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ABSTRACT

It has been known for a century that the theory of General Relativity
proposed by Albert Einstein describes accurately gravitational phenom-
ena at low energies. This theory, when considered classically, is capable
of reproducing the right results for the tests carried on the Solar sys-
tem, as well as many other cosmological observations. However, there
are several problems when we try to compute quantum effects. Specif-
ically, one of the biggest mysteries of today’s theoretical physics is the
so-called cosmological constant problem. This problem is sometimes split
in two, on the one hand there is the matter of why it has its particular
value (very close to zero but not exactly). On the other hand, quantum
corrections to this constant are about 120 orders of magnitude bigger
than the observed one.

Although there are several proposals to solve this problem, some of
them by studying the non-perturbative sector of the theory, there is a
natural solution to the “second” problem within perturbation theory.
In this regard, the theory of Unimodular Gravity provides a natural
solution to the cosmological constant problem because in this theory
the cosmological constant appears as an integration constant at the
classical level. Moreover, this theory is compatible with all the current
observations. In this work we demonstrate that there are no quantum
corrections to first order in perturbation theory to the cosmological
constant value, and we argue that this result holds to any loop order as
long as the Ward identities are respected.

Further, since Unimodular Gravity yields the same classical predic-
tions than General Relativity, we look for differences between both the-
ories at the quantum level by adding matter. As part of this study,
we show that (for both theories) the beta functions, despite being used
as the motivation for proposals such as Asymptotic Safety, lack any
physical meaning when matter is coupled to gravity.



RESUMEN

Sabemos que la teoria de la Relatividad General propuesta por Albert
Einstein describe correctamente los fenémenos gravitatorios a bajas en-
ergias. Esta teoria, cuando se trata clasicamente, es capaz de calcular
correctamente los test llevados a cabo en el sistema solar, asi como
muchas otras observaciones cosmoldgicas. Aparecen sin embargo varios
problemas cuando se intenta implementar el formalismo de una Teoria
Cuantica de Campos. En particular, uno de los mayores misterios en la
fisica tedrica actual es el llamado problema de la constante cosmoldgica.
Este puede dividirse en dos; por un lado, esta el problema de explicar
por qué tiene un valor tan particular (muy proximo a cero) si no hay
ninguna simetria que lo fuerce a ser distinto de cero. Por otro, las cor-
recciones cuanticas a esta constante cuando se afiade materia, predicen
un valor 120 6rdenes de magnitud mayor que el valor observado.

Aunque las soluciones propuestas son varias, muchas de ellas estu-
diando el sector no perturbativo, existe una solucion natural al “se-
gundo” problema dentro de la teoria de perturbaciones. En la teoria de
Gravedad Unimodular la constante cosmoldgica aparece a nivel clasico
unicamente como una constante de integracién. Esta teoria es ademés
compatible con todas las observaciones actuales. En este trabajo de-
mostramos explicitamente que no hay correcciones al valor de la con-
stante cosmoldgica a primer orden en teoria de perturbaciones y argu-
mentamos que, debido a la simetria Weyl que presenta la teoria, esto se
cumple para todos los 6rdenes siempre que no haya una anomalia Weyl.

Ademas, puesto que la teoria de Gravedad Unimodular da las mis-
mas predicciones que la Relatividad General a nivel clasico, buscamos
diferencias a nivel cuantico mediante el estudio del acoplo de materia
a la teorfa. Como parte de este estudio, demostramos que (en ambas
teorias) las funciones beta, a pesar de ser utilizadas como pilar funda-
mental en las propuestas de Seguridad Asintotica, carecen de significado
fisico cuando se acopla materia a gravedad.
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INTRODUCTION

The advances in theoretical physics during the beginning of the XX cen-
tury settled the foundations of modern theories upon which we have
achieved a deep understanding of the fundamental structure of our uni-
verse.

On the one hand, the development of Quantum Field Theory, opened
a whole new field that allowed us to describe —and compute- the be-
haviour of subatomic particles. In particular, the Standard Model of
Particle Physics constitutes the summit of this framework and provides
us with the most complete theory to describe Nature. Although incom-
plete, it accurately predicts most of the particles and interactions that
rule the subatomic world. On the other hand, the theory of General Rel-
ativity [1] improved Newton’s Theory of Universal Gravitation —solving
some open issues and opening a new field of research, achieving a very
precise description of classical gravity.

However, there are well-known problems to describe gravity. If one
tries to get General Relativity into the successful framework of Quan-
tum Field Theory it turns out to be non-renormalizable [2], that is,
when computing quantum corrections, a new operator appear —with a
new coupling— in the action via renormalization for each order. More-
over, the coupling to matter does not improve this behavior [3—6]. This
means that for the complete theory there will be an infinite number of
constants, each of them to be fixed through an experiment. Hence, it
cannot be a complete theory.

There are sundry attempts to solve this problem, from the possibil-
ity of an asymptotic safety scenario, or the assumption of a particular
quantization of the metric as in Loop Quantum Gravity to the modifi-
cation of the UV degrees of freedom in String Theory (see [7] for a more
complete summary) or more radical proposals such as breaking Lorentz
invariance in Horava-Liftsitz gravity. Despite all the proposals, nowa-
days there is still no agreement in which one —if any— is the right one,
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and it seems that we are still far from an ultraviolet-complete theory of
gravity.

What is accepted however, is that although General Relativity is not a
complete theory, it can be thought as an effective field theory below the
Planck scale ( 10GeV) [8, 9]. Thus we can treat it perturbatively as
any other Quantum Field Theory and it is a valid description for all the
possible phenomena that we are able to detect at this time. This means
that any measurement that we can carry out is accurately described by
the theory.

Still, there is a second problem that arises in this scheme, more pro-
found in a sense, that is the so-called cosmological constant problem
[10]. First proposed by Einstein [11] to allow static solutions of the field
equations, it was later rejected by himself after observations indicating
that the universe was expanding. However, the measurements of an
accelerated expansion in the 90’s, that led to the Nobel prize in 2011
brought the cosmological constant back into the game. This cosmolog-
ical constant is the simplest way to explain this accelerated expansion.
It can be interpreted as a vacuum energy, and it is hypothesized that
there is a dark energy that produces it. However it also constitutes
one of the biggest conundrums in Physics nowadays. First of all, while
the measurements point lo a low —but non-zero— value, there is not a
natural way to. The problem arises when one adds matter and tries
to quantize the theory; there are different contributions to the vacuum
energy coming from quantum effects [12] that modify its classical value,
and these contributions are around 120 orders of magnitude bigger than
the measured value.

Albeit this thesis does not attempt to find any solution to the first
problem, that is, to find a renormalizable theory of gravity —therefore,
we will use the effective field theory approach, it is devoted to a pos-
sible solution of the cosmological constant one. This solution comes
through the Unimodular Gravity theory, that offers an easy way of solv-
ing the discrepancy between the theoretical and observational value of
the cosmological constant.

Let us just finish this introduction by being forthright with the cos-
mological constant problem. Despite dark energy is the most accepted



explanation of the accelerated expansion of the universe, it is not the
only one. Although there are many proposals let us just mention two
which are among the most prominent ones like the models of modified
gravity; since the existence of dark energy relies on the truthfulness
of General Relativity, there are different theories proposed —or modi-
fications of General Relativity— that can account for the accelerated
expansion without its existence it is worth saying nonetheless that the
new measurements of gravitational waves have put strong constraints
on these models [13]. Another popular —at least for a time— proposal
was that of the Quintessence model where the presence of a scalar field
could account for the acceleration.

The thesis is organized as follows. In Part IT the theory of Unimodu-
lar Gravity is defined and the motivations for its study introduced. Also
an extended analysis on the classical symmetries of the theory as can be
found in [14] is carried out. Finally, there is a brief description of two
common techniques in QFT that are widely used later; the background
field formalism and the Heat Kernel —or Schwinger-DeWitt— method.
In Part III we compute the one-loop quantum corrections to the theory
— cf. [15, 16]- showing that there is no renormalization of the cosmo-
logical constant (an argument that can be extended to further loops).
Part IV is devoted to the comparison between physical effects in Gen-
eral Relativity and Unimodular Gravity. First, we show that there is a
difference when computing beta functions of gravity coupled to matter,
although it lacks any physical interpretation. Secondly, we compute
some S matrix elements showing that the two theories are equivalent up
to one-loop order. Finally, a summary of all the findings through the
thesis is presented in Part V.
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NOTATION AND CONVENTIONS

This first chapter is devoted to settle down the notation and conventions
that are used throughout the thesis. First of all, everything is given
in terms of natural units, that is, ¢ = A = 1. With respect to the
gravitational conventions, we follow those of [17], that is, the mostly
minus Minkowski metric is given by

M = {+,—,—,—} (1.1)

and the Riemann tensor

R, = 0,T%, — 0,k + T4 T, —Th T}, (1.2)

vpo Ap~vo

while the Ricei tensor is
(1.3)

With these, the commutator of covariant derivatives with our conven-
tions is

V., V, V=R VP

puv

[V, Vo]0 = WP R, + B R’ (1.4)

Y

The Einstein-Hilbert (EH) action principle thus reads

1 4
S = —ﬁ/d 2/lgIR, (1.5)

where k? = 87G, and G is the Newton’s gravitational constant.
g denotes the space-time metric in general, while g,, will be used
for the unimodular one.



2

THE WHAT AND THE WHY OF UNIMODULAR
GRAVITY

The purpose of this chapter is to define what is Unimodular Gravity
(UG) as well as motivate its study as a low energy candidate of quantum
gravity.

It is not generally known (there is however a footnote in [18]), that
after the first publication General Relativity (GR), Einstein proposed a
different set of equations [19] also known as Einstein trace-free equations
and that have been label Unimodular Gravity afterwards. Although the
original purpose of these equations —an alternative proposal to Mie’s the-
ory on the stability of the electron— was proved wrong, the equations
have gotten a further interest in relation with the cosmological constant
problem [20-25].

In particular, and for an arbitrary dimension n, the UG equations
read

1 _ 1
Ry — ﬁRgW = k"2 (T;w — nTgW) . (2.1)

Although one may be tempted to say that there is less information
here that in the usual GR equations —indeed, the trace has been left
out— there is a further identity, namely the second Bianchi identity

1

“V,R, (2.2)

vuR;w = 9
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which is geometrical, and therefore valid also for UG. By virtue of
this identity, we can apply a derivative on (2.1) to get

-9 n—2
n vszilﬁ
2n

This is a first integral, that integrates to

v,T. (2.3)

-2 K2

R T=C 2.4
2n + n ’ (2:4)
with C an arbitrary constant, that will depend on boundary conditions.
Going back to (2.1) the full Einstein equations with a cosmological con-

stant term can be recovered

n

1
R, — §Rgm, +Cgu = K" T (2.5)

This means, that any classical effect predicted by GR is also predicted
in UG [26-29], so the theory fulfills all the classical tests of GR and there
is also room for inflation [30, 31]. There has been some research in the
quantum properties of the theory [32-36] but there is still much to un-
cover. The purpose of this thesis is to deepen in the quantum theory.
Moreover, since the original equations couple to the traceless part of
the energy-momentum tensor, any possible vacuum energy, or dynam-
ical cosmological constant coming from a non-trivial minimum in the
potential of a scalar field, is absorbed into the still arbitrary constant.
This claim of the equivalence of the classical tests is the usual motiva-
tion for working with UG, but it is not the only one. It has been long
believed that any “second order” theory that propagates a free massless
spin-two field at the linear level has to be Einstein theory (that is, the
massless limit of Fierz-Pauli theory [37]). However, as it was proved in
(38, 39], it is not the only one.

The most general action principle built out of dimension four opera-
tors for a spin two field h,, can be written in terms of four local operators

4

L=> ¢ 09, (2.6)
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where the operators read

OW = 29,h,,0"h",

W =

1 loa
0 = =50 hpo0u b7,

1
0B = 5auhaxw,

1
oW = —10uh0"h, (2.7)

and all indices are raised and lowered with the flat space metric 7,,, and
h = n*h,,. The constant C; =1 can be fixed as a global normalization.
The result of the work in [39] was that imposing only transverse dif-
feomorphisms (TDiff) invariance is enough. At the linear level (LTDiff)
this forces

Cy =1, (2.8)

where LTDiff invariance is just
6h,uu = augu + auf,ua
0" = 0. (2.9)

The most important result was however the following. Amongst all
the TDiff invariant theories obtained for arbitrary values of C5 and Cy
there are only two that propagate spin two only, without any admixture
of spin zero. Those are, first

Cg - 04 - 1, (210)

which has an enhanced symmetry under linearized diffeomorphisms (with-

out the transversality restriction). This is the Fierz-Pauli theory.
The other one corresponds to

03:

)

c="t2 (2.11)

n2

S

This is actually a truncation of the Fierz-Pauli one obtained by

B — oy — %hmw, (2.12)

13
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(notice that it is not a field redefinition, because it is not invertible).

This theory was dubbed Weyl transverse diffeomorphisms (W TDiff)
and is actually the linear limit of Unimodular Gravity. This will moti-
vate our definition for an action principle of UG.

Let us now turn our attention to the full nonlinear theory. The naive
way of defining an action principle for UG is just to set

detg,, =g = —1, (2.13)

in the EH action (1.5). This yields just (let us forget for the time

being of the —51; factor, since it is global an will not change any of the
following)

S = /d"mR[g], (2.14)

where as expected, if we were to add a matter field, for example

Sn = [ (500000~ V(). (2.15)

the potential does not couple to the graviton.

However, this is more intricate than it seems. The action (2.15) is
invariant only under TDiff (2.9). That means that in order to get the
equations of motion the allowed variations (67) are constrained by

57\ Jlgl =0, (2.16)

which implies

g6 g, = 0. (2.17)

In addition to the technical complications produced by this, when
considering the quantum theory this means that we need to integrate
over constrained functional variables Dg,,, .

In order to solve this problem, and motivated by the linear analysis in
[39], we shall follow the idea of defining the theory starting from General
Relativity by a non-invertible field redefinition

Guv — g;w = ‘g’_%g/wa (218)
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generalizing the way the flat space WTDiff theory is defined starting
from the Fierz-Pauli theory (2.12). Through this definition, we obtain
the UG action as

_ 1 SR (n—1)(n—2) V,gV"g
S f e { (4 SREDA)

For this unconstrained metric, the equations of motion (EM) are given
[39] by the manifestly traceless expression

1 (n—2)(2n—1) (VugVog 1(Vg)?
R/u/ - *Rgul/ - 4”2 “92 - ; 92 gMV +
n—2 (V#Vl,g 1 V3
+ -
2n g n g

1
gm,> = g2 (Tuu - nTgW) , (2.20)
that reduces to (2.1) when |g| = 1.

There is a further reason why UG seems a promising low energy level

for quantum gravity. Van der Bij, van Dam and Ng [40] showed a long
time ago that TDiff is enough to make gauge artifacts of the three ex-
cess gauge polarizations when going to the massless limit in a spin two
flat space theory (there are five polarizations in the massive case and
only two in the massless limit). This intuitively means that we only
need three arbitrary gauge parameters, which is exactly what we have
in LTDif(M).
Moreover, it is worth remarking that a recent reanalysis of the classical
Deser [41] argument for the non-linear completion of the linear Fierz-
Pauli theory in [42] gets the result that both Unimodular Gravity and
General Relativity (and only these two) are the allowed possibilities.

It has been made clear that Unimodular Gravity seems a promising
theory of gravity. Due to the facts that they are classically equivalent,
but UG seems to partially solve the cosmological constant problem, it
seems that there is no good reason to not consider UG instead of GR.
The purpose of this thesis is double. First, to show that the nature of the

15
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cosmological constant keeps unchanged at the quantum level, i.e. it does
not get quantum corrections and does not couple to the vacuum energy.
Secondly, we try to see if there is any (quantum) physical observable
that can tell UG from GR at the quantum level.



ABOUT THE CAUGE SYMMETRIES OF UNIMODULAR
GRAVITY

In the previous chapter it has been said that UG does not have the full
Diff symmetry of GR but a subgroup that we call TDiff, (2.9), that is,
those that keeps the volume fixed. Now, we want to somewhat clarify
what this symmetry implies. Following [14], we define the unimodular
reduction mapping, given in (2.18) as

UR: G — gaﬁ = |g|7%g,uu (31)

As was said before, it is not invertible, since there is no way to recon-
struct gos from gags.

On the other hand, once we restrict the theory to unimodular metrics,
the ensuing theory (UG) is not invariant under the full diffeomorphism
group of the manifold. Diff(M), but only under the subgroup that pre-
serves the unimodularity condition, which we have dubbed TDiff(M).
This is essentially what mathematicians call the volume preserving sub-
group [43]. It has been pointed out that this symmetry is enough to
kill the three unwanted polarizations when defining the massless theory
from a massive theory in flat space [40]. At any rate, as was written
before, under unimodular reduction Einstein-Hilbert action gets trans-
formed into

1
UR: Sgr = —W/dnx \/@R[Qaﬁ] —

1
—  Syc = T2 /d”;p R [ags] , (3-2)
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and the unimodular action in terms of unconstrained variables reads

R — /d"x | (R+ (n=1)n=2) V“QQV“9>. (3.3)

2Kk"2 4n? g

We always represent covariant derivatives associated to the Levi-Civita
connection of a given metric with the same symbol; id est,

vugaﬁ = O’

Vugaﬁ =0, (34)

and so on.
The covariant derivative acting on g(z) is defined as if g(z) were a
true scalar,

Vug(l’) = 8Ng($),
VoVyug(z) = 0,0,9(x) — F{)H&\g(ac). (3.5)

What we mean is that with the ordinary covariant derivative (which is
the only one we use in this computation) the derivative of a density is
not a density of the same weight. This is not a problem for us, but is
something we have to take into account. Once here one can never go
back to the Einstein frame as this action is Weyl invariant.

