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Abstract
The principal aimof this paper is to present a newproof ofWeyl’s criterion inwhich it is shown that
the natural framework for the associated Sturm-Liouville operators isW L2,1 2Ç -i.e.- the intersection
of a particular Sobolev space and of the L2 space. Indeed, wewill deal with the special case of the radial

operator q xd

dx

2

2- +( )( ) on a real line segment (either bounded or unbounded) that often occurs in

the study of quantum systems in central potentials.We also derive from first principles the functional
behaviour of the coefficients for a general second-order Sturm-Liouville operator by using some
extensions of amilestoneCarathéodory existence theorem.

1. Introduction

Limit-Point Limit-Circle theorywas first developed by the youngHermanWeyl in the early 1900ʼs in one of his
first articles [1]. Since then, suchmethods (hereafter denoted by LP and LC, respectively) have become
increasingly important thanks to their accurate predictions on the formof the potential in the applications,
which can easily supply foundamental information about the solution of a great variety of singular second-order
Sturm-Liouville problems. In themodern literature, thework in [2, 3] provides an enlightening introduction to
the link between these singular second-order problems and functional analysis, as well as to the applications to
ordinary quantummechanics.

Theworld of atomic physics offers indeed awide range of applications of ordinary quantummechanics. This
is not an exact theory, because relativity wouldmake it necessary to use the spectral theory of pseudo-differential
operators in order to develop the quantum theory of bound states [4]. Thus, one still resorts with profit to
ordinary quantummechanics, fromwhich one can learn valuable lessons. For example, if a physical system ruled
by a central potentialV(r) is considered in n (the choice n= 3 is frequent but notmandatory), onefinds an
effective potential

V r V r
r

, 1.1nl
eff 2

r
= +( ) ( ) ( )

where, on denoting by l the orbital angularmomentumquantumnumber, onefinds [5]
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As one learns from [2, 3], the LP condition at the origin is achieved if
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In the particular case of a free particle,V r 0=( ) and (6.3) leads to
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Interestingly, this condition is violated just once, i.e. by s-wave stationary states (forwhich l= 0) in 3 dimensions.
The same holds ifV(r) is a Coulomb-type potential, because then the centrifugal termon the left-hand side of
(1.3) dominates on theCoulomb term as r approaches 0.

Section 2 describes what is known fromaCarathéodory theoremon ordinary differential equations;
section 3 studies the Sobolev functional space for solutions of our singular second-order problems;Weyl’s LP-
LC criterion is studiedwith extensive and original use of Sobolev spaces in sections 4 and 5. Explicit examples of
self-adjoint extensions are analyzed in section 6. Concluding remarks aremade in section 7, while relevant
details are given in the appendix. Throughout our paper, the reader is assumed to have some background on the
LP-LC theory [6, 7] and on operator theory [2, 3].

2. ExtendedCarathéodory’s existence Theorem

First, wewant to understand the functional behaviour of the coefficients and all possible solutions of the general
Sturm-Liouville eigenvalue equation

d

dx
p x

dy

dx
q x y ly l . 2.1- + = Î

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

In the LP-LC literature, whenever one deals with equation (2.1), it is necessary to specify the functional space to
which the coefficients p x p x, ¢( ) ( ) and q(x) belong, in order to develop the theory and reach the desired results.

For example, in [6–8] the coefficients p p, ¢ and q belong to the set of real-valued continuous functions and
hence the solution ymust be globally of classC2 on the interval I Í of interest. On the other hand, in [9, 10],
weaker conditions on p q,1- are given -i.e.- they are L1locwhile the solution y and its derivative y¢ are absolutely
continuous (ACloc) on the interval I of interest.

In order to clarify the hypotesismade on such functions and on the solutions, wewillmake use of some
extendedCarathéodory’s existence theorems:

Theorem2.1. Let I Ì be a closed interval and let f x u x,( ( )) beG-regular on I (see appendix). Then there exists at
least one absolutely continuous function u such that

u x f s u s ds x I, 2.2
x

x

0
ò= Î( ) ( ( )) ( )

where x0 is the average point of I.

Wenote that if f obeys the above theorem, there exists at least one absolutely continuous function u that
satisfies the equation u f x u x,¢ = ( ( )) almost everywhere.

Theorem2.2. Let I a b, = Ì[ ] be a compact interval and let f x y I V V, : ´ ( ) satisfy the following
hypothesis (whereV is a generic n-dimensional space):

(1) For every y VÎ , f x y,( ) is measurable on I and it is continuous inV.

(2) There exists a real-valued non-negative function M x L I1Î( ) ( ) such that f x y M x, ∣ ( )∣ ( ).

Then there exists an absolutely continuous function u(x) such that u x f x u x,¢ =( ) ( ( )) almost everywhere on I.

