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Abstract

We present a new version of the Schwarzschild solution that involves an intrinsically discrete structure
apt for quantization. Our method is the harmonic mapping of the unit sphere (S*) into itself. This
explains the areal quantization whereas the energy quantum derives from the energy of the harmonic
map. Likewise, all thermodynamical quantities are naturally quantized at lower orders. ‘There is Plenty
of Room at the Bottom’ R. P. Feynman [R. P. Feynman, Lecture given on December 29, 1959 at the
annual meeting of the APS with the title There’s Plenty of Room at the Bottom: An Invitation to Enter
a New Field of Physics.

(OMOM

1. Introduction

When K. Schwarzschild solved the spherically symmetric field equations formulated by Einstein in 1916 [1] he
had discovered in fact an infinite class of vacuum metrics involving the harmonic maps (HMs) of the form
f: 8 — §*[2, 3]. In more appropriate terms the Schwarzschild (S) metric can be rewritten as

2
ds? = 7(1 - %)dtz + (d;zM) + r2f2(0)(d0? + sin? 0dp?) (1)
r 1M
where
6 = £k @
sin 6
with
+k
tan 9 = a(tan g) (3)
2 2
inwhich k € Nand a = const. that will be fixed as o = 1 for the time being [3]. Substituting this gives
2k(sin 6)*~!
f0) = sin ) . @
(1 — cos®)® + (1 + cosb)
In general, we consider two Riemannian manifolds M and M’ described by the metrics
M: ds? = g, dx*dxb, (a, b: 1, 2,...,n), (5)
M ds'? = g/;deAde, (A, B: 1, 2,...,m), 6)
andamap f4: M — M, (A=1,2,...,m)defined by the energy functional
1 oft of®
Ay — / ) gab n
E(f )_ 2ngB 8}(‘“ 8xbg \/Ed X, (7)

in which gis the determinant of g, We note that n and m in our study are 2. This expression is adopted as the
action so that the variational principle §E(f4) = 0, yields the field equations
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4 OfB Of¢
VA + FBAC% 3{cc g*=0. )
Here V7 stands for the covariant Laplacian on M and I’ are the connection coefficients on M'. We refer to
[4—7] for the details of the f*: $* — $* HM. The topic of HMs was considered long ago as an alternative
formulation of physical theories [8, 9] which will not be our aim in this Letter. Well-known classes of Einstein
equations follow from (8) upon the appropriate choice of M and M’ metrics which aided in obtaining new
solutions [10—12].

2. The formalism

In this Letter our choice for coordinates on M’ and Mare f4 = {©, ®}and x* = {0, ¢}, respectively, so that
the two metrics are

M: ds? = df? + sin? Odp? 9)
and
M': ds'? = dO? + sin’ Odd2, (10)

The choice () = ki, with k € N (our choice will be k > 0), yields from the HM prescription the results (2)
and (3) as the solution of the equation (8). The integer k denotes the number of times S° is wrapped in the map
and if kis not an integer, (1) does not solve the vacuum Einstein equations. For k = 1, with the (4-) sign, (3)
reduces to the identity map, which gives the standard S-metric. We consider k > 2, so that a quantum number
n=Ak=k, —k; =+1,£2,4£3,...,can be introduced. We note that withany k > 1 (k € N) the metric(1)isa
vacuum solution of Einstein’s equations. In other words, each k represents a Schwarzschild black hole. Therefore
going from one solution to another, changes k for instance from k; to k;, such that n = Ak represents this
transition. Under the transform of S the new Killing vectors (or angular momentum operators) take the form

1 0 1 0
L, = —cotOsin (k) — — —— ko) —, 11
. cot O sin (k) o 0 cos (k) 20 (11)

1 0 1 . 0
L,= zcot@cos(k@)% — %Sln(k@—ae (12)

and
10

=L 13
k 0p 1

which satisfy the original algebra [L;, L;] = € Ly, upon substitutions for © and f () from equations (3) and (4)
above.

Since (1) is a vacuum solution we need to add an energy term to match with any possible contribution as a
quantum correction. This is done by considering a Reissner-Nordstrom (RN)-like term where an appropriate
coefficient replaces the charge term [ 13]. Upon this consideration, a possible choice for a topologically
quantum-corrected S-metric takes the form

dr? + + rf2(0)(d6* + sin’ 0dep?) (14)

r rz 2M (lfl)fh2
(1 i

where the minimum length £}, for HMs is added for dimensional reasons. At this point we leave it open whether
. . . . G\1/2 . . . . .
Z11s to be identified with the Planck length £ = (i—f) ,in which Gis Newton’s gravitational constant cis the

speed of light and 7 is the Planck constant. For this argument, we refer to Misner [8].
The surface area A of the wrapped S” is given by

A = 4rkr? (15)

where for the area of the event horizon we take r = r,. The energy of the map from (7) gives E(f*) = 4k,
however, fixing this so that k = 1 corresponds to S-vacuum with the right physical dimensionality compels us to
choose the energy quantum as

E=4n(k — 1)t (16)
Let us note that (14) has the vacuum limit in M = 0 which consists entirely of quantum effects with frequency
Wy = W. Here, the energy-momentum tensor is given by

2
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(-3

Tl’; = diag(—p, p,» Py» p,p) = 74diag(—l, -1,1, 1) (17)
r

1-1)¢
inwhich p = (r# is the energy density such that the total conserved energy of the spacetime

E= f =g pdx = 27r(1 _ %)f,ﬁ f07r f(e)zsinadé)f; % — 4x(k — )4, (18)
h

Letusclarify that ¢ = detg,, = —f*r*sin’ ¢ in (18) is the determinant of the 3 + 1-dimensional spacetime,

while g = detg,, = f*r*sin? 6 in equation (7) is the determinant of the angular part of the 3 4- 1-dimensional
spacetime. Furthermore, the Kretschmann scalar of (14) is given by

