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Chaos was the law of nature; Order was the dream of man.
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Resumo

Este trabalho analisou diferentes no¢6es de entropia e sua producao em colisdes ep e de ions pesados, com foco
nos estdgios iniciais da colisdo. Para isso, estudou-se a importancia de fenémenos como o emaranhamento
quantico e a decoeréncia na geracao de entropia. Utilizando o estado da arte para o célculo da entropia de
emaranhamento no limite de altas energias e sintetizando as diferentes abordagens para sua obten¢ao, foram
obtidos resultados fenomenolégicos a partir de expressoes analiticas para o nimero de gliions. Também foram
apresentados resultados para a entropia de emaranhamento no espalhamento eldstico de dois corpos, conside-
rando a estrutura hadrénica baseada no método independente de modelo de Lévy, em energias tipicas do RHIC,
Tevatron e LHC. Modelos fenomenolégicos das distribui¢des de gltions néo integradas foram empregados para
calcular a entropia dindmica na QCD dos estados gludnicos densos em colisdes pp e pA em altas energias,
comparando-a com a entropia de decoeréncia. Os resultados obtidos foram contrastados com outras nocoes de
entropia presentes na literatura, assim como foram discutidas as fontes de incertezas tedricas.

Palavras-chave: Fisica de altas energias, entropia, emaranhamento.



Abstract

This work analyzes different notions of entropy and its production in ep and heavy-ion collisions, focusing on
the early stages of the collision. To this end, the importance of phenomena such as quantum entanglement and
decoherence in entropy generation was studied. Using state-of-the-art methods for calculating entanglement
entropy in the high-energy limit and synthesizing various approaches for its computation, phenomenological
results were obtained from analytical expressions for the number of gluons. Results were also presented for
the entanglement entropy in two-body elastic scattering based on the hadronic structure given by the model-
independent Lévy method, at energy values typical of the RHIC, Tevatron, and LHC. Phenomenological models
of unintegrated gluon distributions were used to calculate dynamic entropy in the QCD of dense gluonic states
in pp and p A collisions at high energies, comparing it with decoherence entropy. The obtained results were
contrasted with other notions of entropy in the literature, and theoretical uncertainties were discussed.

Keywords: High-energy physics, entropy, entanglement.



Comunicado de Imprensa: Utilizando a
entropia para compreender as particulas

sub-atomicas

Pode parecer embaracoso, mas, se voltarmos as nossas aulas do ensino bésico, onde perguntas como "o
que é um préoton?"sao frequentes, qual seria a resposta? Acredito que a mais apropriada seria algo como: uma
particula que estd no nicleo de todos os &tomos, possui carga elétrica positiva e é formada por trés particulas
ainda menores, os guarks. Contudo, isso depende. A possibilidade do processo de medida conhecido como
espalhamento profundo ineldstico revelou para cientistas do mundo inteiro que, quanto maior a energia em que
essa medida é realizada ou quanto maior a energia transferida na colisdo, mais profundamente conseguimos
"enxergar". Em altas energias, o préton é compreendido como uma combinacao de distribui¢cdes de conjuntos
de quarks e glions, chamados pdrtons.

Esses partons estdo confinados dentro da regido do préton e ndo podem ser detectados "nus"; ou seja,
ao final do processo de medida, o que se detecta sao outras particulas, chamadas de hddrons, que sabemos
serem formadas por combinacdes especificas de quarks. Isso indica que os quarks e glions estdo sempre
"aprisionados"dentro dos hadrons, ndao podendo ser observados diretamente. Dessa forma, sdo particulas
confinadas.

A investigacao das estruturas internas do préton, ou de qualquer outro hadron, fica ainda mais interessante
se considerarmos colisdes com nticleos pesados. Sabemos que o préton e o néutron estdo dentro do 4tomo;

portanto, é possivel investigar o que ocorre com eles quando, em vez de colidirem diretamente, realizamos



uma medida com os proprios &tomos. Os resultados sdo interessantes, tanto que revelaram um novo estado
da matéria, o plasma de quarks e gltions. Acredita-se que este plasma tenha sido uma fase inicial do Universo
primordial na teoria do Big Bang e, atualmente, conseguimos reproduzi-lo em laboratério.

Diversas linhas de pesquisa relacionadas a 4rea tém contribuido para uma melhor compreensao das
caracteristicas desse plasma. Em especial, nele ocorre um fen6meno que intriga pesquisadores do mundo
inteiro: ele termaliza muito rapidamente, e o mais intrigante é que as teorias mais apropriadas para descrever a
matéria nesse regime ainda ndo deram uma explica¢ao adequada para os motivos que levam a esse fend6meno.

Termalizar significa que as particulas de um sistema, como o plasma de quarks e gltions, se redistribuem de
forma a alcancar um equilibrio térmico, ou seja, uma temperatura uniforme. Nesse estado, ndo hd mais fluxo
de energia entre as particulas, pois elas ja compartilham uma quantidade de energia similar. O impressionante
no caso desse plasma é o tempo com que ele atinge esse equilibrio: cerca de 3.3 x 10724 s. Para se ter uma ideia,
isso é um bilionésimo de um bilionésimo de segundo — um tempo absurdamente curto, mais rapido do que a
maioria dos processos conhecidos na natureza.

Isso chamou a aten¢do de pesquisadores brasileiros, que tentam compreender o que faz o plasma atingir o
equilibrio tao rapidamente. Em suas pesquisas, eles tentam explicar o que estd acontecendo utilizando trés
fendmenos distintos: entropia, emaranhamento e decoeréncia. A entropia é uma medida caracteristica de
um gés e é essencial para a compreensao da termodinamica, ciéncia na qual fisicos do século XIX estudavam
gases em sistemas isolados dentro de pistdes. Sabe-se que os partons estdo confinados dentro dos hadrons;
entdo, grosso modo, é como se tivéssemos particulas confinadas dentro de um ’pistdo’ muito pequeno. Se essa
hipétese for verdadeira, é possivel calcular a entropia.

O emaranhamento e a decoeréncia sdo fendmenos estritamente quanticos. No primeiro, existe uma
relacdo entre um conjunto de particulas em que, ao medirmos as propriedades de apenas uma delas, obtemos
informacoes sobre todo ou parte do conjunto, independentemente da distancia entre elas, desde que estejam
emaranhadas. Einstein chamava esse fendmeno de "agao fantasmagérica a distancia". Por outro lado, a
decoeréncia é uma teoria que busca explicar o desaparecimento das caracteristicas quanticas na matéria,
grosso modo, no nosso cotidiano. Por exemplo, é comum ouvirmos falar do gato de Schridinger, que pode
estar vivo e morto ao mesmo tempo dentro de uma caixa, segundo os principios da mecéanica quantica. O
que isso quer dizer? Os fisicos, ao utilizarem a mecénica quantica, geralmente consideram que as particulas
podem estar em estados excludentes ao mesmo tempo. Contudo, se a mecénica quéntica descreve as particulas
dessa forma, por que ndo observamos isso no dia a dia? Esta é justamente a pergunta que a decoeréncia busca
responder, introduzindo outras interagdes na mecanica quantica, como a medida e o ambiente a que particulas
mintsculas estdo submetidas.

Os resultados dos pesquisadores, utilizando entropia e os fend6menos quanticos citados, foram obtidos tanto
para colisdes mais simples, como entre um elétron e um préton, quanto para a colisdo de ntcleos pesados,
prevendo uma alta taxa de criacao de entropia nos instantes iniciais do processo, de modo a corroborar com
o fato de que o plasma termaliza muito rapidamente. Além disso, é possivel comparar a entropia obtida no
processo final, apds o desaparecimento do plasma, medidas nos aceleradores de particulas mundo afora,
como o LHC do CERN, com as entropias calculadas considerando fen6menos como o emaranhamento e a
decoeréncia.

Para o caso da entropia de emaranhamento, propriedades matematicas especificas de observaveis relacio-
nados a fisica de altas energias, como o geometric scaling da escala de saturagao, possibilitaram o célculo de
entropias para colisdes nucleares. Foram obtidos resultados para nticleos de chumbo (Pb), ouro (Au), célcio



(Ca) esilicio (Si). Analisando os dados, espera-se que, quanto maior for a massa do nticleo envolvido na colisao,
maior seja a entropia.

Analisando a entropia devida a decoeréncia, € possivel demonstrar que, se esses fendmenos de fato ocorrem
nos estégios iniciais da geracao do plasma, existem casos em que até metade da entropia medida ao final
do processo se deve a esse fendmeno quantico. Esses resultados foram comparados com uma abordagem
entropica baseada na teoria fisica da mecénica estatistica de nao equilibrio, chamada entropia dinamica.
Realizando a fenomenologia adequada para estudar o comportamento dessa entropia no regime fisico proposto,
percebeu-se que a entropia dindmica teria uma participacdao mais modesta em comparacao com a entropia

final, contribuindo com um pouco menos de um quarto da geracao total.
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Capitulo 1

Introducao

A nocao de entropia foi proposta com o desenvolvimento da Teoria Termodindmica no contexto das primeiras
madquinas térmicas da modernidade. Seu nome foi cunhado por Rudolf Clausius™ [2], ap6s ele ter tido contato
com a obra de Nicolas Sadi Carnot [3], onde os primeiros desenvolvimentos sobre a impossibilidade da
transformacao total de energia em trabalho comecaram a ficar mais claros. Assim, descobriu-se a saturacéo
natural da energia disponivel em um processo de transformacdo com o fim de se obter trabalho. A importancia
desse observavel pode ser verificada na postulagao da segunda lei da termodindmica.

A termodindmica é uma teoria fenomenolégica de grande sucesso, tendo sido capaz de ainda no século XIX
dar um conjunto de leis simples que sempre seriam verificadas em todos os processos térmicos compilados no
desenvolvimento tecnolégico de sua era. Contudo, as questdes que rondavam o comportamento da matéria
nesta época ainda eram bem nebulosas, nem a teoria atomica era tdo bem estabelecida e uma explicacdo
fundamental do comportamento da matéria verificada nas leis da termodindmica s6 foi possivel com o advento
da Mecdnica Estatistica. Esta teoria tem como seus principais fundadores James Clark Maxwell e Ludwig Eduard
Boltzmann, sendo este segundo autor o responsdvel por um entendimento mais aprofundado da entropia.

O modus operandi da Mecanica Estatistica consiste em caracterizar um grupo de entidades microscépicas
por meio de teorias de probabilidade, com o objetivo de explicar seu comportamento macroscépico. No periodo
de seu desenvolvimento, a comunidade cientifica ainda ndo havia descoberto a Mecdnica Qudntica nem a
Teoria da Relatividade e a teoria predominante para descrever a dindmica de particulas e corpos era a Mecdnica
Cldssica, que inclui as Leis de Newton ou, de forma equivalente, as formulagées lagrangiana e hamiltoniana.

Considerando apenas particulas, a Mecanica Cléssica é capaz de obter resultados consistentes a partir de
condicdes iniciais, como a energia potencial e cinética da particula, seus vinculos e restricdes de movimento,
além de sua posicdo e velocidade. Contudo, ao considerar, por exemplo, a 4gua (H,O), que em apenas uma
grama existem aproximadamente 3.34 x 10?2 moléculas, a utilizacdo de ferramentas da Mecanica Cldssica para
resolver a Segunda Lei de Newton exige a caracterizagao de seis vezes o niimero de moléculas para sua resolucgao,
ou seja, 6 x 3.34 x 10%? equacdes diferenciais. Mesmo que esse calculo fosse vidvel, um computador imprimindo
uma coordenada por microssegundo levaria cerca de 10 bilhdes de anos para concluir o processo — quase a

idade do universo [4]. Além disso, mesmo que fosse possivel reduzir este tempo em um supercomputador que

*Clausius queria que o novo conceito soasse como energia [1], em que, nas suas proprias palavras e em traducao livre, exp0s que:
"Mas, como considero melhores termos para magnitudes importantes das linguas antigas que possam ser adotadas inalteradas em
todas as linguas modernas, proponho chamar a magnitude S de entropia do corpo, da palavra grega evrponta, transformagdo. Formei
intencionalmente a palavra entropia para ser o mais semelhante possivel a palavra energia; pois as duas magnitudes a serem indicadas por
essas palavras sdo tao quase aliadas a seus significados fisicos, que uma certa semelhanca na designacao parece ser desejavel."
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Capitulo 1. Introducao

encontrasse as solu¢des em alguns dias, a mente humana néo teria capacidade para avaliar o resultado de um
numero tdo grande de variéveis.

A ideia de Boltzmann e Maxwell era descrever essas informacoes a partir das teorias de probabilidade
e estatistica, obtendo, assim, valores médios. Afinal, para seres macroscépicos, como os humanos, o que
realmente importa na maioria das vezes € saber se, ao respirar, havera oxigénio disponivel; se a temperatura do
ar ndo estd elevada a ponto de queimar os pulmades; e se a pressdo do ar ndo estd tdo alta que possa estourar
os timpanos [5]. Dessa forma, os observaveis que realmente importam sdo aqueles que, na linguagem da
termodinamica, sdo chamados de varidveis intensivas, como pressdo, temperatura, ou extensivas, como energia,
volume e entropia.

A entropia estd também associada a irreversibilidade dos processos naturais. Até entdo, as teorias dindmicas
ndo parecem distinguir entre passado e futuro. Por exemplo, em uma partida de sinuca, quando alguém dé a
tacada inicial, arremessando a bola branca para dispersar as demais que estdo organizadas em forma triangular,
essas bolas eventualmente se movem até alcancarem o repouso. Utilizando as leis dindmicas, é possivel
imaginar a cena invertida: as bolas dispersas voltando a se mover para recompor a formacdo triangular original
e, ao final, a bola branca retornando  sua posicdo inicial’. Contudo, este cendrio muda se um observador
assiste a cena com 6culos de visdo noturna, percebendo o calor liberado nas colis6es entre as bolas de bilhar.
Esse calor ndo pode retornar e gerar trabalho sobre as bolas, da mesma forma que nao se espera que as dguas
de um lago profundo se agitem para expulsar uma pedra de seu interior ou que os cacos de um copo quebrado
no chéo se reconstituam espontaneamente. H4 uma ordem para o desenvolvimento dos fenémenos naturais, e
essa ordem é aquela que aumenta a entropia, na chamada seta do tempo.

Desta perspectiva, todo momento do universo até o presente estado € tinico e exclusivo e caminha em uma
direcao determinada: a que aumenta a entropia. Disto, existem duas grandes informacdes que nem Boltzmann,
Carnot ou qualquer outro cientista do século XIX sabiam: o Universo estd expandindo aceleradamente e ele
teve um inicio, chamado de Big Bang. A descoberta da expansio do universo deve-se a astronomia’; a Mecanica
Estatistica desvelou a seta do tempo, mas, atualmente, para compreender os primeiros instantes do universo, é
necessario o uso da fisica de particulas, em especial no estudo do Plasma de Quarks e Gliions (Quark Gluon
Plasma, QGP). Este plasma foi descoberto em 2005 [7] a partir de colisdes envolvendo ions pesados de ouro no
Colisor Relativistico de Tons Pesados (Relativistic Heavy Ion Collider, RHIC), e desde entdo novos experimentos
tém sido realizados tanto neste acelerador quanto no Grande Colisor de Hadrons (Large Hadron Collider,
LHC), Experimento de Colisoes de Tons Pesados de Grande Energia (A Large Ion Collider Experiment, ALICE),
Espectrometro Toroidal do LHC (AToroidal LHC ApparatuS, ATLAS) e Solenoide Compacto de Mtons (Compact
Muon Solenoid, CMYS).

Plasma é um estado da matéria que pode ser considerado exético nas Condi¢cdes Normais de Temperatura
e Pressdo (CNTP). Embora ele compartilhe algumas propriedades com os gases, a alta temperatura faz com
que a energia cinética dos constituintes seja globalmente maior que a sua energia de ligacao, resultando em
ionizagdo. No caso de &tomos e moléculas, toda a matéria se dissocia em um gés de alta temperatura fortemente
ionizado. Nesse regime, a principal teoria em acao é a Teoria Eletromagnética, e a forca envolvida é de natureza

eletromagnética. Além disso, com o aumento da energia, surgem regimes onde os préprios constituintes do

TNo entanto, atualmente se sabe que, em sistemas complexos, essa possibilidade é inviabilizada pela teoria do caos classico, que mostra
que pequenas incertezas nas condi¢des iniciais podem crescer exponencialmente, tornando o sistema imprevisivel e, em muitos casos,
irreversivel.

*A descoberta da expansao do universo €é atribuida ao astrénomo Edwin Hubble [6], que em 1929 observou que galaxias distantes
estdo se afastando da Terra e, crucialmente, que a velocidade com que elas se afastam aumenta com a distdncia — uma relacao que ficou
conhecida como Lei de Hubble.
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Capitulo 1. Introducao

nucleo dos dtomos (ntcleons) e mésons nao sao mais fundamentais, mas sim formados por quarks. Neste
caso, a interacao relevante nao é mais a forca eletromagnética, mas uma forca de intensidade ainda maior e de
alcance infimo: a forga forte, mediada por glions.

Se o plasma "ordindrio"é raro nas CNTP, um plasma de quarks e gliions é ainda mais raro: sua temperatura
critica® é de aproximadamente’ 175 MeV (2,0 x 1012 K) [9, 10]. Esses valores de temperatura estdo associados a
energias e densidades de matéria extremamente altas. Para comparacdo, a temperatura da superficie solar é de
aproximadamente 6000 K. Essas condicoes extremas nao sdo a Ginica caracteristica distintiva desse estado: os
quarks possuem carga elétrica fracionéria (em relacao a carga elementar do elétron e) e se movem em altas
velocidades dentro do QGP, gerando tanto campos elétricos quanto magnéticos. Calculos envolvendo a teoria
eletrodinamica resultam em valores de campo magnético da ordem de 10'® G [11] para colisdes envolvendo
ions de ouro, podendo ser até trinta vezes maior para a colisdo de ions de chumbo. Para comparac¢édo, um
magnetar (estrela de néutrons caracterizada por um campo magnético extremamente forte) possui um campo
magnético na faixa de 105G [12].

Desta forma, com temperaturas e campos magnéticos que podem igualar ou até superar fend6menos
cosmolégicos, 0 QGP s6 ocorre em reacoes que envolvem energias extremamente altas. Além disso, especula-se
que esse estado da matéria esteve presente nos estdgios iniciais do universo, segundo a teoria do Big Bang[13],
mais precisamente, nos primeiros 20 a 30 microssegundos.

Assim, as intersecdes do estudo entre a fisica de particulas elementares e a entropia ocupam uma posicao
de destaque: o objeto de estudo sdo as entidades elementares e suas interacées, ou seja, a analise da entropia
serd feita no regime mais fundamental da matéria, sua forma mais elementar. A partir disso, o estudo da
entropia pode ser estendido fundamentalmente a sua criacdo. Portanto, o principal objetivo deste trabalho é
estudar a criacdo de entropia, inicialmente nas colisdes ep, para entao compreender casos mais complexos,
como as colisdes de ions pesados em regimes ultrarrelativisticos. Essa ampliacao se d4 como uma continuacéo
direta dos trabalhos realizados em [14], expandindo-os ao regime de nticleons pesados na tentativa de melhor
compreender propriedades fundamentais tanto das colisdes hadronicas mais simples, até a investigacdo dos
estégios iniciais do QGP.

Desta forma, como serd investigada a entropia em colisdes que envolvem a forga forte, a Teoria Quéntica
de Campos adequada é a Cromodindmica Qudntica (Quantum Chromodynamics, QCD). Neste programa de
pesquisa, muitas das informagdes sobre o comportamento e as propriedades da matéria sdo derivadas das
medidas das particulas produzidas e de seu espectro nos estados finais das colisdes de ions pesados. Essas
propriedades podem ser interpretadas em termos de conceitos advindos da termodindmica e da hidrodindmica
relativistica. Nas energias disponiveis nos colisores atuais, uma das quantidades mais relevantes é a aniso-
tropia do quadrupolo azimutal do fluxo coletivo, geralmente denominada fluxo eliptico v,. Uma excelente
concordancia dessa quantidade é obtida por meio de cdlculos hidrodindmicos, quando comparados com
a anisotropia medida do fluxo da matéria produzida nas colisoes nucleares. Teoricamente, é necessaria a
hipé6tese de um rapido equilibrio térmico da matéria em uma escala temporal da ordem de 1 fm/c para que os
resultados experimentais sejam corretamente descritos. Uma escala temporal tdo reduzida é interpretada como
problemadtica, ja que as teorias de campo nao conseguem explicar adequadamente como a matéria termaliza

tdo rapidamente.

SA temperatura critica, T, é o valor de temperatura acima do qual uma substancia s6 pode existir na forma de gas, independentemente
da pressdo aplicada.

YRecentemente foi descoberto que alguns mésons constituidos de quarks pesados, como o quark top ou o quark charm, ndo se
dissolvem até que a temperatura alcance cerca de 350 MeV (4,3 x 10!2 k) [8].
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Capitulo 1. Introducao

A principio, é possivel distinguir cinco diferentes estdgios na producdo de entropia, a saber: 1) decoeréncia
das funcoes de onda nucleares iniciais, 2) termalizacdo do glasma, 3) dissociagcdo devido a viscosidade de
cisalhamento durante a expansao hidrodindmica, 4) hadronizacdo acompanhada por uma alta viscosidade
do sistema coletivo gerado (conhecida como viscosidade de volume, ou bulk) e 5) congelamento hadrénico
viscoso. Esses diferentes estagios levantam o questionamento sobre como a entropia é criada nas reagoes, pois
atualmente existe apenas um entendimento parcial da contribuicdo de cada estdgio para a entropia final [15].

Nesse contexto, uma das quantidades mais bem conhecidas nas colisdes de ions pesados é a entropia
final por unidade de rapidez, dS/dy |, que pode ser determinada a partir do espectro de hadrons no estado
final combinado com a informacao sobre a fonte, extraida das correlacdes entre particulas idénticas por um
método conhecido como interferometria de Hanbury-Brown-Twiss (HBT). Por exemplo, no RHIC, em baixas
energias (y/syy = 200GeV), para colisdbes com pequena centralidade, estimou-se que em rapidez central
(dS/dy) r =5600+500 [16]. Nas energias do LHC, como em /sy =2.76TeV, (dS/dy) r = 11335+ 1188 para a
mesma configuracdo de rapidez e centralidade [17]. Alternativamente, essa grandeza também pode ser obtida a
partir da abundéncia de hadrons produzidos, combinada com a entropia por particula para um gés de hadrons
em equilibrio quimico a temperatura de T¢ = 160MeV, com S/N = 7.25. Para o RHIC, esse método resulta em
(dS/dy)cn =5100+200 [16], enquanto para o LHC obtém-se (dS/dy).; = 13373 + 1587 [18].

Existem discrepéncias significativas ao se comparar os resultados obtidos pelos diferentes métodos, o que
corrobora a tese de uma producao de entropia durante o congelamento hadronico e reflete a producao de
entropia decorrente do decaimento dos estados excitados das ressonédncias hadronicas, bem como a importante
contribuicao da viscosidade de cisalhamento de um gas hadrdénico térmico [19, 20].

Desta forma, nesta tese serd investigada a produgdo de entropia nos estdgios iniciais de colises ep e de ions
pesados. Para isso, serao abordados diferentes modelos com o objetivo de caracterizar a entropia nesses estagios
iniciais de colisdes na fisica de altas energias, restringindo-se, em geral, aos casos mais simples, como colisdes
ep e pp, para posteriormente adapta-los as colisdes pA. Em especial, trés modelos foram investigados para
caracterizar a entropia nos estagios iniciais das colisdes: (I) obtencdo da densidade de entropia por unidade de
rapidez dS/dy, usando a chamada Entropia Dinamica da QCD gerada pelos estados densos do meio QCD [21];
(IT) caracterizacao de um emaranhamento quantico entre diferentes observaveis préprios da QCD [22-25] e
célculo de uma entropia de emaranhamento; e (III) producao de entropia devido a decoeréncia das funcoes de
onda hadroénicas nos estagios iniciais da colisdo [15].

Nos estudos sobre a entropia de emaranhamento, alguns autores sustentam que esta contribui significati-
vamente para a geracao de entropia no regime de altas energias [22]. Uma forma de avaliar essa afirmacao é
por meio da andlise de modelos alternativos de caracterizacdo entrépica nesse regime. Assim, alguns modelos
de entropia desenvolvidos recentemente foram incluidos neste estudo, permitindo a comparacao de seus
comportamentos. Entre eles estd a entropia semi-classica de Wehrlno contexto da QCD [26]. Nesse modelo,
utiliza-se quase-distribuicoes estatisticas para simular um espaco de fase. Outro modelo abordado é a entropia
dinamica [21], que permite a definicdo de uma entropia calculédvel a partir de distribuicdes gluénicas ndo
integradas (unintegrated gluon distributions, UGD), as quais podem ser definidas com base no teorema de
fatorizacao k em altas energias. Essa formulacdo da entropia em nivel microscépico é estabelecida a partir de
analogias com a Mecdnica Estatistica de néo equilibrio. Finalmente, a Gltima abordagem considera os efeitos da
decoeréncia quantica em uma nocao prépria de entropia [27], associando a elevada producao de entropia nos

primeiros estdgios das colisdes a rdpida decoeréncia envolvida no processo.

Ia rapidez y é uma grandeza fisica de ordem relativistica, também conhecida como pardmetro hiperbdlico, definida como % In ( % )
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Desta forma, esta tese é organizada na seguinte estrutura: O Capitulo 2 introduz as nog¢des bdsicas de
entropia, cobrindo conceitos fundamentais da termodindmica e mecénica estatistica, como as entropias de
Shannon e de von Neumann bem como as suas relacdes, que servem de base para o estudo subsequente.
Nos Capitulos 3, 4 e 5, cada um dos fendmenos associados a producao entrépica serdo estudados, a dizer, os
estados densos do meio QCD, o emaranhamento quantico e a decoeréncia, respectivamente. O Capitulo 6
compila os principais resultados obtidos, incluindo a andlise da producdo de entropia por unidade de rapidez e
a comparacao entre os diferentes modelos estudados. Por fim, o Capitulo 7 resume as conclusdes do trabalho,
destacando as contribuicdes para o entendimento da producao de entropia em sistemas de QCD na fisica de

altas energias.
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Capitulo 2

Nocoes Entropicas Basicas

O estudo da geracgao e caracterizagao da entropia na fisica de altas energias confronta-se com diferentes formu-
lacoes desse observavel. Historicamente, como j4 foi abordado, esse conceito surgiu na Teoria Termodinamica,
incorporando a segunda lei. Mais tarde, com o advento da Mecanica Quantica e a confirmacao da hipétese
atdmica, novas abordagens foram desenvolvidas, como a entropia de von Neumann. Uma perspectiva mais
moderna, desenvolvida por Claude Shannon, criou uma 4rea de pesquisa completamente nova: a Teoria da
Informagdao.

Essas noc¢oes de entropia, embora espalhadas por diferentes teorias, possuem intimas relacoes, e este
capitulo busca apresentar brevemente cada uma delas, demonstrando os casos em que uma nogao se confunde
com outra. Essa distincao é importante, pois o0 uso de uma ou outra varia conforme o contexto e pode causar

confusdo ao cientista que realiza a anélise.

2.1 ENTROPIA NA MECANICA ESTATISTICA

Geralmente, devido a ampla gama de observaveis referidos como "entropia", € comum chamar a entropia
calculada na Mecanica Estatistica de Entropia Termodindmica. Como ja foi elaborado na introdugdo, na
Mecanica Estatistica, expdem-se inicialmente as caracteristicas microscopicas dos elementos que compoem o
sistema. Em seguida, utiliza-se ferramentas de probabilidade e estatistica para obter os observaveis de interesse,
como equacdes de estado e varidveis intensivas. Um ponto de partida é o postulado fundamental da mecénica

estatistica:

Em um sistema estatistico fechado, com energia fixa, todos os microestados acessiveis sdo igualmente

provdveis.

Para compreender este postulado, é necessdria a definicdo dos conceitos de microestado, macroestado e

multiplicidade, conforme segue:

Microestado: Configuracdo especifica de um sistema em um instante determinado.
Macroestado: Conjunto de microestados que compartilham uma mesma caracteristica global
observavel.

Multiplicidade: Ntimero de microestados que correspondem a um dado macroestado.
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Capitulo 2. Nocoes Entrépicas Bésicas

Por exemplo, considere o caso de trés moedas de R$ 1,00, distinguiveis e justas, ou seja, todas com igual
probabilidade de, ao serem langadas, mostrarem a face cara (C) ou coroa (K). Apds lancar as moedas e observar os
resultados, é possivel obter configuragdes como KKC, CCK ou CCC. Cada uma dessas configuracoes individuais
é um exemplo de microestado do sistema. Na Fig. [2.1] sdo ilustradas todas as possibilidades de resultados dos
lancamentos.

0 caras

1cara

Microestados Macroestados

2 caras

3 caras

Figura 2.1: Microestados possiveis do langamento das trés moedas, organizados em seus respectivos macroestados.

Ao analisar os microestados resultantes do langamento, observa-se uma organizacdo em grupos: 0 caras, 1
cara, 2 caras e 3 caras. Esses grupos representam os macroestados do sistema, onde a caracteristica global que
define cada grupo € o niimero de caras. Por exemplo, no macroestado com I cara, existem trés configuracoes
possiveis: CKK, KCK e KKC. No macroestado com 3 caras, existe apenas uma configuragdo, CCC. O ntimero de
microestados associados a um macroestado é chamado de multiplicidade, denotada aqui por Q, que depende
do ntimero de caras (variando entre 0 e 3). Assim, ao construir uma expressao matemadtica para a multiplicidade
em funcao do niimero de caras, tem-se, por exemplo, para o macroestado com 2 caras, Qy = 3.

Encerrando esta andlise, percebe-se a dificuldade em obter uma expressao para a multiplicidade ao aumen-
tar o nimero de moedas. Considerando um sistema estatistico composto por 50 moedas, é facil determinar que
o nimero de microestados para 0 ou 50 caras é apenas 1; no entanto, os demais valores exigem uma anélise
mais elaborada. Para resolver esse problema matematico, utiliza-se a andlise combinatéria, em que o resultado
é dado por uma combinagdo simples, expressa como:

N!
T (N-m)'n!

Nesta expressao, N é o nimero de moedas e n é o nimero de caras. Definindo p como o ntimero de resultados

Q(N,n) =CY 2.1.1)

coroa, percebe-se que a Eq. [2.1.1] estd sujeita a restricdo p + n = N. A Figura [2.2] revela o gréfico da multiplici-
dade no lancamento de 50 moedas. E notavel que a situagdo com o mesmo ntimero de caras e coroas, 25 cada,

é a que apresenta a maior multiplicidade.
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Capitulo 2. Nocoes Entrépicas Bésicas

Q

1.2x10M
1ox10M
8.0x 1013
6.0x 1013
4.0x 1013

2.0x 1013

Figura 2.2: Multiplicidade dos microestados no caso do lancamento de 50 moedas. A maior multiplicidade é obtida para
um ntmero igual de 25 caras e 25 coroas.

Em um jogo onde os apostadores devem prever o resultado do lancamento das moedas, se eles souberem o
postulado fundamental da mecénica estatistica de equilibrio, em que todos os microestados sdao igualmente
provéaveis, eles possuem uma certa vantagem. Isto se da pois a multiplicidade associada a i caras, Q;, e 0

namero total de microestados possiveis, Qr, é dado pela soma:

N
Qr=Qo+Q+..+Qn=)_ Q. 2.1.2)
i=0

Assim, a probabilidade de se obter i caras em um langcamento é dada por:

P = & (2.1.3)
Qr
Logo, para maximizar as chances de ganhar no jogo descrito, deve-se apostar no estado com maior probabili-
dade, que neste caso é o macroestado com um nimero igual de caras e coroas, como ilustrado na Fig. [2.2].
Outra propriedade importante na andlise de probabilidades reside na caracterizacdo da multiplicidade
de dois ou mais conjuntos que formam um sistema tinico. Para compreender isto, considera-se um conjunto
de 6 moedas de R$1,00 separadas em dois grupos, A e B, com trés moedas cada. Ao realizar o langcamento
das moedas, a multiplicidade do sistema composto, notada por Q4p, depende dos dois conjuntos A e B. A
expressdao matematica da multiplicidade composta é dada pelo produto das multiplicidades individuais de A e
B:
Qap=Q4Q5. (2.1.4)

Por exemplo, se ao realizar um langamento, o primeiro grupo de moedas apresenta o macroestado de uma
cara, com multiplicidade Q; = 3, uma vez que esse macroestado compreende os microestados igualmente
provaveis CKK, KCK e KKC, o resultado do segundo lancamento é totalmente independente do primeiro.
Portanto, ao considerar todos os possiveis resultados do segundo grupo (0 a 3 caras, com multiplicidade total
Qg = 8), o nimero de maneiras de obter uma cara no primeiro grupo combinado com qualquer resultado
no segundo é 3 x 8 = 24. Quando se consideram todos os possiveis resultados para A e B, o niimero total de
combinacdes possiveis é 64. Embora este exemplo seja simples, a forma de contar a multiplicidade composta é
uma propriedade geral para sistemas compostos, sempre descrita pela Eq. [2.1.4].

Agora este formalismo sera revestido fisicamente. Em 1907 A. Einstein prop6s um modelo matemdtico com
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o intuito de caracterizar o comportamento de um sélido. A fim de compreender o funcionamento do modelo
proposto por Einstein, vale a revisdo dos conceitos fundamentais associados a um oscilador harménico qudntico
unidimensional. Resolvendo a equacdo de Schridinger independente do tempo, para a energia potencial do
oscilador, encontra-se os autovalores de energia quantizados, E;, dados por,

E,=n+1/2)hf. (2.1.5)

Nesta equacdo, & é a constante de Planck, f é a frequéncia de oscilacdo e n é um nimero inteiro. Para n =0,
obtém-se Ey = hf, a energia de ponto zero. A unidade h f é denominada, quantum de energia. A figura [2.3]

ilustra os valores permitidos de energia no oscilador.

‘ Energia

9/2 hf n=h
/2 hf \ 1 " / n=3
5/2 hf n=2

3/2 hf n=1

1/2 hf n=0

Figura 2.3: Energia em um oscilador harmonico quantico por niveis, n=0a n =4.

O modelo de sé6lido proposto por Einstein [28] consiste em N osciladores harménicos independentes, onde
N representa o nimero de 4&tomos presentes no sélido. Denotando a energia total como U, que resulta da soma

da energia de todos os osciladores, tem-se,

U=E1+E2+“-+EN,

o R O e e e f 2.1.6)

2
Nh
= Tf+(n1+n2+~-+nN)hf.
Como o valor absoluto da energia ndo possui significado fisico, pode-se definir como zero a soma da energia de
ponto zero, Nhf/2, além disso, definindo o niimero inteiro r, como a soma dos 7's,

N
r=Y n. 2.1.7)
i=0

Portanto, utilizando a Eq. [2.1.6], U =rhf.

A fim de elucidar a distribuicdo energética do sé6lido de Einstein, considere um exemplo que consiste em
um s6lido composto por apenas trés particulas e oito quantas de energia. O objetivo é determinar as diferentes
formas possiveis de distribuir a energia entre os osciladores. A figura [2.4] mostra algumas distribuicoes
possiveis da energia no sé6lido. Em 11, por exemplo, o primeiro oscilador possui um quanta, o segundo possui
trés, e o terceiro os quatro restantes.

Esse problema fisico remete a um classico problema matematico, em que os quanta sao substituidos por
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Figura 2.4: Alguns microestados possiveis na distribuicdo de 8 quantas nos 3 osciladores do sélido.

esferas e os osciladores por caixas, conforme mostrado na figura [2.5]. A questdo entdo se transforma em

determinar de quantas formas € possivel distribuir sete esferas em trés caixas.

o i 4m) oo|o|ooo|ocoo| - o

Figura 2.5: O problema da contagem de possiveis distribui¢des de quantas de energia em osciladores no sélido de Einstein é
anélogo a distribuicao de esferas em caixas.

Felizmente, o problema fica ainda mais simples, pois ele se reduz a distribuir linhas entre as esferas: Sempre
terd N-1 linhas para r esferas, ou seja, novamente observando o caso I da figura [2.4], é possivel conceber
a representacao: -|---|----, em que se tem 10 elementos, os quais sdo barras ou pontos. A diferenca entre
os microestados possiveis, estd na determinacado de quais destes elementos sdo barras e quais sdao pontos,
assim, remetendo a Eq. [2.1.1], que realizava a contagem de forma semelhante, trocando N—- N+r—-len—r,

obtém-se para a distribuicdo de r quantas de energia no sélido de Einstein formado por N osciladores,

(N+r=1! (N+7)
(N=D!r! ~ Nr!

Q(N,r) = (2.1.8)

Agora, serdo considerados dois sélidos idénticos, A e B com N4 = Np = N, isolados do universo, que sdo
livres para trocar energia entre si por um longo periodo de tempo. A energia total do sistema, E7 € a simples
soma da energia do sistema A, E4, com a energia do sistema B, Ep, tal que Er = E4 + Ep. Portanto, a energia
total serd ET = (r4 + rp)hf. Além disso, a interagdo entre os s6lidos deve respeitar a conservacao da energia,
uma vez que nao existem fontes externas no sistema isolado do universo. Definindo K como um nimero

constante, a conservacdo da energia exige a restricdo r4 + rg = K. Assim, um sistema com 9 osciladores e 13
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qguanta de energia estabelece os resultados expostos na tabela [2.1]. Para uma andlise mais rigorosa, seria

Tabela 2.1: Multiplicidade associada a um macroestado descrito por r 4, rp respeitando a conservacao da energia.

ra Q4 I'B Qp QaB

0 1 13 | 203490 | 203490
1 12 | 125970 | 1133730
2 45 11 | 75582 | 3,4.10°
3 165 10 | 43758 | 7,22.108
4 495 9 | 24310 | 12,03.10°
5 1287 | 8 | 12870 | 16,56.10°
6 | 3003 | 7 | 6435 | 19,32.10°
7 | 6435 | 6 | 3003 | 19,32.108
8 | 12870 | 5 1287 | 16,56.10°
9 | 24310 | 4 495 12,03.108
10 | 43758 | 3 165 7,22.108
11 | 75582 | 2 45 3,4.108
12 | 125970 | 1 1133730
13 | 203490 | 0 1 203490

necessario realizar cdlculos para N na ordem de 10?® particulas em um nivel mais realista do problema, pois
este algarismo é da ordem do nimero de Avogadro, que representa a quantidade de &tomos em um mol de
solucao ou amostra. Contudo, ele é elucidativo para as caracteristicas da entropia que serao abordadas nesta
tese.

