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We consider a flavor model based on the A4 modular group to account for both lepton and
quark parameters (masses and mixing). The inverse seesaw mechanism is considered to produce the
light neutrino masses. Lepton masses and mixing are obtained in terms of Yukawa coupling ratios and
values of the modulus τ nearby some fixed points for inverted neutrino mass hierarchy. The quark masses
and mixing are arisen at the same τ values used in inverted neutrino mass hierarchy and are in agreement
with the recent data.
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I. INTRODUCTION

The smallness of the neutrino mass is usually explained
via the type-I seesaw mechanism [1] which is the common
scenario used to account for neutrino masses and mixing.
In this mechanism, the small neutrino mass is obtained
by the extension of the fermion content of the Standard
Model (SM) with three gauge singlets as heavy right-
handed neutrinos Ni. The mass of the light neutrino can be
calculated through the relation mν ¼ −mDMR

−1mT
D, where

mD is the Dirac mass andMR is the Majorana mass of right-
handed neutrinos Ni. To account for the tiny neutrino mass
of order Oð10−2Þ eV, either the mass scale of Ni will be of
order Oð1011 GeV) or one should consider a very small
Dirac coupling for TeV mass scale of right-handed neu-
trinos. The large right-handed neutrino masses are far from
experimental reach. In addition, the lepton number is
violated via the large scale of the right-handed neutrino
masses.
On the other hand, the inverse seesaw mechanism [2–4]

is an alternative mechanism used to account for the small
neutrino mass by considering a small scale μs and making a
double suppression by the new scale MR via the relation
mν ¼ mDMR

−1μsMT
R
−1mT

D. In the case of a type-I seesaw,
the lepton number violation (LNV) takes place via the
Majorana mass term of Ni, which is very large. Conversely,
in the inverse seesaw, the lepton number is violated by the

very small mass μs of the singlet S which is a very small
scale compared to the electroweak scale. One can consider
the lepton number as an approximate symmetry of nature,
so it is convenient to break it by a small amount instead of a
large mass likeMR. According to ’t Hooft [5], if μs tends to
zero, the neutrino mass mν goes to zero and LNV vanishes
so that the symmetry is enhanced.
The flavor symmetry was proposed to account for many

aspects such as the differences in mixing and mass
hierarchy for lepton and quark sectors. Several models
based on discrete symmetries were proposed to account for
fermion masses and mixing (see [6]). Most of these models
suffer from considerations of a large number of scalars
(flavons), considering extra ZN symmetries and/or fine-
tuning to account for experimental data.
Recently, finite modular groups ΓN have been proposed

to explain the flavor aspects [7,8]. In such groups, the group
transformations are extended to include the coupling
constants which can transform nontrivially. Extra sym-
metries under modular weights are impeded into the group,
so there is no need to impose other symmetries to match the
data. Some of ΓN are isomorphic to finite permutation
groups, for instance, Γ2 ≅ S3 [9–12], Γ3 ≅ A4 [13–19],
Γ4 ≅ S4 [20–24], and Γ5 ≅ A5 [25–27]. Attempts have
been made to account for both leptons and quarks using a
modular group with a single modulus value for both leptons
and quarks [28–34]. Models with different moduli for
charged lepton and neutrino sectors have been studied
using the concept of modular residual symmetries [35,36].
Multiple modular symmetries with more than one modular
group have been discussed in [37]. The double covering of
modular groups has been investigated in [38–41]. The
modular invariance combining with the generalized CP
symmetry has been studied to predict CP violating phases
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of quarks and leptons [42–44]. Most of the above models
used either the type-I seesaw mechanism or the non-
renormalizable five-dimensional operator to generate neu-
trino masses. The inverse seesaw mechanism has been used
for some modular invariance models [18,45].
In this paper, we introduce a model based on modular A4

symmetry to account for masses and mixing for leptons and
quarks. First, we give an introduction to the modular groups
and how to use them as flavor symmetries, then we explain
our A4 model in the lepton sector, and finally we study the
quark masses and mixing.