2
asmr — 9oMr(1 — )47 + 56((1 - 1)7)
K= R;wuﬂRl”/aﬁ = u k

S , (19)

where R, 3is the Riemann tensor of the 3 + 1-dimensional spacetime. The pressure components are also
evaluated under the quantum assumption that r > £}, In this manner both A and E are quantized. The event
horizon (7, = r,.) and the inner horizon (r_, which is absent in the classical S-metric) are

(- 1)

resM|2 - S (20)
ro~ (-4 %)fhz, @)
2M
and in the extremal case, we have
rn=r.=M= lf%fh (22)

which is valid only for microscopical black holes. At this level, the mass automatically becomes quantized by the
quantum of length #},. It is observed from (18) that the quantum correction to the mass/energy is

AM = 4mngy, (n = £1, £2,...) (23)
which will give the emission/absorption frequency as w, = W. The area change AA gets contributions
from both Ak = nand from AM, which sums up to give

2 87Tk (1 B %)fﬁ 3
AA > 167M*nql + —&G, — ———— + O(&}) ¢- 24
v Ve (%) 29

In the bracket, the first term corresponds to the classical area change, whereas the second and third terms
correspond to the semiclassical and quantum corrections, respectively. The quantum correction to the area is

—8mn (1 — %) £, which is positive or negative depending on the absorption or emission of gravitational
radiation.
The quantized Hawking temperature and the entropy of the black hole (14 ) are given by

THz(— S ) SN S— (25)
4Tk ), MO+ )
and

S = % = knM*(1 + x)% (26)
respectively, where

(s

X =41~ Ve (27)
Using (25) and (26) we calculate the heat capacity of the black hole for fixed k which is given by
2 2
¢ =| 1 oS _ drkm*x (1 + x) . 28)
0Ty ), 2(1 — 2x)

At this stage, a simple application will be in order. The circular, radial geodesics for § = const ., ¢ = const ., are
described by the reduced Lagrangian
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1 . 1
[ 2 2 29
Zwt 21/}r (29)

where
v (1-7)4

b1 ]
r r

(30)

and a dot stands for %. This admits the dimensionless energy constant E, so that for r = ry = const. we have

M \/1 | @ -o(i-g)e

R -1 M?>

1o -1 3D

exactly, and

o (1-p)a L w(’i) n O((”’i)z] (32)

2M 4 M? M?

in expansion. This defines the possible circular radii of a quantum Schwarzschild atom with mass M which
2
collapses to ry = 0, for k = 1 to create the classical singularity. To the order %, the radius (32) takes the orbital

values

1/4, k=2

1 J—
rmﬁf(lfi):ﬁf 1/3, k=3 .

TM 2 M |38 k=4

1/2, k — o0

and there is no need to state that as in the atomic model all states need not be filled in such a quantized
Schwarzschild model.

The inclusion of angular momentum parameter # can be considered in the simplest form in the equilateral
plane § = g where the Lagrangian becomes

2+ lkzrchz (34)
24p(r) 2

which still bears the imprints of the integer k. In terms of the constants E = 1 (r)f and £ = k*r>}, and by
introducing u = %, the quantized Kepler orbits reduce to the form

- e du
- (0 — @) = f \/E2 - (1 M+ (1 B %)f;%uz)(l + ’;;zuZ) (35)

L= f%z/}(r)iz +

to be fixed in terms of the elliptic functions. Our formalism can be extended to other metrics that involve S*
sector. Inserting the same substitutions as (2) and (3) into the Kerr metric with expected complications provide a
similar quantization. For the RN case, it is similar to the S-metric that the charge term in the metric will be

2 Q*+(1- g 2
shifted according to =5 — %k)}, in which the charge Q will compete with the quantum of length. In the

extremal case, we may argue about the quanta of charge, as in the case of mass. Going to higher dimensional
mapssuchasf: S” — S”, faces technical problems which may be overcome by resorting to the special Hopf
polynomial type maps [14].

3. Conclusion

Different from other researchers [15-20], we don’t define the areal quantization but derive it by appealing to the
geometric HMs of S> — S. Area and energy are quantized naturally in terms of the topological number k which
measures at the same time the degree of the map [2, 3]. In other words, we propose the topological degree of the
HMs to represent the quantum integer for a quantized S-black hole. One may naturally ask: what happens if

k = integer? For non-integer k the vacuum equations are not satisfied and then fixing the problem with a suitable
source may be interesting from the topological point of view. Recalling from C. W. Misner [9], since the coupling
constant is dimensional, any quantum gravity must be non-perturbative otherwise non-renormalizability will
follow. Our presentation in this Letter provides one such possibility within the context of HMs. The areal change
AA consists of classical, semiclassical, and quantal terms in reducing powers. Since r > ¢, the fundamental
length, and k>2 the r = 0 singularity of the S-metric is removed whereas the correspondence principle is

4
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provided by k = 1. Although we left the choice of £}, open, for the unity of quantum in the Universe £}, = £p may
be areasonable choice. Otherwise, assuming that gravity remains non-cooperative with other fields, £}, becomes
a candidate for a new fundamental length in our universe. As a next step, we may employ the local isometry
between black holes and colliding waves to study the wave structure of the quantized Schwarzschild geometry.
Finally, in the Quantum Theory of fields/particles, we overcome all difficulties by reducing everything to
harmonic equations/functions, in Quantum Gravity it is logical to resort to the same concept through the HMs.
It is our belief that this work will prompt further applications toward a better understanding of quantum black
holes.
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