Por fim, na ldpide do timulo de Boltzmann, em Viena, estd inscrita a equacao de sua autoria que estabelece

o vinculo entre a entropia e o nimero de multiplicidade, dada por:
S=kplnQ. (2.1.9)

Sendo kp a constante de Boltzmann. A férmula de Stirling facilita o calculo do logaritmo de fatoriais, sendo ela
dada por:
Inn!'=nlnn-n. (2.1.10)

Aplicando essa aproximacao para o caso do s6lido de Einstein, substituindo a multiplicidade [2.1.8] na expressao
da entropia de Boltzmann e utilizando o fato de que U = rhf = rwh, sendo w a frequéncia angular e 7 a

constante de Planck reduzida, se tem:

S(U,N) = kp Nln(l+L)+£ln(N—hw+l)]. (2.1.11)

Nhw hiw U

A temperatura T do sistema estd relacionada a entropia S pela expressao

l_(a_s) 2.1.12)
T \oU)’ o

Portanto:
Nwh

1 kB (th
—~—1In

Assim, a entropia no s6lido de Einstein unidimensional, como funcao da temperatura e do nimero de particulas
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(osciladores), N, é":

wh
wh e kT _ wh
S(N,T)=Nkg ——wh—ln(l—e kBT) . (2.1.14)
kBT1—97W

Este exemplo tradicional é suficiente para estabelecer as caracteristicas gerais da entropia com as demais

nocoes que serdo elaboradas neste trabalho.

2.2 CAOSE 0 PRINCIPIO DE MAXIMA ENTROPIA

Agora serdo abordadas diferentes caracteristicas da entropia relacionadas ao desenvolvimento realizado na

secao anterior. Primeiramente, destaca-se o conceito de caos. No caso do langcamento de 50 moedas, percebe-

se que configuracoes com todas as moedas mostrando cara ou todas mostrando coroa, constituem casos

particulares. Estes estados sdo muito especificos, bem como aquele em que todos os 13 gquanta de energia se

concentrem em um Unico oscilador no sélido de Einstein. Embora essas configuracdes sejam possiveis, elas sdo

extremamente improvaveis e em um conjunto de particulas ou moedas na ordem de um mol, elas se tornam

virtualmente impossiveis. Assim, configuracoes que se afastam do equilibrio tendem a ser menos provaveis.
Brian Greene, em sua obra de divulgacao cientifica Até o

fim do tempo [5], apresenta um excelente exemplo para ilus-

trar essa tendéncia ao aumento do caos: é possivel imaginar

um quarto organizado, com objetos posicionados de forma e ®

mais ou menos ordenada, sem poeira no chdo e com a cama

arrumada. Esse é um estado especifico e particular, assim
como o lancamento de 50 moedas que resulta em 49 caras.
Heuristicamente, esses estados podem ser comparados aos

estados de baixa entropia. Com o passar do tempo e devido

Figura 2.6: Representacao pictérica do aumento do
caos, em que um sistema inicialmente organizado
um de maior entropia: a poeira se acumula, roupas se espa-  eyolyj para um desorganizado. Reproduzido de [29].

lham pelo chdo, e a cama requer a troca dos lenco6is. Esse

a diversas interacoes, esse estado tende a se transformar em

estado inicial de baixa entropia é dificil de manter, razao pela qual é necessério limpar e organizar o quarto
regularmente. Existe, portanto, uma tendéncia para a ‘desordem), pois os sistemas evoluem naturalmente para
estados de maior entropia ou caos (Fig. [2.6]).

O engenheiro dedicado busca desenvolver um motor que consiga render o méximo de trabalho possivel
com a menor quantidade de energia. Contudo, uma forma de enunciar a segunda lei da termodinamica é
afirmar que ndo existem mdaquinas térmicas perfeitas; isto €, em um processo natural — como a energia liberada
na queima da gasolina de um automdével — além do trabalho que faz as rodas girarem, também serd liberado
calor, inttil para a realizacdo de trabalho. Na teoria termodinamica, existem objetos matemadticos, chamados
potenciais, que descrevem a energia disponivel para realizar trabalho em diferentes condicdes. Nesta discussao,

nos processos isotérmicos, destaca-se o potencial de Helmholtz, F:
F=U-TS, 2.2.1)

onde U é a energia interna (no caso do automdvel, a energia liberada com a queima de gasolina), T é a

*Para mais detalhes, verificar a referéncia [4].
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temperatura e S é a entropia. O termo T'S, subtraido da energia interna, indica quanto da energia pode ser
aproveitada para trabalho, sendo este um dos motivos pelos quais o potencial de Helmholtz também é chamado
de energia livre. Assim, o potencial de Helmholtz descreve como, mesmo em processos que buscam organizacao
local, como no exemplo do quarto organizado, a energia disponivel para realizar trabalho tende a diminuir com
o tempo devido a dissipacdo. Em termos préticos, isso significa que manter um estado de baixa entropia requer
uma constante entrada de trabalho externo para compensar as inevitaveis perdas, reforcando a tendéncia
natural para estados de maior entropia e maior desordem.

Por fim, a andlise da Fig. [2.2], que mostra que a multiplicidade méxima para o langamento de 50 moedas
ocorre com 25 caras e 25 coroas, e da Tabela [2.1], que indica que uma divisao equilibrada dos quanta de energia
também apresenta a maior multiplicidade, revela que o estado de equilibrio é um estado de entropia mdxima.
Analisando a expressao da entropia proposta por Boltzmann na Eq. [2.1.9] e os exemplos até aqui abordados,
nota-se que o estado mais provével é justamente aquele que faz o sistema equilibrar e aumentar a entropia,
alcancando a maior multiplicidade possivel Q, pois, neste caso, S o InQ. Essa propriedade é chamada de
Principio da Mdxima Entropia e, em seguida, serdo apresentadas as entropias de Shannon e de von Neumann,

que, assim como a entropia termodindmica, também sdo compativeis com este principio.

2.3 A ENTROPIA DE SHANNON

Para compreender a entropia de Shannon, é necessaria uma breve introducdo aos conceitos basicos da teoria
da informacao. Inicialmente, sdo considerados dois eventos A, com uma probabilidade p de ocorrer, e B, com
uma probabilidade g. Na teoria da informagdo, associa-se uma quantidade de informacao a cada evento, a
partir de uma funcdo matemaética chamada de funcao informacéo I(x), que mede a quantidade de informacao
relacionada a um evento X com probabilidade x.

Se a probabilidade de ocorréncia do evento A for menor do que a do evento B, entdo a informacao associada

ao evento A, I(p), deve ser maior que a do evento B, I(g) [30]. Assim:
Se p<gqg, entao I(p)>1I(q). (2.3.1)

A teoria da informacao parte da interpretacdo de que eventos menos provaveis carregam mais informacao. Por
exemplo, um boletim meteorolégico que informa “amanha fara sol em pleno verdo no Rio de Janeiro” contém
uma previsao que representa um evento muito provavel, ja que dias ensolarados sdo comuns durante o verao na
cidade. Essa informacao nao causa surpresa e nao traz muita “novidade” — ou seja, carrega pouca informacao,
pois o evento era esperado. Agora, se o boletim prever “neve no Rio de Janeiro amanha”, isso representaria um
evento extremamente improvavel, considerando o clima tropical da cidade. Caso essa previsao fosse verdadeira,
causaria enorme surpresa. Esse tipo de informacao seria muito mais “densa”, pois a ocorréncia de um evento
tdo inesperado desafia as expectativas comuns.

Agora, postula-se que a ocorréncia conjunta dos dois eventos independentes A e B deve resultar em uma
informacao aditiva. Portanto:

I(pg) =1(p)+1(q). (2.3.2)

Essa € a exigéncia da aditividade informativa. Se as Egs. [2.3.1] e [2.3.2] forem satisfeitas, e se a informacao for
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definida como uma fun¢dao com o dominio (0, 1], a tinica solucao possivel é:
I(x) = —log; (x), (2.3.3)

com b > 1. Geralmente, na fisica, utiliza-se b = e, chamada de base natural da teoria da informacéao, ou b =2,
chamada de base dos bits.

Por exemplo, o lancamento de trés moedas justas que resulte em CKC é um evento com probabilidade 1/23,
ja que cada moeda tem probabilidade 1/2 de cair em qualquer dos lados. A quantidade de informacao deste
resultado é:

1273 =-log (2%) =3log2. (2.3.4)

Isso equivale a 3 unidades chamadas bits (abreviacdo de “binary digits”), pois a informacao de cada moeda traz
log2 de informacao. Em outras palavras, ao receber a informacao de um evento que ocorre com probabilidade
1/8, o observador verifica “3 bits” de informacao.

Cada unidade de informacgdo mede a quantidade de “surpresa” ou “novidade” associada a um evento, com
base na férmula geral: I(p) = —log p. Embora a unidade mais comum seja o bit, que representa a informacao
associada a um evento com probabilidade 1/2, existem vdrias outras unidades de informacao, dependendo da

base do logaritmo e da probabilidade do evento.

Probabilidade do Evento | Unidade de Informacao Equivalente em Bits

1/2 1 bit 1 bit
1/e 1 nat ~ 1.44 bits
1/3 1 trit ~ 1.58 bits
1/4 1 crumb 2 bits
1/10 1 hartley =~ 3.32 bits
1/16 1 nibble 4 bits

1/256 1 byte 8 bits

1/8192 1 kilobyte 8192 bits (ou 1024 bytes)

Tabela 2.2: Unidades de informacao e suas equivaléncias em bits. Adaptada de [30].
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Figura 2.7: Sistemas S1 (esquerda) e S2 (direita)

Nascida na termodindmica e verificada como um conceito emergente ao relacionar o tratamento microscé-
pico ao macrosc6pico na mecéanica estatistica, a entropia aparece novamente como um conceito fundamental
com os trabalhos de Claude Shannon [31]. Esta formulacao associa a entropia como uma caracteristica intrin-

seca da informacao, a partir da entropia de Shannon:

H=-

1

pilog, pi = (-log, pi), (2.3.5)

n
=1
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Na teoria da informacao, a entropia é uma medida de incerteza. Por exemplo, considerando dois sistemas
bindrios S1 e S2 (Fig. [2.7]), com os estados 0 e 1. Em S1, o sistema tem probabilidade p; = 0.9 de 0 se tornar 1, e

p2 = 0.1 de 1 se tornar 0. Desta forma,
H, (91 9+11 1) 0.47 (2.3.6)
=—|—log, — + —log, — | = 0.47. 3.
=710 *®210 " 10 8210

Por outro lado, em S2 hé apenas uma possibilidade com probabilidade p; = 0.5 de 0 se tornar 1, de forma que

p2 = 0.5, assim,

1 1 1 1
Hgp = - Elogz 2" EIng 7= 23.7)

Este exemplo revela que S1 é menos incerto que S2, havendo uma tendéncia em sua construcao.

Com a atual revolucao digital, a teoria da informacao e seu conceito central, a entropia de Shannon, vive
seu apogeu, mesmo tendo sido publicada em 1948. Naquela época, o matemético americano ndo sabia muito
bem como chamar sua recente descoberta e, em uma conversa com von Neumann, recebeu argumentos

convincentes [32].

“My greatest concern was what to call it. I thought of calling it "information,’ but the word was overly
used, so I decided to call it ‘uncertainty’. When I discussed it with John von Neumann, he had a
better idea. Von Neumann told me, ‘You should call it entropy, for two reasons. In the first place
your uncertainty function has been used in statistical mechanics under that name, so it already has
aname. In the second place, and more important, no one really knows what entropy really is, so in a
debate you will always have the advantage. [Minha maior preocupacdo era como chama-la. Pensei
em chamar de ‘informacao’, mas a palavra era muito usada, entdo decidi chama-la de ‘incerteza’.
Quando discuti isso com John von Neumann, ele teve uma ideia melhor. Von Neumann me disse:
‘Vocé deveria chamar de entropia, por duas razées. Em primeiro lugar, sua funcdo de incerteza foi
usada em mecanica estatistica com esse nome, entdo ela ja tem um nome. Em segundo lugar, e
mais importante, ninguém sabe realmente o que é entropia, entdo em um debate vocé sempre terd

avantagem.]”

No contexto da teoria da informacao, a no¢do de aditividade assume um papel central. Entretanto, outros
tipos de entropias foram propostos para capturar comportamentos, por exemplo, nédo aditivos, relevantes
em sistemas complexos e interdependentes, como aqueles observados em contextos de Mecanica Estatistica
Nao-Extensiva. Nesse sentido, as entropias de Tsallis e Rényi sdo exemplos de nocdes entrépicas que surgem
como generalizagdes da entropia de Shannon.

Inicialmente, a entropia de Tsallis é definida por [33]:

1
Sq=kp— (1 —pr), (2.3.8)
q-1 ;

onde p; sdo as probabilidades dos eventos e g é um pardmetro real que controla o grau de ndo aditividade.
Essa nocdo entrépica estd relacionada com a Mecanica Estatistica Nao-Extensiva. Em um sistema extensivo,

as propriedades macroscépicas, como a entropia, sdo proporcionais ao tamanho do sistema. Em outras palavras,

quando dois sistemas independentes sao combinados, a entropia total é simplesmente a soma das entropias

individuais. No entanto, para sistemas nao-extensivos (como aqueles encontrados em redes complexas,
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sistemas biolégicos e sistemas astrofisicos), essa aditividade néo se aplica. Esses sistemas frequentemente
exibem correlagdes de longo alcance, flutuacoes de larga escala, e uma dindmica muito mais complexa do que
a descrita pela mecanica estatistica tradicional. Matematicamente, extensividade pode ser definida como [34]:
. IS(\V)]

m —— <oo

li

2.3.9
N—oco N ( )

Assim, um sistema chamado de extensivo apresenta um comportamento assinttico com o nimero de subsiste-
mas N, de forma que exista um fator de proporcionalidade finito entre |S(N)| e N. Portanto, a aditividade em
relacdo a uma dada lei de composicao implica extensividade.
A partir da regra de UHopital, quando g = 1, a entropia de Tsallis recupera a entropia de Shannon:
d q
dq (1 - Zi p; )

lim S, = kg lim ——— k= —kBprlnp,-
14

=—kg)_ pilnp;=kgH. (2.3.10)
-1 a=1 4 (q-1) ! i

-

Porém, para g # 1, a entropia de Tsallis obedece a uma propriedade chamada de pseudo-aditividade:

Sq(A+B)  S4(A)  S4(B S54(A4) S4(B
¢ A+B) 5@ 5qB) | py2eD 5B (2.3.11)

kg kg kg ks ks’

onde A e B representam dois sistemas independentes. O termo adicional depende do parametro q e reflete a
correlacdo entre eventos, caracteristica importante em sistemas complexos e interdependentes.

A entropia de Rényi [35] é uma generalizacao da entropia de Shannon, desenvolvida para medir a diversidade,
a incerteza, e a dispersdo de sistemas probabilisticos em que é necessario dar um peso maior ou menor a
eventos com probabilidades muito baixas ou muito altas. Ela geralmente é utilizada em contextos como o dos
eventos raros ou altamente provaveis. Na prética, a entropia de Rényi permite ajustar a sensibilidade da medida
de incerteza ao variar o parametro «, controlando o peso das diferentes probabilidades.

Matematicamente, a entropia de Rényi é dada por:

1
Sq = 1 af, 2.3.12
T l-a Og(zi:pl) ( )

onde a é um parametro real e controla a "focalizacdo"da entropia em eventos de alta ou baixa probabilidade.
Quando a > 1, a entropia de Rényi é mais sensivel a eventos com maiores probabilidades, enquanto valores de
a < 1 ddo mais peso a eventos com menores probabilidades. No limite ¢ — 1, a entropia de Rényi recupera a

entropia de Shannon, ou seja, assume a forma de uma medida de incerteza cldssica média sobre o sistema:

lim S. = lim 45 log (%, pf)]
o = lim de 0 =i

= — p-lnp-:H, (2.3.13)
a—1 a—1 a%(l_a) Zl" ! !

As entropias de Tsallis e Rényi introduzem uma flexibilidade titil ao conceito de entropia, permitindo que
sistemas complexos com interdependéncia entre eventos sejam descritos por uma medida de informagéo

alternativa a proposta por Shannon.
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2.4 A RELACAO DA ENTROPIA DE SHANNON COM A MECANICA ESTATISTICA

Nesta secdo, a entropia de Shannon € avaliada utilizando o principio de maxima entropia. Para isso, a maxi-
mizag¢ao segue o procedimento dos multiplicadores de Lagrange. Inicialmente, considera-se o caso em que a
distribuicdo de probabilidades deve estar normalizada:

N
Y pn=1 2.4.1)
n=1

Dessa forma, o funcional a ser maximizado é dado por:

N N
.iﬂ:—anlnpn—/l(Z pn—l). (2.4.2)
n=1 n=1
Maximizando .Z em relagdo a py:
-1 11— . _ A1
np,-1-A=0, . pp=e . (2.4.3)

Usando a condi¢do de normalizagdo, encontra-se que p;, = 1/ N. Este é 0 ensemble microcandnico, no qual, para

um sistema estatistico fechado com energia fixa, todos os microestados acessiveis sdo igualmente provaveis.
Para o ensemble canonico, o sistema é considerado em contato térmico com um reservatério, de forma que

sua energia total ndo é fixa, mas a energia média (E) deve permanecer constante. Assim, além da normalizacdo

da distribuicdo de probabilidades, também se tem a seguinte restri¢ao:

N
Y pnEn=(E), (2.4.4)
n=1

onde E, representa a energia do estado n do sistema.

O funcional a ser maximizado, com as duas restricoes, € dado por:

N N N

g:—anlnpn—A(Z pn—l)—ﬁ( an,,—<E>), (2.4.5)
n=1 n=1 n=1

de forma que agora A e § sao multiplicadores de Lagrange associados as restri¢gdes de normalizacao e de energia

média, respectivamente.

Para maximizar .Z em relagio a p,,, se toma a derivada parcial de .Z com respeito a p,,, de forma que:

Inp,=1-1-BE,, .. pnze_’l_le_ﬁE”. (2.4.6)

A—

Utilizando a condicdo de normalizacdo, determina-se a constante Z = e~*~!, conhecida como funcéo de

particdo canénica:

N
Z=Y e Pk, (2.4.7)

n=1
sendo, nesta equacdo 8 =1/kpT,de modo que a distribui¢do de probabilidade pode ser expressa como:

e_ﬁEn

VA

Pn= (2.4.8)
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Esta é a conhecida distribuigdo de Boltzmann, que descreve o ensemble candnico, onde a energia média do
sistema é mantida constante em contato com um reservatorio térmico.

Esse procedimento de maximizacdo da entropia para determinar as distribuicdes de probabilidade dos
ensembles estatisticos foi introduzido por Edwin T. Jaynes [36] e, seguindo esta metodologia, também é possivel
mostrar a relacao da entropia de Shannon com ensemble Gram-canodnico. Além disso, a férmula de Shannon
no limite continuo se torna a expressao da entropia de Gibbs [37]. No limite continuo, onde as varidveis do
sistema formam um espaco continuo de estados, substituindo a soma por uma integral e a probabilidade p;
pela densidade de probabilidade p(x), onde x representa as varidveis de estado continuas do sistema, a entropia
se torna:

S= —f p(x)Inp(x)dx. (2.4.9)

Esta expressdo é conhecida na Mecanica Estatistica como entropia de Boltzmann-Gibbs. Ela mede a incerteza
ou dispersao da distribuicdo de densidade de probabilidade p(x) em um espago de estados continuos. Portanto,
a partir da aplicac¢do do principio da méxima entropia na expressao de Shannon é possivel demonstrar um

vinculo entre a Teoria de Informacao e a Mecanica Estatistica.

2.5 A ENTROPIA DE VON NEUMANN

No ambito da Mecanica Quéntica a nocdo de entropia adequada é devida a John von Neumann. Aqui, os valores
médios referem-se ao conceito de média de ensemble, ou seja, sistemas a priori identicamente preparados.
Ap6s a realizagdo da medida, obtém-se uma caracterizagdo estatistica dos constituintes do estado final total,
composto por todos os subsistemas onde a medicdo foi realizada. Por exemplo, ap6s a realizacdo de um
experimento Stern-Gerlach [38], sabe-se que o estado fisico do feixe de &tomos de prata ap6s a interacdo com
0 campo magnético externo possui uma populacao de 50% dos seus 4tomos colapsados em um estado de
spin para cima e a parcela restante, também composta por 50%, possui spin para baixo. Entretanto, ao sair do
forno, ou, em outras palavras, antes da medicao, nao se pode caracterizar os estados fisicos dos &tomos que
constituem o feixe: o spin individual de cada 4&tomo pode estar apontando para qualquer direcdo; em termos
gerais, o estado fisico é randomico.

Para o caso dos sistemas fisicos onde ndao ocorreu uma medicao, sabe-se que eles sdo compostos por um
namero finito de constituintes, de forma que € possivel atribuir um peso a sua populacéo relativa de um dado
estado particular, p,;, com 1 < m < N associado ao m-ésimo estado |m) e N é o nimero de individuos no
ensemble, ou o nimero de sistemas identicamente preparados. Nesse caso, deve-se tomar cuidado para nao
confundir o nimero de individuos que compdem o sistema com a dimensao do espaco gerado pelos autovetores
de um dado observavel: o parametro N geralmente supera a dimensao do autoespaco de um dado operador.
Tratando-se de uma populacéo fraciondria, a soma dos pesos deve ser a unidade, semelhante a eq. [2.4.1].

Além disso, nao se tem nenhuma informacao geométrica dos kets antes da medida: eles podem muito bem
ser ortogonais entre si ou nao; podem ser autovetores de um operador em comum, ou podem nio ser, e nem
é determinado se os operadores que os representam sdo compativeis ou nao. Sendo assim, é possivel inferir
a natureza estatistica deste conjunto: antes de realizada a medida em um sistema composto pela populacao
de estados fisicos e considerando que exista mais de um p,, diferente de zero, diz-se que o sistema configura
um ensemble misto. Agora, ap6s a realizacdo de uma medida, é possivel analisar em sua totalidade a parte da

populacao fraciondria caracterizada por um certo estado fisico em comum, ou seja, a coletanea de sistemas
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fisicos tais quais sdo representadas por um tnico ket. Para este tltimo caso, dd-se o nome de ensemble puro. Ou
seja, um ensemble misto é composto por uma cole¢do de ensembles puros.

Objetivado o interesse na obtencao da medida de algum observavel, este s6 serd possibilitado a partir
de uma média sobre ensembles. Considerando, por exemplo, o observavel G, que na construcio formal da

mecéanica quantica é um operador, obtém-se para sua média (G):

N N
Gy=3 pm(mIGlm)y=Y pp(m|GLim)

m=1 m=1

N (2.5.1)
= 2 2 pmimlG|g)(g|m).
m=1 g
Valendo a equacao de autovalores G |g) =g |g), obtém-se para (G),
N
Gy=Y 3 pml(g|m)Pg. 2.5.2)
m=1 &

A partir deste resultado, deve-se observar a construcao de duas estatisticas independentes na obten¢do de uma
Unica medida: os pesos populacionais de cada estado fisico compdem uma abordagem estatistica que acaba
mediando a média de ensemble das previsdes quanticas, que também constituem um escopo estatistico em si.

O formalismo quantico permite quantas mudancas de base forem necessdrias, utilizando para isso a relacao
de completude dada por:

Y liyil=1, (2.5.3)
i

sendo 1 o operador identidade, possibilitando escrever trocas de base de uma forma bem compacta. Dessa

forma, é possivel avaliar o valor esperado da seguinte forma:

N N
G)=Y pm(mI1GLIm) = Y. pu .Y (mli) (i1G|j){j|m)
m=1 m=1 i j

(2.5.4)
(1G|f).

=;;(V§lpm<ﬂm><mm

O termo destacado entre parénteses é definido como o elemento de matriz de um operador hermitiano,

denominado operador densidade p,

N
pij =ilp|j)= ) pmilm)(m|j). 2.5.5)
m=0

Conciliando a representagdo matricial da mecénica quantica com este operador, define-se a expressao geral do

operador densidade:

e
1]
M=

pm|m) (m]|. (2.5.6)
0

3
I
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Considerando esta construcao, a expressao para (G) toma uma forma mais compacta,

G =33 (jlp1niG|j) =316 )

1 (2.5.7)

=Y. (j16C17) = Te[56]
J

onde a operacdo Tr| ﬁG] corresponde ao traco do operador resultante do calculo de pG, ficando assim explicito
o poder generalizado desta construcgao: o trago é independente da representagdo.
Resumidamente, encontra-se que a média sobre ensemble de um observével G é dada por,

(G =Tr[pG]. (2.5.8)

Agora, analisando o traco do operador identidade separadamente,

wlp) =3 mﬁzopmmxmlﬁ: ﬁopmml(;wm)lm
1 (2.5.9)

N
Pp= ) pPmlm)(ml=|m)(ml. (2.5.10)
m=1
Dai,
pppp =3 =m) (mim) (ml = |m)(m| = pp, (2.5.11)
1
ou seja, pp é um projetor,
0% = pp. (2.5.12)
Somente para um estado puro entdo,
Tr[p3] = 1. (2.5.13)

Logo, os autovalores associados ao operador densidade de ensembles puros devem ser sempre zero ou um, de
forma que, quando se diagonaliza a matriz densidade pp, espera-se encontrar um objeto matematico na forma
de

0 0 0 0 0
: 0 0
pr=|o0 1 0
0

0 0
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Em contrapartida, um ensemble totalmente misto possui a matriz densidade p; com estrutura

1 0 0 O 0
1 0
. 1 1
M= 0 01 = N]lNy
001 .. 0
0 0 0o .. 1

sendo 1 a matriz identidade N-dimensional. Impdem-se entdo duas matrizes diagonais, sujeitas a mesma
condicdo de normalizagdo, que representam objetos fisicos diametralmente opostos. E conveniente, entéo, a
definicdo de uma grandeza que distinga as qualidades fisicas intrinsecas a cada objeto. Neste espirito, define-se
a entropia de von Neumann [39],

Sun=—-kgTr[plnp]. (2.5.14)

Esta entropia mede o desvio do sistema em relacéo ao estado puro, a quantidade de informacao degradada,
mais uma vez, o caos. Para aprofundar a andlise sobre a entropia de von Neumann, existem duas caracteristicas
fundamentais: (1) que a entropia de von Neumann de um estado quantico puro é zero e (2) que, para estados
mistos descritos por probabilidades cléssicas, a entropia de von Neumann recupera a forma da entropia de
Shannon.

Para um estado puro, ao diagonalizar pp, os autovalores associados serdo 1 para o estado ocupado |1//> el

para todos os outros estados. Assim:
Tr(pplnpp) =1-In(1) +0-In(0) = 0. (2.5.15)

Portanto, a entropia de von Neumann de um estado quantico puro é zero. Essa caracteristica reflete o fato de
que um estado puro possui maxima informacao sobre o sistema, sem incerteza associada. Para um estado
misto, o operador densidade é dado por uma combinacdo de estados puros com probabilidades associadas, p;,
que sdo as probabilidades de encontrar o sistema no estado |1//,- ), com ¥ ; p; = 1. Diagonalizando p, se obtém

uma matriz diagonal com os autovalores p;. Assim, a expressdo para S,y se torna:
Sun=—kg)_ pilnp; =kgH. (2.5.16)
i

Ou seja, é exatamente a forma da entropia de Shannon na base natural multiplicada por kp. Essa equiva-
léncia mostra que a entropia de von Neumann generaliza a entropia de Shannon para o contexto quantico,
recuperando-a em situacdes em que o sistema esta descrito por probabilidades classicas.

Além disso, na Mecanica Quéantica, a entropia de Rényi é dada por [40]:

1
Sq = —— InTr[p%]. 2.5.17
o= 7= InTr[p%] (2.5.17)
Neste caso, para @ — 1, recupera-se a entropia de von Neumann:

lim %lnTr[ﬁ“] =-Tr[plnp] = is,,N. (2.5.18)

a—l]l—-a kB

Agora, de formailustrativa, considera-se o caso do oscilador harmo6nico unidimensional. Nele, a distribuicdo
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de Boltzmann é dada por:

e—ﬁE,, e—nﬁwh

- ZC;IO:O e~ BEn - ZZO:O e—npwh

Dn = (1 - e PoRyg=npwh (2.5.19)
onde foi utilizada a expressdo dos autovalores do oscilador harménico unidimensional (Eq. [2.1.5]) e proprieda-
des da série hipergeométrica. Substituindo este resultado na entropia de von Neumann:

S=—kp(1—ePh

In(1-ePon) 3 e _pun S nemben| . (2.5.20)

n=0 n=0

Utilizando algumas manipulagdes, substituindo = 1/kp T e multiplicando por N osciladores, recupera-se a

expressdo para a entropia do sélido de Einstein desenvolvida na primeira secdo:

wh

wh e ®T _ wh
S(N,T) = Nkg ——wﬁ—ln(l—e kBT) : (2.5.21)
kBTl—e_m

E interessante notar que, no primeiro caso, que utilizou métodos de contagem mais rudimentares, o principio
fundamental da mecéanica estatistica e a expressao de Boltzmann, obteve-se exatamente o mesmo resultado
para a entropia de von Neumann, tipica da Teoria Quantica. Este exemplo foi incluido para mostrar a maneira
como as diferentes no¢des de entropia se relacionam. Ao longo deste trabalho, nos modelos avaliados, é comum
a obtencao de uma forma de entropia a partir de manipulacées de outra.

Por exemplo, no célculo da entropia de emaranhamento em colisdes eldsticas [23,24], é preciso primeiro ob-
ter a entropia de Rényi, calcular o limite em que @ — 1, para entdo encontrar uma entropia de emaranhamento
escrita na expressdo de Shannon, de modo que se faz necessario compreender a relacdo entre as diferentes
nocoes entrépicas. De qualquer forma, a Fig. [2.8] ilustra a relagdo das nogées entrépicas avaliadas neste
trabalho.

Termodindmica Teoria da Informacao Mecanica Quantica
Rényi
a1 a—1

¥ |

Boltzmann/Gibbs - Shannon < von Neumann
q-1 Entropia de
‘ Emaranhamento

Tsallis

Figura 2.8: Relacdo entre as nogdes entrépicas estudadas neste capitulo. A entropia de emaranhamento serd estudada no
capitulo [4].
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2.6 INFORMACAO MUTUA

A informacdo mutua, também chamada de Entropia Relativa de Kullback-Leibler, é uma medida fundamental
para avaliar a divergéncia entre duas distribuicdes de probabilidade, p e p'?, onde p© representa uma distri-
buicao chamada de referéncia [33]. Para quantificar essa discrepancia, diversas métricas podem ser adotadas,
sendo a divergéncia de Kullback-Leibler uma das mais relevantes. Formalmente, a informacao mitua entre p e
p© é definida como:

p) ] (2.6.1)

I(p, p(o)) —fdxp(x)ln[ Ore)

A informacio miitua é nio negativa e igual a zero se, e somente se, p(x) = p{¥(x). A propriedade de nio
negatividade torna a divergéncia de Kullback-Leibler ttil para comparar distribuicées ao indicar a proximidade
de p em relacgao a referéncia p©.

Agora, serd considerada uma mudanca de varidveis em uma distribuicdo continua de probabilidades
p(x), de forma que y = f(x). Neste caso, dx = |f'(x)|dy. Aplicando esta transformacdo na distribuicdo de

probabilidades na entropia de Boltzmann-Gibbs (Eq. [2.4.9]):

—f dyp(y)Inp(y) = —fdxp(x) (Inp(x) +1n|f'(x)1). (2.6.2)
Por outro lado, ap6s a mesma transformacao de varidvel na informa¢do mitua, obtém-se:

6%
)= [y 22

dx p@If (2]
= | dayZE peoin | L2 2L
f Ya pmn[p“))( B

_px)
(0)( )

(2.6.3)

fdxp(x) In

Esta é uma caracteristicas importante de I(p, p'?'), a invariancia sob transformacoes de varidveis que preservem
a medida. Isso significa que, mesmo ao realizar uma mudanca de varidveis, a divergéncia entre p e p© se
mantém constante. Em muitos célculos, essa propriedade torna a informacdo mutua preferivel de manipulacao
se comparada a entropia de Boltzmann-Gibbs (Eq. [2.4.9]), pois, neste segundo caso caso, perde-se a invaridncia

sob certas transformacoes, conforme a Eq.[2.6.2].

2.7 MECANICA ESTATISTICA DE NAO EQUILIBRIO

Em geral, o estudo da Termodinamica e da Mecanica Estatistica considera processos e transformacdes entre
estados de equilibrio, descritos por varidveis de estado, como a entropia S, a energia interna U, o ntimero de
particulas N, ou qualquer outra variavel extensiva. Este equilibrio é necessario para a medicao de varidveis
intensivas, como a pressao P e a temperatura T. Grosso modo, a temperatura pode ser interpretada como
a velocidade cinética média das particulas que compdem o gas, enquanto a pressao é dada pela soma das
forcas aplicadas sobre a drea de um certo émbolo. Sem equilibrio, ndo hd uma média satisfatéria das forcas ou
velocidades para que as varidveis intensivas sejam devidamente definidas.

Assim, a segunda lei da termodindmica descreve a limitacao fundamental das transicdes possiveis entre os

estados de equilibrio; a compreensio dos sistemas de néo equilibrio ainda é primitiva. E precisamente neste
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contexto que se aplica a chamada Mecdnica Estatistica de Ndo Equilibrio. Trata-se de um assunto amplo e
em desenvolvimento, mas neste trabalho serdo abordados brevemente apenas dois topicos: a Identidade de

Jarzynski e a relacao de Hatano-Sasa, que serdo discutidas a seguir.

2.7.1 Identidade de Jarzynski

A identidade de Jarzynski [41] € uma relacdo de flutuacdo que permite conectar o trabalho realizado durante um
processo termodinamico entre estados de equilibrio com a respectiva variacao de energia livre. Esta identidade
estabelece uma expressao que envolve a distribuicdo estocdstica do trabalho termodinamico, p (W), permitindo
estudar processos longe do equilibrio.

Em sistemas isolados, é bem conhecido da fisica estatistica que o trabalho médio (W) realizado em um
sistema termodinadmico verifica desigualdades relacionadas a segunda lei da termodindmica. Assim, para uma
transicao entre dois estados de equilibrio, tem-se a relacao:

_(W)-AF =0 (Whiss) 0. 2.7.1)

kgT kgT

AS

Aqui, AE = (W) representa a variacao total de energia e AF é a variagdo de energia livre do sistema. O termo
W — AF = Wpgs corresponde ao trabalho dissipado, o qual s6 é nulo em processos reversiveis.
Aidentidade de Jarzynski generaliza esse principio ao conectar diretamente o trabalho médio as flutuacoes

fora do equilibrio, especialmente no caso de flutuacdes onde Wpjgs < 0. Ela é dada pela expressao:

<e—W/kBT> — g OFIkpT (2.7.2)

Como foi demonstrado nas primeiras se¢des deste capitulo, a segunda lei da termodindmica tem uma natureza
estatistica e, portanto, muito raramente, ocorrem flutuagdes nas quais —W < AF'. Essas flutuagoes podem
ser muito raras, mas com um grande W (ou seja, — W fortemente negativo), sua contribuicio para a média de
e"W/ksT pode ser significativa. Desta forma, a férmula de Jarzynski inclui todas as flutuacdes, inclusive aquelas
que violam —W = AF.

Esta identidade pode ser escrita na forma:
AF=—kg T1n<e‘W’kBT> =—kg Tlnf dWp(W)e W/ksT (2.7.3)

Em que, p(W) é chamada de distribuigao estocéstica do trabalho termodinamico, que descreve a probabilidade
de que o trabalho realizado em um sistema, durante um processo termodinamico, tome um valor especifico.
Em um processo termodinamico fora do equilibrio, o sistema é impulsionado de um estado de equilibrio
inicial para um estado final por uma perturbac¢ao, como a aplicacdo de uma forca mecanica que modifica
o volume, ou de um campo elétrico que altera a energia interna. O trabalho realizado, nesse caso, depende
das trajetérias microscopicas do sistema, ou seja, dos caminhos especificos que as particulas seguem devido
as flutuacoes térmicas durante o processo. Deste modo, os problemas envolvendo esta identidade buscam
encontrar esta distribuicao, em que sao exemplos o pistdo unidimensional [42] e a compressao adiabatica de

um gds diluto [43].

fUtilizando a convencao de sinal em que —W representa o trabalho realizado por uma forca externa sobre o sistema e W é o trabalho
realizado pelo sistema sobre o ambiente.
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2.7.2 Identidade de Hatano-Sasa

Se comparada com a expressao de Jarzinsky, a identidade de Hatano-Sasa [44] ndo possui uma varidvel equiva-
lente a temperatura. Esta identidade é aplicavel a sistemas estaciondarios de ndao-equilibrio e é definida a partir
de um parametro dindmico A. Neste caso, para cada valor de A, existe um espectro estaciondrio no espaco de
fase com uma distribuicdo de probabilidade Pg,¢(2;A)dz, em que a varidvel z descreve o espaco de fase do

sistema. Nesta configuracao, verifica-se a seguinte igualdade:

<exp > =fdz exp
T2

Nesta equacao, a transicao entre um estado estaciondrio de nao equilibrio, ocorre com a alteracao da varidvel

dt oA dt oA

2 dl o 2 dl o
—/ dt — —1InP(z;A, 1) —/ dtr — —1InP(z;A,1) | P(z;A2,72) = 1. (2.7.4)
T T1

dindmica A(7), de forma que A(r;) = A; evolui para 1, e T é o tempo de transicao entre dois estados esta-
ciondrios nao equilibrio distintos. Assim, P(z; A, T) = Psat(2(7); A(T)) representa a solucdo estaciondria para
o valor A(7) em varidveis de espaco de fase “congeladas” no tempo 7. Note-se que essa identidade resulta

independentemente da “histéria” arbitraria de dA/dr no mecanismo de nao-equilibrio.
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Capitulo 3

Entropia dos Estados Densos da QCD

O principal objetivo deste capitulo € investigar a producéo de entropia na fisica de altas energias relacionada
aos chamados estados densos da QCD. Como j4 foi exposto, também serd abordada a criacdo de entropia devida
ao emaranhamento quéntico e a decoeréncia. Entretanto, como a aplicacdo destes fendmenos quanticos estarda
relacionada com caracteristicas bésicas da fisica de altas energias, este também é um capitulo introdutério ao
que serd desenvolvido nos respectivos capitulos de cada um dos fendmenos supracitados.

Além disso, a rapida termaliza¢do do QGP alude a uma grande criacao de entropia nos estdgios inicias da
sua formacao, portanto, também serdo apresentadas algumas caracteristicas basicas deste plasma. Ao final, o
objetivo central do capitulo serd estabelecido com a apresentacdo da chamada entropia dindmica da QCD, que
é uma proposta para avaliar a densidade de entropia por unidade de rapidez definida a partir de observaveis da
fisica de saturacao.