In terms of this unconstrained metric, the equations of motion (EM)
are given by the manifestly traceless expression [15]

1
R;w - ERQ;W = ®,UJ/7

_(n=2)(2n—-1) (V,gV.g 1(Vg)?
®HV = 4n2 92 - E g2 gMV -
n—2(V,V,g 1 Vig
5 ( p o v | - (3.6)

The explicit presence of the determinant of the metric, g clearly indi-
cates the EM are not Diff invariant.

Now given the fact that the EM are Weyl invariant, we can always
transform from g,, to g, such that

g=1, (3.7)
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where the EM simply read

1 _
R#y - Engj. (38)

The solution of these equations are by definition Einstein spaces [44].
The Bianchi identities in the absence of torsion do imply then V,R = 0.

Given an unimodular Einstein space, g, all its Weyl rescalings

G = O?(x) G (3.9)

are also solutions of the equations (3.6). They span a Weyl orbit of
solutions. In four dimensions it is well known that the necessary and

sufficient condition [45] for a space to be conformally Einstein is for it
to be Bach-flat

1
B, = VOV W,up — iRaﬁ Weauws =0, (3.10)

where W, is the Weyl tensor. We are not aware of a similar statement
in arbitrary dimension.

The full symmetry group of this action is quite large though, incorpo-
rating Weyl transformations of the metric. This means that in the pro-
cess of unimodular reduction of Einstein-Hilbert, the symmetry group
changes, namely

UR: Diff(M) — TDiff(M) x Weyl(M) (3.11)

Let us examine this process of symmetry reduction in more detail. We
shall be cavalier about domains of definition of the transformations, and
all of our reasoning will be purely local.

3.1 TDIFF INVARIANCE OF THE UNIMODULAR ACTION

It is not immediately obvious in which reference systems are the EM
(3.6) valid.

Let us first start with the analysis of the already mentioned change
of the symmetry group in the process of unimodular reduction.

19
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We can represent a linearized element of Diffy(M) (the subgroup of
Diff(M) connected with the identity) as
x> =x+E. (3.12)

The corresponding jacobian matrix is

ox®

Jy(z) = p (3.13)
and its determinant will be denoted by the letter J.
The determinant of the metric then transforms as
g(x) — q* (x4+¢&) = JQ(x) g(z), (3.14)

and for the case of a volume preserving diffeomorphisms, it is transverse
in the sense that
& =0, (3.15)

and the jacobian matrix is itself unimodular
Jr = 1. (3.16)

Let us examine what happens with the action of TDiff, x Weyl(M).
Clearly

giy(:c) = JﬁJfgaﬁ(m—f), (3.17)

and consequently

g = Q2 (x) JS T gap(x — ). (3.18)

nv

On the other hand, the other way around yields

G (2) = Q*(z — €) T gap(x — ) (3.19)
This corresponds to the non-commutativity of the diagram

TDiff
g,uu — gﬁy

JWeyl lWeyl (3.20)

TDiff
g, —= ¢D # g%
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thus being the reason why the symmetry group is a semidirect product.

We can move now to answer the question of the validity of the equa-
tion of motion of UG. The two possible paths when going from GR to
UG are shown in the following diagram.

GR 241, qRr

JUR lUR (321)

ve 2 va
The rightmost path correspond to, first perform a diffeomorphism
i (2) = (Teg),,, (2) = T3 (2 = €) ) (x — §)gap(z — §), (3.22)

and unimodularly reduce afterwards. The corresponding unimodular
metric is then

(TuTeg),, (&) = T = (x) g"* (x) (Teg),, - (3.23)

The left path in the diagram corresponds to perform an arbitrary
diffeomorphism after the unimodular reduction. The result is

(TeTug) s (z) = J 7 (@ —€)g 7 (z =€) (Teg) 5 (3.24)

This means again that the diagram above is not commutative.

Indeed, we find particularly clarifying to examine what happens in
this latter case

If we perform a Diff in (3.6) the determinant g(z) transforms as

Vgt (a') = J3Va (2(2) g(x)) =
= J3 (J? Vag(x) +29(z) J(2)ValJ). (3.25)

This conveys the fact that the first monomial in the EM transforms as

Vgt (@) Vgt () _ I

(VagJ? + 29V o J) (J*V g + 29IV 5J) =

g/(x/)Q - J492
VagV VaodVsg+VagVsd VaodVsd
_ 100 78 adVpy a 89 adVp o B
= JH,J,,,{ e 70 +4-2

(3.26)

l
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and its trace, which is the one subtracted from it in (3.6), is just

Vog Va2
( od 42 ) . (3.27)

The second monomial transforms in turn as

T J?, Jov
VuVog @ £8) _ Iw ToNo 1o Gy 4 o) J(2)VaT) =

g*(x +§) J?g
V,JIVg V,Vag V,gVad VoJV,J _ V,VoJ
=Jk Jai2-"L L 2~ 2 P 2~
J#JV{Jg+g+gJ+JJ+J},
(3.28)
being its trace now
PAVAY 2 ad VT 2J
4 YoV | Vg Ve VET ) VT (3.29)

gJ g J? J

The conclusion is that when performing a general Diff,(M) transfor-
mation in the unimodular equations of motion the extra terms generated
are

EoM (g5, ] = JaTj {EOM (9] s +

n—2(1V4JVsg+VagVst 1—-nV,JVsJ VQV5J> B
+ 2n <n Jg 2 n J? e J
=2 (1V,JVig  1=nV,JV | V2

n2 \n gJ n J? J Jos (-

(3.30)

To be specific: the fact that a given metric g,, is a solution of the
unimodular equations of motion does not imply that it remains a solu-
tion after an arbitrary diffeomorphism ¢ € Diff,(M) unless of course this
happens to be transverse, ¢ € TDiff,(M). Certainly there is no problem
with performing the Diff before the unimodular reduction, since GR is
invariant as shown in the last diagram.

In other words, the assertion that a given metric is a solution of the
UG equations of motion is not Diff(M) invariant, only TDiff(M)x Weyl(M)
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invariant. The remaining question is if there is a coordinate system
which is not attainable through a symmetry transformation. It could
be thought that there is none, by the following argument. An arbitrary
diffeomorphism acts as

gfw(aj) = ijJfgag(:c —9), (3.31)

which has the same number of parameters as the action of a volume pre-
serving diffeomorphism composed with a Weyl transformation. How-
ever, there is a subtlety here, since one should have solutions to the
equation

=L (3.32)

and this is possible only when

9, (‘]Jg) 9, ("J) (3.33)

which will not be, in general, true. Therefore, not all coordinate systems
are reachable in UG.

However, let us finally remark that given any metric, it can be made
unimodular through a diffeormophism.

All we have to do is to find a solution of the equation

1
J = . 3.34
(@) = oo (334)
At the linear level this is
1
wo_ _
&t = () 1, (3.35)

which is trivially solved in a formal way by

) = or O (g(i)Q - 1) , (3.36)

whose solution is unique under essentially the same conditions as the
corresponding solution of the wave equation [46].
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We need a suitable technique to compute loop corrections, in particular,
the effective action in Part I1I. Of course, there is always the possibility
of using diagrammatic techniques, but they can be quite involved and,
moreover, explicit gauge invariance is lost throughout the computations.
Because of this, we introduce in this section the Heat Kernel (also known
as Schwinger-DeWitt) technique [47-51].

4.1 BACKGROUND FIELD METHOD

A first tool for computing the heat kernel is the background field method,
[52], which allows us to quantize gauge field theories without losing
explicit gauge invariance.

Since we are interested in obtaining the effective action, we start
with an action S(A) that depends on a number of fields A (that also
include the metric in our case). The quantum dynamics of our theory
are described by the path integral

2[7] = /DA PSla+TA), (4.1)

The S matrix can be obtained from the Green’s functions of the theory
by LSZ reduction. These are then defined as the time ordered n-point
functions

n times

G () = OIT (A0 = (5 57) 21, (4.2)
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That is, the Green’s functions are determined by taking functional
derivatives with respect to the source function J of the generating func-
tional.

However only connected Green’s functions contribute to the S matrix,
so we define the generator of connected Green functions as

W[J] = —ilnZ[J] , (4.3)

where W is called the free energy. The presence of the logarithm implies
that when taking functional derivatives of the free energy, only the
connected pieces are obtained.

The connected Green’s functions can be further simplified by express-
ing them in terms of one-particle-irreducible (1PI) pieces (1 PI diagrams
are those which cannot be split in two by cutting an internal line). These
diagrams can then be stringed together to recover the full connected di-
agrams that one wants to compute. The 1PI Green’s functions are
generated by a functional called the effective action T[A]. It is defined
as

[A]=wW[J]-JA (4.4)
where the mean field
W

can be seen as the vacuum expectation value of A in the presence of
the source.

In order to get the S-matrix, we can now expand this effective action
to the desired order in a loop expansion and get the connected functions
from there. Therefore, it is an easy way to access to study the quantum
theory.

The tool that we use for computing this is the background field
method. It works as follows.

We take the path integral in (4.1) and shift the fields in the classical
action S(A) writing them as a background field ¢ plus a perturbation,
sonow A = ¢+ A and

Z_ /DAei(s[qB+A}+JA) (4.6)
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The background field ¢ obeys

5
6Au ?

With this new path integral we define a new effective energy

—0. (4.7)

n

W([J,4] = —ilog Z[J, ] (4.8)
and a new mean field

W
A= (4.9)

so the background field effective action is

I =W[J,3 —JA (4.10)
It is easy now to find a relation between (4.10) and (4.4). For doing
this, we can rewrite (4.6) by shifting the integration variable A — A — ¢
getting
Z[J,¢| = Z[J])e ¢ (4.11)
therefore, taking the logarithm
W, 8] = W[J] - Jé (4.12)

) . .
taking now the functional derivative — and looking at the previous
definitions of the mean fields, we finally get the relation

A=A-¢ (4.13)
and we get, as the main result of the background field procedure the
relation
T[A,¢| =WI[J] - Jp—JA+Jp=T[A+ (4.14)
As an special case of this equation, we can take A = 0 so

10, ] = I[3] (4.15)
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That is, in order to get the effective action it is enough to compute
T[0, ¢]. .

The background field effective action T'[A, ¢| generates all the 1PI
graphs contributing to Green’s functions in the presence of the back-
ground field ¢. Now, since Green’s functions are generated by taking
derivatives of the effective action, T[4, ¢] generates functions in presence
of a background field, while T'[0, #] ~which has no dependence on A- is
the sum of all 1PI vacuum diagrams. Therefore, the background field
method, by using (4.15), allow us to compute the effective action of a
QFT (T[¢ = A]) by just summing over vacuum diagrams (T[0,$ = AJ).

Let us now particularize this method for the one-loop computations.
Starting from the path integral

2[J,8] = / DACHSIB+AI+14) (4.16)

We expand the field A perturbatively, and, by virtue of (4.15), we
are only interested in the vacuum diagrams. At one loop order, there
is only a single contribution, and it is enough to expand the action to
second order
. 08 1 6%8

Sl + Al = S[9] + SA A:<5A + §A@

We are going to set ¢ = A. This, together with the fact that at
the lowest order W =~ S implies that the linear term vanishes by the
definition (4.5).

Defining

A+0(4%) (4.17)
A=

628

o (4.18)

A=}

the path integral up to one-loop order is just

2[7,3] = /DAeiS[gZ_)] +i2ADA+iJA (4.19)
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The first factor can be absorbed in the overall normalization, so in
the absence of sources' we have
~ _ 1
Z[0,¢] = det™2(D) (4.20)

and the free energy

Wmazgm@m) (4.21)

and the effective action, using (4.10) reads

r@:%ﬂ:ﬁﬁ@:?ﬂmm (4.22)

Summing up, the use of the background field method allow us to
reduce the computation of the effective action to a determinant of some

operator, and in doing so, gauge invariance is preserved explicitly along
the process [53-55].

4.2 SHORT TIME EXPANSION

For the actual computation of the determinant, we will use the Schwinger-
DeWitt technique, more known as Heat kernel technique.

The heat kernel, for a given operator D is defined as

K(t,2,4,D) = {zle"P|y) (4.23)

and receives its name because it satisfies the heat kernel equation

(0, +D.)K(t,z,y,D) =0 (4.24)

with K(t = 0,z,y,D) = 6" (z —y).

We should now relate the heat kernel with the one-loop effective action
(4.21). In doing that, we follow the arguments of [56]. Let us turn in the
following to Euclidean signature by performing a Wick rotation in order
to avoid subtleties with the path integral. For each non-zero eigenvalue

1 Sources are nevertheless irrelevant for computing vacuum diagrams
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of the operator? A\ we can relate this integral to the logarithm of the

eigenvalue
In\ = —/ ﬂfft’\ . (4.25)
o t
Using now the identity Indet(D) = Trlog D we find
W=t [T D), (4.26)
2Jo t

where K (t,D) = Tr(e—tP) = / &z /GK (t,7,y, D).
The ultraviolet divergences are related to the lower limit of the inte-
gral, so we need to regularize it by introducing a cutoff A2

W= lim Wx = lim —1/00 P4, D) . (4.27)

A—oo A—oco 2 Ja-2 t

Since the UV divergences are encoded in the small proper time region,
we can expand the heat kernel there as

K(t,z,y,D) = Ko(t,z,y) Z ap(z, y)t% (4.28)
p=0
Here Ky(t,z,y) is the heat kernel of the laplacian operator,
1 _o(zy)
Ko(t,z,y) = (art)3 e 2 (4.29)

where o(z,y) is Synge’s world function [57]. The coefficients a,, that
get the name of heat kernel coefficients, encode the UV divergences.
Odd coeflicients vanish, as;j11 = 0, and at coinciding arguments, a,(z,z)
they are local polynomials of the background field and its derivatives,
starting by ag(z,z) = 1.

With this expansion, the logarithm of the determinant is just

2 A zero eigenvalue means the presence of a zero mode, thus a gauge symmetry. We
suppose that gauge fixing terms are included in the operator D.
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d
log det D = —/—TTr(K(T,x,y,D)) _
T

: dr 1 n =P _o(zy)
_clrlg(l)/T@m-)z/d T gZTZTr (ap(:v,y)e 2t ) =

|3

Before going any further to the actual computation of the divergence
and the heat kernel coefficients, let us just comment that this expansion
is only valid for second order minimal operators [58]. That is, those
whose highest order term is proportional to the laplacian (O). That is

D =GO+ JV+ M, (4.31)

where G,J and M are matrices that account for the possible index
structure. It is possible however —and quite straightforward— to extend
the expansion to higher order operators, as long as they are minimal [59].

Going back to (4.30), in the case of n = 4 we can use dimensional
regularization to obtain the logarithmic divergence —and therefore the

. : . . . 1
one-loop effective action. In this case, there is a divergence — for p =0,

but it does not depend on the particular operator. The next divergent
term corresponds to p = 2. Defining e = 4 — n, the we have

< ;) _*_7E+O( %), (4.32)
y%: 14— loga(x y) + O(e?), (4.33)

therefore the effective action is given by

1 1
(4m)?n—4

W = %logdetD =— /d4m\/§ Tray(z, x). (4.34)

This means that, in n = 4, the one-loop effective energy is given by
the a4 coefficient in the heat kernel expansion.
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4.2.1 Heat Kernel coefficients of a Laplace-type operator

Most of the operators involved in the computation of the effective ac-
tion of Unimodular Gravity are second order minimal (Laplace-type)
operators of the form

D = —GABD—FNXBVH—FMAB, (435)

where the capital indices refer to some possible gauge bundle. It can be
always taken to a simple form after redefining the covariant derivative
as D =V +w, so that

D = —GapD? — Ep, (4.36)

where
Wi p = %GACNMC& (4.37)
Eg = GA%(=Meop — wuorwsy” — V,whp). (4.38)

Once in this form, the Heat Kernel coefficients for such type of oper-
ators are well-known and were first computed in [51, 60]. We are not
going to describe the process of obtaining the coefficients in detail, but
a exhaustive review can be found in [61]. Let us just mention that there
are two main techniques for this. In the way that they were originally
introduced by Schwinger and DeWitt [47-51], that is, recursively solv-
ing the heat equation (4.24) with the ansatz (4.28). This is a general
method valid for many types of operators, but it is quite tedious. The
other option is to rely on the universality of the coefficients, and use the
properties introduced by Gilkey [62].

