812329t 20 +236660856t > +
311687899t%% + 39509581412 + 482356231t* + 567488012t% + 643670661¢%° +
704102126t%7 + 742982247t% + 756401528t + 742982247130 + 70410212631 +
64367066132 + 567488012t3% + 4823562313 + 3950958141%° + 31168789936 +
23666085637 +172812329¢38+121240970¢% +81634614¢ 10452685460t 1! + 3254306 7¢*2 +
19205498t* + 10807824¢** + 5785934¢*° + 29388760 + 1411762¢*7 + 639012¢*° +
27125414 4 107433t%° + 39404151 + 13283t°2 + 4062t°3 + 1113t + 264t + 541°6 +
8T+ %) /(-1 + O)*A+ )AL+t + 2+ 3+t

(1+ 26t% + 315¢* + 2405¢° + 1325445 + 5673110 +-197168¢12 + 573138t + 1422221¢16 +
3057599t + 5757435t%0 4 957211622 + 1413565134 + 1862118126 4 21945131t +
2317598430 4 21945131¢32 + 18621181¢3* + 14135651¢%6 + 957211638 + 575743540 +
3057599t42 4 1422221t + 57313846 4 197168t*® + 56731¢°° + 1325452 + 2405t%* +
315¢°0 + 26t + ¢90) /(=1 + )*° (1 + ) A -t + )PQ +t + H)°
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Table B.10: Exact unrefined Hilbert series for the m = 7,k = 1 case in the ‘Trapezium’ family of
quivers for v =1,2,3

ni|o

Unrefined Hilbert Series

1

(14 ¢*) (1 + 48t + 393" + 832t° + 393t% + 48t™ + t1%)
(=1 +1)%(1 + 1)1

(1 + 5t + 52¢% + 227¢3 + 922¢* + 2801¢° + 7441¢° + 16422¢" + 31927t + 53767t° +
80682t10 + 106771t + 126707¢'2 + 133630¢'3 + 1267074 + 1067715 + 80682t16 +
537677 + 3192718 + 16422t1° + 7441¢%° + 2801121 + 922¢22 4 22723 + 52¢2* + 5t +
t26)/(_1 + t)14(1 + t)12(1 S+t t2)7

1+ 4212 + 469t* + 25625 + 8491£°% + 18942t + 30079t'% + 34986t™* + 3007916 +
1894248 + 8491¢20 4 2562422 + 46924 + 4226 + 128 /(-1 + )M (1 + ) (1 + )"

Table B.11: Ezact unrefined Hilbert series for the m = 7,k = 2 case in the ‘Trapezium’ family of
quivers for v =1,2,3

n|iov

Unrefined Hilbert Series

(149t + 7412 + 45712 + 2465t* + 1129415 + 453435 + 159791¢7 + 5010735 + 1407196¢° +
356868710 + 8215777t + 17261755¢1% + 3322715813 + 58806645t + 95951209¢1° +
144678726t16 + 20196285317 + 261406665t'8 + 314053002t + 350499186t%° +
36354140421 + 350499186122 + 314053002t% + 261406665t** + 201962853t%° +
1446787261%° + 95951209¢27 + 58806645t + 33227158¢% + 17261755t 4 8215777¢3! +
356868732 + 1407196t%3 + 50107334 + 159791 + 45343t3¢ + 11294437 + 2465t +
457130 + 7410 + 9tt + 4) /(—1 + )22 (1 + )P + t + 21!

(1 + 38t% + 723t + 79141° + 56015¢% + 277316¢1° + 1011173t + 2811056 +
610055016 + 10502324118 + 14492450t %0 + 16124444t%% + 14492450t + 10502324126 +
610055028 4 2811056¢3° + 1011173t32 4 277316t3* + 56015¢36 + 7914438 + 723¢10 +
38t42 + t44)/(—1 + t)22<1 + t)22(1 + t2)11

(1 + 9t + 748% + 42683 + 2186t" + 957715 + 3734515 + 1302387 + 412089¢° +
1192953t + 3188421¢10 + 7920183¢1! + 18399822t12 + 40177265t + 82823481114 +
161782977t + 3004137596 + 531742918t'7 + 899328939t'% + 1456340667t +
2262118536t20 + 3375587774t% + 4845670980t + 6699404229t%% + 892969364 1¢%* +
11485012548t%°+14264042022¢%6+17117445468t%7 +198583601461%5+22280924058t%° +
24184925310t304-25402327314¢31 4258212307362 +25402327314¢33+2418492531034 +
222809240585 +19858360146¢30 4171174454687 4142640420223 4114850125483+
892969364140 + 6699404229t + 484567098042 + 3375587774t*® 4 2262118536t** +
1456340667t* + 89932893946 + 53174291847 + 300413759¢*8 + 1617829774 +
82823481170 + 40177265t + 18399822t5% 4 7920183t + 3188421¢>* + 119295315 +
412089t°¢ + 1302387 + 3734578 +- 9577t + 2186150 + 42651 + 74¢62 +-9¢53 +454) /(=1 +
t)22(1 +t)20(1 Lt 23 +t4)11)
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Table B.12: Exact unrefined Hilbert series for the m = 7,k = 3 case in the ‘Trapezium’ family of
quivers for v =1,2,3

nlo Unrefined Hilbert Series

(1 + 36t2 + 674t + 8058t° + 67083t% + 409192t10 + 18967632 + 6865446t +
198092046 +46278352t18 48856447120 +140010256¢2%+183886760t>* +201306308¢2¢ +-
1| 183886760t%% 4140010256t + 8856447132 + 4627835234 + 19809204136 + 6865446138 +
3 1896763t10 + 409192¢*2 + 67083t + 8058116 + 674t18 + 36t°° + ¢52) /(=1 + ¢)*6(1 +
t)%(l —|—t2>13

(1+ 11t +91¢2 +561¢3 + 2927t 4 13246t + 536245 + 197160t " + 666602t° + 20898441° +
6116574¢10+16799980¢!! +4349437312 4106532655t 13 +247657723t14 + 54796692915 +
1156824845¢1¢ 4 2335327528¢17 + 4517017030t + 8385844508t1% + 14966597581t +
25715853133t%1 + 42593091071¢%* + 68083277137t* + 105137384039t** +
156998522990t%° + 2268924335642 + 3175823221187 + 4308190571148 +
566752262418t%° + 723399678478t30 + 8962894959643 + 1078386828737t3* +
1260384026411¢% + 1431379225435t + 1579894499783t + 1695112427945¢%¢ +
1768151474440¢37 + 1793175996572t + 1768151474440t%° + 1695112427945t +
1579894499783t41 + 1431379225435t%% + 1260384026411 + 1078386828737t4* +
8962894959645 + 7233996784780 + 566752262418t + 430819057114 +
317582322118t + 226892433564t + 156998522990t°! + 105137384039t5% +
68083277137t53 +42593091071¢%* 4-25715853133t%° 4 1496659758 1¢%° + 8385844508°7 +
4517017030¢%8 + 2335327528t + 1156824845t%0 + 547966929¢%1 + 247657723152 +
106532655153 + 43494373t%* + 1679998055 + 6116574¢% + 2089844157 + 666602t +-
197160t%° + 53624¢™ + 13246t™ + 2927t + 5617 + 91t™ + 117 + t76) /(-1 +
OFA+ )1+t +2 48 +t9)8

(1 + ?)(1 + 35> + 582tT + 6195t5 + 47615t° + 282512t + 13514772 +
5375881¢14+18190425¢16+ 532700708 413682600520 + 311485461¢2% +633692332t%4 +
1159674887120 + 1918949593t%% + 28828958623 + 3944502108132 + 4926762778t3* +
3| 5626421830t + 588045513238 + 5626421830140 4 4926762778142 + 3944502108t +
2882895862t1¢ + 191894959348 + 1159674887t + 633692332t%% + 311485461t +
136826005t + 53270070¢% 4 18190425¢%° + 5375881¢%% + 1351477¢%4 4 282512¢%¢ +
47615t%% +6195t™ + 582t™ + 35t™ +¢76) /(=1 4+ 1)*°(1 +1)*°(1 —t + )PP +t +1*)

Table B.13: Exact unrefined Hilbert series for the m = 8,k = 1 case in the ‘Trapezium’ family of
quivers for v =1,2,3

nlo Unrefined Hilbert Series
. 1 + 64¢% + 784t* + 3136t° + 4900¢% + 3136t + 784¢'2 4 64¢™* + ¢1°
1 (=1 +¢)16(1 4 ¢)'6