Tendo em vista a complexidade matematica adjacente as teorias quanticas de campos, é essencial apresentar
uma convencio da notacédo que serd utilizada neste trabalho: os vetores bi e tridimensionais serao indicados
por uma seta superior: para o vetor A, por exemplo, serd utilizado A; os 4-vetores terdo um indice ou sub-indice
com um caractere grego, na forma A¥, podendo também ser representados simplesmente por A, sendo que a
desambiguacdo se revelard frente a operagcdo em que o objeto atua. A partir de agora, utiliza-se a notacao de
unidades naturais, na qual

h=c=kp=1. (3.0.1)

Dessa forma, recorre-se a relacdo entre as unidades de medida,
[massa] = [energial = [tempo]_1 = [comprimento]_1 =GeV, (3.0.2)
sendo essas grandezas sujeitas a relacao de conversao,
1GeV =5,0677fm™". (3.0.3)

Como a partir de agora se lidard com teorias quanticas de campos, tendo a relatividade restrita como
um pré-requisito das manipulacdes matemadticas aqui estabelecidas, o ideal é tratar grandezas que sejam
invariantes de Lorentz. O referencial onde o regime de altas energias faz sentido é chamado de Breit framee

serd melhor abordado na préxima secdo, que tratara justamente de algumas caracteristicas fundamentais da
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fisica de altas energias.

3.1 O MODELO DE PARTONS

Em 1911, Ernest Rutherford realizou uma revolucao cientifica com a descoberta do niicleo atomico [45]. Esse
feito foi crucial para o aprimoramento do modelo e teoria atdmica, tornando as concep¢oes de Thomson e
Dalton obsoletas e fornecendo uma nova explicagao para a estrutura da matéria. Em 1913, Bohr refinou a
teoria com a introducdo das 6rbitas quantizadas, contornando o problema do colapso da matéria previsto pelas
equacoes de Maxwell no modelo de Rutherford. Pouco depois, a existéncia de uma solucao analitica exata
da equacao de Schrodinger para o &tomo de hidrogénio pavimentou o caminho para a génese da mecanica
quéantica. Ao final dos anos 1950, o terreno tornou-se fértil para a formulacéo da Teoria Qudntica de Campos,
permitindo derivar resultados satisfatorios para trés das forcas fundamentais: eletromagnética, fraca e forte;
enquanto a for¢a gravitacional ainda carece de uma teoria quantica.

Utilizando adequadamente as teorias quanticas de campos, € possivel obter expressoes para as secoes de
choque com bons resultados. Além do desenvolvimento dessas teorias, as montagens experimentais também
evoluiram drasticamente: aceleradores maiores foram projetados e posteriormente construidos. Exemplos
atuais incluem o LHC e o RHIC, entre outros, que contam com a colaboracao de pesquisadores e engenheiros
de diversas partes do mundo, com o objetivo de dar sequéncia a exploracdo nao sé do mundo nuclear, mas
também do comportamento da matéria em niveis ainda mais fundamentais — especificamente, a estrutura dos
nucleons (hadrons que constituem os nicleos atdmicos, prétons e néutrons), incluindo quarks e glions.

Um formalismo de suma importancia nessa pes-

quisa é o modelo dos Pdrtons [47]. Em 1968, uma

série de experimentos foi conduzida no Stanford Li- i Flcuon
> Espalhado

near Accelerator Center (SLAC), envolvendo espalha- o7

. P ) . I 4 >

mentos ineldsticos profundos lépton-ntcleon (DIS, Elétron

Deep Inelastic Scattering) [48]. Esses experimentos jcEchis .

consistem no espalhamento de um lépton, com a - ©

. A ~ © ;

medida do angulo de deflexdo, que revela aspectos s I

da natureza do processo. Mais especificamente, em

processos ineldsticos, o alvo absorve parte da energia % ©

cinética da colisao com um projétil de alta energia, o
qual pode ser associado a um pequeno comprimento Figura 3.1: Representacdo do DIS. Adaptado de [46].

de onda, permitindo sondar regides ditas profundas

(Fig. [3.1]). Durante a realizacdo destes experimentos, o fisico tedrico Richard Feynman se encontrou com
membros do grupo experimental responsével e teve acesso aos primeiros resultados obtidos, onde a secao de
choque foi parametrizada segundo sugestdes de James D. Bjorken [49]. Para compreender a contribuicao de

Bjorken, primeiro é necessdrio estabelecer o seguinte conjunto de definicoes:

B Utiliza-se g, tanto para etiquetar os quarks quanto para a transferéncia de 4-momenta, g* = k* — k'*,

tendo sua desambiguacao aplicada no contexto de utilizac3o.
B Utiliza-se k* para o 4-momentum do elétron incidente;

W Utiliza-se k'* para o 4-momentum do elétron espalhado;
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B P! para o 4-momentum do préton;

B p* para o 4-momentum do parton;

B Q?éaquantidade que mede o quanto o féton virtual se desvia da camada de massa, chamada virtualidade

do foton.

B x para a varidvel cinemética de Bjorken, definida como,

Q2
P-q;

X

I\

(3.1.1)

B ¢ para afracdo de momentum do i-ésimo parton em relagdo ao momentum do préton,

Ho_ .
B v é uma varidvel cinemadtica dada por,
P-q
v=—,
M

(3.1.2)

(3.1.3)

sendo M a massa do niicleon, embora neste capitulo seja recorrente o uso do préton de massa 11,.

Utilizando a 4lgebra de correntes, Bjorken notou que no limite em que o
momentum e a energia transferidos no impacto tendem ao infinito, g> — co
e v = (E- E)4p — oo, no referencial de coordenadas chamado Breit Frame,
uma razao fixa é estabelecida, denominada de x de Bjorken:

QZ qZ

x= =- . (3.1.4)
2P-q 2Mv

Além disso, Bjorken observou que neste limite, as func¢des de estrutura,
andlogas aos fatores de forma presentes nas colisdes eldsticas, sdo apenas
funcgoes de x, exibindo um comportamento de escala. Feynman interpretou
o comportamento de escala nas colisdes como uma indicacdo de que o
nucleon teria constituintes dotados de carga elétrica, de modo que o pe-
queno comprimento de onda do 1épton projétil fosse capaz de sondar esses
constituintes (Fig. [3.2]), os chamados Pdrtons (do inglés, part of hadrons).
Ao publicar suas investigacdes sobre o DIS, Feynman introduziu pela pri-
meira vez a distincao entre espalhamentos exclusivos e inclusivos. No caso
exclusivo, trata-se dos processos nos quais se sabe quais particulas serao
produzidas, enquanto o caso inclusivo estuda o comportamento de uma
determinada particula no estado final em diversos intervalos cinematicos
de momento longitudinal e transversal, sem especificar outras particulas
envolvidas.

De forma pratica, um exemplo de processo exclusivo é dado por:

prept—pt+nleat.
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Q? pequeno préton

Q2 grande quark

Figura 3.2: Dois experimentos em
que um elétron colide com um pré-
ton. Em (a) pouca energia foi transfe-
rida na colisao, de forma que o féton
virtual y* possui um comprimento
de onda da ordem do tamanho do
préton. Em (b), energia suficiente foi
transferida na colisdo, de forma que
o comprimento de onda do féton vir-
tual é capaz de sondar a estrutura in-
terna do préton.
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0

As particulas envolvidas neste exemplo sdo o préton p*, o néutron n' e o pion carregado positivamente z+.

Um processo inclusivo pode ser descrito por:
pt+pt—-nt+X,

onde X representa um estado final ndo explicitado, sendo que, neste exemplo, a particula analisada seria o pion.
Feynman argumentou que, em um regime de altas energias, as secdes de choque inclusivas devem apresentar
comportamento de escala quando a energia total € muito grande e o momento transversal da particula no
estado final permanece limitado.

Seguindo a metodologia proposta por Feynman e Bjorken, a se¢ao de choque em um DIS serd parametrizada
em termos de g* e P#,

( do )— CE vy (3.1.5)
dQdE')  4mmuq* E v o
Nesta equacdo, a = 1/137 é o acoplamento da forca eletromagnética, L, € o tensor leptonico e Wy, € o tensor

hadronico. Para um espalhamento néo polarizado, L,y € dado por,
Lyy = 2(kyky + kyky, — k- k' gu), (3.1.6)
e a forma mais geral do tensor hadrénico é dada por,
11374 P. pP.
WH = W, (—g’”’+%)+WQ (Pﬂ—q—fqﬂ) (PV—quV). (3.1.7)

As quantidades escalares as quais W; e W, podem depender devem ser invariantes de Lorentz, sendo elas,
P?=P-P=M? g*e P-q. Usa-se Q = /—g% >0, que é a escala de energia na colisio e, no referencial LAB,

P-q/M = (E— E'). Dessa forma, contraindo o tensor leptonico com o tensor hadronico,

( do ) a? Mo 0 20 1 50 518
= —_— X, COS™ — —_— sen —|. .
dQdE'| ~ 8mE2sen*0/2 | 2 2 2 Mt 2

No caso ineldstico, esta secao de choque revela todas as caracteristicas necessarias.

Para testar o Modelo a Partons, é necessdrio verificar os fatores de forma considerando que o elétron
espalha elasticamente os constituintes protonicos de massa m,. Para realizar esta avaliagdo, considera-se
0 4-momentum inicial e final do parton, p? e p?, respectivamente, entdo, via conservacao de momentum,
pl+qt = p?, dai,

Q?
2pi-q

Mas o 4-momentum do parton nao é diretamente mensurdvel. Assim, assume-se que ele possui uma parcela ¢

=1. (3.1.9)

do momentum do préton,
pl =¢&pH, (3.1.10)

ou seja,
2
x= ¢Q =¢. (3.1.11)
2pi-q

Dessa forma, a medida de x revela a parcela de momentum que o parton carrega do préton pai.
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Para que seja possivel calcular o espalhamento eldstico e™ g, considera-se que os parténs nao interagem
muito entre si. Assim, os fatores de forma possuam apenas uma fraca dependéncia logaritmica com Q?",
tendo o momentum partonico inicial fixo, ou seja, com x constante. A secdo de choque aproximadamente
independente de Q? com x fixo é conhecida como escalonamento de Bjorken.

O modelos de parténs também utiliza as probabilidades f;({)d¢ do féton interagir com o i-ésimo parton
com uma parcela { do momentum do préton. Estas f;(¢)’s sdo conhecidas como Fungdes de Distribuigdo
Partonicas (parton function distributions, PDF’s). O modelo prevé que a secdao de choque para o espalhamento
e P*—e X,0r,édado por e p; — e~ X, 0, onde p; é o parton com momentum pf = ¢{PH, integrado sobre
todo ¢,

1
aTzzfo défi©op. (3.1.12)
i

Assumindo que os partons sao livres, exceto pelas interacdes eletromagnéticas, o elétron espalha apenas as
particulas carregadas, que no préton, sao os quarks. Para um dado quark de momentum p;, a se¢dao de choque
partonica e” g — e” g, 0 p, € aproximada por um espalhamento puntual na Eletrodinamica Quantica, dada pela
férmula de Rosenbluth, com F; =1 e F, =0, entio,

2
20 Q 20

cos” —~+——sen”
2 2my 2

(dap azQ?

Q* )
= S|E-E' - —|, 3.1.13
aQ )LAB 4E2 sen4(9/2) ( ( )

2myq

sendo Q; a carga do quark.
A fim de obter a secdo de choque de DIS, é necessdrio integrar esta expressio sobre o momento do parton
incidente. Sendo assim, obtém-se o resultado,

2n?2
dO'p aeQi Zmp 2 20

0 1
(_) :Zfi(x) x*cos? — + — sen®— |. (3.1.14)
dQ Jiap 5 4E%sen*(0/2) \ Q2 2 my 2

Comparando [3.1.8] com [3.1.14] obtém-se as relagdes,

Wi(x,Q) =27 ¥; Q% f; (x);

. (3.1.15)
Wa(x,Q) :8n%ZiQ?fi(x).

E estas relagdes configuram uma base concreta para a predicdo experimental do escalonamento de Bjor-
ken, pois sao as quantidades W, (x, QZ) e Q2 Wa (x, Q) fracamente dependentes de Q com x fixo, confirmadas
experimentalmente.

Sob essa perspectiva, os partons sdo interpretados como particulas nuas (bare particles) de uma nova
interacdo fundamental — a forca forte — sendo investigados através do DIS no Breit Frame. Neste referencial, o
hadron sofre uma contracdo espacial longitudinal, tornando a interagdo com o lépton (seja eletromagnética
ou fraca, dependendo do 1épton envolvido) praticamente instantdnea. Assim, o estado interno dos hadrons
é "congelado"e a interacdo entre os partons pode ser desconsiderada, permitindo tratd-los como particulas
quase-livres. Mais tarde, os partons foram identificados com os quarks de Gell-Mann [50], estabelecendo o
Modelo Padrdo, e ametodologia de Bjorken e Feynman tornou-se fundamental para a andlise da Cromodindmica
Quadntica Perturbativa.

Para compreender melhor o uso do Modelo dos Partons na investigacao das estruturas hadronicas, é ttil

*Similarmente ao espalhamento e~ u~, bem estabelecido na Eletrodindmica Quantica
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revisar brevemente a teoria que descreve a fisica de particulas elementares: o Modelo Padrao. Esse modelo
organiza as particulas fundamentais em 12 férmions de spin 1/2, divididos em dois grupos principais. O
primeiro grupo inclui os quarks, que constituem a matéria hadronica: up, down, charm, strange, top e bottom.
O segundo grupo consiste nos léptons: elétron, miion, tau e seus respectivos neutrinos. Juntos, esses férmions
compdem toda a matéria ordindria’.

As interacOes entre essas particulas sdo mediadas pelos bdsons de calibre, particulas de spin 1 associadas
as forcas fundamentais: o féton (forca eletromagnética), o gltion (forca nuclear forte) e os bésons W+ e Z°
(forca fraca). Além disso, o Modelo Padrao inclui um béson escalar, o Higgs, cuja existéncia foi confirmada
experimentalmente e que é fundamental para o mecanismo que confere massa a outras particulas. A Fig. [3.3]

ilustra alguns detalhes dos constituintes do Modelo Padrao.

Modelo Padriao das Particulas Elementares

trés geragdes da matéria interagdes / particulas mensageiras
(férmions) (bésons)
I Il Il
massa | ~2.2 MeV/c* ~1.28 GeVic® ~173.1 GeVic? 0 ~124.97 GeVic*
@ I @ | @ @ |- H
up charm top gluon higgs
B
4.7 Mevic2 ~96 MeVic? ~4.18 GeV/c? 0
@ IO I'® || @
down strange bottom foton
IR
~0.511 MeV/c? =105.66 MeV/c® ~1.7768 GeV/c* ~91.19 GeVie?
@ I@® @ || @
elétron muon tau béson Z
e
<1.0 eVict <017 MeVic2 <182 Mevic2 ~80.39 GeVic?
@ I Y || @
ne:::gltr:gndo neur::]r;t;do neut:;r:]o do béson W

Figura 3.3: Organizacao das particulas do modelo padrédo confirmadas experimentalmente. Para cada particula é também
dado o valor de sua massa, carga elétrica e spin. Reproduzido de [51].

As particulas interagem com diferentes forcas dependendo das cargas que possuem. Por exemplo, os quarks
possuem uma carga de cor, que pode ser vermelha, azul ou verde. Essa carga permite que eles formem hédrons
"sem cor" (colorless), como os mésons e bdrions. Os mésons sdo estados ligados quark-antiquark, enquanto os
barions consistem em trés quarks. Além da carga de cor, os quarks possuem carga elétrica fracionéria, o que
lhes permite interagir eletromagneticamente e serem detectados em processos como o DIS.

Assim, o Modelo dos Partons fornece uma compreensao mais clara dos quarks e gltions ao descrever a
composicao dos nicleons, que em um DIS possuem uma fragdo ¢ do momentum do hadron pai, mantendo
colinearidade com ele. Para energias baixas, os chamados quarks de valéncia constituem os ntcleos em triades.
No entanto, com o aumento da energia no DIS, surge a necessidade de considerar as PDF’s. Estas distribuicoes
obedecem certas relacdes, conhecidas como regras de soma [52]. Por exemplo, para garantir a conservacao dos

numeros quanticos do préton, suas PDFs devem satisfazer as seguintes relagoes:

fAinda ha muito a ser descoberto sobre outras formas de matéria, como a matéria escurae a energia escura, que hoje sao foco de vérios
programas de pesquisa. As informacoes sobre essas formas de matéria vém de teorias gravitacionais, e estima-se que compdem cerca de
95% de toda a matéria do universo.
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1 1 1
fdf[fd(f)—fd(f)]zly fdf[fu(f)—fa(f)]=2, fdé[fs(é)—fg(a]:o, (3.1.16)
0 0 0

sendo esta ultima relacdo aplicdvel também aos quarks bottom e charm. Embora ndo exista uma regra de
conservacao especifica para o niimero de gltions, deve-se considerar a soma das suas PDFs com as dos demais

quarks, resultando na condicgao:

Y [erode=1. 8.117)
J

No caso do préton, as regras de soma apresentadas indicam que apenas 38% do momentum do préton esta
contido nos quarks de valéncia (up e down). Por outro lado, os glions transportam uma fracao que varia de 35%
a 50%, dependendo da escala. Os quarks que néo sao contabilizados nessas distribuicdes sdo denominados
quarks de mar. A Fig. [3.4] ilustra o comportamento dessas fun¢des de distribui¢do em um DIS envolvendo um
elétron e um préton para dois valores de virtualidade (Q? = —g?): para altos valores de x, que correspondem
a processos de baixa energia, as distribuicdes caracterizam os quarks de valéncia; enquanto que em regime
de pequeno-x, em processos de alta energia, a composi¢do do préton é dominada por glions, uma regidao
conhecida como fisica de saturagdo, a qual serd abordada mais detalhadamente na sequéncia.

H1 and ZEUS

1
Q= 19 GeV* QF =10 GeV*

xf

sk —— HERAPDFLO sk —— HERAPDFLO
B cxp. uncert. Bl . uncert.
[ model uncert.

[ parametrization uncert.

I:l model uncert.

|:| parametrization uncert. XUy

g (< 0.05)

XS (< 0.05)

Figura 3.4: Comportamento das PDF’s em relacao a varidvel de Bjorken para as virtualidades Q% =1.9 GeV? (esquerda) e
Q% =10 GeV? (direita). As funcGes que aparecem neste caso sao de quarks up, xuy, quarks down, xdy, glions, xg e de mar,
xS =2x(U + D). As distribuicdes gludnicas e de mar foram reduzidas por um fator de 20 para que possam ser avaliadas no
mesmo plano. Reproduzido de [53].

3.1.1 AFisicade Saturacao

Os nticleos dos atomos sdo compostos por dois tipos de particulas denominadas ntcleons: prétons e néutrons.
Para baixas energias, estas particulas sdo basicamente a combinacéao de trés quarks com cores distintas que se
arranjam de forma que os niimeros quanticos do nicleon sejam recobertos. Por exemplo: o préton (Fig. [3.5]) é
composto por dois quarks up com uma carga elétrica positiva de 2/3 de e e um quark down com carga elétrica
-1/3 de e onde a sobreposicao da carga liquida resulta em uma valor de +e. Quarks sdo particulas de spin 1/2,
fazendo com que a funcdo de onda de spin do préton seja uma superposicao das diferentes configuragdes de

spin dos seus constituintes na forma que a configuracao total seja de spin 1/2. Esta combinac¢do nao viola o
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principio de exclusao de Pauli devido a presenca de outro ntimero quantico que é a carga de cor da interagao

forte, podendo ser vermelha (red), azul (blue) ou verde (green) e as respectivas cargas de anti-cor.
Esse tipo de descricao funciona bem para entender a com-

posicao fisica dos nticleons, contudo, ndo € possivel realizar pre-

dicoes tedricas robustas ou prever comportamentos em colisdes

com resultados satisfatérios pois no uso da teoria da perturbacao

a constante de acoplamento forte a; € da ordem da unidade im-

possibilitando o célculo. Felizmente, com o aumento da energia

a constante de acoplamento diminui e os célculos perturbativos

comecam a se tornar efetivos. Fisicamente, é possivel sondar

regides menores para se obter a se¢do de choque e fené6menos

NOvos comegam OCOrTer.
Antes de dar mais detalhes vale a elucidacdo de algumas

diferencas entre eletrodindmica e a cromodindmica quantica:

embora ambas sejam teorias de campos quanticos e possam ter Figura 3.5: Representagdo esquemdtica do pro-
ton em baixas energias com os seus trés quarks

suas propriedades derivadas a partir de grupos abstratos, sendo o o2
de valéncia. Imagem da referéncia [54].

eles os grupos U(1) para eletrodinamica e SU(3) para cromodi-

namica, uma diferenca reside no fato que os geradores' deste

segundo grupo nao comutam como os do primeiro. Por isso, diz-se que a cromodinamica é uma teoria ndo-
abeliana®. Esta caracteristica do grupo de simetria tem como consequéncia o fato de que os mediadores da
forca forte, os glions, carreguem carga de cor e, por isso, interajam entre si, sendo um grave contraste se
comparado com os fétons da Eletrodinamica Quéantica.

Geralmente, a descri¢do da resolugcao em que se avalia a estrutura hadrénica é feita em relacao a duas
varidveis, a virtualidade Q?, que representa o momentum transferido na interacdo, e o x de Bjorken, que
no regime de altas energias pode ser escrito como x = Q?/s, sendo s o quadrado da energia do sistema no
referencial do centro de massa. Antes da colisdo, considera-se que o niicleon porte um certo 4-momentum PH,
logo, por conservacao, os 4-momenta dos quarks devem ser fracdes do total pf = xP*. A variavel de Bjorken é a
fracao de momentum do nticleon pai. A virtualidade do f6ton Q? relaciona-se com o quadrado do 4-momenta
transferido propriamente na colisdo Q = \/—_6]2 .

Considerando estas colocacoes, a analise da estrutura parténica pode ser elaborada considerando o feno-
meno do bremmsstrahlung, no qual os partons podem emitir glions e, estes, flutuar em pares quark-antiquark
ou emitir novos glions. No regime de altas energias, x <« 1 (e na aproximacao de primeira ordem em a;) a

probabilidade diferencial Py de ocorrer a emissdo do glion segue [55],

d’p dx

) 3.1.18
k? x ( )

2
Pyremm o< as(p

sendo p o 4-momentum do parton emitido com p = (/ k2 + k%, E, k; = xP;). Desta forma, no limite em que o

momentum transverso tende a um pequeno valor, aumenta-se a chance de ser gerado um glion colinear com

*Na dlgebra abstrata, um conjunto gerador de um grupo é um subconjunto que nao estd contido em nenhum subgrupo préprio do
grupo. Equivalentemente, um conjunto gerador de um grupo é um subconjunto, tal que todo elemento do grupo pode ser expresso como a
combinagdo (sob a operagdo do grupo) de elementos finitos do subconjunto e seus inversos.

SEm dlgebra abstrata, um grupo abeliano, chamado também de grupo comutativo, é um grupo (G, *) em que a * b = b* a para quaisquer
aebeG.
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uma fracao de momentum x. Fisicamente, o tamanho do hddron é praticamente constante com o aumento da
energia e as populacdes de glions que o compdem neste estado da matéria tém um momentum transverso que
pode ser associada a uma 4rea (utilizando-se o principio da incerteza), também transversa, que é ocupada por
eles na ordem de ~ 1/Q?.

Uma vez no regime de altas energias, torna-se pos-
sivel obter uma caracterizacdo dos constituintes do
ntcleon a partir da andlise de sua dependéncia com a Y=intxf Saturacdo
variavel x de Bjorken (ou equivalentemente a rapidez @

Y, pois Y =1In1/x) e a virtualidade Q. Na Fig. [3.6]

é possivel perceber como a distribui¢do dos partons

Sistema diluido

no nucleon se altera visto a variacao com x e Q. Con-

forme se aumenta a virtualidade o sistema comeca l
BFKL

a se diluir e esta descricdo é dada pelo conjunto de
equacdes DGLAP (em homenagem aos trabalhos de DELAP

Dokshitzer, Gribov, Lipatov, Altarelli e Parisi) [56-58],

In A2, InQ?

in(fq(x,Qz))_%(qu qu)@(fq(Qz,x))‘

0Q? fe(x, Qz) 2n fe (Qz, X) Figura 3.6: A caracterizacdo do estado do nticleon muda de-

(3.1.19) pendendo da varidvel que se analisa. Se for levado em conta
a evolucdo em relacdo a x teremos um sistema saturado com
a sua evolucao descrita pela equagdo BFKL. Por outro lado,
desdobramento e as fi(x)’s sdo as PDF’s. Na ordem  analisando apenas o aumento da virtualidade Q? tem-se um

principal, as funcdes de desdobramento que podem  sistema mais diluido descrito pelas equagoes DGLAP. Figura
adaptada de [55].

qu ng

Nessa equacdo, Pyq, Pgg, Pgq € Pgg 580 as fungoes de

ser obtidas sao listadas abaixo:

3
Pgq(2) = Cp |(1+2%) 1 ++z6(1—z) : (3.1.20)
Pgg(2) = N[z* +(1-2)%], (3.1.21)
14 (1 - z)?
Pgq(2) = CFT, (3.1.22)
e

z 1-2 llNc—ZNf

Pgg(z) =2N, +—+z(1-2)|+ ——56(1 - 2), (3.1.23)

(1-2z]+

sendo nestas expressoes N, o ntimero de sabores de quarks e z= Q?/(2p; - q). Qualitativamente, a0 aumentar a
virtualidade, os partons ocupam uma 4rea transversal menor devido a relacdo de proporcionalidade dada por
1/Q? (Fig. [3.6]), de forma que o sistema se dilui.

Agora, a evolucao em relacdo a varidvel x remonta a outro cendrio. A emissao de gltions com pequeno
momentum torna-se cada vez mais favorecida conforme x diminui, ocupando essencialmente a mesma area

transversal. Neste caso, a equacgdo de evolucao em ordem dominante é dada por:

® dk”

fg(xr klz) _fg(x, kz) " fg(xy kZ)
Ic'2

2ok VaraRe)’ o120

0 2. Neas Zf
6(ln1/x)fg(x'k)_ 7 k 0

e é chamada de equacdo BFKL, devido aos trabalhos de Balitsky, Fadin, Kuraev e Lipatov [59,60]. Neste regime,
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a partir de um certo valor de x, o crescimento da populacdo gluénica aumenta a chance de que os gltions
interajam entre si, recombinando-se, e iniciam-se processos em que gg — g, compensando as emissdes do
bremsstrahlung e saturando a densidade de gltions no sistema hadroénico, i.e., o regime de saturagéo.

Uma forma de determinar se o sistema fisico estd em um estado denso ou diluido é dada pelo modelo fisico
fenomenolégico de Golec-Biernat-Wiisthoff (GBW) [61], que consegue delimitar bem o regime de saturacdo a

partir da escala de saturagéo Q?,

Q%(x) = (xo/x)%, (3.1.25)

sendo que, neste trabalho, em geral, foram utilizados xy = 4.2 x 1073 e 1 = 0.248, obtidos a partir dos dados
experimentais de DIS em colisdes ep [62]. Algumas propriedades importantes a citar sobre o modelo GBW
incluem o geometric scaling (gs), no qual as secdes de choque do DIS podem ser expressas em funcao de uma
tnica varidvel, T = k?/ Q2.

O geometric scaling permite estender a aplicacdo do modelo GBW para as colisdes préton-ntcleo. Especifi-
camente, a relagdo entre a secao de choque da interacdo de um f6ton virtual com um niicleo e a drea transversal
do alvo pode ser reescrita como uma funcao dependente da saturagao nuclear:

oV Mt oV P()

= , (3.1.26)
nRY nR%

onde Ry = (1.12A"3 —0.86 A~1/3) fm representa o raio nuclear e A é o ntimero de massa do nticleo. Para realizar
essa equivaléncia, adapta-se a se¢do de choque transversal o9 — 0 4 e a escala de saturagao Q?(Y) — Qf A(Y).

Assim, a escala de saturacdo nuclear Qs 4(Y) pode entdo ser expressa por:

2 RiA : 2
Q5 4(Y) = (R_Z) Q5 (Y), 3.1.27)
A
onde A = 1.27 e R, = 3.56GeV [63]. Essa formulagdo permite ajustar o modelo para levar em conta o efeito
do aumento de densidade de particulas na interacdo com nucleos, resultando em uma escala de saturacao
adaptada ao contexto nuclear. Assim, a propriedade de geometric scaling oferece um meio de extrapolar
previsoes feitas para prétons isolados para interagdes envolvendo nticleos, com a escala de saturacdo nuclear

Qf 4 refletindo o aumento da densidade de gltions em sistemas nucleares.

3.1.2 O Colour Glass Condensate

O modelo que descreve satisfatoriamente o comportamento do QGP nos instantes iniciais da sua geracao é
o Colour Glass Condensate (CGC) [64], que, em traducdo livre, € o modelo do condensado do vidro de cor. Ele
descreve a matéria associada com uma alta densidade de gltions a partir da descricdo da funcao de onda de um
hédron em altas energias.

A Fig. [3.4] ilustra como no regime da fisica de altas energias

ou, equivalentemente, de pequeno-x, a populagdo de glions

/'

cresce indeterminadamente. Contudo, com o aumento da ener-
gia, o tamanho do préton é praticamente constante. Desta forma,
se forem adicionados cada vez mais glions, estas particulas irdo

47 o Aumento da Energia

Figura 3.7: Para um determinado valor de energia
Ej, os gltions preenchem o préton. Para Ep > E;
gliions ainda menores sdo gerados se organizando
nos espacos nao preenchidos anteriormes. Adap-
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preencher todas as regides ‘vazias’ do préton. Se os glions ti-
vessem um tamanho fixo, existiria um valor determinado para
preencher todo o préton; isto ndo se verifica. Por outro lado, se
os novos glions gerados possuirem um tamanho menor, eles
podem ser organizados em regides nao ocupadas, que também
sdo cada vez menores em um processo que pode prosseguir in-
determinadamente (Fig. [3.7]), semelhantemente ao que ocorre
com Aquiles que nunca alcanga a tartaruga em um mundo em
que ndo existem séries convergentes.
A escala de saturacao Q; é inversamente proporcional ao espago ocupado por um gliion, R; = 1/Q;. Desta
forma, se a escala Q; for fixada, s6 poderdo ser organizados um ntmero fixo de gltions, pois toda a regido do
préton esta ocupada em um sistema condensado. Ao serem gerados, cada glion é encorporado na funcdo de

onda que descreve o hadron, de forma que:

\h) =|qqq)+|qqqg)+...+|qqqg..9388g), (3.1.28)

A terminologia vidro esta relacionada com o tempo e a ordem dos campos associados a este estado da
matéria: evoluem muito lentamente se comparadas as escalas de tempo natural. Neste modelo, os gliions
relacionados as altas energias sao descritas por campos cldssicos produzidas por gltions de menor energia ou,
inicialmente, pelos quarks de valéncia, entendidos aqui como o conjunto de quarks que compunham o hadron
em baixas energias.

Este mecanismo faz com que os gltons ‘filhos’, também chamados de wee partons, tenham sua escala
de evolucdo temporal dilatada em relacdo ao glton ‘pai’, de forma que, quanto mais ‘antigo’ for um glion
nesta hierarquia, ele sera percebido pelos demais como um campo cldssico estatico e assim, as diferentes
configuracdes de gltions que contribuem para a funcao de onda hadrénica podem ser entdo tratadas como um
ensemble de campos ndo interagentes. Por fim, a cor diz respeito as particulas que formam o CGC, praticamente
glions, que possuem cor na QCD.

Existe um sistema de coordenadas mais adequado para tratar dos objetos matemdticos no CGC, chamado
de Sistema de Coordenadas do Cone de Luz (Apéndice A). Para isso, é necessdria a realizacdo da quantizacao da
teoria neste sistema de varidveis, onde o valor inicial é considerado igual na superficie temporal do cone de
luz x* = (t+ 2z)/v/2 = 0, tendo como grande vantagem a simplificacio do estado de vicuo, que coincidiré tanto
para teoria interagente, como para teoria livre’ além de fazer com que as fungoes de onda hadronicas possam
ser calculadas como uma expansao dos estados de Fock. Desta forma, o hamiltoniano do cone de luz na QCD,

P pode ser escrito na forma,

Qcp’
- _p-0

PQCD = PQCD + VQCD- (3.1.29)

de forma que cada wee parton numa configuragdo populosa carregue uma fracdo pequena x = k*/P* do

momentum total P* do hadron pai. A partir disso é possivel verificar a caracteristica temporal ex6tica deste

modelo, pois o tempo tipico das reagdes que os envolve os quarks de valéncia, 74, € muito superior aos tempos

das reacoes dos wee pdrtons:
1 2xP*

Twee = F 7 (3.1.30)

YA operacio de boosts no cone de luz quantizado comuta com o hamiltoniano do cone de luz na QCD. Esta propriedade n3o ¢ satisfeita
na operacao usual de boosts, que leva a criacdo de particulas frente a ela.
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2Pt
R — (3.1.31)
€ como, X < 1, tem-se que fyee < fy.

Desta forma, o CGC é uma teoria de campo efetiva baseada na separacao dos graus de liberdade em duas
categorias: fontes de cor "congeladas" e campos de cor dindmicos. Esses dois tipos de graus de liberdade sdo
separados por uma equacao de grupo de renormalizacdo, conhecida como a Equacédo de JIMWLK, que assegura
a independéncia das quantidades fisicas em relacdo ao corte (cutoff), a partir de uma escala A* que define a
divisdo entre as duas categorias.

Os glions rapidos, que atuam como fontes de cor, possuem um momento longitudinal k* > A*, perma-
necendo "congelados"devido a dilatacao temporal de Lorentz, formando uma corrente de cor descrita pela
densidade de carga de cor p,(x~, x1); 0s wee partons com k™ < A* sdo descritos pelos campos de calibre usuais
da QCD, A*. A interacdo entre esses dois tipos de gltions é acoplada de maneira eikonalical, ou seja, os gltions
rédpidos atuam como fontes para os glions lentos. Embora a densidade de cor p, permaneca constante durante
uma colisdo, ela varia de evento para evento, gerando uma distribui¢do probabilistica W, +[p], denominada de
fungdo peso do CGC que codifica todas as correlacoes da densidade de carga de cor no nivel de corte A™.

A rede de cargas que os wee parton se acopla é representada por uma densidade de cor cldssica por unidade

de 4rea transversa p, em uma distribuicdo randémica, de forma que:

(pn)=0; (p*Cer)p”(yr)) = pA6™6@ (xr - yr), (3.1.32)
na qual,
2
A
uA = 25’;57, (3.1.33)
A

é 0 quadrado da carga de cor por unidade de 4rea transversa.

A funcao peso do CGC descreve a distribuicdo estatistica de p e caracteriza as correlacoes da densidade
de carga de cor no sistema. Os observaveis de interesse para um wee parton sao construidos a partir de um
campo cléssico A5 de forma que podem ser denotados por O[A]. Sendo assim, o valor esperado de um destes

observaveis é obtido a partir do cdlculo da média sobre as configuragoes possiveis de p,
(OlADy =[Wy[,0]O[A[p]]dp. (3.1.34)

A evolugdo de Wy+[p] com A* é governada pela equacdo funcional de JIMWLK:

OWp+lpl _
dln(A*t)

6
Hyimwik | p, % Wi+ [p], (3.1.35)
onde H é o Hamiltoniano de JIMWLK, devido os trabalhos de Jalilian-Marian, lancu, McLerran, Weigert,
Leonidov e Kovner. A solugdo dessa equacao é numérica e pode ser expressa por uma integral de caminho ou
pela hierarquia de Balitsky, onde a equacao de Balitsky Kovchegov [66,67] (BK, melhor descrita no Apéndice

C) é uma aproximacao de campo médio dessa evolucdo, aplicavel no limite de um niimero grande de cores,

lo termo "eikonal"origina-se da teoria de ondas e da dptica, especificamente do conceito de aproximacao eikonal, que se refere
ao comportamento de ondas em meios onde a variagao de fase é rapida em comparacdo com a amplitude. A palavra "eikonal"vem
do grego eikon, que significa "imagem"ou "aparéncia". Na fisica de altas energias e no CGC, essa ideia foi adaptada para descrever
interagdes de particulas em cendrios onde uma das componentes se move a uma velocidade extremamente alta. Neste contexto, o termo
"eikondlico"refere-se a uma situacdo onde as particulas "rdpidas"atuam como uma fonte de campo fixo, criando uma espécie de "imagem
congelada"para as particulas "lentas".
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N, — oo.

O modelo de McLerran-Venugopalan [68] (MV) oferece uma condicgao inicial fisica para a evolucao de
JIMWLK, especialmente ttil para estudar distribuicdes de gliions em nicleos. Nesse modelo, a distribuicdo de
carga de cor WAO+ [p] é uma distribuicao Gaussiana em p:

_r 1 (k) pal=k
Wynvlpl =N e Ji g2 Palbpal ), (3.1.36)

sendo .4 um fator de normalizacdo. Contudo, esta hipdtese é inadequada para descrever a evolucdo dos
observaveis para pequeno-x pois ela ndo depende da rapidez, mas, de qualquer forma, essa abordagem permite
tanto a motivacgao tedrica da teoria efetiva quanto estudos fenomenolégicos diretos em colisdes e, no que tange

a aplicacdo do CGC, sera utilizada nesta tese.
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3.2 A GERACAO E AS FASES DO QGP

Esta secdo foca na descricdo dos processos que geram o QGP a partir da colisdo de dois ions pesados e resume
suas diferentes fases até o estagio final, chamado de congelamento, em que o plasma esfria e sdo detectados
os hadrons resultantes do processo. Cada uma dessas fases é descrita por um ntimero diferente de graus de
liberdade, e uma ilustragao das etapas desses estdgios pode ser vista na Fig. [3.8]:

I. Considera-se, aqui, o referencial do centro de massa. Os fons sdo

acelerados até atingir uma velocidade ultra-relativistica (com um fator de

Lorentz da ordem de 100), e é razodvel aproximar que os ions se distribuem l.
de forma esférica. O efeito da contracdo espacial, que se manifesta na dire-
¢do de propagacdo, faz com que a matéria se distribua quase inteiramente

em um disco longitudinal em relacdo a direcao de movimento. A fisica de

saturacao é evidente, e os ions sdo compostos principalmente de gltons, m
com uma fracdo pequena de momenta (x < 1). Este sistema é bem descrito
pelo modelo do Colour Glass Condensate.

I1. A colisdo ocorre, marcando o tempo inicial 7o = 0 fm/c. Os ntcleos se

atravessam quase instantaneamente, mas deixam residuos cujo tamanho

varia dependendo da centralidade da colisdo. Os primeiros processos que i
ocorrem sdo os chamados duros, que envolvem uma grande transferén-
cia de momenta. Esses processos sao responsaveis por criar as condi¢cdes
necessdrias para a geracdo posterior de quarks pesados, mésons vetoriais,
jatos hadronicos e f6tons diretos, particulas que desempenham um papel IV 5
importante no estado final do sistema. ]

I11. A terceira etapa ocorre em aproximadamente 7 = 0.2 fm/c. A maior -~ —
parte dos partons é liberada pela colisao, criando um meio extremamente
denso e fora do equilibrio, cerca de dez vezes mais denso que o nicleo ato- ¢
mico. Nesta fase, os campos de glions dominam o sistema, e as interacoes V. :90 2 % °w °
entre os partons sdo altamente nao-lineares. Este estado é denominado ;ﬁjo; L0 : 033
glasma, uma fase intermedidria entre o estado inicial dos ions colididos e °, 9:? ;J ’%J:
a formacdo do QGP propriamente dito. Rl 4

IV. Esta fase é marcada por efeitos coletivos que indicam que os partons
interagem fortemente, como no fluxo eliptico [70]. Nesta fase, atinge-sea __ _
Figura 3.8: Representacdo das fases
termalizagdo do sistema em um tempo impressionantemente curto: 7 =1 do QGP. Imagem adaptada de [69].
fm/c. Teorias quanticas de campos nao sdo capazes de explicar um tempo
tao curto, que € obtido a partir da teoria dos fen6menos de transporte, mais precisamente, da hidrodinadmica
relativistica.

