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Abstract

Neutrinos are massive and they oscillate. The three-neutrino oscillation paradigm
is characterized by the three mixing angles (θ12, θ13, θ23); two mass square splittings
(∆m2

solar,∆m
2
atmos) and one complex phase (δ) responsible for CP violation. It is

noteworthy that ∆m2
solar/∆m

2
atmos ∼ 10−2. Earlier the experimental observations

were roughly consistent with popular lepton mixing patterns like the Tribimaximal
(TBM), Bimaximal (BM) and Golden Ratio (GR) mixing as they give θ13 = 0 and
maximal mixing in the atmospheric sector (θ23 = π/4) by construction. In 2012
short-baseline reactor anti-neutrino experiments observed non-zero θ13 which is
small compared to the other two mixing angles i.e., θ13 ∼ 9◦. A running theme
of my research work is to consider a two-component Lagrangian, one of which is
dominant and the other one smaller. The dominant constituent offers any of the
popular lepton mixings or a scenario where all the mixing angles are either 0 or
maximal (π/4) to start with accompanied by ∆m2

solar = 0, while the sub-dominant
component amends the dominant part so as to generate non-zero θ13 and ∆m2

solar

and brings the other mixing angles in concord with the experimental data while
predicting the CP violation phase δ.

We began with an introduction which reviews the essentials of neutrino properties
and the Standard Model that were used throughout the thesis. Then we have
analysed the two-component scenario in the context of different mixing patterns
in a model independent fashion. Next we examined the possibility that the sub-
dominant contribution could originate from a Type I seesaw mechanism. The
theories result in interesting interrelationships between different oscillation param-
eters making it testable. In particular, the CP phase δ, octant of θ23, ordering of
neutrino masses and the lightest neutrino mass get correlated.

We have also explored the possibility of such models arising from discrete flavour
symmetries such as A4 and S3. We have identified the quantum numbers of the
leptons such that the Type II seesaw mechanism gives rise to the dominant part of
the neutrino mass matrix while the smaller Type I seesaw contribution attributes
corrections which bring the mixing angles and masses into the measured range.
The Lagrangian includes all terms allowed by the symmetries and no soft sym-
metry breaking term is introduced. Symmetries are broken spontaneously. The
models predict the octant of θ23 as well as the effective mass for neutrinoless double
beta decay in terms of the lightest neutrino mass and are therefore testable. It
was inferred that normal ordering is always associated with the first octant of θ23
whereas the second octant with inverted ordering. The models have rich scalar
sectors which are carefully studied in terms of the local minimization of the scalar
potential and the necessary conditions specific to them are obtained.
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Abstract

Three-neutrino oscillations are characterised by the mixing angles (θ12, θ13, θ23), mass square splittings
(∆m2

solar,∆m2
atmos) and a Dirac CP phase (δ). Experiments indicate that ∆m2

solar/|∆m2
atmos| ∼ 10−2.

Prior to the observation of θ13 6= 0 in 2012, lepton mixings of the Tribimaximal, Bimaximal, and Golden
Ratio forms were constructed with θ13 = 0 and θ23 = π/4. Their sharp contrast with the experimental
observations accentuates the necessity of amendment. A two-component formalism is the motif of
the thesis. The dominant contribution corresponded to ∆m2

solar = 0 along with any of the popular
mixings or NSM (no solar mixing i.e., θ23 = π/4, θ13, θ12 = 0). The sub-dominant constituent nudged
these parameters into the observed range. Predictions for the CP phase δ were obtained.

Preceded by an overview of neutrino physics and the Standard Model in Chapter 1, in Chapter 2 a
model independent realization of the strategy for the four mixings is presented. In Chapter 3 viability
of the scheme was explored for NSM with the dominant and sub-dominant contributions generated by
Type II and Type I seesaw respectively. In Chapters 4 and 5, we employed discrete flavour symmetries
A4 and S3 to yield the mass matrices conducive to our scheme. All four mixings were considered in
Chapter 5. Our endeavours were restricted to only the NSM case in Chapter 4. The octant of θ23, δ
and |mνeνe | were predicted in terms of the lightest neutrino mass thereby interrelating them. In all
the cases, the first octant of θ23 got associated with normal ordering, the second octant with inverted
ordering. Both models had opulent scalar content studied to the extent of local minimization of
scalar potential. Symmetries were broken spontaneously to render vev to the scalars leading to lepton
masses. No soft symmetry breaking was allowed. The models have several testable predictions.
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Chapter 1

Introduction

Neutrinos are one of the most fascinating entities of the particle kingdom. These
chargeless spin 1

2
fermions were first proposed by Wolfgang Pauli [1] in 1930 to

explain the missing energy of beta decay. Neutrinos are the second most abundant
particles in the universe but are extremely feebly interacting and therefore very
hard to detect. They interact only through weak interactions. Clyde Cowan and
Frederick Reines [2] jointly reported the first detection of the anti-neutrinos (the
antiparticles of neutrinos) in 1956 for which Reines was awarded Nobel Prize in
1995. The elusive neutrinos can serve as ideal messengers for transporting informa-
tion from distant cosmic sources such as supernovae. They may play a pivotal role
in the evolution of the early universe, in particular in generating the dominance of
matter over antimatter by providing a source of lepton number violation as well
as CP violation.

Another interesting property of the neutrino is its surprisingly tiny mass (it could
be about 500000 times lighter than the electron). This along with neutrino oscilla-
tions circumscribes the periphery of my thesis. This chapter comprises of a detailed
discussion of neutrino oscillation (Sec. 1.1.1) and its interrelationship with the neu-
trino masses which is indispensable for oscillations to occur. This is succeeded by
a general discussion (Sec. 1.2) of the Standard Model (SM) in the context of its
signature mass generating principle thereby identifying the limitations which for-
bid it from providing masses to the neutrinos. Thus the experimental observation
of neutrino oscillation was one of the pioneering evidences of physics Beyond the
Standard Model (BSM). In Sec. 1.3 some BSM scenarios for neutrino mass genera-
tion technically known as the seesaw mechanism will be discussed. Finally, having
discussed in detail the inducements that propelled my doctoral research, we will
conclude this chapter by presenting a schematic layout of the thesis in Sec. 1.4.
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1.1 Nuances of Neutrinos

Neutrinos occur in three flavour eigenstates (νe, νµ, ντ ) named after the charged
lepton counterparts (e−, µ−, τ−) whose left-handed component constitute doublets
of SU(2)L along with left-handed neutrinos1 of the same flavour. These flavour
eigenstates (να where α ≡ e, µ, τ) participate in weak interactions and are therefore
also often termed as the weak basis in which the neutrino mass matrix is not
necessarily diagonal. Thus it is worth defining the mass eigenstates (νi, i = 1, 2, 3),
a basis in which the neutrino mass matrix is diagonal that is different from the
weak eigenstates. The weak basis and the mass basis of the neutrinos are connected
by a unitary basis transformation matrix (Uν),

|να〉 =
N∑

i=1

(Uν)αi|νi〉. (1.1)

where N is the number of generic species of light neutrinos taking part in weak
interactions2. Similarly one can define a flavour basis for the charged leptons (lβ,
β = e−, µ−, τ−) in which the charged lepton mass matrix is not diagonal and a
mass basis (lj , j = 1, 2, 3) for the same designated by a diagonal charged lepton
mass matrix. If the unitary basis transformation matrix relating these two bases
for the charged leptons be Ul then one can define the unitary lepton mixing matrix
called the Pontecorvo Maki Nakagawa Sakata (PMNS) [3] matrix3 (UPMNS) as:

UPMNS = U †
l Uν . (1.2)

Now if we can choose a basis for writing down the mass matrices such that the
charged lepton mass matrix is diagonal in that basis then it is crucial to note that
the lepton mixing matrix for that case is given by:

UPMNS = Uν for Ul = I (1.3)

simply4. Neutrinos are capable of oscillating from one flavour eigenstate to another
by virtue of their mass in course of their propagation from one point to the other
by a purely quantum mechanical phenomenon known as neutrino oscillation (to be
discussed in detail in the following sections) which in its turn dictates the UPMNS.

For an N×N unitary matrix, there are N(N−1)/2 angles and N(N+1)/2 phases
among which (2N − 1) phases can be absorbed by appropriate re-phasing of the

1Needless to mention that the SM is an SU(3)C×SU(2)L×U1(Y ) theory that will be discussed
in detail in Sec. 1.2.

2From Z0 −→ invisible decay width it is well known that N = 3.
3This can be thought to be an analogue of the Cabibbo Kobayashi Maskawa (CKM) mixing

matrix in the quark sector.
4In all the chapters of my thesis except Chapter 5 this choice of the flavour basis has been

adopted in which the charged lepton mass matrix is diagonal and the entire mixing resides in the
neutrino sector. In Chapter 5 we performed our analysis in the mass basis of the neutrinos and
the entire mixing was generated by the charged leptons.
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left-handed Dirac fields. Thus (N − 1)(N − 2)/2 physical phases remain, which
are responsible for CP violation. Needless to point out that CP violation can
therefore occur only if the number of generations for the neutrinos N ≥ 3. Thus
for a simple case of 2 flavour oscillation, CP violation cannot take place. If the
neutrinos are of Majorana nature5, then the phases associated with them cannot
be absorbed by re-phasing. Only N phases associated with the left-handed charged
lepton Dirac fields can be re-phased and absorbed and N(N−1)/2 physical phases
persist among which (N−1)(N−2)/2 are the usual Dirac phases whereas the N−1
phases are of Majorana kind. Thus for a three-flavour oscillation (N = 3) there are
three mixing angles (namely θ12, θ13, θ23) and one Dirac phase (δ) responsible for
CP violation and a couple of Majorana phases. Neutrino oscillations are immune
from the effects of Majorana phases and the latter are therefore of no consequences
for our discussion henceforth.

1.1.1 Neutrino Oscillations

Pontecorvo coined the concept of neutrino oscillation based on a two-level quan-
tum mechanical system [4] in 1957. For a quantum mechanical two-level system
characterized by the stationary state |Ψn〉 with energy eigenvalue En, the time
evolved ket after a time t i.e., |Ψn(t)〉 is given by6

|Ψn(t)〉 = e−iEnt|Ψn(0)〉. (1.4)

Thus the stationary state will continue to be an eigenstate of the Hamiltonian after
the time t with just a phase modification. But in case of a non-stationary state (for
example, some arbitrary superposition of the stationary states |Ψ1〉 and |Ψ2〉 with
eigenvalues E1 and E2 respectively), it is evident that the probability of remaining
in the initial state after time evolution will instead be an oscillatory function of
time having frequency (E2 − E1).

One can immediately map this knowledge to neutrinos by identifying the neutrino
flavour eigenstates |να〉 (non-stationary states) as a linear combination of the mass
eigenstates |νi〉 with (Uν)αi as the co-efficients of the linear expansion as implied
by Eq. (1.1) to fetch an explanation to the phenomenon of neutrino oscillations.
In other words, the probability a neutrino flavour eigenstate |να〉 to be in the same
flavour eigenstate will also oscillate with time. If a neutrino flavour eigenstate |να〉
is produced at x, t = 0 by a source, then after time t it will evolve in accordance
to

|να(t)〉 =
N∑

i=1

Uαi|νi(t)〉 =
N∑

i=1

(Uν)αie
−iEit|νi(0)〉, (1.5)

and will travel as a superposition of the mass eigenstates |νi〉. The probability of
a neutrino flavour eigenstate |να〉 to migrate into another flavour eigenstate |νβ〉

5A property yet to be confirmed by neutrinoless double beta decay (0ν2β) experiments.
6Throughout the thesis we will be using natural units, ~ = c = 1.
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after time t in which it travels a distance L(= t) in vacuum7, i.e., precisely the
neutrino oscillation probability8, is given by

Pνανβ = |〈νβ|να(t)〉|2 = |
N∑

i=1

N∑

j=1

(Uν)αi(U
∗
ν )βj〈νj|νi(t)〉|2 . (1.6)

In the ultra-relativistic regime for tiny masses of the neutrinos we can approximate

pi ≃ pj ≡ p ≃ E and Ei =
√
p2i +m2

i ≃ p+
m2

i

2E
where mi and Ei are the mass and

energy of |νi〉. Using this and the orthogonality of the mass eigenstates we get

Pνανβ = δαβ − 4
N∑

i<j

Re[(Uν)αi(Uν)βj(U
∗
ν )βi(U

∗
ν )αj] sin

2 χosc
ij

+ 2
N∑

i<j

Im[(Uν)αi(Uν)βj(U
∗
ν )βi(U

∗
ν )αj] sin 2χ

osc
ij , (1.7)

where

χosc
ij =

(m2
i −m2

j)L

4E
= 1.27

∆m2
ij

eV2

L/E

m/MeV
. (1.8)

The oscillation wave-length is given by

Losc
ij =

4πE

∆m2
ij

≃ 2.48 m
E (MeV)

∆m2
ij (eV

2)
= 2.48 km

E (GeV)

∆m2
ij (eV

2)
(1.9)

It is imperative to note from Eq. (1.7) that for neutrino oscillations to take place,
the mass square splittings, ∆m2

ij ≡ m2
i −m2

j have to be non-vanishing. Thus the
experimental observation of neutrino oscillation tells us that at least there should be
a non-zero mass difference between two neutrino mass eigenstates i.e., at least one
of the |νi〉 must be massive. Thus the observation of neutrino oscillation asserted
the massive nature of the neutrinos9. At this point it is also worth accounting
that neutrino oscillation is insensitive to the absolute neutrino mass scale and its
measurement can only render information about the mass square splittings. For the
three-flavour oscillation there are two such mass square splittings namely the solar
splitting, ∆m2

solar ≡ m2
2 −m2

1 and the atmospheric splitting ∆m2
atmos ≡ m2

3 −m2
2.

These two mass square splittings along with the three mixing angles (θ12, θ13, θ23)
and one Dirac CP phase (δ) constitute the spectrum of three-neutrino oscillation.

Let us now in the following section decipher Eq. (1.7) in terms of the mixing
angles for a simple toy model of two generations and later on extend it for the
three flavour oscillations.

7The effects of matter on neutrino oscillation will be discussed in Sec. 1.1.1.C.
8For anti-neutrinos the Uν are to be replaced by U∗

ν and vice versa.
9According to the SM neutrinos are devoid of masses (detailed discussion appears in Sec. 1.2).

Thus the discovery of neutrino oscillation was the first low energy signature of departure from
SM for which Takaaki Kajita and Arthur B. McDonald were awarded the Nobel Prize in 2015.
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1.1.1.A Two-flavour oscillations

For a two-flavour oscillation, the neutrino mixing matrix Uν is a 2 × 2 matrix
delineated by a single10 mixing angle θ (say) expressed11 as:

Uν =

(
cos θ sin θ
− sin θ cos θ

)
(1.10)

A single mass square splitting ∆m2 prevails. Using the form of Uν featured in Eq.
(1.10) in Eq. (1.7) we get:

Pνανβ = sin2 2θ sin2

(
1.27∆m2 L

E

)
, (1.11)

and

Pνανβ = 1− sin2 2θ sin2

(
1.27∆m2 L

E

)
. (1.12)

Here the mass square splitting ∆m2 is in eV2, the distance traversed by the neutrino
L is in m (km) and its energy E in MeV (GeV). The oscillation amplitude and
frequency are dictated by θ and ∆m2 respectively. Thus to probe a particular
∆m2, the experimental set up has to be devised with E/L ≈ ∆m2 i.e, L ∼ Losc.

As already mentioned, the above discussion is a warm-up exercise for the three
generation case to be explored in the next section.

1.1.1.B Three-flavour oscillations

Since the active light neutrinos occur in three flavours, the study of three-
generation oscillation is of paramount importance and this discussion will con-
stitute one of the cardinal quoin on which my thesis is based.

From the closing remarks of Secs. 1.1 and 1.1.1 we have already gained cognizance
of the fact that the three-neutrino oscillation paradigm is characterised by the three
mixing angles (θ12, θ13, θ23), one Dirac CP phase (δ) and the two independent mass
square splittings viz. ∆m2

solar ≡ m2
2−m2

1 and ∆m2
atmos ≡ m2

3−m2
2. The solar mixing

angle is given by θ12, θ23 is the atmospheric mixing angle. As we will see later from
Eq. (1.16), all the three mixing angles have to be non-vanishing for CP violation
to take place12. The splitting ∆m2

solar ≡ m2
2 −m2

1 = ∆m2
21 is responsible for solar

neutrino oscillation and is observed to be positive (∼ 10−5eV2) ensuring m2 > m1.
The atmospheric splitting (∼ 10−3eV2) is larger i.e., |∆m2

31| ∼= |∆m2
32| ≫ ∆m2

21.
The sign of the atmospheric splitting is not yet known. For Normal Ordering (NO),
∆m2

atmos > 0 i.e., m3 > m2 > m1 whereas ∆m
2
atmos < 0 for Inverted Ordering (IO)

of neutrino masses13 i.e., m2 > m1 > m3 .

10Recall, an N ×N unitary matrix is characterised by N(N − 1)/2 angles.
11For two-flavour oscillations CP violation is prohibited.
12Thus the experimental observation of non-zero θ13 in 2012 paved the way for CP violation.
13Note if m̃± ≡ m3 ±m1, then m̃− > 0 (< 0) for NO (IO). We will come across something

similar while discussing our endeavours integrated to compose this thesis from the next chapter.
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The neutrino mixing matrix Uν can be contemplated as a combination of three
successive Eulerian rotations in 3 dimensions in the 1-2 plane followed by that in
the 1-3 and 2-3 planes for which the rotation14 matrices are given by R12, V13 and
R23.

Uν = R23V13R12, (1.13)

where

R12 =




c12 s12 0
−s12 c12 0
0 0 1


 , V13 =




c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13


 ,

R23 =




1 0 0
0 c23 s23
0 −s23 c23


 . (1.14)

Here cij ≡ cos θij and sij ≡ sin θij and θij is the i− j rotation angle. The neutrino
mixing matrix15 so obtained is given by:

Uν =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13




= UPMNS if Ul = I. (1.15)

The three-neutrino oscillation probability is given by Eq. (1.7). It is useful to note
that the CP phase δ is always associated with16 s13. A basis-independent measure
of CP violation is given by the leptonic Jarlskog(J) parameter [5]:

J = Im[(Uν)e1(Uν)µ2(U
∗
ν )e2(U

∗
ν )µ1] =

1

8
cos θ13 sin 2θ13 sin 2θ23 sin 2θ12 sin δ.

(1.16)
If CP is conserved J = 0. Thus it can be be immediately inferred that CP violation
transpires if all the mixing angles as well as δ is non-zero.

So far we have discussed the neutrino oscillations in vacuum. Although neutrinos
interact weakly with the particles in the medium it still has an impact on its
oscillatory behaviour to be surveyed in the succeeding segment.

1.1.1.C Matter effects

Neutrinos while traversing through a medium interact with the medium compo-
nents through weak interactions that has consequential influences on its oscillation

14There is nothing sacred about combining the rotation matrices in this particular order. They
can of course be combined in a different order yielding the neutrino mixing matrices of some other
form that can be mapped to the Uν in Eq. (1.15) by a unitary transformation. But neutrino
physicists all over the world conventionally follow the standard parametrization of defining Uν

as expressed in Eq. (1.15) that we will also endorse.
15By convention the PMNS mixing matrix (UPMNS) is defined with the mixing angles varying

between 0 ≤ θij ≤ π
2 whereas for the CP phase 0 ≤ δ ≤ 2π.

16If CP is conserved then the oscillation probabilities for neutrinos and anti-neutrinos are iden-
tical. Thus roughly speaking the difference between the oscillation probabilities of the neutrinos
and anti-neutrinos could provide a measure of CP violation in the lepton sector.
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properties. Among these weak interactions (mediated by W± and Z0)17 some co-
herent forward elastic scatterings of the neutrinos with the matter particles take
place, the amplitude for which is not flavour democratic. This is because ordinary
matter does not contains µ−, τ− but has e− with which νe can interact through
CC interactions (left panel of Fig. 1.1) but νµ,τ cannot. This gives rise to a flavour
dependence for the CC processes whereas the NC processes contribute equally for
all the three flavours as can be seen from the right panel of Fig. 1.1 and hence are
not relevant for oscillation studies. The CC interactions of νe with e

− produces an
additional contribution for the νe which is absent for νµ,τ that tweaks the oscilla-
tion probability. The necessary tinkering has to be done with an additional matter
potential of the following form

W±

e

νee

νe

Z0

νe,µ,τ

e, n, pe, n, p

νe,µ,τ

Figure 1.1: Feynman diagrams for CC (NC) interactions of the neutrinos are shown in left
(right) panel.

Veff =
√
2GFNe ≃ 7.6Ye

ρmatter
1014g/cm3

eV , (1.17)

where GF and ρmatter are the Fermi constant18 and the matter density of the
medium respectively. The relative number density Ye ≡ Ne

Np+Nn
where Ne, Np, Nn

are the number densities of electron, proton, neutron in the interacting matter.

The Schrödinger equation governing the time evolution of a neutrino flavour eigen-
state undergoing matter effects in the two-flavour oscillation scenario is proffered
below:

i
∂

∂t

(
νe
νx

)
=

[
C ′

I+
∆m2

p

(
− cos 2θ sin 2θ
sin 2θ cos 2θ

)
+

(
Veff 0
0 0

)](
νe
νx

)
, (1.18)

where p, E are the momentum and energy of the neutrino and θ is the mixing
angle defined in Eq. (1.10). Here νx ≡ νµ or ντ . Using Eqs. (1.17) and (1.18) one
can define:

Ã = ±A where A =
2
√
2EGFNe

∆m2
. (1.19)

The positive and negative sign of Ã in Eq. (1.19) corresponds to neutrinos and anti-
neutrinos respectively. Also the dependence of the sgn(A) on ∆m2, i.e., the mass

17The Z0 boson mediates the neutral current (NC) interactions while charge current (CC)
interactions take place by exchange of W±.

18The Fermi constant is related to the weak coupling g by GF√
2
= g2

8M2

W

where MW is the mass

of W±.
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ordering, is of far reaching consequence as we will see later. For constant matter
density just a simple diagonalisation of the Hamiltonian could yield the results.
The two-level case as already pointed out in the vacuum oscillation discussion is
completely characterized by a mixing angle (θ) and a mass square splitting (∆m2)
that are modified in presence of matter as:

(∆m2)matter = X (∆m2),

sin 2θmatter = sin 2θ/X and

cos 2θmatter = (cos 2θ − Ã)/X. (1.20)

where

X =
√
(cos 2θ − A)2 + sin2 2θ for neutrinos,

=
√
(cos 2θ + A)2 + sin2 2θ for anti− neutrinos. (1.21)

Thus one can immediately conclude that interaction of neutrinos and anti-neutrinos
with matter are different. If we study atmospheric neutrino oscillation then the
neutrino mass ordering dictates whether Pνµντ > Pν̄µν̄τ or Pν̄µν̄τ > Pνµντ which in its
turn can be exploited to unravel the neutrino mass ordering19. Precisely from Eq.
(1.21) we can say, if Pνµντ > Pν̄µν̄τ then A > 0 which implies neutrino masses are
ordered in the inverted fashion whereas normally ordered neutrino mass spectrum
would lead to A < 0 causing Pν̄µν̄τ > Pνµντ .

In 2002, an experiment was proposed in India, namely the India-Based Neutrino
Observatory (INO), to measure the up-down asymmetry for atmospheric neutrinos
and anti-neutrinos separately and extract the Pνµντ and Pν̄µν̄τ and compare them
to specify the neutrino mass ordering. To distinguish between the νµ and ν̄µ INO
will search for the µ− and µ+ coming from processes like:

νµ +X → µ− + Y

ν̄µ +X → µ+ + Y ′ (1.22)

Needless to mention that detection of µ+ will indicate incoming ν̄µ whereas νµ is
associated with µ−. To discriminate between µ+ and µ− INO will be using a 50 kt
magnetised iron calorimeter (ICAL) functioning with a magnetic field of 1 Tesla
for the first time to study atmospheric neutrinos. The charge of the particle can
be easily identified in presence of the magnetic field from the curvature direction
of their tracks. Thus µ− and µ+ and subsequently the associated νµ and ν̄µ coming
in can be distinguished and the corresponding oscillation probability Pνµντ and
Pν̄µν̄τ can be measured. This leads to successful determination of neutrino mass
ordering20.

For completeness it is worthy to mention that a resonance can occur when:

∆m2 cos 2θ = Ã. (1.23)

19Recall, from Eq. (1.19) sgn(A)=sgn(∆m2). A is positive (negative) for NO (IO).
20Determination of mass ordering is one of the objectives of INO. Apart from this it is also

devised for various other measurements including the CP phase δ [6].
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This is the famous MSW resonance21 effect [7].

Having discussed the mechanism behind the neutrino oscillation both in vacuum
and in matter, we will now pay heed to the outcomes of the measurements of this
phenomena.

1.1.2 The light of recent oscillation data

Neutrino physics is one of the most dynamic branches of contemporary particle
physics research. These mysterious particles are probed by experiments worldwide
to procure information about its oscillation parameters including measurement of
CP violation (δ) in the lepton sector that might provide an explanation to the
matter dominance of the universe over antimatter, to look for indications of lepton
number violating BSM physics in 0ν2β experiments, etc.22. Neutrinos are also
used for astrophysical measurements. IceCube Neutrino Observatory located at
the South Pole has detected ultra high energy neutrinos (∼PeV), roughly 250 times
larger than the energy at which the LHC operates, thereby opening up an alternate
avenue for studying high energy events, which although exceedingly interesting is
beyond the scope of this thesis. In the following discussion we will restrict ourselves
to the neutrino oscillation measurements only.

The current 3σ global fits of the neutrino oscillation parameters as obtained from
the NuFIT2.1 of 2016 [8] are:

∆m2
21 = (7.02− 8.08)× 10−5 eV2, θ12 = (31.52− 36.18)◦,

|∆m2
31| = (2.351− 2.618)× 10−3 eV2, θ23 = (38.6− 53.1)◦ ,

θ13 = (7.86− 9.11)◦, δ = (0− 360)◦ . (1.24)

These neutrino mixing parameters23 evince certain fascinating features:

1. ∆m2
solar ≡ ∆m2

21 = m2
2 −m2

1 and ∆m2
atmos ≡ ∆m2

31 = m2
3 −m2

1 differ by two

orders of magnitude and it is handy to define Rmass ≡ |∆m2

21

∆m2

31

| ≃ 10−2.

2. The sign of the atmospheric splitting i.e., sgn(∆m2
31) and hence the neutrino

mass ordering is yet not known to us.

3. The atmospheric mixing angle θ23 which is close to π
4
can lie in both the

octants i.e., whether θ23 <
π
4
(first octant) or θ23 >

π
4
(second octant) remains

undetermined.

21This was first proposed by L. Wolfenstein and later on applied by S. P. Mikheev and
A. Y. Smirnov to observe this effect for the solar neutrinos.

22Experimental observation of 0ν2β processes will ensure that neutrinos are their own antipar-
ticles (Majorana type), the corresponding mass term for which violates lepton number by 2 units
as we will see in Sec. 1.3. There is no such observation yet. Lepton number conservation is an
accidental symmetry of the SM and observation of 0ν2β will mark evidences of lepton number
violating BSM physics.

23In Chapter 4 we also use the recent preliminary T2K hints [9] of δ being near -π/2.
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4. The Dirac CP phase δ is not yet a well measured quantity [10, 11].

5. θ13 although small compared to the other two mixing angles is non-zero [12],
as was observed by the short-baseline reactor anti-neutrino experiments in
2012.

The last in the list i.e., θ13 6= 0 is a comparatively recent result as we can see.
Earlier it was not inconsistent with zero and certain popular lepton mixings were
fabricated in consonance with θ13 = 0 as will be discussed in Sec.1.1.3. Before that
let us for completeness have an inventory of the unknowns of the neutrino sector
at a glance and the searches going on to unravel them.

1.1.2.A Mysteries that prevail

Despite of intense investigations with proficient experimental set-ups worldwide,
the neutrinos continue to allure us with several mysteries in their characteristics
as catalogued below:

• The neutrino mass ordering is not ascertained.

• The octant of the atmospheric mixing angle remains unsettled.

• CP phase δ has to be measured.

• The absolute neutrino mass scale has to be determined.

• Whether the neutrinos are Dirac or Majorana particles has to be elucidated.

