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Abstract
Wepresent a new version of the Schwarzschild solution that involves an intrinsically discrete structure
apt for quantization. Ourmethod is the harmonicmapping of the unit sphere (S2) into itself. This
explains the areal quantizationwhereas the energy quantumderives from the energy of the harmonic
map. Likewise, all thermodynamical quantities are naturally quantized at lower orders. ‘There is Plenty
of Roomat the Bottom’R. P. Feynman [R. P. Feynman, Lecture given onDecember 29, 1959 at the
annualmeeting of the APSwith the title There’s Plenty of Roomat the Bottom: An Invitation to Enter
aNew Field of Physics.

1. Introduction

WhenK. Schwarzschild solved the spherically symmetric field equations formulated by Einstein in 1916 [1] he
had discovered in fact an infinite class of vacuummetrics involving the harmonicmaps (HMs) of the form
f: S2→ S2 [2, 3]. Inmore appropriate terms the Schwarzschild (S)metric can be rewritten as
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inwhich k Î and const.a = that will befixed asα= 1 for the time being [3]. Substituting this gives
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In general, we consider twoRiemannianmanifolds and M¢ described by themetrics
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and amap f : ,A   ¢ (A= 1, 2,K,m)defined by the energy functional
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inwhich g is the determinant of gab. We note that n andm in our study are 2. This expression is adopted as the
action so that the variational principle E f 0,A( )d = yields thefield equations
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Here∇2 stands for the covariant Laplacian on and BC
AG¢ are the connection coefficients on¢.We refer to

[4–7] for the details of the f A: S2→ S2HM. The topic ofHMswas considered long ago as an alternative
formulation of physical theories [8, 9]whichwill not be our aim in this Letter.Well-known classes of Einstein
equations follow from (8) upon the appropriate choice of and¢metrics which aided in obtaining new
solutions [10–12].

2. The formalism

In this Letter our choice for coordinates on¢ and are f ,A { }= Q F and x , ,a { }q j= respectively, so that
the twometrics are

ds d d: sin 92 2 2 2 ( ) q q j= +

and

ds d d: sin . 102 2 2 2 ( )¢ ¢ = Q + Q F

The choice k( )j jF = , with k Î (our choicewill be k> 0), yields from theHMprescription the results (2)
and (3) as the solution of the equation (8). The integer k denotes the number of times S2 is wrapped in themap
and if k is not an integer, (1)does not solve the vacuumEinstein equations. For k= 1, with the (+) sign, (3)
reduces to the identitymap, which gives the standard S-metric.We consider k� 2, so that a quantumnumber
n=!k= k2− k1=±1,±2,±3,K, can be introduced.Wenote that with any k� 1 ( k Î ) themetric (1) is a
vacuum solution of Einstein’s equations. In otherwords, each k represents a Schwarzschild black hole. Therefore
going fromone solution to another, changes k for instance from k1 to k2, such that n=!k represents this
transition. Under the transformof S2 the newKilling vectors (or angularmomentumoperators) take the form
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which satisfy the original algebra L L L, ,i j ijk k[ ] = upon substitutions forΘ and f ( )q from equations (3) and (4)
above.

Since (1) is a vacuum solutionwe need to add an energy term tomatchwith any possible contribution as a
quantum correction. This is done by considering a Reissner-Nordström (RN)-like termwhere an appropriate
coefficient replaces the charge term [13]. Upon this consideration, a possible choice for a topologically
quantum-corrected S-metric takes the form
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where theminimum lengthℓh forHMs is added for dimensional reasons. At this point we leave it openwhether

ℓh is to be identifiedwith the Planck length ,P
G

c

1 2

3( )ℓ = inwhichG is Newton’s gravitational constant c is the

speed of light andÿ is the Planck constant. For this argument, we refer toMisner [8].
The surface area of thewrapped S2 is given by

kr4 152 ( ) p=

where for the area of the event horizonwe take r= rh. The energy of themap from (7) gives E f k4 ,A( ) p=
however,fixing this so that k= 1 corresponds to S-vacuumwith the right physical dimensionality compels us to
choose the energy quantum as

