PHYSICAL REVIEW D 103, 056016 (2021)

Fermion masses and flavor mixing in modular A, symmetry
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We consider a flavor model based on the A, modular group to account for both lepton and
quark parameters (masses and mixing). The inverse seesaw mechanism is considered to produce the
light neutrino masses. Lepton masses and mixing are obtained in terms of Yukawa coupling ratios and
values of the modulus z nearby some fixed points for inverted neutrino mass hierarchy. The quark masses
and mixing are arisen at the same 7 values used in inverted neutrino mass hierarchy and are in agreement

with the recent data.
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I. INTRODUCTION

The smallness of the neutrino mass is usually explained
via the type-I seesaw mechanism [1] which is the common
scenario used to account for neutrino masses and mixing.
In this mechanism, the small neutrino mass is obtained
by the extension of the fermion content of the Standard
Model (SM) with three gauge singlets as heavy right-
handed neutrinos N,. The mass of the light neutrino can be
calculated through the relation m, = —mpMz~'m’, where
mp is the Dirac mass and M, is the Majorana mass of right-
handed neutrinos N;. To account for the tiny neutrino mass
of order O(1072) eV, either the mass scale of N; will be of
order O(10!'! GeV) or one should consider a very small
Dirac coupling for TeV mass scale of right-handed neu-
trinos. The large right-handed neutrino masses are far from
experimental reach. In addition, the lepton number is
violated via the large scale of the right-handed neutrino
masses.

On the other hand, the inverse seesaw mechanism [2—4]
is an alternative mechanism used to account for the small
neutrino mass by considering a small scale u, and making a
double suppression by the new scale My via the relation
m, = mpMgp~ ' u,ME="m?. In the case of a type-I seesaw,
the lepton number violation (LNV) takes place via the
Majorana mass term of N;, which is very large. Conversely,
in the inverse seesaw, the lepton number is violated by the
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very small mass p, of the singlet S which is a very small
scale compared to the electroweak scale. One can consider
the lepton number as an approximate symmetry of nature,
so it is convenient to break it by a small amount instead of a
large mass like M. According to "t Hooft [5], if j, tends to
zero, the neutrino mass m, goes to zero and LNV vanishes
so that the symmetry is enhanced.

The flavor symmetry was proposed to account for many
aspects such as the differences in mixing and mass
hierarchy for lepton and quark sectors. Several models
based on discrete symmetries were proposed to account for
fermion masses and mixing (see [6]). Most of these models
suffer from considerations of a large number of scalars
(flavons), considering extra Zy symmetries and/or fine-
tuning to account for experimental data.

Recently, finite modular groups I'y have been proposed
to explain the flavor aspects [7,8]. In such groups, the group
transformations are extended to include the coupling
constants which can transform nontrivially. Extra sym-
metries under modular weights are impeded into the group,
so there is no need to impose other symmetries to match the
data. Some of I'y are isomorphic to finite permutation
groups, for instance, I, @ S; [9-12], T3 = A, [13-19],
Iy, =S8, [20-24], and T'5 = A5 [25-27]. Attempts have
been made to account for both leptons and quarks using a
modular group with a single modulus value for both leptons
and quarks [28-34]. Models with different moduli for
charged lepton and neutrino sectors have been studied
using the concept of modular residual symmetries [35,36].
Multiple modular symmetries with more than one modular
group have been discussed in [37]. The double covering of
modular groups has been investigated in [38—41]. The
modular invariance combining with the generalized CP
symmetry has been studied to predict CP violating phases

Published by the American Physical Society
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of quarks and leptons [42—44]. Most of the above models
used either the type-I seesaw mechanism or the non-
renormalizable five-dimensional operator to generate neu-
trino masses. The inverse seesaw mechanism has been used
for some modular invariance models [18,45].

In this paper, we introduce a model based on modular A4
symmetry to account for masses and mixing for leptons and
quarks. First, we give an introduction to the modular groups
and how to use them as flavor symmetries, then we explain
our A4 model in the lepton sector, and finally we study the
quark masses and mixing.

