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Abstract

The principal aim of this paper is to present a new proof of Weyl’s criterion in which it is shown that
the natural framework for the associated Sturm-Liouville operators is W! N L% -i.e.- the intersection
of a particular Sobolev space and of the L* space. Indeed, we will deal with the special case of the radial

operator (— %22 +q (x)) onareal line segment (either bounded or unbounded) that often occurs in

the study of quantum systems in central potentials. We also derive from first principles the functional
behaviour of the coefficients for a general second-order Sturm-Liouville operator by using some
extensions of a milestone Carathéodory existence theorem.

1. Introduction

Limit-Point Limit-Circle theory was first developed by the young Herman Weyl in the early 1900’s in one of his
firstarticles [1]. Since then, such methods (hereafter denoted by LP and LC, respectively) have become
increasingly important thanks to their accurate predictions on the form of the potential in the applications,
which can easily supply foundamental information about the solution of a great variety of singular second-order
Sturm-Liouville problems. In the modern literature, the work in [2, 3] provides an enlightening introduction to
the link between these singular second-order problems and functional analysis, as well as to the applications to
ordinary quantum mechanics.

The world of atomic physics offers indeed a wide range of applications of ordinary quantum mechanics. This
is not an exact theory, because relativity would make it necessary to use the spectral theory of pseudo-differential
operators in order to develop the quantum theory of bound states [4]. Thus, one still resorts with profit to
ordinary quantum mechanics, from which one can learn valuable lessons. For example, if a physical system ruled
by a central potential V(r) is considered in R” (the choice nn = 3 is frequent but not mandatory), one finds an
effective potential

Var(r) = V() + B4, (LD)
where, on denoting by I the orbital angular momentum quantum number, one finds [5]

nl

2
:<"—1><”—3>+z(z+n_z):(z+u)—1. (12)
4 2 4

As onelearns from [2, 3], the LP condition at the origin is achieved if

V(r) + Lot > 3 as r — 0™, (1.3)
r2 7 4r?
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In the particular case of a free particle, V (r) = 0 and (6.3) leads to

2
(l+(”_2))—l>i:l+ﬁ>z. (1.4)
2 4 4 2

Interestingly, this condition is violated just once, i.e. by s-wave stationary states (for which / = 0) in 3 dimensions.
The same holds if V(r) is a Coulomb-type potential, because then the centrifugal term on the left-hand side of
(1.3) dominates on the Coulomb term as r approaches 0.

Section 2 describes what is known from a Carathéodory theorem on ordinary differential equations;
section 3 studies the Sobolev functional space for solutions of our singular second-order problems; Weyl’s LP-
LC criterion is studied with extensive and original use of Sobolev spaces in sections 4 and 5. Explicit examples of
self-adjoint extensions are analyzed in section 6. Concluding remarks are made in section 7, while relevant
details are given in the appendix. Throughout our paper, the reader is assumed to have some background on the
LP-LCtheory[6, 7] and on operator theory [2, 3].

2. Extended Carathéodory’s existence Theorem

First, we want to understand the functional behaviour of the coefficients and all possible solutions of the general
Sturm-Liouville eigenvalue equation

—i(p(x)d—y) +qx)y =1 leC. 2.1)
dx dx
In the LP-LC literature, whenever one deals with equation (2.1), it is necessary to specify the functional space to
which the coefficients p(x), p’(x)and g(x) belong, in order to develop the theory and reach the desired results.
For example, in [6-8] the coefficients p, p’ and g belong to the set of real-valued continuous functions and
hence the solution y must be globally of class C?ontheinterval I C R ofinterest. On the other hand, in [9, 10],
weaker conditions on p~!, g are given -i.e.- they are Lj,. while the solution y and its derivative y’ are absolutely
continuous (ACy,.) on the interval I of interest.
In order to clarify the hypotesis made on such functions and on the solutions, we will make use of some
extended Carathéodory’s existence theorems:

Theorem 2.1. Let I C R bea closed interval and let f (x, u(x)) be G-regular on1 (see appendix). Then there exists at
least one absolutely continuous function u such that

u(x) = fx f (s, u(s))ds xel (2.2)
where X is the average point of L.

We note that if fobeys the above theorem, there exists at least one absolutely continuous function u that
satisfies the equation ' = f (x, u(x)) almost everywhere.

Theorem2.2. Let I = [a, b] C R beacompactintervalandlet f (x, y): I X V — V satisfy the following
hypothesis (where V is a generic n-dimensional space):

(1) Forevery y € V, f(x, y)is measurable on1and it is continuous in V.

