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Em memória de Dorival Machado.



Chaos was the law of nature; Order was the dream of man.

Henry Adams
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Resumo

Este trabalho analisou diferentes noções de entropia e sua produção em colisões ep e de íons pesados, com foco

nos estágios iniciais da colisão. Para isso, estudou-se a importância de fenômenos como o emaranhamento

quântico e a decoerência na geração de entropia. Utilizando o estado da arte para o cálculo da entropia de

emaranhamento no limite de altas energias e sintetizando as diferentes abordagens para sua obtenção, foram

obtidos resultados fenomenológicos a partir de expressões analíticas para o número de glúons. Também foram

apresentados resultados para a entropia de emaranhamento no espalhamento elástico de dois corpos, conside-

rando a estrutura hadrônica baseada no método independente de modelo de Lévy, em energias típicas do RHIC,

Tevatron e LHC. Modelos fenomenológicos das distribuições de glúons não integradas foram empregados para

calcular a entropia dinâmica na QCD dos estados gluônicos densos em colisões pp e p A em altas energias,

comparando-a com a entropia de decoerência. Os resultados obtidos foram contrastados com outras noções de

entropia presentes na literatura, assim como foram discutidas as fontes de incertezas teóricas.

Palavras-chave: Física de altas energias, entropia, emaranhamento.
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Abstract

This work analyzes different notions of entropy and its production in ep and heavy-ion collisions, focusing on

the early stages of the collision. To this end, the importance of phenomena such as quantum entanglement and

decoherence in entropy generation was studied. Using state-of-the-art methods for calculating entanglement

entropy in the high-energy limit and synthesizing various approaches for its computation, phenomenological

results were obtained from analytical expressions for the number of gluons. Results were also presented for

the entanglement entropy in two-body elastic scattering based on the hadronic structure given by the model-

independent Lévy method, at energy values typical of the RHIC, Tevatron, and LHC. Phenomenological models

of unintegrated gluon distributions were used to calculate dynamic entropy in the QCD of dense gluonic states

in pp and p A collisions at high energies, comparing it with decoherence entropy. The obtained results were

contrasted with other notions of entropy in the literature, and theoretical uncertainties were discussed.

Keywords: High-energy physics, entropy, entanglement.
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Comunicado de Imprensa: Utilizando a

entropia para compreender as partículas

sub-atômicas

Pode parecer embaraçoso, mas, se voltarmos às nossas aulas do ensino básico, onde perguntas como "o

que é um próton?"são frequentes, qual seria a resposta? Acredito que a mais apropriada seria algo como: uma

partícula que está no núcleo de todos os átomos, possui carga elétrica positiva e é formada por três partículas

ainda menores, os quarks. Contudo, isso depende. A possibilidade do processo de medida conhecido como

espalhamento profundo inelástico revelou para cientistas do mundo inteiro que, quanto maior a energia em que

essa medida é realizada ou quanto maior a energia transferida na colisão, mais profundamente conseguimos

"enxergar". Em altas energias, o próton é compreendido como uma combinação de distribuições de conjuntos

de quarks e glúons, chamados pártons.

Esses pártons estão confinados dentro da região do próton e não podem ser detectados "nus"; ou seja,

ao final do processo de medida, o que se detecta são outras partículas, chamadas de hádrons, que sabemos

serem formadas por combinações específicas de quarks. Isso indica que os quarks e glúons estão sempre

"aprisionados"dentro dos hádrons, não podendo ser observados diretamente. Dessa forma, são partículas

confinadas.

A investigação das estruturas internas do próton, ou de qualquer outro hádron, fica ainda mais interessante

se considerarmos colisões com núcleos pesados. Sabemos que o próton e o nêutron estão dentro do átomo;

portanto, é possível investigar o que ocorre com eles quando, em vez de colidirem diretamente, realizamos
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uma medida com os próprios átomos. Os resultados são interessantes, tanto que revelaram um novo estado

da matéria, o plasma de quarks e glúons. Acredita-se que este plasma tenha sido uma fase inicial do Universo

primordial na teoria do Big Bang e, atualmente, conseguimos reproduzi-lo em laboratório.

Diversas linhas de pesquisa relacionadas à área têm contribuído para uma melhor compreensão das

características desse plasma. Em especial, nele ocorre um fenômeno que intriga pesquisadores do mundo

inteiro: ele termaliza muito rapidamente, e o mais intrigante é que as teorias mais apropriadas para descrever a

matéria nesse regime ainda não deram uma explicação adequada para os motivos que levam a esse fenômeno.

Termalizar significa que as partículas de um sistema, como o plasma de quarks e glúons, se redistribuem de

forma a alcançar um equilíbrio térmico, ou seja, uma temperatura uniforme. Nesse estado, não há mais fluxo

de energia entre as partículas, pois elas já compartilham uma quantidade de energia similar. O impressionante

no caso desse plasma é o tempo com que ele atinge esse equilíbrio: cerca de 3.3×10−24 s. Para se ter uma ideia,

isso é um bilionésimo de um bilionésimo de segundo — um tempo absurdamente curto, mais rápido do que a

maioria dos processos conhecidos na natureza.

Isso chamou a atenção de pesquisadores brasileiros, que tentam compreender o que faz o plasma atingir o

equilíbrio tão rapidamente. Em suas pesquisas, eles tentam explicar o que está acontecendo utilizando três

fenômenos distintos: entropia, emaranhamento e decoerência. A entropia é uma medida característica de

um gás e é essencial para a compreensão da termodinâmica, ciência na qual físicos do século XIX estudavam

gases em sistemas isolados dentro de pistões. Sabe-se que os pártons estão confinados dentro dos hádrons;

então, grosso modo, é como se tivéssemos partículas confinadas dentro de um ’pistão’ muito pequeno. Se essa

hipótese for verdadeira, é possível calcular a entropia.

O emaranhamento e a decoerência são fenômenos estritamente quânticos. No primeiro, existe uma

relação entre um conjunto de partículas em que, ao medirmos as propriedades de apenas uma delas, obtemos

informações sobre todo ou parte do conjunto, independentemente da distância entre elas, desde que estejam

emaranhadas. Einstein chamava esse fenômeno de "ação fantasmagórica à distância". Por outro lado, a

decoerência é uma teoria que busca explicar o desaparecimento das características quânticas na matéria,

grosso modo, no nosso cotidiano. Por exemplo, é comum ouvirmos falar do gato de Schrödinger, que pode

estar vivo e morto ao mesmo tempo dentro de uma caixa, segundo os princípios da mecânica quântica. O

que isso quer dizer? Os físicos, ao utilizarem a mecânica quântica, geralmente consideram que as partículas

podem estar em estados excludentes ao mesmo tempo. Contudo, se a mecânica quântica descreve as partículas

dessa forma, por que não observamos isso no dia a dia? Esta é justamente a pergunta que a decoerência busca

responder, introduzindo outras interações na mecânica quântica, como a medida e o ambiente a que partículas

minúsculas estão submetidas.

Os resultados dos pesquisadores, utilizando entropia e os fenômenos quânticos citados, foram obtidos tanto

para colisões mais simples, como entre um elétron e um próton, quanto para a colisão de núcleos pesados,

prevendo uma alta taxa de criação de entropia nos instantes iniciais do processo, de modo a corroborar com

o fato de que o plasma termaliza muito rapidamente. Além disso, é possível comparar a entropia obtida no

processo final, após o desaparecimento do plasma, medidas nos aceleradores de partículas mundo afora,

como o LHC do CERN, com as entropias calculadas considerando fenômenos como o emaranhamento e a

decoerência.

Para o caso da entropia de emaranhamento, propriedades matemáticas específicas de observáveis relacio-

nados à física de altas energias, como o geometric scaling da escala de saturação, possibilitaram o cálculo de

entropias para colisões nucleares. Foram obtidos resultados para núcleos de chumbo (Pb), ouro (Au), cálcio



(C a) e silício (Si ). Analisando os dados, espera-se que, quanto maior for a massa do núcleo envolvido na colisão,

maior seja a entropia.

Analisando a entropia devida à decoerência, é possível demonstrar que, se esses fenômenos de fato ocorrem

nos estágios iniciais da geração do plasma, existem casos em que até metade da entropia medida ao final

do processo se deve a esse fenômeno quântico. Esses resultados foram comparados com uma abordagem

entrópica baseada na teoria física da mecânica estatística de não equilíbrio, chamada entropia dinâmica.

Realizando a fenomenologia adequada para estudar o comportamento dessa entropia no regime físico proposto,

percebeu-se que a entropia dinâmica teria uma participação mais modesta em comparação com a entropia

final, contribuindo com um pouco menos de um quarto da geração total.
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Capítulo 1

Introdução

A noção de entropia foi proposta com o desenvolvimento da Teoria Termodinâmica no contexto das primeiras

máquinas térmicas da modernidade. Seu nome foi cunhado por Rudolf Clausius* [2], após ele ter tido contato

com a obra de Nicolas Sadi Carnot [3], onde os primeiros desenvolvimentos sobre a impossibilidade da

transformação total de energia em trabalho começaram a ficar mais claros. Assim, descobriu-se a saturação

natural da energia disponível em um processo de transformação com o fim de se obter trabalho. A importância

desse observável pode ser verificada na postulação da segunda lei da termodinâmica.

A termodinâmica é uma teoria fenomenológica de grande sucesso, tendo sido capaz de ainda no século XIX

dar um conjunto de leis simples que sempre seriam verificadas em todos os processos térmicos compilados no

desenvolvimento tecnológico de sua era. Contudo, as questões que rondavam o comportamento da matéria

nesta época ainda eram bem nebulosas, nem a teoria atômica era tão bem estabelecida e uma explicação

fundamental do comportamento da matéria verificada nas leis da termodinâmica só foi possível com o advento

da Mecânica Estatística. Esta teoria tem como seus principais fundadores James Clark Maxwell e Ludwig Eduard

Boltzmann, sendo este segundo autor o responsável por um entendimento mais aprofundado da entropia.

O modus operandi da Mecânica Estatística consiste em caracterizar um grupo de entidades microscópicas

por meio de teorias de probabilidade, com o objetivo de explicar seu comportamento macroscópico. No período

de seu desenvolvimento, a comunidade científica ainda não havia descoberto a Mecânica Quântica nem a

Teoria da Relatividade e a teoria predominante para descrever a dinâmica de partículas e corpos era a Mecânica

Clássica, que inclui as Leis de Newton ou, de forma equivalente, as formulações lagrangiana e hamiltoniana.

Considerando apenas partículas, a Mecânica Clássica é capaz de obter resultados consistentes a partir de

condições iniciais, como a energia potencial e cinética da partícula, seus vínculos e restrições de movimento,

além de sua posição e velocidade. Contudo, ao considerar, por exemplo, a água (H2O), que em apenas uma

grama existem aproximadamente 3.34×1022 moléculas, a utilização de ferramentas da Mecânica Clássica para

resolver a Segunda Lei de Newton exige a caracterização de seis vezes o número de moléculas para sua resolução,

ou seja, 6×3.34×1022 equações diferenciais. Mesmo que esse cálculo fosse viável, um computador imprimindo

uma coordenada por microssegundo levaria cerca de 10 bilhões de anos para concluir o processo — quase a

idade do universo [4]. Além disso, mesmo que fosse possível reduzir este tempo em um supercomputador que

*Clausius queria que o novo conceito soasse como energia [1], em que, nas suas próprias palavras e em tradução livre, expôs que:
"Mas, como considero melhores termos para magnitudes importantes das línguas antigas que possam ser adotadas inalteradas em
todas as línguas modernas, proponho chamar a magnitude S de entropia do corpo, da palavra grega ϵντρoπια, transformação. Formei
intencionalmente a palavra entropia para ser o mais semelhante possível à palavra energia; pois as duas magnitudes a serem indicadas por
essas palavras são tão quase aliadas a seus significados físicos, que uma certa semelhança na designação parece ser desejável."
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Capítulo 1. Introdução

encontrasse as soluções em alguns dias, a mente humana não teria capacidade para avaliar o resultado de um

número tão grande de variáveis.

A ideia de Boltzmann e Maxwell era descrever essas informações a partir das teorias de probabilidade

e estatística, obtendo, assim, valores médios. Afinal, para seres macroscópicos, como os humanos, o que

realmente importa na maioria das vezes é saber se, ao respirar, haverá oxigênio disponível; se a temperatura do

ar não está elevada a ponto de queimar os pulmões; e se a pressão do ar não está tão alta que possa estourar

os tímpanos [5]. Dessa forma, os observáveis que realmente importam são aqueles que, na linguagem da

termodinâmica, são chamados de variáveis intensivas, como pressão, temperatura, ou extensivas, como energia,

volume e entropia.

A entropia está também associada à irreversibilidade dos processos naturais. Até então, as teorias dinâmicas

não parecem distinguir entre passado e futuro. Por exemplo, em uma partida de sinuca, quando alguém dá a

tacada inicial, arremessando a bola branca para dispersar as demais que estão organizadas em forma triangular,

essas bolas eventualmente se movem até alcançarem o repouso. Utilizando as leis dinâmicas, é possível

imaginar a cena invertida: as bolas dispersas voltando a se mover para recompor a formação triangular original

e, ao final, a bola branca retornando à sua posição inicial†. Contudo, este cenário muda se um observador

assiste à cena com óculos de visão noturna, percebendo o calor liberado nas colisões entre as bolas de bilhar.

Esse calor não pode retornar e gerar trabalho sobre as bolas, da mesma forma que não se espera que as águas

de um lago profundo se agitem para expulsar uma pedra de seu interior ou que os cacos de um copo quebrado

no chão se reconstituam espontaneamente. Há uma ordem para o desenvolvimento dos fenômenos naturais, e

essa ordem é aquela que aumenta a entropia, na chamada seta do tempo.

Desta perspectiva, todo momento do universo até o presente estado é único e exclusivo e caminha em uma

direção determinada: a que aumenta a entropia. Disto, existem duas grandes informações que nem Boltzmann,

Carnot ou qualquer outro cientista do século XIX sabiam: o Universo está expandindo aceleradamente e ele

teve um início, chamado de Big Bang. A descoberta da expansão do universo deve-se à astronomia‡; a Mecânica

Estatística desvelou a seta do tempo, mas, atualmente, para compreender os primeiros instantes do universo, é

necessário o uso da física de partículas, em especial no estudo do Plasma de Quarks e Glúons (Quark Gluon

Plasma, QGP). Este plasma foi descoberto em 2005 [7] a partir de colisões envolvendo íons pesados de ouro no

Colisor Relativístico de Íons Pesados (Relativistic Heavy Ion Collider, RHIC), e desde então novos experimentos

têm sido realizados tanto neste acelerador quanto no Grande Colisor de Hádrons (Large Hadron Collider,

LHC), Experimento de Colisões de Íons Pesados de Grande Energia (A Large Ion Collider Experiment, ALICE),

Espectrômetro Toroidal do LHC (AToroidal LHC ApparatuS, ATLAS) e Solenoide Compacto de Múons (Compact

Muon Solenoid, CMS).

Plasma é um estado da matéria que pode ser considerado exótico nas Condições Normais de Temperatura

e Pressão (CNTP). Embora ele compartilhe algumas propriedades com os gases, a alta temperatura faz com

que a energia cinética dos constituintes seja globalmente maior que a sua energia de ligação, resultando em

ionização. No caso de átomos e moléculas, toda a matéria se dissocia em um gás de alta temperatura fortemente

ionizado. Nesse regime, a principal teoria em ação é a Teoria Eletromagnética, e a força envolvida é de natureza

eletromagnética. Além disso, com o aumento da energia, surgem regimes onde os próprios constituintes do

†No entanto, atualmente se sabe que, em sistemas complexos, essa possibilidade é inviabilizada pela teoria do caos clássico, que mostra
que pequenas incertezas nas condições iniciais podem crescer exponencialmente, tornando o sistema imprevisível e, em muitos casos,
irreversível.

‡A descoberta da expansão do universo é atribuída ao astrônomo Edwin Hubble [6], que em 1929 observou que galáxias distantes
estão se afastando da Terra e, crucialmente, que a velocidade com que elas se afastam aumenta com a distância — uma relação que ficou
conhecida como Lei de Hubble.
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núcleo dos átomos (núcleons) e mésons não são mais fundamentais, mas sim formados por quarks. Neste

caso, a interação relevante não é mais a força eletromagnética, mas uma força de intensidade ainda maior e de

alcance ínfimo: a força forte, mediada por glúons.

Se o plasma "ordinário"é raro nas CNTP, um plasma de quarks e glúons é ainda mais raro: sua temperatura

crítica§ é de aproximadamente¶ 175 MeV (2,0×1012 K) [9, 10]. Esses valores de temperatura estão associados a

energias e densidades de matéria extremamente altas. Para comparação, a temperatura da superfície solar é de

aproximadamente 6000 K. Essas condições extremas não são a única característica distintiva desse estado: os

quarks possuem carga elétrica fracionária (em relação à carga elementar do elétron e) e se movem em altas

velocidades dentro do QGP, gerando tanto campos elétricos quanto magnéticos. Cálculos envolvendo a teoria

eletrodinâmica resultam em valores de campo magnético da ordem de 1018 G [11] para colisões envolvendo

íons de ouro, podendo ser até trinta vezes maior para a colisão de íons de chumbo. Para comparação, um

magnetar (estrela de nêutrons caracterizada por um campo magnético extremamente forte) possui um campo

magnético na faixa de 1015G [12].

Desta forma, com temperaturas e campos magnéticos que podem igualar ou até superar fenômenos

cosmológicos, o QGP só ocorre em reações que envolvem energias extremamente altas. Além disso, especula-se

que esse estado da matéria esteve presente nos estágios iniciais do universo, segundo a teoria do Big Bang [13],

mais precisamente, nos primeiros 20 a 30 microssegundos.

Assim, as interseções do estudo entre a física de partículas elementares e a entropia ocupam uma posição

de destaque: o objeto de estudo são as entidades elementares e suas interações, ou seja, a análise da entropia

será feita no regime mais fundamental da matéria, sua forma mais elementar. A partir disso, o estudo da

entropia pode ser estendido fundamentalmente à sua criação. Portanto, o principal objetivo deste trabalho é

estudar a criação de entropia, inicialmente nas colisões ep, para então compreender casos mais complexos,

como as colisões de íons pesados em regimes ultrarrelativísticos. Essa ampliação se dá como uma continuação

direta dos trabalhos realizados em [14], expandindo-os ao regime de núcleons pesados na tentativa de melhor

compreender propriedades fundamentais tanto das colisões hadrônicas mais simples, até a investigação dos

estágios iniciais do QGP.

Desta forma, como será investigada a entropia em colisões que envolvem a força forte, a Teoria Quântica

de Campos adequada é a Cromodinâmica Quântica (Quantum Chromodynamics, QCD). Neste programa de

pesquisa, muitas das informações sobre o comportamento e as propriedades da matéria são derivadas das

medidas das partículas produzidas e de seu espectro nos estados finais das colisões de íons pesados. Essas

propriedades podem ser interpretadas em termos de conceitos advindos da termodinâmica e da hidrodinâmica

relativística. Nas energias disponíveis nos colisores atuais, uma das quantidades mais relevantes é a aniso-

tropia do quadrupolo azimutal do fluxo coletivo, geralmente denominada fluxo elíptico v2. Uma excelente

concordância dessa quantidade é obtida por meio de cálculos hidrodinâmicos, quando comparados com

a anisotropia medida do fluxo da matéria produzida nas colisões nucleares. Teoricamente, é necessária a

hipótese de um rápido equilíbrio térmico da matéria em uma escala temporal da ordem de 1 fm/c para que os

resultados experimentais sejam corretamente descritos. Uma escala temporal tão reduzida é interpretada como

problemática, já que as teorias de campo não conseguem explicar adequadamente como a matéria termaliza

tão rapidamente.

§A temperatura crítica, TC , é o valor de temperatura acima do qual uma substância só pode existir na forma de gás, independentemente
da pressão aplicada.

¶Recentemente foi descoberto que alguns mésons constituídos de quarks pesados, como o quark top ou o quark charm, não se
dissolvem até que a temperatura alcance cerca de 350 MeV (4,3×1012 K ) [8].
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A princípio, é possível distinguir cinco diferentes estágios na produção de entropia, a saber: 1) decoerência

das funções de onda nucleares iniciais, 2) termalização do glasma, 3) dissociação devido à viscosidade de

cisalhamento durante a expansão hidrodinâmica, 4) hadronização acompanhada por uma alta viscosidade

do sistema coletivo gerado (conhecida como viscosidade de volume, ou bulk) e 5) congelamento hadrônico

viscoso. Esses diferentes estágios levantam o questionamento sobre como a entropia é criada nas reações, pois

atualmente existe apenas um entendimento parcial da contribuição de cada estágio para a entropia final [15].

Nesse contexto, uma das quantidades mais bem conhecidas nas colisões de íons pesados é a entropia

final por unidade de rapidez, dS/d y ||, que pode ser determinada a partir do espectro de hádrons no estado

final combinado com a informação sobre a fonte, extraída das correlações entre partículas idênticas por um

método conhecido como interferometria de Hanbury-Brown-Twiss (HBT). Por exemplo, no RHIC, em baixas

energias (
p

sN N = 200GeV), para colisões com pequena centralidade, estimou-se que em rapidez central

(dS/d y) f = 5600±500 [16]. Nas energias do LHC, como em
p

sN N = 2.76TeV, (dS/d y) f = 11335±1188 para a

mesma configuração de rapidez e centralidade [17]. Alternativamente, essa grandeza também pode ser obtida a

partir da abundância de hádrons produzidos, combinada com a entropia por partícula para um gás de hádrons

em equilíbrio químico à temperatura de TC ≈ 160MeV, com S/N ≈ 7.25. Para o RHIC, esse método resulta em

(dS/d y)ch = 5100±200 [16], enquanto para o LHC obtém-se (dS/d y)ch = 13373±1587 [18].

Existem discrepâncias significativas ao se comparar os resultados obtidos pelos diferentes métodos, o que

corrobora a tese de uma produção de entropia durante o congelamento hadrônico e reflete a produção de

entropia decorrente do decaimento dos estados excitados das ressonâncias hadrônicas, bem como a importante

contribuição da viscosidade de cisalhamento de um gás hadrônico térmico [19, 20].

Desta forma, nesta tese será investigada a produção de entropia nos estágios iniciais de colisões ep e de íons

pesados. Para isso, serão abordados diferentes modelos com o objetivo de caracterizar a entropia nesses estágios

iniciais de colisões na física de altas energias, restringindo-se, em geral, aos casos mais simples, como colisões

ep e pp, para posteriormente adaptá-los às colisões p A. Em especial, três modelos foram investigados para

caracterizar a entropia nos estágios iniciais das colisões: (I) obtenção da densidade de entropia por unidade de

rapidez dS/d y , usando a chamada Entropia Dinâmica da QCD gerada pelos estados densos do meio QCD [21];

(II) caracterização de um emaranhamento quântico entre diferentes observáveis próprios da QCD [22–25] e

cálculo de uma entropia de emaranhamento; e (III) produção de entropia devido à decoerência das funções de

onda hadrônicas nos estágios iniciais da colisão [15].

Nos estudos sobre a entropia de emaranhamento, alguns autores sustentam que esta contribui significati-

vamente para a geração de entropia no regime de altas energias [22]. Uma forma de avaliar essa afirmação é

por meio da análise de modelos alternativos de caracterização entrópica nesse regime. Assim, alguns modelos

de entropia desenvolvidos recentemente foram incluídos neste estudo, permitindo a comparação de seus

comportamentos. Entre eles está a entropia semi-clássica de Wehrl no contexto da QCD [26]. Nesse modelo,

utiliza-se quase-distribuições estatísticas para simular um espaço de fase. Outro modelo abordado é a entropia

dinâmica [21], que permite a definição de uma entropia calculável a partir de distribuições gluônicas não

integradas (unintegrated gluon distributions, UGD), as quais podem ser definidas com base no teorema de

fatorização k em altas energias. Essa formulação da entropia em nível microscópico é estabelecida a partir de

analogias com a Mecânica Estatística de não equilíbrio. Finalmente, a última abordagem considera os efeitos da

decoerência quântica em uma noção própria de entropia [27], associando a elevada produção de entropia nos

primeiros estágios das colisões à rápida decoerência envolvida no processo.

||A rapidez y é uma grandeza física de ordem relativística, também conhecida como parâmetro hiperbólico, definida como 1
2 ln

(
1+β
1−β

)
.
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Desta forma, esta tese é organizada na seguinte estrutura: O Capítulo 2 introduz as noções básicas de

entropia, cobrindo conceitos fundamentais da termodinâmica e mecânica estatística, como as entropias de

Shannon e de von Neumann bem como as suas relações, que servem de base para o estudo subsequente.

Nos Capítulos 3, 4 e 5, cada um dos fenômenos associados a produção entrópica serão estudados, a dizer, os

estados densos do meio QCD, o emaranhamento quântico e a decoerência, respectivamente. O Capítulo 6

compila os principais resultados obtidos, incluindo a análise da produção de entropia por unidade de rapidez e

a comparação entre os diferentes modelos estudados. Por fim, o Capítulo 7 resume as conclusões do trabalho,

destacando as contribuições para o entendimento da produção de entropia em sistemas de QCD na física de

altas energias.
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Capítulo 2

Noções Entrópicas Básicas

O estudo da geração e caracterização da entropia na física de altas energias confronta-se com diferentes formu-

lações desse observável. Historicamente, como já foi abordado, esse conceito surgiu na Teoria Termodinâmica,

incorporando a segunda lei. Mais tarde, com o advento da Mecânica Quântica e a confirmação da hipótese

atômica, novas abordagens foram desenvolvidas, como a entropia de von Neumann. Uma perspectiva mais

moderna, desenvolvida por Claude Shannon, criou uma área de pesquisa completamente nova: a Teoria da

Informação.

Essas noções de entropia, embora espalhadas por diferentes teorias, possuem íntimas relações, e este

capítulo busca apresentar brevemente cada uma delas, demonstrando os casos em que uma noção se confunde

com outra. Essa distinção é importante, pois o uso de uma ou outra varia conforme o contexto e pode causar

confusão ao cientista que realiza a análise.

2.1 ENTROPIA NA MECÂNICA ESTATÍSTICA

Geralmente, devido à ampla gama de observáveis referidos como "entropia", é comum chamar a entropia

calculada na Mecânica Estatística de Entropia Termodinâmica. Como já foi elaborado na introdução, na

Mecânica Estatística, expõem-se inicialmente as características microscópicas dos elementos que compõem o

sistema. Em seguida, utiliza-se ferramentas de probabilidade e estatística para obter os observáveis de interesse,

como equações de estado e variáveis intensivas. Um ponto de partida é o postulado fundamental da mecânica

estatística:

Em um sistema estatístico fechado, com energia fixa, todos os microestados acessíveis são igualmente

prováveis.

Para compreender este postulado, é necessária a definição dos conceitos de microestado, macroestado e

multiplicidade, conforme segue:

Microestado: Configuração específica de um sistema em um instante determinado.

Macroestado: Conjunto de microestados que compartilham uma mesma característica global

observável.

Multiplicidade: Número de microestados que correspondem a um dado macroestado.
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Por exemplo, considere o caso de três moedas de R$ 1,00, distinguíveis e justas, ou seja, todas com igual

probabilidade de, ao serem lançadas, mostrarem a face cara (C) ou coroa (K). Após lançar as moedas e observar os

resultados, é possível obter configurações como KKC, CCK ou CCC. Cada uma dessas configurações individuais

é um exemplo de microestado do sistema. Na Fig. [2.1] são ilustradas todas as possibilidades de resultados dos

lançamentos.

Figura 2.1: Microestados possíveis do lançamento das três moedas, organizados em seus respectivos macroestados.

Ao analisar os microestados resultantes do lançamento, observa-se uma organização em grupos: 0 caras, 1

cara, 2 caras e 3 caras. Esses grupos representam os macroestados do sistema, onde a característica global que

define cada grupo é o número de caras. Por exemplo, no macroestado com 1 cara, existem três configurações

possíveis: CKK, KCK e KKC. No macroestado com 3 caras, existe apenas uma configuração, CCC. O número de

microestados associados a um macroestado é chamado de multiplicidade, denotada aqui porΩ, que depende

do número de caras (variando entre 0 e 3). Assim, ao construir uma expressão matemática para a multiplicidade

em função do número de caras, tem-se, por exemplo, para o macroestado com 2 caras,Ω2 = 3.

Encerrando esta análise, percebe-se a dificuldade em obter uma expressão para a multiplicidade ao aumen-

tar o número de moedas. Considerando um sistema estatístico composto por 50 moedas, é fácil determinar que

o número de microestados para 0 ou 50 caras é apenas 1; no entanto, os demais valores exigem uma análise

mais elaborada. Para resolver esse problema matemático, utiliza-se a análise combinatória, em que o resultado

é dado por uma combinação simples, expressa como:

Ω(N ,n) =C N
n = N !

(N −n)!n!
. (2.1.1)

Nesta expressão, N é o número de moedas e n é o número de caras. Definindo p como o número de resultados

coroa, percebe-se que a Eq. [2.1.1] está sujeita à restrição p +n = N . A Figura [2.2] revela o gráfico da multiplici-

dade no lançamento de 50 moedas. É notável que a situação com o mesmo número de caras e coroas, 25 cada,

é a que apresenta a maior multiplicidade.
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Figura 2.2: Multiplicidade dos microestados no caso do lançamento de 50 moedas. A maior multiplicidade é obtida para
um número igual de 25 caras e 25 coroas.

Em um jogo onde os apostadores devem prever o resultado do lançamento das moedas, se eles souberem o

postulado fundamental da mecânica estatística de equilíbrio, em que todos os microestados são igualmente

prováveis, eles possuem uma certa vantagem. Isto se dá pois a multiplicidade associada a i caras, Ωi , e o

número total de microestados possíveis,ΩT , é dado pela soma:

ΩT =Ω0 +Ω1 + ...+ΩN =
N∑

i=0
Ωi . (2.1.2)

Assim, a probabilidade de se obter i caras em um lançamento é dada por:

P (i ) = Ωi

ΩT
. (2.1.3)

Logo, para maximizar as chances de ganhar no jogo descrito, deve-se apostar no estado com maior probabili-

dade, que neste caso é o macroestado com um número igual de caras e coroas, como ilustrado na Fig. [2.2].

Outra propriedade importante na análise de probabilidades reside na caracterização da multiplicidade

de dois ou mais conjuntos que formam um sistema único. Para compreender isto, considera-se um conjunto

de 6 moedas de R$1,00 separadas em dois grupos, A e B , com três moedas cada. Ao realizar o lançamento

das moedas, a multiplicidade do sistema composto, notada por ΩAB , depende dos dois conjuntos A e B . A

expressão matemática da multiplicidade composta é dada pelo produto das multiplicidades individuais de A e

B :

ΩAB =ΩAΩB . (2.1.4)

Por exemplo, se ao realizar um lançamento, o primeiro grupo de moedas apresenta o macroestado de uma

cara, com multiplicidade Ω1 = 3, uma vez que esse macroestado compreende os microestados igualmente

prováveis CKK, KCK e KKC, o resultado do segundo lançamento é totalmente independente do primeiro.

Portanto, ao considerar todos os possíveis resultados do segundo grupo (0 a 3 caras, com multiplicidade total

ΩB = 8), o número de maneiras de obter uma cara no primeiro grupo combinado com qualquer resultado

no segundo é 3×8 = 24. Quando se consideram todos os possíveis resultados para A e B , o número total de

combinações possíveis é 64. Embora este exemplo seja simples, a forma de contar a multiplicidade composta é

uma propriedade geral para sistemas compostos, sempre descrita pela Eq. [2.1.4].

Agora este formalismo será revestido fisicamente. Em 1907 A. Einstein propôs um modelo matemático com
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o intuito de caracterizar o comportamento de um sólido. A fim de compreender o funcionamento do modelo

proposto por Einstein, vale a revisão dos conceitos fundamentais associados a um oscilador harmônico quântico

unidimensional. Resolvendo a equação de Schrödinger independente do tempo, para a energia potencial do

oscilador, encontra-se os autovalores de energia quantizados, En dados por,

En = (n +1/2)h f . (2.1.5)

Nesta equação, h é a constante de Planck, f é a frequência de oscilação e n é um número inteiro. Para n = 0,

obtém-se E0 = h f , a energia de ponto zero. A unidade h f é denominada, quantum de energia. A figura [2.3]

ilustra os valores permitidos de energia no oscilador.

Figura 2.3: Energia em um oscilador harmônico quântico por níveis, n = 0 a n = 4.

O modelo de sólido proposto por Einstein [28] consiste em N osciladores harmônicos independentes, onde

N representa o número de átomos presentes no sólido. Denotando a energia total como U , que resulta da soma

da energia de todos os osciladores, tem-se,

U = E1 +E2 +·· ·+EN ,

=
(
n1 + 1

2

)
h f +

(
n2 + 1

2

)
h f +·· ·+

(
nN + 1

2

)
h f ,

= N h f

2
+ (n1 +n2 +·· ·+nN )h f .

(2.1.6)

Como o valor absoluto da energia não possui significado físico, pode-se definir como zero a soma da energia de

ponto zero, N h f /2, além disso, definindo o número inteiro r , como a soma dos n′
i s,

r =
N∑

i=0
ni . (2.1.7)

Portanto, utilizando a Eq. [2.1.6], U = r h f .

A fim de elucidar a distribuição energética do sólido de Einstein, considere um exemplo que consiste em

um sólido composto por apenas três partículas e oito quantas de energia. O objetivo é determinar as diferentes

formas possíveis de distribuir a energia entre os osciladores. A figura [2.4] mostra algumas distribuições

possíveis da energia no sólido. Em I I , por exemplo, o primeiro oscilador possui um quanta, o segundo possui

três, e o terceiro os quatro restantes.

Esse problema físico remete a um clássico problema matemático, em que os quanta são substituídos por
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Figura 2.4: Alguns microestados possíveis na distribuição de 8 quantas nos 3 osciladores do sólido.

esferas e os osciladores por caixas, conforme mostrado na figura [2.5]. A questão então se transforma em

determinar de quantas formas é possível distribuir sete esferas em três caixas.

Figura 2.5: O problema da contagem de possíveis distribuições de quantas de energia em osciladores no sólido de Einstein é
análogo a distribuição de esferas em caixas.

Felizmente, o problema fica ainda mais simples, pois ele se reduz a distribuir linhas entre as esferas: Sempre

terá N-1 linhas para r esferas, ou seja, novamente observando o caso I I da figura [2.4], é possível conceber

a representação: ·| · · · | · · · ·, em que se tem 10 elementos, os quais são barras ou pontos. A diferença entre

os microestados possíveis, está na determinação de quais destes elementos são barras e quais são pontos,

assim, remetendo a Eq. [2.1.1], que realizava a contagem de forma semelhante, trocando N → N + r −1 e n → r ,

obtém-se para a distribuição de r quantas de energia no sólido de Einstein formado por N osciladores,

Ω(N ,r ) = (N + r −1)!

(N −1)!r !
≈ (N + r )!

N !r !
. (2.1.8)

Agora, serão considerados dois sólidos idênticos, A e B com NA = NB = N , isolados do universo, que são

livres para trocar energia entre si por um longo período de tempo. A energia total do sistema, ET é a simples

soma da energia do sistema A, E A , com a energia do sistema B , EB , tal que ET = E A +EB . Portanto, a energia

total será ET = (r A + rB )h f . Além disso, a interação entre os sólidos deve respeitar a conservação da energia,

uma vez que não existem fontes externas no sistema isolado do universo. Definindo K como um número

constante, a conservação da energia exige a restrição r A + rB = K . Assim, um sistema com 9 osciladores e 13
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quanta de energia estabelece os resultados expostos na tabela [2.1]. Para uma análise mais rigorosa, seria

Tabela 2.1: Multiplicidade associada a um macroestado descrito por r A , rB respeitando a conservação da energia.

r A ΩA rB ΩB ΩAB

0 1 13 203490 203490
1 9 12 125970 1133730
2 45 11 75582 3,4.106

3 165 10 43758 7,22.106

4 495 9 24310 12,03.106

5 1287 8 12870 16,56.106

6 3003 7 6435 19,32.106

7 6435 6 3003 19,32.106

8 12870 5 1287 16,56.106

9 24310 4 495 12,03.106

10 43758 3 165 7,22.106

11 75582 2 45 3,4.106

12 125970 1 9 1133730
13 203490 0 1 203490

necessário realizar cálculos para N na ordem de 1023 partículas em um nível mais realista do problema, pois

este algarismo é da ordem do número de Avogadro, que representa a quantidade de átomos em um mol de

solução ou amostra. Contudo, ele é elucidativo para as características da entropia que serão abordadas nesta

tese.

Por fim, na lápide do túmulo de Boltzmann, em Viena, está inscrita a equação de sua autoria que estabelece

o vínculo entre a entropia e o número de multiplicidade, dada por:

S = kB lnΩ. (2.1.9)

Sendo kB a constante de Boltzmann. A fórmula de Stirling facilita o cálculo do logaritmo de fatoriais, sendo ela

dada por:

lnn! ≈ n lnn −n. (2.1.10)

Aplicando essa aproximação para o caso do sólido de Einstein, substituindo a multiplicidade [2.1.8] na expressão

da entropia de Boltzmann e utilizando o fato de que U = r h f = rωħ, sendo ω a frequência angular e ħ a

constante de Planck reduzida, se tem:

S(U , N ) ≈ kB

[
N ln

(
1+ U

Nħω
)
+ U

ħω ln

(
Nħω

U
+1

)]
. (2.1.11)

A temperatura T do sistema está relacionada à entropia S pela expressão

1

T
=

(
∂S

∂U

)
. (2.1.12)

Portanto:
1

T
≈ kB

ħω ln

(
Nħω

U
+1

)
, ∴ U = Nωħ

eωħ/kB T−1
(2.1.13)

Assim, a entropia no sólido de Einstein unidimensional, como função da temperatura e do número de partículas
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(osciladores), N , é*:

S(N ,T ) = N kB

 ωħ
kB T

e
− ωħ

kB T

1−e
− ωħ

kB T

− ln

(
1−e

− ωħ
kB T

) . (2.1.14)

Este exemplo tradicional é suficiente para estabelecer as características gerais da entropia com as demais

noções que serão elaboradas neste trabalho.

2.2 CAOS E O PRINCÍPIO DE MÁXIMA ENTROPIA

Agora serão abordadas diferentes características da entropia relacionadas ao desenvolvimento realizado na

seção anterior. Primeiramente, destaca-se o conceito de caos. No caso do lançamento de 50 moedas, percebe-

se que configurações com todas as moedas mostrando cara ou todas mostrando coroa, constituem casos

particulares. Estes estados são muito específicos, bem como aquele em que todos os 13 quanta de energia se

concentrem em um único oscilador no sólido de Einstein. Embora essas configurações sejam possíveis, elas são

extremamente improváveis e em um conjunto de partículas ou moedas na ordem de um mol, elas se tornam

virtualmente impossíveis. Assim, configurações que se afastam do equilíbrio tendem a ser menos prováveis.

Figura 2.6: Representação pictórica do aumento do
caos, em que um sistema inicialmente organizado
evolui para um desorganizado. Reproduzido de [29].

Brian Greene, em sua obra de divulgação científica Até o

fim do tempo [5], apresenta um excelente exemplo para ilus-

trar essa tendência ao aumento do caos: é possível imaginar

um quarto organizado, com objetos posicionados de forma

mais ou menos ordenada, sem poeira no chão e com a cama

arrumada. Esse é um estado específico e particular, assim

como o lançamento de 50 moedas que resulta em 49 caras.

Heuristicamente, esses estados podem ser comparados aos

estados de baixa entropia. Com o passar do tempo e devido

a diversas interações, esse estado tende a se transformar em

um de maior entropia: a poeira se acumula, roupas se espa-

lham pelo chão, e a cama requer a troca dos lençóis. Esse

estado inicial de baixa entropia é difícil de manter, razão pela qual é necessário limpar e organizar o quarto

regularmente. Existe, portanto, uma tendência para a ‘desordem’, pois os sistemas evoluem naturalmente para

estados de maior entropia ou caos (Fig. [2.6]).

