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Cocoon emission in neutron star mergers
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In the neutron star (NS) merger events the short gamma-ray burst (sGRB) jet heats up part of the
merger ejecta producing the cocoon component. The cocoon is expected to give a bright early
electromagnetic (EM) counterpart. However, in GW170817, sky localization took ∼10 hours and
early EM counterparts were missed. Here, in anticipation of future GW170817-like events, we
analytically model the cocoon, from the early prompt phase, and from later engine phases (i.e.,
extended and plateau). Then, we calculate its EM cooling emission. We find that the cocoon
outshines the r-process powered kilonova/macronova at early times (10–1000 s), peaking at UV
bands. In particular, later engine activity makes the cocoon emission brighter and longer. We
show that the relativistic velocity of the cocoon’s photosphere is measurable with instruments such
as Swift, ULTRASAT and LSST. Also, we show that energetic cocoons, including failed jets, can
be detected as X-ray flashes. Our model clarifies the physics and parameter dependence, enabling
the extraction of important physical information (about the jet and the merger ejecta) with future
multi-messenger observations of NS mergers.
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1. Introduction

Binary Neutron Star mergers have been proposed to explain short Gamma-Ray Bursts (sGRBs)
[1–3]. In 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo
Consortium (LVC) detected the first gravitational wave (GW) signal from the BNS merger event,
GW170817 [4]. ∼ 1.7 s later, Fermi telescope recorded a sGRB, sGRB 170817A [5]. About
10 hours later, the merger site was localized and follow-up observation across the electromagnetic
(EM) spectrum started. This enabled the discovery of the a red component; i.e, kilonova/macronova
(KN hereafter); indicating presence of r-process nucleosynthesis [6, 7] as previously predicted in
[8–10]. Follow-up observations were also able to find clear evidence of a relativistic jet [11] viewed
off-axis. All these discoveries were perfectly consistent with the scenario of sGRBs.

In this scenario, the merger powers relativistic jets though mass accretion [1–3]). However,
the expanding merger ejecta surrounds the jet birth place. Therefore, the jet-ejecta interaction is
inevitable [12, 13]. During this interaction, the jet outflow is continuously mixed with the ejecta,
creating a hot and turbulent component in the surroundings of the jet called the “cocoon" ([14]).
And once the outer edge of ejecta is reached, both of the jet and the cocoon can escape to the outside
of the ejecta, i.e., breakout powering a unique astrophysical transient [15–18].

Here, we are interested in the EM cocoon emission as a counterpart to GW signal from NS
mergers (NS-NS and BH-NS) as in GW170817. Our goal is to model the cocoon emission so that
we can directly link the observational features with the physical properties of central engine jets
and ejecta in NS mergers, sGRBs, KNe, and r-process nucleosynthesis.

In this paper, we use numerical simulations of hydrodynamical jets propagating in the dynamical
ejecta of NS mergers. We found that most of the cocoon is “trapped" inside the ejecta. We focus
on the“escaped" cocoon part (that breaks out of the ejecta) that is relevant to the cocoon emission.
For simplicity we categorize the escaped cocoon into the “relativistic cocoon" and “non-relativistic
cocoon", and model it analytically. We then analytically estimate the observed cocoon emission.

2. Numerical simulations of sGRB-jet’s cocoon

We use the same numerical code as in [21], [22], and [20]. We investigate the jet propagation
in sGRB – NS merger context where the medium is expanding (see Figure 1). Table 1 shows
the representative subsample of jet models simulated: “narrow", “wide", and “failed" (for more
information see [17, 18]).

Simulations are set to start at 𝑡 = 𝑡0. The jet is launched (injected) at the same time, for a
duration of 𝑡𝑒 − 𝑡0 = 2 s. The delay between the merger time and the jet launch time is set as
𝑡0 − 𝑡𝑚 = 0.160 s. All simulations are run, through the jet breakout, until 𝑡 − 𝑡0 = 10 s. This is
considerably a much longer simulation time compared to previous studies (e.g. [20]) and requires
a large computational domain.

