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Conventions and Notation. In this work, we use a mostly-negative spacetime metric
ηµν = diag(+1,−1,−1,−1) and natural units, ℏ = c = kB = 1, with rationalized Heaviside-
Lorentz units for electromagnetic fields. We define the Fourier transform f(k) of a function
f(x), as well as its inverse transform, as f(k) =

∫
d4x eik·x f(x) and f(x) =

∫ d4k
(2π)4 e−ik·x f(k).

For a four-momentum kµ = (ω, k), we denote k2 = ω2 − |k|2. Throughout, we will also
adopt the notation where prime “′” superscripts are meant to indicate dark sector quantities.
Furthermore, tildes, as in f̃(k) and f̃(x), indicate that a function (including its argument)
is evaluated in the rest frame of the plasma, whereas the absence of a tilde corresponds
to the laboratory frame.

1 Introduction

Throughout its history, the universe has been an efficient factory for visible radiation. Most
notably, we see this today in the form of the cosmic microwave background, starlight, and
high-energy cosmic rays, which are efficiently produced by the hot and dense plasmas found
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in the early universe, stellar environments, or other late-time astrophysical systems. The
efficiency of such reactions implies that even extremely feebly-coupled particles could be
similarly produced. This is known to be the case for solar and supernova neutrinos, and
expected to hold for neutrinos produced thermally in the early universe, constituting the
cosmic neutrino background.

It is thus generic to expect that new feebly-coupled particles beyond the Standard Model
(SM) could be sourced in large numbers through analogous cosmological or astrophysical
processes [1–8] (citation added). Such “dark radiation” is typically searched for in one
of two ways. First, for primordial radiation, its gravitational coupling can leave indirect
telltale signatures in cosmological observations of, e.g., the cosmic microwave background [9,
10] and the abundance of light nuclei [11–13]. Second, if dark radiation possesses non-
gravitational interactions with the SM, it can be detected directly with sensitive calorimetric
or electromagnetic sensors. Although this latter strategy has been most actively explored
in the development of helioscopes searching for new particles emitted by the Sun [14–19]
(and to some degree primordial dark radiation [20–23]), such a program has not been as
widely pursued.

Millicharged particles (mCPs), i.e., particles with an effective electromagnetic charge qχ

much smaller than that of the electron, are a generic class of dark sector particles [24–27]
(citation added). This is because it is reasonable that the dark sector has a massless (or
approximately massless) U(1)′ gauge boson with stable matter that is charged under it. This
U(1)′ can kinetically-mix with our photon, resulting in the dark sector matter acquiring a
small effective electromagnetic charge [28]. If these matter particles are light, it is reasonable
that there is a relativistic abundance of them today, manifesting as dark radiation. In this
paper, we devise a strategy to detect such millicharged dark radiation.

In particular, we focus on light-shining-through-wall (LSW) experiments. Although the
original aim of such experiments is to directly produce and detect new light particles coupled
to electromagnetism, we show that they are also inadvertently sensitive to a relativistic
background of mCPs. Millicharged particles are deflected as they pass through a driven
electromagnetic field, setting up collective phase-space disturbances that can propagate into a
shielded region and excite small signal fields. Such a “direct deflection” setup using quasistatic
lumped element LC circuits was originally proposed in ref. [29] to detect millicharged dark
matter. Here, we show that LSW experiments using pairs of radio-frequency (RF) cavities can
operate in a similar manner to search for millicharged radiation. We focus specifically on the
sensitivity of superconducting RF (SRF) cavities, such as those used in the Dark SRF LSW
experiment [30, 31], since these can achieve extremely large quality factors, Q ∼ few×1011 [32].
Large Q-factors resonantly enhance the strength of the driven electromagnetic field and the
detectable signal field, both of which benefit the overall sensitivity of a LSW experiment.
While we focus solely on the prospects to detect a background of millicharged radiation
(relativistic particles), we note that related works have previously explored the capability
of Dark SRF to detect millicharged dark matter [33] (non-relativistic particles), as well as
directly produce and detect ultralight mCPs [34] (a controlled source of new particles, as
opposed to an isotropic background); see also [35].

The remainder of this work is as follows. In section 2, we provide a conceptual overview of
the class of models and signals discussed throughout this work. In section 3, we summarize the
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formalism used to determine the response of a millicharged plasma to a driven electromagnetic
field similar to those used in RF cavities. Here, we also provide a general discussion on
the sensitivity of a LSW experiment, and list the experimental assumptions that enter into
our projections. The results of these detailed calculations are then applied to a couple of
concrete examples of millicharged dark radiation. In section 4, we consider millicharged
radiation that is produced from the Sun and thermalizes through self-interactions. Then,
in section 5, we apply our formalism to millicharged radiation that arises cosmologically,
such as from dark matter decay or annihilation, a dynamical dark energy component, or
directly or indirectly from the cosmic neutrino background. In each of these examples, we
find that a future version of Dark SRF has the potential to explore a wide range of new
parameter space for such models. Finally, we conclude in section 6 and discuss directions
for future investigation. A series of appendices is also included, which discusses many of
the technical details alluded to throughout the main body.

2 Conceptual overview

Before providing the technical details required to determine the behavior of relativistic
plasmas (by which we mean plasmas whose rest frame temperatures are much greater than
the masses of the plasma particles) we begin by giving a brief overview of the models, signals,
and experimental setup discussed in this work. We will consider a model of dark QED
that includes a dark fermion χ charged under a dark photon A′

µ that is kinetically-mixed
with the SM photon Aµ,

L ⊃ −1
4 FµνF µν − 1

4 F ′
µνF ′µν + ϵ

2 FµνF ′µν − Aµ Jµ − A′
µ J ′µ . (2.1)

Above, Fµν and F ′
µν are the field-strengths for Aµ and A′

µ, respectively, ϵ is the small
dimensionless kinetic mixing parameter, Jµ is the SM electromagnetic current, J ′µ = e′ χ̄γµχ

is the dark current, and e′ =
√

4πα′ is the dark gauge coupling. For simplicity, we will take χ

and A′ to be sufficiently light that they can be well-approximated as massless. To leading order
in ϵ ≪ 1, eq. (2.1) can be diagonalized by redefining the dark photon field as A′ → A′ + ϵ A.
In this basis, it is clear that in addition to its interaction with A′, χ inherits a small effective
“millicharge” under normal electromagnetism, qχ ≃ ϵ e′/e, in units of the standard electric
charge e, whereas SM currents only couple to the SM photon. If, alternatively, the A′ possesses
a small mass mA′ , then χ is effectively millicharged under normal electromagnetism only on
length scales smaller than the Compton wavelength ∼ m−1

A′ [29]. Throughout this work, we
will consider mA′ ≪ 10−7 eV, corresponding to millicharge-like interactions on meter and
longer length scales. For simplicity, we restrict our analysis to cases where the bare masses
mχ and mA′ are negligible. The maximum values of mχ and mA′ for which this assumption
is valid will depend on the context and (qχ, α′) parameter space under consideration, and
will be specified throughout the text.

The strongest bounds on light mCPs come from astrophysical considerations. The
millicharge coupling enables copious pair-production of χ+ and χ− in the solar core, which
occurs most efficiently through the decays of SM plasmons. Such processes lead to extra
energy loss in the Sun and are bounded to contribute less than 1.5% of the observed solar
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assume very good vacuum at the level of LIGO, which is P ⇠ 10�12 atm, which corresponds to a gas density of
nN ' 2.5⇥ 107 cm�3 ⇥ (295 K/T ).

After a time ttrap, the ambient density of mCPs outside the cavendish shell is the number of captured mCPs, which
follows from Eq. 15,

n̄� ' 3

4

n�VE ttrap
Rtrap

, (17)

where now n̄� is the ambient density around the cavendish setup, n� is the density outside of the external trap, and
VE is the electric drift velocity outside the trapping shell.

Inside the trap, the small density of normal matter means that the captured mCPs e↵ectively free-stream. In
particular, we find that for the largest charges we consider, the mean-free path in such low pressure environments is
typically � 103 km. Thus, as the mCPs rush in towards the cavendish shell, they pick up a significant velocity, which
just follows from energy conservation, which gives

v� '
s

3Ttrap

m�
+

2eq�
m�

�0

�
1�R0/Rtrap

�
, (18)

where Ttrap is the temperature of the trap shell and �0 is the voltage of the cavendish shell. Since this velocity is
much greater than the initial thermal one, this can significantly reduce the scattering cross section, thus lowering the
di↵usion time through the cavendish shell.

Aside from the di↵usion time through the cavendish shell, another relevant timescale is the time to fall from the
trap shell to the cavendish shell. Parametrizing the potential energy as U(r) = �eq� �0 R0/r and the total energy as

E = Ttrap + U(Rtrap) ' U(Rtrap), the velocity is thus v = �dr/dt =
p

2(E � U(r))/m�. The integrated version of
this is

tfall =

r
m�

2 eq� �0 R0

Z Rtrap

R0

drq
r�1 �R�1

trap

' ⇡

2
p
2

s
m� R3

trap

eq� �0 R0
, (19)

where tfall is the time it takes to go from the trap shell to the cavendish shell and in the second equality we took
R0 ! 0 in the integral.

When this infall time and di↵usion time through the cavendish shell is shorter than the oscillation timescale of the
cavendish shell, and if the thermalization length scale is smaller than the shell thickness, then the resulting voltage
di↵erence inside the cavendish shell is

��� ' eq�n̄�

6

R3
trap

R0

�
1� r2/R2

0

�
' 1

8

�
1� r2/R2

0

� Rtrap

R0
Etrap Rtrap �� ttrap , (20)

where in the last equality �� is the conductivity of mCPs in the environment external to the trap shell. Compared to
Eq. 16, the main benefit of Eq. 20 is that ttrap can be much larger than the inverse-frequency of the cavendish shell.
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Figure 1. A schematic of the “direct deflection” experimental concept discussed throughout this
work. In a typical light-shining-through-wall experiment employing RF cavities, a “deflector” cavity is
driven to high-field. A quiet “detector” cavity, tuned to the same frequency, is placed nearby. If a
feebly-coupled background plasma of millicharged χ± radiation is present, the driven electromagnetic
fields of the deflector cavity create disturbances in the plasma in the form of charge and current
densities Jµ

χ that oscillate at the same frequency as the driven cavity. This alternating wave train of
millicharges and millicurrents is able to propagate unimpeded throughout the experiment, resonantly
exciting electromagnetic fields in the shielded detector cavity.

luminosity from helioseismology and solar neutrino data, translating to an upper limit of
qχ ≲ 2 × 10−14 [36]. Similar reactions can also modify the stellar evolution of red giant
stars, which has been used to derive the updated bound qχ ≲ 6 × 10−15 [37] (for related,
yet weaker, constraints, see, e.g., refs. [24, 26, 36]).