O engenheiro dedicado busca desenvolver um motor que consiga render o máximo de trabalho possível

com a menor quantidade de energia. Contudo, uma forma de enunciar a segunda lei da termodinâmica é

afirmar que não existem máquinas térmicas perfeitas; isto é, em um processo natural — como a energia liberada

na queima da gasolina de um automóvel — além do trabalho que faz as rodas girarem, também será liberado

calor, inútil para a realização de trabalho. Na teoria termodinâmica, existem objetos matemáticos, chamados

potenciais, que descrevem a energia disponível para realizar trabalho em diferentes condições. Nesta discussão,

nos processos isotérmicos, destaca-se o potencial de Helmholtz, F :

F =U −T S, (2.2.1)

onde U é a energia interna (no caso do automóvel, a energia liberada com a queima de gasolina), T é a

*Para mais detalhes, verificar a referência [4].
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temperatura e S é a entropia. O termo T S, subtraído da energia interna, indica quanto da energia pode ser

aproveitada para trabalho, sendo este um dos motivos pelos quais o potencial de Helmholtz também é chamado

de energia livre. Assim, o potencial de Helmholtz descreve como, mesmo em processos que buscam organização

local, como no exemplo do quarto organizado, a energia disponível para realizar trabalho tende a diminuir com

o tempo devido à dissipação. Em termos práticos, isso significa que manter um estado de baixa entropia requer

uma constante entrada de trabalho externo para compensar as inevitáveis perdas, reforçando a tendência

natural para estados de maior entropia e maior desordem.

Por fim, a análise da Fig. [2.2], que mostra que a multiplicidade máxima para o lançamento de 50 moedas

ocorre com 25 caras e 25 coroas, e da Tabela [2.1], que indica que uma divisão equilibrada dos quanta de energia

também apresenta a maior multiplicidade, revela que o estado de equilíbrio é um estado de entropia máxima.

Analisando a expressão da entropia proposta por Boltzmann na Eq. [2.1.9] e os exemplos até aqui abordados,

nota-se que o estado mais provável é justamente aquele que faz o sistema equilibrar e aumentar a entropia,

alcançando a maior multiplicidade possível Ω, pois, neste caso, S ∝ lnΩ. Essa propriedade é chamada de

Princípio da Máxima Entropia e, em seguida, serão apresentadas as entropias de Shannon e de von Neumann,

que, assim como a entropia termodinâmica, também são compatíveis com este princípio.

2.3 A ENTROPIA DE SHANNON

Para compreender a entropia de Shannon, é necessária uma breve introdução aos conceitos básicos da teoria

da informação. Inicialmente, são considerados dois eventos A, com uma probabilidade p de ocorrer, e B , com

uma probabilidade q . Na teoria da informação, associa-se uma quantidade de informação a cada evento, a

partir de uma função matemática chamada de função informação I (x), que mede a quantidade de informação

relacionada a um evento X com probabilidade x.

Se a probabilidade de ocorrência do evento A for menor do que a do evento B , então a informação associada

ao evento A, I (p), deve ser maior que a do evento B , I (q) [30]. Assim:

Se p < q, então I (p) > I (q). (2.3.1)

A teoria da informação parte da interpretação de que eventos menos prováveis carregam mais informação. Por

exemplo, um boletim meteorológico que informa “amanhã fará sol em pleno verão no Rio de Janeiro” contém

uma previsão que representa um evento muito provável, já que dias ensolarados são comuns durante o verão na

cidade. Essa informação não causa surpresa e não traz muita “novidade” — ou seja, carrega pouca informação,

pois o evento era esperado. Agora, se o boletim prever “neve no Rio de Janeiro amanhã”, isso representaria um

evento extremamente improvável, considerando o clima tropical da cidade. Caso essa previsão fosse verdadeira,

causaria enorme surpresa. Esse tipo de informação seria muito mais “densa”, pois a ocorrência de um evento

tão inesperado desafia as expectativas comuns.

Agora, postula-se que a ocorrência conjunta dos dois eventos independentes A e B deve resultar em uma

informação aditiva. Portanto:

I (pq) = I (p)+ I (q). (2.3.2)

Essa é a exigência da aditividade informativa. Se as Eqs. [2.3.1] e [2.3.2] forem satisfeitas, e se a informação for
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definida como uma função com o domínio (0,1], a única solução possível é:

I (x) =− logb(x), (2.3.3)

com b > 1. Geralmente, na física, utiliza-se b = e, chamada de base natural da teoria da informação, ou b = 2,

chamada de base dos bits.

Por exemplo, o lançamento de três moedas justas que resulte em CKC é um evento com probabilidade 1/23,

já que cada moeda tem probabilidade 1/2 de cair em qualquer dos lados. A quantidade de informação deste

resultado é:

I (2−3) =− log

(
1

23

)
= 3log2. (2.3.4)

Isso equivale a 3 unidades chamadas bits (abreviação de “binary digits”), pois a informação de cada moeda traz

log2 de informação. Em outras palavras, ao receber a informação de um evento que ocorre com probabilidade

1/8, o observador verifica “3 bits” de informação.

Cada unidade de informação mede a quantidade de “surpresa” ou “novidade” associada a um evento, com

base na fórmula geral: I (p) =− log p. Embora a unidade mais comum seja o bit, que representa a informação

associada a um evento com probabilidade 1/2, existem várias outras unidades de informação, dependendo da

base do logaritmo e da probabilidade do evento.

Probabilidade do Evento Unidade de Informação Equivalente em Bits
1/2 1 bit 1 bit
1/e 1 nat ≈ 1.44 bits
1/3 1 trit ≈ 1.58 bits
1/4 1 crumb 2 bits

1/10 1 hartley ≈ 3.32 bits
1/16 1 nibble 4 bits

1/256 1 byte 8 bits
1/8192 1 kilobyte 8192 bits (ou 1024 bytes)

Tabela 2.2: Unidades de informação e suas equivalências em bits. Adaptada de [30].

Figura 2.7: Sistemas S1 (esquerda) e S2 (direita)

Nascida na termodinâmica e verificada como um conceito emergente ao relacionar o tratamento microscó-

pico ao macroscópico na mecânica estatística, a entropia aparece novamente como um conceito fundamental

com os trabalhos de Claude Shannon [31]. Esta formulação associa a entropia como uma característica intrín-

seca da informação, a partir da entropia de Shannon:

H =−
n∑

i=1
pi logb pi =

〈− logb pi
〉

, (2.3.5)
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Na teoria da informação, a entropia é uma medida de incerteza. Por exemplo, considerando dois sistemas

binários S1 e S2 (Fig. [2.7]), com os estados 0 e 1. Em S1, o sistema tem probabilidade p1 = 0.9 de 0 se tornar 1, e

p2 = 0.1 de 1 se tornar 0. Desta forma,

HS1 =−
(

9

10
log2

9

10
+ 1

10
log2

1

10

)
≈ 0.47. (2.3.6)

Por outro lado, em S2 há apenas uma possibilidade com probabilidade p1 = 0.5 de 0 se tornar 1, de forma que

p2 = 0.5, assim,

HS2 =−
(

1

2
log2

1

2
+ 1

2
log2

1

2

)
= 1. (2.3.7)

Este exemplo revela que S1 é menos incerto que S2, havendo uma tendência em sua construção.

Com a atual revolução digital, a teoria da informação e seu conceito central, a entropia de Shannon, vive

seu apogeu, mesmo tendo sido publicada em 1948. Naquela época, o matemático americano não sabia muito

bem como chamar sua recente descoberta e, em uma conversa com von Neumann, recebeu argumentos

convincentes [32].

“My greatest concern was what to call it. I thought of calling it ’information,’ but the word was overly

used, so I decided to call it ‘uncertainty’. When I discussed it with John von Neumann, he had a

better idea. Von Neumann told me, ‘You should call it entropy, for two reasons. In the first place

your uncertainty function has been used in statistical mechanics under that name, so it already has

a name. In the second place, and more important, no one really knows what entropy really is, so in a

debate you will always have the advantage. [Minha maior preocupação era como chamá-la. Pensei

em chamar de ‘informação’, mas a palavra era muito usada, então decidi chamá-la de ‘incerteza’.

Quando discuti isso com John von Neumann, ele teve uma ideia melhor. Von Neumann me disse:

‘Você deveria chamar de entropia, por duas razões. Em primeiro lugar, sua função de incerteza foi

usada em mecânica estatística com esse nome, então ela já tem um nome. Em segundo lugar, e

mais importante, ninguém sabe realmente o que é entropia, então em um debate você sempre terá

a vantagem.]”

No contexto da teoria da informação, a noção de aditividade assume um papel central. Entretanto, outros

tipos de entropias foram propostos para capturar comportamentos, por exemplo, não aditivos, relevantes

em sistemas complexos e interdependentes, como aqueles observados em contextos de Mecânica Estatística

Não-Extensiva. Nesse sentido, as entropias de Tsallis e Rényi são exemplos de noções entrópicas que surgem

como generalizações da entropia de Shannon.

Inicialmente, a entropia de Tsallis é definida por [33]:

Sq = kB
1

q −1

(
1−∑

i
pq

i

)
, (2.3.8)

onde pi são as probabilidades dos eventos e q é um parâmetro real que controla o grau de não aditividade.

Essa noção entrópica está relacionada com a Mecânica Estatística Não-Extensiva. Em um sistema extensivo,

as propriedades macroscópicas, como a entropia, são proporcionais ao tamanho do sistema. Em outras palavras,

quando dois sistemas independentes são combinados, a entropia total é simplesmente a soma das entropias

individuais. No entanto, para sistemas não-extensivos (como aqueles encontrados em redes complexas,
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sistemas biológicos e sistemas astrofísicos), essa aditividade não se aplica. Esses sistemas frequentemente

exibem correlações de longo alcance, flutuações de larga escala, e uma dinâmica muito mais complexa do que

a descrita pela mecânica estatística tradicional. Matematicamente, extensividade pode ser definida como [34]:

lim
N→∞

|S(N )|
N

<∞. (2.3.9)

Assim, um sistema chamado de extensivo apresenta um comportamento assintótico com o número de subsiste-

mas N , de forma que exista um fator de proporcionalidade finito entre |S(N )| e N . Portanto, a aditividade em

relação a uma dada lei de composição implica extensividade.

A partir da regra de L’Hôpital, quando q = 1, a entropia de Tsallis recupera a entropia de Shannon:

lim
q→1

Sq = kB lim
q→1

d
d q

(
1−∑

i pq
i

)
d

d q

(
q −1

) =−kB
∑

i
pq

i ln pi

∣∣∣
q=1

=−kB
∑

i
pi ln pi = kB H . (2.3.10)

Porém, para q ̸= 1, a entropia de Tsallis obedece a uma propriedade chamada de pseudo-aditividade:

Sq (A+B)

kB
= Sq (A)

kB
+ Sq (B)

kB
+ (1−q)

Sq (A)

kB

Sq (B)

kB
, (2.3.11)

onde A e B representam dois sistemas independentes. O termo adicional depende do parâmetro q e reflete a

correlação entre eventos, característica importante em sistemas complexos e interdependentes.

A entropia de Rényi [35] é uma generalização da entropia de Shannon, desenvolvida para medir a diversidade,

a incerteza, e a dispersão de sistemas probabilísticos em que é necessário dar um peso maior ou menor a

eventos com probabilidades muito baixas ou muito altas. Ela geralmente é utilizada em contextos como o dos

eventos raros ou altamente prováveis. Na prática, a entropia de Rényi permite ajustar a sensibilidade da medida

de incerteza ao variar o parâmetro α, controlando o peso das diferentes probabilidades.

Matematicamente, a entropia de Rényi é dada por:

Sα = 1

1−α log

(∑
i

pαi

)
, (2.3.12)

onde α é um parâmetro real e controla a "focalização"da entropia em eventos de alta ou baixa probabilidade.

Quando α> 1, a entropia de Rényi é mais sensível a eventos com maiores probabilidades, enquanto valores de

α< 1 dão mais peso a eventos com menores probabilidades. No limite α→ 1, a entropia de Rényi recupera a

entropia de Shannon, ou seja, assume a forma de uma medida de incerteza clássica média sobre o sistema:

lim
α→1

Sα = lim
α→1

d
dα

[
log

(∑
i pαi

)]
d

dα (1−α)
=−∑

i
pi ln pi = H . (2.3.13)

As entropias de Tsallis e Rényi introduzem uma flexibilidade útil ao conceito de entropia, permitindo que

sistemas complexos com interdependência entre eventos sejam descritos por uma medida de informação

alternativa a proposta por Shannon.

28



Capítulo 2. Noções Entrópicas Básicas

2.4 A RELAÇÃO DA ENTROPIA DE SHANNON COM A MECÂNICA ESTATÍSTICA

Nesta seção, a entropia de Shannon é avaliada utilizando o princípio de máxima entropia. Para isso, a maxi-

mização segue o procedimento dos multiplicadores de Lagrange. Inicialmente, considera-se o caso em que a

distribuição de probabilidades deve estar normalizada:

N∑
n=1

pn = 1. (2.4.1)

Dessa forma, o funcional a ser maximizado é dado por:

L =−
N∑

n=1
pn ln pn −λ

(
N∑

n=1
pn −1

)
. (2.4.2)

Maximizando L em relação a pn :

− ln pn −1−λ= 0, ∴ pn = e−λ−1. (2.4.3)

Usando a condição de normalização, encontra-se que pn = 1/N . Este é o ensemble microcanônico, no qual, para

um sistema estatístico fechado com energia fixa, todos os microestados acessíveis são igualmente prováveis.

Para o ensemble canônico, o sistema é considerado em contato térmico com um reservatório, de forma que

sua energia total não é fixa, mas a energia média 〈E〉 deve permanecer constante. Assim, além da normalização

da distribuição de probabilidades, também se tem a seguinte restrição:

N∑
n=1

pnEn = 〈E〉, (2.4.4)

onde En representa a energia do estado n do sistema.

O funcional a ser maximizado, com as duas restrições, é dado por:

L =−
N∑

n=1
pn ln pn −λ

(
N∑

n=1
pn −1

)
−β

(
N∑

n=1
pnEn −〈E〉

)
, (2.4.5)

de forma que agora λ e β são multiplicadores de Lagrange associados às restrições de normalização e de energia

média, respectivamente.

Para maximizar L em relação a pn , se toma a derivada parcial de L com respeito a pn , de forma que:

ln pn =λ−1−βEn , ∴ pn = e−λ−1e−βEn . (2.4.6)

Utilizando a condição de normalização, determina-se a constante Z = e−λ−1, conhecida como função de

partição canônica:

Z =
N∑

n=1
e−βEn , (2.4.7)

sendo, nesta equação β= 1/kB T ,de modo que a distribuição de probabilidade pode ser expressa como:

pn = e−βEn

Z
. (2.4.8)
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Esta é a conhecida distribuição de Boltzmann, que descreve o ensemble canônico, onde a energia média do

sistema é mantida constante em contato com um reservatório térmico.

Esse procedimento de maximização da entropia para determinar as distribuições de probabilidade dos

ensembles estatísticos foi introduzido por Edwin T. Jaynes [36] e, seguindo esta metodologia, também é possível

mostrar a relação da entropia de Shannon com ensemble Gram-canônico. Além disso, a fórmula de Shannon

no limite contínuo se torna a expressão da entropia de Gibbs [37]. No limite contínuo, onde as variáveis do

sistema formam um espaço contínuo de estados, substituindo a soma por uma integral e a probabilidade pi

pela densidade de probabilidade ρ(x), onde x representa as variáveis de estado contínuas do sistema, a entropia

se torna:

S =−
∫
ρ(x) lnρ(x)d x. (2.4.9)

Esta expressão é conhecida na Mecânica Estatística como entropia de Boltzmann-Gibbs. Ela mede a incerteza

ou dispersão da distribuição de densidade de probabilidade ρ(x) em um espaço de estados contínuos. Portanto,

a partir da aplicação do princípio da máxima entropia na expressão de Shannon é possível demonstrar um

vínculo entre a Teoria de Informação e a Mecânica Estatística.

2.5 A ENTROPIA DE VON NEUMANN

No âmbito da Mecânica Quântica a noção de entropia adequada é devida a John von Neumann. Aqui, os valores

médios referem-se ao conceito de média de ensemble, ou seja, sistemas a priori identicamente preparados.

Após a realização da medida, obtém-se uma caracterização estatística dos constituintes do estado final total,

composto por todos os subsistemas onde a medição foi realizada. Por exemplo, após a realização de um

experimento Stern-Gerlach [38], sabe-se que o estado físico do feixe de átomos de prata após a interação com

o campo magnético externo possui uma população de 50% dos seus átomos colapsados em um estado de

spin para cima e a parcela restante, também composta por 50%, possui spin para baixo. Entretanto, ao sair do

forno, ou, em outras palavras, antes da medição, não se pode caracterizar os estados físicos dos átomos que

constituem o feixe: o spin individual de cada átomo pode estar apontando para qualquer direção; em termos

gerais, o estado físico é randômico.

Para o caso dos sistemas físicos onde não ocorreu uma medição, sabe-se que eles são compostos por um

número finito de constituintes, de forma que é possível atribuir um peso à sua população relativa de um dado

estado particular, pm , com 1 ≤ m ≤ N associado ao m-ésimo estado |m〉 e N é o número de indivíduos no

ensemble, ou o número de sistemas identicamente preparados. Nesse caso, deve-se tomar cuidado para não

confundir o número de indivíduos que compõem o sistema com a dimensão do espaço gerado pelos autovetores

de um dado observável: o parâmetro N geralmente supera a dimensão do autoespaço de um dado operador.

Tratando-se de uma população fracionária, a soma dos pesos deve ser a unidade, semelhante à eq. [2.4.1].

Além disso, não se tem nenhuma informação geométrica dos kets antes da medida: eles podem muito bem

ser ortogonais entre si ou não; podem ser autovetores de um operador em comum, ou podem não ser, e nem

é determinado se os operadores que os representam são compatíveis ou não. Sendo assim, é possível inferir

a natureza estatística deste conjunto: antes de realizada a medida em um sistema composto pela população

de estados físicos e considerando que exista mais de um pm diferente de zero, diz-se que o sistema configura

um ensemble misto. Agora, após a realização de uma medida, é possível analisar em sua totalidade a parte da

população fracionária caracterizada por um certo estado físico em comum, ou seja, a coletânea de sistemas
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físicos tais quais são representadas por um único ket. Para este último caso, dá-se o nome de ensemble puro. Ou

seja, um ensemble misto é composto por uma coleção de ensembles puros.

Objetivado o interesse na obtenção da medida de algum observável, este só será possibilitado a partir

de uma média sobre ensembles. Considerando, por exemplo, o observável Ĝ , que na construção formal da

mecânica quântica é um operador, obtém-se para sua média 〈G〉:

〈G〉 =
N∑

m=1
pm 〈m|Ĝ |m〉 =

N∑
m=1

pm 〈m|Ĝ1 |m〉

=
N∑

m=1

∑
g

pm 〈m|Ĝ ∣∣g〉〈
g
∣∣m〉

.

(2.5.1)

Valendo a equação de autovalores Ĝ
∣∣g〉= g

∣∣g〉
, obtém-se para 〈G〉,

〈G〉 =
N∑

m=1

∑
g

pm |〈g
∣∣m〉 |2g . (2.5.2)

A partir deste resultado, deve-se observar a construção de duas estatísticas independentes na obtenção de uma

única medida: os pesos populacionais de cada estado físico compõem uma abordagem estatística que acaba

mediando a média de ensemble das previsões quânticas, que também constituem um escopo estatístico em si.

O formalismo quântico permite quantas mudanças de base forem necessárias, utilizando para isso a relação

de completude dada por: ∑
i
|i 〉〈i | =1, (2.5.3)

sendo 1 o operador identidade, possibilitando escrever trocas de base de uma forma bem compacta. Dessa

forma, é possível avaliar o valor esperado da seguinte forma:

〈G〉 =
N∑

m=1
pm 〈m|1Ĝ1 |m〉 =

N∑
m=1

pm
∑

i

∑
j
〈m|i 〉〈i |Ĝ ∣∣ j

〉〈
j
∣∣m〉

=∑
i

∑
j

(
N∑

m=1
pm

〈
j
∣∣m〉〈m|i 〉

)
〈i |Ĝ ∣∣ j

〉
.

(2.5.4)

O termo destacado entre parênteses é definido como o elemento de matriz de um operador hermitiano,

denominado operador densidade ρ̂,

ρi j ≡ 〈i | ρ̂ ∣∣ j
〉= N∑

m=0
pm 〈i |m〉〈m

∣∣ j
〉

. (2.5.5)

Conciliando a representação matricial da mecânica quântica com este operador, define-se a expressão geral do

operador densidade:

ρ̂ ≡
N∑

m=0
pm |m〉〈m| . (2.5.6)
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Considerando esta construção, a expressão para 〈G〉 toma uma forma mais compacta,

〈G〉 =∑
i

∑
j

〈
j
∣∣ ρ̂ |i 〉〈i |Ĝ ∣∣ j

〉=∑
j

〈
j
∣∣ ρ̂∑

i
|i 〉〈i |︸ ︷︷ ︸
1

Ĝ
∣∣ j

〉

=∑
j

〈
j
∣∣ ρ̂Ĝ

∣∣ j
〉= Tr

[
ρ̂Ĝ

]
.

(2.5.7)

onde a operação Tr
[
ρ̂Ĝ

]
corresponde ao traço do operador resultante do cálculo de ρ̂Ĝ , ficando assim explícito

o poder generalizado desta construção: o traço é independente da representação.

Resumidamente, encontra-se que a média sobre ensemble de um observável Ĝ é dada por,

〈G〉 = Tr
[
ρ̂Ĝ

]
. (2.5.8)

Agora, analisando o traço do operador identidade separadamente,

Tr
[
ρ̂
]=∑

j

N∑
m=0

pm
〈

j
∣∣m〉〈

m
∣∣ j

〉= N∑
m=0

pm 〈m|
(∑

j

∣∣ j
〉〈

j
∣∣)

︸ ︷︷ ︸
1

|m〉

=
N∑

m=0
pm 〈m|m〉︸ ︷︷ ︸

1

= 1,

(2.5.9)

para um ensemble puro, onde a população relativa torna-se total, com p1 = 1, tem-se a matriz densidade ρ̂P ,

ρ̂P =
N∑

m=1
pm |m〉〈m| = |m〉〈m| . (2.5.10)

Daí,

ρ̂P ρ̂P = ρ̂2
P = |m〉〈m|m〉︸ ︷︷ ︸

1

〈m| = |m〉〈m| = ρ̂P , (2.5.11)

ou seja, ρ̂P é um projetor,

ρ̂2
P = ρ̂P . (2.5.12)

Somente para um estado puro então,

Tr
[
ρ̂2

P

]= 1. (2.5.13)

Logo, os autovalores associados ao operador densidade de ensembles puros devem ser sempre zero ou um, de

forma que, quando se diagonaliza a matriz densidade ρ̂P , espera-se encontrar um objeto matemático na forma

de

ρ̂P
.=



0 ... 0 0 0 ... 0
... ... 0 0 0 ... 0

0 ... 0 1 0 ... 0
... ... 0 0 0 ... 0

0 ... 0 0 0 ... 0


.
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Em contrapartida, um ensemble totalmente misto possui a matriz densidade ρ̂M com estrutura

ρ̂M
.= 1

N



1 ... 0 0 0 ... 0
... ... 1 0 0 ... 0

0 ... 0 1 0 ... 0
... ... 0 0 1 ... 0

0 ... 0 0 0 ... 1


= 1

N
1N ,

sendo 1N a matriz identidade N -dimensional. Impõem-se então duas matrizes diagonais, sujeitas à mesma

condição de normalização, que representam objetos físicos diametralmente opostos. É conveniente, então, a

definição de uma grandeza que distinga as qualidades físicas intrínsecas a cada objeto. Neste espírito, define-se

a entropia de von Neumann [39],

Sv N ≡−kB Tr
[
ρ̂ ln ρ̂

]
. (2.5.14)

Esta entropia mede o desvio do sistema em relação ao estado puro, a quantidade de informação degradada,

mais uma vez, o caos. Para aprofundar a análise sobre a entropia de von Neumann, existem duas características

fundamentais: (1) que a entropia de von Neumann de um estado quântico puro é zero e (2) que, para estados

mistos descritos por probabilidades clássicas, a entropia de von Neumann recupera a forma da entropia de

Shannon.

Para um estado puro, ao diagonalizar ρ̂P , os autovalores associados serão 1 para o estado ocupado
∣∣ψ〉

e 0

para todos os outros estados. Assim:

Tr
(
ρ̂P ln ρ̂P

)= 1 · ln(1)+0 · ln(0) = 0. (2.5.15)

Portanto, a entropia de von Neumann de um estado quântico puro é zero. Essa característica reflete o fato de

que um estado puro possui máxima informação sobre o sistema, sem incerteza associada. Para um estado

misto, o operador densidade é dado por uma combinação de estados puros com probabilidades associadas, pi ,

que são as probabilidades de encontrar o sistema no estado
∣∣ψi

〉
, com

∑
i pi = 1. Diagonalizando ρ̂, se obtém

uma matriz diagonal com os autovalores pi . Assim, a expressão para Sv N se torna:

Sv N =−kB
∑

i
pi ln pi = kB H . (2.5.16)

Ou seja, é exatamente a forma da entropia de Shannon na base natural multiplicada por kB . Essa equiva-

lência mostra que a entropia de von Neumann generaliza a entropia de Shannon para o contexto quântico,

recuperando-a em situações em que o sistema está descrito por probabilidades clássicas.

Além disso, na Mecânica Quântica, a entropia de Rényi é dada por [40]:

Sα = 1

1−α lnTr
[
ρ̂α

]
. (2.5.17)

Neste caso, para α→ 1, recupera-se a entropia de von Neumann:

lim
α→1

1

1−α lnTr
[
ρ̂α

]=−Tr
[
ρ̂ ln ρ̂

]= 1

kB
Sv N . (2.5.18)

Agora, de forma ilustrativa, considera-se o caso do oscilador harmônico unidimensional. Nele, a distribuição
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de Boltzmann é dada por:

pn = e−βEn∑∞
n=0 e−βEn

= e−nβωħ∑∞
n=0 e−nβωħ = (1−e−βωħ)e−nβωħ, (2.5.19)

onde foi utilizada a expressão dos autovalores do oscilador harmônico unidimensional (Eq. [2.1.5]) e proprieda-

des da série hipergeométrica. Substituindo este resultado na entropia de von Neumann:

S =−kB (1−eβωħ)

[
ln

(
1−e−βωħ

) ∞∑
n=0

e−βωħ−βωħ
∞∑

n=0
ne−nβωħ

]
. (2.5.20)

Utilizando algumas manipulações, substituindo β= 1/kB T e multiplicando por N osciladores, recupera-se a

expressão para a entropia do sólido de Einstein desenvolvida na primeira seção:

S(N ,T ) = N kB

 ωħ
kB T

e
− ωħ

kB T

1−e
− ωħ

kB T

− ln

(
1−e

− ωħ
kB T

) . (2.5.21)

É interessante notar que, no primeiro caso, que utilizou métodos de contagem mais rudimentares, o princípio

fundamental da mecânica estatística e a expressão de Boltzmann, obteve-se exatamente o mesmo resultado

para a entropia de von Neumann, típica da Teoria Quântica. Este exemplo foi incluído para mostrar a maneira

como as diferentes noções de entropia se relacionam. Ao longo deste trabalho, nos modelos avaliados, é comum

a obtenção de uma forma de entropia a partir de manipulações de outra.

Por exemplo, no cálculo da entropia de emaranhamento em colisões elásticas [23, 24], é preciso primeiro ob-

ter a entropia de Rényi, calcular o limite em que α→ 1, para então encontrar uma entropia de emaranhamento

escrita na expressão de Shannon, de modo que se faz necessário compreender a relação entre as diferentes

noções entrópicas. De qualquer forma, a Fig. [2.8] ilustra a relação das noções entrópicas avaliadas neste

trabalho.

Figura 2.8: Relação entre as noções entrópicas estudadas neste capítulo. A entropia de emaranhamento será estudada no
capítulo [4].
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2.6 INFORMAÇÃO MÚTUA

A informação mútua, também chamada de Entropia Relativa de Kullback–Leibler, é uma medida fundamental

para avaliar a divergência entre duas distribuições de probabilidade, p e p(0), onde p(0) representa uma distri-

buição chamada de referência [33]. Para quantificar essa discrepância, diversas métricas podem ser adotadas,

sendo a divergência de Kullback–Leibler uma das mais relevantes. Formalmente, a informação mútua entre p e

p(0) é definida como:

I (p, p(0)) =
∫

d x p(x) ln

[
p(x)

p(0)(x)

]
. (2.6.1)

A informação mútua é não negativa e igual a zero se, e somente se, p(x) = p(0)(x). A propriedade de não

negatividade torna a divergência de Kullback–Leibler útil para comparar distribuições ao indicar a proximidade

de p em relação à referência p(0).

Agora, será considerada uma mudança de variáveis em uma distribuição contínua de probabilidades

p(x), de forma que y = f (x). Neste caso, d x = | f ′(x)|d y . Aplicando esta transformação na distribuição de

probabilidades na entropia de Boltzmann-Gibbs (Eq. [2.4.9]):

S =−
∫

d y p(y) ln p(y) =−
∫

d x p(x)
(
ln p(x)+ ln | f ′(x)|) . (2.6.2)

Por outro lado, após a mesma transformação de variável na informação mútua, obtém-se:

I (p, p(0)) =
∫

d y p(y) ln

[
p(y)

p(0)(y)

]
=

∫
d y

d x

d y
p(x) ln

[
p(x)| f ′(x)|

p(0)(x)| f ′(x)|
]

=
∫

d x p(x) ln

[
p(x)

p(0)(x)

]
.

(2.6.3)

Esta é uma características importante de I (p, p(0)), a invariância sob transformações de variáveis que preservem

a medida. Isso significa que, mesmo ao realizar uma mudança de variáveis, a divergência entre p e p(0) se

mantém constante. Em muitos cálculos, essa propriedade torna a informação mútua preferível de manipulação

se comparada a entropia de Boltzmann-Gibbs (Eq. [2.4.9]), pois, neste segundo caso caso, perde-se a invariância

sob certas transformações, conforme à Eq.[2.6.2].

2.7 MECÂNICA ESTATÍSTICA DE NÃO EQUILÍBRIO

Em geral, o estudo da Termodinâmica e da Mecânica Estatística considera processos e transformações entre

estados de equilíbrio, descritos por variáveis de estado, como a entropia S, a energia interna U , o número de

partículas N , ou qualquer outra variável extensiva. Este equilíbrio é necessário para a medição de variáveis

intensivas, como a pressão P e a temperatura T . Grosso modo, a temperatura pode ser interpretada como

a velocidade cinética média das partículas que compõem o gás, enquanto a pressão é dada pela soma das

forças aplicadas sobre a área de um certo êmbolo. Sem equilíbrio, não há uma média satisfatória das forças ou

velocidades para que as variáveis intensivas sejam devidamente definidas.

Assim, a segunda lei da termodinâmica descreve a limitação fundamental das transições possíveis entre os

estados de equilíbrio; a compreensão dos sistemas de não equilíbrio ainda é primitiva. É precisamente neste
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contexto que se aplica a chamada Mecânica Estatística de Não Equilíbrio. Trata-se de um assunto amplo e

em desenvolvimento, mas neste trabalho serão abordados brevemente apenas dois tópicos: a Identidade de

Jarzynski e a relação de Hatano-Sasa, que serão discutidas a seguir.

2.7.1 Identidade de Jarzynski

A identidade de Jarzynski [41] é uma relação de flutuação que permite conectar o trabalho realizado durante um

processo termodinâmico entre estados de equilíbrio com a respectiva variação de energia livre. Esta identidade

estabelece uma expressão que envolve a distribuição estocástica do trabalho termodinâmico, ρ(W ), permitindo

estudar processos longe do equilíbrio.

Em sistemas isolados, é bem conhecido da física estatística que o trabalho médio 〈W 〉 realizado em um

sistema termodinâmico verifica desigualdades relacionadas à segunda lei da termodinâmica. Assim, para uma

transição entre dois estados de equilíbrio, tem-se a relação:

∆S = 〈W 〉−∆F

kB T
≥ 0 ≡ 〈WDiss〉

kB T
≥ 0. (2.7.1)

Aqui, ∆E ≡ 〈W 〉 representa a variação total de energia e ∆F é a variação de energia livre do sistema. O termo

W −∆F =WDiss corresponde ao trabalho dissipado, o qual só é nulo em processos reversíveis.

A identidade de Jarzynski generaliza esse princípio ao conectar diretamente o trabalho médio às flutuações

fora do equilíbrio, especialmente no caso de flutuações onde WDiss < 0. Ela é dada pela expressão:

〈
e−W /kB T

〉
= e−∆F /kB T . (2.7.2)

Como foi demonstrado nas primeiras seções deste capítulo, a segunda lei da termodinâmica tem uma natureza

estatística e, portanto, muito raramente, ocorrem flutuações nas quais −W <∆F †. Essas flutuações podem

ser muito raras, mas com um grande W (ou seja, −W fortemente negativo), sua contribuição para a média de

e−W /kB T pode ser significativa. Desta forma, a fórmula de Jarzynski inclui todas as flutuações, inclusive aquelas

que violam −W ≥∆F .

Esta identidade pode ser escrita na forma:

∆F =−kB T ln
〈

e−W /kB T
〉
=−kB T ln

∫
dW ρ(W )e−W /kB T . (2.7.3)

Em que, ρ(W ) é chamada de distribuição estocástica do trabalho termodinâmico, que descreve a probabilidade

de que o trabalho realizado em um sistema, durante um processo termodinâmico, tome um valor específico.

Em um processo termodinâmico fora do equilíbrio, o sistema é impulsionado de um estado de equilíbrio

inicial para um estado final por uma perturbação, como a aplicação de uma força mecânica que modifica

o volume, ou de um campo elétrico que altera a energia interna. O trabalho realizado, nesse caso, depende

das trajetórias microscópicas do sistema, ou seja, dos caminhos específicos que as partículas seguem devido

às flutuações térmicas durante o processo. Deste modo, os problemas envolvendo esta identidade buscam

encontrar esta distribuição, em que são exemplos o pistão unidimensional [42] e a compressão adiabática de

um gás diluto [43].

†Utilizando a convenção de sinal em que −W representa o trabalho realizado por uma força externa sobre o sistema e W é o trabalho
realizado pelo sistema sobre o ambiente.
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2.7.2 Identidade de Hatano-Sasa

Se comparada com a expressão de Jarzinsky, a identidade de Hatano-Sasa [44] não possui uma variável equiva-

lente a temperatura. Esta identidade é aplicável à sistemas estacionários de não-equilíbrio e é definida a partir

de um parâmetro dinâmico λ. Neste caso, para cada valor de λ, existe um espectro estacionário no espaço de

fase com uma distribuição de probabilidade PStat(z;λ)d z, em que a variável z descreve o espaço de fase do

sistema. Nesta configuração, verifica-se a seguinte igualdade:〈
exp

[
−

∫ τ2

τ1

dτ
dλ

dτ

∂

∂λ
lnP (z;λ,τ)

]〉
τ2

=
∫

d z exp

[
−

∫ τ2

τ1

dτ
dλ

dτ

∂

∂λ
lnP (z;λ,τ)

]
P (z;λ2,τ2) = 1. (2.7.4)

Nesta equação, a transição entre um estado estacionário de não equilíbrio, ocorre com a alteração da variável

dinâmica λ(τ), de forma que λ(τ1) = λ1 evolui para λ2 e τ é o tempo de transição entre dois estados esta-

cionários não equilíbrio distintos. Assim, P (z;λ,τ) ≡ PStat(z(τ);λ(τ)) representa a solução estacionária para

o valor λ(τ) em variáveis de espaço de fase “congeladas” no tempo τ. Note-se que essa identidade resulta

independentemente da “história” arbitrária de dλ/dτ no mecanismo de não-equilíbrio.
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Entropia dos Estados Densos da QCD

O principal objetivo deste capítulo é investigar a produção de entropia na física de altas energias relacionada

aos chamados estados densos da QCD. Como já foi exposto, também será abordada a criação de entropia devida

ao emaranhamento quântico e a decoerência. Entretanto, como a aplicação destes fenômenos quânticos estará

relacionada com características básicas da física de altas energias, este também é um capítulo introdutório ao

que será desenvolvido nos respectivos capítulos de cada um dos fenômenos supracitados.

Além disso, a rápida termalização do QGP alude a uma grande criação de entropia nos estágios inicias da

sua formação, portanto, também serão apresentadas algumas características básicas deste plasma. Ao final, o

objetivo central do capítulo será estabelecido com a apresentação da chamada entropia dinâmica da QCD, que

é uma proposta para avaliar a densidade de entropia por unidade de rapidez definida a partir de observáveis da

física de saturação.

Tendo em vista a complexidade matemática adjacente às teorias quânticas de campos, é essencial apresentar

uma convenção da notação que será utilizada neste trabalho: os vetores bi e tridimensionais serão indicados

por uma seta superior: para o vetor A, por exemplo, será utilizado A⃗; os 4-vetores terão um índice ou sub-índice

com um caractere grego, na forma Aµ, podendo também ser representados simplesmente por A, sendo que a

desambiguação se revelará frente à operação em que o objeto atua. A partir de agora, utiliza-se a notação de

unidades naturais, na qual

ħ= c = kB = 1. (3.0.1)

Dessa forma, recorre-se à relação entre as unidades de medida,

[massa] = [energia] = [tempo]−1 = [comprimento]−1 = GeV, (3.0.2)

sendo essas grandezas sujeitas à relação de conversão,

1GeV = 5,0677fm−1. (3.0.3)

Como a partir de agora se lidará com teorias quânticas de campos, tendo a relatividade restrita como

um pré-requisito das manipulações matemáticas aqui estabelecidas, o ideal é tratar grandezas que sejam

invariantes de Lorentz. O referencial onde o regime de altas energias faz sentido é chamado de Breit frame e

será melhor abordado na próxima seção, que tratara justamente de algumas características fundamentais da
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física de altas energias.

3.1 O MODELO DE PÁRTONS

Em 1911, Ernest Rutherford realizou uma revolução científica com a descoberta do núcleo atômico [45]. Esse

feito foi crucial para o aprimoramento do modelo e teoria atômica, tornando as concepções de Thomson e

Dalton obsoletas e fornecendo uma nova explicação para a estrutura da matéria. Em 1913, Bohr refinou a

teoria com a introdução das órbitas quantizadas, contornando o problema do colapso da matéria previsto pelas

equações de Maxwell no modelo de Rutherford. Pouco depois, a existência de uma solução analítica exata

da equação de Schrödinger para o átomo de hidrogênio pavimentou o caminho para a gênese da mecânica

quântica. Ao final dos anos 1950, o terreno tornou-se fértil para a formulação da Teoria Quântica de Campos,

permitindo derivar resultados satisfatórios para três das forças fundamentais: eletromagnética, fraca e forte;

enquanto a força gravitacional ainda carece de uma teoria quântica.

Utilizando adequadamente as teorias quânticas de campos, é possível obter expressões para as seções de

choque com bons resultados. Além do desenvolvimento dessas teorias, as montagens experimentais também

evoluíram drasticamente: aceleradores maiores foram projetados e posteriormente construídos. Exemplos

atuais incluem o LHC e o RHIC, entre outros, que contam com a colaboração de pesquisadores e engenheiros

de diversas partes do mundo, com o objetivo de dar sequência à exploração não só do mundo nuclear, mas

também do comportamento da matéria em níveis ainda mais fundamentais — especificamente, a estrutura dos

núcleons (hádrons que constituem os núcleos atômicos, prótons e nêutrons), incluindo quarks e glúons.

Figura 3.1: Representação do DIS. Adaptado de [46].

Um formalismo de suma importância nessa pes-

quisa é o modelo dos Pártons [47]. Em 1968, uma

série de experimentos foi conduzida no Stanford Li-

near Accelerator Center (SLAC), envolvendo espalha-

mentos inelásticos profundos lépton-núcleon (DIS,

Deep Inelastic Scattering) [48]. Esses experimentos

consistem no espalhamento de um lépton, com a

medida do ângulo de deflexão, que revela aspectos

da natureza do processo. Mais especificamente, em

processos inelásticos, o alvo absorve parte da energia

cinética da colisão com um projétil de alta energia, o

qual pode ser associado a um pequeno comprimento

de onda, permitindo sondar regiões ditas profundas

(Fig. [3.1]). Durante a realização destes experimentos, o físico teórico Richard Feynman se encontrou com

membros do grupo experimental responsável e teve acesso aos primeiros resultados obtidos, onde a seção de

choque foi parametrizada segundo sugestões de James D. Bjorken [49]. Para compreender a contribuição de

Bjorken, primeiro é necessário estabelecer o seguinte conjunto de definições:

■ Utiliza-se q , tanto para etiquetar os quarks quanto para a transferência de 4-momenta, qµ = kµ−k ′µ,

tendo sua desambiguação aplicada no contexto de utilização.