Let us just state here the result; the coefficients for n = 4 read

1 mn
= (e [, VTS (439)
1 1 ~
T e /Md v vg Te{f(6E+R)} , (4.40)
By 2
“ = (am)? 360 / @"z\/lg| Tr{6000E + GORE + 180E? + 1200R +

+5R? — 2R, R" + 2R 5o R"?° + 30R ., R"} (4.41)
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We have included total derivatives since they contribute if one is in-
terested in the phenomenon of conformal anomalies. Here 7A2W refers to
the field strength defined by

[P, DVa =R, 4V, (4.42)

In the case of the graviton fluctuations this field strength is given by
the Ricci identity.

[vua vl/] h?? = Rpuaﬂhaﬁ (443)
R 5= (ngaﬁ + R0+ R, 00 + RS, 00) (4.44)

Let us just mention that also the ag coefficient is computed in higher
dimensions [58] as well as some others for particular cases [63-67].

As a special case to be considered later is just to consider the simplest
operator

D=0, (4.45)

acting onto a scalar field. Here both N* and M are zero and the field
strength vanishes. This means that its Heat Kernel a4 coefficient is just

(O = g / d"z\/lg] (120R + 5R? — 2R, R + 2R, 0 RM"°) .
(4.46)
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ONE-LOOP QUANTUM CORRECTIONS

5.1 BRST QUANTIZATION OF UNIMODULAR GRAVITY

In order to compute quantum corrections to Unimodular Gravity, we are
going to rely on two main techniques of common use in the path integral
approach to gauge theories and, in particular, to quantum gravity: the
background field method in conjunction with the BRST formalism and
the Schwinger-De Witt technique. Using a combination of both, we
will be able to compute the quantum effective action of the theory for
arbitrary background solutions of the classical fields. We should like to
stress that the application of BRST formalism to the case at hand is
quite involved since, as we shall see below, the theory has first-stage
reducible gauge transformations in the language of Ref. [68]. Further,
the choice of gauge-fixing terms has to be made with care; otherwise
one ends up dealing with very complicated differential operators, which
puts the feasibility of the one-loop computation in jeopardy.

To quantize the classical Unimodular Gravity theory defined by the
action in (2.19) within the background field formalism, one splits the
metric g, into two parts: one contains the background metric g,, and
the other the quantum fluctuations h,,. We shall find it advantageous
to use the following splitting

Juv — gul/ + |g’% hm/ (51)
rather than usual splitting g,, = g + hu. Notice that we can convert
the splitting in (5.1) into the usual splitting by performing a Weyl trans-

formation of the quantum field. This is supported by the claim in [69,
70] that there is no conformal anomaly in Unimodular Gravity.
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Let us also express the background metric g,, in terms of a metric
G such that |g| =1 as follows

I = ‘g’; G- (5'2)
Then, we have the following equality which stems from the Weyl invari-
ance of the classical action

SUG[Q/W = 0w + ’g‘% h,UV] = SUG[QW = Jw + hW]7 (5'3)

where Syg|g.] is given in (2.19).

Let us warn the reader that from now on the covariant derivative
will be defined with respect to the metric §,, and that, unless explicitly
said, we are dropping the tilde over background quantities in order to get
cleaner formulas. However, it is important to keep in mind that there
are two different classical metrics so far; g, representing an arbitrary
background metric and §,, a unimodular (§ = —1) background metric.

Thus, from now we will write

g,u,l/ = Guv- (54)

To quantize the theory defined by Sy in (5.3), one has to identify
first the gauge symmetries of it and then fix them. We already now that
Sy is invariant under TDiff and Weyl gauge transformations, and they
can be written in BRST form

SDYuw — SWhur — O)
sphu = Ve, + Vel + PV hyy + V" Phy, + Vo, Phy,,
SWh;w =2c (g;w + huy) y (55)

where ¢ and ¢ are the anticommuting ghost fields for Weyl invari-
ance and transverse diffeomorphisms, respectively. In this language,
the transverse condition is satisfied by imposing V,¢’* = 0 on the ghost
field. The superscript T' thus means that the vector satisfies this con-
dition. The gauge fixing procedure of these gauge symmetries will be
discussed next.
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The partition function of the theory is now
B /Dh,uy 67327“[‘(1":[ J,wh‘wv (56)

and when the sources vanish this defines the quantum effective action
to be

W = —% log (det D), (5.7)

where D is the operator driving the one-loop quantum fluctuations, de-
fined by the quadratic term in the expansion of the action around the
background metric

Sy = / d"e £V6 = / &'z WD,y h. (5.8)

It is useful to write down the expression as it would stand before the
background metric is assumed to be unimodular

1o 2 _ o
LY = 0By, — "0+ (v B) (Tuht) = — (Vh) (Tli) +

2—n = _ A\ S 1o 3 «a A 1 = aX

+ o (Valogg) <2h5 VhG + fh 5VAh/3 — —hV,\h )-i—

(n—2)?
8n3

1 _
+(n? =30 +2) (8n4h2(Vlogg) - %hwhﬂ”(wogg)? -

(V*logg) hV, h+ L2 (Vg logg) h**V,h+

_ /= . 1 e K
1 Qhahm (V*logg) (VB logg) = 13"has (V' logg) (Vﬁ logg)) +

_ 8—6 2 _ _ 1 —
- —hh“"RW - % (V°10g9) W*Vahu + 5 h* Ryt
— —h’“’h#,,R +5 h2R + haﬁhf‘Rm : (5.9)

Of course, D will contain in principle zero modes coming from the
gauge symmetries of the theory translated to the linear level which
will make its determinant singular. This is solved by constructing an
appropriate gauge fixing term using the BRST quantization method.

Finally, since we are using the splitting (5.1), the action for the one-
loop quantum fluctuations simplifies somewhat, since all terms depend-
ing on V,¢g now vanish. Thus, we end up with
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1. n+2 — 1 - _ 1 — _
UG _ v Lo v v
EQ = Zh/ Dhﬂy — Whl:'h + 5 (Vuh’ ) (V,,ha) — E (Vﬂh) (Vl,h“ ) +
1 1 1 1 1
aff v viofB v 2
+ Sh R Ry = ~ R Ry 4+ S H Ry = 5= by R+ 55 h°R.

(5.10)

After computing the quantum effective action and owing to the al-
ready mentioned fact that no conformal anomaly is present in the theory,
one can just undo the transformation (5.2) and recover the expression
for arbitrary background metrics by performing a conformal transfor-
mation away from the Einstein frame.

5.1.1  Fizing the gauge freedom

To gauge-fix the gauge symmetries in (5.5), we shall use the BRST tech-
nique in a similar way as in [71] and introduce the following nilpotent
BRST operator

s = Sp + sw, (5.11)

where sp and sy are defined in (5.5).

The path integral over the ghost fields must be restricted to the sub-
space of transverse vectors. However, the definition of such a measure
[DcT#] over transverse vectors is a notorious problem [72, 73|. The way
to come to grips with it chosen in this thesis is to parametrize this sub-
space in terms of unconstrained fields so that we can then integrate over
the full space of ¢#, whose integration measure is well-defined. This we
do by introducing an operator ©,,'

ch =0, = (9u0-V,V, = Ru) " = (Qu — VuV,) ", (5.12)

which maps vectors into transverse vectors. In this way, the transver-
sality condition over ¢ translates into a gauge symmetry for c,

CV _> vl/,f) (5-13)

One can easily check that ®,, is indeed an endomorphism in the space spanned by
transverse vectors.
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with f an arbitrary function. Indeed, this transformation takes ¢, into
a longitudinal vector, so that the ®,, operator annihilates it. Of course,
in order to perform now the functional integration over ¢* we must gauge
fix this new gauge symmetry by introducing a non-trivial stairway of
ghost levels with BRST transformations defined in such a way that the
BRST algebra closes

2 .2
5D = Sws

{sp,sw} =0, (5.14)

on all the different fields considered.

The systematic way to obtain this field content together with the ap-
propriate BRST transformations is by using the Batalin-Vilkovisky [68]
formalism. However, in our case, things are easy enough as to allow us
to guess what the BRST transformations read, once the field content
of the theory is chosen as done in [68] for first-stage reducible and irre-
ducible gauge transformations. Notice that the gauge transformations
in (5.5) generated by sp, with ¢, in (5.12), are first-stage reducible due
to the gauge symmetry in (5.13). However, the gauge symmetries in
(5.5) generated by sy are irreducible. We introduce the following set of
fields:

0,0 1,1 1,-1 0,0 0,2
hELl/ )’ cfj, )7 b;(l, )7 f}s )’ ¢( )7
7_‘_(1,—1)’ 7_‘_l(l,l)7 E<O’_2), C/(O’O),

C(l,l), b(Lfl)’ f(ovo)’ (515)

where cf}’l) denotes ¢,,, hfS}O)

stands for h,, and the superscript (n,m) car-
ries the Grassmann number, n, (defined modulo two) and ghost number,
m. In this language, the BRST operators sp and sy enjoy Grassmann
number 1 and ghost number 1, each.

Here we have three families —displayed in three different lines— of fields.
The first line includes the physical graviton field together with the usual
ghost field content that would be naively necessary in order to gauge
fix an unrestricted Diff symmetry. In addition, there is a ¢ field which
accounts for the transformation in (5.13). The second line represents

the field content introduced to gauge fix the gauge symmetry in (5.13),
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together with the one that will be induced on b,(}’*l). Finally, the third

line is the field content due to Weyl invariance.

Field SD sw
Guv 0 0
I Vel + Vel + TV phy + V5 by + Vo hyy, | 265 (g + hyw)
BERYY QM) (PTV ™) + V(02 0
$(02) 0 0
b,(}’_l) ;(Lo,o) 0
(00) 0 0
5(0.-2) 2(1-1) 0
(-1) 0 0
& (0,0) 7 (11) 0
7 LY 0 0
(L) cT”V,,c(U) 0
p(1,-1) TPV b= £0.0)
f(O,O) CTpvpf(O,O) 0

Figure 1: BRST transformations of the fields involved in the path inte-

gral.

Now, we define the action of sp and sy on the fields as shown in Table

1, where the (Q )" denotes the inverse of the operator @, =

g/wD - R,uu,

which exists provided Det(Q) # 0. This is our case since @, is just a

standard Laplacian-type operator acting on vector fields.

With these definitions, it can be readily shown that the equations in

(5.14) hold. In doing so, it is advisable to show first that

spett = cT”Vch”,

(5.16)
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if ¢™* is defined as in (5.12). This can be done by using the following
results
V(@Y™ =0, V, [(Q7Y)) (V") =0. (5.17)
The path integral quantization of the theory is accomplished now by
adding to the classical action the gauge-fixing action, Syquge— fizing, Which
is an appropriate BRST-exact term:

Sgauge—fizing = /dnl' S (XTD + XW) ) (518)

Xrp and Xy are polynomials of the quantum fields with ghost number
-1 and Grassmann number equal to 1 and such that they give rise to
free-kinetic terms that are invertible. Since we are only interested in
one-loop computations, we shall further assume that Xrp and Xy, are
quadratic in the quantum fields. In the next sections we will construct
the terms Xrp and Xy and derive the differential operators involved
in the path integral whose contribution to the quantum effective action
needs to be computed.

5.1.2 The TDiff sector

Let us start with the function Xrp performing the gauge fixing of the
TDiff symmetry. With the field content introduced above and with
the BRST transformations as given in table 1, one has the following
general quadratic polynomial in the quantum fields associated to the
gauge-fixing of the TDiff symmetry

Xrp = b7V [ 4 py frO0] 42072 [Ffie, + por” O] +
+ ¢ OO [Fp=Y) 4 pyrt7Y)] (5.19)

where F), is a function containing the graviton field that can be identified
with the usual gauge fixing condition in the Faddeev-Poppov technique
and F}', F}' and the three p; can be freely chosen. This is enough to fix
the TDiff symmetry with the minimal possible content of fields.
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After applying the s operator, this gives a term in the action
[ @asxep = [[da 00 (P4 pupr00) <yl Vspr
+ (b= (Fé‘cf}’l) + por’ (1’1)) + 0D Rv, 02+

+ 7 (L) (Flub,u(l,—l) + psﬂ(l’_l)) + (070)F1uf;5070)' (5.20)

where we have already taken into account that in the expansion (5.1)
the metric is unimodular.

Now, there are some simplifications that can be done. First, let us
take the terms containing fﬁo’o)

OO (Br o py frO0) 4 fOO e 00), (5.21)
where we have introduced F!' using integration by parts as
/d":v aFl'b = /d":v bE!'a. (5.22)

These can be rewritten completing the square as

1
2p1

2
(Fy + Fiuc (0’0)>) - L(Fu + Fyd 002, (5.23)

P1 (f,so’o) + i

and shifting the variable f,SO’O) the first term does not contribute to the
effective action and we are left with the gauge fixing action

1 _
Sie =1~ / &'z (F, + Fyud ©9)2, (5.24)
1

where p; has been chosen to be a constant. This would be the outcome
of a standard Faddeev-Poppov procedure.

Now let us focus on the terms containing the fermionic 7 fields. Those
read

AL (FQHC,(}’U _|_p27rl(1,1)) -|-7r’(1’1) (Flubl(},—n —1-,037r(1’_1)) _

= (W(l’_l) R Ps)_l) (p2 — p3) (W/(l’l) + (p2 — 03)_1F5LCL1’1)) +
+ F{‘bl(}’_l)(pg - pg)_lFf‘cS’l), (5.25)
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and, again, by shifting the = fields we are left with a gauge fixing term
plus an extra path integral depending on how we choose the operators
p2 and p3

S+ Sgf = /dn 7 (py — pg)’ Y +F1“b£b1’71)(,02*P3)71F5LC;(}’1)>-

(5.26)

So that the BRST action for the T'Diff sector is further simplified to
/ A"z sXrp = / d"x (—bf}’*l)sFﬂ + 0D Rv,e0D ¢
a7 (py = pa)m'™D + P (py — ps) T FY Y
1
L (B 4Rl © 0>)2) (5.27)
Apy
As a next step, the function F,, is chosen with two requirements in
mind. First, that the term F, F* is able to cancel the non-diagonal pieces
of the operators in the original lagrangian for the graviton fluctuations
and also that it is Weyl invariant so both gauge fixing sectors decouple

and their ghost fields do not interact. With these two requirements, the
choice is almost unique

1
Fy = V"l = —Vuh, (5.28)

and its variation under a transverse diffeomorphism is the equivalent to
the application of the s operator

sk, —Dc + V'V ,.cl []c + R%ck (5.29)

uCv

where in the second step we have used Ricci identity [V,,V,]¢" = R,.¢”
and the fact that, since we are performing a transverse diffeomorphism,
c,, satisfies V] = 0.

Now, we have to rewrite ¢/ in terms of an unconstrained field as
explained before. We do this by introducing the operator ®,, defined

n (5.12),
sFy = (950 + RS) (90— VaVy — Roy) /1) =

=P - v, 0V, — 2R, VPV, — OR,,,c"Y —
—2V,R,,Vc!MY — R, RV (5.30)
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The terms in the action for bg’fl) and c,(f’l) is then

/dnx b/‘ |:|2 (1 1) _ quvycu(l,l) . QRHpVPVVCU(I’l)—
_DRupcp(l,l) — QVJR#pVUCﬂ(l,l) _ RﬂpRpVCg,l)_’_
+Ff‘bff’_1)(p2 - P3)_1F2"c,81’1)) ) (5.31)

The non-diagonal term with four derivatives can be canceled by an
appropriate choice of the functions F!', F}', p, and p3. We choose them

to be

Fph = —veplhh,

FQ“CLM) = V“cl(}’l),

(p2—ps)~t =-0. (5.32)
Thus

Flubl(}’_l)(m - p3)_1F5‘C£1,1) - (Vubf,l’_l)> DV“cf}’l) _

where in the second step we have performed an integration by parts
keeping in mind that we are always under an integral sign. The final
action term for b,(}’fl) and c,(}’l) is then

= /d"a: pr (-1 (D%S’l) — ZRWVPVVCV(I’I) — DRWCP(M)—
~2Vo Ry Ve = Ry R M) (5.34)

And with the choice (5.32) for (ps — p3), the integration over the =
fields is given just by

S, —/dnm DOl D), (5.35)

The operator involving ¢ (% and induced by this choice of fixing
functions is

Sher = /dn F“ /(oo)F C(oo)+2F a% 400 4 g F“} _

- / d"x 4—/)1 Vuc' 00 gr 00 4 o, vr (00 +FHF“} . (5.36)
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which mixes with the operator of the graviton fluctuation due to the
term containing F,, and ¢ (*0),
Finally, the operator for %2 and ¢(©?) is

Sep = / d"z 020602, (5.37)

Summarizing, the BRST exact action for the TDiff symmetry is re-
duced to

Sgg?; = /d":z b (DQCS’I) — QRWV”VVCV(I’I) — DRW)C”(M)—
_QVURanCp(Ln _ RMpRpuC£1,1)> + =D 4
1
+ 02002 — e (F,LF*‘ 4V, COyre (00 4 op wid (070>) =
= Spe + 555 + Sz + Sx + She'- (5.38)
The contribution of all these pieces to the quantum effective action

will be computed in section 5.2.