II. MODULAR GROUPS

The modular group I' is defined as linear fractional
transformations on the upper half of the complex plan ‘H
and has the form [8,46—48]

_ar+b

ytr—w(f)—wrd’ (1)

where a, b, c,d € Z, ad — bc = 1. The modular group Tis
isomorphic to the projective special linear group

PSL(2,7) = SL(2,2)/{I, -1}, 2)
where
SL(2,7) = {(CCZ Z),a,b,c,dez,ad—bc - 1}.
3)

The generators of the group I' are two matrices S and T
where their action on the complex number 7 is given by

-1
S:it—->—,

T:t—>71+1. (4)
T

In the two by two representation, the two generators S, T
can be represented as

S G

They should satisfy the conditions
§? =1, (ST)® = 1.

Define the infinite modular groups T'(N),N =1,2,3,....
as

I(N) = {(‘: Z) € SL(2,2).

(2 0)=(, | )moan}. (©)

For N =1,

b
> e SL(2,2),
d

CO-G om0

Since any integers can satisfy the conditions @, d = 1 mod 1
and b,c =0mod 1, I'(1) =SL(2,Z). For N =1, 2, we
define T'(N) = T'(N)/{I,—I} whereas for N > 2, [(N) =
I'(N) because —I ¢ I'(N) for N > 2. It is straightforward to
notice that I'(1) = PSL(2,Z) =T. The group I and its
subgroup I'(N) are discrete but infinite, while the quotient
modular group I'y = I'/T'(N) is finite. The group 'y is
called the finite modular group and can be obtained by
extending the conditions on the generators with the condition
TN =1. For some N, the finite modular group I'y is
isomorphic to a permutation group, for instance, I', = S5,
F3 = A4, F4 = S4 and, F5 = A5.

The modular function f(z) of weight 2k is a meromor-
phic function of the complex variable z which satisfies

o)) = £(227)

a

= (et + d)*f(z) V< Z) eI'(N), (8)

c

where the integer & > 0. By using Eqgs. (1) and (6), it is easy
to calculate

From Eq. (8), one can get

140 _ (ot
f(2) dr

From the above equation, we conclude that the k-form
f(z)d7* is invariant under I'(N). If the modular function is
holomorphic everywhere, it is called “modular form” of
weight 2k. The modular forms of level N and weight 2k
form a linear space of finite dimension. In the basis at
which the transformation of a set of modular forms f;(7) is
described by a unitary representation p(y), one can get

)_" F)d( (@) = f@)de.

filr(@)) = (et + d)*py(r)fi(z).  y €L(N).  (10)
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Consider the superpotential W(z, ¢») be written in terms of
supermultiplets ¢, where I refers to different sectors in the
theory,

=N Vi, @d" g (1)
I n

The supermultiplets ¢/ transform under Ty in the repre-
sentation p(y) as

¢V (2) = ¢ (r(7) (). (12)

The invariance of the superpotential W(z, ¢) under the
modular transformation requires Y; ;, ; (z) to be a modu-
lar form transforming in the representation

= (ct+d)

Yo, (rt) = (cz+d)*Wp()Y, 1 (2). (13)

The modular invariance forces the condition
kY :kll +k12 + "+k1”. (14)

A. Modular forms of level 3

The group A, has one triplet representation 3 and 3
singlets 1 1’, and 1” and is generated by two elements S and
T satisfying the conditions

§?=T3=(ST)*=1. (15)

The modular form of level 3 has the form

filr(2)) =

The modular form of weight 2 and level 3 transforms as a
(¥1.¥2.¥3), [8] where

(ct+ d)2kpij(7)fj(7)’ y €T(3).

triplet and is given by Y 52) =

| /3) (4 1)/3)
n(e) ‘_[ w3 e /3)
(@ +2)/3) 27/ (30
T3 G

) l['r/s>+w 7+ 1)/3) n’((f+2)/3)]

w3 R T3

) z[n' o3), A1) zn'<<1+z>/3>]

e ey e ey

(16)

where @ = ¢*7/3 and the Dedekind eta-function 7(z) is
defined as

g=e*7.  (17)

o =g 0
n=1

One can construct modular forms of higher weights using
the multiplication rules of A4 [8]. Modular forms of weight

