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The paper explores the derivation of the D-dimensional Janis-Newman-Winicour (JNW) solution
directly by solving the Einstein-massless scalar field equations. An analytical form of D-dimensional
JNW metric is has been derived which covers the D-dimensional Schwarzschild solution and the
metric arises pure scalar field in the higher dimension. The curvature invariants such as Ricci scalar
R, Ricci square RαβR

αβ and the Kretschmann scalar K = RαβµνR
αβµν has been determined for

obtained spacetime metric in order to investigate the structure of the geometry. It is also determined
the equipotential surface and proper length for JNW metric in four and higher-dimensional space.

I. INTRODUCTION

The structure of spacetime around the gravitational compact objects, such that black holes, wormholes, even neutron
star is a quite common phenomenon in general relativity (GR) and the alternative theory of gravity (ATG). Since
the last few years, there has been a growing interest in studying scalar field theory and/or the gravitational collapse
of scalar fields and the nature of singularities in the Einstein-scalar theory. In that sense, it is a very interesting and
important task in GR and the alternative theory of gravity is to find the exact analytical solutions of the Einstein
field equations.

It is known that the exact non-vacuum solutions of the Einstein field equations in D-spacetime and pure Gauss-
Bonnet equation in D + 2-spacetime are equivalent to each other. The motivation of work is to check whether this
fact is true for the non-vacuum solutions of field equations in these theories. Before that we wish to present the exact
solution of the Einstein-scalar field equations in D-spacetime.

In the early paper [1], the first spherically-symmetric static solutions of the Einstein-scalar field equations have
been presented. Later similar solutions have been studied in [2–11]. In Ref. [8], it has shown that the general
spherically-symmetric static solution obtained in [5] is the same as Janis, Newman, and Winicour (JNW) solution [2].
The exact solution of the Einstein equations for the wormhole with the scalar field has been recently studied [12].
In Ref. [13] an axisymmetric and static solution of Einstein equations with the self-gravitating scalar field has been
studied. Contribution of the scalar field in the spacetime of static [14] and rotating [15] black holes have been also
studied. In Ref. [16] new method has been developed to finding exact scalar-tensor solutions. Some approximate
static solutions of the Einstein-scalar equations has been presented in [17–20] in the framework of Conformal Field
Theory (CFT).
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The role of scalar field in geodesic motion [21–25], in the strong gravitational lensing [26–37], in optical appearence
of the thin accretion [38, 39], in absorption and scattering of scalar wave [40], in iron line spectroscopy [41] in JNW
spacetime have been studied.

In scalar-tensor gravity, the exterior spacetime of a static, spherically symmetric star sourcing a nontrivial scalar
field in the Einstein frame is given

In Ref. [42], the Schwarzschild-de Sitter metric and Reissner-Nordstrom-de Sitter metric in D-dimensional space
has been derived directly by solving the Einstein and Einstein-Maxwell equations, while in [43, 44] solution for
Einstein-massless scalar field equations in D-dimensional has been studied.

In this research paper, we are interested in finding JNW solution in higher-dimensional space. The paper is organized
as In Sec. II we provide in the very detailed derivation of the Einstein-scalar field equation in arbitrary D dimension.
Section III is devoted to analyst JNW solution in 4D space. In Sec. IV we show the exact analytical static spherically
symmetric solutions of the Einstein-scalar field equations in D dimension. Finally, in Sec. V we summarize obtained
results and give future outlook related to the present work. Throughout the paper Greek (Latin) indices are taken to
run from 0 to D (1 to D), where D ≥ 4. For convenience, we use a system of units in which G = c = ~ = 1 and a
space-like signature (−,+,+,+, ...,+︸ ︷︷ ︸

D−1

).

II. BASIC EQUATIONS

In this section, we will show the derivation of the main equations of the Einstein-scalar field system in an arbitrary
D-dimensional space. The action for the Einstein and massless scalar field system is given by

S =
1

16π

∫
dDx
√
−g
(
R− D − 2

D − 3
∂αΦ∂αΦ

)
, (1)

where R is the Ricci scalar of the curvature, g is the determinant of the metric tensor, Φ is the scalar field which is
the function of coordinates i.e. Φ = Φ(xα) and ∂α stands for partial derivative with respect to coordinate xα.