The motivation behind this longer computation time is to follow the late time evolution of the
cocoon, until the free expansion phase is reached and the system is fully ballistic, i.e., interaction
between the jet/cocoon/ejecta becomes negligible. We refer to this time, the time at which the
system is ballistic, as 𝑡1 ≲ 10s (for more information see [17, 18]).
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𝜃v ≲ 30º: 
Cocoon Emission

(~minutes – hour; X-ray – UV)

𝜃v ∼ 0º – 90º:
Macronova/KN

(~days – weeks; Opt – NIR)

Escaped cocoon
- Relativistic
- Non-relativistic

Ejecta

Trapped cocoon

Central engine

Figure 1: Schematic illustration of the timeline and key phases in NS mergers, with the observational
perspective. Initially, a pair of compact objects in the inspiral phase [NS-NS here; applies also for a NS-BH
system] (A) . The two objects merge into one compact object (B). This interaction triggers mass ejection
[∼ 0.01𝑀⊙ expanding at ⟨𝛽⟩ ∼ 0.2𝑐; [19]] (C). Soon after (∼ 0.1 − 1 s in the case of GW170817; see [20]),
a system of a central compact object with an accretion disk is formed (D). This system (i.e., central engine)
powers two polar jets (D) [white]. Each jet propagates through the surrounding dense ejecta (D) [red and
dark green]. This forms a bubble of hot gas, “cocoon", around the jet (D) [yellow]. Soon after the jet/cocoon
breaks out of the ejecta, the system enters the free-expansion phase (E). Only a small fraction of the cocoon
escapes from the ejecta and expands in the conical manner [with an opening angle 𝜃𝑒𝑠𝑐 ∼ 20◦ − 30◦] (E)
[see [17]]. This escaped cocoon contains a relativistic component, and a non-relativistic component (E)
[yellow (mostly shocked jet cocoon), and light green (mostly shocked ejecta cocoon), respectively]. Three
EM transients are highlighted; from hard to soft, short to long, and narrow to wide emission’s opening angle:
sGRB [white], cocoon emission [yellow], and KN [dark green] (E).
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Table 1: The subsample of the simulated models and their corresponding parameters. From the left: The
model name; the ejecta mass, assuming polar densities; the jet initial opening angle; and the engine’s isotropic
equivalent luminosity. All the other parameters are the same for the three jet models [17, 18].

Jet models 𝑀𝑒 [𝑀⊙] 𝜃0 [deg] 𝐿𝑖𝑠𝑜,0 [erg s−1]
Narrow 0.002 6.8 5 × 1050

Wide 0.002 18.0 5 × 1050

Failed 0.010 18.0 1 × 1050

3. Analytic modeling of the cocoon

3.1 Jet propagation and breakout

The jet propagation through the expanding ejecta can be solved analytically following the
same arguments used by [23] for the collapsar case. Detailed calculations in [20, 22] give a full
description of the cocoon properties as a function of time until the jet breakout.

3.2 Cocoon escape from the ejecta

As explained in [17] the cocoon escape from the ejecta is very modeled by the parameter 𝛼
which is defined as the ratio of energy density between the cocoon and the ejecta, and can be found
analytically (as a function of the jet, ejecta, and cocoon parameters) at the breakout time.

Results are shown in Figure 2 and indicate that our simple analytic model reproduces well the
numerical results [for more information see [17]].

3.3 Freely expanding cocoon

From our late time numerical simulations (up to ∼ 10s), we analysed the escaped cocoon and
measured its mass density, internal energy density and morphology. In our analysis we divide the
escaped cocoon into two parts: relativistic cocoon (10 > Γ𝛽 > Γ𝑡 𝛽𝑡 ∼ 1.33) and the non-relativistic
cocoon (𝛽𝑡 > 𝛽 > 𝛽𝑚); and found that mass and internal energy density for each of these cocoon
components can be fitted with simple power-law functions (with indices respectively; for the mass
density as 𝑙 = 0, and 𝑚 ≈ 8; and for the internal energy density as: 2, and −3) (for more details see
[18]).

4. Analytic modeling of the cocoon emission

4.1 Optical depth

After finding the mass and internal energy distribution for the escaped cocoon, we analytically
solve the radiation transfer using a sharp diffusion shell (see [24]). We follow a relativistic treatment.
We calculate the optical depth using the mass density profile. Then, we calculate luminosity using
the internal energy density’s profile. we find that the classical radiation diffusion criteria 𝜏 ∼ 𝑐/𝑣𝑑
does not apply for the non-relativistic cocoon due the steep density profile, and found the 𝜏 ∼ 20/𝛽𝑑
is more reasonable. For the photospheric radius we use 𝜏𝑝ℎ = 1. Then we solve the Stefan-
Boltzmann equation in the relativistic limit to find the blackbody temperature.
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Figure 2: Mass (blue), energy (red), and internal energy (orange) fractions of the escaped cocoon as measured
from simulations (in the laboratory frame), for the narrow, wide, and failed jet models, at the free expansion
phase (𝑡1). Histograms with black borders indicates the fractions found using our fully analytic model [see
Section 3.2.

