
Fermi National Accelerator Laboratory

SQMS center - Physics Sensing group

in collaboration with

University of Padua

Physics and Astronomy department - ”Galileo Galilei”

October 14, 2024

Italian Summer Student Program 2024

Final Report

Preparation for DM searches with
high Q SRF cavities

Fabio Castañeda
fabio.castanedarestrepo@studenti.unipd.it

frestrep@fnal.gov

Supervisor : Dr. Bianca Giaccone
giaccone@fnal.gov

Contents

1 DM search with Haloscopes 3
1.1 two different DM searches 3

2 SERAPH 3
2.1 Tunability 4
2.2 Cryogenic electronics 4
2.3 Decay measurements 4
2.4 Coupling parameters 5
2.5 Microphonics 6
2.6 Y-factor calibration 7

3 SHADE 8
3.1 Spectral baseline 9
3.2 Sensitivity estimation 10
3.3 Noise sources 11
3.4 Microphonics 11
3.5 Rescaled spectra 11
3.6 Convolved spectra and grand

spectrum 12
3.7 Code 13

4 Acknowledgments 13

5 Appendix 15
5.1 code 15

5.1.1 main 15
5.1.2 structural classes 16
5.1.3 custom libraries 23

2

DM searches w high Q SRF cavities Italian Summer Student Program 2024

Abstract

This work focuses on the preparatory for two dark matter searches based on high Q SRF
cavities. In the context of the SERAPH experiment I participated to experimental work of
characterizing the cavity at mK temperature and subsequently analyzed the data collected.
For the SHADE experiment, I worked on the preparation of the data analysis starting from the
collection of simulated data and built a flexible framework to analyze them.
The goal of this report is to present my contribution to these two experiments that are being
investigated at Fermilab by the Physics Sensing group at SQMS.

1 DM search with Haloscopes

Axions are well motivated Dark Matter (DM)

candidates [1], that could solve the strong
CP problem of QCD [2]. In the GHz regime,
top class experiments like ADMX [3] and
HAYSTAC [4] have proven that haloscopes
can reach the required sensitivity to target the
QCD axion.
Haloscopes are resonant cavities equipped
with a low noise readout and cryogenic cooling
that allow the coherent signal coming from
the DM halo to build up into its volume and
be detectable as a power excess at the desired
cavity mode frequency.[5]

Other DM candidates like dark photons
(DPDM), are detectable with Haloscopes with
little adaptation of the setup required by an
axion search [6]

1.1 two different DM searches

SQMS national center is working at the mo-
ment on two experiments based on high quality
factor, Q, SRF cavities to search for different
dark matter candidates.
SERAPH is sensitive to dark photons and aims
to target a wide range of masses through its
peculiar plunger design. SHADE targets light
axions thanks to a new approach to haloscope
searches.

2 SERAPH

SERAPH’s Plunger Cavity has an innovative
design that allows wide tunability, which we
know is a key feature of a well designed DM
search experiment.
This comes in addition to the fact that the cav-
ity is made of Niobium, thus is superconductive

with a ultra high Q factor (∼ 108).
The cavity design is far from conventional,

Figure 1: Picture of the SERAPH cavity
Credits: Dr. Cervantes, SQMS

because we’re dealing with a cylindrical cav-
ity open on one side where a smaller diame-
ter cylinder guide allows a so called plunger to
slide into the cavity volume. The plunger is
also made of bulk Niobium and supported by a
sapphire rod (Figure 1).
Tuning the cavity consists in moving it with
a piezoelectrically actuated motor in order to
control the relative insertion of the plunger.
During the time of this internship the cav-

Figure 2: Electric Field profile simulated with a par-
tially inserted plunger,
Credits: Dr. Cervantes, SQMS

ity was cold in the dilution refrigerator, DR,
so a series of calibration and characterization
measurements have been conducted. The goal
of the measurement session was to ultimately
conduct a preliminary DM search, which is the

3

DM searches w high Q SRF cavities Italian Summer Student Program 2024

only step that wasn’t undertaken because, as
we will see in the following, considerations from
the calibration steps allowed to conclude that
the cavity wasn’t setup properly to obtain valu-
able data in terms of sensitivity.
In the following all the steps of the calibration
protocol will be briefly explained. I person-
ally assisted Dr. Raphael Cervantes and Daniel
Molenaar (graduate intern collaborating with
Dr. Cervantes) during the lab operations. In
the following, regarding the data analysis it will
be made clear which steps have been performed
by me.

2.1 Tunability

As we’ve mentioned, the peculiar design of this
cavity allows for a wide tunability range of the
TM010-like mode of about 3 GHz, from 4 to 7
GHz. Unfortunately due to mechanical issues,
the mode’s central frequency could be moved
across ≃ 300MHz (from 6.24GHz to 6.56GHz,
see Figure 5), with acceptable levels of heat
injections from the piezo system (characteriza-
tion of this phenomenon has been postponed
to future runs). The issue was probably due to
the plunger getting stuck while retracting: the
motivations for the limit in tuning range will
be investigated once the experiment is warmed
up.

2.2 Cryogenic electronics

Let’s first briefly describe the experiment’s
electronic chain (see Figure 3 for the scheme
of the cold part of the chain). A3 and A4 ports
are the input ports, along these lines cryogenic
coaxial cables send the signal through a series
of attenuators and filters at various tempera-
ture stages. On the other side ports B3 and B4
are output ports along which the signal is am-
plified by a cryogenic High Electronic Mobility
Transistor, HEMT in the 4K stage. Attenua-
tors and isolators are placed along the lines, in
particular the output line, to avoid reflection
signals from the amplifier to travel backwards
on the line and insert additional thermal noise
into the cavity.

Figure 3: Complete scheme of the cold electronics of the
Plunger Cavity experiment

Being the DR equipped to support different
experiments at the same time, two series of
switches are installed in the mixing chamber,
where the cavities are, in order to be able to
switch between cavities. Such switches also
allow to completely exclude the cavity and
instead connect B4 line, the transmission line,
to a heatable 50Ω load called Variable Tem-
perature Stage, a key component to perform
thermal calibration of the line as explained in
section 2.6.

2.3 Decay measurements

A fundamental figure of merit of the cavity re-
sponse is the Q factor. Since the cavity is tun-
able one needs to estimate its value across the
the frequency range of interest. The Q factor
extracted from spectral response measurements
with a Vector Network Analyzer, VNA is not
to be considered reliable for Q factors above a
certain limit (the consensus of the community
suggests this limit to be Q ∼ 107). This is
due to the resolution limits of the instrument,
combined with the effect of mechanical vibra-
tions on the cavity resonant frequency. These
microphonics, as they’re called, broaden the

4

DM searches w high Q SRF cavities Italian Summer Student Program 2024

linewidth of the mode and lower the carrier
mode amplitude (see section 2.5).
This is why SRF cavity characterization relies
on decay measurements to extract the loaded
quality factor, QL.
To perform a Decay measurement connect the
VNA to all four lines coming out of the DR.
Then set up the instrument to send a narrow-
band signal precisely at the central frequency of
the cavity mode previously measured. We drive
the cavity to equilibrium (constant stored en-
ergy), then switch off the rf source abruptly and
record the transmission response. The trans-
mitted power should decay exponentially with
a time constant which is proportional to the
loaded quality factor : QL = 2πf0τL. This
parameter doesn’t depend only on the inter-
nal cavity response, but also on the coupling
to the input and output antennas. For a com-

Figure 4: Decay data with fitted exponential function.
The estimated parameters are printed on the plot.
Y dimension is logaritmic

plete treatment of cavity characterization and
testing refer to Padamsee et al.[7]. Here we
will only report the relation between QL, Q0,
the intrinsic quality factor of the cavity and
βα, the coupling parameters useful to extract
Q0 from decay measurements.

Q0 = QL (1 + βi + βt) (1)

βα :=
Q0

Qα
, α = t, i (2)

Decay measurements have been taken at three
different frequencies to span the whole tuning
range accessible during this run (see above sec-
tion 2.1). For reference Figure 4 shows one of

the fitted decays with the extracted parame-
ters (more plots available in the appendix ??),
while Figure 5 presents the extracted Q0 values
against frequency. This data was analyzed with
python scripts partially adapted and partially
developed by me.

Figure 5: Unloaded quality factor with error bars as a
function of frequency

2.4 Coupling parameters

The coupling parameters can be extracted via
reflection spectral measurements, S11 or S22

[8],
through a analysis procedure called circular fit-
ting: around the central frequency of the cav-
ity, the reflection coefficient is expected to ro-
tate along a circle in the complex plane, from
the radius of such circle the coupling parameter
value of each antenna can be extracted[8].
Due to some complications during the data tak-
ing procedures and other issues valuable data
to perform such analysis couldn’t be recorded
during this measurement session. The results
presented then, rely on a previous estimation
of the quality factors of the coupling antennas
performed in LHe at ∼ 4K (see procedure [9]).
Doubts about the current experiment reach
arised when we noticed that spectra of the S
reflection parameters showed almost no reflec-
tion dip at the frequency where the transmitted
paramters exhibited a standard lorentzian re-
sponse. This could be an indication that both
lines are probably much undercoupled with re-
spect to what expected and desired. However
the antenna weren’t change from previous runs,
so this apparent undercoupling could just be
due to the effect of microphonics changing the
frequency of the cavity and the VNA not be-

5

DM searches w high Q SRF cavities Italian Summer Student Program 2024

ing able to follow such frequency and excite
the cavity efficiently. The combination of this
issue, the impossibility of investigate further
where it was coming from and strict time con-
straints resolved into the decision of limit this
run to characterization measurements.
In general, the power deposited by the DPDM
candidate if resonant with the cavity mode is
expected to be limited by the coupling param-
eter of the transmission line. In fact, in natural
units the dark photon signal power inside the
cavity is [10]

PS(f) = P0
β

β + 1
L(f, f0, QL) (3)

where

P0 = ηχ2mγρDMV GQDM (4)

if QL >> QDM , quality factor of the DM
lineshape predicted by theory (QDM ∼ 106).
L is the lorentzian function that account for
the cavity spectral response, η the attenuation
factor of the carrier mode due to microphonics,
V is the effective volume of the cavity, G the
form factor, ρDM is the Dark matter halo
density on earth (equal to 0.45 GeV/cm3), mγ

the mass of the Dark photon and finally χ2

the chinetic mixing strenght, the parameter
that characterizes the reached sensitivity of
the experiment.
This is why an optimal experiment wuold
want a port which is extremely undercoupled
to use as input line (which is ultimately useful
only during characterization) and a critically
or over coupled port for the transmitted power.