■ Utiliza-se kµ para o 4-momentum do elétron incidente;

■ Utiliza-se k ′µ para o 4-momentum do elétron espalhado;
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■ Pµ para o 4-momentum do próton;

■ pµ para o 4-momentum do párton;

■ Q2 é a quantidade que mede o quanto o fóton virtual se desvia da camada de massa, chamada virtualidade

do fóton.

■ x para a variável cinemática de Bjorken, definida como,

x ≡ Q2

2P ·q
; (3.1.1)

■ ξ para a fração de momentum do i -ésimo párton em relação ao momentum do próton,

pµi = ξPµ; (3.1.2)

■ ν é uma variável cinemática dada por,

ν= P ·q

M
, (3.1.3)

sendo M a massa do núcleon, embora neste capítulo seja recorrente o uso do próton de massa mp .

Figura 3.2: Dois experimentos em
que um elétron colide com um pró-
ton. Em (a) pouca energia foi transfe-
rida na colisão, de forma que o fóton
virtual γ∗ possui um comprimento
de onda da ordem do tamanho do
próton. Em (b), energia suficiente foi
transferida na colisão, de forma que
o comprimento de onda do fóton vir-
tual é capaz de sondar a estrutura in-
terna do próton.

Utilizando a álgebra de correntes, Bjorken notou que no limite em que o

momentum e a energia transferidos no impacto tendem ao infinito, q2 →∞
e ν= (E −E ′)l ab →∞, no referencial de coordenadas chamado Breit Frame,

uma razão fixa é estabelecida, denominada de x de Bjorken:

x = Q2

2P ·q
=− q2

2Mν
. (3.1.4)

Além disso, Bjorken observou que neste limite, as funções de estrutura,

análogas aos fatores de forma presentes nas colisões elásticas, são apenas

funções de x, exibindo um comportamento de escala. Feynman interpretou

o comportamento de escala nas colisões como uma indicação de que o

núcleon teria constituintes dotados de carga elétrica, de modo que o pe-

queno comprimento de onda do lépton projétil fosse capaz de sondar esses

constituintes (Fig. [3.2]), os chamados Pártons (do inglês, part of hadrons).

Ao publicar suas investigações sobre o DIS, Feynman introduziu pela pri-

meira vez a distinção entre espalhamentos exclusivos e inclusivos. No caso

exclusivo, trata-se dos processos nos quais se sabe quais partículas serão

produzidas, enquanto o caso inclusivo estuda o comportamento de uma

determinada partícula no estado final em diversos intervalos cinemáticos

de momento longitudinal e transversal, sem especificar outras partículas

envolvidas.

De forma prática, um exemplo de processo exclusivo é dado por:

p++p+ → p++n0 +π+.
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As partículas envolvidas neste exemplo são o próton p+, o nêutron n0 e o píon carregado positivamente π+.

Um processo inclusivo pode ser descrito por:

p++p+ →π++X ,

onde X representa um estado final não explicitado, sendo que, neste exemplo, a partícula analisada seria o píon.

Feynman argumentou que, em um regime de altas energias, as seções de choque inclusivas devem apresentar

comportamento de escala quando a energia total é muito grande e o momento transversal da partícula no

estado final permanece limitado.

Seguindo a metodologia proposta por Feynman e Bjorken, a seção de choque em um DIS será parametrizada

em termos de qµ e Pµ, (
dσ

dΩdE ′

)
= α2

4πmp q4

E ′

E
LµνWµν. (3.1.5)

Nesta equação, α≈ 1/137 é o acoplamento da força eletromagnética, Lµν é o tensor leptônico e Wµν é o tensor

hadrônico. Para um espalhamento não polarizado, Lµν é dado por,

Lµν = 2(k ′
µkν+kµk ′

ν−k ·k ′gµν), (3.1.6)

e a forma mais geral do tensor hadrônico é dada por,

W µν =W1

(
−gµν+ qµqν

q2

)
+W2

(
Pµ− P ·q

q2 qµ
)(

Pν− P ·q

q2 qν
)

. (3.1.7)

As quantidades escalares as quais W1 e W2 podem depender devem ser invariantes de Lorentz, sendo elas,

P 2 = P ·P = M 2, q2 e P · q . Usa-se Q ≡
√
−q2 > 0, que é a escala de energia na colisão e, no referencial LAB,

P ·q/M = (E −E ′). Dessa forma, contraindo o tensor leptônico com o tensor hadrônico,

(
dσ

dΩdE ′

)
= α2

8πE 2 sen4θ/2

[
M

2
W2(x,Q)cos2 θ

2
+ 1

M
W1 sen2 θ

2

]
. (3.1.8)

No caso inelástico, esta seção de choque revela todas as características necessárias.

Para testar o Modelo a Pártons, é necessário verificar os fatores de forma considerando que o elétron

espalha elasticamente os constituintes protônicos de massa mq . Para realizar esta avaliação, considera-se

o 4-momentum inicial e final do párton, pµi e pµf , respectivamente, então, via conservação de momentum,

pµi +qµ = pµf , daí,

Q2

2pi ·q
= 1. (3.1.9)

Mas o 4-momentum do párton não é diretamente mensurável. Assim, assume-se que ele possui uma parcela ξ

do momentum do próton,

pµi = ξPµ, (3.1.10)

ou seja,

x = ξQ2

2pi ·q
= ξ. (3.1.11)

Dessa forma, a medida de x revela a parcela de momentum que o párton carrega do próton pai.
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Para que seja possível calcular o espalhamento elástico e−q , considera-se que os partóns não interagem

muito entre si. Assim, os fatores de forma possuam apenas uma fraca dependência logarítmica com Q2*,

tendo o momentum pârtonico inicial fixo, ou seja, com x constante. A seção de choque aproximadamente

independente de Q2 com x fixo é conhecida como escalonamento de Bjorken.

O modelos de partóns também utiliza as probabilidades fi (ξ)dξ do fóton interagir com o i -ésimo párton

com uma parcela ξ do momentum do próton. Estas fi (ξ)’s são conhecidas como Funções de Distribuição

Partônicas (parton function distributions, PDF’s). O modelo prevê que a seção de choque para o espalhamento

e−P+ → e−X , σT , é dado por e−pi → e−X , σn , onde pi é o párton com momentum pµi = ξPµ, integrado sobre

todo ξ,

σT =∑
i

∫ 1

0
dξ fi (ξ)σn . (3.1.12)

Assumindo que os pártons são livres, exceto pelas interações eletromagnéticas, o elétron espalha apenas as

partículas carregadas, que no próton, são os quarks. Para um dado quark de momentum pi , a seção de choque

partônica e−q → e−q , σp , é aproximada por um espalhamento puntual na Eletrodinâmica Quântica, dada pela

fórmula de Rosenbluth, com F1 = 1 e F2 = 0, então,

(
dσp

dΩ

)
L AB

= α2
eQ2

i

4E 2 sen4(θ/2)

[
cos2 θ

2
+ Q2

2m2
q

sen2 θ

2

]
δ

(
E −E ′− Q2

2mq

)
, (3.1.13)

sendo Qi a carga do quark.

A fim de obter a seção de choque de DIS, é necessário integrar esta expressão sobre o momento do párton

incidente. Sendo assim, obtém-se o resultado,

(
dσp

dΩ

)
L AB

=∑
i

fi (x)
α2

eQ2
i

4E 2 sen4(θ/2)

(
2mp

Q2 x2 cos2 θ

2
+ 1

mp
sen2 θ

2

)
. (3.1.14)

Comparando [3.1.8] com [3.1.14] obtêm-se as relações,W1(x,Q) = 2π
∑

i Q2
i fi (x);

W2(x,Q) = 8π x2

Q2

∑
i Q2

i fi (x).
(3.1.15)

E estas relações configuram uma base concreta para a predição experimental do escalonamento de Bjor-

ken, pois são as quantidades W1(x,Q2) e Q2W2(x,Q) fracamente dependentes de Q com x fixo, confirmadas

experimentalmente.

Sob essa perspectiva, os pártons são interpretados como partículas nuas (bare particles) de uma nova

interação fundamental — a força forte — sendo investigados através do DIS no Breit Frame. Neste referencial, o

hádron sofre uma contração espacial longitudinal, tornando a interação com o lépton (seja eletromagnética

ou fraca, dependendo do lépton envolvido) praticamente instantânea. Assim, o estado interno dos hádrons

é "congelado"e a interação entre os pártons pode ser desconsiderada, permitindo tratá-los como partículas

quase-livres. Mais tarde, os pártons foram identificados com os quarks de Gell-Mann [50], estabelecendo o

Modelo Padrão, e a metodologia de Bjorken e Feynman tornou-se fundamental para a análise da Cromodinâmica

Quântica Perturbativa.

Para compreender melhor o uso do Modelo dos Pártons na investigação das estruturas hadrônicas, é útil

*Similarmente ao espalhamento e−µ−, bem estabelecido na Eletrodinâmica Quântica
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revisar brevemente a teoria que descreve a física de partículas elementares: o Modelo Padrão. Esse modelo

organiza as partículas fundamentais em 12 férmions de spin 1/2, divididos em dois grupos principais. O

primeiro grupo inclui os quarks, que constituem a matéria hadrônica: up, down, charm, strange, top e bottom.

O segundo grupo consiste nos léptons: elétron, múon, tau e seus respectivos neutrinos. Juntos, esses férmions

compõem toda a matéria ordinária†.

As interações entre essas partículas são mediadas pelos bósons de calibre, partículas de spin 1 associadas

às forças fundamentais: o fóton (força eletromagnética), o glúon (força nuclear forte) e os bósons W ± e Z 0

(força fraca). Além disso, o Modelo Padrão inclui um bóson escalar, o Higgs, cuja existência foi confirmada

experimentalmente e que é fundamental para o mecanismo que confere massa a outras partículas. A Fig. [3.3]

ilustra alguns detalhes dos constituintes do Modelo Padrão.

Figura 3.3: Organização das partículas do modelo padrão confirmadas experimentalmente. Para cada partícula é também
dado o valor de sua massa, carga elétrica e spin. Reproduzido de [51].

As partículas interagem com diferentes forças dependendo das cargas que possuem. Por exemplo, os quarks

possuem uma carga de cor, que pode ser vermelha, azul ou verde. Essa carga permite que eles formem hádrons

"sem cor"(colorless), como os mésons e bárions. Os mésons são estados ligados quark-antiquark, enquanto os

bárions consistem em três quarks. Além da carga de cor, os quarks possuem carga elétrica fracionária, o que

lhes permite interagir eletromagneticamente e serem detectados em processos como o DIS.

Assim, o Modelo dos Pártons fornece uma compreensão mais clara dos quarks e glúons ao descrever a

composição dos núcleons, que em um DIS possuem uma fração ξ do momentum do hádron pai, mantendo

colinearidade com ele. Para energias baixas, os chamados quarks de valência constituem os núcleos em tríades.

No entanto, com o aumento da energia no DIS, surge a necessidade de considerar as PDF’s. Estas distribuições

obedecem certas relações, conhecidas como regras de soma [52]. Por exemplo, para garantir a conservação dos

números quânticos do próton, suas PDFs devem satisfazer as seguintes relações:

†Ainda há muito a ser descoberto sobre outras formas de matéria, como a matéria escura e a energia escura, que hoje são foco de vários
programas de pesquisa. As informações sobre essas formas de matéria vêm de teorias gravitacionais, e estima-se que compõem cerca de
95% de toda a matéria do universo.
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∫ 1

0
dξ

[
fd (ξ)− fd̄ (ξ)

]= 1,
∫ 1

0
dξ

[
fu(ξ)− fū(ξ)

]= 2,
∫ 1

0
dξ

[
fs (ξ)− f s̄ (ξ)

]= 0, (3.1.16)

sendo esta última relação aplicável também aos quarks bottom e charm. Embora não exista uma regra de

conservação específica para o número de glúons, deve-se considerar a soma das suas PDFs com as dos demais

quarks, resultando na condição:

∑
j

∫
ξ f j (ξ)dξ= 1. (3.1.17)

No caso do próton, as regras de soma apresentadas indicam que apenas 38% do momentum do próton está

contido nos quarks de valência (up e down). Por outro lado, os glúons transportam uma fração que varia de 35%

a 50%, dependendo da escala. Os quarks que não são contabilizados nessas distribuições são denominados

quarks de mar. A Fig. [3.4] ilustra o comportamento dessas funções de distribuição em um DIS envolvendo um

elétron e um próton para dois valores de virtualidade (Q2 =−q2): para altos valores de x, que correspondem

a processos de baixa energia, as distribuições caracterizam os quarks de valência; enquanto que em regime

de pequeno-x, em processos de alta energia, a composição do próton é dominada por glúons, uma região

conhecida como física de saturação, a qual será abordada mais detalhadamente na sequência.

Figura 3.4: Comportamento das PDF’s em relação a variável de Bjorken para as virtualidades Q2 = 1.9 GeV2 (esquerda) e
Q2 = 10 GeV2 (direita). As funções que aparecem neste caso são de quarks up, xuv , quarks down, xdv , glúons, xg e de mar,
xS = 2x(Ū + D̄). As distribuições gluônicas e de mar foram reduzidas por um fator de 20 para que possam ser avaliadas no
mesmo plano. Reproduzido de [53].

3.1.1 A Física de Saturação

Os núcleos dos átomos são compostos por dois tipos de partículas denominadas núcleons: prótons e nêutrons.

Para baixas energias, estas partículas são basicamente a combinação de três quarks com cores distintas que se

arranjam de forma que os números quânticos do núcleon sejam recobertos. Por exemplo: o próton (Fig. [3.5]) é

composto por dois quarks up com uma carga elétrica positiva de 2/3 de e e um quark down com carga elétrica

-1/3 de e onde a sobreposição da carga líquida resulta em uma valor de +e. Quarks são partículas de spin 1/2,

fazendo com que a função de onda de spin do próton seja uma superposição das diferentes configurações de

spin dos seus constituintes na forma que a configuração total seja de spin 1/2. Esta combinação não viola o
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princípio de exclusão de Pauli devido a presença de outro número quântico que é a carga de cor da interação

forte, podendo ser vermelha (red), azul (blue) ou verde (green) e as respectivas cargas de anti-cor.

Figura 3.5: Representação esquemática do pró-
ton em baixas energias com os seus três quarks
de valência. Imagem da referência [54].

Esse tipo de descrição funciona bem para entender a com-

posição física dos núcleons, contudo, não é possível realizar pre-

dições teóricas robustas ou prever comportamentos em colisões

com resultados satisfatórios pois no uso da teoria da perturbação

a constante de acoplamento forte αs é da ordem da unidade im-

possibilitando o cálculo. Felizmente, com o aumento da energia

a constante de acoplamento diminui e os cálculos perturbativos

começam a se tornar efetivos. Fisicamente, é possível sondar

regiões menores para se obter a seção de choque e fenômenos

novos começam ocorrer.

Antes de dar mais detalhes vale a elucidação de algumas

diferenças entre eletrodinâmica e a cromodinâmica quântica:

embora ambas sejam teorias de campos quânticos e possam ter

suas propriedades derivadas a partir de grupos abstratos, sendo

eles os grupos U(1) para eletrodinâmica e SU(3) para cromodi-

nâmica, uma diferença reside no fato que os geradores‡ deste

segundo grupo não comutam como os do primeiro. Por isso, diz-se que a cromodinâmica é uma teoria não-

abeliana§. Esta característica do grupo de simetria tem como consequência o fato de que os mediadores da

força forte, os glúons, carreguem carga de cor e, por isso, interajam entre si, sendo um grave contraste se

comparado com os fótons da Eletrodinâmica Quântica.

Geralmente, a descrição da resolução em que se avalia a estrutura hadrônica é feita em relação a duas

variáveis, a virtualidade Q2, que representa o momentum transferido na interação, e o x de Bjorken, que

no regime de altas energias pode ser escrito como x ≈ Q2/s, sendo s o quadrado da energia do sistema no

referencial do centro de massa. Antes da colisão, considera-se que o núcleon porte um certo 4-momentum Pµ,

logo, por conservação, os 4-momenta dos quarks devem ser frações do total pµi = xPµ. A variável de Bjorken é a

fração de momentum do núcleon pai. A virtualidade do fóton Q2 relaciona-se com o quadrado do 4-momenta

transferido propriamente na colisão Q ≡
√
−q2.

Considerando estas colocações, a analise da estrutura partônica pode ser elaborada considerando o fenô-

meno do bremmsstrahlung, no qual os pártons podem emitir glúons e, estes, flutuar em pares quark-antiquark

ou emitir novos glúons. No regime de altas energias, x ≪ 1 (e na aproximação de primeira ordem em αs ) a

probabilidade diferencial Pg de ocorrer a emissão do glúon segue [55],

Pbr emm ∝αs (p2)
d 2p

k2

d x

x
, (3.1.18)

sendo p o 4-momentum do párton emitido com p = (
√

k2 +k2
z , k⃗,kz = xPz ). Desta forma, no limite em que o

momentum transverso tende a um pequeno valor, aumenta-se a chance de ser gerado um glúon colinear com

‡Na álgebra abstrata, um conjunto gerador de um grupo é um subconjunto que não está contido em nenhum subgrupo próprio do
grupo. Equivalentemente, um conjunto gerador de um grupo é um subconjunto, tal que todo elemento do grupo pode ser expresso como a
combinação (sob a operação do grupo) de elementos finitos do subconjunto e seus inversos.

§Em álgebra abstrata, um grupo abeliano, chamado também de grupo comutativo, é um grupo (G ,∗) em que a∗b = b∗a para quaisquer
a e b ∈G .
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uma fração de momentum x. Fisicamente, o tamanho do hádron é praticamente constante com o aumento da

energia e as populações de glúons que o compõem neste estado da matéria têm um momentum transverso que

pode ser associada a uma área (utilizando-se o princípio da incerteza), também transversa, que é ocupada por

eles na ordem de ∼ 1/Q2.

Figura 3.6: A caracterização do estado do núcleon muda de-
pendendo da variável que se analisa. Se for levado em conta
a evolução em relação à x teremos um sistema saturado com
a sua evolução descrita pela equação BFKL. Por outro lado,
analisando apenas o aumento da virtualidade Q2 tem-se um
sistema mais diluído descrito pelas equações DGLAP. Figura
adaptada de [55].

Uma vez no regime de altas energias, torna-se pos-

sível obter uma caracterização dos constituintes do

núcleon a partir da análise de sua dependência com a

variável x de Bjorken (ou equivalentemente a rapidez

Y , pois Y = ln1/x) e a virtualidade Q2. Na Fig. [3.6]

é possível perceber como a distribuição dos pártons

no núcleon se altera visto a variação com x e Q. Con-

forme se aumenta a virtualidade o sistema começa

a se diluir e esta descrição é dada pelo conjunto de

equações DGLAP (em homenagem aos trabalhos de

Dokshitzer, Gribov, Lipatov, Altarelli e Parisi) [56–58],

Q2 ∂

∂Q2

(
fq (x,Q2)

fg (x,Q2)

)
= αs

2π

(
Pqq Pqg

Pg q Pg g

)
⊗

(
fq (Q2, x)

fg (Q2, x)

)
.

(3.1.19)

Nessa equação, Pqq , Pqg , Pg q e Pg g são as funções de

desdobramento e as fi (x)’s são as PDF’s. Na ordem

principal, as funções de desdobramento que podem

ser obtidas são listadas abaixo:

Pqq (z) =CF

[
(1+ z2)

[
1

1− z

]
+
+ 3

2
δ(1− z)

]
, (3.1.20)

Pqg (z) = Nc [z2 + (1− z)2], (3.1.21)

Pg q (z) =CF
1+ (1− z)2

z
, (3.1.22)

e

Pg g (z) = 2Nc

[
z

[1− z]+
+ 1− z

z
+ z(1− z)

]
+ 11NC −2N f

6
δ(1− z), (3.1.23)

sendo nestas expressões Nc o número de sabores de quarks e z =Q2/(2pi ·q). Qualitativamente, ao aumentar a

virtualidade, os pártons ocupam uma área transversal menor devido à relação de proporcionalidade dada por

1/Q2 (Fig. [3.6]), de forma que o sistema se dilui.

Agora, a evolução em relação à variável x remonta a outro cenário. A emissão de glúons com pequeno

momentum torna-se cada vez mais favorecida conforme x diminui, ocupando essencialmente a mesma área

transversal. Neste caso, a equação de evolução em ordem dominante é dada por:

∂

∂(ln1/x)
fg (x,k2) = Ncαs

π
k2

∫ ∞

0

dk ′2

k ′2

[
fg (x,k ′2)− fg (x,k2)

|k ′2 −k2| + fg (x,k2)p
4k ′2 +k2

]
, (3.1.24)

e é chamada de equação BFKL, devido aos trabalhos de Balitsky, Fadin, Kuraev e Lipatov [59, 60]. Neste regime,
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a partir de um certo valor de x, o crescimento da população gluônica aumenta a chance de que os glúons

interajam entre si, recombinando-se, e iniciam-se processos em que g g → g , compensando as emissões do

bremsstrahlung e saturando a densidade de glúons no sistema hadrônico, i.e., o regime de saturação.

Uma forma de determinar se o sistema físico está em um estado denso ou diluído é dada pelo modelo físico

fenomenológico de Golec-Biernat-Wüsthoff (GBW) [61], que consegue delimitar bem o regime de saturação a

partir da escala de saturação Q2
s ,

Q2
s (x) = (x0/x)λ, (3.1.25)

sendo que, neste trabalho, em geral, foram utilizados x0 = 4.2×10−5 e λ= 0.248, obtidos a partir dos dados

experimentais de DIS em colisões ep [62]. Algumas propriedades importantes a citar sobre o modelo GBW

incluem o geometric scaling (gs), no qual as seções de choque do DIS podem ser expressas em função de uma

única variável, τ= k2/Q2
s .

O geometric scaling permite estender a aplicação do modelo GBW para as colisões próton-núcleo. Especifi-

camente, a relação entre a seção de choque da interação de um fóton virtual com um núcleo e a área transversal

do alvo pode ser reescrita como uma função dependente da saturação nuclear:

σγ
∗A(τA)

πR2
A

= σγ
∗p (τ)

πR2
p

, (3.1.26)

onde RA = (1.12A1/3 −0.86A−1/3) fm representa o raio nuclear e A é o número de massa do núcleo. Para realizar

essa equivalência, adapta-se a seção de choque transversal σ0 →σA e a escala de saturação Q2
s (Y ) →Q2

s,A(Y ).

Assim, a escala de saturação nuclear Qs,A(Y ) pode então ser expressa por:

Q2
s,A(Y ) =

(
R2

p A

R2
A

)∆
Q2

s (Y ), (3.1.27)

onde ∆ ≈ 1.27 e Rp ≈ 3.56GeV [63]. Essa formulação permite ajustar o modelo para levar em conta o efeito

do aumento de densidade de partículas na interação com núcleos, resultando em uma escala de saturação

adaptada ao contexto nuclear. Assim, a propriedade de geometric scaling oferece um meio de extrapolar

previsões feitas para prótons isolados para interações envolvendo núcleos, com a escala de saturação nuclear

Q2
s,A refletindo o aumento da densidade de glúons em sistemas nucleares.

3.1.2 O Colour Glass Condensate

O modelo que descreve satisfatoriamente o comportamento do QGP nos instantes iniciais da sua geração é

o Colour Glass Condensate (CGC) [64], que, em tradução livre, é o modelo do condensado do vidro de cor. Ele

descreve a matéria associada com uma alta densidade de glúons a partir da descrição da função de onda de um

hádron em altas energias.

Figura 3.7: Para um determinado valor de energia
E1, os glúons preenchem o próton. Para E2 > E1
glúons ainda menores são gerados se organizando
nos espaços não preenchidos anteriormes. Adap-
tado de [65].

A Fig. [3.4] ilustra como no regime da física de altas energias

ou, equivalentemente, de pequeno-x, a população de glúons

cresce indeterminadamente. Contudo, com o aumento da ener-

gia, o tamanho do próton é praticamente constante. Desta forma,

se forem adicionados cada vez mais glúons, estas partículas irão
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preencher todas as regiões ‘vazias’ do próton. Se os glúons ti-

vessem um tamanho fixo, existiria um valor determinado para

preencher todo o próton; isto não se verifica. Por outro lado, se

os novos glúons gerados possuírem um tamanho menor, eles

podem ser organizados em regiões não ocupadas, que também

são cada vez menores em um processo que pode prosseguir in-

determinadamente (Fig. [3.7]), semelhantemente ao que ocorre

com Aquiles que nunca alcança a tartaruga em um mundo em

que não existem séries convergentes.

A escala de saturação Qs é inversamente proporcional ao espaço ocupado por um glúon, Rs = 1/Qs . Desta

forma, se a escala Qs for fixada, só poderão ser organizados um número fixo de glúons, pois toda a região do

próton esta ocupada em um sistema condensado. Ao serem gerados, cada glúon é encorporado na função de

onda que descreve o hádron, de forma que:

|h〉 = ∣∣qqq
〉+ ∣∣qqqg

〉+ ...+ ∣∣qqqg ...qq̄g g g
〉

, (3.1.28)

A terminologia vidro esta relacionada com o tempo e à ordem dos campos associados a este estado da

matéria: evoluem muito lentamente se comparadas as escalas de tempo natural. Neste modelo, os glúons

relacionados às altas energias são descritas por campos clássicos produzidas por glúons de menor energia ou,

inicialmente, pelos quarks de valência, entendidos aqui como o conjunto de quarks que compunham o hádron

em baixas energias.

Este mecanismo faz com que os glúons ‘filhos’, também chamados de wee partons, tenham sua escala

de evolução temporal dilatada em relação ao glúon ‘pai’, de forma que, quanto mais ‘antigo’ for um glúon

nesta hierarquia, ele sera percebido pelos demais como um campo clássico estático e assim, as diferentes

configurações de glúons que contribuem para a função de onda hadrônica podem ser então tratadas como um

ensemble de campos não interagentes. Por fim, a cor diz respeito às partículas que formam o CGC, praticamente

glúons, que possuem cor na QCD.

Existe um sistema de coordenadas mais adequado para tratar dos objetos matemáticos no CGC, chamado

de Sistema de Coordenadas do Cone de Luz (Apêndice A). Para isso, é necessária a realização da quantização da

teoria neste sistema de variáveis, onde o valor inicial é considerado igual na superfície temporal do cone de

luz x+ = (t + z)/
p

2 = 0, tendo como grande vantagem a simplificação do estado de vácuo, que coincidirá tanto

para teoria interagente, como para teoria livre¶ além de fazer com que as funções de onda hadrônicas possam

ser calculadas como uma expansão dos estados de Fock. Desta forma, o hamiltoniano do cone de luz na QCD,

P−
QC D , pode ser escrito na forma,

P−
QC D = P−0

QC D +VQC D . (3.1.29)

de forma que cada wee parton numa configuração populosa carregue uma fração pequena x = k+/P+ do

momentum total P+ do hádron pai. A partir disso é possível verificar a característica temporal exótica deste

modelo, pois o tempo típico das reações que os envolve os quarks de valência, tq , é muito superior aos tempos

das reações dos wee pártons:

twee = 1

k− = 2xP+

k2 (3.1.30)

¶A operação de boosts no cone de luz quantizado comuta com o hamiltoniano do cone de luz na QCD. Esta propriedade não é satisfeita
na operação usual de boosts, que leva a criação de partículas frente a ela.
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tq ≈ 2P+

k2 , (3.1.31)

e como, x ≪ 1, tem-se que twee ≪ tq .

Desta forma, o CGC é uma teoria de campo efetiva baseada na separação dos graus de liberdade em duas

categorias: fontes de cor "congeladas" e campos de cor dinâmicos. Esses dois tipos de graus de liberdade são

separados por uma equação de grupo de renormalização, conhecida como a Equação de JIMWLK, que assegura

a independência das quantidades físicas em relação ao corte (cutoff ), a partir de uma escalaΛ+ que define a

divisão entre as duas categorias.

Os glúons rápidos, que atuam como fontes de cor, possuem um momento longitudinal k+ >Λ+, perma-

necendo "congelados"devido à dilatação temporal de Lorentz, formando uma corrente de cor descrita pela

densidade de carga de cor ρa(x−, x⊥); os wee partons com k+ <Λ+ são descritos pelos campos de calibre usuais

da QCD, Aµ. A interação entre esses dois tipos de glúons é acoplada de maneira eikonálica||, ou seja, os glúons

rápidos atuam como fontes para os glúons lentos. Embora a densidade de cor ρa permaneça constante durante

uma colisão, ela varia de evento para evento, gerando uma distribuição probabilística WΛ+ [ρ], denominada de

função peso do CGC que codifica todas as correlações da densidade de carga de cor no nível de corteΛ+.

A rede de cargas que os wee parton se acopla é representada por uma densidade de cor clássica por unidade

de área transversa ρ, em uma distribuição randômica, de forma que:

〈
ρa(xT )

〉= 0;
〈
ρa(xT )ρb(yT )

〉
=µ2

Aδ
abδ(2)(xT − yT ), (3.1.32)

na qual,

µ2
A = g 2

s A

2πR2
A

, (3.1.33)

é o quadrado da carga de cor por unidade de área transversa.

A função peso do CGC descreve a distribuição estatística de ρ e caracteriza as correlações da densidade

de carga de cor no sistema. Os observáveis de interesse para um wee párton são construídos a partir de um

campo clássico Aµ
a de forma que podem ser denotados por O[A]. Sendo assim, o valor esperado de um destes

observáveis é obtido a partir do cálculo da média sobre as configurações possíveis de ρ,

〈O[A]〉Y =
∫

WY [ρ]O[A[ρ]]dρ. (3.1.34)

A evolução de WΛ+ [ρ] comΛ+ é governada pela equação funcional de JIMWLK:

∂WΛ+ [ρ]

∂ ln(Λ+)
=−HJ I MW LK

[
ρ,

δ

δρ

]
WΛ+ [ρ], (3.1.35)

onde H é o Hamiltoniano de JIMWLK, devido os trabalhos de Jalilian-Marian, Iancu, McLerran, Weigert,

Leonidov e Kovner. A solução dessa equação é numérica e pode ser expressa por uma integral de caminho ou

pela hierarquia de Balitsky, onde a equação de Balitsky Kovchegov [66, 67] (BK, melhor descrita no Apêndice

C) é uma aproximação de campo médio dessa evolução, aplicável no limite de um número grande de cores,

||O termo "eikonal"origina-se da teoria de ondas e da óptica, especificamente do conceito de aproximação eikonal, que se refere
ao comportamento de ondas em meios onde a variação de fase é rápida em comparação com a amplitude. A palavra "eikonal"vem
do grego eikōn, que significa "imagem"ou "aparência". Na física de altas energias e no CGC, essa ideia foi adaptada para descrever
interações de partículas em cenários onde uma das componentes se move a uma velocidade extremamente alta. Neste contexto, o termo
"eikonálico"refere-se a uma situação onde as partículas "rápidas"atuam como uma fonte de campo fixo, criando uma espécie de "imagem
congelada"para as partículas "lentas".
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Nc →∞.

O modelo de McLerran-Venugopalan [68] (MV) oferece uma condição inicial física para a evolução de

JIMWLK, especialmente útil para estudar distribuições de glúons em núcleos. Nesse modelo, a distribuição de

carga de cor WΛ+
0

[ρ] é uma distribuição Gaussiana em ρ:

WMV [ρ] =N e
−∫

k
1

2µ2(k)
ρa (k)ρa (−k)

, (3.1.36)

sendo N um fator de normalização. Contudo, esta hipótese é inadequada para descrever a evolução dos

observáveis para pequeno-x pois ela não depende da rapidez, mas, de qualquer forma, essa abordagem permite

tanto a motivação teórica da teoria efetiva quanto estudos fenomenológicos diretos em colisões e, no que tange

a aplicação do CGC, será utilizada nesta tese.
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3.2 A GERAÇÃO E AS FASES DO QGP

Esta seção foca na descrição dos processos que geram o QGP a partir da colisão de dois íons pesados e resume

suas diferentes fases até o estágio final, chamado de congelamento, em que o plasma esfria e são detectados

os hádrons resultantes do processo. Cada uma dessas fases é descrita por um número diferente de graus de

liberdade, e uma ilustração das etapas desses estágios pode ser vista na Fig. [3.8]:

Figura 3.8: Representação das fases
do QGP. Imagem adaptada de [69].

I. Considera-se, aqui, o referencial do centro de massa. Os íons são

acelerados até atingir uma velocidade ultra-relativística (com um fator de

Lorentz da ordem de 100), e é razoável aproximar que os íons se distribuem

de forma esférica. O efeito da contração espacial, que se manifesta na dire-

ção de propagação, faz com que a matéria se distribua quase inteiramente

em um disco longitudinal em relação à direção de movimento. A física de

saturação é evidente, e os íons são compostos principalmente de glúons,

com uma fração pequena de momenta (x ≪ 1). Este sistema é bem descrito

pelo modelo do Colour Glass Condensate.

II. A colisão ocorre, marcando o tempo inicial τ0 = 0 fm/c. Os núcleos se

atravessam quase instantaneamente, mas deixam resíduos cujo tamanho

varia dependendo da centralidade da colisão. Os primeiros processos que

ocorrem são os chamados duros, que envolvem uma grande transferên-

cia de momenta. Esses processos são responsáveis por criar as condições

necessárias para a geração posterior de quarks pesados, mésons vetoriais,

jatos hadrônicos e fótons diretos, partículas que desempenham um papel

importante no estado final do sistema.

III. A terceira etapa ocorre em aproximadamente τ= 0.2 fm/c. A maior

parte dos pártons é liberada pela colisão, criando um meio extremamente

denso e fora do equilíbrio, cerca de dez vezes mais denso que o núcleo atô-

mico. Nesta fase, os campos de glúons dominam o sistema, e as interações

entre os pártons são altamente não-lineares. Este estado é denominado

glasma, uma fase intermediária entre o estado inicial dos íons colididos e

a formação do QGP propriamente dito.

IV. Esta fase é marcada por efeitos coletivos que indicam que os pártons

interagem fortemente, como no fluxo elíptico [70]. Nesta fase, atinge-se a

termalização do sistema em um tempo impressionantemente curto: τ= 1

fm/c. Teorias quânticas de campos não são capazes de explicar um tempo

tão curto, que é obtido a partir da teoria dos fenômenos de transporte, mais precisamente, da hidrodinâmica

relativística.

V. A matéria do plasma continua a se expandir e esfriar, hadronizando ao atingir temperaturas abaixo do

valor crítico, em aproximadamente τ= 10 fm/c. O meio hadrônico resultante ainda é relativamente denso, e a

troca de energia entre os constituintes mantém um equilíbrio térmico. Nesta etapa, em cerca de τ= 20 fm/c,

o sistema consiste em um gás de hádrons quente e denso. Quando os processos inelásticos, que convertem

hádrons de uma espécie em outras, cessam, as abundâncias hadrônicas se estabilizam, e o sistema passa pelo

congelamento químico (chemical freeze-out). Em seguida, ocorre o congelamento térmico (thermal freeze-out),
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estágio em que o momento das partículas do meio não sofre mais alterações, ou seja, quando todas as colisões

elásticas e inelásticas cessam. A partir desses pontos, as partículas do meio se tornam livres e se movem

suavemente até os detectores finais.

3.3 AS TEORIAS EFETIVAS DE CADA FASE

Figura 3.9: Representação das fases do QGP. Conforme o tempo evoluí os graus de liberdade do sistema mudam de forma
que diferentes teorias físicas se tornam convenientes para tratar cada uma delas. Imagem adaptada de [55].

Como fora discutido anteriormente, o QGP possui diferentes fases durante a sua evolução. Algumas das

propriedades que aparecem nas diferentes etapas são situações de não equilíbrio, efeitos de curto alcance,

não-homogeneidade, espaço de fase de N corpos, produção de ressonância ou de partículas, dinâmica coletiva

e congelamento. Esta gama de características pode muito bem ser estudada utilizando fenômenos de transporte.

Dessa forma é possível utilizar teorias de transporte microscópicas, macroscópicas (hidrodinâmica) ou híbridas

a fim de uma descrição temporal completa do QGP. Sendo assim, as próximas sub-seções dedicam-se num

breve resumo das duas principais teorias utilizadas a fim de construir e caracterizar cada etapa do sistema: a

Hidrodinâmica Relativística e a Teoria Cinética, em detrimento do CGC que já foi exposto anteriormente e é

responsável pelos estágios iniciais do QGP.

3.3.1 Hidrodinâmica Relativística

A concepção moderna descreve a hidrodinâmica como uma teoria efetiva para baixas energias da teoria

quântica de campos. Este teoria descreve bem as fases intermediárias do QGP. Suas equações básicas descrevem

a conservação de corrente, energia e momentum,

∂µT µν = 0, ∂µ jµi = 0, (3.3.1)

sendo jµi com i = B ,S,Q a corrente conservada e T µν é o tensor de energia-momentum. A velocidade de fluxo

local uµ e o tensor de rank 2 perpendicular ao fluxo ∆µν = gµν−uµuν podem ser utilizados a fim de separar o

tensor T µν e as correntes conservadas em componentes tipo-espaço e tipo-tempo, fazendo com que:

T µν = ϵuµuν−p∆µν+W µuν+W νuµ+πµν,

jµi = ni uµ+V µ

i .
(3.3.2)
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Nestas equações ϵ= uµT µνuν é a densidade energética, p = ps +Π=− 1
3∆µνT µν é soma das pressões hidrostáti-

cas e volumétrica, W µ =∆µαTαβuβ é a corrente de energia, ni = uµ jµi é a densidade de cargas, V µ

i =∆µν jνi é a

corrente de cargas e πµν ≡ 〈T µν〉 é o tensor de stress de cisalhamento. Os brackets na definição do tensor de

stress de cisalhamento indicam a seguinte operação matemática,

〈
Aµν

〉= [
1

2
(∆µα∆

ν
β+∆

µ

β
∆να)− 1

3
∆µν∆αβ

]
Aαβ. (3.3.3)

Para simplificar a discussão de interesse, considera-se agora o caso de uma carga conservada e denota-se

a corrente bariônica por jµ = jµB , então, cada termo da corrente e do tensor de energia-momentum pode ser

explicitamente separado entre ideal e dissipativa:

T µν = T µν

i d +T µν

dis = [ϵuµuν−ps∆
µν]id + [−Π∆µν+W µuν+W νuµ+πµν]dis,

jµ = jµid +Nµ

dis = [nuµ]id + [V µ]dis.
(3.3.4)

A negligenciação dos termos dissipativos configuram a hidrodinâmica ideal. Neste caso, as soluções para

a equação hidrodinâmica [3.3.1] com um dado conjunto de condições iniciais descreve a evolução espaço-

temporal de seis variáveis, sendo três delas de estado, ϵ(x), p(x) e n(x). As três restantes são as componentes

espaciais da velocidade de fluxo uµ. Contudo, as equações de conservação [3.3.1] compõem apenas 5 equações

independentes. A sexta equação relacionando p e ϵ terá de ser adicionada para que o problema seja resolvido.

Uma boa descrição é a equação de estado que provém do cálculo termodinâmico da QCD em altas temperaturas

com potenciais químicos baixos [71],

ϵ−3p =−T

V

d lnΞ

d ln a
, (3.3.5)

sendo T a temperatura, V a pressão, Ξ a grande função de partição canônica e a é o espaçamento na rede**. A

partir desta função de estado ainda é possível realizar a descrição da matéria fortemente interagente abaixo da

temperatura de desconfinamento Tc , onde todas as quantidades termodinâmicas são bem descritas por um gás

de ressonância hadronica primeiramente proposto por Hagedorn [72],

ϵ−3p = ∑
mi≤mmax

T 4 di

2π2

∞∑
k=1

(−ηi )k+1

k

(mi

T

)3
K1

(
kmi

T

)
, (3.3.6)

sendo K1(kmi /T ) é a função modificada de Bessel, tendo espécies de diferentes partículas com massa mi , fator

de degenerescência di , ηi = ±1 com +1 para férmions e −1 para bósons. A soma é realizada para todas as

partículas até a massa de ressonância mmax = 2,5GeV .

Na literatura é possível encontrar duas definições de fluxo; uma relacionada ao fluxo de energia devida a

Landau [73] e outra proposta por Eckart [74] que refere-se ao fluxo de carga conservada. Respectivamente,

**Utilizando cálculos no modelo da lattice-QCD, uma abordagem não-perturbativa à cromodinâmica. Consiste numa teoria de calibre
na forma discretizada, onde os pontos do espaço-tempo correspondem aos pontos de uma rede 4-dimensional finita.
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uµ

L = T µ
ν uν

L√
uα

L T β
αTβγuγ

L

= 1

e
T µ
ν uν

L ,

uν
E = jν√

jν jν
.