5.1.3 The Weyl sector

Now we turn our attention to the second part of the gauge fixing sector,
corresponding to the Weyl invariance of the theory. We choose the
function Xy to be

Xy = VIV (FO0 —ag(h)) (5.39)

with g(h) being some function of the trace of the graviton fluctuation
only, to ensure that it is invariant under a TDiff transformation. The
parameter o we mean to keep arbitrary all along the computation. The
on shell effective action should be independent of o (because it appears
in a BRST exact piece), and this will be used as a nice partial check of
our results.

After the application of s, the BRST exact action is

Spryr = / "z |V fOOVH (fO0 —ag(h)) - aV,bITIVE (sg(h))]
(5.40)
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and we choose g(h) to be the simplest choice
g(h) = h. (5.41)
The BRST term piece is then
Swey = / d"z ¥, f OO ( FO0 —q h) —2naV, bkl =
= / d"x ( OO0 4 % FOO0R + %hm f(°’0)> +
+ 2na b0 = Sy + ), (5.42)

This gives two contributions to the one-loop effective action. The first
part needs to be added to the original action of Unimodular Gravity.
The second piece is the corresponding ghost action.

5.2 THE ONE-LOOP EFFECTIVE ACTION OF UNIMODULAR
GRAVITY

Once the gauge freedom is fixed completely, the computation of the one-
loop counterterm of Unimodular Gravity is reduced to a computation of
a set of determinants. By collecting all the terms defined in the previous
sections, the pole part of the one-loop effective action will be given, as
explained in chapter 4, by

Woo = WL+ WE+WI + W2+ WY, (5.43)

where each W, refers to the contribution to the pole given by the action
labeled as S; in the previous sections, with the only exception of WY¢
which is given by

Svag = S2 + She + Shy. (544)
Each of this action terms have the general structure

S = / &'z YAF, 55, (5.45)
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where ¥4 will be a vector containing different fields and Fup a differ-
ential operator action over the fields. For instance, if we take Sy we
identify

YA = <b> (5.46)

and the operator to be

Fap = (2 é) % nadl. (5.47)

All but one of the operators involved in our computation are minimal
operators, meaning that their principal symbol is diagonal and they are
of the form

Fap = vapld™ 4+ Kap. (548)

where 45 is a metric in configuration space (this includes the spacetime
metric as well as a metric defined on whatever space in which the indices
carried by the fields live) and K 45 is a differential operator of order m — 1
as most. The contribution of an operator of this kind to the quantum
effective action is quite standard and their computation was reviewed in
[74] by using the Schwinger-DeWitt technique. Some details are given
in chapter 4 as well as in Appendix A for quartic operators. Let us
explain here the main points of the computation pertaining to the only
non-minimal operator, namely the one contained in Syq

S3% = Sz + Sper + Spy = /d”:c c, (5.49)

and

1. 1 1, Lo I
L= W Ohyy — Db+ Sh PhiRua + Fh"h P Roowp — —hh*" Ry~
1 1 1
— 5 W R — 5 (Vuc’ 00 gre 00 4 9 <vyh; - nvuh) Vi <°v°)> +

+ (=100 + SO0+ §h0F ) + 5 1R, (5.50)
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where p; = § in order to cancel the non-diagonal parts in the kinetic

term for h,,.
To write it in the form (5.45), we identify

hiv
yA=1| f (5.51)

C/

and the differential operator takes the form
FAB :’}/ABD—FJZIJ;VMVV—FMAB. (552)
where the different matrices involved read

1(1 1
2 (Z’Cgfpa - ,Pﬁéz?pa') Gop %g;w — 89w

YaB = 2 Gpor -1 0 (5.53)
—§9po 0 3
0 0 % (9298 +9297)
Jyy = 0 0 0 (5.54)
L9598 +929?) O 0
My, 0 0
Map=1] 0 0 0 (5.55)
0 00

with
1 e 1 « 1 Q 1 @ 1
Mhh = <2PHVBP0' - 4’CHEPU> Raﬁ - g (Pm/ﬁpo - 4’CMEPO’> ’YaﬂR + §R(pro') :
(5.56)

The round parenthesis for us mean complete symmetrization in all the
enclosed indices unless otherwise stated. We have introduced the tensors

(e} 1 (e} « (e} «
Pitne = 7 (900007 + 9u006)) + 9,000 + 9,00°0)) . (5.57)
1
aff asp asp
Kiitr = 5 (98500 + 95067 ) (5.58)

Since the principal symbol of this operator (the highest order in deriva-
tives) is not diagonal but it contains a non-minimal term given by the
matrix J55, the application of the Schwinger-DeWitt technique requires
extra work.
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5.2.1  The Barvinsky- Vilkovisky technique

There is a useful technique developed in [74] to compute the contribution
to the quantum effective action of non-minimal operators. It is our aim
to apply it to the case of Sy as given in (5.44).

Let us concentrate on the highest derivative term of the operator

DAB(V) = fyABEI+JngaVﬁ. (559)

Furthermore, assume that the full operator F,p can be included in a
one-parameter family

FAB(V’)\) :DAB(V|A)+MAB, 0< A<, (560)
so that Fup is minimal at A = 0. In our case, we can simply choose
Fap(VIA) = vap0 4+ A5V Vs + Mag. (5.61)

where \ parametrizes the introduction of the non-minimal term in such
a way that for A = 0 the operator is minimal and for A = 1 the operator
whose determinant is desired is obtained.

Following Schwinger the effective action can be obtained by differen-
tiating in A and integrating afterwards, arriving to?

dF(\)
dN

W(A) = W(0) - % /0 S NT [ é(x)] . (5.62)

where G()) is the Green function of the operator Fup, defined by F(A)G(\) =
I, and we are dismissing ultralocal contributions and keeping only the

In order to simplify the notation, we are going to use a hat symbol for matrix
operators carrying mixed capital indices. Thus, things like the following are assumed

A= A=A
AB = AB = AEB§,
Tr(A) = tr (v5 %),

and so on. Here tr denotes the usual matrix trace (i.e. sum of the elements of the
diagonal).
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pole part of W(\). The effective action for our original operator corre-
sponds to A = 1. Here, W(0) is the effective action of the corresponding
minimal operator, obtained by setting A = 0.

Many of the technical difficulties appear already in flat space. It is
useful to consider the ordinary matrix in (euclidean) momentum space

A

D(k) = D (k) = v"“Dep(k), (5.63)

with &, a constant vector. Its inverse has the form,

A1y _ K (k)
D™ (k) = 2y (5.64)
with m being an integer.
From this, it is clear that
D(k)K (k) = (K*)™IL (5.65)

Were we to trade the vector k, for the covariant derivative, and owing
to the non-commutative character of the latter, a remainder appears

D(V)K (V) =07+ K,(V), (5.66)

and going to the full operator, we get

EF(V)K(V)=0m+M(V), (5.67)
with K; and M being now operators of as much order 2m — 1 in deriva-
tives.
The last equation allows us to expand the Green function of £ in
powers of M as follows
. I

=KLy (—MDm)p +0 (). (5.68)

The notation O (m®) means that we are keeping only terms up to back-
ground dimension four.

May be this is a good point to comment of power divergences [75, 76]
in the heat kernel formalism. As was stated in chapter 4, it is possible
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to regularize the proper time integral by introducing both an ultraviolet
A~? and infrared =2 cutoff, that is

/OO dr — /" (5.69)
0 A2

WOO = %a0A4 + a2A2 + a4log ({;) . (570)

In that way we get

It is to be stressed that those are gauge invariant proper time cutoffs,
not to be confused with momentum cutoffs.

The first term in this expansion yields a universal (that is, indepen-
dent of the form of the action) quartic renormalization of the cosmolog-
ical constant. This term is non-dynamical in that it does not depend
on any of the fields present in the theory.

The second term yields quadratic divergences, and the last term yields
the physically most interesting ones, namely the logarithmic divergences.
In pure gravity the quadratic divergences are necessarily proportional
to

| Rduts). (5.71)

which is the only dimension two invariant. The measure depends on
whether full Dif(M) invariance is implemented (as in GR, du(g) =
Vlgld"z) or else only the subgroup TDiff(M) (as in UG du(g) = d"z).
There has been some discussion going on in the literature on the physical
relevance of those quadratic divergences confer [77-80].

We shall concentrate on the logarithmic ones (which are the only ones
seen in dimensional regularization). In order to compute this Green

I
function it is useful to commute the S to the right

4
A A - I
G = —KZO(—l)pMpWJrO(mE’), (5.72)
—
with the operators M, given recursively by
Nl = NIXT, + [O7, L], (5.74)
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Furthermore, it can be proven [74] that if the coefficient of the highest
derivative term (of order 2d) is covariantly conserved and there is no
term of order 2d — 1, as it is the case for (5.61), then My = M3 = 0 and
M, = M? +m |0, MO,

Turning now our attention to this explicit case and computing the
inverse of the operator D(k) in the sense (5.64) we get m = 3 and the
calculation of the effective action then reduces just to

W(A) = W(0)—
I I I

1/ N X I A N A
- l af o - - 2 =
2/0 dNTr [J vavﬁ{K< =5 + M= — 300, M = MD9>H.
(5.75)

The computation of W(0) is just the one of a minimal second order
operator cf.[74]

11 16 2 46
= [ n - prof _ yny
WO = Tom2 1 /d x{ g5 s (8a2 —1 15) Fu B

13 1
* (24 Ty 16a2) RQ}' (5:76)

The rest of the pieces in (5.75) are obtained following the steps out-
lined above. The number of terms grows enormously after applying suc-
cessive derivatives through Leibniz’s rule. The computation has been
performed with the help of the Mathematica software zAct [81]. A fair
amount of computing time has been necessary in order to simplify the
resulting expressions.

There is a last non-trivial issue that we have to take care of. After
computing the terms in (5.75), the output will be a collection of terms
of the schematic form

I
Tr (OVWQ_,VJ,VMVW...VMDn) ) (5.77)
with p < 2n —4.

These functional traces can be computed by introducing the formal
representation of J- through a Laplace transform and performing a
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dimensional regularization afterwards, keeping only the logarithmic di-
vergent terms as explained in [74] and summarized in Appendix C.

After doing all this and computing the functional traces we are finally
left with a simple result for the perturbation to W (0)

—1/1d>\’T {jaﬂv v {K (—H+MH—3[D M]H—MQH)H =
2 Jo ' oy 3 6 T 9 -

11 1 2 1/ 12 1
- a 4+ YRR+ —(— _~ _5\R?
16772n—4/ x{(6a2+1—8a2> / +24<8a2—1 o2 ) }

(5.78)

And finally, putting all together we find that the contribution to the
pole part of the effective action of Sy is

1 1 16 1 46
UG __ vaS v
WOO = 167‘[‘2 n—4 /dnm{]ﬁRuuaﬁR“ a + (W - 15) R;,LVR/

Gode) em

where we have neglected total derivatives in the integrand.

As has been already advertised, all the dependence on the gauge
fixing, represented by the presence of the parameter « in the final result,
disappears when we use the background equations of motion R,, =
1Rg,,. This is as it should be because all gauge fixing is BRST exact.

5.2.2  The final result

After computing the contribution of the non-minimal operator, we are
finally ready to write the pole part of the effective action of Unimodular
Gravity, which reads

Wo =W+ W+ W+ W2+ WY, (5.80)
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Here WY¢ is the contribution we have computed in the last section
while the rest of the contributions are given in Appendix B. Adding
everything, we find that the final result is

119 1 359
uvaB g
Woo = 167r2 n— 4/ ( Rywap B0+ (6a2 90 ) By B

*W;<m(y)Rﬁ (5.81)

Now we would like to focus on the issue of on-shell renormalizability.
It is known that although General Relativity is one-loop finite in the
absence of a cosmological constant, this property is lost in its presence.
The on-shell counterterm in this case was obtained in [82] and it amounts
to a renormalization of the cosmological constant and is proportional to

1142
WeR=___~ 167T2 /\fd‘1 ( Wi — 135/\2) (5.82)

Since the main attractive feature of Unimodular Gravity is precisely
the different rdle that the cosmological constant plays with respect to
GR, we would like to see what happens here with the renormalization
group flow when we take the counterterm to be on-shell so that all
external legs correspond to physical states. In that case, the equations
of motion for the |g| = 1 fixed background are the traceless Einstein
equations

Ry~ 1R = 0, (5.83)

which, altogether with Bianchi identities, imply the following for the
operators appearing in the effective action

Ryuap R = Ey, (5.84)
RWH”:ER{ (5.85)
R = constant. (5.86)

The first line is nothing more than the statement of the Gauss-Bonet
theorem when we take into account the equations of motion. Ej is
thus Euler density, whose integral gives the Euler characteristic of the
manifold.
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By using these, we find that the on-shell effective action takes then
the form

1 1 119 83
Wégl—shell — 62— /dn$ <E4 - RQ) . (587)

The contribution of the cosmological constant to the effective action
happens to be a non-dynamical quantity, since it does not couple to the
metric because the /g factor in the integration measure is absent. This
implies that we can disregard this term since it will not contribute to
any correlator involving physical fields. We conclude, therefore, that in
this case there is no renormalization of the cosmological constant and
its peculiar status in Unimodular Gravity is preserved through quantum
corrections.

Indeed, this effect is not specific to one-loop computations. We then
conclude that the bare value of the cosmological constant is protected
and quantum corrections do not modify it.

It could be thought that this effect is just a gauge artifact of our
background choice |g| = 1. However, it can be easily argued that this
is not the case. As we have commented before in this work, if we now
want to obtain the effective action for an arbitrary background from the
one with unimodular background metric, it is enough to make a change
of variables so that

1

guu = gigguu- (588)

This transformation is available as long as there is no conformal
anomaly in the theory. This is indeed the case, since there exists a
regularization in which the anomaly vanishes [69, 83] When doing this,
we can see that the real reason of the cosmological constant not being
renormalized is indeed the presence of Weyl invariance in our formalism,
which protects the appearance of any mass scale in the effective action
and, as a consequence, in the expectation value of the equations of mo-
tion. Therefore, our argument holds and the cosmological constant is
protected and fixed to its bare value all along the renormalization group
flow and at any loop order.



Part IV

UNIMODULAR GRAVITY VERSUS GENERAL
RELATIVITY



GRAVITATIONAL CORRECTIONS TO THE BETA
FUNCTION

We study the beta functions of the quartic and Yukawa couplings of Gen-
eral Relativity and Unimodular Gravity coupled to the A¢* and Yukawa
theories with masses. We show that the General Relativity corrections
to those beta functions as obtained from the 1PI functional by using the
standard MS multiplicative renormalization scheme of Dimensional Reg-
ularization are gauge dependent and, further, that they can be removed
by a non-multiplicative, though local, field redefinition. An analogous
analysis is carried out when General Relativity is replaced with Uni-
modular Gravity. Thus we show that any claim made about the change
in the asymptotic behaviour of the quartic and Yukawa couplings made
by General Relativity and Unimodular Gravity lack intrinsic physical
meaning.

Robinson and Wilczek suggested that when coupled to a Yang-Mills
theory, it improves the behaviour of the theory regarding asymptotic
freedom [84]; but it was proved later that this result is gauge dependent
[85, 86]. Further, it is also known that a non-multiplicative renormal-
ization can be used to eliminate some of the contributions to the beta
functions in the Yang-Mills case [87].

The beta functions of the A¢* (quartic) and Yukawa couplings, and the
logarithmic UV divergences that contribute to them, enter the quantita-
tive analysis of a large number of High Energy Physics topics. Two chief
topics among these are a) the study of the vacuum stability by using
the renormalization-group-improved effective potential, with its impli-
cations in the study of the Physics of the Early Universe and the physics
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of the Standard Model and beyond -see [88] and references therein, and
b) the construction of Asymptotically Safe theories of Quantum Gravity
coupled to matter along the lines laid out in Reference [89]. Thus it
is plain that the computation of the logarithmic UV divergent contri-
butions which may lead to a change in the value of beta functions in
question due to the interaction of the corresponding matter fields with
gravitons is needed. In view of the fate of the corrections found in Refer-
ence [84], it is necessary to see whether or not these gravitational correc-
tions are gauge independent and invariant under non-multiplicative field
renormalization so that an intrinsic physical meaning can be ascribed
to them.

In Reference [90], it was shown that the General Relativity contribu-
tions to beta functions of the quartic and Yukawa couplings obtained
by using the multiplicative MS scheme of Dimensional Regularization
applied to the 1PI functional do not vanish in the de Donder gauge of
the graviton field. The contributions obtained lead to asymptotic free-
dom for appropriate values of the masses involved —among these values
are masses of the real Higgs and top quark.

The first aim of the present section is to show that the General Rel-
ativity corrections to the beta functions of the quartic and Yukawa
couplings as computed in the de Donder gauge in [90] are gauge depen-
dent artifacts and that, besides, they can be removed by appropriate
non-multiplicative field redefinitions. Thus, we conclude that the Gen-
eral Relativity corrections to the beta functions in question obtained
by using the multiplicative MS scheme of Dimensional Regularization
applied to the 1PI functional have no intrinsic physical meaning and,
that, therefore, any physical conclusion derived from them cannot be
trusted. The second aim is to show that this same situation is repro-
duced when Unimodular Gravity is used instead of General Relativity.
We shall actually see that in the gauge we shall use the Unimodular
Gravity corrections to the beta function of the quartic coupling vanish
in the Multiplicative MS scheme of Dimensional Regularization.