II. MODULAR GROUPS

The modular group Γ̄ is defined as linear fractional
transformations on the upper half of the complex plan H
and has the form [8,46–48]

γ∶τ → γðτÞ ¼ aτ þ b
cτ þ d

; ð1Þ

where a; b; c; d ∈ Z; ad − bc ¼ 1. The modular group Γ̄ is
isomorphic to the projective special linear group

PSLð2; ZÞ ¼ SLð2; ZÞ=fI;−Ig; ð2Þ

where

SLð2; ZÞ ¼
��

a b

c d

�
; a; b; c; d ∈ Z; ad − bc ¼ 1

�
:

ð3Þ

The generators of the group Γ̄ are two matrices S and T
where their action on the complex number τ is given by

S∶τ →
−1
τ
; T∶τ → τ þ 1: ð4Þ

In the two by two representation, the two generators S, T
can be represented as

S ¼
�

0 1

−1 0

�
; T ¼

�
1 1

0 1

�
: ð5Þ

They should satisfy the conditions

S2 ¼ 1; ðSTÞ3 ¼ 1:

Define the infinite modular groups ΓðNÞ; N ¼ 1; 2; 3;…:
as

ΓðNÞ ¼
��

a b

c d

�
∈ SLð2; ZÞ;

�
a b

c d

�
¼

�
1 0

0 1

�
modN

�
: ð6Þ

For N ¼ 1,

Γð1Þ ¼
��

a b

c d

�
∈ SLð2; ZÞ;

�
a b

c d

�
¼

�
1 0

0 1

�
mod 1

�
: ð7Þ

Since any integers can satisfy the conditions a; d ¼ 1mod 1
and b; c ¼ 0mod 1, Γð1Þ≡ SLð2; ZÞ. For N ¼ 1, 2, we
define Γ̄ðNÞ ¼ ΓðNÞ=fI;−Ig whereas for N > 2, Γ̄ðNÞ ¼
ΓðNÞ because −I ∉ ΓðNÞ for N > 2. It is straightforward to
notice that Γ̄ð1Þ ¼ PSLð2; ZÞ ¼ Γ̄. The group Γ̄ and its
subgroup Γ̄ðNÞ are discrete but infinite, while the quotient
modular group ΓN ¼ Γ̄=Γ̄ðNÞ is finite. The group ΓN is
called the finite modular group and can be obtained by
extending the conditions on the generators with the condition
TN ¼ 1. For some N, the finite modular group ΓN is
isomorphic to a permutation group, for instance, Γ2 ≅ S3,
Γ3 ≅ A4, Γ4 ≅ S4 and, Γ5 ≅ A5.
The modular function fðτÞ of weight 2k is a meromor-

phic function of the complex variable τ which satisfies

fðγðτÞÞ ¼ f

�
aτ þ b
cτ þ d

�

¼ ðcτ þ dÞ2kfðτÞ ∀
�
a b

c d

�
∈ ΓðNÞ; ð8Þ

where the integer k ≥ 0. By using Eqs. (1) and (6), it is easy
to calculate

dðγðτÞÞ
dτ

¼ 1

ðcτ þ dÞ2 : ð9Þ

From Eq. (8), one can get

fðγðτÞÞ
fðτÞ ¼

�
dðγðτÞÞ
dτ

�
−k

fðγðτÞÞdðγðτÞÞk ¼ fðτÞdτk:

From the above equation, we conclude that the k-form
fðτÞdτk is invariant under ΓðNÞ. If the modular function is
holomorphic everywhere, it is called “modular form” of
weight 2k. The modular forms of level N and weight 2k
form a linear space of finite dimension. In the basis at
which the transformation of a set of modular forms fiðτÞ is
described by a unitary representation ρðγÞ, one can get

fiðγðτÞÞ ¼ ðcτ þ dÞ2kρijðγÞfjðτÞ; γ ∈ ΓðNÞ: ð10Þ
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Consider the superpotential Wðz;ϕÞ be written in terms of
supermultiplets ϕI, where I refers to different sectors in the
theory,

Wðτ;ϕÞ ¼
X
I

X
n

YI1I2…InðτÞϕI1…ϕIn : ð11Þ

The supermultiplets ϕI transform under ΓN in the repre-
sentation ρðγÞ as

ϕðIÞðτÞ → ϕðIÞðγðτÞÞ ¼ ðcτ þ dÞ−2kρðIÞðγÞϕðIÞðτÞ: ð12Þ

The invariance of the superpotential Wðz;ϕÞ under the
modular transformation requires YI1I2…InðzÞ to be a modu-
lar form transforming in the representation

YI1I2…InðγτÞ ¼ ðczþ dÞ2kY ðnÞρðγÞYI1I2…InðτÞ: ð13Þ

The modular invariance forces the condition

kY ¼ kI1 þ kI2 þ � � � þ kIn : ð14Þ

A. Modular forms of level 3

The group A4 has one triplet representation 3 and 3
singlets 1 10, and 100 and is generated by two elements S and
T satisfying the conditions