Theorem 2.1 is discussed and proved in [8]while theorem2.2 in [11].
In [11] it is shown that the requirement (2) of theorem2.2 can be replaced by the following:
(2’) For every y C IÎ ( ), f x y x,( ( )) is summable in I, and upon taking y C IÎ ( ), the functions
f t y t dt,

a

x
ò ( ( )) describe an absolutely equicontinuous family on I

obtaining amore general existence theorem.
Here wewant to show that, if the assumptions of theorem 2.1 are verified andwe also take hypothesis (2’)

instead of (2), then theorem2.2must also be true. From this the formerwill be a restricted case of the latter.
As alreadymentioned, for the definition ofG-regularitywe remind to the appendix at the end of this paper.

Herewewill only give themain condition that ensures the occurrence of this property. For this purpose we need
some further notions:
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Definition 1. Let I Ì and let h h k k L I, , , , , ,m m1 1 1 ¼ ¼ Î ( ).We define the subsequent convex subset G h k,( )
of L I , m1 ( ) by

G h k g L I h x g x k x x I j m, , , , , 1 . 2.3m j j j1     = Î Î( ) { ( ) ( ) ( ) ( ) } ( )

Theorem2.3. If the function f x y I f x y: , ,m m Î ´  Î( ) ( ) satisfies

f x y M x y x y I, 1 , , 2.4m + Î ´∣ ( )∣ ( )( ∣ ∣) ( ) ( )

for some M L I ,1 Î ( ) and it ismeasurable in the x variable for any fixed y and it is also continuous in the y variable,
then there exists a G h k,( ) such that f is G-regular on I.

Of course, form theorem 2.3 the assumptions of theorem 2.1 are satisfied and hence (2.2) is absolutely
continuous.

Definition 2. Let G G h k,= ( ) be given by (2.3) and x0 be themiddle point of the interval I. Let
f I: m m ´ ⟶ be such that

f x g s ds G for all g G, 2.5
x

x

0
ò Î Î

⎛
⎝⎜

⎞
⎠⎟( ) ( )

Then f is said to beG-integrable on I.

Aswe can see from the definition ofG-regularity in our appendix, theG-integrability is necessary for the
G-regularity. By using some content in [12]we can easily see that theG-integrability implies the absolute

continuity of f t y t dt,
x

x

0
ò ( ( )) in the x variable where y is taken to be absolutely continuous as in (2.4).

From this, onefinds that theG-regularitymakes (2.2) absolutely continuouswhenever a particular
absolutely continuous function u(x) is chosen, and hence f s u s ds,

x

x

0
ò ( ( )) is a family of absolutely continuous

functions if we let the u variable run over a particular set of continuous functions.
Since under our hypothesis f is takenG-integrable, it is also bounded from the definition 2 and this suggests

us that f s u s ds,
x

x

0
ò ( ( )) is an equi-absolutely continuous family of functions. From this we have already proved

that theorem 2.1 is a special case of theorem2.2when the (2) hypothesis is replacedwith (2’).

3. Sobolev functional space for solutions

Now, by expressing (2.1) in the subsequent formoffirst-order differential system:

dy

dx
v

dv

dx

p x

p x
v

q x

p x
y

l

p x
y

3.1

=

= -
¢

+ -

⎧
⎨
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⎩
⎪⎪

( )
( )

( )
( ) ( )

( )

it is easy to see, by applying theorem (2.2)with the (2’) hypothesis, that the required summability in the x variable
forces the coefficients p x p x,1 ¢-( ) ( ) and q(x) to belong to L I1( )while the solution y to (2.1) and its derivative y¢
are absolutely continuous functions.

Nowwewill face the fact that an absolutely continuous functionmust belong to a Sobolev space -i.e.-W1,1

defined, for example, in [13]:

Definition 3.

W a b u L a b g L a b u g, , : , : , 3.2
a

b

a

b
1,1 1 1 ò òf fº Î $ Î ¢ = -

⎧⎨⎩
⎫⎬⎭([ ]) ( ) ( ) ( )

for all C a b,0
1f Î ( ).We also recall the following

Definition 4. Let f :  ⟶ be a function in a b,[ ] such that its derivative is defined almost everywhere and

df

dx
dx f b f a , 3.3

a

b

ò = -( ) ( ) ( )

then f is said to be absolutely continuous.

It is well known that theweaker classical hypothesis thatmakes it possible to perform an integration by parts
(Lebesgue fondamental integral theorem) such as

3
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f
d

dx

df

dx
C a b, 3.4

a

b

a

b

0
1ò ò

f
f f= - Î ( ) ( )

is the absolute continuity of the function f.
Now, fromdefinition 5, it follows that such functionsmust be continuous and have got bounded variation in

the compact interval a b,[ ]. This simpy implies that every such function belongs to the L a b,1( ) space.
Furthermore, from the bounded variation behaviour of f, the integral (3.5)must befinite for every compact
interval a b,[ ], thus f ¢must belong to L a b,1( ).

Taking into account the definition 3, jointly with the properties obtained above, we see that every absolutely
continuous function belongs to theW a b,1,1([ ]) Sobolev space.

