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Scientific abstract

In this Thesis we investigate higher homotopy structures arising in ordinary classical field
theory, as well as in string and M-theory. First, we review L∞-algebras and we discuss their
homotopy Maurer–Cartan theory. Our perspective is adapted to an application towards higher
gauge theory from the outset. We observe that homotopy Maurer–Cartan theory always allows
for a supersymmetric extension by auxiliary fields, just as ordinary Chern–Simons theory does.
Then, we review in detail the Batalin–Vilkovisky formalism for Lagrangian field theories and its
mathematical foundations, with an emphasis on higher algebraic structures and classical field
theories. We explain that, with the help of this formalism, any classical field theory admitting
an action can be fully described by an L∞-algebra, encoding its symmetry structure, the field
contents, the equations of motion, as well as the Noether identities. Moreover, the classical
action is given by the homotopy Maurer–Cartan action of its L∞-algebra. We employ the L∞-
perspective of the Batalin–Vilkovisky formalism, with an eye to gauge theory and twistor theory.
In particular, we show how quasi-isomorphisms between L∞-algebras correspond to classical
equivalences of field theories. As examples, we explore Yang–Mills theory and we discuss
in great detail higher (categorified) Chern–Simons theory, providing some useful shortcuts in
usually rather involved computations. Moreover, we employ the fact that the ideas of higher
gauge theory can be combined with those of twistor geometry to formulate self-dual higher
gauge theory. We propose a twistor space action for non-Abelian self-dual tensor field theory
in six-dimensions in terms of holomorphic higher Chern–Simons theory for a Lie 2-algebra.
We explicitly show how both the Abelian and non-Abelian twistor space actions descend to
six-dimensional Euclidean space-time and we comment about possible advantages of the L∞-
perspective in this setting.

Keywords: L∞-algebra, Higher gauge theory, Batalin–Vilkovisky formalism, Yang–Mills theory,
Chern–Simons theory, Twistor geometry, Self-duality
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Lay summary

Gauge theory is a very profound concept at the core of modern theoretical physics. Interest-
ingly, the idea of gauge symmetry does not reflect a true property of Nature, but rather a
redundancy in our description of Nature itself. Yet, such a redundancy turns out to be very
useful, endowing the physical theories that enjoy it with incredible richness and complexity. In
geometrical terms, gauge theory is about the parallel transport of point particles along curves.
The pivotal role of gauge theory emerges when we consider it in the context of quantum
physics. Quantum gauge fields are the building blocks governing the Standard Model of Ele-
mentary Particles, a physical theory describing three of the four fundamental forces in the
universe. However, a quantum theory of gravity is still missing. In the long sought attempt of
unifying all fundamental interactions of Nature in the same framework, String Theory is our
most promising candidate. However, such theory comes with some tricky mathematics. For
instance, it is not formulated in terms of point-like objects, but in terms of higher dimensional
ones, known as strings and branes. Hence, a mathematical description of the dynamics of
these objects requires a generalisation of ordinary gauge theory. This generalisation is known
as Higher Gauge Theory and describes the parallel transport of extended objects along sur-
faces. The underlying language is that of category theory, which brings into the game new
mathematical structures, that are more complex compared to their field theoretic counter-
parts. Investigating these kind of structures might contribute to a deeper understanding of
String Theory. Also from a purely mathematical point of view, Higher Gauge Theory is a very
interesting topic which is worth further investigation.
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1
Introduction

1.1. Motivation

Nowadays, string theory arguably provides the most promising approach to quantum gravity.
At the heart of string theory lies the problem of its full non-perturbative completion, that is,
the proper formulation of M-theory [1] (see [2, Section 12] for exposition). Working within
string theory and M-theory one faces the problem of dealing with higher homotopy structures,
or higher structures for short. These emerge naturally as a consequence of the gauge principle
and appear as higher degree objects, which are the categorification of their field theoretic coun-
terparts. In this context, ordinary geometric and algebraic notions such as smooth manifolds,
Lie algebras and principal fibre bundles need to be generalised. Making use of higher category
theory, the formalism of higher gauge theory [3–8] allows to incorporate higher degree gauge
potentials in a systematic and geometric fashion. For instance, the bosonic string couples to
the Kalb–Ramond B-field, which is part of the connective structure on a gerbe [9]. This is the
higher degree-2 version of the coupling of the charged particle to a Maxwell gauge potential,
the latter being a connection on a principal circle bundle. In particular, higher algebraic struc-
tures become fundamental in string field theory [10]. Explicitly, homotopy algebras encode the
structure of Hilbert spaces of both closed and open classical string field theory. Hence, if one
believes in the fundamental nature of string theory in physics, it is hardly surprising to find out
that these categorified structures make their appearance in several other physical contexts.
In particular, they also play a relevant role in ordinary quantum field theory. This is made
manifest by employing the classical part of the Batalin–Vilkovisky formalism [11–15]. Such
formalism, that represents a general procedure for quantising a classical field theory, manifestly
relies on higher algebraic structures. Much of the current research activity in string theory

1



2 1.1. Motivation

focuses on the so-called (2, 0)-theory [16]. This is a superconformal theory in six dimensions
whose field content comprises a two-form potential with self-dual field strength. A deeper
comprehension of such theory would largely improve our understanding of M-theory, as many
features of string theory can be understood from the perspective of the (2, 0)-theory. A nat-
ural setting for describing self-dual theories is provided by the geometry of twistor theory [17].
In particular, the combination of the ideas of higher gauge theory and twistor theory in this
framework appears very promising.

The aim of this Thesis is twofold. First, we investigate how homotopy algebraic structures
arise in ordinary field theory, with applications towards Yang–Mills theory and (higher) Chern–
Simons theory. Secondly, we study an application of the language of higher gauge theory in
the context of string and M-theory, by using the ideas of twistor geometry. In the remainder
of the Introduction, we shall provide a brief review of the main frameworks underlying this
Thesis, namely higher gauge theory and twistor theory. The Chapter ends with a description
of the various chapters and appendices.

1.1.1. Higher Gauge Theory

Higher gauge theory (HGT) provides the natural framework for describing the parallel transport
for extended objects along higher dimensional surfaces, generalising what ordinary gauge theory
does for point-like objects along one-dimensional paths. The transition from ordinary gauge
theory to higher gauge theory is realised by a ‘categorification’ of the kinematical data of gauge
theory, such as gauge groups and connections on principal fibre bundles. Under this operation
such notions are, roughly speaking, replaced by their category-theoretic counterparts with the
result that the original structure equations hold only up to isomorphisms. This procedure
results in higher extensions of the concept of Lie groups, known as Lie 2-groups [18, 19], as
well as categorified notions of principal bundles known as principal 2-bundles [20,5,6].1 Hence,
ordinary connections on principal bundles generalise to connective structures on principal 2-
bundles, containing differential forms of degree greater than one. Higher categorifications lead
to the notion of principal n-bundles [23].

Besides being an appealing mathematical subject, HGT finds immediate applications in
string theory and M-theory, where point-like particles are replaced by higher dimensional objects
such as strings, M2-branes and M5-branes. As already mentioned, the Kalb–Ramond B-field

1The notion of principal 2-bundle also includes the non-Abelian version of gerbes [21,22] as special cases.



1.1. Motivation 3

that generalises the ordinary electromagnetic potential to strings, belongs to the connective
structure of some topologically non-trivial gerbe. This is a particular higher bundle with a
categorified Lie group as its structure group. Exploiting this point of view, the Freed–Witten
anomaly cancellation [24] in superstring theory, governed by the B-field, is understood as
the principal 2-bundles version of the Dirac charge quantisation. Another physically relevant
class of higher structures in this context is provided by the so-called string structures [25,26].
These are higher generalisations of spin structures for spinning particles and arise from lifting
the spinor group Spin(n) to the string group String(n), in the same way as the former is a lift of
the special orthogonal group SO(n), as required by Dirac’s theory of the electron. For instance,
the Green–Schwarz anomaly cancellation mechanism [27], which plays a key role in heterotic
string theory, requires to consider string structures [28,29]. Moreover, these higher structures
appeared [30] in the formulation of the non-Abelian version of the self-dual string soliton [31].
Similarly, going one step higher in the homotopy Whitehead tower of the orthogonal group,
fivebrane structures [32,29] have been used in the interpretation of the magnetic dual Green–
Schwarz mechanism [33, 34]. While M-theory is well-known, its underlying principles are not
well-understood yet. The path to a better understanding of M-theory goes through a deeper
insight into its fundamental ingredients, namely M2-branes and M5-branes. The description of
single M2-branes or single M5-branes have been already known for quite a long time. M2-branes
are now relatively well-understood and the world-volume theory of multiple coincident M2-
branes is described via three-dimensional Chern–Simons superconformal field theories [35–38].
However, M5-branes remain still mysterious. The low energy dynamics of multiple M5-branes
is described by the aforementioned six-dimensional superconformal field theory withN = (2, 0)
supersymmetry, known as the (2, 0)-theory. This theory plays a central role in M-theory, similar
to the one that N = 4 SYM serves in string theory, rendering its understanding of utmost
importance. For instance, it provides a unifying picture in the intricate web of string theory
dualities. There are rather clear indications suggesting that the (2, 0)-theory is a higher gauge
theory, see e.g. [39] for a review.

Higher algebraic structures also appear in several other contexts within string theory. In
particular, when considering the formalism of string field theory, they become omnipresent.
Closed string field theory [10] is fundamentally based on homotopy Maurer–Cartan theory,
the vastly generalised analogue of Chern–Simons theory to strong homotopy Lie algebras, also
known as L∞-algebras. These are L∞-categorifications of the notion of a Lie algebra, in which
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the Jacobi identity holds only up to homotopies. Similarly, the construction of open string
field theory is based on other higher homotopy algebras, known as A∞-algebras [40, 41], that
are generalisation of associative algebras. Because of the basic role that string field theory
is believed to play in physics, it is quite natural to expect that the relevance of homotopy
algebras also extends to ordinary field theory. As already mentioned, the connection between
Lagrangian field theories and homotopy algebras is realised by the Batalin–Vilkovisky (BV)
formalism. Mathematically, this connection is immediate. The natural framework in which
HGT is formulated is that of higher differential geometry, where differential geometry and
homotopy theory are combined. As we shall see, this is indeed the very ambient theory where
the BV formalism is rooted. Essentially, any BV quantisable theory can be described by an
L∞-algebra encoding both its kinematics and its dynamics, and the original classical action
is reproduced by the corresponding homotopy Maurer–Cartan action, see e.g [42, 43]. This
result invites to adopt a purely algebraic point of view on field theory. This is the very
perspective examined along this Thesis. For instance, minimal models of L∞-algebras encode
tree-level scattering amplitudes of the corresponding field theory. This can be also extended to
loop scattering amplitudes considering quantum versions of L∞-algebras, namely L∞-algebras
satisfying the quantum master equation in the BV formalism. Recently, many results have
appeared discussing recursion relations and S-matrix in the L∞-language. See e.g. [44] for a
condensed review of the subject and pointers to references. In the second part of the Thesis,
we shall also see how these ideas can be combined with those of twistor theory.

This brief overview of the role of higher dimensional structures in the realm of string and
M-theory already suggests that the investigation of HGT is of great interest and worthy of
further explorations. As one can easily imagine, its relevance goes far beyond this context.
For instance, higher degree differential form fields arising naturally in supergravity theory are
part of the connective structure of higher principal bundles, having categorified Lie groups
as their structure groups. Similarly, in the context of generalised geometry, the Courant
algebroid underlying T-duality is better understood within higher symplectic geometry [45].
This is the higher analog of symplectic geometry, where symplectic forms of degree greater
than two are introduced. We shall refer the interested reader to the recent review [46] (and
references therein) for a concise overview of the applications of higher structures in theoretical
physics. For completeness, we just mention that the language of higher gauge theory has been
applied to several other branches of theoretical physics, such as loop quantum gravity and
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condensed matter physics. The interested reader may consult the review [8] for an exhaustive
introduction to the beautiful world of higher gauge theory and its applications, as well as
pointers to references, which is well beyond the scope of this work.

1.1.2. Twistor Theory

Twistor theory was first introduced by Roger Penrose in the late 1960s [17] as a new math-
ematical framework for unifying the description of quantum field theory and gravity. In the
following years, twistors played a fundamental role in the exploration of gauge and gravity
theories, particularly integrable ones. At the heart of twistor geometry there is the idea of
replacing space-time as a background for physical processes by an auxiliary complex space,
called twistor space. Its principal role consists in setting up a general correspondence which
translates certain important data on space-time into data on twistor space. The motivation for
finding such a correspondence, in general, is the attempt to bypass the equations of physics by
deriving them from the rigidity of complex geometry. Explicitly, via this correspondence, dif-
ferentially constrained data on space-time correspond to differentially unconstrained complex
analytic data on twistor space. Concretely, solutions to field equations translate into elements
of cohomology groups. This allows for an elegant picture representing physics by complex geo-
metry. The prime examples capturing this picture are provided by the following classic results.
Via the Penrose transform [17, 47–49], zero-rest-mass fields on four-dimensional space-time
are encoded into cohomology groups on a complex three-dimensional auxiliary space, usually
called Penrose’s twistor space [17]. This integral-geometric method represents a cornerstone
of twistor theory. As an extension of this construction, Ward [50] proved that all solutions to
the non-linear self-dual Yang–Mills equation [51] on flat space-time have a natural interpret-
ation in terms of holomorphic principal bundles, subject to certain triviality conditions, over
Penrose’s twistor space. One often refers to this approach as the Penrose–Ward transform.
This construction is both valid in Minkowski and Euclidean space, where it has yielded strik-
ing results [52]. Moreover, self-dual Riemannian oriented four-dimensional manifolds, that is,
manifolds with self-dual Weyl tensor, were mapped to integrable complex structures on twistor
space (the non-linear graviton) [53]. For a generalisation to the curved setting see [54–56].
In addition, solutions to the full ordinary Yang–Mills and supersymmetric Yang–Mills equa-
tions have been also described in terms of holomorphic data using twistor methods [57–59],
by replacing Penrose’s twistor space by the so-called ambitwistor space [57, 58]. The same
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setting allowed also to capture the full non-linear second-order Einstein equations and their
supersymmetric extensions [60–63]. We invite the reader interested in detailed expositions on
twistor theory and its applications to consult, for example, the textbooks [64–68] or the recent
reviews [69–72].

However, despite many interesting initial achievements, twistor theory has fallen well short
of its original aspirations. Indeed, its next contributions have been mainly limited to the context
of pure mathematics, where twistors have been used as tools for the study of integrable systems
and geometry, see e.g. [67, 73–75]. One of the most significant setbacks1 was represented by
the difficulty to use twistor theory to compute physical observables in quantum field theory, like
scattering amplitudes or cross-sections. Such scenario dramatically changed in the early 2000s.
In 2003 Witten realised [77] that the tree-level scattering amplitudes of planar maximally
supersymmetric Yang–Mills theory in four dimensions (N = 4 SYM) could be computed
by combining string perturbation theory with twistor geometry. This result established a
meaningful connection between twistors and quantum field theory, stimulating a renewed and
broader interest in twistor theory. Twistor string theory led to new powerful approaches to
Yang–Mills theory such as worldsheet formulae for all tree-level amplitudes inN = 4 SYM [78–
80], the MHV formalism [81] and the Britto–Cachazo–Feng–Witten recursion relations [82].
See e.g. [83] for a review. In the meanwhile, a twistor space action functional for Yang–
Mills was introduced in [84, 85]. This led to a proper derivation of twistor string theory
and constructive proof of related formulas, such as the MHV diagram formalism [86, 87] and
scattering amplitude/Wilson loop duality [88, 89, 70]. Moreover, it yields perturbative Yang–
Mills theory without the unwanted contributions from conformal supergravity [90], allowing
to compute physical observables to all orders in perturbation theory. Twistor actions have
been also introduced for many field theories, including for instance conformal gravity [84, 91],
self-dual (super-)gravity [92,93] and (super-)Yang-Mills-Higgs theory in three dimensions [94].
See e.g. [95] for a review and for more references.

Considering the great success of M2-brane models [35,37,38], it appears natural to wonder
about the role of twistor theory in the description of solutions of more general gauge theories.
In the context of M-theory, a crucial role is played by the (2, 0)-theory arising on the world-
volume of parallel M5-branes. Besides its relevance in the web of string dualities, such a
theory reduces to N = 4 SYM after compactifying down to four dimensions. Moreover, the

1Another long-standing issue is represented by the so-called ‘googly problem’. See e.g. [76].
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self-dual string equation in four-dimensions [31], a BPS equation describing configurations
of M2-branes ending on M5-branes, can be obtained reducing the six-dimensional theory of
self-dual three-forms. We have already seen that an appropriate language for describing M5-
branes is provided by higher gauge theory. It turns out that a promising approach towards
finding a classical description of the (2, 0)-theory is to combine the ideas of higher gauge
theory and twistor geometry. In particular, a twistorial description of self-dual tensor field
theories can be obtained along this line. The relevant twistor space in this context is given by
the complex six-dimensional twistor space considered in [96–99]. Such a space encodes the
description of six-dimensional self-dual 3-forms in terms of holomorphic Abelian gerbes [97,98].
Moreover, solutions to the field equations for the non-Abelian N = (2, 0) tensor multiplet in
six dimensions, taking value in some categorified Lie group, have been obtained via a Penrose–
Ward transform of certain higher holomorphic principal bundles over this twistor space [99–
103]. This identification is lifted to the level of an L∞-quasi-isomorphism. Interestingly,
this description also yields a twistor space actions, as shown in [97–99] for the Abelian case.
These might represent the twistor space version of the space-time action of Pasti, Sorokin
& Tonin [104–107] or Sen [108, 109]. Moreover, a non-Abelian extension in terms of higher
holomorphic Chern–Simons theory on twistor space has been constructed in [43]. Higher
holomorphic Chern–Simons theories can be of use even in the case of ordinary field theories.
In [110], an on-shell equivalence between N = 4 SYM in four-dimensions and holomorphic
higher CS theory for a Lie 3-algebra on the ambitwistor superspace of [77] was obtained. This
would allow, at least in principle, for computing N = 4 SYM scattering amplitudes within
twistor string theory. We believe that the application of the homotopic algebraic perspective
at the level of twistor space might help to shed some light on particular aspects of certain
physical theories.

1.2. Outline and main results

Here, we shall briefly expose the contents of the Thesis, trying to facilitate the reader for a
better comprehension of the manuscript. It is our intention to be highly self-contained in the
exposition. In this perspective, each chapter shall start with an introductory section, explaining
the motivation behind it and its structure. However, this Section may provide some further
help. Chapters 2-5 are based on [42, 43], while Chapter 7 is based on [43] and [111]. This
Thesis is organised as follows:
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Chapter 2. This Chapter consists of a detailed review of L∞-algebras. These objects arise
as a particular categorification of the notion of a Lie algebra that is described in terms of
graded vector spaces and higher brackets. Much more directly, L∞-algebras are introduced
by means of certain geometric structures called Q-manifolds. In this approach, one defines
L∞-algebras by generalising the equivalent definition of a Lie algebra via its differential graded
algebra (dga), known as the Chevalley-Eilenberg algebra. In addition, the Batalin–Vilkovisky
formalism can be formulated in the same language. In order to formulate physical theories,
we shall focus on L∞-algebras endowed with an inner product, which are called cyclic L∞-
algebras. After that we define L∞-morphisms and, in particular, the very important notion of
quasi-isomorphisms of L∞-algebras, arguing that quasi-isomorphisms induce equivalences on
the space of L∞-algebras. Then, we recall some relevant structural theorems of L∞-algebras.
These results come in handy in the homological algebraic approach to field theory. In particular,
the minimal model theorem basically tells us how to restrict from the kinematical data of a
certain gauge theory to its physical states. We shall make extensive use of it in Chapter 5. We
conclude by defining a representation of an L∞-algebra, a concept needed in order to define
higher supersymmetric field theories with matter content.

Chapter 3. Here, we discuss homotopy Maurer–Cartan theory by using the language of
L∞-algebras. Ordinary gauge transformations and their higher versions are derived. Then,
for cyclic L∞-algebras, the homotopy Maurer–Cartan action is constructed. We show that
quasi-isomorphisms of L∞-algebras induce isomorphisms of moduli spaces of Maurer–Cartan
elements. We further observe that homotopy Maurer–Cartan theory, just as ordinary Chern–
Simons theory, always allows for a supersymmetric extension by auxiliary fields. This is import-
ant if one wishes to compute path integrals via supersymmetric localisation techniques. Most
importantly, our perspective is adapted to an application towards higher gauge theory. We
see how, given an L∞-algebra, the kinematical data of the corresponding higher gauge theory
can be immediately derived. Interestingly, by considering the cyclic L∞-algebra given by the
tensor product of a gauge algebra and the de Rham (Doulbeault) complex, we can directly
make contact with ordinary (holomorphic) Chern–Simons theory in d = 3. In this setting, the
higher dimensional generalisation is then immediate and makes use of Lie n-algebras.

Chapter 4. The generalities of the Batalin–Vilkovisky formalism together with its application
to homotopy Maurer–Cartan theory are discussed in this Chapter. The first part is dedicated
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to a detailed analysis of the classical BV formalism for ordinary field theory along with its
formulation in the language of symplectic Q-manifolds. Such a formalism allows for the
quantisation of classical field theories with open gauge symmetries. Readers familiar with the
formalism may just skip this part. Then, we explain how this framework provides the natural
connection between Lagrangian field theories and L∞-algebras, even for theories without gauge
symmetries. Mathematically, the BV formalism consists of a two-step resolution of the algebra
of classical observables. This procedure yields a differential graded commutative algebra, called
the BV complex, that is one of the equivalent descriptions of an L∞-algebra. Moreover, the
action of such a theory can be recast as a Maurer–Cartan–Batalin–Vilkovisky action. Hence,
any variational field theory is a homotopy Maurer–Cartan theory. We also see how the BV
formalism is applied to homotopy MC theory and observe that, at least formally, the homotopy
MC action satisfies the quantum master equation.

Chapter 5. This Chapter is devoted to some concrete examples, analysing the L∞-structure
underlying classical field theory, with a particular focus to Yang–Mills and (higher) Chern–
Simons theory. In the L∞-framework, an equivalence of classical field theories is given by a
quasi-isomorphism of L∞-algebras. Firstly, we discuss scalar field theory, providing an example
where the L∞-structure underlies a field theory without gauge symmetry. Secondly, we con-
sider Yang–Mills theory in its first and second order formulation. We construct their minimal
models, yielding a minimal representation of the classical dynamical data and we show that
the corresponding L∞-algebras are quasi-isomorphic, providing an explicit quasi-isomorphism.
In particular, we construct higher Chern–Simons theory for a Lie n-algebra and we perform
detailed computations for the d = 3, 4 cases. We develop the BV formalism and we construct
the minimal model of the corresponding gauge L∞-algebra. Finally, after a brief summary of
the AKSZ construction, we discuss supersymmetric extensions of higher CS theory and YM
theory in the L∞-framework and, because of its relevance to M-theory, we also briefly review
the Bagger–Lambert–Gustavsson model in this setting.

Chapter 6. Here we present an example where the ideas of higher gauge theory have been
proficiently combined with the language of twistor theory. In particular, we review how cer-
tain conformal gauge theories in six dimensions can be reformulated in terms of holomorphic
categorified principal bundles over an appropriate twistor space. First, we briefly discuss zero-
rest-mass fields by using the six-dimensional spinor-helicity formalism. Then, we review the
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geometry of the relevant twistor space, P6, and we discuss Euclidean reality conditions. We
proceed by reviewing the Penrose transform, mapping cohomology groups on twistor space to
certain chiral zero-rest-mass fields on space-time. Finally, the Penrose–Ward transform is also
discussed, both in the Abelian and non-Abelian setting. The former associates Abelian self-dual
3-forms in six dimensions to certain holomorphic Abelian gerbes over P6. The latter estab-
lishes a correspondence between certain higher groupoid bundles over P6 and six-dimensional
non-Abelian self-dual tensor field theories.

Chapter 7. This Chapter is based on the ongoing work [111]. Here, we discuss twistor space
actions on P6 for chiral two-form fields in six dimensions, both in the Abelian and non-Abelian
case. In particular, the non-Abelian twistor space action comes from higher gauge theory. We
are interested in establishing an off-shell correspondence between these actions and space-time
actions such as the PST action or the Sen action. In particular, we provide a pedagogical review
of Sen’s mechanism. Indeed, such a formalism emerges naturally from homotopic algebraic
considerations and it looks particularly promising for our purposes. Explicitly, we show how
the twistorial actions descend to Euclidean six-dimensional space-time. This is done in three
steps. We first impose Euclidean reality conditions on twistor space, we expand the fields in an
adapted basis by using non-holomorphic coordinates and finally we integrate along the fibres
of the twistor fibration. This lays the groundwork for a further analysis by using the language
of L∞-algebras that we plan to conduct in the near future.

Appendices. The Thesis ends with several appendices. We use them to collect many com-
putational proofs, in order to avoid them cluttering our discussion, together with definitions
and conventions which are not introduced in the body of the text.

Appendix A describes L∞-algebras in the codifferential graded coalgebras perspective,1

where the higher products are packaged in a single codifferential and we discuss morphisms
between L∞-algebras as coalgebra morphisms. In Appendix B we briefly discuss cochain
complexes underlying L∞-algebras and abstract Hodge–Kodaira decomposition. Appendix C
contains some rather technical computational proofs related to homotopy Maurer–Cartan the-
ory. Frequently, these results are provided in more than one of the possible descriptions of
L∞-algebras, as sometimes one picture is more illuminating than the others. In Appendix D

1This is the proper picture for performing perturbation theory.
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we introduce some basic notions of category theory and sheaves. We also summarise recent
developments in quasi-groups with regard to higher gauge theory with Lie quasi-groupoids
as gauge structure. In Appendix E we collect a few basic notions of complex geometry and
we review important concepts behind twistor theory, such as Čech–Dolbeault correspondence
and the Penrose transform. Finally, Appendix F collects calculations on twistor space. We
introduce local coordinates on P6, rewriting useful quantities and we discuss some aspects of
fibre integration.





2
L∞-Algebras

2.1. Motivation

Mathematically, the local description of gauge theories is based on Lie algebra-valued differen-
tial forms. Let M be a manifold and g a Lie algebra, then a corresponding gauge theory has a
gauge potential A ∈ Ω1(M, g) := Ω1(M)⊗g and a curvature F := dA+ 1

2 [A,A] ∈ Ω2(M, g).
Moreover, gauge parameters, Bianchi identities, Noether currents, and equations of motion
also involve elements of Ω•(M, g).

To obtain a natural (i.e. category theoretical) description of gauge theory, we should
therefore bring together differential forms and Lie algebras in a common framework. This
framework was provided long ago by Henri Cartan [112,113], by moving from a Lie algebra to
its dual differential graded algebra, known as the Chevalley–Eilenberg algebra. In particular,
the differential graded algebras in which we are interested arise as functions on particular
graded manifolds. On these manifolds we have a vector field Q that induces a differential on
the algebra of functions. Henceforth, they are referred to as Q-manifolds, cf. [114].

Formulating gauge theories using differential graded algebras arising from Q-manifolds has
several advantages. Firstly, one can define vast generalisations of ordinary gauge theory [7]
which appear naturally in string and M-theory in various contexts. Secondly, because of its
mathematical naturality, it is not surprising that a powerful framework such as the Batalin–
Vilkovisky (BV) formalism is best formulated in this language [115]. Thirdly, this is how
they appear directly in the Alexandrov–Kontsevich–Schwarz–Zaboronsky (AKSZ) construc-
tion [114].

In this Chapter, we shall provide a few mathematical tools. We shall introduce graded

13
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manifolds, Q-manifolds and finally L∞-algebras and morphisms between them. Our perspective
will be oriented towards discussing applications in higher gauge theory and follows faithfully [42,
43].

2.2. Differential graded algebras

To set up the stage, we shall first review some definitions about graded structures. For more
details on this topic, see e.g. [116, 117].

Z-graded vector spaces and shifts. By a Z-graded vector space we mean a direct sum
V = ⊕

k∈Z Vk of vector spaces over a field of characteristic zero.1 The Vk are called the
components of V of degree k and the degree of a homogeneous element v ∈ V is denoted
by |v| ∈ Z. In the following we shall make intensive use of the degree-shift operation. For a
Z-graded vector space V, we define the degree shift by l ∈ Z according to

V[l] =
⊕
k∈Z

(V[l])k with (V[l])k := Vk+l for l ∈ Z . (2.1)

This convention (which is one of two commonly used ones) indicates the shift of the coordinate
functions and the opposite direction of the shift of the vectors themselves. For example, given
an ordinary vector space V , the degree-shifted vector space V [1] consists of vectors v of
degree −1, since only (V [1])−1 = V is non-trivial. Moreover, we define the dualisation by
flipping the signs of the shifts. Explicitly, we shall denote the dual of a Z-graded vector
space V by V∗ = ⊕k∈Z(V∗)k, with homogeneous subspaces (V∗)k := (V−k)∗, for all k ∈ Z.
Let V, W be two Z-graded vector spaces. The direct sum V ⊕W is a graded vector space
defined by V ⊕W = ⊕

k∈Z(V ⊕W)k, where (V ⊕W)k := Vk ⊕Wk. Similarly, the tensor
product V ⊗ W is again a Z-graded vector space whose degree k component is given by
(V ⊗W)k := ⊕

i+j=k Vi ⊗Wj. Both constructions are associative. Note that (V ⊗W)[l] =
V[l] ⊗W = V ⊗W[l] and (V[l])∗ = V∗[−l] for all l ∈ Z. Finally, a morphism of Z-graded
vector spaces f : V→ W is a linear map which preserves the degree of homogeneous elements:
f(Vk) ⊆ Wk, for all k ∈ Z. The category of Z-graded vector spaces is a symmetric monoidal
category. The symmetric monodical structure is inherited from the category of ordinary vector

1Here and in the rest of the Thesis all the algebraic structures have to be considered over a field K of
characteristic zero. We always have in mind K = R or C.
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spaces. In particular, the symmetric braiding, for any Z-graded vector spaces V and W, is
given by the the graded linear isomorphism BV,W : V ⊗W→ W ⊗ V, defined by

v ⊗ w 7→ (−1)|v||w|w ⊗ v , (2.2)

for v, w homogeneous elements. The choice of the sign pre-factor in the definition of the
braiding takes the name of Koszul convention.

A note about coordinates. Let us already now stress an important point for our whole
discussion. With respect to a basis τα of degree −1 of the above example V [1] of a grade-
shifted ordinary vector space V , the coordinate functions ξα : V[1]→ R are of degree 1,

ξα : V [1] → R with ξα(v) = ξα(vβτβ) := vβ ξα(τβ)︸ ︷︷ ︸
=: δα

β

= vα . (2.3)

There is now much room for confusion between the coordinates vα and the coordinate functions
ξα; Nick Woodhouse [118] coined the term first fundamental confusion of calculus for this
phenomenon. While in the ungraded case, this confusion is usually reasonably controlled, it
can get out of hands in the graded case, since the degree of the object and the coordinate
functions acting on it will be inverse to each other.

In the context of both the Becchi–Rouet–Stora–Tyutin (BRST) and the BV formalisms,
this problem with degrees is exacerbated by the fact that there is an additional, implicit shift in
degree by −1. For example, consider a gauge parameter c ∈ Ω0(M, g) and a gauge potential
A ∈ Ω1(M, g), where, as before, M is a manifold and g a Lie algebra. These fields belong to
the graded vector space

V = V0 ⊕ V1 := Ω0(M, g)⊕ Ω1(M, g) . (2.4)

The corresponding BRST complex, however, is that of V[1] = V[1]−1 ⊕ V[1]0. Consequently,
we obtain coordinate functions of degrees 1 and 0,

cα(x) : Ω0(M, g)[1] → R and Aαµ(x) : Ω1(M, g)[1] → R , (2.5)

with τα and dxµ are bases1 of g and Ω1(M), respectively. For convenience, we shall often
contract the coordinate functions with the basis of V to arrive at the contracted coordinate

1Note that dxµ is a basis of Ω1(M) regarded as a module over C∞(M). More appropriately, we should
be using the infinite-dimensional basis of Ω1(M) regarded as a vector space over R. To avoid the related,
potentially distracting technicalities, we are slightly sloppy here.
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functions, which we denote by the same letters c and A as customary in the discussion of
BRST/BV quantisation. These contracted coordinate functions are always of total degree 1.
Whether we mean vectors or their coordinate functions should always be clear from the context,
and we hope that no confusion will arise. The degree of the vectors c and A in V will be called
the L∞-degree, while the degree of the (uncontracted) coordinate functions ca(x) and Aαµ(x)
will be called the ghost degree. The latter agrees with the general nomenclature.

Commutative dg-algebras. A differential graded commutative1 algebra (or a dg(c)-algebra
for short) is an associative unital commutative algebra A which is simultaneously a Z-graded
algebra and a differential algebra in a way that all structures are compatible. Specifically, the
Z-grading means that we have the decomposition A = ⊕

k∈Z Ak and non-zero elements of Ak

will be called homogeneous and of degree k ∈ Z. In addition, the product A × A → A is
graded commutative,

a1a2 = (−1)|a1||a2|a2a1 , (2.6)

for a1,2 ∈ A of homogeneous degrees |a1,2| ∈ Z. Being differential means that A is equipped
with differential derivations dk : Ak → Ak+1 of homogeneous degree 1, which we collectively
denote by d. Specifically, d satisfies d2 = d ◦ d = 0 ⇔ dk+1 ◦ dk = 0 and obeys the graded
Leibniz rule

d(a1a2) = (da1)a2 + (−1)|a1|a1(da2) (2.7)

for a1,2 ∈ A and a1 of homogeneous degree |a1| ∈ Z. We shall write (A, d) in the following
to indicate a dg-algebra.

Cochain complexes. Notice that d gives A the structure of a cochain complex,

· · · d−−→ A−1
d−−→ A0

d−−→ A1
d−−→ · · · , (2.8)

and its cohomology H•(A, d) is a graded algebra. For convenience, we shall use the cochain
convention and use the terms cochain and cohomology versus the slightly more common chain
and homology, see the remark at the beginning of Appendix B. More abstractly, we can define
a dg-algebra also as a monoid object in the monoidal category of (co)chain complexes.

1We shall only be concerned with commutative algebras and hence drop the adjective ‘commutative’ in
the following.
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de Rham complex. The prime example in view of applications to gauge theory is the
differential graded algebra given by the de Rham complex (Ω•(M), d) on a d-dimensional
manifold M ,

Ω0(M) d−−→ Ω1(M) d−−→ · · · d−−→ Ωd(M) , (2.9)

with the wedge product being the multiplication and d being the exterior derivative.

Dolbeault complex. Let now X be a complex manifold of dimension d.1 The Dolbeault
complex of X is the cochain complex

Ω0,0(X) ∂̄−−→ Ω0,1(X) ∂̄−−→ · · · ∂̄−−→ Ω0,d(X) , (2.10)

where Ω0,•(X) is the graded vector space of smooth antiholomorphic forms over X and ∂̄ is
the antiholomorphic part of the de Rham differential given by the complex structure. Hence,
(Ω0,•(X), ∂̄) is naturally a (commutative) dg-algebra. See Appendix E for details.

Another fundamental example is that of the Chevalley–Eilenberg algebra described in Sec-
tion 2.4..

Morphisms of dg-algebras. A morphism f : (A, d) → (A′, d′) between two dg-algebras
(A, d) and (A′, d′) is a collection f of degree 0 maps fk : Ak → A′k for all k ∈ Z, which respects
the differential in the sense that f ◦ d = d′ ◦ f ⇔ fk+1 ◦ dk = d′k ◦ fk. An isomorphism of
dg-algebras is an invertible morphism. This notion of isomorphism will turn out to be too strict
for our purposes, mainly due to our interpretation of dg-algebras as categorified Lie algebras.
More appropriately, we should use quasi-isomorphisms of dg-algebras. We shall return to this
point and explain it in detail in Section 2.5.. We shall exhaust the subject by providing a useful
example.

Tensor algebras and shift isomorphism. The (real) tensor algebra of a graded vector
space V is defined by2

⊗•V := R⊕ V ⊕ (V ⊗ V)⊕ · · · =
⊕
k≥0

⊗kV . (2.11a)

1We shall always use sans serif capital letters, such as X,Y,M to denote complex manifolds.
2Note that

⊗•V is a bigraded vector space on which the tensor product naturally describes the unital
algebra structure that is compatible with both gradings.
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It has two totally graded symmetric and graded antisymmetric subalgebras,⊙•V := R⊕ V ⊕ (V � V)⊕ · · · =
⊕
k≥0

⊙kV ,

∧•V := R⊕ V ⊕ (V ∧ V)⊕ · · · =
⊕
k≥0

∧kV ,
(2.11b)

while their reduced counterparts are1

⊙•
0V := V ⊕ (V � V)⊕ · · · =

⊕
k≥1

⊙kV ,

∧•
0V := V ⊕ (V ∧ V)⊕ · · · =

⊕
k≥1

∧kV .
(2.11c)

We introduce the notion of a shift isomorphism

s : V→ V[1] , (2.12)

which lowers the degree of every element of V, that is s : Vk → (V[1])k−1. It induces an
isomorphism of graded algebras,

s• : ∧•V → ⊙•V[1] ,

s⊗i : v1 ∧ . . . ∧ vi 7→ (−1)
∑i−1

j=1(i−j)|vj |sv1 � · · · � svi
(2.13)

for v1, . . . , vi ∈ V. The sign arises from the usual Koszul sign rule,

(s⊗ s)(v1 ⊗ v2) := (−1)|v1|sv1 ⊗ sv2 (2.14)

for v1, v2 ∈ V. The inverse map is given by

(s⊗i)−1 = (−1) 1
2 i(i−1)(s−1)⊗i . (2.15)

This shift isomorphism will be crucial in treating Lie algebras and higher Lie algebras as
differential graded algebras.

Differential graded Lie algebras. We define a graded Lie algebra to be a graded vector
space g2 endowed with a bilinear degree 0 bracket [−,−] : g × g → g, satisfying graded
skew-symmetry and graded Jacobi identity, that is

[v, w] = −(−1)|v||w|[w, v] , (−1)|v||z|[v, [w, z]]+(−1)|v||w|[w, [z, v]]+(−1)|w||z|[z, [v, w]] = 0 ,
(2.16a)

1Other common notations are
⊙̄•

V and
∧̄•

V.
2In the following, with g we shall denote a Lie algebra as well as the graded vector space underlying a

graded Lie algebra or a dg-Lie algebra. It will always be clear by the context which one we are referring to.
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for homogeneous elements v, w, z ∈ g. A differential graded Lie algebra (dg-Lie algebra) is
the data of a graded Lie algebra g together with a differential d, such that

d[v, w] = [dv, w] + (−1)|v|[v, dw] , (2.16b)

for homogeneous elements v, w ∈ g. The graded Leibniz rule (2.16b) implies that the bracket
induces the structure of a graded Lie algebra on the cohomology H•(g) of g. A morphism
of dg-Lie algebras is a morphism of the underlying graded vector spaces that is compatible
with brackets and differentials. Dg-Lie algebras assemble into a category called DGLA. As we
shall see in Section 2.4., L∞-algebras can be seen as generalisation of differential graded Lie
algebras in which the Jacobi identity is satisfied only up to homotopies. The following result
holds. Let g be a dg-Lie algebra and A a dg-algebra. The tensor product g ⊗ A is a dg-Lie
algebra and it is functorial in both arguments. In particular V⊗A is equipped with the bracket

[v ⊗ a, w ⊗ b] = (−1)|a||w|[v, w]⊗ ab , (2.17)

for v, w ∈ g and a, b ∈ A. We shall come back to this examples later in this Chapter. We just
mention here that dg-Lie algebras are fundamental objects in deformation theory. According
to a general paradigm in mathematics, adopted by Quillen, Deligne, Drinfeld, Kontsevich and
others, every deformation problem in characteristic 0 is naturally governed by a dg-Lie algebra
via the Maurer-Cartan equation modulo gauge action. See e.g. [119, 120] for details on the
subject.

2.3. Q-Manifolds

L∞-algebras are most straightforwardly introduced by means of Q-manifolds. Here, we shall
review the language of Q-manifolds and their relation to differential graded algebras and L∞-
algebras.

Motivation. To motivate the notion of Q-manifolds, let us recall the fact that differen-
tial forms Ω•(M) on a d-dimensional smooth manifold M can be regarded as the smooth
functions C∞(T [1]M) on the degree-shifted tangent bundle T [1]M . Indeed, working loc-
ally with coordinates xµ, µ = 1, . . . , dim(M), on M and coordinates ξµ on the fibres of
T [1]M , functions on T [1]M are simply polynomials in ξµ, that is, they are of the form
f(x, ξ) = f ◦(x) + ξµfµ(x) + 1

2ξ
µξνfµν(x) + · · · ∈ C∞(T [1]M). Identifying ξµ with dxµ
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amounts to the identification C∞(T [1]M) ∼= Ω•(M). Under this identification, the de Rham
differential d becomes the vector field Q : C∞(T [1]M)→ C∞(T [1]M), defined by Q = ξµ ∂

∂xµ

and satisfying Q2 = 0. The manifold T [1]M , together with Q, forms an important example
of a Q-manifold [115,121,114]. These Q-manifolds provide a very efficient way of encoding a
categorified Lie algebra in the form of an L∞-algebra or a categorified Lie algebroid in the form
of an L∞-algebroid, as we shall see later. Moreover, such a geometrical point of view brings
significant simplification when considering morphisms between L∞-algebroids or L∞-algebras.
Let us first recall some preliminary notions.

Z-graded manifolds with body Rd. Consider Rd as a manifold. Furthermore, let V be
a Z-graded vector space. We may enlarge the ring of smooth functions C∞(Rd) on Rd by
considering the tensor product ⊙• V∗ ⊗ C∞(Rd), where ⊙• denotes the graded symmetric
tensor algebra (2.11b). We call the result the algebra of functions

C∞(M) := ⊙•V∗ ⊗ C∞(Rd) (2.18)

on the Z-graded manifold M and the underlying ordinary manifold Rd is called the body M◦

of M . By coordinates on the Z-graded manifold M , we mean a set of ordinary coordinates
on M◦ together with a set of generators of ⊙• V ∗, say ξα with α ∈ I for some index set I.

Elements of C∞(M) are clearly polynomials in the generators ξα whose coefficients are
functions on M◦,

f(x, ξ) = f ◦(x) + ξαfα(x) + 1
2!ξ

αξβfαβ(x) + · · · (2.19)

with f ◦, fα, fαβ, . . . ∈ C∞(M◦). We shall make extensive use of the natural decomposition

C∞(M) ∼=
⊕
k∈Z

C∞k (M) , (2.20)

where C∞k (M) are the homogeneous functions of degree k. These are spanned by the monomi-
als of Z-degree k, i.e. monomials ξα1 · · · ξαnfα1···αn(x), where fα1···αn(x) ∈ C∞(M◦) and
|ξα1|+ · · ·+ |ξαn| = k.

For most of our purposes, the above local picture (2.18) of the ring of functions is sufficient.
For some aspects, as e.g. the correct definition of morphisms between Z-graded manifolds,
however, the full mathematical definition1 can be helpful. We therefore recall it in the following.

1This definition also resolves naive paradoxes concerning super and graded manifolds.
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General Z-graded manifolds. The proper definition of Q-manifolds requires the machinery
of locally ringed spaces. A ringed space M is a pair (|M |,SM), where |M | is a topological
space and SM a sheaf of rings on |M |, called the structure sheaf of M .1 A locally ringed
space is a ringed space (|M |,SM) such that all stalks of SM are local rings, that is, they
have unique maximal ideals.

A morphism of (|M |,SM)→ (|M ′|,SM ′) of locally ringed spaces is defined to be a pair
(f, f ]), where f : |M | → |M ′| is a morphism of topological spaces and f ] : SM ′ → f∗SM

a comorphism of local rings, that is, a map that respects the maximal ideals. Here, f∗SM

is the zeroth direct image of SM under f , that is, for any open subset U ′ of |M ′| there is a
comorphism f ]U ′ : SM ′ |U ′ → SM |f−1(U ′). If the structure sheaves carry extra structure such
as a Z-grading, then we require the morphism to respect this structure.

For instance, an ordinary smooth manifold M can be defined as a locally ringed space
(|M |,SM) for a topological manifold |M | such that for each x ∈ |M | there is an open
neighbourhood U 3 x and an isomorphism of locally ringed spaces (U,SM |U) ∼= (U ′,C∞U ′ )
where C∞U ′ is the sheaf of smooth functions on the open set U ′ ⊆ Rd. The stalk of SM at
a point x ∈ |M | is the set of all germs of smooth functions at x ∈ |M |, and the maximal
ideal of the stalk are the functions vanishing at x ∈ |M |. Furthermore, if f : |M | → |M ′|
is a continuous function between two topological manifolds |M | and |M ′| for two smooth
manifolds (|M |,SM) and (|M ′|,SM ′) and if there is a comorphism F : SM ′ → f∗SM of
local rings, then f must also be smooth and F = f ]. See Appendix D for details.

A smooth Z-graded manifold is then defined to be a locally ringed space M = (|M |,SM),
for |M | a topological manifold, such that for each x ∈ |M | there is an open neighbourhood
U 3 x and an isomorphism of locally ringed spaces,

(U,SM |U) ∼= (U ′,⊙•V ∗U ′ ⊗ C∞U ′ ) , (2.21)

where U ′ ⊆ Rd open, C∞U ′ the sheaf of smooth functions on U ′, and VU ′ a locally free Z-
graded sheaf of C∞U ′ -modules on U ′. Hence, we require the sheaf of functions to look locally
like (2.18). We shall denote by C∞M the sheaf of smooth functions on |M | (which is a subsheaf
of the structure sheaf SM), the body of M = (|M |,SM) and denote it by M◦. We shall also
write C∞(M) := Γ(|M |,SM) for the global functions on M .

1See Appendix D for details about sheaves.



22 2.3. Q-Manifolds

Examples. A convenient way of obtaining Z-graded manifolds is by degree shifting the fibres
of a vector bundle. We already mentioned the simplest example of the degree-shifted tangent
bundle T [1]M . In general, it can be shown [122,123] that any smooth real Z-graded manifold
must take the form of a vector bundle E →M◦ over an ordinary smooth manifold M◦ with the
typical fibre being a Z-graded vector space.1 The resulting manifolds are usually called globally
split. Note, however, that complex Z-graded manifolds are not globally split in general, which
is basically due to the non-existence of a holomorphic partition of unity.

Vector fields and differential forms on Z-graded manifolds. A vector field V on a Z-
graded manifold M is a graded derivation of the sheaf of functions, V : C∞(M)→ C∞(M).
That is, for homogeneous V of degree |V | ∈ Z and homogeneous f, g ∈ C∞(M), we have

V (fg) = V (f)g + (−1)|V | |f |f V (g) . (2.22)

As in the ordinary case, we define the tangent bundle TM of a Z-graded manifold M to be
the disjoint union of the tangent spaces which in turn are the vector space of derivations at
particular points of M .

A particular example of a vector field is the Euler vector field Υ which is defined by its
action Υf := |f |f on any homogeneous f ∈ C∞(M) of degree |f | ∈ Z. The Euler vector
field itself is homogeneous and of degree 0.

Note that the definition of differential forms on an ordinary manifold M as functions on
the degree-shifted tangent bundle, Ω•(M) ∼= C∞(T [1]M), as discussed above, generalises
straightforwardly to Z-graded manifolds. That is, we may define

Ω•(M) := C∞(T [1]M) (2.23)

also for M a Z-graded manifold. The shift in the degree-shifted tangent bundle may now be
regarded as an additional grading, extending that of the Z-graded manifold to a bi-grading.
Since we are not interested in any further generalisation of this grading, we simply use the
ordinary notation for differential forms on manifolds to Z-graded manifolds and write again d
and V ¬ for de Rham differential and interior product on a Z-graded manifold,

d ⇐⇒ ξµ
∂

∂xµ
and V µ ∂

∂xµ
¬ ⇐⇒ V µ ∂

∂ξµ
, (2.24)

1This is essentially due to the existence of a partition of unity and the fact that any smooth Z-graded
manifold can be smoothly deformed into said vector bundle.
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where the xµ are now local Z-graded coordinates on M and ξµ local Z-graded fibre coordinates
on T [1]M .

In the following, we shall also make use of the Lie derivative which is now defined by the
graded version of Cartan’s formula

LV ω := V ¬ dω + (−1)|V | d(V ¬ ω) (2.25)

for ω ∈ Ω•(M) and V a homogeneous vector field of degree |V | ∈ Z. Note that [LV , d] =
0, which implies LΥdf = dLΥf = |f | df . Consequently, LΥ extracts the Z-degree of a
differential form while ignoring its form degree. We say that ω ∈ Ω•(M) is of degree k ∈ Z
if and only if LΥω = kω.

Z-graded vector bundles. The tangent bundle of a Z-graded manifold as introduced above
is an example of a Z-graded vector bundle. Generally, a Z-graded vector bundle over a Z-
graded manifold M = (|M |,SM) is defined to be a locally free sheaf EM of Z-graded SM -
modules over M . In addition, for a morphism (f, f ]) : (|M |,SM) → (|M ′|,SM ′) of locally
ringed spaces, the pull-back of a Z-graded vector bundle EM ′ over M ′ to M is the locally free
sheaf f ∗EM ′ := SM ⊗f−1SM′

f−1EM ′ over M .1

Q-manifolds. We now have introduced all the ingredients necessary to define a Q-manifold.
A Q-manifold is a pair (M,Q), where M is a Z-graded manifold and Q is a homological vector
field, that is, a homogeneous vector field Q of degree 1 which satisfies Q2 = 0. Note that
the homological vector field induces a differential on the algebra of functions and the pair
(C∞(M), Q) is a dg-algebra2. Moreover, if the Z-grading reduces to a non-negative or N-
grading, then we also speak of an NQ-manifold. A morphism of Q-manifolds (M,Q) and
(M ′, Q′) is a smooth map f : M → M ′, inducing the homomorphism f# : C∞(M ′) →
C∞(M) of differential algebras, that is the usual chain property holds: Q ◦ f# = f# ◦Q′. As
a composition of two morphisms is apparently a Q-morphism, we have a well-defined category
of Q-manifolds.

Historically, the term Q-manifolds has its origin in physics, in particular in the study of
supersymmetry, where the letter Q was a standard notation for a super-charge. These ob-
jects played a key role in the seminal work of Alexandrov–Kontsevich–Schwarz–Zaboronsky

1Here, f−1SM ′ denotes the inverse image of SM ′ (and likewise for EM ′). See c.f. Appendix D for a
definition.

2The action of Q is naturally extended from C∞(M) to the whole tensor algebra of M .
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(AKSZ) [114], while Kontsevich has shown the link to deformation quantisation [119]. Homo-
logical vector fields were studied by Vaintrob [124, 125], but even before they were formalised
as a mathematical notion, they had existed in physics parlance as BRST symmetries.

Examples. The simplest example of a Q-manifold is any ordinary manifold M together with
Q = 0. Another simple but more interesting example is the degree-shifted tangent bundle
T [1]M , with the canonical vector field turning into the de Rham differential on the algebra
of functions given in the motivational paragraph. We shall encounter many more examples in
Section 2.4..

2.3.1. Symplectic Q-manifolds

A graded symplectic structure of degree k on a Z-graded manifold M is a closed non-
degenerate differential two-form ω ∈ Ω2(M) of degree k. The non-degeneracy means that
V ¬ ω = 0 is equivalent to V = 0 for vector fields V .

A symplectic Q-manifold of degree k is a Q-manifold (M,Q) equipped with a graded
symplectic structure ω of degree k for which Q is symplectic, that is, LQω = 0. It is rather
straightforward to see that ω must be exact for k 6= 0 and Q Hamiltonian for k 6= −1,
respectively [45]. Indeed,

kω = LΥω = Υ ¬ dω + d(Υ ¬ ω) = d(Υ ¬ ω) =⇒ ω = d
(

1
k
Υ ¬ ω

)
. (2.26)

Likewise, to verify that Q is Hamiltonian, we first note that d(Q ¬ ω) = 0 since Q is symplectic.
Then,1

−Q ¬ ω = [Q,Υ] ¬ ω = Q ¬ d(Υ ¬ ω)− d(Q ¬Υ ¬ ω)

= kQ ¬ ω + d(Υ ¬Q ¬ ω) ,
(2.27a)

where in the second step we have used (2.26). Consequently,

Q ¬ ω = dS with S := 1
k+1Q

¬Υ ¬ ω . (2.27b)

1Cartan’s formula (2.25) together with the fact that the Lie derivative is a graded derivation that commutes
with the contraction, LV (W ¬ ω) = [V,W ] ¬ ω + (−1)|V ||W |W ¬ LV ω, imply that [V,W ] ¬ ω = V ¬W ¬

dω + V ¬ d(W ¬ ω)− (−1)|V |(|W |+1)W ¬ d(V ¬ ω) + (−1)|V | d(V ¬W ¬ ω).
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Poisson structure. As on ordinary manifolds, a symplectic structure on a Q-manifold in-
duces a Poisson structure. Concretely, let (M,Q, ω) be a smooth symplectic degree k manifold.
For any f ∈ C∞(M) let Vf be the corresponding Hamilton vector field given by

Vf
¬ ω = df . (2.28)

For homogeneous f ∈ C∞(M) of degree |f | ∈ Z, this equation implies |Vf | = |f |−k because
|Vf ¬ ω| = |Vf |+ |ω| and |df | = |f |. We then define the graded Poisson structure

{f, g} := Vf
¬ Vg ¬ ω = Vfg . (2.29)

For homogeneous elements f, g ∈ C∞(M) of degrees |f |, |g| ∈ Z, we have that |{f, g}| =
|f | + |g| − k. Using Cartan’s formula (2.25), we immediately find the standard result
V{f,g} = (−1)|f |−k[Vf , Vg]. Furthermore, the Poisson structure is graded antisymmetric,

{f, g} = −(−1)(|f |−k)(|g|−k){g, f} , (2.30a)

satisfies a graded Jacobi identity,

{f, {g, h}}+ (−1)(|f |−k)(|g|+|h|)+|f |−k{g, {h, f}}+

+ (−1)(|h|−k)(|f |+|g|)+|h|−k{h, {f, g}} = 0 ,
(2.30b)

as well as a graded Leibniz rule,

{f, gh} = {f, g}h+ (−1)(|f |−k)|g|g{f, h} . (2.30c)

Using (2.27b) and the fact that |S| = k + 1, we find

Q = {S,−} . (2.31)

The Jacobi identity then implies that Q2 = 1
2{{S, S},−}. Consequently, {S, S} = QS must

be locally constant for Q2 = 0. Since |{S, S}| = 2 + k, we may conclude that for k 6= −2 the
condition Q2 = 0 is equivalent to saying that

{S, S} = 0 . (2.32)

For S the (classical) Batalin–Vilkovisky action, this is called the classical master equation. In
this special case, the Poisson bracket is of degree 1. General Poisson algebras of degree 1
are known as Gerstenhaber algebras. We shall return to the Batalin–Vilkovisky action in
Section 4.3..
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Examples. The following examples were first given in [126], see also [45] and [116] for
further details. A symplectic NQ-manifold of degree 0 is simply a symplectic manifold. A
symplectic NQ-manifold of degree 1 is in one-to-one correspondence with a Poisson manifold.
Such a manifold can be shown to be symplectomorphic to T ∗[1]M with canonical symplectic
structure. A compatible homological vector field Q corresponds to a bi-vector field on M and
the condition Q2 = 0 amounts to this bivector being a Poisson tensor. Similarly, symplectic
NQ-manifolds of degree 2 are Courant algebroids. These objects arise in string theory when
studying the geometry underlying T-duality and features prominently in generalised geometry
and double field theory. As a last, more involved, example we mention T ∗[n]T [1]M , a shifted
cotangent bundle of the shifted tangent bundle of an ordinary manifold M . This is a class
of NQ-manifolds containing the Vinogradov algebroid TM ⊕ Λn−1T ∗M , see [127, 128] for
details. Here, the cotangent functor T ∗ gives extra coordinates with opposite degree to the
fibers in T [1]. For n = 2 the Vinogradov algebroid is an exact Courant algebroid1 and one has
local coordinates (xµ, ξµ, ξµ, pµ), with µ = 1, . . . , dim(M) of degree (0, 1, 1, 2), respectively.
A canonical choice of the homological vector field reads Q := ξµ ∂

∂xµ
+ pµ

∂
∂ξµ

.

2.4. L∞-algebras and L∞-algebroids

2.4.1. Motivation

The previous example of a Courant algebroid as well as the Q-manifolds T [1]M and T ∗[1]M
connect Q-manifolds to Lie algebroids. This connection can be vastly generalised as we shall
see in the following.

Firstly, let us see what happens for a Q-manifold M with body M◦ a point. In that case,
we simply have a Z-graded vector space V. Let us further simplify V such that it is non-trivial
only in degree −1, i.e. V = g[1] for an ordinary vector space g. Let ξα be local coordinates
on V of degree 1. Then, the most general degree 1 vector field Q is necessarily of the form

Q = −1
2fαβ

γξαξβ
∂

∂ξγ
, (2.33)

for some constants fαβγ = −fβαγ. It is straightforward to check that the identity Q2 = 0 is

1The data specifying a symplectic structure on T ∗[2]T [1]M are equivalent to the data specifying a Courant
algebroid structure on the bundle TM ⊕ T ∗M , [45].
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equivalent to requiring the fαβγ to satisfy the Jacobi identity

fαβ
δfγδ

ε + fβγ
δfαδ

ε + fγα
δfβδ

ε = 0 . (2.34)

Therefore, the constants fαβγ are, in fact, the structure constants of a Lie algebra structure
on g. We conclude that a Q-manifold with body a point and concentrated in degree −1 is
therefore a Lie algebra g.

The latter generalises to the following statements, which we shall explain in more detail
in the remainder of this Section. A Q-manifold with body a point is an L∞-algebra. If the
only non-trivial coordinates are of degrees 1, . . . , n we shall speak of a Lie n-algebra.1 These
algebras are expected to be the correct infinitesimal symmetry structure for gauge theories of
extended objects. Similarly, a Q-manifold with non-trivial body and coordinates of degrees
0, . . . , n is a Lie n-algebroid and a general Q-manifold is an L∞-algebroid.

Chevalley–Eilenberg complex and Q-manifolds. Let us now link the above discussion to
standard mathematical nomenclature, introducing the language that is natural for describing
BV quantisation. The differential graded algebra2 (∧• g∗, dCE) ∼= (C∞(g[1]), Q), for some
finite dimensional3 Lie algebra g, is called the Chevalley–Eilenberg algebra CE(g) of g and the
differential dCE, induced by the homological vector field Q, is identified with the Chevalley–
Eilenberg differential. Similarly, we have the identification CE(T [1]M) := (Ω•(M), d), defin-
ing the the Chevalley–Eilenberg algebra of the grade-shifted tangent bundle T [1]M as the de
Rham complex of some manifold M . This language is well-known from Lie algebra cohomology
and it allows a natural extension to the case of L∞-algebras.

The Chevalley–Eilenberg algebra is a special case of the Chevalley–Eilenberg complex for
a g-module E ,

0 −−−→ Hom(∧0g,E ) ∼= E
dCE−−−→ Hom(∧1g,E ) dCE−−−→ Hom(∧2g,E ) dCE−−−→ · · ·

(2.35)

1Strictly speaking, they are n-term L∞-algebras, but for all intents and purposes, they can be regarded
as (categorically) equivalent to Lie n-algebras. The categorical equivalence has been proven for Lie 2-algebras
and 2-term L∞-algebras [4]; the extension to Lie n-algebras and n-term L∞-algebras should be very involved,
but ultimately a mere technicality.

2The isomorphism is the shift isomorphism s• defined in (2.13). See Appendix A for details. Moreover,
homomorphisms of a Lie algebra g are in one-to-one correspondence to chain maps of the complex CE(g).

3Special care has to be taken in the infinite-dimensional case. See e.g. [129] for details on this point.
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with Chevalley–Eilenberg differential

dCE : Hom(∧pg,E ) → Hom(∧p+1g,E ) ,

(dCEF )(X1, . . . , Xp+1) :=

:=
p+1∑
i=1

(−1)i+1Xi B F (X1, . . . , X̂i, . . . , Xp+1) +

+
∑

1≤i<j≤p+1
(−1)i+jF ([Xi, Xj], X1, . . . , X̂i, . . . , X̂j, . . . , Xp+1) .

(2.36)

We now explain that in the case of the trivial g-module E = R, we recover the Chevalley–
Eilenberg algebra and the action of dCE is essentially that of Q. First, note that a function
F ∈ Hom(∧kg,R) corresponds to an element in C∞k (g[1]) according to

F (τα1 ∧ . . . ∧ ταk) = Fα1···αk ⇐⇒ 1
k!ξ

α1 · · · ξαkFα1···αk . (2.37)

Under this isomorphism, the Chevalley–Eilenberg differential is indeed mapped to Q. Con-
cretely, we have that

(dCEF )(τα1 ∧ . . . ∧ ταk+1) =
∑

1≤i<j≤k+1
(−1)i+jF ([ταi , ταj ], τα1 , . . . , τ̂αi , . . . , τ̂αj , . . . , τk+1)

= − (k + 1)!
2(k − 1)!f[α1α2

βFβα3...αk+1]

(2.38)
corresponds to

Q
1
k!ξ

α1 · · · ξαkFα1···αk = − 1
2(k − 1)!ξ

α1 · · · ξαk+1fα1α2
βFβα3···αk+1 . (2.39)

Remark. This is exactly the language used by Cartan to describe local connection forms on
principal fibre bundles, as mentioned in the introduction to this Chapter. Let M be a manifold
and g a Lie algebra with basis τα and structure constants fαβγ. Morphisms of differential graded
algebras

A : CE(g)→ CE(T [1]M) , (2.40)

preserve the graded algebra structure and therefore are fixed by the image of ξα, A(ξα) =:
Aα ∈ Ω1(M), that defines a Lie algebra-valued differential form or local connection 1-form
A := Aατα on M . Compatibility with the differentials of CE(g) and CE(T [1]M), that is
(d ◦ A)(ξα) = (A ◦Q)(ξα), enforces flatness of this connection

dAα = A(−1
2f

α
βγξ

βξγ) = −1
2f

α
βγA

β ∧ Aγ =⇒ F := dA+ 1
2 [A,A] = 0 . (2.41)
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Gauge transformations are encoded in partially flat homotopies between two morphisms of
type (2.40). Moreover, to describe non-flat connections one needs to enlarge the Chevalley-
Eilenberg algebra and construct the so called Weil algebra, [130, 7]. We shall not discuss
this approach further, which in its full extent is due to [7] . The interested reader may also
consult [131] for a review of the subject. Along this Thesis, we shall use a different approach
to describe kinematical data of higher gauge, as explained in Chapter 3.

Contracted coordinate functions I. We now come to an important technicality which,
however, will greatly simplify our notation. Relying on basis dependent equations as Qξα =
−1

2fβγ
αξβξγ is both inconvenient and inelegant. We can, however, contract both sides of the

equation by the basis vector τα, obtaining the basis independent version

Qξ = −1
2 [ξ, ξ] with ξ := ξα ⊗ τα . (2.42)

Note that ξ is not an element of g[1] but rather an element of (g[1])∗ ⊗ g which, in turn, is a
subset of gC := C∞(g[1])⊗ g. We thus extended the Lie bracket from g to gC . Since [−,−]
does not carry any degree, this extension by linearity is unique. This is similar to the extension
of the Lie bracket from g to Ω•(M, g), the set of Lie algebra valued differential forms, which
is often used in gauge theories. In the general case of L∞-algebras, however, we will have to
be more careful.

2.4.2. L∞-algebras

As stated above, the differential graded algebra (C∞(g[1]), Q) provides an alternative descrip-
tion of the Lie algebra (g, [−,−]), with [−,−] the Lie bracket via the identification with the
Chevalley–Eilenberg algebra CE(g) := (∧• g∗, dCE) of g. This statement readily generalises
to categorised structures. Considering a Q-manifold1 M concentrated in degrees 1, · · · , n
we declare the pair (C∞(M), Q) to be the Chevalley–Eilenberg algebra CE(L) of an n-term
L∞-algebra (L, µi) over R, with µi being the higher brackets generalising the ordinary Lie
bracket. Indeed, such a Q-manifold is necessarily of the form M = L[1], for a Z-graded vector
space L = ⊕0

k=−nLk.
Defining ξα to be local coordinates of degree |ξα| ∈ {1, . . . , n}, then the vector field (2.33)

1Recall, that we here are considering Q-manifolds with body a point.
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generalises to

Q :=
n∑
i=1

(−1) 1
2 i(i+1)

i! ξα1 · · · ξαif β
α1···αi

∂

∂ξβ
. (2.43)

Note that the f β
α1···αi are constants, but not all them are non-zero because of the requirement

of the vector field Q being of degree 1. These constants encode totally graded anti-symmetric
multilinear maps1

µi : L× · · · × L︸ ︷︷ ︸
i copies

→ L , (2.44a)

of degree 2 − i. Indeed, letting τα be a basis of L with |τα| = −|ξα| + 1 ∈ {−n, . . . , 0} we
may write

µi(τα1 , . . . , ταi) := f β
α1···αi τβ . (2.44b)

The nilpotency condition Q2 = 0 amounts to requiring that the higher maps satisfy the higher
or homotopy Jacobi identities,

∑
j+k=i

∑
σ∈Sh(j;i)

χ(σ; `1, . . . , `i)(−1)kµk+1(µj(`σ(1), . . . , `σ(j)), `σ(j+1), . . . , `σ(i)) = 0 , (2.44c)

for `1, . . . , `i ∈ L and i ∈ N0, as a straightforward but lengthy calculation shows. Here, the
sum is taken over all (j; i) shuffles σ which consist of permutations σ of {1, . . . , i} such that the
first j and the last i−j images of σ are ordered: σ(1) < · · · < σ(j) and σ(j+1) < · · · < σ(i).
Moreover, χ(σ; `1, . . . , `i) is the graded Koszul sign defined via the equation

`1 ∧ . . . ∧ `i = χ(σ; `1, . . . , `i) `σ(1) ∧ . . . ∧ `σ(i) (2.44d)

in the graded exterior algebra for homogeneous elements. More generally, a Z-graded vector
space L together with the i-ary multilinear totally antisymmetric products µi defined above
satisfying (2.44c) is called L∞-algebra or strong homotopy Lie algebra [10, 132–134]. The
homotopy Jacobi identities (2.44c) for i = 1 and i = 2 can be written as

µ1(µ1(`1)) = 0 ,

µ1(µ2(`1, `2)) =µ2(µ1(`1), `2) + (−1)|`1|Lµ2(`1, µ1(`2)) ,
(2.45)

where |`|L denotes the L∞-degree of ` ∈ L. The first identity tells us that the unary product
µ1 is a differential, making L into a cochain complex, while the second identity shows that µ1

1Please note that our notation differs from another commonly used one, where higher products are denoted
by li or `i. For us, the latter are often elements of the L∞-algebras.



2.4. L∞-algebras and L∞-algebroids 31

is a graded derivation which is compatible with the binary product µ2. In addition, the corres-
ponding relation for i = 3 captures the failure of the binary product µ2 to satisfy the standard
Jacobi identity. We just mentions here that L∞-algebras and their homotopy Jacobi relations
can be also elegantly described in the codifferential graded coalgebras perspective, which is due
to [133, 134]. The interested reader may find the translation between the differential graded
algebra, coalgebra and higher brackets pictures in Appendix A.

Note that in the same sense as L∞-algebras generalise Lie algebras, the higher analogue of
an associative algebra is an A∞-algebra or strong homotopy associative algebra, as introduced
in [40, 41]. Roughly speaking, while an L∞-algebra generalises the commutator in a matrix
algebra to a structure violating the Jacobi identity, an A∞-algebra generalises the matrix
product in a matrix algebra to a non-associative structure. These A∞-algebra come with
higher homotopy associative products and antisymmetrising these products yields the L∞-
algebra products µi on the underlying graded vector space. A unifying description of all the
homotopy algebras1 and their cyclic structures is provided by the formalism of operads, where
A∞-algebras and L∞-algebra are defined as homotopy algebras over the associative operad
and the Lie operad, respectively. For our purposes, we are not interested in reaching this level
of abstraction. See e.g. [136, 137].

Special cases. It is useful to introduce some nomenclature. We call the L∞-algebra

L = · · · −→ 0 −→ 0 −→ · · · , (2.46)

where 0 denotes the zero-dimensional vector space, the trivial L∞-algebra. An L∞-algebra
is called minimal whenever µ1 = 0. For example, ordinary Lie algebras form minimal L∞-
algebras, while differential graded Lie algebras are not minimal in general. Furthermore, a
linearly contractible L∞-algebra is one in which the only non-trivial higher product is the
differential µ1 and the corresponding cohomology vanishes. For example, the L∞-algebra
V [1] id−−→ V with µ1 = id and all higher products trivial is linearly contractible. Also the trivial
pairs introduced later for gauge fixing in the BV formalism are linearly contractible. Similarly,
L∞-algebras for which µi = 0 for i ≥ 3 are called strict L∞-algebras. Such L∞-algebras are
the same as differential graded Lie algebras. Finally, we recall that when an L∞-algebra is

1The term homotopy algebra generally refers to either a L∞-, A∞- or C∞-algebra, that is, an A∞-algebra
that also satisfies homotopy commutativity relations, see [135] for details.
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non-trivial only in particular degrees, we say that it is concentrated in these degrees. L∞-
algebras concentrated in degrees −n+ 1, . . . , 0 corresponds to an n-fold categorification of a
Lie algebra (with morphisms up to degree n− 1).

2.4.3. Cyclic L∞-algebras

The appropriate notion of an inner product on an L∞-algebra L is a graded symmetric non-
degenerate bilinear pairing

〈−,−〉L : L× L → R (2.47a)

which is cyclic in the sense of

〈`1, µi(`2, . . . , `i+1)〉L = (−1)i+i(|`1|L+|`i+1|L)+|`i+1|L
∑i

j=1 |`j |L〈`i+1, µi(`1, . . . , `i)〉L (2.47b)

for all i ∈ N for homogeneous `1, . . . , `i+1 ∈ L with |`i|L the L∞-degree of `i ∈ L, cf. [138,139]
for the original introduction of cyclic structures.

Whenever an L∞-algebra is equipped with such an inner product, we shall call it a cyclic
L∞-algebra. When a cyclic L∞-algebra is Hilbert (i.e. complete), the non-degeneracy of the
inner product induces the isomorphisms L ∼= (L[k])∗ ∼= L∗[−k] where k := |〈−,−〉L|L.

In the Q-manifold picture, a cyclic inner product corresponds to a symplectic form and
the cyclicality is encoded in the requirement of the vector field to be symplectic with respect
to the symplectic form. Let us again illustrate this starting form the simple example of a
Lie algebra g. Let ξα be coordinates on g[1] with respect to a basis τα of g. As we have
seen above, the homological vector field is then given by Q = −1

2fαβ
γξαξβ ∂

∂ξγ
. A symplectic

structure on L[1] is necessarily of degree 2 and thus takes the form ω = 1
2ωαβdξα ∧ dξβ with

ωαβ = ωβα ∈ R. The fact that Q is symplectic implies LQω = − d(Q ¬ ω) = 0 which,
together with Q ¬ dξα = Qξα leads to

1
2ωαβ

(
d(Qξα) ∧ dξβ − dξα ∧ d

(
Qξβ

))
= 0 ⇐⇒ ωδ(αfβ)γ

δ = 0 . (2.48)

This is precisely the cyclicity condition for the symmetric inner product 〈τα, τβ〉g = ωαβ on the
Lie algebra g,

〈τα, [τβ, τγ]〉g = 〈τγ, [τα, τβ]〉g . (2.49)

Finally, note that the Hamiltonian (2.27b) for Q is given by S = 1
3!ξ

αξβξγωδ[αfβγ]
δ. It

is not difficult to see that this treatment generalises to L[1] with L = ⊕
k∈Z Lk. That is, a

smooth symplectic Q-manifold of the form (L[1], Q, ω) encodes a cyclic L∞-algebra L.
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2.4.4. L∞-algebras from tensor products

An important observation which we shall heavily rely upon is that the graded vector space
obtained from the tensor product of an L∞-algebra and a differential graded commutative
algebra carries a natural L∞-algebra structure, see e.g. [102]. As we shall see in the rest of
the Thesis, this concept is crucial in describing the kinematical data of a higher gauge theory
having some L∞-algebra as its structure group.