2.5 Microphonics

In the framework of a DM search, a critical
phenomenon that influences the sensitivity is
microphonics. This term refers in general to
random mechanical vibrations induced from
the external environment. Sources could be
for example, but not limited to: earthquakes,
operators working in the lab around the DR,
vacuum pumps, boiling of the LHe.Their effect
is to have the modes central frequencies to
oscillate in time, meaning that the effective
response of the cavity changes from a singular
carrier peak for each mode, to a series of

sidebands whose amplitude is proportional
to the time that the cavity spends at each
detuned frequency during it’s coherence time.
A more detailed model and description of this
phenomenon is described by R. Cervantes et
al.[11].
Super high Q SRF cavities are deeply af-
fected by microphonics, due to the scale of
their bandwidth’s (≲ 1Hz) against the usual
detuning observed (≳ 1Hz). However, due
to the open configuration and the degrees of
vibrational freedom that the plunger has, this
cavity is affected by ≃ 1 kHz microphonics.
Following the method described in [11] a Self
Excited Loop, SEL, was implemented in order
to then measure with a phase noise analyzer,
PNA the time dependant frequency response
of the cavity. The SEL[12] is a feedback circuit
(see Figure 6) that allows to power up the
cavity thanks to the fact that the circuit
tracks the frequency of the cavity by itself and
amplifies its same signal if the loop phase is
shifted in order to match itself after each loop.

ΦCavity
SA or
PNA

Figure 6: Circuit scheme of a SEL equipped with a
power splitter that allows reading through a signal an-
alyzer, SA or phase noise analyzer, PNA.

Figure taken from [11]

The PNA at this point is ready to record
data which is plotted in Figure 7 and then
Fourier transformed to look at the spectral de-
pendence of the microphonics. Microphonics
is essentially caused by random noise mean-
ing that we usually don’t expect to have sharp
peaks at any frequency. When this happens one
can relate this phenomenon to more persistent
vibrational effects. Often times this is what
happens in the DR, due to the vacuum pumps
injecting noise systematically at fixed frequen-
cies. However, in the plots we can see that in
this case both liquid Helium, LHe and DR mea-
surements exhibit largely dominant features at
similar frequencies.
Such frequencies happen to be close to the ones
of the mechanical degrees of freedom of the
plunger according to simulations, demonstrat-

6

DM searches w high Q SRF cavities Italian Summer Student Program 2024

ing that in this experiment cavity design is key
to limit attenuations that draw power from the
carrier mode. My contribution was limited to
reproduce these plots using existing scripts.

Figure 7: Frequency detuning as function of time
recorded by the phase noise analyzer, PNA
The data in blue is measured inside the DR while the
one in orange is obtained in the LHe facility (called
VTS) at 4K

Figure 8: Spectral characterization of microphonics
The data in blue is measured inside the DR while the
one in orange is obtained in the LHe facility (called
VTS) at 4K

2.6 Y-factor calibration

DM search measurements ultimately aim at the
extraction of the SNR that the setup allows to
reach. This means that the noise sources have
to be characterized with care. Provided that
cavity and experiment design are optimized,
haloscope searches are then basically limited
by thermal noise and amplifier noise of the re-
ceiver chain. In this limit the SNR is equal to:

SNR =
PS

kbTn

√
tint
b

(5)

following Nyquist formalism of noise treatment.
tint is the total integration time for each tuning
step.
Johnson formula, in fact, parametrizes random
noise introduced by an amplified line as tem-
perature:

P = Gkbb (Tsys + Tadd) (6)

where kb is the boltzmann constant, b the res-
olution bandwidth of our measurements, Tsys

the system temperaure before amplification, G
is the gain of the amplifier and Tadd is the so
called amplifier added noise temperature.
G and Tadd are treated as effective parameters
that summarize the influence on the signal
of all components in the line (Friis cascade
analysis). The advantage of this approach is
that Y factor calibration allows to directly
measure such effective parameters[13] thanks
to the varibale temperature loa mentioned
before.

Figure 9: Y factor calibration data end exctracted pa-
rameters

In a dark matter search is important to mea-
sure Tadd of the transmission line (B4 in this
case) because this allows to compute Tn ≃
Tcav + Tadd. In practice, when one excludes
the cavity with the cryogenic switch and con-
nects instead the heatable load Tsys = Tload (up
to ≃ 10K), extraction of the desired quantities
with a linear fit is made possible by measur-
ing noise power against Tload. The results are
shown in Figure 9 while raw data is in the ap-
pendix.
However, interesting considerations can be
drawn from studying the spectral dependence

7

DM searches w high Q SRF cavities Italian Summer Student Program 2024

of gain and added temperature, especially to
characterize gain variations across the analy-
sis span. My contribution in this part of the
analysis was indeed this. Instead of extracting
a mean value of temperature and gain over all
measured frequency, a python script was devel-
oped specifically to extract such value for each
measured point (see Figure 10, 11).
What’s interesting about these results is that
we can clearly see that the temperature vari-
ation with frequency is not compatible within
its error with the mean value extracted. The
temperature variations are between 4K to 7K
and hugely dominate system’s thermal noise.
Further steps will need to check this results
through a cascade analysis of the given line.

Figure 10: Added amplifier temperature spectral de-
pendence

Figure 11: Amplifier gain estimated spectral depen-
dence

3 SHADE

SHADE (Superconducting Heterodyne Axion
Dark matter Search) is a dark matter search

that leverages ultra high Q SRF cavities and
the heterodyne principle, as proposed by Asher
Berlin et al[14]. Heterodyne searches bring two
main advantages with respect to standard halo-
scopes:

1. they allow to implement axion searches
without the need of an external magnetic
field, enabling to leverage ultra high Q
SRF cavities for such searches.

2. they extend the target mass range, possi-
bly to extremely low axion masses, limited
only by the control of noise sources

Heterodyne detection is a common approach in
signal processing and in the case of SRF cav-
ities the conversion will be observed between
two cavity modes, called pump ωp and signal
mode ωsig. The pump mode is driven by an ex-
ternal oscillator matched to its frequency and
the presence of an axion DM would be detected
as a power excess at ωsig only if

ωsig ≃ ωp ±ma (7)

because the DM field resonantly drives power
from the pump mode to the signal mode,
therefore taking advantage of the pump mode
magnetic field B0 for the inverse Primakoff
conversion.
The SHADE experiment will consist on an
elliptical Niobium cavity, whose pump and
signal mode will be the TM020 and TE011

respectively.[15] The cavity is designed to
have an initial 1MHz splitting between them
and the signal mode to have a frequency of
ωsig = 2π × 1.41GHz with a Q0,sig ≥ 1010

at 1.4 - 2 K. The cavity is then tunable with
a mechanical tuner that would bring the
splitting down to about 1 kHz at which point
the experiment is expected to be limited by
microphonics and leakage noise (see below).
The importance of having high Q SRF cavities
is made evident by the advantage brought
by them in terms of stored energy in the
pump mode (scales with B2

0), amplification
of the excess signal and reduction of noise, in
particular at very low axion masses.

Since the experiment is not yet ready to
perform data acquisition, in this work some
preliminary studies and data analysis on a
set of simulated data will be presented. The

8

DM searches w high Q SRF cavities Italian Summer Student Program 2024

Figure 12: Picture of two cavities commissioned for
SHADE experiment

simulated data is taken by terminating a
RS-FSW signal analyzer with a 50-Ohm load
and measuring background noise spectra at
room temperature. The analysis would then
automatically renormalize for the expected
noise temperature.

Figure 13: Schematic drawing of the SHADE experi-
ment

The designed experiment setup can be con-
sulted in Figure 13 (see [15] for further details).
Here we will briefly mention the presence of:

• two sets of couplers, one for each mode,
placed at different positions in order to
minimize cross talks and leakage noise.
In particular, the coupler ports in yellow
placed on the sides are the ones that allow

readout of the signal mode;

• a Phase Locked Loop, an active feedback
circuit component that allows to lock to
the central frequency of the pump mode,
to power it up more efficiently;

• a variable temperature stage to perform
line calibration;

• a SEL on the signal mode readout lines
when microphonics measurements are in
order or to measure the frequency of the
signal mode;

• a cryogenic HEMT and a signal analyzer
to measure the axion power

100 tuning steps have been simulated, each
3 Hz apart and consisting in a 100 times
averaged power spectrum spanning 3.2 kHz
(analysis bandwith or ABW) around the
central frequency with a resolution bandwith,
RBW of 0.1 Hz in order to be at least compa-
rable with the linewidth of the cavity, expected
to be of the same order of magnitude.

value unit

RBW 0.1 Hz
fc 1.41 GHz

ABW 3.2 kHz
tuning step 3 Hz

Navg 100
Nsteps 100

Table 1: Parameters of the simulated data based on the
expected limitations of the experiment

The following analysis steps have been de-
signed by Dr. Bianca Giaccone and me to
adapt HAYSTAC[4] and ADMX[3] analyses to
an heterodyne search with high Q cavities.
What’s next is my original contribution to the
experiment: the result of my work supervised
by Dr. Giaccone. These are preliminary results
and yet to be published.