(1+ 6t + 71¢% + 3641 + 1715t 4 6118¢° + 18921¢° + 491207 + 112090¢° + 223476t° +
397390t +629272¢1 4897456112 + 115141643 +1337884¢ 441404648t 1% + 1337884110+
115141617 + 8974568 + 629272t + 397390t% + 223476t + 112090t + 4912023 +
1892112 4+ 6118¢%° 4+ 1715¢%0 4+ 364¢%" + 711 + 6t + £30) /(=1 + )" (1 + ) (1 + £+ ¢*)®

(1+56t% 4 820t" + 5768¢° + 24430¢° + 69608'% + 141988¢"* + 215000t + 246388t +
3| 215000t 4 141988t> + 69608t> + 24430t>! 4 5768t + 820> + 56¢* + 132) /(—1 +
(1 +)"9(1 4 12)°
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Table B.14: Exact unrefined Hilbert series for the m = 8,k = 2 case in the ‘Trapezium’ family of
quivers for v =1,2,3

n|o Unrefined Hilbert Series

(1 + 11¢ + 106t% + 769t> + 4870t* + 26349t> + 1251675 + 524126t + 1959039¢% +
6583221¢2 4+ 20048090¢1° + 55649341411 +141558271¢12 + 331404638t + 716773143t +
1436706861t 4 2676153506t + 4643110405¢'7 + 75183799958 + 11380827210t +
16127350871¢20+21418138241¢%' 2668238693822 +31202417689t%3 +3426 7633179t >4 +
1| 35353713606t2°+34267633179¢20+31202417689t%7+26682386938t28 4214181382412+
2 16127350871¢30 4+ 11380827210¢3! + 7518379995¢32 + 4643110405¢%3 + 2676153506¢3* +
14367068611%° + 71677314336 + 33140463837 + 141558271¢3% + 55649341430 +
200480900 + 6583221¢* + 1959039t*2 + 5241263 + 125167t** + 26349¢*° + 4870¢%6 +
769t47 4+ 106t*8 + 11¢% + 59 /(=1 + )1+ XA+t + 2)8

(14 51#2 4 1305t + 19098t° + 180400¢% + 1193460t + 5838416¢1% + 21924814 +
649001970 + 154355499t + 29905070120 + 476577756122 + 628777824t%* +
2 | 689356068t% + 628777824t + 47657775630 + 29905070132 + 154355499¢3* +
64900197¢36 42192481438 458384160 + 1193460¢*2 4+ 180400¢** 4 190986 + 1305¢48 +
51t50 + t52)/(—1 + t)26(1 + t)26(1 + 252)13

(1 + 11t + 106t> + 726t> + 4397t + 22802t° + 1050485 + 4323157 + 16105561° +
5478757t7 41716704610 + 49893312t 4 1353473632 + 344514490t '3 + 826650208t +
1877220773t'° + 40484991436 + 8316987406¢'7 + 163184963608 + 30650902710t +
55226032655t + 9562373369321 + 1593687554482 + 256018477786t +
396931979707t** + 594595783344t + 861426558034t%6 + 1208052724209t%7 +
1641198188584¢%% + 2161422161175t%° 4+ 2761091165060t + 3423021031082¢3 +
4120212940265t3% 4+ 4816982233122t%3 + 5471569442574t3* 4+ 6040041454719¢% +
6481019072541t3¢ 4+ 6760543909128¢3" + 6856310658000¢3% + 6760543909128¢39 +
6481019072541t + 6040041454719t + 5471569442574t** + 4816982233122t%3 +
4120212940265t* + 3423021031082t*° + 2761091165060t + 2161422161175t +
1641198188584t + 1208052724209t%° + 861426558034t° + 594595783344t°! +
3969319797072 + 256018477786t + 159368755448t%* + 95623733693t +
55226032655t°% +30650902710t°7 4 16318496360t°8 + 8316987406t + 4048499143¢%° 4
1877220773t%1 + 82665020892 + 344514490t%% + 135347363t%* + 49893312t6° +
17167046t5 + 5478757t57 4+ 1610556¢%8 + 43231559 + 105048¢70 + 22802¢™* + 43977 +
726t +106t™ + 11t + ) /(-1 + O)*A + )M A+t + 2+ 3+
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Table B.15: Ezact unrefined Hilbert series for the m = 8,k = 3 case in the ‘Trapezium’ family of
quivers for v =1,2,3.

n|o Unrefined Hilbert Series

(14 48t + 1208¢* + 19743t° + 227168t + 1931399¢™ + 12580080¢'* + 64562900¢ +
266897534116 + 90423593218 + 2545058368120 + 6014719671122 + 12034445136t>* +
20514838759t20+29933441440¢*+ 37503583980t +40422495006¢32+ 37503583980t +
2093344144036 4205148387593 + 120344451360 + 601471967142 4 2545058368t +
904235932t%% + 266897534¢*® 4 64562900¢°° + 12580080¢°% + 1931399t + 227168t +
1974358 4+ 1208£50 + 4852 4 ¢64) /(=1 + #)32(1 + ¢)%2(1 + *)10

(1 + 14t + 139¢% 4 1036£3 + 6481¢* + 35138t° + 170178t% + 748458t + 30269605 +
1135352687 + 39756383t'0 + 130634524t + 404513133t'2 + 1184673946t +
3291788257t +8702687284¢15 +2194637035416 4+ 52912020120t 17 + 122217163848¢18 +
270968772584t + 577651645684t%° + 1185925640608t + 2348113723918t%2 +
4489753883188¢23 4 8300228830574¢%* + 14852491088896t25 + 25750576405212t26 +
43296460223480¢27 +70657910401852¢%8 +112007208027552t>° 4+ 172588931030870¢%° +
258666465974628t3" 4+ 377295339955958t32 4+ 535880589134880¢33
741497845665856t%*  +  999993847146816¢%° 4+  1314928529144676¢3°
1686470775920728¢37 2110403197757586¢33 2577416334823284t%
3072869074307126t*° 3577153496238128¢4 4066729392717320t42
4515794807753280t*3 4898450189357624t 5191115780313904¢*
5374895866791466¢* 5437565804318652t*7 5374895866791466¢*
5191115780313904¢* 4898450189357624¢%° 4515794807753280¢°!
4066729392717320t52 3577153496238128t% 3072869074307126¢%*
2577416334823284t%° 2110403197757586t°6 1686470775920728¢57
1314928529144676t°°  +  999993847146816t>° 741497845665856¢%
535880589134880t51 4+  377295339955958t9%2 4+ 258666465974628t%
172588931030870t%4 4 112007208027552t5° +70657910401852t%6 + 43296460223480t57 4
25750576405212t%8 4+ 1485249108889615%° + 8300228830574t + 4489753883188¢™ +
2348113723918t™ + 1185925640608t™ + 577651645684t + 270968772584t™ +
122217163848t764+52912020120¢77 +21946370354t ™ + 8702687284t 7 + 32917882570 4
11846739463 +404513133t%2 413063452423 4+39756383t%4 4113535265 +-3026960¢56 +
748458157 + 170178t%8 + 3513859 4 6481t + 1036t + 13992 + 14473 + ¢94) /(—1 +
t)32(1 +t)30(1 —|—t+t2 +t3 +t4)16

1+ 48¢% + 1112¢* + 166875 + 181000¢% + 1507623t + 10052864t + 55362916t +
257958930t'% + 1036323060t'® + 3643898608t%° + 113497450792 + 31621466460+ +
79433727887t + 181088582688t + 376688580160t + 718154701658t +
1259512364088t%* 4+ 2038256985200t%¢ 4+ 3051192424019t38 + 4233565727024t%0 +
5453236925459t + 6528751430088t** 4 7270994941632t*0 + 7536301866630t +
3| 7270994941632t + 6528751430088t + 5453236925459t°* + 42335657270241% +
3051192424019t%® + 2038256985200t + 1259512364088t%2 + 718154701658t +
376688580160t%¢ 4 181088582688t%% + 79433727887t + 31621466460t +
11349745079t™ + 3643898608¢™ + 1036323060t™® + 257958930t + 55362916¢52 +
10052864t%* + 1507623t%¢ + 1810003 + 16687t + 1112t92 + 48t 4 ¢96) /(—1 +
OPA+ )21 —t+)A +t 4+ ¢3)'°

o
++ A+ ++
FH At

R i
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Table B.16: Exact unrefined Hilbert series for the m = 8,k = 4 case in the ‘Trapezium’ family of
quivers for v = 1.

