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Quantum annealing-assisted lattice
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Check for updates

Zhihao Xu 1, Wenjie Shang1, Seongmin Kim 2, Eungkyu Lee 3 & Tengfei Luo 1,4

High Entropy Alloys (HEAs) have drawn great interest due to their exceptional properties compared to
conventional materials. The configuration of HEA system is considered a key to their superior
properties, but exhausting all possible configurations of atom coordinates and species to find the
ground energy state is extremely challenging. In this work, we proposed a quantum annealing-
assisted lattice optimization (QALO) algorithm, which is an active learning framework that integrates
the Field-aware Factorization Machine (FFM) as the surrogate model for lattice energy prediction,
Quantum Annealing (QA) as an optimizer and Machine Learning Potential (MLP) for ground truth
energy calculation. By applying our algorithm to the NbMoTaWalloy, we reproduced the Nb depletion
and W enrichment observed in bulk HEA. We found our optimized HEAs to have superior mechanical
properties compared to the randomly generated alloy configurations. Our algorithm highlights the
potential of quantum computing in materials design and discovery, laying a foundation for further
exploring and optimizing structure-property relationships.

High Entropy Alloys (HEAs), which are alloys comprising four or more
elements1–3, have received great interest due to their exceptionalmechanical
properties4–10 and thermal properties11–14 under extreme conditions (high
temperature and pressure). Researchers have made intense efforts to reveal
the underlyingmechanisms governing the unique properties, such as lattice
distortion15,16, phase transitions17 and solid solution strengthening18, and
more importantly, the dominant effect of atomic configurations (i.e.,
cocktail effect) has become a wide consensus14,19,20. HEAs usually possess a
simple phase constitution, and various types of constituent atoms are ran-
domly distributed at the crystallographic lattice sites21. The chemical com-
plexity and component tunability make it possible for HEAs to obtain
optimal properties. While traditional alloy development, including more
than two atoms, is mostly located at the corner of the phase diagram14, the
large area or volumeof thephase spacenear the center of thediagram,which
points to the higher entropy systems, is what studying HEAs needs to
explore (Fig. 1a).

Computational simulations, such as density functional theory
(DFT)22–24 andmolecular dynamics (MD) simulations25,26, arewidelyused to
simulate and predict the properties of HEAs. However, due to the high
computational cost, using DFT calculations to explore large numbers of
atomic configurations of HEA is challenging22. MD simulations, although
they can benefit from the development of machine learning potentials
(MLPs) to greatly improve efficiency while maintaining DFT accuracy27–30,
still require samplingmethods (i.e., Monte Carlo, MC) to explore the phase

space ofHEAs31,32, which does not guarantee the finding of the ground state.
Therefore, existing simulation methods are difficult to complete the high-
dimensional search and global optimization for HEA configurations.

Quantum algorithms, especially quantum annealing (QA), have
become an emerging strategy for solving practical optimization problems
due to their excellent performance33–38. QA is a quantum analog of classical
simulated annealing, which exploits the quantum tunneling effect to help
explore low-energy solutions and ultimately return the ground state of the
corresponding quantum system39,40. Compared with quantum algorithms
basedonuniversal gate-based quantumhardware in thenoisy intermediate-
scale quantum (NISQ) era41, QA have become a viable tool for practically
solving discrete optimization problems inmaterial science domain42,43. Kitai
et al.44, Guo et al.45 and Kim et al.46,47 utilized QA and factorizationmachine
(FM) for designing planar multilayer (PML) and diodes for optical appli-
cations. Their algorithms delivered superior optimization speed and pre-
cision compared to classical algorithms and hardware. Hatakeyama-Sato
et al.48 introduced a quantum physics-inspired annealing machine to tackle
the challenge of large search space for material discovery, achieving at least
104 times faster speeds than conventional approaches. For the HEA opti-
mization problems, QA may be leveraged for its quantum advantage to
address the challenges posed by the extremely large search space of HEA
configurations and find the global minimum.

