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ABSTRACT. Poisson and integrable systems are orbitally equivalent through
the Nambu bracket. Namely, we show that every completely integrable system
of differential equations may be expressed into the Poisson-Hamiltonian formal-
ism by means of the Nambu-Hamilton equations of motion and a reparametri-
sation related by the Jacobian multiplier. The equations of motion provide a
natural way for finding the Jacobian multiplier. As a consequence, we partially
give an alternative proof of a recent theorem in [13]. We complete this work
presenting some features associated to Hamiltonian maximally superintegrable
systems.

1. Introduction and main statement. In this note we connect Nambu-Poisson
structures, integrable systems and Jacobian multipliers showing that every inte-
grable system is expressed as a set of Nambu-Poisson equations of motion after
a reparametrisation of the independent variable. The interested reader could see
Appendix A for a brief review of the Nambu formalism. For our own surprise, we
found that the reformulation of an integrable system in the Nambu-Poisson scenario
is carried out in a straightforward way, since it is obtained by computing a deter-
minant of the gradients of the associated first integrals. Furthermore, we obtain an
extra benefit out of this process, the computation of the Nambu-Poisson equations
provides a vector field proportional to the vector field associated to the integrable
system and the ratio function relating both of them is the Jacobian multiplier, which
is obtained without extra computations.

Before going into details we set terminology and notation. Along this note we
consider an integrable C* autonomous system of ordinary differential equations of
first order given by

w=fw), wecAcCRY, (1)
where the dot denotes derivative with respect to the independent variable s, A
is an open subset of RV, and f(w) = (fi(w),..., fn(w)) € C®(A). We precise
that by completely integrable system we mean a system having N — 1 functionally
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independent first integrals. Observe that versus other papers related to integrability,
we do not make any assumption on the functional type of integrals (Darboux,
polynomial, etc.) and we are not concern on the search of the named integrals
[7). To conclude this paragraph devoted to set terminology, we recall the Jacobi
multiplier definition. Let X' denotes the vector field associated to system (1) and
div X = div f denotes the divergence of the vector field X or f. Thus, X(¢) gives
the variation of a function ¢ along the flow of system (1): X(¢) = f - V¢, and the
following relation holds for any f € C>°(A), where A C RY

div(Jf) = X(J) + Jdiv(f). (2)

A function J of class C* is called a Jacobian multiplier of system (1) if it is defined
in a full Lebesgue measure subset A* C A, and satisfies

div(Jf)=0, ie, X(J)=—JdivX. (3)

A Jacobian multiplier is an integrating factor for the two dimensional case of system
(1). In addition, it plays a central role in the linearisation of completely integrable
systems proposed in [13]. Due to the connection with this paper we maintain the
notation given there for the benefit of the reader.

The following result is the main contribution of this note. The proof is provided
in Section 2.

Theorem 1.1. Let us consider the completely integrable system (1) provided with
the set of integrals T = {I1,...,In—1}. Then the following claims hold:

(i) System (1) is expressed into the Nambu formalism in a full Lebesque measure
subset of A after a reparametrisation of the independent variable. Therefore,
because of the Nambu nested structures, (1) is expressed as a Poisson system,
i.e., integrable and Poisson systems are orbitally equivalent. More precisely,
the independent variable s is replaced by T by means of the relation

;lé = /\I(w)> (4)
the function Az is explicitly constructed in the proof of the theorem and it
depends on the integrals and the order in which we pick them.

(i) If div(f) # 0 we have Az is a Jacobi multiplier. Otherwise, Az is a first
integral of (1).
(iii) There are just N — 1 functionally independent Jacobi multipliers.

Recently in [23] the authors managed to realise the integrable Rossler system
(see [21]) as a Poisson-Hamiltonian system. Here we show that this task could be
carried out generically for every completely integrable system. Hamiltonian formal-
ism is usually formulated on a symplectic manifold environment. Nevertheless, this
approach is generalised to the case of a Poisson manifold by keeping just enough
of the properties of Poisson brackets to describe Hamiltonian systems [15]. It gives
place to the extension of the notion of a Hamiltonian vector field from symplectic
to Poisson context. Namely, given a Poisson bracket {, }, the triplet (M, {,}, H) is
called a Poisson dynamical system and the Hamilton’s equations of motion read as
follows