V. A matéria do plasma continua a se expandir e esfriar, hadronizando ao atingir temperaturas abaixo do
valor critico, em aproximadamente 7 = 10 fm/c. O meio hadrénico resultante ainda é relativamente denso, e a
troca de energia entre os constituintes mantém um equilibrio térmico. Nesta etapa, em cerca de 7 = 20 fm/c,
o sistema consiste em um gas de hadrons quente e denso. Quando os processos ineldsticos, que convertem
hadrons de uma espécie em outras, cessam, as abundancias hadronicas se estabilizam, e o sistema passa pelo

congelamento quimico (chemical freeze-ouf). Em seguida, ocorre o congelamento térmico (thermal freeze-oust),
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estdgio em que o momento das particulas do meio nao sofre mais alteracdes, ou seja, quando todas as colisdes
elasticas e ineldsticas cessam. A partir desses pontos, as particulas do meio se tornam livres e se movem

suavemente até os detectores finais.

3.3 ASTEORIAS EFETIVAS DE CADA FASE

Teoria cinética
Hidrodinamica ideal

Hidrodindmica visc.

Dindmica classica

2

CGC

Figura 3.9: Representacao das fases do QGP. Conforme o tempo evolui os graus de liberdade do sistema mudam de forma
que diferentes teorias fisicas se tornam convenientes para tratar cada uma delas. Imagem adaptada de [55].

Como fora discutido anteriormente, o0 QGP possui diferentes fases durante a sua evolu¢do. Algumas das
propriedades que aparecem nas diferentes etapas sdo situagoes de nao equilibrio, efeitos de curto alcance,
ndo-homogeneidade, espago de fase de N corpos, producdo de ressonédncia ou de particulas, dindmica coletiva
e congelamento. Esta gama de caracteristicas pode muito bem ser estudada utilizando fenémenos de transporte.
Dessa forma é possivel utilizar teorias de transporte microscépicas, macroscopicas (hidrodindmica) ou hibridas
a fim de uma descricdo temporal completa do QGP. Sendo assim, as proximas sub-se¢des dedicam-se num
breve resumo das duas principais teorias utilizadas a fim de construir e caracterizar cada etapa do sistema: a
Hidrodindmica Relativistica e a Teoria Cinética, em detrimento do CGC que ja foi exposto anteriormente e é

responsavel pelos estdgios iniciais do QGP.

3.3.1 Hidrodinamica Relativistica

A concepg¢do moderna descreve a hidrodindmica como uma teoria efetiva para baixas energias da teoria
quantica de campos. Este teoria descreve bem as fases intermediarias do QGP. Suas equacoes basicas descrevem

a conservacao de corrente, energia e momentum,

0,T* =0, 8,jt =0, (3.3.1)

sendo jf com i = B, S, Q a corrente conservada e TH¥ é o tensor de energia-momentum. A velocidade de fluxo
local u* e o tensor de rank 2 perpendicular ao fluxo A*¥ = gtV — u# ¥ podem ser utilizados a fim de separar o

tensor THY e as correntes conservadas em componentes tipo-espago e tipo-tempo, fazendo com que:

™ =eulu” — pA* + WU + WYul + 7t
(3.3.2)

o TS v
Jp =niut+ Vo
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Nestas equagoes € = u, TV 1, € a densidade energética, p = p; +11= —%AW TH¥ é soma das pressoes hidrostati-
cas e volumétrica, W* = AL 798 up € a corrente de energia, n; = uy le é a densidade de cargas, Vl.” =Af ji éa
corrente de cargas e 7"V = (T*") é o tensor de stress de cisalhamento. Os brackets na defini¢do do tensor de

stress de cisalhamento indicam a seguinte operacdo matematica,

1
<A,uv> _ E(AgAV +A”AV)— —A’WAaﬁ A28 (3.3.3)

Para simplificar a discussdo de interesse, considera-se agora o caso de uma carga conservada e denota-se
a corrente barionica por j, = jg , entdo, cada termo da corrente e do tensor de energia-momentum pode ser

explicitamente separado entre ideal e dissipativa:

T = T + T4 = [eutu¥ — pgAYig + [-TIARY + WHLY + WY Uk + 1] g, 534
Ju= AN = g+ VP g -
A negligenciacdo dos termos dissipativos configuram a hidrodindmica ideal. Neste caso, as solucdes para
a equacao hidrodinamica [3.3.1] com um dado conjunto de condig¢des iniciais descreve a evolucao espaco-
temporal de seis varidveis, sendo trés delas de estado, €(x), p(x) e n(x). As trés restantes sao as componentes
espaciais da velocidade de fluxo u*. Contudo, as equacdes de conservagdo [3.3.1] compdem apenas 5 equagdes
independentes. A sexta equacao relacionando p e € terd de ser adicionada para que o problema seja resolvido.
Uma boa descricdo é a equacao de estado que provém do célculo termodindmico da QCD em altas temperaturas
com potenciais quimicos baixos [71],
e—3p= T dlnEy

Vdna

sendo T a temperatura, V a pressdo, = a grande funcdo de particdo canonica e a é o espagamento na rede”

(3.3.5)

partir desta funcdo de estado ainda é possivel realizar a descricao da matéria fortemente interagente abaixo da
temperatura de desconfinamento T, onde todas as quantidades termodindmicas sdo bem descritas por um gés
de ressonancia hadronica primeiramente proposto por Hagedorn [72],

(m" )BKl (%) (3.3.6)

k+1
€e-3p= Z T* dlz Z( nl)

mM;<Mmax T
sendo Kj (km;/T) é a funcao modificada de Bessel, tendo espécies de diferentes particulas com massa m;, fator
de degenerescéncia d;, n; = +1 com +1 para férmions e —1 para bésons. A soma é realizada para todas as
particulas até a massa de ressonancia mmax = 2,5GeV.

Na literatura é possivel encontrar duas definicées de fluxo; uma relacionada ao fluxo de energia devida a

Landau [73] e outra proposta por Eckart [74] que refere-se ao fluxo de carga conservada. Respectivamente,

**Utilizando célculos no modelo da lattice-QCD, uma abordagem néo-perturbativa a cromodinamica. Consiste numa teoria de calibre
na forma discretizada, onde os pontos do espago-tempo correspondem aos pontos de uma rede 4-dimensional finita.
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H_ Tfuz _ 1 MoV
up T Tpyuy 3.3.7)
jV

Up = ——
i

Na defini¢ao Landau tem-se WY = 0, enquanto na Eckart. V¥ = 0. Se for tratada a hidrodinamica ideal as duas
definicoes se tornam equivalentes. Particularmente, na colisdo de ions pesados descreve-se a evolucao da
matéria em uma regido com nimero de decomposicdo bariénica nula, j = 0, como nas regides de rapidez
média no LHC e no topo energético do RHIC, fazendo com que a defini¢dao de Landau seja mais apropriada no
caso de interesse.

Agora, para resolver as equacgdes hidrodinamicas sem descontar os termos dissipativos é usual a introducdo
de duas definic6es fenomenoldgicas, também chamadas de equacdes constitutivas, para o tensor de stress e a

pressdo volumétrica [75],

v =2n(vtu’),
I=-{0,u! =-{V,ut.

(3.3.8)

Os novos coeficientes 77 e { sdao chamados de viscosidade de arrasto e de volume, respectivamente.
Para o fluxo de Bjorken invariante sobre boosts [76], com uma velocidade na dire¢ao z, v, tem-se,

Hot z
po_ X _ 1 Z
Up; = " . (1,0,0, t)’ (3.3.9)

sendo T o tempo proprio. Com esta definicao é possivel encontrar a equacao de movimento [77],

3tTs 1Ts

d 4 1
ae _ _€*Pps (1 n (), (3.3.10)
ar T

s é a densidade de entropia. Se forem desconsiderados os dois termos a esquerda, obtém-se a solucao de
Bjorken para a hidrodinamica ideal [76]. Estes dois tltimos termos descrevem a compressao da densidade de
energia devido as corregdes viscosas. A primeira esta relacionada com a viscosidade de arrasto, /s. Agora, (/s
reflete uma propriedade intrinseca aos fluidos.

A hidrodinamica garante uma descricdo efetiva de um sistema que estd em equilibrio térmico local e
pode ser derivada da descrigao cinética feita a partir de expansdes em séries da 4-corrente entrépica S* = sut
em gradientes das varidveis termodinamicas locais. Os gradientes de ordem zero refletem a hidrodinamica
ideal, fazendo com que os termos de maior ordem correspondam as grandezas dissipativas que aparecem por
causa dos processos termodinamicos irreversiveis no fluido, como por exemplo, a energia de friccao dissipada
entre dois elementos do fluido em movimento relativo. Desta forma, a equacao de Navier-Stokes [3.3.8], que
conta apenas com dependéncias lineares do gradiente de velocidade, resulta em alguns problemas: O fluxo
termodindmico em 7Y ou IT que é uma funcdo puramente local do gradiente de velocidade desaparece ou se
manifesta instantaneamente acarretando influéncias nao causais, ocasionando instabilidades numéricas.

Para resolver este problema, deve-se levar em consideracao a inclusdo de termos de segunda ordem nos
gradientes na implementacdo de um fluido relativistico dissipativo, obtendo-se equagdes do tipo de relaxacao

para 7# e II com tempos de relaxacdo macroscopicos 7, = 2na e 1y = {B. Qualitativamente estes tempos
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refletem a diferenca de duragéo entre a manifestacao de gradientes termodinamicos que conduzem o sistema
para fora do equilibrio local e a consolidacao de fluxos dissipativos em resposta a estes gradientes, restaurando

a causalidade.

3.3.2 Teoria Cinética

A teoria cinética se encaixa bem nos estdgios finais do plasma, quando o sistema estd mais diluido e comeca a
hadroniza¢ao rumo ao congelamento e por fim a detec¢do da multiplicidade de particulas finais. Este modelo
leva em conta uma ampla gama de possibilidades de interacao entre as particulas, podendo ser tanto eldsticas
como ineldasticas.

As quantidades relevantes para a teoria cinética é a descricao a partir de densidades de particulas no
espaco de fase, que deve ser calculado para cada espécie de particula embebida no QGP. Essa quantidade é
adimensional e mede o niimero de particulas de um dado tipo por unidade de espaco de fase dividida pelo
namero de escolhas para cada grau de liberdade discreto possivel. Tomando o caso dos glions, que dominam

os estdgios iniciais do QGP tem-se a densidade f,

1 dNg
2(N2-1) d3xd®p’

f= (3.3.11)

Neste caso, 2(N? — 1) é o fator de degenerescéncia para os gltions, de modo que f(j, X, t)d°xd> p representa o
ndmero médio de glions dentro do volume d°x em torno do ponto ¥ com um momento entre j e p +d> p no
tempo t. A evolucdo no tempo da distribuicdo de um dado conjunto de particulas acontece através da equagao
de Boltzmann [78],

0 .
57 eV FextVp | £G5B, 0) = CIf ). (3.3.12)

Nesta equacao, f € a densidade no espaco de fase de um dado tipo de particulano QGP, U, = p/E), é a velocidade

dos glions e F,,; é uma forca externa genérica.

3.3.3 Alguns Resultados das Teorias Efetivas

A multiplicidade de particulas no estado final da colisdo é um ponto chave nas fases em que 0s processos se
deram, gerando uma miriade de complexidades que variam de jatos hadrénicos aos quarks pesados. Nesta breve
sub-secao, foca-se principalmente nos sucessos obtidos das fases intermediarias descritas pela hidrodinamica
que inspiram mais confiabilidade por ter o poder de prever resultados desde os primeiros experimentos no
RHIC ao LHC.

Na descricao inicial do estado de interacdao hadrénica ou nuclear do tipo (A + B) o comprimento de onda
de de Broglie do ntcleo incidente é muito menor que as distancias intra-nucleares do ntcleo alvo. Para cada
nicleon incidente, as posi¢oes dos nticleons do alvo parecem congeladas no tempo. Apds cada colisdo nticleon-
ntcleon (NN), seja ineldstica ou eléstica, ambos os nicleons participantes adquirem um momentum transverso
a dire¢do da incidéncia, que na maioria dos casos é muito pequeno se comparado com a componente longitu-
dinal da mesma grandeza, fazendo com que o os momenta antes e depois da colisdo seja aproximadamente
0 mesmo p, = p,. Agora, altas energias de incidéncia junto de pequenos angulos de espalhamento indicam
uma interacao dominada por um grande momentum orbital ¢. Neste caso, é conveniente realizar modifica-

¢Oes na expansdo de ondas parciais da amplitude de espalhamento introduzindo um parametro de impacto
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b= (1+¢)/p. Nestas circunstancias entre em cena o modelo que utiliza de aproximacdes semi-cldssicas pro-

posto por Glauber [79], que trata a colisdo nuclear como miiltipla das NN-interacoes [80]. Os niicleons que

sofreram pelo menos uma das NN colisdes é chamado de participante, e os que nao sentiram nenhuma sao

os espectadores. O numero total de espectadores e participantes segue a regra Nes + N, = A+ B. Além disso, é

valida a restri¢do sob o nimero de colisdes N,,;, que deve condizer com a desigualdade, N¢o; < Np/2.
Experimentalmente é medido o nimero de particulas

carregadas N.j, e, grosso modo, os ingredientes do modelo

12 10 8 6 4 2 0 <b ({fm)>
—T T

podem ser arranjados na forma, E
F 50 100 150 200 250 300 350 <N&>

dN,p,
as

o (N = Negp) < b— . (3:3.13) L Jsl<t

Neste diagrama a derivada na esquerda é o observével expe-
rimental, chamada de multiplicidadeﬁ, que acaba sendo
proporcional ao nimero de participantes ou de colisdes 10
segundo o modelo de Glauber. O parametro de impacto b

i : ]
L 50 70 80 90

95
1 | 1 | | 1 u.:"um( I(%)\\
0

a determinacdo da centralidade § da colisao (Fig. [3.10]). foo. Bo e e r?n?fu

é estabelecido a partir de simulacdes onde a finalidade é

Agora, uma das previsoes mais bem estabelecidas do

comportamento coletivo da matéria criada na colisdao de Figura 3.10: A definicio da centralidade da multipli-

ions ultra relativisticos ocorre nas colisdes ndo-centrais. cidade de particulas carregadas no estado final N, e
a sua correlacdo com o parametro de impacto médio

(b) e o nimero médio de ntcleos participantes (Np).
gradientes de pressao da anisotropia espacial da densidade  magem adaptada da referéncia [81].

devido a evolugdes transversais que ocorrem devido os

inicial (Fig. [3.11]) [82]. Esta anisotropia é quantificada

pelos coeficientes de Fourier [83],

vy = (cos[n(p—¥pl), (3.3.14)

com ¢ representando o angulo azimutal da particula, ¥, o 4ngulo simétrico do plano do estado inicial e n
é a ordem do harmonico. No caso de interesse, uma colisao ndo-central de ions pesados, o eixo do feixe e o
parametro de impacto definem o plano de reagdo azimutal W rp. Para um nicleo com uma distribuicdo suave
de matéria, o plano simétrico é o plano de reacao, ¥, = ¥xp, fazendo com que os coeficientes de Fourier
impares sejam nulos por simetria.

Contudo, as flutuagdes na distribuicdo de matéria faz com que o plano de simetria varie evento por evento
em torno do plano de reacdo. Este plano é determinado pelos nticleons participantes e é justamente chamado
de plano participante ¥pp [85]. Como os planos de simetria ¥, ndo sao medidos experimentalmente, os
coeficientes do fluxo anisotrépico sdo estimados a partir de correlacdes medidas entre as particulas observadas
[86] como na Fig. [3.12], em que o termo dominante v, é expresso em funcao de vdrias energias do centro de
massa do colisor em questao (esquerda) e a para diferentes valores dos momenta transverso para particulas
carregadas.

A partir deste panorama os resultados envolvendo os cédlculos da hidrodindmica tomam espacgo pela

capacidade em prever uma viscosidade ndo nula por unidade de entropia n/ s (Fig. [3.13]) relativamente baixa.

tTNzo se confunde com o conceito de multiplicidade Q desenvolvido no estudo da entropia, embora este observavel também seja
utilizado para estimar a entropia nas colisoes.
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Figura 3.11: Um colisdo ndo-central de dois nicleons geram uma regiao de interacao (a) onde a anisotropia espacial da
regido gerada ocasiona gradientes de pressao no plano transverso (b). Este processo gera no final uma anisotropia de
momentum nas particulas geradas. Figura reproduzida da referéncia [84].
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Figura 3.12: (Esquerda) Resultados dos dados do coeficiente v, em respeito a energia do feixe (esquerda), reproduzido da
referéncia [87]. (Direita) Fluxo eliptico em fun¢do dos momenta transverso para particulas carregadas. Reproduzido da
referéncia [86]

Estes resultados podem ainda ser comparados com os que dizem respeito a trabalhos envolvendo teorias de
campos conformais'’ (que nio é o caso da QCD). Nestas teorias a variacao da acio do sistema em respeito
amétrica adjacente € proporcional ao tensor de stress e uma variacdao na métrica serd proporcional ao traco
do tensor. Como consequéncia o trago do tensor de stress deve ser nulo e isto nem sempre ocorre, por isso o
fendmeno é chamado de anomalia conformal ou de anomalia de traco. Dessa forma, nesta teoria, 1/ s deveria
ser a priori 0, mas a anomalia de trago considerando matéria gludnica para termos de ordem /s =6 (0,1 —-1)
para célculos numa teoria de calibre com o grupo SU(3) narede obtém um valor de /s = 1/4m [88] concordando
com os resultados das simulacées da Fig. [3.13].

Ao examinar a expressao [3.3.10], observa-se que a teoria também é capaz de prever o tempo préprio,
que, nas fases de geracdo do fluxo, corresponde ao tempo de termalizagdo do sistema, T7. O valor obtido é
71 = 1fm/c [7], isto é, na geracao do plasma e do fluxo, o sistema é capaz de se organizar e termalizar em um
curto periodo. Contudo, se for utilizada alguma teoria que leve em conta os efeitos microscépicos do sistema,
como a QCD, nao é possivel predizer um tempo tdo curto, sendo ainda um escopo de estudo em aberto a

respeito do QGP. Fisicamente, este curto tempo de termalizacdo estd relacionado com uma criagdo de entropia

HTeoria quantica de campos que é invariante a uma transformacao conformal, que pode ser cldssica ou quantica. Esta transformacao
é realizada numa métrica arbitraria que é covariante com uma transformacao de Weyl (g, — e~ 20(Xmu) gap)- No caso quantico esta
invariancia inaltera a fung¢ao de parti¢do = do sistema.
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Figura 3.13: Dados modelados por simula¢des hidrodinamicas com valores de n/s numa faixa de [0,08-0,2]. Os dados
representados por pontos pretos sao resultados experimentas. Resultados de [89].

abrupta nos estégios iniciais das colisdes, sendo o principal objetivo deste trabalho determinar como essa
entropia é gerada. A partir de agora, serdo apresentados modelos que buscam cumprir este objetivo, sendo o

primeiro deles a ser abordado a entropia dindmica dos estados densos da QCD.

3.4 A ENTROPIA DINAMICA NA QCD

Agora serd apresentada a primeira nocao de entropia estudada neste trabalho, relacionada aos estados densos
da QCD. Esses estados podem ocorrer em diferentes contextos fisicos, mas, em geral, implicam em uma
concentracao elevada de glions e outros partons nos estagios iniciais de uma colisdo. Para uma descricao
adequada, o meio hadrdénico é bem explicado pelo CGC, caracterizado pela fisica de saturacdo em uma
configuracdo densa. Esta descricao também pode ser utilizada para colisdes p A no regime de altas energias.
Desta forma, estes estados podem ser descritos teoricamente na QCD em um regime de fraco acoplamento por
meio de uma evolug¢do nao linear da energia onde as condicdes iniciais sdo descritas por um estado denso.

A evolugao da QCD ocorre em relagdo a rapidez, Y, que, com o seu crescimento, aumenta a densidade
de partons até que o regime de saturagdo, delimitado por Q;, seja atingido, resultando em um CGC. Sendo

Y = —Inx, a escala de saturacgao, descrita na Eq. [3.1.25], pode ser escrita como:
Q2(Y) = (xo/ )" = x} e, (3.4.1)

Assim, o estado CGC é caracterizado, entre outras propriedades, por um tamanho transversal limite Rs ~ 1/Qj.
Portanto, o tamanho R do parton diminui conforme a rapidez aumenta. Assim, com o aumento da energia,
a densidade partonica se torna alta o suficiente para que ocorram reacoes de recombinacao envolvendo os
glions e instaurando o regime de saturacao.

Nesta situacdo, propriedades como o geometric scaling sdo determinantes, fazendo com que as Distribuicoes
de Glions ndo Integradas (Unintegrated Gluon Distributions, UGD’s), ¢(k, Y), se tornem fun¢des de uma tinica

varidvel T = k?/Q? = k?Ry, sendo k? 0 médulo quadrado do momentum transverso portado pelos gltions, assim:

ok, Y)d?*k ~ p(1)R2d* k. (3.4.2)
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Inicialmente, um estado pode ser associado a um valor de rapidez Y7, que, devido a evolucao na rapidez no
regime denso, acarretard em um novo valor Y. Essa evolu¢do descreve como o sistema aumenta sua densidade
de partons, formando um meio denso de glions no CGC. Desta forma, o valor inicial, Y;, deve corresponder
aum estado que ja possa ser descrito pela fisica de saturacao e, para isso, neste trabalho foi utilizado Y = 4.6
(x = 1072). Essa transicdo para um regime de maior densidade implica um comportamento em que os gltions se
ramificam e se recombinam a taxas que se equilibram, caracterizando o estado de saturacdo. A variacdo de
rapidez representa um pardmetro dindmico que altera a energia do sistema. Embora seja um processo fora do
equilibrio, ele gera um estado de saturacdo estdvel, permitindo que o sistema evolua para um meio CGC mais
denso a medida que a energia aumenta com a rapidez.

Na Mecanica Estatistica de ndo Equilibrio, utilizando a identidade de Hatano-Sasa (Sub-secdo [2.7.2]), uma
distribuicao de estados estaciondrios, P(z; 1), pode ser utilizada para descrever a probabilidade de encontrar o
sistema em uma configuracao especifica no espago de fase z para um dado valor do parametro dindmico A.
A transicado de 1; para A, representa uma mudanca no parametro dindmico ao longo do tempo, resultando
em uma nova configuracdo de equilibrio, P»(z;1,). Na fisica de altas energias, considerando as seguintes

comparacgoes:
B Avariavel do espaco de fase z corresponde ao momento transversal dos partons k;
B Avaridvel dindmica A corresponde a rapidez Y;
B Adistribuicdo dos estados estaciondrios P(z; 1) corresponde a P(k, Y).

Desta forma, € possivel definir uma distribuicao de probabilidades para o momentum transverso dos glions
P(k,Y) entre k? e k? + d?k escrita em termos das UGD’s e dada por,

Pk, Y) 2

Pk, Y)d* k= ——————d°k. 3.4.3
k= Tk v azk (3.4.3)

Esta definicdo estd sujeita a condicdo de normalizacao,
fp(k, Y)dzszP(r)dr =1. (3.4.4)

Utilizando a identidade de Hatano-Sasa (Eq. [2.7.4]), se tem:

{ I CIT N
€X] = { €X] -
P n AP fy P(k,Y)

sz(lc, Wd’k=1.

® A ey
- —InP(k,Y)dY
fyldyn( )

_n RtkYp) 2
> = f Pk, Yo)e = PEYD d%f
r (3.4.5)

Nesta equacdo, {...) y, representa uma média calculada sobre a distribuicdo de probabilidades no estado Y> e
0 termo | }:2 % InP(k,Y)dY refere-se a variacdo no logaritmo da distribui¢do de probabilidades ao longo do
intervalo de rapidez de Y; a Y». Agora, utilizando argumentos da mecanica estatistica, o aumento da rapidez
Y que faz com que o tamanho R;(Y) diminua, i.e., Rs(Y1) > Rs(Y>), para Y» > Y1, pode ser interpretado como
uma compressao. Esta compressao altera a distribuicao de probabilidade dos partons, P(k, Y), de maneira a
compatibilizar esta distribuicao com a identidade de Hatano-Sasa.

Utilizando estes conceitos, € possivel a definicao da entropia dindmica da QCD [21], sh=Y2 hum meio

descrito pelo CGC com uma rapidez Y, provinda da evolucao QCD de Y; — Y». A entropia dindmica é definida
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como,
Pk, Y,)

Pk, |

$¥i—Ys :<1nP (’C’Yz)> - f & kP(k, V) In (3.4.6)
Y2

P(k, Y1)

Esta grandeza mede a quantidade de desordem criada no meio CGC devido a evolucdo de rapidez. Percebe-se
que ela é matematicamente equivalente a informacao mutua (Eq. [2.6.1]), de forma que transformacdes de
varidveis envolvendo o geometric scaling T = k*/Q? ndo irdo alterar o valor da entropia dinamica. Desta forma,
agora serdo dispostas algumas das caracteristicas da entropia dindmica da QCD, em especial, sua positividade,
relacdo do geometric scaling em termos da Mecanica Estatistica de ndo Equilibrio e a entropia dindmica de um
estado CGC.

3.4.1 Positividade da Entropia Dindmica da QCD

Inicialmente, considera-se a Desigualdade de Jensen, que é um resultado fundamental que se aplica a fungoes
convexas. Em termos simples, ela afirma que para uma func¢ado convexa e uma varidvel aleatéria X, a média da

funcao é sempre maior ou igual a funcdo da média, isto é:
eX < (). (3.4.7)

Desta desigualdade, se tem:
Ine® <in(eX), . (X)<In(eX). (3.4.8)

Utilizando X = —InP(k, Y2)/P(k, Y1), é possivel relacionar este resultado com a entropia dindmica, pois:

P(k,Yp)
ZY]—'YZ — <ln P(k; YZ) > > —ln<e_ln[P(k'Y%) > ,
Y Y2

P(k, Y1)
Pk, Y1)

-1 fdsz(k Y;)=0 (3.4.9)
Pk, Y2 =

= —lnfdsz(k, Y,)
1

Isto, para todo Y» < Y3, de forma que a condigdo de positividade é obtida para qualquer aumento de rapidez.

3.4.2 Geometric scaling em Termos da Termodinamica de Nao-Equilibrio

Considerando, 7,, = k?/ Q?(Yn) eR, = R?(Yn), a Eq. [3.4.5] vai ser escrita em termos da variavel de escala 7. Para
isso, utilizando a condi¢do de normalizacdo da Eq. [3.4.3]:
ok, Y) p@)R?  R?

PEN= To0ndt ~ Tommrar  x ' G410

Nesta equagdo foi utilizada a substituigdo de varidveis dt = dk2kR?. Agora, avaliando a identidade de Hatano-
Sasana QCD (Eq. [3.4.5]) em termos da varidvel de escala t:

(e ), (o

2
R

P(1,)R? -1
(r2) Ry > :fdsz(k,Yg)e YE g TR 3.4.11)
) ~— — —

P(11)R?

P(k,Y>)

1
P 1)

—In

1
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< exp

Esta equacao pode ser relacionada com a identidade de Jarzinsky (Eq. [2.7.2]). Esta identidade conecta a

Ou seja:
P(t2)R5

—ln—=
P(t))R?

R2
-In—%
=e R (3.4.12)
Y2

distribuicdo estocdstica dos trabalhos termodindmicos no processo A — B ao balanco de energia livre AF
entre dois estados de equilibrio A — C. Uma caracteristica interessante é que a quantidade de trabalho
dissipativo Wp;s = W — AF, realizada durante o processo A — B, é entao relacionada a producao de entropia
AS = (W)T_AF =0, caso o estado B consiga relaxar para a temperatura T, mantendo o parametro de condugdo
constante.

. . . ~ R2
Ao comparar a identidade de Jarzinsky com a Eq. [3.4.12], percebe-se que a expressao In R—% corresponde ao
1

logaritmo da razdo do espaco de fase disponivel para as dimensoes Rg em relacdo a Rf. Esse termo representa a
mudanca na energia livre de uma particula de um gés ideal contido em uma "caixa"bidimensional quando seu
tamanho é reduzido de R; para R» < R;. Assim, uma interpretacao termodinadmica da relagao da QCD obtida
na Eq. [3.4.12] é que a modificacdo da rapidez total Y7 — Y» induz uma modifica¢do no conjunto de estados
do CGC com um tamanho de saturagao reduzido R», resultando em uma entropia eventualmente gerada pela
posterior relaxacao.

Esta andlise leva as seguintes comparacgdes heuristicas entre as varidveis da entropia dindmica e as varidveis

termodinamicas:

P(t)R; W
"PapR T
R: AF
R T
P(k,Y;) W-AF _ Wpy
PkYy)y T T

P(k,Y1)>
Sviny, ={(In—— — AS.
h-to <nP(k,Yz) .

’

In

’

(3.4.13)
In

onde AS, no contexto termodindmico, é a producdo de entropia (pelos graus de liberdade dos gltions) devida a
compressao Ry — R, quando o sistema relaxa para um estado a mesma temperatura T inicial, mas dentro do

dominio restrito de tamanho R,.

3.4.3 Entropia Dindmica de um Estado CGC

Considerando a evolucdo Y; — Y2 e R; — Ry, a adicdo das contribuicoes individuais no célculo da densidade de
entropia dindmica dS/dy para um estado final CGC serd a soma sobre todos os graus de liberdade, chamado
de multiplicidade de cor N? — 1 e o nimero de ocupagéo dos glions no espago de coordenadas longitudinal
~ 1/4nN.a;. Para os graus de liberdade transversais, é preciso tomar conta do ntimero médio de "células
transversas"RZT/ Rg com uma rapidez inicial Y7, sendo Rt o tamanho do alvo hadrénico e o nimero médio de

graus de liberdade dos glions dentro de uma célula p. Desta forma, obtém-se a expressao,

2
as_ Cr By V=Y,
dy 2mag R?

(3.4.149)
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Neste estudo, desconsideram-se os fatores de correcdo devido aos efeitos das correlacdes gludnicas, conside-
rando a aproximacdo com o gés ideal.

Quanto ao nimero médio de graus de liberdade dos gltions, p, é possivel utilizar modelos gaussianos para a
UGD no CGC, como o da referéncia [61], para obter a dS/dy e comparar o resultado com a expressdo (25) obtida
no trabalho [90], em que a saturacao relacionada a esta UGD permite a introdu¢ao da entropia termodindmica
com Q?(Y) =2nT. A partir dessa relagdo, o nimero médio de graus de liberdade gluonicos é identificado como

U= 37”, sendo este o valor a ser utilizado nesta tese.
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Capitulo 4

Entropia de Emaranhamento

Neste capitulo, serd abordada a producdo de entropia devido ao fen6meno do emaranhamento quantico. Para
compreender como esse fendmeno estd relacionado a criacdo de entropia na fisica de altas energias, ele serd
brevemente introduzido, com énfase em suas principais caracteristicas.

Na sequéncia, a entropia de emaranhamento serd definida, assim como um conjunto de estratégias que
podem ser utilizadas para sua obtencdo. Por fim, serdo apresentados os célculos de entropia de emaranhamento
em trés situacdes envolvendo a fisica de altas energias: (1) emaranhamento entre as regides espaciais medidas
e ndo medidas em um DIS; (2) emaranhamento entre particulas incidentes e espalhadas em colisoes elasticas; e

(3) emaranhamento entre quarks de valéncia e wee partons no CGC.

4.1 EMARANHAMENTO QUANTICO

Em 1935, A. Einstein, B. Podolski e N. Rosen publicaram um artigo contestando a completude da Mecéanica
Quantica [91]. Nesta publicagao, os fisicos propuseram um experimento mental chamado paradoxo EPR, que
tinha como principal objetivo provar que a tnica interpretacao sustentdvel no universo quantico é a realista’
em contraste total com a escola de Copenhague'.

David Bohm prop6s uma simplificacao do paradoxo EPR, que se foca no processo de medicao do spin de

uma particula. Nesta formulacao, é considerado o decaimento do méson pi em um elétron e em um poésitron,

' —e +et
Se o pion estd em repouso, o elétron e o positron se movem em dire¢des opostas, devido a conservacao do
momentum linear. Além disso, o pion tem spin 0, de forma que a conservacao do momentum angular exige que
o pésitron e o elétron estejam na configuracdo singleto.
Sendo assim, se o elétron possuir spin para cima, o pésitron possui spin para baixo, e vice-versa. O corpo

tedrico da mecénica quantica é incapaz de prever qual combinacao é obtida em uma medicdo; ele apenas

*Nesta interpretacdo, a medida em um sistema quéntico reflete o estado fisico do sistema exatamente antes de sua realizacdo. Se esta
interpretacao for correta, entao a mecanica quantica é uma teoria incompleta, pois ‘falha’ na determinacao da medida, uma vez que a
teoria prevé apenas probabilidades.

TTambém chamada de interpretagdo ortodoxa. Nela, afirma-se que, antes da medida, o sistema fisico nao estava em nenhum estado
definido, mas sim em uma superposicdo de estados. O ato de medir faz o sistema ‘optar’ entre este ou aquele estado superposto, isto &,
‘forca’ a natureza a decidir o estado.

63



Capitulo 4. Entropia de Emaranhamento

prevé que, na média, se tem metade de cada caso. Nesse experimento, a distdncia que as particulas percorrem
é arbitrdaria, ou seja, ao medir o spin do elétron, para cima, por exemplo, determina-se o spin do poésitron,
para baixo, via conservacdo do momentum angular, sem inferir a esta segunda particula nenhum processo de
medicdo, esteja ela a metros ou a anos-luz de distancia.

Agora, o argumento da escola realista com esse experimento é de que o elétron realmente possuia spin
para cima (e para baixo no caso do pésitron), no momento em que foram criados, e a interpretacao ortodoxa
desse problema teria um custo: para que a conservacao do momentum angular fosse respeitada, o colapso da
funcdo de onda, pelo experimentador que realizou a medi¢do do spin do elétron, deveria se mover com uma
velocidade maior do que a da luz, o que Bohm chamou mais tarde de ndo localidade. Uma vez que a teoria
quantica ndo preveé o resultado de uma medicdo com precisdo e a localidade ndo era verificada, os autores do
experimento EPR afirmavam que a mecanica quantica, na sua forma atual, era incompleta.

A mecénica cldssica também assume alguns aspectos estatisticos bem comportados. Por exemplo, ao lancar
ao ar uma moeda nao viciada, tem-se igual probabilidade de obter cara ou coroa; entretanto, sabendo a forca
aplicada na moeda, a aceleracao da gravidade no local, a viscosidade do ar, a altura em que se encontra a moeda
e a temperatura do ar, entre outras varidveis, é possivel determinar com precisao a face revelada pela moeda ao
tocar o chao. O andlogo dessas varidveis extras, no regime quantico, é chamado de varidveis ocultas.

O decaimento analisado neste experimento é o mais tradicional exemplo de um fen6meno puramente
quantico, o emaranhamento [92], que ocorre entre o elétron e o pésitron. Ele consiste na descricdo de um
sistema quantico composto por duas ou mais particulas, em que a caracterizacao definida de um de seus entes
revela a dos demais de forma inseparavel e independentemente da distancia que os separa, justamente como
ocorre no paradoxo EPR. Atualmente, o fendmeno é a chave por trds de pesquisas relacionadas a criptografia

baseada nas desigualdades de Bell [92-94], teletransporte [95], entre outras aplicacoes.

4.1.1 A Caracterizacdao do Emaranhamento a Partir da Funcao de Estado

O emaranhamento quantico é uma caracteristica prépria de sistemas compostos. Desta forma, para que exista
emaranhamento, deve existir uma divisao do sistema total em, no minimo, dois subsistemas. Ou seja, o0 espaco
de Hilbert total .77 também podera ser subdividido. No caso mais simples, em que a subdivisao se d4 em dois
subespacos, o estado composto total |u/> € S poderad ser representado em relagao ao conjunto dos autovetores
dos subespagos A e B, com |a;) € 7 e |b;) € 75, de forma que o espaco total é 7 = 74 ® 73. Assim, o estado

fisico |w) de um sistema composto pode ser escrito como:

ly) =3 cicla ®lby), (4.1.1)
ik

Um estado fisico W’> em J7 = ¢4 ® 73 é chamado de separdvel quando pode ser escrito como o produto
direto dos estados dos subsistemas A e B. Em outras palavras, |1//> é separavel se existem estados |qb AYE Sy e
|p5) € A4 tais que:

|w>:|¢A>®|¢B>:Zai|ai>®§,ﬁk|bk>~ 4.1.2)
1

Aqui, os coeficientes c¢;; podem ser fatorados como c;x = @; Bk, onde @; e B sdo as amplitudes associadas aos

estados |a;) e |by), respectivamente. Por exemplo, considerando o seguinte estado fisico:

1 1
— a1 +—=laz)|®|b1). (4.1.3)

=175 7
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Neste caso, o estado de A estd em uma superposicao de |a;) e |a,), enquanto o estado de B é fixo em |b;). Os
coeficientes c;j sao:
o \/ié, sei=loui=2ek=1,
Cik = (4.1.4)
0, caso contrario.
Embora o estado de A seja uma superposicao, o estado total ainda é separdvel, pois ndo h4 dependéncia entre
os subsistemas A e B. Desta forma, a composi¢do é uma condi¢do necessdria para o emaranhamento, mas ela
ndo é suficiente.
Para que exista emaranhamento, uma condicdo suficiente e necessaria é que o estado seja ndo separduvel,
também chamado de emaranhado. Neste caso, serd qualquer estado em que a representacdo da Eq. [4.1.2] ndo

se verifique, i.e.:

lw)#) aila) ®) Prlbp). (4.1.5)
i k

Considerando o caso do decaimento do pion discutido no comego desta secdo, a tinica configuracao possivel do
estado fisico do sistema, |u/>, antes de uma medicao é o singleto. Etiquetando com o subscrito A as quantidades

inerentes ao elétron e B para o pésitron, entdo, a Eq. [4.1.1] toma a forma:
lw) = crzlar) @ |b2) + ca1 laz) ® | by) . (4.1.6)

A funcdo de onda tem que estar normalizada, lc1212 + |¢211% = 1. Além disso, realizando a imposicao de que

lc121? = |c211?, tem-se c12 = o1 = £1/v/2, ou seja:

1
[v) =75 Gan) ©1bz) = laz @ 1b1). (4.1.7)

Esta equacao diz que, ap6s o decaimento do pion, ao ser realizada a medida da direcdo do spin do elétron, a
do pésitron é definida instantaneamente, i.e., a medic¢do do estado |a;) € 7 revela a configuragdo do estado
|be) € 73, sem que este tenha sido submetido ao processo de medida.