(2) There exists a real-valued non-negative function M (x) € L'(I) such that | f (x, y)| < M (x).
Then there exists an absolutely continuous function u(x) such that u'(x) = f (x, u(x)) almost everywhere on I.

Theorem 2.1 is discussed and proved in [8] while theorem 2.2 in [11].

In [11]itis shown that the requirement (2) of theorem 2.2 can be replaced by the following:

(2’) Forevery y € C(I), f (x, y(x))issummablein I, and upon taking y € C(I), the functions
fa * f (t, y(t))dt describe an absolutely equicontinuous family on I

obtaining a more general existence theorem.

Here we want to show that, if the assumptions of theorem 2.1 are verified and we also take hypothesis (2°)
instead of (2), then theorem 2.2 must also be true. From this the former will be a restricted case of the latter.

As already mentioned, for the definition of G-regularity we remind to the appendix at the end of this paper.
Here we will only give the main condition that ensures the occurrence of this property. For this purpose we need
some further notions:
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Definition 1. Let I C Randlet A\,....h", k%,....k™ € L['(I, R). We define the subsequent convex subset G (h, k)
of L}(I, R™) by

Glh, k) = {g € (I, R™), hi(x) < ¢i(x) <K (x), xe I, 1 <j< m). (2.3)
Theorem 2.3. If the function f: (x, y) € I x R™ — f(x, y) € R" satisfies
If 6 I < M)A + [yD, (xy) € I x R™ (2.4)

forsome M € L'(I, R) and it is measurable in the x variable for any fixed y and it is also continuous in they variable,
then there exists a G (h, k) such that fis G-regular on 1.

Of course, form theorem 2.3 the assumptions of theorem 2.1 are satisfied and hence (2.2) is absolutely
continuous.

Definition 2. Let G = G (h, k) be given by (2.3) and x, be the middle point of the interval I. Let
f: 1 x R" — R"besuch that

f(x, fx g(s)ds) G forallge G (2.5)
Then fis said to be G-integrable on L.

As we can see from the definition of G-regularity in our appendix, the G-integrability is necessary for the
G-regularity. By using some content in [ 12] we can easily see that the G-integrability implies the absolute
continuity of fx * f (t, y(¢))dt in the x variable where y is taken to be absolutely continuous as in (2.4).

From this, one finds that the G-regularity makes (2.2) absolutely continuous whenever a particular
absolutely continuous function u(x) is chosen, and hence L }: f (s, u(s))ds is a family of absolutely continuous
functions if we let the u variable run over a particular set of continuous functions.

Since under our hypothesis fis taken G-integrable, it is also bounded from the definition 2 and this suggests
us that fx : f (s, u(s))ds is an equi-absolutely continuous family of functions. From this we have already proved

that theorem 2.1 is a special case of theorem 2.2 when the (2) hypothesis is replaced with (2°).

3. Sobolev functional space for solutions

Now, by expressing (2.1) in the subsequent form of first-order differential system:

b_,
X
[ AN (O (3.1)

dx p(x) px) p(x)

itis easy to see, by applying theorem (2.2) with the (2°) hypothesis, that the required summability in the x variable
forces the coefficients p(x)~!, p’(x) and g(x) to belong to L'(I) while the solution y to (2.1) and its derivative y’
are absolutely continuous functions.

Now we will face the fact that an absolutely continuous function must belong to a Sobolev space -i.e.- W!
defined, for example, in [13]:

Definition 3.
Wbi([a, b)) = {u € I[Na, b): Ag € [Xa, b): fb ug' = 7‘[1) gqb}, (3.2)

forall € Cj(a, b). We also recall the following

Definition 4. Let f: R — Rbea functionin [a, b]such thatits derivative is defined almost everywhere and
b d
f Y e — £y — f(a), (3.3)
a dx

then fis said to be absolutely continuous.

Itis well known that the weaker classical hypothesis that makes it possible to perform an integration by parts
(Lebesgue fondamental integral theorem) such as

3



10P Publishing

J. Phys. Commun. 3 (2019) 035017 V F Bellino and G Esposito

R 1
L[a fE = *j; E ¢ € Co(a, b) (3.4)

is the absolute continuity of the function f.

Now, from definition 5, it follows that such functions must be continuous and have got bounded variation in
the compact interval [a, b]. This simpy implies that every such function belongs to the L!(a, b) space.
Furthermore, from the bounded variation behaviour of f, the integral (3.5) must be finite for every compact
interval [a, b], thus f’ mustbelongto L'(a, b).