Let (A, d) be a differential graded commutative algebra and (L, µi) be an L∞-algebra.
Then we have a new L∞-algebra LA with underlying graded vector space

LA :=
⊕
k∈Z

(A⊗ L)k with (A⊗ L)k :=
⊕
i+j=k

Ai ⊗ Lj (2.50a)

so that the homogeneous degree in LA is given by |a ⊗ `|LA = |a|A + |`|L for homogeneous
a ∈ A and ` ∈ L. The higher products µ̂i on LA read as

µ̂i :=

 d⊗ id + id⊗ µ1 i = 1 ,
mi ⊗ µi else ,

(2.50b)

where mi(a1, . . . , ai) := a1 · · · ai is the commutative, associative product on A.
Applied to (a1 ⊗ `1, . . . , ai ⊗ `i) with homogeneous a1, . . . , ai ∈ A and `1, . . . , `i ∈ L, we

obtain

µ̂1(a1 ⊗ `1) := da1 ⊗ `1 + (−1)|a1|Aa1 ⊗ µ1(`1) ,

µ̂i(a1 ⊗ `1, . . . , ai ⊗ `i) := (−1)i
∑i

j=1 |aj |A+
∑i

j=2 |aj |A
∑j−1

k=1 |`k|L ×
× (a1 · · · ai)⊗ µi(`1, . . . , `i)

(2.51a)

for i ≥ 2, and they extend to general elements by linearity. It is shown in Appendix C that
these products satisfy the homotopy Jacobi identities (2.44c).

In addition, if both A and L come with inner products 〈−,−〉A and 〈−,−〉L, then LA

admits a natural inner product defined by

〈a1 ⊗ `1, a2 ⊗ `2〉LA := (−1)|a2|A|`1|L〈a1, a2〉A〈`1, `2〉L (2.51b)

for homogeneous a1, a2 ∈ A and `1, `2 ∈ L. Clearly, this inner product is graded symmetric
and its cyclicity is shown in Appendix C.
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Remark: L∞-algebra structures on graded modules. Let us remark that our previous
discussion of L∞-algebra structures on graded vector spaces translates to the case of graded
modules. This is particularly important for the application to field theory, as here the field
of real numbers is essentially always replaced by a ring of functions or, more generally, by a
ring of sections of some vector bundle. In the following, a (cyclic) L∞-algebra will have an
underlying graded module.

Example: Contracted coordinate functions II. Another fundamental example is the
following. Let (L, µi) be an L∞-algebra. Recall that to use the simplifying notation in Equa-
tion (2.42), we introduced the contracted coordinate functions ξ := ξα ⊗ τα of total degree
|ξ| = 1, extending the Lie algebra g to the tensor product gC := C∞(g[1]) ⊗ g. In the case
of L the analogue extension is

LC := C∞(L[1])⊗ L , (2.52a)

where we regard C∞(L[1]) as a differential graded algebra with trivial differential. This leads
to higher products obtained by linearly extending

µ̂1(ζ1 ⊗ `1) := (−1)|ζ1|ghζ1 ⊗ µ1(`1) ,

µ̂i(ζ1 ⊗ `1, . . . , ζi ⊗ `i) := (−1)i
∑i

j=1 |ζi|gh+
∑i

j=2 |ζj |gh
∑j−1

k=1 |`k|L(ζ1 · · · ζi)⊗ µi(`1, . . . , `i)
(2.52b)

for homogeneous ζj ∈ C∞(L[1]), of degree |ζj|gh ∈ Z, and `j ∈ L. These give the Z-graded
vector space (2.52a) an L∞-structure.

For L a cyclic L∞-algebra with cyclic inner product of degree k, we also define a non-
degenerate graded symmetric pairing LC × LC → C∞(L[1]) given by

〈ζ1 ⊗ `1, ζ2 ⊗ `2〉LC
:= (−1)k(|ζ1|gh+|ζ2|gh)+|`1|L|ζ2|gh(ζ1ζ2)〈`1, `2〉L (2.52c)

for homogeneous ζ1,2 ∈ C∞(L[1]) and `1,2 ∈ L.
This tensor product L∞-algebra now allows us to write the action of Q in a very compact

form, extending formula (2.42). We introduce again the contracted coordinate functions
ξ = ξα ⊗ τα ∈ LC with |ξ| = 1, where τα is a basis for L. As shown in (A.25), we then have

Qξ = −
∑
i≥1

1
i! µ̂i(ξ, . . . , ξ) . (2.53)
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This formula should be interpreted as acting on elements of ⊙• L[1]. The µi(ξ, . . . , ξ) act
non-trivially only on elements of ⊙i L[1] and when moving ξ past elements in L[1], one should
insert Koszul signs accordingly.

Such a construction, together with the one discussed in the next two paragraphs, will be
central in the BRST/BV formalism analysed in Chapter 4.

2.4.5. L∞-algebroids

It remains to discuss the case of a Q-manifold (M,Q) with non-trivial body M◦. As stated
above, these correspond to L∞-algebroids. We call the dg-algebra (C∞(M), Q) the Chevalley–
Eilenberg algebra of an L∞-algebroid.

The Q-manifolds underlying ordinary Lie algebroids are simply degree-shifted vector bundles.
Let E →M◦ be a vector bundle over an ordinary manifold M◦. On the degree-shifted vector
bundle M = E[1], we introduce local coordinates xµ, ξα with |xµ| = 0 and |ξα| = 1, the
homological vector field Q must be of the form

Q = ρµα(x)ξα ∂

∂xµ
− 1

2fαβ
γ(x)ξαξβ ∂

∂ξγ
. (2.54)

The condition Q2 = 0 then amounts to requiring that the fαβγ encode a Lie bracket on the
space of sections of E satisfying a Leibniz rule and the ρµα encode a Lie algebra morphism
E → TM◦.

Example: action Lie algebroid. An important example of a Lie algebroid is the action Lie
algebroid. To define it, let M◦ = (|M |,C∞M ) be an ordinary manifold together with an action
ρ : G×M◦ → M◦ of a Lie group G. We are then often interested in the orbit space M◦/G.
This space is can be badly behaved and hard to get under control. For example, the action
of G may not be free (i.e. it contains fixed points) which leads to singularities when trying to
regard M◦/G as a smooth manifold. But even if this is not the case, it may be hard to find
an explicit and useful description of the quotient space M◦/G.

One way to circumvent this problem is to use the derived quotient instead. This is just
modern terminology for considering the action Lie groupoid.1 The morphisms of the latter are
the maps transforming x ∈M◦ by a group element g ∈ G to g B x ∈M◦,

x
(g,x)−−−−→ g B x . (2.55)

1See Appendix D for a definition of the Lie groupoid. Recall that a Lie group is a Lie groupoid with the
base manifold being a point and similarly a Lie algebra is a Lie algebroid with the base manifold being a point
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The action Lie groupoid is thus the category GnM◦ ⇒ M◦. The structure maps are rather
obvious. The identity map idx : M◦ → G nM◦ is simply x 7→ (1G, x) and composition of
morphisms (g2, g1 B x) and (g1, x) is given by (g2, g1 B x) ◦ (g1, x) = ((g2g1) B x, x). The
inverse of a morphism (g, x) is (g, x)−1 = (g−1, g B x).

Just as a Lie group differentiates to a Lie algebra, a Lie groupoid differentiates to a Lie
algebroid and a very general prescription for the Lie differentiation of L∞-groupoids is found
in [140], see also [103] for all details. The action Lie algebroid is now the trivial vector
bundle g ×M◦ → M◦, where g is the Lie algebra of G. The corresponding Q-manifold is
M = g[1] ×M◦ with local coordinates xµ and ξα of degrees 0 and 1, respectively, and the
homological vector field reads as (2.54). Here, ρµα is given by linearising the Lie group action
ρ : G×M◦ →M◦ and fαβγ are the structure constants of g.

As we shall see in Section 4, when dealing with gauge field theories, the groupoid per-
spective turns out to be a much more refined approach than the naive gauge orbit space
perspective. In particular, the action Lie algebroid is the mathematical structure underlying
the Becchi–Rouet–Stora–Tyutin (BRST) complex. Finally, also note that this construction
generalises to actions of L∞-algebras on manifolds.

Comments on generalisations. Our treatment of L∞-algebras and L∞-algebroids as par-
ticular Q-manifolds extends to cases where the Z-graded vector bundles become infinite-
dimensional. Here, however, care needs to be taken in the dualisation from the dg-algebra
picture involving the Chevalley–Eilenberg differential Q to the coalgebra picture with codiffer-
ential D.1

Also, the cyclicity condition for L∞-algebras (2.47b) can certainly be extended to bilinear
maps on a module A over a ring R to that ring R, just as in the case of Lie algebras. Recall that
such maps are used e.g. when defining Lagrangians, where A are representation space-valued
differential forms and R is the ring of functions (or even densities) on a manifold.

2.5. Morphisms of L∞-algebras and quasi-isomorphisms

Morphisms between L∞-algebras, also known as L∞-morphisms, generalise the notion of Lie
algebra morphisms, which are maps preserving the Lie bracket. Because of the higher categor-
ical nature of L∞-algebras, it shouldn’t be surprising that the former are much richer than

1See e.g. [141] and [142] for discussions on the subject.
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the latter. The notion of morphism of L∞-algebras is naturally induced by their description in
terms of differential graded algebras. In the following, we shall translate this notion to the mul-
tilinear maps µi and clarify the appropriate notion of isomorphism, called quasi-isomorphism.1

A key references for this Section is [143], where corresponding definitions and results are found
in the more general case of A∞-algebras.

2.5.1. L∞-morphisms

L∞-morphisms are most straightforwardly understood via the description of L∞-algebras in
terms of Q-manifolds or via their interpretation as codifferential coalgebras, where there is an
obvious notion of morphism.The technical details of the derivation are found in Appendix A,
which we summarise here as follows. In the Q-manifold picture an L∞-morphism is described
by a degree-0 morphism (f, f#) : (M,Q) → (M ′, Q′) of Z-graded manifolds, preserving the
homological vector fields in the sense that Q ◦ f# = f# ◦Q′. In the L∞-picture, this can be
rephrased as follows. A morphism between two L∞-algebras (L, µi) and (L′, µ′i) is a collection
of mutlilinear totally graded anti-symmetric maps

φi : L× · · · × L→ L′ , (2.56)

of degree 1− i for i ∈ N, which obey∑
j+k=i

∑
σ∈Sh(j;i)

(−1)kχ(σ; `1, . . . , `i)φk+1(µj(`σ(1), . . . , `σ(j)), `σ(j+1), . . . , `σ(i))

=
i∑

j=1

1
j!

∑
k1+···+kj=i

∑
σ∈Sh(k1,...,kj−1;i)

χ(σ; `1, . . . , `i)ζ(σ; `1, . . . , `i)×

× µ′j
(
φk1

(
`σ(1), . . . , `σ(k1)

)
, . . . , φkj

(
`σ(k1+···+kj−1+1), . . . , `σ(i)

))
.

(2.57a)

Here, χ(σ; `1, . . . , `i) is the Koszul sign and ζ(σ; `1, . . . , `i) for a (k1, . . . , kj−1; i)-shuffle σ is
defined as

ζ(σ; `1, . . . , `i) := (−1)
∑

1≤m<n≤j kmkn+
∑j−1

m=1 km(j−m)+
∑j

m=2(1−km)
∑k1+···+km−1

k=1 |`σ(k)|L .

(2.57b)
An L∞-morphism for which φi = 0 for i ≥ 2 is called strict. Clearly, L∞-morphisms concen-
trated in degree 0 are of this type and for those the relation (2.57) reduces to

φ1(µ2(`1, `2))) = µ′2(φ1(`1), φ1(`2)) , (2.58)
1They are most appropriate from a∞-categorical point of view. For example, all definitions of the gerbes

governing the higher form fields work up to quasi-isomorphisms.
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that is, the expected relation for a morphism of Lie algebras. The notion of a weak morphism
between 2-term L∞-algebras was derived in [4], where also many more details on 2-term
L∞-algebras can be found. Morphisms of L∞-algebras are composable, and the formulas
for the composition map can be derived using the coalgebra picture in Appendix A in which
composition is evident. As we shall see, there are two notions of isomorphisms between L∞-
algebras.

L∞-isomorphisms. An L∞-morphism is (strictly) invertible if and only if the map φ1 is
invertible. This is already suggested by (2.57), which shows that the higher products on
either (L, µi) or (L′, µ′i) can be reconstructed from the respective others if φ−1

1 is known. In
this case, the map φ1 : L → L′ is an isomorphism, and, correspondingly, we call such L∞-
morphisms isomorphisms of L∞-algebras or L∞-isomorphisms. They allow us to formulate the
next theorem.

Decomposition theorem. Any L∞-algebra L is L∞-isomorphic to the direct sum of a
minimal L∞-algebra (that is, an L∞-algebra with µ1 = 0) and a linearly contractible L∞-
algebra (that is, an L∞-algebra with µi = 0 for i > 1 and trivial cohomology), see [143] for
the more general case of A∞-algebras.

Because an L∞-isomorphism is in particular a cochain map, it follows that the minimal
L∞-algebra in the decomposition should have the cohomology complex (H•µ1(L), 0) of the
complex (L, µ1) as its differential graded vector space. Thus, we have in general

(L, µi) ∼= (L′, µ′i) := H•µ1(L)⊕ L/H•µ1(L) (2.59)

and L/H•µ1(L) is the linearly contractible part.

2.5.2. L∞-quasi-isomorphisms

Often, L∞-isomorphisms do not yield the physically relevant equivalence classes; see e.g. Sec-
tion 3.1.. Instead, one should consider the following weaker notion of an isomorphism: a
quasi-isomorphism is a morphism that induces an isomorphism on the level of cohomology.
Explicitly, a quasi-isomorphism of L∞-algebras is a L∞-morphism (L, µi)→ (L′, µ′i) for which
φ1 induces an isomorphism H•µ1(L) ∼= H•µ′1

(L′) of graded vector spaces.1 We will argue below

1We observe that the condition (2.57) for i = 1 reads φ1(µ1(`)) = µ′1(φ1(`)), for ` ∈ L. Hence, φ1 is a
cochain map between (L, µ1) and (L′, µ′1) and thus descends to a homomorphism on cohomology.
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that L∞-quasi-isomorphy indeed induces an equivalence on the space of L∞-algebras. Since
a Lie algebra is isomorphic to its cohomology, the difference between quasi-isomorphisms and
L∞-isomorphisms is a new feature of L∞-algebras, which is not present in the case of Lie
algebras. We also call two differential graded algebras (C∞(L[1]), Q) and (C∞(L′[1]), Q′)
quasi-isomorphic, if they form the Chevalley–Eilenberg algebras of two quasi-isomorphic L∞-
algebras L and L′.

Besides the decomposition theorem, there are two additional structure theorems, which
generally hold for homotopy algebras and are useful for the homological algebraic perspective
on field theories.

Strictification theorem. It can be shown [144, 145], that any L∞-algebra is L∞-quasi-
isomorphic to a strict L∞-algebra. Recall that a strict L∞-algebra is a differential graded Lie
algebra because only the differential and the binary product are non-vanishing. This result is
known as strictification1 of an L∞-algebra. Whilst this is a crucial result for making general
statements about L∞-algebras, in practical applications, however, it often turns out that
the transition to the strict model of an L∞-algebra is either hard to begin with or not very
convenient and too restrictive for further computations. We just mention here the relevance of
this result by saying that the strictification theorem implies that any field theory is equivalent
to a field theory with only cubic interaction terms. See [146] or [42] and 5.2.2. for applications
to physical theories.

Minimal model theorem. Here, we present another crucial result, companion to the above
one. It states that any L∞-algebra (L, µi) is quasi-isomorphic to an L∞-algebra (L′, µ′i) with
µ′1 = 0, that is a minimal one. This result follows from the decomposition theorem [143] that
guarantees that there are L∞-quasi-isomorphisms

p : L
∼=−−→ H•µ1(L)⊕ L/H•µ1(L) π

� H•µ1(L) ,

e : H•µ1(L) ι
↪→ H•µ1(L)⊕ L/H•µ1(L)

∼=−−→ L .
(2.60)

Here, π : H•µ1(L) ⊕ L/H•µ1(L) � H•µ1(L) is the projection and ι : H•µ1(L) ↪→ H•µ1(L) ⊕
L/H•µ1(L) the inclusion. Both π and ι are strict, but neither p nor e are, in general. The
existence of the second L∞-quasi-isomorphism in (2.60) is indeed known as the minimal

1In the mathematical literature it is often used the term rectification.
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model theorem [147, 143], which historically predates the decomposition theorem. The L∞-
structure on H•µ1(L) is also called a minimal model, i.e. a minimal representative of the quasi-
isomorphism class of L. We note that minimal models are unique up to L∞-isomorphisms.

Roughly speaking, the restriction to cohomology L → H•µ1(L) is the restriction from the
kinematical data of a gauge theory to its physical states, and we shall come back to this
in Section 5. Hence, as we shall see, quasi-isomorphisms constitute the correct notion of
equivalence of physics theories [42, 43]. In particular, the minimal model of a classical field
theory describes precisely the tree-level scattering amplitudes, as it corresponds to a field
theory that is equivalent to the original field theory, but without any propagating degrees of
freedom [148, 143, 42, 43]. In [42] we constructed these minimal models for Yang–Mills and
higher Chern–Simons theory. We shall see this in Chapter 5.

The construction of a minimal model for (L, µi) amounts to computing the L∞-structure
given by the brackets on the cohomology ring H•µ1(L) =: L′. Explicitly, let (L, µi) be an
L∞-algebra and write dk : Lk → Lk+1 for µ1. Consider the complex (L, d) and denote its
cohomology complex by (H•d(L), 0). The minimal model theorem then tells us that we have
cochain maps p and e

Lh
%% p

// // H•d(L)_?e
oo , (2.61a)

with p ◦ e = 1 and h is a contracting homotopy. Specifically, h is a collection of maps
hk : Lk → Lk−1 such that

dk = dk ◦ hk+1 ◦ dk . (2.61b)

It follows that we can construct the three projectors

Pk := ek ◦ pk , hk+1 ◦ dk , and dk−1 ◦ hk (2.62a)

with

1 = Pk + hk+1 ◦ dk + dk−1 ◦ hk , (2.62b)

that is, they allow for the decomposition

L ∼= im(P )⊕ im(h ◦ d)⊕ im(d ◦ h) with im(P ) ∼= H•d(L) . (2.63)

This decomposition is also known as the abstract Hodge–Kodaira decomposition, see e.g. [143]
as well as Appendix B for more details.
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Explicit minimal model. Let us see how the homological perturbation lemma translates to
the dual picture. To write down the L∞-structure on H•d(L), let us set L′ := H•d(L) and µ′1 := 0.
Following [143], we define totally graded anti-symmetric multilinear maps φi : L′×· · ·×L′ → L
of homogeneous degree 1− i recursively by setting

φ1(`′1) := e(`′) ,

φ2(`′1, `′2) := −h(µ2(e(`′1), e(`′2))) ,
...

φi(`′1, . . . , `′i) := −
i∑

j=2

1
j!

∑
k1+···+kj=i

∑
σ∈Sh(k1,...,kj−1;i)

χ(σ; `′1, . . . , `′i)ζ(σ; `′1, . . . , `′i)×

× h
{
µj

(
φk1

(
`′σ(1), . . . , `

′
σ(k1)

)
, . . . , φkj

(
`′σ(k1+···+kj−1+1), . . . , `

′
σ(i)

))}
,

(2.64)

where `′1, . . . , `′i ∈ L′. Here, h and e are again the maps from (2.61), χ(σ; `′1, . . . , `′i) is the
Koszul sign defined in (2.44d), and ζ(σ; `′1, . . . , `′i) the sign factor introduced in (2.57). Recall
that e is a cochain map and thus so is φ1. The maps φi provide an L∞-quasi-isomorphism
from L′ to L provided the higher products µ′i on L′ are constructed recursively as

µ′1(`′1) := 0 ,

µ′2(`′1, `′2) := p(µ2(e(`′1), e(`′2))) ,
...

µ′i(`′1, . . . , `′i) :=
i∑

j=2

1
j!

∑
k1+···+kj=i

∑
σ∈Sh(k1,...,kj−1;i)

χ(σ; `′1, . . . , `′i)ζ(σ; `′1, . . . , `′i)×

× p
{
µj

(
φk1

(
`′σ(1), . . . , `

′
σ(k1)

)
, . . . , φkj

(
`′σ(k1+···+kj−1+1), . . . , `

′
σ(i)

))}
.

(2.65)

Using the identities p ◦ φ1 = p ◦ e = 1, p ◦ µ1 = p ◦ d = 0, and µ1(e(`′)) = d(e(`′)) = 0 for
all `′ ∈ L′ = H•d(L) together with the decomposition (2.62b) and the higher homotopy Jacobi
identities (2.44c) for the products µi on L, it is rather straightforward to see that (2.64)
together with (2.65) satisfy the definition (2.57) of an L∞-morphism.1

Weak inverses of L∞-quasi-isomorphisms. Using the decomposition theorem, any L∞-
quasi-isomorphism φ : (L, µi) → (L′, µ′i) can be weakly inverted by going through the corres-
ponding minimal models. Specifically, using the L∞-quasi-isomorphisms (2.60), we obtain an

1The calculations are much simplified if one instead works with the contracting homotopy h̃ := h−h◦h◦µ1

in (2.64) since then h̃ ◦ h̃ ◦ µ1 = h̃ ◦ h̃ ◦ d = 0. See [146] for details.
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L∞-isomorphism
φrd : H•µ1(L) −→ L φ−−→ L′ −→ H•µ′1(L′) (2.66)

which can be inverted and composed to give the inverse L∞-quasi-isomorphism,

φ−1 : L′ −→ H•µ′1(L′)
φ−1

rd−−−→ H•µ1(L) −→ L . (2.67)

For instance, the quasi-isomorphisms (2.60) are trivially weakly inverses of each other. Since
L∞-quasi-isomorphism can be weakly inverted, L∞-quasi-isomorphy induces an equivalence
relation on the space of all L∞-algebras.

Examples. Note that linearly contractible L∞-algebras, such as V [1] id−−→ V , have trivial
cohomology and therefore they are quasi-isomorphic to the trivial L∞-algebra. The decom-
position theorem therefore implies the minimal model theorem.

It is always possible to extend an L∞-algebra with underlying graded vector space

L = · · · → 0 → 0 → Li
µ1−−→ Li+1

µ1−−→ Li+2 → · · · , (2.68)

to an L∞-algebra structure on

L′ = · · · −→ 0 −→ ker(µ1) ↪→ Li
µ1−−→ Li+1

µ1−−→ Li+2 −→ · · · . (2.69)

Note, however, that L′ is L∞-quasi-isomorphic to an L∞-algebra structure on

L′′ = · · · −→ 0 −→ 0 −→ coker(µ1) µ1−−→ Li+1
µ1−−→ Li+2 −→ · · · , (2.70)

effectively reducing the L∞-algebra L to L′′ by extending it to L′. It is therefore important to
distinguish between the L∞-algebras L and L′.

Morphisms of cyclic L∞-algebras. The definition of a morphism of cyclic L∞-algebras is
induced from the description in terms of a differential graded algebra: it is simply a morphism
of symplectic differential graded manifolds. However, such a morphism Φ : (M,Q, ω) →
(M ′, Q′, ω′) would imply that ω = Φ∗ω′ which, due to the non-degeneracy of ω implies
that Φ is injective. This is often too restrictive, and one usually switches to Lagrangian
correspondences, see e.g. [149]. For our purposes, however, this is not necessary.

Moreover, we shall restrict our morphisms a bit further with an eye to homotopy Maurer–
Cartan theory, which we shall discuss in Section 3. In this context, we are dealing with constant
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symplectic forms and we wish that morphisms of cyclic L∞-algebras preserve the homotopy
Maurer–Cartan action. Following [143], we thus define a morphism of cyclic L∞-algebras
φ : (L, µi, 〈−,−〉L) → (L′, µ′i, 〈−,−〉L′) as an L∞-morphism φ : (L, µi) → (L′, µ′i) such that
in addition

〈φ1(`1), φ1(`2)〉L′ = 〈`1, `2〉L (2.71a)

and for all i ≥ 3 and `1, . . . , `i ∈ L,

∑
j+k=i
j,k≥1

〈φj(`1, . . . , `j), φk(`j+1, . . . , `j+k))〉L′ = 0 . (2.71b)

As before, for the sake of brevity, we shall also refer to such morphisms as cyclic L∞-morphisms.

Decomposition theorem for cyclic L∞-algebras. As shown in [143] for cyclic A∞-
algebras, the decomposition theorem extends to cyclic L∞-algebras. That is, any cyclic
L∞-algebra is isomorphic to the direct sum of a minimal cyclic L∞-algebra and a linearly
contractible cyclic L∞-algebra.

Quasi-isomorphisms of cyclic L∞-algebras. We indicated above that quasi-isomorphisms
allow us to describe an equivalence between data that is the same up to some gauge symmetry.
To extend this notion to action principles, we need a preservation of the cyclic inner product on
the relevant parts, which are the cohomology. We therefore define that a quasi-isomorphism
of cyclic L∞-algebras is a morphism of cyclic L∞-algebras φ : L → L′, which descends to an
isomorphism of cyclic L∞-algebras between H•µ1(L) and H•µ1(L′).

2.5.3. Representations of L∞-algebras

To define (higher) supersymmetric field theories with matter content, we need to specify what
we mean by a representation of an L∞-algebra. The first ingredient is a higher analogue of
a vector space carrying the representation. There is a variety of definitions in the literature
already for the simplest case of a 2-vector space. Fortunately, supersymmetry requires us to
use the same type of categorified vector space that underlies our L∞-algebras. We can thus
restrict ourselves to dg-vector spaces. Note that these can be regarded as Abelian L∞-algebras
with all higher brackets µi trivial for i ≥ 2.
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L∞-representations. There are now (at least) three evident ways of defining a represent-
ation of an L∞-algebra (L, µi) on a dg-vector space (V, d):

(i) Via an action of elements of L on V with compatibility relations as done in [134, Defin-
ition 5.1], see also [150];

(ii) As an L∞-morphism of L∞-algebras from L to End (V), cf. e.g. [151, Definition 4.3];

(iii) As a semidirect product of L∞-algebras L n V, which can be regarded as a short exact
sequence of L∞-algebras V ↪→ Ln V→ L, cf. e.g. [152, Definition 11.1.1.1].

Theorem 5.4 of [134] shows that (i) and (ii) are equivalent, and we choose to work with
the latter. Recall that any dg-vector space (V, d) comes with a dg-algebra (End (V), dEnd (V)),
which is defined by

End (V) :=
⊕
i∈Z

End i(V) with End i(V) :=
∏
j∈Z

Hom(Vj,Vj+i) (2.72a)

together with
dEnd (V)T := d ◦ T − (−1)|T |T ◦ d (2.72b)

for T ∈ End (V). Together with the commutator [S, T ] := S ◦ T − (−1)|T ||S|T ◦ S for
S, T ∈ End (V), End (V) becomes a dg-Lie algebra.

An L∞-representation of an L∞-algebra (L, µi) on a differential graded vector space (V, d)
is an L∞-morphism, as defined in (2.57), from (L, µi) to (End (V), dEnd (V)).

Example. As an example, let us consider the case of a representation of a Lie 2-algebra, that
is, an L∞-algebra (L, µi) = (L−1⊕L0, µi) concentrated in degrees −1 and 0 on the differential
graded vector space (V, d) = (V−1 ⊕ V0, d). We note that

End (V) =
(

Hom(V0,V−1)
dEnd (V)−−−−−→ End (V0)⊕ End (V−1)

dEnd (V)−−−−−→
(

Hom(V−1,V0)
)

(2.73)
and therefore a representation of (L, µi) on (V, d) consists of a cochain map φ1

L−1
µ1

//

φ1
��

L0
0 //

φ1
��

0
φ1
��

Hom(V0,V−1)
dEnd (V)

// End (V0)⊕ End (V−1)
dEnd (V)

// Hom(V−1,V0)

(2.74a)
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together with a map
φ2 : L0 × L0 → Hom(V0,V−1) (2.74b)

such that

φ1(µ1(y)) = dEnd (V)φ1(y) = d ◦ φ1(y) + φ1(y) ◦ d ,

φ1(µ2(x1, x2)) = [φ1(x1), φ1(x2)] + dEnd (V)φ2(x1, x2)

= [φ1(x1), φ1(x2)] + d ◦ φ2(x1, x2) + φ2(x1, x2) ◦ d ,

φ1(µ2(x, y)) = [φ1(x), φ1(y)] + φ2(x, µ1(y)) ,

φ1(µ3(x1, x2, x3)) = φ2(µ2(x1, x2), x3)− [φ1(x1), φ2(x2, x3)] + cyclic

(2.74c)

for al x1,2,3 ∈ L0 and y ∈ L−1, see (2.57).
As examples of concrete applications, let us specialise to the case φ2 = 0. For (V, d) =

(L−1⊕L0, µ1) and φ1 : L−1 → Hom(L0, L−1) trivial, we recover the representations underlying
the models of [153]. For a suitable choice of L, V−1 = 0 and V0 the tensor fields on a manifold,
we obtain the representations relevant in generalised geometry and double field theory, see the
discussion in [154].





3
Homotopy Maurer–Cartan theory

Homotopy Maurer–Cartan theory was first developed in [10] in the context of the second
quantisation of string theory, known as string field theory. In the same paper also L∞-
algebras were defined for the first time1, taking inspiration from the older definition of A∞-
algebras [40, 41]. Explicitly, the structures of the Hilbert spaces of string field theories are
encoded in higher algebraic structures: L∞-algebras in the case of closed string field theory
and A∞-algebras in the case of open string field theory2. At the classical level, the relevant
action is simply the canonical action associated with an L∞-algebra (or A∞-algebra), which
is known as the homotopy Maurer-Cartan action. As mentioned in the Introduction, this
structure is somehow reflected in ordinary field theory. This is anything but unexpected if
one believes in the fundamental role that string theory, and therefore string field theory, is
supposed to play in physics. We shall explore this connection in detail in Chapters 4 and 5.

Given an L∞-algebra L, we shall see how to construct the kinematical data of a cor-
responding higher gauge theory3 from the homotopy Maurer–Cartan equation of a certain
L∞-algebra. As mentioned in the Introduction, such a higher gauge theory should indeed
describe higher connections taking values in categorified Lie algebras and living on a higher
principal bundle, see Appendix D. That is, following [102] we shall see how to specify notions
of gauge potentials, curvatures, (higher) gauge transformations and Bianchi identities. In par-
ticular, homotopy Maurer–Cartan theory turns out to be a vast generalisation of Chern–Simons
theory, which contains higher Chern–Simons theories as special cases. Here, the discussion

1already together with their quantum variants.
2The construction of open-closed string field theory is based on a combination of both.
3There are several different ways of doing this, generalising the usual definition of connections on principal

bundles.
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follows the detailed review [42].

3.1. Homotopy Maurer–Cartan equation and action

Along this Section, we show how any L∞-algebra comes naturally with an associated homotopy
Maurer–Cartan theory. In the following, some results require quite technical and tedious
computational proofs, which we collect in Appendix C, in order to avoid them cluttering our
discussion.

Differential graded Lie algebras. We start by recalling the Maurer–Cartan theory for a
differential graded Lie algebra (g, d, [−,−]). A Maurer-Cartan element a is an element of
degree 1 satisfying

da+ 1
2[a, a] = 0 , (3.1)

which is called Maurer–Cartan equation. This reduces to dω + ω ∧ ω = 0, for a matrix Lie
algebra valued differential one-form ω. Let us assume that g is endowed with an invariant
inner product compatible with the differential, that is a bilinear, graded symmetric, and non-
degenerate map 〈−,−〉 : g× g→ R such that

〈da1, a2〉+ (−1)|a1|〈a1, da2〉 = 0 and 〈[a1, a2], a3〉+ (−1)|a1||a2|〈a2, [a1, a3]〉 = 0 , (3.2)

for a1, a2, a3 ∈ g. Then, the equation (3.1) is the equation of motion of the Maurer–Cartan
action

SMC := 1
2〈a, da〉+ 1

3!〈a, [a, a]〉 . (3.3)

As L∞-algebras are generalisations of differential graded Lie algebras this construction naturally
generalises.

Gauge potentials and curvatures. In the following, let L be an L∞-algebra with higher
products µi and define |`|L ∈ Z as the L-degree of a homogeneous element ` ∈ L. We call an
element a ∈ L1 a gauge potential, and we define its curvature f ∈ L2 as

f :=
∑
i≥1

1
i!µi(a, . . . , a) . (3.4)

This terminology originates from particular choices of L in which a and f indeed reduce to the
gauge potential and the curvature of (higher) gauge theory.
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A gauge potential a ∈ L1 is called a Maurer–Cartan (MC) element provided it satisfies the
homotopy Maurer–Cartan equation

f = µ1(a) + 1
2µ2(a, a) + · · · = 0 . (3.5)

This equation describes an abstract form of flatness of the gauge potential and general-
ises (3.1).

As can be easily seen, due to the higher homotopy Jacobi identities (2.44c), the curvature
satisfies the Bianchi identity ∑

i≥0

(−1)i
i! µi+1(f, a, . . . , a) = 0 . (3.6)

We invite the interested reader to consult Appendix C for detailed proofs, one using direct but
tedious computation and another, shorter one using the evaluation map ξ and formula (2.53).

3.1.1. Gauge transformations

Elements of L−k for k ≥ 0 are the gauge parameters of infinitesimal gauge transformations
(also called level 0 gauge transformations for k = 0) and infinitesimal higher gauge trans-
formations (also called level k gauge transformations for k ≥ 1). Mathematically, level 0
gauge transformations between two gauge potentials, are encoded in partially flat homotopies
between them. These homotopies are captured by gauge potentials for the tensor product
L∞-algebra Ω•(I, L) := Ω•(I) ⊗ L with I := [0, 1] ⊆ R, where the tensor product is as
defined in Section 2.4.. We can decompose Ω•1(I, L) ∼= C∞(I, L1)⊕Ω1(I, L0) and an element
a ∈ Ω•1(I, L) takes the form

a(t) = a(t) + dt⊗ c(t) , (3.7)

with t ∈ I, a(t) ∈ C∞(I, L1) and c(t) ∈ C∞(I, L0). Moreover, since Ω•2(I, L) ∼= C∞(I, L2)⊕
Ω1(I, L1), the curvature f ∈ Ω•2(I, L) reads as

f(t) =
∑
i≥1

1
i! µ̂i(a(t), . . . , a(t), a(t))

= f(t) + dt⊗

 ∂

∂t
a(t)−

∑
i≥0

1
i!µi+1(a(t), . . . , a(t), c(t))

 ,
(3.8)

where the higher products µi are agnostic about the form degree of their arguments. Partial
flatness ∂

∂t
¬ f = 0 or, equivalently, f ∈ C∞(I, L2), leads to the differential equation

∂

∂t
a(t)−

∑
i≥0

1
i!µi+1(a(t), . . . , a(t), c(t)) = 0 , (3.9)
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which describes the changes of a(t). At t = 0, we can read off the gauge transformation
a 7→ a + δc0a of the gauge potential a := a(0) parametrised by the gauge parameter c0 :=
c(0) ∈ L0,

δc0a := ∂

∂t

∣∣∣∣∣
t=0

a(t) =
∑
i≥0

1
i!µi+1(a, . . . , a, c0) . (3.10)

Furthermore, the curvature transforms under gauge transformations as

δc0f := ∂

∂t

∣∣∣∣∣
t=0

f(t) =
∑
i≥0

(−1)i
i! µi+2(f, a, . . . , a, c0) , (3.11)

the proof of this equation is found in Appendix C .
Always in Appendix C, it is also demonstrated that the commutator of two successive

gauge transformations with gauge parameters c0, c
′
0 ∈ L0 is given by

[δc0 , δc′0 ]a = δc′′0a+
∑
i≥0

1
i! (−1)iµi+3(f, a, . . . , a, c0, c

′
0) (3.12a)

with
c′′0 :=

∑
i≥0

1
i!µi+2(a, . . . , a, c0, c

′
0) , (3.12b)

where we have made repeated use of the higher Jacobi identities (2.44c). This shows that
for general L∞-algebras, gauge transformations only close up to terms proportional to the
curvature f . For instance, the standard gauge transformations always close for strict L∞-
algebras, for which only the differential and the 2-product are non-trivial.

3.1.2. Higher gauge transformations

It is important to stress that, in general, the gauge parameters c0 ∈ L0 may enjoy a gauge
freedom themselves which is mediated by next-to-lowest gauge parameters c−1 ∈ L−1. Like-
wise, the next-to-lowest gauge parameters c−1 ∈ L−1 may enjoy gauge freedom that is medi-
ated by next-to-next-to-lowest gauge parameters c−2 ∈ L−2, and so on. These are known
as the higher gauge transformations. Mathematically, they are described by homotopies
between homotopies. In particular, consider a level 1 gauge transformation between two
level 0 gauge transformations. These are captured by gauge potentials on the tensor product
Ω•(I2, L) with I2 := I × I and I := [0, 1] ⊆ R. This time, we have the decomposition
Ω•1(I2, L) ∼= C∞(I2, L1)⊕ Ω1(I2, L0)⊕ Ω2(I2, L−1) and hence, a ∈ Ω•1(I2, L) takes the form

a(t, s) = a(t, s) + dt⊗ c(1)(t, s) + ds⊗ c(2)(t, s)ds+ (dt ∧ ds)⊗ σ(t, s) , (3.13a)
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where (t, s) ∈ I2, a(t, s) ∈ C∞(I2, L1), c(1,2)(t, s) ∈ C∞(I2, L0), and σ(t, s) ∈ C∞(I2, L−1).
The fact that a is a homotopy between homotopies is reflected in the boundary conditions

a(0, s) = a and c(1)(t, 0) = c(t) . (3.13b)

The geometric shape underlying this homotopy between homotopies is not a square but a bigon
with a coordinate degeneracy in s at t = 0 and t = 1. Therefore, we have to supplement the
above boundary conditions by

c(2)(0, s) = c(2)(1, s) = 0 . (3.13c)

Moreover, Ω•2(I2, L) decomposes as Ω•2(I2, L) ∼= C∞(I2, L2) ⊕ Ω1(I2, L1) ⊕ Ω2(I2, L0), and
upon imposing the partial flatness condition f ∈ C∞(I2, L2), we obtain the level 0 gauge
transformation (3.10) with the gauge parameter c0 := c(1)(0, 0) ∈ L0 together with the level 1
gauge transformation

δc−1c0 := ∂

∂s

∣∣∣∣∣
t=s=0

c(1)(t, s) =
∑
i≥0

1
i!µi+1(a, . . . , a, c−1) , (3.14)

where c−1 := σ(0, 0) ∈ L−1.
The derivation of level k gauge transformations from certain components of a partially flat

curvature on Ik+1 makes it clear that this can be iterated further by considering Ω•(Ik+1, L)
for k ≥ 0. Ultimately, we obtain the level k + 1 gauge transformation,

δc−k−1c−k =
∑
i≥0

1
i!µi+1(a, . . . , a, c−k−1) , (3.15)

for c−k ∈ L−k.
It is important to point out that, as for gauge transformations, the condition f = 0 is also

a sufficient condition for the higher gauge transformations to close. Indeed, computing the
commutator of two successive gauge-of-gauge transformation we have

δc−1(δc0a) :=
∑
i≥0

1
i!µi+1(a, . . . , a, δc−1c0)

=
∑
i≥0

1
i!µi+2(f, a, . . . , a, c−1) ,

δc−k−2(δc−k−1c−k) :=
∑
i≥0

1
i!µi+1(a, . . . , a, δc−k−2c−k−1)

=
∑
i≥0

1
i!µi+2(f, a, . . . , a, c−k−2) ,

(3.16)
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for all k ≥ 0, as is demonstrated in Appendix C. Hence, for MC elements (3.5), this vanishes
identically and gauge transformations of level k gauge parameters leave the outcome of level k
gauge transformations unchanged (as expected).1

Covariant derivative. Given an L∞-algebra (L, µi), consider now ϕ ∈ Lk, for some k ∈ Z
and require that, under infinitesimal gauge transformations, ϕ transforms adjointly, that is,

δc0ϕ := −
∑
i≥0

1
i!µi+2(a, . . . , a, c0, ϕ) (3.17)

for c0 ∈ L0. We define the covariant derivative ∇ : Lk → Lk+1 of ϕ by

∇ϕ :=
∑
i≥0

1
i!µi+1(a, . . . , a, ϕ) , (3.18)

for a ∈ L1. Under the gauge transformations (3.10) and (3.17), ∇ϕ behaves as

δc0(∇ϕ) = −
∑
i≥0

1
i!µi+2(a, . . . , a, c0,∇ϕ) +

∑
i≥0

(−1)i
i! µi+3(f, a, . . . , a, c0, ϕ) (3.19)

as is demonstrated in Appendix C. Hence, ∇ϕ transforms adjointly2 up to terms proportional
to the curvature f . Furthermore, in Appendix C is also shown that we have the standard result

∇2ϕ =
∑
i≥0

(−1)i
i! µi+2(f, a, . . . , a, ϕ) . (3.20)

3.1.3. Homotopy Maurer–Cartan action

Let L now be a cyclic L∞-algebra with an inner product 〈−,−〉L of degree −3. Then the
Maurer–Cartan equation is variational.

Action. The MC equation (3.5) describes the stationary locus of the action functional

SMC[a] :=
∑
i≥1

1
(i+ 1)!〈a, µi(a, . . . , a)〉L . (3.21)

Using the cyclicity (2.47b), it is a straightforward exercise to show that the extrema of SMC

are given by solutions to the MC equation (3.5). We shall refer to the action (3.21) as the
homotopy Maurer–Cartan action.

1Strictly speaking, it is only in this case that the geometric shape underlying the homotopy between
homotopies becomes a bigon.

2It will always transform adjointly in case of strict L∞-algebras.
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The homotopy MC action (3.21) is invariant under the gauge transformations (3.10).
Indeed, we have

δc0SMC[a] = 〈f, δc0a〉L = −
∑
i≥0

(−1)i
i! 〈c0, µi+1(f, a, . . . , a)〉L = 0 , (3.22)

where we have used graded symmetry and the cyclicity (2.47b) of the inner product as well as
the Bianchi identity (3.6).

Further bosonic symmetries. Whilst gauge transformations themselves do not close off-
shell in general, their action on the action functional (3.21) does. This is due to an additional
invariance of SMC[a] under transformations of the form

δ`1,...,`ia :=
∑
j≥0

γj
j!µi+j+1(f, a, . . . , a, `1, . . . , `i) , (3.23)

for `1, . . . , `i ∈ L with ∑i
j=1 |`j|L = i − 2 and γj ∈ R. The invariance follows directly

from cyclicity of the inner product (2.47b) and the fact that µi+2(f, f, . . .) = 0 for i ≥ 0.
Since these symmetries vanish on-shell and therefore do not affect classical observables, they
are referred to as trivial symmetries. They are of no physical significance. In particular, they
neither lead to conserved quantities nor do they prevent perturbation theory.

3.1.4. Maurer–Cartan elements and L∞-morphisms

Let us now study the behaviour of Maurer–Cartan elements and gauge transformations under
L∞-morphisms φ : L → L′ as introduced in (2.57). Here, we just present the results, leaving
the technical details of the computations in the Appendix C.1 We just point out that, even one
may be led to assume that φ should act on a gauge potential a as a′ = φ1(a), this however
turns out not to be the case, as it does not give the desired compatibility with the L∞-algebra
structures. Instead, one gets the following.

Let (L, µi) and (L′, µ′i) be two L∞-algebras. For any L∞-morphism φ between (L, µi) and
(L′, µ′i) there is a natural morphism of gauge potentials,

a 7→ a′ :=
∑
i≥1

1
i!φi(a, . . . , a) , (3.24a)

1See also [148] for a similar discussion in the case of A∞-algebras.
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for a ∈ L1 and a′ ∈ L′1. Correspondingly,

f 7→ f ′ =
∑
i≥0

(−1)i
i! φi+1(f, a, . . . , a) , (3.24b)

for the curvatures

f =
∑
i≥1

1
i!µi(a, . . . , a) ∈ L2 and f ′ =

∑
i≥1

1
i!µ
′
i(a′, . . . , a′) ∈ L′2 . (3.24c)

Therefore, we may conclude that, under L∞-morphisms (2.57), MC elements are mapped to
MC elements.

In addition, let us see what happens at the level of gauge transformations. A gauge
transformation a 7→ a + δc0a of a MC element a ∈ L1, mediated by a gauge parameter
c0 ∈ L0, is transformed under an L∞-morphism to a′ 7→ a′ + δc′0a

′, where a′ ∈ L′1 is given
by (3.24a) and

c0 7→ c′0 :=
∑
i≥0

1
i!φi+1(a, . . . , a, c0) ∈ L′0 . (3.25)

Consequently, the gauge orbits of MC elements a are mapped to the gauge orbits of MC
elements a′ under L∞-morphisms. In other words, gauge equivalence classes of Maurer-Cartan
elements are mapped to gauge equivalence classes of Maurer-Cartan elements.

The above can be extended so that whenever φ is a quasi-isomorphism of L∞-algebras L
and L′, we have an isomorphism

ML ∼= ML′ (3.26)

between the moduli spaces of MC elements in L and L′. Explicitly, the spaces of solutions to the
homotopy Maurer-Cartan equation modulo gauge transformations in L and L′ are isomorphic.

3.1.5. Supersymmetric extension

To close the Chapter, we comment about supersymmetric homotopy Maurer–Cartan theory.
A useful property of Chern–Simons theory in three dimensions is that it is trivially N = 2
supersymmetric, cf. [155]. That is, it can be extended to an N = 2 supersymmetric action
such that all superpartners of the gauge potential are auxiliary fields. The latter come with
algebraic equations that can be integrated out and one is left with the usual Chern–Simons
action. The supersymmetries can be linearly combined into the odd symmetry required for
computing path integrals of Chern–Simons theory via supersymmetric localisation techniques,
see e.g. [156].
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It was shown [42] that a similar supersymmetric extension exists in general homotopy
MC theory. Hopefully, this feature shall allow to exactly compute path integrals and other
physical observables by making use of (higher) supersymmetric localisation techniques. To
avoid introducing the spinors involved in a true supersymmetric extension, we consider here an
example of, roughly, an analogue of a topological twist with only one real supercharge (which
would be sufficient for localisation).

We introduce superpartners (ϕk, ϑk) ∈ Lk ⊕ ΠLk for k = 0, . . . , 3, where Π is the
Graßmann-parity changing functor, which transform under gauge transformations (3.17). These
fields are thus a generalisation of matter fields transforming in the adjoint representation of
some gauge Lie algebra. A gauge invariant action functional is then

SSMC[a, ϕ, ϑ] := SMC[a] + 〈ϑ0, ϑ3〉L + 〈ϑ1, ϑ2〉L + 〈ϕ0, ϕ3〉L + 〈ϕ1, ϕ2〉L (3.27)

with SMC the homotopy MC action (3.21). Note that gauge invariance follows directly from
the cyclicity (2.47b) and the graded symmetry of the inner product 〈−,−〉L. Since the extra
fields ϕk and ϑk appear only algebraically and do not mix with the gauge potential, the two
actions SSMC and SMC are clearly equivalent. We stress that the new fields are auxiliary, but
physical. They are not to be regarded as ghosts or antifields for any value of k.

The action SSMC is also invariant under the following fermionic transformations:

Qa := ϑ1 ,

Qϕ1 := ϑ1 ,

Qϕ2 := −1
2∇ϑ1 + 1

2

∑
i≥0

1− 2γi0
i! µi+2(a, . . . , a︸ ︷︷ ︸

i copies

, ϑ1, ϕ1) +

+
∑
i,j≥0

γi+1j + γij+1

i!(j + 2)! µi+j+3(a, . . . , a︸ ︷︷ ︸
i copies

, ϑ1, ϕ1, . . . , ϕ1︸ ︷︷ ︸
j+2 copies

) ,

Qϑ2 := f + ϕ2 − 1
2∇ϕ1 + 1

2

∑
i≥0

γi0
i! µi+2(a, . . . , a︸ ︷︷ ︸

i copies

, ϕ1, ϕ1) +

+
∑
i,j≥0

γij+1

i!(j + 3)!µi+j+3(a, . . . , a︸ ︷︷ ︸
i copies

, ϕ1, . . . , ϕ1︸ ︷︷ ︸
j+3 copies

)

(3.28a)

and
Qϕ0 := Qϕ3 := Qϑ0 := Qϑ1 := Qϑ3 := 0 , (3.28b)

for
γi0 = 1

3 and γi+1j + γij+1 = − 1
j + 3 . (3.28c)
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Here, ∇ is the covariant derivative defined in (3.18), f is the curvature (3.4) and it is easy to
see that Q2 = 0. We shall see an explicit example in Section 5.3..

3.2. Kinematical data of higher gauge theory

Via the above construction, given an L∞-algebra L, the kinematical data of a corresponding
(very abstract) higher gauge theory can be naturally constructed. Here, we shall introduce
some concreteness on the subject by providing some examples. Let us consider the L∞-algebra
L = Ω•(M), given by the de Rham complex of some d-dimensional manifold M . Homotopy
Maurer–Cartan theory for Ω•(M) provides us with the kinematical data for the topologically
trivial sector of an ordinary Abelian gauge theory. Moreover, considering the degree-shift of
the de Rham complex L• = Ω•+k(M), for k > 1, one obtains the kinematical data of higher
Abelian gauge theories on topologically trivial higher principal bundles. The restriction to
the topologically trivial higher principal bundles1 is due to our restriction to global differential
forms and therefore to the topologically trivial sector.

3.2.1. Non-Abelian higher gauge theory

The generalisation to non-Abelian higher gauge theory is quite straightforward. Recall from 2.4.4.
that the tensor product of an L∞-algebra and a differential graded commutative algebra carries
a natural L∞-algebra structure. The key example regarding higher gauge theory is discussed
in the next paragraph.

Ω•(M, L). Let L be some L∞-algebra and M a smooth manifold of dimension d. The
tensor product of L and the de Rham complex (Ω•(M), d) yields the graded vector space

Ω•(M, L) :=
⊕
k∈Z

Ω•k(M, L) (3.29a)

with
Ω•k(M, L) := Ω0(M)⊗ Lk ⊕ Ω1(M)⊗ Lk−1 ⊕ · · · ⊕ Ωd(M)⊗ Lk−d

=
⊕
i+j=k
0≤i≤d
j∈Z

Ωi(M)⊗ Lj . (3.29b)

1For topologically non-trivial higher principal bundles, one would have to consider local gauge potentials
on patches of the manifold and provide gluing prescriptions on overlaps of the patches. The general discussion
can be found e.g. in [7].
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The total degree is the sum of the individual degrees, |α ⊗ `|Ω•(M,L) = |α|Ω•(M) + |`|L for
homogeneous α ∈ Ω•(M) and ` ∈ L. This graded vector space carries an L∞-algebra
structure which is the linear extension of the higher products

µ̂1(α1 ⊗ `1) := dα1 ⊗ `1 + (−1)|α1|Ω•(M)α1 ⊗ µ1(`1) ,

µ̂i(α1 ⊗ `1, . . . , αi ⊗ `i) := (−1)i
∑i

j=1 |αj |Ω•(M)+
∑i−2

j=0 |αi−j |Ω•(M)
∑i−j−1

k=1 |`k|L ×
× (α1 ∧ . . . ∧ αi)⊗ µi(`1, . . . , `i)

(3.29c)

for i ≥ 2, α1, . . . , αi ∈ Ω•(M) and `1, . . . , `i ∈ L (with obvious linear continuation to
inhomogeneous elements).

Let now M be a manifold of dimension d and L a Lie n-algebra. For the L∞-algebra
(Ω•(M, L), µ̂i) as defined in (3.29), one obtains the potentials and curvatures of non-Abelian
higher gauge theory on topologically trivial higher principal bundles, cf. also [102, 42]. We
shall use this case to illustrate our constructions throughout the remainder of this Section.

Case d = 3. As a concrete example, let L be an ordinary Lie algebra1 g. Here, a gauge
potential is a g-valued one-form a = A ∈ Ω1(M, g) and its curvature is simply

f = F with F := dA+ 1
2 µ̂2(A,A) = dA+ 1

2 [A,A] . (3.30)

The Bianchi identity reads as ∇F = 0 and the homotopy MC equation reduces to the ordinary
MC equation dA + 1

2 [A,A] = 0. The formulas for gauge transformations (3.10) and (3.11)
reproduce the familiar transformations,

A 7→ A+ δc0A = A+ dc0 + [A, c0] ,

F 7→ F + δc0F = F + [F, c0] .
(3.31)

Since µ3 = 0, the gauge algebra closes also for F 6= 0. The same is true in the case of higher
gauge theories corresponding to Ω•(M, L) for L an L∞-algebra with µi = 0 for i ≥ 3.

Case d = 4. As a second concrete example, let L be a Lie 2-algebra2, i.e. an L∞-algebra
concentrated in degrees 0 and −1: L = L−1⊕L0. The gauge potential a is a degree 1 element
in Ω1(M, L) and decomposes as

a = A+B with A ∈ Ω1(M, L0) and B ∈ Ω2(M, L−1) . (3.32a)
1Recall that every Lie algebra is a differential graded Lie algebra concentrated in degree 0.
2Note that any Lie 2-algebra is categorically equivalent to one with µ1 = 0 [4].
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It represents a higher connection on a topologically trivial principal 2-bundle with structure
algebra L, see Appendix D for details. The curvature reads as

f = µ̂1(a) + 1
2 µ̂2(a, a) + 1

3! µ̂3(a, a, a) := F +H , (3.32b)

with
F := dA+ 1

2µ2(A,A) + µ1(B) ∈ Ω2(M, L0) ,

H := dB + µ2(A,B)− 1
3!µ3(A,A,A) ∈ Ω3(M, L−1) .

(3.32c)

Here, the higher products µi only see the gauge algebra, not the degree of the differential
forms in the arguments, yielding sign factors e.g. µ̂3(a, a, a) = µ̂3(A,A,A) = −µ3(A,A,A).
All components of f except for the form of highest degree are usually called fake curvatures,
in the context of non-Abelian gerbes [21, 22]. In the case of a Lie 2-algebra, there is only
one fake curvature, F . We shall further discuss the meaning of the fake curvature F later
in this Section and in 3.1.. The MC equation is simply total flatness, F = 0 and H = 0.
Moreover, the components of the curvature satisfy each a Bianchi identity, which can be readily
computed, together with gauge transformations of the components of the gauge potential and
the curvature. We will need these explicit expressions in the second part of the Thesis.

Since any homogeneous degree 0 element of Ω•(M, L) decomposes into c ∈ Ω0(M, L0)
and Λ ∈ Ω1(M, L−1), the gauge transformations (3.10) and (3.11) reduce to

δc,ΛA = dc+ µ2(A, c) + µ1(Λ) ,

δc,ΛB = −µ2(c, B) + dΛ + µ2(A,Λ) + 1
2µ3(c, A,A)

(3.33a)

and
δc,ΛF = −µ2(c,F) ,

δc,ΛH = −µ2(c,H) + µ2(F ,Λ)− µ3(F , A, c) .
(3.33b)

To conclude the example, we look at the covariant derivative. For ϕ ∈ Ω•(M, L) the equa-
tion (3.18) takes the form

∇ϕ = dϕ+ µ1(ϕ) + µ2(A,ϕ) + µ2(B,ϕ) + 1
2µ3(A,A, ϕ) . (3.34)

It is clear now how to this generalises to any dimension d > 4. In this manner, we can
in principle compute the kinematical data for the topologically trivial sector of any higher
gauge theory. In Chapter 5 we shall also see the homotopy MC description behind certain
supersymmetric field theories.
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(Higher) Chern–Simons actions. Note that the homotopy MC action is a vast generalisa-
tion of the Chern–Simons action functional. We shall come back to this point in Section 5.3.
and we limit ourselves now to the following observation. Let L be a cyclic L∞-algebra and
M a compact, oriented manifold without boundary. Then, the L∞-algebra Ω•(M, L) admits
a natural cyclic inner product,

〈α1 ⊗ `1, α2 ⊗ `2〉Ω•(M,L) := (−1)|α2|Ω•(M)|`1|L
∫
M
α1 ∧ α2 〈`1, `2〉L , (3.35)

where α1,2 ∈ Ω•(M) and `1,2 ∈ L.
Indeed, if M is a compact oriented three-dimensional manifold and L̂ = Ω•(M, g) with g

a metric Lie algebra endowed with the obvious cyclic structure given in 2.4.2., then one has
the gauge potential a = A ∈ Ω1(M, g) and the homotopy Maurer–Cartan action for L̂ reads

SMC[a] =
∫
M

{
1
2〈A, dA〉g + 1

3!〈A, [A,A]〉g
}
. (3.36)

We thus recover the ordinary Chern–Simons action. We shall return to higher Chern–Simons
theory in 5.3., when g will be replaced by a general Lie n-algebra L.

Holomorphic (higher) gauge theory. This construction can be generalised to Calabi–Yau
manifolds to define higher holomorphic Chern–Simons theory [110]. Let X be a complex
manifold, with dimC X = d. In this case, we consider a gauge L∞-algebra (L, µi) and tensor
it with the Dolbeault complex (Ω0,•(X), ∂̄), resulting in homotopy Maurer–Cartan theory for
the L∞-algebra Ω0,•(X, L). The higher non trivial products on Ω0,•(X, L) trivially follows as
in (3.29c), that is

µ̂1(α⊗ `) := ∂̄α⊗ `+ (−1)|α|Ω0,•(X,L)α⊗ µ1(`) , (3.37)

for α ∈ Ω0,•(X), ` ∈ L and similarly for higher products. We shall see concrete examples along
the rest of the Thesis. Here, we just see how to make contact with ordinary holomorphic Chern–
Simons theory. Given α1,2 ∈ Ω0,•(X) and `1,2 ∈ L the cyclic structure (2.51b) specialised to
Ω0,•(X, L) reads

〈α1 ⊗ `1, α2 ⊗ `2〉Ω0,•(X,L) =
∫

X
Ωd,0 ∧ α1 ∧ α2〈`1, `2〉L , (3.38)

where Ωd,0 is the holomorphic volume form on X. Hence, specialising to d = 3 and L = g

being a metric Lie algebra, one has a = A0,1 ∈ Ω0,1(X, g) and the homotopy MC action (3.21)
gives the holomorphic CS action, as desired.
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We shall discuss these theories more in detail in Chapters 6,7. Explicitly, we shall seen how
to formulate holomorphic higher gauge theory by making use of the ideas of higher geometry
and twistor geometry.

Vanishing curvature and kinematical data. It is now worth to take some time to comment
about the observation regarding the formula (3.12). Explicitly, the fact that general gauge
transformations only close if the condition f = 0 is satisfied. In particular, this can now be
interpreted in two possible ways. Firstly, we could regard the condition f = 0 as a dynamical
equation, i.e. an equation of motion and postulate that the condition (3.12) indicates that the
gauge algebra is an open algebra, namely one that only closes on-shell. As we shall discuss in
the next Chapter, these gauge symmetries require using the BV formalism in the quantisation
of the theory. Secondly, we could regard f = 0 as a constraint on the kinematical data of the
higher gauge theory and therefore as an equation that is also imposed off-shell.

We should note that the approach to the kinematical data of higher gauge theory presented
above fits the interpretation of higher connections as a way of capturing a higher-dimensional
parallel transport1. From this perspective, the second interpretation is favoured and the fake
curvature should indeed be part of the kinematical data. Beyond equations (3.12) and (3.16),
there are a number of crucial points observed in the literature. Firstly, for the kinematical
data (3.32) of a Lie 2-algebra, it was shown that a consistent, reparametrisation-invariant par-
allel transport along surfaces requires the fake curvature F defined in (3.32b) to vanish2 [5].
Secondly, it was observed [102] that for semistrict Lie 2-algebras with non-trivial µ3, infinites-
imal gauge transformations can only be concatenated if the fake curvature vanishes. This is
simply a special case of equation (3.12). Thirdly, equation (3.11) shows that the curvature
appears itself in gauge transformations of the curvature, which makes it essentially impossible
to write down covariant equations of motions beyond f = 0 in the general setting.

We stress that, however, there is an alternative approach to defining higher potentials,
curvatures and their gauge transformations that has been worked out for the special case of
(twisted) string structures in [7,29]. In this approach, things become significantly simpler, and

1For a consistent higher dimensional parallel transport in the context of higher non-abelian principal
bundles see [21, 22] and e.g. [157].

2This fake flatness condition also arises from a higher Stokes’ theorem, guaranteeing invariance of the
induced higher parallel transport under reparametrisations. This fact locally renders the connection gauge
equivalent to the connection on an abelian gerbe, as pointed out in [158, 159]. See [159] for an alternative
definition of curvature by using special gauge algebras.
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the resulting structures have been applied in the context of self-dual strings and six-dimensional
superconformal field theories e.g. in [160, 30]. See also [131]. The precise relation between
both approaches has not been fully worked out yet.





4
Batalin–Vilkovisky formalism

The Batalin-Vilkovisky (BV) formalism was developed in the late 70ies, early 80ies as a very
general approach to the quantisation of classical field theories with complicating symmetries,
such as gauge theories. It generalises the Becchi–Rouet–Stora–Tyutin (BRST) quantisation
method which, in turn, is the cohomological and manifestly gauge invariant version of the
Faddeev–Popov approach. This is also known as the BV/BRST formalism, the antifield form-
alism or it is included in the term BRST formalism. The main references are represented by
the series of papers [11–15, 161] as well as [115], where deeper explanations of the geometry
and the meaning of the classical part of the BV formalism were given and the famous [114] in
the context of topological field theories. Here, the discussion follows the papers [42, 43]. For
more detailed reviews, we refer the reader to Section 8 of [162] as well as the papers [163–167]
and [168–170].

This Chapter starts with an outline of the Batalin–Vilkovisky formalism in the context
of ordinary gauge theory. We try to highlight its conceptual origins and its formulation in
terms of the language of symplectic Q-manifolds introduced in Chapter 2. Then, we proceed
explaining how this formalism applies to the much more general example of homotopy Maurer–
Cartan theory. The fundamental papers [10, 115] established the link between L∞-algebras
and BV formalism, which, in turn, provides the bridge connecting Lagrangian field theories and
homotopy algebras, via homotopy Maurer–Cartan theory. As we shall see in Chapter 5, at the
classical level any BV quantisable field theory can be rewritten as a homotopy Maurer–Cartan
theory [42, 43].
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4.1. Motivation and outline

The BV formalism is commonly used in the quantisation of classical field theories with open
gauge symmetries, i.e. gauge symmetries that only close on-shell. This was also the histor-
ical motivation for its development. The corresponding setup of a classical field theory for
quantisation, however, exposes much of the theory’s internal structure in a way that is math-
ematically very precise and useful at the same time. The underlying language is mostly that
of homological algebra, i.e. that of cochain complexes and differential graded algebras. The
result is a cohomological description of the algebra of gauge-invariant functions on the critical
locus of a classical action functional.

Classical field theories. We start by introducing the setup for the BV formalism. Classical
field theory is a formalism for describing a physical system in terms of objects called fields.
Given a space-time manifold M , the space of fields F is generally considered to be a space
of sections of some sheaf over M . For instance, it is given by a space of connections on a
principal G-bundle over M , in the case of gauge theories with structure group G.1 In the
Lagrangian approach, a classical field theory is specified by defining a (usually real or complex
valued) functional on the space of fields

S : F→ R (or C) , (4.1)

called an action functional. This is usually required to satisfy a locality criterion, meaning that
it is of the form

S[Φ] =
∫
M
L(Φ, ∂Φ, ∂2Φ, · · · ) . (4.2)

Here, L is the Lagrangian density2, i.e. a density on M depending on the value of the
field Φ ∈ F and only finitely many of its derivatives at the point of integration on M . For
definiteness, mathematicians often drop the action and work with the Lagrangian instead. The
classical physics of such a system is completely captured by the critical locus of S, that is

Crit(S) := {Φ ∈ F | dS[Φ] = 0} . (4.3)
1In mathematical parlance, a classical gauge theory is a classical field theory whose space of fields is not

modeled by a set, but rather by a stack.
2Mathematically, given some vector bundle E over M , one constructs the bundle of ∞-jets J(E). The

space of Lagrangians on E then is given by the algebra of functions O(J(E)) \ R. See e.g. [171] for an
exhaustive explanation.
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Using the calculus of variations, this defines the space of solutions to the classical equations
of motion or Euler–Lagrange equations. However, if the functional S is not sufficiently well-
behaved, this space can be highly singular, even in the finite-dimensional case. We shall see
how the classical part of Batalin–Vilkovisky formalism addresses this problem by considering
the derived critical locus [172, 173].

Classical BV structure. The classical part of the BV formalism applied to a gauge field
theory consists essentially of a two-step resolution of the space of classical observables. The
first one is the usual starting point of BRST quantisation1 [174, 175], which expresses the
symmetries2 of a field theory as the action Lie algebroid introduced in Section 2.4.. Such
interpretation may seem at first unnecessarily abstract, but it clarifies the mathematical origin
of the fermionic ghosts as well as the generalisation to arbitrarily complicated gauge theories.
Concretely, starting from classical field theory data, the BRST formalism yields a complex
(FBRST, QBRST). The Z-graded vector space FBRST is known as minimal set of fields, while
differential operator QBRST, the BRST operator, is nothing but the Chevalley–Eilenberg dif-
ferential encoding all the information about the Lie algebra of gauge symmetry (and higher
gauge symmetry) and its action on F. Such a complex can be extended to the set of fields
FeBRST needed for gauge fixing in the BRST formalism.

In many cases, the latter complex exists only on-shell, and therefore needs to be lifted
before quantisation. This is true in particular in higher gauge theories if one regards the
vanishing of fake curvatures as a dynamical instead of a kinematical condition, recall the
discussion in 3.1.2.. The off-shell lift is provided by a Koszul–Tate resolution, cf. [168, 169],
which amounts to introducing antifields and, if necessary, anti-ghosts and higher anti-ghosts.
Moreover, these two steps are combined by homological perturbation theory to obtain the
relevant algebra of observables as the cohomology some differential. Explicitly, we extend the
set of fields FBRST further to FBV := T ∗[−1]FBRST, which is endowed with the differential
QBV given by a derived bracket QBV := {SBV,−}. Here, SBV is the classical BV action
satisfying the classical master equation {SBV, SBV} = 0. The fact that, under some reasonable
conditions, SBV exists and is unique for a general k-th stage reducible theory (that is, k-th

1We shall always distinguish between the BRST formalism, which involves ghosts and where antifields
only enter when gauge fixing, and the BV formalism, which involves antifields from the outset.

2Usually, one is only concerned with the local symmetries, as these are the ones complicating the quant-
isation.
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level gauge invariance) was proved in [176] using homological perturbation theory.
The result is then an L∞-algebra1 that encodes the fields, the gauge structure, gauge

invariant observables, field equations, Noether identities and consistent deformations of the
theory; in short, everything one needs to know about a classical theory. The minimal model
of this L∞-algebra yields a minimal representation of the classical dynamical data and an
equivalence of classical theories is a quasi-isomorphism of L∞-algebras.

Quantisation. To quantise a classical field theory (F, S) means to make sense of the path
integral

Z(S) =
∫
F
µF(Φ) e i

~S[Φ] , (4.4)

where ~ is a parameter of the quantisation, µF(Φ) is a measure on the space of fields F

and S is the action functional defined above. Unfortunately, such a quantity is in general
very difficult to compute, in particular we have to make sense of an integration over an
infinite-dimensional space of functions. Path integrals of quantum field theories on spaces M
with Minkowski signature are oscillatory functional integrals. Such functional integrals can be
computed perturbatively by the stationary phase formula (see [167, Section 1.2.4] for details).
This, however, requires the stationary points of S to be isolated or, equivalently, the Hessian
to be non-degenerate at the stationary points.

This is not the case in gauge theories due to the large degeneracy arising from gauge
orbits. Let G be a Lie group inducing a group G of gauge transformations2 acting on the
space F. Gauge symmetry of S implies that the Hessian in any stationary point is degenerate
and the perturbative expansion is not well-defined. One could in principle remedy the problem
of degenerate critical points by restricting to gauge orbits,

∫
F
µF(Φ) e i

~S[Φ] →
∫
F/G

µF/G(Φ) e i
~S[Φ]|F/G , (4.5)

where µF/G(Φ) is the measure induced on F/G by µF(Φ). However, there are various reasons
why a restriction to the orbit space is not feasible in practise, chief of all the fact that the
orbit space is not well-behaved in general.

1or L∞-algebroid in the most general setting.
2In our notation we will always identify the gauge group G and the gauge Lie algebra with the structure

group and structure Lie algebra of the (higher) principal bundle underlying the (higher) gauge theory. The
gauge group is thus different from the resulting group of gauge transformations G.
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The classical BV formalism provides also the starting point for a very convenient gauge
fixing procedure1. As observed above, introducing antifields in the Koszul–Tate resolution
corresponds to extending the space of fields and ghosts FBRST to its cotangent bundle FBV :=
T ∗[−1]FBRST. The original action functional corresponds to evaluating the BV action for
the zero section, but we can choose a different Lagrangian submanifold. This can be done
such that the resulting restricted BV action functional has isolated stationary points and that
corresponding functional integral equals2 the original functional integral. The choice of section
is encoded in a functional known as the gauge fermion. Very roughly speaking, this procedure
is analogous to the computation of a real integral by going to the complex plane: one doubles
the number of variables and extends the original integrand to the new variables. The final
integral is still taken along a half-dimensional contour.

Clearly, expectation values should be independent of the choice of gauge fermion, which is
tantamount to the quantum master equation, a deformation of the classical master equation
in O(~). This requires, in general, to deform the classical BV action to a formal power series
in ~, the quantum BV action. The latter action is then the starting point for all further,
e.g. perturbative computations.

4.2. Becchi–Rouet–Stora–Tyutin quantisation

4.2.1. Gauge Lie algebroid

As stated above, we shall focus on the example of ordinary gauge theories, but we shall present
the steps in a way that allows for a straightforward extension to higher gauge theory. Such
a discussion will show how Z-graded vector spaces and homological vector fields discussed in
the first Chapter enter naturally into the description of a gauge field theory. For a detailed
discussion along traditional lines, see also [177] and in particular [163] for the case of open
algebras, i.e. gauge algebroids where the gauge symmetries close only on-shell.

Action Lie algebroid. As already mentioned, quotient spaces as e.g. F/G appearing in (4.5)
are often badly behaved and a useful way to circumvent this issue is to consider the derived
quotient3 [F/G], which amounts to considering the corresponding action Lie groupoid as

1Meaning the problem of constructing the perturbatively well-defined functional integral for a gauge theory.
2after applying heuristics generalised from ordinary integration to functional integration
3or model for the homotopy quotient
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discussed in Section 2.4..
Let F and G be again the space of fields and the group of gauge transformations, respect-

ively. Then the action Lie groupoid has objects F and morphisms Gn F. A morphism (g,Φ)
is of the form

Φ (g,Φ)−−−−→ g B Φ (4.6)

with the obvious concatenation and identity morphisms, cf. Section 2.4..
For many purposes, and in particular for the BV formalism over contractible manifolds or

with trivial principal (gauge) bundle, the infinitesimal picture in terms of Lie algebra actions
is sufficient.1 The corresponding action Lie algebroid is most readily described in terms of
Q-manifolds, as seen in Section 2.4., and looks like

FBRST := Lie(G)[1]n F , (4.7)

where Lie(G)[1] is the Lie algebra Lie(G) of the group of gauge transformations G, whose
underlying vector space is degree-shifted by −1, cf. Equation (2.1). The group product and
the action of the gauge transformation are now encoded in the homological vector field QBRST,
whose form is determined by actions on the contracted coordinate functions on FBRST,2

QBRSTΦ := δcΦ and QBRSTc := −1
2 [c, c] . (4.8)

Here, δcΦ denotes an infinitesimal gauge transformation of Φ parametrised by c ∈ Lie(G)[1]∗⊗
Lie(G) and [−,−] is the Lie bracket on Lie(G). Hence, together with QBRST, the algebra of
functions on FBRST forms a dg-algebra.