One word of caution: when, in the following, we talk about gravity cor-
rections —either from General Relativity or from Unimodular Gravity—
we refer to corrections that are of order x2.
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6.1 THE SETTING

We start from the well known Einstein-Hilbert Lagrangian coupled to a
massive real scalar ¢ via a ¢* interaction and a Dirac fermion ¢ via a
Yukawa interaction. This is

- - A
Lon =v/=7 { = SR+ DD = ma)+ 500,00+ — g’ — goiu — o'},

(6.1)
while for unimodular gravity
2 . 3 VgV
Lue =- ?<—g>z <R+ 33 ) 0D = my)vt
50 0,00,0 — L — g0l — 0, (6.2)

where k = 327G, and g, \ are -respectively- the Yukawa and the ¢*
coupling constants.

In order to keep explicit the gauge dependence, we use a generalized
gauge condition for general relativity:

1 2
Lon = a(ﬁ“hw - 2(91,h) : (6.3)
where « is an arbitrary gauge parameter. This yields a propagator

<hW(k)hm(_k)>GR = (nuonup + NppMve — 77W77pa) -

i

2k2
1

i (2 + a) (Moo - Tk + Tk + oakiik,)

(6.4)

The gauge fixing and propagator of unimodular gravity are found in [15,
38, 91] and read

i i o’n®—n+2
(P (k) oo (=) = 515 (Moo + Dpapive) — W2 atn2(n —2) e
2 (kpkgn,w . kukynpg> 2in bk ks
(k2)?2 (k2)2 n—2 (k2)?

+n—2

(6.5)
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And it reduces in 4 dimensions to

i i 8a%—1
(hyw (K)o (—K))uc = 5z (MpoNvp + MppNve) — = 1602 "

A kokonuw  Kukunpe Kk k ok,
—l—z(pkA“—l— ”k4p>—4z“k6p . (6.6)

o po +

Let us remark that in the case of unimodular gravity the interaction
comes from hm,f“” = EWT‘“’ with T* the energy-momentum tensor and
the hat quantities the traceless ones. Therefore one can work with the
traceless propagator (A, (k)h,s(—k)) (which can be trivially obtained
from (6.5)) and the full energy-momentum tensor, therefore using the
same Feynman rules for the vertices as in general relativity, or use (6.5)
coupled to TH.

In order to compute the beta functions, the first step is to find the 1PI
gravitational corrections to the scalar and fermion propagators. These
are shown in figures la and 1b.

_4_2’_#_:\}}_4__ —tt {(IJN:\.H? -

(a) Scalar propagator (b) Fermion propagator
PS Py

Figure 1: Corrections to the scalar and fermion propagators.

Using the propagators listed above, and computing divergences in
dimensional regularization (D = 4 + 2¢) these are,
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0 (o Yo (1) -
pUG —, (6.8)
b8 () (B s

) {5 2) B o0
Pygzﬁ2(_wi%>{¢<i"@_7;pﬂ_%zmwﬁ}' (610)

The corrections to the ¢* (1PI) vertex (figure 2) read

N\ 7 N\ 7
N\ 7 N\ 7
N\ 7 N\ 7
N\ 7 N\ 7
{4 Y o {4 Y o
N 4 N 4

N 4
A4 4
7\ 7\
R A A .
Patatara e N ; \\
o » oA N
4 N 4 N
(a) 4+ 5 permutations (b) + 4 permutations

Figure 2: ¢* vertices.

i 3 1o
vt = (o) (o) p Xt -] @)

i=1

VY% =o. (6.12)

Finally, we compute the divergences of the (1PI) Yukawa vertices listed
in figure 3. These ones read
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Figure 3: Contributions to the Yukawa vertex.

erR _ 2 1 le 3 5 1 2, 1
K _gﬁ< 167r26>{ 7me g g TR (B p)E

41 }Jr 2<i)(1+ )[ LI S L S
sPiPe] TN\ Tigaze )\ ) T T 16 T g TR

13 9
_8p1.p2+mw(p1+¢2)—16p1p2], (6.13)

i 9 3 3 3
(6.14)

6.2 BETA FUNCTIONS

We shall proceed now to the computation of the Yukawa and quartic
coupling beta function gravitational corrections coming from General
Relativity and Unimodular Gravity. To use the well known multiplica-
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tive MS renormalization scheme of Dimensional Regularization, we de-
fine

9o = ZyZ;' 2,1y, Zy,=1+027,, (6.15)

Yo = Z4/°Y, Zy,= 14027y, (6.16)

Yo = Z¢/*¥, Zy=1+052,, (6.17)

My, = ZnZg My, Ty = 14 6 Zpy, (6.18)

Mg, = ZmZy Mg, Zmy = 14062, (6.19)
- )-*-- = i(0Zyp— 0 Zpmymy),

——( ) = i(0Z4p? — 6 Zm,m2),

= —igpu=0Z,.

Figure 4: Counterterms

The counterterms obtained from the previous definitions are given in
figure 4.

Following the standard MS procedure, the wave function renormal-
izations (6Zy and §Zy) are obtained by imposing that the contributions
proportional to p in the sum given in figure 5 are finite as e — 0. This
yields the values
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_ 1 s 1

024 = T6.7" Mo [1 + (2 +a>], (6.20)
C Ll (1D

0y = 62" mxy[4 + (2 —l—a) 32]. (6.21)

L o

Y Al S

Figure 5: Wave function renormalization.

For 0Z,, we demand that there is no singularity independent of the
external momenta at e — 0 in the sum of figure 6; hence

1 1 1 3/1 57
T (e PR ) | R FTER | R G

- - -
- — — -

Figure 6: Yukawa vertex renormalization.
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. d . : .
Defining g, = ugd(ﬂ), and using standard techniques, one obtains
® _
the General Relativity contribution, &, to 8, at order x?, from 62, =

1
5Zg — 6Z‘}’ — §5Z¢,I

BER = 1617T2/£2{m2 B - (; +a>} +m?y[— 1- (; +a) ?2} (6.23)

The explicit dependence on the parameter « shows the gauge-dependent

nature of this beta function in presence of gravity. Insofar as no physical
observables can depend on the gauge, no physical consequences should
be extracted from here.

We follow the same procedure for unimodular gravity to find

L

3
UG _ 2 9
0Z¢" = 62" Mg (6.24)
§23¢ =0, (6.25)
3276 =0, (6.26)
that
o UG = L etz S (6.27)
g 1672 Y16 '

We can see that we get a difference between general relativity and uni-

modular gravity by comparing (6.23) and (6.27). However we will see

in the sequel that we can get rid of these beta functions by using a non-

multiplicative renormalization, this is, by performing a field redefinition.
Let us now define

G0 = 12,2, 2;1%, bo = &+ %5Z¢¢, (6.28)

Yo=Y+ %5ny‘}’ + %aQO?y‘Y + %memi‘I’, my, = (14 0Zp, )my,
(6.29)

Yo=Y+ %5ny‘? + %a1n2m?y‘? + %memiq’, Mg, = (L4 0Zn, )my.
(6.30)

69
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- — - -

= —ig(p 02y + ars*miy + bis*m3).

Figure 7: Counterterm.

Therefore the matter lagrangian can be written as

L,

Yo (id — my,)¥o + = ( 000" do —m3 3) — go¥odo¥o =

Y (id —my)¥ + 5 (ucb@% mi¢?) — g~ Y p¥ +

5 Zg Vid¥ + 6 240,00"  — mugd Zp, T — 5%(szm }—

/—’H

{5Z + a1 k> mqf + b1k m¢} YooY+
1
+3 (aQO\F + bun?m?) [(¥odY +idp¥] . (6.31)

While the counterterms for the scalar and fermion field propagator
remain unchanged with respect to the multiplicative renormalization,
the counterterm for the vertex is now given by the expression in figure
7.

Imposing again that the sum in figure 6 is zero (plus terms depending
on the external momenta) when € — 0, we find

= e+ (3 )]

5Z¢—167r2€/1 my |1+ 2—|—a , (6.32)
_ b o fl 2971

02y = o7 e {4 + % (2 + oz)}, (6.33)

57, =62, 02w~ 567, =

- e[ L (o)) e e [ B (L)) -
T 16m2e P 4 T 2\2 16m2 T2 ' 32\2

— ayk*miy — b1k’ m}. (6.34)
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It is clear that by choosing
1 1 8/1
ap = 7167T26 |:2 + 372 (2 + a>:| y (635)

1 1 1/1
by = 1672%¢ [_ 4 * 2(2 —l—oz)], <6.36>

we shall wipe out the gravitational correction to §Z, so the gravitational
corrections to the beta function of the Yukawa coupling is now given by

Bt =0. (6.37)

gravitational

We have seen here that the gravitational contribution to g, can be
brushed away by carrying out a field redefinition. Therefore, it is an
inessential [89] contribution. However, notice that one cannot do the
same with the contributions in absence of gravity, which show that they
are essential contributions.

Finally, we can perform the same non-multiplicative renormalization
for unimodular gravity finding

5259 =0, (6.38)
1 3
UG _ 2 2 9
0Zg~ = Ton2" M¥ e (6.39)
~ 1 1
JZ;JG = 5Z;JG —0Z3¢ — §5Z}3§ = _mKQm%IE —a1k*md — bll~@2m§).
(6.40)
Accordingly, we can set
1 3
T RTE 6.41)
by =0, (6.42)
to make again 67, = 0 and
B8y ¢ = 0. (6.43)

gravitational
The computation of the gravitational corrections of the beta function
of the ¢* interaction is done by following an akin the process. Defining

Ao = )\,U,_QGZ,\ZJQ, Zy=1462,, (644)
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we have obtained

7R — 1 (§+a) (6.45)

1672
6ZY¢ = 0. (6.46)

Hence, one can compute the gravitational corrections to the beta
functions of the quartic coupling, \¢*, to be

SR - —%ﬁ/gmé (2 + a) A, (6.47)
A =0. (6.48)

In this case the beta function of unimodular gravity is directly zero
for this particular gauge. For general relativity, as we did with the
Yukawa coupling, we can reabsorb this discrepancy by means of a non-
multiplicative renormalization. In this case, we can carry out the fol-
lowing field redefinition

G0 = ¢ +wi¢ + wak’ 0’ + wsk G 5 Zy 0, (6.49)

and we can set SYR = 0 by choosing

1
wp = —mﬁmi, (6.50)
wy = 0, (6.51)
1 1

6.3 FINAL DISCUSSION

The knowledge of beta functions of the A¢* (quartic) and Yukawa cou-
plings, and the logarithmic UV divergences that contribute to them, is
needed in the quantitative analysis of such important issues as the vac-
uum stability by using the renormalization-group-improved effective po-
tential —see [88] and references therein—, and the construction of Asymp-
totically Safe theories of Quantum Gravity coupled to matter as put



6.3 FINAL DISCUSSION

forward in Reference [89]. Therefore, a computation of the logarithmic
UV divergent contributions which may yield a change of the value of
beta functions in question due to the interaction of the corresponding
matter fields with gravitons is much needed. However, the fact that the
corrections computed in Reference [84] for the gauge coupling constants
turned out to lack any intrinsic physical meaning —see References [85,
87]— makes necessary to ascertain whether or not these gravitational
corrections to the quartic and Yukawa couplings are gauge independent
and invariant under non-multiplicative field renormalizations so that an
intrinsic physical meaning can be assigned to them.

In this section, we have computed the General Relativity corrections
to the beta functions of the Yukawa and A\¢* theory as obtained from the
1PI functional by using the standard multiplicative MS dimensional reg-
ularization scheme. We have shown that they are gauge dependent and
that, besides, they can be set to zero by appropriate, non-multiplicative,
field redefinitions: they are inessential corrections [89]. We thus con-
clude that these corrections do not have any intrinsic physical mean-
ing and, therefore, the statements about asymptotic freedom made in
reference [90] are not physically meaningful. Of course, the gauge de-
pendence of the gravitational corrections to the beta function can be
avoided by using the DeWitt-Vilkovisky action instead of the 1PI func-
tional —as done in reference [92] for the A¢* theory—, but it is plain that
those gauge-independent contributions can still be removed by appro-
priate non-multiplicative, but local, field redefinitions such as the ones
—with different coefficients, of course— introduced in this section. The
use of the DeWitt-Vilkovisky effective action does not give the gravi-
tational corrections in question any intrinsic physical meaning, so that
any conclusion drawn from them also lack intrinsic physical content.

For the sake of comparison, we have carried out a similar computa-
tion for the case of Unimodular Gravity —for a gauge-fixing choice which
yields no free parameters: the computations are hard enough already—
and found that the corresponding gravitational corrections to the beta
functions do not agree with those from General Relativity —curiously
enough the corrections to the beta function of the \¢* vanish for Uni-
modular Gravity, and, that they can also be set to zero by appropri-
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ate local non-multiplicative field redefinitions. So one cannot use these
gravitational corrections to the beta functions in question to distinguish
between General Relativity and Unimodular Gravity. In fact, they be-
have in the same manner from the physical point of view: they are not
essential in either case, for they correspond to field redefinitions.

Several final comments are in order. First, we would like to point out
that our conclusions are quite in keeping with the conclusions —ie, the
inclusion of gravitational effects into the running coupling constants has
not a universal meaning— in Reference [93] in the massless case, but our
approach to the problem is not the same and, besides, our theories are
massive. Notice that the contributions computed before —and in [90,
92]-— vanish if the masses are sent to zero. Secondly, that our analysis
is in complete harmony with the discussion carried out in reference [87]
for the Yang-Mills coupling constant. Thirdly, the results that we have
presented are to be taken into account unavoidable when developing the
asymptotic safety program as applied to Gravity interacting with mat-
ter, with the proviso that the UV divergences computed here correspond
to logarithmic divergences when a cutoff is used.
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7.1 UV DIVERGENT CONTRIBUTIONS TO THE SCATTERING
OF MASSIVE SCALAR PARTICLES

In the previos chapter the coupling of Unimodular Gravity to a massive
A¢?* theory was introduced and the corrections to the beta function of
the coupling A coming from Unimodular Gravity were computed. The
results obtained point in the direction that, when coupled to the A¢?* the-
ory, Unimodular Gravity and General Relativity are equivalent at the
quantum level, at least when the Cosmological Constant can be dropped
and for the one-loop UV divergent behaviour considered. However, this
conclusion regarding the UV behaviour of these theories —General Rel-
ativity plus A¢* and Unimodular Gravity coupled to A¢*— cannot be
considered as final since, as shown in Ref. [94], the gravitational correc-
tions to the beta function of the coupling A have a very dubious physical
meaning. To settle this issue for once and all is important since it has
been argued [90, 92] that the General Relativity corrections to the beta
function of the coupling A gives rise to asymptotic freedom, with obvious
implications on the Higgs physics.

The purpose of this section is to compute the one-loop and order
x*mj UV divergent contributions to the S matrix element of the scat-
tering process ¢ + ¢ — ¢ + ¢ in a massive —with mass mg, A¢* theory
coupled either to General Relativity or to Unimodular Gravity, both
in the vanishing cosmological constant situation. We shall show that
such UV divergent behaviour is the same in UG case as in the GR in-
stance and this is in spite of the fact this equivalence does not hold
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Feynman diagram by Feynman diagram. This result is not trivial since
UG does not couple to the scalar potential in the classical action and it
provides further evidence that UG and GR are equivalent at the quan-
tum level and for zero Cosmological Constant. As a side result, we shall
show that the UV divergent contributions which give rise to the non-
vanishing gravitational corrections to the beta function of the coupling
A computed in [90, 92, 94] are completely useless for characterizing UV
divergent behaviour S matrix element of the ¢ + ¢ — ¢ + ¢ scattering.
This is completely at odds with the non-gravitational corrections to the
beta function of A and it shows beyond the shadow of a doubt that the
gravitational corrections to the beta function of the coupling constants
lack, in general, any intrinsic physical meaning. This also applies to
the physical implications of a beta function turning negative due to the
gravitational corrections.

7.1.1  Gravity coupled to \¢*

In this section we shall just display the classical actions of General
Relativity and Unimodular Gravity coupled to A¢* and the graviton
free propagator in each case.

7.1.1.1 General Relativity coupled to \¢*

It goes without saying that the classical action of General relativity
coupled to \¢* reads

Scre = Sem + ng)
2
SEH == _7/dnx V _gR[g;w] (7].)
S = [ v=g| 39 0.00,0 - SMPS - Lo

where x? = 327G, R|g,,] is the scalar curvature for the metric g,,.
Using the standard splitting

vy = Nuv + Kh,uu; (72)
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and the generalized de Donder gauge-fixing term
/d”x a(0"hy, — o,h)*, h= hyn™

which depends on the gauge parameter o, one obtains the following free
propagator of the graviton field h,,:

)
<hul/(k)hﬂa(_k>> = TkQ (77#0771/,0 + NupMve — 77;“/77;)0)_

1 1
( + 0() (kauk’a + nupkuko + nupkuko + nuakukp)7

()2 \2
(7.3)
where n* denotes the Minkowski, (+, —, —, —), metric.
Up to first order in &, SW1 %) in (7.1) is given by
n, Aa F o 2
S = i (50,000 — 06 - 26t = ST + 0GR, (T4

where . ) \
vo__ v v = A Tag242 4
T = 990" — " (50100%6 — M6 — 6%,

In (7.4), contractions are carried out with 7,,, the Minkowski metric.