Taking into account the definition 3, jointly with the properties obtained above, we see that every absolutely
continuous function belongs to the Wh!([a, b]) Sobolev space.

4. Weyl’s LP-LC criterion

Let us consider the following special case of Sturm-Liouville equation on (g, b) taking p = 1in (2.1)
42
—XZ +qx)y =1l leC. (4.1)

This is an eigenvalue equation whose differential operator is

d2

L=

+ qx) (4.2)

defined on L*(a, b). The aim of the following Wey!’s Criterion is to provide the condition on the operator (4.2) in
order to ensure its self-adjointness in terms of the LP-LC property. In this way, such a theorem provides a
magnificent link between operator theory on Hilbert spaces and LP-LC theory[2, 3]:

Theorem4.1. Let q(x) € L2 inI = (a, b)andlet L = — dd—; + q(x) withdomain D(L) = C;°(a, b). Then the

closure L has got deficiency indices:

(i) n (L) = n_(L) = 2if Lisin LC at both ends of the interval;
(i) n (L) = n(L) =1 if L isin LC at one end and LP at the other;

(iii) n+(Z) =n(L)=0 if L isin LP at both ends of the interval.
Therefore, L is essentially Self-Adjoint if and only if it is LP at both end-points of the interval.

From the extended version of Carathéodory existence theorem we know that, if a solution to equation (4.1)
exists in a compact [, then it must be absolutely continuous together with its first derivative and thus it belongs
to WHI(I).

We can introduce the following Sobolev space that will be the basic living place for our solutions:

Definition 5.
W2I(ID) = {u € WhI(D) | u' € WhI(D)). (4.3)

Of course, we are only interested in functions which are absolutely continuous with their first derivative.

We note that the operator (4.2) must act on a Hilbert space -i.e.- L?(I) and therefore, from (4.1), the
2
function d—}; € L*(I).
x
The subsequent theorem [11] shows that the hypothesis on the second derivative of our solutions to belong

to L? is sufficient to guarantee us the local absolute continuity of the solutions and their first derivative:

Theorem4.2. Let g € Ly\,.(I) and take for some y, € I the following expression:

v(x) = fx g(®)dt x el (4.4)

Yo

Then, v(x) is continuous in I and
[ver=-[g voecin. (4.5)
I I

By applying recursively the above theorem one finds that, under the hypothesis of square summability of its
second derivative, y and its first derivative are locally absolutelly continuous on I whatever I is. It is also clear that,

4
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in the case of a compact real interval, y and y’ are absolutely continuous functions of WH!(I) and hence y
belongs to the (4.3) set.

Now, if Iis not bounded or half-bounded, we are dealing with functions belonging to W (I) and taking the
square summability required for operator (4.2), the basic functional space to which our solution belongs
is W2H(IDHN L*(D).

Now we can summarise our results in the following theorem:

Theorem 4.3. Whatever thelinterval is, every solution to equation (4.1) belongs to the space W2 (I).

Of course, if Iis compact then W2!(I) = W2!(I) while if the square summability is required, then y” must

belong to L?(I) and thus we obtain the local absolute continuity of yand y’ and the Carathéodory’s existence
theorem is fullfilled.

5. Proof of Weyl’s criterion

We can now proceed with the proof of theorem 4.1 by following the logical steps that can be found in [3]. Our
method will make use of theorem 4.2 jointly with all the information obtained in the previous section.

Proof of statement (i):

Ifthe operator £ is LC at both ends of the interval I, then every solution to the equation Ly = Iy, VI € C for
which J1 = 0,belongs to L?(I). This means that there exist two linearly independent solutions to each of the
equations £y = iy and Ly = —iy, and therefore the deficiency indices are n, (L) = n_(L) = 2.

Proof of statement (ii):

Suppose that LisLPataand LCatb.

Let us consider arestriction £, of the operator £ acting on the subsequent linear domain:

D(Lo) = {¢ € Wk, dD: ¢(c) = ¢(d) = ¢/'(c) = 0, ¢" € [*(c, d)} (5.1)
where [c, d] C I.From theorem 4.2 and the comment below, we have that D (L) C (W2>!([¢, d)N L*(c, d)),

loc

hence D (L) is a Hilbert sub-space of L?(c, d). Itis easily seen that operator £ is symmetric and that the
domain ofits adjoint is

D(LY) = {¢ € Wl(le, dD) | 9(d) = 0, ¢" € L*([c, d])}, (5.2)
because the equations
Lop = Lig (5.3)

have at most two linearly independent solutions in L?(c, d) and hence 7, (L) < 2 and n_(Ly) < 2. We must
rule out the case n,(Ly) = n_(Ly) = 0because it is the self-adjoint one and this is not the case
because D(Ly) C D(LY).