(3.3.7)

Na definição Landau tem-se W ν = 0, enquanto na Eckart: V ν = 0. Se for tratada a hidrodinâmica ideal as duas

definições se tornam equivalentes. Particularmente, na colisão de íons pesados descreve-se a evolução da

matéria em uma região com número de decomposição bariônica nula, j = 0, como nas regiões de rapidez

média no LHC e no topo energético do RHIC, fazendo com que a definição de Landau seja mais apropriada no

caso de interesse.

Agora, para resolver as equações hidrodinâmicas sem descontar os termos dissipativos é usual a introdução

de duas definições fenomenológicas, também chamadas de equações constitutivas, para o tensor de stress e a

pressão volumétrica [75],

πµν = 2η
〈∇µuν

〉
,

Π=−ζ∂µuµ =−ζ∇µuµ.
(3.3.8)

Os novos coeficientes η e ζ são chamados de viscosidade de arrasto e de volume, respectivamente.

Para o fluxo de Bjorken invariante sobre boosts [76], com uma velocidade na direção z, vz , tem-se,

uµ

B J =
xµ

τ
= t

τ

(
1,0,0,

z

t

)
, (3.3.9)

sendo τ o tempo próprio. Com esta definição é possível encontrar a equação de movimento [77],

dϵ

dτ
=−ϵ+ps

τ

(
1− 4

3τT

η

s
− 1

τT

ζ

s

)
, (3.3.10)

s é a densidade de entropia. Se forem desconsiderados os dois termos à esquerda, obtém-se a solução de

Bjorken para a hidrodinâmica ideal [76]. Estes dois últimos termos descrevem a compressão da densidade de

energia devido as correções viscosas. A primeira esta relacionada com a viscosidade de arrasto, η/s. Agora, ζ/s

reflete uma propriedade intrínseca aos fluídos.

A hidrodinâmica garante uma descrição efetiva de um sistema que está em equilíbrio térmico local e

pode ser derivada da descrição cinética feita a partir de expansões em séries da 4-corrente entrópica Sµ = suµ

em gradientes das variáveis termodinâmicas locais. Os gradientes de ordem zero refletem a hidrodinâmica

ideal, fazendo com que os termos de maior ordem correspondam às grandezas dissipativas que aparecem por

causa dos processos termodinâmicos irreversíveis no fluído, como por exemplo, a energia de fricção dissipada

entre dois elementos do fluído em movimento relativo. Desta forma, a equação de Navier-Stokes [3.3.8], que

conta apenas com dependências lineares do gradiente de velocidade, resulta em alguns problemas: O fluxo

termodinâmico em πµν ouΠ que é uma função puramente local do gradiente de velocidade desaparece ou se

manifesta instantaneamente acarretando influências não causais, ocasionando instabilidades numéricas.

Para resolver este problema, deve-se levar em consideração a inclusão de termos de segunda ordem nos

gradientes na implementação de um fluído relativístico dissipativo, obtendo-se equações do tipo de relaxação

para πµν e Π com tempos de relaxação macroscópicos τπ ≡ 2ηα e τΠ = ζβ. Qualitativamente estes tempos
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refletem a diferença de duração entre a manifestação de gradientes termodinâmicos que conduzem o sistema

para fora do equilíbrio local e a consolidação de fluxos dissipativos em resposta a estes gradientes, restaurando

a causalidade.

3.3.2 Teoria Cinética

A teoria cinética se encaixa bem nos estágios finais do plasma, quando o sistema está mais diluído e começa a

hadronização rumo ao congelamento e por fim a detecção da multiplicidade de partículas finais. Este modelo

leva em conta uma ampla gama de possibilidades de interação entre as partículas, podendo ser tanto elásticas

como inelásticas.

As quantidades relevantes para a teoria cinética é a descrição a partir de densidades de partículas no

espaço de fase, que deve ser calculado para cada espécie de partícula embebida no QGP. Essa quantidade é

adimensional e mede o número de partículas de um dado tipo por unidade de espaço de fase dividida pelo

número de escolhas para cada grau de liberdade discreto possível. Tomando o caso dos glúons, que dominam

os estágios iniciais do QGP, tem-se a densidade f ,

f ≡ 1

2(N 2
c −1)

d Ng

d 3xd 3p
. (3.3.11)

Neste caso, 2(N 2
c −1) é o fator de degenerescência para os glúons, de modo que f (p⃗, x⃗, t )d 3xd 3p representa o

número médio de glúons dentro do volume d 3x em torno do ponto x⃗ com um momento entre p⃗ e p⃗ +d 3p no

tempo t . A evolução no tempo da distribuição de um dado conjunto de partículas acontece através da equação

de Boltzmann [78], (
∂

∂t
+ v⃗c ·∇+ F⃗ext ·∇p

)
f (⃗x, p⃗, t ) =C [ f ]. (3.3.12)

Nesta equação, f é a densidade no espaço de fase de um dado tipo de partícula no QGP, v⃗p = p⃗/Ep é a velocidade

dos glúons e F⃗ext é uma força externa genérica.

3.3.3 Alguns Resultados das Teorias Efetivas

A multiplicidade de partículas no estado final da colisão é um ponto chave nas fases em que os processos se

deram, gerando uma miríade de complexidades que variam de jatos hadrônicos aos quarks pesados. Nesta breve

sub-seção, foca-se principalmente nos sucessos obtidos das fases intermediárias descritas pela hidrodinâmica

que inspiram mais confiabilidade por ter o poder de prever resultados desde os primeiros experimentos no

RHIC ao LHC.

Na descrição inicial do estado de interação hadrônica ou nuclear do tipo (A+B) o comprimento de onda

de de Broglie do núcleo incidente é muito menor que as distâncias intra-nucleares do núcleo alvo. Para cada

núcleon incidente, as posições dos núcleons do alvo parecem congeladas no tempo. Após cada colisão núcleon-

núcleon (NN), seja inelástica ou elástica, ambos os núcleons participantes adquirem um momentum transverso

a direção da incidência, que na maioria dos casos é muito pequeno se comparado com a componente longitu-

dinal da mesma grandeza, fazendo com que o os momenta antes e depois da colisão seja aproximadamente

o mesmo pz ≈ p ′
z . Agora, altas energias de incidência junto de pequenos ângulos de espalhamento indicam

uma interação dominada por um grande momentum orbital ℓ. Neste caso, é conveniente realizar modifica-

ções na expansão de ondas parciais da amplitude de espalhamento introduzindo um parâmetro de impacto
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b = (1+ℓ)/p. Nestas circunstâncias entre em cena o modelo que utiliza de aproximações semi-clássicas pro-

posto por Glauber [79], que trata a colisão nuclear como múltipla das NN-interações [80]. Os núcleons que

sofreram pelo menos uma das NN colisões é chamado de participante, e os que não sentiram nenhuma são

os espectadores. O número total de espectadores e participantes segue a regra Nes +Np = A+B . Além disso, é

válida a restrição sob o número de colisões Ncol , que deve condizer com a desigualdade, Ncol ≤ Np /2.

Figura 3.10: A definição da centralidade da multipli-
cidade de partículas carregadas no estado final Nch e
a sua correlação com o parâmetro de impacto médio
〈b〉 e o número médio de núcleos participantes

〈
Np

〉
.

Imagem adaptada da referência [81].

Experimentalmente é medido o número de partículas

carregadas Nch e, grosso modo, os ingredientes do modelo

podem ser arranjados na forma,

d Nch

dδ
∝ (Np ↔ Ncol ) ∝ b → δ. (3.3.13)

Neste diagrama a derivada na esquerda é o observável expe-

rimental, chamada de multiplicidade††, que acaba sendo

proporcional ao número de participantes ou de colisões

segundo o modelo de Glauber. O parâmetro de impacto b

é estabelecido a partir de simulações onde a finalidade é

a determinação da centralidade δ da colisão (Fig. [3.10]).

Agora, uma das previsões mais bem estabelecidas do

comportamento coletivo da matéria criada na colisão de

íons ultra relativísticos ocorre nas colisões não-centrais.

devido a evoluções transversais que ocorrem devido os

gradientes de pressão da anisotropia espacial da densidade

inicial (Fig. [3.11]) [82]. Esta anisotropia é quantificada

pelos coeficientes de Fourier [83],

vn = 〈
cos[n(φ−Ψn)]

〉
, (3.3.14)

com φ representando o ângulo azimutal da partícula, Ψn o ângulo simétrico do plano do estado inicial e n

é a ordem do harmônico. No caso de interesse, uma colisão não-central de íons pesados, o eixo do feixe e o

parâmetro de impacto definem o plano de reação azimutalΨRP . Para um núcleo com uma distribuição suave

de matéria, o plano simétrico é o plano de reação, Ψn =ΨRP , fazendo com que os coeficientes de Fourier

ímpares sejam nulos por simetria.

Contudo, as flutuações na distribuição de matéria faz com que o plano de simetria varie evento por evento

em torno do plano de reação. Este plano é determinado pelos núcleons participantes e é justamente chamado

de plano participante ΨPP [85]. Como os planos de simetria Ψn não são medidos experimentalmente, os

coeficientes do fluxo anisotrópico são estimados a partir de correlações medidas entre as partículas observadas

[86] como na Fig. [3.12], em que o termo dominante v2 é expresso em função de várias energias do centro de

massa do colisor em questão (esquerda) e a para diferentes valores dos momenta transverso para partículas

carregadas.

A partir deste panorama os resultados envolvendo os cálculos da hidrodinâmica tomam espaço pela

capacidade em prever uma viscosidade não nula por unidade de entropia η/s (Fig. [3.13]) relativamente baixa.

††Não se confunde com o conceito de multiplicidade Ω desenvolvido no estudo da entropia, embora este observável também seja
utilizado para estimar a entropia nas colisões.
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Figura 3.11: Um colisão não-central de dois núcleons geram uma região de interação (a) onde a anisotropia espacial da
região gerada ocasiona gradientes de pressão no plano transverso (b). Este processo gera no final uma anisotropia de
momentum nas partículas geradas. Figura reproduzida da referência [84].

Figura 3.12: (Esquerda) Resultados dos dados do coeficiente v2 em respeito a energia do feixe (esquerda), reproduzido da
referência [87]. (Direita) Fluxo elíptico em função dos momenta transverso para partículas carregadas. Reproduzido da
referência [86]

Estes resultados podem ainda ser comparados com os que dizem respeito a trabalhos envolvendo teorias de

campos conformais‡‡ (que não é o caso da QCD). Nestas teorias a variação da ação do sistema em respeito

a métrica adjacente é proporcional ao tensor de stress e uma variação na métrica será proporcional ao traço

do tensor. Como consequência o traço do tensor de stress deve ser nulo e isto nem sempre ocorre, por isso o

fenômeno é chamado de anomalia conformal ou de anomalia de traço. Dessa forma, nesta teoria, η/s deveria

ser a priori 0, mas a anomalia de traço considerando matéria gluônica para termos de ordem η/s =O (0,1−1)

para cálculos numa teoria de calibre com o grupo SU (3) na rede obtém um valor de η/s = 1/4π [88] concordando

com os resultados das simulações da Fig. [3.13].

Ao examinar a expressão [3.3.10], observa-se que a teoria também é capaz de prever o tempo próprio,

que, nas fases de geração do fluxo, corresponde ao tempo de termalização do sistema, τT . O valor obtido é

τT = 1fm/c [7], isto é, na geração do plasma e do fluxo, o sistema é capaz de se organizar e termalizar em um

curto período. Contudo, se for utilizada alguma teoria que leve em conta os efeitos microscópicos do sistema,

como a QCD, não é possível predizer um tempo tão curto, sendo ainda um escopo de estudo em aberto a

respeito do QGP. Fisicamente, este curto tempo de termalização está relacionado com uma criação de entropia

‡‡Teoria quântica de campos que é invariante a uma transformação conformal, que pode ser clássica ou quântica. Esta transformação
é realizada numa métrica arbitraria que é covariante com uma transformação de Weyl (gab → e−2ω(xmu )gab ). No caso quântico esta
invariância inaltera a função de partição Ξ do sistema.
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Figura 3.13: Dados modelados por simulações hidrodinâmicas com valores de η/s numa faixa de [0,08-0,2]. Os dados
representados por pontos pretos são resultados experimentas. Resultados de [89].

abrupta nos estágios iniciais das colisões, sendo o principal objetivo deste trabalho determinar como essa

entropia é gerada. A partir de agora, serão apresentados modelos que buscam cumprir este objetivo, sendo o

primeiro deles a ser abordado a entropia dinâmica dos estados densos da QCD.

3.4 A ENTROPIA DINÂMICA NA QCD

Agora será apresentada a primeira noção de entropia estudada neste trabalho, relacionada aos estados densos

da QCD. Esses estados podem ocorrer em diferentes contextos físicos, mas, em geral, implicam em uma

concentração elevada de glúons e outros pártons nos estágios iniciais de uma colisão. Para uma descrição

adequada, o meio hadrônico é bem explicado pelo CGC, caracterizado pela física de saturação em uma

configuração densa. Esta descrição também pode ser utilizada para colisões p A no regime de altas energias.

Desta forma, estes estados podem ser descritos teoricamente na QCD em um regime de fraco acoplamento por

meio de uma evolução não linear da energia onde as condições iniciais são descritas por um estado denso.

A evolução da QCD ocorre em relação à rapidez, Y , que, com o seu crescimento, aumenta a densidade

de pártons até que o regime de saturação, delimitado por Qs , seja atingido, resultando em um CGC. Sendo

Y =− ln x, a escala de saturação, descrita na Eq. [3.1.25], pode ser escrita como:

Q2
s (Y ) = (x0/x)λ = xλ0 eλY , (3.4.1)

Assim, o estado CGC é caracterizado, entre outras propriedades, por um tamanho transversal limite Rs ∼ 1/Qs .

Portanto, o tamanho Rs do párton diminui conforme a rapidez aumenta. Assim, com o aumento da energia,

a densidade partônica se torna alta o suficiente para que ocorram reações de recombinação envolvendo os

glúons e instaurando o regime de saturação.

Nesta situação, propriedades como o geometric scaling são determinantes, fazendo com que as Distribuições

de Glúons não Integradas (Unintegrated Gluon Distributions, UGD’s), φ(k,Y ), se tornem funções de uma única

variável τ= k2/Q2
s = k2Rs , sendo k2 o módulo quadrado do momentum transverso portado pelos glúons, assim:

φ(k,Y )d 2k ∼φ(τ)R2
s d 2k. (3.4.2)
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Inicialmente, um estado pode ser associado a um valor de rapidez Y1, que, devido à evolução na rapidez no

regime denso, acarretará em um novo valor Y2. Essa evolução descreve como o sistema aumenta sua densidade

de pártons, formando um meio denso de glúons no CGC. Desta forma, o valor inicial, Y1, deve corresponder

a um estado que já possa ser descrito pela física de saturação e, para isso, neste trabalho foi utilizado Y ≈ 4.6

(x = 10−2). Essa transição para um regime de maior densidade implica um comportamento em que os glúons se

ramificam e se recombinam a taxas que se equilibram, caracterizando o estado de saturação. A variação de

rapidez representa um parâmetro dinâmico que altera a energia do sistema. Embora seja um processo fora do

equilíbrio, ele gera um estado de saturação estável, permitindo que o sistema evolua para um meio CGC mais

denso à medida que a energia aumenta com a rapidez.

Na Mecânica Estatística de não Equilíbrio, utilizando a identidade de Hatano-Sasa (Sub-seção [2.7.2]), uma

distribuição de estados estacionários, P (z;λ), pode ser utilizada para descrever a probabilidade de encontrar o

sistema em uma configuração específica no espaço de fase z para um dado valor do parâmetro dinâmico λ.

A transição de λ1 para λ2 representa uma mudança no parâmetro dinâmico ao longo do tempo, resultando

em uma nova configuração de equilíbrio, P2(z;λ2). Na física de altas energias, considerando as seguintes

comparações:

■ A variável do espaço de fase z corresponde ao momento transversal dos pártons k;

■ A variável dinâmica λ corresponde à rapidez Y ;

■ A distribuição dos estados estacionários P (z;λ) corresponde a P (k,Y ).

Desta forma, é possível definir uma distribuição de probabilidades para o momentum transverso dos glúons

P (k,Y ) entre k2 e k2 +d 2k escrita em termos das UGD’s e dada por,

P (k,Y )d 2k = φ(k,Y )∫
φ(k,Y )d 2k

d 2k. (3.4.3)

Esta definição está sujeita a condição de normalização,∫
P (k,Y )d 2k =

∫
P (τ)dτ= 1. (3.4.4)

Utilizando a identidade de Hatano-Sasa (Eq. [2.7.4]), se tem:〈
exp

[
−

∫ Y2

Y1

d

dY
lnP (k,Y )dY

]〉
Y2

=
〈

exp

[
−

∫ Y1

Y1

dP

P (k,Y )

]〉
Y2

=
∫

P (k,Y2)e
− ln

P (k,Y2)
P (k,Y1) d 2k

≡
∫

P (k,Y1)d 2k ≡ 1.

(3.4.5)

Nesta equação, 〈...〉Y2 representa uma média calculada sobre a distribuição de probabilidades no estado Y2 e

o termo
∫ Y2

Y1

d
dY lnP (k,Y )dY refere-se à variação no logaritmo da distribuição de probabilidades ao longo do

intervalo de rapidez de Y1 a Y2. Agora, utilizando argumentos da mecânica estatística, o aumento da rapidez

Y que faz com que o tamanho Rs (Y ) diminua, i.e., Rs (Y1) > Rs (Y2), para Y2 > Y1, pode ser interpretado como

uma compressão. Esta compressão altera a distribuição de probabilidade dos pártons, P (k,Y ), de maneira a

compatibilizar esta distribuição com a identidade de Hatano-Sasa.

Utilizando estes conceitos, é possível a definição da entropia dinâmica da QCD [21], ΣY1→Y2 , num meio

descrito pelo CGC com uma rapidez Y2, provinda da evolução QCD de Y1 → Y2. A entropia dinâmica é definida
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como,

ΣY1→Y2 =
〈

ln
P (k,Y2)

P (k,Y1)

〉
Y2

≡
∫

d 2kP (k,Y2) ln

[
P (k,Y2)

P (k,Y1)

]
. (3.4.6)

Esta grandeza mede a quantidade de desordem criada no meio CGC devido a evolução de rapidez. Percebe-se

que ela é matematicamente equivalente à informação mútua (Eq. [2.6.1]), de forma que transformações de

variáveis envolvendo o geometric scaling τ= k2/Q2
s não irão alterar o valor da entropia dinâmica. Desta forma,

agora serão dispostas algumas das características da entropia dinâmica da QCD, em especial, sua positividade,

relação do geometric scaling em termos da Mecânica Estatística de não Equilíbrio e a entropia dinâmica de um

estado CGC.

3.4.1 Positividade da Entropia Dinâmica da QCD

Inicialmente, considera-se a Desigualdade de Jensen, que é um resultado fundamental que se aplica a funções

convexas. Em termos simples, ela afirma que para uma função convexa e uma variável aleatória X , a média da

função é sempre maior ou igual a função da média, isto é:

e〈X 〉 ≤ 〈
e X 〉

. (3.4.7)

Desta desigualdade, se tem:

lne〈X 〉 ≤ ln
〈

e X 〉
, ∴ 〈X 〉 ≤ ln

〈
e X 〉

. (3.4.8)

Utilizando X =− lnP (k,Y2)/P (k,Y1), é possível relacionar este resultado com a entropia dinâmica, pois:

ΣY1→Y2 =
〈

ln
P (k,Y2)

P (k,Y1)

〉
Y2

≥− ln

〈
e
− ln

[
P (k,Y2)
P (k,Y1)

]〉
Y2

,

=− ln
∫

d 2kP (k,Y2)
P (k,Y1)

P (k,Y2)
=− ln

∫
d 2kP (k,Y1)︸ ︷︷ ︸

1

= 0.
(3.4.9)

Isto, para todo Y2 ≤ Y1, de forma que a condição de positividade é obtida para qualquer aumento de rapidez.

3.4.2 Geometric scaling em Termos da Termodinâmica de Não-Equilíbrio

Considerando, τn = k2/Q2
s (Yn) e Rn = R2

s (Yn), a Eq. [3.4.5] vai ser escrita em termos da variável de escala τ. Para

isso, utilizando a condição de normalização da Eq. [3.4.3]:

P (k,Y ) = φ(k,Y )∫
φ(k,Y )d 2k

= φ(τ)R2
s∫

φ(τ)R2
s d 2k

= R2
s

π
P (τ). (3.4.10)

Nesta equação foi utilizada a substituição de variáveis dτ= dk2kR2
s . Agora, avaliando a identidade de Hatano-

Sasa na QCD (Eq. [3.4.5]) em termos da variável de escala τ:

〈
exp

[
− ln

P (k,Y2)

P (k,Y1)

]〉
Y2

=
〈

exp

[
− ln

P (τ2)R2
2

P (τ1)R2
1

]〉
Y2

=
∫

d 2kP (k,Y2)︸ ︷︷ ︸
1

e
− ln

R2
2

R2
1 = e

− ln
R2

2
R2

1 . (3.4.11)
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Ou seja: 〈
exp

[
− ln

P (τ2)R2
2

P (τ1)R2
1

]〉
Y2

= e
− ln

R2
2

R2
1 . (3.4.12)

Esta equação pode ser relacionada com a identidade de Jarzinsky (Eq. [2.7.2]). Esta identidade conecta a

distribuição estocástica dos trabalhos termodinâmicos no processo A → B ao balanço de energia livre ∆F

entre dois estados de equilíbrio A → C . Uma característica interessante é que a quantidade de trabalho

dissipativo WDif ≡W −∆F , realizada durante o processo A → B , é então relacionada à produção de entropia

∆S = 〈W 〉−∆F
T ≥ 0, caso o estado B consiga relaxar para a temperatura T , mantendo o parâmetro de condução

constante.

Ao comparar a identidade de Jarzinsky com a Eq. [3.4.12], percebe-se que a expressão ln
R2

2

R2
1

corresponde ao

logaritmo da razão do espaço de fase disponível para as dimensões R2
2 em relação a R2

1 . Esse termo representa a

mudança na energia livre de uma partícula de um gás ideal contido em uma "caixa"bidimensional quando seu

tamanho é reduzido de R1 para R2 < R1. Assim, uma interpretação termodinâmica da relação da QCD obtida

na Eq. [3.4.12] é que a modificação da rapidez total Y1 → Y2 induz uma modificação no conjunto de estados

do CGC com um tamanho de saturação reduzido R2, resultando em uma entropia eventualmente gerada pela

posterior relaxação.

Esta análise leva às seguintes comparações heurísticas entre as variáveis da entropia dinâmica e as variáveis

termodinâmicas:

ln
P (τ2)R2

2

P (τ1)R2
1

→ W

T
,

ln
R2

2

R2
1

→ ∆F

T
,

ln
P (k,Y2)

P (k,Y1)
→ W −∆F

T
≡ WDif

T
,

ΣY1→Y2 =
〈

ln
P (k,Y1)

P (k,Y2)

〉
Y2

→∆S.

(3.4.13)

onde ∆S, no contexto termodinâmico, é a produção de entropia (pelos graus de liberdade dos glúons) devida à

compressão R1 → R2 quando o sistema relaxa para um estado à mesma temperatura T inicial, mas dentro do

domínio restrito de tamanho R2.

3.4.3 Entropia Dinâmica de um Estado CGC

Considerando a evolução Y1 → Y2 e R1 → R2, a adição das contribuições individuais no cálculo da densidade de

entropia dinâmica dS/d y para um estado final CGC será a soma sobre todos os graus de liberdade, chamado

de multiplicidade de cor N 2
c −1 e o número de ocupação dos glúons no espaço de coordenadas longitudinal

∼ 1/4πNcαs . Para os graus de liberdade transversais, é preciso tomar conta do número médio de "células

transversas"R2
T /R2

2 com uma rapidez inicial Y1, sendo RT o tamanho do alvo hadrônico e o número médio de

graus de liberdade dos glúons dentro de uma célula µ. Desta forma, obtém-se a expressão,

dS

d y
= CF

2παs

R2
T

R2
1

µΣY1→Y2 . (3.4.14)
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Neste estudo, desconsideram-se os fatores de correção devido aos efeitos das correlações gluônicas, conside-

rando a aproximação com o gás ideal.

Quanto ao número médio de graus de liberdade dos glúons, µ, é possível utilizar modelos gaussianos para a

UGD no CGC, como o da referência [61], para obter a dS/d y e comparar o resultado com a expressão (25) obtida

no trabalho [90], em que a saturação relacionada a esta UGD permite a introdução da entropia termodinâmica

com Q2
s (Y ) = 2πT . A partir dessa relação, o número médio de graus de liberdade gluônicos é identificado como

µ= 3π
2 , sendo este o valor a ser utilizado nesta tese.
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Entropia de Emaranhamento

Neste capítulo, será abordada a produção de entropia devido ao fenômeno do emaranhamento quântico. Para

compreender como esse fenômeno está relacionado à criação de entropia na física de altas energias, ele será

brevemente introduzido, com ênfase em suas principais características.

Na sequência, a entropia de emaranhamento será definida, assim como um conjunto de estratégias que

podem ser utilizadas para sua obtenção. Por fim, serão apresentados os cálculos de entropia de emaranhamento

em três situações envolvendo a física de altas energias: (1) emaranhamento entre as regiões espaciais medidas

e não medidas em um DIS; (2) emaranhamento entre partículas incidentes e espalhadas em colisões elásticas; e

(3) emaranhamento entre quarks de valência e wee pártons no CGC.

4.1 EMARANHAMENTO QUÂNTICO

Em 1935, A. Einstein, B. Podolski e N. Rosen publicaram um artigo contestando a completude da Mecânica

Quântica [91]. Nesta publicação, os físicos propuseram um experimento mental chamado paradoxo EPR, que

tinha como principal objetivo provar que a única interpretação sustentável no universo quântico é a realista*

em contraste total com a escola de Copenhague†.

David Bohm propôs uma simplificação do paradoxo EPR, que se foca no processo de medição do spin de

uma partícula. Nesta formulação, é considerado o decaimento do méson pi em um elétron e em um pósitron,

π0 → e−+e+

Se o píon está em repouso, o elétron e o pósitron se movem em direções opostas, devido à conservação do

momentum linear. Além disso, o píon tem spin 0, de forma que a conservação do momentum angular exige que

o pósitron e o elétron estejam na configuração singleto.

Sendo assim, se o elétron possuir spin para cima, o pósitron possui spin para baixo, e vice-versa. O corpo

teórico da mecânica quântica é incapaz de prever qual combinação é obtida em uma medição; ele apenas

*Nesta interpretação, a medida em um sistema quântico reflete o estado físico do sistema exatamente antes de sua realização. Se esta
interpretação for correta, então a mecânica quântica é uma teoria incompleta, pois ‘falha’ na determinação da medida, uma vez que a
teoria prevê apenas probabilidades.

†Também chamada de interpretação ortodoxa. Nela, afirma-se que, antes da medida, o sistema físico não estava em nenhum estado
definido, mas sim em uma superposição de estados. O ato de medir faz o sistema ‘optar’ entre este ou aquele estado superposto, isto é,
‘força’ a natureza a decidir o estado.
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prevê que, na média, se tem metade de cada caso. Nesse experimento, a distância que as partículas percorrem

é arbitrária, ou seja, ao medir o spin do elétron, para cima, por exemplo, determina-se o spin do pósitron,

para baixo, via conservação do momentum angular, sem inferir a esta segunda partícula nenhum processo de

medição, esteja ela a metros ou a anos-luz de distância.

Agora, o argumento da escola realista com esse experimento é de que o elétron realmente possuía spin

para cima (e para baixo no caso do pósitron), no momento em que foram criados, e a interpretação ortodoxa

desse problema teria um custo: para que a conservação do momentum angular fosse respeitada, o colapso da

função de onda, pelo experimentador que realizou a medição do spin do elétron, deveria se mover com uma

velocidade maior do que a da luz, o que Bohm chamou mais tarde de não localidade. Uma vez que a teoria

quântica não prevê o resultado de uma medição com precisão e a localidade não era verificada, os autores do

experimento EPR afirmavam que a mecânica quântica, na sua forma atual, era incompleta.

A mecânica clássica também assume alguns aspectos estatísticos bem comportados. Por exemplo, ao lançar

ao ar uma moeda não viciada, tem-se igual probabilidade de obter cara ou coroa; entretanto, sabendo a força

aplicada na moeda, a aceleração da gravidade no local, a viscosidade do ar, a altura em que se encontra a moeda

e a temperatura do ar, entre outras variáveis, é possível determinar com precisão a face revelada pela moeda ao

tocar o chão. O análogo dessas variáveis extras, no regime quântico, é chamado de variáveis ocultas.

O decaimento analisado neste experimento é o mais tradicional exemplo de um fenômeno puramente

quântico, o emaranhamento [92], que ocorre entre o elétron e o pósitron. Ele consiste na descrição de um

sistema quântico composto por duas ou mais partículas, em que a caracterização definida de um de seus entes

revela a dos demais de forma inseparável e independentemente da distância que os separa, justamente como

ocorre no paradoxo EPR. Atualmente, o fenômeno é a chave por trás de pesquisas relacionadas à criptografia

baseada nas desigualdades de Bell [92–94], teletransporte [95], entre outras aplicações.

4.1.1 A Caracterização do Emaranhamento a Partir da Função de Estado

O emaranhamento quântico é uma característica própria de sistemas compostos. Desta forma, para que exista

emaranhamento, deve existir uma divisão do sistema total em, no mínimo, dois subsistemas. Ou seja, o espaço

de Hilbert total H também poderá ser subdividido. No caso mais simples, em que a subdivisão se dá em dois

subespaços, o estado composto total
∣∣ψ〉 ∈H poderá ser representado em relação ao conjunto dos autovetores

dos subespaços A e B , com |ai 〉 ∈HA e |bi 〉 ∈HB , de forma que o espaço total é H =HA ⊗HB . Assim, o estado

físico
∣∣ψ〉

de um sistema composto pode ser escrito como:

∣∣ψ〉=∑
i ,k

ci k |ai 〉⊗ |bk〉 , (4.1.1)

Um estado físico
∣∣ψ〉

em H =HA ⊗HB é chamado de separável quando pode ser escrito como o produto

direto dos estados dos subsistemas A e B . Em outras palavras,
∣∣ψ〉

é separável se existem estados
∣∣φA

〉 ∈HA e∣∣φB
〉 ∈HB tais que: ∣∣ψ〉= ∣∣φA

〉⊗ ∣∣φB
〉=∑

i
αi |ai 〉⊗

∑
k
βk |bk〉 . (4.1.2)

Aqui, os coeficientes ci k podem ser fatorados como ci k =αiβk , onde αi e βk são as amplitudes associadas aos

estados |ai 〉 e |bk〉, respectivamente. Por exemplo, considerando o seguinte estado físico:

∣∣ψ〉= (
1p
2
|a1〉+ 1p

2
|a2〉

)
⊗|b1〉 . (4.1.3)
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Neste caso, o estado de A está em uma superposição de |a1〉 e |a2〉, enquanto o estado de B é fixo em |b1〉. Os

coeficientes ci k são:

ci k =


1p
2

, se i = 1 ou i = 2 e k = 1,

0, caso contrário.
(4.1.4)

Embora o estado de A seja uma superposição, o estado total ainda é separável, pois não há dependência entre

os subsistemas A e B . Desta forma, a composição é uma condição necessária para o emaranhamento, mas ela

não é suficiente.

Para que exista emaranhamento, uma condição suficiente e necessária é que o estado seja não separável,

também chamado de emaranhado. Neste caso, será qualquer estado em que a representação da Eq. [4.1.2] não

se verifique, i.e.: ∣∣ψ〉 ̸=∑
i
αi |ai 〉⊗

∑
k
βk |bk〉 . (4.1.5)

Considerando o caso do decaimento do píon discutido no começo desta seção, a única configuração possível do

estado físico do sistema,
∣∣ψ〉

, antes de uma medição é o singleto. Etiquetando com o subscrito A as quantidades

inerentes ao elétron e B para o pósitron, então, a Eq. [4.1.1] toma a forma:

∣∣ψ〉= c12 |a1〉⊗ |b2〉+ c21 |a2〉⊗ |b1〉 . (4.1.6)

A função de onda tem que estar normalizada, |c12|2 +|c21|2 = 1. Além disso, realizando a imposição de que

|c12|2 = |c21|2, tem-se c12 = c21 =±1/
p

2, ou seja:

∣∣ψ〉= 1p
2

(|a1〉⊗ |b2〉− |a2〉⊗ |b1〉) . (4.1.7)

Esta equação diz que, após o decaimento do píon, ao ser realizada a medida da direção do spin do elétron, a

do pósitron é definida instantaneamente, i.e., a medição do estado |a1〉 ∈HA revela a configuração do estado

|b2〉 ∈HB , sem que este tenha sido submetido ao processo de medida.

4.1.2 A Matriz Densidade Reduzida

A matriz densidade de um estado emaranhado ρ̂ é dada por:

ρ̂ = ∑
i , j ,k,l

ci k c∗j l |ai 〉
〈

a j
∣∣⊗|bk〉〈bl | , (4.1.8)

O método utilizado para extrair a informação do sistema contida no subespaço HA , a partir da matriz densidade

ρ̂, é o traço parcial, realizado em relação à base de HB e que resultará na matriz densidade reduzida ρ̂A :

ρ̂A = TrB [ρ̂] =∑
r
〈br | ρ̂ |br 〉 . (4.1.9)

Grosso modo, esta operação é o análogo à integração em uma variável específica, por exemplo, x, de uma

função de duas variáveis ρ = ρ(x, y):

ρ′(y) =
∫

d xρ(x, y). (4.1.10)

Assim, é possível determinar a matriz densidade reduzida, ρ̂A ou ρ̂B , a partir de ρ̂A,B = TrB ,A[ρ̂].

65



Capítulo 4. Entropia de Emaranhamento

De forma geral, a matriz densidade de um estado emaranhado será dada pela expressão:

ρ̂A = trB ρ̂ =∑
m

〈bm | ∑
i , j ,k,l

ci j c∗kl |ai 〉〈ak |⊗
∣∣b j

〉〈bl |bm〉︸ ︷︷ ︸
δlm

= ∑
i , j ,k,l

ci j c∗kl |ai 〉〈ak |⊗
∑
m

〈
bm

∣∣b j
〉
δlm

= ∑
i , j ,k,l

ci j c∗kl |ai 〉〈ak |δl j .

(4.1.11)

Sendo assim:

ρ̂A = ∑
i , j ,k

ci j c∗k j |ai 〉〈ak | . (4.1.12)

Desta expressão, sabe-se que |ai 〉〈ak | ∈ HA ; contudo, se o estado está emaranhado, as constantes ci j c∗k j

carregam informação do estado HB contida no subespaço A.

Por exemplo, a matriz densidade do estado singleto é dada por:

ρ̂ = 1

2

(
|a1〉⊗ |b2〉〈a1|⊗〈b2|− |a1〉⊗ |b2〉〈a2|⊗〈b1|

− |a2〉⊗ |b1〉〈a1|⊗〈b2|+ |a2〉⊗ |b1〉〈a2|⊗〈b1|
)
.

(4.1.13)

Considerando a seguinte representação:

|a1〉 ≡
[

1

0

]
, |a2〉 ≡

[
0

1

]
, |b1〉 ≡

[
1

0

]
, |b2〉 ≡

[
0

1

]
. (4.1.14)

A matriz densidade do estado singleto é dada por,

ρ̂ = 1

2


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

 . (4.1.15)

Assim, a matriz densidade reduzida do sub-espaço A é:

ρ̂A = TrB [ρ̂] = 1

2
12. (4.1.16)

Sendo 12 a matriz identidade bidimensional.

Por fim, é possível utilizar o procedimento de Gram-Schmidt (apêndice B) no estado emaranhado dado pela

Eq. [4.1.1]. A aplicação desta técnica permite uma forma matemática mais simples ao custo da realização de

uma troca de bases. Isto posto, o estado emaranhado é dado por:

∣∣ψ〉=∑
i
αi

∣∣φA
i

〉⊗ ∣∣φB
i

〉
, (4.1.17)

com
∣∣φA

i

〉 ∈HA e
∣∣φB

i

〉 ∈HB . Assim, é possível reescrever a matriz densidade total como:

ρ̂ = ∑
n,m

αnα
∗
m

∣∣φA
n

〉〈
φA

m

∣∣⊗ ∣∣φB
n

〉〈
φB

m

∣∣ . (4.1.18)
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A matriz densidade reduzida ρ̂A será dada por:

ρ̂A = TrB ρ̂ =∑
s

〈
φB

s

∣∣ ∑
n,m

αnα
∗
m

∣∣φA
n

〉〈
φA

m

∣∣⊗ ∣∣φB
n

〉〈
φB

m

∣∣φB
s

〉︸ ︷︷ ︸
δms

. (4.1.19)

Similarmente às operações realizadas na Eq. [4.1.11], a matriz densidade reduzida pode ser expressa como:

ρ̂A =∑
n
α2

n

∣∣φA
n

〉〈
φA

n

∣∣ . (4.1.20)

Além disso, a partir da Eq. [4.1.17], se tem para ρ̂B :

ρ̂B =∑
n
α2

n

∣∣φB
n

〉〈
φB

n

∣∣ . (4.1.21)

4.2 A ENTROPIA DE EMARANHAMENTO

A Entropia de Emaranhamento é dada por:

S(ρ̂A) =−Tr
[
ρ̂A ln ρ̂A

]
. (4.2.1)

Ou seja, é a expressão matemática da entropia de von Neumann (Eq. [2.5.14]) em que é utilizada a matriz

densidade reduzida ρ̂A em detrimento da matriz densidade total ρ̂. Desta forma, a entropia de emaranhamento

também pode ser calculada a partir da entropia de Shannon:

S(pn) =−∑
n

pn ln pn . (4.2.2)

Nesta equação, pn =α2
n , obtido da Eq. [4.1.20].

A entropia de emaranhamento é uma medida dos graus de emaranhamento do sistema. Portanto, quanto

maior for a entropia, mais emaranhado está o sistema. Desta forma, a entropia de emaranhamento em relação

ao subestado A, S(ρ̂A), é idêntica à entropia de emaranhamento em relação ao subestado B , S(ρ̂B ):

S(ρ̂A) =−Tr
[
ρ̂A ln ρ̂A

]=−∑
n
|αn |2 ln |αn |2 =−Tr

[
ρ̂B ln ρ̂B

]= S(ρ̂B ). (4.2.3)

Isto se dá, pois, como esta entropia mede o grau de emaranhamento entre os dois subsistemas, se for avaliada

em A, ela deve ter o mesmo resultado que em B , uma vez que ela não mede características internas aos

subconjuntos, mas sim o quanto eles estão relacionados.

Por exemplo, o estado singleto, com uma matriz densidade reduzida descrita na expressão [4.1.16], tem

uma entropia de emaranhamento tal que:

S(12/2) =−1

2
Tr

[
12 ln

12

2

]
. (4.2.4)

Para calcular a entropia de emaranhamento, geralmente os problemas se resumem em calcular o logaritmo do
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operador. Neste caso, ele tem uma resolução simples:

ln ρ̂A =−12

∞∑
n=1

1

n2n =−12 ln2. (4.2.5)

Ou seja, a entropia de emaranhamento do estado singleto é dada por:

S(12/2) = ln2

2
Tr[12] = 1bit. (4.2.6)

Neste caso, a entropia é máxima, e se diz que o sistema está maximamente emaranhado. Isto ocorre, pois,

ao se determinar em qual estado o sistema está em A, automaticamente toda a informação de B será obtida

(Fig. [4.1]).

Figura 4.1: Emaranhamento máximo no estado singleto. Ao realizar uma medida em A, o observador sabe toda a informação
de B .

Nem sempre esta relação é máxima. Para verificar isso, será considerado agora o estado emaranhado |W 〉:

|W 〉 = 1p
3

(|1〉A |0〉B |0〉C +|0〉A |1〉B |0〉C +|0〉A |0〉B |1〉C ) . (4.2.7)

Este estado está dividido em três subconjuntos, de forma que |0〉A , |1〉A ∈HA , |0〉B , |1〉B ∈HB e |0〉C , |1〉C ∈HC .

Fisicamente, ele pode representar o caso em que um quanta é distribuído em um conjunto de três partículas

idênticas e emaranhadas, onde |1〉 representa a partícula no primeiro nível excitado e |0〉 representa a partícula

no nível fundamental.