In this work, we propose a QA-assisted lattice optimization (QALO)
algorithm and demonstrate it on HEA configuration optimization. The
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algorithm is developed based on the active learning framework, inwhich the
field-aware factorization machine (FFM) is trained with data from DFT
calculations (and MLP labeling in the following iterations) for converting
the lattice configuration optimization problems into quadratic uncon-
strained binary optimization (QUBO) problems and then solved by a
quantum annealer. The algorithm is applied to optimize the bulk lattice
configuration of the refractory body-centered cubic (bcc) NbMoTaW alloy
system. Our algorithm can quickly obtain optimized structures of the
quaternary HEA, and the results successfully reproduce the Nb depletion
and W enrichment phenomena in the bulk phase driven by thermo-
dynamics, which are usually observed in experiments and MC/MD simu-
lations. Themechanical properties of the optimized configurations are then
calculated and compared with randomly generated alloys. The proposed
algorithm may provide a powerful tool for designing and discovering new
alloy materials with high stability and exceptional properties.

Results
QUBO representation for lattice optimization problem
All the problems that can be solved by the state-of-the-art QA algorithm
need to be formulated as an Ising model or, equivalently, a QUBO model
(the details of QA and QUBO problems are in the Methods section).
Therefore,mapping the target optimization problem to theQUBOproblem
as accurately as possible is theprerequisite for the effective use ofQA.For the
lattice optimization problems, the general process of obtaining a reliable
QUBO mapping is to (1) establish a binary representation for lattice con-
figuration and (2) establish a QUBO-like “feature-label” relationship that
can accurately represent the properties of interest as the functions of
configurations.

For aHEAsystem,M types of atoms are randomlydistributed atN sites
in the 3D lattice for a certain composition. The number and coordinates of
sites are pre-defined by the space group of the HEA, and therefore, the
configuration of an HEA lattice can be modeled by a discrete approxima-
tion. In this approximation, the sites in the 3D lattice are assigned with N
indices, and a binary variable x with M × N dimensions can represent the
occupation status for all the sites in the lattice. For example, xij = 1 represents

an atom of type i occupying site j (as Fig. 1b shows). The solution to this
discretization of configuration representation might not provide the true
global optimumas it does not consider lattice distortion, but its solution can
serve as the initial structure for further lattice relaxation49. For selected
systems, we performed additional relaxations before calculating their
mechanical properties (see the Method section for details).

The thermodynamic stability of an alloy at a given temperature and
pressure results from the Gibbs free energy of mixing14,50,51. Therefore, the
target of theHEA lattice optimization is to optimize theGibbs free energy of
the lattice, which includes the enthalpy and the entropy components,ΔGmix

= ΔHmix – T∙ΔSconf. Within the binary regular solution model52, the mixing
enthalpy ΔHmix of a HEA lattice can be defined as a linear combination of
the pair interactions among the constituent elements:

ΔHmix ¼
X
i

X
j>i

Ωijcicj ð1Þ

inwhich ci and cj represents the fractionof elements i and j, andΩij is thepair
interaction between i and j. The binary interaction is obtained from the
enthalpy of mixing of the binary system as

Ωij ¼ 4ΔHij ¼ 4 Eij �
1
2

Ei þ Ej

� �� �
ð2Þ

Where ΔHij is the mixing enthalpy of the binary system made of element i
and j, Eij is the ensemble average of the lattice energy of the binary system
represented by the special quasirandom structure (SQS)51 composed of
element i and j, and Ei is the lattice energy of the reference unary system
containing element i in the same lattice structure. As we do not consider
lattice distortionof the lattice, the energiesof the referenceunary systems are
constants in Eq. (2), and thus the mixing enthalpy of the alloy expressed by
Eq. (1) depends only on ci, cj and Eij. Therefore, the minimization of ΔHmix

can be achieved byminimizing the lattice energy. Then,we establish a lattice
energy model that can be mapped into a QUBO problem for QA optimi-
zation by employing the widely used cluster expansion (CE) method53–55.

Fig. 1 | Overview of HEA optimization.
a Schematic phase diagrams of ternary and qua-
ternary alloy systems. The development of tradi-
tional alloys is mainly in the corner regions (yellow
regions), while the HEA expands toward the center
space of the phase diagram (high-entropy (blue)
regions); b Binary embedding for lattice configura-
tions. A 2D M × N binary matrix xM×N is used to
represent the cell withM types of elements and N
atomic sites. For example, xij = 1 means the i-th
element will occupy the j-th site.
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For versatility and simplicity when applying CE to HEA systems, the
effective pair interaction (EPI) model is used56. We can convert the EPI
model into the Isingmodel, so it is compatiblewithQA.The effective energy
at lattice site j can be expressed as57:

E j
� � ¼ J0 þ

X
l≠j

JX jð ÞY lð Þcl ð3Þ

where JX(j)Y(l) is the pair-wise interatomic potential between elementX andY
at sites j and l, respectively, cl is the occupation parameter of site l, and J0 is
the concentration-dependent part. Summing up the energy over all the N
atomic sites yields the total energy of the lattice:

E σð Þ ¼ NJ0 þ N
X
X;Y

JXYσXY ð4Þ

where σXY is the percentage of XY pairs in the system. Combining the
previously defined binary representation of lattice configurations with an
explicit expression for the pair interaction energy Uijkl, the energy of the
lattice can be written as:

E ¼
X
i; j; k; l

Uijklxijxkl ð5Þ

where the quadratic termUijkl xij xkl represents the contribution to the total
energy when the atom of type i and atom of type k occupy sites j and l,
respectively.

The configurational entropy ΔSconf is described by the Boltzmann’s
entropy formula58–60:

ΔSconf ¼ �R
Xn
i¼1

Xi lnXi ð6Þ

where Xi represents the mole fraction of the atom and R is the ideal gas
constant. For HEA systems, configurational entropy is a compositional
property that assumes that atoms are randomly distributed on the lattice
points and ismaximumwhen the alloy composition is equiatomic61 (i.e., the
proportionof each element is equal). Therefore, configurational entropy can
be considered as an additional constraint on the alloy composition to
control theoptimized structure to alwaysbe in thehighentropy region in the
middle of the phase diagram (as shown in Fig. 1a). Applying the proposed
binary representation for a N-site lattice of M elements, Eq. (6) can be
rewritten as

ΔSconf ¼ �R
XM
i¼1

1
N

XN
j¼1

xij ln
1
N

XN
j¼1

xij

 !
ð7Þ

For the HEA system with M elements, the maximum entropy is
obtained at equiatomic distribution (Xi =M-1), and the polynomial
approximation of Eq. (7) aroundM-1 is

ΔSconf � �R
PM
i¼1

1
M ln 1

M þ 1þ ln 1
M

� � � 1
N

PN
j¼1

xij � 1
M

 ! 

þM
2 � 1

N

PN
j¼1

xij � 1
M

 !2! ð8Þ

which also has a second-order form that can be used to construct a QUBO-
like formula together with the energy in Eq. (5). Therefore, the objective
function for theHEAoptimization can be constructedby the energy term in
Eq. (5) and entropy term in Eq. (8).

In addition, there are physical constraints that need to be applied to the
objective function. The constraint in Eq. (9) is the assignment constraint to

ensure that each type of atom can only occupy a certain number of sites,
which is determined by the composition. The constraint in Eq. (10) ensures
that at most one atom occupies each lattice site. The constraint in Eq. (11)
applies extra physical constraints, such as periodic boundary conditions,
where f(i,j) is the constraint function for xij on the boundary.

XN
j¼1

xij ¼ ci ð9Þ

XM
i¼1

xij ¼ 1 ð10Þ

xbij ¼ f i; j
� �

ð11Þ
With the energy and entropy in Eqs. (5) and (8), and incorporating all

physical constraints from Eq. (9) ~ (11), the QUBO formulation of the
Hamiltonian (hQUBO) to be minimized for lattice optimization problem
can be written as:

H ¼PM
i

PN
j

PM
k

PN
l
Uijklxijxkl � TR

PN
i

1
M ln 1

M þ 1þ ln 1
M

� � � 1
N

PN
j¼1

xij � 1
M

 ! 

þM
2 � 1

N

PN
j¼1

xij � 1
M

 !2!
þ λ1

PM
i
ðPN

j
xij � ciÞ

2

þλ2
PN
j
ðPM

i
xijð
PM
k
xkj � 1ÞÞ þ λ3

PN
j

PM
i

xij � f i; j
� �� �2

ð12Þ
where λi are the weighing factors for the i-th constraint, which are usually
much larger than Uijkl to enforce the constraints.

The construction of the hQUBO shown in Eq. (12) requires the
knowledge of interaction coefficients Uijkl in the EPI model. Factorization
machine (FM), introduced by Rendle et al.62, is a regressionmodel designed
for learning sparse feature interactions. Due to the consistency in mathe-
matical form, the 2nd-order FM is often employed as the surrogatemodel for
mapping the original problems to the QUBO formulation63. By training a
2nd-order FM regression model using DFT-calculated energy data and
retrieving linear coefficients and interacting coefficients, we can obtain the
coefficient Uijkl and construct the EPI energy model shown in Eq. (5), and
thenuse entropy in Eq. (8) and constraints to construct theQUBOmodel in
Eq. (12). In the meantime, based on physical intuition, atomic pairs in the
lattice at different sites will show unique interaction behaviors, so FFM is
selected as the advanced version of FM to accurately capture different pair
interactions by assigning each of the N sites in the lattice to an individual
field (See theMethods section for detailed discussion on the FM and FFM).