The first three entries in the list are neutrino oscillation parameters while the rest
cannot be obtained by oscillation measurements. Searches for 0ν2β can shed light
on the Majorana nature of the neutrinos and beta decay end-point spectrum is
probed to perceive the absolute neutrino mass scale.

It must also be noted that the SM Higgs boson does not couple to the neutrino to
provide them masses24. Theorists all over the world are attempting to render an
explanation to the origin of neutrino masses that happens to be the prime intent
of my doctoral research as well. As will be seen in the following chapters, we have
constructed neutrino mass models consistent with the neutrino oscillation parame-
ters already observed and have predictions about the ones yet to be determined25.
This precisely is the impetus behind the endeavours to be discussed from the next
chapter onwards but for the time being let us resume back to the general overview
of the subject.

24For detail, refer to Sec. 1.2.
25In coming days, if the experimental observations about these parameters are found to be in

contrast with our model predictions then it can be falsified.
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1.1.2.B Searches to unveil

Having gained the acquaintance with the existing puzzles of the neutrino sector,
we can now account the proficient experimental pursuits of these parameters con-
ducted across the globe26:

1. Long-Baseline neutrino experiments: DUNE is the most eminent enterprise
in this category. The Deep Underground Neutrino Experiment (DUNE) for-
merly known as Long-Baseline Neutrino Experiment (LBNE) is the Fermilab
international mega-science project. Measurement of CP phase δ, determina-
tion of neutrino mass ordering and the octant of θ23 are some of the main
objectives of the DUNE experiment apart from which it will also search
for proton decay and look for the νe flux from a core-collapse supernova.
Equipped with the supporting infrastructure at Fermilab, DUNE will be
supplied with the neutrino beamline from the Long-Baseline Neutrino Fa-
cility (LBNF). DUNE is deftly designed with a couple of detectors, one at
the Fermi National Accelerator Laboratory in Batavia, Illinois (near detec-
tor) and the liquid argon (LAr) far detector at a baseline of 1300 km at the
Sanford Underground Research Laboratory in Lead, South Dakota placed
more than a kilometre underground. The far detector of fiducial mass 40
kt will be made up of four similar modules, each serving as a liquid argon
time-projection chamber (LArTPC). Liquid argon will be used for the first
time in a long-baseline neutrino experiment at DUNE which owing to its ex-
cellent tracking and calorimetry performance leads to high signal efficiency
and effective background discrimination. Further, its excellent reconstruc-
tion of the kinematical properties with a high resolution makes it ideal for
precise measurement of neutrino events over wide spans of energies. DUNE
is expected [13] to be capable of measuring δ up to a precision of 10◦ to
20◦ and observing CP violation at 3σ for 67 % values of δ and fathom the
neutrino mass ordering up to ∆χ2 ≥ 25. India is a member of the DUNE
collaboration.

T2K in Japan [10] and Fermilab NOνA [11] are two important ongoing neu-
trino oscillation experiments of this kind.

2. Short-Baseline experiments: Short-baseline anti-neutrino experiments from
reactor sources, i.e., Nuclear Power Plants (NPP), measure the survival prob-
ability of ν̄e at short distances to obtain non-zero θ13. In 2012, Daya Bay [14],
a multinational China-based short-baseline experiment, and the RENO [15]
(Reactor Experiment for Neutrino Oscillations), located in South Korea, col-
laborations reported one of the most significant discoveries of contemporary
particle physics experiments, namely the non-zero θ13 up to 5.2 and 4.9 stan-
dard deviations respectively. There are six NPP’s operating at 2.9 (2.8 and

26We are restricting this discussion to a small sample of the large number of experiments that
measure the quantities of immediate interest to us for this thesis. There are several other ongoing
and proposed projects searching for diverse aspects of the neutrinos that are uncorrelated to our
work and therefore not covered here.
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2.66) GWth at Daya Bay (RENO) producing ν̄e and detected by eight anti-
neutrino detectors, distributed in three groups stretching over a distance of
1.9 km for Daya Bay. RENO has a couple of identical detectors located
at 294 m and 1383 m away from the source. Both the experiments use
Gadolinium-doped liquid scintillator (Gd-Ls) to identify inverse beta decay
i.e., (ν̄e + p→ e+ + n) as the detection principle.

3. India-based Neutrino Observatory (INO): India is embarking on a major
neutrino physics programme through the India-based Neutrino Observatory.
The flagship experiment will make use of a 50 kt magnetised iron calorimieter
(ICAL) for the first time to study atmospheric neutrinos [6]. The main
objectives of the experiment are to determine the neutrino mass ordering by
studying matter effects27 and the CP phase (δ).

4. 0ν2β experiments: 0ν2β searches are capable of constraining the effective
Majorana neutrino mass and therefore is a riveting branch of neutrino physics
worth examining. Lepton number preserving two-neutrino double beta decay
(DBD) is allowed by the SM that emits two e− and two ν̄e. For (0ν2β)
processes lepton number is not conserved and emission of two e− would take
take place sharing the total transition energy. This would lead to a peak
in the sum energy spectrum of the two e−. For the two-neutrino DBD the
phase space is smaller compared to that in the 0ν2β processes which are
however suppressed due to the smallness of the Majorana neutrino mass.
Nonetheless, the latter has emerged to be a conducive tool for probing the
lepton number violating processes. In fact, this reaction rate is proportional
to the square of the effective neutrino mass (|mνeνe |) and thus very hard to
measure. It is also directly affected by the uncertainties in nuclear matrix
element determination. Various dexterous experiments are devised for the
search of (0ν2β) among which we discuss CUORE and GERDA here. A
detailed account of the present status of such searches can be found in [16].

The Cryogenic Underground Observatory for Rare Events (CUORE) is at
its constructional last phase. Housed at the Gran Sasso Underground Lab-
oratory at a depth of 3400 m.w.e. (meters water equivalent), CUORE [17]
will hunt for (0ν2β) using cryogenic bolometers28 functioning at 10 mK. This
temperature is particularly favourable owing to the reduction of the heat ca-
pacity of the crystal at this temperature leading to efficient detectability of
minute energy depositions from temperature fluctuations that can be yielded
by (0ν2β) processes. CUORE made a preliminary search for (0ν2β) with a
single string called CUORE-0 that could determine T 1

2

> 4.0× 1024 years in
TeO2 with an exposure of 9.8 Kg.year. In future it will attempt to improve
it to the extent of 3.5× 1026 years with reduced background.

The GERmanium Detector Array (GERDA) uses a new technique of in-
stalling an array of 86% enriched HPGe detectors directly in the liquid argon

27Some more detail can be found in Sec. 1.1.1.C.
28Each bolometer is a 5 × 5 × 5 cm3 crystal of natural TeO2. These will be arranged in 19

towers each comprising of 52 crystals containing 200 Kg of 130Te.
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(LAr) cryogen that shields external γ rays and supplies the necessary cool-
ing [18]. It started taking data from 2011 and sets T 1

2

> 2.1×1025 years limit

for 76Ge with an exposure of 21.6 Kg.year. This combined with the previous
experiments puts the best present limit of T 1

2

> 3.0× 1025 years.

5. KATRIN experiment: The KArlsruhe TRItium Neutrino (KATRIN) exper-
iment at Tritium Laboratory Karlsruhe is designed to measure the absolute
neutrino mass scale in a model-independent fashion by measuring the kine-
matics of electrons coming from beta-decay with ultra-high precision. In
order to do so, it employs an adroit high resolution spectrometer, Magnetic
Adiabatic Collimation combined with an Electrostatic Filter (MAC-E filter),
having 10 m diameter for accurate measurements of the electron energy com-
ing from a Tritium source [19]. Earlier experiments were able to impose an
upper bound on the ν̄e of about 2.3 eV, whereas KATRIN is expected to
measure it by one more order of accuracy.

6. IceCube/ PINGU experiment: Located at the South Pole, the IceCube de-
tector was designed to detect the Cherenkov light produced by the interacting
neutrinos originating from high energy cosmic rays (∼ PeV) using 1km3 of
transparent Antarctic ice. This unique gigantic ice detector comprises of
5160 optical sensors or digital optical modules (DOM) placed 1.5 km below
the geographical South Pole. They are distributed on 86 vertical cables (each
holding 60 DOMs) called strings, out of which 78 are placed horizontally 125
m apart in grids of equilateral triangles that form a hexagonal array stretch-
ing across a square kilometer of area while the rest of them are more densely
organized to constitute the Deep Core. Each DOM contains PMT (25 cm
long) along with data-acquisition and control electronics. In addition to this
324 DOMs constitute the surface detector called IceTop. After extensive
data collection and analysis for three years (2010 - 2013), IceCube detected
37 ultra high energy events.

Although IceCube was primarily devised and deployed for measurement of
very high energy astrophysical neutrinos (∼ PeV), the detector had been
made capable of observing low energy neutrinos (10 GeV≤ E ≤ 100 GeV),
specifically the energy range probed for atmospheric neutrino oscillation stud-
ies, by increasing the density of the photodetectors in the ice as well as the
efficiency of the PMTs. Thus it is now proficient to measure atmospheric
neutrino oscillation parameters like θ23 and ∆m2

32 with efficiency comparable
to any other ongoing experiments. As reported in [20], an oscillation analy-
sis conducted with 5174 track-like events measured in 953 days, and binning
of data so obtained in logarithm of reconstructed energy ranging between
6 and 56 GeV revealed none of the mass orderings is preferred when θ23
and ∆m2

32 were obtained using binned maximum likelihood technique. For
normal ordering sin2 θ23 = 0.53+0.09

−0.12 and ∆m2
32 = 2.72+0.19

−0.20 × 10−3eV2 were
achieved whereas for inverted ordering the results were sin2 θ23 = 0.51+0.09

−0.11

and ∆m2
32 = −2.72+0.18

−0.21×10−3eV2. Enhancement in the event reconstruction
precision and also the neutrino event number can be procured by increasing
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the density of photodetectors in the Deep Core volume. Keeping this in
mind, the Precision IceCube Next Generation Upgrade (PINGU) has been
proposed to achieve better statistics and more precision on the contours of at-
mospheric neutrino oscillation parameter so as to unravel the neutrino mass
ordering upto 3σ after assembling four years of data. Improvisations in the
Deep Core design is made by reducing the DOM-to-DOM distance from 7 m
to 3 m, intensifying the string-to-string spacing from between 40 and 70 m to
22 m and enhancing the number of DOMs per string from 50 to 96 thereby
making the detector sensitive to low energy events (≤ 10 GeV).

In the following section the popular lepton mixings will be sketched.

1.1.3 Popular lepton mixings

Let us recall, θ13 6= 0 is a recent observation of 2012. Earlier this mixing angle
was consistent with zero. Also from Eq. (1.24), one can readily discern θ23 = π

4

is allowed by the 3σ data. Prior to the discovery of non-zero θ13, the practice of
constructing popular lepton mixings in concurrence with θ13 = 0 and θ23 =

π
4
and

contriving neutrino mass models that can successfully fit in those mixing structures
were in vogue. The PMNS mixing matrix in Eq. (1.15) can be trivially engineered
with θ13 = 0 and θ23 =

π
4
to obtain a general form for the popular lepton mixings:

U0 =




cos θ012 sin θ012 0

− sin θ0
12√
2

cos θ0
12√
2

1√
2

sin θ0
12√
2

− cos θ0
12√
2

1√
2


 . (1.25)

Tuning the θ012 in Eq. (1.25) gives rise to different variants of the popular lepton
mixings viz. Tribimaximal [21], Bimaximal [22], Golden Ratio [23] and no solar
mixing29 as shown in Table 1.1.

Mixing name Tribimaximal Bimaximal Golden Ratio No Solar Mixing
Abbreviation TBM BM GR NSM

θ012 35.3◦ 45.0◦ 31.7◦ 0.0◦

Table 1.1: θ012 for different popular lepton mixing scenarios.

Hence,

U0 =




√
2
3

√
1
3

0

−
√

1
6

√
1
3

√
1
2√

1
6

−
√

1
3

√
1
2


 for TBM, (1.26)

29The no solar mixing (NSM) was first proposed by us in [24].
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U0 =




√
1
2

√
1
2

0

−1
2

1
2

√
1
2

1
2

−1
2

√
1
2


 for BM, (1.27)

U0 =




√
φ√
5

√
1√
5φ

0

− 1√
2

√
1√
5φ

1√
2

√
φ√
5

√
1
2

1√
2

√
1√
5φ

− 1√
2

√
φ√
5

√
1
2


 for GR with φ = (1 +

√
5)/2 (1.28)

U0 =




1 0 0

0
√

1
2

√
1
2

0 −
√

1
2

√
1
2


 for NSM. (1.29)

It is apparent that post non-zero θ13 discovery none of the popular lepton mixings
accord with the neutrino oscillation data and the necessity of an amendment can
be easily comprehended30. The neutrino mass models that we will construct will
ameliorate this issue for the popular lepton mixings.

In the next section the salient features of the SM are highlighted in the context of
the thesis.

1.2 The Standard Model and Neutrinos

The celebrated Standard Model of particle physics is an SU(3)C×SU(2)L×U(1)Y
theory broken down spontaneously to SU(3)C × U(1)Q by the Higgs mechanism.
In this segment we will briefly recollect the essentials implemented in our work. A
complete discussion of the Standard Model can be found in any standard particle
physics textbook [25]. If g and g′ be the couplings for the SU(2)L and U(1)Y
respectively then the weak mixing angle or the Weinberg angle is given by:

tan θw =
g′

g
. (1.30)

The SM particle content is shown in Table 1.2. It is worth noting that unlike
the neutrinos the charged leptons and quarks have both left- and right-handed
fields present within the particle spectrum of the SM model. This is of immense
consequence as we will see soon. With the fields in hand the charge current (CC)
interaction of the neutrinos mediated by the W± boson, already discussed in Sec.
1.1.1.C can be interpreted as:

−LCC =
g√
2

∑

α

ν̄Lαγ
µl−LαW

+
µ + h.c. (1.31)

30The solar mixing angle θ12 = 33.72◦+0.79
−0.76 at 1σ. Thus θ12 for each of TBM, BM, GR, and,

needless to say, NSM lie outside this range.
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Fields Notations SU(2)L Y

Left-handed leptons (Lα)L ≡
(
να
l−α

)

L

2 -1

Right-handed leptons (l−α )R 1 -2

Left-handed quarks (qα)L ≡
(
uα
dα

)

L

2 1/3

Right-handed quarks (uα)R 1 4/3
(dα)R 1 -2/3

Scalar Higgs Boson Φ ≡
(
φ+

φ0

)
2 +1

Table 1.2: The SM particle content. Only the first generation of fermions is shown, α =
1, 2, 3 for the three generations. The last in the list is a the scalar Higgs doublet of SU(2)L
whereas the rest are fermions. Lepton number L = 1 for the leptons and 0 otherwise. The
electromagnetic charge Q = T3 +

Y
2 . For upper (lower) members of the SU(2)L doublets

T3 is 1
2 (-12) whereas it is 0 for singlets of SU(2)L. Thus for SU(2)L singlets, Q = Y

2
simply. Under SU(3)C quarks are triplets and leptons are singlets. The gauge bosons are
not mentioned in the list here.

Similarly the Z0 mediated neutral (NC) interaction of the neutrinos is given by:

−LNC =
g

2 cos θw

∑

α

ν̄Lαγ
µνLαZ

0
µ. (1.32)

In order to give masses to the gauge bosons in the SM, spontaneous symmetry
breaking (SSB) through the Higgs mechanism has to be invoked31 that we will
discuss in Sec. 1.2. The corresponding terms in the Lagrangian are given by

LHiggs = (DµΦ)
†(DµΦ)− V (Φ). (1.33)

We will discuss the potential in detail in Sec. 1.2. The covariant derivative in the
kinetic term of the Lagrangian is expressed as:

DµΦ =

(
∂µ + ig

3∑

a=1

TaW
a
µ + ig′

Y

2
Bµ

)
Φ, (1.34)

31Alternate arguments about the existence of the Higgs doublet in the SM from unitarity using
2 → 2 scattering of the W boson like W+W− →W+W− are also available in literature [26].
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where Ta =
σa

2
(σa being the Pauli matrices) are the generators of SU(2)L and Y is

the hypercharge. Using Eqs. (1.33) and (1.34) one can compute the gauge boson
masses to be

MW =
1

2
gv and MZ =

1

2

√
g2 + g′2 v, (1.35)

where v is the vacuum expectation value32 (vev) of Φ. This leads to the famous
“ρ” parameter:

ρ =
MW

MZ cos θw
. (1.36)

For a doublet of SU(2)L this ρ = 1. Introduction of other scalar multiplets can
lead to departure from unity33.

Having provided masses to the gauge bosons, we consider the lepton number con-
serving Dirac mass term34 for the fermions:

Lmass = −m(ψ̄LψR + ψ̄RψL). (1.37)

Note that this term as it stands is not gauge invariant. This issue is also addressed
by the Higgs field35. Since right-handed neutrinos are not present in SM, such
a mass term cannot be written for them. As a result the neutrinos are massless
within the SM framework.

In terms of the scalar Higgs doublet Φ, we can write down the Yukawa terms as:

LY ukawa = −yα(L̄αLΦlαR + l̄αRΦ
†LαL). (1.38)

After SSB, one can readily identify the mass of the charged lepton as

mα =
yαv√
2
. (1.39)

Similar mass terms can be written for the quarks. Note that since U(1)Q is con-
served, only the neutral scalar can acquire vev. Because of the T3 and Y assign-
ments the Φ can give mass only to the down-type quarks and for the up-type quarks
one has to use Φ̃ = iσ2Φ

∗ for that purpose. Although our models are confined to
the lepton sector only, it is worth commenting here that the mass matrices for the
quarks so obtained in general, may not be diagonal. The diagonalization of the up
and down-type mass matrices can be separately performed by deploying unitary
matrices. A combination of these diagonalizing matrices is defined as the Cabibbo
Kobayashi Maskawa (CKM) mixing matrix for the quarks.

32After spontaneous symmetry breaking the scalar acquires its vev given by 〈Φ〉 = v√
2
described

in Sec. 1.2.1.
33ρ = MW

MZ cos θw
= 1 is a consequence of a custodial symmetry [27].

34Recall, ψ = ψL + ψR and ψL,R = PL,Rψ, where the projection operators are given by

PR,L = (1±γ5)
2 .

35The gauge boson masses are protected by the gauge symmetry and the fermion masses are
protected by the chiral symmetry.
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Figure 1.2: Functional behaviour of V (Φ). Solid curve is for µ2 < 0, dot-dashed curve is
for µ2 > 0. In case of µ2 < 0 spontaneous symmetry breaking occurs.

1.2.1 Sponatneous Symmetry Breaking for one scalar dou-
blet

If a Lagrangian conserves a certain symmetry but the vacuum breaks it [28], then
spontaneous symmetry breaking is said to have occurred [29]. Let us consider a
symmetry operation generated by τ b and θb be the corresponding parameter. For
SSB to take place, the symmetry transformation e−iτb.θb shall not keep the vacuum
unchanged i.e.,

e−iτb.θb |0〉 6= |0〉 ⇒ τ b|0〉 6= 0 for some b. (1.40)

Thus for a system, SSB eventuate if the symmetry transformation conserved by
the Lagrangian comprises of at least one generator that does not annihilate the
vacuum.

The SM Lagrangian is symmetric under SU(2)L × U(1)Y . The scalar potential in
Eq. (1.33) containing all the terms allowed by the gauge symmetry is written as:

V (Φ) = µ2(Φ†Φ) + λ(Φ†Φ)2 (1.41)

λ and µ are the quartic and quadratic couplings respectively36. When minimized
this leads to37

∂V (Φ)

∂v
= µ2v + λv3 = 0 (1.42)

For the potential to be bounded from below λ > 0. µ2 can be both positive or
negative.

36To keep the potential renormalizable only the terms involving fields with mass dimension up
to 4 are included.

37For simplicity we are assuming real vev.
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For µ2 > 0, V (Φ) is minimum at 〈Φ〉 = 0 plotted as the dot-dashed curve in Fig.
1.2. It can be readily inferred from the plot 〈Φ〉 = 0 is the only minimum of
V (Φ) and for this case the vacuum preserves the original symmetry obeyed by the
Lagrangian and hence SSB cannot take place. Since the Lagrangian symmetry is
kept intact by the ground state both the complex scalar fields, namely φ+ and φ0

constituting Φ endure degeneracy in their masses.

The µ2 < 0 case, plotted by the solid line in Fig. 1.2, is devoid of any “true
minimum” at 〈Φ〉 = 0. Alternatively now a continuum of minima is available for

V (Φ) at |〈Φ〉| = v√
2
where v =

√
−µ2

λ
. The degenerate minima can be clearly

identified in Fig. 1.2, all of them are equally probable and the system can choose
to be in any one of them. Since the ground state does not preserve the symmetry
of the original Lagrangian the SSB takes place. The occurrence of the SSB is
irrespective of the preference of the system to lie on any point of the circle with
radius v√

2
in the complex plane spanned by Re(Φ) and Im(Φ). Let us say, the

system chooses 〈Re(φ0)〉 = v√
2
then this can be written as:

Φ =

(
φ+

φ0

)
−→ Φ =

(
χ+

(φ+v)+iχ√
2

)
(1.43)

Here the two real scalar fields χ and φ have vanishing vev. Using Eqs. (1.41) and
(1.43) we obtain the mass of the physical Higgs field (φ):

m2
φ = 2λv2. (1.44)

The other scalars χ± and χ are left massless. Thus spontaneous breaking of the
Lagrangian symmetry gives rise to massless modes in the theory in accordance
to the Goldstone theorem. After SSB, there are three massless Nambu-Goldstone
bosons (χ± and χ) and one massive physical real scalar field (φ).

Thus before symmetry breaking there were four massless gauge bosons (three cor-
responding to SU(2)L and one for U(1)Y )

38 each having 2 transverse degrees of
freedom (dof) contributing39 4 × 2 = 8 dof and the scalar Φ is composed of two
complex scalar fields leading to additional four scalar dof. Thus before SSB there
are total 12 dof. After SSB, the W± and Z0 gains mass (3 dof each, a total 9 dof)
while the photon remains massless (2 dof) and there exists only one massive real
physical scalar field (φ) with 1 dof summing to a total 12 dof. Thus the total dof
remains conserved before and after SSB as expected. It is often said that the 3
massless scalar dof were “eaten up” to provide longitudinal components to theW±

and Z0 gauge bosons40. On July 4, 2012 both the ATLAS [30] and the CMS [31]
collaborations declared the observation of a Higgs-like boson of mass ∼ 125GeV
marking the triumph of this theory.

38SU(2)L has three generators thus has three gauge bosons whereas U(1)Y has only 1 generator
and therefore one gauge boson.

39There are two transverse dof for massless gauge fields whereas for massive ones an additional
longitudinal dof is added leading to a total three dof.

40After SSB, the Lagrangian in the unitary gauge lacks any term consisting of the Goldstones
χ± and χ, as if the gauge bosons “eat up” the Goldstones to acquire mass.
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Here we have studied the Higgs mechanism for one scalar field. The models we
have constructed have a rich scalar sector with different transformation properties
under SU(2)L that were studied41 in the context of local minimization of the scalar
potential inclusive of all the gauge invariant terms simultaneously allowed by the
additional discrete symmetry under consideration.

Let us now address the problem of providing masses to the neutrino, forbidden
within the periphery of the Standard Model, by some alternate mass generating
mechanism i.e., the seesaw mechanism.

1.3 Neutrino masses and Seesaw

Within the purview of SM, the neutrino Dirac mass term is forbidden owing to the
absence of the right-handed neutrino field (νR) while the Majorana mass term is
prohibited as as it violates the (B − L) symmetry by 2 units. Thus the SM needs
to be extended to bestow tiny masses to the neutrinos.

For Type I seesaw mechanism to be operational, the SM field content has to be
appended with right-handed neutrino fields νR, singlets under SU(2)L × U(1)Y .

Allowing violation of lepton number the relevant Majorana mass term is furnished
below:

Lmass =
1

2
( νTL (νcR)

T )

(
0 MT

D

MD MR

)(
νcL
νR

)
+ h.c. (1.45)

where: νcR,L ≡ (νL,R)
C = Cν̄TL,R and

MD+M ≡
(

0 MT
D

MD MR

)
. (1.46)

Here mD and mR are the mass scales of MD and MR respectively. mR is not pro-
tected by electroweak gauge symmetry as νR is an electroweak singlet and therefore
can be large. Masses of MD, on the other hand, owing to its origin from the vev
of Higgs field Φ introduced in Sec. 1.2, is comparable to the electroweak scale.
Further, it is assumed that mD ≪ mR. In other words, the greatest eigenvalue of√
M †

DMD is assumed to be much less than the smallest eigenvalue of
√
M †

RMR.

Moreover, MR is assumed to be invertible. Needless to accentuate its symmetric
nature.

In order to decouple the heavy and light neutrino fields, a basis transformation is
employed leading to:

W TMD+MW =

(
M light

ν 0
0 Mheavy

ν

)
(1.47)

41Additional discrete symmetries were imposed to obtain the neutrino mass matrices of desired
form.
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and (
νL
νcR

)
= W

(
νlight
νheavy

)
. (1.48)

The terms of leading order corresponding to the light neutrino mass matrix results
into the famous seesaw formula

M light
ν = −MT

DM
−1
R MD. (1.49)

The leading terms of the heavy neutrino mass matrix can be used to yield,

Mheavy
ν =MR. (1.50)

It must be commented that the corrections to M light
ν and Mheavy

ν are suppressed
by (mD/mR)

2. Our discussions so far is confined to the Type I seesaw mechanism.
The Type II and Type III seesaw mechanisms are mediated by scalars and fermions
transforming as triplets under SU(2)L respectively.

For the Type II seesaw, the scalar sector of the SM has to be extended with a
triplet of SU(2)L denoted by ∆L. The lepton number violating mass term for this
case used in our model is given by:

Lmass =
1

2
(ylνTLC

−1νL∆L) + h.c. (1.51)

The vev of this triplet scalar ∆L, given by vL, is assumed to be very small42

compared to v. This ensures that the parameter ρ remains close to unity. yl is the
Yukawa coupling and the Majorana mass of the neutrino mν ∝ ylvL. In our work,
we have used Type I and Type II seesaw only43.

So far our discussion was intended to recapitulate some fundamental ideas that we
make use of in our analysis. In the next section we deduce the motivations that
impelled our explorations and present a glimpse of the latter in a nutshell.

1.4 Modus Operandi of the thesis

Summing up, the highlights of our discussion till now:

• Neutrinos are massive and they oscillate by virtue of their mass.

• The particle content of the SM model is insufficient to provide masses to the
neutrinos.

42In the literature models can be found where the spirit of the nomenclature seesaw is captured
by attributing the smallness of the vev of this triplet to the largeness of the vev of some other
scalar in the model.

43Type III seesaw is somewhat close to the Type I seesaw scenario in the sense both of them
are mediated by fermions but their SU(2)L behaviour is the discriminating feature between the
two viz. singlet for Type I seesaw and triplet for the Type III case. In our work we have not
used Type III seesaw, hence will not pursue its description here.
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• Alternate BSM mechanisms like the seesaw had to be devised to generate
neutrino masses.

• Popular lepton mixings and the neutrino oscillation data are not in harmony
with each other and an amendment is necessary.

• ∆m2
solar is smaller than ∆m2

atmos by two orders of magnitude. Also the mixing
angle θ13 is smaller than the other two mixing angles θ23 and θ12.

This entire package will be addressed in our works. The operational concept behind
this enterprise was to construct models for realistic neutrino masses and mixings
using a two-component Lagrangian one of the dominant kind, other of the sub-
dominant nature. The dominant contribution was characterised by observed values
∆m2

atmos and vanishing ∆m2
solar in all the cases we have analysed. The mixing in the

neutrino sector for this contribution varied from project to project but our choices
were limited to the popular lepton mixings viz. TBM, BM, GR or NSM. Needless
to mention such a dominant scenario is not in consonance with the experimental
observations. The role of the sub-dominant component was to tinker the values of
the mass square splittings and mixings so as to concord with the oscillation data.

Guided by the last observation in the list of highlights, in Chapter 2 we did a model
independent investigation of the viability of this scheme [24, 32] for the dominant
contribution with all the four mixing patters which was specified by ∆m2

solar =
0, θ13 = 0 and a sub-dominant correction could yield non-zero values of these two
oscillation parameters allowed by the data. Being derived from the same source i.e.,
the sub-dominant contribution, the solar splitting and θ13 get interrelated which
in its turn put bounds on the parameters comprising this contribution leading to
interesting consequences and observable predictions of δ for all the four mixing
patterns (Fig. 2.5).