4.Weyl’s LP-LC criterion

Let us consider the following special case of Sturm-Liouville equation on (a, b) taking p=1 in (2.1)

d y

dx
q x y ly l . 4.1

2

2
- + = Î( ) ( )

This is an eigenvalue equationwhose differential operator is

d

dx
q x 4.2

2

2
 = - + ( ) ( )

defined on L a b,2( ). The aimof the followingWeyl’s Criterion is to provide the condition on the operator (4.2) in
order to ensure its self-adjointness in terms of the LP-LC property. In this way, such a theoremprovides a
magnificent link between operator theory onHilbert spaces and LP-LC theory [2, 3]:

Theorem4.1. Let q x Lloc
2Î( ) in I a b,= ( ) and let q xd

dx

2

2 = - + ( )with domain D C a b,0 = ¥( ) ( ). Then the
closure ̄ has got deficiency indices:

(i) n n 2 = =+ -( ¯ ) ( ¯ ) if  is in LC at both ends of the interval;

(ii) n n 1 = =+ -( ¯ ) ( ¯ ) if  is in LC at one end and LP at the other;

(iii) n n 0 = =+ -( ¯ ) ( ¯ ) if  is in LP at both ends of the interval.
Therefore,  is essentially Self-Adjoint if and only if it is LP at both end-points of the interval.

From the extended version of Carathéodory existence theoremwe know that, if a solution to equation (4.1)
exists in a compact I, then itmust be absolutely continuous togetherwith itsfirst derivative and thus it belongs
toW I1,1( ).

We can introduce the following Sobolev space that will be the basic living place for our solutions:

Definition 5.

W I u W I u W I . 4.32,1 1,1 1,1= Î ¢ Î( ) { ( ) ∣ ( )} ( )

Of course, we are only interested in functions which are absolutely continuouswith their first derivative.

We note that the operator (4.2)must act on aHilbert space -i.e.- L I2( ) and therefore, from (4.1), the

function
d y

dx
L I

2

2
2Î ( ).

The subsequent theorem [11] shows that the hypothesis on the second derivative of our solutions to belong
to L2 is sufficient to guarantee us the local absolute continuity of the solutions and their first derivative:

Theorem4.2. Let g L Iloc
1Î ( ) and take for some y I0 Î the following expression:

v x g t dt x I. 4.4
y

x

0
ò= Î( ) ( ) ( )

Then, v(x) is continuous in I and

v g C I . 4.5
I I

0
1ò òf f f¢ = - " Î ( ) ( )

By applying recursively the above theoremone finds that, under the hypothesis of square summability of its
second derivative, y and its first derivative are locally absolutelly continuous on Iwhatever I is. It is also clear that,

4

J. Phys. Commun. 3 (2019) 035017 VFBellino andGEsposito



in the case of a compact real interval, y and y¢ are absolutely continuous functions ofW I1,1( ) and hence y
belongs to the (4.3) set.

Now, if I is not bounded or half-bounded, we are dealingwith functions belonging toW Iloc
2,1( ) and taking the

square summability required for operator (4.2), the basic functional space towhich our solution belongs
isW I L Iloc

2,1 2Ç( ) ( ).
Nowwe can summarise our results in the following theorem:

Theorem4.3.Whatever the I interval is, every solution to equation (4.1) belongs to the spaceW Iloc
2,1( ).

Of course, if I is compact thenW I W Iloc
2,1 2,1º( ) ( )while if the square summability is required, then ymust

belong to L I2( ) and thuswe obtain the local absolute continuity of y and y¢ and theCarathéodory’s existence
theorem is fullfilled.

5. Proof ofWeyl’s criterion

Wecannowproceedwith the proof of theorem 4.1 by following the logical steps that can be found in [3]. Our
methodwillmake use of theorem4.2 jointly with all the information obtained in the previous section.

Proof of statement (i):
If the operator  is LC at both ends of the interval I, then every solution to the equation y ly = , l " Î for

which l 0¹I , belongs to L I2( ). Thismeans that there exist two linearly independent solutions to each of the
equations y iy = and y iy = - , and therefore the deficiency indices are n n 2 = =+ -( ¯ ) ( ¯ ) .

Proof of statement (ii):
Suppose that  is LP at a and LC at b.
Let us consider a restriction 0 of the operator  acting on the subsequent linear domain:

D W c d c d c L c d, : 0, , 5.10 loc
2,1 2 f f f f f= Î = = ¢ =  Î( ) { ([ ]) ( ) ( ) ( ) ( )} ( )

where c d I, Ì[ ] . From theorem 4.2 and the comment below, we have that D W c d L c d, ,0 loc
2,1 2 Ì Ç( ) ( ([ ]) ( )),

hence D 0( ) is aHilbert sub-space of L c d,2( ). It is easily seen that operator 0 is symmetric and that the
domain of its adjoint is

D W c d d L c d, 0, , , 5.2loc0
2,1 2* y y y= Î =  Î( ) { ([ ]) ∣ ( ) ([ ])} ( )

because the equations

i 5.30 f f=  ( )

have atmost two linearly independent solutions in L c d,2( ) and hence n 20 +( ) and n 20 -( ) .Wemust
rule out the case n n 00 0 = =+ -( ) ( ) because it is the self-adjoint one and this is not the case
because D D0 0* Ì( ) ( ).