3.1 Spectral baseline

In absence of any DM signal the axion search
data should look like random noise around
Tn ≃ Tcav + Tadd, according to Johnson-
Nyquist definition of thermal noise (Equation

9

DM searches w high Q SRF cavities Italian Summer Student Program 2024

6).
However if the ABW is large enough one can
see the influence of gain variation of both the
IF and RF electronics across the spectrum.
This is why experiments with lower Q cavities,
need to subtract both RF and IF spectral base-
lines, with a corresponding loss of sensitivity
due to the application of a Savitzky-Golay low
passband filter[16] (any low passband software
filter may be applied).

Figure 14: Raw power spectrum recorded for one tuning
step

High Q cavities like SHADE and SERAPH
can in principle avoid this step and gain in sen-
sitivity because the ABW is narrow enough not
to appreciate significant gain variations.
This can be proven by analyzing the distribu-
tion of the excess power and confront it with
an expected gaussian distribution. Then based
on the χ2 value of the gaussian fit one can dis-
card tuning steps that exceed a certain thresh-
old. Even though χ2 values have been esti-
mated and attached to the plots, this filter-
ing is not implemented in the code. Statis-
tics can be improved by increasing the number
of averages, however a 100 average spectrum
with RBW of 0.1 Hz takes about 15 minutes to
be recorded by the SA. The effect is that the
distribution is better fitted by an asymmetric
gaussian, meaning that the underlying χ2 dis-
tribution of each individual power value is still
visible. The choice of 100 AVG and 0.1Hz is
a compromise between statistics and scan du-
ration with the current experimental setup.
With the current setup it was decided to take
the simulated data as it is and approximate it

Figure 15: Excess power distribution data of a single
tuning step fitted with a symmetric normal function.

Figure 16: Excess power distribution data of a single
tuning step fitted with a skewed normal function. The
skew parameter, α is zero for a symmetric normal func-
tion. The reduced χ2 is another indication that this
model better fits the data than a symmetric gaussian
(see Fig 15)

to gaussian random noise advocating the prin-
ciples of the central limit theorem.

3.2 Sensitivity estimation

A thorough theoretical treatment of hetero-
dyne haloscope DM searches can be found in
the work by A. Berlin et al.[14]. From their cal-
culation one can exctract the complete formula
of the axion deposited power in the cavity:

P0 ≃ g2aγγρDMV η2
10B

2
0

{
πQa
ma

, if QL,sig >> Qa
QL,sig

fsig
, if QL,sig << Qa

(8)

The values of the parameters relevant for this
analysis are to be found in Table 2, while gaγγ
is the axion to photon coupling parameter that
like χ2 for DPDM searches parametrizes the
sensitivity reach of the experiment

10

DM searches w high Q SRF cavities Italian Summer Student Program 2024

value unit

V 25 L
η10 0.193
B0 100 mT
β 1

Tadd 1.3 K
Tcav 2 K
ωsig 2π × 1.41 GHz
Q0,sig 1010

Table 2: Relevant parameters of the SHADE experi-
ment. Some are estimated via simulation like the effec-
tive cavity volume, V, the coupling parameter η10, some
are taken from the datasheets of the electronic compo-
nents to be used, others are chosen by the operator as
reasonable values

As mentioned in the paper by Berlin this
formula is valid only in the limit that axion
bandwidth is order of magnitudes greater than
the cavity bandwidth, which is not the case for
this experiment. Therefore, a more correct ap-
proach is to integrate equation number (22) of

section III[14]. Equation 8 is given as refer-
ence to better underline the key magnitudes
that play a role in computing the sensitivity,
which is then expressed in terms of the param-
eter gaγγ :

gaγγ = gγ
α

π

ma

mπfπ
(9)

where mπ and fπ are pion mass and decay con-
stant.
Combining equation 8 and 5, which is still valid
(see below section 3.3), the expected sensitivity
is calculated as:

g2aγγ = SNR
kbTn

PS/g2aγγ

√
RBW

tint
(10)

which results to a value of 2.88× 10−16GeV−1

for SNR = 3.
Future developments of the analysis will have
to take care of the numerical computation
to estimate a more accurate value of the
deposited power.

3.3 Noise sources

In their paper Berlin et al.[14] mention many
sources of error that are peculiar of this new

detection technique.
All things considered, in the range of masses
that SHADE targets the most relevant noise
source is still thermal and amplifier noise. The
treatment is equivalent to the one presented in
section 2.6, so for simulation porpoises we only
need to assume a reasonable value of Tadd and
Tcav which in this case is 2 (or 1.4) K (see Table
2), because the experiment will be performed
in LHe not in a DR.
Further improvements of the analysis will take
into account subdominant sources of noise and
compute their influence on sensitivity or quan-
titatively prove that they’re negligible.

3.4 Microphonics

Some more words will be dedicated to the char-
acterization of mechanical vibrations effects.
Berlin et al.[14] talk about mechanical leakage
and model the response of the pump mode.
Preparing for this analysis, the possibility to
apply the same response to the signal mode os-
cillation has been investigated (see Figure 17).
This should allow to recover some of the sen-
sitivity lost due to attenuation of the carrier
peak, thanks to the sidebands, because for each
tuning step the cavity may be sensitive to more
than one axion mass.

Figure 17: Model of cavity response when microphon-
ics is dominated by two stable in frequency mechanical
induced vibrations

3.5 Rescaled spectra

Once the noise sources and the cavity response
around the signal mode frequency are estab-
lished, the next steps of the analysis are mostly
consistent with HAYSTAC[4] and ADMX[3].

11

DM searches w high Q SRF cavities Italian Summer Student Program 2024

After extracting the excess power values, δp:

δp =
Praw

Pavg
− 1 (11)

section VI.A in [4] explains how to rescale the
excess power in order to:

• account for possible varying parameters,
like Temperature, cavity figures of merit
and such

• by design relate the error associated to the
rescaled excess power to the SNR of such
measured data.

In formulas:

δr =
Pnδp
PS

(12)

σr =
Pnσp
PS

=
1

SNR
(13)

where Pn is the total noise power. This is how
one ultimately relates the measured data to the
limit imposed by it. The result of the rescaling
procedure on a single tuning step spectrum can
be seen in figure 18

Figure 18: Rescaled power excess spectrum for a single
tuning step

In principle computing the rescaled power
depends on the value of sensitivity, in terms
of gaγγ , used to compute PS . However, once
the grand spectrum is obtained (section below),
the computation of the sensitivity reached by
the experiment resolves into computing the ra-
tio between it and the value used to rescale the
power (see [4]).
Therefore, the choice of gaγγ used for this
step is arbitrary (but constant). In this work
gaγγ was set to the value predicted by KSVZ

model[17] for an axion mass of 1 MHz (1 ×
10−19GeV−1)

3.6 Convolved spectra and grand
spectrum

Since the axion mass distribution has a Qa fac-
tor fixed by theory to a value of 106 the axion
power signal for each candidate mass could be
spread across many bins of the recorded spec-
tra. This is again a key feature of ultra high
Q factor cavities even though experiments like
HAYSTAC and ADMX still need to take this
effect into account.
In order to do so one simply needs to convolve
the power data with the expected axion mass
distribution which in first approximation can
be thought as a simple Maxwell-Boltzmann dis-
tribution (see Figure 19).

Figure 19: Distribution of axion masses coming from
theory

In order to assure that the least amount of
sensitivity is lost ADMX analysis[3] and other
related papers explain why one needs to per-
form the convolution as a moving χ2 minimiza-
tion fit of the axion lineshape. The result is a
convolved spectrum for each tuning step (Fig-
ure 20). As final step, the code generates the
grand spectrum. The following and final step
of the analysis corresponds to the limit extrac-
tion. Implementation of this step in the analy-
sis was not possible due to the short duration
of this internship.
The grand spectrum simply accounts for the
sensitivity contribution of all tuning steps to
each axion mass. In a somewhat straightfor-
ward manner the grand spectrum bins are the
vertical combination of all bins in each tun-
ing step spectrum that correspond to the same
axion mass. The combination is performed
through a weighted average procedure.

12

DM searches w high Q SRF cavities Italian Summer Student Program 2024

Figure 20: Convolved excess power spectrum for a single
tuning step

Figure 21: Grand spectrum extracted from the simu-
lated data

At this point the sensitivity limit for each
axion mass can be extracted by computing the
90% confidence limit of the underlying gaus-
sian distribution of each combined power ex-
cess point in the grand spectrum.
This will be addressed in future endeavours.

3.7 Code

Most of my time during this internship has
been dedicated to write the python code to per-
form the steps of the analysis described just
above. The code is implemented as an object-
oriented family of six scripts between which the
different tasks of the analysis are divided.
The code is flexible and allows to implement
the analysis on different sets of data, both re-
garding DM search data and characterization
extracted parameters. In the appendixes one
can read through the entirety of the code given

for reference.

4 Acknowledgments

In conclusion, I’d like to thank SQMS center
for hosting me this summer at Fermilab. This
professional experience has set a milestone in
my academic path, that couldn’t have been so
solid without the guidance of Dr. Bianca Giac-
cone, that supervised my work as the PI of the
SHADE experiment. Most sincere thanks and
appreciations for her and her work.
Huge thanks to Dr. Raphael Cervantes, who
has made space for me to collaborate during
the measurement run of the plunger cavity. It’s
been a pleasure exchange ideas and learn from
you.
Last of all I’d like to thank my family: what-
ever distance divides us, family is home.