In Chapter 3 we have considered a dominant contribution of NSM kind i.e., in
addition to ∆m2

solar = 0, θ13 = 0, we had θ12 = 0 and θ23 = π
4
. Again a

sub-dominant contribution was capable of nudging these values of the oscillation
paramerters into the ranges allowed by the oscillation observations. The dominant
contribution was an outcome of the Type II seesaw mechanism whereas the sub-
dominant one was obtained by employing Type I seesaw [33–36].

In order to establish that the mass matrices used in Chapter 3 are not entirely
arbitrary but a result of some underlying symmetry of the Lagrangian, in Chapter
4 we imposed the discrete group symmetry A4 on it [37]. No soft symmetry
breaking was allowed. Symmetry was broken only spontaneously when the scalars
acquired their vev to give the masses to the charged leptons and the neutrinos. The
model could predict octant of θ23, effective mass for 0ν2β i.e., |mνeνe | as functions
of the lightest neutrino mass (Fig. 4.2) as well as the CP phase δ (Fig. 4.3). The
predictions of CP phase δ of our model is in agreement with NOνA observation of
δ preference towards −π

2
.
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In Chapter 5, the discrete flavour symmetry S3 was appointed to obtain the mass
matrices44. The dominant Type II seesaw contribution with vanishing solar split-
ting was studied for all the four mixing patterns [38]. A Type I seesaw sub-
dominant contribution was capable of providing the necessary corrections to obtain
the oscillation parameters in the desired data allowed range. Our model has several
testable predictions including the CP phase δ for all the four mixing patterns (Fig.
5.2).

Departure of experimental observations in future from the predictions obtained
from our models can rule them out. Thus our models are testable in the light of
recent oscillation data. Both the models had rich scalar sectors that were scruti-
nised to the extent of local minimization in the appendices of Chapters 4, 5.

44Here also soft symmetry breaking was prohibited.
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Chapter 2

Model independent formalism I

2.1 Introduction

This chapter is based on our works presented in the references [24, 32]. The mea-
surement [15, 39] of a non-zero θ13 which is small compared to the other neutrino
mixing angles created a stir in the world of particle physics.

The Daya Bay collaboration after 127 days exposure had obtained for θ13 [39]

sin2 2θ13 = 0.089± 0.010 (stat)± 0.005 (syst) (Daya Bay) (2.1)

and from the RENO experiment with 229 days data [40] it had been reported

sin2 2θ13 = 0.113± 0.013 (stat)± 0.019 (syst) (RENO) (2.2)

The Double Chooz [41], MINOS [42], and T2K [10] experiments also determined
sin2 2θ13, all consistent with the above but with larger uncertainties45.

Earlier there already was in place a strong upper bound on this angle [43]. The
measured value is close to this limit, leading to θ13 getting referred to occasionally
as ‘large’. Now that in the lepton sector, as for the quarks, all three mixing
angles are non-zero the door has been opened for CP violation46. Many alternative
strategies are being considered to explore leptonic CP violation as well as mixing
and the future prospects are rich.

The other face of the neutrino sector is the mass spectrum. Indeed, from the
several oscillation studies at accelerators and reactors complementing the solar
and atmospheric neutrino measurements the mass splittings are now very well
established though the absolute mass remains an unknown. From 1σ global fits
the currently favoured values of the neutrino mixing parameters are [44, 45]:

∆m2
21 = (7.50+0.18

−0.19)× 10−5 eV2, θ12 = (33.36+0.81
−0.78)

◦,

45For current 3σ global fit value of θ13 see Eq. (1.24)
46CP violation in the heavy neutrino sector could be the origin of matter-antimatter asymmetry

through leptogenesis.
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|∆m2
31| = (2.473+0.070

−0.067)× 10−3 eV2, θ23 = (40.0+2.1
−1.5 ⊕ 50.4± 0.13)◦

θ13 = (8.66+0.44
−0.46)

◦, δ = (300+66
−138)

◦ . (2.3)

Recall that the atmospheric mixing angle, θ23, is no longer consistent with maximal
mixing (θ23 = π/4) at 1σ. There are best fit values in both the first and second
octants; determining the θ23 octant is one of the priorities of future experiments. In
this chapter to simplify the discussion and minimize parameters we will nonetheless
take θ23 = π/4. We comment on the effect of the small departure from maximality
on the results. In the global fit θ12 is also large but not maximal while θ13 is the
smallest of the three. Another noteworthy feature here is that the solar splitting
is about two orders of magnitude smaller than the atmospheric splitting47. Thus
it is useful to define Rmass ≡ |∆m2

21/∆m
2
31| = (3.03± 0.16)× 10−2.

The non-zero value of θ13 close to its upper bound (‘large’) and yet small compared
to the other mixing angles has attracted a great deal of attention from diverse
angles. We list a sampling of this body of literature. For example, the role of
µ − τ symmetry [46], see-saw models [47], charged lepton contributions [48], and
renormalization group effects [49] are among the avenues explored. A perturbative
approach has been espoused in [50]. Other attempts have been based on diverse
discrete symmetries [51, 52].

In this work we seek to address the following question: Is it possible that at some
level the small quantities, the ratio Rmass and θ13, are vanishing

48 and that a single
perturbation induces the observed non-zero values for both? The answer is in the
affirmative. To our knowledge, this result was pointed out for the first time through
a specific example in [54]. Here, we make an exhaustive analysis and show that the
existence (or not) of a viable solution depends on two factors: the ordering of the
neutrino masses and the mass of the lightest neutrino, m0. For normal ordering,
for a large choice of parameters the requirements can be met49. The perturbation
can be real or complex. In the latter case, CP violation is present. The inverted
ordering is less favoured if the perturbation is real. In this case one would have to
admit significant differences in the sizes of the matrix elements of the perturbation
to get satisfactory solutions.

This chapter is structured as follows. In the next section we set up the framework
for our discussion. In the following section we elaborate on the degenerate pertur-
bative mechanism which we will adopt. Next we discuss to what extent the global
fits of the mixing parameters constrain the choice of the perturbation. Our main
results are presented in the following section where we show the allowed ranges
of the perturbation matrix for the two mass orderings and the predictions for CP
violation. We then briefly indicate how the perturbation can arise from a mass
model. We end this chapter with some discussions.

47In [44] for inverted ordering a best-fit value of ∆m2
32 has been given. It is consistent to within

1σ with the best-fit value of |∆m2
31| we have cited from their normal ordering fits.

48This may arise from a symmetry such as O(2) [53].
49An earlier work relating θ13 to the solar oscillation parameters which favoured normal mass

ordering can be found in [55].
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2.2 Neutrino mass and mixing scenarios

We restrict ourselves to the case of three flavours of neutrinos. We also work in
a basis where the charged lepton mass matrix is diagonal. In this basis the entire
lepton mixing resides in the neutrino mass matrix, see Eq. (1.3).

Our starting point will be the unperturbed Majorana neutrino mass matrix, M0,
which is always symmetric. We choose a form such that the solar splitting is absent;
i.e., in the mass basis one has

(M0)mass = diag(m
(0)
1 ,m

(0)
1 ,m

(0)
3 ). (2.4)

For a specific mass ordering, the lightest neutrino mass, m0, determines m
(0)
1 and

m
(0)
3 . As already noted it is useful to define50 m± = (m

(0)
3 ±m

(0)
1 ). m− is positive

(negative) for normal (inverted) mass ordering.

In the flavour basis the mass matrix becomes:

(M0)flavour = U0



m

(0)
1

m
(0)
1

m
(0)
3


U0T , (2.5)

where U0 is the lowest order leptonic mixing matrix. The columns of U0 are the
unperturbed flavour eigenstates. Neutrino mass models lead to predictions for U0

of which three often-discussed variants are the Tribimaximal, Bimaximal, and the
Golden Ratio forms. Each of these imply θ13 = 0 and θ23 = π/4. They differ only
in θ12. We will consider them in turn along with a further option where there is
no solar mixing to start with.

Our goal is to check whether in each case a perturbation mass matrix, M ′ (also
symmetric), can be identified which will add corrections to M0 and U0 leading to
mass splittings and mixing angles in agreement with observations, in particular
that the correct ∆m2

21 and θ13 are realized.

2.2.1 General parametrization for popular lepton mixings

A vivid analysis about the popular lepton mixings can be found in Sec. 1.1.3. In
general as long as θ13 = 0 and the atmospheric mixing is maximal (θ23 = π/4) the
leptonic mixing matrix can be parametrized as51:

U0 =




b a 0

−a/
√
2 b/

√
2

√
1
2

a/
√
2 −b/

√
2
√

1
2


 , (2.6)

50We take m
(0)
i (i = 1, 3) to be real and positive. This can be accomplished by a suitable choice

of the Majorana phases.
51This form has appeared earlier in the literature, e.g. [56].
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Mixing Global fit 1σ Global fit 3σ TBM BM GR
parameter amin amax amin amax

a 0.539 0.561 0.515 0.585 0.577 0.707 0.526

Table 2.1: The limits on the mixing parameter a ≡ sin θ012 as obtained from the global fit.
The values of a for the TBM, BM, and GR forms are also shown. For NSM case a = 0.

with
a2 + b2 = 1. (2.7)

For the above U0 the solar mixing angle52 is given by tan θ012 = a/b. The experi-
mentally determined range of θ12 in Eq. (2.3) corresponds to 0.539 ≤ a ≤ 0.561 at
1σ. In Table 2.1 we list the allowed range of a from the global fit and its values in
the TBM, BM, and the GR models. Finally, we also examine the possibility that
the unperturbed mixing matrix has a = 0. This would imply one degenerate state
decoupled and the other maximally mixed to the third (nondegenerate) state. For
this choice θ012 = 0. Another case with one decoupled degenerate state is b = 0 for
which θ012 = π/2. These cases give identical physics results.

As noted, the unperturbed matrix, M0, is such that the solar splitting is absent
and two eigenvalues are degenerate. Due to this degeneracy the two corresponding
eigenstates are non-unique. The perturbation, M ′, which splits the degeneracy
determines the actual eigenstates which will be rotated with respect to the first
two columns of U0 – Eq. (2.6) – by an angle ζ also determined by M ′. Therefore,
on inclusion of the perturbation we have a resultant solar mixing angle given by
θ12 = θ012 + ζ.

2.3 Perturbation Strategy

In this chapter we work in the mass basis unless explicitly mentioned otherwise.
Our discussion will involve only first order perturbative corrections. The pertur-
bation M ′ is a (3 × 3) symmetric matrix which could be real or complex. These
two cases will be treated sequentially. The former provides a good starting point
for the latter.

After removing an irrelevant constant part the perturbation, M ′, can be written
as:

M ′ = m+




0 γ ξ
γ α η
ξ η β


 . (2.8)

52Note that in this chapter we are renaming cos θ012 and sin θ012 as b and a respectively so that
the equations look less cumbersome as can be easily read off by comparing Eq. (2.6) with Eq.
(1.25).
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2.3.1 Real Perturbation

In this case all entries in the matrix M ′ are real. For perturbation theory to
be acceptable the dimensionless entities α, β, γ, ξ, η should be small compared to
unity. Taken together with the unperturbed M0 – Eq. (2.4) – at lowest order the
perturbation will induce the solar oscillation parameters through α and γ; θ13 will
be determined by ξ and η; while β will result in a small correction to m

(0)
3 .

2.3.2 Complex Perturbation

If M ′ is complex symmetric then it is not hermitian53. In such an event one takes
the hermitian combination (M0 +M ′)†(M0 +M ′) and considers M0†M0 as the
unperturbed term and H ′ ≡ (M0†M ′ +M ′†M0) as the lowest order perturbation.

The unperturbed eigenvalues will now be (m
(0)
i )2 and the perturbation matrix with

f(ϕ) = m+Re(ϕ) + i m−Im(ϕ) is given by

H ′ = m+




0 2m
(0)
1 Re(γ) f ∗(ξ)

2m
(0)
1 Re(γ) 2m

(0)
1 Re(α) f ∗(η)

f(ξ) f(η) 2m
(0)
3 Re(β)


 . (2.9)

The imaginary parts of α, β, and γ do not appear in Eq. (2.9). However, they do
contribute at higher order via the M ′†M ′ term.

2.4 Relating elements of M ′ to the data

We look for solutions which are consistent with the global neutrino parameter fits
up to 1σ. In particular, the solar mass splitting and θ13 must both emerge from
the perturbation. We discuss these aspects now.

2.4.1 The solar mixing angle

Due to the degeneracy, to lowest order, the solar mass splitting is obtained via the
(2×2) submatrix of the perturbation,M ′, in the space of the first two generations.
For real M ′ in terms of r = γ/α from Eq. (2.8) this submatrix is:

M ′
(2×2) = m+α

(
0 r
r 1

)
for Real M ′ . (2.10)

If M ′ is complex then r = Re(γ)/Re(α) and

(M0†M ′ +M ′†M0)(2×2) = 2m+m
(0)
1 Re(α)

(
0 r
r 1

)
for Complex M ′ . (2.11)

53M0 is hermitian by construction.
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Parameter TBM BM GR NSM
rmin rmax rmin rmax rmin rmax rmin rmax

r (×102) -4.59 -1.95 -23.1 -19.9 1.54 4.18 108 125

Table 2.2: The range of the off-diagonal entry, r = γ/α, in the 2×2 submatrix of the
perturbation (see Eqs. (2.10, 2.11)) for the TBM, BM, and GR alternatives that produces a
θ12 consistent with the global fits at 1σ. The NSM alternative is also noted.

If r = 0 thenM ′ will produce a mass splitting but will not change the solar mixing.
For r non-zero the eigenstates are rotated from those in U0 through an angle ζ
given by

ζ =
1

2
tan−1(2r) , (2.12)

independent of the prefactor of the matrix. As noted, the Tribimaximal, Bimaximal
and Golden Ratio mixing models do not satisfy the currently measured value of
θ12 within 1σ. Therefore for these cases we choose r 6= 0 in such a manner that
when the mass degeneracy is removed the mixing angle is tweaked to within the
allowed range. In Table 2.2 we show the ranges of r for each of the three models
that result in θ12 values consistent with observations. It is noteworthy that r is
small in every case (but for the NSM alternative when it is O(1)). Since it is a
ratio of two elements of the perturbation matrix it could, in principle, be O(1).
The smallness can be traced to the fact that as r → 0 the mass matrix in the
flavour basis exhibits a Z2 × Z2 symmetry54 of the unperturbed model generated
by:

U1 = 1− 2




a2 ab/
√
2 −ab/

√
2

ab/
√
2 b2/2 −b2/2

−ab/
√
2 −b2/2 b2/2


 and

U2 = 1− 2




b2 −ab/
√
2 ab/

√
2

−ab/
√
2 a2/2 −a2/2

ab/
√
2 −a2/2 a2/2


 . (2.13)

Before closing this subsection it is worth noting that to lowest order in degenerate
perturbation theory the first two eigenstates are:

|ψ1〉 = cos ζ






b
−a/

√
2

a/
√
2


− ξ̄




0
1/
√
2

1/
√
2




− sin ζ






a
b/
√
2

−b/
√
2


− η̄




0
1/
√
2

1/
√
2




 ,

(2.14)

|ψ2〉 = sin ζ






b
−a/

√
2

a/
√
2


− ξ̄




0
1/
√
2

1/
√
2




+ cos ζ






a
b/
√
2

−b/
√
2


− η̄




0
1/
√
2

1/
√
2




 ,

(2.15)

54This is often a subgroup of a larger symmetry such as A4.
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with ζ defined in Eq. (2.12) and

ξ̄ =

(
m+

m−

)
ξ, η̄ =

(
m+

m−

)
η for Real M ′, (2.16)

and

ξ̄ =

(
m+

m−

)
Re(ξ)+i Im(ξ), η̄ =

(
m+

m−

)
Re(η)+i Im(η) for ComplexM ′ . (2.17)

2.4.2 The solar mass splitting

The solar mass splitting is determined by the eigenvalues of the submatrix in Eqs.
(2.10) and (2.11).

For real M ′ the first order corrections to the degenerate eigenvalues are:

m
(1)
2,1 = m+ α

2

[
1±

√
1 + 4r2

]
. (2.18)

Identifying the heavier eigenvalue with m2, as required by the solar data, one has:

m2
2 −m2

1 = 2m+m
(0)
1 α

√
1 + 4r2 . (2.19)

Up to small perturbative corrections m+m− gives the atmospheric mass splitting.
Hence:

Rmass = |(m2
2 −m2

1)/(m
2
3 −m2

1)| = 2
m

(0)
1

|m−| α
√
1 + 4r2 . (2.20)

For complexM ′ the corrections are to the squared masses and one directly obtains
Eqs. (2.19) and (2.20) but for the replacement α → Re(α).

We will return to this equation when we discuss numerical estimates of the element
α.

2.4.3 Generating θ13 6= 0

Using first order degenerate perturbation theory the corrected wave-function |ψ3〉
is given by:

|ψ3〉 =




0
1/
√
2

1/
√
2


+ ξ̄∗




b
−a/

√
2

a/
√
2


+ η̄∗




a
b/
√
2

−b/
√
2


 . (2.21)

To minimize the number of free parameters we will restrict ourselves to only those
perturbations which leave the atmospheric mixing angle θ23 fixed at the maximal
value55 of π/4. This gives the relationship:

(
ξ̄

η̄

)∗

=
b

a
(2.22)

55We remark about deviations from maximal mixing at the end.

30



Since a and b are real Eq. (2.22) implies that ξ̄ and η̄ and hence ξ and η have the
same phase. Comparing with Eq. (1.15) one then has:

sin θ13 e
−iδ =

[
b ξ̄∗ + a η̄∗

]
=
ξ̄∗

b
, (2.23)

where we have used (a2 + b2) = 1.

For real M ′ one has δ = 0. Hence, from Eq. (2.16)

ξ =

(
m−

m+

)
b sin θ13 . (2.24)

In the next section, these formulae will be used to relateM ′ to the neutrino masses
and mixings.

2.5 Results

We now have all the ingredients in place to determine the full perturbation matrix
and extract the consequences. Once the neutrino mass ordering is chosen and the
lightest neutrino mass, m0, specified, the unperturbed mass spectrum is fixed. The
matrix element α is determined from the solar splitting through Eq. (2.20). The
element β makes a small contribution (a few per cent) to the atmospheric neutrino
splitting and does not affect the physics at hand and so will not be pursued any
further in this section. γ is fixed by the ratio r (see Table 2.2). Finally, ξ and η are
determined through Eqs. (2.22) - (2.24). The question to be examined, for each
of the popular mixing patterns for both mass ordering options, is for what range
of m0 are these matrix elements of acceptable magnitude as a perturbation?

2.5.1 Real perturbation

First we consider M ′ real which amounts to δ = 0 and CP conservation. In this
case one can determine the dependence of α on m0 using Eq. (2.20). Since ξ and
η are proportional to each other – see Eq. (2.22) – presenting any one of them is
adequate. Here we present ξ (which is larger than (equal to) η for the TBM and
GR (BM) mixing models) as a function of m0 as obtained from Eq. (2.24).

Normal mass ordering

The results for normal ordering are in the left panel of Fig. 2.1. α is presented as a
function of the lightest neutrino mass m0. We have shown the case for r = 0. We
have verified that using the small values of r required to fit the solar mixing angle
θ12 for the popular models – see Table 2.2 – in Eq. (2.20) causes no perceptible
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Figure 2.1: α and ξ (inset) as a function of the lightest neutrino mass m0 for real M ′. The
left (right) panel is for normal (inverted) mass ordering. In the insets the region between
the two curves is allowed when θ13 is varied over its 1σ range. The results for ξ (∝ b) are

for Tribimaximal mixing (bTBM =
√

2
3 ∼ 0.816). The corresponding plots for Bimaximal

(bBM = 1√
2
= 0.707), Golden Ratio mixing (bGR =

√
φ√
5
∼ 0.851), and the NSM case

(b = 1) can be obtained by scaling.

change56 in α. r is larger for the NSM case and this effectively reduces α by a
factor of around 2. As expected, α diverges as m0 tends to zero.

In the inset we show ξ as a function of m0 for the 1σ limits of θ13. In these

plots b =
√

2
3
corresponding to Tribimaximal mixing. For the other commonly

considered alternatives – Bimaximal (b = 1√
2
) and Golden Ratio (b =

√
φ√
5
) mixing

– the ordinate should be scaled appropriately, see Eq. (2.24). For the NSM case
one must use b = 1.

At this stage one can identify a favoured region ofm0 by requiring that the elements
of M ′ – such as ξ and α – should be of similar order. For this purpose, we plot
in Fig. 2.2 the ratio |ξ/α| as a function of m0 (green solid curves). For easy
identification we have shown where this ratio corresponds to the values 3 and 1

3

(dot-dashed black lines), two limits separated by an order of magnitude. Notice
that for normal ordering the ratio is within the above limits only if 2.3×10−3 eV ≤
m0 ≤ 3.7× 10−2 eV. If from other experiments a larger value of m0 is determined
then that could be an indication that M ′ must be complex, as we discuss in the
following section. Recall that these curves are for Tribimaximal mixing. For the
Bimaximal (Golden Ratio) case the ξ/α curves will be lowered (raised) by about
13.35 % (4.28 %). For the NSM case α is reduced by a factor of about 2 while ξ is
enhanced by 25%. As an upshot ξ/α is 2.5 times larger, squeezing allowed m0 to
smaller values.

56The corrections are O(r2).
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Figure 2.2: The ratio |ξ/α| is plotted as function of the lightest neutrino mass m0 for both
mass orderings when the perturbation M ′ is real. The area between the two curves of the
same type is allowed when θ13 is varied over its 1σ range. Also indicated are the values 1

3
and 3 for |ξ/α| – black dot-dashed lines.

Inverted mass ordering

The results for inverted ordering appear in the right panel of Fig. 2.1. As before,
α as a function of m0 is shown for r = 0 while ξ for the 1σ range of θ13 is given
in the inset. As for normal ordering, inclusion in Eq. (2.20) of the small values
of r required to achieve the best-fit θ12 in the TBM, BM, and GR models causes
essentially no change in α. For the NSM case α is roughly halved. Once again, we

have used the TBM value b =
√

2
3
for the calculation of ξ. In this case ξ turns out

to be negative. The two curves in the ξ panel correspond to the 1σ limits of θ13.

The noteworthy difference from normal ordering is that α is about an order of
magnitude smaller than |ξ| for most of the range of m0. The brown dotted curves
in Fig. 2.2 depict the ratio |ξ/α| for inverted ordering. It is seen that they lie
outside the range of 1/3 to 3 for all m0 considered. Thus the inverted ordering
case would be a less favoured alternative for this picture if the perturbation is real.

2.5.2 Complex perturbation

We now turn to the case of complex M ′. If perturbation theory is to be meaning-
ful then we should expect the magnitudes of the different dimensionless complex
elements of M ′ to be small compared to unity. Barring fine tuning, they should
also be of roughly similar order. Below, we take a conservative stand and set:

α = ǫ exp(iφα), γ = ǫ exp(iφγ), ξ = ǫ exp(iφξ). (2.25)

The dimensionless quantity ǫ sets the scale of the perturbation. The phases φα, φγ

and φξ are left arbitrary57.

57The magnitude of η is determined through Eq. (2.22). ξ and η have the same phase.
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It is seen from Eq. (2.17) that

tan δ = tanφξ̄ =

(
m−

m+

)
tanφξ (2.26)

where φξ̄ is the phase of ξ̄.

As we elaborate in the following, the phase freedom still leaves room for some
flexibility. In particular, we will mostly focus on those ranges of m0 which are
disfavoured for realM ′ as they do not satisfy the chosen criterion 3 ≥ |ξ/α| ≥ 1/3.
We show that such m0 are accommodated for complex M ′.
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Figure 2.3: The limits on the scale of the perturbation, ǫ, for normal (left panel) and
inverted (right panel) mass orderings as a function of the lightest neutrino mass m0. The
upper (lower) limits from Eq. (2.27) for Tribimaximal mixing are the green dashed (blue
solid) curves. The region between the curves of the same type correspond to θ13 values in
the 1σ range. The dotted maroon curves are the lower limits from Eq. (2.28). Here r = 0
has been taken.

The choice of ǫ is not entirely arbitrary. In particular, Eq. (2.17) implies:

∣∣∣∣
m+

m−

∣∣∣∣ ǫ ≥ |ξ̄| ≥ ǫ . (2.27)

These limits are presented in the left (right) panel of Fig. 2.3 for the normal
(inverted) mass ordering. The upper and lower limits on ǫ are shown as the green
dashed and blue solid curves. The two curves of each type show how the limit
changes as θ13 is allowed to vary over its 1σ range. Tribimaximal mixing has been
assumed for these plots.

In addition, from Eq. (2.20) one has

ǫ ≥
∣∣∣∣∣

m−

2m
(0)
1

√
1 + 4r2

∣∣∣∣∣Rmass . (2.28)

The lower limit from this equation is indicated by the dotted maroon curves in
the two panels of Fig. 2.3. This limit is independent of both (a) the choice of θ13
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and (b) whether the mixing is of the Tribimaximal, Bimaximal, or Golden Ratio
nature. We have checked that the dependence on r is insignificant for the physics
calculations. It can be seen from the left (right) panel of Fig. 2.3 that for the
normal ordering (inverted ordering) for most values of m0 (for all values m0) the
lower limit on ǫ from ξ̄ is more restrictive. Guided by these results, in the following
we choose ǫ = 0.1, 0.05, and 0.025.

Normal mass ordering

From Fig. 2.2 it is seen that for real M ′ and normal mass ordering |ξ/α| is outside
the chosen range for m0 ≥ 0.04 eV. If M ′ is complex, α in Eq. (2.20) is replaced
by Re(α). Demanding that the solar splitting is correctly obtained fixes φα when
ǫ is chosen. The results are shown in the left panel of Fig. 2.4 for ǫ = 0.1, 0.05,
and 0.025.

One can conclude from Fig. 2.1 that as m0 increases Re(α) approaches zero. This
is reflected in Fig. 2.4 (left panel) where φα tends to π/2 asymptotically for all
choices of ǫ. For a particular ǫ the lightest neutrino mass m0 has a lower limit
set by Eq. (2.27) where the curves have been terminated. The corresponding φα

can be read off from Fig. 2.3 – cosφα is the ratio of the value of the dot-dashed
maroon curve to that of the blue solid curve at this m0. For these plots we have
taken r = 0; the small corrections O(r2) for the TBM, BM, and GR models are
insignificant. In the NSM case Re(α) is reduced to about half and so φα tends
closer to π/2. One should bear in mind that we have used the central value of
Rmass which has a ±5% uncertainty.
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Figure 2.4: φα (φγ) for a complexM ′ is shown as a function ofm0 for normal mass ordering
in the left panel (left panel inset) for three values of ǫ: in decreasing order of line-thickness
0.1, 0.05 and 0.025. In the right panel the same plots are displayed for inverted mass ordering.

As presented in Table 2.2, in the TBM, BM, and GR models the ratio r =
Re(γ)/Re(α) = cosφγ/ cosφα is tightly constrained from the solar mixing angle
θ12. Thus φγ also tends to π/2 as m0 increases and since r is small it does so faster
than φα. This can be seen from the inset in Fig. 2.4.
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δ is not a free parameter in this model. Rather, picking a value for θ13 amounts
to fixing |ξ̄| from Eq. (2.23). Now, by choice |ξ| = ǫ, hence from Eq. (2.17) one
can get φξ. This in turn determines the phase of ξ̄ which equals δ. The results
so obtained are presented in the left panel of Fig. 2.5 for the TBM (red solid),
BM (violet dashed), and GR (green dot-dashed) models for ǫ = 0.1. The brown
dotted curves are for a = 0, b = 1 i.e., NSM case. For each model the two curves
correspond to the 1σ upper and lower limits of θ13. It is worthwhile to point out
that the procedure for extracting δ using |ξ̄| leaves a two-fold uncertainty δ ↔ π+δ.
Keeping this in mind we have shown δ in the first quadrant in Fig. 2.5 even though
the 1σ range of the global fit – Eq. (2.3) – would prefer the partner π+ δ solution.