cJZ- = {wi, H}
In order to define the appropriate Poisson brackets that allows us to express an
integrable system as a realisation of the Hamilton’s equations, we consider the
standard Nambu structure in R and we show in part (i) of Theorem 1.1 that the
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equations of system (1) are obtained, up to a reparametrisation of the independent
variable, as the Nambu-Hamilton equations of motion, where the N — 1 associated
Hamiltonians are given by the first integrals of (1). This fact plays a key role in
the Poisson formulation of system (1) given in Theorem 1.1, since the existence of,
at least, N — 1 first integrals allows to define a Poisson structure in which one of
them plays the role of the Hamiltonian function and the others are the Casimirs.
This process generates automatically, and without extra computation, the Jacobian
multiplier (a generalisation of an integrating factor) associated to the original system
of differential equation (1). Therefore, we partially obtain in Theorem 1.1, part
(#3), an alternative proof of a recent theorem in [13], that provides a linearisation
of completely integrable systems. Note that in the case of considering several sets
of functionally independent integrals, the theorem leaves open which one might be
more convenient in each application, since the corresponding Jacobian multiplier
defines the reparametrisation given in (4).

For the completeness of this work we recall in the Appendix A the Nambu for-
malism introduced in [19]. It is a generalisation of classical Hamiltonian dynamics,
which initially was tailored for the case of the rigid body system keeping in mind
the importance of the conservation of the Liouville theorem. Two decades after the
original paper of Nambu was extended to the N > 3 case in [22] and [2] shows that
other classical system, as the Kepler or the harmonic oscillator, fit into the Nambu
formalism. More examples and several applications can be found in [14, 16, 20, 3].
The Nambu brackets has been related to the treatment of constrained Hamiltonian
systems in previous works [5, 1, 18, 10]. Furthermore, the Marsden-Ratiu geometri-
cal reduction for Poisson manifolds was also extended to Nambu-Poisson manifolds
[12].

The note is organised as follows. In Section 2 we give the proofs of the main
results summarised above and in Section 3 we study several applications illustrat-
ing the geometrical interpretation of the Nambu-Hamilton equations and showing
how the results may be applied in finding the Jacobian multiplier of the Roseller
system or expressing several integrable system in the Nambu formalism. Finally
Appendix A review some of the basic features of the Nambu structures.

2. Integrable systems, their Poisson-Hamiltonian structure and Jacobian
multipliers. The following Theorem 1.1 contains the main results of this work, it
shows in a constructive way that every integrable system is orbitally equivalent to
a Poisson one. Conditions to guarantee that an ordinary differential equation may
be written exactly (without reparametrisation) in the Nambu form are given in
[17]. We also provide the Jacobi multiplier in case the original system has non zero
divergence, which in addition is an alternative for the claim (a) in Theorem 2 of
[13]. For an application example see Section 3.2.

Before we proceed with the proof of Theorem 1.1, we provide a Lemma giving
some properties relative to the Jacobian multipliers.

Lemma 2.1. Let the system (1) such that div(f) # 0. Then, the following claims
hold

(i) If J1 and Jo are non vanishing Jacobian multipliers. Then, the quotient J1/Ja
s a first integral.

(1i) Let K be a first integral and let J be a Jacobian multiplier. Then, KJ is also
a Jacobian multiplier.
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Proof. (i) Let J; and Jp two Jacobian multipliers for system (1). Thus, both of
them satisfy the relation given in (3). After an easy algebraic manipulation making
use of (3) we obtain that

X(J1) _ X(J)

= S = (), 5)

hence

which implies that In(J;) and In(Jz) differs in a function K satisfying that X'(1C) = 0.
That is to say, a first integral of the system (1). Then, we can write

In(Jy) =In(J2) + K, (7)
and finally J; and J; are related as follows
Jl = JQ €K. (8)

(i) Let J be a Jacobian multiplier and K a first integral. Then, relation (2)
yields as follows

div(KJf) = X(KJ) + KJdiv(f) = KX(J)+ JX(K) + KJdiv(f),
since K is an integral we have that X'(K) = 0, which leads to
div((KJ)f) = KX(J) + KJdiv(f) = K(X(J) + Jdiv(f)) = 0.
Therefore, KJ is a Jacobian multiplier. O
Next we give the proof of Theorem 1.1.

Proof. (i) Let us consider the standard Nambu structure {...}namp, on RY. As
a first step, we are going to show that the Nambu-Hamilton equations of motion

with Hamiltonians given by the set of integrals Z = {I1,...,In_1} are essentially
the original system. That is to say, the following system of differential equations
(,JZ- = {w'hIh ey IN—l}Nambu = det(VWi, vll, ey VIN—I); (9)

and system (1) are orbitally equivalent. For this purpose, let us write (9) in the
more compact way

& = h(w), (10)
where h;(w) = {w;, I1,...,Iny—1}. Thus, since Iy, ..., In_1 are integrals of systems
(1) and (10), we have that solutions of both systems satisfy the identity

Vll(w) w= O7

which implies that f(w) and h(w) satisty
VIi(w) f(w) = 0= VIi(w) h(w),

for i = 1,...,N — 1. These relations imply that f(w) and h(w) belong to the
ortogonal complement of the space generated by the N — 1 independent vectors

VI = {VI;(w),...,VIN_1(w)}.