A matriz densidade reduzida é dada por:

ρ̂A = TrBC ρ̂ = 1

3
|1〉A 〈1|A + 2

3
|0〉A 〈0|A . (4.2.8)

Calculando a entropia de emaranhamento, percebe-se que ela não é máxima:

S(ρA) =−
(

1

3
ln

1

3
+ 2

3
ln

2

3

)
≈ 0.92bits. (4.2.9)

A Fig. [4.2] auxilia na interpretação deste resultado. Para isso, considera-se duas hipóteses: (I.) O observador,

tendo acesso apenas ao subespaço A, mede a energia e encontra o autovalor que corresponde ao estado |1〉.
Neste caso, ao realizar a medição em A, ele sabe que os subespaços B e C devem estar no estado |0〉; na hipótese

(II.), o observador mede o estado |0〉 para a partícula A. Neste caso, ele não sabe dizer em quais estados estão as

partículas dos subespaços B e C , de forma que elas continuam em um estado de superposição. Perceba que no

caso do singleto esta ambiguidade não é verificada.
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Figura 4.2: Emaranhamento entre os estados dos subconjuntos A, B e C : (I.) Se em A o estado é |1〉, automaticamente
sabe-se que em B e C o estado é |0〉. (II.) Ao medir |0〉 em A, não é possível saber a configuração de B e C .

Existem algumas estratégias úteis para calcular a entropia de emaranhamento. A primeira delas é obter

a distribuição de probabilidades pn do conjunto emaranhado e então utilizar a entropia de Shannon, dada

pela expressão [4.2.2] e vinculada ao emaranhamento a partir de pn = |αn |2. A segunda estratégia é avaliar a

definição da função logarítmica, de forma que se tem:

ln ρ̂A = lim
ϵ→0

1

ϵ

(
ρ̂ϵA −1d

)
. (4.2.10)

Na equação acima, 1d é o operador identidade em um espaço de dimensão d , equivalente à dimensão do

subespaço A. Substituindo esta expressão na definição da entropia de emaranhamento:

S(ρ̂A) = lim
ϵ→0

1

ϵ

(
1−Tr

[
ρ̂1+ϵ

A

])
. (4.2.11)

A entropia de emaranhamento de Rényi é dada pela expressão:

S(ρ̂A) = 1

1−α lnTr
[
ρ̂αA

]
. (4.2.12)

Em alguns casos, é mais fácil obter uma expressão para a entropia de Rényi. Desta forma, é possível utilizar o

fato de que esta entropia recai na expressão de von Neumann quando α→ 1. Portanto:

lim
α→1

1

1−α lnTr
[
ρ̂αA

]=−Tr
[
ρ̂A ln ρ̂A

]= S(ρ̂A). (4.2.13)

Sumariamente, nesta tese serão apresentadas três estratégias para o cálculo da entropia de emaranhamento:

■ Estratégia I: Obter uma expressão para pn e então calcular a entropia de emaranhamento de Shannon

dada pela Eq. [4.2.2], sujeita ao vínculo pn = |αn |2, obtido na Eq. [4.1.20];

■ Estratégia II: Obter uma expressão para Tr
[
ρ̂1+ϵ

A

]
, substituir na Eq. [4.2.11] e então calcular o limite em
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que ϵ→ 0;

■ Estratégia III: Encontrar a entropia de emaranhamento de Rényi dada pela expressão [4.2.12] e então

calcular o limite em que α→ 1 para encontrar a entropia de emaranhamento.

Na sequência, estas estratégias serão utilizadas em três modelos distintos de entropia de emaranhamento na

física de altas energias. A Estratégia I será utilizada para calcular a entropia de emaranhamento em um DIS

utilizando o Modelo de Kharzeev-Levin (KL) [22]. Na sequência, a partir de uma expressão para a entropia de

Rényi, será obtida a entropia de emaranhamento em colisões elásticas, confirmando o programa da Estratégia

II. Por fim, será utilizada a Estratégia III para calcular a entropia de emaranhamento no CGC.

4.3 ENTROPIA DE EMARANHAMENTO NO MODELO KHARZEEV-LEVIN

O Modelo KL [22] considera o emaranhamento quântico em um DIS. Para isso, considera-se duas regiões

espaciais: A, sendo a região sondada pelo DIS com um espaço de Hilbert HA , e B , a região não sondada. Neste

modelo, os estados físicos em A estão emaranhados com os de B . A partir disso, é possível caracterizar a função

de onda emaranhada a partir da Eq. [4.1.17].

No modelo de dipolos, a equação de evolução do sistema adequada é a BK (Apêndice C), de forma que,

aplicando o programa da Estratégia I, é possível compatibilizar uma expressão de pn com a Eq. BK. Além disso,

em um DIS, a região sondada A tem o seu tamanho determinado por uma área transversa da ordem de ∼ 1/Q2.

Segundo a referência [96], o emaranhamento entre as regiões A e B será estabelecido pela presença de dipolos

de cor na fronteira entre as duas regiões (Fig. [4.3]).

Figura 4.3: Regiões sondadas em um DIS e sua dependência com as escalas 1/x e 1/Q. Adaptado de [96].

Desta forma, nas próximas subseções, serão apresentadas as formas de se obter pn para calcular a entropia

de emaranhamento no Modelo KL em dois casos, (1+1)-dimensional e (3+1)-dimensional, que descrevem o

problema dos dipolos inicialmente com apenas uma dimensão espacial e com três dimensões, respectivamente.
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4.3.1 Entropia de Emaranhamento: Modelo (1 + 1)-dimensional

A evolução das distribuições partônicas pode ser modelada na representação de dipolo [22], onde os pártons

são representados por um conjunto de dipolos de cor. No modelo (1+1)-dimensional, depende-se apenas de

uma direção espacial e da rapidez Y . Sendo assim, é negligenciada a informação de que dipolos diferentes

possuem tamanhos distintos.

A partir disso, são consideradas as seguintes definições:

■ pn(Y ): Probabilidade de encontrar n dipolos com rapidez Y ;

■ ω0: Probabilidade constante de um dipolo decair em dois.

A equação que relaciona a variação da probabilidade com a rapidez‡ é dada por:

d pn

dY
=−ω0npn + (n −1)ω0pn−1. (4.3.1)

O primeiro termo no lado direito da Eq. [4.3.1] refere-se à diminuição da probabilidade de encontrar n dipolos

frente à divisão dos mesmos em n +1 dipolos, enquanto o segundo trata do crescimento devido à divisão de

n −1 dipolos em n.

Além do modelo de dipolos de cor, é introduzida a função geratriz (ou geradora) G(Y ,u) com a finalidade de

resolver o problema. Esta técnica de resolução foi primeiramente utilizada por A. Mueller em [97]. Desta forma,

tem-se:

G(Y ,u) =
∞∑

n=1
pnun . (4.3.2)

Diferentemente das séries infinitas utilizadas recorrentemente, as funções geratrizes podem divergir, signifi-

cando que G(Y ,u) nem sempre é a função verdadeira, e a variável que ser quer encontrar na realidade pode ser

indeterminada.

Uma das condições de contorno para o problema é o caso em que u = 1:

G(Y ,1) =
∞∑

n=1
pn1n =

∞∑
n=1

pn = 1. (4.3.3)

Além disso, para Y = 0, tem-se P1(0) = 1 (um único dipolo) e Pn>1 = 0, indicando um estado puro. Disto,

obtêm-se completamente as condições de contorno:G(0,u) = u;

G(Y ,1) = 1.
(4.3.4)

É necessário conectar o formalismo da função geratriz com a evolução de pn(Y ) [4.3.1]. Para isso, são

consideradas as derivadas:
∂

∂Y
G(Y ,u) =

∞∑
n=1

[(
d pn

dY

)
un

]
, (4.3.5)

e
∂

∂u
G(Y ,u) =

∞∑
n=1

pnnun−1. (4.3.6)

‡Também se relaciona com a energia, pois tem-se a expressão eω0Y = x−ω0 .
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Substituindo [4.3.1] em [4.3.5]:

∂

∂Y
G(Y ,u) =ω0

∞∑
n=1

[−npn(Y )+ (n −1)pn−1
]

un ,

=−ω0

∞∑
n=1

npnun

︸ ︷︷ ︸
u ∂
∂u G(Y ,u)

+ω0

∞∑
n=1

(n −1)pn−1un , (4.3.7)

Para o segundo termo da Eq. [4.3.7]:

∞∑
n=1

(n −1)pn−1un =︸︷︷︸
n−1=m

∞∑
m=0

mpmum+1 = 0+
∞∑

m=1
mpmum+1 = u2 ∂

∂u
G(Y ,u). (4.3.8)

Observando [4.3.7] e [4.3.8], percebe-se que a evolução partônica no modelo de dipolos de cor com a função

geratriz é modelada pela equação diferencial parcial:

∂

∂Y
G(Y ,u) =ω0u(u −1)

∂

∂u
G(Y ,u). (4.3.9)

A solução geral desta equação, para as condições [4.3.4], é dada por:

G(Y ,u) = ue−ω0Y

1+u(e−ω0Y −1)
= ue−ω0Y 1

1+u(e−ω0Y −1)︸ ︷︷ ︸ . (4.3.10)

Agora, o termo destacado em [4.3.10], considerando |u(1−e−ω0Y )| < 1, se tem:

1

1+u(e−ω0Y −1)
=

∞∑
j=0

u j [1−e−ω0Y ] j =︸︷︷︸
j+1=n

∞∑
n=1

un−1(1−e−ω0Y )n−1. (4.3.11)

Ou seja, é possível escrever a solução geral na forma:

G(Y ,u) = e−ω0Y
∞∑

n=1
(1−e−ω0Y )n−1un . (4.3.12)

Comparando a equação [4.3.12] com a definição da função geratriz em [4.3.2], é determinada a probabilidade

pn(Y ):

pn(Y ) = e−ω0Y (1−e−ω0Y )n−1. (4.3.13)

Substituindo pn(Y ) obtido em [4.3.13] na expressão da entropia de emaranhamento [4.2.1]:

S(Y ) =−∑
n

{
e−ω0Y (1−e−ω0Y )n−1 ln

[
e−ω0Y (1−e−ω0Y )n−1]}

=−e−ω0Y
∑
n

{
(1−e−ω0Y )n−1 ln

[−ω0Y + (n −1)ln
(
1−e−ω0Y )]}

=ω0Y
∑
n

e−ω0Y (1−e−ω0Y )n−1︸ ︷︷ ︸
pn

−∑
n

e−ω0Y (1−e−ω0Y )n−1(n −1)ln
(
1−e−ω0Y )

=ω0Y
∑
n

pn︸ ︷︷ ︸
1

+ ln
(
1−e−ω0Y )n−1

∑
n

e−ω0Y (1−e−ω0Y )n−1︸ ︷︷ ︸
pn

−∑
n

n e−ω0Y (1−e−ω0Y )n−1︸ ︷︷ ︸
pn

 .

(4.3.14)
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Ou seja:

S(Y ) =ω0Y + ln
(
1−e−ω0Y )

(1−∑
n

npn). (4.3.15)

No limite de interesse, que é o das altas energias, Y →∞. Logo:

lim
Y →∞

ln
(
1−e−ω0Y )= 0. (4.3.16)

Então, a entropia toma a forma simples:

S(Y ) ≈ω0Y . (4.3.17)

É possível relacionar a entropia obtida com a densidade de glúons. Para isso, se define o número médio de

pártons como§:

〈n〉 ≡ x fg (x), (4.3.18)

Nessa expressão x fg (x) é a distribuição dos glúons para um dado valor de x possibilitando à avaliação da

entropia por unidade de rapidez. Assim,

x fg (x) = 〈n〉 =
∞∑

n=0
npn . (4.3.19)

A distribuição aparece no termo na extrema direita de [4.3.15], para ele,

∞∑
n=0

npn = e−ω0Y
∞∑

n=1
n(1−e−ω0Y )n−1,

= 1

ω0

d

dY

∞∑
n=1

(1−e−ω0Y )n .

(4.3.20)

Então, para |1−e−ω0Y | < 1, tem-se,

∞∑
n=1

npn = 1

ω0

d

dY

1

1− (1+e−ω0Y )
= eω0Y . (4.3.21)

Agora, para grandes valores de x, mais precisamente, no regime em que x ≫ 1, a rapidez Y relaciona-se

com a escala de Bjorken na forma de Y =− ln x. Somando esta informação aos resultados das Equações [4.3.21]

e [4.3.19], obtém-se:

x fg (x) = eω0Y . (4.3.22)

Assim, a entropia de von Neumann no limite assintótico é dada por:

S(x) = ln[x fg (x)]. (4.3.23)

Nota-se que, para o regime de pequeno x, a entropia [4.3.23] emerge para o limite onde todas as probabili-

dades pn tornam-se equiprováveis. Observando a Eq. [4.3.13] nestas circunstâncias, tem-se a equipartição

probabilística:

pn = e−ω0Y = 1

〈n〉 . (4.3.24)

§Atualmente, o estado da arte propõem que o número de partículas 〈x〉 = x fg (x)+x fsea(x), em que x fsea(x) é a PDF dos quarks de mar.
Contudo, esta contribuição não será considerada neste trabalho. Para uma discussão, considerar as referências [96] e [98].

73



Capítulo 4. Entropia de Emaranhamento

Os postulados da mecânica estatística de equilíbrio acarretam na maximação da entropia, logo, a equação

[4.3.24] descreve um estado físico maximamente emaranhado, ou seja, em um estado hadrônico desta natureza,

é impossível prever quantos pártons serão detectados, uma vez que todos os microestados são igualmente

prováveis.

Figura 4.4: Representação dos estados quânticos equiprováveis na entropia de emaranhamento de von Neumann para os
pártons no modelo (1+1). Inicialmente, em baixas energias, o hádron pai não apresenta estrutura interna, e o espalhamento
pode ser analisado a partir da QED. Conforme aumenta-se a energia, diminuindo o comprimento de onda do fóton virtual,
a estrutura interna se revela. O caso se torna maximamente entrópico no limite das altas energias, onde não mais é possível
estabelecer qual será o estado final do sistema, maximizando o caos.

4.3.2 Entropia de Emaranhamento: Modelo (3 + 1)-dimensional

O caso (3+1)-dimensional traz consigo severas complicações: agora se consideram os graus de liberdade

transversais, o tamanho dos dipolos e o vetor parâmetro de impacto b⃗. Inicialmente, são definidas as variáveis:

{a⃗i } = a⃗1, a⃗2, ..., a⃗i ;

b⃗in = b⃗i + 1

2
r⃗i = b⃗n − 1

2
r⃗i .

(4.3.25)

A equação da cascata partônica para o caso (3+1) é dada por:

∂

∂Y
Pn(Y , {⃗bn , r⃗n}) =−

n∑
i=1

ωG (ri )Pn(Y , {⃗bn , r⃗n})

+ ᾱs

2π

n−1∑
i=1

(⃗ri + r⃗n)2

r 2
i r 2

n
Pn−1(Y , r⃗ , b⃗; r⃗1, b⃗1, ..., (⃗ri + r⃗n), b⃗in, ..., r⃗n−1, b⃗n).

(4.3.26)

Nesta equação, ᾱs = Ncαs /π. No caso (3 + 1), Pn(Y , {⃗bn , r⃗n}) é a probabilidade de se ter n dipolos de

tamanho ri , com parâmetro de impacto bi , em uma rapidez Y . As condições iniciais para este problema em

um espalhamento DIS são dadas por:P1(Y = 0, r⃗ , b⃗; r⃗1, b⃗1) = δ(2) (⃗r − r⃗1)δ(2) (⃗b − b⃗1);

Pn>1(Y = 0;{ri }) = 0,
(4.3.27)
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ou seja, nos instantes iniciais em que Y = 0, só existe um dipolo. As probabilidades seguem a regra de

normalização usual:
∞∑

n=1

∫ n∏
i=1

d 2ri d 2bi Pn(Y ; {⃗ri , b⃗i }) = 1. (4.3.28)

A função geratriz de dipolo no modelo (3+1)-dimensional é dada por

G(Y , r⃗ , b⃗; [ui ]) =
∞∑

n=1

∫
Pn(Y , {⃗bn , r⃗n})

n∏
i=1

u (⃗ri , b⃗i )d 2ri d 2b, (4.3.29)

sendo u (⃗ri , b⃗i ) ≡ ui uma função arbitrária. As condições de contorno [4.3.27] e a normalização [4.3.28] restrin-

gem a função geratriz na seguinte forma:G(Y = 0, r⃗ , b⃗; [ui ]) = u (⃗r , b⃗);

G(Y ,r, [ui = 1]) = 1.
(4.3.30)

Multiplicando ambos os lados da Eq. [4.3.26] por
∏n

i=1 ui e integrando em relação às variáveis ri e bi ,

obtém-se a expressão:

∂

∂Y
G(Y , r⃗ , b⃗; [ui ]) =

∫
d 2r ′K (⃗r ′, r⃗ − r⃗ ′ |⃗r )

[
−u(r,b)+u

(⃗
r ′, b⃗ + 1

2
(⃗r − r⃗ ′)

)]
u

(⃗
r − r⃗ ′, b⃗ − 1

2
r⃗ ′

)
δG

δu(r,b)
. (4.3.31)

Sendo, nesta equação: K (⃗r ′, r⃗ − r⃗ ′ |⃗r ) = ᾱs
2π

r 2

r ′2 (⃗r−r⃗ ′)2 ≡ K ,

ωG (⃗r ) = ∫
d 2r ′K .

(4.3.32)

A fim de encontrar soluções na forma G([u(ri ,bi ,Y )]) com as condições [4.3.30], é possível reescrever [4.3.31]

na forma:

∂

∂Y
G(Y , r⃗ , b⃗; [ui ]) =

∫
d 2r ′K

[
G(r ′, b⃗ + 1

2
(⃗r − r⃗ ′); [ui ])G (⃗r − r⃗ ′, b⃗ − 1

2
r⃗ ′; [ui ])−G(Y , r⃗ , b⃗; [ui ])

]
. (4.3.33)

Agora, definindo a amplitude de espalhamento:

N (Y ,r,b) =
∞∑

n=1

(−1)n−1

n!

∫ v∏
i=1

[
d 2riγ(ri ,b)

δ

δui

]
G(Y ,r,b, [ui ])|ui=1. (4.3.34)

Aqui, γ(ri ,b) é a amplitude de espalhamento para as interações do dipolo para baixas energias. A partir destas

definições, recupera-se a equação de Balistsky-Kovchegov (Apêndice C). O objetivo central deste desenvolvi-

mento é encontrar a solução de [4.3.26]. Para isso, define-se:

P̃n(Y ,r ) ≡
∫

Pn(Y , {⃗bn , r⃗n})
n∏

i=1
d 2ri d 2b′. (4.3.35)

Nesta definição, P̃n é a probabilidade de encontrar n dipolos com todos os tamanhos possíveis para os mesmos

valores do parâmetro de impacto. As condições [4.3.27] e [4.3.28] restringem P̃n na forma das seguintes
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expressões: 
P̃1(Y = 0,r,b) = 1;

P̃n>1(Y = 0,r,b) = 0;∑∞
n=1 P̃n(Y ,r,b) = 1.

(4.3.36)

Com estas condições, é possível resolver a Eq. [4.3.26] de maneira recorrencial: para n = 1, se tem:

∂

∂Y
P1(Y ,r,b,r1,b1) =−ωG (r1)P1(Y ,r,b,r1,b1). (4.3.37)

Para P̃1, a equação toma a forma:

∂

∂Y
P̃1(Y ,r,b) =−ωG (r )P̃1(Y ,r,b), (4.3.38)

com a solução:

P̃1(Y ,r,b) = e−ωG (r )Y . (4.3.39)

Para P2, a Eq. [4.3.26] é dada por:

∂

∂Y
P2(Y ,r,b; {r2,b2}) =−[ωG (r1)+ωG (r2)]P2(Y ,r,b; {r2,b2})+ ᾱs

2π

(⃗r1 + r⃗2)2

r 2
1 r 2

2

P1(Y ,r,b; r⃗1 + r⃗2,b′). (4.3.40)

Inicialmente, estima-se o valor de ωG (r ) dado pela Eq. [4.3.32]:

ωG (r ) = ᾱs

2π

∫
d 2r ′ r 2

r ′2 (⃗r − r⃗ ′)2 = ᾱs

π

∫
d 2r ′ r 2

r ′2[r ′2 + (⃗r − r⃗ ′)2]

= ᾱs

π

∫ r

r0

d 2r ′ r 2

r ′2[r ′2 + (⃗r − r⃗ ′)2]
+ ᾱs

π

∫ ∞

r
d 2r ′ r 2

r ′2[r ′2 + (⃗r − r⃗ ′)2]

= ᾱs ln
(
r 2/r 2

0

)︸ ︷︷ ︸
r ′≤r

+ 0︸︷︷︸
r ′≥r

=
∫ r 2

r 2
0

dr ′2

r ′2 ,

(4.3.41)

por isso, apenas dipolos menores que r contribuem para o valor de ωG (r ).

Os autores da referência [99] sugerem que a Eq. [4.3.40] tem uma solução na forma de:∫
d 2bP2(Y ,r,b;r1,b′,r2,b′) = 1

r 2
1 r 2

2

Θ(r − r1)Θ(r − r2)p2(r,b), (4.3.42)

sendoΘ(z) a função de Heaviside: Θ(z) = 1, para z > 0,

Θ(z) = 0, para z < 0.
(4.3.43)

Para obter a solução da Eq. [4.3.42], é possível obter a equação para P̃2 integrando ambas as partes de

[4.3.40] sobre b′, r1 e r2:
∂

∂Y
P̃2(Y ,r ) = 2ωG (r )P̃2(Y ,r )+ωG (r )P̃1(Y ,r ). (4.3.44)

Utilizando a solução [4.3.39]:

P̃2(Y ,r ) = e−ωG (r )Y (1−e−ωG (r )Y ). (4.3.45)
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A condição P̃2(Y = 0,r ) = 0 é satisfeita, correspondendo à Eq. [4.3.36]. Para ωG (r )Y ≪ 1, deve existir apenas

dois termos na cascata partônica: P̃1 e P̃2, de forma que a Eq. [4.3.28] é reduzida a:

P̃1 + P̃2 → 1−ωG (r )Y +ωG (r )Y = 1. (4.3.46)

Esta equação sugere que os Pn são negligenciáveis para grandes tamanhos, i.e., ri > r , por terem uma probabili-

dade de baixa relevância.

Desta forma, a solução geral da Eq. [4.3.26] tem a forma:

Pn(Y , {⃗bn , r⃗n}) =
n∏

i=1
Θ(r − ri )

1

r 2
i

pn(Y ,r ). (4.3.47)

Para esta solução, utilizando a Eq. [4.3.26], P̃n é dada pela seguinte equação diferencial:

∂

∂Y
P̃n(Y ,r ) =−nωG (r )P̃n(Y ,r )+ (n −1)ωG (r )P̃n−1(Y ,r ), (4.3.48)

com a solução:

P̃n(Y ,r ) = e−ωG (r )Y (1−e−ωG (r )Y )n−1. (4.3.49)

Analogamente à Eq. [4.3.21]:

〈n〉 =
∞∑

n=1
nP̃n(Y ,r ) = eωG (r )Y . (4.3.50)

Sendo assim, a entropia de emaranhamento para altas energias neste caso reproduzirá os resultados obtidos na

Eq. [4.3.14], com a mudança de que a probabilidade de um dipolo decair em dois não é mais constante, mas

depende do seu tamanho r :

S ≈ωG (r )Y = ln〈n〉 . (4.3.51)

Este resultado é semelhante ao obtido pelos autores no trabalho anterior para o caso (3+1)-dimensional em [22],

tendo como resultado a expressão:

S ≈ ᾱs ln
(
r 2Q2

s

)
Y . (4.3.52)

De forma alternativa, é possível estender os estudos do caso (3+1)-dimensional com outras equações

compatíveis com a evolução BK e o formalismo da função geratriz. Na referência [100], por exemplo, os autores

investigam o comportamento da entropia de emaranhamento para a formulação 4-dimensional da QCD com o

objetivo de estudar suas divergências. Desta forma, afirma-se que a evolução da função geratriz, Z (Y ,u,b), é

definida a partir da Eq. [4.3.2], é dada por:

Z (Y ,u,b) = e−mbY +um
∫ Y

0
dY1e−mb(Y −Y1)

∫ b

0
db′Z (b −b′,Y1,u)Z (b′,Y1,u), (4.3.53)

sendo m e b parâmetros da equação integral. A solução desta equação, considerando a conservação de

probabilidade Z (b,Y ,1) = 1, tem a forma da distribuição de Poisson:

Z (Y ,u,b) = e−mbY
∞∑

n=0
un (mbY )n

n!
, (4.3.54)
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ou seja:

pn = e−mbY (mbY )n

n!
. (4.3.55)

Desta forma:

〈n〉 =
∞∑

n=1
npn = e−mbY

∞∑
n=1

n
(mbY )n

n!
,

= mbY e−mbY
∞∑

n=1

(mbY )n−1

(n −1)!
=︸︷︷︸

i=n+1

e−mbY mbY
∞∑

i=0

(mbY )i

i !︸ ︷︷ ︸
embY

= mbY ≡ N .
(4.3.56)

Inserindo [4.3.55] na entropia de emaranhamento (Eq. [4.2.1]),

S(Y ) =−
∞∑

n=1
pn ln

[
e−mbY (mbY )n

n!

]
=−∑

n

N n

n!
e−N ln

(
N n

n!
e−N

)
. (4.3.57)

Com a ajuda da aproximação de Stirling e da representação integral da função logarítmica,

lnn =
∫ ∞

0

d s

s
(e−s −e−ns ), (4.3.58)

o somatório na Eq. [4.3.57] pode ser feito de forma analítica, com validade assintótica para N ≫ 1:

S = 1

2

[
ln(2πeN )− 1

6N
+O(1/N 2)

]
. (4.3.59)

4.4 ENTROPIA DE EMARANHAMENTO DE UM ESPALHAMENTO ELÁSTICO

Nesta subseção, foca-se na entropia de emaranhamento gerada pela interação de partículas em uma colisão.

Seguindo esta linha de investigação, a dinâmica subentendida é dada pela QCD não perturbativa ou, na

fenomenologia de Regge, pela física do Pomeron não perturbativo (soft Pomeron).

Em particular, é descrita a interação hádron-hádron em espalhamentos com interação forte tanto para o

canal elástico (A+B → A+B) quanto inelástico (A+B → X ), utilizando o formalismo da matriz de espalhamento

S. Para isso, segue-se estritamente os passos desenvolvidos nas referências [23, 24], em que a matriz densidade

reduzida, ρ̂A , do estado final de duas partículas que realizaram um espalhamento elástico é escrita em termos

da expansão de ondas parciais dos estados de dois corpos.

É utilizada a expansão de ondas parciais dos observáveis físicos, como a seção de choque total, elástica

e inelástica da colisão (σT , σel e σinel), bem como a seção de choque elástica diferencial, dσel/d t , sendo t a

variável de Mandelstam associada ao momento transferido. Utilizando a Estratégia 2, proposta anteriormente,

a entropia de emaranhamento será obtida a partir da entropia de Rényi:

SE =− lim
α→1

∂

∂α
Tr

[
ρ̂αA

]=− lnΩ, (4.4.1)

Ω= 1−
σel − 4

fV

dσel
d t

∣∣
t=0

π fV −σinel

 . (4.4.2)

Nas equações acima, fV = V /k2 com V = ∑
ℓ(ℓ+1) sendo o volume total do espaço de fase. Um volume
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como este é formalmente divergente, pois o espaço de Hilbert completo abrange todas as ondas parciais até

ℓ→ ∞. Na referência [24], a origem física desta divergência é identificada e a sua regularização é tratada

corretamente.

Inicialmente, será considerado o espalhamento elástico de duas partículas que não interagem, A e B . Antes

do espalhamento, a partícula A tem um 3-momentum k⃗ enquanto a partícula B tem l⃗ . Após a interação, A e B

tem um 3-momentum p⃗ e q⃗ , respectivamente.

Nas colisões elásticas, a matriz densidade do sistema será dada por:

ρ̂ = 1

N

∫
d 3p

2E A(p⃗)

d 3q

2EB (q⃗)

d 3p ′

2E A(p⃗ ′)
d 3q ′

2EB (q⃗ ′)
∣∣p⃗, q⃗

〉〈
p⃗, q⃗

∣∣S
∣∣∣⃗k, l⃗

〉〈
k⃗, l⃗

∣∣∣S† ∣∣p⃗ ′, q⃗ ′〉〈
p⃗ ′, q⃗ ′∣∣ . (4.4.3)

A matriz densidade reduzida é construída em termos da matriz S projetando o estado inicial dos dois corpos no

estado final: sendo Q̂ o operador de projeção,

∣∣ψ f
〉= Q̂Ŝ

∣∣ψi
〉

, (4.4.4)

de forma que
∣∣ψ f ,i

〉
são os estados finais e iniciais respectivamente. Calculando o traço parcial da matriz

densidade total ρ̂ em relação aos vetores do espaço de Hilbert B, HB
¶,

ρ̂A = ρ0

∫
d 3p

2E A,p
δ(p −k)

|〈p⃗,−p⃗
∣∣ Ŝ

∣∣∣⃗k,−k⃗
〉
|2

4k(E A,k +EB ,k )

∣∣p⃗〉〈
p⃗

∣∣ , (4.4.5)

sendo,

ρ−1
0 = δ3(0)

∫
d 3pδ(p −k)

|〈p⃗,−p⃗
∣∣ Ŝ

∣∣∣⃗k,−k⃗
〉
|2

4k(E A,k +EB ,k )
, (4.4.6)

para qual a condição de normalização é obedecida,

TrA[ρ̂A] = TrB [ρ̂B ] = 1. (4.4.7)

Esta condição é responsável pela função delta na Eq. [4.4.6] e é uma possível origem da divergência na entropia.

Nas equações acima, p = |p⃗| e k = |⃗k| com, cosθ = p⃗ · k⃗/(pk).

Para calcular o traço, nos moldes da Eq. [4.4.1],

TrA[ρ̂A]n =
∫

d 3pδ(3)(0)

ρ0δ(p −k)
|〈p⃗,−p⃗

∣∣ Ŝ
∣∣∣⃗k,−k⃗

〉
|2

4k(E A,k +EB ,k )

∣∣p⃗〉〈
p⃗

∣∣n

, (4.4.8)

de forma que a função delta extra aparece devido o cálculo do traço sobre o 3-momentum da partícula A.

Considera-se a definição, 〈
p⃗, q⃗

∣∣ Ŝ
∣∣∣⃗k, l⃗

〉
≡ δ(4)(Pp+q −Pk+l )

〈
p⃗, q⃗

∣∣ s
∣∣∣⃗k, l⃗

〉
, (4.4.9)

com a notação P para o 4-vetor do centro de massa e s = 1+2it a matriz Ŝ reduzida e t a matriz de transferência

reduzida.

¶Com HB ⊗HB =H , sendo H o espaço de Hilbert que contém todo o sistema.
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Realizando a expansão em ondas parciais dos elementos da matriz s e da amplitude de espalhamento,

〈
p⃗,−p⃗

∣∣ s
∣∣∣⃗k,−k⃗

〉
= E A,k +EB ,k

(πk/2)

[
δ(1−cosθ)+ iA

16π

]
, (4.4.10)

sendo a amplitudade de espalhamento dada por,

A (s, t ) = 16π
∞∑
ℓ=0

(2ℓ+1)τℓPℓ(cosθ), (4.4.11)

o traço da Eq. [4.4.8] pode ser calculado. Na Eq. [4.4.11], a variável sℓ = 1+2iτℓ refere-se a ℓ-éssima onda

parcial da matriz Ŝ de dois corpos. É possível definir um volume total do espaço de fase,

V ≡ 2δ(0) =
∞∑
ℓ=0

(2ℓ+1), (4.4.12)

que esta relacionado com as funções delta tridimensionais na forma de V = 4πk2σ(3)(0)/σ(0).

Após a integração sobre o 3-momentum, escrevendo a Eq. [4.4.10] em termos do ângulo de espalhamento θ

e fatorizando os fatores constantes, é possível escrever,

TrA[ρ̂A]n =
(

V

2

)1−n ∫ 1

−1
d cosθ[P (θ)]n , (4.4.13)

com,

P (θ) = δ(1−cosθ)

(
1− 2

∑
ℓ(2ℓ+1)|τℓ|2

V /2−∑
ℓ(2ℓ+1) fℓ

)
+ |∑ℓ(2ℓ+1)τℓPℓ(cosθ)|2

V /2−∑
ℓ(2ℓ+1) fℓ

, (4.4.14)

sendo, nesta equação, fℓ os componentes de onda parcial da seção de choque inelástica relacionados aos

componentes elásticos τℓ através da relação de unitariedade,

fℓ = 2(Imτℓ−|τℓ|2). (4.4.15)

O próximo passo é escrever a expressão P (θ) em função de observáveis físicos, σel, σinel, σT e dσel/d t =
|A |2/(256πk4), que são usualmente descritas em termo dos componentes de ondas parciais τℓ e fℓ. Obtém-se,

P (θ) = δ(1−cosθ)

(
1− σel

πV /k2 −σinel

)
+ 2k2

σel
dσel

d t

σel

πV /k2 −σinel
, (4.4.16)

com a variável de Mandelstam t = 2k2(cosθ−1) sendo o quadrado do momentum transferido.

Finalmente, a entropia de emaranhamento S [4.4.1] é,

S = ln
V

2
−

∫ 1

−1
d cosθP (θ) lnP (θ). (4.4.17)

Como discutido anteriormente, são identificadas divergências na expressão para a entropia de emaranha-

mento devido a presença do volume total no espaço de fase V . Os autores da referência [24] apontam três

opções de regularização: (i) regularização de volume, (ii) regularização por cutoff com uma função de Heaviside

[4.3.43] e (iii) regularização por cutoff com uma função gaussiana. Isto é possível pois para uma dada energia, o

primeiro termo da Eq. [4.4.16] sobrevém da parte de um dos dois corpos no espaço de Hilbert dos estados finais
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que não correspondem aos estados interagentes. A forma natural de remover estes estados não interagentes é

regularizando o volume do espaço de fase de forma que o primeiro termo da Eq. [4.4.16] desapareça.

Para realizar estes procedimentos, as operações são definidas de forma que σel/[(πṼ /k2)−σinel] = 1. Utili-

zando o fato de que σT =σel +σinel, obtém-se Ṽ = k2σT /π, e,

P̃ (θ) = 2k2

σel

dσel

d t
. (4.4.18)

Este é considerada a hipótese de regularização de volume. Com este procedimento a entropia de emaranha-

mento será,

S =−
∫ ∞

0
d |t | 1

σel

dσel

d t
ln

(
4π

σTσel

dσel

d t

)
, (4.4.19)

que depende apenas de observáveis mensuráveis.

Os autores de [24] realizaram estimativas para a Eq. [4.4.19] de forma que na sua obtenção assumiram

a aproximação de pico difrativo no espalhamento hádron-hádron em altas energias. Neste caso, a seção de

choque elástica diferencial é dada por,
dσel

d t
= σ2

T

16π
e−Bel|t |, (4.4.20)

com,

σel =
∫ ∞

0
d |t |dσel

d t
= σ2

T

16πBel
, (4.4.21)

sendo Bel(
p

s) o parâmetro de inclinação elástica.

Agora, seguem os procedimentos dos cutoff com as funções passo e gaussiana. Com estes regularizadores,

os autores de [23] reescreveram a amplitude de espalhamento A na representação do parâmetro de impacto

como,

a(s,b) = 1

2π

∫
d 2qe−iq⃗ ·⃗b f (s, t ), (4.4.22)

f (s, t ) = 1

2π

∫
d 2beiq⃗ ·⃗b a(s,b), (4.4.23)

de forma que f (s, t ) =A /(16πk2) e então, σT = 2
∫

d 2b Im a(s,b) e σel =
∫

d 2b|a(s,b)|2, com t =−q⃗2.

A seguinte prescrição é utilizada para obter aproximadamente o espaço de Hilbert. Identificando que bk ∼ ℓ,

a região para um grande parâmetro de impacto não contribuí para a amplitude de espalhamento a(s,b). O

procedimento de regularização é realizado a partir do truncamento dos modos de grande parâmetro de impacto

introduzindo uma função de cutoff C (b) que desaparece para b →∞. Desta forma, as quantidades reguladas

são dadas por,

σ̂T = 2
∫ ∞

0
d 2bC 2(b) Im a(s,b), (4.4.24)

σ̂el =
∫ ∞

0
d 2bC 2(b)|a(s,b)|2, (4.4.25)

dσ̂el

d t
= 1

4π

∣∣∣ ∫ ∞

0
d 2beiq⃗ ·⃗bC (b)a(s,b)

∣∣∣2
. (4.4.26)

Desta forma, o volume do espaço de fase de Hilbert regularizado é dado por Ṽ ≈ V̂ = k2σ̂T /π e como con-

sequência,
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P̂ (θ) = 2k2

σ̂el

dσ̂el

d t
. (4.4.27)

As funções mais simples para aplicação deste método são justamente a função degrau e a gaussiana,

C (b) =
1, para b ≤ 2Λ;

0, para b > 2Λ,
(4.4.28)

C (b) = e−
1
2

b2

4Λ2 . (4.4.29)

Com a realização do cutoff a entropia de emaranhamento é dada por,

Ŝ =−
∫ ∞

0
d |t | 1

σ̂el

dσ̂el

d t
ln

(
4π

σ̂T σ̂el

dσ̂el

d t

)
. (4.4.30)

Ambos os cutoffs realizam a regularização acima no volume infinito do espaço de fase de Hilbert pois agora

ℓ tem um limite superior definido por ℓmax ≡ 2Λk e agora V̂ = 2k2
∫ ∞

0 C 2(b) = 4k2Λ. De qualquer forma, a

condição que determina o cutoff éΛ2 = σ̂T /4π.

4.5 A ENTROPIA DE EMARANHAMENTO NO CGC

Neste modelo, utiliza-se a caracterização das funções de onda no formalismo CGC a fim de investigar a entropia

de emaranhamento. Para isso, inicialmente, aborda-se a estrutura da função de onda hadrônica num DIS

em altas energias a fim de se obter a matriz densidade reduzida do sistema, para então calcular a entropia de

emaranhamento.

Em altas energias a função de onda hadrônica tem grande contribuição dos glúons soft (que portam um

pequeno momentum), os quais tem energia suficiente para espalhar um alvo hadrônico, num intervalo de

rapidez,

0 < T <∆Y , (4.5.1)

com Y ∼ 1/αs .

No modelo CGC a função de onda hadrônica tem a forma,

Ψ[a, A] =ψ[A]χ[a,ρ], (4.5.2)

sendo a os modos dos glúons soft, A os modos dos quarks de valência (com rapidez Y >∆Y ) e ρa(x) a densidade

de carga de cor, como função da coordenada x. Para ρ≪ 1/αs a função de onda dos glúons é dada por um

estado coerente,

χ[a,ρ] = ei
∫

k bi
a (k)[a†i

a (k)+ai
a (−k)] |0〉 , (4.5.3)

com o campo de Weizsacker-Williams,

bi
a(k) = gρa(k)

ik i

k2 , (4.5.4)

sendo g o acoplamento da interação forte.
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Os operadores criação e aniquilação na Eq. [4.5.3] são integrados sobre a rapidez,

aa
i (k) ≡ 1p

∆Y

∫
Y <∆Y

dY

2π
aa

i (Y ,k). (4.5.5)

Para uma energia fixa, os observáveis que dependem apenas da densidade de carga de cor O[A] são

calculados a partir da Eq. [3.1.34]. Neste modelo será utilizado o modelo de McLerran-Venugopalan [68], com o

o funcional peso dado pela Eq. [3.1.36].

A matriz densidade reduzida ρ̂r para os glúons soft no modelo MV é,

ρ̂r =N
∫

D[ρ]e
−∫

k
1

2µ2(k)ρa (k)ρa (−k) ei
∫

q bi
b (q)φi

b (−q) |0〉〈0|e−i
∫

p b
j
c (p)φ

j
c (−p), (4.5.6)

sendo,

φi
a(k) = ai

a(k)+a†i
a (−k). (4.5.7)

A integral sobre a densidade de carga [4.5.6] resulta em,

ρ̂r =
∑
n

1

n!
e−

1
2φi Mi jφ j

[ n∏
m=1

Mim jmφim |0〉〈0|φ jm

]
e−

1
2φi Mi jφ j , (4.5.8)

consideradas as notações compactas,φi ≡ [a†a
i (x)+aa

i (x)];

Mi j ≡ g 2

4π2

∫
u,v µ

2(u, v)
(x−u)i (y−v) j

(x−u)2(y−v)2 δ
ab ,

(4.5.9)

tendo a matriz M̂ duas polarizações, duas cores e dois índices de coordenadas, denotados coletivamente pelo

par {i , j }.