n|o Plethystic logarithm

(1 + 15t + 1522 + 1160t3 + 7364t* + 40348t> + 196359t5 + 864004t" +
34841918 + 13007946t° + 45325235t'°0 + 148366997t + 458742668t% +
1345992193¢13 4 3762574196t + 1005540623 7¢15 4 2576950347046 + 63499676293¢17 +
150811449701¢'8 + 345957406842t" + 768015026643t + 1652823026444t +
3453593931514¢%2 4+ 7016489417347t** + 13878153081271t%* + 26755720185551¢%° +
50331596319853t%6 +92476299632454¢%” +166102913283119¢%% +-291904573071183t>° 4
502287878574675t*°  +  846872912713515t3 4+ 1399973601024399¢32

2270485259783765t%  +  3614570497585323t3*  +  5651428840412064¢%°

8682238199966561¢36 + 13112049739724701¢37 +  19473992039434201¢38

28454599213758157t% + 40918442761073825t*° + 57929562904111103¢*

80766531110661053t*2 + 110927423585176322t*3 + 150120655632113963¢*
200237635878415679t* + 263303656656781351¢%6 + 341404425523047539¢47
436587200360391991¢*® + 550737590279981553t% + 685435622944164987¢%°
841797470158528088t°1 + 1020312005792106173t%2 + 1220683824185574317¢53
1441696128166564247t%* 4+ 1681107673690404151t%° 4 1935597465128123495¢
2200768971381957873t°7 + 2471222265015961059t°% + 2740697831177675992¢%
3002290180522421129¢%° + 3248723313751306131¢%" + 3472674117041238221¢62
3667124555274860425t% + 3825719681403191979t% + 3943106494958295009¢6°
4015228882757614815t% + 4039556353976212676t7 + 4015228882757614815¢%3
3943106494958295009t% + 3825719681403191979¢t™ + 3667124555274860425¢™
3472674117041238221¢7 + 3248723313751306131¢™ + 3002290180522421129¢7
2740697831177675992t™ + 2471222265015961059¢70 + 2200768971381957873t77
1935597465128123495t™ + 1681107673690404151¢™ + 1441696128166564247¢%°
1220683824185574317t% 4+ 1020312005792106173t%2 + 841797470158528088¢%3
685435622944164987t% + 550737590279981553t%° + 436587200360391991¢36
341404425523047539t57 + 263303656656781351¢%% + 200237635878415679t%
150120655632113963t° + 110927423585176322t°7 + 80766531110661053t°2
57929562904111103t% + 40918442761073825t%* + 28454599213758157¢%

19473992039434201¢%6 4+ 13112049739724701t°7 + 86822381999665611%

5651428840412064t%° + 3614570497585323t100 4+ 2270485259783765¢101

1399973601024399¢192  +  846872912713515¢19% 4+  502287878574675¢104

291904573071183t1%° 4+ 166102913283119t'%  +  92476299632454¢107

50331596319853t19% +-267557201855514199 4 13878153081271¢'10 4701648941734 7¢ 11 4
3453593931514tM2 + 1652823026444t'13 + 768015026643t + 345957406842t1° +
150811449701¢16 4+ 6349967629317 + 25769503470t + 1005540623719 +
3762574196120 + 1345992193121 + 458742668122 + 148366997123 + 45325235124 4
13007946¢'%° + 3484191¢'%6 + 864004¢'%7 + 196359¢'28 + 40348t129 + 7364130 +
1160131 +152¢132 + 158133 + ¢34 /(=1 + ) (1 + ) A+t + 2+ B+t + 10 +15)'7)
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Table B.17: Exact unrefined Hilbert series for the m = 8,k = 4 case in the ‘Trapezium’ family of
quivers for v = 2.

nio Plethystic logarithm

(142%) (144662 +1018t* 4 14584t° +152566¢° 4 124418140 + 8245081412 +4571251 7t +
216671424¢'6 + 892779426¢'8 + 3240426292%° + 10471368239¢%2 + 30390038371¢%* +
79783099549t% + 1906092763142 + 416493317778t30 + 835854880029¢32 +
1546137559346t + 2643912606549¢%6 + 41898749452721%% + 6165893566076t +
8440176638093t2 + 10760606764255t** + 12790358679749¢*6 + 14183755473858¢%8 +
4 12| 14680505470988t%° + 14183755473858%2 + 12790358679749t%* + 10760606764255°5 +
8440176638093t°® + 6165893566076t + 4189874945272t%% + 2643912606549t%* +
1546137559346¢% + 835854880029¢%® + 416493317778t + 190609276314¢™ +
79783099549t ™ + 30390038371t 4 10471368239¢™ + 3240426292t + 89277942652 +
216671424134 445712517186 4824508158 + 1244181190 + 1525662 + 145849 + 1018t +
46t + 100 /(1 + )* (1 + )M A -t + )TA + t + D)V
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Table B.18: Exact unrefined Hilbert series for the m = 8,k = 4 case in the ‘Trapezium’ family of
quivers for v = 3.

n|o Plethystic logarithm

(1 + 15t + 1522 + 1160t3 + 7364t* + 40348t> + 196359t5 + 864004t" +
34841918 + 13007946t° + 45325235t'°0 + 148366997t + 458742668t% +
1345992193¢13 4 3762574196t + 1005540623 7¢15 4 2576950347046 + 63499676293¢17 +
150811449701¢'8 + 345957406842t" + 768015026643t + 1652823026444t +
3453593931514¢%2 4+ 7016489417347t** + 13878153081271t%* + 26755720185551¢%° +
50331596319853t%6 +92476299632454¢%” +166102913283119¢%% +-291904573071183t>° 4
502287878574675t*°  +  846872912713515t3 4+ 1399973601024399¢32

2270485259783765t%  +  3614570497585323t3*  +  5651428840412064¢%°

8682238199966561¢36 + 13112049739724701¢37 +  19473992039434201¢38

28454599213758157t% + 40918442761073825t*° + 57929562904111103¢*

80766531110661053t*2 + 110927423585176322t*3 + 150120655632113963¢*
200237635878415679t* + 263303656656781351¢%6 + 341404425523047539¢47
436587200360391991¢*® + 550737590279981553t% + 685435622944164987¢%°
841797470158528088t°1 + 1020312005792106173t%2 + 1220683824185574317¢53
1441696128166564247t%* 4+ 1681107673690404151t%° 4 1935597465128123495¢
2200768971381957873t°7 + 2471222265015961059t°% + 2740697831177675992¢%
3002290180522421129¢%° + 3248723313751306131¢%" + 3472674117041238221¢62
3667124555274860425t% + 3825719681403191979t% + 3943106494958295009¢6°
4015228882757614815t% + 4039556353976212676t7 + 4015228882757614815¢%3
3943106494958295009t% + 3825719681403191979¢t™ + 3667124555274860425¢™
3472674117041238221¢7 + 3248723313751306131¢™ + 3002290180522421129¢7
2740697831177675992t™ + 2471222265015961059¢70 + 2200768971381957873t77
1935597465128123495t™ + 1681107673690404151¢™ + 1441696128166564247¢%°
1220683824185574317t% 4+ 1020312005792106173t%2 + 841797470158528088¢%3
685435622944164987t% + 550737590279981553t%° + 436587200360391991¢36
341404425523047539t57 + 263303656656781351¢%% + 200237635878415679t%
150120655632113963t° + 110927423585176322t°7 + 80766531110661053t°2
57929562904111103t% + 40918442761073825t%* + 28454599213758157¢%

19473992039434201¢%6 4+ 13112049739724701t°7 + 86822381999665611%

5651428840412064t%° + 3614570497585323t100 4+ 2270485259783765¢101

1399973601024399¢192  +  846872912713515¢19% 4+  502287878574675¢104

291904573071183t1%° 4+ 166102913283119t'%  +  92476299632454¢107

50331596319853t19% +-267557201855514199 4 13878153081271¢'10 4701648941734 7¢ 11 4
3453593931514tM2 + 1652823026444t'13 + 768015026643t + 345957406842t1° +
150811449701¢16 4+ 6349967629317 + 25769503470t + 1005540623719 +
3762574196120 + 1345992193121 + 458742668122 + 148366997123 + 45325235124 4
13007946¢'%° + 3484191¢'%6 + 864004¢'%7 + 196359¢'28 + 40348t129 + 7364130 +
1160131 +152¢132 + 158133 + ¢34 /(=1 + ) (1 + ) A+t + 2+ B+t + 10 +15)'7)

e I T i e T o o Al s o S SN S S o
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Exact unrefined Hilbert series of the ‘Kite’ family

Table B.19: FEzxact unrefined Hilbert series for the k = 1 case of the ‘Kite’ Family of quivers for
vp=1,23.

n | v | Unrefined Hilbert Series
T

1 -
1 (=1 +1)

) 1+t2

(=1 + )41 +1¢)?
3 1—t+1¢t2
(—1+t)* (1 +t+¢t?)