Nowwe can show that each of equations (5.3) has only one solution in L c d,2( ).
It is indeedwell known that the adjoint domain for a linear operator on aHilbert space admits the following

decomposition:

D D K K 5.4*   = Å Å+ -( ) ( ) ( ) ( ) ( )

where K +( ) and K -( ) are the deficiency spaces of the operator under consideration. Let us define the
operator d

dx
2

2

2 = - on the domain (5.1) and let us denote it by 0
2 . Of course 0

2 is symmetric and its adjoint

has domain (5.2), thuswe can certainly say that K K K K0 0 0
2

0
2   Å = Å+ - + -( ) ( ) ( ) ( ). By solving the

equations

i 5.52 f f=  ( )

with the condition imposed by (5.2), we obtain two one-dimensional deficiency spaces of the form

K L c d x x
x

e

K L c d x x
x

e

, .

, . 5.6

i d

i d

0
2 2

1
2

2 1

0
2 2

1
2

2 1









x x l z
z

l

h h l r
r

l

= Î = - Î

= Î = - Î

+ +

- -

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭

( ) ( ) ∣ ( ) ( )
( )

∣

( ) ( ) ∣ ( ) ( )
( )

∣ ( )

( )

( )

where 1z , 2z , 1r and 2r are locally square integrable on the real line. Equations (5.6) show that K K0
2

0
2 Å+ -( ) ( )

is a two-dimensional linear space and hence the same holds for K K0 0 Å+ -( ) ( ). Now, taking into account the
fact that [6, 7] if, for some complex l0 Î all solutions to y l y0 0 = are square integrable, than for every
complex l Î every solution to y ly0 = is square integrable as well, wemust rule out the cases

5
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Kdim 20 =+( ( )) , Kdim 00 =-( ( )) and Kdim 00 =+( ( )) , Kdim 20 =-( ( )) . From this, the only case left is
K Kdim dim 10 0 = =+ -( ( )) ( ( )) and therefore n n 10 0 = =+ -( ) ( ) . This alsomeans that there exists a

non-vanishing function ũ that does not belong to iRan 0 -( ). At this stage, let I a d,=- ( ]and let 1 be a
second restriction of  defined on

D W I L I x d x a a

a d L c d

0, , ,

, , , . 5.7

1 loc
2,1 2

2



 f f f

f
= Î Ç = = Î +

Î  Î
- -( ) { ( ) ( ) ∣ ( ) ( ) ( )

( ) ( )} ( )

Wenote that in the case inwhich the end-point a is atfinite distance from the origin, the basic space in (5.7) can
always be taken to beW I2,1

-( ) instead ofW I L I2,1 2Ç- -( ) ( ).
All our reasoning on 0 can be repeated on 1 , leading us to the same conclusions: 1 is symmetric on its

domain and has got the same deficiency indices of 0 . By using some arguments that can be found in [2], we can
state that there exists atmost one self-adjoint extension of 1 by virtue of the equality of its deficiency indices. Let
us denote by 2 such a self-adjoint extension. It is clear that, if the domain is taken to be

D W I L I a d L I; 0, 5.82 loc
2,1 2 2 f f f f= Î Ç = =  Î- - -( ) { ( ) ( ) ∣ ( ) ( ) ( )} ( )

we are dealingwith a self-adjoint extension of 1 andwe also note that D D2 1 Ì( ) ( ¯ ).
Take now a function D 2c Î ( ) for which i u2 c c- = where u is chosen in such away that its

restriction ũ to the interval c d,[ ] is not in iRan 0 -( ).We easily see thatχ cannot be equal to zero on (a, c).
To see this we have to take into account that C1c Î on a d,( ] (we refer to the previous section); if this were
possible, then the restriction c̃ ofχ to the interval c d,[ ]would belong to D 0( ) becausewewould have

c d a 0c c c= = ¢ =( ) ( ) ( ) and onewouldfind that i u2 c c- =˜ ˜ ˜. But this contradicts our previous
hypothesis, thusχ cannot be equal to zero on (a, c).

Last, sinceχ is L2 near the a end-point in LP and the operator  is LCnear the b end-point, the continuous
extension ĉ ofχ that solves the equation y iy = over thewhole (a, b) is the only L a b,2( ) solution. The same
holds for the equation y iy = - and hencewe have n n 1 = =+ -( ¯ ) ( ¯ ) .

Proof of statement (iii):
Suppose that  is LP at both end-points a and b. From the (ii) statement we know that there exists only one

square-integrable function near a and one near b butwe do not knowwhether they can be related in someway.
Instead of showing that this is not the case, wewill show that the deficiency indices of ̄
are n n 0 = =+ -( ¯ ) ( ¯ ) .

In order to do this, wefirst need some arguments on theWronskian function

x x x I D; , , , 5.9 f y fy f y f y= ¢ - ¢ Î Î( ) ( )( ) ( ) ( )

where D ( ) is defined according to

D W I L I , 5.10loc
2,1

loc
1 j j= Î  Î( ) { ( ) ∣ ( )} ( )

and on the regular points of the operator .We say that the point a is a regular point (the same for b) for  if and
only if it isfinite and the subsequent condition holds:

q x d I. 5.11
a

d
2ò < ¥ " Î∣ ( )∣ ( )

First wewant to show that:

(a) x; , f y( ) is a locally absolutely continuous function in the x variable.