In the right panel of Fig. 2.5 we restrict to the case of Tribimaximal mixing and
show the dependence of δ on the scale of perturbation ǫ. The conclusion that can
be drawn from these panels is that δ is largely independent of the lightest neutrino
mass and varies over a limited region as θ13 covers its 1σ range or ǫ is varied.

A reparametrization invariant measure of CP violation is the Jarlskog parameter,
J [57]. For arbitrary mixing it turns out to be

J = Im[Ue1Uµ2U
∗
e2U

∗
µ1] =

1

4b

[
(b2 − a2) sin 2ζ + 2ab cos 2ζ

]
Im(ξ̄) , (2.29)

where in the last step only the lowest order perturbation effect is retained. In the
inset of the right panel of Fig. 2.5 we show this CP violation measure as a function
of m0. Note that J changes sign under δ → π + δ. We remark at this stage that
for the b = 0 case J = 0.
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Figure 2.5: In the left panel δ for different models is plotted for the 1σ limiting values of
θ13, namely, 9.1◦ (thick curves) and 8.2◦ (thin curves). ǫ has been taken to be 0.1. The right
panel is for the TBM model. Three values of ǫ are chosen – in decreasing order of thickness ǫ
= 0.1, 0.05, 0.025 – and θ13 is taken at the best-fit value. In the inset is shown the Jarlskog
parameter J for the chosen ǫ and the 1σ limits of θ13. Both panels are for normal mass
ordering. For inverted ordering δ → (π − δ) and J is unchanged.
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Inverted mass ordering

The analysis procedure for inverted mass ordering is essentially the same. In the
right-panel of Fig. 2.4 we show φα (with φγ in the inset) as a function of m0. The

difference from normal ordering arises due to the appearance of m
(0)
1 in Eq. (2.20)

which is larger in this case. Hence, φα and φγ remain closer to π/2 for all m0.
The determination of δ using Eqs. (2.23) and (2.26) on the other hand involves

only m± and not m
(0)
i . Consequently, it can be seen from Eq. (2.26) that for any

m0 the CP phase in the inverted and normal mass orderings are simply related by
δ ↔ (π − δ). J remains unchanged. So, δ and J for the inverted mass ordering
can be read off from Fig. 2.5.

2.6 Mass models

The discussion thus far has not been tied to any specific model for neutrino masses.
We restrict ourselves to just a few remarks here. The perturbation matrix in the
flavour basis58 corresponding to the general form of the mixing matrix in Eq. (2.6)
is:

(M ′)flavour = m+




a2α χ −
√
2abα + χ

χ (b2α + β)/2 (−b2α + β)/2
−
√
2abα + χ (−b2α + β)/2 (b2α + β)/2


 (2.30)

where use has been made of Eq. (2.22) and we have set χ = (abα + bξ + aη)/
√
2.

Attempting to relate the above matrix in its general form to the popular mass
models will take us beyond the scope of this chapter. Rather, we indicate here a
limit when it can arise from a Zee-type model [58]. The required condition is:

β = α(2− 3b2) (2.31)

It is seen using Eq. (2.7) that for this choice the diagonal elements of (M ′)flavour

become equal and can be subsumed in the unperturbed matrix. The remaining
terms can be obtained from a Zee-type model59. In these models (M ′)flavourij is
proportional to (M2

i − M2
j ), Mi (i = 1, 2, 3) being the charged lepton masses.

Since mτ ≫ mµ ≫ me, without unnatural fine-tunings one would prefer χ to
be much smaller than the other elements of the matrix. This was already noted
earlier [54]; further details and references can be found therein. An explicit A4
based model which exhibits most of these features is given in [52].

For Tribimaximal mixing, i.e., a = 1√
3
and b =

√
2
3
, Eq. (2.31) amounts to

taking β = 0. For Bimaximal mixing (a = b = 1√
2
) it is accomplished with the

58As noted, γ is small compared to the scale of the perturbation fixed by α, ξ, and η. In this
section, we neglect γ.

59An alternate derivation of θ13 6= 0 using the Zee model can be found in [59].

37



choice β = α/2. For the Golden Ratio mixing (a =
√

1√
5φ
, b =

√
φ√
5
) the choice

β = α(φ− 2)/(2φ− 1) brings (M ′)flavour to the Zee form.

2.7 Conclusion

The neutrino mass spectrum and the mixing angles exhibit two noteworthy fea-
tures: the mixing angle θ13 is small compared to the the other two angles, namely,
θ12 and θ23, and the solar mass splitting is two orders of magnitude smaller than
the atmospheric splitting, Rmass = |∆m2

21/∆m
2
31| ≃ 10−2. We show that both of

these small quantities could be the result60 of a perturbation of a simpler partially
degenerate neutrino mass matrix (m

(0)
1 = m

(0)
2 ) along with a mixing matrix, U0,

which has θ13 = 0.

The perturbation matrix can be chosen to be real only if the neutrino mass ordering
is normal and the lightest neutrino mass, m0, less than about 0.04 eV. In this case
there will be no CP violation in the lepton sector.

For larger values of m0 the pertubation M ′ has to be complex. We show that
depending on the overall scale of the perturbation, which we have indicated by ǫ,
the CP phase, δ, is calculable and could be near maximal (δ = π/2, 3π/2) in some
cases. CP violation varies for the different popular models – e.g., Tribimaximal,
Bimaximal, Golden Ratio, etc. It depends significantly on ǫ – a smaller perturba-
tion resulting in a smaller δ – but is essentially independent of m0. It also varies
with θ13 – in the Tribimaximal model the current 1σ (3σ) range of θ13 translates
to about 10◦ (35◦) variation in δ.

In this chapter we have taken the atmospheric mixing to be maximal (θ23 = π/4).
The current best-fit values are in the two adjoining octants, both more than 1σ
away from maximality. We have repeated the analysis using these two best-fit
values of θ23. We find that the CP violation effects are changed by less than 10%
in both cases61.

As they stand, none of the popular mixing models are consistent with the current
value of θ12 at 1σ. We ensure that for every model the perturbation takes care of
this shortcoming. In passing, we also consider the possibility that in the unper-
turbed case θ12 = 0 in addition to the vanishing θ13. In such a scenario, both these
angles arise from the perturbation. In this case δ is the smallest among all models.

Neutrino mass matrices which exhibit the features of the unperturbed mass matrix
are common in the literature. The perturbative contribution can arise from a sub-
dominant loop contribution from a Zee-type model.

60An attempt to generate the solar splitting and θ13 at low energies starting from a partially
degenerate mass spectrum and θ13 = 0 at a high scale through renormalization group effects in
a supersymmetric model has been made in [60].

61Models have been proposed where the deviation of θ23 from maximality is correlated with
the value of θ13 [61].
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Chapter 3

Seesaw based model independent
analysis

3.1 Introduction

This chapter is based on our publications [33, 34] and the conference proceedings
[35,36]. In the previous chapter we have presented a perturbative scheme by which,
through a two-component formalism, one can reproduce the known neutrino masses
and mixing angles. In this chapter we show that seesaw mechanism provides a
framework in which these ideas can be implemented in a natural way. Here we
restrict ourselves to the NSM scenario. It is unique in the sense that the mixing
angles are initially either maximal, namely π/4 (θ23), or zero (θ13, θ12) and the
solar splitting absent. In this spirit, here a proposal is put forward under which
the atmospheric mass splitting and maximal mixing in this sector arise from a
zero-order mass matrix while the smaller solar mass splitting and realistic θ13 and
θ23 are generated by a Type I seesaw [62] which acts as a perturbation. θ12 also
arises out of the same perturbation and as a consequence of degeneracy is not
constrained to be small.

The three non-zero mixing angles open the possibility of CP violation in the lepton
sector62. This model accommodates a CP phase δ which must be close to maximal
(δ ∼ π/2, 3π/2) if the neutrinos have an inverted mass ordering or if they are
quasidegenerate [33]. Earlier work which partially address similar issues can be
traced to [63,64], but to our knowledge this is the first time that all the small pa-
rameters have been shown to have the same perturbative origin and are consistent
with the latest data.

62For the lepton mixing matrix the standard PMNS form is used, see Eq. (1.15)
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3.2 The model

The unperturbed neutrino mass matrix in the mass basis is M0 =
diag{m(0)

1 ,m
(0)
1 ,m

(0)
3 } with the mixing matrix of the form

U0 =




1 0 0

0
√

1
2

√
1
2

0 −
√

1
2

√
1
2


 . (3.1)

Here ∆m2
atm = (m

(0)
3 )2 − (m

(0)
1 )2. By suitably choosing the Majorana phases the

masses m
(0)
1 ,m

(0)
3 are taken to be real and positive. The columns of U0 are the

unperturbed flavour eigenstates63. As stated, ∆m2
solar = 0 and θ13 = 0. Since the

first two states are degenerate in mass, one can also take θ12 = 0. It is possible
to generate this mass matrix from a Type II seesaw as we will see from the next
chapter onwards.

In the flavour basis the neutrino mass matrix is (M0)flavour = U0M0U0T which in

terms of m± = m
(0)
3 ±m

(0)
1 is

(M0)flavour =
1

2




2m
(0)
1 0 0
0 m+ m−

0 m− m+


 . (3.2)

A smaller additional contribution, which we include perturbatively, is obtained by
a Type I seesaw. To reduce the number of independent parameters, in the flavour
basis the Dirac mass term is taken to be proportional to the identity, i.e.,

MD = mD I . (3.3)

This choice completely determines the right-handed flavour basis although the form
of M flavour

R can be chosen at will to suit our purpose. In the interest of minimality
we seek symmetric matrices with the fewest non-zero entries. Five texture zero
matrices fail the invertibility criterion64 and therefore are not pursued. Next we
try four texture zero options. By examining the different alternatives it can be seen
that all the perturbation goals that we have set for ourselves could be achieved by
only two such candidates out of which one is scripted below65:

M flavour
R = mR




0 xe−iφ1 0
xe−iφ1 0 0

0 0 ye−iφ2


 , (3.4)

where x, y are dimensionless constants ofO(1). The Dirac mass is kept real without
any loss of generality.

63In the flavour basis the charged lepton mass matrix is diagonal.
64Existence of the inverse of MR is an essential condition for the see-saw mechanism.
65The other alternative is a mere 2 ↔ 3 exchange of this configuration and the corresponding

results vary only up to a relative sign.
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3.3 Real MR (φ1 = 0 or π, φ2 = 0 or π)

As a warm-up consider first the real case, i.e., φ1 = 0 or π, φ2 = 0 or π. For
notational convenience in the following the phase factors are not displayed; instead
x (y) is taken as positive or negative depending on whether φ1 (φ2) is 0 or π.

The Type I seesaw contribution in the mass basis is:

M ′mass = U0T
[
MT

D(M
flavour
R )−1MD

]
U0 =

m2
D√

2 xymR




0 y y
y x√

2
− x√

2
y − x√

2
x√
2


 .

(3.5)

The effect on the solar sector is governed by the submatrix ofM ′mass in the subspace
of the two degenerate states,

M ′mass
2×2 =

m2
D√

2 xymR

(
0 y
y x/

√
2

)
. (3.6)

To first order in the perturbation:

tan 2θ12 = 2
√
2
(y
x

)
. (3.7)

For y/x = 1 one obtains the Tribimaximal mixing value of θ12 which, though
allowed by the data66 at 3σ, is beyond the 1σ region. Since for the entire range
of θ12 one has tan 2θ12 > 0, x and y must be chosen of the same sign. Therefore,
either φ1 = 0 = φ2 or φ1 = π = φ2. Furthermore, the allowed values of θ12 are such
that one has sin 2θ12 > 0 and cos 2θ12 > 0. This rules out the second option, i.e.,
only x, y > 0 is allowed. From the global fits to the experimental results one finds:

0.695 <
y

x
< 1.112 at 3σ . (3.8)

Further, from eq. (3.6),

∆m2
solar =

m2
D

xymR

m
(0)
1

√
x2 + 8y2 . (3.9)

To first order in the perturbation the corrected wave function |ψ3〉 is:

|ψ3〉 =




κ
1√
2
(1− κ√

2
x
y
)

1√
2
(1 + κ√

2
x
y
)


 , (3.10)

where

κ ≡ m2
D√

2 xmRm−
. (3.11)

66We use the 3σ ranges 7.02 ≤ ∆m2
21/10

−5 eV2 ≤ 8.08 and 31.52◦ ≤ θ12 ≤ 36.18◦ as in Eq.
(1.24).
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As x is positive the sign of κ is fixed by that of m−. Since by convention all the
mixing angles θij are in the first quadrant, from Eq. (3.10) one must identify:

sin θ13 cos δ = κ =
m2

D√
2 xmRm−

, (3.12)

where the PMNS phase δ = 0 for normal mass ordering and δ = π for inverted
mass ordering. Needless to say, both these cases are CP conserving. We show later
that the IO case cannot satisfactorily fit the observations.

An immediate consequence of Eqs. (3.12), (3.7), and (3.9) is

∆m2
solar = m−m

(0)
1

4 sin θ13 cos δ

sin 2θ12
, (3.13)

which exhibits how the solar sector and θ13 are intertwined. The positive sign of
∆m2

solar, preferred by the data, is trivially verified since m− sin θ13 cos δ > 0 from
Eq. (3.12). However, Eq. (3.13) excludes inverted ordering. Once the neutrino
mass square splittings, θ12, and θ13 are chosen, Eq. (3.13) determines the lightest

neutrino mass, m0. Defining z = m−m
(0)
1 /∆m2

atm and m0/
√

|∆m2
atm| = tan ξ, one

has

z = sin ξ/(1 + sin ξ) (normal ordering),

z = 1/(1 + sin ξ) (inverted ordering) . (3.14)

It is seen that 0 ≤ z ≤ 1/2 for NO and 1/2 ≤ z ≤ 1 for IO, with z → 1/2
corresponding to quasidegeneracy, i.e., m0 → large, in both cases. From Eq. (3.13)

z =

(
∆m2

solar

|∆m2
atm|

)(
sin 2θ12

4 sin θ13| cos δ|

)
, (3.15)

with | cos δ| = 1 for real MR. As shown below, the allowed ranges of the oscillation
parameters imply z ∼ 10−2 and so inverted mass ordering is disallowed. The
remaining discussion in this section is confined to normal ordering only.

From Eq. (3.10) one further finds:

tan θ23 ≡ tan(π/4− ω) =
1− κ√

2
x
y

1 + κ√
2
x
y

, (3.16)

where, using Eqs. (3.7) and (3.12),

tanω =
2 sin θ13 cos δ

tan 2θ12
. (3.17)

θ23 is in the first octant, i.e., the sign of ω is positive as δ = 0.

In Fig. 3.1 the global-fit 3σ range of sin θ13 and tan 2θ12 is shown as the brown
dashed box with the best-fit value indicated by a red dot. Once the atmospheric
and solar mass splittings are fixed, for any point within this region Eq. (3.15)
determines a z, or equivalently an m0, which leads to the correct solar splitting.
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Figure 3.1: The brown dashed box is the global-fit 3σ allowed range of sin θ13 and tan 2θ12.
The best-fit point is shown as a red dot. The green dotted curve is from Eq. (3.13) with
m0 = 2.5 meV when the best-fit values of the two mass-splittings are used. The portion
below the blue solid straight line is excluded by θ23 at 3σ – Eq. (3.17) – for the first octant.
In case of inverted ordering no solution of Eq. (3.13) is allowed for real MR.

From the 3σ data in Eq. (1.24) ωmin = 0 and ωmax = 6.4◦ for the first octant. As
cos δ = 1 for the real MR case, in this model one has from Eq. (3.17) ω ≥ 5.14◦ at
3σ. Thus the range of θ23 that can be obtained is rather limited67. The blue solid
straight line is from Eq. (3.17) for ωmax. The region below this line is excluded in
this model.

Using the 3σ global-fit limits of θ13 and θ12, from Eq. (3.15) one gets zmax =
6.03× 10−2 implying that (m0)max = 3.10 meV. Also, consistency with both Eqs.
(3.17) at ωmax and (3.15) sets zmin = 4.01 ×10−2 corresponding to (m0)min = 2.13
meV. If, as a typical example, m0 = 2.5 meV is taken and the best-fit values of
the solar and atmospheric mass splittings are used then Eq. (3.13) gives the green
dotted curve in Fig. 3.1.

In summary, for real MR the free parameters are m0, m
2
D/xmR and y with which

the solar mass splitting, θ12, θ13, θ23 in first octant are reproduced for normal mass
ordering. Inverted ordering cannot be accommodated.

3.4 Complex MR

Reverting now to complex MR in Eq. (3.4) one has in the mass basis in place of
Eq. (3.5):

M ′mass =
m2

D√
2xymR




0 yeiφ1 yeiφ1

yeiφ1 xeiφ2√
2

−xeiφ2√
2

yeiφ1 −xeiφ2√
2

xeiφ2√
2


 . (3.18)

67This range is excluded at 1σ for the first octant.
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x and y are now positive. M ′ is no longer hermitian. This is addressed, as usual,
by defining the hermitian combination (M0+M ′)†(M0+M ′) and treatingM0†M0

as the unperturbed term and H ′mass ≡ (M0†M ′ + M ′†M0) as the perturbation

to lowest order. The zero order eigenvalues are now (m
(0)
i )2 and the complex yet

hermitian perturbation matrix is

H ′mass =
m2

D√
2xymR




0 2m
(0)
1 y cosφ1 yf(φ1)

2m
(0)
1 y cosφ1

2√
2
m

(0)
1 x cosφ2 − 1√

2
xf(φ2)

yf ∗(φ1) − 1√
2
xf ∗(φ2)

2√
2
m

(0)
3 x cosφ2


 , (3.19)

where
f(ξ) = m+ cos ξ − im− sin ξ . (3.20)

The subsequent analysis is similar to the one for real MR.

The perturbation which splits the degenerate solar sector is the 2× 2 block of Eq.
(3.19). The solar mixing angle now is

tan 2θ12 = 2
√
2
y

x

cosφ1

cosφ2

. (3.21)

The limits of Eq. (3.8) apply on the ratio (y cosφ1/x cosφ2). Also, (cosφ1/ cosφ2)
must be positive. Furthermore, cosφ1, cosφ2 > 0, i.e., φ1, φ2 can be in the first or
the fourth quadrants.

Including first order corrections the wave function |ψ3〉 is

|ψ3〉 =




κf(φ1)/m
+

1√
2
(1− κ√

2
x
y
f(φ2)/m

+)
1√
2
(1 + κ√

2
x
y
f(φ2)/m

+)


 . (3.22)

κ is positive (negative) for NO (IO). One immediately has

sin θ13 cos δ = κ cosφ1 ,

sin θ13 sin δ = κ
m−

m+
sinφ1 . (3.23)

The sign of cos δ is positive (negative) for normal (inverted) mass ordering. Fur-
ther, sinφ1 determines the combination sin θ13 sin δ that appears in the Jarlskog
parameter, J . Note, φ2 plays no role in fixing the CP phase δ.

It is seen that for normal ordering (κ > 0) the quadrant of δ is the same as that of
φ1 i.e., the first or the fourth quadrant. For inverted ordering (κ < 0) δ is in the
second (third) quadrant if φ1 is in the first (fourth) quadrant.

θ23 obtained from Eq. (3.22) is

tan θ23 =
1− κ√

2
x
y
cosφ2

1 + κ√
2
x
y
cosφ2

, (3.24)
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Figure 3.2: θ23 (|mνeνe | in eV) as a function of the lightest neutrino mass m0 (in eV) is
shown in the left (right) panel. The blue (brown) curves are for the normal (inverted) mass
ordering. For every plot the region allowed at 3σ is between the thick curves while the thin
curves are for the best-fit values of the inputs. The solid (dashed) curves correspond to the
first (second) octant of θ23.

where, using Eqs. (3.21) and (3.23),

tanω =
2 sin θ13 cos δ

tan 2θ12
. (3.25)

Eq. (3.17) is recovered when cos δ = +1. As cos δ is positive (negative) for normal
(inverted) mass ordering, from Eq. (3.25) θ23 is in the first (second) octant.

A straight-forward calculation after expressing mD and mR in terms of sin θ13 cos δ,
yields

∆m2
solar = m−m

(0)
1

4 sin θ13 cos δ

sin 2θ12
, (3.26)

which bears a strong similarity with Eq. (3.13) for realMR. Eqs. (3.14) and (3.15)
continue to hold. Noting the factors determining the sign of cos δ, one concludes
that ∆m2

solar is positive for both mass orderings. Thus, satisfying the solar mass
splitting leaves room for either octant of θ23. The allowed range of δ can be easily
read off if we re-express Eq. (3.15) as:

| cos δ| =
(
∆m2

solar

|∆m2
atm|

)(
sin 2θ12
4 sin θ13 z

)
. (3.27)

In the following enterprise m0, θ13, and θ12 are taken as inputs and δ and θ23 are
obtained using Eqs. (3.27) and (3.25). From these the CP violation measure, J ,
and the combination |mνeνe | which determines the rate of neutrinoless double beta
decay are calculated.

In the left panel of Fig. 3.2 marked by the thick curves is shown the dependence of
θ23 on the lightest neutrino mass m0 when the neutrino mass square splittings and
the angles θ13 and θ12 are varied over their allowed ranges at 3σ. The thin curves
correspond to taking the best-fit values. The blue (brown) curves are for normal
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Figure 3.3: The CP phase δ is plotted as a function of m0 (in eV). Inset: The leptonic CP
violation measure J is shown. The conventions are the same as that of Fig. 3.2.

(inverted) mass ordering. For inverted ordering the thick and thin curves are very
close and cannot be distinguished in this figure. Notice that the 3σ predictions
from this model are not consistent with θ23 = π/4. Its range for inverted ordering
falls outside the 1σ global fits but are consistent at 3σ. An improvement in the
determination of θ23 will be the easiest way to exclude one of the orderings unless
one is in the quasidegenerate regime. For normal ordering the smallest value of
m0 is determined by the 3σ limit of θ23 in the first octant. Eq. (3.26) permits
arbitrarily small m0 for inverted mass ordering (see later).

In the right panel of Fig. 3.2 |mνeνe | has been plotted. The sensitivity of direct
neutrino mass measurements is expected to reach around 200 meV [19] in the near
future. Planned neutrinoless double beta decay experiments will also probe the
quasidegenerate range of m0 [65]. As can be seen from this figure, to distinguish
the two mass orderings at least a further one order improvement in sensitivity
will be needed. Long-baseline experiments or large atmospheric neutrino detectors
such as INO will settle the mass ordering more readily.

In Fig. 3.3 is displayed the variation of δ with m0 for both mass orderings while J
is shown in the inset. The conventions are the same as in Fig. 3.2. For NO (IO)
δ can be in first (second) or the fourth (third) quadrants and accordingly J has
positive or negative values. With this proviso in mind, Fig. 3.3 has been plotted
keeping δ in the first or second quadrant and J has been taken as positive. For
inverted mass ordering both δ and J remain nearly independent of m0.

For m0 smaller than 10 meV, the CP phase δ is significantly larger for inverted
ordering68. This could provide a clear test of this model when the mass ordering
is known and CP violation in the neutrino sector is measured. The real limit (δ
= 0) is seen to be admissible, as expected from Fig. 3.1, only for normal ordering
and that too not for the entire 3σ range.

68In fact for inverted ordering δ remains close to π/2 or 3π/2 for all m0.
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Since 0 ≤ z ≤ 1/2 for NO and 1/2 ≤ z ≤ 1 for IO, the allowed values of δ in
the two orderings as seen from Eq. (3.27) are complementary tending towards
a common value as z → 1/2, the quasidegenerate limit, which begins to set in
from around m0 = 100 meV. The main novelty from the real MR case is that
in Eq. (3.15) by choosing cos δ sufficiently small (in magnitude) one can make

z ≡ m−m
(0)
1 /∆m2

atm ∼ 1 so that solutions exist for m0 for inverted mass ordering
corresponding to even vanishing m0 unlike the case of normal ordering where the
lower limit of m0 is set by cos δ = 1, i.e., real MR.

We have checked that the size of the perturbation is at most around 20% of the
unperturbed contribution for all cases.

3.5 Conclusions

In conclusion, a model for neutrino masses has been proposed in which the atmo-
spheric mass splitting together with θ23 = π/4 has an origin different from that
of the solar mass splitting, θ12, θ13, and ω = π/4 − θ23, all of which arise from a
single perturbation resulting from a Type I seesaw. The global fits to the mass
splittings, θ12 and θ13 completely pin-down the model and the CP phase δ and the
octant of θ23 are predicted in terms of the lightest neutrino mass m0. Both mass
orderings are allowed, the inverted ordering being associated with near-maximal
CP violation. Both octants of θ23 can be accommodated; the first (second) octant
being associated with normal (inverted) ordering. Further improvements in the
determination of θ23, a measurement of the CP phase δ, along with a knowledge
of the neutrino mass ordering will put this model to test from several directions.
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Chapter 4

Seesaw model based on A4
symmetry

4.1 Introduction

This chapter is based on our paper [37]. As already noted in Chapter 1, many
neutrino oscillation experiments have established that neutrinos are massive and
non-degenerate and that the flavour eigenstates are not identical with the mass
eigenstates. For the three neutrino paradigm the two independent mass square
splittings are the solar (∆m2

solar) and the atmospheric (∆m2
atmos). The mass and

flavour bases are related through the PMNS matrix usually parametrized as:

U =




c12c13 s12c13 s13e
−iδ

−c23s12 + s23s13c12e
iδ c23c12 + s23s13s12e

iδ −s23c13
−s23s12 − c23s13c12e

iδ s23c12 − c23s13s12e
iδ c23c13


 , (4.1)

where cij = cos θij and sij = sin θij .

The recent measurement of a non-zero value for θ13 [66], which is small compared
to the other mixing angles, has led to a flurry of activity in developing neutrino
mass models which incorporate this feature. Earlier in Chapter 2 we had demon-
strated that a direction which bears exploration is whether two small quantities in
the neutrino sector, namely, θ13 and the ratio, R ≡ ∆m2

solar/∆m
2
atmos, could in fact

be related to each other, both resulting from a small perturbation. Subsequently
in Chapter 3, we had shown that it is possible to envisage scenarios where only the
larger ∆m2

atmos and θ23 = π/4 are present in a basic structure of neutrino mass and
mixing and the rest of the quantities, namely, θ13, θ12, the deviation of θ23 from
π/4, and ∆m2

solar all have their origin in a smaller seesaw induced perturbation69.
Obviously, this gets reflected in constraints on the measured quantities. A vanish-
ing θ13 follows rather easily from certain symmetries and indeed many of the newer
models are based on perturbations of such structures [67, 68].

69Early work on neutrino mass models where some variables are much smaller than others can
be found in [63].
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Encouraged by the success of this program we present a model based on the group
A4 which relies on the seesaw mechanism [62] in which the lightest neutrino mass,
m0, the seesaw scale and one other parameter determine θ13, R, θ12, and the
deviation of θ23 from π/4. If this last parameter is complex then the CP phase
δ is also a prediction. Here, the atmospheric mass splitting is taken as an input
which together with the lightest neutrino mass completely defines the unperturbed
mass matrix generated by the Type II seesaw. The size of the perturbation is
determined by the Type I seesaw and is of the form m2

D/mR where mD and mR

respectively are the scale of the Dirac and right-handed Majorana mass terms.

After a brief summary of the A4 group properties and the structure of the model in
the following section we describe the implications of the model in the next section.
The comparison of this model with the experimental data appears next. We end
with our conclusions. The model has a rich scalar field content. In an Appendix
we discuss the A4 invariant scalar potential and the conditions under which the
desired potential minimum can be realized.

It should be noted that neutrino mass models based on A4 have also been investi-
gated earlier [69–71]. In a majority of them the neutrino mass matrix is obtained
from a Type II seesaw and the earlier emphasis was on obtaining Tribimaximal
mixing. Recent work has focussed on obtaining more realistic mixing patterns [72]
sometimes taking recourse to breaking of A4 symmetry [73]. Our work is unique
in the following aspect. It uses a combination of Type II and Type I seesaw mech-
anisms where the former yields mixing angles which are either vanishing (θ12 and
θ13) or maximal – i.e., π/4 – (θ23) while keeping the solar splitting absent. This
kind of a scenario has not been considered before. The Type I seesaw acting as a
perturbation results in a non-zero CP phase and realistic mixing angles while at
the same time creating the correct solar splitting.