4.1.2 A Matriz Densidade Reduzida

A matriz densidade de um estado emaranhado p é dada por:

p= Y. cixcjjlan(aj|® by bil, (4.1.8)
i,j,k,1

O método utilizado para extrair a informacao do sistema contida no subespaco .7, a partir da matriz densidade

0, € o trago parcial, realizado em relacdo a base de .73 e que resultard na matriz densidade reduzida p a:
pa=Trplpl =) (brlplby). 4.1.9)
r

Grosso modo, esta operacao é o anédlogo a integracdo em uma varidvel especifica, por exemplo, x, de uma

funcao de duas variaveis p = p(x, ):
o'y =/dxp(x,y). (4.1.10)

Assim, é possivel determinar a matriz densidade reduzida, p4 ou pp, a partir de p4 g = Trp alp].
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De forma geral, a matriz densidade de um estado emaranhado serd dada pela expressao:

pa=trgp=) (bml Y cijcp;lai)(axl®|bj)(blbp)

m ikl >
Im
= ) cijcilai(arl® ) (bp|b;j)6im 4.1.11)
ikl m
= Y cijeglayagl 8.
ikl
Sendo assim:
pa= ). cijeg;lai) (axl. 4.1.12)
i

gk
Desta expressao, sabe-se que |a;) {(ax| € 5¢4; contudo, se o estado estd emaranhado, as constantes c; J'CZ]'

carregam informacao do estado .73 contida no subespaco A.

Por exemplo, a matriz densidade do estado singleto é dada por:

1
o= §(|31)® |b2) (a1l ® (bz| — a1} ® |b2) {az| ® {(b1]

(4.1.13)
—laz) ® |by) (a1 ® (bz| +|az) ® | b1) {az]| ® (b1|)-
Considerando a seguinte representacao:
1 0 1 0
lan=| |, lay=|_|,Ib=| |, Ib2=]|_|. (4.1.14)
0 1 0 1
A matriz densidade do estado singleto é dada por,
0 0 0 0
., _1j0 1 -1 0 4.1.15)
210 -1 1 o o
0 0 0 0
Assim, a matriz densidade reduzida do sub-espaco A é:
. o1
PA:TrB[p]ZEJ]Q- (4.1.16)

Sendo 1, a matriz identidade bidimensional.
Por fim, é possivel utilizar o procedimento de Gram-Schmidt (apéndice B) no estado emaranhado dado pela
Eq. [4.1.1]. A aplicacdo desta técnica permite uma forma matematica mais simples ao custo da realizacao de

uma troca de bases. Isto posto, o estado emaranhado é dado por:
A B
lw) =X ailoi)e|¢;), (4.1.17)
14
com \(p;.“) eye |¢f ) € 3. Assim, é possivel reescrever a matriz densidade total como:

p= Y anan,|dn) (] ©|¢n) (bl (4.1.18)
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A matriz densidade reduzida g 4 serd dada por:

Pa=Trgp=3 (7| X anay|on){dml@lon) (Pnled). (4.1.19)
s n,m ———

6"15

Similarmente as operagdes realizadas na Eq. [4.1.11], a matriz densidade reduzida pode ser expressa como:
A 2| pA\ /1A
pa= D ay|¢n) (bnl- (4.1.20)
n
Além disso, a partir da Eq. [4.1.17], se tem para pp:

pe=Y as|pn)(pn]. 4.1.21)
n

4.2 A ENTROPIA DE EMARANHAMENTO

A Entropia de Emaranhamento é dada por:
SPa)=-Tr[palnpa]. 4.2.1)

Ou seja, é a expressao matemdtica da entropia de von Neumann (Eq. [2.5.14]) em que é utilizada a matriz
densidade reduzida p 4 em detrimento da matriz densidade total §. Desta forma, a entropia de emaranhamento

também pode ser calculada a partir da entropia de Shannon:
S(pn)==2_pnlnpnp. (4.2.2)
n

Nesta equacao, p, = afl, obtido da Eq. [4.1.20].
A entropia de emaranhamento é uma medida dos graus de emaranhamento do sistema. Portanto, quanto
maior for a entropia, mais emaranhado estd o sistema. Desta forma, a entropia de emaranhamento em relacao

ao subestado A, S(p 4), é idéntica a entropia de emaranhamento em relacdo ao subestado B, S(pp):
S(a)=-Tr[palnpal ==Y lasl*Inla,l* = -Tr[pplnpg] = S(Pp). (4.2.3)
n

Isto se d4, pois, como esta entropia mede o grau de emaranhamento entre os dois subsistemas, se for avaliada
em A, ela deve ter o mesmo resultado que em B, uma vez que ela ndo mede caracteristicas internas aos
subconjuntos, mas sim o quanto eles estdo relacionados.

Por exemplo, o estado singleto, com uma matriz densidade reduzida descrita na expressao [4.1.16], tem

uma entropia de emaranhamento tal que:
1 1
S(12/2) = —ETr[]lzlnf]. (4.2.4)

Para calcular a entropia de emaranhamento, geralmente os problemas se resumem em calcular o logaritmo do
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operador. Neste caso, ele tem uma resolucao simples:
1
Inpy=-1 — =-13In2. 4.2.5
Pa 2 n;l o 2 (4.2.5)
Ou seja, a entropia de emaranhamento do estado singleto é dada por:
In2 .
S(1,/2) = > Tr[1,] = 1bit. (4.2.6)
Neste caso, a entropia € méxima, e se diz que o sistema estd maximamente emaranhado. Isto ocorre, pois,

ao se determinar em qual estado o sistema estd em A, automaticamente toda a informacgdo de B serd obtida
(Fig. [4.1]).

|l Ik |

e by |

Figura 4.1: Emaranhamento méaximo no estado singleto. Ao realizar uma medida em A, o observador sabe toda a informacao
de B.

Nem sempre esta relacdo é maxima. Para verificar isso, serd considerado agora o estado emaranhado |W):

L
V3

Este estado estd dividido em trés subconjuntos, de forma que |0) 4,|1) 4 € 534, |0)5,|1) g € HB € |0)¢,|1) ¢ € FC.

(W) = (114100 10> +10) 4 1) g |0)c +10Y 4 10) 5 1)) . (4.2.7)

Fisicamente, ele pode representar o caso em que um quanta é distribuido em um conjunto de trés particulas
idénticas e emaranhadas, onde |1) representa a particula no primeiro nivel excitado e |0) representa a particula
no nivel fundamental.

A matriz densidade reduzida é dada por:
R ! 2
Pa=Tepcp= 5D a(la+ 51004014, (4.2.8)

Calculando a entropia de emaranhamento, percebe-se que ela ndao é maxima:

S(pa) :—(llnl+%lng) =~ (0.92bits. (4.2.9)

3 3 3 3
A Fig. [4.2] auxilia na interpretacdo deste resultado. Para isso, considera-se duas hipéteses: (I.) O observador,
tendo acesso apenas ao subespaco A, mede a energia e encontra o autovalor que corresponde ao estado [1).
Neste caso, ao realizar a medi¢do em A, ele sabe que os subespacos B e C devem estar no estado |0); na hip6tese
(IL.), o observador mede o estado |0) para a particula A. Neste caso, ele ndo sabe dizer em quais estados estdo as
particulas dos subespacos B e C, de forma que elas continuam em um estado de superposicao. Perceba que no

caso do singleto esta ambiguidade néo € verificada.
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10y 11 1D

‘ 11) 10}

—
|t
ey
|t

10) ‘

Figura 4.2: Emaranhamento entre os estados dos subconjuntos A, B e C: (I.) Se em A o estado é |1), automaticamente
sabe-se que em B e C o estado € |0). (IL.) Ao medir |0) em A, nédo é possivel saber a configuracdo de B e C.

Existem algumas estratégias tUteis para calcular a entropia de emaranhamento. A primeira delas é obter
a distribuicao de probabilidades p,, do conjunto emaranhado e entdo utilizar a entropia de Shannon, dada
pela expressio [4.2.2] e vinculada ao emaranhamento a partir de p,, = |a,|2. A segunda estratégia é avaliar a
defini¢do da fung¢do logaritmica, de forma que se tem:

A1 1 A€
lnpA—lg%e(pA 14). (4.2.10)

Na equacao acima, 1, é o operador identidade em um espaco de dimensao d, equivalente a dimensao do

subespago A. Substituindo esta expressdo na definicdo da entropia de emaranhamento:
A : 1 ~l+e
S(pA)=£%E(1—Tr[pA ]). (4.2.11)
A entropia de emaranhamento de Rényi é dada pela expressao:
A 1 AL
Spa) = mlnTr[pA]. (4.2.12)

Em alguns casos, é mais facil obter uma expressdo para a entropia de Rényi. Desta forma, é possivel utilizar o

fato de que esta entropia recai na expressao de von Neumann quando @ — 1. Portanto:

1
1imﬁ1nTr[ﬁ§§] =-Tr[palnpa] =S(pa). (4.2.13)

a—11-—
Sumariamente, nesta tese serdo apresentadas trés estratégias para o cdlculo da entropia de emaranhamento:

B Estratégia I: Obter uma expressao para p, e entao calcular a entropia de emaranhamento de Shannon

dada pela Eq. [4.2.2], sujeita ao vinculo p, = |a,|?, obtido na Eq. [4.1.20];

B Estratégia II: Obter uma expressdo para Tr| ﬁ};e], substituir na Eq. [4.2.11] e entao calcular o limite em
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que € — 0;

B Estratégia III: Encontrar a entropia de emaranhamento de Rényi dada pela expressao [4.2.12] e entdo

calcular o limite em que ¢ — 1 para encontrar a entropia de emaranhamento.

Na sequéncia, estas estratégias serdo utilizadas em trés modelos distintos de entropia de emaranhamento na
fisica de altas energias. A Estratégia I sera utilizada para calcular a entropia de emaranhamento em um DIS
utilizando o Modelo de Kharzeev-Levin (KL) [22]. Na sequéncia, a partir de uma expressao para a entropia de
Rényi, serd obtida a entropia de emaranhamento em colisdes elésticas, confirmando o programa da Estratégia

II. Por fim, serd utilizada a Estratégia III para calcular a entropia de emaranhamento no CGC.

4.3 ENTROPIA DE EMARANHAMENTO NO MODELO KHARZEEV-LEVIN

O Modelo KL [22] considera o emaranhamento quantico em um DIS. Para isso, considera-se duas regioes
espaciais: A, sendo a regido sondada pelo DIS com um espaco de Hilbert .77}, e B, a regido nao sondada. Neste
modelo, os estados fisicos em A estdo emaranhados com os de B. A partir disso, é possivel caracterizar a fungao
de onda emaranhada a partir da Eq. [4.1.17].

No modelo de dipolos, a equacdo de evolucdo do sistema adequada é a BK (Apéndice C), de forma que,
aplicando o programa da Estratégia I, é possivel compatibilizar uma expressao de p, com a Eq. BK. Além disso,
em um DIS, a regido sondada A tem o seu tamanho determinado por uma drea transversa da ordem de ~ 1/Q?.
Segundo a referéncia [96], 0o emaranhamento entre as regides A e B serd estabelecido pela presenca de dipolos

de cor na fronteira entre as duas regides (Fig. [4.3]).

S(x,Q)

1/x

.

1/Q

Figura 4.3: Regioes sondadas em um DIS e sua dependéncia com as escalas 1/x e 1/Q. Adaptado de [96].

Desta forma, nas préximas subsecdes, serdo apresentadas as formas de se obter p,, para calcular a entropia
de emaranhamento no Modelo KL em dois casos, (1+1)-dimensional e (3+1)-dimensional, que descrevem o

problema dos dipolos inicialmente com apenas uma dimensao espacial e com trés dimensdes, respectivamente.
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4.3.1 Entropia de Emaranhamento: Modelo (1 + 1)-dimensional

A evolugao das distribuicdes partdonicas pode ser modelada na representacdo de dipolo [22], onde os partons
sdo representados por um conjunto de dipolos de cor. No modelo (1 + 1)-dimensional, depende-se apenas de
uma direcdo espacial e da rapidez Y. Sendo assim, € negligenciada a informacao de que dipolos diferentes
possuem tamanhos distintos.

A partir disso, sdo consideradas as seguintes defini¢oes:

B p,(Y): Probabilidade de encontrar n dipolos com rapidez Y;

B w,: Probabilidade constante de um dipolo decair em dois.

A equacdo que relaciona a variacio da probabilidade com a rapidez' é dada por:

dpn
dy

=—wonpp+n-1wopn-1. (4.3.1)

O primeiro termo no lado direito da Eq. [4.3.1] refere-se a diminuicao da probabilidade de encontrar n dipolos
frente a divisdo dos mesmos em n + 1 dipolos, enquanto o segundo trata do crescimento devido a divisdao de
n—1dipolos em n.

Além do modelo de dipolos de cor, é introduzida a fun¢do geratriz (ou geradora) G(Y, u) com a finalidade de
resolver o problema. Esta técnica de resolucao foi primeiramente utilizada por A. Mueller em [97]. Desta forma,
tem-se:

(0]
G(Y,u)=) pau”. 4.3.2)
n=1

Diferentemente das séries infinitas utilizadas recorrentemente, as fungoes geratrizes podem divergir, signifi-
cando que G(Y, u) nem sempre é a funcao verdadeira, e a varidvel que ser quer encontrar na realidade pode ser
indeterminada.

Uma das condicdes de contorno para o problema é o caso em que u = 1:
(e 0] (o]
GY,)=) pal"=) pn=1 (4.3.3)
n=1 n=1

Além disso, para Y = 0, tem-se P;(0) = 1 (um tnico dipolo) e P,~; = 0, indicando um estado puro. Disto,

obtém-se completamente as condicdes de contorno:

GO,u) = u;
G(Y,1)=1.

(4.3.4)

E necessdrio conectar o formalismo da funcdo geratriz com a evolucéo de p,(Y) [4.3.1]. Para isso, sdo

consideradas as derivadas:

0 S dpn) n
—G(Y,u) = —=u"|, 4.3.5
Sy W HZ::l (dY u (4.3.5)
e
6 o0
—G(Y,u)= Y ppnu"'. 4.3.6)
ou n=1

*Também se relaciona com a energia, pois tem-se a expressdo e®0Y = x~®0,

71



Capitulo 4. Entropia de Emaranhamento

Substituindo [4.3.1] em [4.3.5]:

6 [e )
5y G w) = Y [-npn(V) + (n—=Dpu_]u”,

n=1
o) [eS)
=—wo Y. npau+wo Y. (n—1)puu’, 4.3.7)
=1 -1
R
ul G(v,w
Para o segundo termo da Eq. [4.3.7]:
o0 o) oo 6
Y n=Dpuau” = Y mpuu™t =0+ Y mpuu™! = =Gy, ). (4.3.8)
=l n-1=m"m=0 m=1 ou

Observando [4.3.7] e [4.3.8], percebe-se que a evolu¢do partonica no modelo de dipolos de cor com a funcao
geratriz € modelada pela equagdo diferencial parcial:

0 0
0—yG(Y, u) —wou(u—l)aG(Y, u). (4.3.9)

A solucdo geral desta equacao, para as condigoes [4.3.4], é dada por:

G(Y, ) ue 0" ~woY L (4.3.10)
yU) = —mm—— = Uue _——. 0.
1+ u(e~@¥ —1) 1+ u(e=@?¥ —1)
—_—

Agora, o termo destacado em [4.3.10], considerando |u(1 — e~“Y) <1, se tem:

1 oo | . o]
=y Wl ™) = w1 - em Yyl (4.3.11)
1+u(e -1 % jv+1=n”:1
Ou seja, é possivel escrever a solucdo geral na forma:
o0
GY,wy=e Y Y (1-e V) 1yn, (4.3.12)

n=1

Comparando a equagdo [4.3.12] com a defini¢ao da funcdo geratriz em [4.3.2], é determinada a probabilidade
pn(Y):
pn(Y) = e @Y Q- gmwo¥yn-1, (4.3.13)

Substituindo p,(Y) obtido em [4.3.13] na expressdo da entropia de emaranhamento [4.2.1]:

S(Y) — _Z{e—a)()Y(l _e—wQY)fl—lln[e—w()Y(l _e—a)gY)n—l]}

n

= —ef‘“OYZ{(l — e @ ¥yn-1p [~woY +(n—-1In(1- ef‘“"y)]}

— w0YZ?_w°Y(1 _ e—on)n—l _Ze—on(l _ e—on)n—l(n_ 1) ln(l _ e—on)
n n

Pn

(4.3.14)

_ -1 _ _ _ _ _ -
=woY Y ppt+In(1—e Y)Y gm@0¥ (1 — g @o¥yn=1_§" y pmwo¥ () _ pmwo¥yn-1y
\TL,.J " ;; " Pn
1
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Ou seja:
S(Y)=woY +In(1-e®")1-Y npy,). (4.3.15)
n

No limite de interesse, que é o das altas energias, Y — co. Logo:

lim In(1-e™“") = 0. (4.3.16)

Y—o0o

Entdo, a entropia toma a forma simples:
SY)=woY. (4.3.17)

E possivel relacionar a entropia obtida com a densidade de gltions. Para isso, se define o ntimero médio de
pértons como®:
(n) = xfg(x), (4.3.18)

Nessa expressdo xfg(x) € a distribui¢do dos gltions para um dado valor de x possibilitando a avaliacdo da

entropia por unidade de rapidez. Assim,

xfg(x)=(ny=)_ npp. (4.3.19)
n=0

A distribuicdo aparece no termo na extrema direita de [4.3.15], para ele,

3 — o~ woY - _ ,—woYyn-1
) npp=e Y n(l-e yn-t
n=0 N n=l (4.3.20)
1 7w0Y
w() dY Z(
Entio, para |1 - e~ | < 1, tem-se,
e 1 d 1
Y onpp=— e = "0Y, (4.3.21)

wo dY 1—(1+ e @oY)

Agora, para grandes valores de x, mais precisamente, no regime em que x > 1, a rapidez Y relaciona-se
com a escala de Bjorkenna forma de Y = —In x. Somando esta informacao aos resultados das Equagdes [4.3.21]
e [4.3.19], obtém-se:

xfg(x) =Y. (4.3.22)

Assim, a entropia de von Neumann no limite assint6tico é dada por:
S(x) =In[xfg(x)]. (4.3.23)

Nota-se que, para o regime de pequeno x, a entropia [4.3.23] emerge para o limite onde todas as probabili-
dades p, tornam-se equiprovaveis. Observando a Eq. [4.3.13] nestas circunstancias, tem-se a equiparticao

probabilistica: )
pn = e_wOY = % (4324)

SAtualmente, o estado da arte propdem que o ntiimero de particulas (x) = x fg (x) + X fsea (%), €m que X fsea (x) € a PDF dos quarks de mar.
Contudo, esta contribuicdo nao serd considerada neste trabalho. Para uma discussao, considerar as referéncias [96] e [98].
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Os postulados da mecanica estatistica de equilibrio acarretam na maximacao da entropia, logo, a equacao
[4.3.24] descreve um estado fisico maximamente emaranhado, ou seja, em um estado hadronico desta natureza,
é impossivel prever quantos partons serdo detectados, uma vez que todos os microestados sdo igualmente

provaveis.

Figura 4.4: Representac¢do dos estados quanticos equiprovéveis na entropia de emaranhamento de von Neumann para os
partons no modelo (1+1). Inicialmente, em baixas energias, o hddron pai nao apresenta estrutura interna, e o espalhamento
pode ser analisado a partir da QED. Conforme aumenta-se a energia, diminuindo o comprimento de onda do féton virtual,
a estrutura interna se revela. O caso se torna maximamente entrépico no limite das altas energias, onde ndo mais é possivel
estabelecer qual serd o estado final do sistema, maximizando o caos.

4.3.2 Entropia de Emaranhamento: Modelo (3 + 1)-dimensional

O caso (3 + 1)-dimensional traz consigo severas complicacbes: agora se consideram os graus de liberdade

transversais, o tamanho dos dipolos e o vetor parametro de impacto b. Inicialmente, sdo definidas as varidveis:

{dl} = ﬁlraZr---) Zil;
- - - 1 (4.3.25)
bin = bi+§rl~ = bn—zri.

A equacdo da cascata partonica para o caso (3+ 1) é dada por:

0 = L =
—Pu(Y,{bp, TFn}) == Y wG(ri) Pu(Y, {bp, Fu})
oy i=1
as nl (Fi+7 )2

n
2.2
Ti=1 TiTh

(4.3.26)
P}'l—l (Y) ?) B; ?lr El) [XX3) (?l + ?fl)) I;inr [XX) ?l’l—lr Efl)-

Nesta equacdo, @&s = Nqas/m. No caso (3 +1), Pn(Y,{En,?n}) é a probabilidade de se ter n dipolos de
tamanho r;, com parametro de impacto b;, em uma rapidez Y. As condicdes iniciais para este problema em

um espalhamento DIS sao dadas por:

Pi(Y =0,7,b;71,b) = 6@ (F - 7)6@ (b - by);
(4.3.27)
Pps1(Y =0;{r;}) =0,
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ou seja, nos instantes iniciais em que Y = 0, sé existe um dipolo. As probabilidades seguem a regra de

normalizagdo usual:

ZfHdzridzbiPn(Y;{Fi,Ei})Z1. (4.3.28)

A funcdo geratriz de dipolo no modelo (3 + 1)-dimensional é dada por
G(Y, 7, b;luil) =Y f Py(Y,{by, Fah) [ | w(Fi, bi)d®rid? b, (4.3.29)
n=1

i=1

sendo u(7;, El-) = u; uma funcao arbitrdria. As condi¢6es de contorno [4.3.27] e a normalizacdo [4.3.28] restrin-

gem a funcdo geratriz na seguinte forma:

{G(Y =0,7,b; [w;]) = u(#, b);
(4.3.30)

GY,ru;=1)=1.

Multiplicando ambos os lados da Eq. [4.3.26] por []}_, u; e integrando em relagdo as varidveis r; e b;,

obtém-se a expressao:

0 IR
Sy 7, b; [u; )—fdzr K@, 7 =77

—u(r,b)+u( b+

Sendo, nesta equacio:

S a_anm G _
{K(r ,T=7'|7) = 2n r2(F—7)2 =K (4.3.32)

wg(F) = [d*r'K.

A fim de encontrar solucdes na forma G([u(r;, b;, Y)]) com as condicdes [4.3.30], é possivel reescrever [4.3.31]

na forma:

0 - - 1 - > 1= -
a—yG(Y 7, b; [ui]) :fdzr’K [G(r’,b+ 5(?—?’); [uDGF—-r",b— Er’; (ui]) - G(Y, 7, b; [w;]) | - (4.3.33)
Agora, definindo a amplitude de espalhamento:

(l)nl

N(Y,7,b) = Z fﬂ d? r,y(r,,b) G(Y, 7, b, [Ui]) |1 (4.3.34)
n=1

Aqui, y(r;, b) é a amplitude de espalhamento para as interacdes do dipolo para baixas energias. A partir destas
definicoes, recupera-se a equacao de Balistsky-Kovchegov (Apéndice C). O objetivo central deste desenvolvi-

mento é encontrar a solucdo de [4.3.26]. Para isso, define-se:

n
Py(Y,1) Ean(Y,{En,?n}) [1d*ria*v'. (4.3.35)

i=1

Nesta definicdo, P,, é a probabilidade de encontrar 7 dipolos com todos os tamanhos possiveis para 0s mesmos
valores do parametro de impacto. As condi¢des [4.3.27] e [4.3.28] restringem P, na forma das seguintes
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expressoes:
P (Y=0,1,b)=1;
Pu=1(Y =0,1,b) =0;
Y> ,P,(Y,r,b)=1.

Com estas condigdes, € possivel resolver a Eq. [4.3.26] de maneira recorrencial: para n = 1, se tem:

0
ﬁpl(y r,b,r1,b1) = -wg(r)Pi1(Y,r,b,r1, b1).

Para P, a equacdo toma a forma:

iF’l(Y ryb) —wG(r)Pl(Y, r)b))

oY
com a solucao:

Py (Y,1,b) = e @Y

Para P,, a Eq. [4.3.26] é dada por:
0 as (7 +72)?

—=P2(Y,1,b; {12, b2}) = ~wG (1) + 0G(r) P2 (Y, 1, b; {12, bo}) + — ————P1(Y, 1, b; Ty + T2, b").
oYy 2n r1 r2
Inicialmente, estima-se o valor de wg(r) dado pela Eq. [4.3.32]:

2 2

a2y r @s 2. r
we(r) = _f r/2(r -’1)2 ? asr r2[r2 + (F - 7)2]
— % 2.1 _f r2
7 Jr r/2[r12 + (r _ r/)z r/2[r12 + (r _ r/)Z]

i} dr”
=asIn(r*/r5)+ 0 =f2 —z
%,—/ v rO

por isso, apenas dipolos menores que r contribuem para o valor de wg(r).

Os autores da referéncia [99] sugerem que a Eq. [4.3.40] tem uma solucdo na forma de:
debPz(Y b1, b, ra, b)) = —®(r O —r2)pa(r, b),
1 2

sendo O(z) a funcao de Heaviside:
O(z) =1, para z>0,
B(z) =0, para z<0.

(4.3.36)

(4.3.37)

(4.3.38)

(4.3.39)

(4.3.40)

(4.3.41)

(4.3.42)

(4.3.43)

Para obter a solucdo da Eq. [4.3.42], é possivel obter a equacdo para P, integrando ambas as partes de

[4.3.40] sobre b/, r; e ry:

6%152(1/, r) =2wg(r)Py(Y,r) + wg(r)P1(Y, 7).

Utilizando a solugao [4.3.39]:
Py(Y,r) = 0¥ (1 g7 @cY),

76

(4.3.44)

(4.3.45)



Capitulo 4. Entropia de Emaranhamento

A condicao P, (Y =0,r) =0 é satisfeita, correspondendo a Eq. [4.3.36]. Para wg(r)Y <« 1, deve existir apenas

dois termos na cascata partonica: P, e P,, de forma que a Eq. [4.3.28] é reduzida a:
Pi+DPy—1-wec(Y+wc(nNY =1. (4.3.46)

Esta equacdo sugere que os P, sdo negligenciaveis para grandes tamanhos, i.e., r; > r, por terem uma probabili-
dade de baixa relevancia.

Desta forma, a solucao geral da Eq. [4.3.26] tem a forma:

- n 1
Pp(Y,{bp, Ty}) = ]_[O(r—ri)ﬁpn(Y, r). 4.3.47)
i=1 i

Para esta solucdo, utilizando a Eq. [4.3.26], P,, é dada pela seguinte equacéo diferencial:

%ﬁn(Y, r) = —nwe(r)P,(Y,r) + (n—1)we(r)P,_1(Y,1), (4.3.48)

com a solucao:
Pu(Y,r) = ¢Y (1 - gmwcY)n-1, (4.3.49)

Analogamente a Eq. [4.3.21]:

o0
(ny=Y nP,(Y,r)=ecNY, (4.3.50)

n=1
Sendo assim, a entropia de emaranhamento para altas energias neste caso reproduzira os resultados obtidos na
Eq. [4.3.14], com a mudanca de que a probabilidade de um dipolo decair em dois nao é mais constante, mas
depende do seu tamanho r:

S=wg(NY =In{(n). (4.3.51)

Este resultado é semelhante ao obtido pelos autores no trabalho anterior para o caso (3+1)-dimensional em [22],
tendo como resultado a expressao:
S~ a;In(r*Q?)Y. (4.3.52)

De forma alternativa, é possivel estender os estudos do caso (3 + 1)-dimensional com outras equacoes
compativeis com a evolucdo BK e o formalismo da funcéo geratriz. Na referéncia [100], por exemplo, os autores
investigam o comportamento da entropia de emaranhamento para a formulacdo 4-dimensional da QCD com o
objetivo de estudar suas divergéncias. Desta forma, afirma-se que a evolucao da funcao geratriz, Z(Y, u, b), é

definida a partir da Eq. [4.3.2], é dada por:

Y b
Z(Y,u,b) =e ™Y 4 um[ dv; e"””(Y‘Y”f dv' Z(b-b, v, wZm, Y, w, (4.3.53)
0 0

sendo m e b parametros da equacdo integral. A solucdo desta equacdo, considerando a conservacao de

probabilidade Z (b, Y, 1) = 1, tem a forma da distribuicdo de Poisson:

, (mbY)"

o0
Z(Y,u,b)y=e"™" Y u :
n.

n=0

) (4.3.54)
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ou seja:
by)"
po= ey D) (4.3.55)
n!
Desta forma:
<n> = Z npn = e_mbY Z nu,
n=1 n=1 n!
X (mbY)"! X (mbY)' 4.3.
= mbYe "MPY Z (mb¥)™ = ™Y ypy (m - ) =mbY =N. (4.3.56)
o (m=1D =~ o 1!
i=n+1
embY
Inserindo [4.3.55] na entropia de emaranhamento (Eq. [4.2.1]),
(o) bY n Nn NVZ
S(Y)=~) pnln by TPV ] -y —e—Nln(—e-N). (4.3.57)
=1 n! o n! n!
Com a ajuda da aproximacao de Stirling e da representacgdo integral da funcao logaritmica,
®©d
Inn= f Bes—em, (4.3.58)
0 S
o somatoério na Eq. [4.3.57] pode ser feito de forma analitica, com validade assintética para N > 1:
s=1 [1 (2meN) L Loy (4.3.59)
=—|In@2neN)- — . 3.
2 6N

4.4 ENTROPIA DE EMARANHAMENTO DE UM ESPALHAMENTO ELASTICO

Nesta subsecao, foca-se na entropia de emaranhamento gerada pela interacdo de particulas em uma colisao.
Seguindo esta linha de investigagdo, a dindmica subentendida é dada pela QCD néo perturbativa ou, na
fenomenologia de Regge, pela fisica do Pomeron néo perturbativo (soft Pomeron).

Em particular, é descrita a interacdo hadron-hadron em espalhamentos com interacao forte tanto para o
canal eldstico (A+B — A+ B) quanto ineldstico (A+ B — X), utilizando o formalismo da matriz de espalhamento
S. Para isso, segue-se estritamente os passos desenvolvidos nas referéncias [23, 24], em que a matriz densidade
reduzida, p 4, do estado final de duas particulas que realizaram um espalhamento eldstico é escrita em termos
da expansdo de ondas parciais dos estados de dois corpos.

E utilizada a expansio de ondas parciais dos observaveis fisicos, como a secdo de choque total, eldstica
e ineldstica da colisdo (0T, 0| € Tinel), bem como a secao de choque elastica diferencial, doe /dt, sendo t a
varidvel de Mandelstam associada ao momento transferido. Utilizando a Estratégia 2, proposta anteriormente,

a entropia de emaranhamento seré obtida a partir da entropia de Rényi:

0
Sg=-lim —Tr[p%] = -InQ, (4.4.1)
a—10a
4 dog
Oel = 7, ~ar li=
Q=1- ef"—dtlto . (4.4.2)
ﬂfV_Uinel

Nas equacgdes acima, fy = V/k? com V = ¥ ,(¢ + 1) sendo o volume total do espaco de fase. Um volume
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como este é formalmente divergente, pois o espaco de Hilbert completo abrange todas as ondas parciais até
¢ — oco. Na referéncia [24], a origem fisica desta divergéncia € identificada e a sua regularizagdo é tratada
corretamente.

Inicialmente, serd considerado o espalhamento eléstico de duas particulas que néo interagem, A e B. Antes
do espalhamento, a particula A tem um 3-momentum k enquanto a particula B tem L. Ap6és ainteracao, Ae B
tem um 3-momentum p e g, respectivamente.

Nas colisoes elésticas, a matriz densidade do sistema serd dada por:

d3 p/ d3 6]’
B Nf 2EA(P) 2E3(q) 2EA(P") 2Ep(g")

Baypals|e)(Bi]s'|p.a) @ al. @43

A matriz densidade reduzida é construida em termos da matriz S projetando o estado inicial dos dois corpos no

estado final: sendo Q o operador de projecao,

lwp)=QS|y:), (4.4.4)

de forma que |1// f,i) sd0 os estados finais e iniciais respectivamente. Calculando o traco parcial da matriz

densidade total p em relagdo aos vetores do espaco de HilbertB, ;#3",

T AR
b4 = S5(p—k) 5) (B, (4.4.5)
pa poszA,,, PO Er e PP
sendo,
- 63(0)fd3 ) ASER) (4.4.6)
Po = PO kB + Ep) .
para qual a condicdo de normalizacdo é obedecida,
TIA[ﬁA] = TIB[ﬁB] =1. (4.4.7)

Esta condicdo é responsdavel pela funcao delta na Eq. [4.4.6] e é uma possivel origem da divergéncia na entropia.
Nas equacdes acima, p = |p| e k = |k| com, cos@ = j- k/ (pk).
Para calcular o traco, nos moldes da Eq. [4.4.1],

|<ﬁ,—ﬁ|§|7€,—7&> |2
4k(Eak+ Eg )

TrA[ﬁA]":fd3p5(3)(0) (poé(p—k) 15)(B|| (4.4.8)

de forma que a funcao delta extra aparece devido o célculo do trago sobre o 3-momentum da particula A.
Considera-se a definicdo,

(Pl 8|k T) =89 (Ppeq - Prv) (Bl s|.T), (4.4.9)
com a notacdo P para o 4-vetor do centro de massa e s = 1 +2it a matriz S reduzida e ¢ a matriz de transferéncia
reduzida.

Com 3 ® 3 = A, sendo H o espago de Hilbert que contém todo o sistema.
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Realizando a expansao em ondas parciais dos elementos da matriz s e da amplitude de espalhamento,

> - EA kKt EB k 1o/
p,—p|s|k,—k)=—""—"—""=16(1- 0)+—|, 4.4.10
(P p|5| ) krzy |00+ o (4.4.10
sendo a amplitudade de espalhamento dada por,
[e.¢]
A (s,0) =161 Y_ (20 +1)T,P¢(cos0), (4.4.11)

=0

o traco da Eq. [4.4.8] pode ser calculado. Na Eq. [4.4.11], a varidvel s, = 1 + 2it, refere-se a £-éssima onda
parcial da matriz § de dois corpos. E possivel definir um volume total do espaco de fase,
o0

V=2560)=) (2¢+1), (4.4.12)
=0

que esta relacionado com as funcdes delta tridimensionais na forma de V = 4nk*0® (0)/(0).
Apbs a integracdo sobre o 3-momentum, escrevendo a Eq. [4.4.10] em termos do angulo de espalhamento 6

e fatorizando os fatores constantes, é possivel escrever,

V 1-n 1
Tralpal™ = (5) j;l dcos0[2(0)]", (4.4.13)

com,

, (4.4.14)

2 2
2(0) = 6(1 - cosO) (1 - 2zt Dirdl )+ [Ze(20+ 1o Pelcos6)

VI2—Y,20+1)f; VI2=Y,20+1)f;

sendo, nesta equacao, fy os componentes de onda parcial da secao de choque ineléstica relacionados aos

componentes elasticos 7, através da relacao de unitariedade,
fr=20mt,—|1,%. (4.4.15)

O préximo passo € escrever a expressao 2 (0) em funcao de observaveis fisicos, 0¢|, Oinel, 07 € doel/dt =

|12/ (256mk*), que sdo usualmente descritas em termo dos componentes de ondas parciais 7, e f;. Obtém-se,

Oel 2k? Oel
PO)=6(1—-cos)|1- + , 4.4.16
© (1= cost) ( nVik? - Uinel) Uel% nV/k? = Oinel ( :
com a variavel de Mandelstam t = 2k?(cos6 — 1) sendo o quadrado do momentum transferido.
Finalmente, a entropia de emaranhamento S [4.4.1] é,
vV 1
S= lnz —] dcosO0Z(0)In22(0). (4.4.17)
-1

Como discutido anteriormente, sdo identificadas divergéncias na expressao para a entropia de emaranha-
mento devido a presenca do volume total no espaco de fase V. Os autores da referéncia [24] apontam trés
opcoes de regularizacdo: (i) regularizacdo de volume, (ii) regularizagao por cutoff com uma funcdo de Heaviside
[4.3.43] e (iii) regularizacao por cutoff com uma funcao gaussiana. Isto é possivel pois para uma dada energia, o

primeiro termo da Eq. [4.4.16] sobrevém da parte de um dos dois corpos no espaco de Hilbert dos estados finais
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que nio correspondem aos estados interagentes. A forma natural de remover estes estados ndo interagentes é
regularizando o volume do espaco de fase de forma que o primeiro termo da Eq. [4.4.16] desapareca.

Para realizar estes procedimentos, as operacoes sao definidas de forma que o/ [(TV/k?) — Oinel] = 1. Utili-
zando o fato de que o1 = 0 + Tinel, Obtém-se V = k?c 7 /7, e,

2
PO) = — —=2. (4.4.18)

Este é considerada a hipétese de regularizacao de volume. Com este procedimento a entropia de emaranha-

1 dael ( 47 dael)
d|t , 4.4.19
f | |Ue1 dat Or0e dt ( )

mento sera,

que depende apenas de observdveis mensurdaveis.
Os autores de [24] realizaram estimativas para a Eq. [4.4.19] de forma que na sua obten¢do assumiram
a aproximacao de pico difrativo no espalhamento hddron-hddron em altas energias. Neste caso, a secao de

choque elastica diferencial é dada por,
2
@ = &e_Bellﬂ

4.4.20
dt 167 ( )

com,

do a2
Oel = f [ e y— (4.4.21)
dt 167[Bel

sendo Be(v/s) o parametro de inclinagéo eléstica.
Agora, seguem os procedimentos dos cutoff com as fungées passo e gaussiana. Com estes regularizadores,
os autores de [23] reescreveram a amplitude de espalhamento </ na representacao do pardmetro de impacto

como, )
a(s,b) = f d’qe 0 f(s, 1), (4.4.22)

fs,0) = % f d2bel¥P a(s, by, (4.4.23)

de forma que f(s, t) = </ /(167k?) e entdo, o7 =2 [ d*bIma(s, b) e o¢ = [ d*bla(s,b)|?, com t = —G°.

A seguinte prescricao é utilizada para obter aproximadamente o espaco de Hilbert. Identificando que bk ~ ¢,
aregido para um grande parametro de impacto ndo contribui para a amplitude de espalhamento a(s, b). O
procedimento de regularizacao é realizado a partir do truncamento dos modos de grande pardmetro de impacto
introduzindo uma funcao de cutoff C(b) que desaparece para b — oo. Desta forma, as quantidades reguladas

sdo dadas por,

67=2 f d*bC?(b)Im af(s, b), (4.4.24)
0
o0
el = f d*bC*(b)la(s, b)?, (4.4.25)
0
d0a _ 1 | f ~ @b cyacs b | (4.4.26)
dr ~anl)y ’ ' =

Desta forma, o volume do espaco de fase de Hilbert regularizado é dado por V = V = k6 7/n e como con-

sequéncia,
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. 2k% dé
P () = 249

. 4.4.27
Ge dt ( )

As func¢des mais simples para aplicacdo deste método sado justamente a fungao degrau e a gaussiana,

1, para b<2A;
C(b) = (4.4.28)
0, para b>2A,

»2

12
C(b)=e 242, (4.4.29)
Com a realizacdo do cutoff a entropia de emaranhamento é dada por,

. 00 1 dé 4 dé
S=— f dlt|— 29 ln( 7 40l ) (4.4.30)
0 Ge dt 616, dt

Ambos os cutoffs realizam a regularizagdo acima no volume infinito do espaco de fase de Hilbert pois agora

¢ tem um limite superior definido por ¢ ,,4x = 2Ak e agora V = 2k? [° C?(b) = 4k?A. De qualquer forma, a

condicdo que determina o cutoff é A% = 61 /4.