In this work, we focus on “direct deflection” experiments, which were proposed in ref. [29]
and further investigated in refs. [17, 38] as a laboratory probe of non-relativistic mCPs. Here,
we show that analogous setups can also search for a relativistic background of low-energy
mCPs (of cosmological or astrophysical origin) with sensitivity extending beyond current
astrophysical limits. As shown schematically in figure 1, this detection scheme involves
two regions. The first, referred to as the “deflector,” involves strong electric and magnetic
fields with amplitudes Edef and Bdef, extending over a shielded region of length Ldef and
oscillating at frequency ωdef. The trajectories of mCPs passing through this region are
electromagnetically deflected, setting up small millicharge ρχ and millicurrent Jχ density
perturbations. These perturbations propagate at relativistic speeds into a separate shielded
“detector” region, generating signal electromagnetic fields that oscillate at the same frequency.
An electromagnetic detector tuned to ωdef can resonantly amplify such fields, enhancing the
sensitivity to small couplings. Such setups thus operate analogously to LSW experiments,
where instead of producing and detecting new particles, the system induces and detects
disturbances in a background of feebly-interacting particles. We stress that, like typical LSW
experiments, our proposed experiment does not require scanning of the resonant frequency
ωdef. This is because the frequency of the signal matches the frequency chosen to operate
the deflector and detector cavities. In other words, a single setup will be sufficient to cover
the entire range of experimental reach discussed in this work.

In the weak-coupling, collisionless, and quasistatic regime (to be discussed further
below), the mCP perturbations can be estimated from the force imparted by the deflector
Fdef = eqχ |Edef + vχ × Bdef| ∼ eqχEdef, by noting that the change in the velocity of an
mCP with energy Eχ and velocity vχ is δvχ ∼ eqχ Edef δtdef/Eχ, where δtdef ∼ Ldef/vχ is
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the timescale that the mCP experiences a coherent electromagnetic deflection, set by the
mCP transit time. This estimate holds in the limit that the deflector is quasistatic, i.e.,
ωdef ≪ vχ/Ldef. The amplitude of the current perturbations induced inside the deflector
is thus [17, 29]1

|Jχ| ∼ eqχ nχ δvχ ∼
ω̃2

p

vχ
Edef Ldef , (2.2)

where ω̃p ∼ eqχ

√
nχ/Eχ is the contribution to the plasma frequency of the SM photon from

the background of mCPs with number density nχ. Alternatively, eq. (2.2) follows from the
Drude model for the conductivity σ of a collisionless plasma, i.e., σ = |Jχ|/Edef ∼ δtdef ω̃2

p.
Note that eq. (2.2) is akin to the standard result of Debye screening, which states that

a weakly-coupled background of charged particles partially screens the deflector’s electric
potential A0

def ∼ Edef Ldef, setting up a charge density of ρχ ∼ |Jχ|/vχ ∼ (ω̃p/vχ)2 A0
def (see,

e.g., ref. [39] for a qualitative discussion). In particular, when the plasma is isotropic in
the frame of a static deflector, the induced density tracks the local value of the potential,
ρχ(x) ∝ A0

def(x), such that no perturbations exist where the laboratory is electrically grounded.
This would seem to imply that no charge densities should propagate out of a shielded deflector.
However, provided that certain criteria are met, ρχ and Jχ can indeed propagate into a
separate shielded “detector region.” For instance, if the deflector (i.e., laboratory) frame
is distinct from the rest frame of the plasma, the relative “wind” of charged particles in
the lab frame allows the charge and current perturbations to propagate downstream [29].
Also, on timescales shorter than the transit time δtdef ∼ Ldef/vχ, the behavior of the plasma
exhibits transient behavior that deviates from the ρχ(x) ∝ A0

def(x) steady-state solution.
Hence, in either case of an mCP wind or non-quasistatic deflector, the perturbations can
penetrate the detector at a level parametrically similar to eq. (2.2). This is shown in detail
in the next section, which outlines the formalism to more accurately describe the response
of the mCP background, incorporating the complete magnetohydrodynamic response of
relativistic mCPs. For instance, as we will see, this treatment accounts for modifications to
the simple estimate in eq. (2.2) that can arise as a result of collective backreactions from
long-ranged inter-mCP interactions.

As emphasized above, eq. (2.2) applies to the quasistatic case where ωdef ≪ vχ/Ldef. For
much higher frequencies, we instead expect a strong suppression in ρχ and Jχ, since in this
case an mCP does not experience a coherent force as it traverses the deflector. As a result, past
studies, which have focused on non-relativistic populations of mCPs with vχ ≪ 1, identified
LC circuit resonators as the ideal detector to operate at sub-GHz frequencies [17, 29]. In this
work, we instead focus on relativistic plasmas, implying that RF cavities with ωdef ∼ 1/Ldef
can be used as both the deflector and detector, analogous to the existing Dark SRF LSW
experiment employing superconducting cavities [31].

Also note that from eq. (2.2) the perturbations scale inversely with the characteristic
energy of the plasma, |Jχ| ∝ ω̃2

p ∝ 1/Eχ. As a result, the sensitivity of a direct deflection
1Here, we have used the force imparted transverse to the incoming direction of the mCP, since the

longitudinal component of the acceleration is suppressed by γ2
χ, where γχ is boost of an individual mCP. In

later sections, we will quantify the relative bulk motion of the plasma by γ (without a “χ” subscript).
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setup is enhanced for lower energy systems. In this work, we will focus on two low-energy
examples that arise in a relativistic context: the so-called “dark solar wind” population of
mCPs produced from the Sun [40], as well as cosmological populations of dark radiation
with characteristic temperature ≪ meV. Before discussing the sensitivity to each scenario,
in the next section we first provide a summary of our formalism, which can be generally
applied to ultrarelativistic plasmas.

3 Deflecting dark radiation

3.1 Plasma formalism

This section discusses the general formalism used to determine the millicharged plasma’s
response to a driven electromagnetic field and may be skipped for those readers solely
interested in its application when determining the sensitivity to concrete examples. In this
subsection and in the appendices, we will work with quantities evaluated in the rest frame of
the mCP plasma (denoted with tildes). We treat the mCPs and the dark photons collectively
as an ultrarelativistic thermal plasma, described by a temperature T̃χ much greater than the
particle masses (note that the plasma temperature is only well-defined in its rest frame). For
instance, T̃χ determines the number density as ñχ = 3ζ(3) gχ T̃ 3

χ/4π2 ≃ 0.4 T̃ 3
χ with gχ = 4

for the spin-states of χ± (citation removed).
The response of an mCP population to the deflector is well-captured by fluid variables

(e.g., charge and current densities) in the limit that there are many mCPs within the deflector.
As an example, taking the deflector to be a spherical cavity of radius Ldef in the laboratory
frame and the relative motion of the plasma and the laboratory to be described by the
Lorentz factor γ, the typical number of mCPs inside the deflector in the plasma frame is
then Ñχ ∼ ñχ (4π/3) L3

def/γ. To be well-approximated as a fluid, we will then demand that
Ñχ ≳ 102, such that the relative size of Poisson fluctuation in the total mCP number is small,
1/Ñ

1/2
χ ≲ 0.1, corresponding to T̃χ ≳ 10−3 meV × γ1/3 (m/Ldef).2

We will also approximate the plasma response in the weak-field and collisionless limits [41,
42]. The plasma is said to be in the weak-field regime when its potential energy is small
compared to its kinetic energy ∼ 3 T̃χ. The potential energy of the mCP interacting with the
deflector is, eqχ Ẽdef L̃def ∼ eqχ γ Edef Ldef, whereas the typical interaction energy between
neighboring mCPs in the plasma is α′ ñ

1/3
χ . Thus, for Edef ∼ 0.1 T and Ldef ∼ 1 m,

the weak-field condition is satisfied for T̃χ ≳ 10−5 meV × γ
(
qχ/10−14) and α′ ≲ 1. The

plasma is in the collisionless regime on timescales smaller than the inverse momentum-
exchange rate ∼

(
α′ 2 T̃χ

)−1 [43–45]. Therefore, the plasma is collisionless within the time it
takes to traverse the deflector provided that α′ 2 T̃χ ≲ γ/Ldef, or equivalently α′ ≲ 10−2 ×
γ1/2 (meV/T̃χ)1/2 (m/Ldef)1/2.

As a toy example, let us consider such a plasma consisting of charged particles χ± that
couple only to the SM electromagnetic field. We will therefore ignore in this section the role
of the dark photon, but will address this point later. We wish to describe the currents Jµ

χ in
the plasma that are induced as a result of the deflector, the latter of which is described as a

2We stress that here Ñχ is defined in the plasma frame. Due to loss of the notion of simultaneity between
frames, the number of mCPs that are simultaneously inside the deflector is frame-dependent.
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stiff source-current Jµ
def. In the plasma frame, Maxwell’s equations are given by

∂µF̃ µν(x) = J̃ν
χ(x) + J̃ν

def(x) . (3.1)

In the weak-field limit, the plasma response is approximately linear in the electromagnetic
field, such that in momentum-space the current induced in the plasma is

J̃µ
χ (k) = Π̃µν(k) Ãν(k) . (3.2)

The tensor Π̃µν can be derived from either the Vlasov (transport) equations [46, 47] or thermal
field theory [48] (the two approaches have been shown to give equivalent results [49–52]). In
appendix A.2, we provide a derivation of Π̃µν using the Vlasov equation for an ultrarelativistic
plasma. As shown there, Π̃µν(k) depends on the plasma frequency ω̃p in the plasma rest
frame, which is generally defined as (see, e.g., section 6.3.4, eq. 6.40 of ref. [1])

ω̃2
p = (eqχ)2 ñχ

〈1 − ṽ2
χ/3

Ẽχ

〉
, (3.3)

where the brackets involve an average over phase space of the mCP velocity ṽχ and energy
Ẽχ in the plasma rest frame.

Using eq. (3.2) in the Fourier transform of eq. (3.1) then yields [52](
k2 ηµν − kµ kν + Π̃µν) Ãν(k) = −J̃µ

def(k) . (3.4)

As discussed in appendix A.3, the above equation can be solved after decomposing Π̃µν

into its longitudinal Π̃L and transverse Π̃T components. In Coulomb gauge, ki Ãi(k) = 0,
this procedure gives

Ã0(k) = J̃0
def(k)

|k|2 + (|k|/ω)2 Π̃L

, Ãi(k) = J̃ i
def(k) − (kiω/|k|2) J̃0

def(k)
|k|2 − ω2 − Π̃T

. (3.5)

The poles in the above expressions determine the longitudinal and transverse plasma dispersion
relations, ω2 + Π̃L(k) = 0 and ω2 − |k|2 + Π̃T (k) = 0, respectively. The currents induced in
the plasma are then determined by using eq. (3.5) in eq. (3.2) (see also eq. (A.29))

J̃0
χ(k) = − Π̃L

ω2 + Π̃L

J̃0
def(k) (3.6)

J̃ i
χ(k) = Π̃T

|k|2 − ω2 − Π̃T

J̃ i
def(k) −

( Π̃L

ω2 + Π̃L

+ Π̃T

|k|2 − ω2 − Π̃T

)
ω ki

|k|2
J̃0

def(k) . (3.7)

Finally, we evaluate J̃µ
χ (x) by taking the inverse-Fourier transform of the above momentum-

space expressions, which in our case needs to be done numerically (see appendix B for
additional details).

As a simple example, let us take the deflector to consist of a static test charge qdef
at rest in the plasma frame, such that J̃0

def(x) = eqdef δ3(x). From appendix A.1, the
static (ω → 0) limit of the longitudinal plasma tensor is Π̃L ≃ 3 (ω̃p ω/|k|)2. Using this in
eq. (3.6) and inverse-Fourier-transforming to position-space then gives the standard result,
J̃0

χ(x) = −3ω̃2
p Ã0

def(x) exp(−
√

3 ω̃p |x|), where Ã0
def(x) = eqdef/(4π|x|) is the electric potential
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of the deflector. Thus, within a distance ∼ ω̃−1
p from the deflector, the charge density induced

in the plasma agrees with the parametric form given in section 2.
The above result, in which case Debye screening gives rise to a plasma charge density

that is directly proportional to the local electric potential, occurs in the special case where
the deflector is static and the momentum distribution of the plasma is isotropic in the lab
frame. However, in our work, we will consider a deflector that is not stationary in the plasma
frame, which can arise if it oscillates in time or has a significant relative motion with respect
to the plasma. Importantly, the time it takes for the plasma to respond to the deflector is
roughly the crossing time of a single particle. As a result, the plasma response continually
lags behind that of a rapidly oscillating deflector, screening instead an earlier electromagnetic
configuration. This is known as dynamical Debye screening [53, 54]. In the next section, we
numerically evaluate results for such a deflector in the plasma frame, and then boost into
the laboratory frame, in order to determine the induced response for various representative
choices of model and experimental parameters.