4.2 The Model

A4 is the group of even permutations of four objects comprising of 12 elements
which can be generated using the two basic permutations S and T satisfying S2 =
T 3 = (ST )3 = I. The group has four inequivalent irreducible representations
one of 3 dimension and three of 1 dimension denoted by 1, 1′ and 1′′. The one-
dimensional representations are all singlets under S and transform as 1, ω, and ω2

under T respectively, where ω is the cube root of unity. Thus 1′ × 1′′ = 1.

For the three-dimensional representation

S =




1 0 0
0 −1 0
0 0 −1


 and T =




0 1 0
0 0 1
1 0 0


 . (4.2)

This representation satisfies the product rule

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3 . (4.3)
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The two triplets arising from the product of 3a ≡ ai and 3b ≡ bi, where i = 1, 2, 3,
can be identified as 3c ≡ ci and 3d ≡ di with

ci =

(
a2b3 + a3b2

2
,
a3b1 + a1b3

2
,
a1b2 + a2b1

2

)
or ci ≡ αijkajbk ,

di =

(
a2b3 − a3b2

2
,
a3b1 − a1b3

2
,
a1b2 − a2b1

2

)
or di ≡ βijkajbk , (i, j, k, are cyclic).

(4.4)

In this notation the one-dimensional representations in the 3 ⊗ 3 product can be
written as:

1 = a1b1 + a2b2 + a3b3 ≡ ρ1ijaibj ,

1′ = a1b1 + ω2a2b2 + ωa3b3 ≡ ρ3ijaibj ,

1′′ = a1b1 + ωa2b2 + ω2a3b3 ≡ ρ2ijaibj . (4.5)

Further details of the group A4 are available in the literature [69, 70].

Fields Notations A4 SU(2)L (Y ) L

Left-handed leptons (νi, li)L 3 2 (-1) 1

l1R 1

Right-handed charged leptons l2R 1′ 1 (-2) 1

l3R 1′′

Right-handed neutrinos NiR 3 1 (0) -1

Table 4.1: The fermion content of the model. The transformation properties under A4 and
SU(2)L are shown. The hypercharge of the fields, Y , and their lepton number, L, are also
indicated.

In the proposed model the left-handed lepton doublets of the three flavours are
assumed to form an A4 triplet while the right-handed charged leptons are taken
as 1(eR), 1

′(µR), and 1′′(τR) under A4. The remaining leptons, the right-handed
neutrinos, form an A4 triplet70. The lepton content of the model with the A4 and
SU(2)L properties as well as the lepton number assignments is shown in Table 4.1.
Note that the right-handed neutrinos are assigned lepton number -1. This choice is
made to ensure that the neutrino Dirac mass matrix takes a form proportional to
the identity matrix, as we remark in the following. The assignment of A4 quantum

70We closely follow the notation of [69].
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numbers of the leptons is by no means unique. The entire list of options for this
have been catalogued in [74]. Our choice corresponds to class B of [74]. We do not
discuss the extension of this model to the quark sector71.

Mass of Notations A4 SU(2)L L
(Y )

Charged fermion Φ =



φ+
1 φ0

1

φ+
2 φ0

2

φ+
3 φ0

3


 3 2 (1) 0

Neutrino Dirac η = (η0, η−) 1 2 (-1) 2

Type I seesaw ∆̂L =




∆̂++
1 ∆̂+

1 ∆̂0
1

∆̂++
2 ∆̂+

2 ∆̂0
2

∆̂++
3 ∆̂+

3 ∆̂0
3




L

3 3 (2) -2

1 3 (2) -2
Type I seesaw ∆L

ζ = (∆++
ζ ,∆+

ζ ,∆
0
ζ)

L 1′ 3 (2) -2

1′′ 3 (2) -2

Right-handed neutrino ∆̂R =




∆̂0
1

∆̂0
2

∆̂0
3




R

3 1 (0) 2

Right-handed neutrino ∆R
3 = (∆0

3)
R 1′′ 1 (0) 2

Table 4.2: The scalar content of the model. The transformation properties under A4 and
SU(2)L are shown. The hypercharge of the fields, Y , and their lepton number, L are also
indicated.

All lepton masses arise from A4-invariant Yukawa-type couplings. This requires
several scalar fields72 which develop appropriate vacuum expectation values. To
generate the charged lepton masses one uses an SU(2)L doublet A4 triplet of scalar
fields Φi (i = 1, 2, 3). The Type II seesaw for left-handed neutrino masses requires

71For A4-based models dealing with the quark sector see, for example, [75] and [76].
72Alternate A4 models address this issue by separating the SU(2)L and A4 breakings [70].

The former proceeds through the conventional doublet and triplet scalars which do not transform
under A4. The A4 breaking is triggered through the vev of SU(2)L singlet ‘flavon’ scalars which
transform non-trivially under A4. While economy is indeed a virtue here, one pays a price in the
form of the effective dimension-5 interactions which have to be introduced to couple the fermion
fields simultaneously to the two types of scalars.
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SU(2)L triplet scalars. The product rule in Eq. (4.3) indicates that these could
be in the triplet (∆̂L

i ), or the singlet 1, 1′, 1′′ (∆L
ζ , ζ = 1, 2, 3) representations of

A4. As discussed in the following, all of these are required to obtain the dominant
Type II seesaw neutrino mass matrix of the form of our choice. The Type I seesaw
results in a smaller contribution whose effect is included perturbatively. For the
Dirac mass matrix of the neutrinos an A4 singlet SU(2)L doublet η, with lepton
number -1, is introduced73. The right-handed neutrino mass matrix also arises
from Yukawa couplings which respect A4 symmetry74. The scalar fields required
for this are all SU(2)L singlets and under A4 they transform as triplet (∆̂R

i ) or
the singlet 1′′ (∆R

3 ). The scalar fields of the model, their transformation properties
under the A4 and SU(2)L groups, and their lepton numbers are summarized in
Table 4.2.

The Type I and Type II mass terms for the neutrinos as well as the charged lepton
mass matrix arise from the A4 and SU(2)L conserving Lagrangian75:

Lmass = yjρjik l̄LilRjΦ
0
k (charged lepton mass)

+ fρ1ikν̄LiNRkη
0 (neutrino Dirac mass)

+

[
1

2
(Ŷ L αijkν

T
LiC

−1νLj∆̂
L0
k

+ Y L
ζ ρζijν

T
LiC

−1νLj∆
L0
ζ )
]

(neutrino Type II seesaw mass)

+

[
1

2
(Ŷ R αijkN

T
RiC

−1NRj∆̂
R0
k

+ Y R
3 ρ3ijN

T
RiC

−1NRj∆
R0
3 )
]

(rh neutrino mass) + h.c.

(4.6)

The scalar fields in the above Lagrangian get the following vevs (suppressing the
SU(2)L part):

〈Φ0〉 = v√
3




1
1
1


 , 〈∆̂L0〉 = vL




1
0
0


 , 〈∆L0

1 〉 = 〈∆L0
2 〉 = 〈∆L0

3 〉 = uL , (4.7)

〈η0〉 = u , 〈∆̂R0〉 = vR




1
ω2

ω


 , 〈∆R0

3 〉 = uR . (4.8)

The scalar potential involving the fields listed in Table 4.2 has many terms and is
given in an Appendix. There we indicate the conditions under which the scalars
achieve the vev listed in Eqs. (4.7) and (4.8).

73The assignment of opposite lepton numbers to νL and NR forbids their Yukawa coupling
with Φ and the Dirac mass matrix can be kept proportional to the identity.

74Since the right-handed neutrinos are SU(2)L singlets, in principle, one can include direct
Majorana mass terms for them. These dimension three terms would break A4 softly.

75Note that the Dirac mass terms are also L conserving.
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This results in the charged lepton mass matrix and the left-handed neutrino Ma-
jorana mass matrix of the following forms:

Meµτ =
v√
3



y1 y2 y3
y1 ωy2 ω2y3
y1 ω2y2 ωy3


 ,

MνL =




(Y L
1 + 2Y L

2 )uL 0 0
0 (Y L

1 − Y L
2 )uL Ŷ LvL/2

0 Ŷ LvL/2 (Y L
1 − Y L

2 )uL


 . (4.9)

where we have chosen Y L
2 = Y L

3 . In the above the Yukawa couplings satisfy
y1v = me, y2v = mµ, y3v = mτ . The Type II seesaw generates,MνL, the dominant
contribution to the neutrino mass matrix. In the absence of the solar splitting this
involves just two masses m

(0)
1 and m

(0)
3 . To obtain the requisite structure one must

identify 3Y L
1 uL = 2[2m

(0)
1 −m(0)

3 ], 3Y L
2 uL = m

(0)
1 +m

(0)
3 , and Ŷ LvL = 2[m

(0)
1 +m

(0)
3 ].

The neutrino Dirac mass matrix and the mass matrix of the right-handed neutrinos
are:

MD = fu I , MνR =




Y R
3 uR Ŷ RvRω/2 Ŷ RvRω

2/2
Ŷ RvRω/2 Y R

3 uRω
2 Ŷ RvR/2

Ŷ RvRω
2/2 Ŷ RvR/2 Y R

3 uRω


 . (4.10)

The two unknown combinations appearing in MR above are expressed as Y R
3 uR ≡

(2a+ b) and Ŷ RvR ≡ 2(b− a).

The mass matrices in Eq. (4.9) can be put in a more tractable form by using two
transformations, the first being UL on the left-handed fermion doublets and the
other VR on the right-handed neutrino singlets. UL and VR are given by

UL =
1√
3




1 1 1
1 ω2 ω
1 ω ω2


 = VR . (4.11)

No transformation is applied on the right-handed charged leptons. In the new
basis, which we call the flavour basis, the charged lepton mass matrix is diagonal
and the entire lepton mixing resides in the neutrino sector. The mass matrices
now are:

M flavour
eµτ =



me 0 0
0 mµ 0
0 0 mτ


 , M flavour

νL =
1

2




2m
(0)
1 0 0
0 m+ −m−

0 −m− m+


 ,

(4.12)
and

MD = fu I , M flavour
νR =

1

2




0 a 0
a 0 0
0 0 b


 . (4.13)

Here m± = m
(0)
3 ±m

(0)
1 . m− is positive for normal ordering of masses while it is

negative for inverted ordering. We use the notation mD = fu.

53



4.3 Model implications

The A4 model we have presented results in the four mass matrices in Eqs. (4.12)
and (4.13). The lepton mixing and CP violation will be determined, in this basis,
entirely by the neutrino sector on which we focus from here on.

The left-handed neutrino mass matrix M flavour
νL , obtained via a Type II seesaw,

dominates over the Type I seesaw contribution from the mass matrices in Eq.
(4.13). The contribution from the latter is included using perturbation theory.

In the ‘mass basis’ the left-handed neutrino mass matrix is diagonal. The columns
of the diagonalising matrix are the unperturbed flavour eigenstates in this basis.
We find from M flavour

νL :

M0 =Mmass
νL = U0TM flavour

νL U0 =



m

(0)
1 0 0

0 m
(0)
1 0

0 0 m
(0)
3


 , (4.14)

the orthogonal matrix, U0, being

U0 =




1 0 0
0 1√

2
− 1√

2

0 1√
2

1√
2


 . (4.15)

From Eqs. (4.14), (4.1) and (4.15) it is seen that the solar splitting is absent,
θ12 = 0, θ13 = 0, δ = 0, and θ23 = π/4.

Before proceeding with the analysis we would like to remark on the right-handed
neutrino Majorana mass matrix in Eq. (4.13), M flavour

νR , which follows from the
A4 symmetric Lagrangian. It has a four-zero texture. This has the virtue of being
of a form of M flavour

νR with the most number of texture zeros. For the seesaw to
be operative, the matrix has to be invertible. This eliminates matrices with five
texture zeros in the flavour basis. Of the 15 possibilities with four texture zeros
there are only two which are invertible and also meet the requirements of the model
(i.e., result in a non-zero θ12, θ13, and shift θ23 from π/4). These are:

M1 =
1

2




0 a 0
a 0 0
0 0 b


 , M2 =

1

2




0 0 a
0 b 0
a 0 0


 . (4.16)

Note, M1 ↔M2 under 2 ↔ 3 exchange76. The results from these two alternatives
are very similar except for a few relative signs in the interrelationships among θ13,
θ12, and θ23. The M flavour

νR in Eq. (4.13) is of the form of M1. We remark in the
end about the changes which entail if the M2 alternative is used.

76In the Lagrangian in Eq. (4.6) the replacement ∆R
3 → ∆R

2 , where ∆R
2 transforms like a 1′

under A4, yields an Mflavour
νR of the form of M2.
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Taking a and b as complex we express M flavour
νR as:

M flavour
νR = mR




0 xe−iφ1 0
xe−iφ1 0 0

0 0 ye−iφ2


 , (4.17)

where x, y are dimensionless real constants of O(1) and mR sets the mass-scale.
No generality is lost by keeping the Dirac mass real.

In the flavour basis, the Type I seesaw contribution, which we treat as a pertur-
bation, is:

M ′flavour =
[
MT

D(M
flavour
νR )−1MD

]
=

m2
D

xymR




0 y eiφ1 0
y eiφ1 0 0
0 0 x eiφ2


 . (4.18)

In the mass basis it is:

M ′mass = U0TM ′flavourU0 =
m2

D√
2 xymR




0 y eiφ1 −y eiφ1

y eiφ1 x eiφ2√
2

x eiφ2√
2

−y eiφ1 x eiφ2√
2

x eiφ2√
2


 . (4.19)

4.4 Results

After having presented the group-theoretic underpinnings of the model we now
indicate its predictions which could be tested in the near future. As noted, from
Eq. (4.15) one has θ23 = π/4 and the other mixing angles are vanishing. Further,
once a choice of m0, the lightest neutrino mass, is made, depending on the mass
ordering either m

(0)
1 or m

(0)
3 is determined. The remaining one of these two is

fixed so that the atmospheric mass splitting is correctly reproduced. The solar
mass splitting, θ12, θ13 and the deviation of θ23 from maximality are all realized
through the first order perturbation, which results in inter-relationships between
them. These offer a scope of subjecting the model to experimental probing. From
Eq. (4.14) it is seen that to obtain the solar mixing parameters one must take
recourse to degenerate perturbation theory.

4.4.1 Real MR (φ1 = 0 or π, φ2 = 0 or π)

MR is real if the phases φ1,2 in Eq. (4.17) are 0 or π. For notational simplicity,
instead of retaining these phases we allow x (y) to be of either sign, thus capturing
the possibilities of φ1 (φ2) being 0 or π.

In the real limit Eq. (4.19) becomes

M ′mass =
m2

D√
2 xymR




0 y −y
y x√

2
x√
2

−y x√
2

x√
2


 . (4.20)
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The effect of this perturbation on the degenerate solar sector is obtained from the
following 2× 2 submatrix of the above,

M ′mass
2×2 =

m2
D√

2 xymR

(
0 y
y x/

√
2

)
. (4.21)

This yields

tan 2θ12 = 2
√
2
(y
x

)
. (4.22)

From the data, tan 2θ12 > 0 always, implying x and y have to be either both
positive or both negative. In other words, φ1 = φ2 and can be either 0 or π.
Moreover, from the data 2θ12 <

π
2
at 3σ. This implies that only x, y > 0 is allowed

or equivalently φ1 = φ2 = 0. The fitted range of θ12 translates to

0.695 <
y

x
< 1.112 at 3σ . (4.23)

Eq. (4.21) also implies

∆m2
solar =

m2
D

xymR

m
(0)
1

√
x2 + 8y2 . (4.24)

Including the first-order corrections from Eq. (4.20) the wave function for the
non-degenerate state, |ψ3〉, becomes:

|ψ3〉 =




−κ
− 1√

2
(1− κ√

2
x
y
)

1√
2
(1 + κ√

2
x
y
)


 , (4.25)

with

κ ≡ m2
D√

2 xmRm−
. (4.26)

The sign of κ is the same as that of m−. Comparing with the third column of Eq.
(4.1) one then has

sin θ13 cos δ = −κ = − m2
D√

2 xmRm−
. (4.27)

In the case of normal ordering δ = π while for inverted ordering δ = 0, CP remain-
ing conserved in both cases77. Notice the difference from the result in Chapter 3
where NO (IO) corresponds to δ = 0 (π) for real MR. From Eqs. (4.27), (4.22),
and (4.24) one can write,

∆m2
solar = m−m

(0)
1

4 sin θ13 cos δ

sin 2θ12
, (4.28)

which relates78 the solar sector with θ13. Once the neutrino mass splittings, and
the angles θ12, and θ13 are given, Eq. (4.28) fixes the lightest neutrino mass, m0.

77Recall, the mixing angles θij are kept in the first quadrant and δ ranges from −π to π, as is
the convention.

78It is readily seen from Eq. (4.27) that m− cos δ is always positive, ensuring ∆m2
solar > 0.

56



 1.5

 2

 2.5

 3

 3.5

 0.13  0.14  0.15  0.16  0.17
ta

n 
2θ

12
sin θ13

Real MR

Normal Ordering

← best fit

m0=2.5×10−3eV
ω = 6.4o

Figure 4.1: The area inside blue dot-dashed box in the sin θ13 - tan 2θ12 plane is allowed
by the experimental data at 3σ. The best-fit point is shown as a black dot. The red dotted
curve gives the best-fit solar splitting – from Eq. (4.28) – for m0 = 2.5 meV. Using Eq.
(4.32) for θ23 the area excluded at 3σ is below the green solid straight line for the first octant.
Only normal ordering is allowed for real MR.

It can be checked that Eq. (4.28) does not permit inverted ordering. To this end,

one defines z ≡ m−m
(0)
1 /∆m2

atmos and tan ξ ≡ m0/
√

|∆m2
atmos|. Note that z is

positive for both mass orderings and one has:

z = sin ξ/(1 + sin ξ) (normal ordering),

z = 1/(1 + sin ξ) (inverted ordering) . (4.29)

This implies 0 ≤ z ≤ 1/2 for NO while 1/2 ≤ z ≤ 1 for IO. In both cases z
approaches 1/2 as m0 → large, i.e., one tends towards quasidegeneracy. From Eq.
(4.28)

z =

(
∆m2

solar

|∆m2
atmos|

)(
sin 2θ12

4 sin θ13| cos δ|

)
. (4.30)

Bearing in mind that for real MR one has | cos δ| = 1 and using the measured
values of the other oscillation parameters one finds z ∼ 10−2. This excludes the
inverted mass ordering option.

Further, Eq. (4.25) implies:

tan θ23 ≡ tan(π/4− ω) =
1− κ√

2
x
y

1 + κ√
2
x
y

. (4.31)

Taken together with Eqs. (4.22) and (4.27) one has

tanω =
κ√
2

x

y
= −2 sin θ13 cos δ

tan 2θ12
. (4.32)

As noted, for NO, which is the only allowed ordering, one has δ = π. Thus ω is
positive and θ23 is in the first octant.
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We are now in a position to state the consequences of this model for realMR. There
are three independent input parameters, namely, m0, κ, and y/x which determine
θ12, θ13, θ23, and ∆m2

solar for NO. For real MR inverted ordering is not permitted.

In Fig. 4.1 the main consequences of this model for real MR are displayed. It is
similar to what has already been noted in Chapter 3. The region inside the blue
dot-dashed box is the 3σ range of sin θ13 and tan 2θ12 from the global fits, the
best-fit point being the black dot. From the data in Sec. 1.1.2 ωmin = 0 at 3σ and
ωmax = 6.4◦ for the first octant. For ωmax Eq. (4.32) of this model corresponds to
the green solid straight line, the area below being excluded. Further, for real MR,
as cos δ = 1, from Eq. (4.32) we get ω ≥ 5.14◦. So far, we have not considered
the solar mass splitting. Once ∆m2

solar and |∆m2
atmos| are specified, the z (or

equivalently m0) that produces the correct solar splitting for any chosen point in
the plane is determined by Eq. (4.30). In this way, using the 3σ ranges of θ13
and θ12 one finds zmax = 6.03× 10−2, corresponding to (m0)max = 3.10 meV. The
consistency of Eq. (4.30) with Eq. (4.32) at ωmax sets zmin = 4.01 ×10−2 for
the first octant which translates to (m0)min = 2.13 meV. As an example, choosing
m0 = 2.5 meV and taking the best-fit points of the solar and atmospheric mass
splittings Eq. (4.28) gives the red dotted curve in Fig. 4.1.

4.4.2 Complex MR

The shortcomings of the real MR case – no CP violation, inverted ordering disal-
lowed – can be overcome when MR is complex. One then has, as in Eq. (4.19),

M ′mass =
m2

D√
2xymR




0 yeiφ1 −yeiφ1

yeiφ1 xeiφ2√
2

xeiφ2√
2

−yeiφ1 xeiφ2√
2

xeiφ2√
2


 . (4.33)

x and y are now both positive. Since M ′ is not hermitian any more the hermitian
combination (M0 +M ′)†(M0 +M ′) is considered, treating M0†M0 as the unper-
turbed piece and H ′mass ≡ (M0†M ′ +M ′†M0) as the perturbation at lowest order.

The zero-order eigenvalues are (m
(0)
i )2. Written as a 3 × 3 hermitian matrix the

perturbation is

H ′mass =
m2

D√
2xymR




0 2m
(0)
1 y cosφ1 −yf(φ1)

2m
(0)
1 y cosφ1

2√
2
m

(0)
1 x cosφ2

1√
2
xf(φ2)

−yf ∗(φ1)
1√
2
xf ∗(φ2)

2√
2
m

(0)
3 x cosφ2


 . (4.34)

Above
f(ϕ) = m+ cosϕ− im− sinϕ . (4.35)

Eq. (4.34) provides the basis for the remaining calculation.

In a manner similar to the real MR case, from Eq. (4.34) we get

tan 2θ12 = 2
√
2
y

x

cosφ1

cosφ2

. (4.36)
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Since tan 2θ12 remains positive at 3σ, cosφ1 and cosφ2 must be of the same sign.
Further, cos 2θ12 and sin 2θ12 are both positive from allowed range of θ12 in Eq.
(1.24). This implies cosφ1 > 0, cosφ2 > 0. The allowed possibilities for these
phases are shown in Table 4.3. We can take over the limits in Eq. (4.23) which
now apply on (y/x)(cosφ1/ cosφ2).

In place of Eq. (4.25) we now have at first order:

|ψ3〉 =




−κf(φ1)/m
+

− 1√
2
[1− κ√

2
x
y
f(φ2)/m

+]
1√
2
[1 + κ√

2
x
y
f(φ2)/m

+]


 . (4.37)

Since x, y are now positive quantities, the sign of κ is determined by that of m−,
i.e., κ is positive (negative) for normal (inverted) ordering. From Eqs. (4.1) and
(4.37)

sin θ13 cos δ = −κ cosφ1 ,

sin θ13 sin δ = −κ m−

m+
sinφ1 . (4.38)

Using Eq. (4.38) one can immediately relate the quadrant of δ with that of φ1 for
both orderings. These are also presented in Table 4.3. Notice79 that near maximal
values of δ can be obtained in all cases for a suitable choice of φ1. As an example
for NO (IO) if φ1 =

π
2
− ǫ then δ ≃ −π

2
+ ǫ (≃ −π

2
− ǫ) while φ1 = −π

2
+ ǫ implies

δ ≃ π
2
+ ǫ (≃ π

2
− ǫ).

φ1 φ2 Normal Ordering Inverted Ordering
quadrant quadrant δ θ23 δ θ23

quadrant octant quadrant octant
0− π/2 0− π/2 or -π/2 − 0 -π − -π/2 0− π/4 -π/2 − 0 π/4− π/2
-π/2 − 0 0− π/2 or -π/2 − 0 π/2− π 0− π/4 0− π/2 π/4− π/2

Table 4.3: The options for the phase φ1 in MR and the consequent ranges of the other
phase φ2 in MR, the leptonic CP phase δ, and the octant of θ23 for both mass orderings.
All angles are in radians. For inverted ordering or quasidegeneracy δ ∼ π/2 or −π/2.

In addition, for θ23 Eq. (4.37) implies

tan θ23 =
1− κ√

2
x
y
cosφ2

1 + κ√
2
x
y
cosφ2

. (4.39)

The deviation from maximality, ω, can be obtained from the above and using Eqs.
(4.36) and (4.38) expressed as

tanω = −2 sin θ13 cos δ

tan 2θ12
, (4.40)

79We point again about the prominent difference from the Chapter 3 result in the correlation
of mass ordering and the allowed quadrants of δ.
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which has the same form as Eq. (4.32) for the real MR case except that now cos δ
can deviate from ±1. The octant of θ23 for different choices of φ1 quadrants is
given in Table 4.3 for both mass orderings. Note that NO (IO) always goes with
first (second) octant as in Chapter 3 model.

Substituting for m2
D/mR in terms of sin θ13 cos δ, using Eq. (4.38) one has from

Eq. (4.34)

∆m2
solar = − m−m

(0)
1

4 sin θ13 cos δ

sin 2θ12
, (4.41)

which is reminiscent of Eq. (4.28) for realMR. Keeping in mind that cosφ1/ cosφ2

must be positive and using Eq. (4.38) it is easy to see that ∆m2
solar > 0 always.

As in Eq. (4.30) one again has

| cos δ| =
(

∆m2
solar

|∆m2
atmos|

)(
sin 2θ12
4 sin θ13 z

)
, (4.42)

with the further proviso that | cos δ| can now be anywhere between zero and unity.
This freedom removes the bar which applied on inverted ordering for real MR.
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Figure 4.2: θ23 (left panel) and |mνeνe |, the quantity controlling neutrinoless double beta
decay, in eV (right panel) as a function of the lightest neutrino mass m0 (in eV). The green
(pink) curves are for NO (IO). The 3σ allowed region is between the thick curves while
the thin curves are for the best-fit input values. The solid (dashed) curves are for the first
(second) octant of θ23.

Here we use m0, θ13, and θ12 as inputs to fix the model parameters. Eqs. (4.40)
and (4.42) then determine θ23 and δ respectively, as shown in Figs. 4.2 and 4.3.
One can also obtain |mνeνe|, which determines the neutrinoless double beta decay
rate, in terms of the mass eigenvalues and the mixing angles. In these figures the
green (pink) curves are for NO (IO).

In the left panel of Fig. 4.2 the dependence of θ23 on m0 is presented while the
right panel shows |mνeνe| again as a function of m0. The thick lines delimit the
3σ allowed regions while the thin lines correspond to the best-fit values of input
parameters. The solid (dashed) curves are for the first (second) octant of θ23 i.e.,
NO (IO). The thick and thin curves for IO overlap and cannot be distinguished.
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The experimental 3σ bound on θ23 determines a minimum permitted m0 for NO.
For IO there is no such lower bound. Planned experiments to measure the neutrino
mass [19] are sensitive to m0 not less than 200 meV. From Fig. 4.2 it is seen that
at such a scale the two mass orderings have close predictions though in different
octants, which is a reflection of quasidegeneracy.
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Figure 4.3: The CP phase δ from this model. The green (pink) curves are for NO (IO).
Left: δ as a function of m0 in eV. The line-type conventions are as in Fig. 4.2. Results are
shown only for the first and second quadrants. Right: The blue vertical solid (dot-dashed)
lines are the 3σ (1σ) allowed ranges of sin2 2θ13 from global fits. Dependence of δ for
m0 = 0.5 eV (m0 = 2.5 meV) on sin2 2θ13 within the allowed range are the solid (dashed)
lines. Also shown are the 90% C.L. curves (dotted) obtained by T2K [9] which disallow the
region to their left.

In the left panel of Fig. 4.3 we show the dependence of δ on m0 for both NO and
IO. The line-type conventions are the same as in Fig. 4.2. As noted in Table 4.3
and Eq. (4.38), δ can be in any of the second and third (first and fourth) quadrants
for NO (IO) depending on the choice of φ1. Eq. (4.42) indicates that for all these
four cases, namely, ±δ and ±(π − δ), the dependence of | cos δ| on m0 is identical
for a chosen mass ordering. Keeping this in mind, Fig. 4.3 (left panel) has been
plotted with δ in the second quadrant for NO and first quadrant for IO. For m0

smaller than ∼ 10 meV, δ changes sharply for normal ordering. As expected from
Fig. 4.1, the real MR limit, i.e., δ = π, is obtained only for NO.