7.1.1.2  Unimodular Gravity coupled to \¢*

Let §,, denote the Unimodular —ie, with determinant equal to (—1)—
metric of the n dimensional spacetime manifold. We shall assume the
mostly minus signature for the metric. Then, the classical action of
Unimodular gravity coupled to A¢* reads

Svae = Sva + Sg\gf)
SUG — T T 5 fd Xz R[gm/] (75)
SI09) = Jtw | 590,006 — S M26? !¢4

where k* = 327G, R[j, ] is the scalar curvature for the unimodular
metric.
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To quantize the theory we shall proceed as in Refs. [15, 38, 39] and
introduce the unconstrained fictitious metric, g,,, thus

g,ul/ = (_g)_l/n Guv, (76)

where g is the determinant of g,,. Then, we shall express the action in
(7.1) in terms of the fictitious metric g, by using (7.6). Next, we shall
split g,, as in (7.2)

Guv = Maw + Khyw, (7.7)

and, finally, we shall defined the path integral by integration over h,,
and the matter fields, once an appropriate BRST invariant action has
been constructed.

Since our computations will always involve the scalar field ¢ and will
be of order k2, we only need —as will become clear in the sequel- the
free propagator of h,,, (hu.(k)h,.(—k)), and the expansion of Sy, up
to first order in x. Remember that we have obtained the propagator in
(6.5), and it reads (in n = 4)

: .99
<huV(k)hpa(_k)> 2k2 (77u677Vp + 77up77w7) - ];annpa
2i (kpk;gnw . kukynpa>  2in kukokoks
(k2)2 (k2)2 n—2 (k2?3
(7.8)

n—2

The expansion of Sy in powers of x reads
R PN N (£)
At © iz .

N 1
where hy, = hu, — ;h, with h = n,,h*, is the traceless part of h,, and

A

“ot). (7.10)

C= 0609 — i (L0000 — M-

Again, the contractions in (7.9) are carried out with the Minkowski
metric 7,

Notice that the summand in 7" which is proportional to n** does not
actually contribute to T*“’EW, since EW is traceless. In terms of Feynman
diagrams, this amounts to saying that the n** part of T* will never
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contribute to a given diagram since it will always be contracted with a
free propagator involving h,,. This as opposed to the case of General
Relativity and makes the agreement between General Relativity coupled
to matter and Unimodular Gravity coupled to matter quite surprising
already at the one-loop level.

It is the free propagator of h,,, (A (k)h,(—k)), and not the full
graviton propagator in (6.5), the correlation function that will enter the
computations carried out in this section. From (6.5) one readily obtains
that

<ﬁuy(k)ﬁﬂd(*k>> - <n/w771/p + NupMve — 277uu77pa> +
2k2 n—2
% kuklpo + kot 2in kukkok,
n—2 (k2)? T n—2 (k2)3

(7.11)

7.1.2 The ¢+ ¢ — ¢+ ¢ scattering at one-loop and at order k*m}

The purpose of this section is to work out the one-loop and order x*mj}
UV divergent contribution, coming from General Relativity and Uni-
modular Gravity, to the dimensionally regularized S-matrix element of
the ¢ + ¢ — ¢ + ¢ scattering process and discuss the meaning of the
results we shall obtain.

7.1.2.1 General Relativity contributions

Let us consider the General Relativity case in the first place. To define
the S-matrix of the ¢ + ¢ — ¢ + ¢ scattering at one-loop, we need the
one-loop propagator of the scalar field ¢ to have simple pole at the
physical mass, my with residue 7. This is achieved by introducing the
following mass and wave function renormalizations

mg = M? +il44(p* = m3, k)

6= on[1 =07 = i) T(pte) = S

where M? and ¢ are the bare objects in the action in (7.1). In the
previous equation, the symbol I'y4(p?) denotes the one-loop contribution
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to the 1PI two-point function of the scalar field. The General Relativity

contribution, z'l"ggR) (p?, k) —the non-gravitational ones can be found in

standard textbooks— to i (p?) is given by the diagram in Figure la
and it reads

iro (k) = (1617rge> {1 + (; —l—aﬂ REM2(p? — M2) +  (7.13)

+ UV finite contributions, (7.14)

where n = 4 + 2¢ is the spacetime dimension. The wavy line in Figure
la denotes the free propagator in (7.3).

Now, in terms of the m, and ¢, defined in (7.12), the one-loop and
order x*mj General Relativity contribution to the dimensionally regu-
larized S-matrix element of the scattering process ¢ + ¢ — ¢ + ¢ is given
by the sum the diagrams in Figures 8, 9 and 10 —bear in mind that the
wavy lines represent free propagator in (7.3). Notice that the diagram in
Figure 9 comes from the wave function renormalization in (7.12), which
guarantees that asymptotically ¢, is the free field at t = +oo. It can be
shown that the sum of all the diagrams in Fig. 8 is given by

.~(GR
Zr<(75¢¢<7)5(p1ap2,p37p4§ ﬁ)‘Pf:mi —

-1 1 . . .
= ( ) {1 + (2 + a)] /4:2)\(2 Pi* Djlpr=mz + 4m§,> + UV finite contributions =

1672€ e
-1 1 =
= (1671'26> {1 + (2 + a)] ani)\M + UV finite contributions.

(7.15)
Note that 7,7 = 1,2,3 and 4.
Taking into account (7.12) and (7.14), one concludes that contribution
to the dimensionally regularized S-matrix coming from the diagram in
Figure 9 reads

2
(GR,ct) ori
T pson (P1,D2, D3, pas k) = A |1 —i (‘3?9(;; (P> =m3,K)| A=

_ (1 1 2, 2 . .
- (167r%> [1 + (2 + 04)] K m¢)\{2} + UV finite contributions.
(7.16)
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Figure 8: 1 loop scalar four-point function: z’l"ggﬁorwc) (p1, P2, D3, Pa; K)
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Figure 9: Onshell counterterm

From (7.15) and (7.16), one immediately realizes that the

.~(GR 1 (GR,ct . . .
Zr((¢¢¢(2,(p1,}72,p3,}74; K)p2=m2 +ZFEM,¢¢( )(pr,p2,p3, pa; ) = UV finite contributions,

(7.17)
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so that the General Relativity one-loop and order x*m? UV divergent

contributions to the S-matrix of the process ¢ + ¢ — ¢ + ¢ may only
come from the non-1PI diagrams in Figure 10. This sum reads

. GR
ZNF((;s(M)(;(plava b3, P4; H) |p?:mi =

-1 1 1 . . .
= ( ) () K2\ {2(3 +t+ “)‘p?:nﬁ +mZ| + UV finite contributions =

1672%¢ 12
-1 1 . . .
— (16 . ) <2> QOi)\ + UV finite contributions.
TTe€

(7.18)

u and t channels

Figure 10: Non-1PI diagrams

We are now ready to display the one-loop and order x*m3 UV contri-
bution to the dimensional regularized S matrix element of the scattering
process ¢ + ¢ — ¢ + ¢ coming from General Relativity. The contribu-
tion in question is obtained by adding the UV divergent contributions
in (7.15), (7.16) and (7.18) and it reads

<16_7T126) (;) KPmGA. (7.19)

Let us insist on the fact that the contribution in (7.19) only comes
from the diagrams in Figure 10, which are one particle reducible, for
the contribution coming from the 1PI diagram in Figure 9 cancels the
contributions coming from the diagrams in Figure 8, as seen in (7.17).
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7.1.2.2  Unimodular Gravity contributions

To compute the one-loop and order x*mj Unimodular Gravity contribu-
tions to the S matrix element giving the ¢ + ¢ — ¢ + ¢ scattering, one
proceeds as in the previous subsection,taking into account that now the
wavy lines in the Feynman diagrams in Figures la, 8, and 10 stand for
the traceless free correlation function in (7.11) and that the diagrams
in Figure 8b are zero since they come from the contraction of the n*”
bit of T}, in (7.10) and the traceless h,, field. Our computations yield
the following results

zT(UG) (p%, k) =0 + UV finite contributions
ZF;W(;(pl,pg,pg,p;;; &)]pfzmi =0 + UV finite contributions
Z.Nr<(15¢¢<1)5<p17p27p37p45 )|p 2 -

= <_1> ( ! ) ) [ (8414 u)|pp—me +m¢ + UV finite contributions =

1672€ 12
—1 1 . . .
= <167T26> (2) ﬁQmi)\ + UV finite contributions,

(7.20)

where z’l“%a) (p?, k) is give by the diagram in Figure 1la, erﬁd)@; (p1, P2, D3, Pa; K)
is the sum of all the diagrams —which are not trivially zero— in Figure 8
and iNF(%g(i(pl,pg, p3,pa; k) is the sum of all the diagrams in Figure 10
and my is the physical mass of the scalar field ¢.

By applying the on-shell definitions in (7.12) —ie, now M? and ¢ are
the bare objects in the action in (7.5)— to our case, one concludes that
for Unimodular Gravity the diagram in Fig. 9 is given by

or (GR)

819
=0 + UV finite contributions.

-2
(7 = m3, M?)] "= =

T (1, pay pas pas ) = A [1 —i

(7.21)

Taking into account the results in (7.20) and (7.21) and adding the UV
divergent contributions to z'l"%g; (P1, D2, P35 Pai ) [p2=m zFéwd) )(pl,pQ,pg,m; K)

and z‘Nl"%%(pl, D2, P35 P4 )|p2_m¢, one obtains the one-loop and order

x*m7 UV contribution to the dimensional regularized S matrix element
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of the scattering process ¢ + ¢ — ¢ + ¢ coming from Unimodular Gravity,

which runs thus ) )
(1671'26) <2> &Zmi/\. (7.22)

This is the same contribution that we obtained in the General Relativity
case —see (7.19). Notice, however, that both il"%f;(pl,pg,pg,m;/1)|p3:mi

and iF%gg” (p1,p2,p3,p4; k) are UV finite, which is at odds with their
General Relativity counterparts in (7.15), (7.16).

7.2 SCATTERING OF FERMIONS IN THE YUKAWA THEORY
COUPLED TO GRAVITY

In this section we compute the lowest order gravitational UV diver-
gent radiative corrections to the S matrix element of the fermion +
fermion — fermion + fermion scattering process in the massive Yukawa
theory, coupled either to Unimodular Gravity or to General Relativity.
We show that both Unimodular Gravity and General Relativity give rise
to the same UV divergent contribution in Dimensional Regularization.
This is a nontrivial result, since in the classical action of Unimodular
Gravity coupled to the Yukawa theory, the graviton field does not cou-
ple neither to the mass operator nor to the Yukawa operator. This
is unlike the General Relativity case. The agreement found points in
the direction that UG and GR give rise to the same quantum theory
when coupled to matter, as long as the cosmological constant vanishes.
Along the way we have come across another unexpected cancellation of
UV divergences for both UG and GR, resulting in the UV finiteness of
the one-loop and xy? order of the vertex involving two fermions and one
graviton only.

7.2.1  Yukawa theory coupled to Gravity

First of all, we shall just display the classical actions of the Yukawa
theory coupled to a gravitational field as described by GR and UG. We
shall also display the free graviton propagator in each case.
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7.2.1.1  Yukawa theory coupled to General Relativity

Let e be the vielbein, ete}g,, = nw, for the Lorentzian metric g,
where as always 7, = (4+,—,—,—). Let v* denote the Dirac matrices:
[v*,7%] = n®. The torsion-free spin connection w, is defined,

1 c v
Wy = §[7b77 ]el/b V;L €c»

where 7, is the covariant derivative as given by the Christoffel symbols.
Let ¢, denote a spinor field in spacetime, its covariant derivative being
given by
D, = (0, + wp)i.
The classical action of General relativity coupled to the Yukawa the-
ory reads

_ (GR)
SGR—Yukawa - SEH + SYukawa’

2
SEH - _? /dnm V _gR[g,uu]a

S\ = [0 =G (1" Dyt = ) + 390,00, — LM~y .

(7.23)
where k* = 327G and R[g,,] is the scalar curvature for the metric g,,.
Let us remind that when using the standard splitting

gul/ = 77W + Hhuuv (724)
and the generalized de Donder gauge-fixing term
/d”x a(0"hy, — o,h)?, = hun™,

which depends on the gauge parameter «, one obtains the free propaga-
tor of the graviton field hy, in (7.3)

]
<th(k)hp0(_k)> = ﬁ (nuanup + nupnua - nuunpa>_

(k2)?
(7.25)

1 1
(2 + Oé) (nupkuka + nuakukp + nupkukg + nuakpkp)-
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where n*” denotes the Minkowski, (+,—,—,—), metric.
Up to first order in , S\o%) in (7.23) is given by

ukawa
S = /d[ D10~ m)+ 50,00%6 — SM6* — yibo — 5 TN
k%), (7.26)

T = %/3(7#3” +yF ) - %qﬁ(w 0 + ’y” e+ 8%8%—

BT —m)— BT +m)y+ 50x60°6 — S M2 — yiio).
(7.27)
In (7.26), contractions are carried out with 7,,.

7.2.1.2  Yukawa theory coupled to Unimodular Gravity

Let §,, denote the Unimodular —ie, with determinant equal to -1- metric
of the n dimensional spacetime manifold. We shall assume the mostly
minus signature for the metric. Then, the classical action of the Yukawa
theory coupled to Unimodular Gravity reads

_ (UG)
SUG—Yukawa - SUG + SYukawa7

2
Sug = —— /d% Rljw,

Yukawa /dn [ 6“ V' Dyt~ mw) % " 0,0, ¢ — M2¢>2 9o,
(7.28)
where £? = 327G, R[§,] is the scalar curvature for the unimodular met-
ric, é# is the vielbein, é%é}§,, = ne for the metric §,., 1w = (+,—, —, —),
v% denote the Dirac matrices: [y*,~%] = n® and D, = 9, + &, is the

Dirac operator for the torsion-free spin connection
1 A D A
T §[7b7 VC]euquec-
\Vi ., 18 the covariant derivative as given by the Christoffel symbols of g,,
To quantize the theory we shall follow Refs. [15, 38, 39] and introduce

an unconstrained fictitious metric in (7.6), §,,, thus

QW = (—9)_1/n Guv, (729)



7.2 SCATTERING OF FERMIONS IN THE YUKAWA THEORY

where g is the determinant of g,,. Next, we shall express the action in
(7.28) in terms of the fictitious metric §,, by using (7.6), then, we shall
split g, as in (7.2)

Guv = Muv + Ky (7.30)

and, finally, we shall define the path integral by integration over h,, and
the matter fields, once an appropriate BRS invariant action has been
constructed.

Since our computations will always involve the matter fields 4,
and ¢, and will be of order x?, we shall only need —as will become
clear in the sequel- the free propagator of h,,, (h,.(k)h,(—k)), and
the expansion of Sﬁ((uka?wa up to first order in . Using the gauge-fixing
procedure previously discussed , we obtained the unimodular propagator

(6.5)

i a*n?—n+2

(Mo e + NppNve) — @mmwpﬁ

2i (kpk:[,nu,, N k;ukynp[,>  2in kukkk
(kZ)Z (k.2)2 n—2 (k.2)3
(7.31)

(s () (=) = 575

+n—2

The expansion of SY ¢ ip powers of x reads

ukawa

Yukawa /dn [ Za m)¢ + 8lt¢au¢ - %M2¢2 - y@ﬁ(ﬁ - g Tuyil/w +
O(x?), (7.32)

where h,, = hy, — h —~with h = n,, h*"— is the traceless part of h,,, and

T is given in (7. 27) Again, the contractions in (7.32) are carried out
with the help of 7,,.

Let us point out that the term in 7" which is proportional to n**
does not actually contribute to T#"h,,, since h,,, is traceless. In terms
of Feynman diagrams, this can be stated by saying that the n* part of
T* will never contribute to a given diagram since it will always be con-
tracted with a free propagator involving h,,,. This is not what happens
in the General Relativity case and makes the agreement between Gen-
eral Relativity coupled to the Yukawa theory and Unimodular Gravity
coupled to the latter a non-trivial issue already at one-loop.
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We shall use the correlation function (f,,, (k)h,,(—k)), which can be
easily obtained from (6.5) and is written in (7.11),

A A 1 2
<huy(k7)hpg(_k)> = 27]{:2 <77,ug77yp + NupMve — n_277,u1/77pa> +
2% kukyip + kokot  2in kukukoks

n—2 (k2)? n—2 (k?)3

(7.33)

7.2.2 The fermion+ fermion — fermion + fermion scattering at one-
loop and y?k?* order

The purpose of this section is to work out the one-loop, and y?x? order,

UV divergent contribution, coming from General Relativity and Uni-

modular Gravity, to the dimensionally regularized S matrix element of

the fermion + fermion — fermion + fermion scattering process.