Therefore, h and f are collinear in the subset A* C A of full Lebesgue measure
where rank(VZ) = N — 1 and f(w) # 0 # h(w). That is to say,

f(w) = Az(w)h(w) (11)
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and Az(w) # 0 for w € A*. It implies that systems (1) and (10) are orbitally
equivalent by mean of the reparametrisation of the independent variable s in (1)
given by

ds

i Az (w). (12)

Finally we show that (1) is expressed, up to the above reparametrization, into

the Poisson-Hamiltonian formalism. Without lost of generality, let us define the
Poisson bracket {, }z obtained after fixing the first N — 2 integrals of the set Z.
Namely,

{,}z: FRY) @ FRY) — F(RY),
which is given by
{F,GYz ={F,G,I1,...,IN_2}Nambu, VF,G € F(RY).

We consider H = Iy_1 as the “Hamiltonian function”. Thus, we obtain the follow-
ing Hamiltonian equations of motion

w; = {wi,’H}I, (13)

which correspond with the Nambu-Hamilton equations (10) and the reparametrised
system (1).

(7i) Let us consider the case div(f) # 0. Then, in the preceding part of this
theorem we show that system (1) is orbitally equivalent to system (10). That is to
say, f(w) = Az(w)h(w) and taking into account that h is divergenceless, Az # 0 by
construction and div((Az(w))~tf) = div(h) = 0, we have that J = (Az(w))~! is the
Jacobian multiplier. For the case in which system (1) is such that div(f) = 0, we
have also that the function J satisfies div(J f) = 0. Thus, by using relation (2) we
obtain

div(Jf) = X(J) + Jdiv(f),

which in this case reduces to X'(J) = 0 and J is a first integral of (1).
(#i1) Is a direct consequence of Lemma 2.1. O

3. Applications. The applications puts into light several aspect of the Nambu
dynamical approach. In Section 3.1, we illustrate the geometric interpretation of
the Nambu-Hamilton equations of motion. In part 3.2 we express a completely
integrable system into the Poisson formalism (up to reparametrisation) and also
gives and example of how the Jacobian multiplier is obtained through the Nambu
approach. Finally in Section 3.3 we present some basic features associated to Hamil-
tonian maximally superintegrable systems.

3.1. The N-extended Euler system. Given N — 1 hyper-manifolds in RY, the
Nambu-Hamilton equations of motion are interpreted as a parametrisation of their
intersection curves. The N-extended Euler system illustrates this geometric inter-
pretation. Let us consider the trajectory C described by a particle constrained to
be in the intersection of the following hyper-quadrics in RY

Ci(0) = 5 (0iw;(0)? — oy i(0)?). (14)

This is a elliptic curve in the 3-dimensional case. Generally, hyper-elliptic for the
N dimensional case. The set of hyper-quadrics given by C; = {C11,...,Cin-1}
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is functionally independent and their intersection gives C. Therefore, the hyper-
elliptic curves are the trajectories of the following Nambu-Hamilton equations of
motion

wi:{Cll,...,ClN_l,wi}, iil,...,N, (15)
After some straightforward computations, these equations are given in the following
way

Cl;: =a; [[w,  (1<ij<N). (16)
J#i

This system of differential equations is named as the N-extended Euler system (N-

EES) and has been studied before in [6, 8]. We have shown above that the N-EES

is precisely a set of Nambu-Hamilton equations of motion and therefore it is also a

Poisson-Hamiltonian system.

For the case in which Y a; = 0 and N = 3 we have the Euler system for the rigid
body. It was first expressed into the Nambu formalism in [19]. One of the features
of the system (16) is that it allows, from a dynamical system point of view, dealing
with a large family of functions in the real domain in a unified way. It ranges from
trigonometric functions (harmonic oscillator) to elliptic functions (pendulum and
free rigid body), including also rational functions (for unbounded trajectories), etc.