The variation of δ with sin2 2θ13 obtained from Eq. (4.41) for both mass orderings
for two representative values of m0 = 0.5 eV (solid curves) and 2.5 meV (dashed
curves) is shown in the right panel of Fig. 4.3. Here the best-fit values of the two
mass splittings and θ12 have been used. The allowed range of sin2 2θ13 from the
global fits at 3σ (1σ) is bounded by the blue solid (dot-dashed) vertical lines. For
IO δ remains close to but less (more) than +π/2 (−π/2) for all m0. For NO, with
m0 = 0.5 eV, δ is slightly above (below) but close to +π/2 (−π/2) while for m0

= 2.5 meV one finds δ around ±π and that too for a limited range of sin2 2θ13. In
this panel we have also shown 90% C.L. exclusion limits in the sin2 2θ13 − δ plane
– dotted curves – identified by the T2K collaboration. The regions to the left of
the curves are disfavoured. Notice that δ = −π/2 is preferred, which in our model
is consistent with IO for all masses but a limited range of sin2 2θ13 while for NO
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though the full range of the latter is consistent one must have m0 ≥ 100 meV.
More precise measurements of neutrino parameters will test this model closely.

Finally, it is noteworthy that the phase φ2 enters only in two places: in the combi-
nation x cosφ2/y in the expressions for tan 2θ12 and tan θ23 - Eqs. (4.36) and (4.39).
So, its effect can be entirely subsumed by redefining cosφ2/y → 1/y. Therefore
for complex MR the free input parameters are really m0, κ, y/x and φ1 which
determine the three mixing angles, the solar mass splitting, and the CP phase δ.

Before concluding, we would like to make a comment on our choice of MR. In Eq.
(4.16) two four-zero textures, M1 and M2, were identified both of which could be
admissible for MR. We had chosen M1 for this work. If instead, we had chosen
M2 then the discussion would go through essentially unchanged except for the
replacement κ → −κ. This would bring the model to a close match of the results
in Chapter 3.

4.5 Conclusions

In this chapter we have proposed a model for neutrino masses and lepton mixing
which relies on an underlying A4 symmetry. All masses are generated from A4
invariant Yukawa couplings. There are contributions to the neutrino masses from
both Type I and Type II seesaw terms of which the latter is dominant. It generates
the atmospheric mass splitting and keeps the mixing angles either maximal, e.g.,
π/4 for θ23, or vanishing, for θ13 and θ12. The solar splitting is absent. The Type I
seesaw contribution, which is treated perturbatively, results in θ13, θ12, and θ23 con-
sistent with the global fits and generates the solar splitting. Testable relationships
between these quantities, characteristic of this model, are derived. In particular,
normal ordering is associated with first octant of θ23 while for inverted ordering
only the second octant is allowed. As another example, inverted ordering of neu-
trino masses is correlated with a near-maximal CP phase δ and allows arbitrarily
small neutrino masses. For normal ordering δ can vary over the entire range and
approaches maximality in the quasidegenerate limit. The lightest neutrino mass
cannot be lower than a few meV in this case.

4.A Appendix: The scalar potential minimiza-

tion

In this Appendix we discuss the nature of the scalar potential of the model in some
detail. We also identify the conditions which must be satisfied by the parameters
of the potential so that the vevs take the values considered in the model. Needless
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to say, the conditions ensure that the potential is locally minimized by this choice.
To check whether it is also a global minimum is beyond the scope of this thesis80.

The scalars listed in Table 4.2 have fields transforming under A4, SU(2)L, and
U(1)Y which also carry a lepton number. The scalar potential has to be of the
most general quartic form which is a singlet under all these symmetries. Below we
include all terms that are permitted by the symmetries. Invariance under SU(2)L,
U(1)Y and lepton number are easy to verify.

4.A.1 A4 invariants: Notation and generalities

Here we give a brief account of our notation and the A4-invariant terms. First
recall that there are scalars which transform as 1, 1′, 1′′, and 3 under A4. One
must include in the potential up to quartics in these fields which give rise to A4
singlets. The product rules of the one-dimensional representations 1, 1′ and 1′′ are
simple, it is the A4 triplet which requires some discussion. To this end consider
two A4 triplet fields A ≡ (a1, a2, a3)

T and B ≡ (b1, b2, b3)
T where ai, bi may have

SU(2)L × U(1)Y transformation properties which we suppress here. As noted in
Eq. (4.3), combining A and B one can obtain

3A ⊗ 3B = 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3 . (4.A.1)

We denote the irreducible representations on the right-hand-side by O1(A,B),
O2(A,B), O3(A,B), Ts(A,B) and Ta(A,B), respectively, where, as noted in Eqs.
(4.4, 4.5)

O1(A,B) ≡ 1 = a1b1 + a2b2 + a3b3 ≡ ρ1ijaibj ,

O2(A,B) ≡ 1′ = a1b1 + ω2a2b2 + ωa3b3 ≡ ρ3ijaibj ,

O3(A,B) ≡ 1′′ = a1b1 + ωa2b2 + ω2a3b3 ≡ ρ2ijaibj , (4.A.2)

and

Ts(A,B) ≡ 3 =

(
a2b3 + a3b2

2
,
a3b1 + a1b3

2
,
a1b2 + a2b1

2

)T

,

Ta(A,B) ≡ 3 =

(
a2b3 − a3b2

2
,
a3b1 − a1b3

2
,
a1b2 − a2b1

2

)T

. (4.A.3)

Note that O3(A
†, A) = [O2(A

†, A)]† and Ta(A,A) = 0.

The scalar potential can be written in this notation keeping in mind the following:

• No two scalar multiplets have all quantum numbers the same. So terms in
the potential cannot be related by replacing any one field by some other.

80For example, the global minima of the relatively simple case of one A4 triplet SU(2)L doublet
scalar multiplet have been identified in [77] and used in the context of a model for leptons in [78].
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• Neither is there a scalar which is a singlet under all the symmetries.

Thus the scalar potential can consist of terms of the following forms (displaying
only A4 behaviour):

1. Quadratic: W †W ,

2. Cubic: XiX
′
jX

′′
k , XiXjXk, X

′
iX

′
jX

′
k, X

′′
i X

′′
jX

′′
k , O1(Yi, Yj)Xk, O2(Yi, Yj)X

′′
k ,

O3(Yi, Yj)X
′
k,

3. Quartic: (W †
i Wi)(W

†
jWj), (XiXj)(XkXl), (XiXj)(X

′
kX

′′
l ), (X

′
iX

′′
j )(X

′
kX

′′
l ),

(X ′
iX

′
j)(X

′
kXl), (X

′′
i X

′′
j )(X

′′
kXl), O1(Yi, Yj)XkXl, O1(Yi, Yj)X

′
kX

′′
l ,

O2(Yi, Yj)X
′
kX

′
l , O2(Yi, Yj)XkX

′′
l , O3(Yi, Yj)X

′′
kX

′′
l , O3(Yi, Yj)XkX

′
l ,

O1(Yi, Yj)O1(Yk, Yl), O2(Yi, Yj)
†O2(Yk, Yl), O3(Yi, Yj)

†O3(Yk, Yl),
O2(Yi, Yj)O3(Yk, Yl), O1(Ts(Yi, Yj), Ts(Yk, Yl)),
O1(Ts(Yi, Yj), Ta(Yk, Yl)), O1(Ta(Yi, Yj), Ta(Yk, Yl)), O1(Ts(Yi, Yj), Yk)Xl,
O2(Ts(Yi, Yj), Yk)X

′′
l , O3(Ts(Yi, Yj), Yk)X

′
l ,

O1(Ta(Yi, Yj), Yk)Xl, O2(Ta(Yi, Yj), Yk)X
′′
l , O3(Ta(Yi, Yj), Yk)X

′
l .

In the above W is any field, X, X ′, and X ′′ stand for generic fields transforming as
1, 1′, and 1′′ under A4 while Y is a generic A4 triplet field. We have not separately
listed the invariants formed using X†, X ′†, X ′′†, and Y †.

Because of the large number of scalar fields in our model – e.g., SU(2)L singlets,
doublets, and triplets – the scalar potential has many terms. To simplify this dis-
cussion, we exclude cubic terms in the fields and take all couplings in the potential
to be real. For ease of presentation, we list the potential in separate pieces: (a)
those restricted to any one SU(2)L sector, and (b) those coupling scalars of differ-
ent SU(2)L sectors. Since the vev of the SU(2)L singlets, which are responsible for
the right-handed neutrino mass, are much larger than that of the other scalars, in
the latter category we keep only the terms which couple the singlet fields to either
the doublet or the triplet sectors.

4.A.2 SU(2)L Singlet Sector:

In the SU(2)L singlet scalar sector there is an A4 triplet ∆̂R and another scalar
∆R

3 that transforms as a 1′′. Eq. (4.A.1) shows that two ∆̂R triplets can combine
to give different A4 irreducible representations. For this purpose we introduce the
notations:

Oss
1 ≡ O1(∆̂

R†, ∆̂R); Oss
2 ≡ O2(∆̂

R†, ∆̂R); T ss
s ≡ Ts(∆̂

R, ∆̂R). (4.A.4)

Generically, we will use the notation Õi or T̃s,a if the second A4 triplet field in the
argument is replaced by its hermitian conjugate. For example, here

Õss
3 ≡ O3(∆̂

R†, ∆̂R†) and T̃ ss
s ≡ Ts(∆̂

R, ∆̂R†). (4.A.5)
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We will also require the combinations:

O
ss
2 ≡ O2(∆̂

R, T ss†
s ). (4.A.6)

From the A4 singlet ∆R
3 one can make the combination

Qss
3 ≡ ∆R†

3 ∆R
3 , (4.A.7)

which is obviously a singlet under all the symmetries.

Using this notation the most general scalar potential of this sector is given by:

Vsinglet = m2
∆R

3

Qss
3 +m2

∆̂RO
ss
1

+
1

2
λs1 [Q

ss
3 ]

2 +
1

2
λs2
{
[Oss

1 ]2 + (Oss
2 )†Oss

2 +O1(T
ss
s , T

ss†
s )
}

+
1

2
λs3 [Q

ss
3 O

ss
1 ] + λs4

[
O

ss
2 ∆R

3 + h.c.
]
+ λs5

[
Õss

3 ∆R
3 ∆

R
3 + h.c.

]
.

(4.A.8)

In the above, we have taken λs2 as the common coefficient of the different A4 singlets
that can be obtained from the combination of two ∆̂R and two (∆̂R)† fields. We
also follow a similar principle for the fields with other SU(2)L behaviour.

4.A.3 SU(2)L Doublet Sector:

The SU(2)L doublet scalar sector comprises of the two fields Φ and η transforming
as 3 and 1 under A4 respectively. Recall that Φ and η have opposite hypercharge.
In analogy to the singlet sector we denote the required A4 triplet Φ combinations
as:

Odd
1 ≡ O1(Φ

†,Φ); Odd
2 ≡ O2(Φ

†,Φ); T dd
s ≡ Ts(Φ,Φ), (4.A.9)

and from the A4 singlet η
Qdd

η ≡ η†η . (4.A.10)

The potential for this sector is:

Vdoublet = m2
ηQ

dd
η +m2

ΦO
dd
1 +

1

2
λd1
[
Qdd

η

]2
+

1

2
λd2
{
[Odd

1 ]2 + {Odd
2 }†Odd

2

+ O1(T
dd
s , T dd†

s )
}
+

1

2
λd3
[
Qdd

η O
dd
1

]
. (4.A.11)

4.A.4 SU(2)L Triplet Sector:

The SU(2)L triplet sector consists of four fields, viz, ∆̂L, ∆L
1 , ∆

L
2 and ∆L

3 trans-
forming as 3, 1, 1′, 1′′ under A4.
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We define

Ott
1 ≡ O1(∆̂

L†, ∆̂L); Ott
2 ≡ O2(∆̂

L†, ∆̂L); T tt
s ≡ Ts(∆̂

L, ∆̂L), (4.A.12)

Qtt
i ≡ ∆L†

i ∆L
i , (i = 1, 2, 3), (4.A.13)

and
O

tt
i ≡ Oi(∆̂

L, T tt†
s ) (i = 1, 2, 3). (4.A.14)

The scalar potential for this sector:

Vtriplet =
3∑

i=1

m2
∆L

i
Qtt

i +m2
∆̂L O

tt
1 +

1

2

3∑

i=1

λt1i
[
Qtt

i

]2
+

1

2

2∑

k<j, k=1

3∑

j=2

λt2jkQ
tt
j Q

tt
k

+
1

2
λt3
{
[Ott

1 ]
2 + {Ott

2 }†Ott
2 +O1(T

tt
s , T

tt†
s )
}
+

1

2

3∑

i=1

λt4i
[
Qtt

i O
tt
1

]

+ λt5
[
O

tt
1 ∆

L
1 + h.c.

]
+ λt6

[
O

tt
3 ∆

L
2 + h.c.

]
+ λt7

[
O

tt
2 ∆

L
3 + h.c.

]

+
3∑

i=1

λt8i

[
Õtt

i ∆
L
i ∆

L
i + h.c.

]
+
[
λt91Õ

tt
1 ∆

L
2∆

L
3 + h.c.+ cyclic

]
.(4.A.15)

4.A.5 Inter-sector terms:

So far, we have listed the terms in the potential that involve scalar fields which
belong to any one of three sectors: singlets, doublets, or triplets of SU(2)L. Besides
these, there will also be terms in the scalar potential which involve fields from
multiple sectors. Below we list the terms which arise from couplings of the singlet
sector with either the doublet or the triplet sector. The other inter-sector terms
– doublet-triplet type – are dropped. Since the vacuum expectation values of the
singlet fields are by far the largest this is not an unreasonable approximation.

Inter-sector Singlet-Doublet terms:

It is useful to define,

T̃ ss
s ≡ Ts(∆̂

R, ∆̂R†), and T̃ dd
s ≡ Ts(Φ,Φ

†), (4.A.16)

and
Osd

1S ≡ O1(T̃
dd
s , T̃ ss

s ); O
sd
3 ≡ O3(∆̂

R, T̃ dd
s ) . (4.A.17)

For simplicity, we do not keep the combinations T̃ ss
a ≡ Ta(∆̂

R, ∆̂R†) and T̃ dd
a ≡

Ta(Φ,Φ
†).

In terms of the above:

Vsd =
1

2
λsd1
[
Qss

3 Q
dd
η

]
+

1

2
λsd2
[
Qss

3 O
dd
1

]
+

1

2
λsd3
[
Qdd

η O
ss
1

]
+ λsd4

[
{Osd

3 }†∆R
3 + h.c.

]

+
1

2
λsd5
[
Odd

1 O
ss
1 + {Oss

2 }†Odd
2 + {Odd

2 }†Oss
2 +Osd

1S

]
. (4.A.18)
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Here, in the last term, we have made the simplifying assumption that there is
a common coupling λsd5 for the terms in the potential which arise from various
combinations of (Φ†Φ)(∆̂R†∆̂R), each of the four fields being A4 triplets.

Inter-sector Singlet-Triplet terms:

For this case the following combinations arise:

Ots
i ≡ Oi(∆̂

R†, ∆̂L) (i = 1, 2, 3);Ots
1S ≡ O1(T̃

tt
s , T̃

ss
s );

O
ts
i ≡ Oi(T̃

ss
s , ∆̂

L) (i = 1, 2, 3); Õ ts
3 ≡ O3(T̃

tt
s , ∆̂

R) . (4.A.19)

In line with the convention introduced earlier: Õts
i ≡ Oi(∆̂

R†, ∆̂L†) (i = 1, 2, 3).

The intersector potential for this case is given by:

Vts =
1

2

3∑

i=1

λts1i
[
Qss

3 Q
tt
i

]
+

1

2
λts2
[
Qss

3 O
tt
1

]
+

1

2

3∑

i=1

λts3i
[
Qtt

i O
ss
1

]

+
1

2
λts4
[
Ott

1 O
ss
1 + {Oss

2 }†Ott
2 + {Ott

2 }†Oss
2 +Ots

1S

]

+
3∑

i=1

λts5i

[
O

ts
i ∆

L
i

†
+ h.c.

]
+ λts6

[
Õ

ts
3 ∆

R
3

†
+ h.c.

]

+ λts7

[
Ots

1 ∆
L
3

†
∆R

3 + h.c.
]
+ λts8

[
Ots

2 ∆
L
1

†
∆R

3 + h.c.
]
+ λts9

[
Ots

3 ∆
L
2

†
∆R

3 + h.c.
]

+ λts10

[
Õts

3 ∆
R
3 ∆

L
1 + h.c.

]
+ λts11

[
Õts

2 ∆
R
3 ∆

L
3 + h.c.

]
+ λts12

[
Õts

1 ∆
R
3 ∆

L
2 + h.c.

]
.

(4.A.20)

4.A.6 The minimization conditions:

After having presented the scalar potential we now seek to find the conditions under
which the vev we have used in the model – see Eqs. (4.7) and (4.8) constitute a
local minimum. For ready reference the vev are:

〈Φ0〉 = v√
3




1
1
1


 , 〈∆̂L0〉 = vL




1
0
0


 , 〈∆̂R0〉 = vR




1
ω2

ω


 , (4.A.21)

〈η0〉 = u , 〈∆L0
1 〉 = 〈∆L0

2 〉 = 〈∆L0
3 〉 = uL , 〈∆R0

3 〉 = uR . (4.A.22)

where the SU(2)L nature of the fields is suppressed.

It can be seen from Eq. (4.A.21) that the A4 triplet fields – ∆̂L,R and Φ – acquire
vev which have been shown to be global minima in [77]. While this is certainly
encouraging, that result is for one A4 triplet in isolation. Here there are many
other fields and so it is not straight-forward to directly extend the results of [77].

In the following we list, sector by sector, the conditions under which the vev in
Eqs. (4.A.21) and (4.A.22) correspond to a minimum.
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SU(2)L singlet sector:

The vev of the singlet fields ∆̂R
i and ∆R

3 are much larger than those of the SU(2)L
doublet and triplet scalars. So, the contributions to the minimization equations
from the inter-sector terms can be neglected.

Using the singlet sector potential in Eq. (4.A.8) and the vev in Eqs. (4.A.21) and
(4.A.22) we get (bearing in mind vR is real):

∂Vsinglet|min

∂u∗R
= 0 ⇒ uR

[
m2

∆R
3

+ λs1u
∗
RuR +

3

2
λs3v

2
R

]
+ 3v2R [λs4vR + 2λs5u

∗
R] = 0 ,

(4.A.23)
and

∂Vsinglet|min

∂v∗Ri

= 0

⇒ vR

[
m2

∆̂R + 4λs2v
2
R +

λs3
2
u∗RuR + λs4vR(2uR + u∗R) + 2λs5u

2
R

]
= 0 .

(4.A.24)

SU(2)L doublet sector:

In this sector we have to include the contributions from both the doublet sector
itself – Eq. (4.A.11) – as well as the inter-sector terms in Eq. (4.A.18). We define
VD = Vdoublet + Vsd.

In order that the potential minimum corresponds to the vev in Eqs. (4.A.21) and
(4.A.22) we must have:

∂VD |min

∂u∗
= 0 ⇒ u

[
2m2

η + 2λd1u
∗u+ λd3v

∗v + λsd1 u
∗
RuR + 3λsd3 v

2
R

]
= 0. (4.A.25)

and

∂VD |min

∂v∗i
= 0

⇒ v√
3

[
m2

Φ + 4λd2

(
v∗v

3

)
+ λd3u

∗u+
1

2
λsd2 u

∗
RuR

+ λsd4 (u∗R + uR)vR +
5

4
λsd5 v

2
R

]
= 0. (4.A.26)

Notice that one has to resort to some degree of fine-tuning to satisfy Eqs. (4.A.25)
and (4.A.26) which involve both SU(2)L doublet and singlet vev of quite different
magnitudes.
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SU(2)L triplet sector:

Using Eqs. (4.A.8) and (4.A.20) we define VT = Vtriplet + Vts.

In this sector there are a plethora of couplings. To ease the presentation we choose

m∆L
1

= m∆L
2

= m∆L
3

= m∆L ; λt11 = λt12 = λt13 = λta ; λt41 = λt42 = λt43 = λtb

λt221 = λt232 = λt231 = λtc ; λt81 = λt82 = λt83 = λtd ; λt91 = λt92 = λt93 = λte
λts11 = λts12 = λts13 = λtsa ; λts31 = λts32 = λts33 = λtsb ; λts51 = λts52 = λts53 = λtsc
λts10 = λts11 = λts12 = λtsd ; λts7 = λts8 = λts9 = λtsf . (4.A.27)

For the minimization of VT so as to arrive at the vev in Eqs. (4.A.21) and (4.A.22)
one must satisfy:

∂VT |min

∂u∗L
= 0

⇒ uL

[
m2

∆L + (λta + λtc)u
∗
LuL +

1

2
λtbv

∗
LvL +

1

2
λtsa u

∗
RuR +

3

2
λtsb v

2
R

]

+ 2v2Lu
∗
L(λ

t
d + λte) + vLvR

[
−1

2
λtsc vR + λtsd u

∗
R + λtsf uR

]
= 0.

(4.A.28)

Again:

∂VT |min

∂v∗L1
= 0

⇒ vL

[
m2

∆̂L +
3

2
λtbu

∗
LuL + 2λt3v

∗
LvL +

1

2
λts2 u

∗
RuR +

3

2
λts4 v

2
R

]

+ uL

[
6uLv

∗
L(λ

t
d + λte)−

3

2
λtsc v

2
R + 3λtsf u

∗
RvR + 3λtsd uRvR

]
= 0.

(4.A.29)

Also we have

∂VT |min

∂v∗L2
=

∂VT |min

∂v∗L3
= 0

⇒ vLvR

[
−1

4
λts4 vR + λts6 (u

∗
R + uR)

]
= 0. (4.A.30)

Here again fine-tuning is required to ensure that Eqs. (4.A.28) - (4.A.30) are
satisfied.
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Chapter 5

Seesaw model based on discrete
group S3

5.1 Introduction

This chapter is based on our paper [38]. In this chapter we propose a neutrino mass
model based on the direct product group S3×Z3. The elements of S3 correspond to
the permutations of three objects81. Needless to say, S3-based models of neutrino
mass have been considered earlier [79,80]. A popular point of view [81] has been to
note that a permutation symmetry between the three neutrino states is consistent
with82 (a) a democratic mass matrix,Mdem, all whose elements are equal, and (b) a
mass matrix proportional to the identity matrix, I. A general combination of these
two forms, e.g., c1I+c2Mdem, where c1, c2 are complex numbers, provides a natural
starting point. One of the eigenstates, namely, an equal weighted combination
of the three states, is one column of the popular Tribimaximal mixing matrix.
Many models have been presented [81] which add perturbations to this structure
to accomplish realistic neutrino masses and mixing. Variations on this theme [82]
explore mass matrices with such a form in the context of Grand Unified Theories,
in models of extra dimensions, and examine renormalization group effects on such
a pattern realised at a high energy. Other variants of the S3-based models, for
example [83], rely on a 3-3-1 local gauge symmetry, tie it to a (B − L)-extended
model, or realise specific forms of mass matrices through soft symmetry breaking,
etc. As discussed later, the irreducible representations of S3 are one and two-
dimensional. The latter provides a natural mechanism to get maximal mixing in
the νµ − ντ sector [84].

The present model, also based on S3 symmetry, breaks new ground in the following
directions. Firstly, it involves an interplay of Type I and Type II seesaw contri-
butions. Secondly, it presents a general framework encompassing many popular

81More details of S3 can be found in Appendix 5.A.
82Note, however, there is no 3-dimensional irreducible representation of S3 (see Appendix 5.A).

So these models entail fine tuning.
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Model TBM BM GR NSM
θ012 35.3◦ 45.0◦ 31.7◦ 0.0◦

Table 5.1: The solar mixing angle, θ012 for the TBM, BM, and GR mixing patterns. NSM
stands for the case where the solar mixing angle is initially vanishing.

mixing patterns such as Tribimaximal mixing. Further, the model does not invoke
any soft symmetry breaking terms. All the symmetries are broken spontaneously.

We briefly outline here the strategy of this work. We use the standard notation
for the leptonic mixing matrix – the Pontecorvo Maki Nakagawa Sakata (PMNS)
matrix – U defined in Eq. (1.15). The neutrino masses and mixings arise through a
two-stage mechanism as in Chapter 4. In the first step, from the Type II seesaw the
larger atmospheric mass splitting, ∆m2

atmos, is generated while the solar splitting,
∆m2

solar, is absent. Also, θ13 = 0, θ23 = π/4 and the model parameters can be
varied in a continuous manner to obtain any desired θ012. Of course, in reality
θ13 6= 0 [12], the solar splitting is non-zero, and there are indications that θ23 is
large but non-maximal. Experiments have also set limits on θ12. The Type I seesaw
addresses all the above issues and relates the masses and mixings to each other.

The starting form incorporates several well-studied mixing patterns such as TBM,
BM, and GR mixings within its fold. These alternatives all have θ13 = 0 and
θ23 = π/4. They differ only in the value of the third mixing angle θ012 as displayed
in Table 5.1. The fourth option in this Table, NSM, exhibits the attractive feature
that the mixing angles are either maximal, i.e., π/4 (θ23) or vanishing (θ13 and
θ012).

In the following section we furnish a description of the model including the assign-
ment of S3 × Z3 quantum numbers to the leptons and symmetry-breaking scalar
fields. The consequences of the model are described next where we also compare
with the experimental data. A summary and conclusions follow. The scalar poten-
tial of this model has a rich structure. In two Appendices we present the essence of
S3 symmetry and discuss the S3 invariant scalar potential, deriving the conditions
which must be satisfied by the scalar coefficients to obtain the desired minimum.

5.2 The Model

In the model under discussion fermion and scalar multiplets are assigned S3×Z3
quantum numbers in a manner such that spontaneous symmetry breaking naturally
yields mass matrices which lead to the seesaw features espoused earlier. All terms
allowed by the symmetries of the model are included in the Lagrangian. No soft
symmetry-breaking terms are required.

To begin it will be useful to formulate the conceptual structure behind the model.
Neutrino masses arise from a combination of Type I and Type II seesaw contri-
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butions of which the latter dominates. In the neutrino mass basis, which is also
the basis in which the Lagrangian will be presented, the Type II seesaw yields a
diagonal matrix in which two states are degenerate:

MνL =



m

(0)
1 0 0

0 m
(0)
1 0

0 0 m
(0)
3


 . (5.1)

This mass matrix results in ∆m2
atmos = (m

(0)
3 )2− (m

(0)
1 )2 while ∆m2

solar = 0. Later,

we find the combinations m± = m
(0)
3 ±m

(0)
1 useful. m− signals the mass ordering;

it is positive for normal ordering and negative for inverted ordering.

Fields Notations S3 (Z3) SU(2)L(Y ) L

Le 1′ (1)
Left-handed leptons Lµ 1′ (ω) 2 (-1) +1

Lτ 1 (ω)

eR 1′ (1)

Right-handed charged leptons

(
µR

τR

)
2 (1) 1 (-2) +1

N1R 1′ (1)
Right-handed neutrinos N2R 1′ (ω) 1 (0) 0

N3R 1 (ω)

Table 5.2: The fermion content of the model. The transformation properties under S3,
Z3, and SU(2)L are shown. The hypercharge of the fields, Y , and their lepton number, L,
are also indicated. Here LT

α = (να l−α ).

At this stage the mixing resides entirely in the charged lepton sector. We follow
the convention

Ψflavour = UΨΨmass , (5.2)

for the fermions Ψ, so that the PMNS matrix, U , is given by

U = U †
l Uν . (5.3)

As noted, at this level θ12 = θ012, where alternate choices of θ012 result in popular
mixing patterns such as Tribimaximal, Bimaximal, and Golden Ratio with the
common feature that θ13 = 0 and θ23 = π/4. θ012 = 0 is another interesting
alternative [37] where initially the lepton mixing angles are either vanishing θ13 =
0 = θ12 or maximal, i.e., π/4 (θ23). Thus, till Type I seesaw effects are included,
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the leptonic mixing matrix takes the form:

U0 =




cos θ012 sin θ012 0

− sin θ0
12√
2

cos θ0
12√
2

1√
2

sin θ0
12√
2

− cos θ0
12√
2

1√
2


 = U †

l U
0
ν , (5.4)

where U0
ν = I and the charged lepton mass matrix is:

Meµτ = Ul



me 0 0
0 mµ 0
0 0 mτ


 I =



me cos θ

0
12 −mµ√

2
sin θ012

mτ√
2
sin θ012

me sin θ
0
12

mµ√
2
cos θ012 −mτ√

2
cos θ012

0 mµ√
2

mτ√
2


 .