4.5 A ENTROPIA DE EMARANHAMENTO NO CGC

Neste modelo, utiliza-se a caracteriza¢ao das fun¢des de onda no formalismo CGC a fim de investigar a entropia
de emaranhamento. Para isso, inicialmente, aborda-se a estrutura da fun¢do de onda hadroénica num DIS
em altas energias a fim de se obter a matriz densidade reduzida do sistema, para entdo calcular a entropia de
emaranhamento.

Em altas energias a funcdo de onda hadrdnica tem grande contribuicao dos gliions soft (Qque portam um
pequeno momentum), 0s quais tem energia suficiente para espalhar um alvo hadrénico, num intervalo de
rapidez,

0<T<AY, (4.5.1)

comY ~1/as.

No modelo CGC a funcdo de onda hadronica tem a forma,
Y(a, Al =y[Alxla,p], (4.5.2)

sendo a os modos dos glions soft, A os modos dos quarks de valéncia (com rapidez Y > AY) e p%(x) a densidade
de carga de cor, como funcdo da coordenada x. Para p < 1/a; a funcao de onda dos glions é dada por um
estado coerente,
xla, pl = etk Vbl O+l gy (45.3)
com o campo de Weizsacker-Williams,
; ik!
b, (k) = gpa(k)?, (4.5.4)

sendo g o acoplamento da interagao forte.
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Os operadores criagdo e aniquilacao na Eq. [4.5.3] sdo integrados sobre a rapidez,

1 ay
a%k) = — —a®(y, k). (4.5.5)
! VAY Jy<ay 21

Para uma energia fixa, os observaveis que dependem apenas da densidade de carga de cor O[A] sao
calculados a partir da Eq. [3.1.34]. Neste modelo serd utilizado o modelo de McLerran-Venugopalan [68], com o
o funcional peso dado pela Eq. [3.1.36].

A matriz densidade reduzida p, para os gliions soft no modelo MV é,

pr=N f Diple” P atbat by BHOBh=d) gy o g1y PLOIBLP), (4.5.6)
sendo,
Ol (k) = a’,(k) + all (—k). 4.5.7)

A integral sobre a densidade de carga [4.5.6] resulta em,

. 1 _1em0: | 5 Ll Mo
pr :Z;e Z(PIMIJ(P] H Mlm]m(l)lm |0> <0|(P]m e Zd)lMl](p]’ (458)
n fe m=1

consideradas as notacées compactas,

¢i=1al“(x) +a’));

2 —1):(v—1);
_ g 2 (=i (y=V)j cab
Mij = 2 Juw B V) Tz 8

(4.5.9)

tendo a matriz M duas polarizacdes, duas cores e dois indices de coordenadas, denotados coletivamente pelo
par {i, j}.

Desta forma, nesta secdo, o objetivo é encontrar uma expressao para Tr[,ﬁ1+€ | a fim de estabelecer o
programa proposto na Estratégia III. Para isso, inicialmente, é calculado Tr[ 6] para um N arbitrério, e depois
toma-se o limite N — 1+¢. Para Tr [,6%],

!

. 1 i Moh | T b Mo bs
Te[o7] = X 2 1M TTTT Mi oMy B b 0 010 b | €M 100. - (45.10)
n,n' "ot m=1m'=

Esta expressao é utilizada para o computo da entropia de Rényina referéncia [25]. A generaliza¢do da Eq. [4.5.10]
para p%¥ contempla o produto de N elementos dos operadores da matriz de vdcuo que dependem do campo
¢. Cada um dos elementos de matriz sdo calculadas separadamente, de forma que os campos que entram na
expressdo podem ser considerados independentes. Desta forma, define-se o multipleto de campos replicados
gb;.", coma=1,2,..N.

_yN AN B N anr. . pa+l
Tr[plY] = (ol e” Zamr P M) e FEMIPT g, (4.5.11)

sendo agora |0) o vacuo no cone de luz de todos os campos replicados ¢p*. Nota-se que o préximo vizinho da
‘interag@o’ nos campos replicados seguem a condicao de contorno periédica,

PN =gl 4.5.12)
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Desta forma, é possivel reescrever a Eq. [4.5.11] como,

T[] =

r

sendo, nesta equacao,

N/2
(det[n) fl_[[Dﬁb ¢~ & Tal1 97072 Loy 0F —97 " M (0f —a§).

= 16;;606% (x -

),

A ‘acdo’ é diagonalizada por uma transformada de Fourierem a:

(pn NZ le Nan¢a
(Pa Zn o e—nwan(pn’

com a relacdo de periodicidade,

(Z)N—n — (Z)*n

A relacao entre vizinhos no espaco de Fourier resulta em,

_j2r —
@f —pFH@F —¢ih = mzm(e R -1)(e

Utilizando,

obtém-se,

Y@ - pE @ - ¢t = NY (e F - 1) E R - 1y
a n

25 orey

Entao,

o

sendo NN/2

Sendo,

ﬁZW”m _ 1)e—ﬂzﬁ”a(n+m)(l”)lr_l(ﬁ;n.

j 2L
Ze—n v an+m) _ N6(n+m),N;

:4NZ sen
n

] N (det[n])mzfH

o jacobiano da transformacao [4.5.15].

. n .
fz+4Msen2W:ft+2M(l

a integral gaussiana na Eq. [4.5.20] é

N-1

Tr[pY] =det[fz]N/2det{ I1

n=0

Utilizando a o resultado tabelado (1.396) da referéncia [101],

N-1

[1

n=0

N-1
ﬁ+2]\71(1—coszn—n)] = (ZM)N H (
N n=0

=2MN {cosh

84

N=1Fn(a4aKf con? 7
Yoso OFA+4M sen (nn/N)]iij;”’

2nn)
—cos — |,
N

2nn
1-cos—+
N

Ncosh™! (1 +

N 2nn\] "2
ﬁ+2M(1—cos—)] .
N

Mlﬁ)
2
M7

|

L

(4.5.13)

(4.5.14)

(4.5.15)

(4.5.16)

(4.5.17)

(4.5.18)

(4.5.19)

(4.5.20)

(4.5.21)

(4.5.22)

(4.5.23)
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Desta forma,

N
ln(cosh(Ncosh_1 (1 + M2 H)) - 1)

A entropia é obtida tomando N =1 + € e mantendo os termos lineares em €, de forma que,

Tr[pN] = exp{—%lnz— gTr[lnﬁ_lM] - %Tr

}. (4.5.24)

1+e

Tr[p, ]~1+2Tr In(77'M) - V1+44"1 MIn

1+

(1+ \/1+4fr1M)”. (4.5.25)

Assim, a entropia de emaranhamento é,

1+

1
S= ETr{ln (77 M)+ V1+4#~1MIn

1 (1+ \/1+4ft‘1M)] } (4.5.26)

Para compreender esta equacgao, considera-se o caso invariante frente a translacao, onde a matriz M é diagonal
no espaco de momentum,

pp](sab

M“b(p) 2212 (p?) (4.5.27)

No modelo original MV, u? é uma constante e nao depende do momentum. A contribuicio para a entropia
com modos de grande momentum transverso pode ser obtido expandindo a Eq. [4.5.26] na ordem principal
em M, desde que para grandes momenta (g>u? < p?) os autovalores de M sejam pequenos. A expressio para
entropia no limite do campos fraco é,

S =Tr (A~ 'MIn M '7e]. (4.5.28)
Assim, a contribuic¢ao ultravioleta dominante é,

ap u (pz) 212(p?)
uv o 8 (N2 1 f ( 2
SE ( )S @2n )2 p2 In 67’[[?2 0 p

g2
-= /,tz(pz))] ) (4.5.29)

sendo, nesta equagao, S a drea total do projétil. No modelo MV original com p independente do momentum, a

expressao [4.5.29] é logaritmicamente divergente. Introduzindo o cutoff A no ultravioleta,

S
UV 4Qs V21 |2 82 41 g ] (4.5.30)

Q3 Q3

de forma que a escala de saturacao foi identificada de forma usual no modelo,

4
s~ . (4.5.31)

)

A contribui¢do dos modos do infravermelho também podem ser calculados. Para faixas de momentum
p? < Q?/g? é possivel expandir M~!, de forma que,

SH—eo ~ —Tr[lne A M. (4.5.32)
Assim, ,
IR _ 1 N2 d“p w2 (p? B )
Sg =5 (N I)Sf on )21 o 0(Q3-g*pH) = (N -1)SQ% (4.5.33)
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Combinando as duas expressdes a entropia de emaranhamento CGC no modelo MV é dada por,

2§\ +1 +=.

Sp~ S +8yY = & I
N

SQ¢
- (4.5.34)

272
(Nz—l)(ln g A 3)

Em detrimento da representacdo de campo, na referéncia [102] é feita a mesma computacao da entropia na
representacdo do operador nimero,

d’k
(Ny=Tr f — (4.5.35)
@m)2aaxpr
obtendo uma expressao coincidente,
0 42 2 2 2,2 Ic2 Ic2 22
SEEC » —5 In| &L ) 41448 |1+ + 1+48 2| (4.5.36)
@r )2 k2 k2 2g2,U2 ZgZ/JZ kZ

Para fins fenomenoldégicos, a saturacdo pode evoluir com a rapidez seguindo o modelo GBW. Além disso, o
regulador ultravioleta pode ser identificada como a virtualidade do f6ton no DIS Q?, com a escolha arbitraria

Q? = g% A®. Desta forma, analiticamente,

() + 1V 547 Tn (\/1+4‘r +1) (\/1+4r +1)

1 C
SEe¢ == FQS (4.5.37)

V1+4t-1 V1+47r-1

sendo 7= Q*/Q% e Q2 = (9/4)Q2.
Os comportamentos paramétricos das equacoes [4.5.30] e [4.5.33] sdo obtidos para 7 = 1 (Q? = Qz) entao,

SECC ~8Q2, (4.5.38)
Por outro lado, para grandes valores de 7, VitarT~1+ 2771 de forma que,
SECC ~ sQ?2InT +1n? 7). (4.5.39)
Para célculos numéricos, é possivel utilizar,
S=nR;=00/2, (4.5.40)

com R, sendo o raio do proton.
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Entropia da Decoeréncia Quantica

A tdltima forma de geracdo de entropia estudada nesta tese serd devida a decoeréncia quantica. Desta forma,
este breve capfitulo ird abordar a caracterizacdo do fendmeno, seguida pelo cédlculo da entropia de decoeréncia
nos estados CGC.

5.1 DECOERENCIA QUANTICA

O comego do século XX trouxe consigo teorias fisicas que se impunham sobre a concepg¢ao clédssica até entdo
bem estabelecida, em especial, as Teorias da Relatividade e a Mecanica Quantica, que ndo sé explicam resultados
onde as antigas concep¢oes falham, como prevem novos fendmenos. Contudo, seria ingénuo abandonar todas
as previsoes e resultados obtidos pelas teorias cldssicas, de forma que hoje, sabe-se que cada uma destas teorias
tem o seu regime de dominancia. Por exemplo, a transformacdo de Lorentz da Relatividade Restrita para baixas
velocidades recai na transformacao cldssica de Galileu, de forma que é seguro afirmar que a relatividade é uma
teoria que trata de objetos em altas velocidades.

Por outro lado, as fronteiras entre o regime Cléassico e Quantico da dindmica ndo possuem uma corres-
pondéncia tao simples. Algumas equacdes até podem retomar, ao seu modo, as estabelecidas pela Mecanica
Classica nos valores médios de observaveis a partir do teorema de Ehrenfest. Entretanto, isto nao explica o
desaparecimento da dlgebra de comutacdo entre observaveis e, em alguns casos, possui diversas restricoes.
Na busca entre a delimitacao das teorias, Bohrintroduziu o principio da correspondéncia, onde a ideia seria
estudar o limite em que a constante de Planck tendesse a zero (i — 0). Dessa forma, a energia teria um espectro
continuo, equivalendo ao caso classico. Contudo, ainda faltariam explicacdes para o supracitado problema das
discrepancias entre dlgebras propostas pela mecdnica quantica e cléssica.

Outro fené6meno quantico sem precedentes cldssicos é o Colapso da Fungdo de Onda, onde, para compreendé-
lo, é necessdria a elucidacdao do modos operandi bésico da dindmica quantica: dado um sistema composto
por uma particula de massa m (pode-se ser um conjunto de particulas, mas isto traria algumas dificuldades
que ndo sdo do interesse da discussdo) embebida na influéncia de um campo potencial V (7, t), a evolucdo do

sistema é dada pela equagdo de Schridinger,

ﬁh£| )= —h—2V2+V(’r’ Olw) (5.1.1)
ar”’ | 2m DD o
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|w(?, 1)) é a solugdo desta equacdo: o estado qudntico. Mas ela ndo carrega consigo um sentido fisico préprio,
como por exemplo a equagdo de uma onda de uma corda esticada que revela o seu deslocamento vertical ou
como a diferenca de pressdo nas moléculas do ar na propagacdao de uma onda sonora ou ainda os campos
nas ondas eletromagnéticas. O real significado fisico da funcao de onda deve-se ao fisico alemado Max Born:
o0 modulo quadrado da projegdo do estado qudntico na representagdo da posigdo, i.e., da fungdo de onda
(7, 1) = <F|1//), é a densidade de probabilidade de encontrar a particula na posi¢do 7 e + dr no instante t, ou
seja,

P, 0d°r = |y (7, 0Pd’r. (5.1.2)

Portanto, se é de interesse analisar a probabilidade de encontrar a particula entre os pontos a e b, denotada por

P,p, a probabilidade, no caso unidimensional, é expressa por

b
Py = f lw(x, 1)|?dx. (5.1.3)
a

Uma vez resolvida a equacao de Schriodinger, i. e., obtida a funcao de onda, é possivel expressa-la como

uma combinacao linear dos autoestados que compunham a base do sistema em questao,

N
lw) =2 cili), (5.1.4)
i=1

com o conjunto {|i)} configurando um espaco vetorial N-dimensional denominado espaco de Hilbert 7, espaco
vetorial das fun¢des quadrado-integraveis finitas. Aqui, o conjunto de escalares {c;} € composto por niimeros
complexos. Desta forma, diz-se que o estado fisico (funcdo de onda) é uma combinacdo linear de estados
independentes, ou seja, é um sistema em sobreposi¢do. Desta forma, se for realizada uma medida sobre o
sistema, ele instantaneamente colapsard para o estado medido e todos os demais estados que compunham a
sobreposicao desaparecerdo, de forma que a sobreposi¢do nunca é medida. Este fendmeno é conhecido como
o colapso da funcao de onda.

E possivel tratar um espaco vetorial N-dimensional. Contudo, por fins de simplicidade, considera-se aqui o
caso mais simples, em que N =2, de forma que a Eq. [5.1.4] toma a forma,

ly)=c1ll) +c212). (5.1.5)

A interpretacdo de Bornrevela que a probabilidade de se medir o estado |1) ou |2) segue a regra,

Probabilidade de medir [1): c;cf;
(5.1.6)
Probabilidade de medir [2): cac5.
Desta forma, para um sistema de dois estados (sendo este um resultado geral que pode ser adaptado para N

estados), tem-se,

N
Yocicr=1 . actac=1, (5.1.7)

ou seja, para uma probabilidade de 50% de se medir o estado |1), é possivel ter o coeficiente c¢; = 1/V2 e,
segundo as imposicoes [5.1.7], ¢ = 1/+/2. Contudo, fora dito que os coeficientes da combinacio linear [5.1.5]
podem ser nimeros complexos, e, de fato, é possivel atribuir uma fase 6 aos coeficientes sem perda do resultado

fisico como por exemplo, ¢, = e//2. Pois,
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ccy = [%ew] [%eﬂw = eﬁ‘g(le*f“9 %,: %, (5.1.8)
ou seja, a adicdao de uma fase real 8 nao alterou a fisica do problema. Dito isto, considera-se agora um objeto
material, que pode ter tanto dimensdes microscépicas (um elétron, por exemplo) ou macroscépicas (um grao
de areia), podendo estar em dois estados, |1) e |2), com energias E; e E,. A evolucdo temporal de cada um dos
estados é,

In(1)) — e HEnt! |y, (5.1.9)

portanto, a evolucdo temporal da representacao [5.1.5] é tal que,
lw(6)) — e tE11/h ey 1) 4 e 2E2 1Ny 2y (5.1.10)

Definindo w = (E; — E1)/h, é possivel representar a evolugdo temporal do sistema (que pode ser também

realizada em relacdo a E» caso seja preferivel) na forma,
w) — e B o 1) + e 12)]. (5.1.11)

Agora, considerando que o objeto em questao esteja submetido ao campo gravitacional terrestre, com
o = mgAz/hi, tem-se, para um elétron com valores de separagao nos pacotes de ondade Az=1nmouAz=1
m, w=10"* Hz ou w = 10° Hz; parauma massade 1g, w = 102 Hz ou w = 10%2 Hz. Para fins de comparacgao,
107225 é o tempo que a luz precisa para atravessar um nticleo atomico. Desta forma, quando as fases estio
mudando de forma tdo rapida, apenas um dos estados pode ser medido.

E possivel calcular a matriz densidade do estado que esta sendo analisado, sendo p,, = ¢ C;,, tem-se,

P11 = Cle—nEl t/hcik enEl tlh _ Clcik — |Cl|2»
P12 = C1 e 1E1 tlhc; elE1t/n piwt _ c CZ* enwt’ ( :
5.1.12
P21 = Cze—nEl t/hcif enEl t/he—nwt =cy Cf e—nwt'
_ —1Et/h iEjt/h _ 2
P22 = cpe WS et = )7,
de forma que,
2 * dwt
|cq] cic,e
A 2
o= . —ior Rk (5.1.13)
cacle |cal

Toda medida exige um tempo finito 7, embora nos valores cotidianos ela possa ser considerada instantdnea
(10~'2g). Desta forma, é possivel analisar o que ocorre com a matriz densidade de um sistema submetido a uma

medida mediando-se a mesma em relacaoa T,

1 T cct acks(T
—f ﬁdt:( TR ( )). (5.1.14)
T Jo cocy s(T) c20C;

com, T/2)
. sen(w
lim s(T)= lim e““’m(—zo, (5.1.15)
wT—o0 wT—o0 wT/2
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Portanto,

 flal® 0

o= . (5.1.16)

0 lel?

Por exemplo, paraw = 103?Hz e T = 10765, |s(T)| ~ 1076, Estes casos exigiriam uma grande precisao experi-
mental para que a superposicao pudesse ser detectada. Realizando a medida, vale a elucidagdo de que o sistema
terd de interagir com o ambiente e com o detector que ampliard o sinal, ou seja, a particula que compunha
o sistema interagird vérias vezes com outras particulas antes de que seja detectada. Esta é a descri¢do da
decoeréncia qudntica, as interagdes constantes que o sistema em superposicao tem de suportar se dard com
uma mudanca de fase dos elementos fora da diagonal principal. Cada vez que o sistema interage com qualquer
objeto, seja ele do ambiente ou do detector, irreversivelmente as alteracdes se dardo por uma mudanca aleatéria
na fase 0, entdo a chave para a compreensao da decoeréncia se da no cdlculo da média do nlimero complexo
que acompanha a fase (Fig. [5.1]), ou seja, zero: E possivel representar o niimero complexo e*% na chamada
forma polar onde os eixos de coordenadas sao compostos pelo conjunto de niimeros reais e imaginarios. Uma
alteracdo na fase 6 da exponencial, dependendo o sentido, fard com que a inclinacdo da reta que une a origem e

o ponto no circulo unitdrio mude e para um grande niimero de perturbagdes o valor médio é zero.

a) Im b) Im c) Im

Re Re

Figura 5.1: (a) representagao polar de um niimero complexo no plano real-imagindrio; (b) para os valores de 6 entre 0 e
27 forma-se um circulo unitério centrado na origem; (c) se for considerada um grande ntimero de interacoes do sistema
com sua vizinhanca ou com o detector, onde sua manifestac¢do se da por uma mudanca aleatéria na fase, o valor médio do
ndmero complexo é zero.

A matriz [5.1.16] ndo corresponde mais a nenhum sistema fisico, isto é, nao é possivel encontrar a fungao
de onda |w> que a gerou, pois, analisando a forma [5.1.13], se os elementos fora da diagonal forem nulos, os
elementos na diagonal também o serao. Contudo, o desaparecimento dos termos ndo diagonais na matriz
densidade do sistema é o efeito da decoeréncia quantica e, sem esses termos, o sistema perde sua capacidade
de interferir. Por fim, também vale destacar que a decoeréncia mantém a unitaridade da teoria quantica, ao
contrario do colapso da funcdo de onda, que néo preserva essa propriedade. Enquanto a decoeréncia descreve
a perda de coeréncia devido a interacdo com o ambiente, o colapso implica em uma mudanca ndo unitéria e

irreversivel do estado quantico.

5.2 O FORMALISMO TEORICO DA DECOERENCIA

Fisicamente, a ideia basica na computacgdo dos efeitos de decoeréncia é considerar o efeito do ambiente e da

medida no sistema quéntico, fazendo com que, neste processo, realize a separacdo entre o sistema de anélise S,
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o aparato de medida M e uma relagdo aberta para interacées com o ambiente U (Fig. 5.2). Alguns dos efeitos da
medida foram discutidos previamente e, nesta se¢do, considera-se apenas os efeitos do ambiente no sistema
em que se tem interesse. Sendo assim, o sistema S tem sua base de auto vetores |i) que geram o espago de
Hilbert #€s. Por sua vez o ambiente é descrito pela base |n) do espaco #%. Na interacao destes dois sistemas o
estado geral serd escrito numa base |i) ® |n) = |i, n) que gera o espago composto # = #s ® #y. Supdem-se
agora que as matrizes densidade do espaco composto nao sdo independentes, ou seja, as matrizes no espaco

FC = 5 ® 7y sdo mais gerais que ps® py.

Figura 5.2: Divisdes das regides analisadas no estudo da decoeréncia: S é o sistema estudado, pode ser um dtomo de
hidrogénio, um oscilador harmonico, etc; um sistema fisico de interesse; M é o aparato de medida que colapsard a fun¢ao
de onda do sistema. Para realizar uma medida, este deve interagir obrigatoriamente com S; U é o ambiente que nunca
podera se isolar do sistema, podem ser f6tons que iluminam a amostra, outros &tomos que a cercam-na ou a radiacdo
c6smica de fundo.

No picture de Schrédinger (H = Hy + Hg), sabe-se que a evolucao temporal da matriz densidade do sistema

se da pela equacao de von Neumann [103]

0 .

1i—ps=[Hs, psl. (5.2.1)
ot

Considerando que é possivel separar a dindmica interna do sistema da interacdo com o ambiente, onde a
duracdo de um processo de espalhamento com o meio tem uma duragdo pequena se comparada com a escala
temporal interna, a equacao de von Neumann tera uma pequena modificacao introduzida pela interacao de
espalhamento com o meio [104], considerando uma matriz espalhamento S apropriada,

0

3 (5.2.2)

., 0 PO R
llha—tps=[H,ps]+11h Ps

espalhamento ’
Na maioria dos casos, uma ampla sequéncia de espalhamentos pode ser tratada como um amortecimento

dos elementos fora da diagonal principal, de forma que,

0

—0; = —ApS,(8), (5.2.3)

nm
espalhamento

sendo a constante A dada por,
A=T(1—(nol8},8,1n0)), (5.2.4)

sendo I'" é a taxa de colisao e |7p) o estado do ambiente em uma dada condicdo inicial.
Na sequéncia serdo abordados dois exemplos relacionados ao fendmeno da decoeréncia quantica, a locali-

zacao espacial dos objetos materiais e o efeito Zeno Quantico.
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5.2.1 Localizacao Espacial

O primeiro exemplo a ser explorado € a localizacdo de objetos macroscépicos. Pode nao parecer em primeira
analise, mas a percepcao clédssica que temos da localizacdo de objetos macroscépicos, formados por entes
microscépicos, regidos pela mecéanica quantica, onde o estado fisico ndo tem posicdo e momentum bem
definido ndo é um problema trivial. E ndo somente a percepcao, mas também a utilizacao de teorias classicas
que assertivamente descrevem, em certos limites, a localizacao fisica destes objetos. Considera-se a hipétese
de que diferentes configuracdes espaciais de um sistema devem sofrer um processo de decoeréncia muito
rapidamente a partir de uma forte influéncia por processos de espalhamento.

E possivel dar um tratamento formal para o efeito. Para isso, |x) é o auto estado posicdo de um objeto
macroscopico e |a) é o estado da particula incidente. Desta forma, o efeito das interacdes com o sistema na

evolucdo temporal pode ser expresso por,

t
1x) la) = 1x) layy = 1x) Scla, (5.2.5)

de forma que o espalhamento é calculado a partir da matriz espalhamento S, conveniente. A mesma represen-

tagdo para um estado inicial de um pacote de onda se da por:

t
fd3x(/>(x)|x>|a>?fd3x¢(x)|x) Selay. (5.2.6)
A matriz densidade reduzida que descreve as mudancas no objeto é dada por,
plx, x') = p(x)p* (x') al ST Sx|a). (5.2.7)

Obviamente, um tinico processo de espalhamento nao ird localizar o objeto, de forma que os elementos da
matriz acima sao préximos a unidade. Contudo, a ampla ocorréncia de espalhamentos causa um amortecimento
exponencial da coeréncia espacial,

plx, X, 1) = plx,x', 0 e A, (5.2.8)

Desta forme, a contribuicao deste efeito é descrita a partir de um tinico parametro A, denominado taxa de

localizagdo, dado por,
_ kK*Nvoes
Y

com k sendo o ntimero de onda das particulas incidentes, Nv/V o fluxo e o¢f é da ordem da secdo de choque

A ) (5.2.9)

total. Alguns valores de A sdo dados pela Tab. [5.1]. A maioria dos nimeros na tabela sdao bem grandes,
revelando o quao forte é o vinculo dos objetos macroscopicos, da ordem de tamanho de particulas de poeira
com o ambiente e, até mesmo para o espaco intergaldtico nao estaria de fora do efeito devida a radiacdo c6smica
de fundo.

No caso da decoeréncia na superposi¢cdo de dois pacotes de onda, analisa-se a distdncia entre os pacotes e a
Fig. [5.3] a) representa bem a matriz densidade, ilustrando quatro picos, dois em torno da diagonal principal e
dois fora dela, sendo estas tltimas, contribuicoes que representam a coeréncia entre as duas partes. Contudo, se
forem amortecidos os termos fora da diagonal, tem-se a decoeréncia e os picos desaparecem, como na Fig. [5.3]
b).
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Tabela 5.1: Taxa de localizagdo A em cm~2s~! para trés tamanhos de particulas em varios tipos de espalhamentos. Esta
quantidade mede o quéo rdpido a interferéncia entre as diferentes posi¢des desaparece como uma func¢ao da distancia no

passar do tempo. Dados fornecidos por [104].

Tamanho 1073cm | 10°cm | 10 %cm
Radiacio césmica de fundo 10° 1076 10712
Fétons a 300K 109 10'2 10°
Luz solar (na Terra) 102! 107 1018
Moléculas do ar 1036 1032 1030
Véacuo de laboratério (10° particulas/ cm?) 1033 1019 107

Figura 5.3: (a) Matriz densidade de dois pacotes de onda gaussianos. A coeréncia entre os dois pacotes é representada pelos
elementos fora da diagonal. (b) A matriz densidade ap6s perder sua coeréncia. Figura adaptada de [104]

5.2.2 Efeito Zeno quantico

Macroscopicamente, ndo é adequado que a realizacdo de uma medida interfira no objeto de interesse, ou
melhor, na maioria dos casos, é possivel realizar uma medida sem perturbar o sistema em que ela esta sendo
aplicada, obtendo informacdes a seu respeito. Contudo, sabe-se que esta verificacdao ndo é andloga ao caso
quantico, onde ocorre o colapso da fun¢dao de onda. Além disso, ndo € possivel obter de imediato todos os
valores de medigao dos observéveis de um sistema, de forma que trabalha-se sempre com a ideia de médias de
ensembles.

Um fen6meno que trata bem a peculiaridade da medida no casos dos sistemas quénticos € o efeito Zeno [105],
e segue-se agora sua derivacio matematica: seja H o hamiltoniano de um sistema quantico onde |¥) é o seu

estado no instante inicial, sendo sua evolucao temporal dada por,
1P () = e W), (5.2.10)

Desta forma, € possivel calcular a taxa de transicao P(¢), de um estado fisico que evolui num curto espago de
tempo §t para o estado inicial,
P(1) = (Pole 1 1w0) %, (5.2.11)

Agora, realizando a expansao em séries de Taylor desta probabilidade:

x (116t)”

P() = =1—6t2((H)2 (H*)+061%) ~1-6120%, (5.2.12)

— (A"
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aqui, oy = \/(H)° = (A2) é 0 desvio padrao do valor esperado associado ao hamiltoniano. Desta forma, a
probabilidade da transicdo depende de ? e se forem realizadas medidas em intervalos regulares de tempo,
diga-se 7 = ¢t/ N, sendo N o ntimero de medidas realizadas,

ﬁO'z N 2 2
P()=(1-1%02)N = |1~ NNH e NH, (5.2.13)
ficando 6bvio que para um amplo nimero de medicgdes,
I\IIim P =1, (5.2.14)
—00

um resultado dramaético, onde se realizadas um grande nimero de medidas e intervalos de tempos curtos a
probabilidade do sistema permanecer no estado inicial é de 100%, ou seja, a realizacao continua de medidas
faz com que o sistema permaneca no estado inicial.

Aristoteles escreveu na Fisica [105] uma série de argumentos paradoxais, que seria de autoria do filésofo
pré-socrético Zeno de Eleia, onde a proposta era provar dialeticamente inconsisténcias nos conceitos filos6ficos
da época de multiplicidade, divisibilidade e movimento. Dentre estes argumentos, vem a famosa histéria
da corrida entre Aquiles e a tartaruga: uma vez que o animal teria total desvantagem devido a diferenca de
velocidades, ela ganha a possibilidade de partir de uma distancia mais avancada na frente do heréi de Iliada. O
paradoxo proposto por Zeno é a demonstra¢do de que Aquiles nunca ultrapassaré a tartaruga, pois quando
ele chegar na posicao onde ela partiu, diga-se A, a tartaruga estard em B, quando ele chegar em B, o animal
avancara para C e assim se dara o processo indefinidamente, contudo, o homérico nunca venceria.

Nesta época, nada se sabia de célculo infinitesimal ou dos

referenciais newtonianos; mas a insercao dos dois competidores
1.0

intui o uso de referencial, podendo ser da velocidade de Aquiles

em relacdo a tartaruga e vice-versa, onde os dois objetos tem 0.8

Hl Data

velocidades independentes. Agora, se existe uma relacao entre ST Calculation |

0.6t
os corredores, diga-se, Aquiles restringe seu movimento a uma
observacdo constante ao ponto onde a tartaruga estd, de forma 0.4+ 1
que sempre que ele atinge o ponto C ele verifica a tartaruga em D, o2t |

seguindo este processo indefinidamente, como um padrdo para

Transition probability

. . . . = i 0.0 . . 0
determinar o seu movimento, cria-se uma situacao artificial em 1 2 4 8 16 32 64

S n
que Aquiles é regido pelo espaco da tartaruga, sendo exatamente
o que fora proposto no célculo da probabilidade da taxa de tran-
Figura 5.4: Célculos e dados experimentais da

. _ . taxa de transicdo de um sistema quantico de trés
Uma forma de explicar a solugao classica do paradoxo de Zeno  piveis em funcao do niimero de medidas n reali-

sicdo e por isso o nome do fendmeno é efeito Zeno quantico.

envolve a introdugdo de conceitos como limite, convergénciae zados durante processos de transi¢oes. Para um
amplo valor de n a taxa de transicao cai para 0.

infinitesimal, sendo que a proposta do fil6sofo falha na dinamica Reproduzido de [106].

classica por assumir que a soma de infinitos intervalos de tempo

é sempre infinita, contudo, sabe-se que existe a possibilidade de uma soma infinita de termos resultar em valo-
res finitos. Mas e no caso quantico? Em 1900, Itano, Bollinger e Wineland [106] verificaram experimentalmente
o efeito em um sistema quantico de trés niveis (Fig. [5.4]).

A decoeréncia entra no efeito justamente para elucidar a diferenca entre o caso quantico e classico, sendo
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aqui utilizado um modelo simples, apenas para justificagdo dos seus meios no problema. Para isso considera-se
um modelo simplificado da feoria da medida de von Neumann, onde um pointer (aparelho de medida) é

acoplado a um sistema de dois niveis, |1) e |2), sendo descrito pelo hamiltoniano,

H=Hy+ Hipr = V(1) Q21+ 12) (1)) + E[2) 2| + yp(I11) (1] = [2) 2)), (5.2.15)

sendo que as transicoes entre os dois niveis é induzida pelo potencial V e monitorada pelo pointer, este, tendo
sua intensidade mediada pela constante y. Desta forma, é possivel calcular a taxa de transi¢cdo em fungdo
do tempo (Fig. [5.5(a)]) e da constante de acoplamento (Fig. [5.5(b)]). Assim como previsto anteriormente,
para um pequeno intervalo de tempo, diga-se, a medida é realizada em um tempo muito curto, obtém-se uma
dependéncia quadratica com o tempo, como previsto anteriormente. Contudo, esta evolucdo para tempos
maiores se torna linear. Além disso, se o sistema e o0 aparato de medicao estdo fortemente acoplados, a taxa de

transicao comeca a suavizar.

a)

probabilidade de transigdo
probabilidade de transigdo

tempo acoplamento

Figura 5.5: (a) Dependéncia temporal da probabilidade de encontrar o sistema no estado |2), sendo que em ¢ = 0 0 mesmo
se encontrava no estado |1) para uma constante de acoplamento fixa. (b) Dependéncia com a constante de acoplamento da
probabilidade de encontrar o sistema no estado |2), sendo que em ¢ = 0 0 mesmo se encontrava no estado |1), calculada em
tempo fixo. Imagem adaptada de [106].

Neste capitulo, discutiu-se, dando exemplos, conceitos basicos sobre a decoeréncia e o emaranhamento
quantico, sem exaurir o assunto, apenas elucidando suas caracteristicas bésicas e elementos fundamentais
utilizados na pesquisa em questdo. Na préxima sec¢ao estes conceitos serdo utilizados na formulacao de grande
parte das nocoes entropicas estudadas no desenvolvimento da andlise da criacdo de entropia em colisdes de

particulas em altas energias.

5.3 A ENTROPIA DE DECOERENCIA NAS COLISOES DE IONS PESADOS

Nos estdgios iniciais da colisao ultrarrelativistica de ions pesados os estados disponiveis sdo caracterizados por
uma configuracdo coerente de campos de gltions. Estes campos sdo gerados por cargas de cor quasiestaticas dos
quarks de valéncia dos nticleos e podem ser aproximados com campos de cor semi-cldssicos randomicamente
orientados em um meio CGC.

O fendmeno da decoeréncia pode protagonizar uma boa parte da producao entrépica nestas reagdes.
Inicialmente, os campos de cor nas reacoes das colisdes ultrarrelativisticas de ions pesados pode ser descrita

por campos coerentes cldssicos,

P []]) = I;Iexp(ﬁaklagﬂ —ia} ag,)10), (5.3.1)

95



Capitulo 5. Entropia da Decoeréncia Quantica

sendo k o momentum, A a polarizagéo e a amplitude ay; , determinada pelo campo de criac@o de corrente

classica J,

= (5.3.2)

Por fins de simplificacao, considera-se aqui apenas um modo com k e 1. O estado coerente pode ser escrito

como uma superposi¢cdao do nimero de particulas |n) dos auto-estados com auto-valor «,

o0 n
—lal?/2 a

—n). (5.3.3)
n=0 \/ﬁ

lay=e
Sendo este um estado puro, estd associado a matriz densidade cujo os elementos sdao dados por,
Pmn = {mla){aln), (5.3.4)

que satisfaz as relacao de projecdo p? = p e tem uma entropia de von Neumannnula, S = —Tr{pIn p} = 0.
A completa decoeréncia deste estado corresponde a uma amortizacao dos termos fora da diagonal principal
da matriz densidade associada, de forma que,
|af?

p%e¢ = | (nla) 28 pn = " m&,m. (5.3.5)

O numero de particulas no estado misto pode ser caracterizado por uma distribuicao de Poisson com um
ntmero médio de particulas 7i = |a|®. A entropia que contém os estados mistos é dada por,
(Cs) _ o0 ﬁn
— o1 n_ 7
Sdec—e Z ;(nlnn—n—lnn!), (5.3.6)
n=0 "%
equacao em que o subscrito (cs) indica que o resultado é o mesmo para um estado coerente. Esta equacao é
idéntica a [4.3.59], ou seja, a entropia serd dada pela mesma expressdo que a Eq. [4.3.59], sendo que para 77 > 1,

1
(cs) _ P =2
Sdec = |In(2nen) o7 +0(1/n7)]. (5.3.7)
Desta forma, o nimero dos elementos da matriz densidade que contribuem para o célculo da entropia é dado
por An = v/ devida a distribuico de Poisson.

A entropia de um tinico oscilador harmoénico quantico em uma temperatura de equilibrio T é dada por,
_ _ 1
Seg=In(+1)+7iln{l+—]|, (5.3.8)
il

de forma que o ntiimero de ocupacdo média de particulas é expresso por 72 = (e*/T —1)~!. Considerando um

valor de grande ocupac¢do média 71, assintoticamente, obtém-se S, = 28;?;2 (Fig. [5.6]). Assim, entropia térmica

se torna duas vezes maior que a de decoeréncia; entretanto, para valores médios ou intermediérios da ocupacao,

(cs)
Sdec

grandes da ocupac¢do média, o processo de decoeréncia é consideravelmente responsavel por uma grande fracao

/Seq, € proxima da unidade (~ 0.75 para 72 = 10). Neste modelo tedrico, afirma-se que para valores nao tdo

da entropia criada. Desta forma, a diferenca de entropia criada na reagéo se deve a processos que ocorrem em

sequéncia de evolucao temporal do sistema gerado no espalhamento de ions pesados inicial. Evidentemente, a
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decoeréncia é um fen6meno que ocorre rapidamente se comparado aos processos de equilibrio térmico; sendo
assim, estes resultados implicam que a alta taxa de geracao de entropia observada nas colisdes de ions pesados

se d4 primariamente devido os efeitos da decoeréncia dos campos de cor iniciais.