(b) If D, *f y Î ( ) then there exist the limits xlim ; ,x a f y ( ) and xlim ; ,x b f y ( ) and hence

b a; , ; , , , 5.12* *   f y f y f y f y- = < > -< >( ¯ ) ( ¯ ) ( )

(c) The operator  is in LC at its regular point, and if D *f Î ( ) then the limits

xlimx af ( ) and xlimx af¢ ( ) exist and are zero if D f Î ( ¯ ).
In order to prove the (a) property, we only have to take into account theorem4.2 that ensures the local

absolute continuity of the functions in D ( ) and of their first derivative. From the definition (5.9) it is easily
seen that the product and summation of locally absolutely continuous functions lead to the local abolute
continuity of theWronskian.

For point (b)we can use the fact that the function q x L Iloc
2fy Î( ) ( ) because D, f y Î ( ), while

q x L Iloc
2Î( ) ( ) from the hypothesis. Now, taking into account theorem 4.3 and the fact that the functions of

D *( ) need the square integrability of their second derivatives, from theHölder inequality, such derivatives are

6
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also locally integrable and our starting functions belong to D ( ). From this we have
that D D L I2* Í Ç( ) ( ( ) ( )).

Using the local absolute continuity of , we have for all c d I, Ì[ ] that

d c; , ; , , 5.13
c

d
  òf y f y fy f y- =  - ( ¯ ) ( ¯ ) ( ¯ ¯ ) ( )

and on adding and subtracting the q x
c

d
ò fy( ) term in (5.13), under the hypothesis of D, *f y Î ( ), we have

d c; , ; , . 5.14
c

d
* *   òf y f y f y fy- = -( ¯ ) ( ¯ ) ( ) ( )

Since the functions in D *( ) are locally absolutely continuous and globally square integrable with their second
derivative on I, in (5.14) the limits xlim ; ,c a f y ( ) and xlim ; ,d b f y ( ) exist and equation (5.12) holds.
This completely proves the (b)Wronskian statement.

As far as the property (c) is concerned, under the hypothesis of regularity for point a, if D *f Î ( ), then it is
in D ( ) and thereforef and f¢ are locally absolutely continuous. This ensures us that the limits xlimx af ( )
and xlimx af¢ ( )must exist.

Now, since D C I0 º ¥( ) ( ) and themap a a,f f f ¢( ( ) ( )) is continuous in the norm *f f+∣∣ ∣∣ ∣∣ ∣∣, then
x xlim lim 0x a x af f= ¢ = ( ) ( ) for all D f Î ( ¯ ). Sincef is locally absolutely continuous, it is bounded near a

and thus it belongs to L2. This shows the LC case.
We can nowproceedwith the proof of the (iii) statement, inwhichwewillmake use of the results obtained

above.
Suppose that the end-point a is regular while b is LP. It is easily seen that  has got self-adjoint extensions

because it is symmetric on C I0
¥( ) and it has deficiency indices n n 1 = =+ -( ) ( ) like the operator 1 defined

in the proof of the (ii) statement. Among all conceivable self-adjoint extensions, wewant to choose that one for
which there exists some , 0, 02a b Î( ) ⧹( ) such that

a a 0 5.15af bf+ ¢ =( ) ( ) ( )

and call it ̂. In order to do this wewill use a theorem in [14], knownunder the name of vonNeumann’s extension
Theorem3 that provides the esplicit expression of all possible domains of the closed symmetric extensions for a
closed symmetric operator, by using partial isometries between the deficiency spaces K +( ) and K -( ). Of
course  is closable, thuswe canmake use of vonNeumann’s Theorem.

Let us define the following unitary operator between the deficiency spaces that acts like a complex
conjugation:

K K: . 5.16   x x xÎ = Î+ -( ) ⟶ ¯ ( ) ( )

Certainly  is an isometry, hence it is bijective.
From vonNeumann’s theoremwe know that the self-adjoint extension related to the unitary operator (5.16)

has got the following domain:

D D K, . 5.17   h x x h x= + + Î Î +( ˆ ) { ∣ ( ¯ ) ( )} ( )

It is straightforward that the function in D ( ˆ ) satifies the relation (5.15) for sameα andβ.