Now we can show that each of equations (5.3) has only one solution in L?(c, d).

Itis indeed well known that the adjoint domain for alinear operator on a Hilbert space admits the following
decomposition:

D(A") = D(A) @ K. (A) © K_(A) (5.4)

where K (A)and K_(.A) are the deficiency spaces of the operator under consideration. Let us define the
operator P? = — % on the domain (5.1) and let us denote it by P§. Of course Pj is symmetric and its adjoint
has domain (5.2), thus we can certainly say that K, (Lo) ® K_(Lo) = K. (P2) & K_(PJ). Bysolving the
equations

Pl = +ip (5.5)

with the condition imposed by (5.2), we obtain two one-dimensional deficiency spaces of the form

_ _ G (x)
K (P} = {5 €Ll d)|kx) = A(Cl(x) — eﬁzTUd) |\ € (C}.

K.(P)= {17 € 12(c, d) | n(x) = A(pl(x> - %) I\ e C}. (5.6)
e”\ 1
where ¢, (,, p, and p, are locally square integrable on the real line. Equations (5.6) show that K, (Pg) & K_(Pg)
is a two-dimensional linear space and hence the same holds for K, (Ly) & K_(Lg). Now, taking into account the
factthat [6, 7] if, for some complex [, € C all solutionsto Loy = lyy are square integrable, than for every
complex ] € Ceverysolutionto Loy = ly is square integrable as well, we must rule out the cases

5
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dim(K;(Ly)) = 2, dim(K_(Ly)) = 0and dim(K (L)) = 0, dim(K_(L)) = 2. From this, the only case left is
dim(K(Ly)) = dim(K_(Ly)) = 1and therefore n,(Ly) = n_(Ly) = 1. This also means that there exists a
non-vanishing function # that does notbelong to Ran(L, — iZ). At this stage,let I = (a, d]andlet £, bea
second restriction of £ defined on

D(L) = {¢ € Wl (IHN LX) | d(x) = ¢(d) = 0, x € (a, a + ¢),

loc

€€ (a, d), ¢" € I*(c, d)}. (5.7)

We note that in the case in which the end-point a is at finite distance from the origin, the basic space in (5.7) can
always be taken to be W2!(I_) instead of W>'(I_) N L*(I).

All our reasoning on £ can be repeated on L}, leading us to the same conclusions: £; is symmetric on its
domain and has got the same deficiency indices of L. By using some arguments that can be found in [2], we can
state that there exists at most one self-adjoint extension of £; by virtue of the equality of its deficiency indices. Let
us denote by £, such a self-adjoint extension. Itis clear that, if the domain is taken to be

D(Ly) = {¢ € W2II) NI*U); | ¢(a) = ¢(d) =0, ¢" € I*(I_)} (5.8)

loc

we are dealing with a self-adjoint extension of £; and we also note that D(£,) C D(L)).

Take now a function x € D(L,) for which £,x — iZx = u where uischosen in such a way thatits
restriction i to the interval [¢, d]isnotin Ran(L, — iZ). We easily see that x cannot be equal to zero on (g, ¢).
To see this we have to take into account that y € C!on (a, d] (we refer to the previous section); if this were
possible, then the restriction ¥ of x to the interval [¢, d] would belongto D (L) because we would have
x(¢) = x(d) = x'(a) = 0and one would find that £,% — iZ% = . But this contradicts our previous
hypothesis, thus y cannot be equal to zero on (a, ¢).

Last, since  is L> near the a end-point in LP and the operator £ is LC near the b end-point, the continuous
extension ¥ of  that solves the equation Ly = iy over the whole (a, b) is the only L?(a, b) solution. The same
holds for the equation Ly = —iy and hence we have n (L) =n(L) =1

Proof of statement (iii):

Suppose that £ is LP at both end-points a and b. From the (ii) statement we know that there exists only one
square-integrable function near a and one near b but we do not know whether they can be related in some way.
Instead of showing that this is not the case, we will show that the deficiency indices of £
aren (L) = n_(L) = 0.