3.2 Perturbing a relativistic plasma

In this section, we determine the form of the plasma current Jµ
χ = (ρχ, Jχ) induced in the

laboratory (i.e., deflector) frame. This coordinate system is denoted by symbols without
tildes, with the origin defined to be at the center of the deflector. When investigating the
effect of the relative motion between the laboratory and plasma frames, we will take the
resulting plasma “wind” in the laboratory frame to be oriented along the −ẑ direction. Along
these lines, we will dominantly focus on two representative cases, quantified by the boost γ

of this wind: γ = 1, corresponding to no relative motion between the deflector and plasma,
and γ = 893, corresponding to a large wind with the particular value of γ motivated by the
“dark solar wind” scenario investigated later in section 4.

As discussed in the previous subsection, the deflector is incorporated by the four-current
Jµ

def. As a representative example, we take the deflector in the lab frame to be composed
of two separate localized contributions separated by a distance d along the z-direction,
Jµ

def(x) =
(
Jµ

cap(x + d ẑ/2) + Jµ
cap(x − d ẑ/2)

)
e−iωdeft, where a contribution of a single piece

Jµ
cap(x) is defined to be

J0
cap(x) = Jdef

z

Ldef
e−z2/L2

def cos (x/Ldef) cos (y/Ldef)

Jx
cap(x) = Jy

cap(x) = 0

Jz
cap(x) = − iJdef

2 ωdef Ldef e−z2/L2
def cos (x/Ldef) cos (y/Ldef) , (3.8)

and the amplitude Jdef ∼ Bdef/Ldef controls the overall strength of the current. Note that
the form of Jµ

cap(x) corresponds to a source that is exponentially localized within a distance
Ldef to the x − y plane at z = 0 and is periodic over the same length scale in the transverse
x and y directions. Thus, in the static ωdef → 0 limit, Jµ

cap(x) is a fixed charge distribution
qualitatively similar to a parallel plate capacitor in the x − y plane with a sinusoidal charge
profile. The deflector Jµ

def(x) is a sum of two such contributions, one localized near z = −d/2
and one at z = d/2. Our motivation for eq. (3.8) is as follows: 1) it obeys charge continuity,
2) it admits a closed-form Fourier transform (see appendix B), and 3) for a particular value
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Figure 2. The electromagnetic fields Edef and Bdef directly sourced by the deflector of width ∼ Ldef
(eq. (3.8)) and frequency ωdef = 2.4 L−1

def, independent of the plasma, evaluated in the x − z plane at
y = 0 and t = Ldef. In both panels, the dark gray arrows show the direction of Re(Edef) projected
onto the x − z plane. In the left- and right-panels, the color contours show the magnitude |Re(Edef)|
and |Re(Bdef)|, respectively, normalized by Jdef Ldef.

of the separation d, the electromagnetic fields that Jµ
def sources decay exponentially with

|z| (analogous to a shielded deflector) and are qualitatively similar to those employed in
LSW experiments for |x| ≲ Ldef. This is satisfied by fixing d = π Ldef/

√
(ωdef Ldef)2 − 2 for

ωdef Ldef >
√

2 and d = 0 for ωdef Ldef <
√

2.
To demonstrate this last point, we solve Maxwell’s equations with a source given by

eq. (3.8) in order to determine the electric Edef and magnetic Bdef fields directly generated
by the deflector, independent of the plasma. Our results are displayed in figure 2, which
shows the direction of Re(Edef) in both panels, as well as the magnitude |Re(Edef)| and
|Re(Bdef)| in the left- and right-panels, respectively. Here, we fix the deflector frequency to
be ωdef = 2.4/Ldef, where the numerical prefactor is motivated by the form of the TM010
mode of a cylindrical cavity of radius Ldef [55]. We find that Edef ∼ Bdef ∼ Jdef Ldef are
approximately constant within a distance Ldef of the origin and are exponentially-suppressed
for |z| ≳ Ldef (the precise value of the separation d ∼ Ldef is fixed to guarantee this), with
Edef dominantly aligned along the z-axis for |x| ≲ Ldef. This is qualitatively similar to the
cavity-mode structure of the TM010 mode employed in the Dark SRF LSW experiment [31].
Indeed, we find that when integrated over the volume defined by

√
|x|2 + |y|2 , |z| ≤ πLdef/2,

Edef and Bdef have O(1) overlap with the TM010 modes of a cylindrical cavity aligned along
the z-direction and centered at |x| = 0.

To determine the induced plasma current Jµ
χ (x), we first Lorentz boost the deflector

current Jµ
def(x) to the plasma frame, Fourier transform to momentum-space, use this in

eqs. (3.6) and (3.7) to obtain J̃µ
χ (k), and then numerically perform an inverse-Fourier

transform back to position-space.3 The fact that Jµ
def(x) is sinusoidal in t, x, and y implies

that the corresponding Fourier integrals are trivial. This is an important simplification for
our analysis, which makes the highly-oscillatory integrals amenable to numerical evaluation.
This same sinusoidal profile, however, implies that the source is infinitely extended along
the transverse directions; while this is unrealistic, we expect our results to be accurate up

3As a consistency check, we have confirmed that our numerically obtained Jµ
χ (x) obeys charge continuity.
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Figure 3. The plasma current Jχ in the lab-frame, evaluated in the x− z plane at y = 0 and t = Ldef,
fixing the plasma frequency to ω̃p = 10−2 L−1

def and deflector frequency to ωdef = 2.4 L−1
def. In both

panels, the dark gray arrows show the direction of Re(Jχ) projected onto the x − z plane, and the
contours show the magnitude |Re(Jχ)|, normalized by Jχ (eq. (3.9)). In the left-panel, we consider
the plasma to be at rest in the lab frame with no boost γ = 1, whereas in the right-panel we take it to
have a large relative boost γ = 893 along the −z direction (corresponding to the scenario investigated
in section 4). The boundary of the shaded gray region is where |Edef(x)| = 1% of its maximal value,
thus defining the region in which the deflector fields are dominantly localized.

to O(1) factors as long as we limit ourselves to |x| ≲ Ldef since at these locations the fields
sourced by Jµ

def are qualitatively similar to those of LSW cavity modes, as discussed above.
The induced plasma current oscillates with the same time-dependence as the deflector,

Jµ
χ (x) = Jµ

χ (x) e−iωdeft. In figure 3, we show the spatial profile of the vector-current Re(Jχ),
as well as the magnitude |Re(Jχ)|, in the x − z plane at t = Ldef and y = 0, for the case
where the plasma is either at rest in the lab frame with no boost γ = 1 (left-panel) or has
a large relative boost γ = 893 along the −z direction (right-panel). In both cases, we also
fix ωdef = 2.4/Ldef and ω̃p = 10−2/Ldef. From this, we see that for

√
|x|2 + |z|2 ≲ Ldef, Jχ is

aligned or anti-aligned with the z-axis in both panels, which is qualitatively similar to the
deflector’s electric field Edef in figure 2. Furthermore, Jχ oscillates spatially with period ∼ Ldef
away from the deflector, corresponding to wave trains of alternating charge that propagate
outward from the source. For the case of γ = 1, these pulses propagate symmetrically along
the ±z directions and are strongly-peaked near the source (|z| ≲ Ldef), whereas for γ ≫ 1
they propagate out to much larger distances predominantly downwind along the −z direction.
In presenting our results, we have normalized the magnitude of the plasma current by a
constant Jχ that is comparable to the heuristic estimate in eq. (2.2) with Edef ∼ Jdef Ldef,

Jχ ≡ (ω̃p Ldef)2Jdef/10 , (3.9)

where we have fixed the overall numerical prefactor such that |Jχ| = O(1) × Jχ near
the deflector.

The ω̃2
p scaling of eqs. (2.2) and (3.9) applies to the ω̃p ≲ L−1

def and ωdef ≲ few × L−1
def

regime. To more generally illustrate the behavior of Jχ with varying plasma and deflector
frequencies, we show in figure 4 the magnitude |Jχ| at a fixed position far from the deflector, as
a function of either ω̃p (left-panel) or ωdef (right-panel), and for two representative choices of
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Figure 4. The magnitude of the induced plasma current |Jχ| in the lab frame, normalized by
Edef/Ldef, where Edef is the maximum size of the electromagnetic field directly sourced in the interior
of the deflector. Left: |Jχ| as a function of the plasma frequency ω̃p for various boosts γ of the plasma
in the lab frame, evaluated at the position x = (0, 0,−5Ldef) and fixing the deflector frequency to
ωdef = 2.4/Ldef. The solid lines correspond to a numerical evaluation, whereas the dotted lines show
the simple fitting formula of eq. (3.10). Right: as in the left-panel, except showing |Jχ| as a function
of ωdef, evaluated at the position x = (0, 0,−5Ldef − d/2), fixing ω̃p = 10−2/Ldef. The separation d

is fixed as a function of ωdef following the discussion below eq. (3.8). We do not show our results
for ωdef ∼ (0.5 − 2)/Ldef, since in this range our prescription for d gives rise to a large unshielded
component of Edef ∼ Bdef, and so displays features that are not directly relevant when applying our
results to a shielded cavity.

the relative boost γ between the plasma and lab frames. Fixing ωdef ∼ 1/Ldef in the left-panel,
we see that for ω̃p ≪ ωdef the induced current scales with the plasma frequency as |Jχ| ∝ ω̃2

p,
in agreement with the heuristic discussion of section 2. Instead, when ω̃p ≫ γ ωdef, we find
that the current is suppressed by the large plasma frequency, scaling instead as |Jχ| ∝ 1/ω̃2

p.
The reason for this turnover near ω̃p ∼ γ ωdef is simple to understand. In the plasma

frame, the frequency of the deflector is boosted to ω̃def ∼ γ ωdef. If ω̃def ≲ ω̃p, then the deflector
is unable to excite on-shell plasmon excitations which propagate out to large distances. In
this case, in the plasma frame the deflector drags along with it a cloud of charged particles
of size limited by the Debye length ∼ ω̃−1

p . Boosting back into the proper frame of this
cloud (i.e., the rest frame of the deflector), this length scale is inverse-Lorentz-contracted
along the longitudinal direction to γ ω̃−1

p . Thus, if γ ω̃−1
p ≲ Ldef, then the plasma backreacts

and efficiently screens the effect of the deflector. In other words, Jχ becomes suppressed
in the large ω̃p limit once ω̃p ≳ γ ωdef and ω̃p ≳ γ/Ldef (which for our choice of parameters
are roughly equivalent criteria, since ωdef ∼ 1/Ldef).