(5.5)
The identity matrix, I, at the right in the first step above indicates that no transfor-
mation needs to be applied on the right-handed charged leptons which are SU(2)L
singlets.

In this basis, the matrices responsible for the Type I seesaw have the forms:

MD = mD I and MR =
mR

2xy




0 xe−iφ1 xe−iφ1

xe−iφ1 ye−iφ2/
√
2 −ye−iφ2/

√
2

xe−iφ1 −ye−iφ2/
√
2 ye−iφ2/

√
2


 , (5.6)

where mD and mR set the scale for the Dirac and right-handed Majorana masses
while x and y are dimensionless real quantities of O(1). We take the Dirac mass
matrix MD proportional to the identity for ease of presentation. We have checked
that the same results can be reproduced so long as MD is simply diagonal. The
right-handed neutrino Majorana mass matrix, MR, has a N2R ↔ N3R discrete
symmetry. This choice too can be relaxed without jeopardising the final outcome.

We will show later how the mass matrices in Eqs. (5.1) - (5.6) lead to a good fit to
the neutrino data and yield testable predictions. But before this we must ensure
that the above matrices can arise from the S3× Z3 symmetric Lagrangian.

The behaviour of the fermions, i.e., the three lepton generations83 including three
right-handed neutrinos, is summarised in Table 5.2. The gauge interactions of the
leptons are universal and diagonal in this basis. A feature worth noting is that the
right-handed neutrinos have lepton number L = 0. We discuss later how this leads
to a diagonal neutrino Dirac mass matrix. The lepton mass matrices arise from
the Yukawa couplings allowed by the S3× Z3 symmetry.

The S3 × Z3 structure of the lepton sector is matched by a rich scalar sector
which we have presented in Table 5.3. The requirement of charged lepton masses
and Type I and Type II seesaw neutrino masses dictates the inclusion of SU(2)L
singlet, doublet, and triplet scalar fields. The S3×Z3 properties of the scalars are
chosen bearing in mind the S3 and Z3 combination rules. In particular, for the
former the representations are 1, 1′, and 2 which satisfy the multiplication rules
(see Appendix 5.A):

1× 1′ = 1′ , 1′ × 1′ = 1 , and 2× 2 = 2 + 1 + 1′ . (5.7)

83The scope of this model is restricted to the lepton sector.
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Purpose Notations S3 SU(2)L L vev
(Z3) (Y )

η ≡ (η+ η0) 1 (1) 2 (1) 0 〈η〉 = vη(0 1)

Φa ≡
(
φ+
1 φ0

1

φ+
2 φ0

2

)
2 (1) 2 (1) 0 〈Φa〉 = va√

2

(
0 w1

0 w2

)

Meµτ

Φb ≡
(
φ+
3 φ0

3

φ+
4 φ0

4

)
2 (ω) 2 (1) 0 〈Φb〉 = vb√

2

(
0 w3

0 w4

)

α ≡ (α+ α0) 1 (ω) 2 (1) 0 〈α〉 = vα(0 1)

MD β ≡ (β0 β−) 1 (1) 2 (-1) 1 〈β〉 = vβ ( 1 0 )

∆L ≡ (∆++
L , ∆+

L , ∆
0
L) 1 (1) 3 (2) -2 〈∆L〉 = v∆ ( 0 0 1 )

M ν
L

ρL ≡ (ρ++
L , ρ+L , ρ

0
L) 1 (ω) 3 (2) -2 〈ρL〉 = vρ ( 0 0 1 )

χ ≡ χ0 1 (ω) 1 (0) 0 〈χ〉 = uχ
MR

γ ≡ γ0 1′ (ω) 1 (0) 0 〈γ〉 = uγ

Table 5.3: The scalar content of the model. The transformation properties under S3, Z3,
and SU(2)L are shown. The hypercharge of the fields, Y , their lepton number, L, and the
vacuum expectation values are also indicated. wi (i = 1 . . . 4) are dimensionless.

The scalar multiplets are chosen such that the mass matrices appear with specific
structures as discussed below84. It can be seen from Table 5.3 that all neutral
scalars pick up a vev. The vev of the SU(2)L singlets, namely, uχ and uγ , can
be much higher than the electroweak scale, v, and determine the masses of the
right-handed neutrinos. The other vev break SU(2)L. We take v∆ ∼ vρ ≪ vη ∼
va ∼ vb ∼ vα ∼ vβ ∼ v to maintain consistency with the “ρ” parameter.

Charged lepton and neutrino masses are obtained from the Yukawa terms in a
Lagrangian constructed out of the fields in Tables 5.2 and 5.3. Including all terms
which respect the SU(2)L ×U(1)Y gauge symmetry and the S3×Z3 flavour sym-
metry so long as lepton number, L, is also conserved one is led to the Lagrangian

84In general the multiple scalar fields in models based on discrete symmetries also result in
flavour changing neutral currents induced by the neutral scalars. Discussions of this aspect in
the context of S3 can be found, for example, in [85].
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mass terms

Lmass = f1 ēL(µRφ
0
2 − τRφ

0
1) + f2 µ̄L(µRφ

0
4 − τRφ

0
3) + f3 τ̄L(µRφ

0
4 + τRφ

0
3)

+ f4 µ̄LeRα
0 + f5 ēLeRη

0 (charged lepton mass)

+ (h1ν̄eLN1R + h2ν̄µLN2R + h3ν̄τLN3R)β
0 (neutrino Dirac mass)

+

[
1

2
g1 ν

T
eLC

−1νeL∆
0
L

+
1

2

(
g2 ν

T
µLC

−1νµL + g3 ν
T
τLC

−1ντL
)
ρL

]
(neutrino Type II seesaw mass)

+
1

2

([
k1N

T
2RC

−1N2R + k2N
T
3RC

−1N3R

]
χ+ k3N

T
2RC

−1N3Rγ
)

+
1

2

(
k4N

T
1RC

−1N2Rχ̃+ k5N
T
1RC

−1N3Rγ̃
)

(rh neutrino mass) + h.c. .

(5.8)

Here, χ̃ and γ̃ are charge conjugated fields which transform under Z3 as ω∗ = ω2.
For each term in the Lagrangian the fermion masses which arise therefrom have
been indicated. Both Type I and Type II seesaw contributions for neutrino masses
are present.

The above Lagrangian gives rise to the mass matrices in Eqs. (5.1) - (5.6) through
the Yukawa couplings and the vevs in Table 5.3. Before turning to these let us note
how the quantum number assignments of the fermion and scalar fields force certain
entries in the mass matrices to be vanishing. For example, the mass term τ̄LeR is
zero in Eq. (5.5) because there is no SU(2)L doublet field which transforms as a
1′ under S3. Similarly the diagonal nature of the left-handed neutrino Majorana
mass matrix in Eq. (5.1) is ensured by the absence of an SU(2)L triplet field which
transforms either as (i) a 1′ under S3 or (ii) as ω2 under Z3. The neutrino Dirac
mass matrix in Eq. (5.6) arises from the Yukawa couplings85 of the SU(2)L doublet
scalar β. Since it transforms as 1 under both S3 and Z3 it can be seen from the
left-handed and right-handed neutrino quantum numbers in Table 5.2 that only
diagonal terms are allowed. Finally, the NT

1RN1R term is absent in the right-handed
neutrino Majorana mass matrix in Eq. (5.6) since there is no Z3 singlet among
the SU(2)L singlet scalars.

Before proceeding further it may be useful to comment on the sizes of the vari-
ous vacuum expectation values in Table 5.3. The SU(2)L doublets acquire vevs
vη,a,b,α,β which are O(MW ) while the triplet vevs v∆,ρ are several orders of mag-
nitude smaller. This is in consonance with the smallness of the neutrino masses
as also the ρ parameter of electroweak symmetry breaking. Needless to say, the
SU(2)L singlet fields χ and γ can acquire vevs well above the electroweak scale.

The non-vanishing entries in the mass matrices in Eqs. (5.1) - (5.6) which arise
from the Yukawa couplings entail the following relationships:

85As the NiR carry L = 0, conservation of lepton number forbids any contribution to the Dirac
mass from the SU(2)L scalar doublets which generate the charged lepton masses.
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1. Charged lepton masses – On matching the Lagrangian in Eq. (5.8), the scalar
doublet vevs in Table 5.3 and the charged lepton mass matrix in Eq. (5.5) one
gets:

f1〈φ0
1〉 = −mτ√

2
sin θ012 , f1〈φ0

2〉 = −mµ√
2
sin θ012 , (5.9)

f2〈φ0
3〉 =

mτ√
2
cos θ012 , f2〈φ0

4〉 =
mµ√
2
cos θ012 , f3〈φ0

3〉 =
mτ√
2
, f3〈φ0

4〉 =
mµ√
2
,

(5.10)
and

f4〈α0〉 = me sin θ
0
12 , f5〈η0〉 = me cos θ

0
12 . (5.11)

Notice that Eqs. (5.9) and (5.10) imply

w2

w1

=
w4

w3

=
mµ

mτ

. (5.12)

2. Left-handed neutrino Majorana mass – Similarly, the mass matrix in Eq. (5.1)
is obtained when

g1〈∆0
L〉 = m0

1 = g2〈ρ0L〉 , g3〈ρ0L〉 = m0
3 . (5.13)

The first equation above requires a matching between two sets of Yukawa couplings
and vevs. This is to ensure degeneracy of two neutrino states, implying the van-
ishing of the solar mass splitting at this stage. Notice that the relatively large size
of the atmospheric mass splitting requires g2 and g3 to be of different order.

3. Neutrino Dirac mass – The Dirac mass matrix in Eq. (5.6) is due to the
relations:

h1 = h2 = h3 = h and h〈β0〉 = mD . (5.14)

The equality of the three Yukawa couplings, hi, above is only a simplified choice.
We have checked that deviations from this relation, i.e., a diagonal Dirac mass
matrix but not proportional to the identity, can also readily lead to the results
which we discuss in this chapter.

4. Right-handed neutrino Majorana mass – Finally, the right-handed neutrino
Majorana mass matrix follows from:

k1〈χ0〉 = mRe
−iφ2

2
√
2x

= k2〈χ0〉 , k3〈γ0〉 = −mRe
−iφ2

2
√
2x

, k4〈χ̃0〉 = mRe
−iφ1

2y
= k5〈γ̃0〉 .

(5.15)
We show in Appendix 5.B how from a minimisation of the scalar potential the
required scalar vevs may be obtained.

5.2.1 Type I seesaw contribution

In the previous section we have shown that the S3 model results in a diagonal
left-handed neutrino mass matrix given in Eq. (5.1) through a Type II seesaw.
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The charged lepton mass matrix as given in Eq. (5.5) is not diagonal and induces
a mixing in the lepton sector. This mixing, Eq. (5.4), receives further corrections
from a smaller Type I seesaw contribution to the neutrino mass matrix as we
discuss.

The Type I seesaw arising from the Dirac and right-handed neutrino mass matrices
in Eq. (5.6) is

M ′ =
[
MT

D(MR)
−1MD

]
=
m2

D

mR




0 y eiφ1 y eiφ1

y eiφ1 x eiφ2√
2

−x eiφ2√
2

y eiφ1 −x eiφ2√
2

x eiφ2√
2


 . (5.16)

5.3 Results

We have given above the contributions to the neutrino mass matrix from the Type
I and Type II seesaw. Of these, the former is taken to be significantly smaller than
the latter. As we have noted, in the absence of the Type I seesaw the leptonic
mixing matrix in this model is determined entirely by the charged lepton mass
matrix. It has θ13 = 0, θ23 = π/4, and θ12 arbitrary. We will be considering four
mixing patterns which fall within this scheme and in each of which the value of
θ012 is specified, namely, the TBM, BM, GR, and NSM cases. In addition, in this
model the Type II seesaw sets the solar mass splitting to be zero. The Type I
seesaw, whose effect we incorporate perturbatively, brings all the above leptonic
parameters into agreement with their values preferred by the data. Before we
proceed further with this discussion it will be useful to mention that we have used
the 3σ global fit ranges of the neutrino mixing parameters furnished in Eq. (1.24).
Later, we also remark about the compatibility of this model with the recent T2K
and NOνA hints [10, 11] of δ being near -π/2.

5.3.1 Real MR (φ1 = 0 or π, φ2 = 0 or π)

A limiting case, with less complications, corresponds to no CP violation. This
happens whenMR is real, i.e., the phases φ1,2 in Eq. (5.16) are 0 or π. These cases
can be compactly considered by keeping x and y real but allowing them to be of
either sign, i.e., four alternatives. We show below how the experimental data picks
out one out of these.

Without the phases φ1,2, i.e., for real MR, one gets

M ′ =
m2

D

mR




0 y y
y x√

2
− x√

2
y − x√

2
x√
2


 . (5.17)

The equality of two neutrino masses from the Type II seesaw requires the use of de-
generate perturbation theory to obtain corrections to the solar mixing parameters.
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The 2× 2 submatrix of M ′ relevant for this is:

M ′
2×2 =

m2
D

mR

(
0 y
y x/

√
2

)
. (5.18)

This results in:
θ12 = θ012 + ζ , tan 2ζ = 2

√
2
(y
x

)
. (5.19)

A related quantity, ǫ, which is found useful later is given by

sin ǫ =
y√

y2 + x2/2
and cos ǫ =

x/
√
2√

y2 + x2/2
, i.e., tan ǫ =

1

2
tan 2ζ . (5.20)

Model (θ012) TBM (35.3◦) BM (45.0◦) GR (31.7◦) NSM (0.0◦)
ζ -4.0◦ ↔ 0.6◦ -13.7◦ ↔ -9.1◦ -0.4◦ ↔ 4.2◦ 31.3◦ ↔ 35.9◦

ǫ -4.0◦ ↔ 0.6◦ -14.5◦ ↔ -9.3◦ -0.4◦ ↔ 4.2◦ 44.0◦ ↔ 56.7◦

ǫ− θ012 -39.2◦ ↔ -34.6◦ -59.5◦ ↔ -54.4◦ -39.2◦ ↔ -30.0◦ 44.0◦ ↔ 56.7◦

Table 5.4: The ranges of ζ (Eq. (5.19)), ǫ (Eq. (5.20)), and (ǫ− θ012) allowed by the data
for the different popular mixing patterns.

Once a mixing pattern is chosen, i.e., θ012 fixed, the experimental limits on θ12 as
given in Eq. (1.24) set bounds on the range of ζ and also from Eq. (5.20) on
ǫ. These are displayed for the four mixing patterns in Table 5.4. If ζ is positive
(negative) then the ratio (y/x) will also be positive (negative). In addition, from
Eq. (5.20) the sign of y is fixed by the value of ǫ. Taking these points into account
one can conclude that x is always positive, i.e., φ2 has to be 0. On the other hand,
y must be positive, φ1 = 0 (negative, φ1 = π) for NSM (BM). For the other mixing
patterns, i.e., TBM and GR, both signs of y are possible.

The solar mass splitting arising from the Type I seesaw is also obtained from Eq.
(5.18).

∆m2
solar =

√
2m2

D

mR

m
(0)
1

√
x2 + 8y2 =

√
2m2

D

mR

m
(0)
1

x

cos 2ζ
. (5.21)

Furthermore, incorporating the leading order corrections to neutrino mixing from
Eq. (5.17) one gets from Eq. (5.3):

U = U0Uν with Uν =




cos ζ − sin ζ κr sin ǫ
sin ζ cos ζ −κr cos ǫ

κr sin(ζ − ǫ) κr cos(ζ − ǫ) 1


 , (5.22)

with

κr ≡
m2

D

mRm−

√
y2 + x2/2 =

m2
D

mRm−
x√

2 cos ǫ
. (5.23)
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The third column of the leptonic mixing matrix becomes:

|ψ3〉 =




κr sin(ǫ− θ012)
1√
2
[1− κr cos(ǫ− θ012)]

1√
2
[1 + κr cos(ǫ− θ012)]


 . (5.24)

Since, as noted, x is always positive, κr is positive (negative) for normal (inverted)
ordering.

The right-hand-side of Eq. (5.24) has to be matched with the third column of Eq.
(1.15). This yields:

sin θ13 cos δ = κr sin(ǫ− θ012) , (5.25)

and
tan(π/4− θ23) ≡ tanω = κr cos(ǫ− θ012) . (5.26)

For ready reference the ranges of (ǫ− θ012) allowed for the different mixing patterns
are presented in Table 5.4. For normal ordering86 the CP phase δ is 0 (π) when
sin(ǫ− θ012) is positive (negative). From Table 5.4 one can then observe that δ = 0
for the NSM mixing pattern and is π for the three other cases. Needless to say,
both correspond to CP conservation.

 4.5
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ω
 =

 (
π/

4−
θ 2

3)
 in

 d
eg

re
es
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Real MR, Normal Ordering, First Octant

Figure 5.1: ω = (π/4−θ23) as a function of θ12 for normal ordering. The solid lines indicate
the range for the 3σ allowed variation of sin θ13 while the dashed line corresponds to the
best-fit value. Thick green (thin pink) lines are for the NSM (BM) case. The horizontal and
vertical blue dot-dashed lines delimit the 3σ allowed range from data. Note that ω is always
positive, i.e., the first octant of θ23 is preferred. For the TBM and GR mixing patterns ω,
still positive, lies beyond the 3σ range. Best-fit values of the solar and atmospheric splittings
are used. For MR real there is no allowed solution for inverted ordering.

Combining Eqs. (5.21), (5.23), and (5.25) one can write:

∆m2
solar = 2 m−m

(0)
1

sin θ13 cos δ cos ǫ

cos 2ζ sin(ǫ− θ012)
. (5.27)

86We show in the following that inverted ordering is not consistent with real MR.
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Eq. (5.27) leads to the conclusion that inverted ordering is not allowed for this
case of real MR. To establish this property one can define:

z ≡ m−m
(0)
1 /∆m2

atmos and tan ξ ≡ m0/
√

|∆m2
atmos| , (5.28)

where z is positive for both mass orderings. From Eq. (5.27) one has

z =

(
∆m2

solar

|∆m2
atmos|

)(
cos 2ζ sin(ǫ− θ012)

2 sin θ13| cos δ| cos ǫ

)
. (5.29)

It is easy to verify from Eq. (5.28) that

z = sin ξ/(1 + sin ξ) i.e., 0 ≤ z ≤ 1

2
(for normal ordering),

z = 1/(1 + sin ξ) i.e.,
1

2
≤ z ≤ 1 (for inverted ordering) . (5.30)

There is a one-to-one correspondence of z with the lightest neutrino mass m0. The
quasidegeneracy limit, i.e., m0 → large, is approached as z → 1

2
for both mass

orderings.

In Eq. (5.29) | cos δ| = 1 for real MR. Using the global fit mass splittings and
mixing angles given in Eq. (1.24) and Table 5.4 one finds z ∼ 10−2 or smaller for
all four mixing patterns. This excludes the inverted mass ordering option for real
MR.

From Eqs. (5.25) and (5.26) one has

tanω =
sin θ13 cos δ

tan(ǫ− θ012)
. (5.31)

The noteworthy point is that for normal ordering Eq. (5.26) implies that ω is always
positive irrespective of the mixing pattern. So, in this model θ23 is restricted to
the first octant for real MR.

Eqs. (5.19) and (5.20) can be used to express ǫ in terms of θ12 and thereby put ω
in Eq. (5.31) as a function of θ12 and θ13 only. In Fig. 5.1, ω is shown as a function
of θ12 for the NSM (thick green lines) and BM (thin pink lines) mixing patterns.
The ranges of θ12 and ω have been kept within their 3σ allowed limits from global
fits as given in Eq. (1.24). The TBM and GR cases are excluded because for the
allowed values of θ12 they predict θ23 beyond the 3σ range. The solid lines in the
figure correspond to the 3σ limiting values of θ13 and the dashed line is for its
best-fit value. The blue dot-dashed horizontal and vertical lines display the 3σ
experimental bounds on θ23 and θ12.

Using Eq. (5.29) any allowed point in the ω− θ12 plane and the associated θ13 can
be translated to a value of z or equivalentlym0, provided the solar and atmospheric
mass splittings are given. We find that for both the allowed mixing patterns the
range of variation of m0 is very small. For the NSM (BM) case this range is 2.13
meV ≤ m0 ≤ 3.10 meV (3.20 meV ≤ m0 ≤ 4.42 meV) when both neutrino mass
splittings and all mixing angles are varied over their full 3σ ranges.

To summarise the real MR case:
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1. Only the normal mass ordering is allowed.

2. θ23 can lie only in the first octant.

3. The TBM and GR alternatives are inconsistent with the allowed ranges of the
neutrino mixing angles even after including the Type I seesaw corrections.

4. For the NSM and BM mixing patterns real MR can give consistent solutions
for the neutrino masses and mixings. The ranges of allowed lightest neutrino
masses are very tiny.

5.3.2 Complex MR

KeepingMR real eliminates CP violation. Further, inverted ordering is disallowed.
Also, the TBM and GR mixing patterns cannot be accommodated. These restric-
tions can be ameliorated by taking MR in its general complex form giving rise
to the Type I seesaw contribution M ′ as given in Eq. (5.16). Recall that this
introduces the phases φ1,2 and x and y take only positive values.

With its complex entries, M ′ is now not hermitian any more. To address this we
consider the combination (M0 +M ′)†(M0 +M ′), and treat M0†M0 as the leading
term with (M0†M ′ +M ′†M0) acting as a perturbation at the lowest order, both

hermitian by construction. The unperturbed eigenvalues are thus (m
(0)
i )2. The

perturbation matrix is

(M0†M ′ +M ′†M0) =
m2

D

mR




0 2ym
(0)
1 cosφ1 yf(φ1)

2ym
(0)
1 cosφ1

√
2xm

(0)
1 cosφ2 − x√

2
f(φ2)

yf ∗(φ1) − x√
2
f ∗(φ2)

√
2xm

(0)
3 cosφ2


 .

(5.32)
In the above

f(ϕ) = m+ cosϕ− im− sinϕ . (5.33)

The remaining calculation proceeds in much the same manner as for realMR while
keeping the distinctive features of Eq. (5.32) in mind.

In place of Eqs. (5.19) and (5.20) for the real MR case, we get from (5.32)

θ12 = θ012 + ζ , tan 2ζ = 2
√
2
y

x

cosφ1

cosφ2

, (5.34)

and

sin ǫ =
y cosφ1√

y2 cos2 φ1 + x2 cos2 φ2/2
, cos ǫ =

x cosφ2/
√
2√

y2 cos2 φ1 + x2 cos2 φ2/2
,

tan ǫ =
1

2
tan 2ζ . (5.35)
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Mixing Normal Ordering Inverted Ordering
Pattern δ θ23 δ θ23

quadrant octant quadrant octant
NSM First/Fourth First Second/Third Second

BM, TBM, GR Second/Third First First/Fourth Second

Table 5.5: Quadrants of the leptonic CP phase δ and the octant of θ23 for both mass
orderings for different mixing patterns.

The allowed ranges of ζ and ǫ depend on the mixing pattern and are given in
Table 5.4. It is seen that for all patterns cos ǫ is positive. Therefore, from Eq.
(5.35) we can immediately conclude that φ2 must be always in the first or fourth
quadrants. The possible quadrants of φ1 are also determined from the range of
ǫ for the different mixing patterns. From the first relation in Eq. (5.35) we find
that φ1 has to be in the first or fourth (second or third) quadrants if ǫ is positive
(negative). Using the results in Table 5.4 we conclude that the first (second) option
is valid for the NSM (BM) patterns. For TBM and GR cases ǫ spans a range over
positive and negative values and so both options are included.

The solar mass splitting is induced entirely through the Type I seesaw contribution.
From Eq. (5.32) one finds:

∆m2
solar =

√
2m

(0)
1

m2
D

mR

√
x2 cos2 φ2 + 8y2 cos2 φ1 =

√
2m

(0)
1

m2
D

mR

x cosφ2

cos 2ζ

=
√
2m

(0)
1

m2
D

mR

2
√
2y cosφ1

sin 2ζ
. (5.36)

Eq. (5.24) is now replaced by:

|ψ3〉 =




κc[
sin ǫ
cosφ1

f(φ1) cos θ
0
12 − cos ǫ

cosφ2

f(φ2) sin θ
0
12]/m

+

1√
2
{1− κc[

sin ǫ
cosφ1

f(φ1) sin θ
0
12 +

cos ǫ
cosφ2

f(φ2) cos θ
0
12]/m

+}
1√
2
{1 + κc[

sin ǫ
cosφ1

f(φ1) sin θ
0
12 +

cos ǫ
cosφ2

f(φ2) cos θ
0
12]/m

+}


 , (5.37)

where

κc =
m2

D

mRm−

√
y2 cos2 φ1 + x2 cos2 φ2/2 , (5.38)

Eq. (5.35) has been used, and the complex function f(φ1,2) is defined in Eq. (5.33).

κc is positive (negative) for normal (inverted) ordering. Comparing the right-hand-
side of Eq. (5.37) with the third column of Eq. (1.15) we find

sin θ13 cos δ = κc sin(ǫ− θ012) , (5.39)

sin θ13 sin δ = κc
m−

m+ cosφ1 cosφ2

[
sin ǫ sinφ1 cosφ2 cos θ

0
12 − cos ǫ cosφ1 sinφ2 sin θ

0
12

]
.

(5.40)
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Figure 5.2: θ23 (left) and the CP phase δ (right) as a function of m0 from this model for
different mixing patterns when the best-fit values of the input data are used. The NSM, BM,
TBM and GR cases correspond to the green solid, pink dashed, red dot-dashed, and violet
dotted curves respectively. Thick (thin) curves of each type indicate normal (inverted) mass
orderings.

As indicated in Table 5.4, (ǫ − θ012) always remains in the first (fourth) quadrant
for the NSM (BM, TBM, and GR) mixing pattern. For normal ordering Eq. (5.39)
then implies that for the NSM (BM, TBM, and GR) case(s) δ lies in the first or
fourth (second or third) quadrants. For inverted ordering of masses, κc changes
sign and so the quadrants are accordingly modified. The different possibilities are
indicated in Table 5.5. For any mixing pattern and mass ordering there are two
allowed quadrants of δ which have sin δ of opposite sign. Which of these is chosen
is determined by the phases φ1,2 through the sign of the right-hand-side of Eq.
(5.40). As noted above, φ2 can be in either the first or fourth quadrants and the
quadrant of φ1 is determined by the mixing pattern in such a way that sinφ1 can
be of either sign. Thus the the phases φ1 and φ2 can always be chosen such that
sin δ can be of any particular sign. Therefore the two alternate quadrants of δ for
every case in Table 5.5 are equally viable in this model.

The perturbative Type I seesaw contribution to θ23 can also be extracted from Eq.
(5.37). One finds:

tanω =
sin θ13 cos δ

tan(ǫ− θ012)
. (5.41)

Recalling that Eq. (5.39) correlates δ and (ǫ − θ012) through κc one can readily
conclude that for all mixing patterns θ23 always lies in the first (second) octant
for normal (inverted) ordering. This important conclusion from these models is
shown in Table 5.5.

In the expression for the solar mass splitting in Eq. (5.36) one can trade the factor
m2

D/mR in terms of κc and use Eq. (5.39) to get

∆m2
solar =

2m−m
(0)
1 sin θ13 cos δ cos ǫ

sin(ǫ− θ012) cos2ζ
. (5.42)
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The strategy that we have followed to extract the predictions of this model relies on
utilising Eqs. (5.41) and (5.42). We take the three mixing angles θ13, θ12, and θ23
as inputs. With these at hand Eq. (5.41) fixes a value of the CP phase δ. Using
these and the experimentally determined solar mass splitting one can calculate
from Eq. (5.42) the combination m

(0)
1 m−, or equivalently the variable z, which

fixes the lightest neutrino mass m0. It might appear that arbitrarily large values
of m0, and hence m

(0)
1 m−, may be admitted by taking cos δ to smaller and smaller

values. However, this is not the case. Experimental data require ω = (π/4 − θ23)
to lie within determined limits. Since all other factors have experimentally allowed
ranges, Eq. (5.41) also gives lower and upper bounds on δ. Consequently, for any
mixing pattern m0 lies within a fixed range.