Let us stress here the important distinction between elements c of Lie(G), which paramet-
rise gauge transformations via

A 7→ A′ := A+ δA with δA := dc+ [A, c] (4.9)

and the corresponding coordinate functions c ∈ C∞(FBRST) appearing in (4.8), which is of
degree 1. Nevertheless, we follow the common convention of using the same letter for a
vector and its (contracted) coordinate functions. The degree shift is due to the Q-manifold
description of the gauge algebroid FBRST in which the degree of Lie(G) is shifted by −1 and

1A framework to discuss global aspects of gauge theory in the BV formalism is provided by derived algebraic
geometry [178–180].

2Recall our remark about the first fundamental confusion of calculus in Section 2.2.. For instance, here
c = cα ⊗ τα, for cα : Lie(G)[1]→ R and τα a basis for Lie(G).
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therefore the coordinate function on Lie(G)[1] has degree +1. The coordinate functions c are
known as ghosts and the degree shift is the origin of their fermionic character. In general, we
call the natural degree of functions on FBRST the ghost number.

If we are dealing with a higher action Lie algebroid encoding gauge symmetries between
gauge symmetries, as will be the case for higher gauge theory, then we also have ghosts for
ghosts, which are functions of homogeneous degree greater than one in FBRST. In this case,
Q2

BRST = 0 only on the proper kinematical data which we shall discuss later.

QBRST-cohomology. Note that the functions on FBRST form a cochain complex with dif-
ferential QBRST:

0 −−−−−→ C∞0 (FBRST) QBRST−−−−−→ C∞1 (FBRST) QBRST−−−−−→ · · · , (4.10)

where C∞i (FBRST) are functions of ghost degree i. Gauge invariant functionals F [Φ] ∈ C∞(F),
such as the action S[Φ], satisfy

QBRSTF [Φ] = 0 (4.11)

because QBRST encodes the action of gauge transformations on F. The analogue of restricting
to the isomorphism classes in the derived quotient [F/G] therefore corresponds to restricting
to the QBRST-cohomology H0(FBRST),

C∞(F/G) ∼= H0(FBRST) . (4.12)

We shall return to this point below.
Note that the idea that cohomological considerations should play a key role in functional

integration is motivated by the following heuristics: let M be a smooth compact manifold
with volume form µ. We thus obtain a map C (M)→ Ωn(M) by F 7→ Fµ, for an observable
F ∈ C∞(M). Then, the expectation value of F is computed as

〈F 〉µ :=
∫
M µF∫
M µ

= [Fµ]
[µ] , (4.13)

where [−] denotes the cohomology class of a differential form and we used Stokes theorem and
the fact that dµ = 0. Thus, the computation of the expectation value of an observable can
be reduced from an integral to a comparison of cohomology classes.1 The isomorphism (4.12)
is also a first step into this direction for the case of path integrals.

1To our knowledge, this point of view was first emphasised in [181].
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QBRST-complex. Let us briefly consider the above from a mathematical perspective. Recall
that we replaced the naive quotient F/G by the derived quotient [F/G], where F/G equals
the isomorphism classes of objects in the action Lie groupoid [F/G]. At the infinitesimal level,
this corresponds to considering the cohomology of the Chevalley–Eilenberg (cochain) complex
for the Lie(G)-module C∞(F), which is given in (4.10).

Recall from Section 2.4. that the p-cochains of the Chevalley–Eilenberg complex for a Lie
algebra g and a g-module E are given by Hom(∧p g,E ), and the differential arises from the
action of g on E as well as the Lie algebra structure on g. In our case E = C∞(F), and we
have

Hom(∧pLie(G),C∞(F)) ∼= C∞p (FBRST) , (4.14)

which indeed reproduces the complex (4.10) in the case of ordinary gauge theory. Note also
that the Chevalley–Eilenberg complex of a Lie algebra has a straightforward generalisation for
modules of L∞-algebras.

This complex allows us to characterise the gauge invariant functionals as a certain co-
homology, since we can extend the Chevalley–Eilenberg complex on the left to

0 −−−−−→ C∞(F/G) ∼= H0(F/G) ↪−−−−→ C∞0 (FBRST) QBRST−−−−−→ · · · . (4.15)

Note that two other low cohomology groups have an interesting interpretation. Firstly,
H1(FBRST) is the set of derivations modulo inner derivations. Here, a derivation is a map

δ : Lie(G) → C∞(FBRST) (4.16a)

so that
δ([c, c′]) = c B δ(c′)− c′ B δ(c) for c, c′ ∈ Lie(G) (4.16b)

and inner derivations are derivations of the form δf (c) = c B f for some f ∈ C∞(F).
Secondly, H2(FBRST) is isomorphic to the equivalence classes of Lie algebra extensions

L̂ie(G) by C∞(F), i.e. short exact sequences

0 −→ C∞(F) −→ L̂ie(G) −→ Lie(G) −→ 0 . (4.17)

Further details are found, e.g., in [182].
To summarise, gauge-trivial observables are functions on field space which are QBRST-exact

and gauge invariant observables are functions which are QBRST-closed. In the next Section we
shall reduce H0(FBRST), via a (projective) resolution, to the classical observables, which are



4.2. Becchi–Rouet–Stora–Tyutin quantisation 71

obtained after taking the quotient by the ideal of functionals vanishing on classical solutions.
First, we discuss gauge fixing in the BRST formalism.

4.2.2. Gauge fixing

If the symmetries of a classical theory close off-shell, which amounts to Q2
BRST = 0 without any

further restriction on the fields FBRST, then the BRST formalism is sufficient for quantisation.
We briefly outline this approach in the following.

Gauge fixing and Faddeev–Popov determinant. The gauge fixing itself is encoded in
the gauge fixing function, which is a map F : F → Lie(G) such that each point in F−1(0)
represents a different orbit of G. We can restrict to F−1(0) by inserting a factor of δ(F (Φ))
into the functional integral (4.18) with δ the functional analogue of the δ-distribution. This
also requires the insertion of the Faddeev–Popov (FP) determinant det(MFP(Φ)) to render
the construction invariant under deformations of F . Schematically, we obtain∫

F
µF(Φ) e i

~S[Φ] →
∫
F
µF(Φ) det(MFP(Φ)) δ(F (Φ)) e i

~S[Φ] . (4.18)

BRST quantisation. Instead of dealing with these two insertions as they are, we can encode
them in an extended action functional on an enlarged field space. Since the action must be of
total homogeneous degree 0, this requires an extension of FBRST by fields of negative degrees.1

It turns out that an appropriate choice is FeBRST which contains the fields Φ and ghost c as
well as the Lagrange multipliers b ∈ Lie(G)[0] and the antighosts c̄ ∈ Lie(G)[−1], that is,

FeBRST := (Lie(G)[1]⊕ Lie(G)[0]⊕ Lie(G)[−1])n F . (4.19)

The homological vector field QBRST is extended to the homological vector field

QeBRSTΦ := δcΦ , QeBRSTc := −1
2 [c, c] , QeBRSTc̄ := b , QeBRSTb := 0 . (4.20)

Note that the antighosts and Lagrange multipliers form the dg-subalgebra Lie(G)[−1] id−−→
Lie(G)[0] of FeBRST. The corresponding L∞-algebra is linearly contractible, and therefore the
action algebroid FeBRST is quasi-isomorphic to FBRST. In this sense, we have not extended
the data of the theory.

1More appropriately, one should speak of the graded ring of functions on the action Lie algebroid and
extending it by generators of negative degree.
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Using elements of FeBRST, we now rewrite (4.18) as
∫
F
µF(Φ) e i

~S[Φ] →
∫
FeBRST

µeBRST(Φ, b, c, c̄) e i
~S[Φ]+〈b,F (Φ)〉+〈c̄,MFP(Φ)c〉 . (4.21)

Here µeBRST(Φ, b, c, c̄) is a natural extension of µF(Φ) to FeBRST and 〈−,−〉 is an appropriate
pairing between Lie algebra valued fields, including the integral over space-time. We thus
achieved our goal of replacing a functional integral with degenerate Hessian at stationary
points by a technically equivalent, non-degenerate functional integral over a larger function
space.

Moreover, there is a function1 Ψ ∈ C∞(FeBRST) of homogeneous degree −1, called the
gauge fixing fermion, such that∫

FeBRST
µeBRST(Φ, b, c, c̄) e i

~S[Φ]+〈b,F (Φ)〉+〈c̄,MFP(Φ)c〉 =

=
∫
FBRST

µBRST(Φ, b, c, c̄) e i
~ (S[Φ]+QeBRSTΨ) ,

(4.22)

and the measure µeBRST(Φ, b, c, c̄) is compatible with QeBRST in the sense that
∫
FeBRST

µeBRST(Φ, b, c, c̄) QeBRSTf = 0 (4.23)

for all reasonable test functions f ∈ C∞(FeBRST).
Just as before gauge fixing, we have again a cochain complex (C∞(FeBRST), QeBRST). Its

cohomology encodes potential observables: because of (4.23) and QeBRSTS = 0, QeBRST-
exact terms vanish under the functional integral. Also, only the expectation values of QeBRST-
closed functions are independent of the gauge fixing. Thus, equation (4.22) shows that the
BRST approach to quantisation renders gauge invariance manifest.

4.3. Batalin–Vilkovisky complex and classical master equation

Above, we have seen how gauge-invariant observables were contained in the cohomology of
the BRST operator. However, the BRST formalism is not suitable for the general treatment of
gauge theories. In the case of open symmetries, which are symmetries that are only satisfied
on-shell, the BRST complex is only a complex up to equations of motion. For many purposes
including quantisation, however, we require an off-shell description. This can be obtained by

1We shall describe this function in more detail in Section 4.3.1..
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a further extension of the BRST complex, and this extension is known as the BV formalism.
The idea is to double the field content and to construct the Q-manifold

FBV := T ∗[−1]FBRST , (4.24)

which allows for a homological vector field QBV for which Q2
BV = 0 off-shell. The functional

integral is then performed over a Lagrangian submanifold of FBV which extends FBRST.

Symplectic structure. Since FBV is a cotangent bundle, we have a natural symplectic
structure ωBV of degree −1. Let ΦA be local coordinates on FBRST (i.e. the fields) and let Φ+

A

(i.e. the antifields) be fibre coordinates on FBV → FBRST, where A,B, . . . are multi-indices
running over fields, ghosts, and their antighosts as well as all their labels such as momenta,
tensor and gauge labels. In terms of these Darboux coordinates, the canonical symplectic form
reads as1

ωBV := (−1)|ΦA|δΦA ∧ δΦ+
A , (4.25)

where δ is the exterior differential on FBV. This symplectic form ωBV, in turn, induces a Poisson
bracket {−,−}BV and we have |{F,G}BV| = |F |+|G|+1 for homogeneous F,G ∈ C∞(FBV).
As seen in Section 2.3., {−,−}BV is graded antisymmetric and obeys a graded Leibniz rule
and a graded Jacobi identity. This Poisson bracket is also known as the antibracket. It is of
degree 1 and therefore C∞(FBV) forms a Gerstenhaber algebra.

Batalin–Vilkovisky complex. We now wish to extend the homological vector field QBRST

to a homological vector field QBV such that

QBV|FBRST = QBRST (4.26a)

and QBV is Hamiltonian with respect to the symplectic structure ωBV, that is,

QBV
¬ ωBV = δSBV with SBV ∈ C∞(FBV) (4.26b)

or, equivalently,2

QBV = {SBV,−}BV . (4.26c)
1Note, that here we are implicitly summing over the multi-index A, i.e. summing when the indices are

discrete and integrating when they are continuous.
2Recall that QBV is acting on

⊙•
F∗BV, which is the symmetric tensor algebra (over R) of the space

Hom(FBV,R) of continuous R-linear functionals on FBV. See e.g. [141, 171] for further details.
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This makes (FBV, QBV, ωBV) a symplectic Q-manifold of degree −1. Recall from Section 2.3.
that the Hamiltonian condition is equivalent to requiring that QBV is a symplectomorphism
on symplectic Q-manifolds of degree k except for k = −1, which is the case at hand.

Equation (4.26c), together with the Jacobi identity of the Poisson bracket, provides the
equivalence between Q2

BV = 0 and the classical master equation,
{
SBV, SBV

}
BV

= 0 . (4.27)

Solutions to the classical master equation. We have some freedom in choosing a solution
SBV to equation (4.27), and we use this to impose a boundary condition beyond (4.26a). We
require that

SBV|FBRST
= S , (4.28)

where S ∈ C∞(F) is the original action of our field theory. Thus, SBV encodes simultan-
eously our action and the gauge structure of the fields. One important consequence of the
choice (4.28) is that the classical equations of motion are now encoded in QBV via

{SBV,Φ+
A}
∣∣∣
FBRST

= δΦAS . (4.29)

A solution SBV also defines a Lagrangian subspace LSBV of FBV through its stationary
points. It is called proper provided the rank of the Hessian of SBV on LSBV equals the number
of fields ΦA. For such a proper solution, one finds that SBV has precisely the gauge invariance
required to eliminate all auxiliary fields. It can be shown that a proper solution always exists,
see [164] and references therein for details.

A proper solution can be written as a power series in the antifields,

SBV = S + Φ+
A R

A
B ΦB +O((Φ+

A)2) , (4.30)

where the coefficients RA
B vanish unless the ghost number of ΦA is one less than that of ΦB so

that the total ghost number of SBV indeed vanishes. From the power series expansion, we can
iteratively determine the relevant proper solution for a given action S and gauge symmetries
QBRST.

Koszul–Tate resolution. Let us briefly look at the BV complex induced by QBV on C∞(FBV)
from a more mathematical perspective. Given a field theory with a set of classical fields F,
the classical states are given by the subset (4.3) that solves the equations of motion of the
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theory. The functionals which vanish on solutions to the equations of motion form an ideal I
of C∞(F), and the classical observables are given by C∞(F)/I. In the first step of the classical
BV formalism, the space of gauge invariant functionals on F have been characterised by using
the Chevalley–Eilenberg complex1, the quotient C∞(F)/I shall be replaced by a resolution
encoded in a suitable differential graded algebra. In the language of algebraic geometry, this
corresponds to finding the derived critical locus [172,173] of the action functional S.2 This is
precisely what the BV formalism does.

Consider first the case of a general field theory with action S, ignoring potential gauge
symmetries. Let C∞(F) be the functionals on the fields F and I the ideal induced by the
critical locus of S. We then have the cochain complex of functions on T ∗[−1]F,

· · · QBV−−−−→ C∞−1(T ∗[−1]F) QBV−−−−→ C∞0 (T ∗[−1]F) ∼= C∞(F) −−−−→ 0 , (4.31)

where QBV = {SBV,−} with a BV action SBV satisfying (4.28). Because C∞−1(T ∗[−1]F)
consists of functionals linear in the antifields, equation (4.29) implies that the ideal I is simply
the image of QBV

QBV(C∞−1(T ∗[−1]F)) = I . (4.32)

Thus, the cohomology group H0(T ∗[−1]F) consists of the desired quotient C∞(F)/I. We
can extend the above cochain complex by the projection onto the latter, which leads to the
resolution

· · · QBV−−−−→ C∞−1(T ∗[−1]F) QBV−−−−→ C∞0 (T ∗[−1]F) ε−→ H0(T ∗[−1]F) −−−−→ 0 , (4.33)

and this is the Koszul–Tate resolution of C∞(F)/I. In the absence of ghosts, functions on
field space differing by QBV-exact terms are on-shell equivalent.

To incorporate gauge symmetry, we replace F by FBRST and construct a new homological
vector field QBV satisfying the boundary condition (4.26a). The result is the complex

· · · QBV−−−−→ C∞−1(FBV) QBV−−−−→ C∞0 (FBV) QBV−−−−→ C∞1 (FBV) QBV−−−−→ · · · . (4.34)

1In the language of homological algebra the space of functionals on F/G is replaced by the space of
derived Lie(G)-invariants of functionals on F, which is given by (Hom(

⊙•Lie(G)[1]∗,O(F)), QBRST). See
e.g [141] for further details.

2Recall that if S is a function on M , the derived critical locus is the derived intersection of graph(dS)
with the 0-section of the cotangent bundle of M , Crit(S) = graph(dS)×T∗MM . Derived algebraic geometry
suggests to replacing the tensor product in O(Crit(S)) = O(graph(dS)) ⊗O(T∗M) O(M) with the derived
tensor product. For a complete discussion of the BV formalism in this setting see e.g. [178, 179].
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The image of QBV in C∞0 (FBV) are now the functionals vanishing on the equations of motions
(for fields, ghosts, etc.) and the kernel of QBV in C∞0 (FBV) are the gauge invariant functionals.
The cohomology of the BV differential therefore contains in particular the classical observables:
classical states which are gauge invariant.

Classical L∞-algebra structure. We note already here that the BV formalism assigns to
any Lagrangian field theory an L∞-algebra structure on the graded vector space FBV[−1].1

The question now is clearly to determine the structure of this L∞-algebra dual to the Batalin-
Vilkovisky complex. As we shall see in detail in Chapter 5, such an L∞-algebra captures the
essence of a classical (gauge) field theory.

4.3.1. Quantum master equation

Gauge fixing. Having constructed the BV action, we now need to implement gauge fixing
in the BV formalism before we can quantise the theory. To this end, we return to the gauge
fixing fermion Ψ ∈ C∞(FBV), a field of ghost number −1 which we have already encountered
in Section 4.2.. The idea is then to eliminate all antifields by imposing the equation [14]

Φ+ = δ

δΦΨ , (4.35)

which defines a Lagrangian submanifold LΨ in FBV. The restriction SBV|LΨ is then the gauge-
fixed BV action, i.e. its Hessian it is not degenerate.

In a functional integral, gauge fixing would be implemented by a delta functional, and we
would define expectation values of an observable F ∈ C∞(FBV) as

〈F 〉Ψ :=
∫
FBV

µBV(Φ,Φ+) δ
(

Φ+ − δ

δΦΨ
)
F [Φ,Φ+] e i

~S
~
BV[Φ,Φ+] . (4.36)

Here, S~BV is the quantum generalisation of SBV with the boundary condition

S~BV|~=0 = SBV . (4.37)

Moreover, µBV(Φ,Φ+) is the functional measure on FBV compatible with the symplectic
structure ωBV, i.e. coordinate transformations between Darboux charts are measure preserving.

1This conversion reflects the duality between differential graded commutative algebras and L∞-algebras
discussed in Chapter 2.
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Quantum master equation. Clearly, for physically meaningful statements, we would want
〈F 〉Ψ to be independent of the gauge fixing fermion Ψ. We observe that besides the canonical
symplectic form (4.25), one may also define a canonical second-order differential operator on
C∞(FBV), called the Batalin–Vilkovisky Laplacian; see e.g. [164] for details. This is defined
by

∆BV := (−1)|ΦA|+1
←
δ

δΦA

←
δ

δΦ+
A

(4.38)

and satisfies1

∆2
BV = 0 , ∆BV(FG) = F∆BVG+ (−1)|G|(∆BVF )G+ (−1)|G|

{
F,G

}
BV

,

∆BV
{
F,G

}
BV

=
{
F,∆BVG

}
BV
− (−1)|G|

{
∆BVF,G

}
BV

(4.39)

for F,G ∈ C∞(FBV). Such an object, plays a key role in the path integral quantisation. It
turns out that that the expectation value 〈F 〉Ψ is invariant under deformations of Ψ if and
only if

∆BV
(
F [Φ,Φ+] e i

~S
~
BV[Φ,Φ+]

)
= 0 . (4.40)

This can be easily seen by imposing2 FΨ+δΨ = FΨ in (4.36).

For F = 1, the condition (4.40) reduces to

∆BVe i
~S
~
BV[Φ,Φ+] = 0 ⇐⇒ {S~BV, S

~
BV}BV − 2i~∆BVS

~
BV = 0 , (4.41)

which is known as the quantum master equation. Using this equation and the boundary
condition (4.37), one can compute constraints on the coefficients of the power series expansion
of S~BV in ~. A solution to the quantum master equation can then be found iteratively.

In many cases, and in particular in Chern–Simons theory, it turns out that a solution SBV

of the classical master equation satisfies ∆BVSBV = 0 (at least formally, before regularisation)
and therefore also solves the quantum master equation. We shall comment this fact in the
next Section for Maurer–Cartan theories.

1Note that the BV Laplacian is ill-defined on local functionals. However, the property in the second line
of (4.39) implies that it is well-defined on the subalgebra generated by those local functionals which are killed
by ∆BV. We shall come back to this point later.

2The space of gauge-fixing fermions Ψ (whose Hessian may not be invertible) is contactable, so FΨ is
globally independent of Ψ.
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Quantum L∞-algebra structure. It is now an interesting question to ask what survives of
the classical L∞-algebra structure noticed in Section 4.3. and discussed further in Section 5.
We may define the nilquadratic differential operator1

dBV = −i~∆BV + {SBV,−}BV with d2
BV = 0 . (4.42)

Just as the homological vector field QBV = {SBV,−}BV induces a classical L∞-algebra struc-
ture on FBV, so dBV induces a quantum L∞-algebra or loop homotopy Lie algebra on the
same graded vector space. For more details, see [10] and [183–189]. In particular, the de-
composition theorem can be proved and the minimal model constructed explicitly, e.g. by a
direct application of the homological perturbation lemma. This approach also leads directly
to a homotopy between a quantum L∞-algebra and its minimal model.

Finally, let us mention some further highly relevant papers addressing closely related issues:
the fibre BV integral and its relation to the homotopy transfer of quantum L∞-structures is
subject of [184–186,188], see also [190] and references therein. BV canonical transformations
as isomorphisms of homotopy algebraic structures are discussed in [184–186, 188]. The fact
that the propagator is the chain homotopy is explained in [184, 186, 188], see also [190] and
references therein.

Gauge fixing and trivial pairs. Since the gauge fixing fermion Ψ is a function of degree −1
and because we wish to use it to eliminate the antifields via (4.35), we have to introduce
additional fields of negative degree to construct such a Ψ, and these fields must be trivial
in a certain sense. For this to be consistent, these fields have to have an interpretation as
coordinate functions on a symplectic Q-manifold of degree −1.

We note that one can always add trivial pairs c̄ ∈ V [l] and b ∈ V [l + 1] for V some
vector space and l ∈ Z and consider the Q-manifold V [l] ⊕ V [l + 1] with Qc̄ = b. For
example, V = Lie(G) and l = −1 are used in BRST quantisation, cf. Section 4.2.. The
corresponding L∞-algebra has trivial cohomology and it is therefore quasi-isomorphic to the
trivial L∞-algebra, cf. Section 2.5.. Adding trivial pairs therefore does not affect the data of
the classical theory.

To use a trivial pair in the BV formalism, we have to minimally extend it to a symplectic
Q-manifold of degree −1. This is simply done by adding corresponding antifields c̄+ and b+,

1Note that contrary to the classical version, the quantum version (4.42) is no longer a derivation, but it’s
still a differential.
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which yields

Ftp := T ∗[−1]
(

Lie(G)[l]⊕ Lie(G)[l + 1]
)

(4.43)

with symplectic structure

ωtp := (−1)l〈δc̄, δc̄+〉+ (−1)l+1〈δb, δb+〉 (4.44)

of degree −1 and Hamiltonian

Stp := −〈b, c̄+〉 (4.45)

of homogeneous degree 0. The resulting homological vector field Qtp = {Stp,−}tp is still a
shift isomorphism,

Qtpc̄ = b , Qtpc̄
+ = 0 , Qtpb = 0 , Qtpb

+ = (−1)lc̄+ . (4.46)

Consequently, the resulting cyclic L∞-algebra is still trivial by quasi-isomorphism.
It is now rather straightforward to see that all structures add up properly when adding

trivial pairs to the outcome of the BV formalism. We define ωeBV := ωBV +ωtb, {−,−}eBV :=
{−,−}BV + {−,−}tp and ∆eBV := ∆BV + (−1)l+1

〈←
δ
δc̄
,
←
δ
δc̄+

〉
+ (−1)l

〈←
δ
δb
,
←
δ
δb+

〉
. If an action

functional S~BV satisfies the quantum master equation for {−,−}BV and then S~eBV := S~BV +
Stp satisfies the quantum master equation for {−,−}eBV and ∆eBV.

4.4. Batalin–Vilkovisky complex of homotopy Maurer–Cartan theory

Let us now discuss how the BV formalism is adapted to the context of L∞-algebras and the
Maurer–Cartan action (3.21).

4.4.1. Batalin–Vilkovisky formalism and L∞-algebras

To this end, let us consider a cyclic L∞-algebra (L, µi) with inner product 〈−,−〉L of L∞-
degree −3 and ghost degree 0. As before, we start with the BRST complex. The action of
infinitesimal gauge symmetries on the gauge potential a and the gauge parameters c−k and
their symmetry structure are captured by the elements of the L∞-algebra L of degree i ≤ 1
as displayed in Figure 4.1.
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Becchi–Rouet–Stora–Tyutin complex. The BRST complex therefore corresponds to a
truncation of L,

Ltrunc =
⊕
i≤1

Li , (4.47)

which we endow with the higher products µi of L, but putting all µi with images outside of
Ltrunc to zero.

a c0 c−1 · · · c−k · · ·
L∞-degree 1 0 −1 · · · −k · · ·

Figure 4.1: Becchi–Rouet–Stora–Tyutin fields

In the case where L is concentrated in degrees 0 and 1 (e.g. in the case corresponding to
ordinary Chern–Simons theory), as well as in many other special cases of L∞-algebras, the
truncated higher products still satisfy the homotopy Jacobi identity (2.44c). The truncated
L∞-algebra Ltrunc forms then an action L∞-algebroid and the BRST complex is the Cheval-
ley–Eilenberg algebra of this L∞-algebroid as discussed in sections 4.2.1. and 4.2.. In general,
however Ltrunc is not an L∞-algebra, as we shall explain now.

We still can switch to a graded manifold description underlying Ltrunc, performing the usual
shift by 1 to obtain

FBRST := Ltrunc[1] =
⊕
i≤1

Li[1] , (4.48)

where the higher brackets µi yield a degree 1 vector field QBRST. The fact that Ltrunc is no
longer an L∞-algebra amounts then to QBRST being no longer homological, that is, Q2

BRST = 0
is no longer guaranteed.

To simplify our notation, we again combine the coordinate functions on FBRST with the
basis on Ltrunc to form the contracted coordinate functions

Ltrunc,C := C∞(FBRST)⊗ Ltrunc (4.49)

with higher products µ̂i as defined in (2.52b). Objects in Ltrunc,C now have a bi-degree, and
we refer to the one from Ltrunc as the L∞-degree and the one from C∞(FBRST) as the ghost
degree. The latter indeed matches the usual nomenclature. We use here the same letter for
both the elements of Ltrunc and their contracted coordinate functions, hoping to avoid the first
fundamental confusion of calculus.

We see that the field type is determined by the parity of the ghost degree, i.e. by the field
regarded as a contracted coordinate function, as expected.
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a c0 c−1 · · · c−k · · ·
L∞-degree 1 0 −1 . . . −k · · ·
ghost degree 0 1 2 · · · k + 1 · · ·
field type b f b · · · f/b · · ·

Figure 4.2: Becchi–Rouet–Stora–Tyutin fields; a ‘b’ stands for boson and an ‘f’ for fermion.

The action of the BRST operator QBRST on elements of FBRST is then described using
formula (2.53), combining all contracted coordinate functions into a single object,

a := a+
∑
k≥0

c−k . (4.50)

We then have
QBRSTa = −

∑
i≥1

1
i! µ̂i(a, . . . , a) . (4.51)

Let us briefly look at the individual components of a. First of all, we have

QBRSTa := −
∑
i≥0

1
i! µ̂i+1(a, . . . , a, c0) =

∑
i≥0

1
i!µi+1(a, . . . , a, c0) , (4.52a)

where the µi only respect the L∞-degree of the arguments and they are agnostic about the
ghost degree. This explains the additional sign in going from µ̂i+1 to µi+1: we need to move
the coordinate function in c0, which is of degree 1, past the degree 1 basis vectors of the i
arguments a and the bracket µ̂i+1. Similarly, we have

QBRSTc−k :=

:=
∑
i,n≥0
i+n≥1

1
i!
∑
πn

1
n0! · · ·nk+1! µ̂i+n(a, . . . , a︸ ︷︷ ︸

i

, c0, . . . , c0︸ ︷︷ ︸
n0

, c−1, . . . , c−1︸ ︷︷ ︸
n1

, . . . , c−k−1, . . . , c−k−1︸ ︷︷ ︸
nk+1

)

=
∑
i,n≥0
i+n≥1

1
i!
∑
πn

χ(πn)
n0! · · ·nk+1!µi+n(a, . . . , a︸ ︷︷ ︸

i

, c0, . . . , c0︸ ︷︷ ︸
n0

, c−1, . . . , c−1︸ ︷︷ ︸
n1

, . . . , c−k−1, . . . , c−k−1︸ ︷︷ ︸
nk+1

) ,

(4.52b)
with the sum over πn running over all weighted partition πn of n with n = n0 + · · · + nk+1.
The sign

χ(πn) = (−1)
∑k+1

j=0

∑nk+1
m=1 (j+1)

(
nj−m+

∑k+1
l=j+1 nl

)
(4.52c)

arises again by moving all coordinate functions past the basis vectors and the higher product
µ̂i+n.
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We note that QBRST governs the gauge transformations of fields and ghosts,

QBRSTa := δc0a and QBRSTc−k := δc−k−1c−k + · · · , (4.53)

and it also incorporates the symmetry structure of the ghosts themselves.
As shown in Appendix C, we have

Q2
BRSTa =

∑
i≥0

(−1)i
i!

[
− µi+2(f, a, . . . , a, c−1) + 1

2!µi+3(f, a, . . . , a, c0, c0)
]

(4.54)

and similar equations for c−k. This reflects the fact that the truncation from L to Ltrunc breaks
the homotopy Jacobi relation on the truncated higher products. We see that for ordinary Lie
algebras and, consequently, ordinary gauge theory, we have neither µi for i > 2 nor the higher
ghosts c−k with k > 0 and so, Q2

BRST = 0. Therefore, the BRST formalism is sufficient for
ordinary gauge theory. In the general case, however, we would have to impose f = 0 to close
the gauge algebra, which is usually phrased as the gauge algebra only closes on-shell.

To obtain an off-shell formulation, e.g. for a quantisation of the field theory, we need to
extend the BRST formalism. In the case of homotopy MC theory it is very obvious what this
extension should be. Instead of truncating the original L∞-algebra L to Ltrunc yielding the
BRST complex, we should have simply kept all of L and put FBV = L[1]. This is indeed what
the BV formalism does.

Batalin–Vilkovisky fields. As discussed in Section 4.4., to cure the problem we need to
double the space of fields1, by adding an antifield for every field and ghost, so that

FBV := T ∗[−1]FBRST . (4.55)

Note that in the case of homotopy MC theory, an inner product 〈τα, τβ〉L = ωαβ of degree −3
with respect to some basis τα of L induces a symplectic form ω = 1

2ωαβdξα ∧ dξβ on L[1] of
degree −|τα| + 1 − |τβ| + 1 = −3 + 2 = −1. Non-degeneracy of 〈−,−〉L therefore implies
that T ∗[−1]FBRST ∼= L[1] as claimed above.

For clarity, let us summarise the L∞-degrees and ghost degrees again in Figure 4.3.
Note that the above does not yet include the additional trivial pairs needed for gauge

fixing; we shall come to these later.

1As shown, ghosts appear as Chevalley–Eilenberg generators and antifields arise as Koszul generators.
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· · · c+
−k · · · c+

−1 c+
0 a+ a c0 c−1 · · · c−k · · ·

L∞-degree · · · 3 + k · · · 4 3 2 1 0 −1 · · · −k . . .

ghost degree · · · −k − 2 · · · −3 −2 −1 0 1 2 · · · k + 1 . . .

field type · · · f/b · · · f b f b f b · · · f/b · · ·

Figure 4.3: Batalin–Vilkovisky fields; a ‘b’ stands for boson and an ‘f’ for fermion.

Since FBV = T ∗[−1]FBRST, it comes with the canonical symplectic structure (4.25)

ωBV = 〈da, da+〉L +
∑
k≥0

(−1)k+1〈dc−k, dc+
−k〉L . (4.56)

Note that ωBV is of degree −1 precisely when 〈−,−〉L is of degree −3 after exchanging
coordinate functions for the actual fields. We can conveniently combine all fields, ghosts and
all their antifields into the superfield (contracted coordinate function)1

a := a+ a+ +
∑
k≥0

(c−k + c+
−k) . (4.57)

In terms of the superfield a the symplectic form simply reads as

ωBV := −1
2〈da, da〉LC

. (4.58)

Recall that LC = C∞(L[1])⊗ L and 〈−,−〉LC
denotes the naturally induced inner product on

LC . In terms of a, this symplectic form induces the Poisson structure

{F,G}BV = F

〈 ←
δ

δa ,
→
δ

δa

〉∗
LC

G , (4.59a)

where F,G ∈ C∞(FBV) and 〈−,−〉∗LC
denotes the dual BV pairing.2 Here, the left and right

functional derivatives satisfy

F

←
δ

δa = (−1)|F |LC
+1
→
δ

δaF . (4.59b)

It remains to construct the BV action SBV satisfying the classical master equation
{SBV, SBV}BV = 0 and which induces the homological vector field QBV := {SBV,−}
on FBV.

1Explicitly, a = aA ⊗ eA = ΦA ⊗ eA + Φ+
A ⊗ eA, where the index A runs over all fields, ghosts, higher

ghosts and the corresponding anti-fields, as well as Lie algebra and space-time indices.
2Explicitly, δ

δa := δ
δaA ⊗ eA. Here, we have used eA := eBω

BA with ωAB being understood as the inverse
of ωAB of the symplectic form (4.25) written as ωBV = 1

2daA ∧ ωABdaB.
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Batalin–Vilkovisky action. We could follow the construction of SBV discussed in Sec-
tion 4.4., but for homotopy MC theory, there exists a significant shortcut. Recall that we
require SBV to agree with SMC after all ghosts and antifields are put to zero. Also, we require

{SBV,−}BV|FBRST
= QBRST , (4.60)

where QBRST has the action (4.51). An obvious ansatz is therefore given by the superfield
version of the homotopy Maurer–Cartan action

SBV[a] :=
∑
i≥1

1
(i+ 1)!〈a, µ̂i(a, . . . , a)〉LC

(4.61)

with a defined in (4.57). Note that SBV[a] is still a function on FBV and we compute1

{
SBV, SBV

}
BV

= −〈f, f〉LC
, (4.62a)

where f is the curvature of a,

f =
∑
i≥0

1
i! µ̂i(a, . . . , a) . (4.62b)

By virtue of the identity (C.62) proved in Appendix C, the expression 〈f, f〉LC
vanishes identic-

ally. Consequently, SBV satisfies the classical master equation

{
SBV, SBV

}
BV

= 0 . (4.63)

Defining the homological vector field

QBV :=
{
SBV,−

}
BV

, (4.64)

the triple (FBV, QBV, ωBV) is the data of a symplectic Q-manifold of degree −1. We note
that2

QBVa = −f and QBVf = 0 . (4.65)

From (4.65), we can derive the action of QBV on the individual contracted coordinate functions
on FBV.

1Recall that
→
δ
δaSBV[a] = f. The minus sign in (4.62a) comes from (4.59b).

2Relations (4.65) are shown in C.2.. Note that by using such relations and the definition of QBV, the
result (4.62a) again easily follows.
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Example. As an explicit example, consider the L∞-algebra L = L−1⊕ L0⊕ L1⊕ L2 with the
only non-trivial higher brackets being µ1, µ2 and µ3. The superfield reads

a = a+ a+ + c0 + c+
0 + c−1 + c+

−1 , (4.66)

with

SBV[a] =
∑
i≥1

1
(i+ 1)!〈a, µ̂i(a, . . . , a)〉LC

= SMC[a]− 〈c0, µ1(a+)〉L + 〈c−1, µ1(c+
0 )〉L +

+ 〈a, µ2(c−1, c
+
0 )〉L + 〈a, µ2(a+, c0)〉L + 1

2〈a
+, µ2(a+, c−1)〉L +

+ 1
2〈c

+
0 , µ2(c0, c0)〉L − 〈c+

−1, µ2(c−1, c0)〉L +

+ 1
2〈a, µ3(a, a+, c0)〉L + 1

2〈a, µ3(a, c+
0 , c−1)〉L + 1

2〈a, µ3(a+, a+, c−1)〉L +

+ 1
2〈a, µ3(c0, c0, c

+
0 )〉L − 〈a, µ3(c0, c−1, c

+
−1)〉L − 1

2·2〈a
+, µ3(a+, c0, c0)〉L +

− 〈a+, µ3(c0, c
+
0 , c−1)〉L − 1

2〈a
+, µ3(c−1, c−1, c

+
−1)〉L +

− 1
3!〈c0, µ3(c0, c0, c

+
−1)〉L + 1

2·2〈c
+
0 , µ3(c+

0 , c−1, c−1)〉L .
(4.67a)

Here, the higher products µi are agnostic about the ghost degree of the enclosed fields, and
the signs arise again from moving coordinate functions past graded basis vectors and the µ̂i.
Moreover, SMC is the homotopy MC action for L,

SMC[a] = 1
2〈a, µ1(a)〉L + 1

3!〈a, µ2(a, a)〉L + 1
4!〈a, µ3(a, a, a)〉L . (4.67b)

The homological vector field induced by SBV acts as follows on the individual contracted
coordinate functions on L:

QBVa = µ1(c0) + µ2(a, c0) + 1
2µ3(a, a, c0) + µ2(c−1, a

+)−

− µ3(a, a+, c−1)− µ3(c−1, c0, c
+
0 ) + 1

2µ3(c0, c0, a
+) + 1

2µ3(c−1, c−1, c
+
−1) ,

QBVc0 = −µ1(c−1)− µ2(a, c−1)− 1
2µ3(a, a, c−1)− 1

2µ2(c0, c0)−

− 1
2µ3(a, c0, c0) + µ3(c0, c−1, a

+)− 1
2µ3(c−1, c−1, c

+
0 ) ,

QBVc−1 = µ2(c−1, c0) + µ3(a, c−1, c0) + 1
3!µ3(c0, c0, c0) + 1

2µ3(c−1, c−1, a
+) ,

(4.68)
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QBVa
+ = −µ1(a)− 1

2µ2(a, a)− 1
3!µ3(a, a, a)− µ2(c0, a

+)− µ2(c−1, c
+
0 ) +

+ µ3(a, c0, a
+)− µ3(a, c−1, c

+
0 )− 1

2µ3(c−1, a
+, a+)−

− 1
2µ3(c0, c0, c

+
0 )− µ3(c−1, c0, c

+
−1) ,

QBVc
+
0 = µ1(a+) + µ2(a, a+) + 1

2µ3(a, a, a+)− µ2(c0, c
+
0 ) + µ2(c−1, c

+
−1)−

− µ3(a, c0, c
+
0 ) + µ3(a, c−1, c

+
−1) + µ3(a, c−1, c

+
−1) +

+ 1
2µ3(a+, a+, c0)− µ3(c−1, a

+, c+
0 ) + 1

2(c0, c0, c
+
−1) ,

QBVc
+
−1 = −µ1(c+

0 )− 1
2µ2(a, c+

0 )− 1
2µ3(a, a, c+

0 )− 1
2µ2(a+, a+)− µ2(c0, c

+
−1)−

− 1
2µ3(a, a+, a+)− µ3(a+, c0, c

+
0 ) + µ3(a+, c−1, c

+
−1)−

− 1
2µ3(c−1, c

+
0 , c

+
0 )− µ3(a, c0, c

+
−1) .

(4.69)

Quantum master equation. Following (4.38), we introduce the BV Laplacian by its action
on an F ∈ C∞(FBV),

∆BVF := −1
2F

〈 ←
δ

δa ,
←
δ

δa

〉∗
LC

. (4.70)

Since the inner product 〈−,−〉LC
is graded symmetric and since the higher products µ̂i for

i ≥ 2 are graded anti-symmetric, it follows immediately from the cyclicity of the inner product
that

∆BV 〈a, µ̂i(a, . . . , a)〉LC
= 0 , (4.71a)

for i ≥ 2. We also have
∆BV 〈a, µ̂1(a)〉LC

= 0 , (4.71b)

since both the L-degree and the ghost degree of 〈a, µ̂1(a)〉LC
are zero so that a field and its

antifield cannot pair up in 〈a, µ̂1(a)〉LC
. Hence, the BV action (4.61) obeys

∆BVSBV = 0 . (4.72)

Altogether, we conclude that SBV satisfies the quantum master equation
{
SBV, SBV

}
BV
− 2i~∆BVSBV = 0 ⇐⇒ ∆BVe i

~SBV = 0 . (4.73)

It is important to stress, however, that this is only true formally since the BV Laplacian is
singular and regularisation needs to be taken into account in general.1 Furthermore, the above

1Regularisation and renormalisation in Euclidean signature were addressed in [171] via a heat kernel
approach.
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observation, namely that the two terms in the quantum master equation vanish separately,
was made earlier in the context of BF -theory [191].

4.4.2. Gauge fixing

We shall conclude the Chapter by briefly summarising the gauge fixing procedure, although
quantum computations are beyond our purposes, and adding an outlook on the quantum
master equation for homotopy MC theory.

Additional fields. To gauge-fix the BV action (4.61), we will have to expand the field
space further by introducing trivial pairs, that is, antighosts c̄i,j and Lagrange multipliers bi,j,
together with their antifields, the antifield antighost c̄+

i,j and the antifield Lagrange multiplier
b+
i,j, as encountered in sections 4.2. and 4.3.1..

In the L∞-algebra picture, the necessary extension is given in Figure 4.5. In general, we
have additional quadruples of fields for all i ≤ 0 and i − 1 ≤ j ≤ −i − 1 as displayed in
Figure 4.4.

c̄i,j bi,j c̄+
i,j b+

i,j

takes values in a copy of Li Li L3−i L3−i

which is added to L in ghost degree j j + 1 −j − 1 −j − 2
or, equivalently, in L∞-degree 1− j −j 2 + j j + 3

Figure 4.4: L∞-degrees and ghost degrees of the trivial pairs and their antifields.

Put differently, we extend L to

Le := L⊕
⊕
i≤0

i−1≤j≤−i−1

(
Li[j − 1]⊕ Li[j]⊕ L3−i[−j − 2]⊕ L3−i[−j − 3]

)
(4.74)

and the BV complex FBV correspondingly reads as

FeBV := Le[1]

∼= T ∗[−1]

FBRST ⊕
⊕
i≤0

i−1≤j≤−i−1

(
Li[j]⊕ Li[j + 1]

)
∼= FBV ⊕

⊕
i≤0

i−1≤j≤−i−1

(
Li[j]⊕ Li[j + 1]⊕ L3−i[−j − 1]⊕ L3−i[−j − 2]

)
.

(4.75)
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Figure 4.5: L∞-algebra picture of the Batalin–Vilkovisky fields including trivial pairs
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A diagram of the additional fields is found in Figure 4.5.
The reason for introducing families of antighosts and Lagrange multipliers for each level k

can be understood as follows: the lowest level antighosts and Lagrange multipliers are needed
to fix the gauge symmetries of the fields and ghosts, the next-to-lowest level antighosts and
Lagrange multipliers are needed to fix the gauge symmetries of the lowest level antighosts,
and so on [11]. Reducing to merely the antighost of each quadruple of new fields, one obtains
the so-called Batalin–Vilkovisky triangle [11, 42] displayed in Figure 4.6.

a

c̄0 a

}}   c̄−1 c̄0,−1

|| !!

c0

~~ ��c̄−2 c̄−1,−2

|| ""

c̄−1,0

}}   

c−1

�� ��· · · c̄−2,−3

}} ##

c̄−2,−1

{{ ""

c̄−2,1

}} !!

c−2

~~ ��
· · · · · · · · · · · · · · ·

Figure 4.6: Batalin–Vilkovisky triangle.

Symplectic Q-manifold structure. The graded vector space FeBV comes with the canon-
ical symplectic structure

ωeBV = 〈da, da+〉L +
∑
i≤0

(−1)i+1〈dci, dc+
i 〉L +

+
∑
i≤0

−i−1∑
j=i−1

[
(−1)j〈dc̄i,j, dc̄+

i,j〉L + (−1)j+1〈dbi,j, db+
i,j〉L

]
.

(4.76)

Also, the extension of the BV action to a solution of the classical master equation is given by

SeBV[a, ci, . . . , c̄i,j, . . . ] = SBV[a, ci, . . . ]−
∑
i≤0

−i−1∑
j=i−1

〈bi,j, c̄+
i,j〉L , (4.77)
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as discussed in Section 4.3.1.. We set again QeBV := {SeBV,−}eBV and its action on all the
fields is (4.65) together with

QeBVc̄i,j = bi,j , QeBVbi,j = 0 , QeBVc̄
+
i,j = 0 , QeBVb

+
i,j = (−1)j c̄+

i,j . (4.78)

Note that the new fields c̄i,j, etc., denote contracted coordinate functions here.
As before, it is convenient to combine the additional fields arising from trivial pairs into

superfields c̄i and bi such that

QeBVc̄i = bi and QeBVbi = 0 . (4.79)

We can put

c̄i :=


∑
j≥0(−1)j c̄i−j,i+j−1 for i ≤ 0∑
j≥0(j)b+

1−i−j,j−i for i > 1
(4.80a)

and

bi :=


∑
j≥0(−1)jbi−j,i+j−1 for i ≤ 0∑
j≥0(−1)j−ic̄+

1−i−j,j−i for i > 1
(4.80b)

To obtain the component fields, as before, one simply projects onto the corresponding ghost
degree.

The symplectic form (4.76) and the extended BV action (4.77) then read as

ωeBV := −1
2〈da, da〉LC

+
∑
i+j=1

〈dbi, dc̄j〉LeC
,

SeBV[a, b] := SBV[a]−
∑
i+j=1
i≤j

(−1)i+1〈bi, bj〉LeC
.

(4.81)

Quantum master equation. The fact that the BV action satisfies the quantum master
equation is preserved after the extension by trivial pairs. In particular, the BV Laplacian ∆eBV

on Le annihilates SeBV and we have altogether

{SeBV, SeBV}eBV = 0 and ∆eBVSeBV = 0 (4.82)

so that
{
SeBV, SeBV

}
eBV
− 2i~∆eBVSeBV = 0 ⇐⇒ ∆eBVe i

~SeBV = 0 . (4.83)

As before, this is only true formally as regularisation needs to be taken into account.
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Gauge fixing. To gauge-fix the extended BV action (4.77), we introduce a gauge fixing
fermion

Ψ :=
∑
i≤0
〈c̄i,Gi(a, c̄0, c̄−1, . . .)〉Le (4.84)

such that ∂
∂φ

Ψ for any field φ ∈ Le takes values in the same homogeneously graded vector
subspace of Le as its antifield, φ+. The gauge fixed quantum BV action is then given by

SqBV[a, c, c̄, b] := SeBV[a, b]
∣∣∣∣
φ+=

→
∂
∂φ

Ψ
. (4.85)





5
Classical L∞-structure of field theories

5.1. Interpretation of the BV L∞-algebra

Outline. As we have seen in the previous Chapter, the classical part of the BV formalism
maps the data of a classical field theory (F, S) to a set of BV fields FBV together with a BV
action SBV. As explained in Section 2.4., via the BV bracket, the BV action defines a homo-
logical vector field QBV, which in turn encodes an L∞-algebra structure on the graded vector
space FBV. This L∞-algebra encodes all relevant classical information about the field theory
in question. It captures the field content and its gauge symmetry structure, the equations of
motion, as well as the Noether identities. Moreover, the original action is recovered by the
homotopy Maurer–Cartan theory of that L∞-algebra. At the classical level, Lagrangian field
theories are thus equivalently described by cyclic L∞-algebras [42, 43]. This is not a new fact
and it is certainly well-known by experts on the BV formalism, see [176, 192–205] for earlier
and partial accounts. However, the structural advantages of this description, have not been
yet fully exploited, as pointed out in e.g. [42, 43, 206, 146].

At the classical level, two physical theories are equivalent if they have an isomorphic
space of observables. In the L∞-framework this should translate to L∞-algebras which are
isomorphic in some sense. In particular, this appropriate notion of equivalence is given by
quasi-isomorphisms and physically equivalent classical field theories have quasi-isomorphic L∞-
algebras, see e.g. [42].1 Hence, two equivalent field theories have a common minimal model.
Recall that this corresponds to a field theory equivalent to the original, but without any
propagating degrees of freedom and where the non-triviality of the action is fully absorbed

1at the classical level; however equivalence of quantum field theories is more involved, cf. e.g. [44].

93
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in the higher products. The minimal model and its higher products encode precisely the
tree-level scattering amplitudes of the original field theory [148, 143, 42, 43]. The explicit
application of this idea is rather recent. Quasi-isomorphisms induce useful recursion relations
for the computations of S-matrices at tree level [146,207–209]. This has also been extended to
obtain the full scattering amplitudes of quantum field theories by computing minimal models of
the corresponding quantum algebras1 via the homological perturbation lemma [189,206,210].

This Chapter is devoted to analyse the L∞-structure underlying classical field theory, with
a particular focus to Yang–Mills and (higher) Chern–Simons theory and follows [42]. Be-
fore discussing explicit examples, let us make a few more observations about the L∞-algebra
structure which we expect.

L∞-algebra structure. The vector space FBV is graded in particular with respect to the
ghost degree, FBV := ⊕

i∈Z F
i
BV. The usual correspondence between Q-manifolds and L∞-

algebras suggests that we need to shift the degree by one and invert it, for an L∞-algebra
with higher products µi of degree 2− i. We thus arrive at the L∞-algebra

· · · µ1−−→ F−1
BV︸︷︷︸

=: L0

µ1−−→ F0
BV︸︷︷︸

=: L1

µ1−−→ F1
BV︸︷︷︸

=: L2

µ1−−→ F2
BV︸︷︷︸

=: L3

µ1−−→ · · · (5.1)

That is, L0 is given by the ghosts, L1 by the fields, L2 by the antifields and L3 by the antighosts.
This extends in an obvious manner to cases with ghosts-for-ghosts and trivial pairs.

The map µ1 is encoded in the linear part of the action QBV := {SBV,−}BV on the field
corresponding to the image of µ1. Explicitly, µ1 : L0 → L1 is encoded in the linear part of the
explicit expression for QBVA and therefore encodes the linearised gauge transformations. The
map µ1 : L1 → L2 is obtained by linearising QBVA

+, which yields the linearised variation of
the classical action with respect to the field and therefore the linearised classical equations of
motion. The map µ1 : L2 → L3 is the linearised part of the action of QBV on c+ and these
encode precisely the Noether identities as we shall explain below. This is all the structure
necessary to describe a classical (gauge) field theory; for higher gauge theories, one obtains
an extension beyond the homogeneously graded vector subspaces Lj with 0 ≤ j ≤ 3.

The higher brackets then fulfil the task of making the linearised expressions covariant and
to allow for higher interaction terms. In general, an interaction term of nth order in the fields
will be encoded in a higher product µi with i = n− 1.

1Recall that L∞-algebras can be generalised to quantum L∞-algebras, corresponding to solutions to the
quantum master equation in the BV formalism.
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From our discussion in Chapter 3, it is also clear that the homotopy Maurer–Cartan ac-
tion for L reproduces the original action S and the homotopy Maurer–Cartan action for LC

reproduces the BV action SBV.

· · · L−1 L0 L1 L2 L3 L4 · · ·
· · · gauge-of-gauge gauge physical equations of Noether higher · · ·

transf. transf. fields motion identities Noether

Figure 5.1: Summary of the structure of the L∞-algebra of a classical field theory. While the
labels under Li for i ≤ 1 describe the spaces, the meaning of the labels changes for i ≥ 2: L2,
for instance, is not the space of the equations of motion, but the element ` of L that is forced
to zero by the equations of motion ` = 0 takes values in L2.

Noether identities. Here, we discuss Noether identities as done in [42]. In particular, we
are concerned with Noether’s second theorem, generalising the more familiar first one. In this
picture, also gauge symmetries give rise to Noether identities.

The motivation for considering Noether identities is twofold. First of all, they are at the
heart of the BV formalism: they correspond precisely to the degeneracies of the Hessian which
make the application of the stationary phase formula in the interpretation of the path integral
impossible. Secondly, they are an important part of the classical structure of a field theory
and also contained in its L∞-algebra.

Let M be a manifold with local coordinates xµ. Consider an infinitesimal group action on
a set of fields ΦA on M parametrised by infinitesimal parameters ε = (εI) as

δΦA(x) := RA
I (Φ)εI(x) , (5.2)

where RA
I (Φ) are field-dependent differential operators, possibly containing terms of order 0.

Alternatively, we can write

δΦA(x) =
∫
M
µ(y)RA

I (x, y,Φ)εI(y) , (5.3)

where µ is a suitable measure on M . If this action is a symmetry of an action S[Φ], then we
have the Noether identity ∫

M
µ(x) δS[Φ]

δΦA(x)
δΦA(x)
δεI(y) = 0 (5.4)
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or ∫
M
µ(x) δS[Φ]

δΦA(x)R
A
I (x, y,Φ) = 0 . (5.5)

If we vary this equation with respect to δΦB(z) and restrict Φ to the stationary surface,
we have

δ2S[Φ]
δΦB(z)δΦA(x)R

A
I (x, z,Φ) = 0 , (5.6)

which implies that the RA
I encode degeneracies of the Hessian, that is, they are the eigenvectors

of the Hessian with eigenvalue zero.
The Noether identities also imply that the vector fields QBV decompose as

QBV = QKT + · · · , (5.7)

where QKT is the part purely responsible for the Koszul–Tate resolution acting non-trivially
only on the antifields of fields and ghosts, with Q2

KT = 0. In the BV picture, the symmetry
transformation (5.2) is encoded in QBVΦA, which contains the operators RA

I . Since QBVΦA

is related to the variation of SBV with respect to Φ+
A, we have a term in the BV action of the

form 〈Φ+
A, R

A
I c

I〉, where the inner product is usually given by an integral over some space-time.
This implies that the adjoint of RA

I appears in the QBVc
+
I = ±(R†)AI Φ+

A, which is the variation
of SBV with respect to cI . Here, R† denotes the adjoint of R with respect to 〈−,−〉. The
Noether identity then implies that Q2

KT = 0, at least when acting on the antifields of ghosts:

Q2
KTc

+
I = ±QKTΦ+

A(R†)AI = ±δS[Φ]
δΦA

(R†)AI = 0 . (5.8)

For more details on Noether identities, see e.g. [164, 169, 211, 162].

5.1.1. Scalar field theory

As an introductory example illustrating the construction of an L∞-algebra for a classical field
theory, let us consider scalar field theory on Minkowski space R1,d as a simple example. This
is mainly to stress the point that the BV formalism also provides the L∞-algebra structure
underlying classical field theory without gauge symmetries. Further examples will follow below.
As another unusual point, let us include global symmetries into the BRST formalism. This
is clearly not necessary for the quantisation of the path integral, and it is usually not even
desirable, as it reduces the space of solutions to globally symmetric ones. It will, however,
allow us to obtain the usual Noether identities in the L∞-algebra picture.
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Let ϕ ∈ C∞(R1,d) be a real scalar field with action functional

S :=
∫
R1,d

dd+1x
{

1
2(∂µϕ)2 − 1

2m
2ϕ2 − λ

4!ϕ
4
}
. (5.9)

We extend the field space F = C∞(R1,d) to the action groupoid for the Poincaré group,

(SO(1, d)nR1,d)n C∞(R1,d) ⇒ C∞(R1,d) , (5.10)

which differentiates to the action algebroid

FBRST = (so(1, d)nR1,d)n C∞(R1,d) . (5.11)

In addition to ϕ, we have also ghosts c = cI = cµν +cµ ∈ so(1, d)nR1,d. Those are not fields
but rather constants on Minkowski space R1,d. The actions of the BRST operator QBRST on
c and ϕ capture the Poincaré Lie algebra as well as its action on the field ϕ and read as

QBRST(cµν + cµ) := cµκc
κ
ν + cµκc

κ ,

QBRSTϕ := c B ϕ := cµ∂µϕ+ cµνx
ν∂µϕ .

(5.12)

We now perform the Koszul–Tate resolution by including antifields ϕ+ and c+. The BV
bracket is induced by the canonical symplectic form,

ωBV := −dcI ∧ dc+
I +

∫
R1,d

dd+1x
{
δϕ(x) ∧ δϕ+(x)

}
(5.13)

and the BV action functional reads as

SBV := c+
I [c, c]I +

∫
R1,d

dd+1x
{

1
2(∂µϕ)2 − 1

2m
2ϕ2 − λ

4!ϕ
4 + ϕ+(c B ϕ)

}
, (5.14)

from which the action of QBV is read off as QBV = {SBV,−}BV.
The differential graded vector space underlying the L∞-algebra is

so(1, d)nR1,d︸ ︷︷ ︸
=: L0

0−−→ C∞(R1,d)︸ ︷︷ ︸
=: L1

−∂µ∂µ−m2

−−−−−−−−→ C∞(R1,d)︸ ︷︷ ︸
=: L2

0−−→ (so(1, d)nR1,d)∗︸ ︷︷ ︸
=: L3

(5.15a)

and the non-trivial higher brackets take the form

µ2(c1, c2) := [c1, c2] , µ2(c1, ϕ1) := c1 B ϕ1 ,

µ2(c1, ϕ
+
1 ) := c1 B ϕ+ , µ2(c1, c

+
1 ) := c1 B c+

1 ,

µ3(ϕ1, ϕ2, ϕ3) := −λϕ1ϕ2ϕ3

(5.15b)
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for c1 ∈ L0, ϕ1,2,3 ∈ L1, ϕ+
1 ∈ L2 and c+

1 ∈ L3.
One sees that the homotopy MC action (4.61) of this L∞-algebra is indeed the BV ac-

tion (5.14). In addition, we note that the Noether identities follow. For example, we have

Q2
KTc

+
µ = QKT(ϕ+∂µϕ+ c+

ν cµ
ν) = δS

δϕ
∂µϕ+ · · · = ∂ν

(
∂L

∂(∂νϕ)

)
∂µϕ+ · · · , (5.16)

where the ellipsis denote ghost terms. We thus see indeed the emergence of the usual Noether
identities.

5.1.2. Equivalence of classical field theories

Finally, let us comment a bit more on the role of quasi-isomorphisms. In 2.5., we have seen the
mathematical reasons for using them rather than ordinary isomorphisms, but there is a deeper,
physical, reason. Classically, equivalent physical theories have the same observable and can be
related by field redefinition, factoring out symmetries, integrating out fields, etc. Now, con-
sidering what we have learnt about the BV formalism, this implies that classically equivalent
physical theories have isomorphic QBV-cohomology. In the dual picture, we have the corres-
pondence between classical field theories and L∞-algebras. Such a correspondence implies
that physical equivalence of classical field theories amounts to equivalence between (cyclic)
L∞-algebras, whose appropriate mathematical notion is indeed that of quasi-isomorphisms.
We note that a related notion of equivalence was discussed in [212].

To clarify this point, let us see an example of field theories that are related by integrating
out auxiliary fields. Consider two classical field theories with actions

S :=
∫
R1,d

dd+1x
{

1
2ϕ(−∂µ∂µ −m2)ϕ− λ

4!ϕ
4
}
,

S̃ :=
∫
R1,d

dd+1x
{

1
2ϕ(−∂µ∂µ −m2)ϕ+ 1

2X
2 + 1

2

√
λ
3Xϕ

2
}
,

(5.17)

where ϕ and X are real scalar fields on Minkowski space R1,d. The equations of motion read
as

S : (−∂µ∂µ −m2)ϕ− λ
3!ϕ

3 = 0 ,

S̃ : (−∂µ∂µ −m2)ϕ+
√

λ
3Xϕ = 0 and X + 1

2

√
λ
3ϕ

2 = 0
(5.18)

and S clearly arises from S̃ by integrating out the auxiliary field X.
Following the BV formalism and introducing antifields (which amounts to the Koszul–Tate
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resolution), leads to two L∞-algebras L and L̃ given by

0︸︷︷︸
=: L0

−→ C∞(R1,d)︸ ︷︷ ︸
=: L1

−→ C∞(R1,d)︸ ︷︷ ︸
=: L2

−→ 0︸︷︷︸
=: L3

,

µ1(ϕ1) := (−∂µ∂µ −m2)ϕ1 ,

µ3(ϕ1, ϕ2, ϕ3) := −λϕ1ϕ2ϕ3

(5.19a)

and

0︸︷︷︸
=: L̃0

−→ C∞(R1,d)⊕ C∞(R1,d)︸ ︷︷ ︸
=: L̃1

−→ C∞(R1,d)⊕ C∞(R1,d)︸ ︷︷ ︸
=: L̃2

−→ 0︸︷︷︸
=: L̃3

,

µ̃1(ϕ1 +X1) := (−∂µ∂µ −m2)ϕ1 +X1 ,

µ̃2(ϕ1 +X1, ϕ2 +X2) :=
√

λ
3

(
(X1ϕ2 +X2ϕ1) + ϕ1ϕ2

)
.

(5.19b)

The identity map contained in µ̃1 makes it obvious that the graded vector spaces underlying
L and L̃ have the same cohomology and we define a cochain map φ1 : L̃→ L by setting

φ1 : L̃1 → L1 with φ1(ϕ+X) := ϕ ,

φ1 : L̃2 → L2 with φ1(ζ + Y ) := ζ ,
(5.20)

that is, we obtain a quasi-isomorphism of cochain complexes. To extend this to a quasi-
isomorphism between L̃ and L, we note that all higher products are of the form µ̃i : L̃1×· · ·×
L̃1 → L̃2 and µi : L1 × · · · × L1 → L2. Thus, we are only interested in the defining equation
of L∞-morphisms, (2.57), for all arguments in L̃1. Upon reducing to the non-trivial higher
products and truncating the morphism at the level 2, we obtain

i = 1 : µ1(φ1(ϕ1 +X1)) = φ1(µ̃1(ϕ1 +X1)) ,

i = 2 : µ1(φ2(ϕ1 +X1, ϕ2 +X2)) =

= φ1(µ̃2(ϕ1 +X1, ϕ2 +X2))−

− φ2(µ̃1(ϕ1 +X1), ϕ2 +X2)− φ2(µ̃1(ϕ2 +X2), ϕ1 +X1) ,

i = 3 : µ3(φ1(ϕ1 +X1), φ1(ϕ2 +X2), φ1(ϕ3 +X3)) =

= −[φ2(µ̃2(ϕ1 +X1, ϕ2 +X2), ϕ3 +X3) + cyclic] .

(5.21)

These equations are fulfilled by setting

φ2 : L̃1 × L̃1 → L1 with φ2(ϕ1 +X1, ϕ2 +X2) := 0 ,

φ2 : L̃1 × L̃2 → L2 with φ2(ϕ1 +X1, ζ1 + Y1) :=
√

λ
3ϕ1Y1 .

(5.22)
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Hence, we may conclude that the L∞-algebras L and L̃ corresponding to classically equivalent
field theories are quasi-isomorphic, as mentioned. We shall see more examples in the next few
sections.

5.2. Yang–Mills theory

We start our discussion about gauge theories by studying Yang–Mills theory. In the following,
let M be a smooth compact Riemannian manifold without boundary and real dimension d.
In addition, let G be a Lie group with metric Lie algebra (g, [−,−], 〈−,−〉g). We define L to
be Ω•(M, g) := Ω•(M) ⊗ g, the differential graded Lie algebra of g-valued differential forms
on M . Furthermore, let d be the exterior derivative and d† its adjoint with respect to the
standard inner product 〈α1, α2〉 =

∫
M α1 ∧ ?α2 for α1,2 ∈ Ωk(M), with ? the Hodge operator

for the given metric.

5.2.1. Yang–Mills theory: second-order formulation

The field content of plain Yang–Mills theory in second-order formulation (YM2) consists of
a gauge potential A ∈ Ω1(M, g)[0] with curvature F = dA + 1

2 [A,A]. We add a ghost c ∈
Ω0(M, g)[1] and complete thus the BRST complex, the differential graded algebra description
of the gauge algebroid, as explained in Chapter 4.1 Recall that [k] for k ∈ Z indicates the
ghost degree of the object.

BV action and BV operator. To complete the BV complex, we also add the antifield
A+ ∈ Ωd−1(M, g)[−1] as well as the antifield of the ghost field, c+ ∈ Ωd(M, g)[−2]. On this
space of fields FYM2BV, we have the canonical symplectic form

ωYM2BV :=
∫
M

{
〈δA, δA+〉g − 〈δc, δc+〉g

}
, (5.23)

as introduced in (4.25).
The BV action for Yang–Mills theory is derived to be

SYM2BV :=
∫
M

{
1
2〈F, ?F 〉g − 〈A

+,∇c〉g + 1
2〈c

+, [c, c]〉g
}
, (5.24)

1Recall that A and c denote contracted coordinate functions. For instance A =
∫
M
Aαµ(x)⊗τα⊗dxµ⊗sx,

where τα, dxµ and sx are basis vectors on g, T ∗xM and C∞(M), respectively.
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cf. e.g. [14]. Denoting by {−,−}YM2BV the Poisson bracket induced by (5.23), it is a straight-
forward exercise to show that SYM2BV satisfies the classical master equation

{SYM2BV, SYM2BV}YM2BV = 0 . (5.25)

Hence, we may define the homological vector field

QYM2BV := {SYM2BV,−}YM2BV with Q2
YM2BV = 0 , (5.26)

whose action on a functional F ∈ C∞(FYM2BV) reads as1

QYM2BVF =
∫
M

−
〈
δSBV

δA+ ,
δF

δA

〉∗
g

−
〈
δSBV

δA
,
δF

δA+

〉∗
g

−

−
〈
δSBV

δc+ ,
δF

δc

〉∗
g

−
〈
δSBV

δc
,
δF

δc+

〉∗
g

 .

(5.27)

On the contracted coordinate functions on FYM2BV, we have

QYM2BVc = −1
2 [c, c] ,

QYM2BVA = ∇c = dc+ [A, c] ,

QYM2BVA
+ = −∇?F − [c, A+]

= − d ? dA+ 1
2 d ? [A,A] + [A, ?dA] + 1

2 [A, ?[A,A]]− [c, A+] ,

QYM2BVc
+ = ∇A+ − [c, c+]

= dA+ + [A,A+]− [c, c+] .

(5.28)

L∞-algebra structure. The differential graded algebra (C∞(FYM2BV), QYM2BV) is dual to
an L∞-algebra structure on the graded vector space2

Ω0(M, g)︸ ︷︷ ︸
=: L0

µ1 := d−−−−−→ Ω1(M, g)︸ ︷︷ ︸
=: L1

µ1 := d?d−−−−−−→ Ωd−1(M, g)︸ ︷︷ ︸
=: L2

µ1 := d−−−−−→ Ωd(M, g)︸ ︷︷ ︸
=: L3

. (5.29a)

1Recall that the inner product on Ω•(M, g) is
∫
M
〈−,−〉g. Here and in the following, the notation∫

M
〈−,−〉∗g shall denote the dual BV pairing as discussed in Section 4.4.. In (5.27) for instance, δ

δA =
δ

δAαµ
⊗ eα ⊗ ∂µ, for eα and ∂µ dual bases of τα and dxµ respectively and similarly for the other fields.
2In principle, one may apply the natural isomorphisms Ωd−i(M, g) ∼= Ωi(M, g) to be able to identify the

second µ1 with the Hodge Laplacian. This, however, is somewhat unnatural from the BV perspective, as it
will modify the canonical symplectic structure (5.23) on FYM2BV. It would also make our computations below
less straightforward.
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We call this complex the second-order Yang–Mills complex. Note that the higher products µi
are read off the action (5.28) of the homological vector field on the fields using formula (2.53):
µ1 is given by the linear part of the right-hand side of (5.28), µ2 by the quadratic part, etc.
The coordinate functions on L0, L1, L2, and L3 are, respectively, c, A, A+, and c+. The
L∞-algebra is then defined by the non-vanishing higher products

µ1(c1) := dc1 , µ1(A1) := d ? dA1 , µ1(A+
1 ) := dA+

1 ,

µ2(c1, c2) := [c1, c2] , µ2(c1, A1) := [c1, A1] ,

µ2(c1, A
+
2 ) := [c1, A

+
2 ] , µ2(c1, c

+
2 ) := [c1, c

+
2 ] ,

µ2(A1, A
+
2 ) := [A1, A

+
2 ] ,

µ2(A1, A2) := d ? [A1, A2] + [A1, ?dA2] + [A2, ?dA1] ,

µ3(A1, A2, A3) := [A1, ?[A2, A3]] + [A2, ?[A3, A1]] + [A3, ?[A1, A2]] ,

(5.29b)

for elements ci ∈ L0, Ai ∈ L1, A+
i ∈ L2, and c+

i ∈ L3. We shall denote this L∞-algebra by
LYM2 . Note that as expected from the formalism, LYM2 is cyclic with cyclic structure induced
by the components of the symplectic form (5.23). This L∞-algebra has been rediscovered
several times in the literature. It was first given in [195, 196] in its dual formulation as a
differential graded algebra. The same L∞-algebra was then rederived from string field theory
considerations and further discussed in [197, 199].

We stress again that the L∞-algebra LYM2 encodes all classical information about Yang–
Mills theory: it contains the field content, the gauge symmetries, the equations of motions as
well as the Noether identities.

We note that in the case of classical gauge theories with Abelian gauge group, for which
L is concentrated in degrees 0, . . . , 3, the underlying complex has been studied under the
name of detour complex [213,214]. The non-abelian detour complex differs from the complex
underlying L by terms covariantising the µ1. This relation was explained in [201], where also
the homotopy algebra structures underlying the complex (5.29a) were studied.
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Homotopy Maurer–Cartan action. Let us now plug LYM2 into the homotopy MC ac-
tion (3.21). With a = A we have

1
2〈a, µ1(a)〉LYM2

= 1
2

∫
M
〈dA, ?dA〉g ,

1
3!〈A, µ2(a, a)〉LYM2

= 1
2

∫
M
〈dA, ?[A,A]〉g

= 1
4

∫
M

{
〈[A,A], ?dA〉g + 〈dA, ?[A,A]〉g

}
,

1
4!〈a, µ3(a, a, a)〉LYM2

= 1
8

∫
M
〈[A,A], ?[A,A]〉g .

(5.30)

Consequently, the homotopy Maurer–Cartan action becomes the Yang–Mills action,

SMC =
3∑
i=1

1
(i+ 1)!〈a, µi(a, . . . , a)〉LYM2

= 1
2

∫
M
〈F, ?F 〉g . (5.31)

In addition, the Yang–Mills equation translates into the flatness condition

?∇ ? F = d ? F + [A, ?F ] = 0 →
3∑
i=1

1
i!µi(a, . . . , a) = 0 . (5.32)

We can also reproduce the BV action (5.24) from the BV action (4.61), see also (4.67a),
using a = c0 + a+ a+ + c+

0 = c+ A+ A+ + c+. Indeed, we find

SBV =
3∑
i=1

1
(i+ 1)!〈a, µi(a, . . . , a)〉LYM2

− 〈c0, µ1(a+)〉LYM2
+ 〈a, µ2(a+, c0)〉LYM2

= SYM2BV .

(5.33)

In summary, we have obtained a reformulation of Yang–Mills theory as a homotopy MC
theory, which is closely related to Chern–Simons theory.

Minimal model. Above we observed that the structures of classical Yang–Mills theory are
fully captured by the L∞-algebra LYM2 . As explained earlier, the appropriate isomorphisms,
namely the quasi-isomorphisms, are supposed to lead to theories which are physically equivalent
at the classical level. A particularly interesting quasi-isomorphic L∞-algebra is certainly a
minimal model of LYM2 in which all possible equivalences have been divided out.