In the right-panel of figure 4, we instead fix the plasma frequency to be small (ω̃p ≪
1/|z| ≪ 1/Ldef) and show |Jχ| as a function of the deflector frequency ωdef. We see that
regardless of the boost γ, Jχ is suppressed for rapidly oscillating deflectors, ωdef ≫ L−1

def. As
discussed in section 2, this is due to the fact that the oscillation timescale ∼ ω−1

def is shorter than
the transit time of a relativistic plasma particle ∼ Ldef, such that it is not coherently deflected
by the electromagnetic field. Instead, we see that for a quasistatic deflector ωdef ≪ L−1

def,
the size of the induced current is strongly suppressed if γ = 1, corresponding to no relative
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motion between the plasma and lab frames; as discussed in section 2, this is due to the fact
that for γ = 1 and ωdef ≪ L−1

def, the leading order response of the plasma tracks the local value
of the electric potential. If away from the deflector the local value of the electric potential is
small, the leading contribution enters at O(ωdef Ldef), yielding |Jχ| ∼ ωdef Ldef Jχ.

To summarize, our results show that for a relativistic plasma the optimal choice for ωdef
(i.e., one that enhances |Jχ| independent of γ) is ωdef ∼ L−1

def, analogous to a resonant cavity.
In this case, ωdef is large enough to generate a signal that propagates out of the deflector
independent of γ, but not so large that the deflector oscillates many times within the transit
time of a single plasma particle. In the next section, we will consider the sensitivity of such a
setup. In this case, we find that at a distance ∼ several × Ldef downwind from the deflector,
our results can be roughly approximated by

|Jχ| ∼ aγ
Edef
Ldef

min
(

ω̃p Ldef , 1 ,
bγ γ

ω̃p Ldef

)2
e−iωdeft , (3.10)

where Edef ∼ Bdef refers to the maximum amplitude of the electromagnetic field evaluated
inside the deflector cavity, and aγ and bγ are defined to be aγ ≡ 10−2, bγ ≡ 1 for γ ∼ 1 and
aγ ≡ 1, bγ ≡ 10−2 for γ ≫ 1. Eq. (3.10) is shown as dotted lines in the left-panel of figure 4,
which demonstrates that for most values of ω̃p it adequately captures the main qualitative
behavior of the response, up to O(1) factors. We note that this fit does not capture the
significant signal enhancement evident in our numerical estimate for ω̃p ∼ γ ωdef ∼ γ L−1

def,
which is due to a coherent deflection of the traversing mCPs for our particular choice of
the deflector current Jµ

def.
Before proceeding, we remind the reader that this calculation was performed assuming

that the plasma particles χ only couple to the SM photon. However, as discussed above, we
are interested in the possibility that these interactions are mediated indirectly via an ultralight
kinetically-mixed dark photon A′. In this case, χ couples directly to A′, and indirectly to
electromagnetism with an effective millicharge on distance scales smaller than the dark photon
Compton wavelength ∼ m−1

A′ . As a result, self-interactions mediated by the A′ can backreact
on current densities induced in the millicharged plasma when ω̃′

p ≳ γ max(ωdef , 1/Ldef),
where ω̃′

p = e′ ω̃p/(eqχ) is the contribution of χ to the A′ plasma frequency. In this case,
provided that the dark photon is longer-ranged than the experimental setup (mA′ ≪ L−1

def),
the millicharged plasma generates an effective visible millicurrent of nearly the same form as
in eq. (3.10), after making the replacements ω̃p → ω̃′

p and Jχ → ϵ2 Jχ,

|Jχ(x)| ∼ aγ ϵ2 Edef
Ldef

min
(

ω̃′
p Ldef , 1 ,

bγ γ

ω̃′
p Ldef

)2
e−iωdeft , (3.11)

which maintains the expected scaling |Jχ| ∝ ϵ2 ω̃′ 2
p = ω̃2

p in the limit of small coupling.

3.3 Experimental reach

The previous section determined the form of the current densities Jχ induced in the millicharge
plasma from an oscillating electromagnetic field, such as those driven in resonant cavities
(see eq. (3.11)). Next, we review how Jχ can in turn excite small electromagnetic fields in
a nearby shielded cavity, which we refer to as the detector. More concretely, we will focus
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on a scenario analogous to the existing Dark SRF LSW experiment, which has recently
conducted a pathfinder run [31] employing two resonant cavities tuned to the same frequency.
One such cavity is driven at high power, with the goal of directly producing new particles,
such as dark photons, that can resonantly excite small electromagnetic fields in a shielded
detector cavity tuned to the same frequency. Although inadvertent, this same experiment
also operates as a direct deflection setup, with the driven cavity functioning as the deflector
for a background of relativistic mCPs.

Dark SRF employs TM010 modes in both cavities, which are longitudinally aligned with
respect to the directions of their electric field profiles, Edef and Edet. In the previous section,
we saw that a similar electromagnetic field configuration can also source a millicharge current
density Jχ with a spatial profile similar to that of a TM010 mode. The ability for this
millicurrent to excite the same mode Edet in the detector cavity is dictated by the resonant
form of the signal power [55],

Psig = Q

ωdef

∣∣ ∫ d3x Jχ · E∗
det
∣∣2∫

d3x |Edet|2
≡ Q

ωdef
η2 |Jχ|2 Vdet , (3.12)

where Q is the quality factor of the detector cavity, the integrals are over the volume Vdet
of the detector cavity, and in the second equality |Jχ| is the characteristic amplitude of the
induced millicurrent given in eq. (3.11). In the second equality, we have also defined the
dimensionless overlap form factor η, which is O(1) in the case where the spatial profiles of Jχ

and Edet are optimally matched. In our estimates, we will adopt η = 1.
Let us first consider the existing sensitivity of the recent Dark SRF pathfinder run,

adopting representative experimental parameters of ωdef = 2π × GHz, Q = 3 × 1010, Edef =
5 MV/m, and Vdet = π (10 cm)3. After a total data-taking time of a few hours, this run
observed no excess power in the detector cavity above thermal noise, setting an upper bound
of Psig ≲ 3 × 10−16 W, which was limited by an unwanted frequency offset between the two
cavities. Equating this to eq. (3.12) gives an existing sensitivity of |Jχ| ≃ 5 × 10−13 A/m2.
Future runs of Dark SRF are expected to significantly enhance this sensitivity with better
frequency matching, larger fields and quality factors, reduced noise temperatures, and an
optimized signal analysis.

Therefore, to estimate the ultimate reach of a future experiment, we adopt the following
upgraded experimental parameters: Q = 1012, Edef = 60 MV/m, and deflector/detector
volumes as large as Vdef = Vdet ∼ 1 m3. We also assume that the deflector cavity’s phase is
actively monitored, which enables an optimized signal analysis with a corresponding signal-
to-noise ratio given by SNR = Psig tint/Tdet, where tint = 1 yr is the total observation time
and Tdet = 10 mK is the temperature of the detector cavity [30]. Demanding that SNR ≳ 1
then gives a future sensitivity to millicurrents of size |Jχ| ≃ 3 × 10−24 A/m2 × (1 m/Ldef)2,
where we took Vdef = Vdet = π L3

def and ωdef = 2.4/Ldef (corresponding to a cylindrical
cavity of radius and length Ldef).

To summarize, we will adopt the following sensitivity to |Jχ| for the existing pathfinder
or future reach of Dark SRF,

|Jχ| ∼

5 × 10−13 A/m2 (existing pathfinder)
3 × 10−24 A/m2 × (1 m/Ldef)2 (future) .

(3.13)
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In the sections below, we apply the second line of eq. (3.13) to determine Dark SRF’s ultimate
sensitivity to two scenarios involving relativistic backgrounds of mCPs. First in section 4,
we will consider astrophysical mCPs that are produced from the Sun. For sufficiently large
self-couplings α′, such particles can thermalize through self-interactions in the solar interior,
forming a so-called “dark solar wind,” as recently investigated in ref. [40]. Then, in section 5,
we will consider cosmological sources of mCPs, such as those generated from a thermal bath
in the early universe or at much later times through a dynamical dark energy component or
dark matter decay/annihilation. We will also investigate models in which the lightest SM
neutrino has a small effective millicharge or neutrinos equilibrate with a light millicharged
sector after neutrino-photon decoupling, such that the cosmic neutrino background directly
or indirectly gives rise to the class of signals discussed throughout this work, respectively.

4 Dark solar wind

Light mCPs can be created in large numbers from rare thermal processes in the extreme
environment of the solar interior. It is commonly assumed that such particles simply free-
stream out of the Sun unscathed, each carrying away energy comparable to the temperature
of the solar core ∼ keV. While this is often the case, self-interactions mediated by the dark
photon can drastically alter this scenario, as recently highlighted in ref. [40]. The degree to
which this is true is determined both by the millicharge qχ, which sets the initial density of
mCPs produced in the solar core, and the dark fine-structure constant α′, which controls
the strength of self-interactions. In particular, for

α′ ≳ 5 × 10−6 ×
(
10−14/qχ

)1/2
, (4.1)

number-changing processes (such as χχ → χχA′) become highly efficient, leading to local
thermalization of the mCP-A′ plasma in the Sun [40]. As a result, the mean free path
of the mCPs is drastically shortened, causing them to behave collectively as a fluid on
solar length scales.

Before number-changing processes become efficient, the phase space of the initial free-
streaming mCPs is far from thermal, with a number density very small compared to that
of a thermal population with the same characteristic energy per particle. Thermalization
correspondingly enhances the number density at the expense of lowering the typical mCP
energy. This thermalized plasma behaves as an adiabatically expanding fluid driven by its
own thermal pressure, accelerating radially outward to increasingly ultrarelativistic bulk
velocities as it moves away from the Sun. The resulting steady-state outflow, referred to as
the “dark solar wind” [40], is orders of magnitude more dense and less energetic (≪ keV per
particle) compared to a free-streaming population of the same luminosity.4

The underlying fluid equations governing the evolution of the dark solar wind were solved
in ref. [40]. Here, we simply quote the results. Evaluated at Earth, the boost describing

4As far as dark solar wind thermalization is concerned, the plasma particles can be treated as effectively
massless if mχ, mA′ ≲ ω′

pre, where ω′
pre ∼ 6× 10−6 eV×α

1/2
D

(
qχ/10−15) is the pre-thermalization dark plasma

frequency of newly created plasma particles in the solar core. As discussed in the Supplemental Material of
ref. [40], outside this regime, the thermalization requirement for the formation of the dark solar wind becomes
more restrictive than eq. (4.1), in a mχ- and mA′ -dependent way.
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the relative bulk motion of the fluid is γ ≃ 893, while the temperature and number density
in the plasma frame are approximately

T̃χ ≃ 10−4 eV ×
(
qχ/10−14)1/2

, ñχ ≃ 150 cm−3 ×
(
qχ/10−14)3/2

. (4.2)

In turn, these quantities imply a lab-frame per-particle energy and plasma-frame dark plasma
frequency of5

Eχ ≃ 0.5 eV ×
(
qχ/10−14)1/2

, ω̃′
p ≃ 1 GHz ×

(
qχ/10−14)1/2 (

α′/10−5)1/2
. (4.3)

For the largest viable couplings, qχ ∼ 10−14, the resulting energy flux of mCPs is six orders
of magnitude greater than the local kinetic energy flux of galactic DM. Despite this, the dark
solar wind is challenging to detect in conventional underground dark matter direct detection
experiments searching for elastic scattering. This is because the typical energy exchanged
in an mCP-electron collision is ∼ α pχ ∼ meV × (qχ/10−14)1/2, well below the thresholds of
existing and future sensors. However, note that the direct deflection signals discussed in
section 3.3 benefit from the small energy of the plasma. Indeed, ω̃′

p is enhanced both by the
larger number density and smaller mCP energy seeded by thermalization. For the largest
viable values of qχ, both effects together enhance ω̃′

p by roughly a factor of ∼ 103 compared to
a non-thermalized free-streaming population produced by the Sun.6 Since the millicurrent Jχ

induced by a deflector scales as ω̃′ 2
p in the weak-coupling limit (as in eq. (3.10)), thermalization

of solar mCPs enhances the class of signals detectable with a direct deflection experiment.
Before applying the formalism of section 3, we note that an additional complication

arises from the fact that the same self-interaction processes that drive the dark solar wind
population towards a thermal distribution also damp the perturbations induced by the deflec-
tor. In particular, section 3 applies strictly to plasmas that are collisionless on length scales
comparable to the size of the deflector-detector setup. The typical distance traversed between
collisions by an mCP of the dark solar wind is ∼ γ / (α′ 2 T̃χ) ≃ 2 m × (1/α′)2 (10−14/qχ)1/2,
which is longer than the size of an experiment in the parameter space of interest. Thus, on
laboratory length scales, we may approximate the dark solar wind as collisionless.