13

DM searches w high Q SRF cavities Italian Summer Student Program 2024

This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Sci-

ence Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under contract number DE-AC02-07CH11359.

References

[1] Steven Weinberg. A new light boson?
Phys. Rev. Lett., 40:223–226, Jan 1978.

[2] R. D. Peccei and Helen R. Quinn. CP con-
servation in the presence of pseudoparti-
cles. Phys. Rev. Lett., 38:1440–1443, Jun
1977.

[3] C. Bartram, T. Braine, R. Cervantes,
N. Crisosto, N. Du, G. Leum, L. J. Rosen-
berg, G. Rybka, J. Yang, D. Bowring,
A. S. Chou, R. Khatiwada, A. Sonnen-
schein, W. Wester, G. Carosi, N. Woollett,
L. D. Duffy, M. Goryachev, B. McAllister,
M. E. Tobar, C. Boutan, M. Jones, B. H.
LaRoque, N. S. Oblath, M. S. Taubman,
John Clarke, A. Dove, A. Eddins, S. R.
O’Kelley, S. Nawaz, I. Siddiqi, N. Steven-
son, A. Agrawal, A. V. Dixit, J. R. Glea-
son, S. Jois, P. Sikivie, J. A. Solomon,
N. S. Sullivan, D. B. Tanner, E. Lentz,
E. J. Daw, M. G. Perry, J. H. Buckley,
P. M. Harrington, E. A. Henriksen, and
K. W. Murch. Axion dark matter experi-
ment: Run 1b analysis details. Phys. Rev.
D, 103:032002, Feb 2021.

[4] B. M. Brubaker, L. Zhong, S. K. Lamore-
aux, K. W. Lehnert, and K. A. van Bibber.
Haystac axion search analysis procedure.
Phys. Rev. D, 96:123008, Dec 2017.

[5] P. Sikivie. Experimental tests of the ”in-
visible” axion. Phys. Rev. Lett., 51:1415–
1417, Oct 1983.

[6] R. Essig, J. A. Jaros, W. Wester, P. Hans-
son Adrian, S. Andreas, T. Averett,
O. Baker, B. Batell, M. Battaglieri,
J. Beacham, T. Beranek, J. D. Bjorken,
F. Bossi, J. R. Boyce, G. D. Cates, A. Ce-
lentano, A. S. Chou, R. Cowan, F. Cur-
ciarello, H. Davoudiasl, P. deNiverville,
R. De Vita, A. Denig, R. Dharmapalan,
B. Dongwi, B. Döbrich, B. Echenard,
D. Espriu, S. Fegan, P. Fisher, G. B.
Franklin, A. Gasparian, Y. Gershtein,
M. Graham, P. W. Graham, A. Haas,

A. Hatzikoutelis, M. Holtrop, I. Iras-
torza, E. Izaguirre, J. Jaeckel, Y. Kahn,
N. Kalantarians, M. Kohl, G. Krn-
jaic, V. Kubarovsky, H-S. Lee, A. Lind-
ner, A. Lobanov, W. J. Marciano,
D. J. E. Marsh, T. Maruyama, D. McK-
een, H. Merkel, K. Moffeit, P. Monaghan,
G. Mueller, T. K. Nelson, G. R. Neil,
M. Oriunno, Z. Pavlovic, S. K. Phillips,
M. J. Pivovaroff, R. Poltis, M. Pospelov,
S. Rajendran, J. Redondo, A. Ring-
wald, A. Ritz, J. Ruz, K. Saenboonruang,
P. Schuster, M. Shinn, T. R. Slatyer,
J. H. Steffen, S. Stepanyan, D. B. Tan-
ner, J. Thaler, M. E. Tobar, N. Toro,
A. Upadye, R. Van de Water, B. Vla-
hovic, J. K. Vogel, D. Walker, A. Welt-
man, B. Wojtsekhowski, S. Zhang, and
K. Zioutas. Dark sectors and new, light,
weakly-coupled particles, 2013.

[7] Hasan S Padamsee, J. Knobloch, T. Hays,
and Perry B. Wilson. Rf superconductiv-
ity for accelerators. 1998.

[8] Qi-Ming Chen, Meike Pfeiffer, Matti Par-
tanen, Florian Fesquet, Kedar E. Hona-
soge, Fabian Kronowetter, Yuki Nojiri,
Michael Renger, Kirill G. Fedorov, Achim
Marx, Frank Deppe, and Rudolf Gross.
Scattering coefficients of superconducting
microwave resonators. i. transfer matrix
approach. Phys. Rev. B, 106:214505, Dec
2022.

[9] O. Melnychuk, A. Grassellino, and A. Ro-
manenko. Error analysis for intrinsic qual-
ity factor measurement in superconduct-
ing radio frequency resonators. Review of
Scientific Instruments, 85(12):124705, 12
2014.

[10] Sumita Ghosh, E. P. Ruddy, M. J. Jew-
ell, A. F. Leder, and R. H. Maruyama.
Searching for dark photons with existing
haloscope data. Phys. Rev. D, 104:092016,
Nov 2021.

[11] R. Cervantes, J. Aumentado, C. Brag-
gio, B. Giaccone, D. Frolov, A. Gras-

14

DM searches w high Q SRF cavities Italian Summer Student Program 2024

sellino, R. Harnik, F. Lecocq, O. Melny-
chuk, R. Pilipenko, S. Posen, and A. Ro-
manenko. Deepest sensitivity to wavelike
dark photon dark matter with supercon-
ducting radio frequency cavities. Phys.
Rev. D, 110:043022, Aug 2024.

[12] Kenny Fong, M. Laverty, Eric Chojnacki,
Si Ping Wang, and Georg H. Hoffstaetter.
Self excited operation for a 1.3 ghz 5-cell
superconducting cavity. 2011.

[13] Slawomir Simbierowicz, Visa Vesterinen,
Joshua Milem, Aleksi Lintunen, Mika Ok-
sanen, Leif Roschier, Leif Grönberg, Juha
Hassel, David Gunnarsson, and Russell E.
Lake. Characterizing cryogenic ampli-
fiers with a matched temperature-variable
noise source. Review of Scientific Instru-
ments, 92(3), March 2021.

[14] Asher Berlin, Raffaele Tito D’Agnolo, Se-
bastian A. R. Ellis, Christopher Nantista,
Jeffrey Neilson, Philip Schuster, Sami

Tantawi, Natalia Toro, and Kevin Zhou.
Axion dark matter detection by super-
conducting resonant frequency conversion.
Journal of High Energy Physics, 2020(7),
July 2020.

[15] Bianca Giaccone, Asher Berlin, Ivan
Gonin, Anna Grassellino, Roni Harnik,
Yonatan Kahn, Timergali Khabiboulline,
Andrei Lunin, Oleksandr Melnychuk,
Alexander Netepenko, Roman Pilipenko,
Yuriy Pischalnikov, Sam Posen, Oleg
Pronitchev, Alex Romanenko, and Vyach-
eslav Yakovlev. Design of axion and axion
dark matter searches based on ultra high
q srf cavities, 2022.

[16] R. W. Schafer. Technical report no. hpl-
2010-109, 2011.

[17] Jihn E. Kim. Weak-interaction singlet and
strong CP invariance. Phys. Rev. Lett.,
43:103–107, Jul 1979.

5 Appendix

5.1 code

5.1.1 main

1 import sys

2 import glob

3 from analysis import models , const , spectrum_analysis , phys_units

4 from plots import plotting

5 from spectral_data import spectral_data

6 from char_data import char_data

7 from experiment_structure import tuning_step , exp_run

8

9

10 file_patterns = [’simdata /*_1 .4100G_*Step*span4000_BW0 .1*100. dat’]

11 names = []

12 # List all files matching the pattern

13 for pattern in file_patterns:

14 names.extend(glob.glob(pattern))

15 #print(names)

16 print(len(names))

17

18 ref_m_a_value = 1e6

19

20 try:

21 run4k = exp_run(names , ["dummyCharFile.csv"], "dummyTheoreticalFile.csv",

FIXED_m_a = ref_m_a_value)

22 except Exception as a:

23 print(a)

24 try:

25 run4k.filter_bins ()

26 #run4k.plot_excess_spectra (500 ,5 ,250 ,5)

15

DM searches w high Q SRF cavities Italian Summer Student Program 2024

27 run4k.plot_excess_spectra ()

28 except Exception as a:

29 print(a)

30

31 run4k.verify_gaussian_distribution(’excess ’)

32 run4k.select_ABW(ABW = 5e2)

33

34 run4k.rescaled_spectra ()

35 run4k.compute_expected_sensitivity(SNR=3)

36 try:

37 run4k.ax_lineshape ()

38 run4k.grand_spectrum ()

39 for i in range(len(run4k.comb_relevant)):

40 print(run4k.comb_relevant.iloc[i])

41 except Exception as a:

42 print(a)

5.1.2 structural classes

1 from spectral_data import spectral_data

2 from char_data import char_data

3 import pandas as pd

4 from analysis import spectrum_analysis , const

5 from plots import plotting

6 import matplotlib.pyplot as plt

7 from scipy import constants

8 from analysis import models , phys_units

9 import numpy as np

10 from uncertainties import ufloat , nominal_value

11 from scipy.spatial import cKDTree

12

13

14 class tuning_step(spectral_data , char_data):

15 def __init__(self , file_Spec , file_Char , m_a):

16 spectral_data.__init__(self , file_Spec)

17 char_data.__init__(self , file_Char)

18 self.f_pump = self.f_pump - (self.fc - self.f_sig)

19 self.f_sig = self.fc

20 self.m_a = m_a

21 self.m_a_eV = self.m_a * const.hbar # eV

22

23 #we changed this value to the fc value , this would be temporary , just

for the simulation stage

24

25 def __repr__(self):

26 return f"tuning step: \nfreq ={self.fc} \npower ={self.spectrum })"

27

28 def rescale_ax_pow(self , eta , V):

29 #it could be computed for each axion mass value but maybe it’s too

difficult , there could be problems while redistributing the bins at

combination step , better use a unique value for all exp run!