In the left (right) panel of Fig. 5.2 we show the mixing angle θ23 (the CP phase
δ) as a function of the lightest neutrino mass m0 as obtained from this model for
different mixing patterns when the best-fit values of the various measured angles
and mass splittings are used. The NSM, BM, TBM and GR correspond to the
green solid, pink dashed, red dot-dashed, and violet dotted curves respectively.
The thick (thin) curves of each type indicate normal (inverted) mass orderings.
Note that normal and inverted orderings are always associated with the first and
second octants of θ23 respectively. For normal (inverted) ordering with the NSM
mixing pattern δ lies in the first (second) quadrant while for the other cases it is
in the second (first) quadrant. As expected, for inverted ordering |δ| stays close
to π/2 for the entire range of m0. For normal ordering δ is near π/2 for m0 larger
than around 0.05 eV.

Of course, as indicated in Table 5.5 if δ is a solution for some m0 then by suitably
picking alternate values of the phases φ1,2 which appear in MR one can also get a
second solution with the phase −δ. We have not shown this mirror set of solutions
in Fig. 5.2. The T2K [10] and NOνA [11] experiments have presented data which
may be taken as a preliminary hint of normal ordering associated with δ ∼ −π/2.
As seen from Fig. 5.2 this is consistent with our model, with δ ∼ −π/2 favouring
m0 in the quasidegenerate regime, i.e., m0 ≥ O(0.05 eV). If this result is confirmed
by further analysis then the model will require neutrino masses to be in a range to
which ongoing experiments will be sensitive [19, 86].

The correlation between the octant of θ23, the quadrant of the CP phase δ, and the
ordering of neutrino masses is a smoking-gun signal of this S3× Z3 based model.

5.4 Conclusions

In this chapter we have put forward an S3×Z3 model for neutrino mass and mix-
ing. After assigning the flavour quantum numbers to the leptons and the scalars we
write down the most general Lagrangian consistent with the symmetry. Once the
symmetry is broken, the Yukawa couplings give rise to the charged lepton masses
as well as the Dirac and Majorana masses for the left- and right-handed neutrinos.
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Neutrino masses originate from both Type I and Type II seesaw terms of which the
former can be treated as a small correction. The dominant Type II seesaw results
in the atmospheric mass splitting, no solar splitting, keeps θ23 = π/4, and θ13 = 0.
By a choice of the Yukawa couplings θ12 can be given any preferred value. Thus, at
this level this model can accommodate any of the much-studied Tribimaximal, Bi-
maximal, Golden Ratio, and no solar mixing patterns. The smaller Type I seesaw
contribution acting as a perturbation generates the solar mass splitting and nudges
the mixing angles to values consistent with the global fits. The octants of θ23 are
correlated with the neutrino mass ordering – first (second) octant is allowed for
normal (inverted) ordering. The model is testable through its predictions for the
CP phase δ and from the relationships between mixing angles and mass splittings
that it entails. Further, inverted mass ordering is correlated with a near-maximal
CP phase δ and arbitrarily small neutrino masses are permitted. For normal mass
ordering δ can vary over a wider range and maximality is realised in the quaside-
generate limit. The lightest neutrino mass must be at least a few meV in this
case.

5.A Appendix: Essentials of the S3 group

S3 is a discrete group of order 6 which consists of all permutations of three ob-
jects. It can be generated by two elements A and B satisfying A2 = I = B3 and
(AB) (AB) = I. The group table is given below.

I A B C D F
I I A B C D F
A A I C B F D
F F C I D A B
C C F D I B A
D D B A F I C
B B D F A C I

Table 5.6: The group table for S3.

The group has two 1-dimensional representations denoted by 1 and 1′, and a 2-
dimensional representation. 1 is inert under the group while 1′ changes sign under
the action of A. For the 2-dimensional representation a suitable choice of matrices
with the specified properties can be readily obtained. We choose

I =

(
1 0
0 1

)
, A =

(
0 1
1 0

)
, B =

(
ω 0
0 ω2

)
, (5.A.1)

where ω is a cube root of unity, i.e., ω = e2πi/3. For this choice of A and B the
remaining matrices of the representation are:

C =

(
0 ω2

ω 0

)
, D =

(
0 ω
ω2 0

)
, F =

(
ω2 0
0 ω

)
. (5.A.2)
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The product rules for the different representations are:

1× 1′ = 1′, 1′ × 1′ = 1, and 2× 2 = 2 + 1 + 1′ . (5.A.3)

One can see that each of the 2×2 matricesMij in Eqs. (5.A.1) and (5.A.2) satisfies:

∑

j,l =1,2

αjl Mij Mkl = αik , (5.A.4)

where αij = 0 for i = j and αij = 1 for i 6= j.

If Φ ≡
(
φ1

φ2

)
and Ψ ≡

(
ψ1

ψ2

)
are two field multiplets transforming under S3 as

doublets then using Eqs. (5.A.1) and (5.A.4):

φ1ψ2 + φ2ψ1 ≡ 1 , φ1ψ2 − φ2ψ1 ≡ 1′ and

(
φ2ψ2

φ1ψ1

)
≡ 2 . (5.A.5)

Sometimes we have to deal with hermitian conjugate fields. Noting the nature of
the complex representation (see, for example, B in Eq. (5.A.1)) the conjugate S3

doublet is Φ† ≡
(
φ†
2

φ†
1

)
. As a result, one has in place of (5.A.5)

φ†
2ψ2 + φ†

1ψ1 ≡ 1 , φ†
2ψ2 − φ†

1ψ1 ≡ 1′ and

(
φ†
1ψ2

φ†
2ψ1

)
≡ 2 . (5.A.6)

Eqs. (5.A.5) and (5.A.6) are essential in writing down the fermion mass matrices
in Sec. 5.2.

5.B Appendix: The scalar potential and its min-

imum

As seen in Table 5.3 this model has a rich scalar field content. In this Appendix
we write down the scalar potential of the model keeping all these fields and derive
conditions which must be met by the coefficients of the various terms so that the
desired vevs can be achieved. These conditions ensure that the potential is locally
minimized by this choice.

Table 5.3 displays the behaviour of the scalar fields under S3 × Z3 besides the
gauged electroweak SU(2)L × U(1)Y . The fields also carry a lepton number. The
scalar potential is the most general polynomial in these fields with up to quartic
terms. Our first step will be to write down the explicit form of this potential.
Here we do not exclude any term permitted by the symmetries. SU(2)L × U(1)Y
invariance of the terms as well as the abelian lepton number and Z3 conservation
are readily verified. It is only the S3 behaviour which merits special attention.
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There are a variety of scalar fields in this model, e.g., SU(2)L singlets, doublets,
and triplets. Therefore, the scalar potential has a large number of terms. For
simplicity we choose all couplings in the potential to be real. In this Appendix
we list the potential in separate parts: (a) those belonging to any one SU(2)L
sector, and (b) inter-sector couplings of scalars. The SU(2)L singlet vevs, which
are responsible for the right-handed neutrino mass, are significantly larger than
those of other scalars. So, in the second category we retain only those terms which
couple the singlet fields to either the doublet or the triplet sectors.

5.B.1 SU(2)L Singlet Sector:

The SU(2)L singlet sector comprises of two fields χ and γ transforming as 1(ω)
and 1′(ω) of S3 (Z3) respectively. They have L = 0. The scalar potential arising
out of these is:

Vsinglet = m2
χχ

†χ+m2
γγ

†γ + Λs
1

{
γ2χ+ h.c.

}
+
λs1
2

[
χ†χ

]2
+
λs2
2

[
γ†γ
]2

+
λs3
2
(χ†χ)(γ†γ) + λs4

{
(γ†χ)(γ†χ) + h.c.

}
, (5.B.1)

where the coefficient of the cubic term, Λs
1, carries the same dimension as mass

while the λsi are dimensionless.

5.B.2 SU(2)L Doublet Sector:

The SU(2)L doublet sector of the model has two fields Φa,b that are doublets of
S3, in addition to α, β, and η which are S3 singlets. Among them, all fields except
Φb and α (∈ ω ofZ3) are invariant under Z3.

Vdoublet = m2
Φa
Φ†

aΦa +m2
Φb
Φ†

bΦb +m2
ηη

†η +m2
αα

†α +m2
ββ

†β

+
λd1
2

(
Φ†

aΦa

)2
+
λd2
2

(
Φ†

bΦb

)2
+
λd3
2
(Φ†

aΦa)(Φ
†
bΦb) +

λd4
2
(Φ†

aΦb)(Φ
†
bΦa)

+
λd5
2
(Φ†

aΦa)(η
†η) +

λd6
2
(Φ†

aΦa)(α
†α) +

λd7
2
(Φ†

aΦa)(β
†β) +

λd8
2
(Φ†

bΦb)(α
†α)

+
λd9
2
(Φ†

bΦb)(β
†β) +

λd10
2

(Φ†
bΦb)(η

†η) +
λd11
2

(
α†α

)2
+
λd12
2

(α†α)(η†η)

+
λd13
2

(α†η)(η†α) +
λd14
2

(α†α)(β†β) +
λd15
2

(
η†η
)2

+
λd16
2

(η†η)(β†β)

+ λd17
{
(Φ†

aΦb)(α
†η) + h.c.

}
+
λd18
2

(
β†β
)2

. (5.B.2)

Leaving aside S3 properties for the moment, to which we return below, out of
any SU(2) doublet Φ one can construct two quartic invariants (Φ†Φ)(Φ†Φ) and
(Φ†~τΦ)(Φ†~τΦ). Needless to say, this can be generalised to the case where several
distinct SU(2) doublets are involved. In order to avoid cluttering, in Eq. (5.B.2)
we have displayed only the first combination for all quartic terms.

87



The quartic terms involving λ1 to λ4 in Eq. (5.B.2) are combinations of two pairs
of S3 doublets. Each pair can combine in accordance to 2×2 = 1+1′+2 resulting
in three terms. The S3 invariant in the potential arises from a combination of the
1, 1′, or 2 from one pair with the corresponding term from the other pair. Thus,
for each such term of four S3 doublets, three possible singlet combinations exist
(recall, Eq. (5.A.3)) and we have to keep an account of all of them. We elaborate
on this using as an example the λd1 term which actually stands for a set of terms:

λd1
2

(
Φ†

aΦa

)2 → λd11

[
(Φ†

1Φ1) + (Φ†
2Φ2)

]2
+ λd1

1′

[
(Φ†

1Φ1)− (Φ†
2Φ2)

]2

+ λd12

[
(Φ†

1Φ2)(Φ
†
2Φ1) + (Φ†

2Φ1)(Φ
†
1Φ2)

]
. (5.B.3)

Substituting vevs, 〈Φ1〉 = v1 and 〈Φ2〉 = v2 and defining λd11 + λd1
1′

=
λd
a1

2
and

2(λd11 − λd1
1′
+ λd12) =

λd
a2

2
we get:

λd1
2

(
Φ†

aΦa

)2 −→ λda1
2

[
(v∗1v1)

2 + (v∗2v2)
2
]
+
λda2
2

(v∗1v1)(v
∗
2v2). (5.B.4)

Similarly,

λd2
2

(
Φ†

bΦb

)2
−→ λdb1

2

[
(v∗3v3)

2 + (v∗4v4)
2
]
+
λdb2
2
(v∗3v3)(v

∗
4v4) (5.B.5)

where, 〈Φ3〉 = v3 and 〈Φ4〉 = v4. Further,

λd3
2

[
(Φ†

aΦa)(Φ
†
bΦb)

]
→ λd31

[
(Φ†

1Φ1 + Φ†
2Φ2)(Φ

†
3Φ3 + Φ†

4Φ4)
]

+ λd3
1′

[
(Φ†

1Φ1 − Φ†
2Φ2)(Φ

†
3Φ3 − Φ†

4Φ4)
]

+ λd32

[
(Φ†

1Φ2)(Φ
†
4Φ3) + (Φ†

2Φ1)(Φ
†
3Φ4)

]
. (5.B.6)

Substituting the respective vevs and defining λd31 + λd3
1′
=

λd
ab1

2
, λd31 − λd3

1′
=

λd
ab2

2

and λd32 = λdab3 we get;

λd3
2

[
(Φ†

aΦa)(Φ
†
bΦb)

]
−→ λdab1

2
[(v∗1v1)(v

∗
3v3) + (v∗2v2)(v

∗
4v4)]

+
λdab2
2

[(v∗1v1)(v
∗
4v4) + (v∗2v2)(v

∗
3v3)]

+ λdab3 [(v
∗
1v2)(v

∗
4v3) + (v∗2v1)(v

∗
3v4)] . (5.B.7)

In a similar fashion the λd4 term when expanded will lead to

λd4
2

[
(Φ†

aΦb)(Φ
†
bΦa)

]
−→ λ̃dab1

2
[(v∗1v3)(v

∗
3v1) + (v∗2v4)(v

∗
4v2)]

+
λ̃dab2
2

[(v∗1v3)(v
∗
4v2) + (v∗2v4)(v

∗
3v1)]

+ λ̃dab3 [(v
∗
1v4)(v

∗
4v1) + (v∗2v3)(v

∗
3v2)] . (5.B.8)
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Adding Eqs. (5.B.7) and Eq. (5.B.8) we get:

λd3
2

[
(Φ†

aΦa)(Φ
†
bΦb)

]
+
λd4
2

[
(Φ†

aΦb)(Φ
†
bΦa)

]
=

λ̂dab1
2

[(v∗1v1)(v
∗
3v3) + (v∗2v2)(v

∗
4v4)]

+
λ̂dab2
2

[(v∗1v1)(v
∗
4v4) + (v∗2v2)(v

∗
3v3)]

+ λ̂dab3 [(v
∗
1v2)(v

∗
4v3) + (v∗2v1)(v

∗
3v4)] ;

(5.B.9)

where,
λ̂d
ab1

2
≡ λ̃d

ab1

2
+

λd
ab1

2
,

λ̂d
ab2

2
≡ λ̃dab3 +

λd
ab2

2
and λ̂dab3 ≡

λ̃d
ab2

2
+ λdab3 . Also, summing

up the λd12 and λd13 terms lead to
λ̂d
123

2
(v∗αvα)(v

∗
ηvη), where λ̂

d
123 ≡ λd12 + λd13.

5.B.3 SU(2)L Triplet Sector:

Both the SU(2)L triplets present in our model (∆L, ρL) that are responsible for
Majorana mass generation of the left handed neutrinos happen to be S3 invariants
and differ only in their Z3 properties i.e., ∆L(1) and ρL(ω).

Vtriplet = m2
∆L

∆†
L∆L +m2

ρL
ρ†LρL +

λt1
2

[
∆†

L∆L

]2
+
λt2
2

[
ρ†LρL

]2
+
λt3
2
(∆†

L∆L)(ρ
†
LρL)

+
λt4
2
(∆†

LρL)(ρ
†
L∆L) +

λt5
2
(∆LρL)(∆LρL)

† . (5.B.10)

It is noteworthy that when we write the minimized potential in terms of the vacuum
expectation values, the λt3, λ

t
4 and λ

t
5 terms will be providing the same contribution

as far as potential minimization is concerned. Thus we can club these couplings
together as λt345 ≡ λt3 + λt4 + λt5.

5.B.4 Inter-sector terms:

So far we have listed those terms in the potential which arise from scalars of any
specific SU(2)L behaviour – singlets, doublets, or triplets. In addition, there can be
terms which couple one of these sectors to another. Since the vacuum expectation
values of the singlet scalars are the largest we only consider here the couplings of
this sector to the others. The SU(2)L triplet sector vev is very small and we drop
the doublet-triplet cross-sector couplings.

SU(2)L Singlet-Doublet cross-sector:

Couplings between the SU(2)L singlet and doublet scalars in the potential give
rise to the terms:

Vds = Λds
1

[
(Φ†

bΦa)1′γ + h.c.
]
+ Λds

2

[
(Φ†

bΦa)1χ+ h.c.
]
+ Λds

3

[
(α†η)χ+ h.c.

]
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+
λds1
2
(Φ†

aΦa)(χ
†χ) +

λds2
2
(Φ†

aΦa)(γ
†γ) +

λds3
2
(Φ†

bΦb)(χ
†χ) +

λds4
2
(Φ†

bΦb)(γ
†γ)

+
λds5
2
(α†α)(χ†χ) +

λds6
2
(α†α)(γ†γ) +

λds7
2
(η†η)(χ†χ) +

λds8
2
(η†η)(γ†γ)

+ λds9
[
(Φ†

aΦb)χ
2 + h.c.

]
+ λds10

[
(Φ†

aΦb)γ
2 + h.c.

]
+ λds11

[
(η†α)χ2 + h.c.

]

+ λds12
[
(η†α)γ2 + h.c.

]
+ λds13

[
(Φ†

aΦb)1′(χγ) + h.c.
]
+
λds14
2

(β†β)(χ†χ)

+
λds15
2

(β†β)(γ†γ) . (5.B.11)

SU(2)L Singlet-Triplet cross-sector:

The terms in the potential which arise from couplings between the SU(2)L singlet
and triplet scalars are:

Vts = Λts
1

[
(ρ†L∆L)χ+ h.c.

]
+
λts1
2
(∆†

L∆L)(χ
†χ) +

λts2
2
(∆†

L∆L)(γ
†γ)

+
λts3
2
(ρ†LρL)(χ

†χ) +
λts4
2
(ρ†LρL)(γ

†γ) + λts5

{
(∆†

LρL)χ
2 + h.c.

}

+ λts6

{
(∆†

LρL)γ
2 + h.c.

}
. (5.B.12)

5.B.5 The minimization conditions:

The vevs of the scalar fields are given in Table 5.3. Using these:

SU(2)L singlets: 〈γ0〉 = uγ and 〈χ0〉 = uχ.

SU(2)L doublets: 〈Φa〉 =
(
0 v1
0 v2

)
, 〈Φb〉 =

(
0 v3
0 v4

)
, 〈η〉 = vη ( 0 1 ),

〈α〉 = vα ( 0 1 ) and 〈β〉 = vβ ( 1 0 ) .

Recall that from the structure of the charged lepton mass matrix Eq. (5.12) re-
quires v2/v1 = v4/v3 = A where the real quantity A = mµ/mτ . We often also need
B ≡ (1 + A2).

SU(2)L triplets: 〈ρ0L〉 = vρ and 〈∆0
L〉 = v∆.

SU(2)L Singlet sector:

∂Vsinglet|min

∂u∗χ
= 0 ⇒ uχ

[
m2

χ + λs1u
∗
χuχ
]
+ Λs

1

(
u∗γ
)2

+ uγ

[
λs3
2
uχu

∗
γ + 2λs4u

∗
χuγ

]
= 0 ,

(5.B.13)
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and

∂Vsinglet|min

∂u∗γ
= 0 ⇒ uγ

[
m2

γ + λs2u
∗
γuγ
]
+2Λs

1

(
u∗γu

∗
χ

)
+uχ

[
λs3
2
uγu

∗
χ + 2λs4u

∗
γuχ

]
= 0 .

(5.B.14)

SU(2)L Doublet sector:

Define VD = Vdoublet + Vds.

∂VD |min

∂v∗α
= vα

[
m2

α +
λd6
2
(v∗1v1)B +

λd8
2
(v∗3v3)B

]

+ vα

[
λd11(v

∗
αvα) +

λ̂d123
2

(v∗ηvη) + λd14(v
∗
βvβ) +

λds5
2
(u∗χuχ) +

λds6
2
(u∗γuγ)

]

+ vη
[
λd17(v

∗
1v3)B + Λds

3 uχ + λds11(u
∗
χ)

2 + λds12(u
∗
γ)

2
]
= 0.

(5.B.15)

∂VD |min

∂v∗β
= vβ

[
m2

β +
λd7
2
(v∗1v1)B +

λd9
2
(v∗3v3)B +

λd14
2

(v∗αvα) +
λd16
2

(v∗ηvη)

]

+ vβ

[
λd18(v

∗
βvβ) +

λds14
2

(u∗χuχ) +
λds15
2

(u∗γuγ)

]
= 0.

(5.B.16)

∂VD |min

∂v∗η
= vη

[
m2

η +
λd5
2
(v∗1v1)B +

λd10
2

(v∗3v3)B +
λ̂d123
2

(v∗αvα) + λd15(v
∗
ηvη)

]

+ vη

[
λd16
2

(v∗βvβ) +
λds7
2
(u∗χuχ) +

λds8
2
(u∗γuγ)

]

+ vα
[
λd17(v

∗
3v1)B + Λds

3 u
∗
χ + λds11(uχ)

2 + λds12(uγ)
2
]

= 0. (5.B.17)

∂VD |min

∂v∗1

= v1

[
m2

Φa
+ (v∗1v1)

(
λda1 + A2λ

d
a2

2

)]

+ v1

[
(v∗3v3)

(
λ̂dab1
2

+ A2 λ̂
d
ab2

2
+ A2λ̂dab3

)]
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+ v1

[{
λd5
2
(v∗ηvη) +

λd6
2
(v∗αvα) +

λd7
2
(v∗βvβ)

}]

+ v1

[{
λds1
2
(u∗χuχ) +

λds2
2
(u∗γuγ)

}]
+ v3

[{
λd17(v

∗
αvη)

}]

+ v3
[{

Λds
1 u

∗
γ + Λds

2 u
∗
χ + λds9 (uχ)

2 + λds10(uγ)
2 + λds13(uχuγ)

}]

= 0. (5.B.18)

∂VD |min

∂v∗2
= Av1

[
m2

Φa
+ (v∗1v1)

(
A2λda1 +

λda2
2

)]

+ Av1

[
(v∗3v3)

(
A2 λ̂

d
ab1

2
+
λ̂dab2
2

+ λ̂dab3

)]

+ Av1

[{
λd5
2
(v∗ηvη) +

λd6
2
(v∗αvα) +

λd7
2
(v∗βvβ)

}]

+ Av1

[{
λds1
2
(u∗χuχ) +

λds2
2
(u∗γuγ)

}]
+ Av3

[{
λd17(v

∗
αvη)

}]

+ Av3
[{

−Λds
1 u

∗
γ + Λds

2 u
∗
χ + λds9 (uχ)

2 + λds10(uγ)
2 − λds13(uχuγ)

}]

= 0. (5.B.19)

∂VD |min

∂v∗3
= v3

[
m2

Φb
+ (v∗3v3)

(
λdb1 + A2λ

d
b2

2

)]

+ v3

[
(v∗1v1)

(
λ̂dab1
2

+ A2 λ̂
d
ab2

2
+ A2λ̂dab3

)]

+ v3

[{
λd8
2
(v∗αvα) +

λd9
2
(v∗βvβ) +

λd10
2

(v∗ηvη)

}]

+ v3

[{
λds3
2
(u∗χuχ) +

λds4
2
(u∗γuγ)

}]
+ v1

[{
λd17(v

∗
ηvα)

}]

+ v1
[{

Λds
1 uγ + Λds

2 uχ + λds9 (u∗χ)
2 + λds10(u

∗
γ)

2 + λds13(u
∗
χu

∗
γ)
}]

= 0.

(5.B.20)

∂VD |min

∂v∗4
= Av3

[
m2

Φb
+ (v∗3v3)

(
A2λdb1 +

λdb2
2

)]

+ Av3

[
(v∗1v1)

(
A2 λ̂

d
ab1

2
+
λ̂dab2
2

+ λ̂dab3

)]

+ Av3

[{
λd8
2
(v∗αvα) +

λd9
2
(v∗βvβ) +

λd10
2

(v∗ηvη)

}]
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+ Av3

[{
λds3
2
(u∗χuχ) +

λds4
2
(u∗γuγ)

}]
+ Av1

[{
λd17(v

∗
ηvα)

}]

+ Av1
[
+
{
−Λds

1 uγ + Λds
2 uχ + λds9 (u∗χ)

2 + λds10(u
∗
γ)

2 − λds13(u
∗
χu

∗
γ)
}]

= 0. (5.B.21)

SU(2)L Triplet sector:

Define VT = Vtriplet + Vts.

∂VT |min

∂v∗∆
= v∆

[{
m2

∆L
+ λt1(v

∗
∆v∆) +

λt345
2

(v∗ρvρ)

}]

+ v∆

[
+

{
λts1
2
(u∗χuχ) +

λts2
2
(u∗γuγ)

}]

+ vρ
[
Λts

1 u
∗
χ + λts5 u

2
χ + λts6 u

2
γ

]
= 0. (5.B.22)

∂VT |min

∂v∗ρ
= vρ

[{
m2

ρL
+ λt2(v

∗
ρvρ) +

λt345
2

(v∗∆v∆)

}]

+ vρ

[{
λts3
2
(u∗χuχ) +

λts4
2
(u∗γuγ)

}]

+ v∆
[
Λts

1 uχ + λts5 (u
∗
χ)

2 + λts6 (u
∗
γ)

2
]
= 0. (5.B.23)
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Chapter 6

Summary and Conclusions

Neutrino mass and mixing have been subjects of intensive exploration as they
shed light on the physics beyond the standard model. The three-neutrino oscil-
lation scenario is completely characterised by the three mixing angles (θ12, θ13,
θ23), two independent mass square splittings (∆m2

solar, ∆m
2
atm) and the CP phase

δ. Oscillation experiments over vastly different baselines and a range of neutrino
energies have filled up a vast portion of the mass and mixing jigsaw of the neu-
trino sector. Atmospheric and solar neutrinos indicate two very different scales of
neutrino mass splitting – ∆m2

solar/|∆m2
atm| ∼ 10−2 – which are confirmed in accel-

erator and reactor experiments. Yet, we still remain in the dark with regard to CP
violation in the lepton sector. Neither do we know the mass ordering – whether it
is normal or inverted. Further open issues are the absolute mass scale of neutrinos
and whether they are of Majorana or Dirac nature. While we await experimental
guidance for each of the above unknowns, there have been many attempts to build
models of lepton mass which capture much of what is known which is the prime
intent of my doctoral research as well.

The thematic flow of the thesis has been to consider a two-component procedure
such that from the dominant contribution we could achieve any of the popular
lepton mixings viz. TBM, BM, GR and the NSM, each of which requires θ13 = 0
and θ23 = π

4
. Needless to say that these mixing patterns are in sharp contrast

with the current status of the neutrino oscillation data. The role played by the
sub-dominant contribution had been to tweak the dominant component so as the
obtain the oscillation parameters within the observed range.

After a summary of the essential background of neutrino physics and the Stan-
dard Model of particle physics, in Chapter 2 and Chapter 3 model independent
implementations of this mechanism were undertaken. The dominant contribution
in Chapter 2 had ∆m2

solar = 0 with the data allowed value of ∆m2
atm. The mixing

angles were that of the popular lepton mixing type studied case by case. Sum-
ming up, all the dominant contributions were characterised by ∆m2

solar = 0 and
θ13 = 0 that were ameliorated by the sub-dominant contribution to produce non-
zero values of these quantities. CP phase δ was predicted for all the four mixing
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patterns. We restricted ourselves to the NSM scheme in Chapter 3. Thus the
dominant component had ∆m2

solar = 0, θ13 = 0, θ23 = π
4
, θ12 = 0. The origin

of it can be derived from a Type II seesaw mechanism. The corrections offered by
a Type I seesaw sub-dominant contribution tuned these oscillations parameters in
to the allowed range. Predictions for the octant of θ23, CP phase δ and the effec-
tive mass for neutrinoless double beta decay in terms of the lightest neutrino mass
were presented. As a result these unknowns of the neutrino sector get correlated
in our model. Chapter 4 comprises of a model for the scheme discussed in Chapter
3 based on the discrete flavour symmetry A4. All the four mixing patterns were
amended by this two-component formalism in Chapter 5 where the mass matrices
derived their origin from an underlying S3× Z3 symmetry of the Lagrangian.

Both the models depicted in Chapter 4 and Chapter 5 had an opulent scalar sector.
All the lepton mass matrices – charged leptons, left- and right-handed Majorana
and Dirac masses of the neutrinos – were generated through these scalars via
spontaneous symmetry breaking. All terms consistent with the symmetry were
retained. No soft symmetry breaking terms were entertained. The scalar poten-
tial was extensively studied with all the terms allowed by the particular flavour
symmetries under consideration to the extent of local minimization.

Several predictions were obtained including the octant of θ23, CP phase δ and the
effective mass for neutrinoless double beta decay which if found to be in contrast
with the experimental observations in future can rule out our model. An interesting
inference of our enterprise was the interrelationships between the octant of θ23
and the ordering of neutrino mass. Normal ordering always was predicted to be
associated with the first octant of θ23 whereas inverted ordering got correlated to
the second octant of θ23. Thus the models are amenable to testing in the near
future.
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