3
LetA be a closedHermitian operator with domainD(A) dense in aHilbert space , and let us define the spaces [2, 3, 14]

A iIKer ,* = ( )

with dimension denoted by d± . For any closed symmetric operatorB, we denote byUB its Cayley transform

U B iI B iI ,B
1º - + -( )( )

extended to  by setting it to 0 on B iIRan + ^( ) . The vonNeumann Extension theorem can be stated as follows [2, 3, 14]:IfA is a closed
Hermitian operator, there exists a 1−1 correspondence between closed symmetric extensionsB ofA, and partial isometriesV, with initial
space VI Ì +( ) andfinal space VF Ì -( ) . This correspondence is expressed by

U U V ,B A= +

or by

D B V D A V: , ,Ij y y j y= + + Î Î( ) { ( ) ( )}

whereB equals the restriction of the adjointA* to the domainD(B). The operatorB is self-adjoint if and only if

V V, .I F   = =+ -( ) ( )

In particular, the operatorAhas self-adjoint extensions if and only if d d=+ - and, in that case, if d < ¥+ , the set of self-adjoint extensions
is a d 2

+-dimensional real topologicalmanifold, in the topology of norm-resolvent convergence.
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Eventually, if we show that

x D; , 0 , 5.18* f y f y= " Î( ¯ ) ( ) ( )

at the LP end-points, under our hypothesis of LP at both ends of I, from (5.12)we get the symmetry of the
operator * , and becausewemust have D D* ** Í( ) ( ) but at the same time is easily seen that ** = and
D D ** º( ) ( ), wemust have D D * =( ) ( ) and there follows that  is self-adjoint, thus its closure ̄ is
symmetric frompropositions (c) and (b) and has got deficiency indeces n n 0 = =+ -( ¯ ) ( ¯ ) .

In order to show that x; , 0 f y =( ¯ ) at the LP extremes, suppose b in LP. First of all we see that

b; , 0 f y =( ¯ ) for all D, f y Î ( ˆ ) because from (5.15)we have a; , 0 f y =( ¯ ) and from the self-adjoint

behaviour of ̂wemust have b; , 0 f y =( ¯ ) by relation (5.12). Now, if some C I0 0h Î ¥( ) is chosen in such a
way that it equals zero on c b,[ ) for some c IÎ , and forwhich (5.15) is not verified, such a functionmust belong
to D D* ( )⧹ ( ˆ ). From the fact that  has deficiency indices equal to one, theremust be

D Ddim 1* - =( ( ) ( ˆ )) and therefore every function D *f Î ( ) can bewritten in the form

D, . 5.190 0 0 f f lh l f= + Î Î ( ˆ ) ( )

Since x x 00 0h h= ¢ =( ) ( ) on c b,[ ), then x xlim ; , lim ; , 0x b x b 0 0 f y f y= = ( ¯ ) ( ¯ ¯ ) for all
D, *f y Î ( ) of the form (5.19).

This completely shows that (5.18) holds, and the desired proof is completed.

6. Examples of self-adjoint extensions

Herewewant to show that indeed, the operator d

dx

2

2- has gotmore that one self-adjoint extension, and these

correspond to theDirichlet andNeumann conditions at the origin.We can proceed in the followingway:

(1) First we consider a particular class of domains -i.e.- D , m{ }, that let our operator be closed and symmetric
and from this, using some arguments contained in [2], we are ensuring the existence of self-adjoint
extensions for such closed and symmetric restrictions.

(2) We use the von Neumann’s theorem [2, 3, 14] to obtain explicitly all domains of closed and symmetric
extensions -i.e- D c, m ( ){ } (where c runs over 0, 2p[ [).

(3) Wederive the formof the domains of the adjoint -i.e.- D c,* m ( ){ } .

(4) We use the Self-Adjointness condition D c D c, ,* =m m( ) ( ){ } { } to find which of the D c, m ( ){ } domains is of
self-adjointness.

Let us define the following two-parameter domains of symmetry for
d

dx

2

2
- :

D C x x: 0 0, , , . 6.1, 0    f f f m m= Î = " Î = Îm
¥ +{ ( ) ( ) ( ) ( ) } ( ){ }

It is easy to see that such domains are closed and on themour operator is symmetric, and from the fact that
n n 1= =+ - , there exist self-adjoint extensions for eachfixed admissible pair , m( ).

In order to use vonNeumann’s Theorem, we need the expression of the deficiency spaces, andwe easily find
that

L c e c, 6.2
i x2

1
2  f f= Î = Î+

+
+

-

+{ ( ) ∣ } ( )

L c e c, 6.3
i x2

1
2  f f= Î = Î-

+
-

- +

-{ ( ) ∣ } ( )

We see that such spaces are one-dimensional linear spaces and, fromvonNeumann’s theoremwe know that
all possible symmetric extensions for each of D , m{ }, are in bijectionwith the isometries between the deficiency
spaces. From the fact that the deficiency spaces are one-dimensional, the isometries required can only be phase
factors of the form ei x c c, ,q + -( ) and therein, following the statement of the Theorem, wemust have

e e
c

c
e , 6.4i x c c

i x i x, ,
1

2
1

2=q
-

-

+

- +
+ - ( )( )

and since it follows that 1c

c
=-

+
, we set ec

c
ic=-

+
with c 0, 2pÎ [ [, and this shows that x c x c, 2q = - +( ) .