To determine the future sensitivity of the Dark SRF LSW experiment to the dark solar
wind, we apply the general results of eqs. (3.11) and (3.13). Note that since eq. (3.11) applies
to regions downwind of the deflector, our projections assume that the axis connecting the two
cavities in a LSW experiment is aligned with the Earth-Sun axis. In figure 5, we show the
ultimate sensitivity of Dark SRF in the qχ − α′ plane, fixing the kinetic mixing parameter
in terms of the two other couplings, ϵ = eqχ/

√
4πα′.

The sensitivity to qχ is a non-trivial function of α′. For α′ below the critical value in
eq. (4.1), the mCP population does not efficiently thermalize and simply free-streams out of
the Sun. In this case, we determine the dark plasma frequency ω̃2

p ∼ 4πα′nχ/Eχ at Earth using
5The bare masses mχ and mA′ remain negligible at this point if mχ, mA′ ≲ ω̃′

p. Note that this is a more
restrictive condition than mχ, mA′ ≲ T̃ ′

χ and, in the model space of interest here, less restrictive than the
condition mχ, mA′ ≲ ω′

pre of footnote 4.
6This comparison involves evaluating the plasma frequency in the rest frame for the dark solar wind and

the laboratory frame for the free-streaming case. Hence, this is valid up to O(1) factors, since the plasma
frequency is controlled by the Lorentz invariant ratio nχ/Eχ.
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Figure 5. The projected direct deflection sensitivity of the Dark SRF light-shining-through-wall
experiment to millicharged particles emitted by the Sun, in the plane spanned by the millicharge
qχ = ϵ e′/e and self-coupling α′ = e′ 2/4π, where ϵ is the kinetic mixing parameter and e′ is the dark
photon coupling. The solid or dashed red lines assume an experimental setup of size Ldef = 1 m or
Ldef = 10 cm, respectively. Also shown in gray are existing constraints derived from considerations of
stellar energy loss [36, 37]. However, note that in certain models [56, 57], the in-medium millicharge
coupling is screened in higher density and temperature environments; in this case, bounds derived
from Red Giants may be relaxed compared to those derived from the Sun. Above the black line,
millicharged particles thermalize in the solar interior through self-interactions mediated by the dark
photon, leading to an enhanced signal in direct deflection experiments.

nχ ≃ (Lχ/4πr2
⊕)/Eχ, where Eχ ∼ 5 keV is the typical mCP energy and the mCP luminosity

Lχ is related to the total solar luminosity L⊙ by Lχ ≃ 4 × 10−2 L⊙ (qχ/10−14)2 [36, 40, 58].
Instead, for α′ slightly above the critical value in eq. (4.1), the dark solar wind develops,
and the mCP plasma does not efficiently backreact within the length scales and timescales
set by the experiment. For much larger α′, the backreaction from collective mCP self-
interactions screens the perturbations induced by the deflector before reaching the detector
cavity, thereby suppressing the signal. As discussed in section 3.2, such backreactions occur
when ω̃p ≫ γ/Ldef. We find that the resulting range of self-couplings for which a LSW
experiment has optimal sensitivity to the dark solar wind is approximately

10−5 ×
(
10−14/qχ

)1/2
≲ α′ ≲ 10−4 ×

(
10−14/qχ

) (
1 m/Ldef

)2
. (4.4)

In figure 5, we consider two possible sizes of the cavities, Ldef = 10 cm and Ldef = 1 m,
and correspondingly fix the separation of the cavities to be ∼ few × Ldef and the operating
frequency to be ωdef = 2.4/Ldef. From eq. (3.13), larger setups can probe smaller values of
the millicharge qχ in the weak-self-coupling regime. However, since the experimental size and
cavity oscillation period decrease as Ldef is reduced, it is more difficult for the mCP plasma
to backreact for smaller values of Ldef. As a result, smaller experimental setups can probe
larger values of the self-coupling α′, as given by eq. (4.4). Regardless, in either case, future
iterations of Dark SRF can be sensitive to a wide range of mCP parameter space.
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5 Cosmological dark radiation

A relativistic background of mCPs can also be sourced cosmologically, resulting in an
approximately isotropic population of millicharged dark radiation. The present abundance
of dark radiation is generally quantified by normalizing its present day energy density by
the critical energy density, ΩDR = ρDR/ρcrit. In the case of dark radiation in the early
universe, ρDR is alternatively parametrized in terms of the additional effective number of
neutrino species, ∆Neff = (8/7) (11/4)4/3 (ρDR/ργ), such that ΩDR can be reexpressed as
ΩDR ≃ 1.2 × 10−5 ∆Neff. An additional cosmological population of dark radiation, beyond
the contribution of Neff ≃ 3 by the cosmic neutrino background, is constrained by Planck and
ACT observations of the cosmic microwave background to contribute ∆Neff ≲ O(0.1), with
the precise value of this upper bound depending on whether such radiation is free-streaming
or fluid-like [59–61].

The simplest scenario arises when dark radiation is described by a thermal distribution
with temperature T̃χ. In this case, the resulting energy density and dark plasma frequency
are ρ̃DR = (π2/30) g′∗ T̃ 4

χ and ω̃′
p = e′ T̃χ/3, respectively. Here, g′∗ is the total effective

relativistic degrees of freedom in the dark sector, which is g′∗ = 11/2 for a single pair
of fermionic mCPs and a dark photon. The dark plasma frequency can then be related
straightforwardly to ΩDR by

ω̃′
p ≃ 93 GHz ×

(
e′/g

′ 1/4
∗

) (
ΩDR/10−5)1/4

. (5.1)

In this section, we will consider various cosmological sources for ΩDR. An irreducible
contribution arises from the out-of-equilibrium decay of SM plasmons in the early universe [62,
63]. In this case, the corresponding density depends directly on the size of the millicharge;
ΩDR ≃ 2.5× 10−16 ×

(
qχ/10−14)2 [63]. Millicharged radiation can also arise from dark matter

decay or annihilation. For instance, current limits allow as much as ∼ 4% of the present dark
matter density having decayed into dark radiation [64], corresponding to ΩDR ≲ 10−2. For
dark matter annihilations to mCPs, let us consider the galactic center, which contributes a
local millicharge density of ΩDR ∼ 10−4 × (MeV/mDM) (σv/10−26 cm3 s−1), where mDM is
the dark matter mass, σv is its annihilation rate to mCPs, and we have taken a J-factor
of ∼ 1024 GeV2/cm5 for the inner region of the Milky Way [65]. Recent work has also
investigated radiation sourced by the kinetic energy of a dynamical dark energy component,
leading to ΩDR ≲ 3 × 10−2 [66–68]. The population of millicharged radiation from any of
these sources initially possesses a non-thermal distribution. However, thermalization can
easily occur through self-interactions, analogous to the discussion in section 4. For these
examples, we assume this to be the case, and utilize eq. (5.1) to determine the corresponding
plasma frequency.

As another example, we consider the possibility that the lightest SM neutrino ν of the
cosmic neutrino background possesses a small effective millicharge, which can arise in scenarios
similar to the “portalino” models of refs. [69, 70]. In this case, electroweak symmetry breaking
mixes the active neutrino ν with a sterile neutrino N . If there also exists a dark fermion N±

directly charged under a dark U(1)′, then spontaneous symmetry breaking of the U(1)′ can
mix N and N±, thereby giving ν a small dark charge. If the A′ of this U(1)′ kinetically-mixes
with SM electromagnetism, then on length scales smaller than m−1

A′ the SM-like neutrino
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inherits a small effective millicharge, suppressed by the size of the kinetic mixing as well as
the ν − N and N − N± mass-mixings. Since a single cosmic neutrino contributes Neff = 1,
this scenario corresponds to ΩDR ≃ 1.2 × 10−5. There exist stringent limits on a neutrino
millicharge [71–73]. The strongest of these are model-dependent. For instance, limits derived
from tests of matter-neutrality assume that the millicharge is unbroken in the four-Fermi
n ↔ peν̄e interaction [74]. However, this need not be the case when the effective millicharge
is generated by a broken U(1)′. Furthermore, astrophysical limits derived from the coupling
of neutrinos to magnetic fields [75] do not apply if the effective range of the interaction, set
by m−1

A′ , is small compared to astrophysical length scales. In this work, we adopt the most
model-independent of these limits, which is set by considerations of stellar energy loss [36, 37].
We postpone a more complete investigation of these models to future studies.

The cosmic neutrino background may also indirectly contribute to millicharged radiation.
In particular, a related scenario arises if the cosmic neutrino background equilibrates with a
distinct relativistic mCP population well after neutrino-photon decoupling [76–78]. If the
initial pre-equilibrated energy density of the mCPs is negligible compared to that of the
SM radiation bath, then Neff ≃ 3 is initially unmodified compared to its standard value.
When the mCPs thermalize with the SM neutrinos, the temperature of the mCPs increases,
thereby lowering the temperature of the neutrinos compared to that of the photon bath.
Since equilibration conserves energy, the ν + mCP population still contributes only Neff ≃ 3
after equilibration, with the relative energy density in the mCPs controlled by the ratio of
relativistic degrees of freedom g′∗/gν

∗ , where gν
∗ = 21/4. Hence, for g′∗ ≫ gν

∗ , the majority of
the apparent energy density in the cosmic neutrino background is instead made up of mCPs
at late times, analogous to the “neutrinoless universe” investigated in ref. [79].

As discussed in section 3, the signal in a direct deflection experiment depends strongly
on the relative motion between the plasma and laboratory frames. For cosmological sources
of millicharged radiation, the preferred frames of the laboratory and plasma approximately
coincide, with a small offset controlled by the velocity ∼ 10−3 of the solar system. To leading
order, we can ignore this correction and adopt γ = 1 in quantifying the relative boost between
the plasma and laboratory frames. In regards to the particular experimental setup, the use
of RF cavities employing ωdef Ldef ∼ 1 is crucial to generating a signal in this case, since it
vanishes in the quasistatic limit (ωdef Ldef ≪ 1) for γ = 1 (see section 3).