In order to do this, we first need some arguments on the Wronskian function
W ¢, ) = (99" — ¢'p)(x)  x€L, ¢, 1h € DOV) (5.9)

where D (W) is defined according to
DW) = {p € Wl(D | ¢" € Lipe(D}, (5.10)

loc

and on the regular points of the operator £. We say that the point a is a regular point (the same for b) for £ ifand
only ifit is finite and the subsequent condition holds:

d
f WP <o Vdel (5.11)
First we want to show that:

(@) W(x; ¢, 1) is alocally absolutely continuous function in the x variable.
(b) If ¢, 1p € D(L*) then there exist the limits lim,_,, W(x; ¢, v) and lim,_,;,; W(x; ¢, 1) and hence
W(b; ¢, ) — Wia; ¢, ) = <, L¥% > —<LF¢, 1> (5.12)

(c) Theoperator £ isin LC at its regular point, and if ¢ € D (L*) then the limits

lim,_,, ¢ (x) and lim,_,, ¢/(x) existand are zero if ¢ € D(L).

In order to prove the (a) property, we only have to take into account theorem 4.2 that ensures the local
absolute continuity of the functions in D (WV) and of their first derivative. From the definition (5.9) it is easily
seen that the product and summation of locally absolutely continuous functions lead to the local abolute
continuity of the Wronskian.

For point (b) we can use the fact that the function q(x) ¢t € L2 (I)because ¢, 1» € D(W), while
q(x) € Li.(I) from the hypothesis. Now, taking into account theorem 4.3 and the fact that the functions of
D(L*) need the square integrability of their second derivatives, from the Holder inequality, such derivatives are

6
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also locally integrable and our starting functions belong to D (W). From this we have
that D(£*) C (D(W) N L*(D)).
Using the local absolute continuity of W, we have for all [¢, d] C I that

_ _ d _ _
W(ds &, 1) — WIc; &, 1) = f Gy — 3", (5.13)

and on adding and subtracting the f ¢ q(x) $) term in (5.13), under the hypothesis of ¢, 1 € D(L*), we have

- - d _ -
W 6, %) = Wies 6, %) = [ @L* — T760). (5.14)

Since the functions in D (L£*) are locally absolutely continuous and globally square integrable with their second
derivative on I, in (5.14) the limits lim,_,, W(x; ¢, ©)and lim,_,; W(x; ¢, ¥) exist and equation (5.12) holds.
This completely proves the (b) Wronskian statement.

As far as the property (c) is concerned, under the hypothesis of regularity for point a, if ¢ € D (L*), then itis
in D(W) and therefore ¢ and ¢’ are locally absolutely continuous. This ensures us that the limits lim,,_,, ¢ (x)
and lim,_,, ¢'(x) must exist.

Now, since D(£) = C;°(I) and themap ¢ — (¢(a), ¢'(a)) is continuous in the norm ||@|| + ||£L*®||, then
lim,_, ¢(x) = lim,_,¢'(x) = 0forall € D(L). Since ¢ is locally absolutely continuous, it is bounded near a
and thus it belongs to L*. This shows the LC case.

We can now proceed with the proof of the (iii) statement, in which we will make use of the results obtained
above.

Suppose that the end-point a is regular while b is LP. It is easily seen that £ has got self-adjoint extensions
because it is symmetric on C;°(I) and it has deficiency indices n. (L) = n_(L£) = 1like the operator £, defined
in the proof of the (ii) statement. Among all conceivable self-adjoint extensions, we want to choose that one for
which there exists some (o, 3) € R?\ (0, 0) such that

ag(a) + B¢'(a) =0 (5.15)

and callit £. In order to do this we will use a theorem in [14], known under the name of von Neumann’s extension
Theorem’ that provides the esplicit expression of all possible domains of the closed symmetric extensions for a
closed symmetric operator, by using partial isometries between the deficiency spaces K (£) and K_(L). Of
course L is closable, thus we can make use of von Neumann’s Theorem.

Let us define the following unitary operator between the deficiency spaces that acts like a complex
conjugation:

U: £ € K(L) — UE=E € K(L). (5.16)

Certainly U is an isometry, hence it is bijective.
From von Neumann’s theorem we know that the self-adjoint extension related to the unitary operator (5.16)
has got the following domain:

D(L) = {n+ &+ US| n € DL, &€ KuL)). (5.17)
It is straightforward that the functionin D (ﬁ) satifies the relation (5.15) for same cvand 3.