From the vonNeumann’s criterion [2, 3, 14]we can give the explicit form to the domains of symmetric
extensions that wewill call D c, m ( ){ } :
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D c L z e e e , 6.5
i x ic

i x
,

2
1

2
1

2 y y f= Î = + +m
+

- - +
( ) { ( ) ∣ ( )} ( ){ }

where D z,, f Î Îm{ } . Taking into account the symmetry relation

d

dx

d

dx
, , ,

2

2

2

2
x y x y=

where D c,y Î h m ( ){ } and D c,*x Î h m ( ){ } , we obtain the following equation:

e
i

e
i

0 1 0
1

2

1

2
0 6.6ic icx x¢ + +

+
-

-
=

⎛
⎝⎜

⎞
⎠⎟( )( ) ( ) ( )

that defines the two following kinds of adjoint domains:

D c L
e

e i e

0

0

2 1

1 1
6.7

ic

ic ic1
2* x

x
x

= Î
¢

= -
+

+ + -
+

⎧⎨⎩
⎫⎬⎭( ) ( ) ∣ ( )

( )
( )

( )
( )

with c
2

¹ p , and

D c L
e

e i e

0

0

2 1

1 1
, 6.8

ic

ic ic2
2

1

* x
x
x

= Î
¢

= -
+

+ + -
+

-
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝⎜

⎞
⎠⎟

⎫
⎬
⎭

( ) ( ) ∣ ( )
( )

( )
( )

( )

with c p¹ , inwhichwe have ruled out
2

p andπ values that lead to singular ratios
0

0

x
x¢

( )
( )

and
0

0

x
x
¢( )
( )

, respectively.

First of all, it is interesting to note that (6.7) and (6.8) are independent of the , m( ) pair. In this waywe can
certainly say that (6.7) and (6.8) cover all possible domains for the adjoints of the closed and symmetric extensions for

any of the possible closed and symmetric realizations of d

dx

2

2- over the real half-line.

Now, by using the self-adjointness relations D c D c, 1* =m ( ) ( ){ } and D c D c, 2* =m ( ) ( ){ } we easily get the
following self-adjointness domains:

D D L 0 0 , 6.91 1
2* p p x x= = Î =( ) ( ) { ( ) ∣ ( ) } ( )

D D L
2 2

0 0 , 6.102 2
2* p p

x x= = Î ¢ =⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ { ( ) ∣ ( ) } ( )

that correspond to theDirichlet andNeumann condition at the origin.
The last thing that wewant to note is that the sets (6.9) and (6.10) are both closed and open.
For example, by using the following sequence in D D1 2 2

p Ç p( )( ) :

f x

x x
n

x
x

n
a

x a

a

0,
1

1 1
,

0 ,

1, 6.11n

32

3

=

Î

Î

Î ¥

Î ¥

⎧

⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

( )

[ [

( ) ( )

which converges in L2 but not in the intersection of D1 p( ) and D2 2

p( ), we realize that (6.9) and (6.10) are open
sets. On the other hand, if we choose the following:

g x n
x

n
x a

x a

a
1 1

0,

0 ,

6.12n

2

=
- - Î

Î ¥
Î +⎜ ⎟

⎧
⎨⎪
⎩⎪

⎛
⎝

⎞
⎠( ) [ [

[ )
( )

we see that g L D Dn
2

1 2 2
 ÈpÎ - p+( )( )( )( ) ( ) , hence it belongs to the complement of each D1 p( ) and

D2 2

p( ) for every n Î but its limit belongs D D1 2 2
p Ç p( )( ) . This shows that the complement of (6.9) and

(6.10) is an open set and therefore (6.9) and (6.10)must be closed sets.
The fact that they are closed sets also results from vonNeumann’s Theorem. In this way, the sequence (6.12)

confirms the validity of such a Theorem. Eventually, we have obtained that the operator d

dx

2

2- is Self-Adjoint

only on domains (6.13) and (6.14), which are simultaneously closed and open.

7. Concluding remarks

In thefirst part of our paper we have derived two peculiar aspects of the general Sturm-Liouville operators. First
over all, starting from very general and fundamental theorems, we have shownwhich are theweakest
assumptions on the coefficients in order to obtain solutions of the eigenvalue problem that are sufficiently
regular, i.e. -absolutelly continuous- to be usedwhenever needed. A second remarkable aspect is essentially seen
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in the possibility of considering such regular solutions embedded in a hightly non-regular space such as (4.3). It
is from this latter aspect that our proof ofWeyl’s theorem takes themoves. Other proofs of this theorem can be
found in [15, 16], under the natural assumption of differential operators acting on a suitableHilbert space. As far
as this last pair of references are concerned, wewant tomention some further functional-analyticalmethods
which are up to date with the current developments of this subject. An example is themaximal operator and
minimal operator related to a differential expression like (2.1) or (4.2). In [15], the domain of definition for the
maximal operator related to a nth-order differential expression τ on a real line segment is

D f a b f f f AC a b f a b, : , , ..., , ; , ,M
n2 0 1 1 2 t= Î Î Î-{ ( ) ( ) ( )}( ) ( ) ( )

and it is shown that such a domain is densely defined and closed in theHilbert space.Here we also define the
domain for theminimal operator in the form

D f a b f C a b, : , .m
2

0
2= Î Î{ ( ) ( )}

Upon focusing on our differential operator (4.2), it is evident that theminimal operator occurs instead under the
hypothesis of theorem 4.1.With the language of our paper and bymeans of theorem 4.2, themaximal setDM is
basically