The projected sensitivity of Dark SRF to cosmological sources of millicharged dark
radiation is shown in figure 6, fixing the experimental benchmarks as in sections 3.3 and 4.
In the left-panel, we consider two setups of different size, Ldef = 10 cm and Ldef = 1 m,
and show the sensitivity in the qχ − α′ plane, fixing the millicharged dark radiation density
to ΩDR = 3 × 10−2 (corresponding to mCPs produced by dark energy). For the same
reasons as discussed in section 4, larger setups can explore smaller millicharges, while smaller
cavities are able to probe larger values of the self-coupling (corresponding to stronger plasma
backreactions). For small α′, backreactions from self-interactions of the dark plasma can be
ignored. For sufficiently large qχ and α′, the dark solar wind from section 4 contributes a
significant density at Earth, which can potentially modify the local density of an independent
cosmological population. Since the projected sensitivity of the experimental setup discussed
here does not explore new parameter space in this regime, we do not investigate this
possibility further.
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Figure 6. As in figure 5, but instead for cosmological millicharged dark radiation. Left: sensitivity of
Dark SRF in the qχ − α′ plane, for experimental setups of size Ldef = 1 m (solid red) or Ldef = 10 cm
(dashed red), fixing the density parameter of millicharged radiation to ΩDR = 3× 10−2, corresponding
to millicharges sourced by a dynamical dark energy component. Above the black line, the dark
solar wind of section 4 contributes an irreducible local abundance of millicharged radiation. Right:
sensitivity of Dark SRF in the qχ − ΩDR plane, for an experimental setup of size Ldef = 1 m, fixing
the self-coupling to be sufficiently small such that backreactions from self-interactions are negligible
on laboratory length scales. As benchmark values of ΩDR, we show scenarios where millicharged
radiation is sourced by dark energy, the cosmic neutrino background (CνB), or when it is a small
subcomponent of the total radiation energy density with ∆Neff = 0.1.

To further explore the weak-coupling regime, in the right-panel of figure 6 we instead show
the Dark SRF sensitivity in the qχ − ΩDR plane, fixing Ldef = 1 m and α′ to be sufficiently
small such that self-interactions can be ignored on laboratory length scales. In this panel,
we show the various ΩDR benchmarks discussed above, in the case that millicharged dark
radiation arises from dark energy, dark matter decay, the cosmic neutrino background, or
some other subcomponent of the total primordial radiation density with ∆Neff = 0.1. We see
that Dark SRF can explore orders of magnitude of new parameter space for a cosmological
abundance of millicharged dark radiation, including that arising from the millicharge of the
cosmic neutrino background. The sensitivity to such models is parametrically enhanced
compared to that of the dark solar wind in section 4. This is largely due to the fact that
unlike the dark solar wind, we have considered less-restrictive examples of cosmological dark
radiation, treating the density ΩDR as a free parameter independent of the couplings qχ and α′.

Before concluding this section, we note that terrestrial, solar, and galactic magnetic
fields can significantly impede the propagation of mCPs in the solar system if the interaction
mediated by the dark photon is long-ranged on the relevant length scales. For instance, for
dark photons longer-ranged than an Earth radius, mA′ ≲ R−1

⊕ ∼ 10−14 eV, Earth’s magnetic
field B⊕ ∼ 0.5 G can significantly modify the terrestrial density of such radiation when the
mCP gyroradius rg ∼ Ẽχ/(eqχ B⊕) is much smaller than R⊕ [80], where Ẽχ ∼ 3 T̃χ is the
typical energy of mCP radiation. Similarly, for dark photons longer-ranged than a solar
radius mA′ ≲ R−1

⊙ ∼ 10−16 eV, we expect solar modulation to suppresses the local abundance
of mCPs with energy Ẽχ ∼ 3 T̃χ ≲ 0.2 GeV × qχ [81, 82]. Finally, if the dark photon is
long-ranged on galactic length scales, the local abundance of millicharged radiation may
be affected by galactic supernova remnants [83, 84]. However, note that these effects need
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not apply in our parameter space of interest, since we only require that mCPs possess an
effective charge on meter-sized length scales.7

6 Discussion and conclusion

In this work, we have explored a new approach to detect a relativistic background of
millicharged particles using light-shining-through-wall experiments, where a cavity is driven
with strong electromagnetic fields and placed nearby a quiet shielded cavity. Inadvertently,
these setups can also operate as direct deflection experiments. Millicharged radiation passing
through the driven cavity is deflected, setting up propagating disturbances of feebly-coupled
charges and currents that can resonantly excite small signal fields in the detection cavity.

We have focused on the existing Dark SRF light-shining-through-wall experiment, since
it employs high-Q superconducting RF cavities, which enhances both the strength of the
driven fields, as well as the resonant sensitivity of the detection cavity. In particular, our
estimates show that a future version of Dark SRF can probe orders of magnitude of unexplored
parameter space for relativistic millicharges produced by the Sun or cosmologically in the
early or late universe. Such a setup has the potential to measure the abundance of the cosmic
neutrino background if it possess a small effective electromagnetic charge, or cosmological
dark radiation with an energy density four orders of magnitude smaller than that of the
cosmic microwave background.

In future work, it would be interesting to pursue more dedicated experimental approaches.
For instance, multiple deflecting cavities can be used (analogous to a LINAC) in order to
multiplicatively increase the signal, or larger magnetic field configurations can be employed
to focus the millicharge radiation into a smaller experimental area. Also note that in
the weak-coupling regime, the signal strength in a direct deflection setup is controlled by
the millicharge plasma frequency, which scales favorably with larger number densities and
smaller characteristic energies. While we have focused on thermal populations of millicharged
radiation, this implies that direct deflection setups would have enhanced sensitivity to
populations of millicharges with high-occupancy in the lowest momentum-modes, such as
those created by parametric resonance or tachyonic instabilities. Generalizations of this
approach may also be adapted to search for dark radiation coupled to a non-electromagnetic
force, such as one mediated by a new spin-coupled boson. However, in this case an experiment
needs to contend with strong constraints on the existence of such new light mediators.
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Figure 7. Left: the longitudinal and transverse components of the linear response tensor, given
in eqs. (A.9) and (A.10). Right: the longitudinal (L) and transverse (T ) dispersion relations of an
ultrarelativistic plasma, using eqs. (A.7)–(A.10). We also show the light cone ω = |k| for comparison.
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A Plasma formalism details

In this appendix, we provide some of the technical details needed to determine the response
of a plasma to an external electromagnetic field.

A.1 Isotropic, ultrarelativistic, collisionless plasma

In the rest frame of the plasma, we take it be isotropic. In this case, the spatial part of the
linear response tensor Π̃ij can be decomposed into its longitudinal and transverse components,

Π̃L (ω, |k|) = −kikj

|k|2 Π̃ij(k) (A.1)

Π̃T (ω, |k|) = 1
2

(
ηij + kikj

|k|2
)

Π̃ij(k) , (A.2)

as follows [52]

Π̃ij(k) = −kikj

|k|2 Π̃L (ω, |k|) +
(

ηij + kikj

|k|2

)
Π̃T (ω, |k|) . (A.3)

Charge continuity and gauge invariance of the induced current J̃µ
χ (k) = Π̃µν(k) Ãν(k) imply

kµ Π̃µν(k) = 0 and kν Π̃µν(k) = 0, respectively. These can be used to construct the remaining
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components of Π̃µν(k) in terms of Π̃L [52],

Π̃00(k) = kikj

ω2 Π̃ij(k) = −|k|2

ω2 Π̃L (ω, |k|) (A.4)

Π̃i0(k) = −kj

ω
Π̃ij(k) = −ki

ω
Π̃L (ω, |k|) (A.5)

Π̃0j(k) = −ki

ω
Π̃ij(k) = −kj

ω
Π̃L (ω, |k|) . (A.6)

By requiring that non-trivial solutions Ãµ(k) ̸= 0 to the sourceless Maxwell’s equations exist,
we obtain the dispersion relations, which for an isotropic plasma decompose into two parts [52]

Longitudinal: ω2 + Π̃L (ω, |k|) = 0 (A.7)
Transverse: ω2 − |k|2 + Π̃T (ω, |k|) = 0 . (A.8)

Note that Π̃L,T (ω, |k|) and the corresponding dispersion relations are gauge-invariant [52, 85].
For an isotropic, ultrarelativistic, and collisionless plasma, the longitudinal and transversal
components of the linear response tensor are [54, 85–88]

Π̃L (ω, |k|) =
(
− ω2

|k2|

)
× 3ω̃2

p

(
ω

2|k|Λ − 1
)

(A.9)

Π̃T (ω, |k|) = (−1) × 3
2 ω̃2

p

ω2

|k|2

[
1 −

(
1 − |k|2

ω2

)
ω

2|k|Λ
]

(A.10)

Λ = ln ω + |k|
ω − |k| = ln

∣∣∣∣ω + |k|
ω − |k|

∣∣∣∣− iΘ
(
|k|2 − ω2

)
, (A.11)

where in the second equality of the last line we have picked the sign of Im(Λ) such that
a plane wave ϕ̃(x) ∝ e−iωt+ik.x ∝ e−Im |k|x∥ (where x∥ = x.k̂) propagating in the frame of
the plasma with a real positive ω and with Re |k| > 0 will have Im |k| > 0, meaning that
it decays instead of grows, due to Landau damping when |k|2 > ω2.8 In appendix A.2, we
provide a derivation of these expressions for Π̃L and Π̃T . We plot Π̃L,T and the corresponding
dispersion relations in figure 7.

We emphasize that the definitions of Π̃L,T vary in the literature. Our definitions follow
that of ref. [52] (M08) and differ from that used in, e.g., refs. [86–90] (T08) which are,
again, different from those used in, e.g., refs. [54, 85] (C06). If these definitions were to
lead to the same longitudinal and transverse dispersion relations, the Π̃L,T must be related
as Π̃M08

L = (−ω2/|k|2)Π̃T08
L =

(
−ω2|k|2/k2) Π̃C06

L and Π̃M08
T = (−1)Π̃T08

T = (−1)Π̃C06
T . Note

also that sometimes, e.g., in refs. [54, 90], the Π̃L,T are expressed in terms of the Debye
screening mass m̃2

D = 3ω̃2
p [54, 91] instead of the what we refer to as the plasma frequency,

ω̃p. In our definition, the plasma frequency ω̃p is the lowest frequency at which plasma waves
can propagate, i.e., the value of ω that solves eqs. (A.7) and (A.8) in the limit |k| → 0.
The plasma frequency of an ultrarelativistic e± plasma at a temperature T̃ , for example, is
ω̃p = eT̃ /3 [53, 86–88, 91]. Furthermore, while in our notation k2 = kµkµ and |k|2 = kiki,
other variations are often used in the literature.