7.2.2.1 The General Relativity case

To work out the UV divergent contribution in question to fermion +
fermion — fermion + fermion, we shall need the UV divergent con-
tributions coming from the 1PI diagramas in Figures la to 12. These
contributions read in the General Relativity case

T GR) (2 1 1 2072 (2 2
r =(———) |1 = M - M
v ol (p 7’%) (167T26) |: + (2 +CE>:| K (p )7
r(GR) T 2 2 2 2
iTys (pik) = oz )" (8p m= gt gm (p—m) )+

—|—<1—|—a (3 2m—19771‘°’+<297712—152) )}

2 VLET? 27 T Rn")P) )
(GR) C) — a2 ¢ S22y & 2
iLyj (P1,p2i k) = yr (_ 16n2e { =M=yt e (o)
+1m(7’1 + )+ 87’1?2) + <2 + a> (‘mi o EmQ +

a7, L 13 9
+33(p1+p2)—§p1-p2+m(]$1+?2)—ﬁﬂlﬂg )

~(GR) N9 1 1 1 L1 ,
er’l/_fh;w (p17p25 ’V”') = RY <167T2€) { {8(]”1 _'_ ?2) + 2m:| nﬂ - E(pl +p2)“’y

_TG(pl + p2)¥

(7.34)
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where z‘FéiR) (p?, k) and z‘l“pr;R) (p; k) are given by the diagrams in Figure
la and Figure 1b | respectively. The wavy line stands for the graviton
propagator in (7.3). ifﬁlz) (p1,p2; k) is obtained by adding up all the
contributions the diagrams in Figure 11 give rise to. The sum of the

diagrams in Figure 12 yields irfﬁ;iu (p1,p2; k).

I
I

Pl—pQY p1—P2*
I

- -

Figure 11: Vertices of order yx?.

To define the S matrix elements it is necessary to express the bare
masses M and m in terms of the corresponding physical masses —ie, the
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D1 D2

Figure 12: Vertices of order y?x.

poles of the propagators— M, and m,. This is accomplished by using
the following formulae

m:mew, MZZZMMC?),

]
Zmzl—Zl(pZ:mi)—ZQ( 2:m12/)), Zle—WFM(pQ:Mj),
: (NG (G
ilys(p, k) = ZFEW )(p) + ZFEM;), (p; k),
iToo(pi k) = T3 Y (p) +iT5) (b ),
T (p,w) = (p = m)" Y (0?) + m2™ (p?),

T3 . 5) = (p — )= (7?) + mZi® (7).

(7.35)
where the superscript G stand for gravitational —those from General
Relativity in the current subsection— contributions, given in (7.34), and
the superscript NG denote the corresponding contributions in absence
of gravity, whose actual values are not needed in this computation.

To obtain the S matrix elements from the Green functions of the
fields, it is also convenient to introduce renormalized fields ¢ and g,
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so that the Laurent expansion of their propagators, (¢pr(p)¢r(—p)) and
(Yr(p)Yr(p)) , around the mass shell read

(Yr(P)Pr(D)) = Z(’Zfim;") + Regular terms,
pm—my

(pr(p)dr(—D)) =

(3
M2 + Regular terms.
The fields ¥ and ¢r are obtained from the bare fields, v and ¢ —the
fields in (7.23)— by introducing the following wave function renormaliza-
tions

b= 7Y, ¢ = 2% or,
Zy=1+07Zy, 0Zy = To(p* = ml) + 2m2 % (p* = m3),
Zy =1+ 62y, 624 =il 4y (p* = M), (7.36)
with
5 (%) = L%, (p?)and T (?) = LT (p? 7.37
1(p):d7)2 1(p”)an ¢¢(p)=d72 60 (P7)- (7.37)

The reader should bear in mind that in the defining Z,,, Z,, Z) and
Zg in terms of il (p, k) and ilye(p; k), we have taken into account that
we are working at the one-loop level.

Considering (7.34), (7.36) and the definitions in (7.35), one obtains

82y = T2 [29 + K2m3, 3 + 5 4+« + UV finite contributions,
1
824 = o2 [2y2 + KQMQ% (1 + {2 + QD} + UV finite contributions,

(7.38)

where n = 4 + 2¢, n being the dimension of spacetime in Dimensional

Regularization. The bits of §Z, and §Z, in (7.38) that are independent
of x are the usual ones that can be found in textbooks.
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The wave function renormalizations in (7.36) and (7.38) give rise to

a vertex counterterm diagrammatically represented by the diagram in
Figure 13, whose value reads

, 1 g [3 5 1
—Zy<5Zw+§(SZ¢) 16 2, |: +/€ mw (8+|:2+Oé:|>

1 . ) .
+K*M; <1 + {2 + aD] + UV finite contributions.

(7.39)

Figure 13: Counterterm yx2.

(b
b4

Figure 14: S matrix contributions.
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(b
-4 e

Figure 15: Crossing S matrix contributions.

Using the value of erw (p1,p2; k), displayed in (7.34), and the coun-
terterm in (7.39), one obtains the following expression for the UV diver-
gent, General Relativity contribution to the S matrix coming from the
sum of all the diagrams in Figure 14:

(@(p1) - u(p2)) (@(py) - u(py))
X (167:26) y2K? BMQ% + gmi — éQz + [3 + ] (Q M2)] o ! MQ,
(7 40)
where Q = p; — py. Bear in mind that the blob with slanted lines in
diagrams of Figure 14 represents the sum of all the diagrams in Figure
11, i.e. erpw)(pl’p??’*)'
The crossing diagrams in Figure 15 yields the following UV divergent

General Relativity contribution to the S matrix:

(@) -u u(py)) (@(py) - u(p2))
( ! ) y2K? BM; + ;mi - éQQ + [1 + oz] (Q* - Mg)}

167m2¢ 2 Q*— M3’

where Q = p| — p.
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Let us denote by Box8a, Box8b and Box8c the UV divergent General
Relativity UV divergent contributions to the S matrix coming from the
diagrams a), b) an ¢) in Figure 16, respectively. A lengthy computation
yields at the following simple expressions

Box8a = 1

16w2e>”292 <_:> (@(p1) - u(p2))(@(p1) - u(pa)),
Boxsh = ( 1omg )ts? (5 ) (00) - u(p2)) 308 - u(p2),
Box8c = (

2

Jew| =1 |5+ o] | @) ulp) @) - uleh).

1672%¢

(a) +3 permutations (b) +3 permutations

Figure 16: Box diagrams.

By adding Box8a, Box8b and Box8c above, one obtains

(1671726>“2y2 (51; - (; + a)) (@(p1) - u(p2))(a(py) - ulpy)).  (7.42)

Obviously, the sum of the crossing diagrams in Figure 17 yields the
following UV contribution to the S matrix for General Relativity

( L )y (é(;+a)>(ﬂ(pi)'U(Pz))(ﬂ(m)'u(ﬁg)) (7.43)

1672¢
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Pl
(a) +3 permutations

Figure 17: Box diagrams (crossing).

Adding the expressions in (7.40), (7.41), (7.42) and (7.43), one obtains
the following result

(0(pr) -2 0(51) 00 (52, ) 02 (M8 + 5| gy | -
(50 o) 6051) - wt02) (g ) v [+ 57 oty |
(7.44)

where Q = p; —p» and Q = p, — p». Let us stress that the dependence
on the gauge parameter a goes away upon summing over all diagrams
in Figures 14 to 17.

Let us introduce now the counterterm vertex in Figure 18, which
comes from renormalization produced by the constants Z, and Z,, in
Minkowski spacetime applied to the energy-momentum tensor in (7.27):
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-(c K in 1 » v
Zr;f;)h,w (p1,p2; k) = — 12{5Z,$JM k) [4 (7“(171 +p2)” ++"(p1 —i—pg)”) —

— o (g + ) - 2m)] + 6Z&Mm’“>n””m}, (7.45)

where

Figure 18: Counterterm 3°x.

Taking into account the expressions presented in (7.34) and (7.45),
one concludes that

(GR (e
erwhiy(pl’p2?’i) +ZF;3}W (p1,p2; k) = 0. (7.46)

Hence, at one-loop and y?x order, the vertex ¢vh,, is UV finite and,
as a result, there is no UV divergent contribution to the S matrix coming
from the sum of the diagrams in Figure 19. Likewise for the sum of the
diagrams in Figure 12. Note that the black blob in Figures 19 and 20
represents irﬁ—)ﬁ’j(pl,pg; k) in (7.34).

The cancellation of UV divergences in (7.46) is an addition to the
list of surprising UV cancellations that occur when gravity is coupled
to matter: See [86, 95] and references therein.

Summarizing, the UV divergent contribution the S matrix element
of the fermion + fermion — fermion + fermion scattering is given by
(7.44) at one-loop and y?k? order, due to the cancellation of UV diver-
gences in (7.46).
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b1 , b1 ,
Q b1 Q Y4
_|_
/ /
b2 2 b2 P2
/
D1 P1 ) b1
+
b2 bz Ph
Figure 19: S matrix contributions.
4 b1
Py 0 P1 p/l 0
_|_
P2 P2 Py
, b1
P Q P Q
_I_
b2 bz Ph

Figure 20: Crossing S matrix contributions.

7.2.2.2  The Unimodular Gravity case

When Unimodular Gravity is the theory of quantum gravity the dia-
grams to be computed are the same as those in the General Relativity
case —ie, diagrams in Figures la to 20, with the proviso that the inter-
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nal graviton line represents the propagator —given in (7.11)— of the field
h,., —this is the field which couples to the Energy-momentum tensor, see
(7.32).

Let us denote by ZT%G) (p?, k) and ZT%G) (p; k) the UV divergent part
of the diagrams in Figures la and 1b. Let il"%? (p1,p2; ) be UV di-
vergent contribution coming from the sum of all diagrams in Figure 11,
and, finally, let T gﬁ) (p1,p2; k) stand for the UV divergent contribution

v

obtained by summing all diagrams in Figure 12. We have

erﬁgﬁa) (p27 K’) = 07

i 3 5 3
TUG) (. :( Z)2(2 92 9 9 2)
s i) = 1572 )7 \gP "~ 6P P T 16 7))

~(UG) . _ —1 9
iy 55 (P1,p2; k) = yr? (1%26 (16(19% +p3) = gpupat
3 3
' +Em(p1+¢2)_§¢1¢2 J
T !

1 1
Pl (p1,p2i ) = Hy2<167r26) { {8(¢1 )+ 2m] -

— —(p1 +p2)"y — = (p1 +p2)" " ¢

16 16
(7.47)
Taking into account the definitions in (7.36) and the results in (7.47),
one concludes, after a little algebra, that

1 1
82y = 167’[’265312 + UV finite contributions,
624 = 2y* + UV finite contributions,

1672¢
i.e. in the Unimodular Gravity case and for the gauge-fixing leading to
the propagator in (7.11), there are no y?x? UV divergent contributions
to the wave function renormalizations of the fermion and scalar fields.
Hence, unlike in the General Relativity case, the countertem vertex in
Figure 13 can be set to zero when computing the UV divergent con-
tributions to the S matrix. This very same reasoning applies to those
diagrams in Figures 14 and 15 which involve the vertex in Figure 13.
Let us point out that the blob with slanted lines in Figure 14 rep-
resents now the function ZT%? (p1,p2; ). Next, by using the value of

z’l"g{&i) (p1,p2; k) in (7.47), one obtains that the Unimodular Gravity UV
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divergent contribution to the S matrix coming form the diagrams in
Figure 14 reads:

(o)) 301) wpi)) < g )2 (53 + (@ Gy

(7.48)

where Q = p1 — P2
Now, the corresponding contribution coming from the crossing dia-
grams in Figure 7 runs thus

~(0) ) ) 00 (55, ) [ 5778 + @

(7.49)

where Q = p| — po.

Let us call Box8aUG, Box8bUG and Box8cUG the sum of the dia-
grams in Figures 8a, 8b and 8c, respectively, where the graviton line
stands for the propagator in (7.11). A long computation yields the fol-
lowing simple results for the UV divergent contribution to the S matrix
coming from those diagrams:

Box8aUG = 1671T26>/£2y2 (1873) (a(p1) u(p2))(ﬂ(p/1) u(plg)),
Box8bUG = (1 )02 (= ) (alp) - u(r)) (005 - )
Box8cUG — (16)H2y2<_1>(a<p1> cu(p2)) (@(p)) - ulp))).

Hence,

Box8aUG + Box8bUG + Box8cUG =
N (16;6)”23/2 (‘2) (a(pr) - w(p2) (alpy) - u(py))- (7.50)

The contribution coming from the crossing diagrams in Figure 17
reads

(16;25>52y2 (‘2) (a(py) - u(p2) (@(pr) - u(py)- (7.51)
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S MATRIX CORRECTIONS

Let us add all the UV divergent contributions to the S matrix coming
from the diagrams in Figures 14, 15, 16 and 17. These contributions
are given in (7.48), (7.49), (7.50) and (7.51); their sum being

(1(00) ) 00) 0050 (3, ) [+ @~ 5@ - M)
() )00 1) ( gz, oo { [+ 2 - @ -2
() )00 ) (g ) oo { (382 + ] -
) a0h) ) (g5 ) e [ 3308+ 32 gt

(7.52)

where Q = p; —p; and Q :P/1 — P2

It is plain that (7.44) and (7.52) are equal, i.e., the sum of the UV
divergent contributions to the S matrix coming from the diagrams in
Figures 14, 15, 16 and 17 in General Relativity and Unimodular Gravity
is the same. Notice, however, that the contribution coming from each
diagram is not the same in General Relativity as in Unimodular Gravity.

It is clear —the gravitational field here is a mere spectator— that the
counterterm vertex represented by the diagram in Figure 18 has the
same value for Unimodular Gravity as for General Relativity, i.e. is
given by the expressions in (7.45) upon replacing h,, with &,,,. Next, no-
tice that erﬁﬁ?y (p1,po; k) in (7.47) is equal to z‘l"ﬁ%iy(pl,p% k) in (7.34).
Hence, as in the General Relativity case -see (7.46), the following can-
cellation of UV divergences hold

ngﬁi (p1,p2; K) + iFf:;)HW (p1,p2; k) = 0. (7.53)
Thus, the one loop and y?x order correction to the 9ih,, is UV finite.

Using the previous result, one concludes that the sum of the diagrams
in Figure 19 contains no UV divergent pieces in the Unimodular Gravity
case either. Same result for the sum of the diagrams in Figure 20.

In summary, due to the UV cancellation we have just discussed, only
the sum of the diagrams in Figures 14, 15, 16 and 17 gives, in the
Unimodular Gravity case, a UV divergent contribution to the S matrix
element of the fermion + fermion — fermion + fermion scattering at
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one-loop and y?x? order. Full agreement between Unimodular Gravity

and General Relativity has been thus reached.



Part V

CONCLUSIONS



SUMMARY AND DISCUSSION

Throughout this thesis we have studied the theory of Unimodular Grav-
ity. To achieve this, we have started studying if the main property of
this theory at the classical level —~the decoupling between the cosmolog-
ical constant and the metric tensor— holds at the quantum level. And
secondly, we have tried to find observable differences between Unimod-
ular Gravity and General Relativity at the quantum level.

With respect to the cosmological constant problem, it appears in a
different guise in UG with respect to GR. The corresponding EoM admit
a first integral that plays the same role as the cosmological constant in
GR. The novelty is however that this first integral is not related to the
zero momentum piece of the potential, but is rather determined by the
boundary conditions, as is the rest of the dynamics. This is an impor-
tant shift of the paradigm, in the sense that it explains why a huge value
for the vacuum energy does not imply a correspondingly huge value for
the cosmological constant.

We have argued that (one-loop) quantum corrections do not generate
a cosmological constant in UG. It would be more precise to say that the
cosmological constant is generated, but it is a non-dynamical quantity,
since it does not couple to the gravitational field. This is due to the
absence of the /g factor in the integration measure. The analysis is long
and quite technical, but the result is simple enough. The implication
is that we can disregard this term since it will not contribute to any
correlator involving physical fields. Therefore, we conclude that in this
case there is no renormalization of the cosmological constant and its
peculiar status in UG is preserved through quantum corrections.
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Moreover, due to our definition of UG —that is, in terms of uncon-
strained metrics, there is a Weyl symmetry that forbids operators of
zero dimension,

S = M"/d"ac (—g)”, (7.54)

for any non-vanishing .

This means that, although we have performed the explicit computa-
tion at one-loop level, the result can be extended to any loop order, since
it relies in the fact that the operators contributing to the cosmological
constant are non-dynamical.

Once it was clear that the theory is useful to solve the cosmological
constant problem even when quantum corrections are taken into ac-
count, we focused on finding other differences between the two theories.
In order to achieve that, in the second part of the thesis we studied
if there is any (quantum) observable that can tell UG from GR. We
obtained several results to this respect.

First of all, we computed the corrections to the beta functions of
the Yukawa and \¢* theory both in GR and UG and found different
values for the beta functions —actually, for UG the A¢* theory it vanishes,
when performing the usual multiplicative renormalization. Although
this may seem a difference between these two theories, we have shown
that these beta functions are gauge dependent. The conclusion is that
these corrections do not have any intrinsic physical meaning, therefore,
the statements about asymptotic freedom are not physically meaningful.
Moreover, we also proved that they can be set to zero by a suitable, non-
multiplicative, field redefinition. This means that these gravitational
corrections to the beta functions in question can not distinguish between
both theories.