Varying the action (1) with respect to the metric tensor, gαβ , and the scalar field, Φ, we get the equation of motion
for the system, namely, the Einstein field equations and the Klein-Gordon equation in the following forms

Gαβ = Rαβ −
1

2
gαβR = Tαβ , (2)

∇α∇αΦ =
1√
−g

∂α
(√
−g∂αΦ

)
= 0 , (3)

where Gαβ and Rαβ are the Einstein and Ricci tensors, respectively. Tαβ is the energy-momentum tensor for the
scalar field Φ which can be defined as

Tαβ = 2
D − 2

D − 3

(
∂αΦ∂βΦ− 1

2
gαβ∂µΦ∂µΦ

)
. (4)

Note that gαα = δαα = D for D-dimensional space. Hereafter taking trace from both side of equation (2) and
performing simple algebra one can rewrite the equation (2) in the following separable form

R =
D − 2

D − 3
∂αΦ∂αΦ , Rαβ =

D − 2

D − 3
∂αΦ∂βΦ , RαβR

αβ = R2 . (5)

The first expression in (5) is one of the curvature invariant of the spacetime geometry. There are, actually, two more
curvature invariants such as Ricci square RαβR

αβ and the Kretschman scalar K = RαβµνR
αβµν . In order to find

Ricci square we first determine Einstein ”scalar” or the product of Einstein tensor (i.e. GαβG
αβ) as:

GαβG
αβ =

(
Rαβ −

1

2
gαβR

)(
Rαβ − 1

2
gαβR

)
= RαβR

αβ −
(

1− D

4

)
R2 =

D

4
RαβR

αβ , (6)

on the other hand taking into account equation (2) one has

RαβR
αβ =

4

D
TαβT

αβ =

(
D − 2

D − 3

)2

∂αΦ∂βΦ∂αΦ∂βΦ = R2 . (7)
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Obviously, it is very difficult to obtain the exact analytical solutions of Einstein field equations (2), in particular,
when the source term exists (non-vacuum case). But it can be solved under a reasonable assumption. In order to
get analytical solution of equations (2) and (3), assume that the scalar field depends on the radial coordinate r only
Φ = Φ(r), then the diagonal element of the energy-momentum tensor can be written in the following form

T 0
0 = −T 1

1 = T 2
2 = ... = TD−1D−1 = −D − 2

D − 3
∂rΦ∂

rΦ , (8)

which are equivalent, form Einstein equations (2), to the following equations

G0
0 = −G1

1 = G2
2 = ... = GD−1D−1 = −D − 2

D − 3
∂rΦ∂

rΦ . (9)

Consequently, the scalar field Φ satisfies the following equation

∂r
(√
−ggrr∂rΦ

)
= 0 or

√
−ggrr∂rΦ = const . (10)

In this paper, our main aim is to find an analytical solution of the equations (9) and (10) in an arbitrary D-dimensional
space. Before that let us focus on JNW solution in four-dimensional space.

III. JNW SOLUTION IN 4D SPACE

In this section, we will briefly study JNW solution in 4D space. Up to now, number of authors have been forund
JNW solution in different ways (See, for example, [2, 5, 7, 8, 10]). The general form of JNW solution is given by

ds2 = −
(

1− 2M
r

)n
dt2 +

(
1− 2M

r

)−n
dr2 +

(
1− 2M

r

)1−n

r2dΩ2 , (11)

with dΩ2 = dθ2 + sin2 θdφ2 and the associated scalar field has a form

Φ(r) =

√
1− n2

2
ln

(
1− 2M

r

)
=

σ

2M
ln

(
1− 2M

r

)
, (12)

where M is the induced mass of the compact object that can be defined as

M =
√
M2 + σ2 , n =

M

M
≤ 1 , (13)

with two free parameters, the total mass M of the gravitational compact object and σ is “scalar charge”. Simple
analysis shows that

• the well-known Schwarzschild solution can be easily obtained by putting q = 0,

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2 , Φ(r) = 0 , (14)

with the following curvature scalar invariants

R = RαβR
αβ = 0 , K =

48M2

r6
. (15)