Table B.20: FExact unrefined Hilbert series for the k = 2 case of the ‘Kite’ Family of quivers for

b=1,2,3.
nlo Unrefined Hilbert Series
(1 + 5t + 32t* + 129¢3 + 452¢* + 1291¢° 4 3231t° + 6962t" + 13239¢° + 22155¢° +
|| 33026t'° 443743t 4 51799412 + 5472611 + 51799¢ 1" + 43743¢1° 4 33026t + 22155¢17 +
5 13239¢18 + 6962t + 323170 4 1291421 + 45272 4 129¢23 + 3262 + 5¢2° +¢20) /((—1 +
O+ )21+t +2)7)
5| +22t% +191¢* +952¢° + 31015 + 7000¢1° - 11297¢ 1% + 13228¢ 1 + 11297¢ 16 +7000¢™ +
3101#%° + 952¢%% + 19142 4 22¢2° + %) /(=1 + )" (1 + )M (1 + 3)7)
(1 + 5t + 32t* + 12063 + 407¢* + 1140¢° 4 2857t% + 6412¢7 + 13222¢% + 25077t° +
44382110 + 73395t + 114204412 + 167526t + 232593t1* + 305874+ + 382137¢16 +
5 45368217 + 512626t'8 + 551333t + 56499820 + 551333t + 51262622 + 453682t +

38213712% + 305874t2° 4 232593126 + 167526127 + 11420428 + 73395¢29 + 44382130 +
250773 + 13222t32 + 6412133 4+ 2857134 + 1140¢3° + 40736 + 120837 + 32638 + 5¢39 +
Y/ (m1+ )11+ )20 +t+ 2+ 2+t
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Table B.21: FExact unrefined Hilbert series for the k = 3 case of the ‘Kite’ Family of quivers for
v=1,23.

n|o Unrefined Hilbert Series

(1 + 512 + 1296t* + 207435 + 231124¢% + 190314310 + 12057442t'% + 60501689 +
245693944416 + 820951913¢'8 + 2286178042t%° + 5359408861122 + 106588762461 +
18091269915¢%6+26320135410¢%8 32920932321t +35463630834¢32+32920932321¢34 +
2632013541036 418091269915t + 10658876246¢*° + 5359408861142 4 2286178042t +
820951913¢0 + 245693944¢*® + 60501689¢™ + 12057442¢°2 4+ 1903143t + 231124¢°° +
20743t%% + 1296t + 51¢5% + %) /((—=1 + ¢)**(1 + )3%(1 + t*)'9)

(1 + 14t + 142¢% + 10783 + 6890t* + 38086t° + 187357t% + 832736t7 + 3385801¢° +
12707230¢° + 44350540t'0 + 144818330t + 444678628t'2 + 1289602686t +
3545584183t 4+-9271806532t1° +23127796402t'6 + 55169434408t 7 4126134480468t '8 +
276955374784t + 585065134420t + 1191008765112t + 2339754367128t%2 +
4441577302552t23 + 8156972077880¢%* 4+ 14508108156088t2° + 25015273150194¢%6 +
41850121721300t% +67988450794850¢%% 4+ 107334490282680t%° + 164778170391600t>° +
246139285532776t3" 4+ 357951379993072t32 4+ 507046900471928t33
699926045061460t>* 4+ = 941924905819456t%° 4+  1236241035837868t%6
1582920058383320¢%7 1977946173840456¢%8 2412601815148008¢3
2873257851765004¢% 3341719963018176t* 3796189697954922¢*2
4212808113183628t* 4567650441066094¢* 4838950821685912¢%
5009276034502816¢ 5067351262074456t* 5009276034502816t
4838950821685912¢* 4567650441066094¢°° 4212808113183628t°!
3796189697954922¢°2 3341719963018176¢°3 2873257851765004¢°*
2412601815148008¢%° 1977946173840456¢%6 1582920058383320t°7
1236241035837868t°°  +  941924905819456t°° 699926045061460t5°
507046900471928t51 4+ 357951379993072t%2 4+  246139285532776t%
164778170391600£%* +10733449028268015° 4 679884507948505¢ 4+ 4185012172130057 4
25015273150194¢%8 4+ 14508108156088t5° + 8156972077880t + 4441577302552¢™ +
2339754367128t™ + 1191008765112t + 585065134420t™ + 276955374784t™ +
126134480468t7 +55169434408t77 423127796402t +9271806532t ™ + 354558418330 +
12896026863 444467862832 414481833033 4+44350540t%4 412707230t +-3385801¢56 +
832736137 + 18735758 + 38086t% + 6890t + 107871 + 14292 4 141%3 + 94) /((—1 +
t)32(1 +t)30(1 —|—t+t2 +t3 +t4)16)

(14 51#% + 1248¢* + 1911145 + 2063525 + 1690175¢™° + 1103561212 + 59501547t +
271886436t'% + 10736716898 + 3719961686t%° + 1144319305522 + 31551477938t%* +
7857621774126 + 177863314892t + 367829950013t3° + 697950292696t32 +
1219406743321t%* + 1967342741456t%¢ 4 2937983789307t%% + 4068994310590¢%° +
5234145983089t*2 + 6260623079224t** + 6968599528959t%6 4+ 7221583960034¢*8 +
3| 6968599528959t + 6260623079224t°% + 5234145983089t°* + 4068994310590t°% +
2937983789307t%® + 1967342741456t + 1219406743321t + 697950292696t +
367829950013t% + 177863314892t%% + 78576217741t + 31551477938t% +
11443193055t + 3719961686t + 1073671689t + 271886436t%° + 59501547¢52 +
11035612t%4 + 1690175¢%6 + 206352¢%% + 19111#%° + 1248t%2 + 51¢9 + %) /(=1 +
P+ 0% —t+ )1 + 14+ %))

[\)
+ 4+t

FH A+
R i
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Exact unrefined Hilbert series for the ‘Truck’ family

Table B.22: FExact unrefined Hilbert series for the k = 1 case of the ‘Truck’ Family of quivers for
v=1,2,3.

n

b

Unrefined Hilbert Series

1

(1+ %) (1 + 48t% + 393t* + 832t° + 393¢° + 48t™0 + ¢12)
(—1+ )" (1 +1)H

(1 + 5t + 52¢* + 22713 + 922¢* 4 2801¢° + 7441¢° + 164227 + 31927¢% + 537677 +
8068210 4+ 106771t + 126707¢'2 + 133630t'3 + 126707t + 106771¢'° + 80682t16 +

2
537677 + 3192718 + 16422t19 + 744120 + 2801¢2' + 92222 + 22723 + 52t%* 4 525 +
t26)/(—1 + t)14(1 + t)12(1 + t + t2)7

5 1+ 42¢% + 469t* + 2562t + 8491¢% + 18942t10 ++ 30079¢'2 + 34986¢™ + 3007916 +

18942418 4 8491420 4 256222 4 46924 4 42626 + 128 /(=1 + ) (1 + 1) (1 + 2"

Table B.23: FExact unrefined Hilbert series for the k = 2 case of the ‘Truck’ Family of quivers for
v=1,23.

n

v

Unrefined Hilbert Series

(149t + 71¢% + 420¢% + 2150¢* + 9412¢° + 36337t + 124051¢" + 379003¢® + 1041724¢° +
2594425¢1° + 5881681t + 12196521112 + 23215826t'3 + 40700792t + 65885464t +
987028716 + 137075325t + 17672817718 + 211739308tY + 235928860t%° +
244576472t% + 235928860122 + 211739308t% + 176728177t + 137075325t%° +
9870287112° + 658854647 + 40700792¢%8 4 23215826¢%° + 121965213 + 5881681¢3! +
259442532 + 104172433 + 37900334 + 124051¢%° + 36337136 + 9412437 + 2150¢38 +
420630 + 71 + 9t + ) /(1 + )20 + ) 1+t + )