Desta forma, nesta seção, o objetivo é encontrar uma expressão para Tr
[
ρ̂1+ϵ] a fim de estabelecer o

programa proposto na Estratégia III. Para isso, inicialmente, é calculado Tr
[
ρ̂N

r

]
para um N arbitrário, e depois

toma-se o limite N → 1+ϵ. Para Tr [ρ̂2
r ],

Tr
[
ρ̂2

r

]= ∑
n,n′

1

n!n′!
〈0|e−φi Mi jφ j

(
n∏

m=1

n′∏
m′=1

Mim jm Mim′ jm′φ jm′φim |0〉〈0|φ jmφim′

)
e−φi M j mφ j |0〉 . (4.5.10)

Esta expressão é utilizada para o cômputo da entropia de Rényi na referência [25]. A generalização da Eq. [4.5.10]

para ρ̂N
r contempla o produto de N elementos dos operadores da matriz de vácuo que dependem do campo

φ. Cada um dos elementos de matriz são calculadas separadamente, de forma que os campos que entram na

expressão podem ser considerados independentes. Desta forma, define-se o multipleto de campos replicados

φαi , com α= 1,2, ..., N .

Tr
[
ρ̂N

r

]= 〈0|e−
∑N
α=1φ

α
i Mi jφ

α
j +

∑N
α=1φ

α
i Mi jφ

α+1
j |0〉 , (4.5.11)

sendo agora |0〉 o vácuo no cone de luz de todos os campos replicados φα. Nota-se que o próximo vizinho da

‘interação’ nos campos replicados seguem a condição de contorno periódica,

φN+1 =φ1. (4.5.12)
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Desta forma, é possível reescrever a Eq. [4.5.11] como,

Tr
[
ρ̂N

r

]= (
det[π̂]

2π

)N /2 ∫ N∏
α=1

[Dφα]e
− π

2
∑N
α=1φ

α
i φ

α
i − 1

2
∑N
α=1(φαi −φα+1

i )Mi j (φαj −αα+1
j )

, (4.5.13)

sendo, nesta equação,

π̂=πδi jδ
abδ2(x − y), (4.5.14)

A ‘ação’ é diagonalizada por uma transformada de Fourier em α:φ̃n = 1
N

∑N
α=1 ei

2π
N αnφα;

φα =∑N−1
n=0 e−i

2π
N αnφ̃n ,

(4.5.15)

com a relação de periodicidade,

φ̃N−n = φ̃∗n . (4.5.16)

A relação entre vizinhos no espaço de Fourier resulta em,

(φαi −φα+1
i )(φαj −φα+1

j ) = ∑
n,m

(e−i
2π
N n −1)(e−i

2π
N m −1)e−i

2π
N α(n+m)φ̃n

i φ̃
m
j . (4.5.17)

Utilizando, ∑
α

e−i
2π
N α(n+m) = Nδ(n+m),N , (4.5.18)

obtém-se, ∑
α

(φαi −φα+1
i )(φαj −φα+1

j ) = N
∑
n

(e−i
2π
N n −1)(e−i

2π
N n −1)φ̃n

i φ̃
∗n
j

= 4N
∑
n

sen2
(πn

N

)
φ̃n

i φ̃
∗n
j .

(4.5.19)

Então,

Tr
[
ρ̂N

r

]= N N /2
(

det[π̂]

2π

)N /2 ∫ ∏
n

[Dφ̃n]e
− N

2
∑N−1

n=0 φ̃
n
i [π̂+4M̂ sen2(πn/N )]i j φ̃

∗n
j , (4.5.20)

sendo N N /2 o jacobiano da transformação [4.5.15].

Sendo,

π̂+4M̂ sen2πn

N
= π̂+2M̂

(
1−cos

2πn

N

)
, (4.5.21)

a integral gaussiana na Eq. [4.5.20] é,

Tr
[
ρ̂N

r

]= det[π̂]N /2 det

{
N−1∏
n=0

[
π̂+2M̂

(
1−cos

2πn

N

)]−1/2
}

. (4.5.22)

Utilizando a o resultado tabelado (1.396) da referência [101],

N−1∏
n=0

[
π̂+2M̂

(
1−cos

2πn

N

)]
= (2M̂)N

N−1∏
n=0

(
1−cos

2πn

N
+ M̂−1π̂

2

)
= 2M̂ N

{
cosh

[
N cosh−1

(
1+ M̂−1π̂

2

)]}
.

(4.5.23)
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Desta forma,

Tr
[
ρ̂N

r

]= exp

{
−1

2
ln2− N

2
Tr

[
ln π̂−1M̂

]− 1

2
Tr

[
ln

(
cosh

(
N cosh−1

(
1+ M̂−1π̂

2

))
−1

)]}
. (4.5.24)

A entropia é obtida tomando N = 1+ϵ e mantendo os termos lineares em ϵ, de forma que,

Tr
[
ρ̂1+ϵ

r

]≈ 1+ ϵ

2
Tr

[
ln

(
π̂−1M̂

)−√
1+4π̂−1M̂ ln

[
1+ M̂−1π̂

2

(
1+

√
1+4π̂−1M̂

)]]
. (4.5.25)

Assim, a entropia de emaranhamento é,

S = 1

2
Tr

{
ln

(
π̂−1M̂

)+√
1+4π̂−1M̂ ln

[
1+ M̂−1π̂

2

(
1+

√
1+4π̂−1M̂

)]}
. (4.5.26)

Para compreender esta equação, considera-se o caso invariante frente à translação, onde a matriz M̂ é diagonal

no espaço de momentum,

M ab
i j (p) = g 2µ2(p2)

pi p j

p4 δab . (4.5.27)

No modelo original MV, µ2 é uma constante e não depende do momentum. A contribuição para a entropia

com modos de grande momentum transverso pode ser obtido expandindo a Eq. [4.5.26] na ordem principal

em M̂ , desde que para grandes momenta (g 2µ2 < p2) os autovalores de M̂ sejam pequenos. A expressão para

entropia no limite do campos fraco é,

SM≪1
E = Tr

[
π̂−1M̂ ln M̂−1π̂e

]
. (4.5.28)

Assim, a contribuição ultravioleta dominante é,

SUV
E ≈− g 2

π
(N 2

c −1)S
∫

d 2p

(2π)2

µ2(p2)

p2 ln

[
g 2µ2(p2)

eπp2 θ

(
p2 − g 2

π
µ2(p2)

)]
, (4.5.29)

sendo, nesta equação, S a área total do projétil. No modelo MV original com µ independente do momentum, a

expressão [4.5.29] é logaritmicamente divergente. Introduzindo o cutoffΛ no ultravioleta,

SUV
E ≈ Q2

s

4πg
(N 2

c −1)S

[
ln2 g 2Λ2

Q2
s

+ ln
g 2Λ

Q2
s

]
, (4.5.30)

de forma que a escala de saturação foi identificada de forma usual no modelo,

Q2
s =

g 4µ2

π
. (4.5.31)

A contribuição dos modos do infravermelho também podem ser calculados. Para faixas de momentum

p2 <Q2
s /g 2 é possível expandir M̂−1, de forma que,

SM→∞
E ≈ 1

2
Tr

[
lne2π̂−1M̂

]
. (4.5.32)

Assim,

S I R
E ≈ 1

2
(N 2

c −1)S
∫

d 2p

(2π)2 ln
e2g 2µ2(p2)

πp2 θ(Q2
s − g 2p2) = 3

8πg 2 (N 2
c −1)SQ2

s . (4.5.33)
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Combinando as duas expressões a entropia de emaranhamento CGC no modelo MV é dada por,

SE ≈ S I R
E +SUV

E = SQ2
s

4πg 2 (N 2
c −1)

(
ln2 g 2Λ2

Q2
s

+ ln
g 2Λ2

Q2
s

+ 3

2

)
. (4.5.34)

Em detrimento da representação de campo, na referência [102] é feita a mesma computação da entropia na

representação do operador número,

〈N〉 = Tr

[∫
d 2k

(2π)2a†
k ak ρ̂r

]
(4.5.35)

obtendo uma expressão coincidente,

SCGC
E ≈ 1

2
SCF

∫ ∞

0

d 2k

(2π)2

ln

(
g 2µ2

k2

)
+

√
1+4

g 2µ2

k2 ln

1+ k2

2g 2µ2 + k2

2g 2µ2

√
1+4

g 2µ2

k2

 . (4.5.36)

Para fins fenomenológicos, a saturação pode evoluir com a rapidez seguindo o modelo GBW. Além disso, o

regulador ultravioleta pode ser identificada como a virtualidade do fóton no DIS Q2, com a escolha arbitraria

Q2 = g 2Λ2. Desta forma, analiticamente,

SCGC
E = 1

2
S

CF

4π
Q̃2

s

[
τ ln

(
τ−1)+τ√1+4τ−1 ln

(p
1+4τ−1 +1p
1+4τ−1 −1

)
+ ln2

(p
1+4τ−1 +1p
1+4τ−1 −1

)]
, (4.5.37)

sendo τ=Q2/Q̃2
s e Q̃2

s = (9/4)Q2
s .

Os comportamentos paramétricos das equações [4.5.30] e [4.5.33] são obtidos para τ= 1 (Q2 = Q̃2
s ), então,

SCGC
E ∼ SQ̃2

s , (4.5.38)

Por outro lado, para grandes valores de τ,
p

1+4τ−1 ≈ 1+2τ−1, de forma que,

SCGC
E ∼ SQ̃2

s (2lnτ+ ln2τ). (4.5.39)

Para cálculos numéricos, é possível utilizar,

S =πR2
p =σ0/2, (4.5.40)

com Rp sendo o raio do próton.
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Capítulo 5

Entropia da Decoerência Quântica

A última forma de geração de entropia estudada nesta tese será devida à decoerência quântica. Desta forma,

este breve capítulo irá abordar a caracterização do fenômeno, seguida pelo cálculo da entropia de decoerência

nos estados CGC.

5.1 DECOERÊNCIA QUÂNTICA

O começo do século XX trouxe consigo teorias físicas que se impunham sobre a concepção clássica até então

bem estabelecida, em especial, as Teorias da Relatividade e a Mecânica Quântica, que não só explicam resultados

onde as antigas concepções falham, como prevem novos fenômenos. Contudo, seria ingênuo abandonar todas

as previsões e resultados obtidos pelas teorias clássicas, de forma que hoje, sabe-se que cada uma destas teorias

tem o seu regime de dominância. Por exemplo, a transformação de Lorentz da Relatividade Restrita para baixas

velocidades recai na transformação clássica de Galileu, de forma que é seguro afirmar que a relatividade é uma

teoria que trata de objetos em altas velocidades.

Por outro lado, as fronteiras entre o regime Clássico e Quântico da dinâmica não possuem uma corres-

pondência tão simples. Algumas equações até podem retomar, ao seu modo, às estabelecidas pela Mecânica

Clássica nos valores médios de observáveis a partir do teorema de Ehrenfest. Entretanto, isto não explica o

desaparecimento da álgebra de comutação entre observáveis e, em alguns casos, possui diversas restrições.

Na busca entre a delimitação das teorias, Bohr introduziu o princípio da correspondência, onde a ideia seria

estudar o limite em que a constante de Planck tendesse a zero (ħ→ 0). Dessa forma, a energia teria um espectro

contínuo, equivalendo ao caso clássico. Contudo, ainda faltariam explicações para o supracitado problema das

discrepâncias entre álgebras propostas pela mecânica quântica e clássica.

Outro fenômeno quântico sem precedentes clássicos é o Colapso da Função de Onda, onde, para compreendê-

lo, é necessária a elucidação do modos operandi básico da dinâmica quântica: dado um sistema composto

por uma partícula de massa m (pode-se ser um conjunto de partículas, mas isto traria algumas dificuldades

que não são do interesse da discussão) embebida na influência de um campo potencial V (⃗r , t ), a evolução do

sistema é dada pela equação de Schrödinger,

iħ ∂

∂t

∣∣ψ〉= [
− ħ2

2m
∇2 +V (⃗r , t )

]∣∣ψ〉
, (5.1.1)
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∣∣ψ(⃗r , t )
〉

é a solução desta equação: o estado quântico. Mas ela não carrega consigo um sentido físico próprio,

como por exemplo a equação de uma onda de uma corda esticada que revela o seu deslocamento vertical ou

como a diferença de pressão nas moléculas do ar na propagação de uma onda sonora ou ainda os campos

nas ondas eletromagnéticas. O real significado físico da função de onda deve-se ao físico alemão Max Born:

o módulo quadrado da projeção do estado quântico na representação da posição, i.e., da função de onda

ψ(⃗r , t ) = 〈⃗
r
∣∣ψ〉

, é a densidade de probabilidade de encontrar a partícula na posição r⃗ e r⃗ +dr⃗ no instante t , ou

seja,

P (⃗r , t )d 3r = |ψ(⃗r , t )|2d 3r. (5.1.2)

Portanto, se é de interesse analisar a probabilidade de encontrar a partícula entre os pontos a e b, denotada por

Pab , a probabilidade, no caso unidimensional, é expressa por

Pab =
∫ b

a
|ψ(x, t )|2d x. (5.1.3)

Uma vez resolvida a equação de Schrödinger, i. e., obtida a função de onda, é possível expressá-la como

uma combinação linear dos autoestados que compunham a base do sistema em questão,

∣∣ψ〉= N∑
i=1

ci |i 〉 , (5.1.4)

com o conjunto {|i 〉} configurando um espaço vetorial N -dimensional denominado espaço de Hilbert H , espaço

vetorial das funções quadrado-integráveis finitas. Aqui, o conjunto de escalares {ci } é composto por números

complexos. Desta forma, diz-se que o estado físico (função de onda) é uma combinação linear de estados

independentes, ou seja, é um sistema em sobreposição. Desta forma, se for realizada uma medida sobre o

sistema, ele instantaneamente colapsará para o estado medido e todos os demais estados que compunham a

sobreposição desaparecerão, de forma que a sobreposição nunca é medida. Este fenômeno é conhecido como

o colapso da função de onda.

É possível tratar um espaço vetorial N -dimensional. Contudo, por fins de simplicidade, considera-se aqui o

caso mais simples, em que N = 2, de forma que a Eq. [5.1.4] toma a forma,

∣∣ψ〉= c1 |1〉+ c2 |2〉 . (5.1.5)

A interpretação de Born revela que a probabilidade de se medir o estado |1〉 ou |2〉 segue a regra,Probabilidade de medir |1〉 : c1c∗1 ;

Probabilidade de medir |2〉 : c2c∗2 .
(5.1.6)

Desta forma, para um sistema de dois estados (sendo este um resultado geral que pode ser adaptado para N

estados), tem-se,
N∑

i=1
ci c∗i = 1 ∴ c1c∗1 + c2c∗2 = 1, (5.1.7)

ou seja, para uma probabilidade de 50% de se medir o estado |1〉, é possível ter o coeficiente c1 = 1/
p

2 e,

segundo as imposições [5.1.7], c2 = 1/
p

2. Contudo, fora dito que os coeficientes da combinação linear [5.1.5]

podem ser números complexos, e, de fato, é possível atribuir uma fase θ aos coeficientes sem perda do resultado

físico como por exemplo, c2 = eiθ/
p

2. Pois,
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c2c∗2 =
[

1p
2

eiθ
][

1p
2

e−iθ
]
= eiθe−iθ︸ ︷︷ ︸

1

1

2
,= 1

2
, (5.1.8)

ou seja, a adição de uma fase real θ não alterou a física do problema. Dito isto, considera-se agora um objeto

material, que pode ter tanto dimensões microscópicas (um elétron, por exemplo) ou macroscópicas (um grão

de areia), podendo estar em dois estados, |1〉 e |2〉, com energias E1 e E2. A evolução temporal de cada um dos

estados é,

|n(t )〉→ e−iEn t/ħ |n〉 , (5.1.9)

portanto, a evolução temporal da representação [5.1.5] é tal que,

∣∣ψ(t )
〉→ e−iE1t/ħc1 |1〉+e−iE2t/ħc2 |2〉 . (5.1.10)

Definindo ω ≡ (E2 −E1)/ħ, é possível representar a evolução temporal do sistema (que pode ser também

realizada em relação à E2 caso seja preferível) na forma,

∣∣ψ(t )
〉→ e−iE1t/ħ

[
c1 |1〉+e−iωt c2 |2〉

]
. (5.1.11)

Agora, considerando que o objeto em questão esteja submetido ao campo gravitacional terrestre, com

ω= mg∆z/ħ, tem-se, para um elétron com valores de separação nos pacotes de onda de ∆z = 1 nm ou ∆z = 1

m, ω= 10−4 Hz ou ω= 105 Hz; para uma massa de 1g , ω= 1023 Hz ou ω= 1032 Hz. Para fins de comparação,

10−22s é o tempo que a luz precisa para atravessar um núcleo atômico. Desta forma, quando as fases estão

mudando de forma tão rápida, apenas um dos estados pode ser medido.

É possível calcular a matriz densidade do estado que esta sendo analisado, sendo ρmn = cmc∗n , tem-se,

ρ11 = c1e−iE1t/ħc∗1 eiE1t/ħ = c1c∗1 = |c1|2,

ρ12 = c1e−iE1t/ħc∗2 eiE1t/ħeiωt = c1c∗2 eiωt ,

ρ21 = c2e−iE1t/ħc∗1 eiE1t/ħe−iωt = c2c∗1 e−iωt ,

ρ22 = c2e−iE1t/ħc∗2 eiE1t/ħ = |c2|2,

(5.1.12)

de forma que,

ρ̂ =
(

|c1|2 c1c∗2 eiωt

c2c∗1 e−iωt |c2|2
)

. (5.1.13)

Toda medida exige um tempo finito T , embora nos valores cotidianos ela possa ser considerada instantânea

(10−12s). Desta forma, é possível analisar o que ocorre com a matriz densidade de um sistema submetido a uma

medida mediando-se a mesma em relação à T ,

1

T

∫ T

0
ρ̂d t =

(
c1c∗1 c1c∗2 s(T )

c2c∗1 s(T ) c2c∗2

)
. (5.1.14)

com,

lim
ωT→∞

s(T ) = lim
ωT→∞

eiωT /2 sen(ωT /2)

ωT /2
= 0, (5.1.15)
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Portanto,

ρ̂ =
(
|c1|2 0

0 |c2|2
)

. (5.1.16)

Por exemplo, para ω= 1032Hz e T = 10−16s, |s(T )| ∼ 10−16. Estes casos exigiriam uma grande precisão experi-

mental para que a superposição pudesse ser detectada. Realizando a medida, vale a elucidação de que o sistema

terá de interagir com o ambiente e com o detector que ampliará o sinal, ou seja, a partícula que compunha

o sistema interagirá várias vezes com outras partículas antes de que seja detectada. Esta é a descrição da

decoerência quântica, as interações constantes que o sistema em superposição tem de suportar se dará com

uma mudança de fase dos elementos fora da diagonal principal. Cada vez que o sistema interage com qualquer

objeto, seja ele do ambiente ou do detector, irreversivelmente as alterações se darão por uma mudança aleatória

na fase θ, então a chave para a compreensão da decoerência se dá no cálculo da média do número complexo

que acompanha a fase (Fig. [5.1]), ou seja, zero: É possível representar o número complexo e±iθ na chamada

forma polar onde os eixos de coordenadas são compostos pelo conjunto de números reais e imaginários. Uma

alteração na fase θ da exponencial, dependendo o sentido, fará com que a inclinação da reta que une a origem e

o ponto no círculo unitário mude e para um grande número de perturbações o valor médio é zero.

Figura 5.1: (a) representação polar de um número complexo no plano real-imaginário; (b) para os valores de θ entre 0 e
2π forma-se um círculo unitário centrado na origem; (c) se for considerada um grande número de interações do sistema
com sua vizinhança ou com o detector, onde sua manifestação se da por uma mudança aleatória na fase, o valor médio do
número complexo é zero.

A matriz [5.1.16] não corresponde mais a nenhum sistema físico, isto é, não é possível encontrar a função

de onda
∣∣ψ〉

que a gerou, pois, analisando a forma [5.1.13], se os elementos fora da diagonal forem nulos, os

elementos na diagonal também o serão. Contudo, o desaparecimento dos termos não diagonais na matriz

densidade do sistema é o efeito da decoerência quântica e, sem esses termos, o sistema perde sua capacidade

de interferir. Por fim, também vale destacar que a decoerência mantém a unitaridade da teoria quântica, ao

contrário do colapso da função de onda, que não preserva essa propriedade. Enquanto a decoerência descreve

a perda de coerência devido à interação com o ambiente, o colapso implica em uma mudança não unitária e

irreversível do estado quântico.

5.2 O FORMALISMO TEÓRICO DA DECOERÊNCIA

Fisicamente, a ideia básica na computação dos efeitos de decoerência é considerar o efeito do ambiente e da

medida no sistema quântico, fazendo com que, neste processo, realize a separação entre o sistema de análise S,
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o aparato de medida M e uma relação aberta para interações com o ambiente U (Fig. 5.2). Alguns dos efeitos da

medida foram discutidos previamente e, nesta seção, considera-se apenas os efeitos do ambiente no sistema

em que se tem interesse. Sendo assim, o sistema S tem sua base de auto vetores |i 〉 que geram o espaço de

Hilbert HS . Por sua vez o ambiente é descrito pela base |n〉 do espaço HU . Na interação destes dois sistemas o

estado geral será escrito numa base |i 〉⊗ |n〉 .= |i ,n〉 que gera o espaço composto H =HS ⊗HU . Supõem-se

agora que as matrizes densidade do espaço composto não são independentes, ou seja, as matrizes no espaço

H =HS ⊗HU são mais gerais que ρ̂S ⊗ ρ̂U .

Figura 5.2: Divisões das regiões analisadas no estudo da decoerência: S é o sistema estudado, pode ser um átomo de
hidrogênio, um oscilador harmônico, etc; um sistema físico de interesse; M é o aparato de medida que colapsará a função
de onda do sistema. Para realizar uma medida, este deve interagir obrigatoriamente com S; U é o ambiente que nunca
poderá se isolar do sistema, podem ser fótons que iluminam a amostra, outros átomos que a cercam-na ou a radiação
cósmica de fundo.

No picture de Schrödinger (H = HU +HS ), sabe-se que a evolução temporal da matriz densidade do sistema

se dá pela equação de von Neumann [103]

iħ ∂

∂t
ρ̂s = [HS , ρ̂s ]. (5.2.1)

Considerando que é possível separar a dinâmica interna do sistema da interação com o ambiente, onde a

duração de um processo de espalhamento com o meio tem uma duração pequena se comparada com a escala

temporal interna, a equação de von Neumann tera uma pequena modificação introduzida pela interação de

espalhamento com o meio [104], considerando uma matriz espalhamento Ŝ apropriada,

iħ ∂

∂t
ρ̂s = [H , ρ̂s ]+ iħ ∂

∂t
ρ̂s

∣∣∣
espalhamento

. (5.2.2)

Na maioria dos casos, uma ampla sequência de espalhamentos pode ser tratada como um amortecimento

dos elementos fora da diagonal principal, de forma que,

∂

∂t
ρs

nm

∣∣∣
espalhamento

=−λρs
nm(t ), (5.2.3)

sendo a constante λ dada por,

λ= Γ(1−〈n0| Ŝ†
m Ŝn |n0〉), (5.2.4)

sendo Γ é a taxa de colisão e |n0〉 o estado do ambiente em uma dada condição inicial.

Na sequência serão abordados dois exemplos relacionados ao fenômeno da decoerência quântica, a locali-

zação espacial dos objetos materiais e o efeito Zeno Quântico.
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5.2.1 Localização Espacial

O primeiro exemplo a ser explorado é a localização de objetos macroscópicos. Pode não parecer em primeira

analise, mas a percepção clássica que temos da localização de objetos macroscópicos, formados por entes

microscópicos, regidos pela mecânica quântica, onde o estado físico não tem posição e momentum bem

definido não é um problema trivial. E não somente a percepção, mas também a utilização de teorias clássicas

que assertivamente descrevem, em certos limites, a localização física destes objetos. Considera-se a hipótese

de que diferentes configurações espaciais de um sistema devem sofrer um processo de decoerência muito

rapidamente a partir de uma forte influência por processos de espalhamento.

É possível dar um tratamento formal para o efeito. Para isso, |x〉 é o auto estado posição de um objeto

macroscópico e |a〉 é o estado da partícula incidente. Desta forma, o efeito das interações com o sistema na

evolução temporal pode ser expresso por,

|x〉 |a〉
t︷︸︸︷→ |x〉 |ax〉 = |x〉 Ŝx |a〉 , (5.2.5)

de forma que o espalhamento é calculado a partir da matriz espalhamento Ŝx conveniente. A mesma represen-

tação para um estado inicial de um pacote de onda se dá por:

∫
d 3xφ(x) |x〉 |a〉

t︷︸︸︷→
∫

d 3xφ(x) |x〉 Ŝx |a〉 . (5.2.6)

A matriz densidade reduzida que descreve as mudanças no objeto é dada por,

ρ̂(x, x ′) =φ(x)φ∗(x ′)〈a| Ŝ†
x Ŝx |a〉 . (5.2.7)

Obviamente, um único processo de espalhamento não irá localizar o objeto, de forma que os elementos da

matriz acima são próximos à unidade. Contudo, a ampla ocorrência de espalhamentos causa um amortecimento

exponencial da coerência espacial,

ρ̂(x, x ′, t ) = ρ̂(x, x ′,0)e−Λ(x−x′)2
. (5.2.8)

Desta forme, a contribuição deste efeito é descrita a partir de um único parâmetro Λ, denominado taxa de

localização, dado por,

Λ= k2N vσef

V
, (5.2.9)

com k sendo o número de onda das partículas incidentes, N v/V o fluxo e σef é da ordem da seção de choque

total. Alguns valores de Λ são dados pela Tab. [5.1]. A maioria dos números na tabela são bem grandes,

revelando o quão forte é o vínculo dos objetos macroscópicos, da ordem de tamanho de partículas de poeira

com o ambiente e, até mesmo para o espaço intergalático não estaria de fora do efeito devida à radiação cósmica

de fundo.

No caso da decoerência na superposição de dois pacotes de onda, analisa-se a distância entre os pacotes e a

Fig. [5.3] a) representa bem a matriz densidade, ilustrando quatro picos, dois em torno da diagonal principal e

dois fora dela, sendo estas últimas, contribuições que representam a coerência entre as duas partes. Contudo, se

forem amortecidos os termos fora da diagonal, tem-se a decoerência e os picos desaparecem, como na Fig. [5.3]

b).
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Tabela 5.1: Taxa de localizaçãoΛ em cm−2s−1 para três tamanhos de partículas em vários tipos de espalhamentos. Esta
quantidade mede o quão rápido a interferência entre as diferentes posições desaparece como uma função da distância no
passar do tempo. Dados fornecidos por [104].

Tamanho 10−3cm 10−5cm 10−6cm
Radiação cósmica de fundo 106 10−6 10−12

Fótons à 300K 1019 1012 106

Luz solar (na Terra) 1021 1017 1013

Moléculas do ar 1036 1032 1030

Vácuo de laboratório (103 partículas/cm3) 1023 1019 1017

Figura 5.3: (a) Matriz densidade de dois pacotes de onda gaussianos. A coerência entre os dois pacotes é representada pelos
elementos fora da diagonal. (b) A matriz densidade após perder sua coerência. Figura adaptada de [104]

5.2.2 Efeito Zeno quântico

Macroscopicamente, não é adequado que a realização de uma medida interfira no objeto de interesse, ou

melhor, na maioria dos casos, é possível realizar uma medida sem perturbar o sistema em que ela esta sendo

aplicada, obtendo informações a seu respeito. Contudo, sabe-se que esta verificação não é análoga ao caso

quântico, onde ocorre o colapso da função de onda. Além disso, não é possível obter de imediato todos os

valores de medição dos observáveis de um sistema, de forma que trabalha-se sempre com a ideia de médias de

ensembles.

Um fenômeno que trata bem a peculiaridade da medida no casos dos sistemas quânticos é o efeito Zeno [105],

e segue-se agora sua derivação matemática: seja Ĥ o hamiltoniano de um sistema quântico onde |Ψ0〉 é o seu

estado no instante inicial, sendo sua evolução temporal dada por,

|Ψ(t )〉 = e−iĤ t |Ψ0〉 . (5.2.10)

Desta forma, é possível calcular a taxa de transição P (t ), de um estado físico que evolui num curto espaço de

tempo δt para o estado inicial,

P (t ) = |〈Ψ0|e−iĤ t |Ψ0〉 |2, (5.2.11)

Agora, realizando a expansão em séries de Taylor desta probabilidade:

P (t ) =
∣∣∣∣ ∞∑
n=1

(iδt )n

n!

〈
Ĥ n〉∣∣∣∣2

= 1−δt 2(
〈

Ĥ
〉2 −〈

Ĥ 2〉)+O (δt 3) ≈ 1−δt 2σ2
H , (5.2.12)
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aqui, σH =
√〈

Ĥ
〉2 −〈

Ĥ 2
〉

é o desvio padrão do valor esperado associado ao hamiltoniano. Desta forma, a

probabilidade da transição depende de t 2 e se forem realizadas medidas em intervalos regulares de tempo,

diga-se τ= t/N , sendo N o número de medidas realizadas,

P (t ) = (1−τ2σ2
H )N =

(
1−

t 2

N σ
2
H

N

)N

≈ e−
t2
N σ2

H , (5.2.13)

ficando óbvio que para um amplo número de medições,

lim
N→∞

P (t ) = 1, (5.2.14)

um resultado dramático, onde se realizadas um grande número de medidas e intervalos de tempos curtos a

probabilidade do sistema permanecer no estado inicial é de 100%, ou seja, a realização contínua de medidas

faz com que o sistema permaneça no estado inicial.

Aristóteles escreveu na Física [105] uma série de argumentos paradoxais, que seria de autoria do filósofo

pré-socrático Zeno de Eleia, onde a proposta era provar dialeticamente inconsistências nos conceitos filosóficos

da época de multiplicidade, divisibilidade e movimento. Dentre estes argumentos, vem a famosa história

da corrida entre Aquiles e a tartaruga: uma vez que o animal teria total desvantagem devido a diferença de

velocidades, ela ganha a possibilidade de partir de uma distância mais avançada na frente do herói de Ilíada. O

paradoxo proposto por Zeno é a demonstração de que Aquiles nunca ultrapassará a tartaruga, pois quando

ele chegar na posição onde ela partiu, diga-se A, a tartaruga estará em B, quando ele chegar em B, o animal

avançará para C e assim se dará o processo indefinidamente, contudo, o homérico nunca venceria.

Figura 5.4: Cálculos e dados experimentais da
taxa de transição de um sistema quântico de três
níveis em função do número de medidas n reali-
zados durante processos de transições. Para um
amplo valor de n a taxa de transição cai para 0.
Reproduzido de [106].

Nesta época, nada se sabia de cálculo infinitesimal ou dos

referenciais newtonianos; mas a inserção dos dois competidores

intui o uso de referencial, podendo ser da velocidade de Aquiles

em relação a tartaruga e vice-versa, onde os dois objetos tem

velocidades independentes. Agora, se existe uma relação entre

os corredores, diga-se, Aquiles restringe seu movimento a uma

observação constante ao ponto onde a tartaruga está, de forma

que sempre que ele atinge o ponto C ele verifica a tartaruga em D,

seguindo este processo indefinidamente, como um padrão para

determinar o seu movimento, cria-se uma situação artificial em

que Aquiles é regido pelo espaço da tartaruga, sendo exatamente

o que fora proposto no cálculo da probabilidade da taxa de tran-

sição e por isso o nome do fenômeno é efeito Zeno quântico.

Uma forma de explicar a solução clássica do paradoxo de Zeno

envolve a introdução de conceitos como limite, convergência e

infinitesimal, sendo que a proposta do filósofo falha na dinâmica

clássica por assumir que a soma de infinitos intervalos de tempo

é sempre infinita, contudo, sabe-se que existe a possibilidade de uma soma infinita de termos resultar em valo-

res finitos. Mas e no caso quântico? Em 1900, Itano, Bollinger e Wineland [106] verificaram experimentalmente

o efeito em um sistema quântico de três níveis (Fig. [5.4]).

A decoerência entra no efeito justamente para elucidar a diferença entre o caso quântico e clássico, sendo
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aqui utilizado um modelo simples, apenas para justificação dos seus meios no problema. Para isso considera-se

um modelo simplificado da teoria da medida de von Neumann, onde um pointer (aparelho de medida) é

acoplado a um sistema de dois níveis, |1〉 e |2〉, sendo descrito pelo hamiltoniano,

Ĥ = Ĥ0 + Ĥi nt =V (|1〉〈2|+ |2〉〈1|)+E |2〉〈2|+γp̂(|1〉〈1|− |2〉〈2|), (5.2.15)

sendo que as transições entre os dois níveis é induzida pelo potencial V e monitorada pelo pointer, este, tendo

sua intensidade mediada pela constante γ. Desta forma, é possível calcular a taxa de transição em função

do tempo (Fig. [5.5(a)]) e da constante de acoplamento (Fig. [5.5(b)]). Assim como previsto anteriormente,

para um pequeno intervalo de tempo, diga-se, a medida é realizada em um tempo muito curto, obtém-se uma

dependência quadrática com o tempo, como previsto anteriormente. Contudo, esta evolução para tempos

maiores se torna linear. Além disso, se o sistema e o aparato de medição estão fortemente acoplados, a taxa de

transição começa a suavizar.

Figura 5.5: (a) Dependência temporal da probabilidade de encontrar o sistema no estado |2〉, sendo que em t = 0 o mesmo
se encontrava no estado |1〉 para uma constante de acoplamento fixa. (b) Dependência com a constante de acoplamento da
probabilidade de encontrar o sistema no estado |2〉, sendo que em t = 0 o mesmo se encontrava no estado |1〉, calculada em
tempo fixo. Imagem adaptada de [106].

Neste capítulo, discutiu-se, dando exemplos, conceitos básicos sobre a decoerência e o emaranhamento

quântico, sem exaurir o assunto, apenas elucidando suas características básicas e elementos fundamentais

utilizados na pesquisa em questão. Na próxima seção estes conceitos serão utilizados na formulação de grande

parte das noções entrópicas estudadas no desenvolvimento da análise da criação de entropia em colisões de

partículas em altas energias.

5.3 A ENTROPIA DE DECOERÊNCIA NAS COLISÕES DE ÍONS PESADOS

Nos estágios iniciais da colisão ultrarrelativística de íons pesados os estados disponíveis são caracterizados por

uma configuração coerente de campos de glúons. Estes campos são gerados por cargas de cor quasiestáticas dos

quarks de valência dos núcleos e podem ser aproximados com campos de cor semi-clássicos randomicamente

orientados em um meio CGC.

O fenômeno da decoerência pode protagonizar uma boa parte da produção entrópica nestas reações.

Inicialmente, os campos de cor nas reações das colisões ultrarrelativísticas de íons pesados pode ser descrita

por campos coerentes clássicos,

|Ψ[J ]〉 =∏
k⃗

exp
(
iαk⃗,λa†

k⃗,λ
− iα∗

k⃗,λ
ak⃗,λ

)
|0〉 , (5.3.1)
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sendo k⃗ o momentum, λ a polarização e a amplitude αk⃗,λ determinada pelo campo de criação de corrente

clássica J⃗ ,

αk⃗,λ =
ϵ⃗k⃗,α · J⃗ (⃗k,ωk⃗ )√

ħωk⃗V
. (5.3.2)

Por fins de simplificação, considera-se aqui apenas um modo com k⃗ e λ. O estado coerente pode ser escrito

como uma superposição do número de partículas |n〉 dos auto-estados com auto-valor α,

|α〉 = e−|α|
2/2

∞∑
n=0

αn

p
n!

|n〉 . (5.3.3)

Sendo este um estado puro, está associado a matriz densidade cujo os elementos são dados por,

ρmn = 〈m|α〉〈α|n〉 , (5.3.4)

que satisfaz as relação de projeção ρ2 = ρ e tem uma entropia de von Neumann nula, S =−Tr{ρ̂ ln ρ̂} = 0.

A completa decoerência deste estado corresponde a uma amortização dos termos fora da diagonal principal

da matriz densidade associada, de forma que,

ρdec
mn = |〈n|α〉 |2δmn = e |α|

2 |α|2
(n −1)!

δmn . (5.3.5)

O número de partículas no estado misto pode ser caracterizado por uma distribuição de Poisson com um

número médio de partículas n̄ = |α|2. A entropia que contém os estados mistos é dada por,

S(cs)
dec = e−n̄

∞∑
n=0

n̄n

n!
(n ln n̄ − n̄ − lnn!), (5.3.6)

equação em que o subscrito (cs) indica que o resultado é o mesmo para um estado coerente. Esta equação é

idêntica à [4.3.59], ou seja, a entropia será dada pela mesma expressão que a Eq. [4.3.59], sendo que para n̄ ≫ 1,

S(cs)
dec =

[
ln(2πen̄)− 1

6n̄
+O(1/n̄2)

]
. (5.3.7)

Desta forma, o número dos elementos da matriz densidade que contribuem para o cálculo da entropia é dado

por ∆n =p
n̄ devida à distribuição de Poisson.

A entropia de um único oscilador harmônico quântico em uma temperatura de equilíbrio T é dada por,

Seq = ln(n̄ +1)+ n̄ ln

(
1+ 1

n̄

)
, (5.3.8)

de forma que o número de ocupação média de partículas é expresso por n̄ = (eω/T −1)−1. Considerando um

valor de grande ocupação média n̄, assintoticamente, obtém-se Seq ≈ 2S(cs)
dec (Fig. [5.6]). Assim, entropia térmica

se torna duas vezes maior que a de decoerência; entretanto, para valores médios ou intermediários da ocupação,

S(cs)
dec /Seq , é próxima da unidade (∼ 0.75 para n̄ = 10). Neste modelo teórico, afirma-se que para valores não tão

grandes da ocupação média, o processo de decoerência é consideravelmente responsável por uma grande fração

da entropia criada. Desta forma, a diferença de entropia criada na reação se deve a processos que ocorrem em

sequência de evolução temporal do sistema gerado no espalhamento de íons pesados inicial. Evidentemente, a

96



Capítulo 5. Entropia da Decoerência Quântica

decoerência é um fenômeno que ocorre rapidamente se comparado aos processos de equilíbrio térmico; sendo

assim, estes resultados implicam que a alta taxa de geração de entropia observada nas colisões de íons pesados

se dá primariamente devido os efeitos da decoerência dos campos de cor iniciais.

Figura 5.6: Entropia de decoerência Sdec para um único modo k⃗,λ e a entropia de equilíbrio Seq para os mesmos valores
de energia média e número de ocupação n̄. Reproduzido de [27].
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Capítulo 6

Resultados e Conclusão

Neste capítulo são expostos os resultados desenvolvidos na pesquisa em questão, envolvendo investigações

fenomenológicas nas propriedades da entropia de emaranhamento, sua versão no modelo CGC, entropia

dinâmica da QCD e a entropia de decoerência.

Os primeiros resultados dizem respeito à comparação entre os modelos da entropia de emaranhamento no

Modelo KL e CGC na investigação de colisões onde os núcleons são os alvos [107]. A entropia de emaranhamento

no modelo KL é comparada com dados da entropia hadrônica* em colisões pp no LHC e ep da Colaboração

H1 [108]. Este trabalho é estendido para alvos nucleares. Continuando as pesquisas com a entropia de

emaranhamento, investiga-se o caso das colisões elásticas utilizando o método da femtoscopia independente

de modelo de Lévy, obtendo resultados para energias típicas do RHIC, Tevatron e LHC [109]. Por fim, utilizando

diferentes modelos de UGD’s, é possível computar a entropia dinâmica da QCD para núcleons [110] e para

colisões e A. Estes resultados são comparados com a entropia de decoerência. Ao final do capítulo, serão

apresentadas as conclusões deste trabalho de doutorado.

6.1 ENTROPIA DE EMARANHAMENTO EM ALTAS ENERGIAS NO DIS PARA COLI-

SÕES PP E EP

As expressões para a entropia de emaranhamento dadas por [4.3.23] e [4.3.51] dependem da PDF dos glúons.

O modelo de PDF da referência [111] contém uma expressão fenomenológica analítica para esta distribuição,

válida tanto para grandes valores da virtualidade do fóton (Q2 ≤ 50 GeV2) quanto para pequenos (Q2 ≪ 1 GeV2).