• one the other hand when the mass of the compact object vanishes M = 0, then one can see the effect of the
only pure scalar field in the spacetime in the form

ds2 = −dt2 + dr2 +

(
1− 2σ

r

)
r2dΩ2 , Φ(r) =

1

2
ln

(
1− 2σ

r

)
. (16)

In this case the curvature scalar invariants take the form

R =
2σ2

r2(r − 2σ)2
, RαβR

αβ =
4σ4

r4(r − 2σ)4
, K =

12σ4

r4(r − 2σ)4
. (17)
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Let us analysis the scalar field in equation (12), leading order of scalar field reads as

Φ(r) ' −σ
r

+O

(
σ2

r2

)
, (18)

which reduces to the Coulomb-type potential.

The components of the energy-momentum tensor can be expressed as

T 0
0 = −T 1

1 = T 2
2 = T 3

3 = (n2 − 1)
M2

r4

(
1− 2M

r

)n−2
= −σ

2

r4

(
1− 2M

r

)n−2
, (19)

In order to investigate the formation of curvature singularities of the spacetime (11), we consider curvature invariants
such as Ricci scalar R, Ricci square RαβR

αβ , and Kretschmann scalar K = RαβµνR
αβµν that are given by

R = −
2M2

(
n2 − 1

)
r4

(
1− 2M

r

)n−2
, RαβR

αβ =
4M4

(
n2 − 1

)2
r8

(
1− 2M

r

)2(n−2)

, (20)

and

K =
48M2

r6

(
1− 2M

r

)2n−4
(
n2 − 2M

3r
A+

M2

12r2
B

)
, (21)

where A = n(n+ 1)(2n+ 1) and B = (n+ 1)2(7n2 + 2n+ 3).
From equation (21) we can see that the Kretschmann scalar has two singular points, the first is at r = 0 like in

Schwarzschild spacetime and the second singular point appears at r = 2M(= 2
√
M2 + σ2) for non-zero value of both

M and σ (i.e. M 6= 0 and q 6= 0). In the case when σ = 0 which is correspondence to Schwarzschild space, then there
is an only single singular point (r = 0), and the radius of horizon takes rh = 2M , while when mass vanishes M = 0
then Kretschmann scalar has still two singular points at r = 0 and r = σ as shown in the equation (17) which means
in this can horizon doesn’t exit. That is why sometimes JNW metric calls as a solution of naked-singularity.

We now focus on the investigation of the formation of this singularity by examining the properties of the equipo-
tential surfaces and of the closed curves on these surfaces as r approaches the value. The area of the equipotential
surfaces is [6]

A =

∫ π

0

dθ

∫ 2π

0

dφ
√
gθθgφφ = 4πr2

(
1− 2M

r

)1−n

, (22)

and the proper lengths are, respectively, to closed azimuthal curve θ = π/2 and for a polar curve φ = const, given by

Lφ =

∫ 2π

0

dφ
√
gφφ = 2πr

(
1− 2M

r

)(1−n)/2

, (23)

Lθ = 2

∫ π

0

dθ
√
gθθ = 2πr

(
1− 2M

r

)(1−n)/2

. (24)

Unlike in Schwarzschild spacetime the quantities in equations (22)-(24) have singularities at r = 0 for n < 1 and at
r = 2M for n > 1. It is now evident that the singularity at r = 2M has the topology of a point and the event horizon
has therefore shrunk to a point. Thus we cannot speak of a black hole in the usual sense, even if the red-shift still
approaches infinity as the radius of the body tends to zero.

IV. SOLUTION IN ARBITRARY D-DIMENSIONAL SPACE

In this section, we show the derivation of the scalar hairy black hole solution in an arbitrary D-dimensional space.
Again we assume that the scalar field is a function radial coordinate as we did in the previous section. We can seek
the solution in the following form

ds2 = −fa(r)dt2 + f b(r)dr2 + f c(r)r2dΩD−2 , (25)
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where dΩD−2 is the solid angle in D-dimensional space, a, b, and c are unknown constants which can be found by
solving the equations (9). Here one has to emphasize that in arbitrary dimensional space we assume JNW solution will
be the same as in 4D space that is why we have chosen spacetime metric same as in equation (11). To be convenience
the lapse function in equation (25) can be written as

f(r) = 1− 2

(
M
r

)D−3
, (26)

where M is again induced mass of the object in D-dimensional space which has the same dimension of length.
Once the explicit form of the metric is given then we can immediately calculate Einstein tensor Gαβ , and using the

equations (9) one can easily find the following relations for the metric function for arbitrary dimension