8From eq. (A.8), we see that Im |k| = Im Π̃T /(2Re |k|). Thus, Im |k| > 0 requires Im Π̃T > 0 for |k|2 > ω2,
which is indeed the case for the choice of sign of the imaginary part of Π̃T in eq. (A.11).
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A.2 Vlasov derivation of the linear response tensor of ultrarelativistic
pair-plasma

The induced currents Jµ
χ (x) in a plasma of ±eqχ charged plasma particles χ± can be expressed

in terms of its distribution functions f±(x, p) [52, 53]

Jµ
χ (x) = 2eqχ

∫
d3p

(2π)3
pµ

p · u
[f+(x, p) − f−(x, p)] = 2eqχ

∫
d3p

(2π)3
pµ

p · u
[δf+(x, p) − δf−(x, p)] ,

(A.12)

where the factor of two accounts for spin degrees of freedom, uµ is the velocity of the plasma
wind, and the 4-momentum pµ is on-shell. In the second equality, we defined δf± = f±−feq as
the deviation of the distribution function f±(x, p) of the plasma particles from their thermal
equilibrium distribution in the absence of a chemical potential feq(p) =

[
ep·u/T̃ + 1

]−1
, and

we assumed that the equilibrium plasma has Jµ
χ (x) = 0. For a collisionless plasma, the

evolution of the distribution function f±(x, p) is governed by the Vlasov equation,

pµ∂µf±(x, p) ∓ eqχFµν(x)pµ ∂f±(x, p)
∂pν

= 0 . (A.13)

In the weak-field regime, this can be solved perturbatively in Aµ. To first order in Aµ, and
after Fourier-transforming, the solution is given by

δf±(k, p) = ±eqχ

T̃
feq(p) [1 − feq(p)]

[
u · A(k) − (k · u)[p · A(k)]

k · p

]
, (A.14)

where p is the 4-momentum of a χ particle, and k is the wavenumber associated with coordinate
position x. Since this is linear in Aµ, the resulting induced dark current Jµ

χ can be written as

Jµ
χ (k) = Πµν(k, u)Aν(k) . (A.15)

Matching eqs. (A.12) and (A.14) with eq. (A.15), we find

Πµν(k, u) = 4(eqχ)2

T̃

∫
d3p

(2π)3(p · u)feq(p) [1 − feq(p)]
[
pµuν − (k · u)pµpν

(k · p)

]
. (A.16)

Note that the description in this subsection is thus far covariant. To evaluate the above
integral, we: (1) move to the plasma frame by setting uµ = δµ0, (2) take the ultrarelativistic
plasma temperature limit p0 ≃ |p|, (3) define p̂µ = pµ/|p|, and (4) define cos θ = p̂iki/|k|.
The integral then simplifies as follows,

Π̃µν(k) = 2(eqχ)2

T̃

∫ ∞

0

|p|2d|p|
π2 feq(|p|) [1 − feq(|p|)] Π̂µν = 3ω̃2

pΠ̂µν , (A.17)

where we have expressed the |p| integral in terms of the plasma frequency ω̃p = eqχT̃ /3,

2(eqχ)2

T̃

∫ ∞

0

|p|2d|p|
π2 feq(|p|) [1 − feq(|p|)] = 3ω̃2

p , (A.18)

and collected the remaining angular integral in

Π̂µν =
∫

dΩ
4π

[
p̂µδν0 −

ω

ω − |k| cos θ
p̂µp̂ν

]
. (A.19)
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Using eqs. (A.1), (A.17), and (A.19), the longitudinal part of Π̃µν(k) can be evaluated as

Π̃L (ω, |k|) = −kikj

|k|2
(
3ω̃2

pΠ̂ij
)

= 3ω̃2
p

∫
dΩ
4π

cos2 θ

1 − (|k|/ω) cos θ
= −3ω̃2

p

ω2

|k|2
[

ω

2|k|Λ − 1
]

.

(A.20)

Using eqs. (A.2), (A.17), and (A.19), the transverse part of Π̃µν can be evaluated as

Π̃T (ω, |k|) = 1
2

(
ηij + kikj

|k|2
)(

3ω2
pΠ̂ij

)
= 3ω̃2

p

∫
dΩ
4π

1
2

1 − cos2 θ

1 − (|k|/ω) cos θ

= −3ω̃2
p

ω2

2|k|2

[
1 −

(
1 − |k|2

ω2

)
ω

2|k|Λ
]

, (A.21)

in agreement with eqs. (A.9)–(A.11), which were adapted from refs. [54, 85–88]. Π̃L,T specifies
all of the entries of the linear response tensor in the plasma frame Π̃µν(k) via eqs. (A.3)–(A.6).
Πµν(k) in an arbitrary frame can be found by the substitution ω → k · u and ω2 − |k|2 → k2.

A.3 Solving Maxwell’s equations in Coulomb gauge

In order to invert the Fourier-transformed Maxwell’s equations in the plasma frame (eq. (3.4)),
one needs to pick a gauge. In this paper, we adopt Coulomb gauge

kiÃ
i(k) = 0 . (A.22)

Maxwell’s equations then reduce to(
|k|2 − Π̃00

)
Ã0(k) − Π̃0iÃi(k) = J̃0

def(k) (A.23)(
kiω − Π̃i0

)
Ã0(k) −

(
k2ηij + Π̃ij

)
Ãj(k) = J̃ i

def(k) . (A.24)

Moreover, eqs. (A.22) and (A.3) imply

Π̃ijÃj(k) = Π̃T Ãi(k) . (A.25)

Using eqs. (A.4), (A.6), and (A.22) in eq. (A.23) and eqs. (A.5), (A.25), and (A.22) in
eq. (A.24), we find

Ã0(k) = 1
|k|2

J̃0
def(k)

1 + Π̃L/ω2 (A.26)

Ãi(k) = J̃ i
def(k) − (kiω/|k|2)J̃0

def(k)
|k|2 − ω2 − Π̃T

. (A.27)

The induced currents are given by eq. (3.2)

J̃0
χ(k) = − Π̃L

ω2 + Π̃L

J̃0
def(k) (A.28)

J̃ i
χ(k) = Π̃T

|k|2 − ω2 − Π̃T

J̃ i
def(k) −

(
Π̃L

ω2 + Π̃L

+ Π̃T

|k|2 − ω2 − Π̃T

)
kiω

|k|2 J̃0
def(k) , (A.29)

where we have used eqs. (A.4), (A.6), and (A.22) to arrive at the first line and used
eqs. (A.5), (A.25), and (A.22) to arrive at the second line. It can be shown that if the
external currents obey charge continuity, kµJ̃µ

def(k) = 0, then the induced currents also obey
charge continuity, kµJ̃µ

χ (k) = 0, manifestly.
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B Response of an ultrarelativistic plasma to an oscillating deflector

B.1 Zero wind velocity

Here, we derive the expressions for the induced currents Jµ
χ in the absence of a plasma wind

in the laboratory frame, γ = 1. The Fourier-transformed deflector currents are

J0
def(k) = (−kz) i4π7/2JdefL

2
defe

− (kz)2
L2

def
4 ∆γ=1(k) (B.1)

Jz
def(k) = (−ωdef) i4π7/2JdefL

2
defe

− (kz)2
L2

def
4 ∆γ=1(k) , (B.2)

where

∆γ=1(k) = δ (ω − ωdef)

δ
(
kx − L−1

def

)
+ δ

(
kx + L−1

def

)
2

δ
(
ky − L−1

def

)
+ δ

(
ky + L−1

def

)
2

 .

(B.3)

From eqs. (A.28), (A.29), (B.1), and (B.2), we find

J0,z
χ (x) = iJdefL

2
def

4π1/2 e−iωdeft cos
(

x

Ldef

)
cos

(
y

Ldef

)
×
∫ +∞

−∞
dkzeikzze−

(kz)2
L2

def
4

[
Ξ0,z

γ=1(k)
]

ω=ωdef, |kx,y |=L−1
def

(B.4)

Jx
χ(x) = −JdefL

2
def

4π1/2 e−iωdeft sin
(

x

Ldef

)
cos

(
y

Ldef

)
×
∫ +∞

−∞
dkzeikzze−

(kz)2
L2

def
4

[
Ξx

γ=1(k)
]

ω=ωdef, |kx,y |=L−1
def

(B.5)

Jy
χ(x) = −JdefL

2
def

4π1/2 e−iωdeft cos
(

x

Ldef

)
sin
(

y

Ldef

)
×
∫ +∞

−∞
dkzeikzze−

(kz)2
L2

def
4

[
Ξy

γ=1(k)
]

ω=ωdef, |kx,y |=L−1
def

, (B.6)

where the remaining kz integral must be done numerically, and

Ξµ
γ=1(k)=



− ΠL

ω2+ΠL
(−kz) for µ=0

ΠT

|k|2−ω2−ΠT
(−ωdef)−

( ΠL

ω2+ΠL
+ ΠT

|k|2−ω2−ΠT

)
kzω

|k|2 (−kz) for µ=z

−
( ΠL

ω2+ΠL
+ ΠT

|k|2−ω2−ΠT

)
L−1

defω

|k|2 (−kz) for µ=x,y.

(B.7)

B.2 Non-zero wind velocity

Above, we have adopted the notation where the presence (absence) of a tilde on a function
indicates that the function including its argument is evaluated in the plasma (laboratory)
frame. In this subsection only, to keep expressions concise we abuse this notation by sometimes
writing lab-frame quantities as functions of plasma-frame coordinates, e.g., J0

def(k̃), or vice
versa, e.g., J̃0

χ(x).
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In the case of a non-zero plasma wind, γ > 1, we first compute quantities of interest in the
plasma frame, where the plasma response is easier to understand, and then Lorentz transform
to the lab frame. We start by expressing the lab-frame deflector currents Jµ

def(x) in terms of
plasma-frame coordinates Jµ

def(x̃) using the following Lorentz tranformation of coordinates

t̃ = γ (t + vz) , z̃ = γ (z + vt) , x̃ = x, ỹ = y . (B.8)

Next, we Fourier transform Jµ
def(x̃) with respect to the plasma-frame coordinates x̃,

J0
def

(
k̃
)

= (γωdef − ω̃) i4π7/2JdefL
2
def

γ2v
e
− (ω̃−γωdef)2

L2
def

4γ2v2 ∆γ>1
(
k̃
)

(B.9)

Jz
def

(
k̃
)

= (−γωdefv) i4π7/2JdefL
2
def

γ2v
e
− (ω̃−γωdef)2

L2
def

4γ2v2 ∆γ>1
(
k̃
)

, (B.10)

where

∆γ>1
(
k̃
)

=δ

(
ω̃−ωdef

γ
−k̃zv

)δ
(
kx−L−1

def

)
+δ
(
kx+L−1

def

)
2

δ
(
ky−L−1

def

)
+δ
(
ky+L−1

def

)
2

 .

(B.11)

Using the Lorentz transformations,

J̃0
def = γ

(
J0

def + vJz
def

)
, J̃z

def = γ
(
Jz

def + vJ0
def

)
, J̃x

def = Jx
def , J̃y

def = Jy
def , (B.12)

we obtain the momentum-space deflector currents in the plasma frame,

J̃0
def

(
k̃
)

=
(

ωdef
γ

− ω̃

)
i4π7/2JdefL

2
def

γv
e
− (ω̃−γωdef)2

L2
def

4γ2v2 ∆γ>1
(
k̃
)

(B.13)

J̃z
def

(
k̃
)

= (−ω̃v) i4π7/2JdefL
2
def

γv
e
− (ω̃−γωdef)2

L2
def

4γ2v2 ∆γ>1
(
k̃
)

. (B.14)

Then, eqs. (A.28) and (B.13) as well as eqs. (A.29), (B.13), (B.14), and (B.8) give9

J̃0,z
χ (x) = iJdefL

2
def

4π1/2γv2 e−iωdeft cos
(

x

Ldef

)
cos

(
y

Ldef

)

×
∫ ∞

−∞
dω̃ e

i
ω̃−γωdef

γv
z
e
− (ω̃−γωdef)2

L2
def

4γ2v2
[
Ξ0,z

γ>1

(
k̃
)]

k̃z= ω̃−ωdef/γ

v
,|kx,y |=L−1

def

J̃x
χ(x) = − JdefL

2
def

4π1/2γv2 e−iωdeft sin
(

x

Ldef

)
cos

(
y

Ldef

)