Recall that the minimal model can be constructed recursively by using the homological
perturbation lemma [215–217]. In particular, to compute the minimal model L′YM2 of LYM2

one needs to find a contracting homotopy

LYM2h
77 p

// // L′YM2 := H•d(LYM2)_?e
oo . (5.34)
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Explicitly, we shall make use of the Hodge decomposition

Ωk(M, g) ∼= Ωk
h(M, g)⊕ dΩk−1(M, g)⊕ d†Ωk+1(M, g) , (5.35a)

together with the projectors

Ph : Ωk(M, g) → Ωk
h(M, g) , Pe : Ωk(M, g) → dΩk−1(M, g) ,

Pc : Ωk(M, g) → d†Ωk+1(M, g) ,
(5.35b)

which extract the harmonic, exact, and coexact parts, respectively. The cohomology complex

L′YM2 := H•µ1(LYM2) (5.36)

of the second-order Yang–Mills complex (5.29a) is then given by

Ω0
h(M, g)︸ ︷︷ ︸

=: L′0

µ′1 := 0−−−−−→ Ω1
h(M, g)︸ ︷︷ ︸

=: L′1

µ′1 := 0−−−−−→ Ωd−1
h (M, g)︸ ︷︷ ︸

=: L′2

µ′1 := 0−−−−−→ Ωd
h(M, g)︸ ︷︷ ︸

=: L′3

, (5.37)

as we shall now argue. First, L′0 and L′3 are obvious; note also that Ω0
h(M, g) ∼= g.1 On

Ωd(M, g), we have ker
(

d ? d
) ∼= ker(d†d) ∼= PcΩd(M, g) and so, H1

µ1(LYM2) ∼= H1
dR(M, g) ∼=

Ω1
h(M, g) using the Hodge theorem. Moreover,

ker(d) ∼= Ωd−1
h (M, g)⊕ dΩd−2(M, g)

∼= Ωd−1
h (M, g)⊕ dd†Ωd−1(M, g)

∼= Ω1
h(M, g)⊕ im(− d ? d)

(5.38)

using the Hodge decomposition and Hodge duality, and therefore H2
µ1(LYM2) ∼= Ω1

h(M, g).
As discussed in Section 2.5., the complex L′YM2 admits an L∞-structure. To construct

the higher products µ′i for i > 1 on L′YM2 , we first note that the second-order Yang–Mills
complex (5.29a) is split in the sense of (2.61). To see this, set

d0 := d , d1 := d ? d , and d2 := d . (5.39)

Next, we need to find a contracting homotopy hk : Lk → Lk−1, that is, dk = dk ◦ hk+1 ◦ dk
for k = 0, 1, 2. Using the Green operator G defined in (5.92), we can put

h1 := d†G , h2 := (−1)d+1G? , and h3 := d†G . (5.40)
1This condition holds if M is connected.
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This is seen using the identities (5.94). Furthermore, setting (d−1, h0) := (0, 0) and (d3, h4) :=
(0, 0), we have the projectors Pk defined by

1 = Pk + hk+1 ◦ dk + dk−1 ◦ hk , (5.41)

which are the compositions of the projections pk : Lk � Hk
µ1(LYM2) and the injections ek :

Hk
µ1(LYM2) ↪→ Lk. That is, the Pk form a projector Ph : Ω•(M, g) → Ω•h(M, g) onto the

harmonic forms using the Hodge decomposition. Using the contracting homotopy (5.40)
it is now easy to adapt the formulas (2.64) for the quasi-isomorphism between LYM2 and
L′YM2 = H•µ1(LYM2). For the sake of clarity, we shall again only display the formulas in
homogeneous degree 1. We obtain

φ1(a′) = e(a′) ,

φ2(a′, a′) = −Gd†[e(a′), e(a′)] ,
...

(5.42)

Hence, the higher products on L′YM2 = H•µ1(LYM2) defined in (2.65) are then given for degree 1
elements by

µ′1(a′) = 0 ,

µ′2(a′, a′) = 0 ,

µ′3(a′, a′, a′) = 3p
([
e(a′), ?Ph[e(a′), e(a′)]

])
,

...

(5.43)

where we have used the projectors (5.35b).
Altogether, we note that the simplification of the configuration space in the quasi-isomorphism

induced a much more complicated structure in the interaction terms. See [206,146] for details.

5.2.2. Yang–Mills theory: first-order formulation

It is well-known [218] that Yang–Mills theory in four dimensions admits an alternative formu-
lation which only makes use of first-order rather than second-order differential operators and
has only cubic interactions. Again, it can be formulated in L∞-language [204, 42].

Hence, let us consider d = 4. The metric on M induces the decomposition of differential
2-forms

Ω2(M, g) ∼= Ω2
+(M, g)⊕ Ω2

−(M, g) (5.44)
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into self-dual and anti-self-dual parts. Letting P± := 1
2(1± ?) be the corresponding projectors

where ? is, as before, the Hodge operator associated with the given metric, we may write
Ω2
±(M, g) = P±Ω2(M, g).

BV action and BV operator. The field content of Yang–Mills theory in first-order formu-
lation consists of a gauge potential A ∈ Ω1(M, g)[0], with usual curvature F = dA+ 1

2 [A,A],
together with an additional Lie-algebra valued, self-dual two-form B+ ∈ Ω2

+(M, g)[0], subject
to the gauge transformations

δcA := ∇c , δcB+ := −[c, B+] , and δcF = −[c, F ] (5.45)

for c ∈ Ω0(M, g). The action reads as

SYM1 :=
∫
M

{
〈F,B+〉g + ε

2〈B+, B+〉g
}
, (5.46)

where the parameter ε is a positive real number. Note that the Yang–Mills equation ∇?F = 0
is equivalent to ∇F± = 0 due to the Bianchi identity ∇F = 0. Hence, the equations of
motion following from (5.46), B+ = −1

ε
F+ and ∇B+ = 0, imply the Yang–Mills equations so

that (5.46) is classically equivalent to Yang–Mills theory.

The action (5.46) is extended to a BV action by adding ghosts c ∈ Ω0(M, g)[1] as well
as the antifields A+ ∈ Ω3(M, g)[−1], B+

+ ∈ Ω2
+(M, g)[−1], and c+ ∈ Ω4(M, g)[−2]. The

canonical symplectic form on the space of BV fields FBV is

ωYM1BV :=
∫
M

{
〈δA, δA+〉g + 〈δB+, δB

+
+〉g − 〈δc, δc+〉g

}
(5.47)

and the BV action reads as

SYM1BV :=
∫
M

{
〈F,B+〉g + ε

2〈B+, B+〉g−

− 〈A+,∇c〉g − 〈B+
+ , [B+, c]〉g + 1

2〈c
+, [c, c]〉g

}
.

(5.48)

Hence, we may define

QYM1BV := {SYM1BV,−}YM1BV with Q2
YM1BV = 0 , (5.49)
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where {−,−}YM1BV is the Poisson bracket induced by (5.47). We then obtain

QYM1BVc = −1
2 [c, c] ,

QYM1BV(B+ + A) = −[c, B+] +∇c = dc+ [B+ + A, c] ,

QYM1BV(B+
+ + A+) = −(F+ + εB+ + [c, B+

+ ])− (∇B+ + [c, A+]) ,

= −εB+ − P+dA− dB+−

− 1
2P+[A,A]− [A,B+]− [c, B+

+ + A+] ,

QYM1BVc
+ = ∇A+ + [B+, B

+
+ ]− [c, c+]

= dA+ + [A,A+] + [B+, B
+
+ ]− [c, c+] .

(5.50)

L∞-algebra structure. Note that (5.46) is only cubic in the interactions and hence the
corresponding equations of motion are at most quadratic. The L∞-algebra LYM1 has now the
underlying graded vector space [219]

Ω0(M, g)︸ ︷︷ ︸
=: L0

µ1 := d−−−−−→ Ω2
+(M, g)⊕ Ω1(M, g)︸ ︷︷ ︸

=: L1

µ1 := (ε+d)+P+d−−−−−−−−−−−→

Ω2
+(M, g)⊕ Ω3(M, g)︸ ︷︷ ︸

=: L2

µ1 := 0+d−−−−−−→ Ω4(M, g)︸ ︷︷ ︸
=: L3

,
(5.51a)

that we call the first-order Yang–Mills complex, together with the non vanishing higher products

µ1(c1) := dc1 , µ1(B+1 + A1) := (εB+1 + P+dA1) + dB+1 , µ1(A+
1 ) := dA+

1 ,

µ2(c1, c2) := [c1, c2] , µ2(c1, B+1 + A1) := [c1, B+1] + [c, A1] ,

µ2(c1, B
+
+1 + A+

1 ) := [c1, B
+
+1] + [c, A+

1 ] , µ2(c1, c
+
2 ) := [c1, c

+
2 ] ,

µ2(B+1 + A1, B+2 + A2) := P+[A1, A2] + [A1, B+2] + [A2, B+1] ,

µ2(B+1 + A1, B
+
+2 + A+

2 ) := [A1, A
+
2 ] + [B1, B

+
+2] ,

(5.51b)
which are read off the action of the homological vector field QYM1BV on FBV = LYM1 [1] as
given in (5.50). Here, ci ∈ L0, (B+i + Ai) ∈ L1, (B+

+i + A+
i ) ∈ L2, and c+

i ∈ L3 for i = 1, 2.
Moreover, an inner product on LYM1 is induced by the symplectic form (5.47) and reads as

〈α1 ⊗ t1, α2 ⊗ t2〉LYM1
:=

∫
M
α1 ∧ α2 〈t1, t2〉g . (5.52)

Homotopy Maurer–Cartan action. Again, let us briefly check that the homotopy MC
action (3.21) for the L∞-algebra LYM1 reproduces the classical action (5.46) and, after ex-
tension to shifted copies, the BV action (5.48). For degree 1 elements a ∈ L1 we have
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a = B+ + A ∈ Ω2
+(M, g)[0]⊕ Ω1(M, g)[0] and so

1
2〈a, µ1(a)〉LYM1

=
∫
M

{
〈dA,B+〉g + ε

2〈B+, B+〉g
}
,

1
3!〈a, µ2(a, a)〉LYM1

= 1
2

∫
M
〈[A,A], B+〉g .

(5.53)

Consequently, the homotopy MC action (3.21) becomes (5.46).
Furthermore, the BV action (5.48) inducing the transformations (5.50) is obtained from

the BV action (4.61), see also (4.67a), using a = c0+a+a++c+
0 = c+B++A+B+

+ +A++c+.

Minimal model. As in the second-order formalism, it is a rather straightforward exercise to
compute a minimal model of the L∞-algebra LYM1 . We start from the cohomology complex

L′YM1 := H•µ1(LYM1) (5.54)

of the first-order Yang–Mills complex (5.51a) using the Hodge decomposition and the Hodge
theorem. We obtain the complex

Ω0
h(M, g)︸ ︷︷ ︸

=: L′0

µ′1 := 0−−−−−→ Ω1
h(M, g)︸ ︷︷ ︸

=: L′1

µ′1 := 0−−−−−→ Ω3
h(M, g)︸ ︷︷ ︸

=: L′2

µ′1 := 0−−−−−→ Ω4
h(M, g)︸ ︷︷ ︸

=: L′3

, (5.55)

which is the same as the complex (5.37). Indeed,

H0
µ1(LYM1) ∼= Ω0

h(M, g) and H3
µ1(LYM1) ∼= Ω4

h(M, g) (5.56)

follow trivially. Furthermore,

ker(P+d + (ε+ d)) ∼= ker(d†d|Ω1(M,g)) (5.57a)

so that
H1
µ1(LYM1) ∼= ker(d†d|Ω1(M,g))/im(d) ∼= Ω1

h(M, g) (5.57b)

as was already shown in the previous Section. Since

1|Ω2
±(M,g) = (Ph + 2P± ◦ Pe)|Ω2

±(M,g) = (Ph + 2P± ◦ Pc)|Ω2
±(M,g) , (5.58)

where Ph, Pe, and Pc were introduced in (5.35b), we obtain

ker(d) ∼= Ω3
h(M, g)⊕ dΩ2(M, g)⊕ Ω2

+(M, g) ,

im(P+d + (ε+ d)) ∼= Ω2
+(M, g)⊕ dΩ2(M, g) .

(5.59a)
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Hence,

H2
µ1(LYM1) ∼= Ω3

h(M, g) . (5.59b)

To complete the quasi-isomorphism, let us again construct a contracting homotopy hk :
Lk → Lk−1. We set

d0 :=
0

d

 , d1 :=
ε P+d

d 0

 , and d2 :=
(
0, d

)
. (5.60)

Then, we wish to find hk such that dk = dk ◦ hk+1 ◦ dk for k = 0, 1, 2. Using the Green
operator (5.92) and (5.58), we obtain

h1 =
(
0, d†G

)
, h2 =

 1
ε
Ph 2P+d†G

2d†G 2εd†GdG?

 , and h3 =
 0

d†G

 . (5.61)

Furthermore, setting (d−1, h0) := (0, 0) and (d3, h4) := (0, 0), we have the projectors Pk
defined by

1 = Pk + hk+1 ◦ dk + dk−1 ◦ hk (5.62)

projecting Lk onto Hk
µ1(LYM1). That is, the Pk yield the projector Ph : Ω•(M, g)→ Ω•h(M, g).

Using the contracting homotopy (5.61), we now adapt the formulas (2.64) for the quasi-
isomorphism between LYM1 and L′YM1 = H•µ1(LYM1). As before, for the sake of clarity, we
shall only display the formulas in homogeneous degree 1. We obtain

φ1(a′) = e(a′) ,

φ2(a′, a′) = −
(

1
ε
Ph + 2d†G

)
P+[e(a′), e(a′)] ,

...

(5.63)

Hence, the higher products on L′YM1 = H•µ1(LYM1) defined in (2.65) are then given for degree 1
elements by

µ′1(a′) = 0 ,

µ′2(a′, a′) = 0 ,

µ′3(a′, a′, a′) = −3
ε
p
([

[e(a′), PhP+[e(a′), e(a′)]
])
,

...

(5.64)
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Integrating out fields. Before showing that both formulations of Yang–Mills theory are
L∞-quasi-isomorphic, we demonstrate, as a warm up, that both formulations are equivalent
by ‘integrating out fields’ [171, 42]. Starting from the action

SYM1 =
∫
M

{
〈F,B+〉g + ε

2〈B+, B+〉g
}

(5.65)

of Yang–Mills theory in the first-order formulation one can easily integrate out B+, as it only
appears algebraically. We obtain

SYM1, eff = − 1
2ε

∫
M
〈F+, F+〉g = − 1

4ε

∫
M
〈F, ?F 〉g − 1

4ε

∫
M
〈F, F 〉g , (5.66)

that is, we find the Yang–Mills action in the second-order formulation plus a topological term,
which is irrelevant for perturbation theory. Hence, the two formulations of Yang–Mills theory
are equivalent at the level of their equations of motion.

Next, let us recall the BV action (5.48)

SYM1BV =
∫
M

{
〈F,B+〉g + ε

2〈B+, B+〉g−

− 〈A+,∇c〉g − 〈B+
+ , [B+, c]〉g + 1

2〈c
+, [c, c]〉g

}
,

(5.67)

of Yang–Mills theory in the first-order formulation. Since the ghosts and all the anti-fields
are present, integrating out B+ and B+

+ is not as straightforward as above even though they
appear only algebraically. Following [42] we consider the symplectomorphism given by the
Hamiltonian1

H := 1
2ε

∫
M
〈c, [B+

+ , B
+
+ ]〉g (5.68)

for the symplectic form (5.47). Concretely,

A 7→ A+ {H,A}YM1BV = A ,

B+ 7→ B+ + {H,B+}YM1BV = B+ − 1
ε
[c, B+

+ ] ,

c 7→ c+ {H, c}YM1BV = c ,

A+ 7→ A+ + {H,A+}YM1BV = A+ ,

B+
+ 7→ B+

+ + {H,B+
+}YM1BV = B+

+ ,

c+ 7→ c+ + {H, c+}YM1BV = c+ + 1
2ε [B

+
+ , B

+
+ ] ,

(5.69)

1Costello [171] proves an homotopy equivalence of classical field theories by using H := 1
ε

∫
M
〈F,B+

+〉g
instead.
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where {−,−}YM1BV is the Poisson structure induced by (5.47). Furthermore, it is easy to see
that this symplectomorphism preserves the Darboux path integral measure. Upon performing
the transformation (5.69), the BV action (5.67) becomes

S̃YM1BV := SYM1BV +QYM1BVH

=
∫
M

{
− 1

2ε〈F+, B+〉g + ε
2〈B+, B+〉g−

− 1
ε
〈F+, [c, B+

+ ]〉g − 〈A+,∇c〉g + 1
2〈c

+, [c, c]〉g
}
.

(5.70)

Now we can straightforwardly integrate out B+ and B+
+ . Indeed, we obtain

S̃YM1BV, eff =
∫
M

{
− 1

4ε〈F, ?F 〉g − 〈A
+,∇c〉g + 1

2〈c
+, [c, c]〉g

}
− 1

4ε

∫
M
〈F, F 〉g , (5.71)

that is, we find (5.24) in the second-order formulation plus a topological term. Hence, the
two formulations of Yang–Mills theory are also equivalent in the BV formalism.

L∞-quasi-isomorphism between the formulations of Yang–Mills theory. L∞-algebras
for the first-order and second-order formulation are L∞-quasi-isomorphic [204,42]. Since LYM1

and LYM2 describe equivalent classical field theories, this should not be surprising according
to our general discussion in Section 5.1.. In the following we verify the classical equivalence
by giving the explicit quasi-isomorphism in the Q-manifold language, as in [42].

Clearly, we expect a quasi-isomorphism that is based on an L∞-morphism which is an
injective L∞-morphism LYM2 ↪→LYM1 .1 In the dga-picture, this corresponds to a surjection
Φ : C∞(FYM1BV)→ C∞(FYM2BV). For this surjection to be a cochain map we have to verify
that

QYM2BV ◦ Φ = Φ ◦QYM1BV . (5.72)

Trying to construct such a Φ, one is lead to the surjection defined on the coordinate
functions as

Φ(c) := c , Φ(B+) := −1
ε
F+ , Φ(A) := A ,

Φ(B+
+) := 0 , Φ(A+) = A+ , Φ(c+) := c+ .

(5.73)

The left-hand side of (5.72) reads as

QYM2BVΦ(c+B+ + A+B+
+ + A+ + c+) =

= QYM2BV(c+ A− 1
ε
F+ + A+ + c+)

= −1
2 [c, c] +∇c− 1

ε
[F+, c] +∇?F + [c, A+]−∇A+ − [c, c+] ,

(5.74)

1Obviously, here we are considering LYM2 for d = 4.
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while the right-hand side of (5.72) evaluates to

Φ(QYM1BV(c+B+ + A+B+
+ + A+ + c+)) =

= Φ
(
− 1

2 [c, c]− [c, B+] +∇c− (F+ + εB+ + [c, B+
+ ])−

−∇B+ − [c, A+] +∇A+ + [B+, B
+
+ ]− [c, c+]

)
= −1

2 [c, c] +∇c− 1
ε
[F+, c] +∇(1 + ?)F − [c, A+] +∇A+ − [c, c+]

= −1
2 [c, c] +∇c− 1

ε
[F+, c] +∇?F − [c, A+] +∇A+ − [c, c+] .

(5.75)

Since both results agree, Φ defines indeed a morphism of L∞-algebras. Moreover, this iso-
morphism is surjective, and because we know that the cohomologies of LYM1 and LYM2 agree,
the L∞-morphism induces an isomorphism on cohomology. One trivially notes that the sym-
plectic from on LYM2 is the pull-back of that on LYM1 along Φ. Altogether, Φ defines a cyclic
quasi-isomorphism, as expected. Hence, the L∞-algebra (LYM1 , µi) provides a strictification
of the four-dimensional Yang–Mills L∞-algebra (LYM2 , µi).

This short computation shows the power of going back and forth between the bracket for-
mulation of L∞-algebras and the dga-picture. The direct construction of a quasi-isomorphism
in the bracket formulation would have been somewhat lengthier, as was showing the equival-
ence of the BV actions by integrating out fields in the previous paragraph.

5.3. Chern–Simons theory and its higher analogues

Homotopy Maurer–Cartan theory is clearly a vast generalisation of Chern–Simons theory for
Lie algebras and one may derive higher Chern–Simons theories directly by constructing suitable
L∞-algebras, cf. [110]. Here, motivated by their prominent role in both quantum field theory
and string theory, we further specialise our discussion in 3.2.1. to the case of (higher) Chern–
Simons theory.

The setup is the following. Let M be a d-dimensional smooth compact oriented manifold
with d ≥ 3 and L := ⊕0

k=−d+3 Lk be a cyclic L∞-algebra to which we shall refer as the
gauge L∞-algebra in the following. The tensor product L∞-algebra Ω•(M, L) as defined
in (3.29) then has a cyclic structure of degree −d− (−d + 3) = −3 and we can write down
the corresponding homotopy MC action (3.21). This action defines higher Chern–Simons
theory with trivial underlying principal ∞-bundles. For instance, in the case when d = 3, the
gauge L∞-algebra L is an ordinary Lie algebra and we recover ordinary Chern–Simons theory,
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see (3.30) and (3.36). In the case when d = 4, L is a 2-term L∞-algebra or, equivalently, a
Lie 2-algebra, see (3.32). To obtain the classical L∞-structure, we simply enlarge the space of
fields consisting of the gauge potentials by all ghosts and higher ghosts and then once more
by all corresponding antifields.

5.3.1. BV formalism and L∞-structure

Let us now review the BV formalism applied to (higher) Chern–Simons theory.

Case d = 3. In the case of ordinary Chern–Simons theory in three dimensions, we have
additional ghosts c ∈ Ω0(M, g)[1] and antifields A+ ∈ Ω2(M, g)[−1] and c+ ∈ Ω3(M, g)[−2].
Hence, with a = c+A+A+ + c+, the symplectic form ωBV on FBV defined in (4.58) becomes

ωBV =
∫
M

{
〈δA, δA+〉g − 〈δc, δc+〉g

}
. (5.76)

Thus, the induced the Poisson bracket (4.59) reads explicitly as

{F,G}BV =
∫
M

F
〈 ←

δ

δA+ ,

→
δ

δA

〉∗
g

G− F
〈 ←
δ

δA
,

→
δ

δA+

〉∗
g

G−

− F

〈 ←
δ

δc+ ,

→
δ

δc

〉∗
g

G+ F

〈←
δ

δc
,

→
δ

δc+

〉∗
g

G


(5.77)

for F,G ∈ C∞(FBV). The BV action (4.61) reads as

SBV =
∫
M

{
1
2〈A, dA〉g + 1

3!〈A, [A,A]〉g−

− 〈c, dA+〉g − 〈c, [A,A+]〉g + 1
2〈c

+, [c, c]〉g
}
,

(5.78)

which is the Hamiltonian for the vector field QBV, which acts on an element F ∈ C∞(FBV)
according to

QBVF := {SBV, F}BV

=
∫
M

−
〈
δSBV

δA+ ,
δF

δA

〉∗
g

−
〈
δSBV

δA
,
δF

δA+

〉∗
g

−

−
〈
δSBV

δc+ ,
δF

δc

〉∗
g

−
〈
δSBV

δc
,
δF

δc+

〉∗
g

 .
(5.79)
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For the coordinate functions, we obtain explicitly

QBVc = −1
2 [c, c] , QBVA = dc+ [A, c] ,

QBVA
+ = −dA− 1

2 [A,A]− [c, A+] , QBVc
+ = dA+ + [A,A+]− [c, c+] .

(5.80)

Note that we can also specialise the extended BV action (4.77), which is suitable for
gauge fixing. Here, the above field content is further extended by the trivial pair (c̄, b) ∈
Ω1(M, g)[−1]⊕Ω1(M, g)[0] together with a trivial pair of corresponding antifields (c̄+, b+) ∈
Ω2(M, g)[0]⊕ Ω2(M, g)[−1]. The extended BV action (4.77) then reads as

SeBV =
∫
M

{
1
2〈A, dA〉g + 1

3!〈A, [A,A]〉g−

− 〈c, dA+〉g + 〈A, [A+, c]〉g + 1
2〈c

+, [c, c]〉g − 〈b, c̄+〉g
}
,

(5.81)

resulting in

QeBVc = −1
2 [c, c] , QeBVA = dc+ [A, c] ,

QeBVA
+ = −dA− 1

2 [A,A]− [c, A+] , QeBVc
+ = dA+ + [A,A+]− [c, c+] ,

QeBVc̄ = b , QeBVc̄
+ = 0 , QeBVb

+ = −c̄+ , QeBVb = 0 .

(5.82)

Case d = 4. Next, let us discuss the simplest higher case d = 4 in detail. Here, the
gauge algebra is a Lie 2-algebra1 whose underlying graded vector space is of the form L =
L−1 ⊕ L0. The inner product identifies (L−1)∗ ∼= L0 so that L−1 and L0 must be of the same
dimension. We have the decomposition Ω•1(M, L) ∼= Ω1(M, L0)⊕Ω2(M, L−1) of homogeneous
degree 1 elements in Ω•(M, L). Consequently, we obtain a 1-form gauge potential A ∈
Ω1(M, L0)[0] and a 2-form gauge potential B ∈ Ω2(M, L−1)[0], respectively. The homotopy
MC action (3.21), with a = A+B, is then higher Chern–Simons theory on a four-dimensional
manifold M ,

SMC =
∫
M

{
〈B, dA+ 1

2µ2(A,A) + 1
2µ1(B)〉L + 1

4!〈µ3(A,A,A), A〉L
}
, (5.83)

and the curvature (3.4) reduces to f := F +H where F , H given in (3.32c). As previously
mentioned, in these and the following formulas, the higher products µi will not see the form

1Non-trivial examples of Lie 2-algebras relevant for physical applications are not easy to find. We mention
here the string Lie 2-algebras (corresponding to the string Lie 2-group String(n)) introduced in [4] and we
refer to the papers [7, 30, 160] (and references therein) together with the T-duality Lie 2-algebra [220] for
applications in string theory. The interested reader may also consult c.f. [7, 221] for further pointers to the
physics literature on Lie 2-algebras and the recent review [222] for more geometrical applications.
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degree of the various fields. Since any homogeneous degree 0 element of Ω•(M, L) decomposes
into c ∈ Ω0(M, L0)[0] and Λ ∈ Ω1(M, L−1)[0], the gauge transformations of the components
of the gauge potential and the curvature reduce to (3.33a) and (3.33b), respectively.

To write down the BV action (4.61), see also (4.67a), we recall that one needs to add
antifields leading to the decompositions

a = A+B ∈ Ω1(M, L0)[0]⊕ Ω2(M, L−1)[0] ,

a+ = A+ +B+ ∈ Ω3(M, L−1)[−1]⊕ Ω2(M, L0)[−1] ,
(5.84a)

while for the ghosts we obtain

c0 = c0
0 + c1

0 ∈ Ω0(M, L0)[1]⊕ Ω1(M, L−1)[1] ,

c+
0 = c0+

0 + c1+
0 ∈ Ω4(M, L−1)[−2]⊕ Ω3(M, L0)[−2] ,

c−1 ∈ Ω0(M, L−1)[2] , c+
−1 ∈ Ω4(M, L0)[−3] .

(5.84b)

The full BV action (4.61) is then SBV = SMC + Sgh with SMC given by (5.83) and

Sgh :=
∫
M

{
〈dA+, c0

0〉L + 〈dB+, c1
0〉L + 〈c1

0, µ1(A+)〉L + 〈c−1, dc1+
0 + µ1(c0+

0 )〉L−

− 〈µ2(c1+
0 , c−1) + µ2(B+, c1

0) + µ2(A+, c0
0), A〉L + 〈B, µ2(B+, c0

0)〉L−

− 1
2〈µ2(B+, c−1), B+〉L + 1

2〈c
0+
0 , µ2(c0

0, c
0
0)〉L − 〈µ2(c0

0, c
1
0), c1+

0 〉L−

− 〈µ2(c0
0, c−1), c+

−1〉L + 1
2〈µ3(A,B+, c0

0), A〉L − 1
2〈µ3(A, c1+

0 , c0
0), A〉L+

+ 1
2〈µ3(c0

0, c
0
0, c

1+
0 ), A〉L + 1

2·2〈µ3(B+, c0
0, c

0
0), B+〉L+

+ 1
3!〈µ3(c0

0, c
0
0, c

+
−1), c0

0〉L
}
.

(5.85)

It induces a homological vector field QBV on FBV acting on F ∈ C∞(FBV) as

QBVF :=
∫
M

{
−
〈
δSBV

δA+ ,
δF

δA

〉∗
L
−
〈
δSBV

δA
,
δF

δA+

〉∗
L
−
〈
δSBV

δB+ ,
δF

δB

〉∗
L
−

−
〈
δSBV

δB
,
δF

δB+

〉∗
L
−
〈
δSBV

δc0+
0
,
δF

δc0
0

〉∗
L
−
〈
δSBV

δc0
0
,
δF

δc0+
0

〉∗
L
−

−
〈
δSBV

δc1+
0
,
δF

δc1
0

〉∗
L
−
〈
δSBV

δc1
0
,
δF

δc1+
0

〉∗
L

+
〈
δSBV

δc+
−1
,
δF

δc−1

〉∗
L

+

+
〈
δSBV

δc−1
,
δF

δc+
−1

〉∗
L

}
.

(5.86)
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Explicitly, we have

QBVA = dc0
0 + µ2(A, c0

0)− µ1(c1
0) ,

QBVB = −µ2(c0
0, B) + dc1

0 + µ2(A, c1
0) + 1

2µ3(c0
0, A,A)−

− µ2(B+, c−1) + 1
2µ3(B+, c0

0, c
0
0) ,

QBVA
+ = −dB − µ2(A,B) + 1

3!µ3(A,A,A)− µ2(A+, c0
0)− µ2(B+, c1

0) +

+ µ2(c−1, c
1+
0 ) + µ3(A,B+, c0

0) + 1
2µ3(c0

0, c
0
0, c

1+
0 ) ,

QBVB
+ = −dA− 1

2µ2(A,A)− µ1(B)− µ2(B+, c0
0) ,

QBVc
0+
0 = −dA+ + µ2(A,A+) + µ2(B,B+)− µ2(c0

0, c
0+
0 ) + µ2(c1

0, c
1+
0 )

+ µ2(c−1, c
+
−1) + 1

2µ3(A,A,B+) + 1
2µ3(B+, B+, c0

0)

− µ3(A, c0
0, c

1+
0 ) + 1

2µ3(c0
0, c

0
0, c

+
−1) ,

QBV c1
0 = −dc−1 − µ2(A, c−1)− µ2(c0

0, c
1
0) + 1

2µ3(A, c0
0, c

0
0) ,

QBVc
1+
0 = −dB+ − µ1(A+) + µ2(A,B+)− µ2(c0

0, c
1+
0 ) ,

QBVc−1 = −µ2(c0
0, c−1) + 1

3!µ3(c0
0, c

0
0, c

0
0) ,

QBVc
+
−1 = −dc1+

0 − µ1(c0+
0 ) + µ2(A, c1+

0 )− 1
2µ2(B+, B+)− µ2(c+

−1, c
0
0) ,

(5.87)

cf. (4.68).

The extension (4.77) of SBV by trivial pairs requires the introduction of the additional
quadruples

c̄0,−1 = c̄0
0,−1 + c̄1

0,−1 ∈
(
Ω0(M, L0)⊕ Ω1(M, L−1)

)
[−1] ,

b0,−1 = b0
0,−1 + b1

0,−1 ∈
(
Ω0(M, L0)⊕ Ω1(M, L−1)

)
[0] ,

c̄+
0,−1 = c̄3+

0,−1 + c̄2+
0,−1 ∈

(
Ω3(M, L0)⊕ Ω2(M, L−1)

)
[0] ,

b+
0,−1 = b3+

0,−1 + b2+
0,−1 ∈

(
Ω3(M, L0)⊕ Ω2(M, L−1)

)
[−1] ,

(5.88a)

and
c̄−1,−2 ∈ Ω0(M, L−1)[−2] , b−1,−2 ∈ Ω0(M, L−1)[−1] ,

c̄+
−1,−2 ∈ Ω3(M, L−1)[1] , b+

−1,−2 ∈ Ω3(M, L−1)[0] ,

c̄−1,0 ∈ Ω0(M, L−1)[0] , b−1,0 ∈ Ω0(M, L−1)[1] ,

c̄+
−1,0 ∈ Ω3(M, L−1)[−1] , b+

−1,0 ∈ Ω3(M, L−1)[−2] ,

(5.88b)

where all Ωi(M, Lj) are regarded as ungraded vector spaces with elements of degree 0. The
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additional contribution to the extended BV action (4.77) is

Stp :=
∫
M

{
− 〈b0

0,−1, c̄
3+
0,−1〉L − 〈b1

0,−1, c̄
2+
0,−1〉L + 〈b−1,−2, c̄

+
−1,−2〉L + 〈b−1,0, c̄

+
−1,0〉L

}
.

(5.89)

Minimal model and L∞-quasi-isomorphism. We now construct the minimal model of
the L∞-algebra Ω•(M, L) underlying higher Chern–Simons theory following our discussion in
Section 2.5..

We start by noting that the cochain complex underlying the L∞-algebra (3.29) is the tensor
product of two cochain complexes: the de Rham complex and the complex arising from the
gauge L∞-algebra L. Since the cohomology H•µ1(L) of L is evidently free, Künneth’s theorem,
see e.g. [223], yields the isomorphisms

H•µ̂1(Ω•(M, L)) :=
⊕
k∈Z

Hk
µ̂1(Ω•(M, L)) ,

Hk
µ̂1(Ω•(M, L)) ∼=

⊕
i+j=k
0≤i≤d

−n+1≤j≤0

H i
dR(M)⊗Hj

µ1(L) , (5.90)

where H i
dR(M) denotes the i-th de Rham cohomology group.

To construct the L∞-structure on H•µ̂1(Ω•(M, L), we note that another consequence of
the cochain complex underlying the L∞-algebra (3.29) being the tensor product of cochain
complexes of vector spaces is that it splits in the sense of (2.61); see also Appendix B. Hence,
we have

hµ̂1
  Ω•(M, L)

pµ̂1 // // H•µ̂1(Ω•(M, L))_?eµ̂1
oo , (5.91)

where pµ̂1 ◦ eµ̂1 = id and hµ̂1 : Ω•(M, L) → Ω•(M, L) with µ̂1 = µ̂1 ◦ hµ̂1 ◦ µ̂1 a contracting
homotopy of Pµ̂1 := eµ̂1 ◦ pµ̂1 . To construct hµ̂1 explicitly, we assume that we have already
found1 a contracting homotopy hµ1 : L → L of Pµ1 := eµ1 ◦ pµ1 and construct a contracting
homotopy hd : Ω•(M) → Ω•(M) of Pd := ed ◦ pd. In order to write down the latter, we fix
a Riemannian metric on M and let d† be the adjoint of d with respect to the standard inner
product 〈α1, α2〉 =

∫
M α1 ∧ ?α2 for α1,2 ∈ Ωk(M) with ? the Hodge operator for the chosen

metric. Using the Green operator

G|im(d)⊕im(d†) := ∆−1 and G|ker(∆) := 0 with ∆ := dd† + d†d , (5.92)

1See Appendix B for an explicit example.
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we define

hd := d†G . (5.93)

Together with the identities

Gd = dG , Gd† = d†G , and ?G = G? , (5.94)

it is then easily seen that d = d ◦ hd ◦ d. We thus obtain

1 = Pd + hd ◦ d + d ◦ hd = Pd + ∆G =⇒ Pd = 1−∆G (5.95)

which is the projector onto the harmonic forms Ω•h(M) under the Hodge decomposition

Ωk(M) ∼= Ωk
h(M)⊕ dΩk−1(M)⊕ d†Ωk+1(M) , (5.96)

cf. Appendix B. Postcomposing the projector with the Hodge isomorphism Ω•h(M) ∼= H•dR(M),
we obtain a projector on de Rham cohomology. We now combine the homotopies hd and hµ1

as

hµ̂1 := 1
2(hd ⊗ 1 + 1⊗ hµ1 + Pd ⊗ hµ1 + hd ⊗ Pµ1) . (5.97)

Using µ̂1 = d⊗ 1 + 1⊗ µ1, it now follows that µ̂1 = µ̂1 ◦ hµ̂1 ◦ µ̂1, as desired.
Using the contracting homotopy (5.97), it is now easy to adapt the formulas (2.64) for

the quasi-isomorphism between Ω•(M, L) and H•µ̂1(Ω•(M, L)). For the sake of clarity, we shall
only display the formulas in homogeneous degree 1. We obtain

φ1(a′) = eµ̂1(a′) ,

φ2(a′, a′) = −hµ̂1

(
µ̂2
(
eµ̂1(a′), eµ̂1(a′)

))
,

φ3(a′, a′, a′) = −3hµ̂1

(
µ̂2
(
φ2(a′, a′), eµ̂1(a′)

))
− hµ̂1

(
µ̂3
(
eµ̂1(a′), eµ̂1(a′), eµ̂1(a′)

))
,

φ′4(a′, a′, a′, a′) = −3hµ̂1

(
µ̂2
(
φ2(a′, a′), φ2(a′, a′)

))
− 4hµ̂1

(
µ̂2
(
eµ̂1(a′), φ3(a′, a′, a′)

))
−

− 6hµ̂1

(
µ̂3
(
eµ̂1(a′), eµ̂1(a′), φ2 (a′, a′)

))
−

− hµ̂1

(
µ̂4
(
eµ̂1(a′), eµ̂1(a′), eµ̂1(a′), eµ̂1(a′)

))
,

...
(5.98)
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Hence, the higher products µ̂′i on H•µ̂1(Ω•(M, L)) defined in (2.65) are then given for degree 1
elements by

µ̂′1(a′) = 0 ,

µ̂′2(a′, a′) = pµ̂1

(
µ̂2
(
eµ̂1(a′), eµ̂1(a′)

))
,

µ̂′3(a′, a′, a′) = 3pµ̂1

(
µ̂2
(
φ2(a′, a′), eµ̂1(a′)

))
+ pµ̂1

(
µ̂3
(
eµ̂1(a′), eµ̂1(a′), eµ̂1(a′)

))
,

µ̂′4(a′, a′, a′, a′) = 3pµ̂1

(
µ̂2
(
φ2(a′, a′), φ2(a′, a′)

))
+ 4pµ̂1

(
µ̂2
(
eµ̂1(a′), φ3(a′, a′, a′)

))
+

+ 6pµ̂1

(
µ̂3
(
eµ̂1(a′), eµ̂1(a′), φ2 (a′, a′)

))
+

+ pµ̂1

(
µ̂4
(
eµ̂1(a′), eµ̂1(a′), eµ̂1(a′), eµ̂1(a′)

))
,

...
(5.99)

We conclude that the resulting classical field theory equivalent to higher Chern–Simons theory
has a much simpler or reduced space of fields, however this is compensated by the interactions
becoming much more involved.

Remark on fake curvatures. To conclude the Section, we briefly consider fake curvatures
in the case of higher Chern–Simons theories, recalling our discussion on the general role of
fake curvatures in Section 3.1..

For general d ≥ 3, the MC potential a ∈ Ω•1(M, L) decomposes as a = A1+A2+· · ·+Ad−2

with Ak ∈ Ωk(M, L−k+1) while the curvature f has the decomposition f = F2+F3+· · ·+Fd−1

with Fk ∈ Ωk(M, L−k+2). The curvatures Fk for k = 2, . . . , d − 2 are known as the k-form
fake curvatures.

Analogously, the gauge parameters of level k gauge transformations, c−k, decompose into
forms of varying degrees and c−k ∈ Ω0(M, L−k)⊕ · · · ⊕ Ωd−k−3(M, L−d+2). We see that the
formula (3.11) for the gauge transformation of the curvature form Fd−1 contains a covariant
term of the form µ2(Fd−1, α), where α ∈ Ω0(M, L0) is a component of c0 and all other terms
are proportional to lower curvatures, Fj with j < d− 1.

We also note that the successive action of two gauge transformations (3.16) does not
contain the highest form component of the curvature, Fd−1: we have k ≤ −1, and matching
the L∞-degrees makes an appearance of Fd−1 impossible.

Altogether, requiring F2 = · · · = Fd−2 = 0 renders the gauge transformations of the
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highest curvature Fd−1 covariant and allows to close general gauge transformations. The first
point is particularly important for writing down interesting equations of motions, coupling the
higher gauge potentials to matter fields.

5.3.2. Alexandrov–Kontsevich–Schwarz–Zaboronsky construction

As we have seen, in the classical approach to BV, one starts from a classical field theory and
constructs a corresponding BV action. There are, however, more modern approaches to directly
construct (possibly infinite dimensional) classical field theories directly in their BV form. The
most important of these is the Alexandrov–Kontsevich–Schwarz–Zaboronsky (AKSZ) formal-
ism [114]. This method is essentially a way to induce a differential graded symplectic structure
on the space of maps between two graded manifolds, endowed with opportune geometrical
structures. We briefly summarise the AKSZ construction in the following and derive Chern–
Simons theory as an example. For more details and examples, see also [224–227] and in
particular [228] for a modern perspective.1 Examples of AKSZ descriptions of non-topological
gauge field theories are found, e.g., in [231, 232].

Alexandrov–Kontsevich–Schwarz–Zaboronsky data. We start from an NQ-
manifold (Σ, QΣ), which is endowed with a non-degenerate QΣ-invariant measure µ of de-
gree −n − 1, for some positive integer n. The canonical example here is Σ = T [1]Σ0 for
a compact oriented (n + 1)-dimensional manifold Σ0 without boundary and with QΣ the de
Rham differential. The manifold Σ is called the source and Σ0 often corresponds to the world
volume of the described objects (point particles, strings, etc.).

We also define a target (thought of as an extended form of the target space), which is a
symplectic NQ-manifold (M,QM , ωM) of degree n. As explained in 2.3.1., QM is Hamiltonian
with Hamiltonian function Θ satisfying {Θ,Θ} = 0, where {−,−} is the Poisson bracket
induced by ωM .

The space of fields FBV is now the space of maps from Σ to M . This is, in fact, a
very general construction. For example, the mechanics of point particles can be described by
maps from their worldline R into space-time. It also leads to vast generalisations of gauge
theories after appropriate refinement, see [7]. In particular, in the case Σ = T [1]Σ0 and

1For the AKSZ construction of higher Chern–Simons theories see also [229] and [230] for an earlier
account.
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M = g[1] with QM the Chevalley–Eilenberg differential of the Lie algebra g, we obtain the
kinematical data of Chern–Simons theory as morphisms of degree 0. Let ξα be again the
coordinate functions on g[1] and let dxµ be the generators of Ω•(Σ0) over C∞(Σ0). Then, a
dga-morphism a : C∞(g[1])→ Ω•(Σ0) maps

a : ξα 7→ dxµAαµ(x) =: Aα (5.100)

such that a ◦QM = QΣ ◦ a or, equivalently,

(a ◦QM)ξα = a(−1
2fβγ

αξβξγ) = −1
2fβγ

αAβ ∧ Aγ = dAα = (QΣ ◦ a)ξα . (5.101)

We thus obtain a gauge potential A ∈ Ω1(Σ0, g) whose curvature F := dA+ 1
2 [A,A] vanishes.

Batalin–Vilkovisky structure. Note that FBV is naturally graded, and the degree will be
the ghost number of the fields. In addition, the structures on Σ and M endow FBV with a
homological vector field and a symplectic form. To obtain the symplectic form, note that there
is the evaluation map ev : FBV × Σ→M , acting as ev(φ, x) := φ(x).

We can pull back any differential form α ∈ Ω•(M) along ev to FBV×Σ and subsequently
integrate over Σ, leading to the map

p(α) :=
∫

Σ
µ ev∗α . (5.102)

We can use this map to define the symplectic form

ωBV = p(ωM) (5.103)

inducing the BV bracket. From the degrees of ωM and µ it is clear that ωBV is of degree −1.
Also, ωBV is non-degenerate if µ is non-degenerate.

To construct the homological vector field QBV, note that diffeomorphisms on both Σ and
M induce an action on FBV, by pre-composition or post-composition, respectively. Therefore,
the two homological vector fields QΣ and QM induce vector fields Q̂Σ and Q̂M on FBV and
we can choose any linear combination of these to form QBV. The compatibility between QBV

and ωBV is readily checked, cf. [224,225]. In particular, one can show that the map p defined
in (5.102) is a symplectomorphism. Thus,

{Θ,Θ} = 0 ⇐⇒ {p(Θ), p(Θ)}BV = 0 , (5.104)
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and therefore p(Θ) is the Hamiltonian of a homological vector field Q̂M . The contribution of
Q̂M to the Hamiltonian of QBV is thus a multiple of p(Θ).

On the other hand, µ is invariant under QΣ and so is ev under the simultaneous action on
FBV and Σ, which leads to

LQ̂Σ
p = Q̂Σ

¬ dp+ d
(
Q̂Σ
¬ p

)
= 0 . (5.105)

If the symplectic form ωM is exact, ωM = dϑ, then the Hamiltonian of Q̂Σ is therefore
Q̂Σ
¬ p(ϑ). Moreover, if ϑ = ϑα(ξ)dξα in some coordinates ξα on M , then

Q̂Σ
¬ p(ϑ) =

∫
Σ
ϑα(φ)δφα , (5.106)

where φα is the coordinate corresponding to ξα on FBV under the map φ : Σ→M .
Altogether, the Hamiltonian of QBV, which is a linear combination of Q̂Σ

¬p(ϑ) and p(Θ),
is the classical BV action. For a more precise argument regarding to which linear combinations
are preferable, see [226,228]. The gauge invariant classical action, may be eventually recovered
from a solution of the classical master equation setting to zero all fields with negative degree.

Example: Chern–Simons theory. As a simple example, consider the case Σ = T [1]Σ0

with QΣ = d for a compact oriented three-dimensional manifold Σ0. As target, choose
M = g[1] where g is a metric Lie algebra with coordinates ξα and metric 〈τα, τβ〉g = ωαβ

inducing a symplectic form ωg = 1
2ωαβdξα ∧ dξβ of degree 2. The Hamiltonian Θ of Qg[1] is

Θ = 1
3!fαβγξ

αξβξγ with fαβγ := fαβ
δωδγ and corresponds to the 3-cocycle 〈−, [−,−]〉g.

The maps from Σ to g[1] form the space of g-valued forms on Σ0 and we have FBV =
Ω•(Σ0, g). The symplectic form reads as

ωBV :=
∫

Σ0

1
2ωαβδφ

α ∧ δφβ =
∫

Σ0
〈δφ, δφ〉g (5.107)

for φ ∈ Ω•(Σ0, g). Note that ωg is exact (see Section 2.3.) with symplectic potential ϑ =
1
2ξ

αωαβdξβ, and the two contributions to SBV from degree 0 maps are

Q̂Σ
¬ p(ϑ) = 1

2

∫
Σ0
〈φ, dφ〉g and p(Θ) = 1

3!

∫
Σ0
〈φ, [φ, φ]〉g , (5.108)

where φ ∈ Ω•(Σ0, g). To see this, note that the pull-back along the evaluation map yields

ev∗ξα = (x, φα(x)) (5.109)
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and

Q̂Σ
¬ p(ϑ) = Q̂Σ

¬
∫

Σ0

1
2ωαβφ

αDφβ = 1
2

∫
Σ0

φαωαβdφβ , (5.110)

where D is the de Rham differential on FBV × Σ.

If we decompose φ into forms of homogeneous degree, φ = c+A+A+ + c+, and linearly
combine both of the above contributions, we obtain the classical BV action of Chern–Simons
theory,

SBV =
∫

Σ0

{
1
2〈A, dA〉g + 1

3!〈A, [A,A]〉g−

− 〈c, dA+〉g + 〈A, [A+, c]〉g + 1
2〈c

+, [c, c]〉g
}
.

(5.111)

5.4. Supersymmetric Extensions

In the following we shall comment on the supersymmetric extensions of the field theories
examined above, starting from higher Chern–Simons theory. In addition, due to its relevance
to the description of M-theory, which is ultimately the source of much motivation of higher
structures, we shall also quickly review the Bagger–Lambert–Gustavsson (BLG) model [35–37].

Higher CS theory: topological setting. Let us briefly consider the supersymmetric ex-
tension of the above classical higher Chern–Simons theory along the lines discussed in Sec-
tion 3.1.3.. That is, we introduce the additional fields

φ1 = Y + φ ∈ Ω•1(M, L) ∼= Ω1(M, L0)⊕ Ω2(M, L−1) ,

φ2 =
[
D − 1

2µ1(φ)
]
− Z ∈ Ω•2(M, L) ∼= Ω2(M, L0)⊕ Ω3(M, L−1) ,

ψ1 = λ1 + χ2 ∈ ΠΩ•1(M, L) ∼= ΠΩ1(M, L0)⊕ ΠΩ2(M, L−1) ,

ψ2 = λ2 + χ3 ∈ ΠΩ•2(M, L) ∼= ΠΩ2(M, L0)⊕ ΠΩ3(M, L−1) ,

(5.112)

where, as before, Π is the Graßmann-parity changing functor. The action (5.83) is then
extended to the appropriate specialisation of the action (3.27),

SSTMC :=
∫
M

{
〈B,F − 1

2µ1(B)〉L + 1
4!〈µ3(A,A,A), A〉L +

+ 〈χ2, λ2〉L + 〈χ3, λ1〉L + 〈φ,D − 1
2µ1(φ)〉L − 〈Z, Y 〉L

}
.

(5.113)
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The fermionic transformations (3.27) read as

Qλ1 = 0 , Qλ2 = F +D ,

QA = λ1 , QY = λ1 ,

QD = −∇λ1 + µ1(χ2)

(5.114a)

and

Qχ2 = 0 ,

Qχ3 = H −∇φ− 1
2µ2(Y,B − φ) + 1

4µ3(Y,A,A)− 1
3!µ3(Y, Y,A) + 1

4!µ3(Y, Y, Y ) + Z ,

QB = χ2 , Qφ = χ2 ,

QZ = −1
2µ2(λ1, B − φ) + 1

4µ3(λ1, A,A)− 1
3!µ3(λ1, Y, A) + 1

4!µ3(λ1, Y, Y ) .
(5.114b)

where the curvatures F and H were defined in (3.32c). As shown in 3.1.3., we have Q2 = 0
off-shell.

Higher CS theory: physical setting. The above supersymmetric extension is similar to a
topological twist of supersymmetric higher Chern–Simons theory for the d = 4, N = 2 tensor
multiplet coupled to the N = 2 vector multiplet. The Abelian part of the action was already
presented in [233,234] and with our framework, we extend the action to the non-Abelian case
on M = R

4, as we shall now briefly discuss.
For convenience, we switch to spinor notation and replace the coordinates xµ by the

coordinates xαα̇ with α, α̇ = 1, 2. This is possible due to the factorisation of the tangent
bundle TM ⊗C ∼= S+⊗ S− into the tensor product of the chiral and anti-chiral spin bundles
S+ and S−. We also use R-symmetry indices i, j = 1, 2. The N = 2 vector multiplet then
consists of a one-form gauge potential, two pairs of Weyl spinors and 5 real auxiliary fields,

{Aαα̇, λiα, λ̂iα̇, Dij = Dji, Y, Ŷ } , (5.115)

which all take values in L0. TheN = 2 tensor multiplet consists of a two-form gauge potential,
two pairs of Weyl spinors and 5 real auxiliary fields,

{Bαβ = Bβα, Bα̇β̇ = Bβ̇α̇, χiα, χ̂
i
α̇, φ

ij = φji, Z, Ẑ} , (5.116)

which all take values in L−1. Here, Bαβ and Bα̇β̇ encode the self-dual and antiself-dual parts
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of the two-form B. The curvatures (3.32c) become

Fαβ = Fαβ − µ1(Bαβ) , Fα̇β̇ = Fα̇β̇ − µ1(Bα̇β̇) ,

Hαβ̇ = εγ̇δ̇∇αγ̇Bβ̇δ̇ − εγδ∇γβ̇Bαδ − 1
3! [µ3(A,A,A)]αβ̇ .

(5.117)

The action functional

SSPMC :=
∫

d4x
{

i
[
〈Bαβ, Fαβ − 1

2µ1(Bαβ)〉L − 〈Bα̇β̇, Fα̇β̇ − 1
2µ1(Bα̇β̇)〉L +

+ 1
2·4!〈[µ3(A,A,A)]αβ̇, Aαβ̇〉L

]
+ 〈χiα, λiα〉L + 〈χ̂iα̇, λ̂iα̇〉L−

− 〈Z, Y 〉L − 〈Ẑ, Ŷ 〉L − 〈φij, Dij − 1
2µ1(φij)〉L

} (5.118)

is then invariant under the supersymmetry transformations

δSUSYAαβ̇ := εiαλ̂iβ̇ − ε̂iβ̇λiα ,

δSUSYλ
i
α := iεiβFαβ − 1

2εjα[Dij − µ1(φij)] + ε̂iβ̇∇αβ̇Y + εiαµ2(Y, Ŷ ) ,

δSUSYλ̂iα̇ := iε̂β̇i Fα̇β̇ − 1
2 ε̂
j
α̇[Dij − µ1(φij)]− εβi∇βα̇Ŷ + ε̂iα̇µ2(Y, Ŷ ) ,

δSUSYD
ij := ε(iα∇αβ̇λ̂

j)β̇ + ε̂(iα̇∇βα̇λ
j)β + ε(iαµ2(Y, λj)α ) + ε̂(iα̇µ2(Ŷ , λ̂j)α̇ ) ,

δSUSYY := εiαλiα , δSUSYŶ := ε̂iα̇λ̂iα̇ ,

(5.119a)

and

δSUSYBαβ := −εi(αχiβ) , δSUSYBα̇β̇ := −ε̂i(α̇χ̂iβ̇) ,

δSUSYχiα := [iHαβ̇εij −∇αβ̇φij]ε̂jβ̇ + εiαZ + εjαµ2(Y, φij) ,

δSUSYχ̂
i
α̇ := [iHβα̇ε

ij +∇βα̇φ
ij]εβj + ε̂iα̇Ẑ − ε̂jα̇µ2(Ŷ , φij) ,

δSUSYφ
ij := ε(iαχj)α − ε̂(iα̇χ̂

j)
α̇ ,

δSUSYZ := −ε̂iβ̇∇αβ̇χ
α
i + ε̂α̇i µ2(Ŷ , χ̂iα̇) , δSUSYẐ := −εβi∇βα̇χ̂

iα̇ + εiαµ2(Y, χiα) .
(5.119b)

As in ordinary Chern–Simons theory, all fields except for the gauge potentials appear merely
algebraically and are therefore auxiliary and can be integrated out.

Yang–Mills theory. We consider the example of N = 1 supersymmetric Yang–Mills theory
on a ten-dimensional compact Riemannian spin manifold M . The lower-dimensional cases
simply follow by dimensional reduction, see e.g. [235]. The spin bundle decomposes into the
bundles of chiral and anti-chiral spinors S± and we have S± ∼= S∗∓. Let σ± : TM⊗C→ �2S±
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and consider the complex

Ω0(M, g)︸ ︷︷ ︸
=: L0

µ1:=d−−−−→ Ω1(M, g)⊕ Γ(M,ΠS+ ⊗ g)︸ ︷︷ ︸
=: L1

µ1:=d?d+ /D−−−−−−−−→ Ωd−1(M, g)⊕ Γ(M,ΠS− ⊗ g)︸ ︷︷ ︸
=: L2

µ1:=d−−−−→ Ωd(M, g)︸ ︷︷ ︸
=: L3

,
(5.120)

where /D is the Dirac operator on M and for any one-form ω ∈ Ω1(M) we set /ω := σ−
¬ ω

with the non-vanishing higher products

µ1(c1) := dc1 , µ1(A1 + ψ1) := d ? dA1 + /Dψ1 , µ1(A+
1 ) := dA+

1 ,

µ2(c1, c2) := [c1, c2] , µ2(c1, A1 + ψ1) := [c1, A1 + ψ1] ,

µ2(c1, A
+
1 + ψ+

1 ) := [c1, A
+
1 + ψ+

1 ] , µ2(c1, c
+
2 ) := [c1, c

+
2 ] ,

µ2(A1 + ψ1, A
+
2 + ψ+

2 ) := [A1, A
+
2 ] + [ψ1, ψ

+
2 ] ,

µ2(A1 + ψ1, A2 + ψ2) := d ? [A1, A2] + [A1, ?dA2] + [A2, ?dA1] +

+ψ1(σ− ¬ (?1))ψ2 + [ /A1, ψ2]− [ /A2, ψ1] ,

µ3(A1, A2, A3) := [A1, ?[A2, A3]] + [A2, ?[A3, A1]] + [A3, ?[A1, A2]] .

(5.121)

Here, ci ∈ L0, {Ai + ψi} ∈ L1, {A+
i + ψ+

i } ∈ L2, and c+
i ∈ L3 for i = 1, 2, 3. Following the

same discussion as in the previous sections, one can check that the MC action (3.21) with
a = A+ ψ becomes

SMC = 1
2

∫
M

{
〈F, ?F 〉g + 〈ψ, ? /∇ψ〉g

}
, (5.122)

where /∇ is the covariant Dirac operator, involving the gauge connection one-form A. We note
that extensions of the Yang–Mills L∞-algebra LYM2 by scalars and Dirac spinor fields coupling
to the gauge field were already given in [236].

Finally, we observe that by using these results about N = 1 supersymmetric Yang–Mills
theory in ten dimensions the quasi-isomorphism discussed at the end of 5.2.2. also extends to
N = 4 supersymmetric Yang–Mills theory.

5.4.1. Bagger–Lambert–Gustavsson model

Finally, let us review the Bagger–Lambert–Gustavsson model in this setting.1 It describes the
effective dynamics of stacks of M2-branes and relies on Lie 3-algebras. A sub-L∞-algebra of
the L∞-algebra structure of this model was identified previously in [202].

1Note that other Chern–Simons matter theories lead to analogous results.



5.4. Supersymmetric Extensions 127

Review of the model. Let M = R
1,2. It is convenient to describe the gauge structure

of the BLG model using the metric 3-Lie algebra A4. This 3-Lie algebra is a vector space
A4 ∼= R

4 with basis σa and 3-algebra relation and metric structure

[σa, σb, σc] = εabc
dσd and 〈σa, σb〉A4 = δab . (5.123)

This 3-Lie algebra comes with an associated Lie algebra gA4
∼= su(2)⊕su(2) of inner derivations

acting on A4 and the metric 〈−,−〉A4 on A4 induces a metric 〈−,−〉gA4
of split signature on

gA4 .
The matter fields of the BLG model consist of eight scalars XI ∈ Ω0(M,A4)⊗R8 on M

with I, J, . . . = 1, . . . , 8 and a Graßmann-odd Majorana spinor Ψ ∈ Γ(M,ΠS ⊗ A4) on M

in R1,10, reduced to 3 dimensions, both taking values in A4. In addition, we have a gauge
potential A ∈ Ω1(M, gA4) taking values in the Lie algebra gA4 associated with A4. Let us
decompose the gamma matrices ΓM for SO(1, 10) as ΓM → (Γµ,ΓI) with µ, ν, . . . = 0, 1, 2
and we shall write ΓIJK··· for the corresponding normalised totally antisymmetric products.
The action of the BLG model reads as [35, 37]

SBLG :=
∫
M

{
1
2〈A, dA〉gA4

+ 1
3!〈A, [A,A]〉gA4

+ 1
2〈X

I ,∇?∇XI〉A4 + i
2〈Ψ̄, ? /∇Ψ〉A4 +

+ i
4〈Ψ̄, ?ΓIJ [XI , XJ ,Ψ]〉A4 − 1

2·3!〈[X
I , XJ , XK ], ?[XI , XJ , XK ]〉A4

}
(5.124)

with equations of motion

∇?∇XI + ?1
2 [XJ , XK , [XI , XJ , XK ]] = 0 ,

/∇AΨ + 1
2ΓIJ [XI , XJ ,Ψ] = 0 ,

dA+ 1
2 [A,A]︸ ︷︷ ︸

=:F

+?(XI ∧∇XI + i
2Ψ̄ ∧ ΓΨ) = 0 ,

(5.125)

where, in local coordinates xµ, we define Γ := dxµΓµ.

Batalin–Vilkovisky action. The action (5.124) is extended to the corresponding BV action

SBLGBV := SBLG + Sgh , (5.126)

containing the same ghosts and antifields as Chern–Simons theory, c ∈ Ω0(M, g)[1], A+ ∈
Ω2(M, g)[−1] and c+ ∈ Ω3(M, g)[−2], as well as the additional two antifields
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XI+ ∈ Ω3(M,A4)⊗R8[−1] and Ψ+ ∈ Γ(M,ΠS ⊗ A4)[−1]. Explicitly,

Sgh :=
∫
M

{
− 〈c, dA+〉g − 〈c, [A,A+]〉g + 1

2〈c
+, [c, c]〉g +

+ 〈XI+, c B XI〉A4 + ?〈Ψ+, c B Ψ〉A4

}
.

(5.127)

As always, the BV action SBLGBV is the Hamiltonian function for the homological vector field
with respect to the canonical symplectic form. The latter encodes the L∞-algebra structure
of the BLG model, and we directly jump to its description.

L∞-structure. The action (5.124) and the equations (5.125) can be re-written in L∞-
language. In particular, we consider the complex

Ω0(M, gA4)︸ ︷︷ ︸
=: L0

µ1:=d−−−−→ Ω1(M, gA4)⊕ Ω0(M,A4)⊗R8 ⊕ Γ(M,ΠS ⊗ A4)︸ ︷︷ ︸
=: L1

µ1:=d+d?d+ /D−−−−−−−−−→ Ω2(M, gA4)⊕ Ω3(M,A4)⊗R8 ⊕ Γ(M,ΠS ⊗ A4)︸ ︷︷ ︸
=: L2

µ1:=d−−−−→ Ω3(M, gA4)︸ ︷︷ ︸
=: L3

,

(5.128a)

which we call the Bagger–Lambert–Gustavsson complex, together with the non-vanishing
higher products

µ1(c1) = dc1 , µ1(A1 +X1 + Ψ1) = dA1 + ?d?dX1 + /DΨ1 ,

µ1(A+
1 +X+

1 + Ψ+
1 ) = dA+

1

µ2(c1, c2) = [c1, c2] , µ2(c1, c
+
2 ) = [c1, c

+
2 ] ,

µ2(c1, A1 +X1 + Ψ1) = [c1, A1] + c1 B (X1 + Ψ1) ,

µ2(c1, A
+
1 +X+

1 + Ψ+
1 ) = [c1, A

+
1 ] + c1 B (X+

1 + Ψ+
1 ) ,

µ2(A1 +X1 + Ψ1, A2 +X2 + Ψ2) =

= [A1, A2] +
{
/A1 B Ψ2 + ? d? (A1 B XI

2 ) +

+?(A1 B ?dXI
2 ) + ?(XI

1 ∧ dXI
2 + i

2Ψ̄I
1 ∧ ΓΨI

2) + (1↔ 2)
}
,

µ2(A1 +X1 + Ψ1, A
+
2 +X+

2 + Ψ+
2 ) = [A1, A

+
2 ] + d(XI

1 , X
+I
2 ) + d(Ψ1,Ψ+

2 ) ,

(5.128b)

µ3(A1 +X1 + Ψ1, . . . , A3 +X3 + Ψ3) =

= ?A1 B (?A2 B X3) + 1
2ΓIJ [XI

1 , X
J
2 ,Ψ3] + ?XI

1 ∧ A2 B XI
3 + cyclic ,

µ5(A1 +X1 + Ψ1, . . . , A5 +X5 + Ψ5) = 1
2 [XJ

1 , X
K
2 , [X3, X

J
4 , X

K
5 ]] + cyclic ,

(5.128c)
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where ci ∈ L0, Ai + Xi + Ψi ∈ L1, A+
i + X+

i + Ψ+
i ∈ L2, and c+

i ∈ L3 for i = 1, . . . , 5. In
addition, the flavour indices on the Xi and X+

i are contracted with some basis λI , e.g. Xi =
XI
i λI and d : A4 × A4 → g maps two elements in A4 to the corresponding inner derivation

d(τa, τb) := [τa, τb,−].
It is rather easy to see that the MC equation (3.5) translates into (5.125). We can endow

the above L∞-algebra with the cyclic inner product

〈`1, `2〉L :=
∫
M

{
− 〈c1, c

+
2 〉g − 〈c+

1 , c2〉g + 〈A1, A
+
2 〉g + 〈A+

1 , A2〉g +

+ 〈X1, X
+
2 〉A4 + 〈X+

1 , X2〉A4 + ?〈Ψ1,Ψ+
2 〉A4 + ?〈Ψ+

1 ,Ψ2〉A4

}
,

(5.129)
where `i = ci + Ai +Xi + Ψi + A+

i +X+
i + Ψ+

i + c+
i in the notation used above and spinor

indices are contracted with the Spin(1, 2)-invariant metric on ΠS. With this inner product, the
MC action (3.21) for the L∞-algebra (5.128) becomes the BLG action (5.124), as expected.





6
Six-dimensional self-dual fields from twistors

6.1. Motivation and outline

We are interested now in discussing an example where the language of higher gauge theory
can be fruitfully combined with that of twistor geometry. In particular, we shall consider
higher holomorphic Chern–Simons theory. Via an extension of the Čech–Dolbeault corres-
pondence [237–239], which is discussed for the Abelian case in [97], classical solutions to
the higher holomorphic Chern–Simons equations of motion correspond to topologically trivial
higher holomorphic principal bundles. Over twistor spaces, the latter can be mapped to solu-
tions of various field equations on space-time via a Penrose–Ward transform. Particularly
interesting in this context is the complex six-dimensional twistor space considered in [96–98],
that is associated with flat complexified space-time in six dimensions. We recall that the
advantage of twistor geometry is that the equations of motion and the gauge transformations
of a certain gauge theory follow directly from complex algebraic data on twistor space. Higher
holomorphic bundles over this space yield solutions to the self-duality equation H = ?H, for
a three-form curvature H = dB in six dimensions. Our motivation to better understand these
objects comes from the important role that they play in string theory and M-theory. In fact,
two-forms with self-dual field strength are part of the field content of the (2, 0)-theory [16],
a six-dimensional superconformal field theory that plays a key role in the web of string theory
dualities. In particular, Abelian self-dual three forms on six-dimensional space-time can be
represented by certain holomorphic gerbes over the aforementioned twistor space [97,98]. The
twistor description presents several advantages. First, both supersymmetric and non-Abelian
extension of the self-duality equations are found by switching to supertwistor spaces and non-
Abelian higher principal bundles, see the discussions in the papers [99–103]. Explicitly, it has

131
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been shown how twistor theory naturally identifies the moduli space of solutions to the con-
straint system of supercurvatures containing the non-Abelian tensor multiplet with the moduli
space of holomorphic higher principal G -bundles, for G a Lie quasi group, over this twistor
space. In fact, this identification is lifted to the level of an L∞-quasi-isomorphism.

The field equations for non-Abelian supersymmetric self-dual strings in four dimensions [31]
can be also easily obtained [97, 100] by performing a dimensional reduction at the level of
twistor geometry, in terms of the complex three-dimensional twistor space introduced in [97].
Moreover, in this language the problem of searching for a classical candidate (2, 0)-theory gets
essentially reduced to the search of the suitable higher gauge structure, see [160, 240].

In this Chapter, we shall review the geometry of the relevant twistor space, that we denote
by P6 and notational conventions that we will use. As usual in twistor theory, we will always
work in the complex setting, unless otherwise mentioned. In particular, since we are interested
in discussing field theories in six dimensions, we shall start by studying physics on flat six-
dimensional complexified space-time M6 := C

6. However, we recall that one can recover
results on the desired space-time signature by imposing appropriate real structures at any
stage of the construction. This particular aspect will be discussed in Section 6.3. and then
exploited in the next Chapter. See the paper [97] for more details on this point. Moreover, we
shall review how self-dual tensor field theories in six dimensions, for general gauge structure,
can be described in the twistor approach. In particular, we shall review both Penrose and
Penrose–Ward transforms for the construction of chiral zero-rest-mass spinor fields on six-
dimensional space-time M6 by using the twistor space P6.

6.2. Spinors and zero-rest-mass fields in six dimensions

First, we provide a brief review of spinors and free fields in six dimensions. See e.g. [241,97,98]
for an exhaustive and pedagogical treatment of the subject. This allows for an immediate intro-
duction of twistor theory, which is naturally defined for complexified space-time and formulated
in terms of spinor variables.

6.2.1. Spinors in six dimensions

The spin bundle of M6 is of rank eight and decomposes into the direct sum S̃ ⊕ S of two
complex rank-four bundles. The S̃ and S are simply the bundles of chiral spinors and anti-
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chiral spinors, respectively. In dimension six there exist the natural isomorphisms S ∼= S̃∗ and
S̃ ∼= S∗, between the spaces of spinors and their duals.1 Hence, we may identify the tangent
bundle TM6 with the antisymmetric tensor product S ∧ S ( ∼= S̃ ∧ S̃) of the anti-chiral spin
bundle over the spin manifold M6. Note that a factorisation of this form is equivalent to
choosing a (holomorphic) conformal structure on the spin manifold M6, since the isomorphism
TM6 ∼= S ∧ S yields canonically the complex line subbundle detS∗ := Λ4S∗ in TM6 � TM6,
see [97, Remark 3.2] for details. Therefore, we shall use (upper) lower capital Latin indices
A,B = 1, · · · , 4 to label (anti-chiral) chiral spinors. This reflects the fact that the complexified
Lorentz group in six dimensions is SO(6,C), which is locally isomorphic to SL(4,C). Here, SA

and S∗A correspond to the two independent Weyl spinors representations that transform in the
fundamental and anti-fundamental of SL(4,C), respectively. Correspondingly, points in M6

can be parametrised using spinor coordinates by xAB = −xBA. In particular, we coordinatise
M6 by xM , for M,N, · · · = 1, . . . , 6 and we use the identification xAB = σ̃ABM xM and xM =
1
4σ

M
ABx

AB, where the 4×4 antisymmetric matrices σMAB, σ̃ABM are the off-diagonal blocks in the
six-dimensional γ-matrices satisfying the corresponding Clifford algebra, see [97]. Moreover,
the flat metric in spinor coordinates becomes gABCD = 1

2εABCD, where εABCD is the Levi-
Civita symbol in six dimensions. Hence, anti-symmetric pairs of spinor indices can be raised and
lowered by2 xAB = 1

2εABCDx
CD and xAB = 1

2ε
ABCDxCD. Accordingly, we introduce partial

derivatives with respect to xAB as ∂AB = 1
4σ

M
AB∂M = 1

2εABCD∂
CD, with ∂ABx

CD = δC[Aδ
D
B].

Here and in the following, brackets denote normalised anti-symmetrisation of the enclosed
indices. Similarly, we shall use parentheses to denote normalised symmetrisation.

6.2.2. Free fields in six dimensions

Our main interest in the following will be discussing six-dimensional zero-rest-mass chiral
fields, as done in [97, 98]. We shall start by briefly recalling the spinor-helicity formalism in
six dimensions, as explained in [241]. Let us stress that, here, we are considering complex

1This was shown by Penrose and Rindler [242] and is due to an automorphism of the Clifford algebra
under charge conjugation. Recall that in our notation V ∗ denotes the dual of some given linear space V .

2Note that the four index object εABCD is the only non-trivial Spin(6,C)-invariant tensor. Hence, there
is no tensor that can raise or lower a single spinor index. Moreover, we recall that it satisfies relations

εABCDεABCD = 4! , εABCDεEBCD = 3!δAE , εABCDεEFCD = 2!δA[EδBF ] , εABCDεEFGD = 3!δA[EδBF δCG] .
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momenta, for which the associated spinors need not satisfy any reality conditions.