(1+35t2 +596t* + 61045 + 414885 419991310 + 715079¢2 4 1960640t + 4213746t 16 +
7207530t + 9909462t + 1101227622 + 9909462t%* + 7207530¢%¢ + 4213746t +
1960640¢30 + 71507932 4+ 19991334 4- 4148836 4+ 6104138 + 5964 4 35¢42 + t44) /((—1 +
H*2 (1 +1)**(1 +*)'")

(1 + 9t + 71#2 + 399t3 + 1961¢* + 8262t + 31072t° + 105118t7 + 324312% +
919586t + 2416068t1° + 5916870t + 13582512¢12 + 2935905813 + 59998484 +
116320918t + 214588740¢'0 + 377665670t 4+ 635546260t'® + 1024655182t +
1585431217¢20 + 2357783503t%! + 3374542499t + 4653398305¢% + 6188648811¢%* +
7944308554%° + 985059961612 + 11805276716¢*” + 13680836596 + 153371263504 +
1663804984630 +17469499684¢31 +17755538748t32 +17469499684¢%3 +166380498461>* +
15337126350t + 13680836596%6 + 1180527671637 + 985059961638 + 79443085541 +
618864881110 + 4653398305¢* + 3374542499t*2 + 2357783503¢* + 1585431217t +
1024655182t% + 635546260¢'6 + 377665670t + 214588740t* + 116320918t +
59998484t + 29359058t + 13582512¢5% 4 5916870¢° + 2416068t%* 4 919586¢™ +
324312¢°° +105118¢°7 4 31072¢° 4 8262t + 1961¢5° + 399¢°1 + 71¢52 + 993 +-¢54) /(=1 +
t)22(1 +t)20(1 L2443 +t4)11)
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B.2 Refined Plethystic Logarithm (PL)

Refined PL of ‘Trapezium’ family

Table B.2}: Refined Plethystic Logarithm (PL) of the m = 2 case in the ‘Trapezium’ family of quivers.

nilo Plethystic logarithm
1
1 2 [0+ [2]
t*: (g +1/q)[1]
tt: —[0]
2 t°: —(g+1/9)[1]
8 —[0] — [2]
t": (¢ +1/q)[1]
8 2[0] + 2[2]
t2:[0] + [2]
3
th:=[0] + (¢ + 1/)[1
3| t°:
t5: —(¢+1/9)[1]
7
t°: —[0]+ (¢ + 1/g)[1] — [2]
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Table B.25: Refined Plethystic Logarithm (PL) of the m = 3 case in the ‘Trapezium’ family of quivers.

nio Plethystic logarithm
t2:10,0] + (1/q)[0, 1] + g1, 0] + [1, 1]

7

8 :=8[0,0] — (11/q + 4¢*)[0,
(1/¢% +99)[0,2] - 6[0, 3] — (
11¢)[1,0] — 20[1,1] — (
2¢°)[1,2] — 2¢[1,3] — (
¢*)[2,0] — (2/¢* + Tq)[2,
3[27 2] — 6[37 0] — 2/(]{37 1]

2 :10,0]+[1,1]

21 (1/q)[0,1]+q[1,0]

t*:-[0,0]-[1,1]

ts :_[1/(]][07 1] - Q[Oﬂ 2] - Q[LO] -

2 1/q[2,0]
£ :-[0,0]+[1,1]
t742/)[0,1] + 2¢[0,2] + 2¢[1,0] +
(1/q)[1,2] + (2/9)[2,0] + q[2, 1]
t*:[0,0] 4+¢°[0, 1]+ (1/¢*)[1, 0] +-[1, 1]
2:00,0] + [1, 1]
3
t*: —[0,0] + (1/¢)[0,1] + ¢[1,0] — [1,1]
t5 .
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Table B.26: Refined Plethystic Logarithm (PL) of the m =4,k =1 case in the ‘Trapezium’ family of
quivers.

n|o Plethystic logarithm
t2:10,0,0] + (1/¢)[0,0,1] + ¢[1,0,0] + [1,0, 1]

t6 :(all positive terms)
2.10,0,0] + [1,0, 1]

o 120,01+ 4l1,0,0
t*:—[0,0,0] — [0,2,0] — [1,0,1]
t5: 1/9)[0,0,1] — g¢[0,1,1] —

0,0] — (1/q)[1,1,0]

[0,0,0] — 40, 1,2] — 3[0,2,0] —
01 - 22 - 202 -
, 0] + positive terms

o =
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Table B.27: Refined Plethystic Logarithm (PL) of the m = 4,k = 2 case in the ‘Trapezium’ family of
qUIveErs.

niv Plethystic logarithm
t*:(0,0,0] + [1,0, 1]
t° (g +1/9)[0,1,0]

[
N N~

—_— =
\'l\')\
\.O}Q
o+

~
NI

'\‘B,Q “O}—‘
O&b—‘
=

+ -
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Table B.28: Refined Plethystic Logarithm (PL) of the m =5,k =1 case in the ‘Trapezium’ family of
quivers.

n|v Plethystic logarithm
t2:00,0,0,0] + 1/¢[0,0,0,1] +
q[1,0,0,0] 4+ [1,0,0,1]

3
1 t4:—2[0,0,0,0] — l/q([0,0,0,I] +
1 [1,0,1,0]) — q([O,l,O,l] +
[1,0,0,0])—[0,1,1,0]—2[1,0,0,1]

t5'

t% . All positive terms

t2:10,0,0,0] + [1,0,0,1]

3 :1/4[0,0,0, 1] + ¢[1,0,0,0]

t*:—[0,0,0 0] [0,1,1,0] —[1,0,0,1

5 t5:—1/q([0,0,0,1] + [1,0,1,0]) —

q([0,1,0,1] +[1,0,0,0])

t6 :—[0,0,0,0]+[0,0,2, 1]+0, 1,0, 2]+
2[0,1,1,0]+[1,0,0,1]+[1,2,0,0]+
2,0,1,0]

t2:[0,0,0,0] + [1,0,0,1]

t4:=[0,0,0,0] + 1/¢[0,0,0,1] —
[0,1,1,0] + ¢[1,0,0,0] — [1,0,0, 1]
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Table B.29: Refined Plethystic Logarithm (PL) of the m = 5,k = 2 case in the ‘Trapezium’ family of
quivers.

nlo Plethystic logarithm
t?:[0,0,0,0] + [1,0,0,1]
3 :1/4[0,0,1,0] + ¢[0,1,0,0]
t*:—[0,0,0,0] —[1,0,0,1]
1 t°:—1/¢([0,0,0,2] + [0,0,1,0] +
9 [1,1,0,0])) — ¢([0,0,1,1] +
[0,1,0,0] + [2,0,0,0])
t%:-10,0,0,0] — ¢*[0,0,0,1] —
0,1,1,0] — (1/¢*)[1,0,0,0]
t2:[0,0,0,0] + [1,0,0,1]
3
t*:—[0,0,0,0] + 1/¢[0,0,1,0] +
9 q[0,1,0,0] — [1,0,0,1]
o
t%:-1/¢([0,0,0,2] + [0,0,1,0] +
[1’17070]) - Q([O,O,l,l] +
0,1,0,0] +[2,0,0,0)) +[1,0,0, 1]
t2:[0,0,0,0] + [1,0,0,1]
13
t*:—[0,0,0,0] — [1,0,0,1]
5 :1/4[0,0,1,0] + ¢[0,1,0,0]
3| t5:[1,0,0,1]
t":—1/¢([0,0,0,2] + [0,0,1,0] +
[1,1,0,0])) — ¢([0,0,1,1,] +
0,1,0,0] +[2.0,0,0))
t—[0,0,0,0] +[0,1,1,0] — [1,0,0, 1]
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Table B.30: Refined Plethystic Logarithm (PL) of the m = 6,k =1 case in the ‘Trapezium’ family of
quivers.

nlov Plethystic logarithm
t?:(0,0,0,0,0] + 1/¢[0,0,0,0,1] +
q[1,0,0,0,0] + [1,0,0,0,1]

#4:2-2[0,0,0,0,0] — 1/¢([0,0,0,0, 1] +
[1,0,0,1,0]) — ¢([0,1,0,0,1] +
[1,0,0,0,0)) — [0,1,0,1,0] —
2[1,0,0,0, 1]

£2:]0,0,0,0,0] + [L,0,0,
t%:1/4[0,0,0,0,1] + ¢[1,
#1:-0,0,0,0,0] — o,

—| 1,] +
0,1,0,0,2] + 2[0,1,0,1,0] +
1,0,0,0,1] + [1,1,1,0,0] +
2,0,0,1,0]

t? :[0,0,0,0,0] + [1,0,0,0, 1]