×
∫ ∞

−∞
dω̃ e

i
ω̃−γωdef

γv
z
e
− (ω̃−γωdef)2

L2
def

4γ2v2
[
Ξx

γ>1

(
k̃
)]

k̃z= ω̃−ωdef/γ

v
,|kx,y |=L−1

def

9Here, we use the three delta functions in eq. (B.11) to evaluate the kx, ky, k̃z integrals, leaving the ω̃

integral as the remaining non-trivial integral. Since one of the Dirac deltas imposes k̃z = (ω̃ − ωdef/γ)/v,
one cannot easily take the v → 0 limit to recover the zero wind velocity results. Nevertheless, we checked
numerically that the γ > 1 results reduce to the γ = 1 ones as we bring γ close to 1. Had we evaluated the
ω̃, kx, ky first using the three delta functions, we would be left with a k̃z integral instead. In the limit v → 0,
this k̃z integral reduces trivially to the γ = 1 results, eqs. (B.4)–(B.6).
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J̃y
χ(x) = − JdefL

2
def

4π1/2γv2 e−iωdeft cos
(

x

Ldef

)
sin
(

y

Ldef

)

×
∫ ∞

−∞
dω̃ e

i
ω̃−γωdef

γv
z
e
− (ω̃−γωdef)2

L2
def

4γ2v2
[
Ξy

γ>1

(
k̃
)]

k̃z= ω̃−ωdef/γ

v
,|kx,y |=L−1

def
(B.15)

where

Ξµ
γ>1

(
k̃
)

=



− Π̃L

ω̃2 + Π̃L

(
ωdef
γ

− ω̃

)
for µ = 0

Π̃T

|k̃|2 − ω̃2 − Π̃T

(−ω̃v) for µ = z

−
(

Π̃L

ω̃2 + Π̃L

+ Π̃T

|k̃|2 − ω̃2 − Π̃T

)
k̃zω̃

|k̃|2

(
ωdef
γ

− ω̃

)
−
(

Π̃L

ω̃2 + Π̃L

+ Π̃T

|k̃|2 − ω̃2 − Π̃T

)
L−1

def ω̃

|k̃|2

(
ωdef
γ

− ω̃

)
for µ = x, y .

(B.16)

Finally, the lab-frame induced currents Jµ
χ (x) are found using the inverse of eq. (B.12).

B.3 Regimes of plasma response

It is well known that an oscillating deflector at rest in the plasma frame either excites on-shell,
propagating plasma waves or gets Debye shielded, depending on whether its frequency is
above or below the plasma frequency ω̃p [48, 92]. The boundary between the two regimes
becomes less trivial when the deflector is not at rest in the plasma frame. In this section, we
chart the different regimes of the ultrarelativistic-plasma response to a moving deflector.

B.3.1 Weak backreaction: ω̃p ≪ L−1
def

The longitudinal and transverse propagators in the plasma can be inferred from eq. (3.5).
They reduce to those of the vacuum when ω̃2 ≫ |Π̃L| in the longitudinal case and kµkµ ≫ |Π̃T |
in the transverse case. The deflector can excite modes with ω ≲ ωdef ∼ L−1

def, kx,y = L−1
def ,

and |kz| ≲ L−1
def, which means typically ω̃ = γ (ω − vkz) ≲ γL−1

def and kµkµ ∼ L−2
def. On the

other hand, as displayed in figure 7, we have |Π̃L| ∼ |Π̃T | ≲ ω̃2
p.10 Hence, the longitudinal

and transverse plasma responses are negligible when ω̃p ≪ γL−1
def and ω̃p ≪ L−1

def, respectively.
We refer to the regime ω̃p ≪ L−1

def, where both the longitudinal and transverse responses are
negligible, as the weak-backreaction regime. Intuitively, in this regime the deflector operates at
such a high plasma-frame frequency/wavenumber that the plasma does not have enough time
to react in a significant way. Using eq. (3.2) in the lab frame and using that the magnitude
of the linear response tensor is typically |Πµν | ∼ ω̃2

p, we can estimate the magnitude of the
induced current as Jχ ∼ ω̃2

p ϕ, where ϕ is the electric potential. Since the plasma response is
negligible in this regime, the total electric potential is approximately equal to that sourced
by the deflector, ϕ ≃ ϕdef ∼ BdefLdef. It follows that

Jχ ∼ (ω̃p Ldef)2 ϕdef . (B.17)

10This is true unless ω̃/|k̃| ≃ 1 which has a negligible phase-space measure in the weak-backreaction regime,
but more generally can be important as discussed below.
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Outside of the weak-backreaction regime, the gauge field Aµ
χ sourced by the induced

plasma current Jµ
χ contributes significantly to the total gauge field Aµ which, in turn, affects

the generation of Jµ
χ . In that case, the gauge field Aµ must be solved self-consistently to

all orders in the plasma frequency ω̃p.

B.3.2 On-shell plasmon excitations: ω̃p ≲ γL−1
def

The Fourier-transformed deflector current in the plasma frame has the form J̃µ
def(k) ∝

δ [ωdef/γ − kµvµ], where vµ is the four-velocity of the deflector. Thus, only modes satisfying
kµvµ = ωdef/γ can be excited by the deflector.11 Plasma modes satisfying this resonance
condition are excited by the deflector. However, unless they are on-shell, they will subsequently
decay due to Landau damping. Propagating (on-shell) plasma modes can be excited if the
(ω, k) phase-space defined by kµvµ = ωdef/γ intersects with the plasma dispersion relations,
displayed in figures 7 and 8. To see if this is the case, we rewrite kµvµ = ωdef/γ in terms
of cos θ̃ = k̃z/|k̃|,

|k̃|
ω̃p

(
1 − v cos θ̃

)
+ ω̃ − |k̃|

ω̃p
= ωdef

γω̃p
. (B.18)

Let us determine the smallest ωdef relative to γ ω̃p that leads to excitation of on-shell
plasma waves. This amounts to finding the minimum value of the left-hand side when the
dispersion relations are imposed. The first term can be as small as ∼ |k̃|/(γ2ω̃p) when
θ̃ ≲ 1/γ ≪ 1.12 The second term, although more involved, can be understood through
figure 8, which indicates that

ω̃L − |k̃|
ω̃p

≃ min

O(1) ,
2|k̃|
ω̃p

e
−2
(

|k̃|2

3ω̃2
p

+1
) ,

ω̃T − |k̃|
ω̃p

≃ min
[
O(1) ,

3ω̃p

4|k̃|

]
. (B.19)

Considering the sum of ∼ |k̃|/(γ2ω̃p) and each of the above, we find that the left-hand side
of eq. (B.18) is minimized when |k̃|/ω̃p ∼ 2 at a value ∼ γ−2 for longitudinal modes, while
it is minimized when |k̃|/ω̃p ∼ γ at a value ∼ γ−1 for transverse modes.13 Therefore, for
ωdef ∼ L−1

def, the conditions for exciting on-shell plasma waves are ω̃p ≲ γL−1
def for longitudinal

modes and ω̃p ≲ L−1
def for transverse modes. In cases where the plasma frequency lies in the

range L−1
def ≲ ω̃p ≲ γL−1

def, the deflector excites on-shell plasmons which backreact significantly
on the total gauge field Aµ.

B.3.3 Dynamical Debye screening: ω̃p ≳ γL−1
def

When ω̃p ≳ ω̃def ∼ γL−1
def, the deflector excites only plasma waves with imaginary wavenumbers.

The latter means the plasma waves decay spatially, i.e., the deflector is Debye screened.
11Alternatively, this resonance condition can also be seen in position-space where the deflector current reads

J̃µ
def(x) ∝ e−iΦdef , with Φdef = ωdef t = γ ωdef

(
t̃ − vz̃

)
as per a simple Lorentz transformation t = γ(t̃ − vz̃).

Along the worldline of a particle moving with the deflector z̃ = vt̃ + constant, the deflector phase evolves as
dΦdef/dt̃ = ωdef/γ (i.e., the usual special-relativistic time-dilation effect), which is to be matched with the
Doppler shifted frequencies of plasma waves kµvµ. Note also that the Cherenkov resonance condition for a
static deflector, kµvµ = ω − k.v = 0, is recovered in the limit ωdef → 0 [41, 52].

12Excited modes with θ̃ ≲ 1/γ in the plasma frame can have lab-frame angles of θ = O(1), which follows
from inverse relativistic-beaming cos θ = (cos θ̃ − v)/(1 − v cos θ̃).

13Since the first and second terms in the left-hand side of eq. (B.18) are both positive and have opposite
monotonic behaviors, their sum is minimized when these terms are comparable.
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Figure 8. The deviation of the dispersion relation from the light cone ω = |k|. Analytical
approximations to the dispersion relations, which are valid at |k|/ωp ≳ 2, are also shown.

C Electromagnetic fields of the deflector

The gauge potentials sourced by the deflector in the lab frame are given by

A0
def(k) = J0

def(k)
|k|2

, Adef(k) = Jdef(k) − (ωk/|k|2)J0
def

|k|2 − ω2 . (C.1)

The deflector’s electric and magnetic fields can be computed from these gauge potentials
through the following relations

Edef(k) = −ikA0
def(k) + iωAdef , Bdef(k) = ik × Adef(k) . (C.2)

It follows that

Ez
def(x) = iJdefL

2
def

4π1/2 e−iωdeft cos
(

x

Ldef

)
cos

(
y

Ldef

)
×
∫ +∞

−∞
dkzeikzze−

(kz)2
L2

def
4 [Ξz

E(k)]ω=ωdef, |kx,y |=L−1
def

(C.3)

Ex
def(x) = −JdefL

2
def

4π1/2 e−iωdeft sin
(

x

Ldef

)
cos

(
y

Ldef

)
×
∫ +∞

−∞
dkzeikzze−

(kz)2
L2

def
4 [Ξx

E(k)]ω=ωdef, |kx,y |=L−1
def

(C.4)

Ey
def(x) = −JdefL

2
def

4π1/2 e−iωdeft cos
(

x

Ldef

)
sin
(

y

Ldef

)
×
∫ +∞

−∞
dkzeikzze−

(kz)2
L2

def
4 [Ξy

E(k)]ω=ωdef, |kx,y |=L−1
def

, (C.5)

and

Bz
def(x) = 0 (C.6)

Bx
def(x) = JdefL

2
def

4π1/2 e−iωdeft cos
(

x

Ldef

)
sin
(

y

Ldef

)
×
∫ +∞

−∞
dkzeikzze−

(kz)2
L2

def
4 [ΞB(k)]ω=ωdef, |kx,y |=L−1

def
(C.7)
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By
def(x) = −JdefL

2
def

4π1/2 e−iωdeft sin
(

x

Ldef

)
cos

(
y

Ldef

)
×
∫ +∞

−∞
dkzeikzze−

(kz)2
L2

def
4 [ΞB(k)]ω=ωdef, |kx,y |=L−1

def
, (C.8)

where

Ξi
E(k) =


−ikz −kz

|k|2 + iω
(−ω) −

(
ωkz/|k|2

)
(−kz)

|k|2 − ω2 , for i = z

−iL−1
def

−kz

|k|2 + iω
−
(
ωL−1

def/|k|2
)

(−kz)
|k|2 − ω2 , for i = x, y

(C.9)

ΞB(k) = −iL−1
def

−ω

|k|2 − ω2 . (C.10)

The electric and magnetic fields of the TM010 mode are

ETM010 =−E0J0

(
2.4
√

x2+y2

R

)
ei 2.4

R
tẑ , BTM010 = iE0J1

(
2.4
√

x2+y2

R

)
ei 2.4

R
tϕ̂ , (C.11)

where J0 and J1 are Bessel functions of zeroth and first order, respectively.
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