3.2. The completely integrable Réssler system. In the recent paper of Llibre,
Valls and Zhang, [13] it is shown that a completely integrable system of differential
equations is orbitally equivalent to the linear differential system w = w. This lineari-
sation rely on the construction of the corresponding Jacobian multiplier. We give
an alternative way of finding the Jacobian multiplier that we apply to the Rossler
system, which is the only completely integrable system of differential equations con-
structed by Rossler [21] and was also studied in [13] as an application example. This
system is given by
t=-y—2z Y=z, i=uz (17)
In the cited paper [13], the authors give the linearisating change of variables for
system (17) by means of the following pair of integrals

1
Hy =@ +y") +2, Hy=e (18)

and the Jacobian multiplier J = e™¥. More precisely, the named change of variables
reads as follows
y1=JHy, y2=JHs ys=1J,
which leads to the linear system g; = (J/J)y;, for i = 1,2, 3.
We obtain here J in an alternative way. Since H; and Hy are functionally
independent, system (17) is orbitally equivalent to the following Nambu-Hamilton
equations of motion

& ={Hy,Hs,2}, y={H1,Ha,y}, 2={Hy, Ho, z}. (19)
where {, } is the standard Nambu bracket in R3. Thus, taking into account that
VH, = (z,y,1), VHy=(0,—e Yyz,e™Y),
we have that the Nambu-Hamilton equations of motion (29) are given by
t=eY(-y—2), y=e¢Yx, Z=e¢Yzz (20)

Thus, since the vector field associated to system (20) is divergenceless, we have that
e~Y is the Jacobian multiplier for (17).
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3.3. The harmonic oscillator. The aim of this example is to show that a Hamil-
tonian maximally superintegrable system can be expressed in the Hamiltonian-
Poisson formalism in several different ways. That is to say, there are several Pois-
son brackets and several candidates for the Hamiltonian functions that lead to the
original system up to the independent variable reparametrisation. Furthermore, the
named reparametrisations are always given by first integrals. For this purpose, we
study the planar harmonic oscillator in resonance 1:1. The phase space is R* and
the Hamiltonian function is given by

Ho = (1ol + o). (21)

There are 22 quadratic polynomials in the variables (g, p), where p,q € R?, that
generate the space of functions invariant with respect to the action given by the
flow of Hp

™ =pi+qi, T3 = q192 + p1p2, (22)
To=p3+q5,  Ti=q@P2 — @D

The following are some examples (without the aim of being exhaustive) of the
Nambu-Hamilton equations of motion for different choices of the integrals. Namely,
the Nambu-Hamilton equations read as follows

q; = {qhﬂ-ja ﬂ-kvﬂ-l}7

) 23
pi:{pivﬁjaﬂ'kvﬂl}» (23)
and for example, let j = 1, k = 2, [ = 4. Then, we obtain

le = {Q177Tl77T2,7T4} = (274)1917

Go = {q2,m1,T2, s} = (2m4) po,

n= A b= (em) -

p1 = {p1,m,me, M} = —(2m4) qu,

P2 = A{p2,m1, M2, ma} = —(274) @2

Note that by fixing two of the integrals {my, 72, 4} several Poisson brackets are
obtained

{F7G}12 = {F7 71—17772’G}a {F7 C;(}14 = {F7 WIaGaﬂ4}7 {F7 G}24 = {F5G7772a774}7

all of them lead to exactly the same equations of motion (24) when we choose
the Hamiltonian function to be 74, mo or 7 respectively. Other choices produce
proportional equations, for example j =1, k = 3, [ = 4 leads to

G = {q,m,m3, T} = (472)p1,

G2 = {q2, 71,73, ma} = (472) p2, (25)
p1= A{p1, T, 73, Ta} = —(4m2) qu,

P2 = A{p2,m1, 73, T4} = —(4m2) @2

Therefore, we obtain a time-reparametrization of the Hamilton equations of the
harmonic oscillator for each choice of the integrals ;. In addition, the function
relating the independent variables of the pure oscillator system and every example
given above is a first integral.
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Appendix A. A précis on generalized Nambu dynamics. With the aim of
making this work as self contained as possible, we review here, without giving a
proof, some of the basics concepts and facts relative to Nambu dynamics. All of
them and further details may be found in [19, 22, 24] and the references therein.

In 1973 Yoichiro Nambu introduced a generalization of the Hamiltonian dynamics
by introducing a new bracket called the Nambu bracket [19]. This new structure
generalises the Poisson bracket and enables to define the Nambu-Poisson manifolds
(see [22]). Here we recall some of the basic ideas about this generalization.

Hamiltonian dynamics takes place on a Poisson manifold, 4. e., a pair made of
a smooth manifold M endowed with a bilinear operation {, } on F(M) = C>(M)
satisfying skew-symmetry, the Jacobi identity and the Leibniz rule. Nambu’s gen-
eralization hinges on the introduction of the Nambu-Poisson manifold of order N.
It is a smooth manifold M endowed with a N-multilinear operation on F (M) called
the Nambu bracket of order N, satisfying the following properties.