E k4 1 . 16hℓ( ) ( )p= -

Let us note that (14)has the vacuum limit inM= 0which consists entirely of quantum effects with frequency

n
n4 hℓ∣ ∣


w = p . Here, the energy-momentum tensor is given by
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is the energy density such that the total conserved energy of the spacetime
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Let us clarify that g g f rdet sin4 4 2 q= = -mn in (18) is the determinant of the 3+ 1-dimensional spacetime,

while g g f rdet sinab
4 4 2 q= = in equation (7) is the determinant of the angular part of the 3+ 1-dimensional

spacetime. Furthermore, theKretschmann scalar of (14) is given by
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whereRμναβ is the Riemann tensor of the 3+ 1-dimensional spacetime. The pressure components are also
evaluated under the quantum assumption that r� ℓh. In thismanner bothA andE are quantized. The event
horizon (rh= r+) and the inner horizon (r−, which is absent in the classical S-metric) are
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and in the extremal case, we have
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which is valid only formicroscopical black holes. At this level, themass automatically becomes quantized by the
quantumof lengthℓh. It is observed from (18) that the quantum correction to themass/energy is
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whichwill give the emission/absorption frequency as .n
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fromboth!k= n and from!M, which sums up to give
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In the bracket, the first term corresponds to the classical area change, whereas the second and third terms
correspond to the semiclassical and quantum corrections, respectively. The quantum correction to the area is

n8 1 ,
k h
1 2( )ℓp- - which is positive or negative depending on the absorption or emission of gravitational

radiation.
The quantizedHawking temperature and the entropy of the black hole (14 ) are given by
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Using (25) and (26)we calculate the heat capacity of the black hole forfixed kwhich is given by
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At this stage, a simple applicationwill be in order. The circular, radial geodesics for const .,q = const .,j = are
described by the reduced Lagrangian
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This admits the dimensionless energy constant E0 so that for r r const.0= = wehave
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in expansion. This defines the possible circular radii of a quantum Schwarzschild atomwithmassMwhich

collapses to r0= 0, for k= 1 to create the classical singularity. To the order
M
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and there is no need to state that as in the atomicmodel all states need not befilled in such a quantized
Schwarzschildmodel.

The inclusion of angularmomentumparameterℓ can be considered in the simplest form in the equilateral
plane

2
q = p where the Lagrangian becomes
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which still bears the imprints of the integer k. In terms of the constants E r t( )y= and k r ,2 2ℓ j= and by
introducing u
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1= , the quantizedKepler orbits reduce to the form
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to befixed in terms of the elliptic functions. Our formalism can be extended to othermetrics that involve S2

sector. Inserting the same substitutions as (2) and (3) into theKerrmetric with expected complications provide a
similar quantization. For the RN case, it is similar to the S-metric that the charge term in themetric will be

shifted according to ,Q

r
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1
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2

2 1 2

2
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in which the chargeQwill compete with the quantumof length. In the

extremal case, wemay argue about the quanta of charge, as in the case ofmass. Going to higher dimensional
maps such as f: Sn→ Sn, faces technical problemswhichmay be overcome by resorting to the special Hopf
polynomial typemaps [14].

3. Conclusion

Different fromother researchers [15–20], we don’t define the areal quantization but derive it by appealing to the
geometricHMs of S2→ S2. Area and energy are quantized naturally in terms of the topological number kwhich
measures at the same time the degree of themap [2, 3]. In other words, we propose the topological degree of the
HMs to represent the quantum integer for a quantized S-black hole. Onemay naturally ask: what happens if
k≠ integer? For non-integer k the vacuumequations are not satisfied and thenfixing the problemwith a suitable
sourcemay be interesting from the topological point of view. Recalling fromC.W.Misner [9], since the coupling
constant is dimensional, any quantum gravitymust be non-perturbative otherwise non-renormalizability will
follow.Our presentation in this Letter provides one such possibility within the context ofHMs. The areal change
 consists of classical, semiclassical, and quantal terms in reducing powers. Since r� ℓh, the fundamental
length, and k�2 the r= 0 singularity of the S-metric is removedwhereas the correspondence principle is
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provided by k= 1. Althoughwe left the choice ofℓh open, for the unity of quantum in theUniverseℓh= ℓPmay
be a reasonable choice. Otherwise, assuming that gravity remains non-cooperative with otherfields,ℓh becomes
a candidate for a new fundamental length in our universe. As a next step, wemay employ the local isometry
between black holes and collidingwaves to study thewave structure of the quantized Schwarzschild geometry.
Finally, in theQuantumTheory of fields/particles, we overcome all difficulties by reducing everything to
harmonic equations/functions, inQuantumGravity it is logical to resort to the same concept through theHMs.
It is our belief that this workwill prompt further applications toward a better understanding of quantumblack
holes.
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