G0
0 +G1

1 ≡ 0 =
c[a− b+ (D − 2)c− 2]f−b−2

2r2
− ((a− b)(c− 1) + 2(c− 2)c)f−b−1

r2
(27)

+
(c− 2)[a− b+ (D − 2)c− 2]f−b − 4f−c

2r2
,

G0
0 −G2

2 ≡ 0 =
(c− a)[a− b+ (D − 2)c− 2]f−b−2

4r2
+

[
a(a− b) + (a+ b)(c− 1)− 2(c− 2)c

]
f−b−1

2r2
(28)

+
(a− c+ 2)[−a+ b− (D − 2)c+ 2]f−b − 4f−c

4r2
.

Notice that here we have used the following useful notations

f ′(r) =
D − 3

r

(
1− f(r)

)
, f ′′(r) = − (D − 2)(D − 3)

r2
(
1− f(r)

)
,

where prime and double primes denote the first and the second derivatives with respect to radial coordinate r. From
the equations (27) and (28), we can get the following relations

a− b+ (D − 2)c− 2 = 0 , c = b+ 1 , (29)

for unknown a, b and c constants. Note that the relations in equation (29) also satisfies the following G1
1 + G2

2 ≡ 0
condition. As we already mention before that JNW solution is non-vacuum solution and characterise with two free
parameters, mass M and parameter n as shown in the metric (11). In that sense we now simply express unknown
constants a, b and c in terms of constant n as in the form

a = n , b =
1− n
D − 3

− 1 , c =
1− n
D − 3

. (30)

Finally, we obtain the following solution

ds2 = −

[
1− 2

(
M
r

)D−3]n
dt2 +

[
1− 2

(
M
r

)D−3]−n+D−4
D−3

dr2 +

[
1− 2

(
M
r

)D−3] 1−n
D−3

r2dΩD−2 , (31)

Now we focus on finding an exact form of the associated scalar field to corresponding metric (25). The determinant
of the metric tensor is

g = det gαβ = −r2(D−2)
[

1− 2

(
M
r

)D−3] 2(1−n)
D−3

sinD−2 θ1 sinD−3 θ2... sin θD−2 , (32)

then taking into account equations (31) and (32) Klein-Gordon equation (10) takes a form

Φ′(r)

[
1− 2

(
M
r

)D−3]
rD−2 = const . (33)

By introducing new radial coordinate, x = (r/M)D−3, equation (33) can be rewritten as

dΦ(x)

dx

(
1− 2

x

)
x2 = const , → Φ(x) ' ln

(
1− 2

x

)
, (34)
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here the constant in equation (34) can found from equation (9) and finally, the associated scalar field corresponding
to metric (31) is given by

Φ(r) =

√
1− n2

2
ln

[
1− 2

(
M
r

)D−3]
. (35)

In order to explore spacetime geometric we determine the curvature invariants such as Ricci scalar, Ricci square
and the Kretschmann scalar. However we could not find the general form of the curvature invariants in arbitrary
space. That is why here we wish to present them at least for some spacial form. According to equation (7) we have
RαβR

αβ = R2, which means it is enough to present Ricci scalar along the Kretschmann scalar. In D = 5 we have

R =
6
(
1− n2

)
M4

r6

(
1− 2M2

r2

)n−3
2

, (36)

K =
12M4

r12

(
1− 2M2

r2

)n−3 [
M4(n+ 1)2(n(17n+ 2) + 5)− 12M2n(n+ 1)(3n+ 1)r2 + 24n2r4

]
, (37)

in D = 6 they take the form

R =
12M6

(
1− n2

)
r8

(
1− 2M3

r3

)n−2
3

, (38)