4

Figura 5.6: Entropia de decoeréncia S;,, para um tinico modo kLea entropia de equilibrio S¢4 para os mesmos valores
de energia média e ntimero de ocupagao 1. Reproduzido de [27].
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Capitulo 6

Resultados e Conclusao

Neste capitulo sao expostos os resultados desenvolvidos na pesquisa em questao, envolvendo investigacoes
fenomenolégicas nas propriedades da entropia de emaranhamento, sua versao no modelo CGC, entropia
dinamica da QCD e a entropia de decoeréncia.

Os primeiros resultados dizem respeito a comparacao entre os modelos da entropia de emaranhamento no
Modelo KL e CGC na investigac¢ao de colisdes onde os niicleons sdo os alvos [107]. A entropia de emaranhamento
no modelo KL é comparada com dados da entropia hadronica” em colisdes pp no LHC e ep da Colaboracgao
H1 [108]. Este trabalho é estendido para alvos nucleares. Continuando as pesquisas com a entropia de
emaranhamento, investiga-se o caso das colisoes elasticas utilizando o método da femtoscopia independente
de modelo de Lévy, obtendo resultados para energias tipicas do RHIC, Tevatron e LHC [109]. Por fim, utilizando
diferentes modelos de UGD’s, é possivel computar a entropia dindmica da QCD para ntcleons [110] e para
colisoes eA. Estes resultados sao comparados com a entropia de decoeréncia. Ao final do capitulo, serao

apresentadas as conclusoes deste trabalho de doutorado.

6.1 ENTROPIA DE EMARANHAMENTO EM ALTAS ENERGIAS NO DIS PARA COLI-

SOES PP E EP

As expressoes para a entropia de emaranhamento dadas por [4.3.23] e [4.3.51] dependem da PDF dos gltons.
O modelo de PDF da referéncia [111] contém uma expressao fenomenolégica analitica para esta distribuicgao,
vélida tanto para grandes valores da virtualidade do féton (Q? < 50 GeV?) quanto para pequenos (Q? <« 1 GeV?).
Este modelo é vantajoso se comparado com as PDFs usuais extraidas a partir do fitting com condic¢6es iniciais
em aproximadamente Q? = Qg ~ 2 GeV2. Outra conveniéncia desta expressdo é que ela é uma funcao explicita

da escala de saturagdo Q;. Partindo do modelo de saturacao GBW, é possivel obter uma distribuicao de gltions

*A entropia hadrénica é uma das principais medidas experimentais de entropia na fisica de particulas. Ela é obtida a partir da
multiplicidade de particulas detectada ap6s as colisoes. Em colisoes de alta energia, a distribui¢ao da multiplicidade de particulas é
frequentemente descrita pela Distribuicdo Binomial Negativa (Negative Binomial Distribution, NBD), que é definida por dois parametros:
(n) e k. ANBD é dada por:

T(n+k) my 'k \F
(n+1I'(k) (k+ (n)) (Ic+<n))

onde I' é a funcao gama. A NBD é amplamente utilizada na fenomenologia de colisdes de alta energia, pois descreve bem as flutuagoes
observadas na multiplicidade de particulas.

Pnp(n) = T
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nio integrada:
2
Nok® _i2; Q?
e s,

asF(x, k)= —— (6.1.1)
) Q:
com Ny = 30¢/4n?. APDF pode ser obtida a partir da integral:
QZ
(ny=xfe(x,Q%) = f dK*F (x, k)
° 6.1.2)

30 2\ -%
= =0 @2 1—(1+Q—)e &
am?ag Q?

Nesta expressao, a escala de saturagao Q; é dada pela Eq. [3.1.25], e os valores utilizados para os pardmetros sao
00=27.32mb, 1 =0.248 e xo = 4.2 x 107° ajustados na referéncia [62].
Inicialmente, analisando a dependén-

cia das nocoes entrépicas estudadas com

60 e 150 e e

a rapidez Y, avalia-se a entropia no mo-

— - WEHRL

delo de KL, especificadamente a Eq. [4.3.52], s,n:— — ! T Kharzcev-Levin
comparando-a com as expressoes para a en-
tropia de Wehrl [E.2.13] (estudada na disserta-
¢ao [14] e com uma breve exposicdo no Apén- 30 —
dice E.1) e 0 modelo CGC [4.5.37]. Os resulta-

dos sdo mostrados na Fig. [6.1]. O valor para

4.0 - L
L 9,0 -

6.0 -~ 2

a constante de acoplamento da forca forte é 10 — or 7

a; = 0.25. Analisando os diferentes modelos

ool el 1,
de entropia, percebe-se que tanto para o mo- T

delo de emaranhamento CGC quanto para a

versao partonica da entropia de Wehrl, estas Figura 6.1: A comparacdo de diferentes modelos para entropia partd-

sdo proporcionais a drea transversa do alvo. nica em altas energias. A entropia é expressa como fungéo do x de
Bjorken para virtualidades de Q2 = 2 GeV? (esquerda) e Q2 = 10 GeV2
) . (direita) em um DIS de prétons. Os resultados sdo obtidos para a en-
servavel extensivo como a entropia. Esta pro- tropia de emaranhamento no Modelo de KL, modelo CGC e Wehrl.

priedade nao é contemplada na equagdo da Reproduzido de [107].

Esta é uma propriedade intrinseca de um ob-

entropia de emaranhamento no modelo KL

[4.3.23]. Esta expressdo se comporta como S ~ Y com uma supressao logaritmica em 1/Q?. A escolha r? = 4/Q?
para o tamanho médio do dipolo é utilizada para o produto dentro do logaritmo, de forma que Q?r = 4Q2/Q?+e
(0 segundo termo é utilizado para evitar os valores negativos quando Q2 < Q?). Por outro lado, a entropia de

MY e cresce com Q? com a simplificacio realizada na integracdo em k, o que é

Wehrl se comporta como Sy ~ e
suficiente nesta andlise fenomenolégica. Por fim, a entropia de emaranhamento no modelo CGC se comporta
como Scge ~ e¥ (In® Q% —21Y).

Na Fig. [6.2], sd3o apresentados os resultados para entropia de emaranhamento utilizando a PDF analitica
para glions em altas energias [6.1.1] em funcéo de x (10™° < x < 1072) para alguns valores especificos da
virtualidade do féton. O modelo analitico possibilita uma anélise na escala leve, Q* = 0.65 GeV~2, um regime
que ndo pode ser avaliado pela evolugdo DGLAP [3.1.19], pois em geral esta equacdo comeca a ser avaliada
em Q3 ~ 2 GeVZ. Os resultados para as virtualidades Q* = 2 GeV? e Q? = 10 GeV? também sdo apresentados.

E bem clara a transicéo entre as escalas leves para as mais duras. A vantagem de utilizar o modelo analitico
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Figura 6.2: (a): Entropia de emaranhamento como funcéo do x de Bjorken para as virtualidades Q® = 0.63, 2, 10 GeV? em
um DIS de prétons. A entropia méxima para a escala Q? = 0.63 é representada pela linha vermelha (linha tracejada). A
expressdo paramétrica [4.3.52] também é apresentada (linhas de ponto traco). (b): Entropia de emaranhamento em colisdes
pp comparada com a entropia hadronica final determinada para diferentes dominios de pseudo-rapidezes no LHC (os
pontos com || < 0.5,1.0,2.0) obtidos a partir de [112]. O resultado numérico é representado pelas linhas sélidas. Adaptado
de [107].

para x fg € a possibilidade de verificar comportamentos anteriores em termos da variavel de escala 7 = Q%/Q3.
Para 7 <« 1, uma expansdo em séries resulta em x fg o Q*/Q?, de forma que S oc —In Q2. Para pequenos valores
de x, obtém-se S ~ Alnx. Quando 7 =1, xfg o< [1-2/e] 2, com a entropia S ~ —In(x) — 1 fazendo com que a
curva mude de inflexdo na regido de transicao Q? =~ Q2. No regime duro, quando Q? < Q2, o comportamento
assintotico € dado por x fg o Q? e S~ —AIn(x). Isto é visto para grandes valores de x no gréfico de Q? = 2 GeV?
e para todo x no caso Q? = 10 GeV?.

A determinacdo da entropia de emaranhamento a partir de dados experimentais € realizada em [112]. Para
um DIS de prétons com pequeno-x no intervalo de energia /S, ~ 225 GeV para o DESY-HERA. Os autores
utilizaram o método de Monte Carlo para a distribuicdo de multiplicidades a fim de obter a entropia dos
hadrons nos estégios finais com a entropia hadrénica S;, comparando-a com a entropia de emaranhamento,
demonstrando que ambas nio sdo correlacionadas em Q? = 2 e Q? = 10 GeV?. Em ambas as virtualidades,
obtém-se um resultado independente de (x) com Sy, = 1.5, em contradi¢do com o comportamento de poténcias
da entropia de emaranhamento. O resultado do modelo proposto nesta tese, observado em (b) da Fig. [6.2]
para Q? = 2 GeV? é similar ao obtido pelos autores de [112]. Na Tabela [6.1] é apresentada a entropia de
emaranhamento dada pela Eq. [4.3.23] utilizando a escala Q> = Q?(x) e utilizando os mesmos procedimentos
dareferéncia [112] para comparar com a entropia Sy,. A escolha para a rapidez do hddron y é tomada baseada
nos diferentes cortes experimentais da distribui¢do de multiplicidade de um hadron com pseudo-rapidez 5.
Entdo, Sy, é obtido dos dados experimentais da colaboracao CMS [113], que é consistente com ATLAS e ALICE.

Desta forma, a expressdo analitica para entropia de emaranhamento €,

S(Q? = Q%) =In[Q%(x)] + So, (6.1.3)

com Sy =1In[3(e— 2)Rf,/4emx5] ~2paraas=0.2eS =S5y quando Qf =1GeV2. Na Fig. [6.2] (b) os resultados

mostram uma boa concordancia com a entropia de emaranhamento obtida e a entropia reconstruida a partir
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Tabela 6.1: Entropia de emaranhamento em colisdes pp no LHC previstas pela PDF de saturacao de gltions utilizando os
procedimentos da referéncia [112]. Alguns valores extraidos dos dados do CMS sdo também apresentados (em parénteses)
[114]. Adaptado de [107].

VSop(TeV) /<05 ly[<1.0 lyI<15 Iyl<2 ly<24
7.00 1.668(1.914+0.212) | 2.368(2.673+0.157) | 2.787 | 3.093(3.478+0.236) | 3.291
2.36 1.398(1.271£0.099) | 2.100(2.139+0.318) | 2517 | 2.823(3.142+0.326) | 3.022
0.90 1.160 1.860(1.633£0.130) | 2277 | 2.584(2.671+0.108) | 2.784

da multiplicidade hadrénica para valores de pequeno-x.

Por fim, foi calculada a entropia de emaranhamento KL utilizando a PDF de glions GBW [6.1.2] comparando-
a com os dados da colaboracdo H1 [115] para colisdes ep. Os dados fornecem a entropia do hadron no
estado final, derivada das distribui¢6es de multiplicidade carregada para pseudo-rapidez de tragos n no
referencial do centro de massa hadronico, restritas ao intervalo 0 < n < 4. Além disso, a colaboracdo H1
mediu a entropia hadrénica em quatro faixas de virtualidade do féton: 5 < Q% < 10, 10 < Q% < 20,20 < Q*> <40 e
40 < Q* < 100GeV?.

Para comparar a expressao KL com os dados, é necessario adaptar a férmula da entropia de emaranhamento
para incluir a contribuicdo de Q. Uma maneira de realizar este procedimento é fornecida em [96], onde os
autores relacionam a entropia de emaranhamento KL com a entropia dos estados finais, apontando diversas
incertezas na comparac¢do atual com os dados. Em particular, eles destacam a normalizacdo global, a relacdo
entre multiplicidade de hadrons carregados versus total na comparacdo com os resultados experimentais,
bem como diferentes métodos para determinar o nimero de partons em um DIS. Eles também incluiram
o PDF de quarks do mar, X fse,(x, Qz), modificando a Eq. (4.3.18) para (n) = xfg(x, QZ) + X fsea (X, QZ). Aqui,
manteremos apenas a contribuicdo dos gltions para aproveitar a expressao analitica GBW para o PDF de glions.
Seguindo [96], o tratamento para as medidas em faixas de Q? sera dado por:

2

Qmax
dQ*x fg(x,Q%). (6.1.4)

1
2 _
ntxQ )>QZ - Qfax— Qrznin Qhin

Ap6s as alteracoes na Eq. (4.3.23), a expressao final para avaliar a entropia de emaranhamento KL, a ser

comparada com a andlise dos dados H1, é:

(8(x,Q%) g2 =In(n(x,Q%) 2 - (6.1.5)

Os resultados sdo apresentados na Fig. [6.3]. Em geral, os resultados ajustam-se bem, exceto para os dados de
40 < Q? < 100GeV?. A razdo para isso é que a férmula analitica GBW é valida até 50 GeV?. Uma evolugio DGLAP

é necessdria nesta regido cinematica.

6.2 ENTROPIA DE EMARANHAMENTO EM ALTAS ENERGIAS NO DIS PARA NU-

CLEOS

Nesta secdo discute-se a entropia de emaranhamento partonica no caso de alvos nucleares. Para simplificar a
andlise do DIS nuclear, considera-se a propriedade do geometric scaling na aproximagao da saturagao partdnica.

Desta forma, a secao de choque de um DIS eA para pequeno-x é diretamente relacionada com a secao de
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Figura 6.3: Entropia de emaranhamento partonica versus Bjorken-x. Os resultados sdo contrastados com a entropia
hadrénica derivada das distribuicdes de multiplicidade carregada medidas pela colaboragdo H1 [115]. Os resultados
numéricos deste trabalho sdo representados pelas linhas sélidas. Reproduzido de [108].

choque para o préton como alvo. Os efeitos nucleares sao absorvidos pela escala de saturacdo nuclear Q? A7

Q% (x,A) =

JTRIZ? A
o ) Q2 (x) ~ AP Q% (), 6.2.1)
A

com A = 1.27 [116] e a normalizacdo da se¢do de choque reescalada em rela¢do ao caso ep com a troca,

TR
gp— —;0'0 ~ AZISO'(), (6.2.2)
R

de forma que o raio nuclear seja dado por R4 = 1.12A'/3 fm. Assim, a extensdo mais simples da distribuicao de

glions nuclear é,

2
3R? 2\ -3
ng,A(x,QZ)=ﬁQ§A 1- 1+QT)e %a . (6.2.3)
s s,A

Na Fig. [6.4] estdo expostos os resultados para a entropia de emaranhamento nuclear a partir da parame-
trizacao para a PDF nuclear [6.2.3]. Foram consideradas as virtualidades Q? =5, 10, 50 GeV? e 0s seguintes
nucleos: chumbo (Pb), ouro (Au), célcio (Ca) e silicio (Si). Os nucleos de Pb e Au serdo investigados em
futuros colisores elétron-ion como o LHeC e o eRHIC. O caso Q? = 2 é interessante pelo fato de a escala de

A4/9

saturac¢do ser aprimorada por um fator de se comparada com o caso do préton. Este fator é de 10 para o

chumbo (A =208) e 5 para o célcio (A = 40). Portanto, no modelo utilizado, a escala Q? 4 €na ordem de 2 GeV?
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para x = 1072 parao Pb e x = 1073 para o Ca, enquanto no caso do préton isto ocorre para x ~ 107> (Fig. [6.2]

(a)). Isto significa que a entropia de emaranhamento alcanga o seu valor maximo para um valor maior de x se

comparada com o DIS nuclear devido a rdpida saturagdo no caso nuclear.
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Figura 6.4: Entropia de emaranhamento nuclear como fun¢do de x para as virtualidades Q? =5, 10, 50 GeV2 em um DIS
nuclear. Para cada virtualidade, os seguintes nuclideos foram examinados: Pb (linhas sélidas), Au (linhas pontilhadas), Ca
(linhas pontilhadas longas) e Si (linhas tracejadas). Reproduzido de [107].

6.3 ENTROPIA DE EMARANHAMENTO EM COLISOES ELASTICAS UTILIZANDO

FEMTOSCOPIA HADRONICA

Nas referéncias [23, 24] foi realizado o cdlculo da entropia de emaranhamento em colisdes elasticas, na forma
como foi desenvolvido na Secdo [4.4]. Contudo, para que fosse possivel obter a expressdao da entropia de
emaranhamento [4.4.19], os autores, além de realizarem uma regularizacao de volume, tiveram que tomar
algumas assung¢odes quanto a dependéncia dos observaveis fisicos em relacdo a varidvel de Mandelstam t, neste
caso, a aproximacao de pico de difracdo no espalhamento hadron-hadron [4.4.20].

E possivel obter uma expressio para a entropia de emaranhamento [23,24] sem considerar qualquer hipétese
para a dependéncia em ¢, como o pico de difracdo. Contudo, para isso, utiliza-se modelos de femtoscopia, mais
especificamente, o método de femtoscopia independente de modelo de Lévy para colisées eldsticas (Apéndice
D).

O objetivo desta se¢do é apresentar os resultados obtidos para a entropia de emaranhamento utilizando
o modelo de femtoscopia de Lévy [109]. Nao apenas os dados para altas energias foram considerados, mas
também os regimes menos energéticos. Foram utilizadas expansdes de Lévy até a quarta ordem para os dados
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do espalhamento pp medidos no dominio energético do ISR (v/s = 23.5, 30.7, 44.7, 52.8 e 62.5 GeV). Além disso,
para as colisdes pp as expansoes de Lévy utilizadas foram até o segundo grau para as energias /s = 53 GeV
(ISR) e v/s = 1960 GeV (DO, Tevatron) e expansdes até a terceira ordem para /s = 546 GeV e /s = 630 GeV (UA4).
Para as energias do LHC, as expansoes de Lévy foram realizadas até a quarta ordem para todas as medidas da
secdo de choque diferencial em colisdes eldsticas pp para 7 e 13 TeV. Os parametros para a expansao, R, a e
os coeficientes complexos c¢; estdo disponiveis nos Apéndices A e B da referéncia [117]. De qualquer forma,
usualmente utiliza-se a = 0.9 e R = 0.6-0.7 fm.

Uma parte dos resultados é exposta na Tab. [6.2], utilizando os trés métodos de regularizacdo propostos
pela referéncia [23], originalmente com /s = 1.8, 7, 8 e 13 TeV. Os valores medidos para as se¢des de choque
totais e eldsticas também sdo apresentados. Foram adicionadas previsoes para as energias do RHIC, 0.2 TeV, e
LHC com 2.76 TeV e também resultados recentes para 7 e g nas colisdes pp do RHIC com /s = 200 GeV.

Na Fig. [6.5] sdo apresentados os resultados da entropia de emaranhamento extraida como funcao da
energia do centro de massa da colisdo utilizando a regularizacdo de volume [4.4.19], com a metodologia de
femtoscopia de Lévy. Os dados das colisdes pp para baixas energias no ISR sao etiquetados por tridngulos
levantados, enquanto os dados de colisdes pp do ISR, UA4 e DO sao representados por tridngulos invertidos. Os
dados do TOTEM-LHC com energias de 7 e 13 TeV, representados por quadrados, sdo expostos junto com a
entropia de emaranhamento da referéncia [24], sendo estes estrelas no gréfico.

O célculo da entropia de emaranhamento utilizando a metodologia de Lévy resultou em altos valores
utilizando a regularizacao por volume devido a contribuicdo adicional para grande ¢ que é suprimida na
aproximacao de pico de difracdo. Contudo, o desvio nao € tdo grande para aproximacao de pequeno ¢, podendo
ser considerada uma extracao compativel com a entropia de emaranhamento. Reitera-se que a regularizagdo

utilizando a funcdo degrau consumiu mais tempo de maquina devido ao integrando oscilante na Eq. [4.4.26].

Tabela 6.2: A entropia de emaranhamento determinada com o método independente de modelo de Lévy comparada com a
aproximacao de pico de difracao apresentada em [24]. Também s3o apresentados resultados para trés tipos de regularizacao
(regularizacdo de volume, e cutoffs de fungdo degrau/gaussiana). As predicoes para 0.2 TeV (RHIC) e 2.76 TeV (LHC), que
ndo aparecem originalmente em [24], s@o calculadas. Adaptado de [109].

VSpp (TeV) | Lévy | Reg. de Volume | Dados Experimentais [0, 0¢ll (mb) | E Heaviside | E Gaussiana
13.00 1.126 1.114 [110.6 3.4, 31.0 1.7] 1.212 0.8621
8.00 - 1.063 [101.7 2.9, 271 14] 1.197 0.7965
7.00 1.020 1.031 [98.0 2.5, 25.1 1.1] 1.192 0.7539
2.76 - 1.029 [84.7 3.3, 21.8 1.4] 1.144 0.7509
1.80 0.953 0.918 [72.10 3.3, 16.6 1.6] 1.193 0.6009
0.20 - 0.769 [54.67 1.89, 10.85 1.103] 1.103 0.3909

6.4 A ENTROPIA DINAMICA DA QCD

A entropia dindmica dos estados densos nas colisdes pp em altas energias pode ser estudada utilizando modelos
fenomenolégicos para as UGD’s. Desta forma, é possivel obter as distribui¢des de probabilidades de momentum
transverso avaliadas em termos da rapidez. A entropia dindmica é avaliada em funcdo de AY = ¥, — Y, sendo
Yy arapidez inicial.

Foram analisados quatro UGD’s na investigacao da entropia dindmica: a distribui¢do CGC gaussiana [118]

dGaus (Y, k), a proposta fenomenolégica que considera a producdo de hiadrons carregados em colisées pp
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Figura 6.5: A entropia de emaranhamento para colisdes eldsticas como fungdo da energia do centro de massa da colisdo /s.
A extracdo obtida utilizando o método de Lévy é apresentada em baixas e altas energias e comparada com os resultados
de [24]. Os valores para LHC, Tevatron e RHIC sdo dados na Tabela [6.2]. A predi¢do para a aproximacéo de pico difrativo
utilizando um canal no modelo eikonal é apresentada (linha sélida). Um ajuste baseado na contribuicao de polo tnico de
Regge para o Pomeron leve também é apresentada (linha tracejada). Reproduzido de [109].

combinada com distribuicdes do tipo Tsallis [119] ¢mpm (Y, k), 0 modelo que considera tanto as condi¢oes
iniciais do CGC por McLerran-Venugopalan quanto as solucoes de Levin-Tuchin em um amplo dominio da
distribuicdo de momentum transverso [120] ¢11(T, k) e a proposta numérica da referéncia [121] ¢gs(Y, k).
Contudo, inicialmente é necesséria a obtencdo das distribuicdes de probabilidades para cada uma das UGD’s

citadas.

6.4.1 As Distribuicoes de Probabilidades da Entropia Dindmica da QCD

Agora, demonstra-se, em detalhes, os procedimentos realizados para o cdlculo da entropia dindmica no caso
da UGD gaussiana, que pode ser resolvido analiticamente. Com excecdo da proposta de ¢s(Y, k), as demais
distribuicdes foram obtidas a partir de uma metodologia andloga, de forma que esta demonstracdo segue uma
linha mais pedagégica.

Inicialmente, para obter as distribuicées de probabilidades do momentum, é necesséria a realizagcao da

normalizacdo da UGD, pois, da Eq. [3.4.3],

P(1) = % = %, NZdek(P(T). (6.4.1)
Lembrando que 7 = k?/Q?(x).
A UGD gaussiana QCD da referéncia [61] é dada por,
CFAT 112 —1/2 CrAr
— =C . = . 6.4.2
¢(1) 4”2%16 Te nta, ( )
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Nesta equacao, At € a drea transversa do préton. Sendo assim, o fator de normalizagao pode ser obtido a partir

de uma substituicdo de variaveis trivial,

+00 +00 [e.¢]
N= f f dkydkyp(k*,x) =2n f dkk(T)
—0o J—co 0

=1Q%(x) fooo<p(r)dr = an(x)Cj:ore*T/sz. 6.4.3)
—
Desta forma, N =4nC Q?(x). Sendo assim, a distribui¢do para o caso gaussiano Pgaus(1) € dada por,
1o T2
Pgays(1) = W' (6.4.4)
Para o caso da UGD ¢w\pMm, dada por,
Pmpm = 590 Thi) (6.4.5)

antas (1+ 1)1+’

sendo, nesta equagao, as = 0.2, com Q?(Y) = k2™ e kj = )33 GeV2. O comportamento de poténcias dos
gltions produzidos no spectrum de grande momenta é determinado pela funcdo B(r) = ar®. O conjunto de

parametros oy, Xo, a e b é ajustado a partir de dados provenientes de um DIS para pequeno-x [119],

09 =20.47mb;

Xp=3.52x1075;
(6.4.6)
a=0.055;

b =0.204.

De forma andloga ao procedimento seguido para obter a distribuicdo gaussiana, para o caso de ¢ypm

obtém-se a distribuicao,
1 76(1)

mQ2E (1+7)1+A@’ (6.4.7)

Pyipm(T) =

sendo ¢ = 4.34618 uma constante proveniente da integracdo numérica [6.4.1].

A fim de analisar informacdes provenientes das distribuicoes de momentum transverso (TMD, transverse
momentum distribution) do glion, que carregam consigo mais informagdes do comportamento tedrico correto
tanto para grandes quanto pequenos momenta, considera-se a distribuicao ¢rr. Ela é derivada a partir de uma
forma de solucao geral ¢(Y, k) que reproduz tanto as condicdes iniciais do Modelo MV quanto as solucdes de
Levin-Tuchin (LT) em seus limites apropriados. Esta distribuicdo conecta ambos os limites suavemente e melhor
se aproxima da solucdo numeérica em primeira ordem da equacao BK, especialmente na regido de saturagao.
Neste limite, a TMD para o gltion vai a 0. Inicialmente, com a TMD de gltions para um pequeno momentum

transverso a partir da solugdo da matriz S de LT, a UGD toma a seguinte forma na regido Qs > k > Agcp,

N A .
Gy, k) = — 7;3;6 1n(£)e—€1n2(1), (6.4.8)
N

de forma que ([)if}t(Y, k) foi obtida para um pequeno momentum transverso em termos de uma série de polind-
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mios de Bell. Esta expressdo corresponde a aproximacao de logaritmo dominante para as séries resumidas com
uma constante € = 0.2, que aparece devido a condi¢do do ponto de sela em torno da borda de saturacao. Fora
dos contornos da saturacao (k > Qg), mas préximo a linha de saturagdo, a amplitude de dipolo QCD no espaco
transverso tem a forma N(r, Y) = (r?Q?%)s. Neste limite, a TMD pode ser escrita como,

NCATG

dil -
(Y, k) x T 7s,
Ty, Ba,

(6.4.9)

Utilizando os procedimentos de normalizacdo [6.4.1] e considerando os detalhes da regido fisica de interesse,
é proposta a seguinte distribuicao,

2
-BIn(%)e ™ @/¥  para 7<1,

Prr(Y, k) = ,
B(dt) Yse € /4 para T<]1,

(6.4.10)

sendo d = (In4)"Y"s e B~0.1/ ﬂQ?, parametros da normalizac3o.
Por fim, utilizou-se o modelo de UGD néo linear proveniente do algoritmo providenciado pelo autor da
referéncia [121], utilizado neste trabalho com o intuito de verificar as incertezas teéricas adjacentes aos demais

modelos utilizados. Esta UGD é tratada numericamente com o formalismo matemdtico da entropia dindmica a
partir de algoritmos disponibilizados por um dos autores.

— Y=2In(10)

— Y =2In(10)
—— Y =4In(10)| : —— Y=4In(10)| §
- Y =6In(10) . o Y =6In(10)| ]
w7 TN -— Y =8In(10) A= Y=8in(10)

-10 | MR [
10 2
e 0

10
k[GeV]
(a)

Figura 6.6: A distribuicdo de probabilidade, P(Y, k), como funcao de k para valores fixos de Y = —Inx (x = 1078-1072).
Resultados para o modelo MPM (esquerda) e modelo gaussiano (direita). Reproduzido de [110].

Na Fig. [6.6] sdo apresentadas as distribuicdes de probabilidade de momentum transverso dos gltions para
os modelos MPM (a) e gaussiano CGC (b). E apresentada a dependéncia com k para vérios valores de Y (2,
4,6, 8,1n10), que correspondem as fracdes de momentum longitudinal dos gltions, x = 1078-1072. Ambos os
modelos apresentam a propriedade de geometric scaling, ¢(Y, k) ~ ¢(r = k?/Q?)R;, e 0 seu pico ocorre com
um momentum transverso proporcional a escala de saturacao. De qualquer forma, em cada um dos modelos,

esse pico é alcancado para valores diferentes: para a gaussiana CGC, tem-se k"% = /2Q,(Y), enquanto, no
caso do modelo MPM, k™% =~ 1/0.954Q;(Y).
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6.4.2 Resultados para Entropia Dinamica da QCD e a Entropia de Decoréncia
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Figura 6.7: (esquerda): Entropia dinamica correspondente a uma evolugao QCD de rapidez Yy — Y, com AY =Y - Yy. A
rapidez inicial é Yy = —Inxp, sendo xg = 1072. Resultados numéricos para o modelo MPM (linha pontilhada), modelo CGC
gaussiana (linha sélida), CGC LV (linha pontilhada) e modelo KS (pontos). (direita): Entropia dindmica total em uma colisdo
pp para uma evolugao QCD de rapidez, ¥y — Y, no dominio AY = [0,15]. Reproduzido de [110].

Nesta secao, apresentam-se os resultados obtidos para a entropia dindmica da QCD com uma rapidez Y
sujeita a evolucao Yy — Y. Foi considerada uma rapidez inicial Yy = 4.6. Os valores de x < x correspondem ao
limite de validade para a aplicacdo fenomenolégica das UGD’s consideradas neste trabalho. Para essa rapidez
inicial, os partons populam uma drea transversal proporcional ao tamanho Ry (Yp) = 1/Q;(Yp).

O caso do modelo da UGD gaussiana do CGC pode ser tratado analiticamente. Utilizando a expressao [3.4.6]
com a UGD gaussiana dada por [6.4.4],

2 2
_ (Y) Qs (Y)
3 Y:fz[(os —1)—1 . H 6.4.11
gaus Q) R0 6410

Utilizando a expressao para a escala de saturagao em fungao da rapidez, Q?(Y) = Q2(Yp)e**Y, obtém-se:

ZYoﬂYzz(e/lAY_l_AAY), (6.4.12)

Gauss

Para o caso do modelo MPM, a entropia é parametrizada na forma:
Zion = (L4719 —g—0AY), (6.4.13)

de forma que 0 = 0.088 e g = 0.95 na regido AY « 5.

Na Fig. [6.7], a entropia dinamica é apresentada para todos os modelos de UGD’s estudados: modelos MPM
(linha tracejada), CGC gaussiano (linha sélida), LT (linha pontilhada) e KS ndo linear (pontos). Os modelos MPM
e LV sdo praticamente coincidentes, significando que a fenomenologia realizada no modelo MPM mimetiza
corretamente o comportamento teérico da UGD LT na regido de saturacdo. O modelo gaussiano apresenta uma
entropia de maior magnitude se comparado com os demais.

A densidade de entropia dindmica [3.4.14] também é calculada e apresentada na Fig. [6.7], com a mesma
notacgdo das linhas do lado esquerdo da mesma figura. Na Eq. [3.4.14], ndo estdo incluidas as correlacées

parténicas [21]. Os resultados foram obtidos no dominio de AY = [0, 15], que corresponde a uma evolucao
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QCD de x = 1072 até x = 1078, Foram utilizados a; = 0.2 e Ry = 0.8414 fm no computo numeérico. Para os
modelos MPM e LT, a magnitude é bem aproximada. O modelo de UGD de KS n#o apresenta geometric scaling,
especialmente para grande k. Este modelo mimetizou muito bem as UGD’s LV e MPM, especialmente para
grande AY.

Por fim, na Fig. [6.8], a entropia dindmica por niimero médio de ocupacéao de gltons (n) é apresentada
em comparacao com a entropia de decoeréncia de um tnico modo [5.3.7] e a entropia de equilibrio [5.3.8].
Para obter os resultados da entropia dindmica em funcado da ocupagdo média, foram utilizadas as instrugdes
da referéncia [22], em que (n) = xfg(x). A escala de resolugdo é Q? = Q2(Y), de forma que a densidade de

ocupacao de glions é dada nesta escala por:
xfelx=e", Q) =CQ;(Y), (6.4.14)

comC= 371Rf,(1 —2/e)/4n®a;. O resultado é uma expressdo para o modelo MPM. Comparando os resultados da
Fig. [6.8], percebe-se que, para um grande niimero de ocupagdes, o comportamento da entropia de equilibrio é
bem similar ao da entropia dindmica. De qualquer forma, observa-se que diferentes definicdes para (n) foram

utilizadas em cada caso.
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Figura 6.8: A entropia dindmica X~ como funcdo do niimero médio de ocupacdo (linha pontilhada). Comparacao com a
entropia de decoeréncia (linha sélida) e entropia de equilibrio (linha tracejada) para os estados coerentes de um tinico
modo. Reproduzido de [110].

6.4.3 Entropia Dinamica em Colisdes pA

Para adaptar o calculo da Entropia Dindmica é necessério encontrar UGD’s nucleares. Este tipo de objto
matematico é escasso na literatura, de forma que foram estabelecidas duas estratégias para adaptar as UGD’s ja
estudadas no caso dos prétons para o caso dos nuclei. A primeira delas faz uso da propriedade do geometric

scaling proposta na referéncia [63], proposto na Eq. [3.1.27], em que a drea transversa do alvo pode ser absorvida
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pela escala de saturacdo dependente da massa atdmica A, ou seja, oV AT )l nRE1 =07 P(1)/nR%, com Ry =
(1.12AY3 —0.86 A71/3) fm sendo o raio nuclear. Assim, é necessario adaptar a secdo de choque transversa

00 — 0 4 e a escala de saturagdo Q?(Y) — Qf 4(Y). Especificamente, para a escala de saturacao nuclear Qg 4(Y):

R2A\2
Q% (V)= (;—2) Q(Y), (6.4.15)
A

onde A~ 1.27 ¢ R, = 3.56 GeV.

Agora, no célculo da entropia dindmica, o procedimento de normalizacdo é idéntico ao caso do préton, con-
forme mostrado em resultados anteriores, onde todas as dependéncias da se¢do de choque o sdo despreziveis
devido ao processo de normalizacdo. Portanto, realizando a operagao Q?(Y) — Qi 4(Y), as distribuicoes de
probabilidade de momento transverso para os modelos GBW, MPM e LV no caso préton-ntcleo séo:

T 4e° A2

Plaw(Ta) = ——, (6.4.16)
GBW\lA 4]TQ52‘A

1 TA(1+ arﬁ)
PA L (Ta) = , (6.4.17)
VP Q2 4 (1+74)2+9h

() em?(7)

——*e , parata<l1;
Phiry=4{ %% (6.4.18)
v 2(14
ey e?(%4) paraty=1
BHQiA ’ A=

Nestas equacoes, a variavel de scaling é agora 7 4 = k?/ Qi 4 €¢ =4.346 € o fator de normalizacdo para o modelo
MPM.

A segunda forma de se obter uma UGD nuclear utiliza o formalismo de Glauber-Gribov, em que a se-
¢éo de choque total do dipolo do préton, g4i, (1, Y), € substituida pela se¢do de choque nuclear o g4(x, 1) =
[d?bo g4(x,1,b), com:

1
oga(Y,r,b) =2 l—exp(—ETAadip(Y,r)) . (6.4.19)

Nesta equacao, T4 (b) é afuncao de espessura nuclear, definida como a func¢ao de perfil nuclear T4 = f:’;f palz, E),
normalizada & massa atdmica, [ d?bT4(b) = A. Neste trabalho, utilizou-se a parametrizagdo de Woods-Saxon
para a densidade nuclear p 4.

A UGD nuclear é dada pela expressao:

e F T g an (Y, 1, b). (6.4.20)

N, Ik? d?bd?r
PAY, k) = —— f

Amlag 27

Em particular, para o modelo GBW no regime de pequeno-x, pode-se utilizar a secao de choque do dipolo
do préton, e a UGD nuclear é [122]:

GBW(x k) =

n n
Q fdzbz( B Zc[ Letereat (6.4.21)
as Qs

onde, nesta equacio, C? é a féormula de combinagdo e B = %TA(b)UO.

Calculando a entropia dindmica nuclear utilizando a estratégia do geometric scaling, utilizando as distri-
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Figura 6.9: Entropia dinadmica total da QCD, dX;/dy, produzida em uma colisdo p A como funcdo de AY =Y - Yp, com
Yp = 4.6, para os modelos de UGD GBW (linhas sélidas), MPM (linhas tracejadas) e LV (linhas tracejadas-pontilhadas), para
chumbo (esquerda) e célcio (direita).

buicbes de probabilidade de momento transverso nuclear [6.4.16]-[6.4.18], obteve-se o mesmo resultado do
préton mostrado na Fig. [6.7]. Para compreender isso, a entropia dindmica pode ser avaliada na seguinte forma:

- e P(14)
=Y — 702 (v f dt 4P (1 4)In ) 6.4.22
Qs 4(Y) A AP(T4) P(T?q) ( )
com 79 = k*/Q% , (Yo). A partir disso, k* = 74Q? ,(Y) = 79Q? ,(Yp), e ¢ ttil definir a razdo,
A
R3A 9
22 Y)
Q% (V) ( 7 ) Qs (
sA 1A =MV =, (6.4.23)

QA (?)A QX (¥o)
A

onde AY =Y - Y, com Y = 4.6 (xo = 0.01). Considera-se essa rapidez inicial porque os valores de x < xg
correspondem ao limite de validade para a aplicagdo dos modelos fenomenolégicos de UGD considerados aqui.
Assim, inicialmente, os partons ocupam uma drea transversa proporcional ao tamanho inicial de correlacao de
cor Ry(Yp) = 1/Q;(Yp).

A partir da expressdo [6.4.22], a razdo entre P(7 4) e P(sT 4) pode ser analisada para as diferentes expressoes
das distribuicdes de probabilidade de momento transverso nuclear na estratégia de adaptacao de geometric
scaling [6.4.16)-(6.4.18]. Para o modelo GBW, pode-se observar:

Pgpw (T 4)

=2AAY + K*[R2(Yp) — R2(Y)]. 6.4.24
Posw (ST 4) [R5 (Yo) — R (Y)] ( )

Substituindo este resultado na expressao [3.4.6], obtém-se uma expressao equivalente a obtida na Eq. [14] da
Ref. [21], recuperando a entropia dindmica do préton:

sl @) =2(eY —1-2aY), (6.4.25)

-Y

. . . - oA . Y
Um procedimento similar pode ser realizado para a entropia dinamica do modelo MPM, X}, uma vez
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que apresenta propriedade de geometric scaling:

b_b

v 1 [ 741+ ath) (1+ar?) (1 +s72)%+% 72

zho-¥ : f dr A A (6.4.26)
0

MPM b

)2+HTZ A

)2+ar

1+74 sz(l+asbrg)(1+m

Esta expressdo também retorna a entropia dindmica do préton mostrada na Fig. [6.7]. O procedimento de
normalizacgao [6.4.1] elimina toda a dependéncia nuclear no tamanho transverso do alvo, Sf = nRi. O mesmo
efeito pode ser demonstrado para o caso da UGD LV, tanto para as contribuicdes diluidas quanto saturadas.
Na Fig. [6.9], a densidade de entropia [3.4.14] é calculada para chumbo (painel esquerdo) e para célcio
(painel direito) para todos os modelos baseados no fendmeno de geometric scaling: GBW (linha sélida), MPM
(linha tracejada) e LV (linha tracejada e pontilhada) no intervalo AY = [0,15]. Embora a entropia dindmica
nuclear seja independente de A, sua densidade esté relacionada ao tamanho do raio nuclear como ddin ~ Ri.
Na definicao proposta na refe;}%?cia [21], deve-se levar em consideragdo a razdo entre todas as células unitarias
A

disponiveis no meio CGC, ~ P
0
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Figura 6.10: Entropia dindmica QCD nuclear em colisdes préton-nticleo correspondente a evolu¢do QCD em rapidez,
Yp — Y, nointervalo AY = [0, 15] na abordagem de Glauber-Gribov. A entropia é calculada para chumbo (linha sélida) e
silicio (linhas tracejadas).