3 Let A be a closed Hermitian operator with domain D(A) dense in a Hilbert space H, and let us define the spaces [2, 3, 14]
K+ = Ker(A* F il),
with dimension denoted by d_. . For any closed symmetric operator B, we denote by Uy its Cayley transform
Up= (B —il)(B+ i)},

extended to H by setting it to 0 on Ran(B + il )*. The von Neumann Extension theorem can be stated as follows [2, 3, 14:If A is a closed
Hermitian operator, there existsal — 1 correspondence between closed symmetric extensions B of A, and partial isometries V, with initial
space H;(V) C K, and final space Hr(V) C K_. This correspondence is expressed by

Ug=Us+V,
orby
D(B) = {¢ + ¢ + Vi): p € D(A), ¥ € Hi(V)},
where B equals the restriction of the adjoint A* to the domain D(B). The operator Bis self-adjoint if and only if
Hi(V) = Ky, He(V) =K_.

In particular, the operator A has self-adjoint extensions ifand only if d; = d_ and, in that case, if d; < 00, the set of self-adjoint extensions
isa d?-dimensional real topological manifold, in the topology of norm-resolvent convergence.

7
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Eventually, if we show that
W ¢, 9) =0 V¢, € D(LY (5.18)

atthe LP end-points, under our hypothesis of LP at both ends of I, from (5.12) we get the symmetry of the
operator £*, and because we must have D(£*) C D (L**) but at the same time is easily seen that £ = £** and
D(L) = D(L**),wemusthave D (L) = D(L£*) and there follows that £ is self-adjoint, thus its closure L is
symmetric from propositions () and (b) and has got deficiency indeces n(£) = n_(£L) = 0.

In order to show that W(x; ¢, 1) = 0 at the LP extremes, suppose b in LP. First of all we see that
W(b; ¢, 1) = 0forall ¢, 1) € D(L) because from (5.15) we have W(a; &, ¥) = 0and from the self-adjoint
behaviour of £ we must have W(b; é, 1) = 0byrelation (5.12). Now, if some 1y € Co°(I)ischoseninsucha
way thatit equals zero on [¢, b) for some ¢ € I, and for which (5.15) is not verified, such a function must belong
to D(L*)\D (L). From the fact that £ has deficiency indices equal to one, there must be

dim(D(L£*) — D(L)) = 1and therefore every function ¢ € D(L*) can be written in the form
b=y + My AEC, ¢, DL). (5.19)

Since 17,(x) = 1'o(x) = Oon[c, b), then lim,_, W(x; @, V) = lim,_, W(x; éo, hy) = 0forall
o, ¥ € D(L*) ofthe form (5.19).
This completely shows that (5.18) holds, and the desired proofis completed.

6. Examples of self-adjoint extensions

2
Here we want to show that indeed, the operator — % has got more that one self-adjoint extension, and these

correspond to the Dirichlet and Neumann conditions at the origin. We can proceed in the following way:

(1) First we consider a particular class of domains -i.e.- Dy, ), that let our operator be closed and symmetric
and from this, using some arguments contained in [2], we are ensuring the existence of self-adjoint
extensions for such closed and symmetric restrictions.

(2) We use the von Neumann’s theorem [2, 3, 14] to obtain explicitly all domains of closed and symmetric
extensions -i.e- Dy, ;) (c) (where cruns over [0, 27[).

(3) Wederive the form of the domains of the adjoint -i.e.- D{*f, 1)(©)-

(4) We use the Self-Adjointness condition Dy, (c) = D{t 4)(0) to find which of the Dy, ) (c) domains is of
self-adjointness.

2
Let us define the following two-parameter domains of symmetry for — %:
x

D{(,[L] = {¢ S C()OC(R+) (b(x) =0Vxe (Oa 6)) ¢(f) =W, UE (C} (61)

Itis easy to see that such domains are closed and on them our operator is symmetric, and from the fact that
ny = n_ = 1, there exist self-adjoint extensions for each fixed admissible pair (¢, p).

In order to use von Neumann’s Theorem, we need the expression of the deficiency spaces, and we easily find
that

i—1

Ki={¢€P®R)|p=c,e-2, ¢, €C} 6.2)
_itl,
K.={pecP®R)|d=ce -2, c_eC} (6.3)

We see that such spaces are one-dimensional linear spaces and, from von Neumann’s theorem we know that
all possible symmetric extensions for each of Dy}, are in bijection with the isometries between the deficiency
spaces. From the fact that the deficiency spaces are one-dimensional, the isometries required can only be phase
factors of the form e’*¢~¢) and therein, following the statement of the Theorem, we must have

. i-1 i1
el 9(x,c+,c,)eﬁ * — C__ e 2 x’ (6.4)
C+
and since it follows that ‘ £ = 1,weset z—’ = ¢ with ¢ € [0, 27 [, and this shows that 8 (x, ¢) = —/2x + c.