S2 ¼ T3 ¼ ðSTÞ3 ¼ 1: ð15Þ

The modular form of level 3 has the form

fiðγðτÞÞ ¼ ðcτ þ dÞ2kρijðγÞfjðτÞ; γ ∈ Γð3Þ:

The modular form of weight 2 and level 3 transforms as a

triplet and is given by Yð2Þ
3 ¼ ðy1; y2; y3Þ, [8] where

y1ðτÞ ¼
i
2π

�
η0ðτ=3Þ
ηðτ=3Þ þ

η0ððτþ 1Þ=3Þ
ηððτþ 1Þ=3Þ

þ η0ððτþ 2Þ=3Þ
ηððτþ 2Þ=3Þ −

27η0ð3τÞ
ηð3τÞ

�
;

y2ðτÞ ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þω2

η0ððτþ 1Þ=3Þ
ηððτþ 1Þ=3Þ þω

η0ððτþ 2Þ=3Þ
ηððτþ 2Þ=3Þ

�
;

y3ðτÞ ¼
−i
π

�
η0ðτ=3Þ
ηðτ=3Þ þω

η0ððτþ 1Þ=3Þ
ηððτþ 1Þ=3Þ þω2

η0ððτþ 2Þ=3Þ
ηððτþ 2Þ=3Þ

�
;

ð16Þ
where ω ¼ e2iπ=3 and the Dedekind eta-function ηðzÞ is
defined as

ηðτÞ ¼ q1=24
Y∞
n¼1

ð1 − qnÞ; q ¼ e2πiτ: ð17Þ

One can construct modular forms of higher weights using
the multiplication rules of A4 [8]. Modular forms of weight

4 are constructed via multiplication of two triplets of weight
2. Using A4 multiplication rules of two triplets, one can get
one triplet and three singlets all of weight 4 as

Yð4Þ
3 ¼

0
B@

y21 − y2y3
y23 − y2y1
y22 − y1y3

1
CA; Yð4Þ

1 ¼ y21 þ 2y2y3;

Yð4Þ
2 ¼ y23 þ 2y2y1; Yð4Þ

3 ¼ y22 þ 2y1y3: ð18Þ

The representations of the above singlets are

Yð4Þ
1 ∼ 1; Yð4Þ

2 ∼ 10; Yð4Þ
3 ∼ 100:

At all values of τ, the condition Yð4Þ
3 ¼ 0 is satisfied.

We will use the basis where the generators of A4 in triplet
representation are

S¼ 1

3

0
B@
−1 2 2

2 −1 2

2 2 −1

1
CA; T¼

0
B@
1 0 0

0 ω 0

0 0 ω2

1
CA: ð19Þ

III. A4 MODULAR INVARIANCE MODEL

The lepton content in the model is extended by adding a
triplet of chiral supermutiplets Nc as a right-handed
neutrino and three SM singlets Si to get the neutrino
masses via the inverse seesaw mechanism. We add a gauge
singlet scalar χ transforming trivially under A4 to get the
masses of the singlet fermions Nc and S. Contrary to most
flavor symmetric models, no more flavons are considered
and no extra discrete symmetries are considered in our
model. According to the modular invariance condition in
Eq. (14), we chose the modular weights such that the
following relations are satisfied:

kL þ kHd
þ kE ¼ 2;

kL þ kHu
þ kN ¼ 2;

2kS þ 4kχ ¼ 0;

kS þ kN þ kχ ¼ 0: ð20Þ

If we chose kL ¼ 3, kHu
¼ 0, we can get the modular

weights of other fields as shown in Table I. The lepton
modular A4 invariant superpotential can be written as

TABLE I. Assignment of flavors under A4 and the modular
weight kI .