Por fim, os resultados obtidos para a entropia dindmica nuclear via o formalismo de Glauber-Gribov sdo
dados na Fig. [6.92], a entropia dinAmica novamente mostrou independéncia em relacdo a A, também plotada
como uma func¢do de AY no intervalo [0, 15]. Embora a obtencdo da UGD envolva um processo mais complexo
via a Eq. [6.4.21], parece que o geometric scaling e o procedimento de normalizacdo também eliminam a
dependéncia de A na entropia dindmica. Uma diferenca notével em relagéo a estratégia do geometric scaling é

que este resultado néo se reduz ao caso do préton e é aproximadamente dez vezes maior.
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Capitulo 6. Resultados e Conclusao

6.5 CONCLUSAO

Nesta tese, foi investigada a entropia de emaranhamento em processos DIS, para pp, ep e pA e também
em espalhamentos elésticos. O formalismo teérico baseou-se na entropia de emaranhamento utilizando a
expressdao de von Neumann, escrita em termos do nimero de glions como fun¢do de x de Bjorken e das
virtualidades do féton, Q2. Utilizou-se expressoes analiticas para a densidade de gltions relacionadas a fisica
de saturagdo de partons, com modelos baseados na representacdo de dipolos de cor. A andlise incluiu tanto
densidades integradas quanto nao integradas, permitindo a descri¢ao de observaveis fundamentais em DIS
para x pequeno e valores intermediarios de Q% ~ 50 GeV2. Além disso, foi realizada uma extrapolacao utilizando
propriedades de geometric scaling para obter a densidade de gltions nucleares, sendo os resultados consistentes
com os dados experimentais.

A investigacdo da entropia de emaranhamento em processos de espalhamento eldstico em colisées pp
e pp foi conduzida utilizando o formalismo da matriz S e a expansao em ondas parciais. A extracdo model-
independent, baseada no método de imagem de Lévy, permitiu a andlise sistemdtica do emaranhamento nos
estados finais hadronicos. Verificou-se que, em altas energias, a entropia para espalhamento eldstico apresenta
saturacdo em energias assint6ticas, com comportamento parametrizado como S ~ 1 +1In(2) — In(In(s)).

A entropia dindmica da QCD foi estudada em colisdes pp e p A, com base em diversos modelos de UGD’s.
Para colisdes pp, foram utilizados modelos analiticos como o0 MPM, que descreve de forma precisa os espectros
de particulas carregadas no LHC, além de modelos CGC baseados em distribuicdes gaussianas e na lei de
Levin-Tuchin. Os resultados mostraram que, em todos os casos, 0 maximo da distribui¢do ocorre em torno de
k ~ Qs, destacando a propriedade de geometric scaling. Foi calculada a entropia dindmica total e sua densidade,
apresentando forte dependéncia de AY, especialmente no caso do modelo gaussiano do CGC. Para colisdes p A,
estratégias baseadas no geometric scaling e no formalismo de Glauber-Gribov foram empregadas, confirmando
que a entropia dindmica independe do niimero atémico A, devido ao procedimento de normalizacao.

Os resultados compararam a entropia dindmica com a entropia de decoeréncia e a entropia de equilibrio de
um Unico modo, destacando semelhancas para grandes nimeros médios de ocupacgdo de glions. A andlise
detalhada destas entropias, utilizando ferramentas analiticas e fenomenoldgicas, oferece uma nova perspectiva
para compreender a dindmica dos estados iniciais em colisdes de ions pesados e a producdo de multiplas
particulas em altas energias.

Por fim, a anélise robusta de diversas no¢des de entropia confronta os bons resultados obtidos pela entropia
de emaranhamento no Modelo LV. Neste caso, como a matriz densidade reduzida pode ser escrita em func¢ao
da virtualidade, que, por sua vez, estd relacionada com a porcao espacial do hddron investigado em um DIS,
sendo esta na sua totalidade Ay, é proposta a ideia de que, para baixos valores da virtualidade, na ordem em
que Aj, ~ 1/Q?, ter-se-4 p o ~ p, ou seja, a matriz densidade é similar & matriz densidade total do sistema, de

forma que a entropia de emaranhamento se confunde com a entropia hadronica.
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Apéndice A

Variaveis do Cone de Luz

As coordenadas do cone de luz sdo o sistema usual na fisica de particulas em altas energias. Tradicionalmente,
existem duas formas de tratar esse sistema, que podem mudar conforme a referéncia estudada. A primeira
forma é chamada de convencao de Lepage-Brodsky (LB), e a segunda, convenc¢do de Kogut-Soper (KS). Por
exemplo, ao tratar desse sistema de varidveis, na secao em que o formalismo CGC é apresentado [3.1.1], os
resultados reproduzidos utilizaram a convencao KS; em contrapartida, ao realizar manipula¢des para obtengao
da entropia de Wehrlneste apéndice [E.1], foi utilizada a convencao LB.

Dessa forma, neste apéndice sao brevemente apresentados os fundamentos das duas convengoes, uma vez
que, para cada tratamento das teorias e formalismos abordados neste trabalho, foram mantidas as escolhas e
convencoes de cada autor. Para uma discussdao completa das varidveis do cone de luz, indica-se a referéncia
[123].

Convencao de Lepage-Brodsky
Os 4-vetores contravariantes da posi¢ao x* sao escritos como:

=t xT, 1 ) = (X7, * ). (A.0.1)
As componentes do tipo tempo e do tipo espaco sao dadas por:

=" +x?) e x=00-2Y), (A.0.2)

respectivamente, e sio chamadas de fempo no cone de luz e posicdo no cone de luz. Os vetores covariantes sao

obtidos utilizando Xy = gwxv, com os tensores de métrica:

02 0 0
20 0 0

g = (A.0.3)
00 -1 0
00 0 -1
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Apéndice A. Varidveis do Cone de Luz

0 1/2 0
172 0 0
Ev=lo o0 -1

O produto escalar é dado por:

1
xX-p=xtpy=x"pi+x potxlprexipy= ST+ X p) = Fr- pr.

Convenciao de Kogut-Soper

Kogut e Soper utilizaram para as componentes do tipo tempo e do tipo espaco:

1 1
+ 0, .3 - 0o_.3
X =—x +x’) e x =—(x"—Xx7),
V2 V2
Os tensores de métrica sao:
0 1
1 O
A =
£ 78 =y o
0O 0 0 -1

O produto escalar é dado por:

x-p=xtpy=xtpr+x po+xpr+Epr=xTpT +x pt -3r- pr.

(A.0.4)

(A.0.5)

(A.0.6)

(A.0.7)

(A.0.8)

Por fim, demonstra-se que a razdo p*/p~ fornece uma medida do boost de Lorentz que uma particula sofre

em relagdo ao seu referencial de repouso. A rapidez Y é uma grandeza definida em relacdo a essa razao, sendo

dada, tanto em KS como em LB, por:

1 + 1 + 1. (E+
2 X0 — X3 2 E-p,
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Apéndice B
O procedimento de Gram-Schmidt

O processo de Gram-Schmidt é um algoritmo simples para produzir uma base ortogonal ou ortonormal para

qualquer subespaco nao nulo. Sendo (¢#| <¢>ﬂ = <¢>f¢>? ‘, considere o produto interno:

(6708 |waz) = an, (B.0.1)

com |a,|% #0.

Agora, sendo |¢7') € 77, 3 |¢7') L (¢#], e e um ntimero complexo arbitrério, tem-se:
) + €| P =11 g2 12 + el | oY IIZ = 1+ O(€?). (B.0.2)

Desconsiderando termos de segunda ordem em €, a combinacéo linear |gb;.“) +e |(,blA) se torna um vetor
unitdrio. Agora:

(CAREOAIE <¢?‘WAB> = <¢?¢?‘U/AB> +e(p}|® <¢?‘WAB> =ap+e{p)|e <¢?’WAB>. (B.0.3)

1K +e (@ N o (@8 [wan) 12 =llan+e(of| o (¢ |was) 1P

- 2 A B 2 (B.0.4)
= llanll? +2Re(ean (97| @ (08| an ) + O,

O lado esquerdo da Eq. [B.0.4] é estaciondrio em relacdo a qualquer variacdo de |¢>f>, de forma que:
<¢f|®<¢ﬂw3>=o, i#l V|pMye Ay, (B.0.5)

sendo .7¢ o conjunto de todos os estados pertencentes a .7¢4 ortogonais a |(,bf>. Realizando procedimento
similar no espaco vetorial .73, é possivel obter:

(o @ (PpE|lwas)=0, k#j Y|pE)ye typ. (B.0.6)
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Apéndice B. O procedimento de Gram-Schmidt

Tendo o vetor |y, ;) dado por:

[v'sp) = |WaB) —an

o1yelof) o lwan)= W) +anlol)e |of), B0

a definicao de a, resulta em:
(@@ (¢E|yi) =0. (B.0.8)

Logo, |1;/’AB) € Sy ® Ay . O procedimento explicitado pelas equacdes [B.0.1]-[B.0.8] pode ser repetido a fim

de eliminar os k-ésimos e [-ésimos estados e, depois, os seguintes, até se obter a forma:

lw)=> aila) by (B.0.9)
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Apéndice C

Dipolos de Cor e a Equacao
Balitsky-Kovchegov

Esta secao tem como intuito apresentar brevemente a derivacao e as propriedades da equacao BK no formalismo
dos dipolos de cor. Inicialmente, considera-se um par quark-antiquark (Fig. [C.1]), um dipolo de cor, com uma
func¢ado de onda na representacdo de momentum denotada por ”’g)z)%(kl’ z1), sendo %1 0 momentum transverso
do quark, z; = ki / p* a fragdo de momentum longitudinal do foton portada pelo quark nas variaveis do cone de
luz e a e B os indices de cor. Esta funcao de onda é obtida a partir da expansao em estados de Fock do estado do

féton virtual que gerou dipolo.

01

l=z, p7k |

Figura C.1: Dipolo de cor, em azul, gerado a partir de um féton virtual com 4-momentum p. O quark possui uma fragao de
momentumlongitudinal z; e momentum transverso k1, enquanto para o anti-quark tem-se 1 —z; e p; — k1, respectivamente.
A linha vermelha é o médulo do vetor Xg;. Reproduzido de [124].

A obtencido da funcdo de onda no espago de coordenadas transversas 1//5%(?60, X1,z1) é realizada a partir de

uma transformada de Fourier bi-dimensional,

o de L2
iy (o, %1, 21) = ﬁe”‘“ oy kn, 21), (C.0.1)
sendo, nesta equacao, Xo; provém da definicio,
Xnm =Xn—Xm, (C.0.2)
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Apéndice C. Dipolos de Cor e a Equacao Balitsky-Kovchegov

sendo, Xy e X; as posicdes, no referencial de repouso do nticleon, do quark e do antiquark, respectivamente,
configurando os pontos finais do dipolo. Sendo assim, a obtencdao do médulo quadrado da func¢ao de onda
¢ (%y, %1, 21), probabilidade de medida de um tinico dipolo, é dada por,
0 (G, 1,20 =), |1l/g)23 (%o, %1, 21)1%. (C.0.3)
ap
Agora, considera-se a emissdo de um glion soft (zp/z; <« 1) a partir do quark ou anti-quark original (Fig.

C.2), com fracdo de momentum longitudinal z, e momentum transverso ks. A probabilidade desta emissdo

M (%, 71, z1), pode ser obtida a partir de ¢©, com a relacio,
p p G

. asCr [* dzp x5 oy o
oV (%o, %1, 21) = — f _fdzxZ%(l)(o)(XO),XLZl), (C.0.4)
T Ja 22 X50%12
sendo Cr a constante de Casimir, dada por,
N2-1
Cr = , (C.0.5)
2N,

e a; a constante de acoplamento forte. Desta forma, a emissdo de um glion adicional é equivalente a ruptura
do dipolo original (0,1) em dois dipolos (0,2) e (2,1) com uma probabilidade de medida dada por,

(C.0.6)

1=z, p~k,

Figura C.2: Emissdo de um gltion a partir do quark ou anti-quark (a), que de forma equivalente, representa um estado com
dois dipolos no limite de altos valores para o ntimero de cor (b). Reproduzido de [124].

Desta forma, o processo de emissdo de gltions soft subsequentes pode ser realizado de forma andloga,
possibilitando a obtencao do médulo quadrado de um estado com um niimero arbitrario de glions. Para
descrever este processo, Mueller [97] introduziu a fungdo geratriz de dipolo Z (X1, z1, u). Ela deve satisfazer as
condig¢des de normalizagdo, ou seja, Z (X1, 21, u = 1) = 1. A utilizacdo desta ferramenta matemadtica faz com que

o médulo quadrado da funcdo de onda com um ntimero 7 de gltons, </)(”’ ({Xn+1}, 21), possa ser obtida com o
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Apéndice C. Dipolos de Cor e a Equacao Balitsky-Kovchegov

uso da expressao,
n+1

(n) rg= —_ 1(0)
" ((Xp1},z21) = ¢ jljzau(?c,-)

Z(Xo, X1, 21, W|yu=o0. (C.0.7)

Esta equacao relaciona a probabilidade de encontrar n dipolos filhos do par quark-anti-quark original (0, 1) que
serdo produzidos nas posicoes X,,. A relacdo entre as funcoes de onda de n e n+ 1 dipolos é dada pela equacao

diferencial para a funcao geratriz,

d . 2
_Z(by-)—eOl)Yr u) zfdzxz 201
ay X50X75

L% . R
[Z(b+f,?czo,Y,uHZ(b—f,x’lz,Y,u)—Z(b,%m,zl,u). (C.0.8)

Nesta equacdo introduziu-se uma dependéncia da funcao geratriz com a rapidez Y =In1/z; e o pardmetro de
impacto b (Fig. [C.3]), dado por,

p=X0r N (C.0.9)
2
—
Xg
—
*01
-
X4

ol

Figura C.3: Representacdo geométrica do vetor do parametro de impacto. Adaptado de [124].

Utilizando a Eq. [C.0.8] é possivel obter a equacgao de evolucdo para a amplitude de espalhamento do dipolo

no alvo. Para isso, inicialmente, define-se a densidade do nimero de dipolos n,

Oo

k
]‘[ ———Zly=1. (C.0.10)
i=16u(b,X;)
A amplitude de espalhamento de um tnico dipolo N} no alvo é obtida a partir da convolucao da densidade do

numero de dipolos com o propagador desde dipolo com o ntcleo,

N (Zo1, bo1, Y) =fd[<@1]n11‘)1, (C.0.11)

sendo d[ )] = d x‘ 1 d?b amedida no espaco de fase e 9 = 9(%, b)o propagador de um dipolo simples no niicleon.
Diferenciando a equag:ao para a funcao geratriz e utilizando a relacdo [C.0.11] é possivel obter a equagdo para a
amplitude dipolo-alvo,

d L -
HNI(XOLI’% Y)= fdz X2

2 N+ 22 500, V) + Ny (b= 222, %10, 1) = Ny (B o1, V)|, (C0.12)
Ox12 2 2

Nesta derivacao, fora incluso apenas a contribuicdo de um tnico dipolo. Esta equacgdo é a versdao no

120
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formalismo de dipolos para a equa¢do BFKL no espaco de coordenadas transversais. E possivel generalizar
esta equacao levando em consideracao conta os multiplos espalhamento dos dipolos com o alvo. Para isso
considera-se a densidade de um ntimero k de dipolos e a sua convolu¢do com k propagadores. Neste processo,

a amplitude serd dada pela expressao,
N 00 k
N(%o1,b,Y) =) fd[gzk]nk [19; (C.0.13)
k=1 j=1

de forma que a média do espaco de fase é definida agora como,

P =15 (C.0.14)
Kkl = 1 an? . .0.
De forma andloga ao desenvolvimento da equacao para amplitude de um tinico dipolo, para varios dipolos

obtém-se,

dN _ a;N; f d? x5
day X2 i,
T X20%12 (C.0.15)

-

X

- X2 - X0 . - - X2 > X0
N(b+%yxZOrY)JI‘N(b_%yxlzyy)_N(b)xoer)_N(bJ"%VXZOVY)N(b_f’xIZ'Y)]'

Esta é a equacdo Balitsky-Kovchegov. Trata-se de uma expressao ndo linear, que considera a interacdo de k
dipolos com o nticleon alvo. E uma equacao de evolugdo em relacdo a rapidez Y, que necessita de condicoes
iniciais N© (E, Xo01, Y =0), sendo valida na aproximacao do logaritmo dominante. Ela também considera um
valor constante para o acoplamento forte. O problema envolve (4 + 1) varidveis, ou seja, quatro graus de

liberdade por dipolo e uma variédvel de evolucao, Y.
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Apéndice D

Femtoscopia Independente de Modelo de

Lévy para Espalhamentos Elasticos

As séries de Lévy sao uma generalizacdo dos métodos de expansao de Lévy propostos para analisar distribuicoes
de fontes estaveis de Levy na femtoscopia de campos de particulas [125-127]. Neste trabalho, os interesses
sdo concentrados na transferéncia de momentum com as distribuigdes- ¢ em colisdes eldsticas hadron-héadron.
Este modelo fornece um método sistemético e independente de modelo para caracterizar as variacoes do
tamanho aproximado destas distribuicoes utilizando uma varidvel adimensional, z = R%|t| =0, e um conjunto
completamente ortonormal de polindmios que sdo ortogonais a funcao peso w(z) = e A quantidade R
denota o parametro de escala de Levy. Neste apéndice segue-se estritamente a anélise das secdes de choque
elésticas de processos pp e pp realizada em [125]. Uma vantagem clara do método de Levy para a imagem do
préton é fornecer o perfil de inelasticidade do préton como uma funcdo da energia e do parametro de impacto.

Na representacdo t de momentum, a secdo de choque diferencial elédstica é relacionada com o médulo do
valor complexo de uma amplitude eléstica T,;. A sequéncia é expressa como a expansao de séries ortonormais

em termo dos polinémios de Lévy,

dog 1 2
—=—|T L0115, D.0.1
ar 4n| e1(8, 1) ( )
com,
Pod &
Tei(s, t) =1V4nAe™ 2 (1 + Z c,-li(zla)), (D.0.2)
i=1

onde, nesta equacao, c¢; = a; +ib; sdo os coeficientes da expansao complexa. A varidvel adimensional z é
introduzida como uma medida da magnitude do quadrado de 4-momentum transferido || multiplicado pelo
quadrado do parametro de escala de Lévy, R, no sistema de unidades naturais. Os parametros para a expansao,
A, R, a e os coeficientes complexos c; estdo disponiveis nos Apéndices A e B da referéncia [117]. As quantidades

l; (z]a) sdo os polindmios de Levy normalizados de ordem i e sdo dados por,

Li(z]la)
VDi{(@yDi1 (@)

para j = 0. Estes polindmios sao construidos em termos dos polindmios ndo normalizados de Levy, que de

li(zla) = (D.0.3)

forma geral,
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a a
L (zla) :det(“ o H 1), (D.0.4)
1 z
N s
Ly(zla) =det| uf ug pf|, (D.0.5)
1 z z2
o Kim
Lp(zl@)y=det| : | (D.0.6)
1 .. zZ™

sendo Lo(z|a) = 1. Na Eq. [D.0.3], D;(a) sdo os Gram-determinantes, definidos como,

Dy (@) = g, (D.0.7)

a a
Dy (zla) = det(”‘; “}x), (D.0.8)
S )
Ho Hin-1
Dp(@)=det| : 1 |, (D.0.9)
Moot = Momop
com,
a_lr(”“) (D.0.10)
/Jn - a a ) U,
e Do(a) =1.
A secdo de choque total o1 =Im T,(s,0) e a secdo de choque eldstica é expressa em funcdo das quantidades
abaixo,
o7 =2V4AnA 1+Za,-ll-(0|a)), (D.0.11)
i=1
All 1y & , ,
Ou =17 Er E)+i:21(ai +b7)|. (D.0.12)

E demonstrado na referéncia [125] que a expansdo para T,; (s, f) converge rapidamente e uma série de Levy
de terceira ordem ja é suficiente para reproduzir os dados medidos com /s < 1 TeV com niveis de confianca

altos para uma descricdo estatistica apropriada.

123



Apéndice E
Entropia de Wehrl

A entropia no espaco de fase cléssico f(q, p) é dada pela expressdo,

dpd
S=—k3f ’2, qf(q,p)lnf(q,p). (E.0.1)
sendo /' uma célula elementar neste espaco. No caso quéntico nao existe a possibilidade da defini¢do de um
espaco de fase devido o principio da incerteza, contudo a entropia serd dada pela expressdo de von Neumann

escrita em termos da matriz densidade p, aqui expressa no sistema natural de unidades,
Sun =-Tr[pInp]. (E.0.2)

As duas entropias nao sdo simplesmente conectadas, i. e. S,y ndo recai na expressdo S no limite que 7z — 0.
Contudo, é possivel realizar esta conversdo a partir de uma definicdo intermedidria de entropia dada por Alfred
Wehrl [128]. A expressao cldssica da entropia dada pela Eq. [E.0.1] pode assumir valores infinitamente negativos
devidamente a arbitrariedade quanto o volume da célula unitéria, podendo violar o principio de incerteza. Para
ajustar o modelo é considerada a base dos estados coerentes |c) com pacotes gaussianos de incerteza minima

(004 =h/2). Tomando o traco da Eq. [E.0.2] na base dos estados coerentes, tem-se

dqd
SvN:‘f 94P (1 pInplo). (E.0.3)
2nh

A entropia de Wehrl Sy é obtida realizando a substituigdo cldssica que consiste na troca de {c| pIn p|c) por

(clplc)In{c|plc). Desta forma,

__(44gdp, . .
Sw = _[Znh {c|plcyIn{clplc). (E.0.4)

Como —xInx é uma fungdo concava (Fig. [E.1]),
Sw>Sy,n=0. (E.0.5)

Aigualdade Sy = S, é impossivel. Isto significa que Sy é sempre ndo nula mesmo para um estado puro. Para
diversos sistemas fisicos sujeitos a substituicao cldssica, obtém-se um erro negligenciavel para funcées suaves

no espaco de fase com um volume muito maior que 7, contudo, se existem flutuacdes concentradas em regides
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muito pequenas, esta aproximacao nao é um bom modelo.

Além disso, seria 1til a introducdo de um espaco de fase a fim de visualizar o que esta ocorrendo no sistema
quantico de interesse. Contudo, esta idealizacao contradiz o principio da incerteza. Agora, por outras vias é
possivel realizar algumas aproximagdes: Considerando um sistema quéntico unidimensional com um estado

puro genérico |w(t)), a chamada distribuicdo de Wigner [129] é definida como,

Wi(g,p,t) :f dxe irxin (W) g—x/2){q+x/2|y(0)
-~ (E.0.6)

:f dxe *PE g1 12| p(o)|q - x/2),
—00

com p () sendo a matriz densidade de um estado puro. A distribui¢do de Wigner é uma funcao tanto da posicao

g como do momentum p, satisfazendo as condicoes,

S 29w (g, p, 0 =1{w®]|p)
2EW(q,p, 1) = {w(0)]q) (E.0.7)

dqd
[ EEwg,p,n=1,

aqui a ultima propriedade é a normalizacdo. O conjunto de propriedades [E.0.7] torna tentadora a interpretacdo
de W como uma distribui¢do de probabilidades no espaco de fase (g, p). No entanto, a distribuicdao de Wigner
é fortemente oscilante e néo é positiva definida, sendo portanto uma quasi-distribui¢do. Contudo, ainda é
possivel fazer seu uso na investigacdo das propriedades do sistema.

Para uma aproximacao do espago de fase no computo da entropia de Wehrl é possivel utilizar a distribuicao
de Wigner [E.0.6] para os casos em que o sistema fisico analisado é compativel com uma distribuicdo positivo-
definida. Contudo, o méaximo que se pode fazer é descrever o sistema em termos das probabilidades de
se encontrar a particula em uma posicdo dada pela banda (g +04/2, p £ 0,/2) com uma incerteza minima
040y =N/2.

Agora, considera-se a distribuicdo de Husimi, que pode ser obtida a partir da convolucao gaussiana da

distribuicao de Wigner
1 ! /
H(g,p, 1) = _nh f dq/dp e~ mwld—q 21h—(p-p')? I mwh W(q’, P,, 0. (E.0.8)

Esta expressdo também é conhecida como transformagdo de Weistrass [130]. Nela, m é a massa da particula e
é um parametro arbitrario. Os comprimentos dos fatores gaussianos indicam que a distribuicdo preenche o
espaco de configura¢do com o4 = Vi/2mw e reciprocamente no espago de momentum com o, = Vimw/2.
Os diferentes valores assumidos por w corresponde a escalas de resolucao distintas provadas pelo sistema. Para
sistemas oscilantes, incluindo campos de radiacao, w € identificado como a frequéncia.

Agora, uma propriedade importante da distribuicdao de Husimi é a de que ela é positiva-semidefinida,
H(g,p,0)=(clplc)={y|c)* =0, (E.0.9)
Isto é basicamente o traco da matriz densidade na base dos estados coerentes. Ela é construida de tal maneira

que observaveis escritos em ordem anti-normal seguem o teorema da equivaléncia éptica [131]. Isso significa

125



Apéndice E. Entropia de Wehrl

f(x)

Figura E.1: Gréfico de f(x) = —xInx.

que é essencialmente a matriz de densidade colocada em ordem normal, isto é, pde-se os operadores criacdo a
esquerda dos operadores aniquilagdo,

+

caa=ata. (E.0.10)

Este procedimento, também é chamado de ordenamento de Wick e é essencial na teoria quantica de campos a
fim de evitar o aparecimento de infinitos. A ordem anti normal consiste na inversao da légica construida em
[E.0.10]. Considerando a defini¢do [E.0.9], é possivel escrever a entropia de Wehrina forma,

dqdp

SW:—IWH(q,p)lnH(q,p). (E.0.11)

A partir de [E.0.6], também é possivel definir uma definicao entrépica alternativa,

5 ——qudpmq ) InW (g, p) (E.0.12)
w==| S —-Wiap q,p). 0.

Agora, para fins elucidativos, considera-se um exemplo que € possivel ser resolvido analiticamente, o

oscilador harmonico unidimensional. Este sistema tem a hamiltoniana classica,

P2 mewtq?

H=—+ (E.0.13)
2m 2
Para o n-ésimo estado excitado, a distribuicao de Husimi é dada por,
L o #m (% )n
H(g,p)=—e 7" —| . E.0.14
@.p) n! fiw ( )
Substituindo esta expressdo em [E.0.11] é possivel mostrar que,
Sw=n+1+Inn'-né(n+1), (E.0.15)

onde ¢ é a fungdo digamma. Assintoticamente Sy = Iny/n. Por outro lado, com excecdo do estado fundamental,
a expressao para entropia conjugada [E.0.12], neste caso, oscila e se torna negativa, nao tendo sentido neste
problema especifico; contudo, é sempre possivel analisar as duas nogdes entrépicas e relaciona-las a partir da
convolucdo gaussiana. A Fig. [E.2] mostra a distribuicao de Husimie Wigner para o caso do oscilador harménico
no quarto estado excitado explorando bem o uso de cada uma destas distribui¢des.
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Figura E.2: As distribuicdes de Wigner (a esquerda) e de Husimi (a direita) para o caso do quarto estado excitado do oscilador
harménico no plano (g, p). E possivel notar que a distribui¢cio de Husimi suavizou as oscilagdes abruptas que ocorrem na
distribuicao de Wigner além de ser sempre positiva ou nula. Esta figura foi retirada da referéncia [132].

E.1 A ENTROPIA DE WehrINA QCD

No regime de altas energias, os partons sao caracterizados pela fracdo de momentum longitudinal x, pelo
momentum transverso kr e a posicdo transversa ou parametro de impacto b. Dessa forma, a caracterizacdo do
sistema pode ser obtida a partir da distribuicdo de momentum transverso TMD (do inglés transverse momentum
distribution), T (x, %T), e da transformada de Fourier da distribuicao partdnica generalizada GPD (do inglés,
generalized parton distribution), G(x, b).

Agora, no célculo da entropia, tanto as informacdes contidas em kr quanto em b é necesséria. Outro
exemplo seria a decomposicdo do spin do nicleon obtida a partir do momentum angular orbital bx kr. Um
dos métodos para se obter as informacgdes de ambas as varidveis, sendo estas conjugadas, € a distribuicdo de
Wigner ja discutida nas segdes anteriores; entretanto, agora ela é uma fungao W = Wi(x, b, kr).

No caso quéantico a distribuicdo de Wigner é dada por [E.0.6],
(o) .
W(G,p,t) = f APxe PG+ 312 p(0) |G- %/2). (E.1.1)
—00

Serdo agora discutidas ponto a ponto as modificacdes que devem ser realizadas em [E.1.1] para uma
construgdo consistente com a QCD.

Em primeiro lugar, a troca de variéveis,

t—x, (E.1.2)
G—b, (E.1.3)
p— kr. (E.1.4)
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Sendo entdo o principio da incerteza assegurado por,

. (E.1.5)

Do | =

Op0f =

A Eq. [E.1.1] é escrita na representacao da posicdo. Nas TQC'’s é usual a descri¢do dos operadores na repre-
sentacdo de momentum para que sejam aplicadas as regras de Feynman, para isso, basta uma transformacao
de Fourier bidimensional trivial. Além disso, a flutuacdo que respeita o principio da incerteza na distribui¢cao
de Wignerna teoria quéntica, tem seus vetores etiquetados a partir de +X/2, simbolizando vetores de estados
com uma incerteza minima estipulada pelo principio de Heisenberg. No ambito da QCD se utiliza +A/2, com
A =(0,0,A7), assim,

L dZA e -
fdsxe‘ﬂp'x -] % )g e 1ATb) (E.L6)
b 4

lembrando que b é o bi-vetor parametro de impacto. Agora o estado puro é representado por um hadron de

4-momentum PH respeitado a limitacdo de incerteza minima,

|G—%/2) —|P-A/2), (E.1.7)

(G+3%/2| = (P+A/2]. (E.1.8)

Por fim, resta a assimilacdo da matriz densidade. Ela é dada por,

o) — f %‘iﬁeﬂ’*z‘”ﬁ Tr[F* (212U E} (—z12)U' ], (E.1.9)

A transformacao de Fourier ocorre pelos mesmos motivos da substituicdo da integral em X, contudo agora
ela é realizada nas varidveis do cone de luz. F*% é o tensor do campo de cor e U'*! sdo as linhas de Wilson de
forma U que mantém os operadores invariantes de calibre (para uma discussao, veja a referéncia [133]). As
linhas de Wilson aqui tratadas sao representadas na Fig. [E.3].

(a) (b)
Figura E.3: Linhas de Wilson nas variaveis do cone de luz. Em (a) tem-se U*! e em (b) U],

Assim, a distribuicdo de Wignerna QCD pode ser escrita na forma,

Wi(x E ET) :f dZ—dZZT dZATe—ﬁ(xP*z’+ET-ZT+ZT-E)
Y @m)3  (2m)?

< A
x{ P+ —
2

Ainda é possivel escrever a equacao de uma forma que melhor se adéque a entropia por unidade rapidez, sendo

(E.1.10)

Te[Fe (g) U"IE; (—g) U] ‘P— %>
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xWi(x, E, I_ET) dada por,

xW = f de d7zr dzr —dZAT o ixP 2 +kr2r) <P + = Tr

P+(2m)3 (2m)? 2

F*e(b+ g) UME; (b- g) U] ‘P— §> (E.1.11)

A expressao [E.1.10] descreve uma distribuicao no espaco de fase transverso caracterizada pelo parametro
de impacto b e momentum transverso kr dos gliions que portam uma parcela x do momentum longitudinal. Se
é realizada a integracdo em relacdo a b obtém-se a TMD T'(x, k1); integrando em relacdo a kr obtém-se a GPD
G(x, b). Dela também é possivel obter a distribuicao relacionada ao momentum angular orbital canénico do

ntcleon polarizado longitudinalmente,
Ly = f dxd?bd*k(b x kr)W (x, b, k). (E.1.12)
A distribuicdo de Husimina QCD é dada por,
xXH(x, b, Fr) = % f d2b d2 K e DD C R o B R, (E.1.13)

sendo ¢ um parametro arbitrario com dimensodes de comprimento”. A Eq. [E.1.13] aparenta ser uma extensao
precisa da distribuicdo de Husimina linguagem das TQC'’s, contudo a sua positividade néo é garantida a priori,
devido ao recuo de momentum At # 0, fazendo com que sempre exista uma diferenca entre os estados iniciais
e finais. A referéncia [132] discute alguns pontos do uso da expressao [E.1.13]. Além disso vale esclarecer a
positividade da distribuicao de Husimi como uma hip6tese de trabalho. Entao é possivel escrever a entropia de
Wehrlna QCD,

Swx) = - f d*bd? kxH(x, b, k) In[xH(x, b, k)], (E.1.14)

e também mantém-se a definicdo de Sw (x), utilizando a distribuicdo de Wigner,
Swx)=— f d*bd? kxW (x, b, k) In[xW (x, b, k1)1, (E.1.15)

Um exemplo trivial € um quark ou um elétron livre que se move na direcao positiva de z. A distribuicdo de

Husimie Wignercom x =1 6§,
o D120k

xHb, k1) = (E.1.16)

w2 ’

Wb, kr) =6P B)6P (kr). (E.1.17)

Mesmo que a distribuicdo de Wigner seja positiva definida, o seu logaritmo nao faz sentido, entdo a entropia
de Wehrl é obtida a partir da Eq. [E.1.14],
L[ oo e (V2 o0
Sw=— | d°bd"ke — +0°k% | =2. (E.1.18)
7 Iz
O fato desta entropia nao desaparecer reflete a inabilidade de definir precisamente a posi¢cdo e o momentum

simultaneamente devido o principio da incerteza.

*Em alguns casos utiliza-se £ como Ry, sendo este o raio hadronico. Outra escolha é 2=1/ <%%> A referéncia [132] estabelece uma
possivel conexao com a fisica de altas energias onde ¢ = 1/Qs.
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E.2 A ENTROPIA DE Wehrl PARA OS PARTONS

Existem duas abordagens para o tratamento da entropia de Wehrl gerada pelas distribuicoes de Wigner dos
glions na regido de pequeno-x, o formalismo de dipolos com a distribuigdo xWy;), [134] e os gltons de
Weiszacker-Williams (WW) [135] com a distribuicdo x Wy,

> > ZNC der E R 0 2 6 21 & >
Wyip(x, b, k) = ikr-rr v — + k?|S(x, b, Fr). E.2.1
xWaip(x, b, kr) a.ent) eo? e (6b2 F (x, b, 1) (E.2.1)
. an kr
XWiww (x, b, k) = f d*r 1-Sx, rr, b)] (E.2.2)

Nestas equacdes, S e S sdo as matrizes S para um dipolo de tamanho r7 com um parametro de impacto b
em um espalhamento com um hddron e a formulacao adjunta deste operador respectivamente. Avaliando estes

objetos no modelo GBW,
§=e itAh g e Qi) (E2.3)

sendo, N
Qs(x,b) = —Qs (x,b) = (xo) e~V 12vsBeac (E.2.4)
Cr

Nesta expressdo, a escala de saturacdo depende do pardmetro de impacto é a dada pelo modelo b-CGC, sendo
Ys a dimensdo anémala e Bcgc um parametro. As constantes foram fitadas com os dados obtidos via DIS para
pequenos valores de x [136]

Xo =0.00105;
A =0.2063;

(E.2.5)
Ys =0.6599;

Bccec=5.5 GeV72,

A avaliacao do caso da distribuicdo de Wigner para os dipolos néo sera positiva definida, necessitando
o cdlculo da distribuicdo de Husimi, seu desenvolvimento foi realizado no trabalho [14]. Nesta tese, serd
desenvolvido o caso da entropia de Wehrl para os glions WW. Desta forma, é possivel escrever a expressdo
[E.2.2] na forma,

xW = ﬁf dzreﬁ?T";Tf(x, rr,b) = BF T f(x, 11, b)}, (E.2.6)

com a definicdo B = Cr/(2as7*) e sendo a operacdo .# ~! o computo da transformacao de Fourier bidimensional
inversa para a funcdo f(x, rr, b) dada por,

1 — efir%Q.s(va)

fx,rp,b) = ————, (E.2.7)
I'r
de forma que,
k2
{ (x,r7,b)} =7aT |0, = (E.2.8)
ftorr ( Q2 (x ,b))
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sendo I'(0, x) a funcdo gamma incompleta, positiva definida. Entao, a distribuicdo de Wigner é dada por,

Wi kb = —F 1o K (E.2.9)
WW A, K, _2713063 )Q~§(x,b) . ol

Substituindo a Eq. [E.2.9] na definicao da entropia de Wehrl [E.0.4] e desconsiderando a constante 73 no

fator que envolve o logaritmo obtém-se,

Sw=— Cr f db*F(1)Q%(x, b), (E.2.10)
2nag Jo
sendo, .
F(1)= f I'0,7)InT(0,7). (E.2.11)
0

O integrando da expressao F foi alterado por uma troca de variével na forma de ¥ = k?/Q? e para introduzir uma
dependéncia com a escala de resolucao, fora inserido Q? ao invés de oo na integracdo. Na expressao [E.2.11],

7 = Q?/Q?%(x, b). No limite em que Q? (e consequentemente 7) tende a infinito, F ¢ apenas um ntimero,
lim F(r) = —0.248. (E.2.12)
T—00

Para simplificar os célculos, ndo é realizada a integracdo numeérica no parametro de impacto, aproveitando o
fato de que a escala de satura¢do possui um maximo em b =0, com Q? ., (x) = Q%(x, b = 0) = (Nc/ Cp) Q3 (x).
De qualquer forma, na regido de pequeno-x a escala de saturacdo tipica é da ordem de 1 GeV. Desta forma,
utilizando 7 = Q?/(Q?) com (Q?) =1 GeV?, obtém-se F = —0.095377 para Q? = 2 GeV? e F ~ —0.247802 para
Q? =10 GeV?. Para qualquer Q?, apés a integracdo sobre o parametro de impacto,

2FysBcgeNe

Qi (x), (E.2.13)
2

Sw(x) =~

ou seja, Sy ~ Q2.
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