&+ +
From the von Neumann’s criterion [2, 3, 14] we can give the explicit form to the domains of symmetric

extensions that we will call Dy, ,y (¢c):
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i1y & O
D{f,,u}(c) = {w € LZ(R+) | w = ¢ +z(ev2 +ee V2 )}) (6.5)
where ¢ € Dy, ), z € C. Taking into account the symmetry relation
d? d?
<§) @¢> - <E§) ¢>)

where ¢ € Dy, ,j(c)and § € D{";,, 1)(€), we obtain the following equation:

) i+ 1 . i—1
8mmw+n+amﬂﬁfﬂ—ﬂﬁ)=o (6.6)
that defines the two following kinds of adjoint domains:
pro ={ec p@n £Q - 24D 6.7)
£(0) 1+ e+ i(e*—1)
with ¢ = %, and
/ ic -1
DI = e e @y EQ - (24D , 63)
£(0) 1+ e+ i(e—1)
!
with ¢ = 7, in which we have ruled out g and 7 values that lead to singular ratios £O and ¢O , respectively.

£'(0) £(0)

First of all, it is interesting to note that (6.7) and (6.8) are independent of the (¢, ) pair. In this way we can

certainly say that (6.7) and (6.8) cover all possible domains for the adjoints of the closed and symmetric extensions for
2

any of the possible closed and symmetric realizations of — % over the real half-line.

Now, by using the self-adjointness relations Dy, ;3 (c) = D;*(c) and Dy (€) = D5(c) we easily get the
following self-adjointness domains:

Di(m) = Di(r) = {£ € I*(R) | £(0) = 0}, (6.9)
lﬂ{g):lb(g):{feL%RH&%m::OL (6.10)

that correspond to the Dirichlet and Neumann condition at the origin.
The last thing that we want to note is that the sets (6.9) and (6.10) are both closed and open.
For example, by using the following sequence in D; (7)N D, (g)

1
i3 xG[O,—[
n

L =11 ]1[ a € (1, c0) 6.11)
— X€ |—a
3/x n

0 x € [a, oo[

which converges in L*but not in the intersection of D; () and D, (%), we realize that (6.9) and (6.10) are open
sets. On the other hand, if we choose the following:

2
x—l) x € [0, a[

1
g0 =3n ( n ac Rt (6.12)
0

x € [a, 00)
we see that g € (L2 (Rt — (D1 (m) U D, (%) ) ), hence it belongs to the complement of each D; () and

D, (%) forevery n € Nbutitslimitbelongs D;(7) N D, (%) This shows that the complement of (6.9) and
(6.10) is an open set and therefore (6.9) and (6.10) must be closed sets.

The fact that they are closed sets also results from von Neumann’s Theorem. In this way, the sequence (6.12)
confirms the validity of such a Theorem. Eventually, we have obtained that the operator — %22 is Self-Adjoint
only on domains (6.13) and (6.14), which are simultaneously closed and open.

7. Concluding remarks

In the first part of our paper we have derived two peculiar aspects of the general Sturm-Liouville operators. First
over all, starting from very general and fundamental theorems, we have shown which are the weakest
assumptions on the coefficients in order to obtain solutions of the eigenvalue problem that are sufficiently
regular, i.e. -absolutelly continuous- to be used whenever needed. A second remarkable aspect is essentially seen

9
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in the possibility of considering such regular solutions embedded in a hightly non-regular space such as (4.3). It
is from this latter aspect that our proof of Weyl’s theorem takes the moves. Other proofs of this theorem can be
foundin [15, 16], under the natural assumption of differential operators acting on a suitable Hilbert space. As far
as this last pair of references are concerned, we want to mention some further functional-analytical methods
which are up to date with the current developments of this subject. An example is the maximal operator and
minimal operator related to a differential expression like (2.1) or (4.2). In [15], the domain of definition for the
maximal operator related to a nth-order differential expression 7on a real line segment is

Dy = {f€ L%a, b): fO, fO, . f=D c AC(a, b); 7f € L%(a, b)},

and itis shown that such a domain is densely defined and closed in the Hilbert space. Here we also define the
domain for the minimal operator in the form

D,, = {f€ L%a, b): f€ Ci(a, b)}.