4 are constructed via multiplication of two triplets of weight
2. Using A, multiplication rules of two triplets, one can get
one triplet and three singlets all of weight 4 as

Y= ¥y
4 4
Yg): y3 =y |- Y(1>ZY%+2)’2Y3,
)’%—)’1)’3

4 4
Y =33+ 2y, Y$ =32 + 2515, (18)

The representations of the above singlets are
vi~r e

At all values of 7, the condition Y g4) = 0 is satisfied.
We will use the basis where the generators of A, in triplet

representation are

| -1 2 2 100
S:§ 2 -1 2|, T=|0w O |. (19)
2 2 -1 00 w?

III. Ay MODULAR INVARIANCE MODEL

The lepton content in the model is extended by adding a
triplet of chiral supermutiplets N¢ as a right-handed
neutrino and three SM singlets S; to get the neutrino
masses via the inverse seesaw mechanism. We add a gauge
singlet scalar y transforming trivially under A4 to get the
masses of the singlet fermions N and S. Contrary to most
flavor symmetric models, no more flavons are considered
and no extra discrete symmetries are considered in our
model. According to the modular invariance condition in
Eq. (14), we chose the modular weights such that the
following relations are satisfied:

kL+kHd+kE:27
kL—’_kHu +kN :2,
2kg + 4k, =0,
ks + ky +k, = 0. (20)
If we chose k; =3, ky, =0, we can get the modular

weights of other fields as shown in Table I. The lepton
modular A, invariant superpotential can be written as

TABLE 1.
weight k;.

Assignment of flavors under A4 and the modular

Fieldls L E$ E E, N° S H, H, g

Ay 3 1 1” 4 3 3 1 1 1
ky 3 -1 -1 -1 -1 2 0 0 -1
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wy =MESH)(L ® Yg2>)1 + hHhESH,(L ® YgZ))/l
+IESH (L ® YY) + gy (N°H,L)3sYY),

+ 92((NCHML)3AYI(§2))1 +h(N°® S)1x

Lt

F (5@ ) e1)

where A is the nonrenormalizable scale and g; is the
coupling constant of the term of the symmetric triplet
arising from the product of the two triplets L and Y, while
g» 1s the coupling of the antisymmetric triplet term. After
spontaneous symmetry breaking, the scalar fields H,, H,,
and y acquire vevs namely v,, vy, and v’ respectively,
where v’ > v, v,. We assume that ¢’ satisfies the relation
%N O(4.) where 1. =0.22 is the Cabibbo angle. From
Eq. (21), we can write the charged lepton mass matrix as

A0 0 yi Y3 »n
m,=v4| 0 4 O | X |y yi y3 (22)
0 0 43 Y3 Y2 N

To deal only with the left-handed mixing, it is convenient to

use the Hermitian matrix M, = mZme which can be
diagonalized as

M —yim,u,.

The neutrino mass matrices are

100 100

=f23lo o 1|, Mg=n'/[0 0 1],
010 010

29131 (=1 +9)ys (=91 —92)»2

mp=v,| (=91 = 92)¥3 291y, (=91 + 92)1
(=91 +9)y> (=g1—92)0 2913

(23)

The neutrino mass matrix in the basis (v, N¢,S) is
given by

0 mp O
M = m{) 0 My (24)
0 Mg p

After diagonalization of this matrix, one can get three
eigenvalues, one for the light neutrino and the other two for
the heavy neutrino states. The masses of the light neutrino
state m, can be obtained as

my, = mpMg~ usMy~" mi,. (25)

A }:‘zg L : determines the scale of light
neutrino masses and can be easily chosen to achieve the
desired scale. For instant, we can set i~ O(1 GeV),
f~0(0.001 GeV), v/ ~O(100 TeV), v, ~ O(10> GeV),
and g; ~ O(0.01 GeV) to get the neutrino masses of order
O(107! eV). The neutrino mass matrix m,, is complex and
symmetric, so it is convenient to diagonalize the Hermitian
matrix M,

The overall parameter

— T
- mllmp’

M = Uim,U,. (26)

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton
mixing matrix Upyg 1S given by

Uiu,.