Este modelo é vantajoso se comparado com as PDFs usuais extraídas a partir do fitting com condições iniciais

em aproximadamente Q2 =Q2
0 ≈ 2 GeV2. Outra conveniência desta expressão é que ela é uma função explícita

da escala de saturação Qs . Partindo do modelo de saturação GBW, é possível obter uma distribuição de glúons

*A entropia hadrônica é uma das principais medidas experimentais de entropia na física de partículas. Ela é obtida a partir da
multiplicidade de partículas detectada após as colisões. Em colisões de alta energia, a distribuição da multiplicidade de partículas é
frequentemente descrita pela Distribuição Binomial Negativa (Negative Binomial Distribution, NBD), que é definida por dois parâmetros:
〈n〉 e k. A NBD é dada por:

PNB(n) = Γ(n +k)

Γ(n +1)Γ(k)

( 〈n〉
k +〈n〉

)n (
k

k +〈n〉
)k

,

onde Γ é a função gama. A NBD é amplamente utilizada na fenomenologia de colisões de alta energia, pois descreve bem as flutuações
observadas na multiplicidade de partículas.
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não integrada:

αsF (x,k) = N0k2

Q2
s

e−k2/Q2
s , (6.1.1)

com N0 = 3σ0/4π2. A PDF pode ser obtida a partir da integral:

〈n〉 ≡ x fg (x,Q2) =
∫ Q2

0
dk2F (x,k)

= 3σ0

4π2αs
Q2

s

[
1−

(
1+ Q2

Q2
s

)
e
−Q2

Q2
s

]
.

(6.1.2)

Nesta expressão, a escala de saturação Qs é dada pela Eq. [3.1.25], e os valores utilizados para os parâmetros são

σ0 = 27.32 mb, λ= 0.248 e x0 = 4.2×10−5 ajustados na referência [62].

Figura 6.1: A comparação de diferentes modelos para entropia partô-
nica em altas energias. A entropia é expressa como função do x de
Bjorken para virtualidades de Q2 = 2 GeV2 (esquerda) e Q2 = 10 GeV2

(direita) em um DIS de prótons. Os resultados são obtidos para a en-
tropia de emaranhamento no Modelo de KL, modelo CGC e Wehrl.
Reproduzido de [107].

Inicialmente, analisando a dependên-

cia das noções entrópicas estudadas com

a rapidez Y , avalia-se a entropia no mo-

delo de KL, especificadamente a Eq. [4.3.52],

comparando-a com as expressões para a en-

tropia de Wehrl [E.2.13] (estudada na disserta-

ção [14] e com uma breve exposição no Apên-

dice E.1) e o modelo CGC [4.5.37]. Os resulta-

dos são mostrados na Fig. [6.1]. O valor para

a constante de acoplamento da força forte é

αs = 0.25. Analisando os diferentes modelos

de entropia, percebe-se que tanto para o mo-

delo de emaranhamento CGC quanto para a

versão partônica da entropia de Wehrl, estas

são proporcionais à área transversa do alvo.

Esta é uma propriedade intrínseca de um ob-

servável extensivo como a entropia. Esta pro-

priedade não é contemplada na equação da

entropia de emaranhamento no modelo KL

[4.3.23]. Esta expressão se comporta como S ∼ Y 2 com uma supressão logarítmica em 1/Q2. A escolha r 2 = 4/Q2

para o tamanho médio do dipolo é utilizada para o produto dentro do logaritmo, de forma que Q2
s r = 4Q2

s /Q2+e

(o segundo termo é utilizado para evitar os valores negativos quando Q2
s ≪Q2). Por outro lado, a entropia de

Wehrl se comporta como SW ∼ eλY e cresce com Q2 com a simplificação realizada na integração em k, o que é

suficiente nesta análise fenomenológica. Por fim, a entropia de emaranhamento no modelo CGC se comporta

como SCGC ∼ eY (ln2 Q2 −2λY ).

Na Fig. [6.2], são apresentados os resultados para entropia de emaranhamento utilizando a PDF analítica

para glúons em altas energias [6.1.1] em função de x (10−5 ≤ x ≤ 10−2) para alguns valores específicos da

virtualidade do fóton. O modelo analítico possibilita uma análise na escala leve, Q2 = 0.65 GeV−2, um regime

que não pode ser avaliado pela evolução DGLAP [3.1.19], pois em geral esta equação começa a ser avaliada

em Q2
0 ∼ 2 GeV2. Os resultados para as virtualidades Q2 = 2 GeV2 e Q2 = 10 GeV2 também são apresentados.

É bem clara a transição entre as escalas leves para as mais duras. A vantagem de utilizar o modelo analítico
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Figura 6.2: (a): Entropia de emaranhamento como função do x de Bjorken para as virtualidades Q2 = 0.63, 2, 10 GeV2 em
um DIS de prótons. A entropia máxima para a escala Q2 = 0.63 é representada pela linha vermelha (linha tracejada). A
expressão paramétrica [4.3.52] também é apresentada (linhas de ponto traço). (b): Entropia de emaranhamento em colisões
pp comparada com a entropia hadrônica final determinada para diferentes domínios de pseudo-rapidezes no LHC (os
pontos com |η| < 0.5,1.0,2.0) obtidos a partir de [112]. O resultado numérico é representado pelas linhas sólidas. Adaptado
de [107].

para x fg é a possibilidade de verificar comportamentos anteriores em termos da variável de escala τ=Q2/Q2
s .

Para τ≪ 1, uma expansão em séries resulta em x fg ∝Q4/Q2
s , de forma que S ∝− lnQ2

s . Para pequenos valores

de x, obtêm-se S ∼λ ln x. Quando τ= 1, x fg ∝ [1−2/e]Q2
s , com a entropia S ∼− ln(x)−1 fazendo com que a

curva mude de inflexão na região de transição Q2 ≈Q2
s . No regime duro, quando Q2 ≪Q2

s , o comportamento

assintótico é dado por x fg ∝Q2
s e S ∼−λ ln(x). Isto é visto para grandes valores de x no gráfico de Q2 = 2 GeV2

e para todo x no caso Q2 = 10 GeV2.

A determinação da entropia de emaranhamento a partir de dados experimentais é realizada em [112]. Para

um DIS de prótons com pequeno-x no intervalo de energia
p

sep ≈ 225 GeV para o DESY-HERA. Os autores

utilizaram o método de Monte Carlo para a distribuição de multiplicidades a fim de obter a entropia dos

hádrons nos estágios finais com a entropia hadrônica Sh comparando-a com a entropia de emaranhamento,

demonstrando que ambas não são correlacionadas em Q2 = 2 e Q2 = 10 GeV2. Em ambas as virtualidades,

obtêm-se um resultado independente de 〈x〉 com Sh ≈ 1.5, em contradição com o comportamento de potências

da entropia de emaranhamento. O resultado do modelo proposto nesta tese, observado em (b) da Fig. [6.2]

para Q2 = 2 GeV2 é similar ao obtido pelos autores de [112]. Na Tabela [6.1] é apresentada a entropia de

emaranhamento dada pela Eq. [4.3.23] utilizando a escala Q2 =Q2
s (x) e utilizando os mesmos procedimentos

da referência [112] para comparar com a entropia Sh . A escolha para a rapidez do hádron y é tomada baseada

nos diferentes cortes experimentais da distribuição de multiplicidade de um hádron com pseudo-rapidez η.

Então, Sh é obtido dos dados experimentais da colaboração CMS [113], que é consistente com ATLAS e ALICE.

Desta forma, a expressão analítica para entropia de emaranhamento é,

S(Q2 =Q2
s ) = ln[Q2

s (x)]+S0, (6.1.3)

com S0 = ln[3(e −2)R2
p /4eπαs ] ≈ 2 para αs = 0.2 e S = S0 quando Q2

s = 1 GeV2. Na Fig. [6.2] (b) os resultados

mostram uma boa concordância com a entropia de emaranhamento obtida e a entropia reconstruída a partir
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Tabela 6.1: Entropia de emaranhamento em colisões pp no LHC previstas pela PDF de saturação de glúons utilizando os
procedimentos da referência [112]. Alguns valores extraídos dos dados do CMS são também apresentados (em parênteses)
[114]. Adaptado de [107].

p
spp (TeV) |y | < 0.5 |y | < 1.0 |y | < 1.5 |y | < 2 |y | < 2.4

7.00 1.668(1.914±0.212) 2.368(2.673±0.157) 2.787 3.093(3.478±0.236) 3.291
2.36 1.398(1.271±0.099) 2.100(2.139±0.318) 2.517 2.823(3.142±0.326) 3.022
0.90 1.160 1.860(1.633±0.130) 2.277 2.584(2.671±0.108) 2.784

da multiplicidade hadrônica para valores de pequeno-x.

Por fim, foi calculada a entropia de emaranhamento KL utilizando a PDF de glúons GBW [6.1.2] comparando-

a com os dados da colaboração H1 [115] para colisões ep. Os dados fornecem a entropia do hádron no

estado final, derivada das distribuições de multiplicidade carregada para pseudo-rapidez de traços η no

referencial do centro de massa hadrônico, restritas ao intervalo 0 < η < 4. Além disso, a colaboração H1

mediu a entropia hadrônica em quatro faixas de virtualidade do fóton: 5 <Q2 < 10, 10 <Q2 < 20, 20 <Q2 < 40 e

40 <Q2 < 100GeV2.

Para comparar a expressão KL com os dados, é necessário adaptar a fórmula da entropia de emaranhamento

para incluir a contribuição de Q2. Uma maneira de realizar este procedimento é fornecida em [96], onde os

autores relacionam a entropia de emaranhamento KL com a entropia dos estados finais, apontando diversas

incertezas na comparação atual com os dados. Em particular, eles destacam a normalização global, a relação

entre multiplicidade de hádrons carregados versus total na comparação com os resultados experimentais,

bem como diferentes métodos para determinar o número de pártons em um DIS. Eles também incluíram

o PDF de quarks do mar, x fsea(x,Q2), modificando a Eq. (4.3.18) para 〈n〉 = x fg (x,Q2)+ x fsea(x,Q2). Aqui,

manteremos apenas a contribuição dos glúons para aproveitar a expressão analítica GBW para o PDF de glúons.

Seguindo [96], o tratamento para as medidas em faixas de Q2 será dado por:

〈
n(x,Q2)

〉
Q2 = 1

Q2
max −Q2

min

∫ Q2
max

Q2
min

dQ2x fg (x,Q2). (6.1.4)

Após as alterações na Eq. (4.3.23), a expressão final para avaliar a entropia de emaranhamento KL, a ser

comparada com a análise dos dados H1, é:

〈
S(x,Q2)

〉
Q2 = ln

〈
n(x,Q2)

〉
Q2 . (6.1.5)

Os resultados são apresentados na Fig. [6.3]. Em geral, os resultados ajustam-se bem, exceto para os dados de

40 <Q2 < 100GeV2. A razão para isso é que a fórmula analítica GBW é válida até 50GeV2. Uma evolução DGLAP

é necessária nesta região cinemática.

6.2 ENTROPIA DE EMARANHAMENTO EM ALTAS ENERGIAS NO DIS PARA NÚ-

CLEOS

Nesta seção discute-se a entropia de emaranhamento partônica no caso de alvos nucleares. Para simplificar a

análise do DIS nuclear, considera-se a propriedade do geometric scaling na aproximação da saturação partônica.

Desta forma, a seção de choque de um DIS e A para pequeno-x é diretamente relacionada com a seção de
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Figura 6.3: Entropia de emaranhamento partônica versus Bjorken-x. Os resultados são contrastados com a entropia
hadrônica derivada das distribuições de multiplicidade carregada medidas pela colaboração H1 [115]. Os resultados
numéricos deste trabalho são representados pelas linhas sólidas. Reproduzido de [108].

choque para o próton como alvo. Os efeitos nucleares são absorvidos pela escala de saturação nuclear Q2
s,A ,

Q2
s,A(x, A) =

(
AπR2

p

πR2
A

)∆
Q2

s (x) ∼ A4/9Q2
s (x), (6.2.1)

com ∆≈ 1.27 [116] e a normalização da seção de choque reescalada em relação ao caso ep com a troca,

σA → πR2
A

πR2
p
σ0 ∼ A2/3σ0, (6.2.2)

de forma que o raio nuclear seja dado por RA ≈ 1.12A1/3 fm. Assim, a extensão mais simples da distribuição de

glúons nuclear é,

x fg ,A(x,Q2) = 3R2
A

4παs
Q2

s,A

1−
(

1+ Q2

Q2
s,A

)
e
− Q2

Q2
s,A

 . (6.2.3)

Na Fig. [6.4] estão expostos os resultados para a entropia de emaranhamento nuclear a partir da parame-

trização para a PDF nuclear [6.2.3]. Foram consideradas as virtualidades Q2 = 5, 10, 50 GeV2 e os seguintes

núcleos: chumbo (Pb), ouro (Au), cálcio (C a) e silício (Si ). Os núcleos de Pb e Au serão investigados em

futuros colisores elétron-íon como o LHeC e o eRHIC. O caso Q2 = 2 é interessante pelo fato de a escala de

saturação ser aprimorada por um fator de A4/9 se comparada com o caso do próton. Este fator é de 10 para o

chumbo (A = 208) e 5 para o cálcio (A = 40). Portanto, no modelo utilizado, a escala Q2
s,A é na ordem de 2 GeV2
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para x ≈ 10−2 para o Pb e x ≈ 10−3 para o C a, enquanto no caso do próton isto ocorre para x ∼ 10−5 (Fig. [6.2]

(a)). Isto significa que a entropia de emaranhamento alcança o seu valor máximo para um valor maior de x se

comparada com o DIS nuclear devido à rápida saturação no caso nuclear.

Figura 6.4: Entropia de emaranhamento nuclear como função de x para as virtualidades Q2 = 5, 10, 50 GeV2 em um DIS
nuclear. Para cada virtualidade, os seguintes nuclídeos foram examinados: Pb (linhas sólidas), Au (linhas pontilhadas), C a
(linhas pontilhadas longas) e Si (linhas tracejadas). Reproduzido de [107].

6.3 ENTROPIA DE EMARANHAMENTO EM COLISÕES ELÁSTICAS UTILIZANDO

FEMTOSCOPIA HADRÔNICA

Nas referências [23, 24] foi realizado o cálculo da entropia de emaranhamento em colisões elásticas, na forma

como foi desenvolvido na Seção [4.4]. Contudo, para que fosse possível obter a expressão da entropia de

emaranhamento [4.4.19], os autores, além de realizarem uma regularização de volume, tiveram que tomar

algumas assunções quanto à dependência dos observáveis físicos em relação à variável de Mandelstam t , neste

caso, a aproximação de pico de difração no espalhamento hádron-hádron [4.4.20].

É possível obter uma expressão para a entropia de emaranhamento [23,24] sem considerar qualquer hipótese

para a dependência em t , como o pico de difração. Contudo, para isso, utiliza-se modelos de femtoscopia, mais

especificamente, o método de femtoscopia independente de modelo de Lévy para colisões elásticas (Apêndice

D).

O objetivo desta seção é apresentar os resultados obtidos para a entropia de emaranhamento utilizando

o modelo de femtoscopia de Lévy [109]. Não apenas os dados para altas energias foram considerados, mas

também os regimes menos energéticos. Foram utilizadas expansões de Lévy até a quarta ordem para os dados
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do espalhamento pp medidos no domínio energético do ISR (
p

s = 23.5, 30.7, 44.7, 52.8 e 62.5 GeV). Além disso,

para as colisões pp̄ as expansões de Lévy utilizadas foram até o segundo grau para as energias
p

s = 53 GeV

(ISR) e
p

s = 1960 GeV (D0, Tevatron) e expansões até a terceira ordem para
p

s = 546 GeV e
p

s = 630 GeV (UA4).

Para as energias do LHC, as expansões de Lévy foram realizadas até a quarta ordem para todas as medidas da

seção de choque diferencial em colisões elásticas pp para 7 e 13 TeV. Os parâmetros para a expansão, R, α e

os coeficientes complexos ci estão disponíveis nos Apêndices A e B da referência [117]. De qualquer forma,

usualmente utiliza-se α≈ 0.9 e R ≈ 0.6-0.7 fm.

Uma parte dos resultados é exposta na Tab. [6.2], utilizando os três métodos de regularização propostos

pela referência [23], originalmente com
p

s = 1.8, 7, 8 e 13 TeV. Os valores medidos para as seções de choque

totais e elásticas também são apresentados. Foram adicionadas previsões para as energias do RHIC, 0.2 TeV, e

LHC com 2.76 TeV e também resultados recentes para σT e σel nas colisões pp do RHIC com
p

s = 200 GeV.

Na Fig. [6.5] são apresentados os resultados da entropia de emaranhamento extraída como função da

energia do centro de massa da colisão utilizando a regularização de volume [4.4.19], com a metodologia de

femtoscopia de Lévy. Os dados das colisões pp para baixas energias no ISR são etiquetados por triângulos

levantados, enquanto os dados de colisões pp̄ do ISR, UA4 e D0 são representados por triângulos invertidos. Os

dados do TOTEM-LHC com energias de 7 e 13 TeV, representados por quadrados, são expostos junto com a

entropia de emaranhamento da referência [24], sendo estes estrelas no gráfico.

O cálculo da entropia de emaranhamento utilizando a metodologia de Lévy resultou em altos valores

utilizando a regularização por volume devido à contribuição adicional para grande t que é suprimida na

aproximação de pico de difração. Contudo, o desvio não é tão grande para aproximação de pequeno t , podendo

ser considerada uma extração compatível com a entropia de emaranhamento. Reitera-se que a regularização

utilizando a função degrau consumiu mais tempo de máquina devido ao integrando oscilante na Eq. [4.4.26].

Tabela 6.2: A entropia de emaranhamento determinada com o método independente de modelo de Lévy comparada com a
aproximação de pico de difração apresentada em [24]. Também são apresentados resultados para três tipos de regularização
(regularização de volume, e cutoffs de função degrau/gaussiana). As predições para 0.2 TeV (RHIC) e 2.76 TeV (LHC), que
não aparecem originalmente em [24], são calculadas. Adaptado de [109].

p
spp (TeV) Lévy Reg. de Volume Dados Experimentais [σT , σel] (mb) F. Heaviside F. Gaussiana

13.00 1.126 1.114 [110.6 3.4, 31.0 1.7 ] 1.212 0.8621
8.00 - 1.063 [101.7 2.9, 27.1 1.4 ] 1.197 0.7965
7.00 1.020 1.031 [98.0 2.5, 25.1 1.1 ] 1.192 0.7539
2.76 - 1.029 [84.7 3.3, 21.8 1.4 ] 1.144 0.7509
1.80 0.953 0.918 [72.10 3.3, 16.6 1.6 ] 1.193 0.6009
0.20 - 0.769 [54.67 1.89, 10.85 1.103] 1.103 0.3909

6.4 A ENTROPIA DINÂMICA DA QCD

A entropia dinâmica dos estados densos nas colisões pp em altas energias pode ser estudada utilizando modelos

fenomenológicos para as UGD’s. Desta forma, é possível obter as distribuições de probabilidades de momentum

transverso avaliadas em termos da rapidez. A entropia dinâmica é avaliada em função de ∆Y = Y0 −Y , sendo

Y0 a rapidez inicial.

Foram analisados quatro UGD’s na investigação da entropia dinâmica: a distribuição CGC gaussiana [118]

φGaus(Y ,k), a proposta fenomenológica que considera a produção de hádrons carregados em colisões pp
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Figura 6.5: A entropia de emaranhamento para colisões elásticas como função da energia do centro de massa da colisão
p

s.
A extração obtida utilizando o método de Lévy é apresentada em baixas e altas energias e comparada com os resultados
de [24]. Os valores para LHC, Tevatron e RHIC são dados na Tabela [6.2]. A predição para a aproximação de pico difrativo
utilizando um canal no modelo eikonal é apresentada (linha sólida). Um ajuste baseado na contribuição de polo único de
Regge para o Pomeron leve também é apresentada (linha tracejada). Reproduzido de [109].

combinada com distribuições do tipo Tsallis [119] φMPM(Y ,k), o modelo que considera tanto as condições

iniciais do CGC por McLerran-Venugopalan quanto as soluções de Levin-Tuchin em um amplo domínio da

distribuição de momentum transverso [120] φLT(T,k) e a proposta numérica da referência [121] φKS(Y ,k).

Contudo, inicialmente é necessária a obtenção das distribuições de probabilidades para cada uma das UGD’s

citadas.

6.4.1 As Distribuições de Probabilidades da Entropia Dinâmica da QCD

Agora, demonstra-se, em detalhes, os procedimentos realizados para o cálculo da entropia dinâmica no caso

da UGD gaussiana, que pode ser resolvido analiticamente. Com exceção da proposta de φKS(Y ,k), as demais

distribuições foram obtidas a partir de uma metodologia análoga, de forma que esta demonstração segue uma

linha mais pedagógica.

Inicialmente, para obter as distribuições de probabilidades do momentum, é necessária a realização da

normalização da UGD, pois, da Eq. [3.4.3],

P (τ) = φ(τ)∫
dτφ(τ)

= φ(τ)

N
, ∴ N =

∫
d 2kφ(τ). (6.4.1)

Lembrando que τ= k2/Q2
s (x).

A UGD gaussiana QCD da referência [61] é dada por,

φ(τ) = CF AT

4π2αs
τe−τ/2 ≡Cτe−τ/2 ∴ C ≡ CF AT

4π2αs
. (6.4.2)
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Nesta equação, AT é a área transversa do próton. Sendo assim, o fator de normalização pode ser obtido a partir

de uma substituição de variáveis trivial,

N =
∫ +∞

−∞

∫ +∞

−∞
dkx dkyφ(k2, x) = 2π

∫ ∞

0
dkkφ(τ)

=πQ2
s (x)

∫ ∞

0
φ(τ)dτ=πQ2

s (x)C
∫ ∞

0
τe−τ/2dτ︸ ︷︷ ︸

4

.
(6.4.3)

Desta forma, N = 4πCQ2
s (x). Sendo assim, a distribuição para o caso gaussiano Pgaus(τ) é dada por,

Pgaus(τ) = τe−τ/2

4πQ2
s

. (6.4.4)

Para o caso da UGD φMPM, dada por,

φMPM = 3σ0

4π2αs

τβ(τ)

(1+τ)1+β(τ)
, (6.4.5)

sendo, nesta equação, αs = 0.2, com Q2
s (Y ) = k2

0e0.33Y e k2
0 = x̄0.33

0 GeV2. O comportamento de potências dos

glúons produzidos no spectrum de grande momenta é determinado pela função β(τ) = aτb . O conjunto de

parâmetros σ0, x̄0, a e b é ajustado a partir de dados provenientes de um DIS para pequeno-x [119],

σ0 = 20.47mb;

x̄0 = 3.52×10−5;

a = 0.055;

b = 0.204.

(6.4.6)

De forma análoga ao procedimento seguido para obter a distribuição gaussiana, para o caso de φMPM

obtém-se a distribuição,

PMPM(τ) = 1

πQ2
s ξ

τβ(τ)

(1+τ)1+β(τ)
, (6.4.7)

sendo ξ= 4.34618 uma constante proveniente da integração numérica [6.4.1].

A fim de analisar informações provenientes das distribuições de momentum transverso (TMD, transverse

momentum distribution) do glúon, que carregam consigo mais informações do comportamento teórico correto

tanto para grandes quanto pequenos momenta, considera-se a distribuição φLT. Ela é derivada a partir de uma

forma de solução geral φ(Y ,k) que reproduz tanto as condições iniciais do Modelo MV quanto as soluções de

Levin-Tuchin (LT) em seus limites apropriados. Esta distribuição conecta ambos os limites suavemente e melhor

se aproxima da solução numérica em primeira ordem da equação BK, especialmente na região de saturação.

Neste limite, a TMD para o glúon vai a 0. Inicialmente, com a TMD de glúons para um pequeno momentum

transverso a partir da solução da matriz S de LT, a UGD toma a seguinte forma na região Qs > k >ΛQC D ,

φsat
LT (Y ,k) =−Nc AT ϵ

π3αs
ln

(τ
4

)
e−ϵ ln2(

τ
4

)
, (6.4.8)

de forma que φsat
LT (Y ,k) foi obtida para um pequeno momentum transverso em termos de uma série de polinô-
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mios de Bell. Esta expressão corresponde à aproximação de logaritmo dominante para as séries resumidas com

uma constante ϵ≈ 0.2, que aparece devido à condição do ponto de sela em torno da borda de saturação. Fora

dos contornos da saturação (k >Qs ), mas próximo à linha de saturação, a amplitude de dipolo QCD no espaço

transverso tem a forma N (r,Y ) ≈ (r 2Q2
s )γs . Neste limite, a TMD pode ser escrita como,

φdil
LT (Y ,k) ∝ Nc AT ϵ

π3αs
τ−γs . (6.4.9)

Utilizando os procedimentos de normalização [6.4.1] e considerando os detalhes da região física de interesse,

é proposta a seguinte distribuição,

PLT(Y ,k) =
−B ln

(
τ
4

)
e−ϵ ln2(τ/4), para τ< 1,

B(dτ)−γs e−ϵ
2(τ/4), para τ≤ 1,

(6.4.10)

sendo d = (ln4)−1/γs e B ≈ 0.1/πQ2
s , parâmetros da normalização.

Por fim, utilizou-se o modelo de UGD não linear proveniente do algoritmo providenciado pelo autor da

referência [121], utilizado neste trabalho com o intuito de verificar as incertezas teóricas adjacentes aos demais

modelos utilizados. Esta UGD é tratada numericamente com o formalismo matemático da entropia dinâmica a

partir de algoritmos disponibilizados por um dos autores.

Figura 6.6: A distribuição de probabilidade, P (Y ,k), como função de k para valores fixos de Y = − ln x (x = 10−8-10−2).
Resultados para o modelo MPM (esquerda) e modelo gaussiano (direita). Reproduzido de [110].

Na Fig. [6.6] são apresentadas as distribuições de probabilidade de momentum transverso dos glúons para

os modelos MPM (a) e gaussiano CGC (b). É apresentada a dependência com k para vários valores de Y (2,

4, 6, 8, ln10), que correspondem às frações de momentum longitudinal dos glúons, x = 10−8-10−2. Ambos os

modelos apresentam a propriedade de geometric scaling, φ(Y ,k) ∼φ(τ= k2/Q2
s )Rs , e o seu pico ocorre com

um momentum transverso proporcional à escala de saturação. De qualquer forma, em cada um dos modelos,

esse pico é alcançado para valores diferentes: para a gaussiana CGC, tem-se kmax =p
2Qs (Y ), enquanto, no

caso do modelo MPM, kmax ≈p
0.954Qs (Y ).
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6.4.2 Resultados para Entropia Dinâmica da QCD e a Entropia de Decorência

Figura 6.7: (esquerda): Entropia dinâmica correspondente a uma evolução QCD de rapidez Y0 → Y , com ∆Y = Y −Y0. A
rapidez inicial é Y0 =− ln x0, sendo x0 = 10−2. Resultados numéricos para o modelo MPM (linha pontilhada), modelo CGC
gaussiana (linha sólida), CGC LV (linha pontilhada) e modelo KS (pontos). (direita): Entropia dinâmica total em uma colisão
pp para uma evolução QCD de rapidez, Y0 → Y , no domínio ∆Y = [0,15]. Reproduzido de [110].

Nesta seção, apresentam-se os resultados obtidos para a entropia dinâmica da QCD com uma rapidez Y

sujeita à evolução Y0 → Y . Foi considerada uma rapidez inicial Y0 ≈ 4.6. Os valores de x ≤ x0 correspondem ao

limite de validade para a aplicação fenomenológica das UGD’s consideradas neste trabalho. Para essa rapidez

inicial, os pártons populam uma área transversal proporcional ao tamanho R0(Y0) = 1/Qs (Y0).

O caso do modelo da UGD gaussiana do CGC pode ser tratado analiticamente. Utilizando a expressão [3.4.6]

com a UGD gaussiana dada por [6.4.4],

Σ
Y0→Y
g aus =

∫
2

[(
Q2

s (Y )

Q2
s (Y0)

−1

)
− ln

[
Q2

s (Y )

Q2
s (Y0)

]]
. (6.4.11)

Utilizando a expressão para a escala de saturação em função da rapidez, Q2
s (Y ) =Q2

s (Y0)eλ∆Y , obtém-se:

Σ
Y0→Y
Gauss = 2(eλ∆Y −1−λ∆Y ), (6.4.12)

Para o caso do modelo MPM, a entropia é parametrizada na forma:

Σ
Y0→Y
MPM = (1+γs )(eσ∆Y − g −σ∆Y ), (6.4.13)

de forma que σ≈ 0.088 e g ≈ 0.95 na região ∆Y ≪ 5.

Na Fig. [6.7], a entropia dinâmica é apresentada para todos os modelos de UGD’s estudados: modelos MPM

(linha tracejada), CGC gaussiano (linha sólida), LT (linha pontilhada) e KS não linear (pontos). Os modelos MPM

e LV são praticamente coincidentes, significando que a fenomenologia realizada no modelo MPM mimetiza

corretamente o comportamento teórico da UGD LT na região de saturação. O modelo gaussiano apresenta uma

entropia de maior magnitude se comparado com os demais.

A densidade de entropia dinâmica [3.4.14] também é calculada e apresentada na Fig. [6.7], com a mesma

notação das linhas do lado esquerdo da mesma figura. Na Eq. [3.4.14], não estão incluídas as correlações

partônicas [21]. Os resultados foram obtidos no domínio de ∆Y = [0,15], que corresponde a uma evolução
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QCD de x = 10−2 até x = 10−8. Foram utilizados αs = 0.2 e Rp = 0.8414 fm no cômputo numérico. Para os

modelos MPM e LT, a magnitude é bem aproximada. O modelo de UGD de KS não apresenta geometric scaling,

especialmente para grande k. Este modelo mimetizou muito bem as UGD’s LV e MPM, especialmente para

grande ∆Y .

Por fim, na Fig. [6.8], a entropia dinâmica por número médio de ocupação de glúons 〈n〉 é apresentada

em comparação com a entropia de decoerência de um único modo [5.3.7] e a entropia de equilíbrio [5.3.8].

Para obter os resultados da entropia dinâmica em função da ocupação média, foram utilizadas as instruções

da referência [22], em que 〈n〉 = x fg (x). A escala de resolução é Q2 = Q2
s (Y ), de forma que a densidade de

ocupação de glúons é dada nesta escala por:

x fg (x = eY ,Q2
s ) =CQ2

s (Y ), (6.4.14)

com C = 3πR2
p (1−2/e)/4π2αs . O resultado é uma expressão para o modelo MPM. Comparando os resultados da

Fig. [6.8], percebe-se que, para um grande número de ocupações, o comportamento da entropia de equilíbrio é

bem similar ao da entropia dinâmica. De qualquer forma, observa-se que diferentes definições para 〈n〉 foram

utilizadas em cada caso.

Figura 6.8: A entropia dinâmica Σ como função do número médio de ocupação (linha pontilhada). Comparação com a
entropia de decoerência (linha sólida) e entropia de equilíbrio (linha tracejada) para os estados coerentes de um único
modo. Reproduzido de [110].

6.4.3 Entropia Dinâmica em Colisões pA

Para adaptar o cálculo da Entropia Dinâmica é necessário encontrar UGD’s nucleares. Este tipo de objto

matemático é escasso na literatura, de forma que foram estabelecidas duas estratégias para adaptar as UGD’s já

estudadas no caso dos prótons para o caso dos nuclei. A primeira delas faz uso da propriedade do geometric

scaling proposta na referência [63], proposto na Eq. [3.1.27], em que a área transversa do alvo pode ser absorvida
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pela escala de saturação dependente da massa atômica A, ou seja, σγ
∗A(τA)/πR2

A =σγ∗p (τ)/πR2
p , com RA =

(1.12A1/3 − 0.86A−1/3) fm sendo o raio nuclear. Assim, é necessário adaptar a seção de choque transversa

σ0 →σA e a escala de saturação Q2
s (Y ) →Q2

s,A(Y ). Especificamente, para a escala de saturação nuclear Qs,A(Y ):

Q2
s,A(Y ) =

(
R2

p A

R2
A

)∆
Q2

s (Y ), (6.4.15)

onde ∆≈ 1.27 e Rp ≈ 3.56 GeV.

Agora, no cálculo da entropia dinâmica, o procedimento de normalização é idêntico ao caso do próton, con-

forme mostrado em resultados anteriores, onde todas as dependências da seção de choque σ0 são desprezíveis

devido ao processo de normalização. Portanto, realizando a operação Q2
s (Y ) →Q2

s,A(Y ), as distribuições de

probabilidade de momento transverso para os modelos GBW, MPM e LV no caso próton-núcleo são:

P A
GBW(τA) = τAe−τA /2

4πQ2
s,A

, (6.4.16)

P A
MPM(τA) = 1

πξQ2
s,A

τA(1+aτb
A)

(1+τA)2+aτb
A

, (6.4.17)

P A
LV(τA) =


− ln

(
τA
4

)
8πQ2

s,A
e
−ϵ ln2

(
τA
4

)
, para τA < 1;

(dτA )−γs

8πQ2
s,A

e
−ϵ ln2

(
τA
4

)
, para τA ≥ 1.

(6.4.18)

Nestas equações, a variável de scaling é agora τA = k2/Q2
s,A , e ξ= 4.346 é o fator de normalização para o modelo

MPM.

A segunda forma de se obter uma UGD nuclear utiliza o formalismo de Glauber-Gribov, em que a se-

ção de choque total do dipolo do próton, σdip(r,Y ), é substituída pela seção de choque nuclear σd A(x,r ) =∫
d 2bσd A(x,r,b), com:

σdA(Y ,r,b) = 2

[
1−exp

(
−1

2
TAσdip(Y ,r )

)]
. (6.4.19)

Nesta equação, TA(b) é a função de espessura nuclear, definida como a função de perfil nuclear TA = ∫ +∞
−∞ ρA(z, b⃗),

normalizada à massa atômica,
∫

d 2bTA(b) = A. Neste trabalho, utilizou-se a parametrização de Woods-Saxon

para a densidade nuclear ρA .

A UGD nuclear é dada pela expressão:

ϕA(Y ,k) =− Nc k2

4π2αs

∫
d 2bd 2r

2π
e i k⃗ ·⃗rσdA(Y ,r,b). (6.4.20)

Em particular, para o modelo GBW no regime de pequeno-x, pode-se utilizar a seção de choque do dipolo

do próton, e a UGD nuclear é [122]:

ϕGBW
A (x,k) = Nc

π2αs

k2

Q2
s

∫
d 2b

∞∑
n=1

(−B)n

n!

n∑
ℓ=1

C n
ℓ

(−1)ℓ

ℓ
e−k2/ℓQ2

s , (6.4.21)

onde, nesta equação, C n
ℓ

é a fórmula de combinação e B = 1
2 TA(b)σ0.

Calculando a entropia dinâmica nuclear utilizando a estratégia do geometric scaling, utilizando as distri-
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Figura 6.9: Entropia dinâmica total da QCD, dΣd /d y , produzida em uma colisão p A como função de ∆Y = Y −Y0, com
Y0 ≈ 4.6, para os modelos de UGD GBW (linhas sólidas), MPM (linhas tracejadas) e LV (linhas tracejadas-pontilhadas), para
chumbo (esquerda) e cálcio (direita).

buições de probabilidade de momento transverso nuclear [6.4.16]-[6.4.18], obteve-se o mesmo resultado do

próton mostrado na Fig. [6.7]. Para compreender isso, a entropia dinâmica pode ser avaliada na seguinte forma:

ΣY0→Y =πQ2
s,A(Y )

∫ ∞

0
dτAP (τA) ln

[
P (τA)

P (τ0
A)

]
, (6.4.22)

com τ0
A = k2/Q2

s,A(Y0). A partir disso, k2 = τAQ2
s,A(Y ) = τ0

AQ2
s,A(Y0), e é útil definir a razão,

Q2
s,A(Y )

Q2
s,A(Y0)

=

(
R2

p A

R2
A

)∆
Q2

s (Y )(
R2

p A

R2
A

)∆
Q2

s (Y0)

= eλ∆Y ≡ s, (6.4.23)

onde ∆Y = Y −Y0 com Y0 ≈ 4.6 (x0 = 0.01). Considera-se essa rapidez inicial porque os valores de x ≤ x0

correspondem ao limite de validade para a aplicação dos modelos fenomenológicos de UGD considerados aqui.

Assim, inicialmente, os pártons ocupam uma área transversa proporcional ao tamanho inicial de correlação de

cor R0(Y0) = 1/Qs (Y0).

A partir da expressão [6.4.22], a razão entre P (τA) e P (sτA) pode ser analisada para as diferentes expressões

das distribuições de probabilidade de momento transverso nuclear na estratégia de adaptação de geometric

scaling [6.4.16)-(6.4.18]. Para o modelo GBW, pode-se observar:

ln

[
PGBW(τA)

PGBW(sτA)

]
= 2λ∆Y +k2[R2

s (Y0)−R2
s (Y )]. (6.4.24)

Substituindo este resultado na expressão [3.4.6], obtém-se uma expressão equivalente à obtida na Eq. [14] da

Ref. [21], recuperando a entropia dinâmica do próton:

Σ
Y0→Y
GBW (∆Y ) = 2

(
eλ∆Y −1−λ∆Y

)
, (6.4.25)

Um procedimento similar pode ser realizado para a entropia dinâmica do modelo MPM, ΣY0→Y
MPM , uma vez
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que apresenta propriedade de geometric scaling:

Σ
Y0→Y
MPM = 1

ξ

∫ ∞

0
dτA

τA(1+aτb
A)

(1+τA)2+aτb
A

ln

[
(1+aτb

A)(1+ sτA)2+asbτb
A

s2(1+asbτb
A)(1+τA)2+aτb

A

]
. (6.4.26)

Esta expressão também retorna a entropia dinâmica do próton mostrada na Fig. [6.7]. O procedimento de

normalização [6.4.1] elimina toda a dependência nuclear no tamanho transverso do alvo, S A
⊥ =πR2

A . O mesmo

efeito pode ser demonstrado para o caso da UGD LV, tanto para as contribuições diluídas quanto saturadas.

Na Fig. [6.9], a densidade de entropia [3.4.14] é calculada para chumbo (painel esquerdo) e para cálcio

(painel direito) para todos os modelos baseados no fenômeno de geometric scaling: GBW (linha sólida), MPM

(linha tracejada) e LV (linha tracejada e pontilhada) no intervalo ∆Y = [0,15]. Embora a entropia dinâmica

nuclear seja independente de A, sua densidade está relacionada ao tamanho do raio nuclear como dSD
d y ∼ R2

A .

Na definição proposta na referência [21], deve-se levar em consideração a razão entre todas as células unitárias

disponíveis no meio CGC, ∼ πR2
A

πR2
0

.

Figura 6.10: Entropia dinâmica QCD nuclear em colisões próton-núcleo correspondente à evolução QCD em rapidez,
Y0 → Y , no intervalo ∆Y = [0,15] na abordagem de Glauber-Gribov. A entropia é calculada para chumbo (linha sólida) e
silício (linhas tracejadas).

Por fim, os resultados obtidos para a entropia dinâmica nuclear via o formalismo de Glauber-Gribov são

dados na Fig. [6.92], a entropia dinâmica novamente mostrou independência em relação a A, também plotada

como uma função de ∆Y no intervalo [0,15]. Embora a obtenção da UGD envolva um processo mais complexo

via a Eq. [6.4.21], parece que o geometric scaling e o procedimento de normalização também eliminam a

dependência de A na entropia dinâmica. Uma diferença notável em relação à estratégia do geometric scaling é

que este resultado não se reduz ao caso do próton e é aproximadamente dez vezes maior.
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6.5 CONCLUSÃO

Nesta tese, foi investigada a entropia de emaranhamento em processos DIS, para pp, ep e p A e também

em espalhamentos elásticos. O formalismo teórico baseou-se na entropia de emaranhamento utilizando a

expressão de von Neumann, escrita em termos do número de glúons como função de x de Bjorken e das

virtualidades do fóton, Q2. Utilizou-se expressões analíticas para a densidade de glúons relacionadas à física

de saturação de pártons, com modelos baseados na representação de dipolos de cor. A análise incluiu tanto

densidades integradas quanto não integradas, permitindo a descrição de observáveis fundamentais em DIS

para x pequeno e valores intermediários de Q2 ∼ 50GeV2. Além disso, foi realizada uma extrapolação utilizando

propriedades de geometric scaling para obter a densidade de glúons nucleares, sendo os resultados consistentes

com os dados experimentais.