Of course, the gauge dependence of the gravitational corrections to
the beta function can be avoided by using the DeWitt-Vilkovisky ac-
tion instead of the 1PI functional —as done in reference [92] for the
A¢* theory— but those gauge-independent contributions can still be re-
moved by non-mutiplicative, but local, field redefinitions. The use of
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the DeWitt-Vilkovisky effective action does not give the gravitational
corrections in question any intrinsic physical meaning, so that any con-
clusion drawn from them also lack physical content.

Finally, and motivated by this previous result, we computed the
UV divergent contribution to the S matrix element for the fermion +
fermion — fermion + fermion scattering process in the Yukawa theory
coupled to UG (at one-loop and y?x? order). We have proved that it is
the same as the corresponding S matrix element when UG is replaced
with GR. We should point out that this agreement does not hold for
each individual Feynman diagram but it unfolds upon adding the contri-
butions coming from classes of the Feynman diagrams (which of course
yields a result independent of the gauge parameter). This is a common
result in every computation comparing UG and GR, as we have seen
when computing the beta functions as well as in other works [91]. Of
course, the gauge symmetries of UG are not the same —as was explained
in detail in chapter 3— as those of GR, then, agreement between non
gauge invariant objects computed in both theories is not to be expected
and it does not occur in general.

As a final remark, these results explicitly show that the beta function
of the Yukawa coupling cannot be used to draw any physically mean-
ingful conclusion, a fact already discussed in [94] (and [96], in the case
the A¢? theory).

To sum up, we conclude that UG is a compelling alternative to GR
that partially solves the cosmological constant problem, even from the
point of view of an effective field theory. Besides this result —and the
technical difficulties that UG has when computing quantum corrections
compared to GR, we have not found any physical effect up to one-loop
order that can differentiate both theories. At this point, one should
wonder whether GR or UG is the most reasonable low energy effective
field theory for describing gravity. To find any difference at two-loop
order could help to put an end to this question.

Finally, as an open question, it would be interesting to find out if UG
can be derived from String Theory as GR can. We have not explicitly
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proved that but, since we have given proof that the S-matrix is the same
for both theories, we are confident that this is te case.



RESUMEN Y DISCUSION

A lo largo de esta tesis hemos estudiado la teoria de Gravedad Unimodu-
lar . Para ello, empezamos estudiando si la principal propiedad de la
teoria — el desacoplo entre la constante cosmoldgica y el tensor métrico—
se mantiene a nivel cuantico. Después, intentamos ver si hay algtin ob-
servable que pueda distinguir entre ambas teorias a nivel cuantico.

Con respecto a la constante cosmoldgica, ésta aparece de forma dis-
tinta en la Gravedad Unimodular a como lo hace en Relatividad Gene-
ral. En la primera, las ecuaciones de movimiento admiten una integral
primera que juega el papel de la constante cosmologica en Relatividad
General. Sin embargo, la novedad aqui es que esta integral primera no
se relaciona con la parte constante del potencial, sino que estd determi-
nada por las condiciones de contorno. Este es un cambio importante en
el paradigma, puesto que permite explicar por qué un valor muy grande
de la energia de vacio no implica un valor muy grande de la constante
cosmolobgica.

Hemos expuesto que las correcciones cuédnticas (en particular a un
loop) no generan un término de constante cosmolégica en Gravedad
Unimodular. Seria mas adecuado, sin embargo, decir que se genera una
constante cosmolodgica, pero que es no dindmica, ya que no se acopla
al campo gravitatorio. Esto se debe a la ausencia del factor /g en la
acciéon. A pesar de que el andlisis es largo y técnicamente complicado,
la conclusion es sencilla: podemos ignorar ese término ya que no con-
tribuye a ninguna cantidad fisica. Por lo tanto, concluimos que en este
caso no hay renormalizacién de la constante cosmolégica y que las co-
rrecciones cudnticas no modifican su valor en Gravedad Unimodular.
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Ademas, debido a nuestra definicién de la acciéon en términos de
métricas sin ligaduras, la teoria tiene una simetria Weyl que impide
que aparezcan operadores de dimensién cero en la accion

S = M"/d“x (—9)?, (7.55)

para f distinto de cero.

Esto significa que aunque hemos presentado el resultado explicito a
orden un loop, el resultado puede extenderse a cualquier orden, ya que
se debe al hecho de que los operadores que contribuyen a la constante
cosmoldgica son no dindmicos.

Una vez ha quedado claro que la teoria es interesante para resolver el
problema de la constante cosmolégica, incluso cuando tratamos cuantica-
mente la teoria, nos centramos en encontrar otras diferencias entre am-
bas teorias. Para ello, en la segunda parte de la tesis estudiamos si hay
algiin observable (a nivel cudntico) que pueda distinguir entre ambas.
A este respecto obtenemos varios resultados.

En primer lugar, calculamos en ambas teorias las correcciones a las
funciones beta para una interaccion de Yukawa y de un campo es-
calar A\¢*. Cuando utilizamos una renormalizacién multiplicativa, en-
contramos distintos resultados para estas funciones beta —de hecho, en
Gravedad Unimodular la funcién beta para A¢? se anula directamente.
Esto puede parecer, a priori, una diferencia entre ambas teorias, pero
también demostramos que estas funciones beta dependen del gauge es-
cogido. La conclusion es por lo tanto que no pueden tener significado
fisico y, en consecuencia, que las afirmaciones sobre libertad asintotica
en presencia de gravedad no tienen sentido. También probamos que
pueden incluso hacerse cero (y por lo tanto iguales) cuando se utiliza
una renormalizacién no multiplicativa. Esto significa que no podemos
utilizar las funciones beta para distinguir entre Gravedad Unimodular
y Relatividad General. Por supuesto, la dependencia del gauge de las
correcciones gravitatorias a las funciones beta podrian evitarse usando
la accién de DeWitt-Vilkovisky en lugar del funcional generador de los
diagramas 1PI —tal y como se hace en la referencia [92], pero esas con-
tribuciones, aunque independientes del gauge, pueden eliminarse por
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medio de redefiniciones de los campos no multiplicativas. Por lo tanto,
usar la accion de DeWitt-Vilkovisky no da ningtn significado fisico a las
correcciones gravitatorias, luego cualquier conclusion sacada a partir de
ellas carece también de significado fisico.

Finalmente, motivado por el resultado anterior, calculamos las con-

tribuciones divergentes ultravioleta a la matriz S para los procesos fermion +

fermion — fermion + fermion con la interaccion de Yukawa acoplada
a la Gravedad Unimodular (a un loop y y*x? order), y comprobamos
que son las mismas cuando se acopla a Relatividad General. En este
punto cabe destacar que dichas contribuciones no coinciden para cada
diagrama de Feynman, sino que aparece al sumar todas las contribu-
ciones que vienen de distintos tipos de diagramas (que es por supuesto
independiente del parametro gauge). Este es un resultado comin en
todos los calculos en los que hemos comparado Relatividad General con
Gravedad Unimodular, ya lo hemos visto al calcular las funciones beta,
asi como en otros trabajos anteriores [91]. Por supuesto, las simetrias
gauge en Gravedad Unimodular no son las mismas que en Relatividad
general —como se explica en el capitulo 3— por lo que no se debe esperar
un acuerdo entre cantidades que dependen del gauge en ambas teorias, y
de hecho no ocurre en general. Como ultimo comentario a este respecto,
nuestros resultados demuestran explicitamente que la funcién beta para
la interaccion de Yukawa no puede usarse para obtener ninguna conse-
cuencia fisica, hecho que se discute en [94] (y [96] para el caso de A¢?).

Para concluir, llegamos a la conclusion que la Gravedad Unimodular
es una teoria muy prometedora como alternativa a Relatividad General,
ya que soluciona parcialmente el problema de la constante cosmologica.
Ademas de este resultado —y de las dificultades técnicas que tiene la
Gravedad Unimodular si lo comparamos con Relatividad General, no
hemos encontrado ningin efecto fisico, al menos a orden un loop, que
nos permita diferenciar ambas teorias. En este punto deberiamos pre-
guntarnos cudl de las dos es méas razonable como teoria efectiva a baja
energia para describir la gravedad. Encontrar una diferencia a orden
dos loops podria contestar esta pregunta. Seria interesante descubrir
si se puede obtener la Gravedad Unimodular a partir de la teoria de
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Cuerdas tal como se puede hacer con la Relatividad General. Aunque
no hemos demostrado esto explicitamente,dado que hemos probado que
la matriz S es igual para ambas teorias creemos que este es el caso.
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HEAT KERNEL COEFFICIENTS OF A QUARTIC
OPERATOR

One of the operators appearing in our computations is an operator
whose leading part contains four covariant derivatives. The Heat Ker-
nel of these operators have been also studied by many people and fairly
general formulas have been given. However, here we are only interested
in the contribution to the effective action in four dimensions. This has
been computed in [74, 97] for an operator of the form we are interested
in

D =40+ QNSV YV, Vo + J45V .V, + Hi VYV, + Pap. (A1)

The corresponding expression of this kind of operators in four dimen-
sions is quite involved. However, when Q4% = 0 as it is in the case of
our work, the resultant expression simplifies a lot and reads, with our

conventions
Wi = #ﬁ / da\f|g Tr (;()RMBRWW - %RWR’“’ + %Rzll ~ P+
+éfzw7€ﬂ” ~ éJW”)Rw + 1—12J5R + 4—18(J;;)2+
_}_iJ(MV)J(HV) _ ;J[W]QW> 7 (A.2)
where, as usual
T = L (), (A.3)
Jh = % (JH — JHY (A.4)



HEAT KERNEL CONTRIBUTIONS OF THE DIFFERENT
OPERATORS INVOLVED

Here we compute the different heat kernel coefficients corresponding to
each of the minimal differential operator appearing in the path integral
formulation of Unimodular Gravity.

THE CONTRIBUTION OF S,

The action term for the fields b#(*:=1) and ¢#(*'1) was defined in equation
(5.34) and reads

/d”x b (DQCS’U — ZRM,VPVVCVU’U — DRupcp(l’l)—

—2V, Ry, Ve = Ry RV ) (B.1)

This is a quartic operator of the form (A.1) if we identify

JhY = —2RESY, (B.2)
H', = —2V" R, (B.3)
Pas = ~ORas — Ra,RY, (B.4)

here the bundle indices are just spacetime greek indices that we indicate
with « and S.
And the field strength

(Vi Vile* =R, s =R, es. (B.5)
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Plugging this into (A.2) we find that the contribution of Sj. to the
quantum effective action is

1 1 11 41 1
be _ n - prapf T py T P2
Weo 167r2n—4/d ! (45R“”‘WR A TR )
(B.6)

where we have set |g| = 1 and we have multiplied by minus two in order
to take into account of the fact that there are two fermionic fields.

THE CONTRIBUTION OF S,

The action term for the dynamics of the fermionic = fields was defined
in (5.35) and reads

Sy = /d"x rL-DUO-1g (1) (B.7)

Even if this is a pseudo-differential operator, its contribution to the
pole part of the quantum effective action can be easily computed thanks
to the fact that O x O~ = 1. This means that

det(0) = det (O )™ — log [det(O)] = —log [det(O" )], (B.8)

if there is no multiplicative anomaly. This sums up into the fact that
the corresponding Heat Kernel expansion of (J=! will be minus the ex-
pansion of 0. Therefore, by using the result of (4.46)

1 1

- - _— n 2 _ 4 wvpo
as(0) (1792360 /d z (120R+5R*—2R,, R"" + 2R, ,c R ),
(B.9)

where we have already set g = 1.
However, here we are integrating over two fermionic fields, which
introduces another factor of minus two. Thus, we have that

s 1 1 n 14 vpo
a, = (471')2]_80/d x (12|:|R+5R2 — QRHVRH +2RNVPUR# P ),
(B.10)
and its contribution to the effective action is given by
1 1 1
T = "z (120 = 2R, R" 4+ 2R,,,; R"P7) .
Wee 167r2n—4180/dx( Bt 5 = 2R B + 2Ryp0 R

(B.11)



B.0 THE CONTRIBUTION OF Sgg

THE CONTRIBUTION OF Sz

The action term for & and ¢ was given in equation (5.37), reading
/d":c 0-2g02), (B.12)

This is the simplest possible operator and its a, coefficient was given
n (4.46). It reads

- 1 1
ch __ m 2 v vpo
al = (47T)2180/d x (120R + 5R? — 2R, R™ + 2R,,,cR""°)  (B.13)
where a factor of two has been introduced to take into account that we
have two fields. Again, remind that we have set g = 1.

Its contribution to the effective action is given by

1
we =
T 16720 — 4180

/ d"z (120R + 5R® — 2R, R™ + 2R, ,, R")
(B.14)

THE CONTRIBUTION OF Sw

The action term for the Weyl ghost field was given in (5.42) and reads
2na / d"z bUc (B.15)

The global multiplicative constant will not contribute to the pole
part of the quantum effective action, since it gives just an ultralocal
contribution, so we can dismiss it, having just

/d"x b0c (B.16)

Again, we are left the simplest possible operator and its a4 coefficient
was given in (4.46). It reads

1 1
w_ __ - - n 2 _ pv pvpo
al (4@2180/(1 z (120R + 5R? — 2R, R" + 2R, ,, R"*°) ,
(B.17)
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where a factor of minus two has been introduced to take into account
that we have two fermionic fields and we have set again g = 1.
Its contribution to the effective action is given by

11 1
wW = -
oo 16720 — 418

0 /d”a} (12DR + 5R2 - QR#VRMV + 2RyupaRijJ) .
(B.18)



FUNCTIONAL TRACES

The functional traces

I
T'I" <O,,1,,2,”Vjvmvu2...vupDn) y (C]_)
that appear in the calculation of the quantum effective action will lead
to new contributions to the divergences and can be computed using the
heat kernel representation of the operator.

Starting with an operator F(V), it can be written as'

(F(V)™" = (n—11)! [(di2)n_l G(m2)1 . (C.2)

m2=0

Now, the heat kernel representation of the Green function is

G(mQ):/Oooexp(—st)exp(—SF(V)), (C.3)
where
V2(g 2 o(z, ')\ A
exp(—sF(V))d(z,2') = (47r1)"/2 b 376/27 ) exp (—(2;)>Q(s|x,x'),
(C4)
and with
(s|z,2") Zs an(z, 2 (C.5)

Let us note here that while [74] are performing their computations in lorentzian
signature, we are doing them in the euclidean setting. The differences account for
some global signs and some factors of 4 in the definition of the proper time and the
effective action.
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1
Here o is the world function, defined by the equation o = ioﬂa“ and
D(x,2’) is the so-called Van-Vleck determinant

det <_(9x(3gx”> 5 (Cﬁ)
D(x,a') = g"/*(2)g"/*(2')A(z,'). (C.7)

D(z,2') =

For the particular case of F'(V) = [J we can find the representation
of the inverse Laplace operator

% = (n—ll)'/o ds " ' exp (—s0J). (C.8)

Each of the traces we find in our computation can now be computed
by acting with derivatives on this representation and using the tables of
coincidence limits given in [74]. Finally it is needed to integrate over s,
where we find that only three types of (logarithmic) divergent integrals
arise for dimension n — 4

/Ooo %, with k= —1,0,1. (C.9)
and whose pole part can be obtained by integrating by parts, which
gives the Laurent series of the result.

All but one of the functional traces we need in our computation can
be found in [74]. Here we give the value of all of them and remark that
we have rederived all of them explicitly, thus checking their results.

The divergent functional traces corresponding to p=2n (C.1) that
appear are

2

15 tna =

ViV T = 8- ayme 2 | [Tag ™t Howsw T ggfosndty
1 1 1
_ - afroe _ _~ aB |
Guuw (180R"’””R 180 et B+ 3
1

1 1 1 A 1.
—0OR,, + —RR,, + —V,V,R| — —guRuasR*® + —RR,,
g+ g il + GV 1 as e G ARt

1
R’+ —0OR|T
+30 )+

Vs ome I o0 1 o 1 o
R R+ g RuaRy — £V, V" Ray — VLV Rw}. (C.10)
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I V7 1o
VHVVVaVﬁ@ = W { |:18O (RN (llR,jalgx — Rﬁal/)\) +

+RY (11 Ryasr — Roopn) + B (11Rup — Rgvun) + B (11 Rpan — RWW\)> +
1
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1
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+15 [BiwRas + RuaRup + RupRua + RuaRpus + RusRpua + RapRyw] +
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+3 [ViViRas 4+ VuVaRup + Vi VaRys] + 3 [RuvRap + RapRuv + RuaRup+
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For p = 2n — 1 just one is involved

| N ] 1 1
Vg = S B2 (DV#R]I— v RW) . (C.12)

The ones with p=2n—2
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where the field strength R, defined as in (4.42) and

g =1,

1
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@) = + +
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N 1 1
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Finally for p=2n-4 all traces can be computed with the expression

(n—2)
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