Fields L Ec
1 Ec

2 Ec
3 Nc S Hd Hu χ

A4 3 1 100 10 3 3 1 1 1
kI 3 −1 −1 −1 −1 2 0 0 −1
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wl ¼ λ1Ec
1HdðL ⊗ Yð2Þ

3 Þ1 þ λ2Ec
2HdðL ⊗ Yð2Þ

3 Þ01
þ λ3Ec

3HdðL ⊗ Yð2Þ
3 Þ001 þ g1ððNcHuLÞ3SYð2Þ

3 Þ1
þ g2ððNcHuLÞ3AYð2Þ

3 Þ1 þ hðNc ⊗ SÞ1χ

þ f
Λ3

ðS ⊗ SÞ1χ4; ð21Þ

where Λ is the nonrenormalizable scale and g1 is the
coupling constant of the term of the symmetric triplet
arising from the product of the two triplets L and Y, while
g2 is the coupling of the antisymmetric triplet term. After
spontaneous symmetry breaking, the scalar fields Hu, Hd,
and χ acquire vevs namely vu, vd, and v0 respectively,
where v0 ≫ vu, vd. We assume that v0 satisfies the relation
v0
Λ ∼OðλcÞ where λc ¼ 0.22 is the Cabibbo angle. From
Eq. (21), we can write the charged lepton mass matrix as

me ¼ vd

0
B@

λ1 0 0

0 λ2 0

0 0 λ3

1
CA ×

0
B@

y1 y3 y2
y2 y1 y3
y3 y2 y1

1
CA: ð22Þ

To deal only with the left-handed mixing, it is convenient to
use the Hermitian matrix Me ¼ m†

eme which can be
diagonalized as

Mdiag
e ¼ U†

eMeUe:

The neutrino mass matrices are

μs ¼ fv0λ3c

0
B@

1 0 0

0 0 1

0 1 0

1
CA; MR ¼ hv0

0
B@

1 0 0

0 0 1

0 1 0

1
CA;

mD ¼ vu

0
B@

2g1y1 ð−g1 þ g2Þy3 ð−g1 − g2Þy2
ð−g1 − g2Þy3 2g1y2 ð−g1 þ g2Þy1
ð−g1 þ g2Þy2 ð−g1 − g2Þy1 2g1y3

1
CA:

ð23Þ

The neutrino mass matrix in the basis ðνL; Nc; SÞ is
given by

M ¼

0
B@

0 mD 0

mT
D 0 MR

0 MT
R μs

1
CA: ð24Þ

After diagonalization of this matrix, one can get three
eigenvalues, one for the light neutrino and the other two for
the heavy neutrino states. The masses of the light neutrino
state mν can be obtained as

mν ¼ mDMR
−1μsMT

R
−1mT

D: ð25Þ

The overall parameter fv2ug21λ
3
c

h2v0 determines the scale of light
neutrino masses and can be easily chosen to achieve the
desired scale. For instant, we can set h ∼Oð1 GeV),
f ∼Oð0.001 GeV), v0 ∼Oð100 TeV), vu ∼Oð102 GeVÞ,
and g1 ∼Oð0.01 GeVÞ to get the neutrino masses of order
Oð10−1 eVÞ. The neutrino mass matrix mν is complex and
symmetric, so it is convenient to diagonalize the Hermitian
matrix Mν ¼ m†

νmν,

Mdiag
ν ¼ U†

νMνUν: ð26Þ

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton
mixing matrix UPMNS is given by

UPMNS ¼ U†
eUν: ð27Þ

The mixing angles can be calculated from the relations

Sin2ðθ13Þ ¼ jðUPMNSÞ13j2; Sin2ðθ12Þ ¼
jðUPMNSÞ12j2

1− jðUPMNSÞ13j2
;

Sin2ðθ23Þ ¼
jðUPMNSÞ23j2

1− jðUPMNSÞ13j2
: ð28Þ

The mixing angles and mass ratios are determined by the
ratios g2=g1,

λ1
λ3
, λ2λ3 and the modulus τ. The parameter g2=g1

is complex in general, so we can write it as

g2
g1

¼ geiϕ; ð29Þ

where ϕ is the relative phase of g1 and g2. The best fit
values and 3σ ranges for the experimental results are
summarized in Table II, in which the neutrino mass squared
differences are defined as

TABLE II. 3 σ range for neutrino mixings and mass difference squares from [49] for inverted hierarchy.

Δm2
12

ð10−5 eV2Þ
jΔm2

23
j

ð10−3 eV2Þ r ¼ Δm2
12

jΔm2
23
j θ12=° θ23=° θ13=° δCP=π

Best fit 7.39 2.51 0.0294 33.82 49.8 8.6 1.57
3σ range 6.79–8.01 2.41–2.611 0.026–0.033 31.61–36.27 40.6–52.5 8.27–9.03 1.088–2
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Δm2
12 ¼ m2

2 −m2
1; jΔm2

23j ¼ jm2
3 − ðm2

2 þm2
1Þ=2j:

The parameters are scanned in the upper half of the

complex plane by fixing r ¼ Δm2
12

jΔm2
23
j and the mixing angles

with the 3σ ranges in Table II. The modulus τ is scanned in
the ranges Re½τ� ∈ ½−0.5; 0.5� and Im½τ� ∈ ½0.4; 1�, the
coupling ratio g is scanned in the range g ∈ ½0.5; 3�, and
the phase ϕ ∈ ½−π; π�. We study the model in the case of
normal and inverted hierarchies.