QALO algorithm
The QALO algorithm is developed based on the active learning framework
integrating FFM, QA and MLP in an iterative loop for the proper QUBO
mapping of the target optimization problem, solving the QUBO and new
data production, respectively (Fig. 2). The initial data pool for the active
learning is constructed with randomly generated alloy configurations and
their energies calculated using DFT (see Methods section for the details of
DFT calculations). An ensemble random sampling strategy57 is used to
generate initial random configurations, which means several different
supercell sizes are considered simultaneously to provide diverse degrees of
atomic disorder in the dataset. Large supercells can better capture long-
range order, while small supercells help capture short-range order and
preserve low computational cost. Both are important in HEAs, which are
important factors affecting the mechanical properties of alloys. Therefore,
including different supercell sizes in the dataset helps to establish a more
comprehensiveHamiltonian by the surrogatemodel14,64.With the iterations
goingon,newdatapoints fromeachQALOloopwill be added to thedataset.
To maintain the representativeness of the data pool for different degrees of
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disorders by preventing the algorithm from keeping adding new data of the
same supercell size, randomly generated configurations of other sizes that
different from the designing target and their energies calculated byMLP are
also added to the data pool.

The FFM model, which serves as a surrogate mode for mapping the
original optimization problem to the QUBO form, is trained on a sub-
dataset randomly sampled from the whole data pool. The FFM models in
this work are implemented in the open-source package “xLearn”65. For each
training, 70% of the data points are randomly sampled from the data pool
and split into the training set, validation set, and test set with a ratio of 8:1:1.
After the FFMmodel is trained, the QUBOmodel is constructed according
to the discussion in the last section. QA is then used to solve the hQUBO to
find the ground state. Comparingwith classical algorithms, the usage of QA
can greatly accelerate the optimization for the high dimensional problems.
In this work, we use the hybrid QA (HQA, powered by the hybrid parti-
tioning algorithm66) to address the challenge of high dimensional optimi-
zation (see Methods section for the details). The MLP is then used to
calculate the energy for this QA-predicted configuration without compu-
tationally expensive DFT calculations. The MLP used in this work is the
spectral neighbor analysis potential (SNAP)67 and is trained with the entire
data pool (see Methods section for the details of SNAP model and the
training of MLP). Since the MLP usually has high accuracy and strong
interpolation ability, the re-training of the MLP is not necessary in each
iteration but is only needed when the root mean squared error (RMSE) of
energy on the small test set (randomly sampled from the data pool) is larger
than a pre-set threshold (RMSE > 1.0 eV in this work).

Theoptimization for theHEA lattice shouldnot be limited toobtaining
themost stable atomic arrangement but also includes obtaining the optimal
composition in the alloy system. The assignment constraint in Eq. (9)
ensures that atoms of each type strictly occupy a certain number of sites that
are determinedby the corresponding composition ci. Therefore, the solution
of the hQUBO constructed with the assignment constraint will just be the
optimal atomic arrangement under a given elemental composition. How-
ever, if the assignment constraint is relaxed during the construction of the
hQUBO, the solutions obtained fromQAmodulewill have the possibility to
break the constraint and move to a different elemental composition. This
can lead to the optimization toward better composition. Figure 3 showshow
the QA module in the QALO algorithm is designed. As mentioned above,

the optimization for composition is realized by a relatively loose constraint,
while the optimization for atomic arrangement is realized by a tight con-
straint. In the QA module, the hybrid quantum annealer will be called
multiple times in a serial way and return the solution sets of a series of
hQUBOs (as depicted by Si in Fig. 3, each solution set contains all the
solutions frommultiple QA shots for the same hQUBO) whose assignment
constraints are adjusted from loose to tight by the exponential increaseof the
weighting factor λ1 (as Eq. (13) shows, where r is the increasing rate of
constraint weighting factors, λmax is the maximum weighting factor in the
loose-to-tight QA deployment, λi is the weighting factor in the i-th HQA
run, andn is the total number ofHQAcalls inoneQAmodule).Theoptimal
composition obtained from the previous solution will be applied to the
assignment constraint of the following hQUBO, so that both atomic
arrangement and composition can be optimized simultaneously within a
single QALO iteration.