30 P_ax = self.P_ax(eta , V, self.m_a)

31 print(f’axion power: {P_ax:e}’)

32 wid = self.f_sig / self.Q_sig / 2

33 #print(wid)

34 Lor_cav_response = models.Lorentzian(self.freq , 1, self.f_sig , wid)

35 norm = nominal_value(sum (Lor_cav_response))

36 Lor_cav_response = Lor_cav_response / norm

37

38 self.spectrum[’rescaled ’] = self.spectrum[’excess ’] / P_ax /

Lor_cav_response

39

40 def rescale_noise(self):

41 T_noise = constants.k * self.T_eq * self.RBW

16

DM searches w high Q SRF cavities Italian Summer Student Program 2024

42 print(f’thermal and amp noise: {T_noise:e}’)

43 self.spectrum[’rescaled ’] = self.spectrum[’rescaled ’] * T_noise

44 plotting.power_plot(self.freq , self.spectrum[’rescaled ’], ’frequency [Hz

]’, ’rescaled excess power [-]’, f’{self.fc/1e9:0.9f}GHz_rescaledPower.png’,

error = True)

45

46

47 def compute_expected_sensitivity(self , SNR , eta , V): #check unit of k

48 g_agg_ref = const.g_agg(self.m_a_eV)

49 print(f’g_agg_ref: {g_agg_ref:e}’)

50 self.g2_agg = g_agg_ref **2 * SNR * constants.k * self.T_eq * np.sqrt(

self.RBW / self.t_int) / self.P_ax(eta , V, self.m_a)

51 print(’g_agg ’ + f’= {np.sqrt(self.g2_agg.n)} for tuning step: {self.fc

:0.9f}’)

52 return self.g2_agg

53

54

55 def rescale_x_ax_mass(self):

56 self.spectrum[’f_ax’] = self.freq.copy() - self.f_pump # in Hz

57

58

59

60 class sim_theory_data:

61 def __init__(self , file):

62 data_raw = pd.read_csv(file , sep=";", names = [’magnitude ’, ’value ’ ,’

unit’], dtype = {’magnitude ’:str , ’value ’:float , ’unit’: str}).set_index(’

magnitude ’)

63 self.store_params(data_raw)

64

65 def store_params(self , data):

66 self.form_fac = data.loc[’eta_10 ’, ’value ’]

67 self.vol_cav = data.loc[’V’, ’value ’]

68 self.eps_1d = data.loc[’eps_1d ’, ’value ’]

69

70

71 class exp_run(sim_theory_data):

72 def __init__(self , file_spec_list , file_char_list , file_theory , FIXED_m_a):

73 # Check if file_list2 is long enough to handle the number of chunks

74 #if len(file_char_list) < (len(file_spec_list) + 9) // 10:

75 # raise ValueError (" file_list2 must be long enough to handle all

steps .")

76 try:

77 self.tuning_steps_series = self.create_tuning_steps(file_spec_list ,

file_char_list , m_a = FIXED_m_a)

78 sim_theory_data.__init__(self ,file_theory)

79 except Exception as a:

80 #print(a)

81 raise Exception(a)

82

83 #if True is disabled

84 self.IF = False

85

86 def create_tuning_steps(self , file_list1 , file_list2 , m_a):

87 tuning_steps = []

88

89 for i, file1 in enumerate(file_list1):

90 # Determine which file2 to use based on the step

91 file2 = file_list2 [0]

92 #for now we only have the one file with the simulated parameters [i

// 10] # Change file2 every 10 steps

93 tuning_steps.append(tuning_step(file1 , file2 , m_a))

94

95 return pd.Series(tuning_steps)

17

DM searches w high Q SRF cavities Italian Summer Student Program 2024

96

97 def compute_expected_sensitivity(self , SNR):

98 return self.tuning_steps_series.apply(lambda obj: obj.

compute_expected_sensitivity(SNR , self.form_fac , self.vol_cav))

99

100 def plot_excess_spectra(self , WIF = 0 , POIF = 0, WRF = 0 , PORF = 0):

101 if not self.IF: #because we decided to perform IF baseline removal

102 print("IF analysis on")

103 self.init_IF_ana ()

104 #print(self.IF_spectrum[’baseline ’])

105 #spectrum_analysis.IFbaseline_extraction(self , WIF , POIF)

106

107 #print(’over with IF ’)

108 self.tuning_steps_series.apply(lambda obj: spectrum_analysis.calc_excess

(obj , WIF , POIF , WRF , PORF , self.IF_spectrum[’baseline ’]))

109

110 def verify_gaussian_distribution(self , powtype):

111 self.tuning_steps_series.apply(lambda obj: obj.verify_gaus(powtype))

112 self.tuning_steps_series.apply(lambda obj: obj.verify_skewnorm(powtype))

113

114 def filter_bins(self):

115

116 if not self.IF:

117 print("IF analysis on")

118 self.init_IF_ana ()

119

120 self.tuning_steps_series.apply(lambda obj: obj.spec_filtering(self.

idx_IF_interf))

121

122 def init_IF_ana(self):

123 self.IF = True

124

125 self.IF_spectrum = pd.DataFrame ()

126 self.idx_IF_interf = spectrum_analysis.IFinterferences(self)

127

128

129 self.IF_spectrum = self.IF_spectrum.copy().iloc[self.idx_IF_interf]

130 self.IF_spectrum[’baseline ’] = self.IF_spectrum[’IFmean ’] * 0

131

132

133 #extract the discarded bins

134 self.IF_damaged_bins = list(set(list(range(len(self.IF_spectrum)))).

symmetric_difference(set(self.idx_IF_interf)))

135 print(’list of excluded bins due to IF interferences ’)

136 print(f’{self.IF_damaged_bins}’)

137 #for i in range(len(self.IF_damaged_bins)):

138 # print(f’ {self.IF_damaged_bins[i]}’)

139 print(f’number of bins excluded {len(self.IF_damaged_bins)}’)

140

141

142

143 def select_ABW(self , ABW):

144 self.tuning_steps_series.apply(lambda obj: obj.select_ABW(ABW))

145

146 def rescaled_spectra(self):

147 self.tuning_steps_series.apply(lambda obj: obj.rescale_ax_pow(self.

form_fac , self.vol_cav))

148 self.tuning_steps_series.apply(lambda obj: obj.rescale_noise ())

149

150 def grand_spectrum(self):

151 self.mass_column = np.arange (1e6 -2e4, 1e6+2e4, 0.2)

152 self.combined = pd.DataFrame ({’f_ax’: self.mass_column })

153 self.combine_spectra ()

18

DM searches w high Q SRF cavities Italian Summer Student Program 2024

154

155 #print(self.combined)

156

157 # Apply the function row -wise across the DataFrame

158 self.combined[’weighted_average ’] = self.combined.copy().apply(

phys_units.weighted_sum_ufloats , axis =1)

159 #select rows that end up having a non NaN computed value in the weighted

average column

160 self.combined = self.combined [~self.combined[’weighted_average ’].isna()]

161

162 self.comb_relevant = self.combined [[’f_ax’, ’weighted_average ’]]

163 self.comb_relevant = self.comb_relevant [(self.combined.f_ax < 1e6+6e2) &

(self.combined.f_ax > 1e6 -0.05e2)]

164

165 plotting.power_plot(self.comb_relevant[’f_ax’], self.comb_relevant[’

weighted_average ’],

166 ’axion mass [Hz]’, ’combined excess power [-]’,

167 filename = ’grandspectrum.png’, error = True)

168

169 #print(self.combined[[’f_ax ’,’weighted_sum ’]])

170

171

172 def combine_spectra(self):

173 for i, step in enumerate(self.tuning_steps_series):

174 # Get the masses and powers from the current step

175 #here we don’t take into account errors in the masses

176 step_masses = step.spectrum[’f_ax’].apply(lambda x: x.nominal_value)

.values

177 step_powers = step.spectrum[’convolved ’]. values

178

179 # Find the closest mass in the predefined mass_column

180 tree = cKDTree(self.mass_column [:, None])

181 _, closest_indices = tree.query(step_masses [:, None])

182

183 # Create a power column for this step

184 power_column = np.full(len(self.mass_column), np.nan , dtype=object)

185 power_column[closest_indices] = step_powers

186

187 # Add the power column to the result DataFrame

188 self.combined = self.combined.copy()

189 self.combined[f’power_step_{i}’] = power_column

190

191

192 def ax_lineshape(self):

193 self.tuning_steps_series.apply(lambda obj: obj.rescale_x_ax_mass ())

194 self.tuning_steps_series.apply(lambda obj: obj.convolved_spectra ())

195

196 def __repr__(self):

197 return f"exp_run(tuning_steps_series ={self.tuning_steps_series })"

1 import dask.dataframe as dd

2 import pandas as pd

3 import numpy as np

4 from analysis import spectrum_analysis , models

5 import matplotlib.pyplot as plt

6 from uncertainties.umath import sqrt

7 from uncertainties import ufloat , nominal_value , std_dev

8 from plots import plotting

9

10 class spectral_data:

11 def __init__(self , file):

12 data_raw_dd = dd.read_csv(file , sep=";",

13 usecols = [0,1], names = [’freq’, ’power’])

14

19

DM searches w high Q SRF cavities Italian Summer Student Program 2024

15 data_raw = data_raw_dd.compute ().iloc [31:]. astype(’float64 ’)

16 params = data_raw_dd.compute ().iloc [:31]