A investigação da entropia de emaranhamento em processos de espalhamento elástico em colisões pp

e p̄p foi conduzida utilizando o formalismo da matriz S e a expansão em ondas parciais. A extração model-

independent, baseada no método de imagem de Lévy, permitiu a análise sistemática do emaranhamento nos

estados finais hadrônicos. Verificou-se que, em altas energias, a entropia para espalhamento elástico apresenta

saturação em energias assintóticas, com comportamento parametrizado como S ∼ 1+ ln(2)− ln(ln(s)).

A entropia dinâmica da QCD foi estudada em colisões pp e p A, com base em diversos modelos de UGD’s.

Para colisões pp, foram utilizados modelos analíticos como o MPM, que descreve de forma precisa os espectros

de partículas carregadas no LHC, além de modelos CGC baseados em distribuições gaussianas e na lei de

Levin-Tuchin. Os resultados mostraram que, em todos os casos, o máximo da distribuição ocorre em torno de

k ∼Qs , destacando a propriedade de geometric scaling. Foi calculada a entropia dinâmica total e sua densidade,

apresentando forte dependência de ∆Y , especialmente no caso do modelo gaussiano do CGC. Para colisões p A,

estratégias baseadas no geometric scaling e no formalismo de Glauber-Gribov foram empregadas, confirmando

que a entropia dinâmica independe do número atômico A, devido ao procedimento de normalização.

Os resultados compararam a entropia dinâmica com a entropia de decoerência e a entropia de equilíbrio de

um único modo, destacando semelhanças para grandes números médios de ocupação de glúons. A análise

detalhada destas entropias, utilizando ferramentas analíticas e fenomenológicas, oferece uma nova perspectiva

para compreender a dinâmica dos estados iniciais em colisões de íons pesados e a produção de múltiplas

partículas em altas energias.

Por fim, a análise robusta de diversas noções de entropia confronta os bons resultados obtidos pela entropia

de emaranhamento no Modelo LV. Neste caso, como a matriz densidade reduzida pode ser escrita em função

da virtualidade, que, por sua vez, está relacionada com a porção espacial do hádron investigado em um DIS,

sendo esta na sua totalidade Ah , é proposta a ideia de que, para baixos valores da virtualidade, na ordem em

que Ah ∼ 1/Q2, ter-se-á ρ̂A ∼ ρ̂, ou seja, a matriz densidade é similar à matriz densidade total do sistema, de

forma que a entropia de emaranhamento se confunde com a entropia hadrônica.
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Variáveis do Cone de Luz

As coordenadas do cone de luz são o sistema usual na física de partículas em altas energias. Tradicionalmente,

existem duas formas de tratar esse sistema, que podem mudar conforme a referência estudada. A primeira

forma é chamada de convenção de Lepage-Brodsky (LB), e a segunda, convenção de Kogut-Soper (KS). Por

exemplo, ao tratar desse sistema de variáveis, na seção em que o formalismo CGC é apresentado [3.1.1], os

resultados reproduzidos utilizaram a convenção KS; em contrapartida, ao realizar manipulações para obtenção

da entropia de Wehrl neste apêndice [E.1], foi utilizada a convenção LB.

Dessa forma, neste apêndice são brevemente apresentados os fundamentos das duas convenções, uma vez

que, para cada tratamento das teorias e formalismos abordados neste trabalho, foram mantidas as escolhas e

convenções de cada autor. Para uma discussão completa das variáveis do cone de luz, indica-se a referência

[123].

Convenção de Lepage-Brodsky

Os 4-vetores contravariantes da posição xµ são escritos como:

xµ = (x+, x−, x1, x2) = (x+, x−, x⃗T ). (A.0.1)

As componentes do tipo tempo e do tipo espaço são dadas por:

x+ = (x0 +x3) e x− = (x0 −x3), (A.0.2)

respectivamente, e são chamadas de tempo no cone de luz e posição no cone de luz. Os vetores covariantes são

obtidos utilizando xµ = gµνxν, com os tensores de métrica:

gµν =


0 2 0 0

2 0 0 0

0 0 −1 0

0 0 0 −1

 (A.0.3)
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gµν =


0 1/2 0 0

1/2 0 0 0

0 0 −1 0

0 0 0 −1

 . (A.0.4)

O produto escalar é dado por:

x ·p = xµpµ = x+p++x−p−+x1p1 +x2p2 = 1

2
(x+p−+x−p+)− x⃗T · p⃗T . (A.0.5)

Convenção de Kogut-Soper

Kogut e Soper utilizaram para as componentes do tipo tempo e do tipo espaço:

x+ = 1p
2

(x0 +x3) e x− = 1p
2

(x0 −x3), (A.0.6)

Os tensores de métrica são:

gµν = gµν =


0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1

 . (A.0.7)

O produto escalar é dado por:

x ·p = xµpµ = x+p++x−p−+x1p1 +x2p2 = x+p−+x−p+− x⃗T · p⃗T . (A.0.8)

Por fim, demonstra-se que a razão p+/p− fornece uma medida do boost de Lorentz que uma partícula sofre

em relação ao seu referencial de repouso. A rapidez Y é uma grandeza definida em relação a essa razão, sendo

dada, tanto em KS como em LB, por:

Y = 1

2
ln

(
p+

p−

)
= 1

2
ln

(
x0 +x3

x0 −x3

)
= 1

2
ln

(
E +pz

E −pz

)
. (A.0.9)
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O procedimento de Gram-Schmidt

O processo de Gram-Schmidt é um algoritmo simples para produzir uma base ortogonal ou ortonormal para

qualquer subespaço não nulo. Sendo
〈
φA

i

∣∣⊗〈
φB

j

∣∣∣= 〈
φA

i φ
B
j

∣∣∣, considere o produto interno:

〈
φA

i φ
B
j

∣∣∣ψAB

〉
=αn , (B.0.1)

com |αn |2 ̸= 0.

Agora, sendo
∣∣φA

l

〉 ∈HA , ∋ ∣∣φA
l

〉⊥ 〈
φA

i

∣∣, e ϵ um número complexo arbitrário, tem-se:

|| ∣∣φA
i

〉+ϵ ∣∣φA
l

〉 ||2 = || ∣∣φA
i

〉 ||2 +|ϵ|2|| ∣∣φA
l

〉 ||2 = 1+Θ(ϵ2). (B.0.2)

Desconsiderando termos de segunda ordem em ϵ, a combinação linear
∣∣φA

i

〉+ ϵ ∣∣φA
l

〉
se torna um vetor

unitário. Agora:

[
〈
φA

i

∣∣+ϵ〈φA
l

∣∣]⊗〈
φB

j

∣∣∣ψAB

〉
=

〈
φA

i φ
B
j

∣∣∣ψAB

〉
+ϵ〈φA

l

∣∣⊗〈
φB

j

∣∣∣ψAB

〉
=αn +ϵ〈φA

l

∣∣⊗〈
φB

j

∣∣∣ψAB

〉
. (B.0.3)

E:

||[〈φA
i

∣∣+ϵ〈φA
l

∣∣]⊗〈
φB

j

∣∣∣ψAB

〉
||2 = ||αn +ϵ〈φA

l

∣∣⊗〈
φB

j

∣∣∣ψAB

〉
||2

= ||αn ||2 +2Re(ϵαn
〈
φA

l

∣∣⊗〈
φB

j

∣∣∣ψAB

〉
)+Θ(ϵ2).

(B.0.4)

O lado esquerdo da Eq. [B.0.4] é estacionário em relação a qualquer variação de
∣∣φA

i

〉
, de forma que:

〈
φA

l

∣∣⊗〈
φB

j

∣∣∣ψAB

〉
= 0, i ̸= l ∀ ∣∣φA

l

〉 ∈HA′ , (B.0.5)

sendo HA′ o conjunto de todos os estados pertencentes a HA ortogonais a
∣∣φA

i

〉
. Realizando procedimento

similar no espaço vetorial HB , é possível obter:

〈
φA

i

∣∣⊗〈
φB

k

∣∣ψAB
〉= 0, k ̸= j ∀ ∣∣φB

k

〉 ∈HB ′ . (B.0.6)
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Tendo o vetor
∣∣ψ′

AB

〉
dado por:

∣∣ψ′
AB

〉= ∣∣ψAB
〉−αn

∣∣∣φA
j

〉
⊗

∣∣∣φB
j

〉
∴

∣∣ψAB
〉= ∣∣ψ′

AB

〉+αn

∣∣∣φA
j

〉
⊗

∣∣∣φB
j

〉
, (B.0.7)

a definição de αn resulta em: 〈
φA

i

∣∣⊗〈
φB

j

∣∣∣ψ′
AB

〉
= 0. (B.0.8)

Logo,
∣∣ψ′

AB

〉 ∈HA′ ⊗HB ′ . O procedimento explicitado pelas equações [B.0.1]-[B.0.8] pode ser repetido a fim

de eliminar os k-ésimos e l-ésimos estados e, depois, os seguintes, até se obter a forma:

∣∣ψ〉=∑
i
αi |ai 〉⊗ |bi 〉 . (B.0.9)
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Dipolos de Cor e a Equação

Balitsky-Kovchegov

Esta seção tem como intuito apresentar brevemente a derivação e as propriedades da equação BK no formalismo

dos dipolos de cor. Inicialmente, considera-se um par quark-antiquark (Fig. [C.1]), um dipolo de cor, com uma

função de onda na representação de momentum denotada por ψ(0)
αβ

(k1, z1), sendo k⃗1 o momentum transverso

do quark, z1 = k+
1 /p+ a fração de momentum longitudinal do fóton portada pelo quark nas variáveis do cone de

luz e α e β os índices de cor. Esta função de onda é obtida a partir da expansão em estados de Fock do estado do

fóton virtual que gerou dipolo.

Figura C.1: Dipolo de cor, em azul, gerado a partir de um fóton virtual com 4-momentum p. O quark possui uma fração de
momentum longitudinal z1 e momentum transverso k⃗1, enquanto para o anti-quark tem-se 1−z1 e p⃗t −k⃗1, respectivamente.
A linha vermelha é o módulo do vetor x⃗01. Reproduzido de [124].

A obtenção da função de onda no espaço de coordenadas transversas ψ(0)
αβ

(⃗x0, x⃗1, z1) é realizada a partir de

uma transformada de Fourier bi-dimensional,

ψ(0)
αβ

(⃗x0, x⃗1, z1) =
∫

d 2k1

(2π)2 eix⃗01 ·⃗k1ψ(0)
αβ

(k1, z1), (C.0.1)

sendo, nesta equação, x⃗01 provém da definição,

x⃗nm = x⃗n − x⃗m , (C.0.2)
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sendo, x⃗0 e x⃗1 as posições, no referencial de repouso do núcleon, do quark e do antiquark, respectivamente,

configurando os pontos finais do dipolo. Sendo assim, a obtenção do módulo quadrado da função de onda

φ(0) (⃗x0, x⃗1, z1), probabilidade de medida de um único dipolo, é dada por,

φ(0) (⃗x0, x⃗1, z1) = ∑
α,β

|ψ(0)
αβ

(⃗x0, x⃗1, z1)|2. (C.0.3)

Agora, considera-se a emissão de um glúon soft (z2/z1 ≪ 1) a partir do quark ou anti-quark original (Fig.

C.2), com fração de momentum longitudinal z2 e momentum transverso k⃗2. A probabilidade desta emissão

φ(1) (⃗x0, x⃗1, z1), pode ser obtida a partir de φ(0), com a relação,

φ(1) (⃗x0, x⃗1, z1) = αsCF

π2

∫ z1

z0

d z2

z2

∫
d 2x2

x2
01

x2
20x2

12

φ(0) (⃗x0), x⃗1, z1), (C.0.4)

sendo CF a constante de Casimir, dada por,

CF = N 2
c −1

2Nc
, (C.0.5)

e αs a constante de acoplamento forte. Desta forma, a emissão de um glúon adicional é equivalente a ruptura

do dipolo original (0,1) em dois dipolos (0,2) e (2,1) com uma probabilidade de medida dada por,

d 2x2
x2

01

x2
20x2

12

. (C.0.6)

Figura C.2: Emissão de um glúon a partir do quark ou anti-quark (a), que de forma equivalente, representa um estado com
dois dipolos no limite de altos valores para o número de cor (b). Reproduzido de [124].

Desta forma, o processo de emissão de glúons soft subsequentes pode ser realizado de forma análoga,

possibilitando a obtenção do módulo quadrado de um estado com um número arbitrário de glúons. Para

descrever este processo, Mueller [97] introduziu a função geratriz de dipolo Z (⃗x01, z1,u). Ela deve satisfazer as

condições de normalização, ou seja, Z (⃗x01, z1,u = 1) = 1. A utilização desta ferramenta matemática faz com que

o módulo quadrado da função de onda com um número n de glúons, φ(n)({⃗xn+1}, z1), possa ser obtida com o
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uso da expressão,

φ(n)({⃗xn+1}, z1) =φ(0)
n+1∏
j=2

δ

δu (⃗x j )
Z (⃗x0, x⃗1, z1,u)|u=0. (C.0.7)

Esta equação relaciona a probabilidade de encontrar n dipolos filhos do par quark-anti-quark original (0,1) que

serão produzidos nas posições x⃗n . A relação entre as funções de onda de n e n +1 dipolos é dada pela equação

diferencial para a função geratriz,

d

dY
Z (⃗b, x⃗01,Y ,u) =

∫
d 2x2

x2
01

x2
20x2

12

[
Z (⃗b + x⃗12

2
, x⃗20,Y ,u)+Z (⃗b − x⃗20

2
, x⃗12,Y ,u)−Z (⃗b, x⃗01, z1,u)

]
. (C.0.8)

Nesta equação introduziu-se uma dependência da função geratriz com a rapidez Y = ln1/z+ e o parâmetro de

impacto b⃗ (Fig. [C.3]), dado por,

b⃗ = x⃗0 + x⃗1

2
. (C.0.9)

Figura C.3: Representação geométrica do vetor do parâmetro de impacto. Adaptado de [124].

Utilizando a Eq. [C.0.8] é possível obter a equação de evolução para a amplitude de espalhamento do dipolo

no alvo. Para isso, inicialmente, define-se a densidade do número de dipolos nk ,

nk =
k∏

i=1

δ

δu (⃗b, x⃗i )
Z |u=1. (C.0.10)

A amplitude de espalhamento de um único dipolo N1 no alvo é obtida a partir da convolução da densidade do

número de dipolos com o propagador desde dipolo com o núcleo,

N1 (⃗x01, b⃗01,Y ) =
∫

d [P1]n1ϑ1, (C.0.11)

sendo d [P1] = d 2x1

2πx2
i

d 2b a medida no espaço de fase eϑ≡ϑ(⃗x, b⃗) o propagador de um dipolo simples no núcleon.

Diferenciando a equação para a função geratriz e utilizando a relação [C.0.11] é possível obter a equação para a

amplitude dipolo-alvo,

d

dY
N1 (⃗x01, b⃗,Y ) = αs Nc

π

∫
d 2x2

x2
01

x2
20x2

12

[
N1 (⃗b + x⃗12

2
, x⃗20,Y )+N1 (⃗b − x⃗20

2
, x⃗12,Y )−N1 (⃗b, x⃗01,Y )

]
, (C.0.12)

Nesta derivação, fora incluso apenas a contribuição de um único dipolo. Esta equação é a versão no
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formalismo de dipolos para a equação BFKL no espaço de coordenadas transversais. É possível generalizar

esta equação levando em consideração conta os múltiplos espalhamento dos dipolos com o alvo. Para isso

considera-se a densidade de um número k de dipolos e a sua convolução com k propagadores. Neste processo,

a amplitude será dada pela expressão,

N (⃗x01, b⃗,Y ) =
∞∑

k=1

∫
d [Pk ]nk

k∏
j=1

ϑ j , (C.0.13)

de forma que a média do espaço de fase é definida agora como,

[Pk ] =
k∏

i=1

d 2xi

2πx2
i

d 2b. (C.0.14)

De forma análoga ao desenvolvimento da equação para amplitude de um único dipolo, para vários dipolos

obtém-se,

d N

dY
= αs Nc

π

∫ d 2x2x2
01

x2
20x2

12

×
[

N (⃗b + x⃗12

2
, x⃗20,Y )+N (⃗b − x⃗20

2
, x⃗12,Y )−N (⃗b, x⃗01,Y )−N (⃗b + x⃗12

2
, x⃗20,Y )N (⃗b − x⃗20

2
, x⃗12,Y )

]
.

(C.0.15)

Esta é a equação Balitsky-Kovchegov. Trata-se de uma expressão não linear, que considera a interação de k

dipolos com o núcleon alvo. É uma equação de evolução em relação a rapidez Y , que necessita de condições

iniciais N (0) (⃗b, x⃗01,Y = 0), sendo válida na aproximação do logaritmo dominante. Ela também considera um

valor constante para o acoplamento forte. O problema envolve (4+ 1) variáveis, ou seja, quatro graus de

liberdade por dipolo e uma variável de evolução, Y.
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Apêndice D

Femtoscopia Independente de Modelo de

Lévy para Espalhamentos Elásticos

As séries de Lévy são uma generalização dos métodos de expansão de Lévy propostos para analisar distribuições

de fontes estáveis de Levy na femtoscopia de campos de partículas [125–127]. Neste trabalho, os interesses

são concentrados na transferência de momentum com as distribuições-t em colisões elásticas hádron-hádron.

Este modelo fornece um método sistemático e independente de modelo para caracterizar as variações do

tamanho aproximado destas distribuições utilizando uma variável adimensional, z ≡ R2|t | ≥ 0, e um conjunto

completamente ortonormal de polinômios que são ortogonais à função peso ω(z) = e−zα . A quantidade R

denota o parâmetro de escala de Levy. Neste apêndice segue-se estritamente a análise das seções de choque

elásticas de processos pp e pp̄ realizada em [125]. Uma vantagem clara do método de Levy para a imagem do

próton é fornecer o perfil de inelasticidade do próton como uma função da energia e do parâmetro de impacto.

Na representação t de momentum, a seção de choque diferencial elástica é relacionada com o módulo do

valor complexo de uma amplitude elástica Tel . A sequência é expressa como a expansão de séries ortonormais

em termo dos polinômios de Lévy,
dσel

d t
= 1

4π
|Tel (s, t )|2, (D.0.1)

com,

Tel (s, t ) = i
p

4πAe−
zα
2

(
1+

∞∑
i=1

ci li (z|α)

)
, (D.0.2)

onde, nesta equação, ci = ai + ibi são os coeficientes da expansão complexa. A variável adimensional z é

introduzida como uma medida da magnitude do quadrado de 4-momentum transferido |t | multiplicado pelo

quadrado do parâmetro de escala de Lévy, R, no sistema de unidades naturais. Os parâmetros para a expansão,

A, R , α e os coeficientes complexos ci estão disponíveis nos Apêndices A e B da referência [117]. As quantidades

li (z|α) são os polinômios de Levy normalizados de ordem i e são dados por,

li (z|α) = Li (z|α)p
Di (α)

p
Di+1(α)

, (D.0.3)

para j ≥ 0. Estes polinômios são construídos em termos dos polinômios não normalizados de Levy, que de

forma geral,
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L1(z|α) = det

(
µα0 µα1

1 z

)
, (D.0.4)

L2(z|α) = det


µα0 µα1 µα2

µα1 µα2 µα3

1 z z2

 , (D.0.5)

Lm(z|α) = det


µα0 ... µαm

... ...
...

1 ... zm

 , (D.0.6)

sendo L0(z|α) = 1. Na Eq. [D.0.3], D j (α) são os Gram-determinantes, definidos como,

D1(α) =µα0 , (D.0.7)

D2(z|α) = det

(
µα0 µα1

µα1 µα2

)
, (D.0.8)

Dm(α) = det


µα0 ... µαm−1

... ...
...

µαm−1 ... µα2m−2

 , (D.0.9)

com,

µαn = 1

α
Γ

(
n +1

α

)
, (D.0.10)

e D0(α) ≡ 1.

A seção de choque total σT ≡ ImTel (s,0) e a seção de choque elástica é expressa em função das quantidades

abaixo,

σT = 2
p

4πA

(
1+

∞∑
i=1

ai li (0|α)

)
, (D.0.11)

σel =
A

R2

[
1

α
Γ

(
1

α

)
+

∞∑
i=1

(a2
i +b2

i )

]
. (D.0.12)

É demonstrado na referência [125] que a expansão para Tel (s, t ) converge rapidamente e uma série de Levy

de terceira ordem já é suficiente para reproduzir os dados medidos com
p

s ≤ 1 TeV com níveis de confiança

altos para uma descrição estatística apropriada.
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Apêndice E

Entropia de Wehrl

A entropia no espaço de fase clássico f (q, p) é dada pela expressão,

S =−kB

∫
d pd q

h′ f (q, p) ln f (q, p), (E.0.1)

sendo h′ uma célula elementar neste espaço. No caso quântico não existe a possibilidade da definição de um

espaço de fase devido o principio da incerteza, contudo a entropia será dada pela expressão de von Neumann

escrita em termos da matriz densidade ρ̂, aqui expressa no sistema natural de unidades,

Sv N =−Tr
[
ρ̂ ln ρ̂

]
. (E.0.2)

As duas entropias não são simplesmente conectadas, i. e. Sv N não recai na expressão S no limite que ħ→ 0.

Contudo, é possível realizar esta conversão a partir de uma definição intermediária de entropia dada por Alfred

Wehrl [128]. A expressão clássica da entropia dada pela Eq. [E.0.1] pode assumir valores infinitamente negativos

devidamente à arbitrariedade quanto o volume da célula unitária, podendo violar o princípio de incerteza. Para

ajustar o modelo é considerada a base dos estados coerentes |c〉 com pacotes gaussianos de incerteza mínima

(σpσq =ħ/2). Tomando o traço da Eq. [E.0.2] na base dos estados coerentes, tem-se

Sv N =−
∫

d qd p

2πħ 〈c| ρ̂ ln ρ̂ |c〉 . (E.0.3)

A entropia de Wehrl SW é obtida realizando a substituição clássica que consiste na troca de 〈c| ρ̂ ln ρ̂ |c〉 por

〈c| ρ̂ |c〉 ln〈c| ρ̂ |c〉. Desta forma,

SW =−
∫

d qd p

2πħ 〈c| ρ̂ |c〉 ln〈c| ρ̂ |c〉. (E.0.4)

Como −x ln x é uma função côncava (Fig. [E.1]),

SW > Sv N Ê 0. (E.0.5)

A igualdade SW = Sv N é impossível. Isto significa que SW é sempre não nula mesmo para um estado puro. Para

diversos sistemas físicos sujeitos à substituição clássica, obtém-se um erro negligenciável para funções suaves

no espaço de fase com um volume muito maior que ħ, contudo, se existem flutuações concentradas em regiões
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muito pequenas, esta aproximação não é um bom modelo.

Além disso, seria útil a introdução de um espaço de fase a fim de visualizar o que esta ocorrendo no sistema

quântico de interesse. Contudo, esta idealização contradiz o princípio da incerteza. Agora, por outras vias é

possível realizar algumas aproximações: Considerando um sistema quântico unidimensional com um estado

puro genérico
∣∣ψ(t )

〉
, a chamada distribuição de Wigner [129] é definida como,

W (q, p, t ) =
∫ ∞

−∞
d xe−ipx/ħ 〈

ψ(t )
∣∣q −x/2

〉〈
q +x/2

∣∣ψ(t )
〉

=
∫ ∞

−∞
d xe−ipx/ħ 〈

q +x/2
∣∣ ρ̂(t )

∣∣q −x/2
〉

,
(E.0.6)

com ρ̂(t ) sendo a matriz densidade de um estado puro. A distribuição de Wigner é uma função tanto da posição

q como do momentum p, satisfazendo as condições,


∫ d q

2πħW (q, p, t ) = |〈ψ(t )
∣∣p〉 |2;∫ d p

2πħW (q, p, t ) = |〈ψ(t )
∣∣q〉 |2;∫ d qd p

2πħ W (q, p, t ) = 1,

(E.0.7)

aqui a última propriedade é a normalização. O conjunto de propriedades [E.0.7] torna tentadora a interpretação

de W como uma distribuição de probabilidades no espaço de fase (q, p). No entanto, a distribuição de Wigner

é fortemente oscilante e não é positiva definida, sendo portanto uma quasi-distribuição. Contudo, ainda é

possível fazer seu uso na investigação das propriedades do sistema.

Para uma aproximação do espaço de fase no cômputo da entropia de Wehrl é possível utilizar a distribuição

de Wigner [E.0.6] para os casos em que o sistema físico analisado é compatível com uma distribuição positivo-

definida. Contudo, o máximo que se pode fazer é descrever o sistema em termos das probabilidades de

se encontrar a partícula em uma posição dada pela banda (q ±σq /2, p ±σp /2) com uma incerteza mínima

σqσp =ħ/2.

Agora, considera-se a distribuição de Husimi, que pode ser obtida a partir da convolução gaussiana da

distribuição de Wigner

H(q, p, t ) = 1

πħ
∫

d q ′d p ′e−mω(q−q ′)2/ħ−(p−p ′)2/mωħW (q ′, p ′, t ). (E.0.8)

Esta expressão também é conhecida como transformação de Weistrass [130]. Nela, m é a massa da partícula e ω

é um parâmetro arbitrário. Os comprimentos dos fatores gaussianos indicam que a distribuição preenche o

espaço de configuração com σq =pħ/2mω e reciprocamente no espaço de momentum com σp =pħmω/2.

Os diferentes valores assumidos por ω corresponde a escalas de resolução distintas provadas pelo sistema. Para

sistemas oscilantes, incluindo campos de radiação, ω é identificado como a frequência.

Agora, uma propriedade importante da distribuição de Husimi é a de que ela é positiva-semidefinida,

H(q, p, t ) ≡ 〈c| ρ̂ |c〉 = |〈ψ∣∣c〉 |2 ≥ 0, (E.0.9)

Isto é basicamente o traço da matriz densidade na base dos estados coerentes. Ela é construída de tal maneira

que observáveis escritos em ordem anti-normal seguem o teorema da equivalência óptica [131]. Isso significa
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Figura E.1: Gráfico de f (x) =−x ln x.

que é essencialmente a matriz de densidade colocada em ordem normal, isto é, põe-se os operadores criação a

esquerda dos operadores aniquilação,

: ââ† := â†â. (E.0.10)

Este procedimento, também é chamado de ordenamento de Wick e é essencial na teoria quântica de campos a

fim de evitar o aparecimento de infinitos. A ordem anti normal consiste na inversão da lógica construída em

[E.0.10]. Considerando a definição [E.0.9], é possível escrever a entropia de Wehrl na forma,

SW =−
∫

d qd p

2πħ H(q, p) ln H(q, p). (E.0.11)

A partir de [E.0.6], também é possível definir uma definição entrópica alternativa,

S̄W =−
∫

d qd p

2πħ W (q, p) lnW (q, p). (E.0.12)

Agora, para fins elucidativos, considera-se um exemplo que é possível ser resolvido analiticamente, o

oscilador harmônico unidimensional. Este sistema tem a hamiltoniana clássica,

H = p2

2m
+ mω2q2

2
. (E.0.13)

Para o n-ésimo estado excitado, a distribuição de Husimi é dada por,

H(q, p) = 1

n!
e−H /ħω

(
H

ħω
)n

. (E.0.14)

Substituindo esta expressão em [E.0.11] é possível mostrar que,

SW = n +1+ lnn!−nξ(n +1), (E.0.15)

onde ξ é a função digamma. Assintoticamente SW ≈ ln
p

n. Por outro lado, com exceção do estado fundamental,

a expressão para entropia conjugada [E.0.12], neste caso, oscila e se torna negativa, não tendo sentido neste

problema específico; contudo, é sempre possível analisar as duas noções entrópicas e relacioná-las a partir da

convolução gaussiana. A Fig. [E.2] mostra a distribuição de Husimi e Wigner para o caso do oscilador harmônico

no quarto estado excitado explorando bem o uso de cada uma destas distribuições.
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Figura E.2: As distribuições de Wigner (à esquerda) e de Husimi (à direita) para o caso do quarto estado excitado do oscilador
harmônico no plano (q, p). É possível notar que a distribuição de Husimi suavizou as oscilações abruptas que ocorrem na
distribuição de Wigner além de ser sempre positiva ou nula. Esta figura foi retirada da referência [132].

E.1 A ENTROPIA DE Wehrl NA QCD

No regime de altas energias, os pártons são caracterizados pela fração de momentum longitudinal x, pelo

momentum transverso k⃗T e a posição transversa ou parâmetro de impacto b⃗. Dessa forma, a caracterização do

sistema pode ser obtida a partir da distribuição de momentum transverso TMD (do inglês transverse momentum

distribution), T (x, k⃗T ), e da transformada de Fourier da distribuição partônica generalizada GPD (do inglês,

generalized parton distribution), G(x, b⃗).

Agora, no cálculo da entropia, tanto as informações contidas em k⃗T quanto em b⃗ é necessária. Outro

exemplo seria a decomposição do spin do núcleon obtida a partir do momentum angular orbital b⃗ × k⃗T . Um

dos métodos para se obter as informações de ambas as variáveis, sendo estas conjugadas, é a distribuição de

Wigner já discutida nas seções anteriores; entretanto, agora ela é uma função W =W (x, b⃗, k⃗T ).

No caso quântico a distribuição de Wigner é dada por [E.0.6],

W (q⃗ , p⃗, t ) =
∫ ∞

−∞
d 3xe−ip⃗ ·⃗x 〈

q⃗ + x⃗/2
∣∣ ρ̂(t )

∣∣q⃗ − x⃗/2
〉

. (E.1.1)

Serão agora discutidas ponto a ponto as modificações que devem ser realizadas em [E.1.1] para uma

construção consistente com a QCD.

Em primeiro lugar, a troca de variáveis,

t → x, (E.1.2)

q⃗ → b⃗, (E.1.3)

p⃗ → k⃗T . (E.1.4)
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Sendo então o princípio da incerteza assegurado por,

σbσk ≥ 1

2
. (E.1.5)

A Eq. [E.1.1] é escrita na representação da posição. Nas TQC’s é usual a descrição dos operadores na repre-

sentação de momentum para que sejam aplicadas as regras de Feynman, para isso, basta uma transformação

de Fourier bidimensional trivial. Além disso, a flutuação que respeita o princípio da incerteza na distribuição

de Wigner na teoria quântica, tem seus vetores etiquetados a partir de ±x⃗/2, simbolizando vetores de estados

com uma incerteza mínima estipulada pelo princípio de Heisenberg. No âmbito da QCD se utiliza ±∆/2, com

∆µ = (0,0,∆⃗T ), assim, ∫
d 3xe−ip⃗ ·⃗x →

∫
d 2∆T

(2π)2 e−i∆⃗T ·⃗b , (E.1.6)

lembrando que b⃗ é o bi-vetor parâmetro de impacto. Agora o estado puro é representado por um hádron de

4-momentum Pµ respeitado a limitação de incerteza mínima,

∣∣q⃗ − x⃗/2
〉→|P −∆/2〉 , (E.1.7)

〈
q⃗ + x⃗/2

∣∣→〈P +∆/2| . (E.1.8)

Por fim, resta a assimilação da matriz densidade. Ela é dada por,

ρ̂(t ) →
∫

d z−d 2zT

(2π)3 exP+z−−k⃗T ·⃗zT Tr
[
F+α(z/2)U [+]F+

α (−z/2)U [−]], (E.1.9)

A transformação de Fourier ocorre pelos mesmos motivos da substituição da integral em x⃗, contudo agora

ela é realizada nas variáveis do cone de luz. F+α é o tensor do campo de cor e U [±] são as linhas de Wilson de

forma U que mantém os operadores invariantes de calibre (para uma discussão, veja a referência [133]). As

linhas de Wilson aqui tratadas são representadas na Fig. [E.3].

Figura E.3: Linhas de Wilson nas variáveis do cone de luz. Em (a) tem-se U [+] e em (b) U [−].

Assim, a distribuição de Wigner na QCD pode ser escrita na forma,

W (x, b⃗, k⃗T ) =
∫

d z−d 2zT

(2π)3

d 2∆T

(2π)2 e−i(xP+z−+k⃗T ·⃗zT +∆⃗T ·⃗b)

×
〈

P + ∆
2

∣∣∣∣Tr
[

F+α
( z

2

)
U [+]F+

α

(
− z

2

)
U [−]

]∣∣∣∣P − ∆
2

〉
.

(E.1.10)

Ainda é possível escrever a equação de uma forma que melhor se adéque a entropia por unidade rapidez, sendo
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xW (x, b⃗, k⃗T ) dada por,

xW =
∫

d z−d 2zT

P+(2π)3

d 2∆T

(2π)2 e−i(xP+z−+k⃗T ·⃗zT )
〈

P + ∆
2

∣∣∣∣Tr
[

F+α
(⃗
b + z

2

)
U [+]F+

α

(⃗
b − z

2

)
U [−]

]∣∣∣∣P − ∆
2

〉
. (E.1.11)

A expressão [E.1.10] descreve uma distribuição no espaço de fase transverso caracterizada pelo parâmetro

de impacto b⃗ e momentum transverso k⃗T dos glúons que portam uma parcela x do momentum longitudinal. Se

é realizada a integração em relação a b⃗ obtém-se a TMD T (x, k⃗T ); integrando em relação a k⃗T obtém-se a GPD

G(x, b⃗). Dela também é possível obter a distribuição relacionada ao momentum angular orbital canônico do

núcleon polarizado longitudinalmente,

LW =
∫

d xd 2bd 2k (⃗b × k⃗T )W (x, b⃗, k⃗T ). (E.1.12)

A distribuição de Husimi na QCD é dada por,

xH(x, b⃗, k⃗T ) = 1

π2

∫
d 2b′d 2k ′e−(⃗b−b⃗′)2/ℓ2−ℓ2 (⃗kT −k⃗ ′

T )2
xW (x, b⃗′, k⃗ ′

T ), (E.1.13)

sendo ℓ um parâmetro arbitrário com dimensões de comprimento*. A Eq. [E.1.13] aparenta ser uma extensão

precisa da distribuição de Husimi na linguagem das TQC’s, contudo a sua positividade não é garantida a priori,

devido ao recuo de momentum ∆T ̸= 0, fazendo com que sempre exista uma diferença entre os estados iniciais

e finais. A referência [132] discute alguns pontos do uso da expressão [E.1.13]. Além disso vale esclarecer a

positividade da distribuição de Husimi como uma hipótese de trabalho. Então é possível escrever a entropia de

Wehrl na QCD,

SW (x) ≡−
∫

d 2bd 2kxH(x, b⃗, k⃗T ) ln[xH(x, b⃗, k⃗T )], (E.1.14)

e também mantém-se a definição de S̄W (x), utilizando a distribuição de Wigner,

S̄W (x) ≡−
∫

d 2bd 2kxW (x, b⃗, k⃗T ) ln[xW (x, b⃗, k⃗T )], (E.1.15)

Um exemplo trivial é um quark ou um elétron livre que se move na direção positiva de z. A distribuição de

Husimi e Wigner com x = 1 é,

xH (⃗b, k⃗T ) = e−b2/ℓ2−ℓ2k2

π2 , (E.1.16)

xW (⃗b, k⃗T ) = δ(2) (⃗b)δ(2) (⃗kT ). (E.1.17)

Mesmo que a distribuição de Wigner seja positiva definida, o seu logaritmo não faz sentido, então a entropia

de Wehrl é obtida a partir da Eq. [E.1.14],

SW = 1

π2

∫
d 2bd 2ke−b2/ℓ2−ℓ2k2

(
b2

ℓ2 +ℓ2k2
)
= 2. (E.1.18)

O fato desta entropia não desaparecer reflete a inabilidade de definir precisamente a posição e o momentum

simultaneamente devido o princípio da incerteza.

*Em alguns casos utiliza-se ℓ como Rh , sendo este o raio hadrônico. Outra escolha é ℓ2 = 1/
〈

k⃗2
T

〉
. A referência [132] estabelece uma

possível conexão com a física de altas energias onde ℓ= 1/Qs .
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E.2 A ENTROPIA DE Wehrl PARA OS PÁRTONS

Existem duas abordagens para o tratamento da entropia de Wehrl gerada pelas distribuições de Wigner dos

glúons na região de pequeno-x, o formalismo de dipolos com a distribuição xWdi p [134] e os glúons de

Weiszacker-Williams (WW) [135] com a distribuição xWW W ,

xWdi p (x, b⃗, k⃗T ) = 2Nc

αs (2π)2

∫
d 2rT

(2π)2 e i⃗kT ·⃗rT

(
∂

∂b2 b2 ∂

∂b2 +k2
)

Ŝ(x, b⃗, r⃗T ). (E.2.1)

xWW W (x, b⃗, k⃗T ) = CF

2π4αs

∫
d 2r

e i⃗rT ·⃗kT

r 2
T

[1− S̃(x,rT ,b)] (E.2.2)

Nestas equações, Ŝ e S̃ são as matrizes S para um dipolo de tamanho rT com um parâmetro de impacto b

em um espalhamento com um hádron e a formulação adjunta deste operador respectivamente. Avaliando estes

objetos no modelo GBW,

Ŝ = e−
1
4 r 2

T Q2
s (x,b), S̃ = e−

1
4 r 2

T Q̃2
s (x,b), (E.2.3)

sendo,

Q̃s (x,b) = Nc

CF
Q2

s (x,b) = Nc

CF

( x0

x

)λ
e−b2/2γs BCGC . (E.2.4)

Nesta expressão, a escala de saturação depende do parâmetro de impacto é a dada pelo modelo b-CGC, sendo

γs a dimensão anômala e BCGC um parâmetro. As constantes foram fitadas com os dados obtidos via DIS para

pequenos valores de x [136] 

x0 = 0.00105;

λ= 0.2063;

γs = 0.6599;

BCGC = 5.5 GeV −2.

(E.2.5)

A avaliação do caso da distribuição de Wigner para os dipolos não será positiva definida, necessitando

o cálculo da distribuição de Husimi, seu desenvolvimento foi realizado no trabalho [14]. Nesta tese, será

desenvolvido o caso da entropia de Wehrl para os glúons WW. Desta forma, é possível escrever a expressão

[E.2.2] na forma,

xW =β
∫

d 2r e i⃗rT ·⃗kT f (x,rT ,b) =βF−1{ f (x,rT ,b)}, (E.2.6)

com a definiçãoβ≡CF /(2αsπ
4) e sendo a operação F−1 o computo da transformação de Fourier bidimensional

inversa para a função f (x,rT ,b) dada por,

f (x,rT ,b) = 1−e−
1
4 r 2

T Q̃s (x,b)

r 2
T

, (E.2.7)

de forma que,

F−1{ f (x,rT ,b)} =πΓ
(

0,
k2

T

Q̃2
s (x,b)

)
, (E.2.8)
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sendo Γ(0, x) a função gamma incompleta, positiva definida. Então, a distribuição de Wigner é dada por,

xWW W (x,k,b) = CF

2π3αs
Γ

(
0,

k2
T

Q̃2
s (x,b)

)
. (E.2.9)

Substituindo a Eq. [E.2.9] na definição da entropia de Wehrl [E.0.4] e desconsiderando a constante πβ no

fator que envolve o logaritmo obtêm-se,

SW =− CF

2παs

∫ ∞

0
db2F (τ)Q̃2

s (x,b), (E.2.10)

sendo,

F (τ) =
∫ τ

0
Γ(0, τ̃) lnΓ(0, τ̃). (E.2.11)

O integrando da expressão F foi alterado por uma troca de variável na forma de τ̃= k2/Q̃2
s e para introduzir uma

dependência com a escala de resolução, fora inserido Q2 ao invés de ∞ na integração. Na expressão [E.2.11],

τ=Q2/Q̃2
s (x,b). No limite em que Q2 (e consequentemente τ) tende a infinito, F é apenas um número,

lim
τ→∞F (τ) =−0.248. (E.2.12)

Para simplificar os cálculos, não é realizada a integração numérica no parâmetro de impacto, aproveitando o

fato de que a escala de saturação possui um máximo em b = 0, com Q̃2
s,max (x) = Q̃2

s (x,b = 0) = (Nc /CF )Q2
s (x).

De qualquer forma, na região de pequeno-x a escala de saturação típica é da ordem de 1 GeV. Desta forma,

utilizando τ=Q2/
〈
Q̃2

s

〉
com

〈
Q̃2

s

〉= 1 GeV2, obtêm-se F ≈−0.095377 para Q2 = 2 GeV2 e F ≈−0.247802 para

Q2 = 10 GeV2. Para qualquer Q2, após a integração sobre o parâmetro de impacto,

SW (x) ≈−2Fγs BCGC Nc

2παs
Q2

s (x), (E.2.13)

ou seja, SW ∼Q2
s .
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