43
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Table B.31: Refined Plethystic Logarithm (PL) of the m = 6,k = 2 case in the ‘Trapezium’ family of
quivers.

niv Plethystic logarithm

t?:(0,0,0,0,0] + [1,0,0,0,1]

3 :1/4[0,0,0,1,0] + ¢[0,1,0,0,0]

[1,0,0,0,1]

1 410,0,0,1,0] +

,0,1,0,1] +
|

1,0
aov ] -

t4:-[0,0,0,0,0] + 1/¢[0,0,0,1,0] +
¢[0,1,0,0,0] — [1,0,0,0,1]

£+ —1/¢([0,0,0,0,2] +[0,0,0, 1,0] +
s Uy ] - Q[070717071] +
[0,

(
0,1,0,0,0)) —

3| #:-00,0,0,0,0] — [1,0,0,0,1]
#5:1/4[0,0,0,1,0] + ¢[0, 1,0,0,0]
#6:-[0,0,2,0,0] + [1,0,0,0, 1]

Table B.32: Refined Plethystic Logarithm (PL) of the m = 6,k = 3 case in the ‘Trapezium’ family of
qUIVeErs.

n|v Plethystic logarithm
t2:10,0,0,0,0] + [1,0,0,0,1]
3
t*:-[0,0,0,0,0] + (1/q +
1 E ¢)[0,0,1,0,0] —[1,0,0,0,1]
3 :
t:—(1/qg + ¢)(0,0,0,1,1] +
0,0,1,0,0] + [1,1,0,0,0]) +
[1,0,0,0,1]
t2:[0,0,0,0,0] + [1,0,0,0,1]
3
2| t*:—[0,0,0,0,0] - [1,0,0,0,1]
> (1/q + q)[0,0,1,0,0]
t%:[1,0,0,0,1]
t2:[0,0,0,0,0] + [1,0,0,0,1]
3
3| t*:-[0,0,0,0,0] —[1,0,0,0,1]
o
t5+(1/q+¢)[0,0,1,0,0] +[1,0,0,0,1]
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Table B.33: Refined Plethystic Logarithm (PL) of the m =7,k =1 case in the ‘Trapezium’ family of
quivers.

n|ov Plethystic logarithm
t2:10,0,0,0,0,0] + [1,0,0,0,0,1] +
, 1/4[0,0,0,0,0,1] + ¢[1,0,0,0,0,0]
A

t*:-2[0,0,0,0,0,0] —
1 1/¢([0,0,0,0,0,1] +
[1,0,0,0,1,0]) —q¢(]0,1,0,0,0, 1] +
[1,0,0,0,0,0]) —2[1,0,0,0,0,1] —
[0,1,0,0,1,0]

12]0,0,0,0,0,0] + [1,0,0,0,0, 1]
£ :1/4[0,0,0,0,0,1] + ¢[1,0,0,0,0, 0]
t4 :_[0’070707070} - [07 17070a 170] -

[1,0,0,0,0,1]
t5:—1/4([0,0,0,0,0,1] +
2 [1,0,0,0,1,0]) —q([0,1,0,0,0,1] +
[1,0,0,0,0,0])
t6:-[0,0,0,0,0,0] + [0,0,1,0,1,1] +
0,1,0,0,0,2] + 2[0,1,0,0,1,0] +
[1,0,0,0,0,1] + [1,1,0,1,0,0] +
2,0,0,0,1,0]
t2:[0,0,0,0,0,0] + [1,0,0,0,0, 1]
13
t4: =[0,0,0,0,0,0] +
3 1/4[0,0,0,0,0,1]—1[0,1,0,0,1,0]+
_ 4[1,0,0,0,0,0] = [1,0,0,0,0,1]
o
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Table B.34: Refined Plethystic Logarithm (PL) of the m =7,k = 2 case in the ‘Trapezium’ family of
qUIvers.

njv Plethystic logarithm

t*:[0,0,0,0,0] + [1,0,0,0,1]

3 :1/4[0,0,0,0,1, 0] +

q[0,1,0,0,0,0,0]

t*:—[0,0,0,0,0,0] — [1,0,0,0,0,1]

t5:—1/4([0,0,0,0,0, 2] +

[0,0,0,0,1,0] + [1,0,0,1,0,0]) —
+

121 a(0.0,1,0,0,1] +[0,1,0,0,0,0)
2,0,0,0,0,0]
£:-10,0,0,0,0,0,] -
¢°[0,0,0,1,0,0] _
1/¢%[0,0,1,0,0,0,0] —
0,0,1,1,0,0] — [0,1,0,0,1,0]
#2.]0,0,0,0,0,0] 1 [1,0,0,0,0, 1]
3
5 t*:-[0,0,0,0,0,0,] +
1/¢[0,0,0,0,1,0] +
al0,1,0,0,0,0] - [1,0,0,0,0,1]
t°
#:0,0,0,0,0,0] [T, 0,0,0,0,1]
t3 .

3| t*:-[0,0,0,0,0,0] - [1,0,0,0,0,1]
o :1/q[0,0,0,(), 1,0] + q[(), 1,0,0,0,0]
t:-[0,0,1,1,0,0] + [1,0,0,0,0, 1]
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Table B.35: Refined Plethystic Logarithm (PL) of the m =7,k = 3 case in the ‘Trapezium’ family of
quivers.

ni|v Plethystic logarithm
t*:(0,0,0,0,0] + [1,0,0,0,1]
3
t*:-[0,0,0,0,0,0,] +
1/¢[0,0,0,1,0,0] +
1 q[0,0,1,0,0,0] — [1,0,0,0,0,1]
o
3 #:—1/¢([0,0,0,0,1,1,] +
[0,0,0,1,0,0] + [1,0,1,0,0,0]) —
q([0,0,0,1,0,1] +[0,0,1,0,0,0] +
[1,1,0,0,0,0]) +[1,0,0,0,0,1]
t2:[0,0,0,0,0,0] + [1,0,0,0,0, 1]
.
9 t*:-[0,0,0,0,0,0,] — [1,0,0,0,0,1]
t5:1/¢[0,0,0,1,0,0] +
q[0,0,1,0,0,0,0]
t%:11,0,0,0,0,1]
2
3
3 th:
o
0.
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B.3 D-type orthosymplectic quivers

D-type orthosymplectic quivers from Section 4.7 whose Coulomb branch are product of
moduli spaces. Note that even if one computes the perturbative Hilbert series, it can still be

factorized into the perturbative Hilbert series of each moduli space.
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Table B.36: Hilbert series results for theories of Tables 4.10 and 4.11. The first line displays the
Coulomb branch Hilbert series for the proposed quiver, while the second line displays the factorisation
into a product. The known Hilbert series for the factors match these findings.

Coulomb branch Hilbert series

1+58t2 +32t3 4+ 1569t* + 1600t +27220t6 + 3785617 + 3481248 + 577920t 4 35409361 + 6502720t +
20081572t12 + 58099072t13 + 217747736t'* + 43215145615 + 1385881186t16 + 2764473568t17 +
Ek:2,1=0 7858110900t!8 + 15572468640t1° + 40224531398t20 + . ..
3-21 = (14 29t + 16t3 + 364t* 4 336t° + 2926t5 + 3360t7 + 17584t8 + 22400t° + 85260¢10 + 114240t +
349572t12 4 479232t13 4 1251816t1% + 172948815 + 4008081t16 + 5534496t17 + 11680405t18 +
16045920t + 31415582t20 + .. .)?

1+ 58t2 4 1601t* + 28424t5 4 3691563 4 377134810 4 31759488t12 + 22780130414 4 142577575816 4
Ek:3,l=1 7933063516t'8 4 39822908626t20 +- . ..
321 = (1+29t2+380t* +3192¢5 +19810¢8 +98224¢10 4+ 409016t 12 4 1480548t 14 + 477684916 + 1399838518 +
3780526420 + ... )2

Ek:3’l:0 14 134¢2 + 9017t + 403982t5 + 13508026t8 + 358747158¢10 + ...