17

18 try:

19 self.init_params(params , len(data_raw))

20 except ImportError:

21 #print ()

22 raise ImportError(f"computed sample rate doesn’t make sense. \n see

file {file}")

23 except ValueError as N:

24 #print ()

25 raise ValueError(f’no match in number of data points. \nexpected {

len(data_raw)}, read from file {N}’)

26

27 try:

28 self.create_spectrum(data_raw)

29 except TypeError as typeS:

30 #print(typeS)

31 raise TypeError(typeS)

32

33 def init_params(self , p, N_points):

34 self.fc = float(p.iloc [6 ,1])

35 self.f_range = [float(p.iloc [8 ,1]) , float(p.iloc [9 ,1])]

36 self.Max_ABW = self.f_range [1] - self.f_range [0]

37 if self.Max_ABW != float(p.iloc [16 ,1]):

38 raise ImportError

39 self.RBW = float(p.iloc [14 ,1])

40 self.Avg = float(p.iloc [19 ,1])

41

42 self.N_bins = int(p.iloc [30 ,1])

43 if self.N_bins != N_points:

44 raise ValueError(self.N_bins)

45 self.bin_w = float(p.iloc [15 ,1]) / self.N_bins

46 self.pow_scale_raw = p.iloc [24 ,1]

47

48 self.t_int = self.Avg / self.RBW

49

50

51 self.counts = {}

52 self.bins = {}

53 self.chi = pd.Series ()

54

55 def create_spectrum(self , data):

56

57 freq = data[’freq’].copy()

58 #select frequencies within ABW , short of 2*500 bins per side for

filtering reasons

59 ABW_idx = np.where((freq >self.f_range [0] + 2*500* self.bin_w)

60 & (freq <self.f_range [1] -2*500* self.bin_w))

61 self.freq = freq.iloc[ABW_idx]

62

63 self.spectrum = pd.DataFrame ()

64

65 if self.pow_scale_raw == ’LOG’:

66 self.spectrum[’raw_dBm ’] = data[’power ’].copy().iloc[ABW_idx]

67 self.spectrum[’raw_mW ’] = self.spectrum[’raw_dBm ’].apply(

spectrum_analysis.convert_pow_scale , scale = self.pow_scale_raw)

68 else:

69 if self.pow_scale_raw == ’LIN’:

70 self.spectrum[’raw_mW ’] = data[’power ’].copy().iloc[ABW_idx]

71 try:

72 self.spectrum[’raw_dBm ’] = self.spectrum[’raw_mW ’].apply(

spectrum_analysis.convert_pow_scale , scale = self.pow_scale_raw)

20

DM searches w high Q SRF cavities Italian Summer Student Program 2024

73 except TypeError as typeS:

74 #print(typeS)

75 raise TypeError(f"invalid scale: {self.pow_scale_raw}")

76 else:

77 raise TypeError(f"invalid scale: {self.pow_scale_raw}")

78 self.average_lin_pow = self.spectrum[’raw_mW ’].mean()

79

80 def spec_filtering(self , idx , ax = 1):

81 if ax == 0:

82 self.spectrum = self.spectrum.copy().iloc[:, idx]

83 self.freq = self.freq.copy().iloc[:, idx]

84 if ax == 1:

85 self.spectrum = self.spectrum.copy().iloc[idx]

86 self.freq = self.freq.copy().iloc[idx]

87

88 def select_ABW(self , ABW):

89 i_ABW = np.where((self.freq < self.fc + ABW/2) & (self.freq > self.fc -

ABW /2))[0]

90 self.spec_filtering(i_ABW)

91

92 def verify_gaus(self , powertype):

93 addtoplot = True

94 self.counts , self.bins , par , perr , cov = spectrum_analysis.verify_gaus(

self.spectrum , powertype , self.fc, error = True , addtoplot = addtoplot)

95

96 self.chi[powertype] = models.Chi_squared_gaus(self.counts[self.counts

>0], self.counts[self.counts >0], self.bins[self.counts >0], par)

97

98 cov_matrix_formatted = np.vectorize(lambda x: f"{x:.3g}")(cov)

99

100 if addtoplot:

101 with pd.option_context(’display.float_format ’, ’{:.2f}’.format):

102 plt.text (2.5* par[2], max(self.counts) * 8 / 10, f’χ^2: {

self.chi[powertype]:0.5f}\n’

103 + ’σ_{gaus} : ’ + f’{par [2]:0.3f} \pm {perr

[2]:0.3f}\n’

104 + ’f_{0} : ’ + f’{par [1]:0.3f} \pm {perr [1]:0.3f}\n

’

105 #+ ’cov_{mat} : ’ + f’{cov_matrix_formatted }\n’

106 , horizontalalignment=’center ’,

107 verticalalignment=’center ’,fontsize = ’large ’)

108 plt.legend(loc = ’best’)

109 plt.savefig(f’developFolder/img/{self.fc/1e9:0.9f}GHz_{powertype}

_Hist.png’, dpi=300, bbox_inches=’tight’)

110 plt.close()

111 else:

112 print(f’{self.fc} step has chi2: {self.chi[powertype]}’)

113

114

115

116 def verify_skewnorm(self , powertype):

117 addtoplot = True

118 self.counts , self.bins , par , perr , cov = spectrum_analysis.

verify_skewnorm(self.spectrum , powertype , self.fc , error = True , addtoplot =

addtoplot)

119

120 self.chi[powertype + ’_skewed ’] = models.Chi_squared_skewed_norm(self.

counts[self.counts >0], self.counts[self.counts >0], self.bins[self.counts >0],

par)

121

122 cov_matrix_formatted = np.vectorize(lambda x: f"{x:.3g}")(cov)

123

124 if addtoplot:

21

DM searches w high Q SRF cavities Italian Summer Student Program 2024

125 plt.text (2.5* par[2], max(self.counts) * 8 / 10,

126 f’χ^2: {self.chi[powertype + ’_skewed ’]:0.5f}\n’

127 + ’$alpha$: ’ + f’{par [3]:0.3f}\pm {perr [3]:0.3f}\n’

128 + ’loc : ’ + f’{par [1]:0.3f}\pm {perr [1]:0.3f}\n’

129 + ’$scale$: ’ + f’{par [2]:0.3f}\pm {perr [2]:0.3f}\n’

130 #+ ’cov_{mat} : ’ + f’{cov_matrix_formatted }\n’,

131 ,horizontalalignment=’center ’,

132 verticalalignment=’center ’,fontsize = ’large ’)

133 plt.legend(loc = ’best’)

134 plt.savefig(f’developFolder/img/{self.fc/1e9:0.9f}GHz_{powertype}

_Hist_SkewedNorm.png’, dpi=300, bbox_inches=’tight’)

135 plt.close()

136 else:

137 print(f’{self.fc} step has chi2: {self.chi[powertype]}’)

138

139

140 def convolved_spectra(self):

141 def kernel(data , x_0):

142 #print(x_0)

143 k = data.apply(lambda x: models.MB_ax(x.n, x_0.n))

144 return k / sum(k)

145

146 def A(row_new):

147 spec = pd.DataFrame({’rescaled ’: self.spectrum.rescaled , ’f_ax’ :

self.spectrum.f_ax })

148

149

150 spec = spec[spec.f_ax > row_new.f_ax]

151 #print(len(spec))

152 end = min(len(spec), 25)

153 if end == 0:

154 return ufloat(np.nan , np.nan)

155 spec = spec.copy().iloc[:end]

156

157 spec[’k’] = kernel(spec.f_ax , row_new.f_ax)

158

159 #print(spec)

160 A_num = sum (spec.apply(lambda row: nominal_value(row.rescaled) *

row.k / std_dev(row.rescaled) **2, axis = 1))

161 sigma_2 = sum (spec.apply(lambda row: 0.5 * (row.k / row.rescaled.

s) **2 , axis = 1)) **-1

162 #print(sigma_2)

163 sigma = np.sqrt(sigma_2)

164 del spec

165 A = ufloat(A_num * 2 * sigma_2 , sigma)

166 #print(A)

167 if type(A).__name__ != ’Variable ’:

168 return ufloat(np.nan , np.nan)

169 return A

170

171 #A_list = []

172 #for i in range(len(self.spectrum)):

173 # A_list.append(A(self.spectrum.iloc[i]))

174

175 #print(A_list)

176 self.spectrum[’convolved ’] = self.spectrum.apply(lambda row: A(row),

axis =1)

177

178 # Check the types and values before assignment

179 #print (" Convolved Values :")

180 #print(self.spectrum[’convolved ’])

181

182 plotting.power_plot(self.spectrum.f_ax , self.spectrum[’convolved ’], ’

22

DM searches w high Q SRF cavities Italian Summer Student Program 2024

frequency [Hz]’, ’convolved excess power [-]’, f’{self.fc/1e9:0.9f}

GHz_convolvedspectrum.png’, error = True)

1 import pandas as pd

2 from analysis import const

3 from scipy import constants

4 from uncertainties import ufloat

5 from uncertainties.umath import *

6 import numpy as np

7 class char_data:

8 def __init__(self , file):

9 data_raw = pd.read_csv(file , sep=";", names = [’magnitude ’, ’value ’, ’

error’ ,’unit’], dtype = {’magnitude ’:str , ’value’:float , ’error’:float , ’

unit’: str}).set_index(’magnitude ’)

10 self.store_params(data_raw)

11

12 def store_params(self , data):

13 self.T_add = ufloat (data.loc[’T_add ’, ’value ’] , data.loc[’T_add ’, ’

error’])

14 self.G_rc = ufloat (data.loc[’G_rc’, ’value ’] , data.loc[’G_rc’, ’error

’])

15 self.b_yfac = ufloat (data.loc[’bw’, ’value ’] , data.loc[’bw’, ’error ’]