Spinor-helicity formalism. Let us consider a momentum six-vector p = pM . Similar to
four dimensions, the six-dimensional spinor-helicity provides the spinor representation of null
momentum vectors. In spinor notation, the null condition p2 = 0 implies det pAB = 0 =
det pAB. Hence, the most general solution can be represented either by chiral or anti-chiral
spinors1 [241]

pAB = kAakBbε
ab , pAB = k̃Aȧk̃Bḃεȧḃ . (6.1)

Here, the indices a, b, . . . , ȧ, ḃ, · · · = 1, 2 turn out to be precisely the indices for the little group
SL(2,C)× ˜SL(2,C) inside the stabilizer of the vector pAB under the Lorentz group SO(6,C).
Little group indices will be raised and lowered with the help of the the usual invariant tensors
εab = −εba and εȧḃ = −εḃȧ, with ε12 = ε1̇2̇ = 1. In fact, transformations of the form
kAa 7→M b

akAb and k̃Aȧ 7→ M̃ ȧ
ḃ
k̃Aḃ, with detM = 1 = det M̃ , will leave p invariant. It should

be noted that kAa has five independent components and that kAa and k̃Aḃ are not independent,
as kAak̃Aḃ = 0, since pAB = 1

2εABCDp
CD. Hence, (6.1) constitutes spinor representations of

the null-momentum pM that transform appropriately under the Lorentz and little groups.
Since we shall make extensive use of differential forms in spinor coordinates, it is useful

to briefly establish a dictionary between vector and spinor notation. In spinor notation, a
differential 1-form A on M6 has components AAB = −ABA, while a differential 2-form B

is given by trace-less matrix B B
A . Moreover, a differential 3-form H on space-time in spinor

coordinates is the pair of symmetric bi-spinors H = (HAB, H
AB), where HAB = HBA contains

the self-dual part of H, while HAB = HBA contains the anti-self-dual part. By imposing either
self-duality or anti-self-duality onto H in spinor notation, one of the bi-spinors is put to zero.
Moreover, H = dB takes the form

H = (HAB, H
AB) = (∂C(AB

C
B) , ∂

C(AB
B)
C ) (6.2)

and transforms as the (3,1) ⊕ (1,3) of the little group. We invite the interested reader to
consult [97] where the explicit translation between vector and spinor notation for differential

1This is due to the fact that null momenta are matrices pAB of rank two, due to the antisymmetry of the
spinor indices. Hence,

p2 = 1
8εABCDp

ABpCD = 1
8εABCDk̃

Aȧk̃Bḃk̃Cċk̃Dḋεȧḃεċḋ = 0 .
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forms can be found. We just mention here that AAB = 1
4σ

M
ABAM , while the connection to the

ordinary space-time expression of the self-dual three-form is through HAB = σMNK
AB HMNK ,

where the projector σMNK
AB is given by some totally antisymmetric product of sigma-matrices.1

Zero-rest-mass fields. Let us discuss now some linear field equations on space-time M6.
From the above considerations, the spin label of six-dimensional fields consists of a pair of
integers, corresponding to irreducible representations of the little group. Chiral zero-rest-mass
fields form representations (2h + 1,1), for h ∈ 1

2N0, of SL(2,C) × ˜SL(2,C). These are
conformally invariant fields, of helicity h, that carry 2h symmetrised lower spinor indices and
satisfy the free equations of motion

∂AA1ψA1...A2h = 0 , for h ≥ 1
2 and �ψ = 0 , for h = 0 . (6.3)

Explicitly, we define the sheaf of germs of solutions to zero-rest-mass equations for helicity h,
denoted by Zh, as [97, 43]

Zh :=


ker

{
∂AB : �2h−1S∗ ⊗ detS∗ → (�2h−1S∗ ⊗ S)0 ⊗⊗2 detS∗

}
, for h ≥ 1

2 ,

ker
{
� := 1

4∂
AB∂AB : detS∗ → ⊗2 detS∗

}
, for h = 0 .

(6.4)
Here, the subscript zero refers to the totally trace-less part, while the powers of the determinant
of S∗ are included to render the zero-rest-mass field equations conformally invariant2, in
analogy to the four dimensional case [243, 242, 66].

Example: N = (2, 0) tensor multiplet. As a motivational example let us consider the
(2, 0)-theory, arising on the world-volume of parallel M5-branes. From supersymmetry we know
that the field content is given by the N = (2, 0) tensor multiplet in six dimensions [244]. This
is a chiral multiplet and consists of a self-dual three-form curvature H = dB, which transforms
as the (3,1) of the little group, as well as five scalars φIJ = −φJI3 with I, J = 1, . . . 4, in the
trivial representation (1,1), parametrising transverse fluctuations of the M5-brane, together
with four Weyl spinors ψIA in the (2,1). The zero-rest-mass field equations for the fields in

1Explicitly, σMNK
AB := 1

3! (σ
M
ACσ

N CDσKDB ± permutations ) = σMNK
BA .

2Here, we refer to the notion of conformal weights, as introduced in [66].
3The six scalars φIJ are constrained by the condition φIJΩIJ = 0, where ΩIJ is an invariant form of the

underlying Sp(2)R ∼= SO(5)R/Z2 R-symmetry group, see e.g. [245].
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the tensor multiplet read as1

HAB = 0 , ∂ABψB = 0 and �φ = 0 . (6.5)

Recall that, in our conventions, the first equation is nothing but self-duality, i.e. the field H can
be described as the chiral field HAB with symmetric subscripts. Moreover, HAB = ∂C(AB

C
B)

implies2 the Bianchi identity ∂ACHCB = 0, which is equivalent to the field equation for
self-dual three-forms. The corresponding plane waves

HABab = kA(akBb)e
ip·x , ψAa = kAae

ip·x and φ = eip·x , (6.6)

show, for instance, the three polarisation states of a helicity 1 field HAB. Moreover, gauge
transformations are mediated by the gauge parameter ΛAB = −ΛBA via

B A
B 7→ B A

B + ∂ACΛCB − ∂BCΛCA . (6.7)

Potential formulation. As in four dimensions, there is a formulation of six-dimensional
conformally invariant massless fields in terms of potentials. Here, we closely follow [97], that
generalises the four dimensional case [66]. Let us consider h ∈ 1

2N0. The potential field of a
chiral zero-rest-mass field of helicity h is the spinor field

BA1...A2h
A = B

(A1...A2h)
A ∈ H0(M6, (�2h−1S ⊗OM6 S

∗)0 ⊗ detS∗) , (6.8)

Then, one defines the corresponding field strength according to

HA1...A2h := ∂(A1B1 · · · ∂A2h−1B2h−1B
B1···B2h−1
A2h) ∈ H0(M6, (�2hS)⊗ detS∗)) . (6.9)

Moreover, the equations
HA1...A2h := ∂A(A1B

A2...A2h)
A = 0 . (6.10)

immediately imply
∂AA1HA1...A2h = 0 (6.11)

There is a gauge freedom in the potential (6.8), namely the transformations

BA1...A2h
A 7→ BA1...A2h

A +
(
∂CBΛC(AA1...A2h−2) − ∂C(AΛA1...A2h−2)

CB

)
0
, (6.12)

1Here, for simplicity, we have suppressed the R-symmetry indices.
2See Appendix F.
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in terms of the totally trace-less gauge parameter ΛA1...A2h−2
AB = Λ(A1...A2h−2)

[AB] , give the same
pair of spinors (HA1,...,A2h , HA1,...,A2h) . Hence, the spinor field HA1,...,A2h can be regarded
as a section of the sheaf Zh. In the following, we will refer to general theories containing
a self-dual 3-form field strength as self-dual tensor field theories. Via twistor approach, it
is possible to employ the representation of solutions to (6.11) in terms of sheaf cohomology
on the corresponding twistor space. One immediately notice that for h = 1 this formalism
reproduces the 3-form field (6.2). Moreover, (6.10) implies the equations of motion for HAB

and (6.12) gives the desired gauge transformations.

6.3. Twistor space of six-dimensional space-time

In the following, we give an overview of the geometry of twistor space P6, underlying the
description of self-dual 3-forms on flat six-dimensional space-time C6. Such a twistor space
has a long history, see e.g. [246–253, 96, 254–256]. Here, we shall expose its construction
following [96–98], see also [43] for a brief account of the subject. Then, we shall focus our
attention on Euclidean signature by means of an appropriate anti-holomorphic involution on
twistor space that picks the desired real slice on complexified space-time.

In the following, we will make use of the standard notation OX(k) for the sheaf of holo-
morphic functions on a complex manifold X which are homogeneous of degree k ∈ Z and Ωp

X

for the sheaf of holomorphic differential p-forms on X.1 The interested reader may consult
Appendices D and E for a review of the notions of algebraic and complex geometry necessary
to understand the constructions described throughout this Chapter.

6.3.1. Geometry of twistor space

Following a standard approach such space can be constructed as follows. First, we define the
so called correspondence space

F9 := P(S∗) ∼= C
6 ×P3 , (6.13)

as the projectivisation of the dual of S. This is a nine-dimensional complex manifold, that
can be equipped with coordinates (xAB, λA), with λA being homogenous coordinates on P3.2

1Notice that we shall freely switch between the notions of vector bundles and their corresponding sheaves
of sections, as we are working with locally free sheaves [97].

2Here, P3 is understood as a copy of the projectivised fibres of the dual of the anti-chiral spin bundle,
hence, the chiral (i.e. lower-script) spinor index.



138 6.3. Twistor space of six-dimensional space-time

Then, we consider the vector fields
V A = λB∂

AB (6.14)

on F9 and the induced distribution D := span{V A}, called the twistor distribution. Because
of the relation λAV

A = 0, this is a rank-3 distribution. Moreover, because of the condition
[VA, VB] = 0, the twistor distribution is integrable, that is, [D,D] ⊆ D. Consequently, there
is a foliation of F9 by three-dimensional complex manifolds and the twistor space is defined to
be the the associated six-dimensional leaf space, P6 := F9/D. Hence, we may now establish
a twistor correspondence, which is captured by the following double fibration1

F9

P6 M6

π1 π2 (6.15)

Let (zA, λA) be homogeneous coordinates the complex projective space P7, identified up to
overall re-scalings, i.e. (zA, λA) ∼ (tzA, tλA), for any t ∈ C0. Here, we assume (λA) 6=
(0, 0, 0, 0), meaning that we are working on the open subset P7

◦ := P
7 \ P3, where the

removed projective space P3 is given by λA = 0 and zA 6= 0. Clearly, the projection π2 is the
trivial projection (x, λ) 7→ x, while π1 is given by

π1 : (xAB, λA) 7→ (zA, λA) = (xABλB, λA) . (6.16)

Since the matrix xAB is skew-symmetric, the constraint zAλA = 0 holds. It follows that the
twistor space P6 is the complex quadric hypersurface given by the zero locus

P6 :=
{

(zA, λA) ∈ P7
◦ | zAλA = 0

}
, (6.17)

embedded into the total space of the holomorphic fibration2 OP3(1) ⊗ C4 → P
3, with fibre

coordinates zA as well as base coordinates λA. Here and in the following OP3(1) denotes the
dual tautological bundle3 (or hyperplane bundle) over P3. See Appendix E for details.

1See Appendix E for geometrical treatment of the double fibrations appearing in twistor theory.
2Twistor space P6 may be seen as a rank-3 subbundle of OP3(1) ⊗ C4 → P3 or, alternatively, as the

normal bundle of P3 inside the hypersurface Q ↪→ P7 given by zAλA = 0. See Appendix E and [97] for
details.

3We shall also use the standard notation OP3(k) := ⊗kOP3(1) and OP3(−k) := ⊗kO∗
P3(1), k > 0 as

well as OP3(0) := OP3 .
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We notice that the relation

zA = xABλB (6.18)

is a six-dimensional generalisation of the Penrose’s incidence relation, relating twistor space
to space-time. By virtue of the relation (6.18), a geometric correspondence between M6

and P6 is realised. Explicitly, a point x ∈ M6 corresponds to a three dimensional subman-
ifold π1(π−1

2 (x)) ↪→ P6 that is bi-holomorphic to P3, while a point (z, λ) in twistor space
corresponds to a submanifold π2(π−1

1 (z, λ)) in space-time given by

xAB = xAB0 + εABCDµCλD . (6.19)

This defines a totally null self-dual three-plane1 (as three is the rank of the twistor distribution),
for some arbitrary µC defined modulo terms proportional2 to λC and xAB0 being a particular
solution to the incidence relation corresponding to a reference point in space-time. Hence,
twistor space P6 parametrises all totally null three-planes of space-time M6.

As explained in detail in [97], the twistor space P6 admits various dimensional reductions.
It has not be a surprise that, upon reducing to four space-time dimensions, P6 can be reduced
to the Penrose’ twistor space, the space of all totally null 2-planes in four dimensions, as well
as to to the ambitwistor space, the space of all null rays in four dimensions and the hyperplane
twistor space in three dimensions, the space of all hyperplanes in four dimensions.

Having recalled the basic ingredients, in the next Section we will see how both Abelian
and non-Abelian self-dual tensor fields on M6 can be described on twistor space P6. First,
however, we shall review the reality conditions we employ to descend to Euclidean space-time,
that we will make extensive use of in Chapter 7.

6.3.2. Reality structures

Up to now, we have only dealt with complex manifolds. However, in order to deal with gauge
theories, one needs to put certain real structures on twistor space. These, in turn, induce real
structures on all the manifolds appearing in the double fibration (6.22). In the next Chapter,
we shall be interested in six-dimensional Euclidean space-time and its associated twistor space.

1These totally null self-dual three planes are known as α-planes (β-planes being the anti-self-dual ones).
2Transformations of the form µC → µC + ρλC , ρ ∈ C, leave x invariant, so the space of solutions is

three-dimensional. Also, εABCDµCλD denotes a generic null-vector in six dimensions.
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The twistor correspondence in Euclidean signature. Explicitly, an Euclidean signature
real slice is realised by defining an anti-linear involution on twistor space τ : P6 → P6, acting
on spinors as

τ(λA) = (λA)∗ := λ̂A , τ(zA) = (zA)∗ := ẑA (6.20)

and such that τ 2 = 1. By virtue of the incidence relation (6.18) we obtain an induced
involution on space-time1 explicitly given by

τ(xAB) = (xAB)∗ := x̂AB . (6.21)

This, in turn, induces a reality structure on M6. The fixed point set of this involution, that is,
τ(x) = x for x ∈ M6, defines Euclidean space-time R6 inside M6. In this setting, the double
fibration (6.15) reduces to the non-holomorphic fibration2

π : P6 → R
6 , (6.22)

since π−1
2 (R6) ∼= P6 and therefore π1 becomes a bijection. Hence, there is no need for the

double fibration picture in Euclidean signature. Explicitly, this P3 fibration is given by

(zA, λA) 7→ xAB = 2z[Aλ̂B] + εABCDẑCλD

λAλ̂A
, (6.23)

associating a unique point x to every pair (z, λ). In other words, the Euclidean twistor space is
isomorphic to R6 ×P3. Here, xAB is real and det(xAB) = δ(x, x), with δ being the standard
Euclidean metric on R6.

This allows us to work with the non-holomorphic coordinates (xAB, λA), with the projective
scaling carried now exclusively by λA, the homogeneous coordinates on the fibres P3. This
helps avoiding a number of technical difficulties. In terms of these coordinates we may define3

the following differential (0, 1)-forms on twistor space P6

eA := λ̂BdxAB
[λλ̂]

and ẽAB := 2λ̂[Adλ̂B]

[λλ̂]2
, (6.24)

1In the following, with a slight abuse of notation, we shall use the same notation τ for the anti-holomorphic
involution induced on the different manifolds in the twistor correspondence.

2In Euclidean signature a point on P6 is specified by fixing a point on R6 and a point on the correspondent
P3, giving the identification of Euclidean twistor space with R6 ×P3. However, the correspondence remains
non-local, as a full projective space P3 corresponds to the same point on R6.

3The analogous basis of (0, 1) forms on twistor space corresponding to Euclidean four-dimensional space-
time were introduced in [84, 257].
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such that Ω0,1(P6) = span {eA, ẽAB}. Here, we have chosen to normalise these differential
forms with powers of [λλ̂] := λAλ̂

A(> 0) for later convenience and ensuring that they have
holomorphic weight only, i.e. they are independent of rescalings of λ̂. In particular the
differential forms (6.24) have homogeneity (−1, 0) and (−2, 0), respectively. Analogously, the
vector fields

V
A := λB∂

AB and ṼAB := [λλ̂]λ[A
∂

∂λ̂B]
, (6.25)

generate the space of anti-holomorphic vectors, i.e. T 0,1P6 = span {V A
, ṼAB}, determin-

ing the twistor complex structure on Euclidean twistor space. Notice that these have been
chosen to have homogeneity (1, 0) and (2, 0), respectively. Also, we observe that the vector
fields (6.14) are (0, 1)-vector field in this real setting.

Along this basis, a one-form field A0,1 on twistor space may be expanded as

A0,1 = e[AλB]A
AB + ẽABAAB , (6.26)

in a way which is adapted to the description on P6 ∼= R
6 × P3. Here, we have introduced

coefficients AAB = −ABA and AAB = −ABA, which are generally functions of (x, λ, λ̂). In
particular, e[AλB]A

AB denotes the horizontal component along the base R6, while ẽABAAB is
the vertical component along the fibres of the fibration (6.22). It is crucial to observe that,
since λAV

A = 0, the eA are defined modulo terms proportional to λA1. As we will see, this
property is reflected in the expansions of the form fields appearing throughout the rest of the
Thesis.

In addition, the fibration (6.22) allows to express the integrable complex structure on P6 in
terms of coordinates on R6. This is given by the nilpotency of the anti-holomorphic Dolbeault
operator ∂̄ : Ωp,q(P6)→ Ωp,q+1(P6), that can be expressed as2

∂̄ := 2eAV
A + ẽABṼAB . (6.28)

1It is important to stress that the redundancy introduced by using homogeneous coordinates is reflected
in the fact that the sets (6.24)-(6.25) do not define dual frames.

2The compatibility with the twistor correspondence easily follows from the incidence relation as

∂̄ = dẑAPAB
∂

∂ẑB
+ dπ̂A ∂

∂π̂A
, (6.27)

where (zA, πA) are homogeneous coordinates on P6 and we have introduced the operator PAB := δAB −
πB π̂

A

[ππ̂] .
The easiest way of showing this is to use local coordinates on both P6 and R6×P3. In general, this allows to
shred some lights on relations that may not be manifest by using homogeneous coordinates. See Appendix F
for more details.
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We want to already point out that the choice of Euclidean signature simplifies the mapping
from twistor space quantities to space-time quantities. As we shall see, the basis (6.24) turns
out to be helpful in relating twistor and space-time self-dual actions. We will take advantage
of this fact at several points later on.

6.4. Penrose transform

The essence of twistor theory in any number of dimensions is to encode differentially con-
strained data (solutions to field equations) on space-time in terms of differentially uncon-
strained complex analytic data on twistor space. In four space-time dimensions the basic tool
in this regard is the Penrose transform [48,258], which is an integral geometric method relating
solutions of the zero-rest-mass equations to certain cohomology classes on Penrose’s twistor
space. The Penrose transform also extends to any number of dimensions [96]. Generally, in
higher dimensions it involves higher degree cohomology classes on the relevant twistor space,
encoding solutions to certain field equations on space-time. In particular, in [97, 98] the Pen-
rose transform on the twistor space P6 has been analysed. Explicitly, it manifests itself in the
following manner [97]:

Theorem 6.1. Let U ⊂ M6 be an open and convex subset and Û := π1(π−1
2 (U)) ⊂ P6 the

corresponding open subset1 under the double fibration (6.15). For h ∈ 1
2N0, the canonical

isomorphism
P : H3(Û ,OÛ(−2h− 4)) −→ H0(U,Zh) , (6.29)

is called Penrose transform.

This tells us that fields of non-negative helicity h, satisfying zero-rest-mass field equations
on a suitable region of space-time U , correspond to classes of the Čech cohomology group
H3(Û ,OÛ(−2h− 4)), with values in certain holomorphic line bundles over the corresponding
region Û . We refer to the papers [97, 98] for a detailed and thorough proof. This basically
consists in introducing the relative de Rham complex on the correspondence space of the double
fibration P6 π1←− F9 π2−→ M6 and then computing its cohomology by applying the direct image
functor with respect to the fibration π2.2 It is also shown that, for h < 0, the cohomology
groups H3(Û ,OÛ(−2h− 4)) yield nothing but trivial fields on space-time, see also [96]. We

1Since the maps π1,2 are continuous and open.
2See Appendix E for some general definitions and results in this respect.
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invite the interested reader to consult Appendix E for an overview of the mathematical tools
behind the twistor correspondence in any dimensions.

6.4.1. Integral formulas

The Penrose transform is most easily realised in terms of contour integral formulæ. In dimen-
sion six, such formulæ first appeared in the works by Hughston [248–251].

Čech representation. Let U ⊂ M6 be open and convex and Û := π1(π−1
2 (x)) ⊂ P6

the correspondent subset in twistor space. Consider an open Stein covering Û = {Ûa} of Û ,
a = 1, · · · , 4, obtained by lifting the standard 4-patches covering of P3 to Û . Then an element
of the Čech cohomology group H3(Û ,OÛ(−2h − 4)) can be represented1 by a holomorphic
function f−2h−4 = f−2h−4(z, λ) on the only quadruple overlap Û1234 := Û1∩ Û2∩ Û3∩ Û4. Let
us consider h ≥ 0. In terms of the Čech cocycle f−2h−4, a zero-rest-mass field ψ ∈ H0(U,Zh)
is given by the contour integral formula2

ψA1...A2h :=
∮

Γ
Ω3,0λA1 · · ·λA2hf−2h−4|Y . (6.30)

Here,

Ω3,0 = 1
4!ε

ABCDλAdλB ∧ dλC ∧ dλD , (6.31)

is the natural SL(4,C)-invariant, holomorphic measure on P3, with values in OP3(4), while Γ
is topologically a three-torus3 in Û1234 ⊂ P3, specified by the cohomology class. Moreover,
the restriction f−2h−4|Y to Y ∼= P

3 ⊂ P6, defined via twistor correspondence, is accomplished
simply by imposing the incidence relation (6.18): f−2h−4|Y = f−2h−4(x · λ, λ) on Û1234 ∩ Y.
We stress out that this realises the pull-back part of the Penrose transform as explained
in Appendix E. The second and final step, namely integrating out the fibre coordinates, is

1Note that this is not the general way to represent an element of H3(Û ,OÛ ), for which one needs to use
branched contour integrals, cf. [242].

2Integral formluæ for the cohomology groups H3(Û ,OÛ (2h − 4)), with h > 0, require to thicken (via
infinitesimal neighbourhood) the twistor space P6 into its ambient space P7

◦ := OP3(1)⊗C4 in order to make
sense. See the discussion in [97].

3The open sets Ûa are chosen so that for any submanifold Yx = π1(π−1
2 (x)) in Û the intersections

Ûax := Ûi ∩Yx overlap in a region Û1x ∩ Û2x ∩ Û3x ∩ Û4x ∼= T3×R. The contour Γ is a three-torus winding
around such region.
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nothing but the contour integration1. One can immediately check that the integral is well
defined since the respective weights cancel out2. The spinor field ψA1...A2h = ψ(A1...A2h) forms
the representation (2h + 1,1) of the little group and satisfies (6.3), as shown in Appendix F.

Altogether, this shows how the role of twistor theory is indeed transforming the differential
equations (6.4) that on-shell fields satisfy in space-time into pure holomorphy in twistor space.

Dolbeault representation. Alternatively, thanks to the Dolbeault isomorphism (see e.g.
Appendix E), a Dolbeault representative3 of the cohomology group H3(Û ,OÛ(−2h− 4)) can
be chosen. Consequently, space-time fields are represented by equivalence classes of certain
(0, 3)-forms on twistor space. Recall that the Dolbeault representative in question is a (0, 3)-
form η on Û taking values in the holomorphic line bundle OÛ(−2h−4) and such that ∂̄η = 0,
where η is defined modulo ∂̄Ξ, with Ξ ∈ Ω0,2(Û ,OÛ(−2h − 4)). A space-time function of
helicity h, for h ≥ 0, is then defined by

ψA1...A2h :=
∫

Y
Ω3,0 ∧ λA1 · · ·λA2hη|Y . (6.32)

As before, η|Y indicates the restriction to Y using the incidence relation and the integral
depends only on the cohomology class of η. It can be easily shown that space-time field
ψA1...A2h is a 2h-index symmetric spinor field satisfying the zero-rest-mass equations (6.3).
Hence, the integral formula (6.32) realises the isomorphism (6.29) from the left to the right.
Again, we invite the reader to consult Appendix F for a proof. The choice of the Dolbeault
representation will lead to considerably simpler computations in many cases.4

6.5. Penrose–Ward transform

For gauge theories, the right tool encoding solutions to certain field equations on space-time
in terms of holomorphic data on twistor space is the Penrose–Ward transform. On the other

1Here, the contour integral corresponds to the functor of direct image for sheaves. See Appendices D, E
for details.

2Note that this requirement determines the relationship between homogeneity and helicity.
3 Note that working with Dolbeault cohomology allows us to avoid to use the combinatorics of Leray

covers and there is no contour ambiguity involved, unlike in the Čech cohomology setup, most widely used by
twistor theorists, see e.g. [48,258,66]. This choice leads to considerably simpler computations in many cases.

4Given a z.r.m. field on complex space-time M there is not, in general, a canonical way to reconstruct
the twistor representative. However, in Euclidean signature there is a canonical way for some z.r.m. fields due
to Woodhouse [259].
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hand, the field equations in question and the associated gauge transformations can be naturally
derived starting from algebraic data on twistor space.

6.5.1. Abelian fields

The Penrose–Ward transform discussed in [97, 98] provides a way to associate u(1)-valued
self-dual 3-forms on M6 to certain algebraic data over P6. See also [96] for an earlier account
and [99] for a supersymmetric extension. The algebraic data in question are represented by
topologically trivial, holomorphic one-gerbes Γ̂ → P6 over the twistor space P6. Moreover,
these objects are required to be holomorphically trivial when restricted to any complex pro-
jective 3-space π1(π−1

2 (x)) ↪→ P6, for all x ∈ M6.1 Following Manin’s terminology [65]
in the principal 1-bundle case, we shall refer to such gerbes as M6-trivial. As we will see,
these gerbes on twistor space are parametrised by elements of the Čech cohomology group
H2(Û ,OÛ(2h − 2)) for h > 0, see e.g. [43]. In a way, such a cohomology group replaces
H3(Û ,OÛ(−2h−4)) for h < 0,2 that, as we have seen, yields trivial space-time fields. Besides
these two cohomology groups, all the other (higher) cohomology groups, namely for OÛ(k)
with k ∈ Z, appear to give trivial fields on space-time, [96, 97].3 First, we set h = 1 and
consider H2(Û ,OÛ(0)) := H2(Û ,OÛ). To analyse this cohomology group we consider the
short exact exponential sequence of sheaves4 on Û

0 −→ Z −→ OÛ
exp−−→ O∗

Û
−→ 0 . (6.33)

Here O∗
Û

denotes the subsheaf of non-vanishing holomorphic functions on Û , while exp :
OÛ → O∗Û is the exponential map defined by exp(f) := e2πif , for f ∈ OÛ . The corresponding
long exact sequence of cohomology groups yields

H1(Û , O∗
Û

) c1−−→ H2(Û ,Z) −→ H2(Û ,OÛ) −→ H2(Û ,O∗
Û

) DD−−→ H3(Û ,Z) . (6.34)

1Alternatively (see Appendix E for details on the subject), this means that the pull-back gerbe π∗1 Γ̂ is
trivial on each fibre of π2.

2This is in contradistinction to four-dimensional twistor theory, where fields of any integer helicity can
be obtained from twistor space. Note that the case h = 0 is somewhat exceptional and needs to be treated
differently in both the Penrose and Penrose–Ward transforms. See [97] for a full discussion of the subject,
based on spectral sequence arguments.

3In particular, H2(Û ,OÛ (−2h−2)), for h < 0, yields trivial fields on space-time as the appropriate direct
images vanish.

4See the the discussion Appendix D.
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The group H1(Û ,O∗
Û

) topologically classifies isomorphism classes of line bundles on Û , while
the map c1 is the first Chern class map1 which gives the characteristic class of line bundles
(zero-gerbes). Similarly, DD is the Dixmier–Duady class and H2(Û ,O∗

Û
) is the moduli space

of holomorphic one-gerbes over Û . Hence, Abelian holomorphic gerbes provide a geometric
realisation of classes in H3(Û ,Z) via their Dixmier-Douady class, analogous to the way that
line bundles provide, via their Chern class, a geometric realisation of the elements of H2(Û ,Z)
in lower degree. Since the map c1 is surjective and2 H3(Û ,Z) = 0 the above sequence reduces
to

H2(Û ,OÛ) ∼= H2(Û ,O∗
Û

) . (6.35)

Note that in the discussion of the more general case of H2(Û ,OÛ(2h − 2)), with h > 0,
one generally loosely speaks of holomorphic one-gerbes also in this case. Since the restriction
of H2(Û ,OÛ(2h − 2)) to π1(π−1

2 (x)) ∼= P
3 ↪→ Û , vanishes3 for all points x ∈ U , these

holomorphic one-gerbes are naturally M6-trivial. As mentioned, the Penrose–Ward transforms
provides then a space-time interpretation of such geometrical objects. Explicitly, we have the
following result [97, 98]:

Theorem 6.2. Let U ⊂ M6 be an open and convex subset and Û := π1(π−1
2 (U)) ⊂ P6

the corresponding open subset under the double fibration (6.15). For h ∈ 1
2N0, there is a

canonical isomorphism

P : H2(Û ,OÛ(2h− 2)) −→ H0(U,Zh) , (6.36)

called Penrose–Ward transform.

In other words, this result establishes a bijection between equivalence classes of M6-trivial
holomorphic Abelian one-gerbes over twistor space P6 and gauge equivalence classes of solu-
tions of chiral zero-rest-mass field equations on space-time M6 . Hence, space-time fields of
helicity h satisfying (6.3) may be also described by H2(Û ,OÛ(2h− 2)) on twistor space. For
the particular case h = 1, the group H2(Û ,O∗

Û
) describes a self-dual 3-form curvature on

1Explicitly, the image c1(E) ∈ H2(Û ,Z) of a line bundle E ∈ H1(Û ,O∗
Û

) is the first Chern class.
2This may be seen via singular homology considerations, as P3 and more in general Pn have no odd-

dimensional cells. Hence H2k(Pn,Z) = Z, for k = 0, 1, . . . , n and the remaining cohomology groups are
zero.

3The only non-vanishing cohomology groups over P3 with coefficients in the sheaf O(k) are H0(P3,O(k))
and H3(P3,O(−4− k)), for k ≥ 0.
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U ⊂ M6. Here, we are not interested in going into detail about the technicalities of the trans-
form and we remind the interested reader to the relevant papers [97, 98] and to Appendix E
for some mathematical constructions. However, we briefly review some of the main steps, that
highlight some aspects relevant for our future discussions.1 As mentioned, the starting point is
the cohomological datum H2(Û ,OÛ), describing an holomorphic one-gerbe Γ̂ on P6, subject
to certain triviality conditions. First, we note that a Stein open cover on P3 induces good cov-
ers Û = {Ûa} on the holomorphic vector bundle P6 → P

3 as well as U′ := {U ′a := π−1
1 (Ûa)}

on F9 (see Appendix E for details). By the Dolbeault isomorphism, the cohomology group
H2(Û ,OÛ) can be represented by a globally defined (0, 2)-form B̂0,2 on Û , that is ∂̄-closed 2.
The condition of M6-triviality ensures that the pulled-back gerbe π∗1Γ̂ will be holomorphically
trivial on the correspondence space F9. Despite this triviality, this object contains non-trivial
information. One can perform a gauge transformation yielding to a holomorphic gerbe on F9

with trivial transition functions and flat, but non-vanishing, relative connective structure. The
final step of the transform consists of pushing the gerbe π∗1Γ̂→ F9, together with its relative
connective structure, down to space-time M6. As rigorously shown in [97], this is realised by
computing the zeroth direct images of the sheaf Ωp

π1 .3 Concretely, this consists in ‘integrating
out’ the λ-dependence in the B0,2

π1 stemming from the fibres of π2 : F9 → M6. Explicitly, one
considers the holomorphic relative de Rham complex, defined as the following exact sequence
of sheaves on F9, see e.g. [97]

0 −→ π−1
1 OP6 −→ OF9

dπ1−−→ Ω1
π1

dπ1−−→ Ω2
π1

dπ1−−→ Ω3
π1 −→ 0 . (6.37)

Here, the holomorphic relative exterior derivative dπ1 : Ωp
π1 → Ωp+1

π1 is defined as4

dπ1 := 2eAV
A
. (6.38)

We observe that we are using vector fields and differential forms adapted to the non-holomorphic
coordinates (xAB, λA). This choice is justified by the fact that, in this Euclidean setting, V A

1To deal with the h = 0 case one needs some further considerations, as explained in [97].
2In particular, the equation Ĥ0,3 = ∂̄B̂0,2 = 0, where Ĥ0,3 denotes the (0, 3)-part of the three-form

curvature, is the same as the equation of motion of (Abelian) holomorphic CS theory for ordinary holomorphic
vector bundles, but translated in the context of holomorphic one-gerbes.

3See and Appendix E for some definitions.
4We want to point out the different pre-factor in (6.38) with respect to the papers [97, 100–103]. The

reason is purely conventional and has to do with the fact that our notation is already adapted to calculations
on Euclidean twistor space. This will become more clear in the next Chapter.
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and eA are the generators of the twistor distribution and its dual, respectively. The relative
differential form Bπ1 ∈ H0(F9,Ω2

π1) can be expanded in λA according to

Bπ1 = eA ∧ eBλCεABCDB E
D λE , (6.39)

where the coefficient field B B
A depends only on xAB ∈ M6 and it is trace-less. The relative

flatness condition implies
∂C(AB

B)
C = 0 . (6.40)

Moreover, the self-dual part of the three-form curvature, that is HAB := ∂C(AB
C
B) , obeys the

chiral zero-rest-mass field equation

∂ABHBC = 0 . (6.41)

Similarly, the gauge freedom in defining the relative connection form Bπ1 7→ Bπ1 + dπ1Λπ1 ,
for

Λπ1 := 2e[AλB]ΛAB ∈ H0(F9,Ω1
π1) , (6.42)

corresponds to the familiar space-time gauge transformations for two-form potentials

B B
A 7→ B B

A + ∂BCΛCA − ∂ACΛCB , (6.43)

with space-time gauge parameter ΛAB = 1
2εABCDΛCD. Hence, via the Penrose–Ward trans-

form (6.36), M6-trivial holomorphic one-gerbes over twistor space are bijectively mapped to
Abelian 2-form potentials with self-dual 3-form field strength on space-time.

6.5.2. Non-Abelian fields

The previous result can be extended to describe non-Abelian fields. Since the Abelian tensor
multiplet in six dimensions contains a 2-form gauge potential described by a U(1)-gerbe, it
is natural to expect that the non-Abelian case requires for a non-Abelian generalisation of
gerbes1, see e.g. [21, 22, 262]. The cohomology group H2(Û ,OÛ) and its identification with
the moduli space of solutions to certain field equations, was generalised to the cohomology
set of principal G -bundles for G a Lie quasi-group. This, in turn, can be understood as a

1Recall that these objects, unlike their Abelian counterparts, are not completely understood. In par-
ticular, in their usual formulation their connections are locally gauge equivalent to Abelian ones, rendering
the construction of local non-trivially interacting Lagrangians ‘problematic’. The interested reader may con-
sult [25,260,7,261], where solutions to this problems are provided, making use of the so-called string structures.
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direct generalisation of the Penrose–Ward transform to higher principal bundles. Explicitly, a
Penrose–Ward transform have been established between certain non-Abelian self-dual tensor
fields in six dimensions1 and holomorphic principal G -bundles over P6, for G a strict Lie 2-
group [100], a semistrict Lie 2-group [102] and a Lie 3-group [101]. Finally, in [103], this
has been generalised to Lie quasi-groupoids, providing perhaps the most general and concise
framework for formulating self-dual non-Abelian tensor field theories within twistorial higher
gauge theory. The interested reader is invited to consult Appendix D, where an introduction
to (Lie) quasi groupoids by using the language of simplicial geometry is provided. Moreover,
a formulation of higher principal bundles having such groupoids as their structure groups is
given. In particular, we shall consider some reduced (Lie) quasi groupoids, called Lie quasi
k-groups2 [140, 264, 265]. The correspondence in question is provided by the following res-
ult [103]:

Theorem 6.3. Let G be a Lie k-quasi-group and consider the double fibration (6.15). There
are bijections between

(i) equivalence classes of M6-trivial principal G -bundles over P6,

(ii) equivalence classes of holomorphically trivial holomorphic principal G -bundles over F9

that are equipped with a flat holomorphic relative connective structure and

(iii) gauge equivalence classes of complex holomorphic solutions to constraint equations on
M6 containing a 3-form curvature H that is self-dual, that is, HAB = 0.

For concreteness, we specialise ourselves to the case k = 2, that is the one analysed
in [111]. A detailed proof of the theorem can be found in [103]. Let G denote a Lie 2-
quasi-group. The associated L∞-algebra (L, µi), with graded vector space L = L−1 ⊕ L0 and
higher products µi, is obtained by computing the 1-jet of G (see Appendix E). A holomorphic
principal G -bundle over P6, subordinate to a Stein open cover Û := ∪a∈AÛa, is characterised
by a holomorphic simplicial map3 ĝ : N(Č (Û → P6)) → G [266, 263]. Concretely, it comes
with transition functions ĝab : Ûa ∩ Ûb → G1 and ĝabc : Ûa ∩ Ûb ∩ Ûc → G2, subject to the

1More generally, the correspondence also holds for some superconformal non-Abelian self-dual tensor field
theories once one considers twistor space P6|2n of chiral superspace M6|2n, for n = 0, 1, 2 [100–103]. We shall
limit ourselves to the bosonic case.

2We just recall here that the categories of Lie quasi-groups and Lie simplicial groups are equivalent, as
was shown in Nikolaus et al. [263, Proposition 3.35].

3Here, N(Č (Y → X)) denotes the nerve of the Čech groupoid Č (Y → X), known also as the Čech nerve.
See definition (D.32).
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certain simplicial identities. In Appendix D we list the cocycle and coboundary conditions in
the case of a strict Lie 2-quasi-group. The pull-back bundle on correspondence space is the
holomorphic simplicial map g′ = π∗1(ĝ) : N(Č (U′ → F9)) → N(G ), where U′ is the induced
open cover on F9. The component maps of g′ are annihilated by the twistor distribution, that
is dπ1g

′
ab = dπ1g

′
abc = 0, by the definition of a pull-back.

Relative forms. Furthermore, since the pull-back bundle is trivial1 (topologically as well
as holomorphically) on all of F9, we may introduce a globally defined holomorphic relative
connective structure on such bundle

(Aπ1 , Bπ1) ∈ H0(F9,Ω1
π1 ⊗ L0)⊕H0(F9,Ω2

π1 ⊗ L−1) , (6.44)

which is constrained to be flat. Explicitly, the relative curvatures defined by

Fπ1 := dπ1Aπ1 + 1
2µ2(Aπ1 , Aπ1) ,

Hπ1 := dπ1Bπ1 + µ2(Aπ1 , Bπ1)− 1
3!µ3(Aπ1 , Aπ1 , Aπ1)

(6.45)

satisfy the conditions

Fπ1 := Fπ1 + µ1(Bπ1) = 0 and Hπ1 = 0 . (6.46)

If we now recall our discussion in Chapter 3, we immediately notice that these equations are
nothing but the equations (3.32c) and we recognise Fπ1 as the relative 2-form fake curvature.
As final step one has to push the relative connective structure (6.44) down to space-time.
Concretely, taking the direct images of Ωp

π1 under the projection π2 we may expand relative
connective structure (Aπ1 , Bπ1) as [97]2

Aπ1 = 2e[AλB]A
AB ,

Bπ1 = −eA ∧ eBλCεABCDB E
D λE ,

(6.47)

while the corresponding relative curvatures (Fπ1 , Hπ1) read

Fπ1 = −eA ∧ eBλCεABCDF E
D λE ,

Hπ1 = 2
3eA ∧ eB ∧ eCλDε

ABCDHEFλEλF .
(6.48)

1Thus, there exists a coboundary transformation trivialising g′. See [103] for details.
2Here, the numerical coefficients are chosen for further convenience. These calculations are suited for the

discussion in [111].
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Since all λ-dependence has been made explicit in the above expansions, the component fields
in (6.47) and (6.48) are fields defined on the space-time M6. Hence, we recall that AAB =
1
2ε
ABCDACD, while B B

A and F B
A are trace-less and HAB = HBA. We stress here that

these expansions reflect the property that the differential forms eA are defined modulo terms
proportional to λA. The conditions

Fπ1 = 0 and Hπ1 = 0 (6.49)

determine some constraint equations on space-time. Explicitly, upon using dπ1 = 2eAV
A and

the expansions (6.47)-(6.48), we arrive after a few algebraic manipulations at the equations

F B
A = 0 and HAB = 0 (6.50)

on M6. Here, the component fake curvature F and the anti-self-dual part of the three-form
curvature H on space-time are given explicitly by

F B
A := ∂BCACA − ∂CAABC + µ2(ABC , ACA) + µ1(B B

A ) ,

HAB := ∂C(AB
B)
C + µ2(AC(A, B

B)
C ) + µ3(AC(A, ACD, A

B)D) .
(6.51)

Summarising, the theorem 6.3 tells us that the moduli space of solution to the equations of
motion1

F = 0 and H = ?H (6.52)

on U ⊆ M6, with H and F given by (3.32c), is equivalent to the moduli space of holo-
morphic principal G -bundles over Û ⊆ P6 which are homomorphically trivial when restricted to
π1(π−1

2 (x)) ↪→ P6, for all x ∈ M6 [100–103]. In the next Chapter we shall see how to lift such
a correspondence off-shell.

1For the explicit gauge transformations see e.g. [100, 101].





7
Self-dual actions from twistor space

7.1. Motivation

As we have seen in the last Chapter, self-dual higher gauge theory in six dimensions can
be formulated by using categorified principal bundles in the framework of twistor geometry.
Particularly interesting is that a Lagrangian description of the theory exists in this setting.
Twistor space actions on P6 for six-dimensional Abelian self-dual tensor fields has been con-
structed [97–99]. It appears rather natural to wonder whether these actions are equivalent to
the actions describing self-dual three-forms in six dimensional space-time, such as the PST
action [104–107] or Sen’s action [108, 109]. Along this Chapter we shall make some progress
in this direction. By imposing appropriate reality conditions and partially fixing a gauge we
shall see how the twistor action reduces to its six-dimensional space-time counterpart. We
believe that different space-time actions might be obtained by simple operations at the level
of twistor space, such as redefining fields or imposing different gauge-fixings. This idea has
been reinforced by a recent result [159], where it was shown how Sen’s action can be naturally
interpreted by using the language of homotopy Maurer–Cartan theory, developed along the
Thesis. We shall come back to these considerations again in Chapter 8.

In addition, a non-Abelian generalisation of these twistor actions has been proposed in [43]
in terms of higher holomorphic Chern–Simons theory. At least at the classical level, via
the Penrose–Ward transform 6.3, such a theory reproduces non-Abelian self-dual three form
fields on six-dimensional flat space-time. In Section 7.4.2. we shall analyse how such an action
descends on Euclidean space-time. The computations in this Chapter are based on the ongoing
work [111]. Moreover, Sen’s formalism has been recently used [267] to construct a Lagrangian
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whose equations of motion are the one given in [268] for the non-Abelian six-dimensional (2, 0)
tensor multiplet. This may suggest us that a homotopy algebraic analysis on twistor space
could be useful also in the non-Abelian case. Along this Chapter, we shall lay the basis for
this kind of discussions.

7.2. Self-dual actions on six-dimensional space-time

For the sake of completeness we give a brief overview to the problem of constructing a vari-
ational principle for the dynamics of chiral p-forms.

Introduction. p-form gauge potentials naturally appear in theories of fundamental extended
objects. Of particular interest are p-forms whose (p+ 1)-form field strength is constrained to
be self-dual1. These fields, usually called chiral p-forms, define the so-called self-dual gauge
field theory or chiral gauge field theory. Such theories have been studied for quite a long time
because of their appearence in various interesting contexts. For instance, they play a central
role in dealing with six-dimensional and ten-dimensional type IIB supergravity, they show up in
heterotic strings as well as in M-theory-five-branes. Unfortunately, the analysis of the dynamics
of chiral fields is a long-standing problem, due to the absence of a natural action principle.
This makes even the construction of a Lagrangian describing the low-energy dynamics of a
single M5-brane a non-trivial problem. The main difficulty lies in the implementation of both
Lorentz invariance and self-duality conditions. Rather extensive literature has been devoted to
the problem of writing down an action for theories of 2n-form fields in 4n+2 dimensions. The
initial approach consisted in imposing the self-duality constraint by hand, after deriving the
equations of motion from the action. Various alternative formulations have been suggested,
where self-duality condition arises on-shell. However, any of these option present some trade-
offs. In fact, many of these theories break manifest Lorentz invariance2 [270–272] while others
introduce an infinite number of (typically massless) auxiliary fields, [273–280] or require to
add an extra dimension [281, 282].

1This reduces the physical degrees of freedom in a theory to half of the case without the self-duality
condition.

2The fact that non-manifestly Lorentz-invariant actions may yield to Lorentz-invariant dynamics was first
realised by Floreanini & Jackiw [269].
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Pasti–Sorokin–Tonin formalism. There exists a further, more economic and efficient ap-
proach to this problem, called the Pasti-Sorokin-Tonin (PST) formalism [104, 105, 283, 106,
107]. This method provides a manifestly Lorentz-invariant formulation of self-dual gauge field
theory. This is realised by introducing a single scalar auxiliary field that, however, enters the
action in a non-polynomial way (only through its derivatives).1 It is naturally compatible with
supersymmetry and kappa symmetry, with the coupling to gravity, and with the functional
integral approach. Moreover, the non-dynamical nature of the auxiliary field is ensured by
gauge fixing one of the extra symmetries of the theory (shift symmetry).

7.2.1. Sen’s mechanism

Inspired by string field theory considerations, Sen [108, 109], see also [290], has recently pro-
posed an alternative method to incorporate self-duality by an action principle. This approach
relies on an action for self-dual Abelian fields in 4n+ 2 dimensions involving a second auxiliary
2n-form field, which eventually decouples from the physical degrees of freedom. In this ap-
proach, the self-duality condition holds off-shell. Such a construction has the feature that the
coupling to gravity is somewhat non-standard, so that diffeomorphisms act differently from
usual2. Hence, the action is not manifestly invariant under general diffeomorphisms. Fur-
thermore, Lambert [291] has shown how to implement supersymmetry within this method,
constructing the action of a (2, 0) tensor multiplet in six dimensions.3

Keeping in mind our motivation, we shall review the action proposed in [108,109] in some
detail. For definiteness, we shall consider the case of a chiral two-form in six dimensions. Let
M6 be six-dimensional space-time, coordinatised by xM , M = 1, . . . , 6. Given a two-form
field B and a three form field H subject to the self-duality condition H = ?ηH, the Sen action
reads4

SSen =
∫
M6

[
1
4dB ∧ ?ηdB −H ∧ dB + Lint(g,H)

]
, (7.1)

where Lint(g,H) is some Lagrangian density which denotes the coupling of H to the metric

1See also [284–288] for others actions of the same kind. See also [289] for a recent variant of the PST
method.

2See [267] for a detailed analysis of this aspect.
3Recently, an action for describing the dynamics of an M5-brane in the eleven-dimensional supergravity

background was proposed [292].
4In writing the action (7.1) we are not following the original notation of Sen, but the one of [291], to be

closer to the standard (2, 0) literature.
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field g and to external sources. For our purposes, we are not interested in the matter field
part of the Lagrangian. Here, the notation points out that, although in Sen’s approach the
background is generically curved, the Hodge star operator ?η is defined with respect to the
flat (Minkowski) metric.1 Varying the action (7.1) one finds that the equations of motion for
H and B are given by

d
(1

2 ?η dB +H
)

= 0 ,
1
2(dB − ?ηdB) +R = 0 ,

(7.2)

where R is defined by
δHLint := −

∫
δH ∧R . (7.3)

Note that the quantity R is a ?η anti self-dual 3-form, by construction. It follows that there
are two self-dual three forms: H and 1

2(dB + ?ηdB). The combination

Hs := H + 1
2(dB + ?ηdB) (7.4)

is free by the first equation of motion and does not contain physical degrees of freedom, due
to the wrong sign of its kinetic term2. Sen considered an interaction term of the form

Lint := H ∧ Φ(H) , (7.5)

where Φ is a linear map from self-dual three-forms to anti-self-dual three forms, that is,

Φ(H) := − ?η Φ(H) . (7.6)

This is determined by the following requirements, which are all satisfied at the level of action
itself:

• Φ annihilates anti-self-dual forms

Φ(H ′) = 0 , for H ′ = − ?η H ′ (7.7)

• It is symmetric in the sense that the condition

H1 ∧ Φ(H2) = H2 ∧ Φ(H1) (7.8)

holds for any two self-dual three-forms H1, H2.
1Similarly to the PST models, Sen’s actions are available only in spaces of Minkowski signature.
2Moreover, after extending the theory to an abelian (2, 0) theory, the field Hs is a singlet under super-

symmetry transformations [291].
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• Moreover, for a ?η-self-dual form H, the following linear combination is a self-dual form
on (M, g)

H − Φ(H) = ?g(H − Φ(H)) . (7.9)

There exists an explicit construction of a map with the above properties, which can be found
in [108, 109, 267]. However, one may immediately notice that the map Φ is necessarily aware
of the background metric, even though the (pseudo-)forms themselves are not.

Equations (7.2), now read

d
(1

2 ?η dB +H
)

= 0 ,

(1− ?η) (dB − Φ(H)) = 0 .
(7.10)

Moreover, in terms of the field

Hg := H − Φ(H) , (7.11)

the equations of motion can be recast into

dHs = 0 and dHg = 0 . (7.12)

Notice that (7.9) can be rewritten as Hg = ?gHg. The field Hg describes the physics of the
desired free chiral two-form on (M6, g).1 On the other hand, the field Hs is also free, but
decouples, at least at the level of equations of motion, from the physical degree of freedom
carried by Hg. A detailed analysis2 then shows [109] that this decoupling holds also at the
quantum level. Moreover, Hs also decouples from gravity (recall that only Φ “sees” g). Hence,
it is completely decoupled from the physical sector and can be properly be considered as an
auxiliary field (it is physically inaccessible). However, there is a minor drawback. One may
notice that the presence of the Hodge star operator ?η already suggests that the action (7.2)
is not manifestly diffeomorphism invariant. It was shown [108, 267], that the fields B and H
do not behave in standard way under diffeomorphisms3 and the non-standard transformations

1Hence, it is self-dual with respect (physical) metric g. It also possesses on-shell the standard transform-
ation properties under diffeomorphisms [267].

2This is done in the Hamiltonian formulation, where the fully quantum mechanical analysis of the action
is performed. It carries the degrees of field Π+ in Sen’s formulation [109]. For our purposes, it is sufficient to
consider the classical aspects of this action.

3They are not standard differential forms and sometimes dubbed as pseudo-forms. The analysis of (7.2)
under diffeomeorphisms is performed in [267].



158 7.3. Twistor action: Abelian case

which leave these fields invariant are determined. However, one can verify that the action is
indeed invariant under general coordinate transformations, as it should be.

A better understanding of the mathematical origin of Sen’s mechanism has been recently
given in [159], adopting the language of homotopy Maurer–Cartan theory. In particular, by
using that quasi-isomorphisms of L∞-algebras define classically equivalent field theories, the
unphysical field Hs has been identified as pure gauge, also in presence of coupling to matter
fields.

7.3. Twistor action: Abelian case

In this Section, we shall consider the twistor space action for Abelian self-dual tensor fields as
in [97–99] and we show that it reduces to its six-dimensional space-time counterpart on R6.

7.3.1. Action and equations of motion

In the previous Chapter we have seen how both the Penrose and the Penrose–Ward transforms
identify self-dual tensor fields on M6 with certain cohomology groups on twistor space P6.
These two isomorphisms, that we recall here for convenience

H3(Û ,OÛ(−2h− 4)) ∼= H0(U,Zh) ∼= H2(Û ,OÛ(2h− 2)) , (7.13)

allow1 for a twistor space action for chiral zero-rest-mass fields. In order to construct such
an action, we must allow the fields to go off-shell. This is most straightforwardly done in the
Dolbeault setting. Hence, we consider the Dolbeault representatives of the cohomology groups
H3(Û ,OÛ(−2h− 4)) and H2(Û ,OÛ(2h − 2)) and we lift them to off-shell fields on twistor
space, assuming they are not holomorphic. Then, the twistor action takes the form [97–99]

S =
∫
Û

Ω6,0 ∧B0,2
2h−2 ∧ ∂̄C

0,3
−2h−4 , (7.14)

for the fields B0,2
2h−2 ∈ Ω0,2(Û ,OÛ(2h− 2)) and C0,3

−2h−4 ∈ Ω0,3(Û ,OÛ(−2h− 4)), where the
subscript denote the respective homogeneity. Here, Ω6,0 is the top degree holomorphic form
of weight (6, 0) on P6, defined as the contour integral2

Ω6,0 := 1
2πi

∮
C

Ω4,0(z) ∧ Ω3,0(λ)
zAλA

, (7.15)

1We stress that this is a peculiar feature of the six-dimensional case.
2The contour integral localising the measure to the quadric P6 ⊂ P7 \P3 can be written equivalently in

terms of a holomorphic delta function as Ω6,0 =
∫

Ω4,0(z) ∧ Ω3,0(λ) δ(z · λ), see e.g. [98, 293]
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where C is any contour encircling P6 insideOP3(1)⊗C4 → P
3, while Ω3,0(λ) is given by (6.31)

and
Ω4,0(z) := 1

4!εABCDdzA ∧ dzB ∧ dzC ∧ dzD . (7.16)

We observe that the action (7.14) is globally defined as the respective weights cancel out. We
shall focus on the case h = 1, that is, the action for the differential forms B0,2 ∈ Ω0,2(Û ,OÛ)
and C0,3

−6 ∈ Ω0,3(Û ,OÛ(−6)), of holomorphic weight 0 and −6, respectively. Such action is
invariant under the obvious (higher) gauge transformations

B0,2 → B0,2 + ∂̄Λ0,1 , Λ0,1 → Λ0,1 + ∂̄f ,

C0,3 → C0,3
−6 + ∂̄Ξ0,2 , Ξ0,2 → Ξ0,2 + ∂̄Υ0,1 , Υ0,1 → Υ0,1 + ∂̄g ,

(7.17)

where the gauge parameters are differential forms on twistor space of appropriate weight.
Explicitly, Λ0,1 ∈ Ω0,1(Û ,OÛ), f ∈ C∞(Û ,OÛ) and Ξ0,2 ∈ Ω0,2(Û ,OÛ(−6)), Υ0,1 ∈
Ω0,1(Û ,OÛ(−6)), g ∈ C∞(Û ,OÛ(−6)). The Euler–Lagrange equations arising from the
action (7.14) imply the holomorphicity conditions

∂̄B0,2 = 0 = ∂̄C0,3
−6 . (7.18)

Consequently, by the Čech–Dolbeault correspondence, the differential forms B0,2, C0,3
−6 corres-

pond, on-shell, to representatives of the Čech cohomology groups H2(Û ,OÛ) and
H3(Û ,OÛ(−6)), respectively. Thus, they describe self-dual three-form fields on space-time
M6. Notice that the action for h = 1 may be considered as the six-dimensional counterpart
to holomorphic Chern–Simons theory (3.38) in the twistor description of self-dual fields on
four-dimensional space-time.

7.3.2. Equivalence to space-time action

Here, we explicitly show the off-shell equivalence of the action

S =
∫
Û

Ω6,0 ∧B0,2 ∧ ∂̄C0,3
−6 (7.19)

with its space-time counterpart on R6. To validate this claim, we need a three step procedure.
First, one needs to expand the field content (B0,2, C0,3

−6) along the basis (6.24) adapted to
the description P6 ∼= R

6 × P3. Subsequently, one has to (partially) gauge-fix the fields to
remove the extra symmetry beyond space-time gauge group. Finally, the space-time action
is obtained by integrating along the fibres of the twistor fibration. We shall be deliberately
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pedantic here as the following calculations also apply to the computationally more involved
non-Abelian case. This derivation follows that of the twistor action for Yang-Mills theory in
four-dimensions [84, 85, 95] and shares many of its features.1

Field expansions. We start by picking Euclidean signature, as discussed in 6.3.2.. Along
the line of (6.26), the (0, 3)-form field C0,3

−6 admits the expansion

C0,3
−6 = εABCD

λ̂Adλ̂B ∧ dλ̂C ∧ dλ̂D

[λλ̂]4
C0 + εCDEF

e[AλB] ∧ λ̂Cdλ̂D ∧ dλ̂E

[λλ̂]3
C̃AB,F

+ εABCD
eA ∧ eBλC ∧ λ̂[Edλ̂F ]

[λλ̂]2
C̊D,EF + εABCDeA ∧ eB ∧ eCλD Ĉ .

(7.20)

Here, the coefficient fields are smooth functions of (x, λ, λ̂) of appropriate homogeneity as
shown in the table below. In particular, C̃AB,F = −C̃BA,F and C̊D,EF = −C̊D,FE. Analog-
ously, for the (0, 2)-form field B0,2 we may write

B0,2 = εABCDeA ∧ eBλCBD + e[AλB] ∧ λ̂[Cdλ̂D]

[λλ̂]2
B̊ AB
CD

+ εABCD
λ̂Adλ̂B ∧ dλ̂C

[λλ̂]3
B̂D ,

(7.21)

where B̊ AB
CD is anti-symmetric in both pairs of indices and again the coefficient fields depend

on (x, λ, λ̂). Moreover, we recall the expression (6.28) for the Dolbeault operator.

BA B̊ AB
[CD] B̂A C0 C̃AB,C C̊A,BC Ĉ

Homogeneity (1, 0) (2, 0) (3, 0) (−2, 0) (−3.0) (−3.0) (−4.0)

Figure 7.1: Coefficient fields weights

Gauge fixing. We immediately notice that the coefficient field B̂D in (7.21) may be set to
zero thanks to cohomological considerations. Recall that, here, B0,2 is part of the connective
structure of a complex (but not necessarily holomorphic) one-gerbe Γ → P6, which is homo-
morphically trivial upon restriction to submanifolds Y ↪→ P6. Such a condition amounts to
considering the connection (0, 2)-form field B0,2 as being in a gauge in which the restrictions
B0,2|Y vanish. Note that a similar argument does not apply to the field C0,3

−6 , because of its
1See also [94] where a twistor space action for Yang–Mill–Higgs theory in three dimensions is discussed.
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different nature. In fact, it comes from the Penrose transform 6.1 and it carries an holomorphic
weight.1

In addition, following [259,85], we may exploit the gauge redundancy of the action (7.14)
by restricting to a gauge in which

∂̄†YB
0,2|Y = 0 , ∂̄†YC

0,3
−6 |Y = 0 . (7.22)

This gauge will be referred to as space-time gauge.2 Here, ∂̄Y is the ∂̄-operator restricted to
all the fibres Y ∼= P

3 and ∂̄†Y = − ∗ ∂̄Y∗ denotes the adjoint operator of ∂̄Y, with respect
to the Fubini-Study metric on P3. In other words, we require the components of the field
content along P3 to be fiberwise coclosed on each Yx := π1(π−1

2 (x)) ↪→ P6, corresponding to
a space-time point x ∈ M6. This gauge is not a complete gauge fixing on Euclidean twistor
space. Hence, there is still some residual (higher) gauge freedom. In particular transformations
of the form

∂̄†Y∂̄YΛ0,1|Y = 0 = ∂̄†Y∂̄YΞ0,2|Y (7.23)

for all fibres Y, and analogous conditions for all the (higher) gauge parameters, leave (7.22)
unchanged. Let us consider the connection form B0,2. On top of (7.22) we also require similar
conditions to apply for the gauge parameters, that is

∂̄†YΛ0,1|Y = 0 (7.24)

together with the requirement
∂

∂λ̂

¬ ∂̄Λ0,1 = 0 . (7.25)

This determines for the field Λ0,1 an expansion of the form

Λ0,1 = e[AλB]ΛAB , (7.26)

where ΛAB denotes a space-time parameter. Residual gauge transformations with parameter
f obey

∂̄†Y∂̄Yf(x, λ, λ̂) = 0 . (7.27)

This tells that f is harmonic along the fibres and f(x, λ, λ̂) = f(x) by the maximum modulus
principle. Hence, in space-time gauge (7.22) on P6, the residual gauge freedom reduces

1It does not admit a potential formulation.
2Sometimes it is also called Woodhouse gauge or harmonic gauge.
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precisely to that of ordinary gauge transformations on R6.1

Because of trivial dimensional reasons (dimC Y = 3) the condition (7.22) tells us that
in this gauge the restriction C0,3

−6 |Y is required to be harmonic along the fibres of P6 →
R

6. Moreover, since P3 is compact, the Hodge and Dolbeault theorems2 imply that the
restricted component field C0|Y is fixed in space-time gauge to be a harmonic representative
of H3(P3,OP3(−6)). Computing the Čech cohomology group H3(P3,OP3(−6)) gives the
index structure of C0, which turns out to have ten symmetric space-time indices [97]. Thus,
the field C0 takes the form

C0(x, λ, λ̂) = α1CAB
λ̂Aλ̂B

[λλ̂]2
, (7.28)

where CAB is a symmetric field depending only on the space-time coordinates xAB and the
numerical coefficient α1 is inserted for future convenience. However, the other components of
the field C0,3

−6 are not constrained by our gauge condition.3

Integration along the fibres. To integrate, we first observe that the holomorphic volume
form (7.15) on Euclidean twistor space takes the form

Ω6,0 = 2πi [λλ̂]2
4!4! εABCDe

A ∧ eB ∧ eC λ̂D ∧ λEdλF ∧ dλG ∧ dλHεEFGH , (7.29)

in terms of the complex conjugates of the differential forms in (6.24).4 This is obtained by
performing the contour integration as shown in Appendix F. Moreover, we recall that the
Fubini-Study metric ωFS on P3 in Euclidean signature has a canonical form, induced by spinor
conjugation, and its Kähler form reads

K = 1
4!

1
4!ε

ABCDλAdλB ∧ dλC ∧ dλD ∧ λ̂Edλ̂F ∧ dλ̂G ∧ dλ̂H

[λλ̂]4
εEFGH . (7.30)

1Moreover, by using the Dolbeault representation (6.32) for h = 1 one can show that the gauge parameter
g in (7.17) is a holomorphic function of homogeneity (−6, 0) and, hence, must vanish. This argument shall
be elaborated in more detail in [111]. See also Appendix E for some related geometric notion.

2See e.g. [294].
3We just recall here that in Euclidean signature the Penrose transform provides a self-dual three form on

space-time via the Woodhouse construction [259] as shown in Appendix F.
4Explicitly, we have defined eA := λBdxAB

[λλ̂] .
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The action (7.19) takes the form

S =2
3β

∫
U×P3

d6x ∧K

BAλB

(
α1
λ̂C λ̂D

[λλ̂]2
∂ABCCD −

1
3
λ̂C ṼCD

[λλ̂]
C̃AB,D

)
+

+ 2B̊ CD
[AB]

(
εDEFG

λ̂AλC

[λλ̂]
V
E
C̃FG,B + εABEF

λC λ̂
H

[λλ̂]2
λ̂GṼGEC̊D,FH

) ,
(7.31)

as the other components wedge to zero against Ω6,0. Here, we observe that the expression
inside the brackets is weightless. In writing (7.31) we have used the relation1

βd6x = [λλ̂]2εABCDeA ∧ eB ∧ eC λ̂D ∧ eI ∧ eJ ∧ eKλLεIJKL (7.32)

as follows from (6.24)-(6.25) and (7.29). The field B̊ CD
AB appears only linearly, so it can be

considered as a Lagrange multiplier field. Integrating it out enforces the second line in (7.31)
to vanish. Moreover, integrating by parts the second term in the first line, enforces the
condition λ̂C ṼCDBA = 0. Hence,2 the field BA must be holomorphic in λ. Accounting for its
homogeneity with respect to λ (and λ̂) this constraint necessary implies

BA(x, λ, λ̂) = B B
A λB , (7.33)

The field B B
A is trace-less and depend only on xAB. This provides the required object on

space-time. Having solved this constraint leaves us with the following integral

S = 2
3β

∫
U×P3

d6x ∧Kα1
λBλC λ̂

I λ̂J

[λλ̂]2
B C
A ∂ABCIJ . (7.34)

Finally, we need to integrate over the P3-fibres of the Euclidean twistor fibration, leaving only
Euclidean space integration. This is done by using the general formula∫

P3

K

[λλ̂]2h
λA1 · · ·λA2hλ̂

B1 · · · λ̂B2h = 1
αh
δB1

(A1
· · · δB2h

A2h) , (7.35)

where αh := (2h+ 3)!/(2h)!3!. This is just a consequence of Serre duality on projective space
P

3, as observed in Appendix F. Therefore, the twistor action (7.19) reduces to the space-time
action

S = 2
3β

∫
U

d6xB C
A ∂ABCBC , (7.36)

as desired.
1The numerical coefficient β is yet to be determined [111].
2 In fact λ̂C ṼCDBA = 0 implies ∂

∂λ̂D
BA = 0, since Υ̂ := λ̂A ∂

∂λ̂A
is the homogeneity operator which

counts the homogeneity w.r.t λ̂.
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7.3.3. An interpretation from homotopy algebras

Here, we just briefly comment on some work in progress. In order to apply the L∞-perspective
we need to employ the BV formalism at the level of twistor space.

Batalin-Vilkovisky field theory on twistor space. Recall that the classical BRST setup
corresponds to a Chevalley–Eilenberg resolution taking care of the gauge equivalences. Hence,
the BRST field content FBRST on P6 of the theory is given by the field B0,2 and C0,3

−6 , together
with gauge parameters defined in (7.17). We consider the differential complex1

L =



g

Ω0,0
−6

Υ0,1

Ω0,1
−6

Ξ0,2

Ω0,2
−6

C0,3

Ω0,3
−6

⊕ ⊕ ⊕

︸︷︷︸
L−2

f

Ω0,0︸︷︷︸
L−1

Λ0,1

Ω0,1︸︷︷︸
L0

B0,2

Ω0,2︸︷︷︸
L1

∂̄ ∂̄ ∂̄

∂̄ ∂̄


. (7.37)

The Batalin–Vilkovisky formalism consists of doubling the field space, that is introducing the
anti-fields for each field, ghost, ghost for ghosts, etc. This extends the L∞-algebra to one
that encodes the full dynamical information. Hence, the BV space of fields is given by

FBV = {a, a+,Ξ0,2,Ξ0,2+
,Υ0,1,Υ0,1+

,Λ0,1,Λ0,1+
, f, f+, g, g+} , (7.38)

where we have defined a := B0,2 + C0,3
−6 . The corresponding L∞-degrees and ghost degrees

are summarised in the table below for clarity.

field g+ f+ + Υ† Λ+ + Ξ+ a+ a Λ + Ξ f + Υ g

L∞-degree 5 4 3 2 1 0 −1 −2
ghost-degree −4 −3 −2 −1 0 1 2 3

Figure 7.2: BV space of fields of self-dual field theory on twistor space P6

The BV complex is obtained by the shifting the cotangent fibres by 3, that is L′ = T ∗[−3]L.

1Here, the notation implies that Ω0,• = Ω0,•(Û ,OÛ ) and the subscript −6 denotes forms taking values
on OÛ (−6).
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Explicitly, we define our relevant L∞-algebra via the differential complex

L′ =



g

Ω0,0
−6

Υ0,1

Ω0,1
−6

Ξ0,2

Ω0,2
−6

C0,3

Ω0,3
−6

B0,2+

Ω0,4
−6

Ξ0,2+

Ω0,5
−6

Υ0,1+

Ω0,6

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

︸︷︷︸
L′−2

f

Ω0,0︸︷︷︸
L′−1

Λ0,1

Ω0,1︸︷︷︸
L′0

B0,2

Ω0,2︸︷︷︸
L1

C0,3+

Ω0,3︸ ︷︷ ︸
L′2

Λ0,1+

Ω0,3︸ ︷︷ ︸
L′3

f+

Ω0,5︸︷︷︸
L′4

g+

Ω0,6︸︷︷︸
L′5

∂̄ ∂̄ ∂̄ ∂̄ ∂̄ ∂̄

∂̄ ∂̄ ∂̄ ∂̄ ∂̄ ∂̄


.

(7.39)
The BV space of fields comes with the canonical symplectic structure

ωBV =
∫
Û

Ω6,0 ∧
(
δB0,2 ∧ δB0,2+ + δC0,3 ∧ δC0,3+ − δΛ0,1 ∧ δΛ0,1+ + · · ·

)
(7.40)

of degree −1. Defining the superfield

a := a+ a+ + Ξ0,2 + Ξ0,2+ + Υ0,1 + Υ0,1+ + · · · (7.41)

the BV action reads
SBV := 1

2〈a, ∂̄a〉L′ , (7.42)

where 〈−,−〉L′ is the cyclic structure of degree −3 given by (2.52c). Hence,

QBV := {SBV,−}BV (7.43)

and the nilpotency condition Q2
BV = 0 is equivalent to the classical master equation

{SBV, SBV}BV = 0 . (7.44)

7.4. Twistor action: Non-Abelian case

In the following, we address the question of constructing a non-Abelian action on twistor space
P6. Inspired by homotopy Maurer–Cartan theory, a non-Abelian analogue of the twistor space
action (7.14) has been proposed in [43].

7.4.1. A candidate action from higher gauge theory

Let G be a Lie 2-quasi-group and (L , µi) be the associated 2-term L∞-algebra, with L :=
Lie(G ). We remind the reader that L is the graded vector space L = L−1 ⊕ L0, together with



166 7.4. Twistor action: Non-Abelian case

totally antisymmetric multilinear higher products µi : L∧i → L, i = 1, . . . , 3, of degree 2 − i
satisfying (2.44a). Moreover, in order to have an action principle, we assume that L comes
equipped with a cyclic inner product 〈−,−〉 of L∞-degree +1, encoding the dynamics. We
want to extend the action (7.19) to the setting of Section 6.5.2.. As in the Abelian case, to
write down an action principle on twistor space we need an off-shell approach to holomorphic
principal G -bundles. We exploit the fact that the Čech–Dolbeault correspondence extends
to higher principal bundles [97, 100–102, 295, 103].1 Consequently, a holomorphic principal
G -bundle can be equivalently described by a complex principal G -bundle with a connective
structure locally given by2

A0,1 ∈ Ω0,1(Û , L0) , B0,2 ∈ Ω0,2(Û , L−1) , (7.45)

and subject to the constraint equations

F0,2 = 0 and H0,3 = 0 , (7.46)

where

F0,2 := ∂̄A0,1 + 1
2µ2(A0,1 , A0,1) + µ1(B0,2) ∈ Ω0,2(Û , L0) ,

H0,3 := ∂̄B0,2 + µ2(A0,1 , B0,2)− 1
3!µ3(A0,1 , A0,1 , A0,1) ∈ Ω0,3(Û , L−1) .

(7.47)

Besides the connective structure (7.45), to write down the action we add to the kinematical
data the fields3

C0,3 ∈ Ω0,3(Û ,OÛ(−6)⊗ L0) and D0,4 ∈ Ω0,4(Û ,OÛ(−6)⊗ L−1) . (7.48)

Twistor action. Hence, with these ingredients we consider the following twistor action [43]

S = 1
2πi

∫
Û

Ω6,0 ∧LhhCS , (7.49)

1In these papers, a version of the Čech–Dolbeault correspondence for a relative exterior derivative along
a fibration is proven. However, the arguments are completely analogous for the ∂̄ operator on a complex
manifold X. See also Appendix E.

2Recall that given an L∞-algebra one may construct the kinematical data of a corresponding higher
gauge theory. That means, specifying notions of gauge potentials, curvatures, gauge transformations, Bianchi
identities, etc.

3Note that here and in the following we omit to explicitly denote the holomorphic weight of the fields to
ease the notation.
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where
LhhCS := 〈B0,2, ∂̄C0,3〉L + 〈D0,4, ∂̄A0,1〉L + 1

2〈D
0,4, µ2(A0,1, A0,1)〉L

+ 〈D0,4, µ1(B0,2)〉L − 〈µ2(A0,1, B0,2), C0,3〉L

+ 1
3!〈µ3(A0,1, A0,1, A0,1), C0,3〉L .