3-21 = (1 4+ 67t% + 2264t* + 50303t0 4+ 8208643 4 1048969910 4 ... )2
EE=AI=D 1413487 + 8889t 4 128t° + 38836610 + 1561617 + 12558722¢° + 943360t° + 320512966¢'° + . ..
3=21 = (14 67t2 + 2200t* + 64¢> + 46783t6 + 3520t7 4 724900t® + 95040t° + 8763535¢10 + ... )2

1 + 48t2 + 976t* + 11600t° + 95350t8 + 59835210 + 3053296¢12 + 13224752t14 + 50129875¢16 +
Ek:1,1=0 170108000¢18 + 525728128t20 + . ..
4-21 = (1 + 24t% + 200t* + 1000t5 + 3675t% + 10976¢10 + 28224¢12 4+ 64800t'* + 136125¢16 4 266200t'8 +
490776120 4 ...)?2

1+ 32t2 + 163 + 456t* + 41615 + 4104¢5 4 4960t7 + 27490t8 + 38400t° + 148792¢10 4 223840t +
k—oj—1 681924t1% + 10624323 4 2729368t + 430537615 + 9754099¢16 + 15374976t 7 + 31652168¢18 +
E, =5 49482864t 4 94506536t20 +- . . .
= (14 16t2 + 8t3 + 100t* + 80t + 420t® + 4007 + 1385t% + 1440t° + 383610 + 4200t + 9366t12 +
1052813 4- 20728t 4 23632t15 4 42345t16 4+ 48672¢17 + 81088t18 + 93480t + 147106t20 4 ...)2

Ek=2,l=0 1+ 92t2 + 64t3 + 4168t* + 5248t° + 125140t5 4 211968t + 28092968 + 5635008t° + 5026059010 + . ..

- = (14 46t2 + 32t3 + 1026t* + 1152¢5 + 14862t6 + 20160t + 15779413 + 232608t° + 1314687¢10 + . ..
4-21 46¢2 3 26t + 1152t5 + 148626 + 2 7 77948 + 232608t° + 131468710 2
Ek:&l:l 1+ 9212 + 4232t* + 128860t% + 29105928 + 51921078¢10 4 ...
4-21 = (1 + 46t% + 1058t* + 157625 + 170562¢8 + 1438491¢10 4 ... )2
14-90t2 43565t +84588t6 4+-1386700t8 +17100048t10 416785741612 41365541740t 14 4-9486469554+16 +
k=1 57589566980t18 + 311107661634¢20 + . ..
5 = (1 + 45t + 770t* + 764416 + 52920t% + 282744¢10 + 1241460t'2 + 4671810t + 15520791¢16 +

46521475¢18 + 12789176420 + .. )2

1 + 134t2 + 128t3 + 8889¢% + 156165 + 394310t + 943360t7 + 13220746t + 377132807 +
357061474110 4+ 1123982464t + 8061468875t12 + 26656882432t 4+ 155821066386t14 +
e 5242374773765 +2622606331104¢16 + 8795126835840t 17 4 38944260460754t18 4 128525072279296t19 +
E: 515800796930805t%° + . ..
= (1 + 67t2 + 64¢3 + 2200t* + 3520t + 477075 + 95040t7 + 7687245 + 1691712t% + 9793069t +
22431552t 4 102616722t12 + 237022656t1% + 910198783t1* + 20836999045 + 6988000316t16 +
15707153088t17 + 4727776566718 + 1038275251209 + 2860565248480 + ... )2

1+ 156t2 4 10944t* + 466596t + 13807080t8 + 30652479010 4 5377829028t12 + 77405354312¢14 +
k=1 940221343776¢16 + 9853246779220t18 + 90680857312617¢20 - . ..
6 = (14782 4+2430t* +43758t5 4-537966% +4969107t10 + 36685506t 12 + 225961450t 14 + 119800652416 +
559756932818 + 2347415678420 + ... )2

1 4 184¢2 + 256t3 + 16810t% + 43520t° + 1040056t8 + 3674112t7 + 49469875t% + 206409216¢° +
1925805206t10 + 8703438848t + 6341877963012 + 294056655104t13 + 1801033108182t14 +
2 8290154332416t1° + 44696692490453t16 + 200425546653440t17 + 979719926063866t'8 +
Eg 4237436679956480t0 + 19144937799760589t20 + . ..
= (1+92t2 + 1283 + 4173t + 9984¢5 + 127920t + 384384¢7 + 2981381¢8 + 9804288t° + 55764111¢10 +
186920448t +863386770t12 +2844037120t13 + 11315720064t + 3598465561641 + 1278636526446 +
3895387159047 + 1265346923490t'8 + 3684348495360t1° + 11116073388432t20 + ...)2

142662 4+32431t* +2437890t6 +128297273t8 +5085058160t10 4+ 159309437560¢12 4 4084414731904 14 +

k=1 87979394611180t16 + 162545525718402418 + 26192135424825720t20 + . ..
7 = (1 + 133t + 7371t* 4 238602t5 + 5248750t% + 8570998810 + 110129692412 4 1160430601214 +
1034021411646 4 797856027500t'® + 5431803835220t20 +- . .. )2
k=1 14 496t2 + 115504t* + 16918250t% + 1761796000t8 + 1397492325600 +- . ..
8 = (1 + 248t + 27000t* + 1763125t6 + 79143000t8 + 2642777280¢10 + . ..)?2
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B.4 Unitary vs orthosymplectic quivers

In Section 4.3 we mentioned that not only the Hilbert series matches between F),, orthosym-
plectic quivers and their unitary counterparts but other functions such as superconformal indices

matches as well.

B.4.1 Superconformal index

E4 quiver. To begin with, consider k = 1 and Ny = 3. The E; = su(5) quiver is given by the

Dynkin diagram of su(5):

1
1 1
1 (B.1)
—>
1 1 1 1 2 2 2

The wiggly line denotes a charge 2 hypermultiplet (under the U(1) gauge node). The definition of
the index for the framed unitary quiver is standard; in contrast, the index for the orthosymplectic
quiver requires a careful consideration of the magnetic lattice as emphasised in Section 4.4.
After these preliminary remarks, a straightforward perturbative computation shows that both

quivers have the same superconformal indices

24 200 1000 451
H=1+\/ﬁ<t—2+f2> +q (_26+t_4+t4> +2qi6 +q° ( © —t—2+t6) +qi (—26 + 2()
3675 2824 8)
— ) +...

@ a (B.2)

+ g (373 +
up to order q.

Es quiver. In the case of Ny = 4, the unitary quiver is the affine Dynkin quiver of D5, whereas

the orthosymplectic quiver is different. Again, to evaluate the superconformal index of the
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unframed orthosymplectic, we need to adjust the magnetic lattice.

2 2 O o0
2 2 2 2

(B.3)

It is then straightforward but tedious to verify that the superconformal index of the orthosym-

plectic quiver below agrees up to O(q%/?).

45 770 7644 1714
1+ Vﬁ+q( 46+~ +#)+f”(———— +@)

2 {6 2
52920 24574
B8y

+&(%8+ —#+2@>+~-

Es quiver. Consider the unitary quiver whose Coulomb branch is O.;, :

%% (B.5)
3

—~
)
2

M)
)
2

The unitary-orthosymplectic quiver whose Coulomb branch is the closure of the Eg minimal

nilpotent orbit O, takes the following form [3] (see also [20, A.1.5] for class S description):

1 2

f - I (B.6)

o0 @ o0 @ o0 @ o0 0
2 2 4 4 4 2 2 2 2 4 4 4 2 2

Since the orthosymplectic quiver is rather large, the perturbative calculation of the superconfor-

mal indices of these theories is limited to order O(q). Nonetheless, both computations yield the

same result

78 2430
H=1+—J@ q( t )+”.‘ (B.7)

f2
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Appendix C

Review: Rank 1 N =2 SCFTs

Based on our paper [10]

A brief review of the classification of rank one 4d N/ = 2 SCFTs [66, 130, 131, 132, 200].
It is a geometric classification, based on the geometry of the Coulomb branch C, which by
definition is a complex singular space of dimension 1. In the case where there is no enhanced
Coulomb branch, at a generic point on C the theory is a free U(1) gauge theory, and interesting
physics emerges at singular points. Scale invariance indicates that the singular locus is reduced
to a single point, which we take to be the origin O of the Coulomb branch. On the non simply
connected regular locus C — {O}, the locally trivial physics undergoes non-trivial topological
effects, incarnated by a non-trivial monodromy in the electromagnetic duality group SL(2,Z).
Scale invariance constrains the geometry of the Coulomb branch to be one of those listed in the

left part of Table 5.1. These geometries can be characterized by their Kodaira type [201]
Ke{Ir 111 1v-I;,1V,1I1, 11} . (C.1)

When there is an enhanced Coulomb branch, on a generic point of the Coulomb branch there
are also d > 0 hypermultiplets which can take vacuum expectation values, parametrizing a
geometry which can be globally non-trivial (in the rank 1 case, studied in this paper, these take
the form of orbifolds hgy, see [6]).