)

16 self.eta_mic = ufloat (data.loc[’eta’, ’value ’] , data.loc[’eta’, ’

error’])

17 self.f_pump = ufloat (data.loc[’f_0’, ’value ’] , data.loc[’f_0’, ’error

’])

18 self.Q_pump = ufloat (data.loc[’Q_0’, ’value ’] , data.loc[’Q_0’, ’error

’])

19 self.beta_pump = ufloat (data.loc[’beta_0 ’, ’value ’] , data.loc[’beta_0

’, ’error ’])

20 self.f_sig = ufloat (data.loc[’f_1’, ’value ’] , data.loc[’f_1’, ’error ’

])

21 self.Q_sig = ufloat (data.loc[’Q_1’, ’value ’] , data.loc[’Q_1’, ’error ’

])

22 self.beta_sig = ufloat (data.loc[’beta_1 ’, ’value ’] , data.loc[’beta_1 ’

, ’error ’])

23 self.B_0 = ufloat (data.loc[’B_0’, ’value ’] , data.loc[’B_0’, ’error ’]

)

24 self.T_cav = ufloat (data.loc[’T_cav ’, ’value ’] , data.loc[’T_cav ’, ’

error’])

25

26 #one cannot define an axion mass for each tuning step!! There’s always a

range of masses to which each tuning step is sensitive

27 #self.m_a = abs(self.f_pump - self.f_sig)

28 #self.m_a_eV = self.m_a * const.hbar # eV

29 self.T_eq = self.T_add + self.T_cav

30

31 def P_ax(self , form_fac , V, m_a):

32 g_agg_val = const.g_agg(m_a * const.hbar)

33 #print(f’gagg: {g_agg_val:e}’)

34 return 0.25e7 * np.pi * const.rho_DM * (form_fac * self.B_0 * g_agg_val)

**2 * V * const.Q_a * self.beta_sig / m_a / (self.beta_sig + 1)

5.1.3 custom libraries

1 from scipy import constants

2 import numpy as np

3 from plots import plotting

4 import matplotlib.pyplot as plt

5 import statistics as stat

6 import scipy

7 from scipy.stats import skewnorm

8 import pandas as pd

23

DM searches w high Q SRF cavities Italian Summer Student Program 2024

9 import dask.dataframe as dd

10 from scipy.signal import savgol_filter as SG

11 from uncertainties import ufloat

12

13

14 class models:

15 def Gaussian(x, A, x0 , sigma):

16 return A * np.exp(-(x - x0) ** 2 / (2 * sigma ** 2))

17

18 def Skenorm(x, A, x0 , scale , alpha):

19 return A * skewnorm.pdf(x, alpha , loc = x0, scale = scale)

20

21 def Lorentzian(x, amp , cen , wid):

22 return amp*wid **2/((x-cen)**2+ wid **2)

23

24 def MB_ax(x,f_a):

25 if x < f_a:

26 return 0

27 else:

28 return 2 * np.sqrt((x-f_a)/np.pi) * (3* const.v2_ax / f_a /

constants.c **2) **(3/2) * np.exp(-3 * (x - f_a) * constants.c **2 / f_a /

const.v2_ax)

29

30 def Chi_squared_gaus(y, w2 , x, par):

31 DoF = len(x) - len(par)

32 #print(w2)

33 #print(DoF)

34 return sum((y - models.Gaussian(x, *par)) **2 / w2) / DoF

35

36 def Chi_squared_skewed_norm(y, w2 , x, par):

37 DoF = len(x) - len(par)

38 #print(w2)

39 #print(DoF)

40 return sum((y - models.Skenorm(x, *par)) **2 / w2) / DoF

41

42

43 class const:

44 rho_DM = 0.45e3 # GeV / dm -3

45 Q_a = 1e6 #?

46 Lambda = 77.6 # MeV

47 g_gamma = -0.97

48 hbar = constants.hbar / constants.eV # eV/Hz

49 mu_0 = constants.mu_0 # T2 * m3 / J

50 k = constants.k / constants.eV # eV/K

51 m_pi = 135 # MeV

52 f_pi = 93 # MeV

53 v2_ax = 270e3 **2 # m/s [rms velocity of the dark matter halo]

54

55 def g_agg (m_a_eV):

56 return const.g_gamma * m_a_eV *1e-3 * constants.alpha / np.pi / const.

m_pi / const.f_pi

57

58 class phys_units:

59 def p_tomW(x):

60 return 10 ** (x/10)

61

62 # Function to compute the weighted sum across rows

63 def weighted_sum_ufloats(row):

64

65 # Filter out NaN values directly , whether they are in ufloat or plain

NaNs

66 ufloat_values = [u for u in row if not isinstance(u, float)]

67

24

DM searches w high Q SRF cavities Italian Summer Student Program 2024

68 # If no valid values remain

69 if not ufloat_values:

70 #print (" created a row with no values !!!")

71 return np.nan

72

73 # For valid ufloat values , proceed with the weighted sum calculation

74 weights = [1 / (u.s**2) for u in ufloat_values]

75

76 # Compute the weighted sum of nominal values

77 weighted_nominal_sum = sum(u.n * w for u, w in zip(ufloat_values ,

weights))

78

79 # Compute the total weight

80 total_weight = sum(weights)

81

82 # Calculate the weighted mean nominal value

83 weighted_mean_nominal = weighted_nominal_sum / total_weight

84

85 # Calculate the uncertainty (standard deviation) of the weighted sum

86 weighted_std = np.sqrt(1 / total_weight)

87

88 return ufloat(weighted_mean_nominal , weighted_std)

89

90

91

92 class spectrum_analysis:

93

94 def convert_pow_scale(x, scale):

95 if(scale == ’LOG’):

96 return 10 ** (x/10)

97 if(scale == ’LIN’):

98 return 10 * np.log10(x)

99 else:

100 raise TypeError(f"invalid scale: {scale}")

101

102 def calc_excess(obj , WIF , POIF , WRF , PORF , IFbase = []):

103 plotting.power_plot(obj.freq , obj.spectrum[’raw_mW ’], ’frequency [Hz]’,

’power [mW]’, f’{obj.fc/1e9:0.9f}GHz_rawPower.png’)

104 spectrum_analysis.baseline_removal_average(obj)

105 #change to another method if Gain variations are to be taken into

account and any filter is to be applied to the data

106

107 #spectrum_analysis.IFbaseline_removal(obj , IFbase)

108 #RFbaseline = spectrum_analysis.RFbaseline_removal(obj , WRF , PORF)

109 plotting.power_plot(obj.freq , obj.spectrum[’excess ’], ’frequency [Hz]’,

’excess power [-]’, incomplete = True)

110

111

112

113 #plt.plot(obj.freq , RFbaseline , ’b’, ms = 2, label = ’RF gain variations

’)

114 plt.legend(loc = ’best’)

115 plt.savefig(f’developFolder/img/{obj.fc/1e9:0.9f}

GHz_normalizedPower_baseline.png’, dpi=300, bbox_inches=’tight’)

116 plt.close()

117

118 obj.spectrum[’excess ’] = obj.spectrum[’excess ’] - 1

119 err = obj.spectrum[’excess ’].std()

120 print(f’excess noise std: {err}’)

121 obj.spectrum[’excess ’] = obj.spectrum[’excess ’].copy().apply(lambda x:

ufloat(x, err))

122 plotting.power_plot(obj.freq , obj.spectrum[’excess ’], ’frequency [Hz]’,

’excess power [-]’, f’{obj.fc/1e9:0.9f}GHz_excessPower.png’, error = True)

25

DM searches w high Q SRF cavities Italian Summer Student Program 2024

123

124

125

126 def baseline_removal_average(obj):

127 obj.spectrum[’excess ’] = obj.spectrum[’raw_mW ’].copy() / obj.

average_lin_pow

128

129 def IFbaseline_removal(obj , IFbase):

130 if len(obj.spectrum) == len(IFbase):

131 obj.spectrum[’excess ’] = obj.spectrum[’raw_mW ’].copy() / IFbase

132 else:

133 raise ValueError(f’IF baseline doesnt match data length: should be {

len(obj.spectrum)}, insteas it is {len(IFbase)}’)

134

135 def RFbaseline_removal(obj , W, PO):

136 RFbase = spectrum_analysis.RFbaseline_extraction(obj , W, PO)

137 obj.spectrum[’excess ’] = obj.spectrum[’excess ’].copy() / RFbase

138 return RFbase

139

140 def verify_gaus(spectrum , powertype , fc , error = False , addtoplot = False):

141 if error:

142 spectral_values = spectrum[powertype]. apply(lambda x: x.n)

143 AMP = spectrum[powertype]. apply(lambda x: x.s).iloc [0]

144 else:

145 spectral_values = spectrum[powertype]

146 AMP = stat.stdev(spectral_values)

147

148 if powertype == ’excess ’:

149 counts , bins , bars = plotting.hist_plot(spectral_values/AMP ,f’{

powertype} power [-]’, incomplete = True)

150 startAMP = 1

151 else:

152 counts , bins , bars = plotting.hist_plot(spectral_values ,f’{powertype

} power [-]’, incomplete = True)

153 startAMP = AMP

154

155 #shift bins to be centered

156 nbins = len(bins) - 1

157 binw = bins [1] - bins [0]

158 bins = bins + binw/2

159 #delete last one

160 bins = bins[:nbins]

161

162 idx_max = np.argmax(counts)

163

164 MAX = counts[idx_max]

165 CENTRE = bins[idx_max]

166

167 filtering_idx = np.where((bins < CENTRE + 3 * startAMP) & (bins >

CENTRE - 3 * startAMP))

168

169 filt_bins = bins[filtering_idx]

170 filt_count = counts[filtering_idx]