UPMNS (27)

The mixing angles can be calculated from the relations

‘(IJPMNS)12|2
1- |(UPMNS)13|

(28)

Si”2(913) :|(UPMNS)13|2’ Sin? (012) =

|(Upnns )3l

Sin- (0 _—— e
08) = T Upes)aF-

The mixing angles and mass ratios are determined by the
ratios g,/ g, j—i, % and the modulus z. The parameter g,/ g,
is complex in general, so we can write it as

92 _ geid,

" (29)

where ¢ is the relative phase of g; and g,. The best fit
values and 30 ranges for the experimental results are
summarized in Table II, in which the neutrino mass squared
differences are defined as

TABLE II. 3 ¢ range for neutrino mixings and mass difference squares from [49] for inverted hierarchy.
Am%2 \Am%ﬁ o Am%2
(107 eV?) (107 eV?) T [Am3y] 012/° 023/° 013/° dcp/m
Best fit 7.39 2.51 0.0294 33.82 49.8 8.6 1.57
30 range 6.79-8.01 2.41-2.611 0.026-0.033 31.61-36.27 40.6-52.5 8.27-9.03 1.088-2
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Amiy =m3—mi,  |Am3s| = |m3 = (m3 4 mp)/2].

The parameters are scanned in the upper half of the

complex plane by fixing r = Ii;%
with the 3¢ ranges in Table II. The modulus 7 is scanned in
the ranges Re[zr] € [-0.5,0.5] and Im[z] € [0.4,1], the
coupling ratio g is scanned in the range g € [0.5, 3], and
the phase ¢ € [—=, z]. We study the model in the case of
normal and inverted hierarchies.

and the mixing angles

A. Normal hierarchy

For the normal hierarchy, we found the following
benchmark: 7 = -0.245+ 0.5236i, ¢g=2.503, ¢ =

—0.1057, % = 0.00031, j—f = 0.063, with

A 2
=2 00203, 00003, =006l
|Am;]| m; m;
01, =3325°, 0 =41678°, 0,;=87%.  (30)

B. Inverted hierarchy

For inverted neutrino mass hierarchy, we found the
following benchmarks:
(1) ©=-0494+0.55i, g=205 ¢=-n/2, 3=
0.0009, 7 = 0.07, with ’

A 2
_ m? —0.0286. e — 0.0003,
|Amzs| my;
m,, o
— =0.061, 01, =32.4°,
mT
0y = 49.26°, 0,5 = 8.54°. (31)

(2) 7=0.0962+0984i, ¢=205  ¢=-n/2,
4 = 0.0009, j—f = 0.07, with

A3

A 2

= 200296, ¢ =0.0003,

|Amz;| m,
mﬂ R
— = 0-0617 912 =32.36 s
mT
03 = 49.24°, 03 = 8.73°. (32)

The two points 7 = —0.494 4 0.55; and 7 = 0.0962 +
0.984i are close to the fixed points 7; = —0.5 + 0.5 and
7¢ = i respectively. The two fixed points are related to each
other as 7; = STz.. The modular group A, is broken to its
subgroup Z, = {I,S} at 7o =i as neutrino and charged
lepton mass matrices are invariant under the § trans-
formation [35,36]. The lepton masses and mixing at 7.
are studied in [35,36] with the conclusion that 7~ cannot
be used to lead to the correct lepton masses and mixing.
The point 7; = —0.5 + 0.5 is invariant under ST?ST

transformation 7 = _&Z) at which the group A, is broken

to its subgroup Z, = {1, ST*>ST}. The charged lepton mass
matrix M, is invariant under unitary transformation
S, = ST?ST, SIM,S, = M,, where

1 -1 20 2w
20 20 -1

One of the eigenvalues of M, is zero since the determent of
M, vanishes, so 7; cannot be used to lead to the correct
charged lepton masses. The matrix M, is invariant under
the transformation §; = ST2ST in Eq. (33). In this case,
one of the eigenvalues of M, is zero and Det(M,) = 0. The
mixing matrix in this case has two vanishing mixing angles
and a nearly maximal angle. As we see, the observed lepton
masses and mixing are consequences of breaking modular
residual symmetry by deviation from 7. or 7.