The geometry of the scale-invariant geometry C is not sufficient to fully characterize the

SCFT: one also needs to understand possible N' = 2 preserving mass deformations. These
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deformations break conformal invariance, so the geometry after deformation does not need to
contain a single singular point. Rather, it contains a finite number of singularities which can be
characterized by a finite set of Kodaira classes. The deformation parameters are invariant under
(the Weyl group of) a flavor symmetry F. There can also be chiral deformation parameters.
Barring the issue of discrete gauging [202], a pair [K, F] entirely identifies a 4d N/ = 2 rank-1
SCFT. For instance, the su(2) gauge theory with Ny =4 has K = [} (which can be deformed
to {If}), F = D, and has an exactly marginal deformation parameter.

The classification gives a list of 17 rank 1 N/ =2 SCFTs (not counting IR-free theories)
and can be uniquely identified by the flavor symmetry F' (which is also the global symmetry of
the Higgs branch).
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Appendix D

Crash course on algebraic varieties

Based on our paper [11]
In this Appendix, we give a brief review of algebraic varieties and nilpotent orbits. This is

based on [203, 204, 63] in which the reader will find more details and proofs.

D.1 Ideals and Varieties

We are mainly interested in two classes of objects:

e Polynomial rings of the form C[X},...,X,]/I where [ is an ideal. For instance, the ring

Clg, q]/ (F-terms) where ¢, ¢ are the scalars in the chiral and anti-chiral multiplets.

Or, the ring C[M, B, B] modulo relations. This defines our chiral ring where M, B, B are
gauge invariant objects constructed from ¢, ¢ and form irreducible representations of the
global symmetry group. The relations between them can be extracted from the first few

negative terms in the refined plethystic logarithm of the Hilbert series.
e Algebraic varieties, i.e. the subset of C" of zeroes of a finite family of polynomials.

At the heart of algebraic geometry is the correspondence between these two classes of objects.
An ideal in C[X4, ..., X,,] is always generated by a finite number of polynomials P, ..., P.. In
this case, we denote the ideal by I = (Py,..., P,). Therefore to each ideal one can associate an

algebraic variety. Conversely, to every algebraic variety one can associate the ideal of polynomials
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which vanish on this variety. Therefore, in this thesis we often refer to a moduli space as an
algebraic variety but also expresses it as a chiral ring.

However the first class contains more objects, because certain polynomials in the rings can
be nilpotent, and as a consequence two ideals can correspond to the same variety. For instance
the rings C[X]/(X) and C[X]/(X?) both correspond to the algebraic variety {0}, but they are
not isomorphic rings. The Hilbert series is sensitive to such a difference: if X is given weight 1,

then the Hilbert series of C[X]/(X) is 1 while the Hilbert series of C[X]/(X?) is 1 +¢.

Radical To remedy this, one needs to introduce the concept of radical of an ideal. The radical

of I is the ideal defined by

VI ={f|f™ eI for some integer m > 0} . (D.1)

If an algebraic variety is defined by a set of polynomial equations P, =0 for i = 1,...,r in some
variables X7,..., X, then the coordinate ring of this variety is

ClX1,..., Xnl//(Pr,...,P). (D.2)

For instance, we can check that m = (X). There is a one-to-one correspondence between
the algebraic varieties and the radical ideals (this is the Nullstellensatz). In particular, the
Hilbert series of an algebraic variety coincides with the Hilbert series of the ring defined by the
radical ideal.

A ring without non-zero nilpotent elements is called a reduced ring. It follows directly from
the definition that a quotient ring R/I is reduced if and only if I is a radical ideal.

The importance of radical ideals arise when we look at the classical Higgs branch of SQCD
theories when the number of flavors are too small. This was discussed in great detail in our

work [11] but such examples do not arise in this thesis.

Intersections and Unions of varieties In chapter 4 we looked at Higgs branches that

are unions of several hyperKéahler cones. These unions have non-trivial intersections and
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mathematically they can be understood as the following. Given two algebraic varieties V; and
V4, their intersection V3 N V5 is again an algebraic variety. At the level of ideals, this translates
into a sum. Namely, let /; and I be the (radical) ideals associated to V; and V5. The sum
I, + I is simply the set of all polynomials P+ @ for P € I}, Q € I,. We note the useful property
that if [, = (Py,..., P,) and I, = (@1, ...,Qs), then

[1_'_[2:<P17"'7praQ17"'7Q3>' (D3>

This makes it clear that I; 4+ I, is associated with the intersection Vi N V5.
Similarly, a the union Vi U V5 is associated to the intersection of ideals Iy N I5. Corre-
spondingly, the variety is written as a union of irreducible varieties (which are cones in this

thesis).

D.2 Nilpotent orbits

We give a brief review on nilpotent orbits focusing on g = sl(n,C)'. An sl(n,C) nilpotent
adjoint orbit is characterised by a partition of n, A € P(n), where P(n) is the set of all tuples

of positive integers \;, such that \; > A\;Vi < j and ), \; = n. As an example

PB)={(1,1,1,1,1),(2,1,1,1),(2,2,1),(3,1,1),(3,2), (4,1),(5) }
(D.4)

={(1%),(2,1%), (2%, 1), (3,1%), (4,1), (5)} (exponent notation)

An elementary Jordan block of order d, Jy, is a d x d matrix with all entries 0 except for super

diagonal entries, which are 1

010 00
001 ...00

Jg=1|: + ¢ .t ] e R (D.5)
000 01
000 ...00

In the text, we simply denote these algebra as su(n).
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for every partition A = (A1, Ag,..., A\x) we can build the nilpotent matrix
Ty, 0 0
0 Jy ... 0
X, = € sl(n, C). (D.6)
0 0 I,

A nilpotent adjoint orbit of sl(n,C) is now given as

O, ={M € sl(n,C)|M = Ady(X,),g € PSL(n,C)}. (D.7)

Two nilpotent orbits corresponding to different partitions are disjoint sets in sl(n, C). However,
the Zariski closures of nilpotent orbits are partially ordered by inclusion. A graphical represen-
tation of this partial order is given by a Hasse diagram. The closure of an orbit is its union

with all of its lower orbits in the Hasse diagram.
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Symplectic singularities

Based on our paper [6]

In this subsection, we provide a brief guide to the mathematics of Hasse diagrams employed
in the main text, referring the reader to references for the details.

In classical mechanics, a central tool is the Poisson bracket {f, g} for f and g two functions

on the phase space. This bracket satisfies

1. Skew-symmetry {f, g} + {g,f} =0
2. The Jacobi identity {f,{g,h}} + {g,{h, f}} +{h,{f.9}} =0
3. The Leibniz rule {h, fg} = {h, f}g + f{h, g}

More generally, a Poisson variety is any variety whose coordinate ring possesses a bracket
satisfying the above three properties. Note that the Poisson bracket can be seen as a two-vector
defined on the variety, called the Poisson bivector.

Dualising the Poisson bivector, one obtains a two-form, and vice versa. Recalling that a
symplectic variety is a variety with a non-degenerate two-form, we immediately see that any
symplectic variety is a Poisson variety. However, the converse is not true, because the Poisson
bivector can be degenerate. For reviews of Poisson geometry, we refer to [205, 206, 207]. In this
sense, Poisson geometry generalises symplectic geometry, by “allowing” the symplectic form to

be degenerate.
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A Poisson structure on a smooth manifold gives rise to a foliation by symplectic leaves,
and these leaves can have jumps in dimensionality. This extends to symplectic singularities
[208, 209], see also [210, 211] for a review. Given an affine normal variety X over C of even
complex dimension with a non-degenerate closed two-form, we say that X is a symplectic
singularity if the two-form extends to a two-form on a resolution of X. We stress that this two
form does not have to be non-degenerate in general.

According to [212, Thm. 2.3], every (normal) symplectic singularity admits a finite stratifi-
cation {0} = Xy C X; C --- C X,, = X such that

(i) the singular part of X; is X; 4, and

(ii) the normalisation of any irreducible component of X; is a symplectic singularity.
In general, there exists more than one such stratification. The set of all the spaces involved in
these stratifications are nevertheless partially ordered by the operation of taking the singular
part. This partial order is represented by a Hasse diagram.

Questions about the properties of the symplectic leaves of a 3d N’ = 4 Coulomb branch

have already been raised in [213, Sec. 2].
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