λi1 ¼ λmax
1 × r1�

i
n ð13Þ

Optimization of NbMoTaW HEA lattice
The established QALO algorithm is then used to optimize the bulk lattice
configuration of the refractory NbMoTaW alloy system. The refractory bcc
NbMoTaW exhibits outstanding high-temperaturemechanical strength6,10,
and one of the major limitation is the brittleness, exhibiting limited room-
temperature compressive strain32,68,69. Therefore, studying the relationship
between the configuration of NbMoTaW and its mechanical property can
help improve alloys with better performance, especially the microscopic
atomic arrangement is directly related to short-range orders (SROs), which
also determines the stability of lattice structure19.

As mentioned in the last section, an ensemble random sampling
strategy is used to randomly generate configurations with different
supercell sizes using DFT calculations for the initial data pool. Table 1
shows the sampling method used in this work. Four different supercell
sizes (2 × 2 × 2, 4 × 2 × 2, 4 × 4 × 2 and 4 × 4 × 4) are used, and 200 dif-
ferent configurations for each size are randomly drawn. Our target lattice
for optimization is 8 × 8 × 8 supercells to minimize artifacts due to the
finite size effect70. During the active learning iterations, as new data for the

Fig. 2 | The schematic of the active machine learning scheme of the QALO algorithm. The details of FFM, QA and ML potential are in the Methods section. The QA
module is executed on the D-Wave quantum annealer, and other modules are on the classical computer.
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8 × 8 × 8 supercell will be continuously added to the data pool, random
configurations of the other sizes will be randomly generated and added to
the data pool after each iteration to maintain their representativeness in
the entire data pool.

Before starting the active learning iterations, we trained the FFM
and SNAP-MLP with a sub-dataset (400 data points randomly sampled
from the initial data pool) for benchmark testing of the two surrogate
models. Figure 4 shows the parity plots for FFM and SNAP-MLPmodels
on the training set and a test set (40 data points from the initial data pool
not seen in the training). For comparison, the energy values are nor-
malized according to the supercell sizes. It can be seen that FFM can
workwell on both training set and test set, showing its good performance
on describing the energy landscape and interpolation. MLP shows the
accuracy comparable to DFT ground truth and higher accuracy than
FFM on both the training set and the test set. Therefore, using the active
learning strategy to continuously increase the capacity and representa-
tiveness of the database to improve the accuracy of FFM is necessary for
the high-quality mapping of the original problem to the QUBO form,
while the re-training of MLP does not need to be performed frequently
due to its high accuracy, by which we can reduce the computational cost
for the algorithm.

QALO is then used to optimize the configuration of the NbMoTaW
lattice. The initial composition for the optimization is set to be equiatomic
quantities, i.e., 25% for each of the Nb, Mo, W, and Ta species. The
hyperparameters and setups for eachmodule are listed in Table 2. Figure 5a
shows the evolution of the Hamiltonian in 700 QALO iterations, within
which the energy of the system converges. At the beginning of the opti-
mization, the active learning continuously produces configurations with
better atomic arrangements under the equiatomic composition, resulting in
a slight but gradual decrease in the lattice total energy. However, after a few
cycles, the QALO algorithm starts to explore the phase space under the
guidance of the HQA and the loose constraint in hQUBO, leading to

the update on the composition ratios of the four elements. Concurrently, the
energy of the solution exhibits a precipitous drop after the update of
the composition. Such dualmodes of energy evolution alternately appear in
the subsequent optimization process. Finally, the composition of the four
elements tends to converge, and the optimizations further focus on the
atomic arrangements. Figure 5b shows the composition evolution during
the iterations. Clear depletion of Nb and enrichment of W can be observed
during the optimization, and the composition converges to Nb 18.0%, Mo
23.6%, Ta 26.5% andW31.9%,which are similar to the observations of Li et
al.32 on the bulk grain phase (Nb, 15.5%,Mo24.6%,Ta 28.0%andW31.9%),
where theNbdepletion andWenrichment drivenby thermodynamicswere
simulated by MC/MD simulations. In the real alloy synthesis, the heat
treatments that stabilize the alloy’s microstructure, such as annealing or
homogenization, are also driven by the thermodynamics, but they are not
considered in the present work71.