D f W a b f a b, : , ,M loc
2,1 2= Î  Î{ ([ ]) ( )}

hencewe derive theHilbert-space nature ofDM by relying only upon the square summability of highest
derivatives in it. In our proof we decided to use theVonNeumann’s extension theorem in order to reach all
possible self-adjoint extensions for the specific differential operator under consideration.We suggest reading
[15] for a the general theory about nth-order differential operators’s self-adjoint extensions in terms of boundary
conditions of which our (5.18) represents a specific case.We remark the fact that, with the language used here,
the expression (5.18) cannot be untied from the functional space (5.10). Following the conceptual behaviour of
VonNeumann’s theorem,wemust bring to the attention of the reader another functionalmethod thatmakes
use of a tool called boundary triples. Given anyHilbert space and a symmetric operatorT, it is always useful to
define a sesquilinearmapΓ

T T, , ,T * *f y f y f yG = á ñ - á ñ( )

for D T, *f y Î ( ) in order tofind the closure ofT.We also refer to [16] for a recent redefinition of essential self-
adjointness in terms of themapΓ. By theway, a boundary triple is a triplet h, ,1 2r r( )where h is a suitable
Hilbert space and ,1 2r r are D T h*( ) ⟶ maps that satisfy the rule

a , , ,T 1 1 2 2* f y r f r y r f r yG = á ñ - á ñ( ) ( ) ( ) ( ) ( )

for some complex a constant. In terms of boundary triples, onefinds that ,f yG( ) vanishes identically whenwe
restrict the inputs ,f y to the domain of some self-adjoint extension.One can therefore say that the domain of
any self-adjoint extension of a symmetric operatorT is of the form

D T T : 2 1*  f r f r f= Î =( ) { ( ) ( )}

where  is a unitary operator. In terms of boundary triples, one can obtain amore general statement and
expression for the self-adjoint extensions of a symmetric operator. The role played by the sesquilinearmapΓ is
the same as the role played by the domain (5.10). Such a theory is described in detail in [16].

To sumup, we have indeed shown that the operator (4.2) can clearly act over a sort of spaces like (5.1), and
that theHilbert-space nature of such sets, resides only in the square summability of second derivatives of their
functions by virtue of theorem4.2. In this fashion, whenever needed, one can look forweaker solutions of the
eigenvalue equation.

Similar techniques have been applied, over the years, to awide range of topics. For example, thework in [17]
studied essential self-ajointness in 1-loop quantum cosmology, thework in [18]has provided enlightening
examples of boundary conditions for self-adjoint extensions of linear operators, whereas thework in [19] has
suggested that a profound linkmight exist between the formalism for asymptotically flat space-times and the
limit-point condition for singular Sturm-Liouville problems in ordinary quantummechanics. Last, but not

least, the parameter l
n 2

2
nll º +

-( )
in equation (1.2) is neatly related to the parameter L used in large-N

quantummechanics [20], i.e.

L

2
1.nll = -

Moreover, since the Schrödinger stationary states are even functions of nll , this suggests exploiting the
complex- nll plane in the analysis of scattering problems [21]. If n is kept arbitrary, thismeans complexifying a
linear combination of l and n [5], including the particular casewhere l remains real while the dimension n is
complexified.
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Thus, there is encouraging evidence that Sobolev-spacemethods and yet other concepts of functional and
complex analysismay provide the appropriate tool for investigating classical and quantumphysics as well as
correspondences among such frameworks.
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Appendix. G-regularity

For the definition ofG-regularity we need to endow the n spacewith the norm

y y . A1
i

n

i
1

å=
=

∣∣ ∣∣ ∣ ∣ ( )

Herewemake use of the topology induced by the uniform convergence in order to give to the C I , n( ) vector
space a Banach structure. Let us call it.

Wewill say that the sequence u un  Î Î⟶ if and only if, for every  Î +, there exists some n Î
such that, for all n  n the followingmajorization is verified:

u x u xsup . A2I n - <∣ ( ) ( )∣ ( )

Since  is also ametric space, we can use in (A2) the following notation for the distance between un and u:

d u x u xsup . A3n I n= -∣ ( ) ( )∣ ( )

At this stage we have only to define the following particular sequence on the I segment:

x x d xsign A4n
n= - ( ) ( )

andwe note that x xn ⟶ on I only if u un ⟶ on.
We are now in a position to define the concept of G-regularity, while we refer to definition 2 for the

G-integrability.

Definition 6. Let f beG-integrable on the interval Iwhosemiddle point is x0, and let g GÎ be defined in

equation (2.3). Let the sequence u x g s ds Gn x

x

n
0

ò= Î( ) ( ) be such that un tends uniformly to u x g s ds
x

x

0
ò=( ) ( )

on I. Let xn be defined by (A4). If now every such sequence of functions verifies the condition

f x u x f x u x, , , A5n
n

n ( ( )) ( ( )) ( )

thenwe say that f isG-regular on I.

Formore insights on theG-regularity property of functions, we refer the reader to [12].
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