Upon focusing on our differential operator (4.2), it is evident that the minimal operator occurs instead under the
hypothesis of theorem 4.1. With the language of our paper and by means of theorem 4.2, the maximal set Dy is
basically

Dy = {f€ Wgl(la, bD): f" € L*(a, b)},

loc

hence we derive the Hilbert-space nature of D, by relying only upon the square summability of highest
derivatives in it. In our proof we decided to use the Von Neumann’s extension theorem in order to reach all
possible self-adjoint extensions for the specific differential operator under consideration. We suggest reading
[15] for a the general theory about nth-order differential operators’s self-adjoint extensions in terms of boundary
conditions of which our (5.18) represents a specific case. We remark the fact that, with the language used here,
the expression (5.18) cannot be untied from the functional space (5.10). Following the conceptual behaviour of
Von Neumann’s theorem, we must bring to the attention of the reader another functional method that makes
use of a tool called boundary triples. Given any Hilbert space and a symmetric operator T, it is always useful to
define a sesquilinear map I'

FT(¢7 1/1) = <T*¢’ 1/1> - <¢’ T*W

for ¢, 1 € D(T*)in order to find the closure of T. We also refer to [16] for a recent redefinition of essential self-
adjointness in terms of the map I'. By the way, aboundary tripleis a triplet (h, p,, p,) where hisasuitable
Hilbertspaceand p,, p, are D(T*) — h maps that satisfy the rule

al'r+(¢, ¥) = (p1(8), ;) — (P2(0)> p,(¥))

for some complex a constant. In terms of boundary triples, one finds that I'(¢, ) vanishes identically when we
restrict the inputs ¢, 1 to the domain of some self-adjoint extension. One can therefore say that the domain of
any self-adjoint extension of a symmetric operator T'is of the form

D(Ty) = {¢ € T p,(¢) = Upy(9)}

where U is a unitary operator. In terms of boundary triples, one can obtain a more general statement and
expression for the self-adjoint extensions of a symmetric operator. The role played by the sesquilinear map I is
the same as the role played by the domain (5.10). Such a theory is described in detail in [16].

To sum up, we have indeed shown that the operator (4.2) can clearly act over a sort of spaces like (5.1), and
that the Hilbert-space nature of such sets, resides only in the square summability of second derivatives of their
functions by virtue of theorem 4.2. In this fashion, whenever needed, one can look for weaker solutions of the
eigenvalue equation.

Similar techniques have been applied, over the years, to a wide range of topics. For example, the work in [17]
studied essential self-ajointness in 1-loop quantum cosmology, the work in [18] has provided enlightening
examples of boundary conditions for self-adjoint extensions of linear operators, whereas the work in [19] has
suggested that a profound link might exist between the formalism for asymptotically flat space-times and the
limit-point condition for singular Sturm-Liouville problems in ordinary quantum mechanics. Last, but not

(n—-2
2

least, the parameter \,; = I + in equation (1.2) is neatly related to the parameter L used in large-N

quantum mechanics [20], i.e.

L
)‘nl - E - 1.
Moreover, since the Schrodinger stationary states are even functions of A, this suggests exploiting the
complex- \,; plane in the analysis of scattering problems [21]. If n is kept arbitrary, this means complexifying a
linear combination of /and # [5], including the particular case where / remains real while the dimension # is

complexified.

10
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Thus, there is encouraging evidence that Sobolev-space methods and yet other concepts of functional and
complex analysis may provide the appropriate tool for investigating classical and quantum physics as well as
correspondences among such frameworks.
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Appendix. G-regularity
For the definition of G-regularity we need to endow the R” space with the norm
lyll = > Iyl (AD)
i=1

Here we make use of the topology induced by the uniform convergence in order to give to the C (I, R") vector
space a Banach structure. Let us call it .

We will say that the sequence u, € K — u € K ifand onlyif, for every € € R*, there exists some v € N
such that, forall n > v the following majorization is verified:

sup;lu,(x) — u(x)| < e. (A2)
Since K is also a metric space, we can use in (A2) the following notation for the distance between u,, and u:
dy = sup;lu,(x) — u(x)|. (A3)
At this stage we have only to define the following particular sequence on the I segment:
x" = x — d,sign(x) (A4)
and we note that x” — xonIonlyifu, — uon K.

We are now in a position to define the concept of G-regularity, while we refer to definition 2 for the
G-integrability.

Definition 6. Let f be G-integrable on the interval I whose middle point s xy, and let ¢ € G be defined in
equation (2.3). Let the sequence u,(x) = f * g,(s)ds € G besuch that u, tends uniformly to u(x) = f * g(s)ds
Xo X0

on I. Let x" be defined by (A4). If now every such sequence of functions verifies the condition

" un(x™) — f G, u(x)), (A5)
then we say that fis G-regular on I.

For more insights on the G-regularity property of functions, we refer the reader to [12].
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