The configuration of HEA systems can be characterized by the partial
radial pair correlation functions (RDF)32,72. Figure 6 shows the partial RDF
for the optimized structure. TheRDF curves reveal that the pair correlations
between elements from different groups, such as Mo-Ta, Ta-W, and Nb-
Mo, are significantly stronger than those between elements within the same
group, such as Nb-Ta and Mo-W73. In addition, the SRO parameters are
calculated in the lattice to further qualify the local atomic arrangement. The
Warren-Cowley SRO parameter is defined as74

αi;jk ¼ 1� Pi;j
k

cj
ð14Þ

in which Pi;j
k is the probability of finding element j at the k-th neighbor shell

of element i, and cj is the concentration of element j. A negative αi;jk suggests
the tendency of element j clustering around the element I, while the positive
αi;jk indicates the opposite. If αi;jk ¼ 0 for each of the k-th shell, then the
distribution can be regarded as completely random. In Fig. 6, we also show
the SRO parameters αi;j1 of each pair of elements, which are consistent with
the partial RDF analysis.

One of the major advantages of HEA is its superior mechanical
properties, which are related to the composition and atomic configuration.
We perform MD simulations at 300 K with the MLP to study the uniaxial
stress-strain responses of a randomly generated equiatomic NbMoTaW
configuration, a suboptimal NbMoTaW configuration with the converged
composition but random atomic arrangement, and the optimized NbMo-
TaW configurations from the QALO algorithm, as shown in Fig. 7. The
optimizedHEA configuration is obtained by selecting the solution from the
last QALO iteration. The compressive and tensile deformations are applied
on the structure along the x-axis (see Methods section for the details of

Table 1 | Ensemble random sampling for NbMoTaW
configurations

supercell size # of atoms # of initial data points

2 × 2 × 2 16 200

4 × 2 × 2 32 200

4 × 4 × 2 64 200

4 × 4 × 4 128 200

The unit cell of NbMoTaW has the bcc lattice structure (2 atoms in each unit cell).

Fig. 3 | The deployment strategy of QA in QALO.
For each calling of QA, the EPI energy model
obtained from FFM coefficients, and the initial
composition of the current iteration are passed to
the QA module. Then, a series of hQUBO Hi is
constructed based on the EPI energy model with
different assignment constraints from loose to tight.
D-Wave quantum annealer will return optimal
configurations Si for the current hQUBO and pass
the composition information of the optimal solution
to the next hQUBO construction. Finally, the QA
module returns both optimal elemental composition
and atomic configurations.
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strain-stress simulations). It can be seen that the optimized configuration
exhibits much highermoduli under both compression and tension than the
randomly generated alloy structure and the suboptimal structure. From
QALO, we see that the optimization of the lattice of bulk grain will lead to
special SRO and create regions with varying compositions and local
environments formed by elements with strong chemical affinities, which
can contribute to the solid solution effect known to enhance themechanical
property ofHEAs18. This result suggests that the algorithmwe proposed can
simultaneously optimize the HEA structure in terms of composition and
atomic arrangement, thereby obtaining the structure with excellent
mechanical properties and thermodynamical stabilities. The comparison of
the mechanical properties of the three alloy systems also illustrates the
importance of both composition optimization and configuration optimi-
zation for HEA property, highlighting the advantages of our proposed
algorithm when facing a large search space.

Computational efficiency analysis
For comparison with QA, the same lattice optimization problem is also
solved by the mixed-integer linear program (MILP) solver Gurobi75 and
simulated annealer76, which are classical optimizers that are generally more
efficient at escaping local minima compared to traditional MC methods.

These two classical optimizers are carried out on the classical computerwith
Dual 12 core Intel®Xeon® 2.50 GHz CPU and 256 GB RAM. The loose-to-
tight deployment strategy (as Fig. 2 depicted) is also used for constructing
the hQUBOs for these two optimizers to optimize the compositions and
configurations. Table 3 shows the computational time and the minimum
configurational energyof the three solvers. The running time is calculatedby
averaging thewall timeof all the loose-to-tight optimizationmodules during
the entire QALO optimization, and theminimum configurational energy is
theMLP-calculated energy of the optimized configuration after the iteration
converges. For small optimization problems (2 × 2 × 2 supercell), Gurobi
shows a faster convergence speed than simulated annealing andQA. In this
scenario, the non-negligible charge time (including communication and
problem embedding time on quantum devices) on the quantum annealer
hardware will become an obstacle to computing efficiency. As the target
problem becomes larger (4 × 4 × 4 supercell), the computational efficiency
of Gurobi becomes much lower, and the optimization results are also less
satisfactory compared to the other two annealing algorithms. At the same
time, the advantages of QA in both computational efficiency and global
searching accuracy are gradually emerging. As the scale of the problem
further increases (8 × 8 × 8 supercell), Gurobi and simulated annealer
cannot converge to the optimal solution within 6 hours due to the physical
memory limitations of the classical computer. It is foreseeable that as the
optimization problem becomes larger and larger, the advantage of the QA
algorithm will become more significant. The limitations of quantum
hardware (e.g., number of interconnect qubits) still largely limit the size of
the problems. However, for theHEA problem in this study, 4x4x4 a cell size
is found yielding converged state when considering the per atom energy of
the optimized lattice.