171

172

173 par , pcov = scipy.optimize.curve_fit(models.Gaussian ,

174 filt_bins , filt_count ,

175 p0=[MAX ,CENTRE ,startAMP])

176 perr = np.sqrt(np.diag(pcov))

177

178 #print(par)

179 plt.plot(filt_bins , models.Gaussian(filt_bins , *par),

180 ’r’, ms = 2, label = ’fit curve ’)

26

DM searches w high Q SRF cavities Italian Summer Student Program 2024

181 plt.legend(loc = ’best’)

182 plt.savefig(f’developFolder/img/{fc/1e9:0.9f}GHz_{powertype}_Hist_log.

png’, dpi=300, bbox_inches=’tight’)

183 plt.close()

184

185 if powertype == ’excess ’:

186 plotting.hist_plot(spectral_values/AMP ,f’{powertype} power [-]’,

incomplete = True , log = False)

187 else:

188 plotting.hist_plot(spectral_values ,f’{powertype} power [-]’,

incomplete = True , log = False)

189 plt.plot(filt_bins , models.Gaussian(filt_bins , *par),

190 ’r’, ms = 2, label = ’fit curve ’)

191 if not addtoplot:

192

193 plt.legend(loc = ’best’)

194 plt.savefig(f’developFolder/img/{fc/1e9:0.9f}GHz_{powertype}_Hist.

png’, dpi=300, bbox_inches=’tight’)

195 plt.close()

196

197 return counts , bins , par , perr , pcov

198

199 def verify_skewnorm(spectrum , powertype , fc , error = False , addtoplot =

False):

200 if error:

201 spectral_values = spectrum[powertype].apply(lambda x: x.n)

202 AMP = spectrum[powertype]. apply(lambda x: x.s).iloc [0]

203 else:

204 spectral_values = spectrum[powertype]

205 AMP = stat.stdev(spectral_values)

206 if powertype == ’excess ’:

207 counts , bins , bars = plotting.hist_plot(spectral_values/AMP ,f’{

powertype} power [-]’, incomplete = True)

208 startAMP = 1

209 else:

210 counts , bins , bars = plotting.hist_plot(spectral_values ,f’{powertype

} power [-]’, incomplete = True)

211 startAMP = AMP

212

213 #shift bins to be centered

214 nbins = len(bins) - 1

215 binw = bins [1] - bins [0]

216 bins = bins + binw/2

217 #delete last one

218 bins = bins[:nbins]

219

220 idx_max = np.argmax(counts)

221

222 MAX = counts[idx_max]

223 CENTRE = bins[idx_max]

224

225 filtering_idx = np.where((bins < CENTRE + 3) & (bins > CENTRE - 3))

226

227 filt_bins = bins[filtering_idx]

228 filt_count = counts[filtering_idx]

229

230

231 par , pcov = scipy.optimize.curve_fit(models.Skenorm ,

232 filt_bins , filt_count ,

233 p0=[MAX ,CENTRE ,startAMP , 1])

234 perr = np.sqrt(np.diag(pcov))

235

236 #print(par)

27

DM searches w high Q SRF cavities Italian Summer Student Program 2024

237 plt.plot(bins , models.Skenorm(bins , *par),

238 ’r’, ms = 2, label = ’fit curve ’)

239 plt.legend(loc = ’best’)

240 plt.savefig(f’developFolder/img/{fc/1e9:0.9f}GHz_{powertype}

_Hist_SkewedNorm_log.png’, dpi=300, bbox_inches=’tight ’)

241 plt.close()

242

243

244 if powertype == ’excess ’:

245 plotting.hist_plot(spectral_values/AMP ,f’{powertype} power [-]’,

incomplete = True , log = False)

246 else:

247 plotting.hist_plot(spectral_values ,f’{powertype} power [-]’,

incomplete = True , log = False)

248 plt.plot(bins , models.Skenorm(bins , *par),

249 ’r’, ms = 2, label = ’fit curve ’)

250 if not addtoplot:

251 plt.legend(loc = ’best’)

252 plt.savefig(f’developFolder/img/{fc/1e9:0.9f}GHz_{powertype}

_Hist_SkewedNorm.png’, dpi=300, bbox_inches=’tight’)

253 plt.close()

254

255 return counts , bins , par , perr , pcov

256

257 def IFinterferences(obj):

258

259 power = pd.DataFrame ()

260 #power = dd.DataFrame ()

261 for i in range(len(obj.tuning_steps_series)):

262 newcol = obj.tuning_steps_series[i]. spectrum[’raw_mW ’].copy().rename

(f’step{i:n}’)

263 power = pd.concat ([power.copy(),newcol], axis = 1)

264

265 #print(len(obj.tuning_steps_series))

266 obj.IF_spectrum[’IFmean ’] = power.mean(axis = 1)

267 #print(power.mean(axis = 1))

268

269 c, b, MeanPar , MeanPerr , MeanCov = spectrum_analysis.verify_gaus(obj.

IF_spectrum , ’IFmean ’, fc = 0)

270

271 f_central = ufloat (MeanPar [1], MeanPerr [1])

272 sigma = ufloat (MeanPar [2], MeanPerr [2])

273

274 match len(power):

275 case _ if len(power) < 1e4:

276 tolerance = 4.5

277 case _ if 1e4 <= len(power) < 1e5:

278 tolerance = 5

279 case _ if 1e5 <= len(power) <= 1e6:

280 tolerance = 5.5

281 case _ if 1e6 <= len(power) <= 1e7:

282 tolerance = 6

283 case _:

284 print("sample size out of range (too large), go check!")

285

286 return np.where((obj.IF_spectrum[’IFmean ’] < f_central.n + tolerance *

sigma.n) & (obj.IF_spectrum[’IFmean ’] > f_central.n - tolerance * sigma.n))

[0]

287

288 def IFbaseline_extraction(obj , HWL , PO):

289 obj.IF_spectrum[’baseline ’] = SG(obj.IF_spectrum[’IFmean ’],

290 window_length= 2*HWL+1, polyorder = PO ,

291 mode = ’nearest ’)

28

DM searches w high Q SRF cavities Italian Summer Student Program 2024

292

293

294 plotting.power_plot(obj.idx_IF_interf , obj.IF_spectrum[’IFmean ’], ’IF

bins’, ’average IF response (mW)’, incomplete = True)

295 plt.plot(obj.idx_IF_interf , obj.IF_spectrum[’baseline ’], ’b’, ms = 1,

label = ’IF baseline ’)

296 plt.legend(loc = ’best’)

297 plt.savefig(’developFolder/img/IFInterferences_mean_baseline.png’, dpi

=300, bbox_inches=’tight ’)

298 plt.close()

299

300 return obj.IF_spectrum[’baseline ’]

301

302 def RFbaseline_extraction(obj , HWL , PO):

303 return SG(obj.spectrum[’excess ’],

304 window_length= 2*HWL+1, polyorder = PO ,

305 mode = ’nearest ’)

1 import matplotlib.pyplot as plt

2 from uncertainties import ufloat

3 from uncertainties.unumpy import nominal_values , std_devs

4 import numpy as np

5

6 class plotting:

7 def power_plot(x, y, x_lab , y_lab , filename = ’dummyname.png’, new = True ,

incomplete = False , error = False):

8 if new:

9 plt.figure ()

10

11 if error:

12 x_val = nominal_values(x)

13 y_val = nominal_values(y)

14 y_err = std_devs(y)

15 #plt.errorbar(x_val , y_val , yerr = y_err ,

16 # marker = ’o’, ms = 0.5, color = ’yellow ’,

17 # label = "errors ")

18 plt.plot(x_val , y_val ,

19 ’go’, ms = 1,

20 label = "data")

21 else:

22 plt.plot(x, y,

23 ’go’, ms = 1,

24 label = "data")

25 plt.xlabel(x_lab , fontsize=’x-large’)

26 plt.ylabel(y_lab , fontsize=’x-large’)

27

28 if not incomplete:

29 #plt.legend(loc = ’best ’)

30 plt.savefig(’developFolder/img/’+filename , dpi=300, bbox_inches=’

tight’)

31 plt.close()

32

33 def hist_plot(x, x_lab , filename = ’dummyname.png’, new = True , incomplete =

False , log = True):

34 if new:

35 plt.figure ()

36 if log:

37 counts , bins , bars = plt.hist(x, bins = len(x)//400, log = True ,

label = "data")

38 else:

39 counts , bins , bars = plt.hist(x, bins = len(x)//400, label = "data")

40

41

42 bin_centers = 0.5 * (bins [1:] + bins [: -1])

29

DM searches w high Q SRF cavities Italian Summer Student Program 2024

43

44 # Errors (e.g., Poisson errors: sqrt of the counts)

45 errors = np.sqrt(counts)

46

47 # Overlay the error bars

48 plt.errorbar(bin_centers , counts , yerr=errors , fmt=’o’, color=’C1’,

label=’errors ’, ms = 2)

49 plt.xlabel(x_lab , fontsize=’xx -large’)

50 plt.ylabel(’counts ’, fontsize=’xx -large’)

51 if not incomplete:

52 plt.legend(loc = ’best’)

53 plt.savefig(’developFolder/img/’+filename , dpi=300, bbox_inches=’

tight’)

54 plt.close()

55 return counts , bins , bars

30

	DM search with Haloscopes
	two different DM searches

	SERAPH
	Tunability
	Cryogenic electronics
	Decay measurements
	Coupling parameters
	Microphonics
	Y-factor calibration

	SHADE
	Spectral baseline
	Sensitivity estimation
	Noise sources
	Microphonics
	Rescaled spectra
	Convolved spectra and grand spectrum
	Code

	Acknowledgments
	Appendix
	code
	main
	structural classes
	custom libraries