K =
24M6

r16

(
1− 2M3

r3

) 2(n−4)
3 [

M6(n+ 1)2(n(31n+ 2) + 7)− 16M3n(n+ 1)(4n+ 1)r3 + 40n2r6
]
, (39)

and in D = 7 one gets

R =
20M8

(
1− n2

)
r10

(
1− 2M4

r4

)n−5
4

, (40)

K =
40M8

r20

(
1− 2M4

r4

)n−5
2 [

M8(n+ 1)2(n(49n+ 2) + 9)− 20M4n(n+ 1)(5n+ 1)r4 + 60n2r8
]
, (41)

Similarly, one can continue calculations for any higher dimensions. However, from the expressions (36), (36) and (40)
one see that the curvature invariants have two singularities as shown in four-dimensional space. The first singularity
at r = 0, while second one appears at r = 21/(D−3)M which corresponds to naked singularity.

We now determine the equipotential surfaces and proper lengths in D-dimensional spacetime. The area of the
equipotential surfaces is

AD =
2πD/2

(D/2− 1)!
rD−2

[
1− 2

(
M
r

)D−3](D−2)(1−n)
, (42)

and the proper lengths are, respectively, for each angular coordinates given by

Lθ1 = 2

∫ 2π

0

dθ1
√
gθ1θ1 = 2πr

[
1− 2

(
M
r

)D−3](D−2)(1−n)/2
, (43)

Lθ2 = 2

∫ 2π

0

dθ2
√
gθ2θ2 = 2πr

[
1− 2

(
M
r

)D−3](D−2)(1−n)/2
, (44)

...

LθD−2
=

∫ 2π

0

dθD−2
√
gθD−2θD−2

= 2πr

[
1− 2

(
M
r

)D−3](D−2)(1−n)/2
, (45)
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FIG. 1: Penrose diagram for JNW naked singularity in D-dimensional space, where r0 = 21/(D−3)M.

In the case when n = 1 the solution (31) reduces Schwarzschild solution in D-dimensional space. When the mass
of the object vanishes then we have

ds2 = −dt2 +

[
1− 2

(
σ

r

)D−3]−D−4
D−3

dr2 +

[
1− 2

(
σ

r

)D−3] 1
D−3

r2dΩD−2 , (46)

and

Φ(r) =
1

2
ln

[
1− 2

(
σ

r

)D−3]
. (47)

From equation (46) one can see that unlike in four-dimensional space the spatial components of the metric is radially
dependent.

The causal structure of the D-dimensional JNW solution can be summarized in the corresponding Penrose diagrams
in Fig. 1. The topology of the spacelike singularity located at r = 0, is R1

t ×SD. Figure 1 draws the region conformal
to the JNW spacetime (31), r ∈ (2M,∞). It is asymptotically flat and has timelike curvature singularity is located
at r ∈ (2M,∞).

V. CONCLUSION

The explicit form of the JNW solution in higher dimensions has been investigated. The solution covers the well-
known Schwarzschild metric in arbitrary dimensional space and D-dimensional metric arises from the pure scalar
field. In order to verify the solution, we substitute it into the Einstein-scalar equations.

In order to investigate the structure of curvature singularities of the spacetime, we determine the curvature invariants
such as Ricci scalar, Ricci square, and Kretschmann scalar. It has been shown that introducing a scalar field with
minimal coupling to gravity prevents the formation of the event horizons which are present in all the well-known exact
solutions of the exterior problem.

The physical meaning of the “scalar charge” is still clearly an open question. In particular, it might be not a good
idea to think in a classical way, however on quantum approaches might explain this problem. For example, the capture
of particles or antiparticles which are created in pairs in the curved vacuum surrounding the compact object during
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the gravitational collapse. There might also be a connection between scalar charge and Hawking radiation in order
to describe black-hole evaporation.

We also calculate the area of the equipotential surface in the equatorial plane and the proper lengths in both
four and higher-dimensional space. It has been shown that in a higher dimension the spatial components of the
metric tensor survive unlike in a four-dimensional JNW solution. In the future, similar work can be done for the
Einstein-Maxwell-scalar field system in higher-dimensional space.
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[17] Z.-Y. Fan and H. Lü, Phys. Rev. D 92, 064008 (2015), 1505.03557.
[18] Z.-Y. Fan and H. Lu, ArXiv e-prints (2015), 1507.04369.
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