Discussion
In this work, we explore the possibility of using quantum algorithms for
lattice materials design and optimization. The proposed QALO algo-
rithm combines the QA algorithm and the machine learning algorithm
to achieve the global search of the large material design space through
an active learning scheme. TheQALO algorithm achieves simultaneous
optimization for composition and atomic arrangement through the
proper deployment of QA in a two-tiered optimization strategy. When
applied to optimizing the configuration of the refractory NbMoTaW
alloy, our algorithm can reproduce the enrichment of W and depletion
of Nb in the bulk lattice. At the same time, the optimized alloy con-
figuration also shows higher mechanical strength. With the develop-
ment of quantum devices in the future, the current optimization
framework is expected to be further enhanced. More qubits and more
complex architectures of quantum computers will allow for the reali-
zation of higher-dimensional and complex optimization problems,
which will greatly expand the application potential of the QALO
algorithm.

Fig. 4 | Parity plots of FFM and SNAP-MLP
models against DFT calculated energy on the
training set and test set. (a) Parity plot of FFM
model. (b) Parity plot of SNAP-MLP model.

Table 2 | Hyperparameters and setup for different modules in
the QALO optimization simulation

Basics

designed system 8 × 8 × 8

lattice constant 3.29Å

QALO iterations 700

Temperature 300 K

FFM

learning rate 0.05

latent space 8

epochs 10,000

optimizer adam

Quantum Annealing

# of shots for each QA 5

# of QA calls in each QA module (n) 5

growth rate of λ 0.01

λmax 1000

SNAP-MLP

cutoff 4.6 Å

bispectrum coefficient 6
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Methods
DFT calculations
Weperformed theDFTcalculations for total energies of randomly generated
HEA configurations using the Perdew–Burke–Ernzerhof (PBE)77 exchange-
correlation functional and projector-augmented plane wave (PAW)78

potentials as implemented in the Vienne ab initio simulation package
(VASP)79. The plane-wave cutoff energy is 520 eV, and the k-point density is
3 × 3 × 3 for the 4 × 4 × 4 supercells. For other supercell sizes, the densities of
k-point are scaled according to the sizeof their lattices in the reciprocal space,
which are inversely proportional to the supercell sizes. The energy threshold
for self-consistency and the force threshold for structure relaxation are
10−8 eV and 0.02 eV/Å, respectively. The Python Materials Genomics
(pymatgen)80 library is used for all structure manipulations and analysis of
DFT computations. All the energies calculated byVASP are first normalized
according to the supercell sizes and then used to construct the datasets.

SNAP potential and LAMMPS calculations
The SNAPmodel67 expresses the energies and forces of a collection of atoms
as a function of the coefficients of the bispectrum of the atomic neighbor
density function. For the linear SNAP model, the energy of atom i is
expressed as81:

Ei
SNAPðBi

1; . . . ; B
i
K Þ ¼ β

μi
0 þ

XK
k¼1

β
μi
k B

i
k ¼ β0 þ β � Bi ð15Þ

where Bi
k is the k-th bispectrum component of atom i, and β

μi
k is the cor-

responding linear coefficient that depends on μi, which is the SNAPelement
of atom i. Similarly, the force on each atom j can be written as a weighted
sum over the derivatives of the bispectrum components of each atom i:

Fj
SNAP ¼ �∇j

XN
i¼1

Ei
SNAP ¼ �β �

XN
i¼1

∂Bi

∂rj
ð16Þ

The bispectrum coefficients B are given by32,67,81:

Bj1 ;j2;j
¼ Pj1

m1 ;m01¼�j1

Pj2
m2 ;m0

2¼�j2

Pj
m0;m0¼�j

ðujm;m0 Þ* � Cjm
j1m1 j2m2

×Cjm0

j1m
0
1 j2m

0
2
uj1m0

1 ;m1
uj2m0

2 ;m2

ð17Þ

where Cjm
j1m1 j2m2

and Cjm0

j1m
0
1 j2m

0
2
are Clebsch-Gordan coupling coefficients82,

and ujm;m0 are the coefficients of four-dimensional hyperspherical
harmonics extracted from the Fourier expansion of the atomic density

Fig. 5 | The evolution of results in 700 QALO iterations. a Hamiltonian (H = E – TS) evolution and (b) composition evolution.