(7.50)

This is the most general holomorphic higher Chern–Simons action one could write down
in this setting. As a first consistency check we observe that, since H1(Û ,OÛ) = 0 and
H4(Û ,OÛ(−6)) = 0, this action reduces to (7.14) in the Abelian case. At the infinitesimal
level, gauge transformations are parametrised by a degree zero element η ∈ Ω(0,•)(Û , L), which
decomposes as

η := X0,0 + Λ0,1 with X0,0 ∈ C∞(Û , L0) , Λ0,1 ∈ Ω0,1(Û , L−1) . (7.51)

Then, the infinitesimal gauge transformations of (A0,1, B0,2) are read off (3.10). The action
is invariant under the transformations

δA0,1 = ∂̄X0,0 − µ1(Λ0,1) + µ2(A0,1, X0,0) ,

δB0,2 = ∂̄Λ0,1 + µ2(B0,2, X0,0) + µ2(A0,1,Λ0,1) ,

δC0,3 = µ2(C0,3, X0,0) ,

δD0,4 = µ2(D0,4, X0,0) + µ2(C0,3,Λ0,1)

(7.52)

The curvatures (7.47) satisfy each a Bianchi identity and induced gauge transformations. In
particular, the latter read1

δF0,2 = µ2(F0,2, X0,0) ,

δH0,3 = −µ2(H0,3, X0,0)− µ2(F0,2,Λ0,1) .
(7.53)

The corresponding equations of motion for (A0,1, B0,2) are nothing but the equations (7.46),
as desired. Modulo gauge transformations, this is equivalent to the statement that the complex
principal G -bundle in question is holomorphic on-shell. Assuming M6-triviality, solutions to
the Euler-Lagrange equations of the twistor action (7.49) are in one-to-one correspondence to
moduli space of solutions of solutions to higher gauge theory for a self-dual 3-form curvature,
via Penrose–Ward transform. In the next section we obtain the stronger result that such a
correspondence also holds off-shell. In addition, the action (7.49) gives the equations

∂̄C0,3 + µ1(D0,4)− µ2(A0,1, C0,3) = 0 ,

∂̄D0,4 + µ2(A0,1, D0,4) + µ2(B0,2, C0,3)− 1
2µ3(C0,3, A0,1, A0,1) = 0 .

(7.54)

1Note that the action (7.49) can be re-written as S =
∫
Û

Ω6,0 ∧
{
〈D0,4,F0,2〉L − 〈H0,3, C0,3〉L

}
.
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for the fields C0,3 and D0,4 in the background of A0,1 and B0,2, respectively.

7.4.2. Equivalence to space-time action

Here, we follow the same steps as in 7.3.2. to reduce the twistor action to the desired space-
time action on R6.

Fields expansion. The starting point of the analysis consists of considering the Euclidean
structure given in 6.3.2.. Together with (7.20) and (7.21), we consider the following expansion

A0,1 = e[AλB]A
AB + λ̂[Adλ̂B]

[λλ̂]2
ÃAB , (7.55)

for the (0, 1) connection form and similarly

D0,4 = εCDEF
e[AλB] ∧ λ̂Cdλ̂D ∧ dλ̂E ∧ dλ̂F

[λλ̂]4
DAB + εABCDeA ∧ eBλC∧

∧ εEFGH
λ̂Edλ̂F ∧ dλ̂G

[λλ̂]3
D̃ H
D + εABCD

eA ∧ eB ∧ eCλD ∧ λ̂Edλ̂F

[λλ̂]2
D̂EF ,

(7.56)

for the remaining kinematical field. Here, we have defined the skew-symmetric coefficients
fields AAB and ÃAB of holomorphic weight 0 and +2, respectively. Moreover, DAB, D̃B

A and
D̂AB have all homogeneity (−2, 0) and satisfy DAB = −DBA and D̂AB = −D̂BA. Recall that
at this points the coefficients are functions of (x, λ, λ̂).

Gauge fixing. It is crucial here to remark the different geometric role played by the connect-
ive structure (7.45) and the kinematic fields (C0,3, D0,4). The M6-triviality of the principal
G -bundle ĝ : N(Č (Û→ P6))→ G is encoded in the assumption of the existence of a gauge
in which the differential forms both A0,1 and B0,2 have no components along the submanifolds
P

3 ↪→ P6. On top of that, as in the Abelian case, we shall employ the space-time gauge1

∂†YA
0,1|Y = 0 , ∂†YB

0,2|Y = 0 , ∂†YC
0,3|Y = 0 (7.57)

and similarly for all the gauge parameters. We remind the this tells us that the field C0,3 is
harmonic upon restriction to the fibres of the Euclidean twistor fibration. This means that
the λ-dependence of the coefficient field C0 is fixed by (7.28). Moreover, this choice restricts

1Obviously, there are no (0, 4)-forms on Y.
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the remaining gauge freedom to that of the standard space-time gauge transformations, that
is, the freedom of performing gauge transformations on R6 × P3 that are the pull-back of
space-time gauge transformations on R6.1

Integration along the fibres. By wedging the gauge-fixed holomorphic higher Chern–
Simons form against the volume form Ω6,0, the non-Abelian action (7.49) takes the form

S := S1 + S2 , (7.58)

where

S1 :=
∫
Û

Ω6,0 ∧
[
〈B0,2, ∂̄C0,3〉L − 〈µ2(A0,1, B0,2), C0,3〉L

+ 1
3!〈µ3(A0,1, A0,1, A0,1), C0,3〉L

]

= β
∫
U×P3

d6x ∧K
[
−2

3〈V
A
BA, C0〉L −

1
3〈µ2(AAB, BA), C0〉LλB

− 1
12〈µ3(AAB, AAD, ACD), C0〉LλBλC −

1
3〈BA,

λ̂C ṼCD

[λλ̂]
C̃AB,D〉LλB

]
,

(7.59a)
and

S2 :=
∫
Û

Ω6,0 ∧
[
〈D0,4, ∂̄A0,1〉L + 1

2〈D
0,4, µ2(A0,1, A0,1)〉L + 〈D0,4, µ1(B0,2)〉L

]
= β

∫
U×P3

d6x ∧K
[
−1

6〈D
AB, ∂CEAEA − ∂EAACE〉LλBλC

− 1
12〈D

AB, µ2(ACD, ADA)〉LλBλC + 1
3〈D

AB, µ1(BA)〉LλB + 2
9〈D̃

B
A ,

λ̂C ṼCB

[λλ̂]
AAD〉LλD

]
(7.59b)

In deriving (7.59a) and (7.59b) we have made repeatedly use of the cyclicity equation2 (2.47b)
together with (7.30) and (7.32). We further observe that the component fields C̃AB,D and
D̃ B
A can be treated as Lagrange multiplier fields. Integrating them out enforces the constraints

λ̂C ṼCBBA = 0 , λ̂C ṼCBA
AD = 0 , (7.61)

1The residual gauge symmetry still needs to be fixed further in order to quantise the theory. Any ordinary
gauge choice will do the trick.

2Recall that a cyclic structure on L is a graded symmetric map. Hence, 〈−,−〉L satisfies

〈X,Y 〉L = −(−)(|X|L−1)(−)(|Y |L−1)〈Y,X〉L . (7.60)
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which, because of homogeneity reasons, yield

BA(x, λ, λ̂) = −B B
A λB and AAB(x, λ, λ̂) = 2AAB . (7.62)

Here, the fields AAB and B B
A denote space-time functions and the numerical coefficients have

been chosen for future convenience. Also, recall that AAB = 1
2εABCDA

CD and B B
A is trace-

less. As regards the field D0,4, the only component surviving in this gauge is DAB. Taking
into account its homogeneity, it admits the general power series expansion

DAB(x, λ, λ̂) = D AB
CD (x) λ̂

C λ̂D

[λλ̂]2
+D ABC

DEF (x)λC λ̂
Dλ̂Eλ̂F

[λλ̂]3
+ · · · , (7.63)

where each of the space-time coefficients is skew-symmetric in AB. Now that the λ-dependence
is completely determined we can directly integrate out the P3 degrees of freedom, reducing
the twistor action (7.49) to a space-time action on R6. As we shall see, the fibre integration
will also fix the space-time index structure of the field DAB. By using relations (7.62), (7.63)
and integrating along the P3-fibres we get

S1 = 2
3β

∫
U

d6x 〈CBC , ∂A(BB
C)
A + µ2(AA(B, B

C)
A ) + µ3(AA(B, AAD, A

C)D)〉L (7.64)

together with

S2 = −1
3αDβ

∫
U

d6x 〈D B
A , (∂ACACB − ∂CBAAC) + µ2(AAC , ACB) + µ1(B A

B )〉L . (7.65)

Here, in the first equation we have used again (7.28), while in deriving S2 we have defined the
coefficient field D B

A as

αDD
B
A := 1

α1
D BC
CA + 1

α3/2
D BCD
CDA + · · · , (7.66)

depending only on space-time coordinates. Here, the coefficient αD is yet to be determined,
while the object D B

A is trace-less. Finally, by recalling the space-time curvatures (6.51) and
taking αD := 2 we obtain the expression

S = 2
3β

∫
U

d6x
[
〈CAB, HAB〉L − 〈D B

A , F A
B 〉L

]
. (7.67)

This is consistent with our expectation about the higher gauge theory action (7.49) on twistor
space descending on space-time R6. In the next Chapter we shall discuss further investigations
we plan to conduct in the next future.



8
Conclusions and outlook

8.1. Outcomes

We devoted the first part of the Thesis to deepen our understanding of the intimate relation
between L∞-algebras and classical field theory. Explicitly, in Chapter 4 we explained how
L∞-algebras necessarily arise from the classical master equation of the BV formalism and why
quasi-isomorphisms constitute the correct and very useful notion of equivalence, corresponding
to the classical equivalence of field theories. The aspiration was to present an accessible, self-
contained review of the complete picture with the aim of increasing the interest in the subject
and allowing for further investigation of higher structures in both classical and quantum field
theories. We also presented some new results and observations. In Chapter 3 we observed that
the homotopy Maurer–Cartan theory always allows for a supersymmetric extension by auxiliary
fields, just as ordinary Chern–Simons theory. We also noticed that homotopy Maurer–Cartan
action, at least formally, satisfies the quantum master equation of the BV formalism, which can
simplify the computation of the quantum master equation. Most importantly, our perspective
is adapted to an application towards higher gauge theory from the outset. As examples,
in Chapter 5 we have explored Yang–Mills theory and higher Chern–Simons theory in this
formalism. In this regard, we have provided a quasi-isomorphism between first and second
order formulations of Yang–Mills theory in the Q-manifolds language. We considered higher
Chern–Simons theory for a Lie n-algebra or n-term L∞-algebra in dimension 2 + n, and we
constructed the minimal model of the corresponding gauge L∞-algebra.

In the second part of the Thesis we discussed an application coming from the interplay
between higher homotopy structures and twistor theory. In particular, in Chapter 7 we have
explicitly showed how the twistor space actions of [97–99] descend to Euclidean six-dimensional

171
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space-time. To do so, we have imposed Euclidean reality conditions on twistor space P6, we
have expanded the fields in an adapted basis by using non-holomorphic coordinates (xAB, λA)
and finally we have integrated along the P3-fibres of the twistor fibration. We have also
proposed a twistor space action for non-Abelian fields in terms of higher holomorphic Chern–
Simons theory. We have performed similar calculations to lift the twistor correspondence
off-shell. Finally, we have commented about the application of the L∞-perspective in this very
context.

8.2. Future directions

We conclude the Thesis with a brief survey of some of the possible future directions for research
in this field. We point out that this is by no means an exhaustive list and there are numerous
projects that one could embark on. We only consider those that, by the opinions and interests
of the author, are the most compelling.

Self-dual actions from twistor space. In order not to interrupt the flow, we start from
the discussion in Chapter 7. As already mentioned, the calculations here are based on the
work in progress [111]. Our objective in this context is to adopt the L∞-perspective via the
BV formalism on twistor space P6 to see if space-time actions such as the PST action or
Sen’s action naturally descend from the same twistor space action. Hopefully, these actions
would emerge by considering L∞-quasi isomorphisms at the level of twistor space, such as
field redefinitions or integrating in and out additional fields. Possibly, the greater freedom in
choosing a gauge on twistor space could allow us to obtain different space-time actions from
different gauge choices.

Always in this setting, it would be interesting to employ the formalism used recently by
Popov in four dimensions [296] to construct a graded extension of P6, by considering a non-
integrable almost complex structure on it.

MSYM theory as Higher Chern-Simons theory. The twistor space of N = 3 supersym-
metric Yang–Mills theory is a five-dimensional complex manifold and therefore the relevant
holomorphic bundles cannot be described in terms of an ordinary holomorphic Chern–Simons
action functional. Recently, Saemann & Wolf [110] have proposed twistor space action by
using a higher holomorphic Chern–Simons theory for a Lie 3-algebra L = L−2 ⊕ L−1 ⊕ L0, see
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also [111]. It would be very interesting to show the off-shell correspondence of this twistor
action to the MSYM action on space-time. This would allow to analyse higher holomorphic
CS theory within twistor string theory and in the computation of the N = 4 SYM scattering
amplitudes. In this case, the calculations turn out to be quite involved because of the six-
fermionic coordinates on ambitwistor space. We have started to tackle this problem in the
past, but most of the work still needs to be done.

Renormalisation group and quasi-isomorphisms. This Thesis is intended also as ground
work for future research on higher structures in the context of classical and quantum BV
formulations of field theories. A particularly interesting topic here is the relation between
quasi-isomorphism and renormalisation group flow, which has been established in some special
cases, cf. [297]. This should be a quasi-isomorphism of quantum homotopy algebras. For some
recent work on the renormalisation in the BV context, see [298,299] and in particular [219,171].

Supersymmetric localisation in higher gauge theory. We have seen how to supersym-
metrise homotopy Maurer–Cartan theory by adding auxiliary fields, similarly to ordinary Chern–
Simons theory. Hence, it would be interesting to apply (higher) supersymmetric localisation
techniques to try and evaluate exactly the path integral of supersymmetric higher Chern-
Simons theory on compact manifolds. Here, besides the computational task, there is still
some conceptual gap to fill. However this definitely represents an interesting topic that is
worth some further analysis.
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A
L∞-algebras and L∞-morphisms: a coalgebra

perspective

Below we shall explain the relation between L∞-algebras and codifferential coalgebras. In this
perspective, all higher products are packaged in a single codifferential. We also derive the
structure equation for morphisms of L∞-algebras from morphisms of codifferential coalgebras.
The following calculations can be found in [42]. The relevant original reference for this material
is [134], helpful may also be the detailed discussions in [300–302].

A.1. Codifferential graded coalgebras

Preliminaries. Given a real graded vector space V , we define the following associative al-
gebras:

tensor algebra : ⊗•V := R⊕ V ⊕ (V ⊗ V)⊕ · · · =
⊕
k≥0

⊗kV ,

symmetric tensor algebra : ⊙•V := R⊕ V ⊕ (V � V)⊕ · · · =
⊕
k≥0

⊙kV ,

antisymmetric tensor algebra : ∧•V := R⊕ V ⊕ (V ∧ V)⊕ · · · =
⊕
k≥0

∧kV ,

reduced tensor algebra : ⊗•
0V := V ⊕ (V ⊗ V)⊕ · · · =

⊕
k≥1

⊗kV ,

reduced symmetric tensor algebra : ⊙•
0V := V ⊕ (V � V)⊕ · · · =

⊕
k≥1

⊙kV ,

reduced antisymmetric tensor algebra : ∧•
0V := V ⊕ (V ∧ V)⊕ · · · =

⊕
k≥1

∧kV ,

(A.1)
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cf. Section 2.2.. Here, � and ∧ denote the graded symmetric and antisymmetric tensor
products, with weight one, e.g.

v1 � v2 := v1 ⊗ v2 + (−1)|v1| |v2|v2 ⊗ v1 . (A.2)

These tensor products yield embeddings of ⊙• V and ∧• V into ⊗• V as well as ⊙•0 V and ∧•0 V
into ⊗•0 V. We also have projectors from the reduced tensor algebra ⊗•0 V to both reduced
symmetric and antisymmetric algebras:

pr�(v1 ⊗ · · · ⊗ vi) :=
∑
σ∈Si

ε(σ; v1, . . . , vi)vσ(1) � · · · � vσ(i) ,

pr∧(v1 ⊗ · · · ⊗ vi) :=
∑
σ∈Si

χ(σ; v1, . . . , vi)vσ(1) ∧ . . . ∧ vσ(i) ,
(A.3)

where ε(σ; v1, . . . , vi) and χ(σ; v1, . . . , vi) are the symmetric and antisymmetric Koszul signs
of a permutation σ. Explicitly, we have

v1 � · · · � vi = ε(σ; v1, . . . , vi)vσ(1) � · · · � vσ(i) (A.4)

and
`1 ∧ . . . ∧ `i = χ(σ; `1, . . . , `i)`σ(1) ∧ . . . ∧ `σ(i) (A.5)

for `1, . . . , `i ∈ V. Using the shift isomorphism s• defined in (2.13), we obtain the identity

χ(σ; `1, . . . , `i) = (−1)
∑i−1

j=1(i−j)(|`j |+|`σ(j)|)ε(σ; s`1, . . . , s`i) , (A.6)

which we shall use later.

Reduced symmetric coalgebra. Consider now the reduced algebras ∧•0 V and ⊙•
0 V as

introduced in (2.11c). Together with the reduced comultiplication,

∆0 : ⊙•0V → ⊙•
0V ⊗⊙•0V ,

v1 � · · · � vi 7→
∑
j+k=i

∑
σ∈Sh(j;k)

ε(σ; v1, . . . , vi)(vσ(1) � · · · � vσ(j))⊗ (vσ(j+1) � · · · � vσ(i)) ,

(A.7)⊙•
0 V becomes a cocommutative coalgebra.

Given functions f1, f2 : ⊙•0 V →⊙•
0 V , we define the symmetrised tensor product

f1 � f2 := m� ◦ (f1 ⊗ f2) ◦∆0 , (A.8)
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where m�(v1 ⊗ v2) := v1 � v2 for v1,2 ∈ V . Explicitly,

(f1 � f2)(v1 � · · · � vi) =

=
∑
j+k=i

∑
σ∈Sh(j;k)

ε(σ; v1, . . . , vi)f1(vσ(1) � · · · � vσ(j))� f2(vσ(j+1) � · · · � vσ(i)) .
(A.9)

Formula (A.8) generalises to expressions f1 � · · · � fi using shuffles with i ordered subsets.

Codifferentials. A codifferential on a coalgebra (⊙•0 V,∆0) is a linear map D : ⊙•0 V →⊙•
0 V of degree 1, which is a nilquadratic coderivation,

∆0D = (D ⊗ 1)∆0 + (1⊗D)∆0 and D2 = 0 . (A.10)

The first equation is the coalgebra analogue of the Leibniz rule. The second equation is
equivalent to

∞∑
i=1

∑
j+k=i

Dk+1(Dj � id�k) = 0 (A.11)

for all i ≥ 1, where Dk : ⊙k
0 V→ V is the restriction of the codifferential,

Dk := prV ◦D ◦ ι�k0V . (A.12)

Note that we can pull back Dk along the projection pr� defined in (A.3) to a map Dk :⊗k
0 V→ V. The condition D2 = 0 then simply translates to

∑
j+k=i

Dk+1(Dj ⊗ id⊗k) ◦
∑

σ∈Sh(j;i)
ε(σ,−)σ(−) = 0 (A.13)

for every i > 0, where the sum is taken over all (j; i)-shuffles, ε(σ,−) is the Koszul sign of
the shuffle and σ(−) is the application of the shuffle to elements of ⊗i

0 V.

A.2. L∞-algebras from codifferentials

The homological vector field Q dualises to the codifferential D of homogeneous degree 1 on⊙•
0 V ∼=

∧•
0 L, where the isomorphism is the shift isomorphism s• defined in (2.13). First, we

note that the codifferential decomposes into a sum

D =
∑
i∈N

D̃i . (A.14)
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The restricted codifferentials on the coalgebra (⊙•0 V,∆0) now induce a set of totally anti-
symmetric, multilinear products µi on ∧•0 L with L = V[−1]. We define higher products

µi := (−1) 1
2 i(i−1)+1s−1 ◦Di ◦ s⊗i (A.15)

with s⊗i as in (2.13). Here, we note that the homotopy Jacobi identities follow from Q2 = 0
⇔ D2 = 0. Inserting

id⊗i = (−1) 1
2 i(i−1)s⊗i ◦ (s−1)⊗i (A.16)

into the conditions (A.11) equivalent to D2 = 0 and concatenate with s−1 and s⊗i to obtain

0 =
∑
j+k=i

s−1 ◦Dk+1 ◦ (Dj ⊗ id⊗k) ◦
∑

σ∈Sh(j;i)
ε(σ,−)σ(−) ◦ s⊗i

=
∑
j+k=i

(−1) 1
2k(k+1)+ 1

2 i(i−1)s−1 ◦Dk+1 ◦ s⊗k+1

◦ (s−1)⊗(k+1) ◦ (Dj ⊗ id⊗k) ◦ s⊗i ◦ (s−1)⊗i ◦
∑

σ∈Sh(j;i)
ε(σ,−)σ(−) ◦ s⊗i

=
∑
j+k=i

(−1) 1
2k(k+1)+k(j+1)+ 1

2 i(i−1)s−1 ◦Dk+1 ◦ s⊗k+1

◦
(
(s−1 ◦Dj ◦ s⊗j)⊗ (s−1)⊗k

)
◦ (id⊗j ⊗ s⊗k) ◦ (s−1)⊗i ◦

∑
σ∈Sh(j;i)

ε(σ,−)σ(−) ◦ s⊗i

=
∑
j+k=i

(−1) 1
2 i(i−1)+ 1

2 j(j−1)+k(j+1)+ 1
2k(k−1)µk+1◦

(µj ⊗ id⊗k) ◦ (s−1)⊗i ◦
∑

σ∈Sh(j;i)
ε(σ,−)σ(−) ◦ s⊗i

=
∑
j+k=i

(−1) 1
2 i(i−1)+kµk+1 ◦ (µj ⊗ id⊗k) ◦

∑
σ∈Sh(j;i)

χ(σ,−)σ(−) ,

(A.17)
where we used the identity

(s−1)⊗i ◦
∑

σ∈Sh(j;i)
ε(σ,−)σ(−) ◦ s⊗i = (−1) 1

2 i(i−1) ∑
σ∈Sh(j;i)

χ(σ,−)σ(−) . (A.18)

Here, σ(−) is the application of the (j; i)-shuffle. Hence, the formula∑
j+k=i

(−1)kµk+1 ◦ (µj ⊗ id⊗k) ◦
∑

σ∈Sh(j;i)
χ(σ,−)σ(−) = 0 . (A.19)

is nothing but an alternative form of the higher homotopy Jacobi identity (2.44c). In fact,
evaluating it `1 ⊗ · · · ⊗ `n ∈

⊗n L, we obtain∑
j+k=i

∑
σ∈Sh(j;i)

(−1)kχ(σ; `1, . . . , `i)µk+1(µj(`σ(1), . . . , vσ(j)), `σ(j+1), . . . , `σ(i)) = 0 . (A.20)
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Higher products and the differential graded algebra picture. Let us briefly link the
higher products µi and the differential graded algebra picture of an L∞-algebra. Using the
notation of Section 2.4. we consider a graded vector space L with basis τα and corresponding
coordinate functions ξα on L[1] with respect to sτα. The choice of basis defines structure
constants fβ1···βk

α via the equation

Qξα =
∑
k≥1

(−1)|α|
k! fβ1···βk

αξβ1 · · · ξβk , (A.21)

where for each k, |β1| + · · · + |βk| = |α| + 1. The coordinate functions ξα are now maps
L[1] → R, satisfying ξα(X) = ξα(Xβsτβ) = Xα, where Xα ∈ R are the coordinates of
the vector X ∈ L[1] with respect to the basis sτα. Correspondingly, ξβ1 · · · ξβk is a function⊙k

0 L[1]→ R, with

(ξβ1 · · · ξβk)(sτγ1 � · · · � sτγk) = (−1)
∑k

i=2

∑i−1
j=1 |βi||βj |δβ1

(γ1
· · · δβkγk) , (A.22)

where the symmetrisation of the indices γ1, . . . , γk is evidently graded. Note that by precom-
position with the projection pr⊙k

0 L[1], ξ
β1 · · · ξβk becomes a map ⊙•0 L[1]→ R.

We now contract both sides of (A.21) by τα from the left and apply the result to (sτγ1 �
· · · � sτγk) to obtain

τα(Qξα)(sτγ1 � · · · � sτγk) =
∑
k≥1

(−1)|α|
k! ταfβ1···βk

α(ξβ1 · · · ξβk)(sτγ1 � · · · � sτγk)

ταξ
αD(sτγ1 � · · · � sτγk) = (−1)

∑k

i=2

∑i−1
j=1 |γi||γj |ταfγ1···γk

α

s−1(D(sτγ1 � · · · � sτγk)) = (−1)
∑k

i=2

∑i−1
j=1 |γi||γj |ταfγ1···γk

α .

(A.23)
Using (A.15), we now compute

µi(τα1 , . . . , ταi) = ((−1) 1
2 i(i−1)s−1 ◦Di ◦ s�i)(τα1 , . . . , ταk)

= ((−1)
1
2 i(i−1)+

∑i

j=1(i−j)|ταj |)(s−1(Di(sτα1 , . . . , sταi))

= (−1)
1
2 i(i−1)+

∑i

j=2

∑j−1
k=1(|ταj |+1)(|ταk |+1)+

∑i

j=1(i−j)|ταj | τβfα1···αi
β

= (−1)
∑i

j=2

∑j−1
k=1 |ταj ||ταk |+

∑i

j=1(j+1)|ταj | τβfα1···αi
β .

(A.24)
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Similarly, we have

τα(Qξα) =
∑
i≥1

(−1)|α|
i! ταfβ1···βi

α(ξβ1 · · · ξβi) ,

(Qξ) = −
∑
i≥1

(−1)
∑i

j=2

∑j−1
k=1 |τβj ||τβk |+

∑i

j=1(j+1)|τβj |

i! µi(τβ1 , . . . , τβi)(ξβ1 · · · ξβi)

= −
∑
i≥1

(−1)
∑i

j=2

∑j−1
k=1 |τβj |(2|τβk |+1)+

∑i

j=1(j+1)|τβj |

i! µ̂i(ξ, . . . , ξ)

= −
∑
i≥1

1
i! µ̂i(ξ, . . . , ξ) ,

(A.25)

where we used the higher products µ̂i on LC as defined in (2.52b).

A.3. L∞-morphisms from coalgebra morphisms

An advantage of the coalgebra formulation is that the notion of an L∞-morphism results more
natural and transparent. Recall that a morphism of coalgebras from (⊙•0 V,∆0) to (⊙•0 V′,∆′0)
is a map
Φ : ⊙•0 V→⊙•

0 V′ of degree 0 which satisfies

∆′0 ◦ Φ = (Φ⊗ Φ) ◦∆0 . (A.26)

If ⊙•0 V and ⊙•
0 V′ are both endowed with a codifferential D and D′, respectively, we also

demand that
Φ ◦D = D′ ◦ Φ . (A.27)

Consider now two codifferential coalgebras (⊙•0 V,∆0, D) and (⊙•0 V′,∆′0, D′) correspond-
ing to two L∞-algebras. We can restrict a morphism

Φ : (⊙•0V,∆0, D) → (⊙•0V′,∆′0, D′) (A.28)

to the maps
Φj := pr⊙j V′ ◦ Φ . (A.29)

Note that Φ is uniquely reconstructed from Φ1 since Φ is a morphism of coalgebras, cf. e.g. [300,
Prop. 1.2]. In particular, using the further decomposition

Φj
i := pr⊙j V′ ◦ Φ|⊙i V , (A.30)
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we have explicitly

Φj
i =

∑
k1+···+kj=i

1
k1! · · · kj!

1
j! (Φ1

k1 � · · · � Φ1
kj

) . (A.31)

Note that the maps Φ1
k1 � · · · �Φ1

kj
act on the totally graded symmetrised elements of ⊙i V

and the result is then projected onto ⊙j
0 V′. The degrees of all the maps Φ, Φi, Φj

i and
Φ|�iV are zero, since Φ is of degree zero, and all other maps originate from restriction and
concatenation with projectors.

Condition (A.27) decomposed into the maps Φ1
i and Di reads as

∑
j+k=i

Φ1
k+1

(
Dj ⊗ id⊗k

)
=

i∑
j=1

∑
k1+···+kj=i

D′j ◦
1

k1! · · · kj!
1
j! (Φ1

k1 � · · · �Φ1
kj

) . (A.32)

We multiply this equation by factors of s and s−1, restrict it and rewrite both sides, using the
shifted morphisms1

φi := (−1) 1
2 i(i−1)s−1 ◦ Φ1

i ◦ s⊗i with |φi| = i− 1 , (A.33)

and the postcomposition with shuffles, cf. (A.13), as

∑
j+k=i

(−1) 1
2k(k+1)+ 1

2 i(i−1)s−1 ◦ Φ1
k+1 ◦ s⊗(k+1) ◦ (s−1)⊗(k+1) ◦

(
Dj ⊗ id⊗k

)
◦ s⊗i ◦

◦ (s−1)⊗i ◦
∑

σ∈Sh(j;i)
ε(σ,−)σ(−) ◦ s⊗i

=
∑
j+k=i

(−1) 1
2k(k−1)+k(j+1)+ 1

2 j(j−1)φk+1 ◦
(
µj ⊗ id⊗k

)
◦

∑
σ∈Sh(j;i)

χ(σ,−)σ(−)

(A.34)

1The degree of the map φi follows from its definition together with |Φ1
i | = 0 and |s| = 1.
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and
i∑

j=1

∑
k1+···+kj=i

(−1) 1
2 i(i−1)+ 1

2 j(j−1)

j! s−1 ◦D′j ◦ s⊗j ◦ (s−1)⊗j ◦ (Φ1
k1 ⊗ · · · ⊗ Φ1

kj
) ◦ s⊗i ◦

◦ (s−1)⊗i ◦
∑

σ∈Sh(j;i)
ε(σ,−)σ(−) ◦ s⊗i

=
i∑

j=1

∑
k1+···+kj=i

1
j! µ

′
j ◦ (s−1)⊗j ◦ (Φ1

k1 ⊗ · · · ⊗ Φ1
kj

) ◦ s⊗i ◦

◦
∑

σ∈Sh(j;i)
χ(σ,−)σ(−)

=
i∑

j=1

∑
k1+···+kj=i

(−1)
∑j−1

m=1 km(j−m)

j! µ′j ◦ (s−1 ◦ Φk1 ◦ sk1 ⊗ · · · ⊗ s−1 ◦ Φ1
kj
◦ skj) ◦

◦
∑

σ∈Sh(j;i)
χ(σ,−)σ(−)

=
i∑

j=1

∑
k1+···+kj=i

(−1) 1
2 (k1+1)k1+···+ 1

2 (kj+1)kj+
∑j−1

m=1 km(j−m)

j! µ′j ◦ (φk1 ⊗ · · · ⊗ φkj) ◦

◦
∑

σ∈Sh(k1,...,kj−1;i)
χ(σ,−)σ(−) .

(A.35)
We obtain ∑

j+k=i
(−1) 1

2 i(i−1)+kφk+1 ◦
(
µj ⊗ id⊗k

)
◦

∑
σ∈Sh(j;i)

χ(σ,−)σ(−)

=
i∑

j=1

∑
k1+···+kj=i

(−1) 1
2 (k1+1)k1+···+ 1

2 (kj+1)kj+
∑j−1

m=1 km(j−m)

j! µ′j ◦

◦ (φk1 ⊗ · · · ⊗ φkj) ◦
∑

σ∈Sh(k1,...,kj−1;i)
χ(σ,−)σ(−) .

(A.36)

Applied to `1 ⊗ · · · ⊗ `i ∈ L⊗i, we find∑
j+k=i

∑
σ∈Sh(j;i)

(−1)kχ(σ,−)φk+1(µj(`σ(1), . . . , `σ(k)), `σ(k)+1, . . . , `σi)

=
i∑

j=1

∑
k1+···+kj=i

(−1)
∑

1≤m<n≤j kmkn+
∑j−1

m=1 km(j−m)+
∑j

m=2(1−km)
∑k1+···+km−1

k=1 |`σ(k)|L

j! ×

×
∑

σ∈Sh(k1,...,kj−1;i)
χ(σ,−)µ′j(φk1(`σ(1), . . . , `σ(k1)), . . . , φkj(`σ(i−kj+1), . . . , `σ(i))) ,

(A.37)
where Koszul signs are inserted to account for the permutation of the `σ(m) past the φkn . We
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also used
(−1) 1

2 i(i−1) = (−1)
∑j

m=1
1
2km(km−1)+

∑
1≤m<n≤j kmkn (A.38)

for k1 + · · ·+ kj = i.





B
Cochain complexes and Hodge–Kodaira decomposition

An L∞-algebra L has an underlying cochain complex (L, µ1). Morphisms and quasi-isomor-
phisms of L∞-algebras are specialisations of cochain maps and quasi-isomorphisms between
the underlying cochain complexes. Here, we merely report the content of [42, Appendix B], a
good reference of which is [223].

A comment on our nomenclature: usually, one would work with the homology of chain
complexes with a differential of degree −1. To avoid as much confusion as possible, and due
to the prominence of the de Rham complex as key example of cochain complexes, we will use
the terms cochains and cohomology with differentials of degree 1.

Cochain complexes. A cochain complex (C, d) over an associative ring R is a family of R-
modules Ck for k ∈ Z and morphisms dk : Ck → Ck+1 of degree 1 satisfying dk+1 ◦ dk = 0.
The k-cocycles of the cochain complex are defined as Zk := ker(dk) ⊆ Ck while the k-
coboundaries of the cochain complex are defined as Bk := im(dk−1) ⊆ Ck. The cohomology
of the cochain complex is then Hk

d(C) := Zk/Bk.
A morphism of cochain complexes φ : (C, d)→ (C ′, d′) is a family of maps φk : Ck → C ′k

of degree 0 such that φk+1 ◦ dk = d′k ◦ φk. A quasi-isomorphism of cochain complexes is a
morphism of cochain complexes which induces an isomorphism on the cohomologies.

A cochain homotopy between two morphisms φ : (C, d) → (C ′, d′) and ψ : (C, d) →
(C ′, d′) of cochain complexes is a family of morphisms hk : Ck+1 → C ′k of degree −1 such
that φk−ψk = hk ◦dk+d′k−1 ◦hk. If such a cochain homotopy exists, we say that φ and ψ are
homotopic. A cochain homotopy is the correct notion of a 2-morphism of cochain complexes.
A homotopy equivalence between two cochain complexes C and C ′ is a pair of morphisms

187
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φ : C → C ′ and ψ : C ′ → C such that ψ ◦ φ and φ ◦ ψ are homotopic to the respective
identity maps. In the special case when ψ ◦ φ = 1 and φ ◦ ψ is homotopic to the identity, we
call this a contracting homotopy of φ ◦ ψ.1

Split cochain complexes and Hodge–Kodaira decomposition. Suppose (C, d) is a
cochain complex of vector spaces. Then, we can always choose decompositions

Ck/ ker(dk) ∼= im(dk) =⇒ Ck/Zk ∼= Bk+1 =⇒ Ck ∼= Zk ⊕ Zk
c ,

Hk
d(C) = Zk/Bk =⇒ Zk ∼= Bk ⊕Bk

c ,

Zk
c
∼= Bk+1 and Bk

c
∼= Hk

d(C)

(B.1a)

since short exact vector space sequences always split2. We thus have

Ck ∼= Hk
d(C)⊕Bk ⊕Bk+1 . (B.1b)

Consequently, we can define maps hk : Ck → Ck−1 of degree −1 by the compositions

hk : Ck � Zk � Bk ∼= Zk−1
c ↪→ Ck−1 (B.2)

of the projections Ck � Zk and Zk � Bk, the isomorphism Bk ∼= Zk−1
c , and the inclusion

Zk−1
c ↪→ Ck−1. Since hk+1(Bk+1) ∼= Zk

c , these maps satisfy dk = dk ◦ hk+1 ◦ dk.
This motivates the following definition. A general cochain complex (C, d) is called split

whenever there is a family of morphisms hk : Ck → Ck−1 of degree −1, called the splitting
maps, such that dk = dk ◦ hk+1 ◦ dk.

In this case, we then automatically have3

(hk+1 ◦ dk)2 = hk+1 ◦ dk , (dk−1 ◦ hk)2 = dk−1 ◦ hk ,

(hk+1 ◦ dk) ◦ (dk−1 ◦ hk) = (dk−1 ◦ hk) ◦ (hk+1 ◦ dk) = 0 ,
(B.3)

which, in turn, yield the decomposition

1 = Pk + hk+1 ◦ dk + dk−1 ◦ hk (B.4a)
1This is a particular case of a strong deformation retract.
2Note that the same holds evidently true for tensor products of split cochain complexes.
3Whilst (hk+1 ◦dk)◦ (dk−1 ◦hk) = 0 follows trivially since dk ◦dk−1 = 0, if (dk−1 ◦hk)◦ (hk+1 ◦dk) 6= 0

one may always re-define hk and set h̃k := hk − hk ◦ hk+1 ◦ dk. Then, dk = dk ◦ h̃k+1 ◦ dk as well, and it
is easy to check that (dk−1 ◦ h̃k) ◦ (h̃k+1 ◦ dk) = 0 and also all other identities hold with h̃k instead of hk.
Note that we then have the more strict relation h̃k ◦ h̃k+1 ◦ dk = 0.
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with

P 2
k = Pk , Pk ◦ dk−1 = dk ◦ Pk = 0 ,

Pk ◦ (dk−1 ◦ hk) = (dk−1 ◦ hk) ◦ Pk = Pk ◦ (hk+1 ◦ dk) = (hk+1 ◦ dk) ◦ Pk = 0 .
(B.4b)

Consequently,

Ck ∼= im(Pk)︸ ︷︷ ︸
∼=Hk

d (C)

⊕ im(dk−1 ◦ hk)︸ ︷︷ ︸
∼=Bk

⊕ im(hk+1 ◦ dk)︸ ︷︷ ︸
=:Zkc

∼= Hk
d(C)⊕Bk ⊕ Zk

c . (B.5)

This decomposition is known as the abstract Hodge–Kodaira decomposition. Furthermore,
the projector Pk induces a surjection pk : Ck � Hk

d(C) and an injection ek : Hk
d(C) ↪→ Ck

with pk ◦ ek = 1 by means of Pk = ek ◦ pk. Thus, we obtain the diagram

Ch
)) p

// // H•d(C)_?e
oo . (B.6)

Put differently, a splitting of a cochain complex (C, d) is equivalent to having morphisms
of cochain complexes pk : Ck � Hk

d(C) and ek : Hk
d(C) ↪→ Ck such that pk ◦ ek = 1 and

1−ek◦pk = hk+1◦dk+dk−1◦hk. In other words, such a splitting is equivalent to a contracting
homotopy hk : Ck → Ck−1 of Pk = ek ◦ pk. Note that pk is a quasi-isomorphisms of cochain
complexes between C and H•d(C) and so is ek between H•d(C) and C.

Extension to L∞-algebras. Consider the cochain complex (L, µ1) underlying an L∞-
algebra (L, µi) with a choice of decomposition (B.1)

L ∼= B ⊕Bc ⊕ Zc with Bc
∼= H•µ1(L) . (B.7)

We can use the inverse of the isomorphism between Bc and H•µ1(L) to define a strict L∞-
morphism to Bc. Composition with an L∞-quasi-isomorphism between L and H•µ1(L) then
yields an L∞-quasi-isomorphism between L to Bc. Thus, any projection L � Bc can be
extended to an L∞-quasi-isomorphism L→ Bc. Consequently, we can use the abstract Hodge–
Kodaira decomposition to find a minimal model. See Section 2.5. for explicit formulas.

Example. Let L be an L∞-algebra together with decompositions L = ker(µ1) ⊕ V =
im(µ1)⊕W . We have

µ1 : ker(µ1)⊕ V → im(µ1)⊕W (B.8)
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and µ1 is invertible as a map from V → im(µ1) with inverse µ−1
1 |im(µ1). Define h : L→ L as

the map of degree −1
h := µ−1

1 |im(µ1) ◦ prim(µ1) , (B.9)

where prim(µ1) : L → im(µ1) is the orthogonal projection. Note that the map h satisfies
µ1 ◦ h ◦ µ1 = µ1 and we can use it as a starting point for the abstract Hodge–Kodaira
decomposition.



C
Lemmata

We are in debt of a few computational proofs of results presented in Chapter 3. In this
Appendix, we aim to settle the debt, proving various formulas involving L∞-algebras. The
following material is contained in [42, Appendix C]. In some cases, such results are presented
in more than one of the three possible descriptions of L∞-algebras: higher brackets, differential
coalgebra, differential graded algebra. While some of the calculations are slightly involved, they
are illuminating in one sense or another.

Throughout this Appendix, let L be an L∞-algebra with higher products µi. We shall
occasionally assume that L is cyclic with an inner product 〈−,−〉L.

Cauchy product. We start by proving a result we will make extensive use of along this
Appendix. Recall that the Cauchy product of two (absolutely convergent) series ∑i≥0 ai and∑
i≥0 bi is

∑
i≥0

ai
∑
j≥0

bj =
∑
i,j≥0

aibj =
∑
i≥0

i∑
j=0

ajbi−j =
∑
i≥0

∑
j+k=i

ajbk . (C.1)

Hence, ∑
i,j≥0

1
i!j!aibj =

∑
i≥0

1
i!
∑
j+k=i

(
i

j

)
ajbk . (C.2)

Furthermore, note that (C.1) generalises to

∑
k1≥0

a
(1)
k1 · · ·

∑
kj≥0

a
(j)
kj

=
∑
i≥0

∑
k1+···+kj=i

a
(1)
k1 · · · a

(j)
kj

(C.3)
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for the product of j (absolutely convergent) series and so,

∑
k1≥0

1
k1!a

(1)
k1 · · ·

∑
kj≥0

1
kj!
a

(j)
kj

=

=
∑
i≥0

1
i!

∑
k1+···+kj=i

(
i− k1

k2

)
· · ·

(
i− k1 − · · · − kj−2

kj−1

)
a

(1)
k1 · · · a

(j)
kj
.

(C.4)

C.1. Tensor product L∞-algebras

Let A be a dg-algebra. We wish to verify the higher homotopy Jacobi identities (2.44c) of
the higher products µ′i defined in (2.51) as well as the cyclicity (2.51b) of the tensor product
L∞-algebra LA. To this end, let us use the abbreviation li := ai ⊗ `i for homogeneous ai ∈ A
and `i ∈ L together with |li|A := |ai|A and |li|L := |`i|L. It is sufficient to consider only those
elements since the result for general elements follows from linearity.

The higher homotopy identities (2.44c) of the higher products (2.51) are

∑
j+k=i

∑
σ

χ(σ; l1, . . . , lj+k)(−1)kµ′k+1(µ′j(lσ(1), . . . , lσ(j)), lσ(j+1), . . . , lσ(j+k)) = 0 . (C.5)

We have

µi(`σ(1), . . . , `σ(i)) = χ(σ; `1, . . . , `i)µi(`1, . . . , `i) (C.6a)

and

χ(σ; l1, . . . , li) = χ(σ; a1, . . . , ai)χ(σ; `1, . . . , `n)×

× (−1)
∑i

j=2 |aσ(j)|A
∑j−1

k=1 |`σ(k)|L+
∑i

j=2 |aj |A
∑j−1

k=1 |`k|L .
(C.6b)

To prove (C.5), we first focus on the terms containing the differential d. For i = 1, we
have

µ′1(µ′1(l1)) = µ′1(da1 ⊗ `1 + (−1)|a1|Aa1 ⊗ µ1(`1))

= (−1)|a1|A+1da1 ⊗ µ1(`1) + (−1)|a1|Ada1 ⊗ µ1(`1)

= 0 .

(C.7)
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For i > 1, the relevant terms are

d(µ′i(l1, . . . , li)) +
∑
σ

χ(σ; l1, . . . , li)(−1)i−1µ′i(d
(

lσ(1)
)
, lσ(2), . . . , lσ(i)) =

= s1 d(a1 · · · ai)⊗ µi(`1, . . . , `i) +

+
∑
σ

χ(σ; l1, . . . , li) s2(σ)
[
(daσ(1))aσ(2) · · · aσ(i)

]
⊗ µi(`σ(1), . . . , `σ(i))

= s1
∑
σ

χ(σ; a1, . . . , ai)χ(σ; `1, . . . , `i)
[
(daσ(1))aσ(2) · · · aσ(i)

]
⊗ µi(`σ(1), . . . , `σ(i)) +

+
∑
σ

χ(σ; l1, . . . , li) s2(σ; l1, . . . , li)
[
(daσ(1))aσ(2) · · · aσ(i)

]
⊗ µi(`σ(1), . . . , `σ(i))

(C.8a)
with signs

s1 := (−1)i
∑i

j=1 |aj |A+
∑i

j=2 |aj |A
∑j−1

k=1 |`k|L ,

s2(σ; l1, . . . , li) := (−1)i−1(−1)i(|aσ(1)|A+1+
∑i

j=2 |aσ(j)|A)+
∑i

j=2 |aσ(j)|A
∑j−1

k=1 |`σ(k)|L

= −(−1)i
∑i

j=1 |aσ(j)|A+
∑i

j=2 |aσ(j)|A
∑j−1

k=1 |`σ(k)|L .

(C.8b)

The expression (C.8a) clearly vanishes since

χ(σ; l1, . . . , li) s2(σ; l1, . . . , li) = −s1 χ(σ; a1, . . . , ai)χ(σ; `1, . . . , `i) (C.9)

due to (C.6b).
The remaining terms in (C.5) combine to∑

j+k=i

∑
σ

s3(σ; l1, . . . , li)×

× (a1 · · · aj+k)⊗ µk+1(µj(`σ(1), . . . , `σ(j)), `σ(j+1), . . . , `σ(j+k)) = 0
(C.10)

with the sign s3(σ; l1, . . . , li) given by

s3(σ;l1, . . . , li) :=

:= χ(σ; l1, . . . , lj+k)(−1)kχ(σ; a1, . . . aj+k)×

× (−1)j
∑j

m=1 |aσ(m)|A+
∑j

m=2 |aσ(m)|A
∑m−1

n=1 |`σ(n)|L ×

× (−1)(k+1)
∑j+k

m=1 |am|A+
∑k

m=1 |aσ(j+m)|A (j+
∑j+m−1

n=1 |`σ(n)|L)

= (−1)kχ(σ; `1, . . . , `j+k)(−1)
∑j+k

m=2 |aσ(m)|A
∑m−1

n=1 |`σ(n)|L+
∑j+k

m=2 |am|A
∑m−1

n=1 |`n|L ×

× (−1)j
∑j

m=1 |aσ(m)|A+
∑j

m=2 |aσ(m)|A
∑m−1

n=1 |`σ(n)|L ×

× (−1)(k+1)
∑j+k

m=1 |am|A+
∑k

m=1 |aσ(j+m)|A (j+
∑j+m−1

n=1 |`σ(n)|L)

= (−1)kχ(σ; `1, . . . , `j+k) (−1)
∑j+k

m=2 |am|A
∑m−1

n=1 |`n|L+(j+k+1)
∑j+k

m=1 |am|A︸ ︷︷ ︸
=: s4

,

(C.11)
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where we used again (C.6b). Note that s4 contributes an overall sign so that (C.5) reduces
to the homotopy Jacobi identity (2.44c) on L.

Next suppose that L and A are equipped with inner products 〈−,−〉L and 〈−,−〉A. Let
us verify the cyclicity of the inner product 〈−,−〉LA defined in (2.51b). Using the definitions
of the higher products µ′i given (2.51) we obtain for i = 1

〈l1, µ′1(l2)〉LA =

= 〈a1 ⊗ `1, da2 ⊗ `2 + (−1)|l2|Aa2 ⊗ µ1(`2)〉LA

= (−1)|l1|L(|l2|A+1)〈a1, da2〉A 〈`1, `2〉L + (−1)(|l1|L+1)|l2|A〈a1, a2〉A 〈`1, µ1(`2)〉L
= −(−1)|l1|L(|l2|A+1)+|l2|A(|l1|A+1)+|l1|A+|l1|L|l2|L〈a2, da1〉A 〈`2, `1〉L−

− (−1)(|l1|L+1)|l2|A+|l1|A|l2|A+|l1|L+|l2|L+|l1|L|l2|L〈a2, a1〉A 〈`2, µ1(`1)〉L
= −(−1)|l1|L(|l2|A+1)+|l2|A(|l1|A+1)+|l1|A+|l1|L|l2|L+|l2|L(|l1|A+1)〈a2 ⊗ `2, da1 ⊗ `1〉LA −

− (−1)(|l1|L+1)|l2|A+|l1|A|l2|A+|l1|L+|l2|L+|l1|L|l2|L+|l2|L|l1|A〈a2 ⊗ `2, a1 ⊗ µ1(`1)〉LA

= (−1)1+|l1|LA |l2|LA +|l1|LA |l2|LA 〈l2, µ′1(l1)〉LA ,

(C.12)
while for i ≥ 2 we find

〈l1, µ′i(l2, . . . , li+1)〉LA =

= (−1)i
∑i+1

j=2 |lj |A+|l1|L
∑i+1

j=2 |lj |A+
∑i+1

j=3 |lj |A
∑j−1

k=2 |lk|L ×
× 〈a1, a2 · · · ai+1〉A 〈`1, µi(`2, . . . , `i+1)〉L

= (−1)i
∑i+1

j=2 |lj |A+|l1|L
∑i+1

j=2 |lj |A+
∑i+1

j=3 |lj |A
∑j−1

k=2 |lk|L ×

× (−1)i+i(|l1|L+|li+1|L)+|li+1|L
∑i

j=1 |lj |L+|li+1|A
∑i

j=1 |lj |A ×
× 〈ai+1, a1 · · · ai〉A 〈`i+1, µi(`1, . . . , `i)〉L

= (−1)i
∑i+1

j=2 |lj |A+|l1|L
∑i+1

j=2 |lj |A+
∑i+1

j=3 |lj |A
∑j−1

k=2 |lk|L ×

× (−1)i+i(|l1|L+|li+1|L)+|li+1|L
∑i

j=1 |lj |L+|li+1|A
∑i

j=1 |lj |A ×

× (−1)i
∑i

j=1 |lj |A+|li+1|L
∑i

j=1 |lj |A+
∑i

j=2 |lj |A
∑j−1

k=1 |lk|L ×

× 〈li+1, µ
′
i(l1, . . . , li)〉LA ,

(C.13)
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and therefore

(−1)i
∑i+1

j=2 |lj |A+|l1|L
∑i+1

j=2 |lj |A+
∑i+1

j=3 |lj |A
∑j−1

k=2 |lk|L×

× (−1)i+i(|l1|L+|li+1|L)+|li+1|L
∑i

j=1 |lj |L+|li+1|A
∑i

j=1 |lj |A×

× (−1)i
∑i

j=1 |lj |A+|li+1|L
∑i

j=1 |lj |A+
∑i

j=2 |lj |A
∑j−1

k=1 |lk|L =

= (−1)i+i(|l1|LA +|li+1|LA )+|li+1|L
∑i

j=1 |lj |LA +|li+1|A
∑i

j=1 |lj |A ×

× (−1)|l1|L
∑i+1

j=2 |lj |A+
∑i

j=2 |lj |A
∑j−1

k=1 |lk|L+
∑i+1

j=3 |lj |A
∑j−1

k=2 |lk|L

= (−1)i+i(|l1|LA +|li+1|LA )+|li+1|L
∑i

j=1 |lj |LA +|li+1|A
∑i

j=1 |lj |A ×

× (−1)|l1|L(|l2|A+···+|li|A+|li+1|A)×

× (−1)|l1|L|l2|A+(|l1|L+|l2|L)|l3|A+···+(|l1|L+···+|li−1|L)|li|A ×

× (−1)|l2|L|l3|A+(|l2|L+|l3|L)|l4|A+···+(|l2|L+···+|li−1|L)|li|A+(|l2|L+···+|li|L)|li+1|A

= (−1)i+i(|l1|LA +|li+1|LA )+|li+1|L
∑i

j=1 |lj |LA +|li+1|A
∑i

j=1 |lj |A ×

× (−1)|li+1|A
∑i

j=1 |lj |L+2
∑i−1

j=1 |lj |L
∑i

k=j+1 |lk|A

= (−1)i+i(|l1|LA +|li+1|LA )+|li+1|LA

∑i

j=1 |lj |LA .

(C.14)

Altogether, we obtain the cyclicity

〈l1, µ′i(l2, . . . , li+1)〉LA =

= (−1)i+i(|l1|LA +|li+1|LA )+|li+1|LA

∑i

j=1 |lj |LA 〈li+1, µ
′
i(l1, . . . , li)〉LA

(C.15)

for i ∈ N, as claimed.

C.2. Homotopy Maurer–Cartan theory

Bianchi identity. Let us verify the Bianchi identity (3.6) for the curvature f defined in (3.4).
To this end, recall the homotopy Jacobi identity (2.44c) for a gauge potential a ∈ L1,

∑
j+k=i

(−1)j
(
i

j

)
µj+1(µk(a, . . . , a), a, . . . , a) = 0 . (C.16)

Making use of (C.2), we rewrite
∑
i≥0

(−1)i
i! µi+1(f, a, . . . , a) =

∑
i≥0

(−1)i
i!j! µi+1(µj(a, . . . , a), a, . . . , a)

=
∑
i≥0

1
i!
∑
j+k=i

(−1)j
(
i

j

)
µj+1(µk(a, . . . , a), a, . . . , a) = 0 .

(C.17)
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Let us prove the same statement using the Q-manifold morphism language, and in particular
formula (2.53),

Qξ = −
∑
i≥1

1
i!µi(ξ, . . . , ξ) (C.18)

for ξ = ξα ⊗ τα ∈ (L[1])∗ ⊗ L. We can evaluate this function on

esa := 1 + esa0
= 1 + sa+ sa⊗ sa+ sa⊗ sa⊗ sa+ · · ·

= 1 + sa+ 1
2sa� sa+ 1

3!sa� sa� sa+ · · · ,

(C.19)

for a ∈ L1. Since sa is even, no Koszul signs appear and we obtain

(Qξ)(esa0 ) = −
∑
i≥1

1
i!µi(a, . . . , a) = −f . (C.20)

This equation will prove very helpful. It also shows why the definition of f is so natural.
A first advantage of this alternative perspective is a trivial derivation of the Bianchi identity.

We compute
0 = (−Q2ξ)(esa0 )

= (Qf(ξ)(esa0 )

=
Q∑

i≥1

1
i!µi(ξ, . . . , ξ)

 (esa0 )

=
∑
i≥0

(−1)2−(i+1)

i! µi+1(Qξ, ξ, . . . , ξ)
 (esa0 )

=
∑
i≥0

(−1)i
i! µi+1(f(ξ), ξ, . . . , ξ)

 (esa0 ),

=
∑
i≥0

(−1)i
i! µi+1(f, a, . . . , a) .

(C.21)

Let us also give the coalgebra picture description, which shall be useful later on. Here, we
have

D(esa0 ) =
∑
i≥1

1
i!Di(sa, . . . , sa)� esa = sf � esa , (C.22)

because
sf = s

∑
i≥1

1
i!µi(a, . . . , a)

= s
∑
i≥1

(−1)
1
2 i(i−1)

i! s−1 ◦Di ◦ s⊗i(a, . . . , a)

=
∑
i≥1

1
i!Di(sa, . . . , sa) .

(C.23)
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The Bianchi identity follows here from D2 as follows:

0 = (s−1 ◦ pr⊙1 L[1] ◦D ◦D)(esa0 )

= (s−1 ◦ pr�1L[1] ◦D)(sf � esa)

=
∑
i≥1

(−1)i
i! µi+1(f, a, . . . , a) .

(C.24)

Commutator of gauge transformations. We wish to prove (3.12). Using (C.2), we obtain

δc0δc′0a =
∑
i,j≥0

1
i!j!µi+2(µj+1(a, . . . , a, c′0), a, . . . , a, c0)

=
∑
i≥0

1
i!
∑
j+k=i

(
i

j

)
µj+2(µk+1(a, . . . , a, c′0), a, . . . , a, c0)

=
∑
i≥2

1
(i− 2)!

∑
j+k=i

(
i− 2
j − 1

)
µj+1(µk(a, . . . , a, c′0), a, . . . , a, c0)

=
∑
i≥2

1
(i− 2)!

∑
j+k=i

(
i− 2
k − 1

)
µj+1(µk(a, . . . , a, c′0), a, . . . , a, c0)

= δc′0δc0a+

+
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)j
(
i− 2
j − 2

)
µj+1(µk(a, . . . , a), a, . . . , a, c0, c

′
0) +

+
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)j
(
i− 2
k − 2

)
µj+1(µk(a, . . . , a, c0, c

′
0), a, . . . , a)
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= δc′0δc0a+

+
∑
i,j≥0

1
i!j! (−1)iµi+3(µj(a, . . . , a), a, . . . , a, c0, c

′
0) +

+
∑
i,j≥0

1
i!j!µi+1(a, . . . , a, µj+2(a, . . . , a, c0, c

′
0)) ,

(C.25)

where in the fifth step we have used the homotopy Jacobi identity (2.44c) for the elements
(a, . . . , a, c0, c

′
0),

∑
j+k=i

(−1)j
(
i− 2
j − 2

)
µj+1(µk(a, . . . , a), a, . . . , a, c0, c

′
0) +

−
∑
j+k=i

(
i− 2
k − 1

)
µj+1(µk(a, . . . , a, c0), a, . . . , a, c′0) +

+
∑
j+k=i

(
i− 2
k − 1

)
µj+1(µk(a, . . . , a, c′0), a, . . . , a, c0) +

+
∑
j+k=i

(−1)j
(
i− 2
k − 2

)
µj+1(µk(a, . . . , a, c0, c

′
0), a, . . . , a) = 0 .

(C.26)

Hence, using the expression (3.4) of the curvature, we find (3.12):

[δc0 , δc′0 ]a = δc′′0a+
∑
i≥0

1
i! (−1)iµi+3(f, a, . . . , a, c0, c

′
0) (C.27a)

with
c′′0 :=

∑
i≥0

1
i!µi+2(a, . . . , a, c0, c

′
0) . (C.27b)

A proof via the Q-manifold evaluation map ξ is possible, but rather technical and not very
enlightening.

Gauge transformation of the curvature. The gauge transformation of the curvature is
derived using the Bianchi identity (3.6) on Ω•(I, L),

0 =
∑
i≥0

(−1)i
i! µ̂i+1(f(t), a(t), . . . , a(t))

=
∑
i≥0

(−1)i
i! µi+1(f(t), a(t), . . . , a(t)) +

+ dt⊗

 ∂

∂t
f(t)−

∑
i≥0

(−1)i
i! µi+2(f(t), a(t), . . . , a(t), c(t))


= dt⊗

 ∂

∂t
f(t)−

∑
i≥0

(−1)i
i! µi+2(f(t), a(t), . . . , a(t), c(t))

 ,

(C.28)
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from which we read off the gauge transformation of the curvature,

δc0f := ∂

∂t

∣∣∣∣∣
t=0

f(t) =
∑
i≥0

(−1)i
i! µi+2(f, a, . . . , a, c0) . (C.29)

Alternatively, we can perform the direct computation using brackets. Upon making use
of (C.2), we find

δc0f =
∑
i≥0

1
i!µi+1(δc0a, a, . . . , a)

=
∑
i,j≥0

1
i!j!µi+1(µj+1(a, . . . , a, c0), a, . . . , a)

=
∑
i≥0

1
i!
∑
j+k=i

(
i

j

)
µj+1(µk+1(a, . . . , a, c0), a, . . . , a)

=
∑
i≥1

1
(i− 1)!

∑
j+k=i

(
i− 1
j

)
µj+1(µk(a, . . . , a, c0), a, . . . , a)

=
∑
i≥1

1
(i− 1)!

∑
j+k=i

(
i− 1
k − 1

)
µj+1(µk(a, . . . , a, c0), a, . . . , a)

=
∑
i≥1

1
(i− 1)!

∑
j+k=i

(−1)j−1
(
i− 1
j − 1

)
µj+1(µk(a, . . . , a), a, . . . , a, c0)

=
∑
i≥0

1
i!

i∑
j=0

(−1)i−j
(

i

i− j

)
µi−j+2(µj(a, . . . , a), a, . . . , a, c0)

=
∑
i,j≥0

(−1)i
i!j! µi+2(µj(a, . . . , a), a, . . . , a, c0)

=
∑
i≥0

(−1)i
i! µi+2(f, a, . . . , a, c0) ,

(C.30)

where in the sixth step have used the homotopy Jacobi identity (2.44c) for (a, . . . , a, c0),

∑
j+k=i

(−1)j
(
i− 1
j − 1

)
µj+1(µk(a, . . . , a), a, . . . , a, c0) +

+
∑
j+k=i

(
i− 1
k − 1

)
µj+1(µk(a, . . . , a, c0), a, . . . , a) = 0 .

(C.31)

Altogether we recover (3.11).

Higher gauge transformations. In particular, consider a level 1 gauge transformation
between two level 0 gauge transformations. These are captured by gauge potentials on the
tensor product Ω•(I2, L) with I2 := I × I and I := [0, 1] ⊆ R. This time, we have the
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decomposition Ω•1(I2, L) ∼= C∞(I2, L1) ⊕ Ω1(I2, L0) ⊕ Ω2(I2, L−1) and hence, a ∈ Ω•1(I2, L)
takes the form

a(t, s) = a(t, s) + dt⊗ c(1)(t, s) + ds⊗ c(2)(t, s)ds+ (dt ∧ ds)⊗ σ(t, s) , (C.32a)

where (t, s) ∈ I2, a(t, s) ∈ C∞(I2, L1), c(1,2)(t, s) ∈ C∞(I2, L0), and σ(t, s) ∈ C∞(I2, L−1).
The fact that a is a homotopy between homotopies is reflected in the boundary conditions

a(0, s) = a and c(1)(t, 0) = c(t) . (C.32b)

The geometric shape underlying this homotopy between homotopies is not a square but a bigon
with a coordinate degeneracy in s at t = 0 and t = 1. Therefore, we have to supplement the
above boundary conditions by

c(2)(0, s) = c(2)(1, s) = 0 . (C.32c)

Moreover, Ω•2(I2, L) decomposes as Ω•2(I2, L) ∼= C∞(I2, L2) ⊕ Ω1(I2, L1) ⊕ Ω2(I2, L0), and
upon imposing the partial flatness condition f ∈ C∞(I2, L2), we obtain the level 0 gauge
transformation (3.10) with the gauge parameter c0 := c(1)(0, 0) ∈ L0 together with the level 1
gauge transformation

δc−1c0 := ∂

∂s

∣∣∣∣∣
t=s=0

c(1)(t, s) =
∑
i≥0

1
i!µi+1(a, . . . , a, c−1) , (C.33)

where c−1 := σ(0, 0) ∈ L−1.

The derivation of level k gauge transformations from certain components of a partially flat
curvature on Ik+1 makes it clear that this can be iterated further by considering Ω•(Ik+1, L)
for k ≥ 0. Ultimately, we obtain the level k + 1 gauge transformation,

δc−k−1c−k =
∑
i≥0

1
i!µi+1(a, . . . , a, c−k−1) , (C.34)

for c−k ∈ L−k.
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(Higher) gauge-of-gauge transformations Let us verify (3.16). Firstly, using (C.2), we
find

δc−1(δc0a) =
∑
i≥0

1
i!µi+1(a, . . . , a, δc−1c0)

=
∑
i≥0

(−1)i
i! µi+1(δc−1c0, a, . . . , a)

=
∑
i,j≥0

(−1)i
i!j! µi+1(µj+1(a, . . . , a, c−1), a, . . . , a)

=
∑
i≥0

1
i!

i∑
j=0

(−1)j
(
i

j

)
µj+1(µi−j+1(a, . . . , a, c−1), a, . . . , a)

=
∑
i≥1

1
(i− 1)!

∑
j+k=i

(−1)j
(
i− 1
k − 1

)
µj+1(µk(a, . . . , a, c−1), a, . . . , a)

=
∑
i≥1

1
(i− 1)!

∑
j+k=i

(−1)j−1
(
i− 1
j − 1

)
µj+1(µk(a, . . . , a), a, . . . , a, c−1)

=
∑
i≥0

1
i!

i∑
j=0

(−1)i−j
(

i

i− j

)
µi−j+2(µj(a, . . . , a), a, . . . , a, c−1)

=
∑
i,j≥0

(−1)i
i!j! µi+2(µj(a, . . . , a), a, . . . , a, c−1)

=
∑
i≥0

(−1)i
i! µi+2(f, a, . . . , a, c−1) ,

(C.35)

where we have used the homotopy Jacobi identity (2.44c) for (a, . . . , a, c−1) in the sixth step,

∑
j+k=i

(−1)j
(
i− 1
j − 1

)
µj+1(µk(a, . . . , a), a, . . . , a, c−1) +

+
∑
j+k=i

(−1)j
(
i− 1
k − 1

)
µj+1(µk(a, . . . , a, c−1), a, . . . , a) = 0 .

(C.36)

This establishes the first part of (3.16).

As for the second part, the gauge transformation (3.10) of a (odd degree) and the gauge-
of-gauge transformation of c0 (even degree) make it clear how to extend this to c−k for all
k ∈ N. Indeed, a straightforward calculation shows that

δc−k−2(δc−k−1c−k) =
∑
i≥0

(−1)i
i! µi+2(f, a, . . . , a, c−k−2) . (C.37)
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Covariant derivative. Next, we verify (3.19) and (3.20). For (3.19), we make use of the
definitions (3.10), (3.17), and (3.18) together with (C.2) to obtain

δc0(∇φ) =
∑
i≥0

1
i!

[
µi+2(δc0a, a, . . . , a, φ) + (−1)i(|φ|L+1)µi+1(δc0φ, a, . . . , a)

]

=
∑
i,j≥0

1
i!j!

[
µi+2(µj+1(a, . . . , a, c0), a, . . . , a, φ)−

− (−1)i(|φ|L+1)µi+1(µj+2(a, . . . , a, c0, φ), a, . . . , a)
]

=
∑
i≥0

1
i!
∑
j+k=i

(
i

j

)[
µj+2(µk+1(a, . . . , a, c0), a, . . . , a, φ)−

− (−1)j(|φ|L+1)µj+1(µk+2(a, . . . , a, c0, φ), a, . . . , a)
]

=
∑
i≥2

1
(i− 2)!

∑
j+k=i

(
i− 2
j − 1

)
µj+1(µk(a, . . . , a, c0), a, . . . , a, φ)−

−
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)j(|φ|L+1)
(
i− 2
j

)
µj+1(µk(a, . . . , a, c0, φ), a, . . . , a)

=
∑
i≥2

1
(i− 2)!

∑
j+k=i

(
i− 2
k − 1

)
µj+1(µk(a, . . . , a, c0), a, . . . , a, φ)−

−
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)j(|φ|L+1)
(
i− 2
k − 2

)
µj+1(µk(a, . . . , a, c0, φ), a, . . . , a)

=
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)j
(
i− 2
j − 2

)
µj+1(µk(a, . . . , a), a, . . . , a, c0, φ) +

+
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)(j+1)|φ|L

(
i− 2
k − 1

)
µj+1(µk(a, . . . , a, φ), a, . . . , a, c0)

=
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)j
(
i− 2
j − 2

)
µj+1(µk(a, . . . , a), a, . . . , a, c0, φ) +

+
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)(j+1)|φ|L

(
i− 2
j − 1

)
µj+1(µk(a, . . . , a, φ), a, . . . , a, c0)

=
∑
i≥0

1
i!

i∑
j=0

(−1)j
(
i

j

)[
µj+3(µi−j(a, . . . , a), a, . . . , a, c0, φ) +

+ (−1)(j+1)|φ|Lµj+2(µi−j+1(a, . . . , a, φ), a, . . . , a, c0)
]

=
∑
i,j≥0

1
i!j!

[
(−1)iµi+3(µj(a, . . . , a), a, . . . , a, c0, φ) +

+ (−1)i|φ|Lµi+2(µj+1(a, . . . , a, φ), a, . . . , a, c0)
]
,

=
∑
i,j≥0

1
i!j!

[
(−1)iµi+3(µj(a, . . . , a), a, . . . , a, c0, φ)−

− µi+2(a, . . . , a, c0, µj+1(a, . . . , a, φ))
]
,

(C.38)
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where in the sixth step we have used the homotopy Jacobi identity (2.44c) for the elements
(a, . . . , a, c0, φ),

∑
j+k=i

(−1)j
(
i− 2
j − 2

)
µj+1(µk(a, . . . , a), a, . . . , a, c0, φ)−

−
∑
j+k=i

(
i− 2
k − 1

)
µj+1(µk(a, . . . , a, c0), a, . . . , a, φ) +

+
∑
j+k=i

(−1)(j+1)|φ|L

(
i− 2
k − 1

)
µj+1(µk(a, . . . , a, φ), a, . . . , a, c0) +

+
∑
j+k=i

(−1)j(|φ|L+1)
(
i− 2
k − 2

)
µj+1(µk(a, . . . , a, c0, φ), a, . . . , a) = 0 .

(C.39)

Hence, using (3.4) and (3.18), we obtain

δc0(∇φ) = −
∑
i≥0

1
i!µi+2(a, . . . , a, c0,∇φ) +

∑
i≥0

(−1)i
i! µi+3(f, a, . . . , a, c0, φ) , (C.40)

as required.
To verify (3.20), consider

∇2φ =
∑
i≥0

1
i!µi+1(a, . . . , a,∇φ)

=
∑
i,j≥0

(−1)i|φ|L
i!j! µi+1(µj+1(a, . . . , a, φ), a, . . . , a)

=
∑
i≥0

1
i!
∑
j+k=i

(−1)j|φ|L
(
i

j

)
µj+1(µk+1(a, . . . , a, φ), a, . . . , a)

=
∑
i≥1

1
(i− 1)!

∑
j+k=i

(−1)j|φ|L
(
i− 1
j

)
µj+1(µk(a, . . . , a, φ), a, . . . , a)

=
∑
i≥1

1
(i− 1)!

∑
j+k=i

(−1)j|φ|L
(
i− 1
k − 1

)
µj+1(µk(a, . . . , a, φ), a, . . . , a)

=
∑
i≥1

1
(i− 1)!

∑
j+k=i

(−1)j−1
(
i− 1
j − 1

)
µj+1(µk(a, . . . , a), a, . . . , a, φ)

=
∑
i≥0

1
i!

i∑
j=0

(−1)i−j
(

i

i− j

)
µi−j+2(µj(a, . . . , a), a, . . . , a, φ)

=
∑
i,j≥0

(−1)i
i!j! µi+2(µj(a, . . . , a), a, . . . , a, φ)

=
∑
i≥0

(−1)i
i! µi+2(f, a, . . . , a, φ) ,

(C.41)
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where we have used (C.2) in the third step and the homotopy Jacobi identity (2.44c) for
(a, . . . , a, φ),

∑
j+k=i

(−1)j
(
i− 1
j − 1

)
µj+1(µk(a, . . . , a), a, . . . , a, φ) +

+
∑
j+k=i

(−1)j|φ|L
(
i− 1
k − 1

)
µj+1(µk(a, . . . , a, φ), a, . . . , a) = 0 ,

(C.42)

in the sixth step. Altogether, we arrive at (3.20),

∇2φ =
∑
i≥0

(−1)i
i! µi+2(f, a, . . . , a, φ) . (C.43)

L∞-morphisms and Maurer–Cartan elements. In the following, we explain formulas
(3.24a), (3.24b), and (3.25) in detail. As mentioned, one may be led to assume that φ
should act on a gauge potential a as a′ = φ1(a). However, this does not give the desired
compatibility with the L∞-algebra structures. Instead, one should either regard the shifted
exponential1 esa0 := sa+ 1

2sa�sa+ 1
3!sa�sa�sa+ · · · in the coalgebra picture as the natural

invariant object, or, equivalently in the L∞-picture, evaluate (2.57) at `1 = · · · = `i = a ∈ L1.
Both approaches eventually lead to the following.

Coalgebra picture. Recall that a morphism φ : L → L′ corresponds to a morphism of
coalgebras Φ : ⊙•0 L[1]→ ⊙•

0 L′[1] and satisfies D ◦ Φ = Φ ◦D. In the dual, dga-picture, we
have a morphism Φ∗ : C∞(L′[1])→ C∞(L[1]) satisfying Φ∗ ◦Q = Q′ ◦ Φ∗.

From equation (A.31), it follows that

Φ(esa0 ) = Φ(sa+ 1
2sa� sa+ 1

3!sa� sa� sa+ · · · )

= Φ1
1(sa) + 1

2Φ1
2(sa� sa) + 1

2Φ1
1(sa)� Φ1

1(sa) + 1
3!Φ

1
3(sa� sa� sa) +

+ 1
2Φ1

2(sa� sa)� Φ1
1(sa) + 1

3!Φ
1
1(sa)� Φ1

1(sa)� Φ1
1(sa) + · · ·

= esa′0 ,

(C.44a)

where

a′ :=
∑
i≥1

1
i!φi(a, . . . , a) . (C.44b)

1This expression is used in the proofs in Appendix C.
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We can then use equation (C.22) to compute the curvature of a′ as

f ′ = (s−1 ◦ pr⊙1 L[1] ◦D
′)(esa′0 )

= (s−1 ◦ pr⊙1 L[1] ◦D
′ ◦ Φ)(esa0 )

= (s−1 ◦ pr⊙1 L[1] ◦ Φ ◦D)(esa0 )

= (s−1 ◦ pr⊙1 L[1] ◦ Φ)(sf � esa)

= s−1(Φ1
1(sf) + 1

2Φ1
2(sf � sa) + . . . )

=
∑
i≥0

(−1)i
i! φi+1(f, a, . . . , a) .