A. Normal hierarchy

For the normal hierarchy, we found the following
benchmark: τ ¼ −0.245þ 0.5236i, g ¼ 2.503, ϕ ¼
−0.105π, λ1

λ3
¼ 0.00031, λ2

λ1
¼ 0.063, with

r¼ Δm2
12

jΔm2
23j

¼ 0.0293;
me

mτ
¼ 0.0003;

mμ

mτ
¼ 0.061;

θ12 ¼ 33.25°; θ23 ¼ 41.678°; θ13 ¼ 8.73°: ð30Þ

B. Inverted hierarchy

For inverted neutrino mass hierarchy, we found the
following benchmarks:
(1) τ ¼ −0.494þ 0.55i, g ¼ 2.05, ϕ ¼ −π=2, λ1

λ3
¼

0.0009, λ2
λ1
¼ 0.07, with

r ¼ Δm2
12

jΔm2
23j

¼ 0.0286;
me

mτ
¼ 0.0003;

mμ

mτ
¼ 0.061; θ12 ¼ 32.4°;

θ23 ¼ 49.26°; θ13 ¼ 8.54°: ð31Þ

(2) τ ¼ 0.0962þ 0.984i, g ¼ 2.05, ϕ ¼ −π=2,
λ1
λ3
¼ 0.0009, λ2

λ1
¼ 0.07, with

r ¼ Δm2
12

jΔm2
23j

¼ 0.0296;
me

mτ
¼ 0.0003;

mμ

mτ
¼ 0.061; θ12 ¼ 32.36°;

θ23 ¼ 49.24°; θ13 ¼ 8.73°: ð32Þ

The two points τ ¼ −0.494þ 0.55i and τ ¼ 0.0962þ
0.984i are close to the fixed points τ1 ¼ −0.5þ 0.5i and
τC ¼ i respectively. The two fixed points are related to each
other as τ1 ¼ STτC. The modular group A4 is broken to its
subgroup Z2 ¼ fI; Sg at τC ¼ i as neutrino and charged
lepton mass matrices are invariant under the S trans-
formation [35,36]. The lepton masses and mixing at τC
are studied in [35,36] with the conclusion that τC cannot
be used to lead to the correct lepton masses and mixing.
The point τ1 ¼ −0.5þ 0.5i is invariant under ST2ST

transformation τ ¼ −ð1þτÞ
1þ2τ at which the group A4 is broken

to its subgroup Z2 ¼ fI; ST2STg. The charged lepton mass
matrix Me is invariant under unitary transformation
S1 ¼ ST2ST, S†1MeS1 ¼ Me, where

S1 ¼ ST2ST ¼ 1

3

0
B@

−1 2ω2 2ω

2ω −1 2ω2

2ω2 2ω −1

1
CA: ð33Þ

One of the eigenvalues ofMe is zero since the determent of
Me vanishes, so τ1 cannot be used to lead to the correct
charged lepton masses. The matrix Mν is invariant under
the transformation S1 ¼ ST2ST in Eq. (33). In this case,
one of the eigenvalues ofMν is zero and DetðMνÞ ¼ 0. The
mixing matrix in this case has two vanishing mixing angles
and a nearly maximal angle. As we see, the observed lepton
masses and mixing are consequences of breaking modular
residual symmetry by deviation from τC or τ1.