5. Results and Discussion

The isotropic luminosity from jet-shock heating in the different phases [calibrating to the
parameters of the wide (successful) jet model; see Table 1] can be estimated reasonably well as

𝐿
𝑗

𝑏𝑙
∼ 3.3 × 1043 erg s−1(

𝐿𝑖𝑠𝑜,0

5 × 1050 erg s−1

) ( 𝑡𝑏 − 𝑡0
0.46 s

) ( 𝑡𝑏

0.62 s

) (𝐸𝑒𝑠
𝑐,𝑖,𝑟

/𝐸𝑒𝑠
𝑐,𝑖

0.52

)
(
𝐸𝑒𝑠
𝑐,𝑖
/𝐸𝑐,𝑖

0.63

) (
𝜃0
18◦

)2 (
𝜅

1 cm2 g−1

) 𝑝−2
2 ( 𝑡𝑜𝑏𝑠

75 s

)−𝑝

,

(1)

where, 𝐿𝑖𝑠𝑜,0 is the central engine’s isotropic luminosity, 𝜃0 is the initial jet opening angle, 𝑡𝑏 − 𝑡0

is the breakout time since the jet launch, 𝑡𝑏 is the breakout time since the merger,
𝐸𝑒𝑠
𝑐,𝑖

𝐸𝑐,𝑖
is the

fraction of escaped cocoon internal energy,
𝐸𝑒𝑠
𝑐,𝑖,𝑟

𝐸𝑒𝑠
𝑐,𝑖

is the fraction of escaped cocoon internal energy
in the relativistic cocoon, and 𝜅 is the opacity in the escaped cocoon. The the time index 𝑝

has been introduced to reproduce the temporal properties of the luminosity [𝑝 = 4/3 for 𝑡𝑜𝑏𝑠 <

𝑡𝑜𝑏𝑠 (Γ𝑑 = 1/𝜃𝑒𝑠𝑐 ), and 𝑝 = 2 for 𝑡𝑜𝑏𝑠 > 𝑡𝑜𝑏𝑠 (Γ𝑑 = 1/𝜃𝑒𝑠𝑐 )]; and one can find the timescale

𝑡𝑜𝑏𝑠 (Γ𝑑 = 1/𝜃𝑒𝑠𝑐 ) ∼
[
𝜅𝑀𝑒𝑠

𝑐,𝑟 (𝜃𝑒𝑠𝑐 )6

12𝑐2ΩΓ−2
𝑡

]1/2
(∼ 75 s here for the wide jet case; and ∼ 6 s for the narrow jet

case) (for more details see [18]).

6. Conclusion

We presented numerical simulations of the cocoon breakout in NS mergers, for three different
types of jets: narrow, wide, and failed. We followed the cocoon evolution for timescales much
longer than the breakout time (up to ∼ 10 s ≫ 𝑡𝑏 − 𝑡0). We analysed the distribution of mass
and energy in the cocoon, finding that, contrary to previous considerations, only a tiny fraction of
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Figure 3: Bolometric isotropic luminosity (top), photospheric four-velocity (middle), and observed temper-
ature (bottom), for three representative jet models [narrow (blue), wide (red), and failed (green) in Table 1],
as a function of the observed time since the merger. The predicted early KN is shown (dotted black; following
the analytic model by [25]), as well as the recorded measurements on GW170817 (grey circles [6, 7]). This
illustrates the expected imprint of the cocoon depending on the jet model in future GW170817-like events
(NS mergers with or without a sGRB).
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the cocoon manages to escape from the ejecta (∼ 0.5 − 5% in terms of mass). We then modeled
the escaped cocoon mass and internal energy distribution, and estimated its emission using the
approximation of a sharp diffusion shell, as a function of the parameters of the jet and the ejecta.

Our results indicates that , with the new generation of GW detectors (the upcoming LIGO
O4; also with ET, and CE), the cocoon emission is detectable in future GW170817-like events if
early localization is achieved. And with its observational features (luminosity, temperatures, and
photospheric velocity) understood (with our analytic model), the cocoon emission can potentially be
used to better understand NS mergers, sGRBs, and KNe (together with the other EM counterparts:
prompt emission, KN emission, and afterglow emission); practically, the cocoon emission can be
used to indirectly measure the escaped cocoon’s mass and relate it to the mass of the dynamical
ejecta, infer the type of jet, and indirectly trace r-process nucleosynthesis.
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