(C.45)

Furthermore, using equation (C.22), we can write gauge transformations as follows in the
coalgebra picture,

δc0a = (s−1 ◦ pr⊙1 L[1] ◦D)(sc0 � desa) . (C.46)

This allows us to compare different gauge orbits,

δc′0a
′ = s−1 ◦ pr⊙1 L[1]D

′(sc′0 � esa′)

= s−1 ◦ pr⊙1 L[1] ◦D
′ ◦ Φ(sc0 � esa)

= s−1 ◦ pr⊙1 L[1] ◦ Φ ◦D(sc0 � esa)

= s−1 ◦ pr⊙1 L[1] ◦ Φ(sδc0a� esa + sc0 � sf � esa) ,

(C.47)

and we conclude that

c′0 =
∑
i≥0

1
i!φi+1(a, . . . , a, c0) . (C.48)

L∞-morphisms and Maurer–Cartan elements using brackets. Consider the defini-
tion (2.57) of a general L∞-morphism (L, µi)→ (L′, µ′i) evaluated at (`1, . . . , `i) = (a, . . . , a)
for a ∈ L1. Then, the left-hand-side of (2.57) becomes

∑
j+k=i

(−1)k
(
i

k

)
φk+1(µj(a, . . . , a), a, . . . , a) =

= i!
∑

k1+k2=i

(−1)k1

k1! φk1+1

( 1
k2!µk2(a, . . . , a), a, . . . , a

)
,

(C.49a)
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while the right-hand-side reads as

i∑
j=1

1
j!

∑
k1+···+kj=i

(
i

k1

)(
i− k1

k2

)
· · ·

(
i− k1 − · · · − kj−2

kj−1

)
×

× µ′j(φk1(a, . . . , a), . . . , φkj(a, . . . , a))

= i!
i∑

j=1

1
j!

∑
k1+···+kj=i

µ′j

(
1
k1!φk1(a, . . . , a), . . . , 1

kj!
φkj(a, . . . , a)

)
.

(C.49b)

Hence, upon equating (C.49a) and (C.49b), we obtain

∑
k1+k2=i

(−1)k1

k1! φk1+1

( 1
k2!µk2(a, . . . , a), a, . . . , a

)
=

=
i∑

j=1

1
j!

∑
k1+···+kj=i

µ′j

(
1
k1!φk1(a, . . . , a), . . . , 1

kj!
φkj(a, . . . , a)

)
.

(C.50)

Thus, setting
a′ :=

∑
i≥1

1
i!φi(a, . . . , a) (C.51)

and using the Cauchy product formula (C.3), we obtain from (C.50) the relation

∑
i≥0

(−1)i
i! φi+1(f, a, . . . , a) = f ′ , (C.52a)

where
f :=

∑
i≥1

1
i!µi(a, . . . , a) and f ′ :=

∑
i≥1

1
i!µ
′
i(a′, . . . , a′) . (C.52b)

are the corresponding curvatures. Thus, we conclude that under L∞-morphisms, MC elements
are mapped to MC elements.

Recall the formula (3.10) for gauge transformations,

a 7→ a+ δc0a with δc0a =
∑
i≥0

1
i!µi+1(a, . . . , a, c0) for c0 ∈ L0 . (C.53)

We wish to study (C.51) under such transformations.
Generally, we have

∑
i≥1

1
i!φi(a+ δc0a, . . . , a+ δc0a) =

∑
i≥1

1
i!φi(a, . . . , a)

︸ ︷︷ ︸
= a′

+
∑
i≥0

1
i!φi+1(δc0a, a, . . . , a)

︸ ︷︷ ︸
=: ∆a′

= a′ + ∆a′ .

(C.54)
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To compute ∆a′, we again consider equation (2.57) for a general L∞-morphism, and this time
we evaluate it at (`1, . . . , `i) = (a, . . . , a, c0) for c0 ∈ L0 and a ∈ L1. The left-hand-side of
that equation becomes

∑
j+k=i

[
(−1)k

(
i− 1
k − 1

)
φk+1(µj(a, . . . , a), a, . . . , a, c0) +

+
(
i− 1
j − 1

)
φk+1(µj(a, . . . , a, c0), a, . . . , a)

]
=

= (i− 1)!
∑

k1+k2=i

[
(−1)k1

(k1 − 1)!φk1+1

( 1
k2!µk2(a, . . . , a), a, . . . , a, c0

)
+

+ 1
k1!φk1+1

(
1

(k2 − 1)!µk2(a, . . . , a, c0), a, . . . , a
)]

,

(C.55a)

while the right-hand-side reads as

i∑
j=1

1
(j − 1)!

∑
k1+···+kj=i

(
i− 1
k1

)(
i− 1− k1

k2

)
· · ·

(
i− 1− k1 − · · · − kj−2

kj−1

)
×

× µ′j(φk1(a, . . . , a), . . . , φkj(a, . . . , a, c0)) =

= (i− 1)!
i∑

j=1

1
(j − 1)!

∑
k1+···+kj=i

×

× µ′j

(
1
k1!φk1(a, . . . , a), . . . , 1

kj−1!φkj−1(a, . . . , a), 1
(kj − 1)!φkj(a, . . . , a, c0)

)
.

(C.55b)
Hence, upon equating (C.55a) and (C.55b), we obtain

∑
k1+k2=i

[
(−1)k1

(k1 − 1)!φk1+1

( 1
k2!µk2(a, . . . , a), a, . . . , a, c0

)
+

+ 1
k1!φk1+1

(
1

(k2 − 1)!µk2(a, . . . , a, c0), a, . . . , a
)]

=

=
i∑

j=1

1
(j − 1)!

∑
k1+···+kj=i

×

× µ′j

(
1
k1!φk1(a, . . . , a), . . . , 1

kj−1!φkj−1(a, . . . , a), 1
(kj − 1)!φkj(a, . . . , a, c0)

)
.

(C.56)
Next, we set

c′0 :=
∑
i≥0

1
i!φi+1(a, . . . , a, c0) (C.57)
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and use (C.51) and (C.53), the definition

δc′0a
′ :=

∑
i≥0

1
i!µ
′
i+1(a′, . . . , a′, c′0) , (C.58)

and the Cauchy product formula (C.3) to obtain

−
∑
i≥0

(−1)i
i! φi+2(f, a, . . . , a, c0) +

∑
i≥0

1
i!φi+1(δc0a, a, . . . , a) = δc′0a

′ (C.59)

from (C.56). Upon comparing this with (C.54), we find

∆a′ = δc′0a
′ +

∑
i≥0

(−1)i
i! φi+2(f, a, . . . , a, c0) . (C.60)

Consequently, for MC elements this reduces to

∆a′ = δc′0a
′ =⇒

∑
i≥1

1
i!φi(a+ δc0a, . . . , a+ δc0a) = a′ + δc′0a

′ , (C.61)

and, combining this with (C.52a), we realise that gauge equivalent MC configurations are
mapped to gauge equivalent MC configurations under L∞-morphisms.

A curvature identity. Let L be equipped with an inner product 〈−,−〉L and let f be the
curvature as defined in (3.4). We wish to prove that

〈f, f〉L = 0 . (C.62)

Firstly,
〈f, f〉L =

∑
i,j≥0

1
i!j!〈µi(a, . . . , a), µj(a, . . . , a)〉L

=
∑
i≥0

1
i!
∑
j+k=i

(
i

j

)
〈µj(a, . . . , a), µk(a, . . . , a)〉L︸ ︷︷ ︸

=:Fi

,
(C.63)

and therefore

Fi =
i∑

j=0

(
i

j

)
〈µj(a, . . . , a), µi−j(a, . . . , a)〉L

= −
i∑

j=0
(−1)j

(
i

j

)
〈a, µj(µi−j(a, . . . , a), a, . . . , a)〉L

= −
i−1∑
j=1

(−1)j
(
i

j

)
〈a, µj(µi−j(a, . . . , a), a, . . . , a)〉L

=
i−2∑
j=0

(−1)j
(

i

j + 1

)
〈a, µj+1(µi−j−1(a, . . . , a), a, . . . , a)〉L .

(C.64)
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Hence,

Fi+1 =
i−1∑
j=0

(−1)j
(
i+ 1
j + 1

)
〈a, µj+1(µi−j(a, . . . , a), a, . . . , a)〉L

=
i∑

j=0
(−1)j

(
i+ 1
j + 1

)
〈a, µj+1(µi−j(a, . . . , a), a, . . . , a)〉L

=
i∑

j=0
(−1)j

[(
i

j

)
+
(

i

j + 1

)]
〈a, µj+1(µi−j(a, . . . , a), a, . . . , a)〉L

=
i∑

j=0
(−1)j

(
i

j + 1

)
〈a, µj+1(µi−j(a, . . . , a), a, . . . , a)〉L ,

(C.65)

where in the last step we have use the Bianchi identity (3.6). Therefore,

Fi+1 =
i−1∑
j=0

(
i

j + 1

)
〈µj+1(a, . . . , a), µi−j(a, . . . , a)〉L

=
i∑

j=1

(
i

j

)
〈µj(a, . . . , a), µi+1−j(a, . . . , a)〉L .

(C.66a)

However, from the first line of (C.64), we also have

Fi+1 =
i∑

j=1

(
i+ 1
j

)
〈µj(a, . . . , a), µi+1−j(a, . . . , a)〉L . (C.66b)

Furthermore, for any Aij = Aji we have the identity
(
i+ 1

1

)
A1i +

(
i+ 1

2

)
A2i−1 + · · ·+

(
i+ 1
i− 1

)
Ai−12 +

(
i+ 1
i

)
Ai1 =

= 2
[(
i

1

)
A1i +

(
i

2

)
A2i−1 + · · ·+

(
i

i− 1

)
Ai−12 +

(
i

i

)
Ai1

]
.

(C.67)

Hence, using the symmetry of the inner product we take Aij := 〈µi(a, . . . , a), µj(a, . . . , a)〉L,
which implies that the sum in (C.66b) is twice the sum in (C.66a), that is,

i∑
j=1

(
i+ 1
j

)
〈µj(a, . . . , a), µi+1−j(a, . . . , a)〉L =

= 2
i∑

j=1

(
i

j

)
〈µj(a, . . . , a), µi+1−j(a, . . . , a)〉L .

(C.68)

Consequently, we must have Fi+1 = 0 and so 〈f, f〉L = 0, as claimed.
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Becchi–Rouet–Stora–Tyutin transformations. Let us verify (4.54). Firstly, we have

QBRSTa =
∑
i≥0

1
i!µi+1(a, . . . , a, c0) ,

QBRSTc0 = −
∑
i≥0

1
i!

[
µi+1(a, . . . , a, c−1) + 1

2!µi+2(a, . . . , a, c0, c0)
] (C.69)

and so

Q2
BRSTa =

∑
i≥0

1
i!
[
µi+2(QBRSTa, a . . . , a, c0) + (−1)iµi+1(QBRSTc0, a, . . . , a)

]
=

∑
i≥0

1
i!j!

[
µi+2(µj+1(a, . . . , a, c0), a . . . , a, c0) +

− (−1)iµi+1(µj+1(a, . . . , a, c−1), a, . . . , a)−

− (−1)i
2! µi+1(µj+2(a, . . . , a, c0, c0), a, . . . , a)

]
=

∑
i≥0

1
i!
∑
j+k=i

(
i

j

)[
µj+2(µk+1(a, . . . , a, c0), a, . . . , a, c0) +

− (−1)jµj+1(µk+1(a, . . . , a, c−1), a, . . . , a)−

− (−1)j
2! µj+1(µk+2(a, . . . , a, c0, c0), a, . . . , a)

]
=

∑
i≥2

1
(i− 2)!

∑
j+k=i

(
i− 2
j − 1

)
µj+1(µk(a, . . . , a, c0), a, . . . , a, c0) +

−
∑
i≥1

1
(i− 1)!

∑
j+k=i

(−1)j
(
i− 1
j

)
µj+1(µk(a, . . . , a, c−1), a, . . . , a)−

−
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)j
2!

(
i− 2
j

)
µj+1(µk(a, . . . , a, c0, c0), a, . . . , a)
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=
∑
i≥2

1
(i− 2)!

∑
j+k=i

(
i− 2
k − 1

)
µj+1(µk(a, . . . , a, c0), a, . . . , a, c0) +

−
∑
i≥1

1
(i− 1)!

∑
j+k=i

(−1)j
(
i− 1
k − 1

)
µj+1(µk(a, . . . , a, c−1), a, . . . , a)−

−
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)j
2!

(
i− 2
k − 2

)
µj+1(µk(a, . . . , a, c0, c0), a, . . . , a)

= −
∑
i≥1

1
(i− 1)!

∑
j+k=i

(−1)j−1
(
i− 1
j − 1

)
µj+1(µk(a, . . . , a), a, . . . , a, c−1) +

+
∑
i≥2

1
(i− 2)!

∑
j+k=i

(−1)j
2!

(
i− 2
j − 2

)
µj+1(µk(a, . . . , a), a, . . . , a, c0, c0)

=
∑
i≥0

1
i!

i∑
j=0

(−1)j
(
i

j

)[
− µj+2(µi−j(a, . . . , a), a, . . . , a, c−1) +

+ 1
2!µj+3(µi−j(a, . . . , a), a, . . . , a, c0, c0)

]
=

∑
i,j≥0

(−1)i
i!j!

[
− µi+2(µj(a, . . . , a), a, . . . , a, c−1) +

+ 1
2!µi+3(µj(a, . . . , a), a, . . . , a, c0, c0)

]
,

(C.70)

where we used the homotopy Jacobi identity (2.44c) for (a, . . . , a, c0, c0) in the sixth step,

1
2!

∑
j+k=i

(−1)j
(
i− 2
j − 2

)
µj+1(µk(a, . . . , a), a, . . . , a, c0, c0)−

−
∑
j+k=i

(
i− 2
k − 1

)
µj+1(µk(a, . . . , a, c0), a, . . . , a, c0) +

+ 1
2!

∑
j+k=i

(−1)j
(
i− 2
k − 2

)
µj+1(µk(a, . . . , a, c0, c0), a, . . . , a) = 0 ,

(C.71)

and for (a, . . . , a, c−1),

∑
j+k=i

(−1)j
(
i− 1
j − 1

)
µj+1(µk(a, . . . , a), a, . . . , a, c−1) +

+
∑
j+k=i

(−1)j
(
i− 1
k − 1

)
µj+1(µk(a, . . . , a, c−1), a, . . . , a) = 0 ,

(C.72)

respectively. Altogether, using the curvature f defined in (3.5), we arrive at

Q2
BRSTa =

∑
i≥0

(−1)i
i!

[
− µi+2(f, a, . . . , a, c−1) + 1

2!µi+3(f, a, . . . , a, c0, c0)
]
. (C.73)





D
Quasi-groups and higher principal bundles

D.1. Categories and Sheaves

Here, we just present a coincise exposition of some mathematical notions underlying many
constructions discussed in this Thesis. The following literature has proven to be useful for
studying this subject: [303, 304] (category theory), [294, 305, 306] (algebraic geometry).

D.1.1. Categories

As seen along the Thesis, categories appear naturally in the study of higher gauge theory.
Here, we just recall the basic definitions to fix notation.

A category C consists of the following data:

• a collection Ob(C ) of objects,

• for each pair X, Y ∈ Ob(C ), a collection homC (X, Y ) of morphisms from X to Y , also
called arrows,

such that

• for each object X ∈ Ob(C ), there is a distinguished identity morphism idX ∈ homC (X,X) ,

• for each X, Y, Z ∈ Ob(C ) and each pair of morphisms f ∈ homC (X, Y ) and g ∈
homC (Y, Z), there is a morphism function ◦ : homC (X, Y )×homC (Y, Z)→ homC (X,Z),
defined by (f, g) 7→ g ◦ f , called composition.

This data is subject to the following axioms:
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214 D.1. Categories and Sheaves

• for any f ∈ homC (X, Y ), we have f ◦ idX = f = idY ◦ f ,

• for each morphism f ∈ homC (X, Y ), g ∈ homC (Y, Z) and h ∈ homC (Z,W ), we have
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Given a category C , we define the opposite category C op by Ob(C op) := Ob(C ) and
homC op(X, Y ) := homC (Y,X), that is, C op has the same objects as C , but the directions of
all morphisms are reversed. Here, for each X ∈ C , the identity idop

X is given by idX , while
for each f op : X → Y and gop : Y → Z, the composition gop ◦ f op is given by f ◦ g, for all
X, Y, Z ∈ C .

Examples. Useful examples of categories in our discussion are1:

• Set, with sets as its objects and functions between sets as its morphisms.

• Top, with topological spaces as objects and continuous functions as morphisms.

• Man, with smooth manifolds as objects and smooth maps as morphisms.

• The category of complex manifolds, with complex manifolds as objects and holomorphic
maps as morphisms.

• The category of (complex) holomorphic vector bundles, with (complex) holomorphic
vector bundles as objects and (smooth) holomorphic bundle maps as morphism.

• Grp, whose objects are groups and whose morphisms are group homomorphisms. The
categories Rings of associative and unital rings and ring homomorphisms and Fields of
fields and field homomorphisms are defined similarly.

• Vectk, with vector spaces over a field k as objects and k-linear maps as morphisms. For
our discussion, k = R,C.

A groupoid is defined as a category where all the arrows are invertible. For instance, a
group G is a groupoid with one object, namely it is the same thing as a category BG with
one object, Ob(BG) = {?}, in which the morphisms are given by {G}. Hence g : ? → ? is
considered as a morphism, the identity morphism is e ∈ G, the composition is the composition
in G and morphisms admit an inverse, g−1 : ?→ ?.

1The following are concrete categories, those whose objects have underlying sets and whose morphisms
are structure-preserving morphisms between these sets.
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Functors. Besides the notion of categories, we shall need the notion of functors encapsulating
the notion of arrows between categories. A functor F : C → D between categories C and D

consists of the following data

• An object F (X) ∈ D , for each X ∈ C ,

• A morphism F (f) ∈ homD(F (X), F (Y )), for each f ∈ homC (X, Y ), X, Y ∈ C ,

subjected to the following (functoriality) axioms

F (idX) = idF (X) and F (g ◦ f) = F (g) ◦ F (f) ,

for all f ∈ homC (X, Y ), g ∈ homC (Y, Z) and X, Y, Z ∈ C . Hence, a functor consists of
a mapping on objects and a mapping on morphisms that preserves all of the structure of a
category. What we have just defined is a covariant functor. A functor F : C → D is called
faithful (respectively, full) if the assignment homC (X, Y )→ homD(F (X), F (Y )), f 7→ F (f)
is injective (respectively, surjective). Let C and D be categories. A contravariant functor
from C to D is a functor C op → D . For instance, given a vector space one can define the
so-called dual vector space functor. Explicitly, the functor (−)∗ : Vectop

k → Vectk carries a
vector space to its dual vector space V ∗ = hom(V, k). A vector in V ∗ is a linear functional
on V , i.e., a linear map V → k. Such a functor is contravariant: a linear map φ : V → W is
sent to the linear map φ∗ : W ∗ → V ∗ that pre-composes a linear functional ψ : W → k with
φ to obtain a linear functional ψ ◦ φ : V → W → k. Another useful example is the following.
Let G be a group and C a category. The functor F : BG→ C defines an action1 of the group
G on an object X ∈ C . Indeed, F : BG → C specifies an object X ∈ C , together with an
endomorphism g∗ : X → X, for each g ∈ G. This assignment satisfies h∗g∗ = (hg)∗, for all
g, h ∈ G and e∗ = idX , where e ∈ G is the identity element. Specifying C = Vectk, the object
X endowed with such an action is called a G-representation. Similarly, for C = Set we obtain
a G-set, while for C = Top one gets a G-space. Another example is given by the functor
Hn : Topop → AbGrp from the opposite category of topological spaces to the category of
Abelian groups. For each n ∈ N, the functor Hn assigns to a space its nth cohomology group.
Its relevance will be clear in the next Section. Moreover, for every functor F : C → D there is
a functor C op → Dop, called opposite functor. We note that the composition of two functors
is a functor. If both are covariant or both are contravariant the composition is covariant, while
if one is covariant and one is contravariant the composition is a contravariant functor.

1Notice that the action specified by BG→ C is a left-action. A right-action is a functor BGop → C .
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D.1.2. Sheaves

Pre-sheaves and sheaves are two of the indispensable tools used in some of the more advanced
parts of algebraic topology and algebraic geometry. Roughly speaking, pre-sheaves can be
seen as a way of packaging local information about a topological space in a way that is
mathematically useful, while sheaves allow to locally attach data to any open subset of a
topological space and glue together such local data to obtain something global.

Let X be a topological space. A pre-sheaf P of Abelian groups1 over X is the association
of an Abelian group P(U) to every open subset U ⊂ X together with morphisms, called the
restriction maps, rUV : P(U) → P(V ), for each pair of open sets U, V with V ⊂ U . These
groups and morphisms satisfy rUW = rVW ◦ rUV , for W ⊂ V ⊂ U , rUU is the identity map and
P(∅) = {0}. The elements s ∈ P(U) are called sections of the pre-sheaf P on U . Put
differently, a pre-sheaf is a contravariant functor from the category whose objects are the open
subsets of X and the morphisms are the inclusions of open sets, to the category AbGrp of
Abelian groups.

In many situations it is desirable to reconstruct global information by gluing together pieces
of local data. This local-to-global property is made precise by introducing a sharper notion,
that of a sheaf. Explicitly, let U ⊂ X an open subset and {Va}a∈A an open covering of U . A
pre-sheaf P over X becomes a sheaf if the following conditions are satisfied:

(i) Sections are determined by local data: Given two sections s, s̄ ∈ P(U) such that
rUVa(s) = rUVa(s̄) for all a ∈ A, then s = s̄ .

(ii) Compatible local data can be patched together: Given any family (sa)a∈A with sa ∈
P(Va), if rVaVa∩Vb(sa) = rVbVa∩Vb(sb), then there exists s ∈ P(U) such that rUVa(s) = sa for
all a ∈ A.

A morphism of (pre-)sheaves φ : S → S ′ over X consists of a family of morphisms of
Abelian groups φU : S(U)→ S ′(U), for each open U ⊂ X, commutating with the restriction

1For a definition involving non-Abelian groups see e.g. the discussion in [237]. Pre-sheaves of rings (or
set, vector space, R-module, etc.) are defined in the same way, by requiring that the restriction maps are ring
(set, vector space, R-module, etc.) morphisms.
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morphisms; i.e., the following diagram commutes

S(U) S ′(U)

S(V ) S ′(V )

φU

rUV r′UV

φV

(D.1)

Two sheaves S and S ′ are isomorphic if there exist some sheaf morphisms φ : S → S ′ and
ψ : S ′ → S such that φ ◦ ψ = id and ψ ◦ φ = id.

Examples. The following examples are useful for our purposes:

• Let M be a smooth manifold1. Smooth functions on M form a sheaf, denoted by
C∞(M). Also, the smooth p-forms Ωp(M) form a sheaf.

• Let X be a complex manifold. Holomorphic functions on X form the sheaf OX and
smooth (p, q)-forms Ωp,q(X) on X is a sheaf.

• Let E → X be a holomorphic vector bundle over a complex manifold X. Holomorphic
sections of E on X is a sheaf, denoted by OX(E).

Turning a pre-sheaf into a sheaf. There exists a well-behaved procedure for converting a
pre-sheaf P to a sheaf S on a topological space X. Such a procedure is called sheafification,
see e.g. [307] for a clear explanation.

Definition D.1. The stalk of a pre-sheaf P at a point x ∈ X is the Abelian group

Px := lim−→
U

P(U) , (D.2)

where U ranges over all open neighbourhoods, directed by inclusion.

Remark D.2. Let us recall the definition of direct limit. Let I be a partially ordered set, such
that for each pair of elements i, j ∈ I there is a third element k such that i < k and j < k (I
is called a directed set). Given such an I, we consider a family of Abelian groups {Gi}i∈I such
that for all i < j there is a group morphism f ij : Gi → Gj, with f ii = id, and f jk ◦ f ij = f ik.
Then, on the set G = ⊔

i∈I Gi, where ⊔ denotes the disjoint union, we consider the following
1Recall that in Chapter 2, we have used the interpretation of a manifold M as a locally ringed space,

which is a topological space |M | together with a sheaf of commutative rings on it.
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equivalence relation: for g ∈ Gi and h ∈ Gj we say g ∼ h if there exists a k ∈ I such that
f ik(g) = f jk(h). The direct limit of the system {Gi}i∈I , denoted by

lim−→
i∈I

Gi , (D.3)

is defined as the quotient G/ ∼. For more details, the reader may consult cf. [182].

If x ∈ U and s ∈ P(U), the image sx of s in Px via the canonical projection P(U)→ Px is
called the germ of s at x. Two elements s ∈ P(U), s′ ∈ P(V ), for U, V open neighbourhoods
of x, define the same germ at x, i.e. sx = s′x if and only if there exists an open neighbourhood
W ⊂ U ∩V of x such that s and s′ coincide on s|W = s′|W . One can naturally associate with
P a sheaf having the same stalks. One considers P̂ := ⊔

x∈X Px (called the étalé space) and
the natural projection P̂ → X. Sections s of P give rise to sections ŝ : U ↪→ P̂ of π defined
by ŝ(x) = sx. Then, we define a new pre-sheaf P] by taking P](U), for U ⊂ X, to be the
group of sections σ : U ↪→ P̂ of π such that, for every x ∈ U , there is an open neighbourhood
V ⊂ U of x satisfying σ|V = s, for some s ∈ P(V ). P]1 is called the sheaf associated with
the pre-sheaf P .

A subsheaf of a sheaf S over a topological space X is a sheaf S ′ over X such that S ′(U)
is a subgroup of S(U) for any open set U ⊂ X. The restriction maps on S ′ are inherited from
the ones on S.

Let A be a sheaf of rings on a topological space X. A sheaf S of modules over A is said
locally free and of rank r if S is locally isomorphic to A⊕r on a neighbourhood of every point.
Hence, for every x ∈ X one can find a neighbourhood U ⊂ X and sections s1, . . . , sr ∈ S(U)
such that the sheaf homomorphism

s : A⊕r|U → S|U , A⊕rx 3 (a1, . . . , ar) 7→
∑

1≤j≤r
ajsj,x ∈ Sx (D.4)

is an isomorphism. The notion of locally free sheaf is related to the notion of vector bundle.
Given a rank r vector bundle E → X over a manifold X, the sheaf of sections (which is
an OX-module) is a locally free sheaf of rank r, S|Ui ∼= O⊕rUI , for {Ui} an open cover of X.
Isomorphism classes of locally free sheaves of rank r over X are in one-to-one correspondence
with isomorphism classes of vector bundles of the same rank over X. Hence, these two terms
often are used to indicate the same object.

1Notice that in general the morphism P → P] is neither injective nor surjective.



D.1. Categories and Sheaves 219

A sequence of morphisms of sheaves 0→ S1
f−→ S2

g−→ S3 → 0 on a topological space X
is exact if, for every point x ∈ X, the sequence of morphisms of stalks 0→ S1x

fx−→ S2x
gx−→

S3x → 0 is exact, i.e. ker fx = imgx for all x ∈ X. Notice that, if 0→ S1 → S2 → S3 → 0 is
exact for every open subset U ⊂ X, the sequence of groups 0 → S1(U) → S2(U) → S3(U)
is exact, but the last arrow may fail to be surjective. In particular, exactness implies that f is
a monomorphism and g is an epimorphism and the image of f is equal to the kernel of g.

Associated to any complex manifold X1, we have the following short exact sequence of
sheaves

0 −→ Z
ι−→ OX

exp−−→ O∗X −→ 0 (D.5)

called the exponential sheaf sequence. Here, Z is the constant sheaf with stalk the integers,
while OX and O∗X denote the sheaf of holomorphic functions and the subsheaf of non-vanishing
holomorphic functions on X, respectively. The map ι is the obvious inclusion, while the
exponential map exp is defined by the homeomorphism

exp : OU → O∗U : f 7→ e2πif , for f ∈ OU , U ⊂ X . (D.6)

That Z is the kernel of exp is immediate, and exactness of the sequence at O follows from the
fact that X admits a cover by contractible open sets, over each of which any non-vanishing
holomorphic function has a logarithm, which is unique up to a constant of the form 2πki,
k ∈ Z.

D.1.3. Cohomology of sheaves

We shall now describe a cohomology theory which associates cohomology groups to a sheaf
on a topological space. As clearly emerges in Chapter 6,7, sheaf cohomology plays also an
important role in the twistor framework.

Čech cohomology. To begin with, let P be a pre-sheaf over the topological space X with
an open covering U. We assume U is labelled by a totally ordered set I and we define

Ui0,··· ,iq := Ui0 ∩ · · · ∩ Uiq . (D.7)

1We shall discuss complex geometry in the Appendix.
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The Čech complex of U with coefficients in P is defined as the complex whose p-th term is
the Abelian group

Cq(U,P) :=
∏

i0<···<iq
P(Ui0,··· ,iq) . (D.8)

Hence, a q-cochain is a collection f = {fi0,···iq} of sections of P , each one belonging to the
space of sections over the non-empty intersection1 of q + 1 open sets in U. Then we define
the coboundary map (the Čech differential)

δq : Cq(U,P)→ Cq+1(U,P) (D.9)

by the formula2

(δqf)i0,··· ,iq :=
q+1∑
k=0

(−1)kfi0,··· ,̂ik,··· ,iq+1
|Ui0,··· ,iq+1

. (D.10)

It follows that δq ◦ δq−1 = 0. The corresponding cohomology groups are

Hq(U,P) := ker(δq)/im(δq−1) , q ≥ 0 . (D.11)

As usual, elements of ker(δq) are called q-cocycles, while elements of im(δq−1) are q-boundaries.
The direct sum

H•(U,P) =
⊕
q≥0

Hq(U,P) , (D.12)

is called the Čech cohomology of U with coefficients in P .
The cohomology groups H•(U,S) with coefficients in a sheaf S over X are then defined

as the cohomology groups with coefficients in the canonical pre-sheaf of S. If S is a sheaf
over X, the following result holds: the cohomology group H0(U,S) is naturally isomorphic to
the group S(X) of sections of S over X.

The result depends to some extent on the choice of covering U, but for a good covering
this dependence disappears. This is achieved by defining a notion of refinement on covers and
by taking direct limits, as we shall briefly show. An open covering V = {Vj}j∈J of X is a
refinement of an open covering U = {Ui}i∈I if each Vj is contained in at least one Ui.3 Two

1Notice that, since the indexes of the open sets are taken in strictly increasing order, each intersection is
counted only once.

2Here, the roof over a symbol means that the symbol is to be omitted.
3The order must be fixed at the outset, since a cover may be regarded as a refinement of another in many

ways.
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open coverings are cofine if each is a refinement of the other. Given U,V, there is a natural
group homomorphism (induced by the restriction mappings of the sheaf S)

hUV : Hq(U,S)→ Hq(V,S) (D.13)

One can define the Čech cohomology groups depending only on the pair (X,S) and not on
the covering by

Hq(X,S) := lim−→
U

Hq(U,S) , (D.14)

which we call the q-th Čech cohomology group of X with coefficients in S. Here, the direct
limit is taken over a cofinal subset of the directed set of all covers of X (the order is of course
the refinement of covers). Notice that the groups Hq(X,S) are well-defined, as different
cofinal families give rise to the same inductive limit.

Čech cohomology is well-behaved when the base space X is paracompact. See e.g. [294,305]
for details. Recall, that a topological space X is paracompact if it is a Hausdorff space and if
every open covering of X has a locally finite refinement. Here, we just mention the following
useful definitions.

Definition D.3 (Direct image sheaf). Let X, Y be topological spaces and f : X → Y a
continuous map. The direct image by f of a pre-sheaf P on X is the pre-sheaf f∗P on Y

defined by (f∗P)(V ) = P(f−1(V )), for every open subset V ⊂ X. If S is a sheaf on X, then
f∗S turns out to be a sheaf.

Definition D.4 (Inverse image sheaf). Let P be a pre-sheaf on Y and f : X → Y a
continuous map. The inverse image of P by f is the pre-sheaf on X defined by

U → lim−→
U⊂f−1(V )

P(V ) , (D.15)

for any open subsets V ⊂ Y . For S a sheaf on Y , f−1S is the sheaf on X associated with
the inverse image pre-sheaf of S.

Note that the stalk at a point x ∈ X of the inverse image pre-sheaf is isomorphic to
Pf(x). Hence, the sequence of sheaves 0 → S ′ → S → S ′′ → 0 and the induced sequence
0→ f−1S ′ → f−1S → f−1S ′′ → 0 are both exact.

Moreover,
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Definition D.5 (Acyclic sheaf). A sheaf S of Abelian groups on a topological space X is said
to be acyclic if Hq(X,S) = 0, for q > 0.

Let S be a sheaf over X. If an open cover U of the topological space X is suitably
chosen, the Čech cohomologies H•(U,S) and H•(X,S) are isomorphic. The following theorem
establishes a sufficient condition for such an isomorphism to hold. We say that an open cover
U = {Ui}i∈I of a topological space X is acyclic for a sheaf S if Hq(Ui0,...,ip ,S) = 0 for all
q > 0 and all nonvoid intersections Ui0,...,ip = Ui0 ∩ · · ·Uip , i0, . . . , ip ∈ I.

Theorem D.6 (Leray’s theorem). Let S be a sheaf on a paracompact space X, and let U

be an open cover of X which is acyclic for S and is indexed by an ordered set. Then, for all
q ≥ 0, the cohomology groups Hq(U,S) and Hq(X,S) are isomorphic.

For a proof see e.g. [294, 305].
We recall that, when X is a paracompact topological space, any exact sequence of sheaves

0 −→ S1 −→ S2 −→ S3 −→ 0 (D.16)

induces a corresponding long exact sequence of Čech cohomology groups according to

0 −→H0(X,S1) −→ H0(X,S2) −→ H0(X,S3)

−→ H1(X,S1) −→ H1(X,S2) −→ H1(X,S3)

−→ H2(X,S1) −→ H2(X,S2) −→ H2(X,S3) −→ · · ·

(D.17)

We mention that, using the notion of flabby sheaves one may define a cohomology theory
which is well-behaved (e.g., it has long exact sequences in cohomology) on every topological
space, not just on paracompact ones, cf. [308]. Moreover, regarding the comparison with other
types of cohomology, it turns out that, even if in general Čech cohomology of a space can
differ from singular cohomology, in case of manifolds they agree. Moreover, Čech cohomology
of the constant pre-sheaf RX also agrees with de Rham cohomology.

D.2. Quasi-groups

Along the thesis we have discussed L∞-algebras as higher generalisations of Lie algebras. Now
we want to face the question about their finite counter parts. As Lie algebras integrate to Lie
groups and, vice-versa, Lie groups differentiate to Lie algebras, analogously the finite counter
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part of an L∞-algebra is equivalent to a so-called quasi-group [140, 309, 265]. However, it
turns out that this problem in the context of L∞–algebras is rather involved. To define a
quasi-group one needs the rather involved machine of simplicial geometry. Hence, we first
provide a brief, elementary introduction into the rich topic of simplicial sets, which are a
combinatorial substitute for topological spaces. Our treatment of the subject will be very
concise and we closely follow [43]. For a more extensive and nicely illustrated introduction to
simplicial sets and simplicial homotopy we refer the interested reader to [310, 103] or the text
books [311–313].

D.2.1. Simplicial manifolds

Let us recall the definition of simplicial sets in terms of the simplex category ∆. This is the
category whose objects are finite ordered sets [p] := {0, 1, . . . , p}, for p ∈ N0, and whose
morphisms are order-preserving maps [p]→ [p′]. The morphisms of ∆ are naturally generated
by the coface maps φpi and codegeneracy maps δpi , which are given by

φpi : [p− 1] → [p]

0
1 ... ...

i− 1
i ... ...p− 1

0
1

i− 1
i
i+ 1
p

δpi : [p+ 1] → [p]

0
1

i
i+ 1
i+ 2

p+ 1

0
1

i
i+ 1
p

...

...

...

...

(D.18)

Indeed, any order-preserving map φ : [p]→ [p′] can be decomposed as

φ = φim ◦ · · · ◦ φi1 ◦ δj1 ◦ · · · ◦ δjn , (D.19)

with p + m − n = p′, 0 ≤ i1 < · · · < im ≤ p′ and 0 ≤ j1 < · · · < jn < p. Moreover, the
objects in ∆ have a geometric realisation in terms of the standard topological p-simplices

|∆p| :=
{

(t0, . . . tp) ∈ Rp+1|
p∑
i=0

ti = 1 and ti ≥ 0
}
. (D.20)

This is realised by means of the functor ∆→ Top, defined on objects by

[p] 7→ |∆p| (D.21)
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and on morphisms by

(
[p] φ−−→ [p′]

)
7→

 |∆p| → |∆p′ |

(t0, . . . , tp) 7→ (
∑

φ(i)=0 ti, . . . ,
∑

φ(i)=p′ ti)

 , (D.22)

with Top being be the category of topological spaces. Thus, the injection |∆p| ↪→ |∆p+1|, in-
duced by the coface map φpi , inserts a 0 in the i-th coordinate (t0, . . . , tp) 7→ (t0, . . . , ti−1, 0, ti, . . . , tp).
Geometrically, it inserts |∆p| as the i-th face of |∆p+1|. Analogously, the codegeneracy
map δpi induces the projection |∆p| to the i-th face of |∆p−1|. Explicitly, this is given by
(t0, . . . , tp) 7→ (t0, . . . , ti + ti+1, . . . , tp), collapsing together the vertices i and i+ 1.

As usual, by ∆op we denote the opposite of the simplex category, which we recall is the
category formed by the same objects, but reversing the morphisms, i.e. interchanging the
source and target of each morphism. Moreover, let Set be the category of sets. We define a
simplicial set as a Set-valued pre-sheaf on ∆, that is a contravariant functor H : ∆op → Set.1

This tells us that H is a collection of sets H = {Hp}p∈N0 , where we have defined Hp :=
H ([p]), called the simplicial p-simplices. Coface and codegeneracy maps translate into the
face maps fpi := H (φpi ) : Hp →Hp−1 and the degeneracy maps dpi := H (δpi ) : Hp →Hp+1,
respectively. These are subject to the simplicial identities

fi ◦ fj = fj−1 ◦ fi for i < j , di ◦ dj = dj+1 ◦ di for i ≤ j ,

fi ◦ dj = dj−1 ◦ fi for i < j , fi ◦ dj = dj ◦ fi−1 for i > j + 1 ,

fi ◦ di = id = fj+1 ◦ di .

(D.23)

These identities follow immediately from similar identities for the coface and the codegeneracy
maps. Note that the last line of (D.23) implies that the face maps are surjective and the
degeneracy maps are injective. In the following, simplicial sets shall be depicted by writing
arrows for the face maps as {

· · · −→−→−→−→ H2
−→−→−→ H1 −→−→ H0

}
. (D.24)

Note, that replacing Set by the category of groups Grp or the category of (Frechét) manifolds
Mfd, one defines simplicial groups or simplicial manifolds, respectively.

Having defined simplicial sets, let us now move on to maps between them. Morphisms of
simplicial sets, also known as simplicial maps, are natural transformations between the functors

1Notice that, unlike other (pre-)sheaves, the special pre-sheaves forming simplicial sets and simplicial
manifolds are denoted by calligraphic letters H ,Y , . . . .
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defining the simplicial sets as pre-sheaves. Explicitly, given two simplicial sets H and H ′, a
simplicial map g : H →H ′ is defined as the collection of maps gp : Hp →H ′

p , commuting
with the face and degeneracy maps on H and H ′. Simplicial sets together with simplicial
maps form the category of simplicial sets sSet. It can be also defined as the functor category1

Fun(∆op, Set). In general, given an arbitrary category C , a simplicial object in C is a functor
∆op → C . For instance, the category of simplicial manifolds is Fun(∆op,Mfd).

Examples. An important example of a simplicial set is given by the standard simplicial p-
simplex ∆p, which is given by hom∆(−, [p]) : ∆op → Set. We have ∆p = {∆p

q}q∈N0 where
∆p
q := hom∆([q], [p]) are simplicial q-simplices in ∆p. Whenever such a map is injective it

is called a non-degenerate simplicial simplex (degenerate otherwise). One can show that this
is unique and given by the identity at [p], while all simplicial simplices for q > p in ∆p are
degenerate. Via the Yoneda lemma (see e.g. [303], Chapter 4 for a proof), there is a bijection
between any simplicial map ∆p → ∆p′ and a morphism [p] → [p′] in the simplex category.
The Yoneda lemma also implies the bijection

Hp
∼= homsSet(∆p,H ) (D.25)

for any simplicial set H .

Products of simplicial sets. We observe that sSet is a symmetric monoidal category. In
particular, it comes with a product. Indeed, given any two simplicial sets H and H ′, we define
the product H ×H ′ to be the simplicial set with simplicial p-simplices (H ×H ′)p := Hp×
H ′

p together with the face and degeneracy maps acting as fH ×H ′

i (xp, x′p) := (fH
i xp, fH ′

i x′p)
and dH ×H ′

i (xp, x′p) := (dH
i xp, dH ′

i x′p), for all (xp, x′p) ∈ (H ×H ′).
Given the product, we define the following. For H , H ′ as before, the object hom(H ,

H ′), called the internal hom, is the simplicial set with simplicial p-simplices homp(H , H ′) :=
homsSet(∆p ×H , H ′) and face and degeneracy maps given by

fpi :
(

∆p ×H
f−→H ′

)
7−→

(
∆p−1 ×H

φpi×idH−−−−−→ ∆p ×H
f−→H ′

)
,

dpi :
(

∆p ×H
f−→H ′

)
7−→

(
∆p+1 ×H

δpi×idH−−−−−→ ∆p ×H
f−→H ′

)
.

(D.26)

1Given categories C ,D , the functor category Fun(C ,D) is the category whose objects are functors
F : C → D and morphisms given by natural transformations between these functors. See e.g. [303, 304]
for details.
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Hence, simplicial 0-simplices hom0(H , H ′) are the simplicial maps between H and H ′.
Invoking again the Yoneda lemma, one has the isomorphism

homsSet(∆p ×H ,H ′) ∼= homsSet(∆p, hom(H ,H ′)) . (D.27)

This can be generalised further to1

homsSet(H ×H ′,H ′′) ∼= homsSet(H , hom(H ′,H ′′)) , (D.28)

for any simplicial sets H , H ′ and H ′′.

D.2.2. Simplicial homotopy theory

Let us consider now two simplicial sets H , H ′ and two simplicial maps g, g̃ between
them. A simplicial homotopy between them is defined as an element h ∈ hom1(H ,H ′) =
homsSet(∆1 ×H ,H ′) such that the following diagram commute

∆0 ×H ∼= H

∆1 ×H H ′

∆0 ×H ∼= H

g
φ1

1×idH

h

φ1
0×idH

g̃

(D.29)

An equivalent description of simplicial homotopies that will be useful to us later is the following.
Using (D.28), a simplicial map h ∈ homSet(H , hom(∆1,H ′)), which is a collection of maps
hp = (hpi ) : Hp → homp(∆1,H ′) with hpi : Hp → H ′

p+1 for i = 0, . . . , p, is a simplicial
homotopy between the simplicial maps gp := fp+1

0 ◦ hp0 : Hp → H ′
p and g̃p := fp+1

p+1 ◦ hpp :
Hp →H ′

p . In this spirit higher simplicial homotopies will be elements of homk(H ×H ′) ∼=
homsSet(H , hom(∆k,H ′)), for k ≥ 2.

Particularly important simplicial sets are the horns of the standard simplicial p-simplex.
Recall that, given a simplicial set H , the simplicial simplices of H can be given by the
standard maps (D.25) from ∆p to H . We call the simplicial subset of ∆p generated by
the union of all faces of ∆p, except for the i-th one, the (p, i)-horn of ∆p and we denote it
by Λp

i . Since all the horns Λp
i of ∆p arise by removing the unique non-degenerate simplicial

p-simplex from ∆p as well the i-th non-degenerate simplicial (p− 1)-simplex, they can again
1Hence, hom is the right-adjoint of the product in the category sSet.
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be completed to simplicial simplices. If the horns of a simplicial set can be filled, we say
that certain Kan conditions are satisfied. In particular, note that the horns homsSet(Λp

i ,H )
of a general simplicial set H may not always be completed to simplices homsSet(∆p,H ).
Whenever for any horn λ : Λp

i →H there exists a simplicial map δ̃ : ∆p →H , such that

Λp
i H

∆p

λ

δ̃ (D.30)

is commutative, we call H a Kan simplicial set. This can be rephrased by saying that the
natural restriction mappings

homsSet(∆p,H )→ homsSet(Λp
i ,H ) (D.31)

are surjective for all p ≥ 1 and 0 ≤ i ≤ p. Moreover, a Kan simplicial manifold is a simplicial
manifold so that the above restrictions are surjective submersions. We shall denote the category
of simplicial manifolds by sMfd := Fun(∆op,Mfd).1 Also, the internal hom hom(H ,H ′) is
Kan whenever H ′ is Kan.

Each small category2 comes with an associated simplicial set defined as follows. The nerve
N(C ) for a small category C is the simplicial set N(C ) : ∆op :→ Set, whose simplicial p-
simplices are Np(C ) = Fun([p],C ). Any ordinary manifold, interpreted as a constant simplicial
object, is a Kan simplicial manifold. As a further relevant example of Kan simplicial manifolds,
we define the Čech groupoid. Recall that a groupoid is a small category in which every
morphism is invertible. Consider two manifolds X, Y and a surjective submersion φ : Y → X.
The fibre product of Y with itself over X is denoted by Y ×X Y := {(y1, y2) ∈ Y ×Y |φ(y1) =
φ(y2)}. The Čech groupoid Č (Y → X) is the groupoid Y ×X Y ⇒ X with pairs (y1, y2)
for y1, y2 ∈ Y satisfying φ(y1) = φ(y2) as its morphisms. Finally, the Čech nerve is defined
to be the nerve of the Čech groupoid, which can be shown to be a Kan simplicial manifold.
Explicitly, this is the simplicial set

N(Č (Y → X)) =
{
· · · −→−→−→−→ Y ×X Y ×X Y −→−→−→ Y ×X Y −→−→ Y

}
(D.32a)

1A simplicial manifold is a sMfd-valued pre-sheaf on ∆.
2Recall, a category C is called small if the collections Ob(C ) and hom(C ) are sets. Otherwise, C is called

large.
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with face and degeneracy maps defined by

fpi (y0, . . . , yp) := (y0, . . . , yi−1, yi+1, . . . , yp) ,

dpi (y0, . . . , yp) := (y0, . . . , yi−1, yi, yi, . . . , yp) .
(D.32b)

D.2.3. Quasi-groups and L∞-algebras

We observe an important fact, which will come in handy when discussing higher principal
bundles. If H ′ is a Kan simplicial set the simplicial homotopy always induces an equivalence
relation on homsSet(H ,H ′), even if in general that is not true.

Let us now give some definitions. Kan simplicial sets are known as quasi-groupoids and
Kan simplicial manifolds as Lie quasi-groupoids, respectively. Moreover, a Kan simplicial
set (manifold) is called a reduced (Lie) quasi-groupoid, if there is only one single simplicial 0-
simplex. We shall see in the following how these objects, which are higher versions of groupoids,
describe the gauge structure of simplicial bundles. Following the delooping hypothesis, we
identify reduced (Lie) quasi-groupoids with (Lie) quasi-groups. It was shown by Quillen [314]
that the categories of (Lie) quasi-groups and simplicial (Lie) groups are equivalent. Finally,
we shall speak of (Lie) n-quasi-groups whenever all the (p, i)-horns for a (Lie) quasi-group can
be filled uniquely for all p > n.

Differentiation of Lie quasi-groupoids. In this paragraph, we briefly comment about
differentiation of Lie quasi-groupoids. This notion allows to endow higher principal (groupoid)
bundles with connections. We follow the ideas of [140] and we invite the interested reader to
consult [315, 103] for more details on the subject. We observe that, via the forgetful functor,
Z-graded manifolds may be mapped to Z2-graded manifolds, known as supermanifolds. We
let SMfd be the category of (Frechét) supermanifolds.1 Moreover, denote by SurSub the
category of surjective submersions Y → X between supermanifolds Y and X as its objects
and morphisms such that

Y1 Y2

X1 X2

(D.33)

are commutative for surjective submersions Y1,2 → X1,2. As before, we set sSMfd :=
Fun(∆op, SMfd) and call it the category of simplicial supermanifolds.

1SMfd is the category of Z2-graded manifolds together with morphisms of Z2-graded manifolds.
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Since the nerve N of the Čech groupoid of an object in SurSub is an object in sSMfd, any
object H ∈ sSMfd can be used a to define a Set-valued pre-sheaf

homsSMfd(N(−),H ) : SurSubop → Set (D.34)

on SurSub. Now, in analogy to the well-known construction in differential geometry, we call
k-jets of H the linearisation of this pre-sheaf. We define SurSubk to be the subcategory of
SurSub whose objects are surjective submersions of the form X × R0|k → X. We have the
identification

homSurSubk(X1×R0|k → X1, X2×R0|k → X2) ∼= homsSMfd(X1, X2)×homSMfd(X1×R0|k,R0|k) .
(D.35)

Hence, a pre-sheaf on SurSubk is equivalent to a pre-sheaf on SMfd together with an action
of hom(R0|k,R0|k). We shall denote this by SMfdk. For instance, sSMfd1 is the category of
Q-supermanifolds since the action of hom(R0|1,R0|1) corresponds to the action of the vector
field Q. Following Ševera [140], for any pre-sheaf of SurSub we may consider its restriction
to SurSubk to obtain a pre-sheaf of SMfd. We call the latter the k-jet of the pre-sheaf on
SurSub. In addition, the k-jet of a simplicial supermanifold H is the k-jet of the pre-sheaf
homsSMfd(N(−),H ).

Again, following [140,103], one can see that taking the 1-jet of a quasi-groupoid turns out
to be the appropriate higher version of the differentiation of a Lie group to a Lie algebra. In
particular, the 1-jet of a Lie quasi-group is an L∞-algebra. Explicitly, letting

G :=
{
· · · −→−→−→−→ G2

−→−→−→ G1 −→−→ ∗
}

(D.36)

be a Lie quasi-group with face maps fpi and degeneracy maps dpi , the 1-jet of G is parametrised
as [103]

L[1] =
⊕
k≤0

Lk[1] with Lk[1] :=
−k⋂
i=0

ker (f1−k
i ? )[1− k] , (D.37)

where fpi ? denote the linearisation of fpi . Moreover, µ1|Lk[1] = f1−k
1−k ? and the products µi for

i > 1 are given in terms of the j-th order derivatives of the face maps with j ≤ i.

Proving the converse is a much more problematic as it involves topological questions.
However, it can be shown that every L∞-algebra integrates to a Lie-quasi-group [309, 265].
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D.3. Higher principal bundles

Since we are interested in studying higher gauge theory we need to define connective structures
on higher principal bundles with quasi-groups as their structure groups. We present a rather
straightforward approach to the computation of all the kinematical ingredients to corresponding
higher gauge theories given by higher Deligne cocycles and coboundaries. The subject has been
extensively studied in the past and we refer to e.g. [316, 22, 5, 20, 21, 6, 317, 157, 100, 23, 263,
101, 318, 102, 103] for details.

D.3.1. Principal G -bundles

Let us consider a Lie group G. We recall that the Lie groupoid1 is defined as its delooping
BG = G⇒ ?. Here, the source and the target maps are trivial, id∗ = 1G and the composition
is just the group multiplication in G. Because it is a category, we can consider the nerve
N(BG) of BG. This is the simplicial manifold

N(BG) :=
{
· · · −→−→−→−→ G× G −→−→−→ G −→−→ ?

}
, (D.38)

with the obvious face and degeneracy maps. In addition, recall the Čech nerve (D.32) for a
subjective submersion U → M given by a manifold M subordinate to an open cover U :=
∪a∈AUa. In the simplicial language we have the following

Definition D.7. Let G be a Lie group. A principal G-bundle over a manifold M subordinate
to the cover U := ∪a∈AUa is a simplicial map g : N(Č (U→M))→ N(BG).

The simplicial map g is a collection of maps gp : Np(Č (U → M)) → Np(BG) explicitly
given by

ga(x) := g0(x, a) = ? ,

gab(x) := g1(x, a, b) ∈ G ,

gabc(x) := g2(x, a, b, c) = (g1
abc(x), g2

abc(x)) ∈ G× G .

(D.39)

Being simplicial, the gp commute with the face and the degeneracy maps so that

g1
abc(x) = gab(x) , g1

abc(x)g2
abc(x) = gac(x) , g2

abc(x) = gbc(x) . (D.40)

This allows us to recover the usual description of principal G-bundles in terms of Čech cocycles,
i.e. the transition functions gab : Ua ∩ Ub → G satisfy the standard cocycle conditions.

1Recall that a Lie groupoid is a groupoid internal to Mfd.
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Moreover, two principal G-bundles g, g̃ : N(Č (U→M))→ N(BG) are called equivalent if
and only if there is a simplicial homotopy between them. One can check that such an object,
h : ∆1 × N(Č (U → M)) → N(BG), is a collection of maps ha : Ua → G satisfying the
standard coboundary conditions

gab(x)hb(x) = ha(x)g̃ab(x) . (D.41)

This definition of principal G-bundles generalises to nerves of Lie groupoids. Generally, let
us consider a Lie-quasi-group G . Similarly, we define a principal G -bundle over M subordinate
to U to be the simplicial map g : N(Č (U→M))→ G [266, 263]. Two such bundles are said
to be equivalent, whenever there is a simplicial homotopy between them defining simplicial
maps. It should be emphasised that this notion of equivalence is well-defined since G is Kan.

D.3.2. Higher non-Abelian Deligne cohomology

Besides principal bundles, we shall also need connective structures to discuss gauge theory.
Recall that a connection or connective structure on a principal G-bundle on a manifold M

subordinate to an open cover U = {Ua}a∈A → M is a collection of g-valued differential
1-forms {Aa ∈ Ω1(Ua, g)}, with g being the Lie algebra of G, which obey

Ab(x) = g−1
ab (x)Aa(x)gab(x) + g−1

ab (x)dgab(x) (D.42)

on non-empty intersections Ua ∩ Ub 6= ∅. Here, the smooth maps gab : Ua ∩ Ub → G are the
transition functions of the principal G-bundle.

In addition, the coboundary transformations (D.41) yield the transformations

Ãa(x) = h−1
a (x)Aa(x)ha(x) + h−1

a (x)dha(x) , (D.43)

with ha : Ua → G smooth maps. This allows use to introduce the Deligne cocycle {Aa, gab}
which defines a principal G-bundle with connection and two such cocycles are called equivalent
if there is a coboundary transformation of the form (D.41) and (D.43).

In this picture, the generalisation to higher principal bundles is immediate. Let G be a
Lie-n-quasi-group and (L, µi), with L = ⊕0

k=−n+1 Lk, be the corresponding n-term L∞-algebra
obtained by computing the 1-jet of G (see D.2.3.). Let us consider a manifold M subordinate
to an open cover U := ∪a∈AUa and a higher principal bundle over M with structure group G .
This is defined by transition functions

ga0···ak : Ua0 ∩ · · · ∩ Uak → Gk , for k = 1, . . . , n , (D.44a)
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which are encoded in a simplicial map g : N(Č (U→ M))→ G , supplemented, when n ≥ 2,
by differential form-valued transition functions

λa0,···ak ∈
⊕

i+j=1−k
Ωi(Ua0 ∩ · · · ∩ Uak)⊗ Lj , for k = 1, . . . , n− 1 . (D.44b)

A connective structure on the principal G -bundle is given by a set of local L∞-valued differential
forms

Aa ∈
⊕
i+j=1

Ωi(Ua)⊗ Lj . (D.45)

Together (D.44) and (D.45) form what is known as higher Deligne cocycle. The general
treatment of the subject, providing the complete and rather involved cocycle and coboundary
conditions of such a cocycle, can be found in [266,263,101,318,102,103]. Here, for simplicity
we shall consider the cases of an ordinary Lie group and a Lie 2-quasi-group.

Principal 1-bundles. Let G be a Lie group with corresponding Lie algebra g. The corres-
ponding Deligne cocycle is given by

{gab, Aa} (D.46)

with gab : Ua ∩ Ub → G and Aa ∈ Ω1(Ua, g) subject to the cocycle conditions

gac = gabgbc on Ua ∩ Ub ∩ Uc , (D.47a)

Ab = g−1
ab Aagab + g−1

ab dgab on Ua ∩ Ub . (D.47b)

Two degree-1 cocycles ({gab}, {Aa}) and ({g̃ab}, {Ãa}) are considered equivalent if there is a
degree-0 cochain {ga} with values in G such that

Ãa = g−1
a Aaga + g−1

a dga on Ua , (D.48a)

g̃ab = g−1
a gabgb on Ua ∩ Ub . (D.48b)

Principal 2-bundles. The next step in our discussion is the introduction of categorified
Lie groups. Here, instead of having a fully categorified Lie group (a so-called weak Lie 2-
group) as a gauge group, we focus on strict Lie 2-quasi-groups. These can can equivalently
be described by a Lie crossed module and the corresponding strict 2-term L∞-algebra by a
differential crossed module. We would like to point out that, differential Lie crossed modules
naturally describe the 3-algebras underlying the recently popular M2-brane models [319]. A
Lie crossed module is a pair of Lie groups (G,H) together with a Lie group homomorphism
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t : H → G and an action B of G on H by automorphisms. The map t is G-equivariant
t(g B h) = gt(h)g−1 and the Peiffer identity, t(h1) B h2 = h1h2h

−1
1 , holds for all g ∈ G and

h, h1, h2 ∈ H. Furthermore, a differential crossed module is the 1-jet of a Lie crossed module
and is given by a pair of Lie algebras (g, h) with g := Lie(G) and h := Lie(H) with t∗ : h→ g

such that t∗(V B∗U) = [V, t∗(U)] and t∗(U1)B∗U2 = [U1, U2] for all V ∈ g and U,U1, U2 ∈ h

where t∗ and B∗ are the linearisations of t and B, respectively.1

A Deligne cocycle in the crossed module language is then given by

{gab, habc, λab, Aa, Bb} (D.49)

with gab : Ua ∩Ub → G, habc : Ua ∩Ub ∩Uc → H, λab ∈ Ω1(Ua ∩Ub, h), Aa ∈ Ω1(Ua, g), and
Ba ∈ Ω2(Ua, h) subject to the cocycle conditions

t(habc)gabgbc = gac ,

hacdhabc = habd(gab B hbcd) ,

λac = λbc + g−1
bc B λab − g−1

ac B (habc∇ah
−1
abc) ,

Ab = g−1
ab Aagab + g−1

ab dgab − t∗(λab) ,

Bb = g−1
ab BBa −∇bλab − 1

2 [λab, λab]

(D.50)

on appropriate non-empty overlaps and ∇a := d + AaB∗. Furthermore, two such cocycles
{gab, habc, λab, Aa, Bb} and {g̃ab, h̃abc, λ̃ab, Ãa, B̃b} are equivalent whenever there is a cobound-
ary transformation, mediated by

{ga, hab, λa} (D.51)

1Differential crossed modules and 2-term L∞-algebras (L, µi) with L = L−1⊕ L0 and µ3 = 0 are actually
the same thing. Indeed, given such an L∞-algebra, the corresponding differential crossed module is g := L0

and h := L−1, t∗ := µ1, V B U := µ2(U, V ), [U1, U2] := µ2(µ1(U1), U2), and [V1, V2] := µ2(V1, V2) for
U,U1, U2 ∈ h and V, V1, V2 ∈ g. The antisymmetry and the Jacobi identities for the Lie brackets [−,−] as
well as the equivariance condition t∗(V B∗ U) = [V, t∗(U)] follow from the higher Jacobi identities for µ1 and
µ2, and the Peiffer condition t∗(U1) B∗ U2 = [U1, U2] is evidently satisfied. Obviously, the converse is also
true, i.e. we can use the same identifications to construct a 2-term L∞-algebra (L, µi) with L = L−1⊕L0 and
µ3 = 0 from a differential crossed module, and the graded antisymmetry as well as the higher Jacobi identities
for µ1 and µ2 follow from the Jacobi identities for the Lie brackets together with the equivariance and Peiffer
conditions.
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with ga : Ua → G, hab : Ua ∩ Ub → H, and λa ∈ Ω1(Ua, h), and explicitly given by

t(hab)gabgb = gag̃ab

hachabc = (ga B h̃abc)hab(gab B hbc) ,

λa = λ̃ab + λb + g−1
b B λab − g−1

a B (hab∇ah
−1
ab ) ,

Ãa = g−1
a Aaga + g−1

a dga − t∗(λa) ,

B̃a = g−1
a BBa − ∇̃aΛa − 1

2 [Λa,Λa] .

(D.52)

It is rather straighforward to see that with the help of these coboundary transformations, we
can always set haaa = 1H, which, in turn, yields gaa = 1G and haab = habb = 1H. Residual
coboundary transformations are then those with haa = 1H.

The corresponding curvatures on each patch Ua are defined by

Fa := dAa + 1
2 [Aa, Aa] and Ha := dBa + Aa B Ba = ∇aBa . (D.53)

They satisfy the Bianchi identities

dFa + [Aa, FA] = 0 and dHa + Aa B Ha = 0 . (D.54)

Notice that the Bianchi identity for Ha comes from the fake curvature condition Fa = Fa +
t(Ba) = 0.



E
Geometry of twistor correspondence

In this Appendix we shall review some basic notions of complex geometry, which will be heavily
used throughout this Thesis because of the intimate relation of this subject with twistor theory.
Moreover, we shall look closely at the geometry behind the twistor correspondence. The
following literature has proven to be useful for studying this subject: [320, 321, 306, 322] for
complex geometry, [238, 323–325] for Dolbeault and Čech-description of holomorphic vector
bundles and [326, 96] for the twistor transform.

E.1. Complex geometry

E.1.1. Complex manifolds and vector bundles

Homolorphic map. Let U be an open subset of Cn and f : U → C a continuously
differential mapping. It is convenient to identify Cn with R2n by means of the association

(z1, . . . , zn)↔ (x1, . . . , xn, y1, . . . , yn) , (E.1)

where zi = xi + iyi, i = 1, . . . , n are the coordinates in Cn. Then, f(xi, yi) = u(xi, yi) +
iv(xi, yi) is called holomorphic if it satisfies the Cauchy-Riemann conditions

∂u

∂xi
= ∂v

∂yi
,

∂v

∂xi
= − ∂u

∂yi
. (E.2)

for i = 1, . . . , n. Equivalently, using variables zi, z̄i, the conditions (E.2) read

∂f

∂z̄i
= 0 , for i = 1, . . . , n , (E.3)

235
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Indeed, Cauchy’s theorem implies that f is holomorphic if and only if f is complex analytic. A
map (f 1, · · · , , fm) : Cn → C

m is called holomorphic if each function f j, for 1 ≤ j ≤ m, is
holomorphic.

Moreover, two open subsets U, V ∈ Cn are said to biholomorphic if there exists a bijective
holomorphic map f : U → V whose inverse is holomorphic. The map f itself is then said to
be biholomorphic.

Complex manifolds. Let X be a topological space with an open covering U = {Ua}a∈A. X
is called a complex manifold of dimension n if for every Ua ∈ U there is a homeomorphism
ha : Ua → C

n such that, for every non-empty intersection Ua ∩ Ub, the transitions functions
gab := ha ◦ h−1

b : hb(Ua ∩ Ub)→ ha(Ua ∩ Uj) are biholomorphisms.
The pair (Ua, ha) is called a local complex chart and the collection {(Ua, ha)}a∈A is called

a complex atlas. If the union of two atlases is again an atlas which satisfies the previous
conditions these are said to define the same complex structure. Notice that a complex manifold
may carry a number of complex structures.

Example E.1 (Complex projective space). A very important family of complex manifolds are
the complex projective spaces. n-dimensional complex projective space Pn is defined as the
space of complex lines through the origin of Cn+1, i.e. Pn = (Cn+1 − {0})/ ∼, where we
quotient by the identification (z1, . . . , zn+1) ∼ t(z1, . . . , zn+1), for t any non-zero complex
number. The coordinates (z1, . . . , zn+1) are called homogeneous coordinates on Pn. More
precisely, we can show that it is a complex manifold by defining a set of coordinate charts with
holomorphic transition functions. Let π : Cn+1 − {0} → P

n be the projection. Since the zi

are not all zeros, we may define an open cover as follows. Let Ũa ⊂ Cn+1 be the open set
with za 6= 0 and let Ua = π(Ũa). Also, we define the maps ha : Ua → C

n as

ha(z1, . . . , zn+1) =
(
z1

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn+1

zi

)
. (E.4)

The sets Ua cover Pn, the maps ha are homeomorphisms and their transition functions (as-
suming a < b)

gab :=ha ◦ h−1
b = hb(Ub)→ ha(Ua) ,

ha ◦ h−1
b (w1, . . . , wn) =

(
w1

wa
, . . . ,

wa−1

wa
,
wa+1

wa
, . . . ,

1
wa︸︷︷︸

b-th argument

, . . . ,
wn

wa

)
(E.5)



E.1. Complex geometry 237

are biholomorphic. Hence, (Ua, ha) are an holomorphic atlas of Pn. The map π restricted
to the unit sphere in Cn+1 is surjective, so that Pn is compact. On patch Ua the coordin-
ates defined by the maps ha, denoted by1 (w1, . . . , ŵb, . . . , wn+1) with wa = za

zb
, are called

inhomogeneous or local coordinates.

Submanifolds. Given a complex manifold X, a submanifold of X is a pair (Y, ι), where Y
is a complex manifold and ι : Y → X is an injective holomorphic map whose Jacobian matrix
has rank equal to the dimension of Y at any point of Y. For instance, all the closed complex
submanifolds of Cn are also compact. In fact, there is a theorem by Chow that states that all
such submanifolds of Cn can be defined by the zero locus of a finite number of homogeneous
polynomials.2

Equivalence of manifolds. Two complex manifolds X and Y are biholomorphic if there is a
biholomorphic map f : X→ Y. Equivalently, given an open cover U of X and Y, one requires
that on each patch Ua ∈ U there exist biholomorphic functions ha such that the transition
functions are related by: gX

ab = ha ◦ gY
ab ◦ hb on Ua ∩ Ub 6= ∅. Two complex manifolds are

diffeomorphic if their underlying smooth manifolds are diffeomorphic.

Example E.2 (Stein manifolds). A complex manifold that can be embedded as a closed
submanifold into a complex Euclidean space is called a Stein manifold.

In the next Section, we shall see how they play an important role in making Čech cohomo-
logy on a manifold independent of the covering.

Orientation. All the complex manifolds are oriented. For simplicity, we can look at the one
dimensional case. The Jacobian of a transition function f(z) = u(x, y) + iv(x, y) reads

J =
ux uy

vx vy

 =
 ux uy

−uy ux

 , (E.6)

so that det J = u2
x+u2

y > 0 and the manifold is oriented. Notice that we may always conjugate
the complex structure, so that the orientation gets reversed.

1As usual, the hat symbol here indicates an omission.
2In general, a zero locus of a set of polynomials is not a manifold (due to singularities), but an algebraic

variety.
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Holomorphic functions. Let U be an open subset of a complex manifold X and f : U → C

a function. Then, f is holomorphic on U if, taken (Ua, ha) such that U∩Ua 6= ∅, the function
f ◦ h−1

a : ha(Ua ∩ U)→ C is holomorphic. This definition does not depend on the choice of
the coordinates. For instance, one may easily check that the projection π : Cn+1−{0} → P

n

is holomorphic. Moreover, the following striking result holds: if X is a (connected) compact
complex manifold and f : X → C a holomorphic function, then f is constant. This is a
generalisation of the maximum principle of elementary complex analysis, see e.g. [327]. The
sheaf of holomorphic functions on X shall be denoted by OX.

Definition E.3 (Hypersurface). Let X be a complex manifold. An analytic subvariety Y of X
is a subset of X which is locally defined as the zero set of a finite collection of holomorphic
functions. If dim Y = dim X − 1, Y will be called an analytic hypersurface.

Complex structures. Let V be a real vector space. A complex structure on V is a R-linear
map J : V → V , such that J2 = −1V . A real vector space V with a complex structure J can
be given the structure of a complex vector space by defining the product of a vector v ∈ V by
a complex number z = x+ iy ∈ C as1 z · v = x · v+ y · J(v). A real space V with a complex
structure has necessarily an even dimension, dimR V = 2n. On the other hand, each complex
vector space has a complex structure given by J(v) = iv.

Example E.4 (Canonical complex structure). The obvious identification of Cn with R2n is
obtained by equating zi = xi + iyi, which induces the canonical complex structure

J(x1, . . . , xn, y1, . . . , yn) = (−y1, . . . ,−yn, x1, . . . , xn)

and thus J =
 0 −1n
1n 0

 .
(E.7)

Almost complex structures. Let X be a smooth 2n-dimensional manifold. At each point
x ∈ X the tangent space TxX is a real 2n-dimensional vector space. If we can endow each
tangent space TxX with a complex structure Jx so that this structure varies smoothly over the
manifold, then we have an almost complex structure on X.

Definition E.5 (Almost complex structure). Let X be a differentiable manifold of dimension
2n, and suppose J is a differentiable vector bundle isomorphism J : TX → TX such that

1Notice that for any nonzero vector v ∈ V , the vectors v and J(v) are linearly independent over R.
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Jx : TxX → TxX is a complex structure for TxM . Then J is called an almost complex
structure for the differentiable manifold X. A manifold with a fixed almost complex structure
is called an almost complex manifold.

If X is a complex manifold then it carries a canonical almost complex structure. This is
defined by transferring the almost-complex structure on Cn to the manifold via holomorphic
charts. With respect to the coordinate system (x1, . . . , xn, y1, . . . , yn) an almost complex
structure on Cn is defined by

J
( ∂

∂xi

)
= ∂

∂yi
, J

( ∂

∂yi

)
= − ∂

∂xi
. (E.8)

Notice that a complex manifold is naturally an almost complex manifold, but an almost-
complex manifold need not be a complex manifold. The most celebrated example of an
almost complex manifold which is not a complex manifold is S6, see e.g. [328].

A mapping f : X → Y between almost complex manifolds is said to be holomorphic if its
differential f∗ : TX→ TY commutes with the respective almost complex structures, i.e.

f∗ ◦ JX = JY ◦ f∗ . (E.9)

Integrable almost complex structures. To determine whether or not a given almost-
complex structure is induced by a complex structure we introduce the following object. The
Nijenhuis tensor N of an almost-complex structure J is a tensor field of type (1, 2) defined by

N(X, Y ) = 1
4([X, Y ] + J [X, JY ] + J [JX, Y ]− [JX, JY ]) , (E.10)

for any two vector fields X and Y.

Definition E.6. An almost complex structure J is said to be integrable if N ≡ 0.

In case an almost complex manifold is real-analytic it is not hard to show that an integrable
almost-complex structure is complex as an application of the Frobenius theorem, see e.g. [329,
330]. Without the real-analyticity assumption, however, this result is highly nontrivial and is
due to the following:

Theorem E.7 (Newlander–Nirenberg [331]). An almost complex structure is complex if and
only if it is integrable.
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Complexification. Given a real vector space V with a real scalar multiplication, we define
its complexification as the tensor product V c = V ⊗R C.

The complex tangent space. Let X be a complex manifold of complex dimension n. Upon
using the identification1

C
n ∼= R

2n one can show that X has an underlying structure of 2n-
dimensional real manifold. Let TX be the smooth tangent bundle, that is the collection of all
ordinary tangent spaces to X. The complexified tangent space TxX⊗RC admits the intrinsic
basis {( ∂

∂z1

)
x
, . . . ,

( ∂

∂zn

)
x
,
( ∂

∂z̄1

)
x
, . . .