(): {,}: FM)@YN — F(M) is a N-multilinear operation.

(ii): Skew-symmetry, {f1,..., fn} =€(i1, .., in){fir, -+, fin}- Where € is the

N-dimensional Levi-Civita symbol.
(iii): The fundamental identity holds

Hfs o Ind N, fan—ad + v {f - v vl e, - fan—a b+
o Ny fov—o A Inon fon—a b = s v AN fan—a

(iv): {, } Leibniz rule is satisfied in each factor

{fifos oo Ingay = filfos o vy ol v, Y i, fvg € F(M).

According to the above properties, Nambu bracket may be rendered in a geo-
metrical sense as a smooth section of the vector space of exterior N-forms on the
tangent bundle of M, i.e., /\N TM. In other words, the Nambu bracket is realised
as the N-contravariant tensor

def

{fi,oo AN} = Bdfr, ..., dfn), (26)
where 8 € /\N TM is called the Nambu tensor. It is given, in local coordinates
2z = (w1,...,wn), by the following expression

N
0 0
B = Z ﬂil,...,iz\l (I)i AN (27)

T yeens in=1 awil awiN,
Notice that 8 may be expressed, for suitable local coordinates, by B, .iy(x) =
€(i1,...,in), where € is the Levi-Civita tensor. In what follows, we name the N-
contravariant tensor given by Levi-Civita tensor as the standard Nambu bracket on
F (M), which will be denoted by the usual bracket {, }. That is to say, the stan-
dard Nambu bracket is given by the determinant of the gradients of the functions
involved.

Even though Nambu is a generalisation of Hamiltonian dynamics, there are also
fundamental differences between them. For example, in [11, 9], it is proven that
every NambuPoisson bracket with N > 3 is in essentially a determinant. This is
not true for Poisson ones.

This bracket allows to study the variation of f € F(M) on Nambu-Poisson
manifolds when it is restricted to be in the intersection of N — 1 hyper-manifolds
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H;
%:{f,Hl,...,HN_l}. (28)

In this vein, the Nambu formulation has been applied to Hamiltonian systems with
constraints (see [10] and the references therein). It is straightforward to extend the
above formalism to the dynamics of points w = (w1, ...,wy) in the phase space M
by means of the Nambu-Hamilton equations of motion as they were first given in
[19]

dw' . . .
dtl ={wi, Hy,...,Hy 1} = Z €(iyit, ... in_1)
i1 AN —1F1

0H, OHN_1
8wi1 8wiN71

o (29)

where H; are called the Hamiltonian functions.

Next we gather below some basic features of the Nambu structures, which will be
of high relevance in the subsequent development. All of them, except the Remark 1,
can be found in [22].

Theorem A.1 (Nambu nested structure). The set of all possible Nambu structures
on M is isomorphic to the Grassmann algebra \ TM. Since it is a graded associa-
tive algebra, every Nambu structure is considered as an N-degree element of NTM
and by fizing f1,..., fr in (20), with k < N —2 we are left with a Nambu structure
of order N — k. More precisely for the case k = N —2 the Nambu structure obtained
is a Poisson structure and the fived integrals f1,..., fn_o are the Casimirs.

Theorem A.2 (SL(N,R) Nambu bracket invariance). The Nambu bracket is in-
variant under the action (left or right) of the special linear group SL(N,R). That
is to say, let ¢ be the action of SL(N,R) on F(M)®N given by

¢ : SL(N,R) x F(M)®N — F(M)oN, (A, F) - F, (30)

where A € SL(N,R) and F,F' € F(M)®" are the N-tuples given by F = (fi,...
fn) and F' = AF = (f{,... fn). Thus, the following identity holds

Theorem A.3 (Liouville Condition). The corresponding phase flow on the phase
space of the Nambu-Hamilton equations of motion is divergence-free and preserves
the standard volume form dwi A ...dwy.

However, the reciprocal of Theorem A.3 is not true, i.e., divergence-free systems
can be written into the Nambu formalism. Such a statement was made in [9], but
the error is shown in [4], see [17] for further details.

Remark 1 (Geometric interpretation). Let us consider RY together with the stan-
dard Nambu bracket and N —1 hyper-manifolds Mih" given by the level sets H; = h;
of the functions H; € F(M) for i = 1,...,N — 1. Then, the Nambu-Hamilton
equations of motion given in (29) may be interpreted as a parametrisation of the
. . . N—1 7 rh;
intersection curves resulting from (1,2, M,".
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