IV. QUARK MASSES

The embedding of the quark sector into a flavor model is
a challenge due to the differences in the mass hierarchy and
mixing for leptons and quarks. In this model, we extend the
modular A4 symmetry to the quark sector at the value of the
modulus τ1 ¼ −0.494þ 0.55i. All quarks transform as
singlets under A4. The assignments of the quark fields
are shown in Table III.
The A4 invariant superpotential for down quarks can be

written as

wd ¼
hd11
Λ3

dc1HdQ1χ
3 þ hd22

Λ
dc2HdQ2χ þ

hd23
Λ2

Yð4Þ
2 dc3HdQ2χ

2

þ hd33Y
ð4Þ
1 dc3HdQ3: ð34Þ

The chosen A4 and kI assignments prevent the other mixing
terms. Without loss of generality, we assume that hd11=h

d
33 ∼

hd22=h
d
33 ∼ 1=2 and hd23=h

d
33 ∼ 1. The down quark mass

matrix takes the form

md ¼ hd33hHdi

0
B@

λ3=2 0 0

0 λ=2 0

0 Yð4Þ
2 λ2 Yð4Þ

1

1
CA: ð35Þ

TABLE III. Assignment of quarks under A4 and the modular
weight kI .

Fields Q1 Q2 Q3 uc1 uc2 uc3 dc1 dc2 dc3

A4 1 10 100 100 1 10 1 100 10
kI 3 2 0 4 4 1 0 −1 4
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To deal with left-handed mixing only, we construct the
matrix Md ¼ m†

dmd which can be diagonalized by

Vd ¼

0
B@

1 0 0

0 −0.490 − 0.869i 0.0257þ 0.045i

0 0.0524 0.9985

1
CA; ð36Þ

with the corresponding eigenvalues

Md ¼ diagðλ4=2; λ2=2; 1Þhd33Yð4Þ
1 hHdi: ð37Þ

The hierarchical spectrum of the down quark masses is in a
good agreement with the recent data for quark masses [50]:

md ¼ 4.67þ0.48
−0.17 MeV; ms ¼ 93þ11

−5 MeV;

mb ¼ 4.18þ0.03
−0.02 GeV:

For the up quarks, using the condition Yð4Þ
3 ¼ 0, the

invariant superpotential under modular A4 can be written as

wu ¼
hu11
Λ3

Yð4Þ
2 uc1HuQ1χ

3 þ hu12
Λ2

Yð4Þ
1 uc1HuQ2χ

2

þ hu21
Λ3

Yð4Þ
1 uc2HuQ1χ

3 þ hu23Y
ð4Þ
2 uc2HuQ3

þ hu33
Λ

uc3HuQ3χ: ð38Þ

The up quark mass matrix takes the form

mu ¼ hHui

0
BBB@

hu11Y
ð4Þ
2 λ3 hu12Y

ð4Þ
1 λ2 0

hu21Y
ð4Þ
1 λ3 0 hu23Y

ð4Þ
2

0 0 hu33λ

1
CCCA: ð39Þ

Assume that the couplings hu11 ∼ hu12 ∼ hu21 ∼ hu33,
hu23 ∼ 3hu33, the Hermitian matrix Mu ¼ m†

umu is diagon-
alized by

Vu ¼

0
B@

−0.478þ 0.848i −0.11þ 0.198i 0.0017 − 0.0035i

−0.118 − 0.195i 0.504þ 0.83i 1.5 × 10−7

0.00349 0.0008245 0.999942

1
CA; ð40Þ

with the corresponding eigenvalues

Mdiag
u ¼ hu33hHuiYð4Þ

1 diagðλ7; λ3; 1Þ; ð41Þ

which are in agreement with the up quark mass ratios [50]

mu

mt
¼ 0.000012;

mc

mt
¼ 0.008:

The Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix VCKM takes the form

jVCKMj ¼ jV†
uVdj ¼

0
B@
0.9737 0.224 0.006

0.224 0.9723 0.05

0.005 0.05 0.9986

1
CA; ð42Þ

which is close to the correct VCKM [50]. The same result of
quark masses and mixing can be obtained at τ ¼ 0.0964þ
0.984i while the observed masses and mixing are not

achieved at τ ¼ 0.2525þ 0.526i with the above quark
model.

V. CONCLUSION

We built an A4 modular invariance model to account for
both lepton and quark masses and mixing. The model is
free from large number of flavons or extra symmetries like
ZN symmetries which were considered in many models
based on the flavor symmetry. The neutrino masses are
obtained via the inverse seesaw mechanism. The predicted
lepton mixing and mass ratios are compatible with the
recent data. The neutrino mass square difference ratios
and lepton mixing angles are determined in terms of the
coupling ratio g2=g1 and the modulus τ at values near fixed
points for the inverted hierarchy scenario. For the same
value of τ ¼ −0.494 þ 0.55i, we extend the modular
A4 symmetry to the quark sector. The calculated quark
mass ratios and mixing are in quite agreement with the
experimental results.
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