( ∂

∂z̄n

)
x

}
, (E.11)

in terms of a set of local complex coordinates (z1, . . . , zn) around a point x ∈ X. Hence, the
transition functions are holomorphic and do not mix the vectors ∂

∂zi
with the ∂

∂z̄i
. This yields

the decomposition2

TXc := TX ⊗R C = T 1,0X ⊕ T 0,1X . (E.12)

Sections of T 1,0X and T 0,1X are called vector fields of type (1, 0) and (0, 1), respectively.
Vector fields of type (1, 0), whose action on arbitrary functions will be holomorphic, are called
holomorphic vector fields, while antiholomorphic vector fields are defined analogously.

Complex differential forms. Using the decomposition of the complexified cotangent bundle,
it is easy to show that the space of complex differential forms on a complex manifold admits
the decomposition

Ωk(X)c := Γ(X,ΛkT ∗X ⊗R C) =
⊕
p+q=k

Ωp,q(X) . (E.13)

Moreover, there is a canonical projection of vector bundles πp,q : Ωk(X)c → Ωp,q, for each p,
q such that p+ q = k. Elements in Ωp,q(X) denote the space of forms of bi-degree (p, q) and
are called differential forms of type (p, q). In particular, elements of Ω1,0(X) and Ω1,0(X) are
dual to elements of T 1,0X and T 0,1X, respectively and local bases are dual to the ones given
in (E.11) and are then given by (dz1, . . . , dzn) and (dz̄1, . . . , dz̄n).

1Recall that a biholomorphic map is a smooth diffeomorphism.
2The complex structure on X naturally extends to a map Jx : TxX ⊗ C → TxX ⊗ C. Since J2 = −1,

the spaces T 1,0X and T 0,1X denote the eigenspaces of Jx with eigenvalue ±i, respectively. Since this works
at any point x ∈ X we have (E.12).
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Exterior derivative. Locally, a (p, q)-form be written as

ω = 1
p!q!ωi1,...,ip,j1,...,jq(z, z̄)dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq . (E.14)

The compositions1

Ωp+1,q(X)

Ωp,q(X) ∧p+q+1 T ∗X

Ωp,q+1(X)

d

πp+1,q

πp,q+1

(E.15)

define the differential operators ∂ = πp+1,q ◦ d : Ωp,q(X) → Ωp+1,q(X) and ∂̄ = πp,q+1 ◦ d :
Ωp,q(X) → Ωp,q+1(X). Locally, the exterior derivative maps a (p, q)-form to a form which is
the sum of an (p+ 1, q)-form and an (p, q + 1)-form by

ω = 1
p!q!

(
∂kωi1,...,jq(z, z̄)dzk∧dzi1∧· · ·∧dz̄jq + ∂̄kdzi1ωi1,...,jq(z, z̄)∧· · ·∧dz̄k∧· · ·∧dz̄jq

)
.

(E.16)
The identity d2 = 0 implies

∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0 , (E.17)

giving Ωp,q(X) the structure of a (bi-)graded differential algebra, recall the discussion in Sec-
tion 2.2.. In particular, the operator ∂̄ is called the Dolbeault operator. A holomorphic p-form
on X is given by an ω ∈ Ωp,0(X) =: Ωp

X satisfying ∂̄ω = 0 and holomorphic 0-forms are
holomorphic functions. Since ∂̄2 = 0 we can construct the Dolbeault cohomology groups, see
later.

Homotopy lifting property. Let E,X, Y be topological spaces. A map π : E → X is
said to have the homotopy lifting property with respect to the X if, given the commutative
diagram2

Y × {0} E

Y × [0, 1] X

p

h

π

ht

(E.18)

1The same pictorial representation can be found in [306].
2Here, we assume that all the maps are continuous.
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there exists a map γ : Y × [0, 1]→ E such that γ(x, 0) = h(x) and π ◦ γ(x, t) = ht(x), i.e.
γ gives rise to two commutative triangles.

Fibration. A fibration is a continuous map E → X of topological spaces which satisfies
the homotopy lifting property for all topological spaces Y . We just remind that every vector
bundle is a fibration see e.g. [332].

Complex vector bundles. A complex vector bundle E over a complex manifold X is a
vector bundle π : E → X such that for each x ∈ X, the fibre π−1(x) is a complex vector
space. Every vector bundle is furthermore a fibration, see e.g. [332].

Let E and E ′ be two vector bundles over X. A morphism (bundle map) φ : E → E ′ is
a mapping such that φ restricted to the fibre Ex is a linear mapping to the fibre E ′x, for all
x ∈ X. We call φ a monomorphism if it is one-to-one on the fibres, an epimorphism if it is
surjective on the fibres and an isomorphism if it is one-to-one and surjective on the fibres. The
vector bundle E is a subbundle of E ′ if E is a submanifold of E ′ and Ex is a linear subspace
of E ′x, for all x ∈ X. Another important concept is the following.

Let π : E → X be a complex vector bundle and f : Y → X be a smooth mapping, then
the pull-back bundle f ∗E is a complex vector bundle over Y of the same rank as E such that

f ∗E E

Y X

q

π′ π

f

(E.19)

is commutative. Moreover, the pull-back must be universal with respect to this diagram.
Explicitly, given any other bundle E ′′ → Y and a continuous map ḡ : E ′′ → E such that
f ◦ π′′ = π ◦ ḡ, there must exist a unique map g′ : E ′′ → f ∗E such that π′ ◦ g′ = π′′ and
ḡ = q ◦ g′

E ′′

f ∗E E

Y X

ḡ

π′′

g′

q

π′ π

f

(E.20)

Hence, the total space is defined to be the set

f ∗E = {(y, v) ∈ Y × E|f(y) = π(v)} ⊆ Y × E , (E.21)
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with projection induced by projection on the first factor. Moreover, if {Ua} is a covering of
X and gab are the transition functions of E then {f−1(Ui)} defines a covering of Y such that
f ∗E is locally trivial. The transition functions f ∗gab of the pull-back bundle f ∗E are then
given by f ∗gab = gab ◦ f .

Let E1, E2, E3 be three complex vector bundles over X. The sequence

E1
φ−−→ E2

ψ−−→ E3 (E.22)

is exact at E2, if kerψ = imφ. A short exact sequence is a sequence of the form

0 −→ E1 −→ E2 −→ E3 −→ 0 , (E.23)

which is exact at E1, E2 and E3. We say that the sequence splits if E2 = E1 ⊕ E3. Hence,
one can understand E2 in (E.23) as a deformation of the direct sum E1 ⊕ E3.

Example E.8 (Euler sequence.). For X = P
n

0 −→ C −→ O(1)⊗Cn+1 −→ TPn −→ 0 (E.24)

is a short exact sequence called the Euler sequence.

Holomorphic vector bundles. Holomorphic vector bundles on a complex manifold X are
defined in the same way as complex vector bundles, but requiring that all the maps involved are
holomorphic. Explicitly, let X be a complex manifold of dimension n. A (n + r)-dimensional
complex manifold E together with a holomorphic map π : E → X is a rank-r holomorphic
vector bundle over X if there is an open covering {Ua} of X and holomorphic maps ha :
π−1(Ua)→ Ua ×Cr such that

(i) π = pr1 ◦ ha, where pr1 is the projection onto the first factor of Ua ×Cr and

(ii) the map
pr2 ◦ hb ◦ h−1

a (p, ·) : Cr → C
r (E.25)

is a linear isomorphism, for all x ∈ Ua ∩ Ub.

In Section E.1.3. we shall see the description in terms of transition functions.
A morphism between two vector bundles E, E ′ over X is a holomorphic map φ : E → E ′

such that for every x ∈ X one has φ(Ex) ⊂ E ′x and such that the resulting map φx : Ex → E ′x

is linear. If φ is a biholomorphism, it is said to be an isomorphism of vector bundles, and E

and E ′ are said to be isomorphic.
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Holomorphic line bundles. If the fibres of a holomorphic vector bundle is C, i.e. it is of
rank 1, then it is called a holomorphic line bundle.

Example E.9 (Tautological bundle). Let us consider the special case where X is Pn. Recall
that any point p ∈ Pn corresponds to a line in Cn+1. The tautological line bundle is obtained
by associating that line to each point on Pn. Pn is covered by (n+1) patches. Let {Ua} be the
standard cover of Pn. We parametrise p ∈ Ua with homogeneous coordinates (λ1, . . . , λn+1).
Then, we define ha : π−1(Ua) → Ua ×C as ha(U) = (p, λa), if p = π(u). The tautological
line bundle is then parametrised by transition functions gab = λa/λb and we denote it by
OPn(−1).

The dual of the tautological bundle, which we denote by OPn(1), is called the hyperplane
line bundle. Since the tensor product of two holomorphic line bundles is always a holomorphic
line bundle, one can construct holomorphic line bundles OPn(k) of Pn, for any k ∈ Z. Given
coordinate functions λa, a = 1, . . . , n on Pn the line bundle O(k) is defined by transition
functions gab = (λa/λb)k. Notice that for k ≥ 0 the vector space of holomorphic sections
of O(k) is canonically identified with the set of homogeneous polynomials of degree k in
P
n. Hence, homogeneous coordinates of Pn are sections of the hyperplane line bundle.

For instance, let Y be a smooth hypersurface in Pn, defined as a zero locus of a degree
k polynomial. Such a polynomial can be seen as a section of the holomorphic line bundle
OPn(k).

The canonical bundle KX on a complex manifold X of complex dimension n is the highest
exterior power of the holomorphic cotangent bundle to X, i.e. KX = ∧n,0 T ∗X. Its sections
are holomorphic volume forms on X, i.e O(KX) ∼= Ωn

X. The dual of KX, denoted as K∗X is
the anti-canonical line bundle. Moreover, it can be shown that every holomorphic line bundle
over projective space is isomorphic to OPn(−k), for some k ∈ Z. In particular, the canonical
bundle over Pn is isomorphic to the (n+ 1)-th exterior power of the tautological line bundle,
i.e. OPn(−n− 1).

Also, given any holomorphic vector bundle E of rank r one can form the exterior product
bundle as ΛkE, for k = 0, . . . , r. When k = r, the holomorphic line bundle ΛrE is given
by the special symbol detE and is called the determinant line bundle, since its transition
functions are given by the determinants of the transition function of E. If E is the cotangent
bundle T ∗X it reduces to the canonical bundle.
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E.1.2. Dolbeault cohomology

Let us consider now the Dolbeault cohomology associated to a complex manifold X. We first
need an analytic result, analogous to the Poincaré lemma, sometimes called ∂̄-Poincaré lemma
or Dolbeault lemma:1

Lemma E.10. Let D be an open polydisk in Cn (that is, the cartesian product of disks in
C). Then

Hp,q

∂̄
(D) = 0 , for q ≥ 1 . (E.26)

See e.g. [294].

The kernel of the morphism ∂̄ : Ωp,0(X) → Ωp,1(X) is the sheaf of holomorphic p-forms
Ωp(X)2. By the ∂̄-Poincaré lemma, the complex Ωp,q(X) gives a fine resolution of the sheaf of
holomorphic p-forms on X. Namely, the sheaf sequence

0 −→ Ωp
X

∂̄−→ Ωp,1(X) ∂̄−→ · · · ∂̄−→ Ωp,n(X) −→ 0 , (E.27)

is exact, for all p = 0, . . . , n = dimC. The Dolbeault cohomology Hp,q

∂̄
(X) of X of type (p, q)

is the q-th cohomology of the complex (Ωp,•(X), ∂̄). The following result holds (see e.g. [294])

Proposition E.11 (Dolbeault theorem). Let X be a complex manifold. For all p, q ≥ 0 the
cohomology groups Hp,q

∂̄
(X) and Hq(X,Ωp) are isomorphic.

Using the argument in the proof of the Dolbeault Theorem, it is possible to establish a
version of the Leray theorem for the sheaf of germs of holomorphic p-forms.

Proposition E.12. Let U be an acyclic cover for the structure sheaf Ωp. Then Hq(U,Ωp) ∼=
Hp(X,Ωp).

One can also prove the isomorphism (see e.g. [294])

Hp,q

∂̄
(X, E) ∼= Hq(X,Ωp

X ⊗ E) , (E.28)

1There exists a stronger version of the lemma E.10 that shows that the higher Dolbeault cohomology
groups vanish on arbitrary finite products of polydisks with punctured polydisks (i.e. polydisks minus the
origin).

2Notice that Ωp(X) is a subsheaf of
∧p,0(X).
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called Dolbeault isomorphism, where E denotes a holomorphic vector bundle over X, while E
is the sheaf of its holomorphic sections.1 From the pairing Hp,q

∂̄
(X)⊗Hn−p,n−q

∂̄
(X)→ C, on

a n-dimensional compact complex manifold one obtains the isomorphism [294, 321]

Hp(X,Ωq ⊗ E)∗ ∼= Hn−p(X,Ωn−q ⊗ E∗) (E.29)

This is Kodaira-Serre duality. In particular, for q = 0 we get

Hp(X, E)∗ ∼= Hn−p(X, KX ⊗ E∗) , (E.30)

which is usually called Serre duality.

E.1.3. Čech-Dolbeault correspondence

Here, we briefly recall how (holomorphic) principal bundles over a complex manifold can be
equivalently described in terms of Čech cohomology and in the dual Dolbeault picture. In
fact, the twistor construction requires switching between one another. Moreover, such a
correspondence generalises to higher principal bundles. We remind the reader of the discussion
about Čech cohomology in Appendix D. In the following we shall closely follow [237,238,324,
325]

Čech approach. To this end, let X be a complex manifold and let U := {Ua}a∈A be an
open covering of X. By G we denote a sheaf of smooth maps from open subsets of X into
G. A q-cochain of the covering U with values in G is a collection ψ = {ψa0···aq} of sections
of the sheaf G over non-empty intersections Ua0 ∩ · · · ∩ Uaq . We will denote the set of such
q-cochains by Cq(U,G).2

Furthermore, we define the subsets of Čech cocycles Zq(U,G) ⊂ Cq(U,G). For example,
for q = 0, 1 they are given by

Z0(U,G) := {ψ ∈ C0(U,G) | ψa = ψb on Ua ∩ Ub 6= ∅} ,

Z1(U,G) := {χ ∈ C1(U,G) | χab = χ−1
ba on Ua ∩ Ub 6= ∅

and χabχbcχca = 1 on Ua ∩ Ub ∩ Uc 6= ∅} .

(E.31)

1Recall that sometimes this distinctions will not be made.
2We stress that it has a group structure, where the multiplication is just pointwise multiplication.
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These sets will be of particular interest. We remark that from the first of these two definitions
it follows that Z0(U,G) coincides with the group

H0(X,G) = G(X) , (E.32)

which is the group of global sections of the sheaf G. Hence, the zeroth Čech cohomology set
is independent of the covering. Note that in general the subset Z1(U,G) ⊂ C1(U,G) is not
a subgroup of the group C1(U,G).

We say that two 1-cocycles χ, χ′ ∈ Z1(U,G) are equivalent if χ′ab = ψ−1
a χabψb, for some

ψ ∈ C0(U,G), on all Ua∩Ub 6= ∅. The set of equivalence classes induced by this equivalence
relation is the first Čech cohomology set, that is denoted by H1(U,G) ∼= Z1(U,G)/C0(U,G).
If the patches Ua are Stein manifolds, one can show that the first Čech cohomology sets are
independent of the covering and depend only on the manifold

H1(U,G) ∼= H1(X,G) . (E.33)

Recall (see (D.14)) that if that is not the case one needs to take the inductive limit.
In particular, we shall be interested in holomorphic maps from open subsets of X into

GL(r,C) as well as in the sheaf GL(r,OX) of such matrix-valued functions.1 Elements of
H1(X,GL(r,OX)) classify rank-r locally free sheaves of OX modules up to isomorphisms.
Hence, rank-r holomorphic vector bundles over some complex manifold X are parametrised
by H1(X,GL(r,OX)). To make contact with our notation we shall denote elements of
C0(U,GL(r,OX)) by h = {ha} and elements of C1(U,GL(r,OX)) by g = {gab}.

Dolbeault approach. Another approach to holomorphic vector bundles makes use of Dol-
beault cohomology. Here, we follow [69]. Let us consider a rank-r complex vector bundle
E → X over a complex manifold X. Furthermore, we let Ωp,q(X) be the smooth differential
(p, q)-forms on X and ∂̄ : Ωp,q(X) → Ωp,q+1(X) be the anti-holomorphic exterior derivative.
First, recall that a connection ∇ is a C-linear sheaf morphism

∇ : E → Ω1
X ⊗ E , (E.34)

where E is the sheaf of sections of E and satisfying the Leibniz rule

∇(fs) = f∇(s) + df ⊗ s , (E.35)
1Notice that GL(r,OX) is a non-Abelian sheaf contrary to the Abelian sheaves considered so far.
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for every section s of E and every functions f on X. Let ∇0,1 : E → Ω0,1(X) ⊗ E be a
(0, 1)-connection on E. Locally, it is of the form

∇0,1 = ∂̄ + A0,1 , (E.36)

where the connection (0, 1)-form A0,1 takes values in EndE. The complex vector bundle E is
said to be holomorphic if the (0, 1)-connection is flat, that is, if the corresponding curvature
vanishes,

F 0,2 = (∇0,1)2 = ∂̄A0,1 + A0,1 ∧ A0,1 = 0 . (E.37)

The reader may recognise the equation of motion of holomorphic Chern-Simons theory. We
say that ∇0,1 defines a holomorphic structure on E. We denote by Z the sheaf of solutions
to (E.37). The group H0(X,GL(r,SX)), where SX is the sheaf of smooth functions on X,
acts on Z(X) by gauge transformations,

A0,1 7→ g−1A0,1g + g−1∂̄g , with g ∈ H0(X,GL(r,SX)) . (E.38)

These transformations preserve the holomorphic structure on E, as they leave (E.37) invariant.
Hence the Dolbeault cohomology set

H1
∇0,1(X, E) := Z(X)/GL(r,SX)(X) (E.39)

parametrises all different holomorphic structures on the complex vector bundle E.

Equivalence of the Čech and Dolbeault descriptions. It can be shown that these two
approaches to holomorphic vector bundles are equivalent.1

Theorem E.13. Let X be a complex manifold with an open Stein covering U = {Ua} and
E → X be a rank-r complex vector bundle over X. Then there is a map ρ : H1(X,GL(r,OX))→
H1(X,GL(r,SX)) of cohomology sets, such that H1

∇0,1(X, E) ∼= ker ρ.

For a proof see e.g. [238, 325]. Therefore, the moduli spaces of both descriptions are
bijective and we have the equivalence

(E, g = {gab},∇0,1) ∼ (Ẽ, f̃ = {g̃ab}, ∂̄) , (E.40)

with g̃ab = h−1
a gabhb for some h = {ha} ∈ C0(U,GL(r,SX)). Given holomorphic vector bundle

E → X in the Dolbeault picture, we can always find a holomorphic vector bundle Ẽ → X
1This may be understood as a non-Abelian generalisation of Dolbeault’s theorem, see e.g. [294, 321].
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in the Čech picture and vice versa, such that E and Ẽ are equivalent as complex vector
bundles. This is called Čech–Dolbeault correspondence. See [237, 238, 325, 333] for detailed
explanations.

The following observation is at the heart of the Penrose–Ward transform [69]. Given the
triple (E, g = {gab},∇0,1), then any solution A0,1 of the equation F 0,2 = 0 is of the form

A0,1|Ua = Aa = ha∂̄h
−1
a (E.41)

for some h = {ha} ∈ C0(U,GL(r,SX)) with

Ab = g−1
ab ∂̄gab + g−1

ab Aafab , (E.42)

as patching conditions. Plugging (E.41) into (E.42) we find

g̃ab := ha ∂̄h
−1
b with ∂̄g̃ab = 0 . (E.43)

Conversely, starting from g̃ab = h−1
a gabhb with ∂̄g̃ab = 0 and ∂̄gab 6= 0, one can recover an

A0,1|Ua = Aa = ha∂̄h
−1
a which obeys the patching conditions.

In the Penrose–Ward transform one relates the transition function of a holomorphic vector
bundle on twistor space to those of the pull-back on the correspondence space. By the
definition of the pull-back, the transition function is annihilated by the vector fields that span
the tangent spaces of the leaves of π1 (see later). Then, these transition functions are related
to a Lie algebra-valued (differential) one-form with components only along π1. More precisely,
this one-form is the connection one-form of the so-called relative connection along π1 which
by our very construction turned out to be flat. In this picture, the transition function is the
Čech representative while the Lie algebra-valued one-form is the Dolbeault representative of a
relatively flat bundle on the correspondence space. In this setting, it was also shown a version of
Čech–Dolbeault correspondence for higher principal bundles. See e.g. [100–103]. In this case,
one considers a correspondence for a relative exterior derivative along a fibration. However,
higher cohomology groups with values in the sheaf of smooth differential (0, q)-forms Ω0,q,
which are needed to verify the correspondence for relative differential forms, vanish trivially
as this is a fine sheaf when working in the smooth category. Hence, the arguments for a ∂̄
operator on a complex manifold are completely analogous.

E.2. Generalities of twistor correspondence

We first introduce some very useful mathematical notions.
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Normal bundle. Let X be a manifold and Y ⊂ X a submanifold. The normal bundle NY|X

of Y inside X is defined via the short exact sequence

0 −→ TY −→ TX|Y −→ NY |X −→ 0 . (E.44)

Hence, NY |X = TX|Y
TY

. For complex manifolds, it is understood that one considers holomorphic
tangent spaces T1,0X and T1,0Y.

Relative de Rham complex. The classical de Rham sequence (see Section 2.2.) on a
(smooth) manifold provides a connection between solutions of certain differential equations
and the topology of the manifold. Similarly, the relative de Rham sequence for a certain
mapping between manifolds establishes a connection between the topology of the fibres of the
mapping and solutions of differential equations [334]. This turns out to be a very fundamental
tool in relating objects in twistor space to space-time objects. Let Z be a smooth manifold
with covering U = {Ua} and let U ⊂ Z be an open subset of Z. Furthermore, Ωp

Z denotes
the sheaf of smooth differential p-forms on Z and Ω•Z := ⊕

p≥0 Ωp
Z . We consider a fibration

π1 : Y → Z, for a smooth manifold Y . The sheaf of relative 1-forms Ω1
π1 , with respect to

the fibration π1, is defined by the exact sequence

0 −→ π∗1Ω1
Z −→ Ω1

Y

prπ1−−−→ Ω1
π1 −→ 0 , (E.45)

that is, Ω1
π1 is the quotient sheaf and prπ1 denotes the usual quotient map. This is dual to

the sequence
0 −→ Tπ1 −→ TY −→ π∗1TZ −→ 0 , (E.46)

defining the relative tangent bundle Tπ1 on Y (sheaf of vertical vector fields). Hence, relative
one-forms are dual to those vectors which are tangent to the fibres of π1.

Remark E.14 (Twistor space P6). Let us specialise the sequence (E.46) to X = P
7, with

coordinates (zA, λA) and Y = P
3 and consider the inclusion P3 ↪→ P

7, given by zAλA = 0
and λA 6= 0. The normal bundle NP3|P7 of P3 inside P7 is given by [97]

0 −→ TP3 −→ i∗TP7 −→ NP3|P7 −→ 0 , (E.47)

where TP3 = 〈 ∂
∂λA
〉 and TP7 = 〈 ∂

∂zA
, ∂
∂λA
〉. This implies that NP3|P7 ∼= OP3(1)⊗C4 → P

3

Hence, one may alternatively define twistor space P6 via the exact sequence

0 −→ P6 −→ i∗NP3|P7
κ−−→ OP3(2) −→ 0 , (E.48)

where κ : (zA, λA) 7→ zAλA.
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The sequence (E.45) easily extends this to higher order forms and to vector-bundle-valued
differential forms. In general, relative p-forms with respect to the fibration π1 : Y → Z are
defined by

0 −→ π∗1Ω1
Z ∧ Ωp−1

Y −→ Ωp
Y

prπ1−−→ Ωp
π1 −→ 0 , (E.49)

for p = 1, . . . , n := (dim Y − dim Z). The ordinary exterior derivative d : Ω0
Y → Ω1

Y on
Y may be composed with the canonical projection prπ1 : Ωp

Y → Ωp
π1 to define the induced

relative exterior derivative
dπ1 := prπ1 ◦ d : Ωp

π1 → Ωp+1
π1 , (E.50)

whose kernel is the smooth functions on Y which are locally constant along the fibres of π1.
The relative differential dπ1 induces a complex, known as the relative de Rham complex. In
fact, the sequence

0 −→ π−1
1 OZ −→ OY

dπ1−−→ Ω1
π1

dπ1−−→ Ω2
π1

dπ1−−→ . . .
dπ1−−→ Ωn

π1 −→ 0 (E.51)

is an exact sequence of sheaves on Y . Here, π−1
1 OZ denotes the topological inverse image of

the sheaf OZ on Y , namely the subsheaf of OY consisting of those functions locally constant
on the fibres of π1. Let E denote a vector bundle on Z. One may obtain a resolution of
π−1

1 OZ(E) by tensoring (E.51) with ⊗π−1
1 OZ

π−1
1 OZ(E), where π−1

1 OZ(E) is the sheaf of
sections of π∗1E that are constant along π1. The following (twisted) sequence

0 −→ π−1
1 OZ(E) −→ OY (π∗1E) dπ1−−→ Ω1

π1(E) dπ1−−→ . . .
dπ1−−→ Ωn

π1(E) −→ 0 , (E.52)

is exact. Here and in the following Ωp
X(E) denotes sheaves of germs of differential E-valued

p-forms on X, with OX(E) := Ω0
X(E) and we have defined Ωp

π1(E) := Ωp
π1 ⊗OY OY (π∗1E).

We have also used that π∗1O(E) = O(π∗1E), for the sheaf of germs of sections of a vector
bundle E, where π∗1E is the usual pull-back vector bundle.

Before going into the details of the twistor transform, let us recall a result about differential
forms.

Proposition E.15. Let π : Y → X be a surjective submersion with connected fibres and
Tπ := ker (dπ) the tangent bundle relative to π. Then, the pull-back map π∗ : Ω•(X) →
Ω•(Y ) is injective and identifies Ω•(X) as the graded subalgebra of basic forms

{α ∈ Ω•(Y ) : ιV α = LV α = 0 , for all V ∈ Γ(Y, Tπ)} ⊂ Ω(Y ) . (E.53)
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Namely, a differential form in the image of π∗ is a basic form, that is, a differential form
on Y which is horizontal (ιV α = 0) and invariant (LV α = 0). This tells us when differential
forms on Y descend to honest differential forms on X. We shall make use of this notion in
gauge fixing the twistor action in Chapter 7.

Leray spectral sequence. Let π : Y → X be a continuous map of topological spaces and
let S be a sheaf on Y . The q-th direct image sheaf is defined as the sheaf generated by the
pre-sheaf U → Hq(π−1(U),S), for U ⊂ X open. If π is a proper surjective map there is a
spectral sequence

Ep,q
2 = Hp(X, πq∗S) =⇒ Hp+q(Y,S) , (E.54)

called Leray spectral sequence. Moreover, if S is coherent, the sheaf πq∗S is also coherent, by
the Direct Image Theorem. Assuming X to be a Stein manifold one has the following

Hq(Y,S) ∼= Γ(X, πq∗S) . (E.55)

E.2.1. Twistor transforms

For completeness, we shall establish the twistor correspondences on quite generic ground, as
considered, e.g., by Eastwood [326]. We start by defining the twistor correspondence in the
holomorphic category. The central objects of the twistor technology are double fibrations of
the form1

Y

Z X

π1 π2 (E.56)

Here, X, Y and Z are complex manifolds together with two suitable2 holomorphic projections
π1,2. We are interested in moving geometrical objects along this double fibration. In the
following, we shall work with complex analytic objects. Such a double fibration induces a
correspondence between X and Z, given by the assignment

points p in Z ←→ subspaces π1(π−1
2 (x)) in X

subspaces π2(π−1
1 (z)) in Z ←→ points x in X ,

1Recall that such a framework can be easily generalised for studying certain supersymmetric field theories,
just replacing the manifolds in double fibration by supermanifolds.

2Following [326], these are considered to be surjective holomorphic mappings of maximal rank, i.e. sub-
mersions.
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known as twistor correspondence. In particular, using this correspondence one starts with data
given on Z (such as sheaf cohomology groups, holomorphic vector bundles, contact forms,
etc.) and ends up with solutions to differential equations on X. The main idea here is indeed
to derive the equations of physics by using the rigidity of complex geometry. This is a two-
step procedure. First, one needs to pull-back data on Z to data on Y and then one descends
to X by integrating along the fibres of π2. By virtue of this process the derived data on X
should possess some differential property reflecting the fact that the intermediary object on Y
is in some sense constant along the fibres of π1. Under certain conditions, the transform is
invertible. Hence, such a construction provides a way of studying physical objects on X (space-
time), obeying differential equations, in terms of unconstrained objects on a totally different
manifold Z (twistor space). We shall refer to such a map as Penrose–Ward transform.

Let us see how this works. The discussion here follows the one in [326, 96]. Let us start
from the fibration π1 : Y → Z and consider a holomorphic vector bundle Ê on Z. As we
have seen, any fibration comes with an associated relative exterior derivative, which is the
projection of the exterior derivative onto 1-forms along the fibres. Provided the fibres are
connected, a function is constant along the fibres if and only if its relative exterior derivative is
zero. We pull-back Ê via π1 to E := π∗1Ê on Y. By construction, E is described by transition
functions which are constant along the fibres of π1. Explicitly, they are annihilated by the
vector fields spanning the twistor distribution and hence by dπ1 . Therefore, one can show that
the pull-back bundle E comes with a non-trivial relative connection1. This is defined as the
differential operator [326]

∇π1 : O(E)→ Ω1
π1(Ê) , (E.57)

satisfying the relative Leibnitz rule

∇π1(fω) = f∇π1ω + (dπ1f)⊗ ω , (E.58)

for f ∈ OY and ω ∈ O(E). Moreover, if some topological conditions apply, such a connection
is flat, namely the corresponding curvature ∇2

π1 ∈ Γ(Y,Ω2
π1(End(E))) vanishes. Explicitly the

following result holds:

Proposition E.16 (Eastwood [326]). Let π1 be a surjective holomorphic map of maximal
rank. If the fibres of π1 are connected and simply connected then holomorphic vector bundles

1Generally, a relative connective structure is composed by differential forms that have components only
along the fibration in question.
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on Z are in one-to-one correspondence to holomorphic vector bundles on Y with a flat relative
connection.

For every integer q ≥ 0 there is a natural map on cohomology1

π−1
1 : Hq(Z,O(Ê))→ Hq(Y, π−1

1 O(Ê)) , (E.59)

in terms of the inverse image sheaf π−1
1 O(Ê). If the fibres of π1 are connected, the following

isomorphism
H0(Z,O(Ê)) ∼= H0(Y, π−1

1 O(Ê)) , (E.60)

holds [96]. To deal with higher cohomology the following result comes to help:

Proposition E.17 (Buchdahl [335]). Let π1 as above. Suppose that π1 has connected fibres
and there is an n0 > 0 such that Hq(π−1

1 (z),C) = 0 for q = 1, . . . , n0 and for all z ∈ Z.
Then, the homomorphism (E.59) is an isomorphism for q = 0, 1, . . . , n0 and a monomorphism
for q = n0 + 1.

Moreover, in the previous hypothesis, if the fibers of π1 are cohomologically acyclic (i.e.
contractible) then π−1

1 : Hq(Z,O(Ê)) → Hq(Y, π−1
1 O(Ê)) is an isomorphism for all q [326].

Recalling that these objects originate from sheaves on Z, then one uses the result E.17, to
connect the cohomology groups of both kinds of sheaves.

The second stage consists of pushing down cohomological data Hq(Y, π−1
1 O(Ê)) onto X

under π2 : Y → X. As we shall see, this is realised by taking direct images of Ωπ1(Ê) with
respect to the fibration π2 to obtain certain sheaves on (space-time) X, and using the tool of
Leray spectral sequence for computing cohomology groups. In particular it can be shown, via
spectral sequences argument, that the fundamental object to study is the cohomology of the
complex Ω•π1(Ê).

Penrose transform. As we have seen, the twisted relative de Rham sequence of sheaves (E.52)

0 −→ π−1
1 OZ(Ê) −→ Ω0

π1(Ê) dπ1−−→ · · ·
dπ1−−→ Ωn

π1(Ê) −→ 0 , (E.61)

is exact. Hence, there exists a spectral sequence associated with the resolution [326]

Ep,q
1 = Hq(Y,Ωp

π1(Ê)) =⇒ Hp+q(Y, π−1
1 O(Ê)) , (E.62)

1This can be realised by the Dolbeault resolution for O(Ê). See [96] for an explanation.
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with differentials induced by∇π1 . In particular, this gives us a way of computing Hp+q(Y, π−1
1 O(Ê))

in terms of the cohomology groups Hq(Y,Ωp
π1(Ê)). If the complex manifold X is Stein, the

Leray spectral sequence collapses and gives

Hq(Y,Ωp
π1(E)) ∼= Γ(X, πq2∗(Ωp

π1(E))) (E.63)

Summarising, we have the following

Theorem E.18 (Eastwood [326]). Let us consider the correspondence (E.56) with Ê a holo-
morphic vector bundle over Z. In the hypotheses of the theorem E.17 there is a spectral
sequence

Ep,q
1 = Γ(X, πq2∗Ωp

π1(E)) =⇒ Hp+q(Z,O(Ê)) . (E.64)

We shall refer to this as the Penrose transform.

Ward correspondence. We start by requiring the holomorphic vector bundle Ê to be X-
trivial or, in other words, the pull-back bundle E to be trivial on each fibre of π2. Now, we
are interested in considering what extra information on X is supplied by the relative connec-
tion (E.57) on E. Again, this involves computing direct images. Under these assumptions,
the direct image

E ′ := π2∗π
∗
1Ê (E.65)

is an holomorphic vector bundle on X of the same rank as Ê. By pushing down ∇π1 one
obtains a first order differential operator [96]

D := π2∗∇π1 : E ′ → π2∗Ω1
π1 ⊗ E

′ (E.66)

satisfying a Leibnitz-type rule

D(fs) = fD(s) + ∂f ⊗ s (E.67)

where ∂ := π2∗dπ1 . If the canonical1 map ΩX → π2∗Ω1
π1 is an isomorphism, then D descends

to a connection
∇ : O(E ′)→ Ω1(E ′) , (E.68)

on X. The flatness of ∇ on certain submanifolds of X is then related to the flatness of the
relative connection (E.57). This is contained in the following result:

1The idea is that something is canonical if it transforms correctly when the whole system is subjected to
a morphism of the category in which one is working.
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Proposition E.19 (Eastwood [326]). We are in the hypothesis of E.16. Let us assume
π1(π−1

2 (x)) is compact and connected for all x ∈ X. Moreover, Ω1(X) ∼= π2∗Ω1
π1(Y). Then,

there is a bijection between X-trivial holomorphic vector bundles on Z and holomorphic vector
bundles on X equipped with a connection flat on each π2(π−1

1 (z)), for all z ∈ Z.

This establishes the connection with E.16 and close the circle. The equations∇2|π2(π−1
1 (z)) =

0 yield a system of nonlinear integrable differential equations on space-time X.
To conclude we just observe that the requirements needed above are always satisfied in

our setting, i.e. for the double fibration P6 ← F9 → M6.



F
Calculations on twistor space

The aim of this Appendix is to present a few useful tools for performing computations on
twistor space P6. We also prove some results that we have used in Chapters 6 and 7.

F.1. Homogeneous–local coordinates: a dictionary

Here, we shall introduce local coordinates on twistor space P6 and re-write many relevant
objects accordingly. Although all the calculations in the body of the Thesis are presented, more
elegantly, in homogeneous coordinates, using local coordinates sometimes comes in handy to
avoid some subtleties that homogeneous coordinates may induce. For instance, we recall that
the differential one-forms eA, spanning the dual of the twistor distribution, are defined up to
terms proportional to λA, as λAV

A = 0. Similarly, because of the invariance under rescaling
of homogeneous coordinates, local sections of OP3 fulfil the equation λA

∂
∂λA

f = 0, where
λA

∂
∂λA

is the Euler vector field on P3.

Coordinates. Let (zA, πA), for A = 0, . . . 3, be homogeneous coordinates on P7. Recall
that the the invariance under C0 rescalings of homogeneous coordinates means that they only
contain seven complex degrees of freedom. We have defined twistor space P6 to be a quadric
hypersurface in P7

0 \ P3 in which (λA) 6= 0. A standard open covering of P6 is a lift of the
standard cover of P3 and consists of four coordinate patches U = {Ui}, i = 1, . . . , 4. We
define the inhomogeneous or local coordinates on a patch U1 ⊂ P6 = {[πA] | π0 6= 0} by(

ζa := za

π0
, ηa := πa

π0

)
, for a = 1, 2, 3 . (F.1)

Coordinates on the other three patches are defined accordingly.

257
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Analogously, let V = {Vi}, 1 = 1, . . . , 4 be an open covering of Euclidean twistor space.
Recall that in this setting P6 ∼= R

6 × P3. It can be equivalently coordinatised by global
coordinates (xAB, λA), where λA are homogeneous coordinates on P3. On a patch V1 ⊂
R

6 ×P3 = {[(xAB, λA)] | λ0 6= 0}, we introduce local coordinates

(
xab, x0a, ρa := λa

λ0

)
, for a = 1, 2, 3 , (F.2)

where ρa are local fibre coordinates. Using the Euclidean reality conditions defined in 6.3.2.
one may invert the incidence relation zA = xABλB, obtaining

x0a = 1
1 + [ηη̄]

[
η̄bζ̄bηa − ζ̄a + εabcζ

bη̄c
]
, (F.3)

xab = εabcx
0c = 1

1 + [ηη̄]

[
2ζ̄[aηb] − εabcζc − εabcη̄cζdηd

]
, (F.4)

where [ηη̄] := ∑3
p=1 |ηp|2. Here, three dimensional indices are raised and lowered by the rules

xab = εabcx
0c and x0a = 1

2ε
abcxbc . (F.5)

Vector fields. In Section 6.3.2. we have also introduced the (0, 1)-vector fields {V A
, ṼAB}

on Euclidean twistor space. In terms of homogeneous coordinates (zA, πA) the space T 0,1P6

is generated by { ∂

∂ẑA
, π[A

∂

∂π̂B]

}
, (F.6)

with

∂

∂ẑA
= 2

[λλ̂]
V
A and π[A

∂

∂π̂B] = − 1
[λλ̂]

εABCDx
CEλEV

D + λ[A
∂

∂λ̂B]
, (F.7)

where we have used ẑA = xABλ̂
B. Similarly for the (0, 1)-differential forms {eA, ẽAB} we have

eA + 1
2εABCDz

B ẽCD = 1
[ππ̂]

(
dẑA −

2
[ππ̂] ẑ[AπB]dπ̂B

)
and ẽAB = 2

[ππ̂]2 π̂
[Adπ̂B] (F.8)

Locally, on Euclidean twistor space1, we may introduce the following sets of (0, 1)-vector
fields {

E
a := ∂a0 + ρb∂

ab ,
∂

∂ρ̄a

}
(F.9)

1Here and in the following, local quantities are always considered on a patch even if not explicitly specified.
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and (0, 1)-differential forms
{
ea := 1

1 + [ρρ̄]
[
dxa0 + ρ̄b(ρadxb0 + dxab)

]
, dρ̄a

}
, (F.10)

such that
T 0,1P6 = span

{
E
a; ∂

∂ρ̄a

}
and Ω0,1(P6) = span{ēa; dρ̄a} , (F.11)

Differently from the situation in Section 6.3.2., here (F.9) and (F.10) define actual frames of
(0, 1)-vectors and (0, 1)-forms, respectively. By using conventions

∂ab ¬ dxcd = δ[a
c δ

b]
d , ∂ab ¬ dxc0 = 0 , ∂a0 ¬ dxc0 = 1

2δ
a
c and ∂a0 ¬ dxbc = 0 , (F.12)

one can immediately see that these bases are dual in the sense that

∂

∂ρ̄a
¬ dρ̄b = δba ,

∂

∂ρ̄a
¬ eb = 0 , E

a ¬ eb = 1
2δ

a
b , E

a ¬ dρ̄b = 0 . (F.13)

Then, due to the diffeomorphism P6 ∼= R
6 × P3, we have the following transformation laws

between the coordinate anti-holomorphic vector fields:

∂

∂η̄a
= ∂

∂ρ̄a
+ 2xabE

b + 2
1 + [ρρ̄] ρ̄

cxacρbE
b
,

∂

∂ζ̄a
= 2

1 + [ρρ̄] (E
a + ρ̄aρbE

b) .
(F.14)

Dolbeault operator. Let (zA, πA) and (xAB, λA) be homogeneous coordinates on P6 and
coordinates on Euclidean twistor space, respectively. As regards the anti-holomorphic exterior
derivate, in Section 6.3.2. we claimed that

∂̄ = 2eAV
A + ẽABṼAB = dẑAPA

B

∂

∂ẑB
+ dπ̂A ∂

∂π̂A
, (F.15)

in terms of the projector PA
B := δAB + πB π̂

A

[ππ̂] . This is an example where using local coordinates
turns out to be quite useful. Indeed, a lengthy, but straightforward, calculation shows that

∂̄ = dη̄a ∂

∂η̄a
+ dζ̄a

∂

∂ζ̄a
= 2eaE

a + dρ̄a ∂

∂ρ̄a
. (F.16)

Here, we have used the definitions (F.9)-(F.10) and (F.14) together with the relations

η̄bxab = x0a + ζ̄a , η̄bxb0 = η̄bζ̄b (F.17)

and the symmetry relation T[ab]c = 3T[abc] + T[ac]b + T[cb]a, for some general tensor T .
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Differential forms. We have seen that in the Abelian case the relevant fields are (0, 2)- and
(0, 3)-differential forms on twistor space. In local coordinates, their expansions read

B0,2 = εabcea ∧ eb(Bc − ρcB0) + ea ∧ dρ̄b
[
ρ̄cB̊

[a0]
[cb] + B̊

[a0]
[0b] + ρcB̊

[ac]
[0b] + ρcρ̄

dB̊
[ac]

[db]

]
, (F.18)

and

C0,3 = εabcdρ̄a ∧ dρ̄b ∧ dρ̄c C0 + εcdfea ∧ dρ̄c ∧ dρ̄d
[
ρbC̃

[ab],f − ρbρ̄f C̃ [ab],0

+ C̃ [a0],f − ρ̄f C̃ [a0],0
]

+ εabcea ∧ eb ∧ dρ̄d
[
C̊c,[0d] − ρcC̊0,[0d] + ρ̄f C̊c,[fd] − ρcC̊0,[fd]

]
− εabcea ∧ eb ∧ ec Ĉ .

(F.19)
Here, the coefficient fields are weightless smooth functions of (xab, x0a, ρa, ρ̄

a). Similar expan-
sions hold for the other form fields entering the non-Abelian case.

Holomorphic measure. Moreover, the holomorphic volume form (7.15) may be re-written
as

Ω6,0 =
∮

C
εabce

a ∧ eb ∧ ec ∧ dρl ∧ dρm ∧ dρnεlmn . (F.20)

in terms of the complex conjugate basis of (F.10){
ea := 1

1 + [ρρ̄]
[
dxa0 + ρb(dxab + ρ̄adxb0)

]
, dρa

}
. (F.21)

This allow us to check calculations without dealing with homogeneous coordinates, and their
corresponding subtleties.

F.2. Integral formulas

In the following we give a proof of the integral formulæ presented in Section 6.4.. We borrow
some ideas from [257]. See also [97].

Čech representation. Let us consider the integral1

ψA1...A2h :=
∮

Γ
Ω3,0λA1 · · ·λA2hf−2h−4|Y . (F.22)

We recall that the open convex subset Û ⊂ P6 is Stein, while f−2h−4 ∈ H3(Û ,OÛ(−2h− 4))
is a Čech cocycle and Y ∼= P

3. One may immediately realise that this integral formula gives
1Recall that the contour Γ is, for any x ∈ U ⊂ M6, S1 × S1 × S1.
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rise to solutions of the massless field equations by directly differentiating under the integral
sign and using the fact that

∂ABf−2h−4

∣∣∣
X

= 1
2ε

ABCD∂CDf−2h−4(xEFλF , λE) = 1
2ε

ABCDδE[Cδ
F
D] λF

∂f−2h−4

∂zE

∣∣∣∣∣
Y

=

= 1
2ε

ABCDλ[D
∂f−2h−4

∂zC]

∣∣∣∣∣
Y
.

(F.23)

Explicitly,

∂ABψBA1...A2h−1 =
∮

Γ
Ω3,0λBλA1 · · ·λA2h−1∂

ABf−2h−4

∣∣∣
Y

=
∮

Γ
Ω3,0λA1 · · ·λA2h−1

1
4ε

ABCD

(
λBλD

∂f−2h−4

∂zC

∣∣∣∣∣
Y
− λBλC

∂f−2h−4

∂zD

∣∣∣∣∣
Y

)
= 0 ,

(F.24)
by symmetry reasons. Hence, the integral formula (F.22) realises this isomorphism (6.29) from
the left to the right. In particular, for h = 1 (case of interest) one has the expression

CAB(x) =
∮

Γ
Ω(3,0)λAλBf−6|Y , (F.25)

with f−6 ∈ H3(P6,OP6(−6)) and ∂ABCBC = 0. We notice that the contour integral for-
mula (F.22) can be recognised as a representation of a special instance of Serre duality.
Considering the Abelian sheaf O(k), Serre duality on projective space P3 reads

Hq(P3,OP3(k)) ∼= H3−q(P3,OP3(−k − 4)) . (F.26)

This follows from that fact that the canonical line bundle on P3 is K := det T ∗P3 ∼= OP3(−4).

Dolbeault representation. Alternatively, we have defined the integral formula

ψA1...A2h :=
∫

Y
Ω3,0 ∧ λA1 · · ·λA2hη|Y , (F.27)

for η = η(z, λ) a Dolbeault representative of the cohomology group H0,3
∂̄

(Û ,OÛ(−2h − 4)).
This integral depends only on the cohomology class of η. Once again, the fact that the z.r.m.
equations are indeed obeyed follows directly by differentiating under the integral sign and using
the fact that

∂

∂xAB
= λ[B

∂

∂zA] , (F.28)

thanks to the incidence relation. Here, we have used the holomorphicity condition, ∂̄η = 0, i.e.
the Dolbeault representative η does not depend on the complex conjugated twistor variables.
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To be precise about anti-holomorphic dependence on twistor space, we must specify some
reality conditions on it. Let us consider Euclidean reality conditions (6.22), providing twistor
space with the non-holomorphic fibration π : P6 → R

6. In this real setting we consider
η ∈ Ω(0,3)(Û ,OÛ(−2h− 4)). For convenience, we recall the expansion for a (0, 3)-form field

η = εABCD
λ̂Adλ̂B ∧ dλ̂C ∧ dλ̂D

[λλ̂]4
η0 + εABCDeA ∧ eB ∧ eCλD η̂

+ εCDEF
e[AλB] ∧ λ̂Cdλ̂D ∧ dλ̂E

[λλ̂]3
η̃AB,F + εABCD

eA ∧ eBλC ∧ λ̂Edλ̂F

[λλ̂]2
η̊D,EF ,

(F.29)

in terms of the coefficient fields {η0, η̂, η̃
AB,F , η̊EF,D} of appropriate weights. Hence, (F.27)

reduces to
ψA1...A2h =

∫
Y

Ω3,0 ∧ λA1 · · ·λA2hη0|Y Ω0,3 , (F.30)

as the only component that appear in the integral is the one that points along the P3 direction
of the Euclidean twistor space. Again, η0|Y denotes that the incidence relations have been
imposed. Differentiating (F.27) under the integral sign gives

∂ABψBA1...A2h−1 =
∫
Y

Ω3,0λA1 · · ·λA2h−1(λB∂ABη0|Y) ∧ Ω0,3 =
∫
Y
KλA1 · · ·λA2h−1V

A
η0|Y ,

(F.31)
where K is the Kähler metric (7.30), on each copy of the P3 fibre of the Euclidean twistor
fibration. It is more convenient to work with local coordinates (F.2). For the sake of the
argument, let us consider the simplest case

ψB =
∫

Y
Ω3,0 ∧ λBη|Y =

∫
Y
KλBη0|Y .

On a patch V1, by using the expansion

η = εabcdρ̄a ∧ dρ̄b ∧ dρ̄c η0 + εcdfea ∧ dρ̄c ∧ dρ̄d
[
ρbη̃

[ab],f − ρbρ̄f η̃[ab],0

+ η̃[a0],f − ρ̄f η̃[a0],0
]

+ εabcea ∧ eb ∧ dρ̄d
[
η̊c,[0d] − ρcη̊0,[0d] + ρ̄f η̊c,[fd] − ρcη̊0,[fd]

]
− εabcea ∧ eb ∧ ec η̂

(F.32)

and differentiating, one obtains1

∂ABψB =
∫
V
K(1)V

A

(1)η
(1)
0 |Y =

∫
V

dρ1 ∧ dρ2 ∧ dρ3 ∧ dρ̄1 ∧ dρ̄2 ∧ dρ̄3E
a
η

(1)
0 |Y

= 1
6

∫
V

dρ1 ∧ dρ2 ∧ dρ3 ∧ dρ̄1 ∧ dρ̄2 ∧ dρ̄3 ∂

∂ρ̄c

[
ρbη̃

ab,c − ρbρ̄cη̃[ab],0 + η̃[a0],c − ρ̄cη̃[a0],0
]
,

which vanishes by Stoke’s theorem on the projective space Y.
1 Here, the suffix (1) denotes the restriction to the patch V1. Note that, in the second line the incidence

relation is assumed to be taken into account.
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Woodhouse method. On the other side, we are also interested in knowing how, given a
z.r.m. field on space-time M6, one can construct a twistorial cohomology class which manifests
the requested space-time degrees of freedom. For this purpose, again, the additional structure
induced by Euclidean reality conditions turns out to be very useful. We follow a method due
to Woodhouse [259]. Let ψA1···A2h ∈ H0(U,Zh) and ηψ be the corresponding element of
H0,3(Û ,OÛ(−2h− 4)). Recalling expansion (F.29), the component along P3 is given by

ηψ0 (x, λ, λ̂) := αhψA1...A2h(x) λ̂
A1 · · · λ̂A2h

[λλ̂]2h
, (F.33)

as can be easily seen by considering the integral formula (F.27) and using the identity∫
P3

K

[λλ̂]2h
λA1 · · ·λA2hλ̂

B1 · · · λ̂B2h = 1
αh
δB1

(A1
· · · δB2h

A2h) . (F.34)

The remaining components fields of ηψ follow by exploiting the ∂̄-closure condition. Explicitly,

∂̄ηψ = 2e
A ∧ Ω(0,3)

[λλ̂]4

[
V
A
ηψ0 −

1
3
λBλ̂

C

[λλ̂]
Ṽ ψ
CDη̃

AB,D

]
+

− 2e
A ∧ eB ∧ eCλD ∧ dλ̂F

[λλ̂]4

[
λ̂EṼ ψ

EF η̂ + V
M
λ̂E η̊ψM,EF

]
+

− 3 1
[λλ̂]3

[
e[AλB ∧ eM ] ∧ λ̂Cdλ̂D ∧ dλ̂EεCDEFV

M
η̃AB,Fψ +

εABCDeA ∧ eBλC ∧ dλ̂[F λ̂E ∧ dλ̂M ] λ̂
LṼLM

[λλ̂]
η̊ψD,EF

]
= 0 ,

(F.35)

imposes relations between the coefficients fields as the distinct (0, 4)-forms on twistor space
have to vanish independently.

F.3. Integration over the fibres

In this Section we show some results the have been useful in performing integration over
twistor space.

Holomorphic measure. Here, we are interested in showing how the holomorphic measure
defined in (7.15) may be rewritten in the form (7.29), by using non-holomorphic coordinates
(xAB, λA). We perform a (local) change of variable by solving the quadric constraint zAλA = 0
for z as

zA = ξAw + xABλB . (F.36)
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Here, we have introduced coordinates ξA, satisfying the constraint ξAλA = 1 and of homo-
geneity such that the combination ξAw has holomorphic weight +1. Hence, zAλA = w.
Moreover, we set dzA = αA(w) + ξAdw + xABdλB, were the (1, 0)-form α is defined by
αA(w) := dξAw + dxABλB. Noting that αAλA = −wξAdλA, the holomorphic form is given
by

Ω6,0 =
∮

C

1
4!εABCD

dzA ∧ dzB ∧ dzC ∧ dzD
zAλA

∧ Ω3,0(λ)

=
∮

C

1
4!εABCD

αA(w) ∧ αB(w) ∧ αC(w)ξDdw
w

∧ Ω3,0(λ) ,
(F.37)

as the other terms vanish when wedging to Ω3,0(λ). Performing the contour integral in w

gives
Ω6,0 = 2πi 1

4!εABCDdxAIλI ∧ dxBJλJ ∧ dxCKλKξD ∧ Ω3,0(λ) . (F.38)

Finally, choosing ξA := λ̂A

[λλ̂] , equation (7.29) follows immediately from the definition (6.24),
as αA(0) = [λλ̂]eA.

Useful relations. Before integrating along the fibres of the twistor fibration one needs to
properly rearrange the indices in order to factorise the space-time measure and the Fubini-
Study measure on P3. This translates into straightforward, but lengthy calculations. The
following results products of differential forms are helpful in this regard. Just to give the idea,
let A0,1

1 = e[AλB]A
AB
1 and A0,1

2 = e[CλD]A
CD
2 . The wedge product reads

A0,1
1 ∧ A

0,1
2 = 1

4ε
ABCDeA ∧ eBλC

(
AFE1 A2ED − A1EDA

FE
2

)
λF , (F.39)

where we have used

e[AλB] ∧ e[CλD] = 3
2
[
e[AλB ∧ eC]λD − e[AλB ∧ eD]λC

]
. (F.40)

Similarly,

e[AλB] ∧ e[CλD] ∧ e[EλF ] = 1
2
[
e[AλB ∧ eC ∧ eE]λDλF − e[AλB ∧ eC ∧ eF ]λDλE

− e[AλB ∧ eD ∧ eE]λCλF + e[AλB ∧ eD ∧ eF ]λCλE
]
.

(F.41)

Serre duality. In showing how both Abelian and non-Abelian twistor actions reduces to
space-time actions it is necessary to integrate along the P3-fibres of P6 → R

6. In particular,
we have integrals of the form∫

U
d6x

∫
P3
KφAB...ψCD...

λAλB · · · λ̂C λ̂D · · ·
[λλ̂]2h

, (F.42)
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where K is the Kähler form on P3 given in (7.30), while φAB..., ψCD... denote space-time
dependent symmetric tensors with 2h indices each. Following the discussion in [84] we define
the quantities

Φ := φAB...λAλB · · · ∈ H0,0
∂̄

(P3,OP3(2h)) (F.43)

and

Ψ := ψCD...
λ̂C λ̂D · · ·
[λλ̂]2h+4

Ω0,3 ∈ H0,3
∂̄

(P3,OP3(−2h− 4)) , (F.44)

where Ω0,3 := 1
4!εABCDλ̂

Adλ̂B ∧ dλ̂c ∧ dλ̂d. Here, we have used the fact that Φ is anni-
hilated by the ∂̄ on P3 and Ψ is ∂̄-closed because dimCP

3 = 3. By using the Dolbeault
isomorphism (E.28) one finds

H0,0
∂̄

(P3,OP3(2h)) ∼= H0(P3,OP3(2h)) ,

H0,3
∂̄

(P3,OP3(−2h− 4)) ∼= H3(P3,OP3(−2h− 4))
(F.45)

Hence, the duality pairing is ∫
P3

Ω3,0Φ ∧Ψ = αhφ
AB...ψAB... . (F.46)

This, together with the coefficient αh, follow from the following lemma for complex projective
space.

Let ωn−1
FS be the Standard Fubini-Study Kähler metric on Pn−1, with Kn−1 its correspond-

ent Kähler form and let [λ1, · · · , λn] denote homogeneous coordinates on Pn−1. Given the
2h-tuples of integers A = (A1, · · · , A2h) and B = (B1, · · · , B2h), for h ∈ 1

2N0, we define
the generalised Kronecker δ by

δAB :=
∑
τ∈S2h

2h∏
j=1

δAτ(j)Bτ(j) , (F.47)

where S2h is the permutation group in 2h symbols. The following linear algebraic lemma, see
e.g. [336, 337] makes Serre duality on a (complex) projective space explicit.1

Lemma F.1. If VA = λA1 · · ·λA2h and VB = λB1 · · ·λB2h then

∫
Pn−1

Kn−1
VAV B

[λλ]2h
= (n− 1)!

(n+ 2h− 1)!δAB . (F.48)

1Here, the bar denotes complex conjugation.
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We are interested in the case n = 4. Assuming we are choosing Euclidean reality conditions,
as explained in 6.3., the formulas (F.48)-(F.47) translate to the following integrals

∫
P3
K
λAλ̂

B

[λλ̂]
= 1

4δ
B
A and

∫
P3
K
λAλBλ̂

C λ̂D

[λλ̂]2
= 1

10δ
C
(Aδ

D
B) , (F.49)

for the relevant cases h = 1/2 and h = 1, respectively. Here, we have used K as in (7.30).
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[22] P. Aschieri, L. Cantini, and B. Jurčo, Nonabelian bundle gerbes, their differential geo-
metry and gauge theory, Commun. Math. Phys. 254 (2005) 367 [hep-th/0312154].

[23] T. Nikolaus, U. Schreiber, and D. Stevenson, Principal ∞-bundles - General theory, J.
Homot. Relat. Struct. 10 (2015) 749 [1207.0248 [math.AT]].

[24] D. S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math 3
(1999) 819 [hep-th/9907189 [hep-th]].

[25] T. P. Killingback, World sheet anomalies and loop geometry, Nucl. Phys. B 288 (1987)
578.

[26] E. Witten, THE INDEX OF THE DIRAC OPERATOR IN LOOP SPACE, Lect. Notes
Math. 1326 (1988) 161.

http://dx.doi.org/10.1103/PhysRevD.28.2567, 10.1103/PhysRevD.30.508
http://dx.doi.org/10.1063/1.526780
http://dx.doi.org/10.1063/1.526780
http://dx.doi.org/10.1016/0550-3213(84)90227-X
http://dx.doi.org/10.1016/0370-2693(81)90205-7
http://dx.doi.org/10.1016/0370-2693(81)90205-7
http://dx.doi.org/10.1016/0370-2693(77)90553-6
http://www.arxiv.org/abs/hep-th/9507121
http://dx.doi.org/10.1063/1.1705200
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/TAC/volumes/12/14/12-14.pdf
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/TAC/volumes/12/14/12-14.pdf
http://www.arxiv.org/abs/math.QA/0307200
http://projecteuclid.org/euclid.hha/1201127333
http://www.arxiv.org/abs/math.QA/0504123
http://www.arxiv.org/abs/math.CT/0410328
http://dx.doi.org/10.1016/j.aim.2005.06.014
http://www.arxiv.org/abs/math.AG/0106083
http://dx.doi.org/10.1007/s00220-004-1220-6
http://www.arxiv.org/abs/hep-th/0312154
http://dx.doi.org/10.1007/s40062-014-0083-6
http://dx.doi.org/10.1007/s40062-014-0083-6
http://www.arxiv.org/abs/1207.0248
http://www.arxiv.org/abs/hep-th/9907189
http://dx.doi.org/10.1016/0550-3213(87)90229-X
http://dx.doi.org/10.1016/0550-3213(87)90229-X
http://dx.doi.org/10.1007/BFb0078045
http://dx.doi.org/10.1007/BFb0078045


References 269

[27] M. B. Green and J. H. Schwarz, Anomaly cancellation in supersymmetric d=10 gauge
theory and superstring theory, Phys. Lett. B 149 (1984) 117.

[28] U. Bunke, String structures and trivialisations of a Pfaffian line bundle, 0909.0846
[math.KT].

[29] H. Sati, U. Schreiber, and J. Stasheff, Differential twisted String and Fivebrane struc-
tures, Commun. Math. Phys. 315 (2012) 169 [0910.4001 [math.AT]].

[30] C. Saemann and L. Schmidt, The Non-Abelian Self-Dual String and the (2,0)-Theory,
Lett. Math. Phys. 110 (2020) 1001 [1705.02353 [hep-th]].

[31] P. S. Howe, N. D. Lambert, and P. C. West, The self-dual string soliton, Nucl. Phys. B
515 (1998) 203 [hep-th/9709014].

[32] H. Sati, U. Schreiber, and J. Stasheff, Fivebrane Structures, Rev. Math. Phys. 21 (2009)
1197 [0805.0564 [math.AT]].

[33] A. Salam and E. Sezgin, Anomaly Freedom in Chiral Supergravities, Phys. Scripta 32
(1985) 283.

[34] S. J. Gates, Jr. and H. Nishino, New D = 10, N = 1 Superspace Supergravity and
Local Symmetries of Superstrings, Phys. Lett. B 173 (1986) 46.

[35] J. Bagger and N. D. Lambert, Gauge symmetry and supersymmetry of multiple M2-
branes, Phys. Rev. D 77 (2008) 065008 [0711.0955 [hep-th]].

[36] J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105
[0712.3738 [hep-th]].

[37] A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66
[0709.1260 [hep-th]].

[38] O. Aharony, O. Bergman, D. L. Jafferis, and J. M. Maldacena, N = 6 superconformal
Chern–Simons-matter theories, M2-branes and their gravity duals, JHEP 0810 (2008)
091 [0806.1218 [hep-th]].
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[42] B. Jurčo, L. Raspollini, C. Sämann, and M. Wolf, L∞-Algebras of Classical Field Theories
and the Batalin-Vilkovisky Formalism, Fortsch. Phys. 67 (2019) 1900025 [1809.09899
[hep-th]].
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[46] B. Jurčo, C. Sämann, U. Schreiber, and M. Wolf, Higher Structures in M-Theory,
Fortsch. Phys. 67 (2019) 1910001 [1903.02807 [hep-th]].

[47] R. Penrose, Twistor quantization and curved space-time, Int. J. Theor. Phys. 1
(1968) 61.

[48] R. Penrose, Solutions of the zero-rest-mass equations, J. Math. Phys. 10 (1969) 38.

[49] R. Penrose and M. A. H. MacCallum, Twistor theory: An approach to the quantization
of fields and space-time, Phys. Rept. 6 (1972) 241.

[50] R. S. Ward, On self-Fdual gauge fields, Phys. Lett. A 61 (1977) 81.

[51] A. Belavin, A. Polyakov, A. Schwartz, and Y. Tyupkin, Pseudoparticle solutions of the
Yang–Mills equations, Phys. Lett. B 59 (1975) 85.

[52] M. Atiyah and R. Ward, Instantons and algebraic geometry, Commun. Math. Phys. 55
(1977) 117.

[53] R. Penrose, The Nonlinear Graviton, Gen. Rel. Grav. 7 (1976) 171.

[54] R. Penrose, Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav. 7 (1976) 31.

[55] M. Atiyah, N. J. Hitchin, and I. Singer, Self-duality in four-dimensional Riemannian
geometry, Proc. Roy. Soc. Lond. A 362 (1978) 425.

[56] R. Ward, Self-dual space-times with cosmological constant, Commun. Math. Phys. 78
(1980) 1.

http://dx.doi.org/10.1002/prop.201900025
http://www.arxiv.org/abs/1809.09899
http://www.arxiv.org/abs/1809.09899
http://dx.doi.org/10.1002/prop.201910025
http://www.arxiv.org/abs/1903.02887
http://www.arxiv.org/abs/1903.02887
http://dx.doi.org/10.1103/PhysRevLett.126.191601
http://www.arxiv.org/abs/2007.13803
http://www.arxiv.org/abs/2007.13803
http://www.arxiv.org/abs/math.SG/0203110
http://www.arxiv.org/abs/math.SG/0203110
http://dx.doi.org/10.1002/prop.201910001
http://www.arxiv.org/abs/1903.02807
http://dx.doi.org/10.1007/BF00668831
http://dx.doi.org/10.1007/BF00668831
http://dx.doi.org/DOI:10.1063/1.1664756
http://dx.doi.org/10.1016/0370-1573(73)90008-2
http://dx.doi.org/10.1016/0375-9601(77)90842-8
http://dx.doi.org/10.1016/0370-2693(75)90163-X
http://dx.doi.org/10.1007/BF01626514
http://dx.doi.org/10.1007/BF01626514
http://dx.doi.org/10.1007/BF00763433
http://dx.doi.org/10.1007/BF00762011
http://dx.doi.org/10.1098/rspa.1978.0143
http://dx.doi.org/10.1007/BF01941967
http://dx.doi.org/10.1007/BF01941967


References 271

[57] E. Witten, An interpretation of classical Yang-Mills theory, Phys. Lett. B 77 (1978) 394.

[58] J. Isenberg, P. B. Yasskin, and P. S. Green, Non-self-dual gauge fields, Phys. Lett. B
78 (1978) 462.

[59] J. Isenberg and P. B. Yasskin, Twistor description of nonselfdual Yang-Mills fields, in:
‘Complex Manifold Techniques In Theoretical Physics,’ 180, Lawrence, 1978.

[60] C. LeBrun, The first formal neighbourhood of ambitwistor space for curved space-time,
Lett. Math. Phys. 6 (1982) 345.

[61] C. R. LeBrun, Ambitwistors and Einstein’s equations, Class. Quant. Grav. 2 (1985) 555.

[62] C. LeBrun, Thickenings and conformal gravity, Commun. Math. Phys. 139 (1991) 1.

[63] S. A. Merkulov, Simple supergravity, supersymmetric nonlinear gravitons and super-
twistor theory, Class. Quant. Grav. 9 (1992) 2369.

[64] S. A. Huggett and K. P. Tod, An Introduction to Twistor Theory, Cambridge University
Press, 1994.

[65] Y. I. Manin, Gauge field theory and complex geometry, Grundlehren der mathematischen
Wissenschaften, 289, Springer, Berlin, 1988.

[66] R. S. Ward and R. O. Wells, Twistor geometry and field theory, Cambridge University
Press, Cambridge, 1990.

[67] L. J. Mason and N. M. J. Woodhouse, Integrability, self-duality, and twistor theory,
Clarendon, Oxford (1996).

[68] M. Dunajski, Solitons, Instantons, and Twistors (Oxford Graduate Texts in Mathemat-
ics), Oxford University Press, USA (February 8, 2010).

[69] M. Wolf, A first course on twistors, integrability and gluon scattering amplitudes, J.
Phys. A 43 (2010) 393001 [1001.3871 [hep-th]].

[70] T. Adamo, M. Bullimore, L. Mason, and D. Skinner, Scattering amplitudes and Wilson
loops in twistor space, J. Phys. A A 44 (2011) 454008 [1104.2890 [hep-th]].

[71] M. Atiyah, M. Dunajski, and L. Mason, Twistor theory at fifty: from contour integrals
to twistor strings, 1704.07464 [hep-th].

[72] T. Adamo, Lectures on twistor theory, PoS M odave2017 (2018) 003 [1712.02196
[hep-th]].

http://dx.doi.org/10.1016/0370-2693(78)90585-3
http://dx.doi.org/10.1016/0370-2693(78)90486-0
http://dx.doi.org/10.1016/0370-2693(78)90486-0
http://dx.doi.org/10.1007/BF00419314
http://dx.doi.org/10.1088/0264-9381/2/4/020
http://dx.doi.org/10.1007/BF02102727
http://dx.doi.org/10.1088/0264-9381/9/11/006
http://dx.doi.org/10.1088/1751-8113/43/39/393001
http://dx.doi.org/10.1088/1751-8113/43/39/393001
http://www.arxiv.org/abs/1001.3871
http://dx.doi.org/10.1088/1751-8113/44/45/454008
http://www.arxiv.org/abs/1104.2890
http://www.arxiv.org/abs/1704.07464
http://dx.doi.org/10.22323/1.323.0003
http://www.arxiv.org/abs/1712.02196
http://www.arxiv.org/abs/1712.02196


272 References

[73] N. J. Hitchin, G. B. Segal, and R. S. Ward. Integrable systems: Twistors, loop groups,
and Riemann surfaces, . In Proceedings, Conference, Oxford, UK, September 1997,
Oxford, UK: Clarendon (1999) 136 p1997.

[74] L. Mason, Geometry and Integrability, Cambridge University Press, 2003.

[75] S. Salamon, Quaternionic Kähler Manifolds, Inventiones Mathematicae 67 (1982) 143.

[76] R. Penrose, Palatial twistor theory and the twistor googly problem, Phil. Trans. Roy.
Soc. Lond. A 373 (2015) 20140237.

[77] E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun.
Math. Phys. 252 (2004) 189 [hep-th/0312171 [hep-th]].

[78] N. Berkovits, An alternative string theory in twistor space for N = 4 super-Yang-Mills,
Phys. Rev. Lett. 93 (2004) 011601 [hep-th/0402045].

[79] R. Roiban, M. Spradlin, and A. Volovich, On the tree-level S-matrix of Yang-Mills theory,
Phys. Rev. D 70 (2004) 026009 [hep-th/0403190].

[80] Y. Geyer, A. E. Lipstein, and L. Mason, Ambitwistor strings at null infinity and subleading
soft limits, 1406.1462 [hep-th].
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Phys. 56 (2015) 082902 [1406.5342 [hep-th]].

[296] A. D. Popov, A Twistor Space Action for Yang-Mills Theory, 2103.11840 [hep-th].

[297] E. Sharpe, Lectures on D-branes and sheaves, hep-th/0307245 [hep-th].

[298] R. Zucchini, Exact renormalization group and effective action: a Batalin–Vilkovisky
algebraic formulation, 1711.07795 [math-ph].

[299] R. Zucchini, Exact renormalization group in Batalin–Vilkovisky theory, JHEP 1803
(2018) 132 [1711.01213 [hep-th]].

[300] F. Schuhmacher, Deformation of L∞-algebras, math.QA/0405485.

[301] Y. Fregier, C. L. Rogers, and M. Zambon, Homotopy moment maps, Adv. Math. 303
(2016) 954 [1304.2051 [math.DG]].

http://dx.doi.org/10.1088/1126-6708/1998/07/017
http://www.arxiv.org/abs/hep-th/9806140
http://dx.doi.org/10.1007/BFb0104262
http://www.arxiv.org/abs/hep-th/9812170
http://www.arxiv.org/abs/1406.5185
http://dx.doi.org/10.1007/JHEP12(2019)076
http://www.arxiv.org/abs/1908.01789
http://dx.doi.org/10.1007/JHEP02(2016)087
http://dx.doi.org/10.1007/JHEP02(2016)087
http://www.arxiv.org/abs/1508.05387
http://dx.doi.org/10.1016/j.physletb.2019.134948
http://www.arxiv.org/abs/1908.10752
http://dx.doi.org/10.1007/JHEP05(2021)039
http://dx.doi.org/10.1007/JHEP05(2021)039
http://www.arxiv.org/abs/2011.14384
http://dx.doi.org/10.1007/JHEP08(2016)167
http://dx.doi.org/10.1007/JHEP08(2016)167
http://www.arxiv.org/abs/1607.03763
http://dx.doi.org/10.1063/1.4929537
http://dx.doi.org/10.1063/1.4929537
http://www.arxiv.org/abs/1406.5342
http://www.arxiv.org/abs/2103.11840
http://www.arxiv.org/abs/hep-th/0307245
http://www.arxiv.org/abs/1711.07795
http://dx.doi.org/10.1007/JHEP03(2018)132
http://dx.doi.org/10.1007/JHEP03(2018)132
http://www.arxiv.org/abs/1711.01213
http://www.arxiv.org/abs/math.QA/0405485
http://dx.doi.org/10.1016/j.aim.2016.08.012
http://dx.doi.org/10.1016/j.aim.2016.08.012
http://www.arxiv.org/abs/1304.2051


References 287

[302] D. Khudaverdyan, Higher Lie and Leibniz algebras, Ph.D. thesis, University of Luxem-
bourg, 2015 [1501.01925 [math.CT]].

[303] T. Leinster, Basic Category Theory, Cambridge University Press 143 (2014)
[1612.09375 [math.CT]].

[304] E. Riehl, Category theory in context, Courier Dover Publications, 2017.

[305] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer Berlin Heidelberg,
1966.

[306] U. Bruzzo. Introduction to algebraic topology and algebraic geometry, 2002. Interna-
tional School for Advanced Studies, available online.

[307] J.-P. Serre, Faisceaux Algebriques Coherents, Annals of Mathematics 61 (1955) 197.
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