IV. QUARK MASSES

The embedding of the quark sector into a flavor model is
a challenge due to the differences in the mass hierarchy and
mixing for leptons and quarks. In this model, we extend the
modular A, symmetry to the quark sector at the value of the
modulus 7; = —0.494 + 0.55i. All quarks transform as
singlets under A4. The assignments of the quark fields
are shown in Table III.

The A, invariant superpotential for down quarks can be
written as

h[lil c 3 hgz c h% 4) gc 2
Wy :FledQU( +szHdQ2){+FY2 d5H ;0>
+hs Y54>d§HdQ3- (34)

The chosen A4 and k; assignments prevent the other mixing
terms. Without loss of generality, we assume that h¢, /h¢; ~
hd,/h$y ~1/2 and hdy/h¢; ~1. The down quark mass
matrix takes the form

B2 0 0
mg=h(Hy) [ 0 420 f. (35)
o vz vy

TABLE IIL
weight k;.

Assignment of quarks under A, and the modular

Fields 0, Q, Qs u$ u§ u d d5 dS

Ay 1 Iy " 1 Iy 1 1” Iy
ky 3 2 0 4 4 1 0 -1 4

056016-5
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To deal with left-handed mixing only, we construct the
matrix M, = mjlmd which can be diagonalized by

1 0 0
Vo= |0 -0.490-0.869; 0.0257 +0.045; |, (36)
0 0.0524 0.9985

with the corresponding eigenvalues
M, = diag(*/2,22/2, D&Y\ (H,). (37

The hierarchical spectrum of the down quark masses is in a
good agreement with the recent data for quark masses [50]:

my = 4.677018 MeV,

my, = 4.187093 GeV.

my = 93J_r511 MeV,

For the up quarks, using the condition Yg4) =0, the
invariant superpotential under modular A4 can be written as
|

w —%YM)MCHQ 3+%Y(4) CHQ 2
u_A321u1)( Azl”luZ}(

h51 @) . u @) e
+%Y§ WSH, 013 + h Y usH, 04

h
+ =2 uSH, sy (38)

The up quark mass matrix takes the form

reySDe mnyPa2 o
my, = <Hu> /’llztl Y(14)/13 0
0 0

nuys |- (39)

hit,

Assume that the h, ~ hiy ~ hy ~ hs,
R4y ~ 3h%,, the Hermitian matrix M, = mjm, is diagon-
alized by

couplings

—-0.478 +0.848; —0.11 +0.198; 0.0017 —0.0035i
V.= —-0.118 = 0.195;  0.504 + 0.83i 1.5 x 1077 , (40)
0.00349 0.0008245 0.999942
[
with the corresponding eigenvalues achieved at 7 = 0.2525 4 0.526i with the above quark
model.
M3 = hiy(H,)Y P diag(47, 23, 1), (41)

which are in agreement with the up quark mass ratios [50]

e — 0000012, 7<= 0.008.
m; m;

The Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix Vgy takes the form

0.9737 0.224 0.006
0224 09723 005 |. (42)
0.005 0.05 0.9986

|Vekm| = |V;Vd| =

which is close to the correct Vky [50]. The same result of
quark masses and mixing can be obtained at 7 = 0.0964 +
0.984i; while the observed masses and mixing are not

V. CONCLUSION

We built an A, modular invariance model to account for
both lepton and quark masses and mixing. The model is
free from large number of flavons or extra symmetries like
Zy symmetries which were considered in many models
based on the flavor symmetry. The neutrino masses are
obtained via the inverse seesaw mechanism. The predicted
lepton mixing and mass ratios are compatible with the
recent data. The neutrino mass square difference ratios
and lepton mixing angles are determined in terms of the
coupling ratio g,/¢g; and the modulus 7 at values near fixed
points for the inverted hierarchy scenario. For the same
value of 7= -0.494 + 0.55i, we extend the modular
A, symmetry to the quark sector. The calculated quark
mass ratios and mixing are in quite agreement with the
experimental results.
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