Fig. 6 | Partial radial distribution function (RDF) and the SRO for optimized
NbMoTaW lattice structure.

Fig. 7 | Uniaxial stress-strain behavior of NbMoTaW systems. In comparison are a
randomly generated equiatomic NbMoTaW configuration (NbMoTaW_Rand), a
suboptimal NbMoTaW configuration with the converged composition but random
atomic arrangement (NbMoTaW_subOpt), and the optimized NbMoTaW config-
urations from the QALO algorithm (NbMoTaW_Opt).
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functions (see Thompson et al.67 for more details of the SNAP descriptor).
SNAP is employed because it can be trained very efficiently compared to
other MLPs while not losing accuracy.

In this work, we used the LAMMPS package83 and the FitSNAP
package84 to calculate the bispectrum coefficients for all the training
structures67. The key hyperparameters for training a SNAP model are the
cutoff radius Rcut for bispectrum computation and the order of the bis-
pectrum coefficients jmax. The values of these parameters have been given in
Table 2.

All the MD simulations in this work are also performed by LAMMPS.
The relaxations are carried out on the undistorted structures under NPT
ensembles at 300 K and 0 pressure. For the stress-strain simulations, the
undistorted structures are first enlarged to about 40 × 40 × 40Å. Then, the
enlarged structures are relaxed for 2 ns. Uniaxial tensile deformation and
compression deformation are applied on the relaxed structures with a strain
rate of 5 × 108 s-1 along the x-direction under NPT ensemble at 1 atm and
300 K. The timestep is set to be 1 fs for the simulation.

FM and QUBO problem
FM is a machine learning model that extends traditional linear regression
models by incorporating interactions betweendifferent input features62. The
2nd order FM can be written as:

yðxÞ ¼ ω0 þ
Xn
i¼1

ωixi þ
Xn
i¼1

Xn
j¼iþ1

hvi; vjixixj ð18Þ

where xi is the i-th feature of the input variable,ω are linear coefficients, and
vi; vj represents the inner product of the latent vectors associated with
features i and j.

However, the simple mathematical form of FM sometimes cannot
capturemore complexornuanced interactions between features, such as the
pair atomic interactions in the lattice. These interactions are usually related
to the context of features85. FFM is an improved version of FM,which allows
each feature to have multiple latent vectors, one for each field with which it

interacts. The 2nd order FFM can be written as86:

yðxÞ ¼ ω0 þ
Xn
i¼1

ωixi þ
Xn
i¼1

Xn
j¼iþ1

hvi;f j ; vj;f i ixixj ð19Þ

where fi and fj denote the fields of features i and j, respectively, and vi;f j
represents the latent vector of feature iwhen interacting with a feature from
field fj. In the lattice withN sites andM types of elements, each of theN ×M
features will correspond to N fields, so that the 2nd order coefficients in the
FFM will accurately describe spatially dependent atomic pair interactions.
By introducing field-wise latent vectors, the complexity of the latent space is
highly increased.

QUBO problems are a class of optimization problems that involve
finding the binary variable assignment that minimizes a quadratic objective
function87. Mathematically, the QUBO problem can be written as:

min
x
ðxTQxÞ ¼ min

x

Xn
i¼1

Xn
j¼i

Qijxixj

 !
ð20Þ

where x is a binary variable withN components and Q is the hQUBO. The
consistency betweenQUBO and factorizationmachines (FM and FFM) lies
in the structure of their formulations, both of which involve the interactions
between features (as Eqs. (18)~(20) shown). Therefore, FM and FFM are
always regarded as an efficient way for mapping a general combinatorial
optimization problem to QUBO form44,46.

Quantum annealing
Quantum annealing is a quantum analog of classical simulated annealing
that permits quantum tunneling to facilitate the efficient exploring of energy
landscapes and find the global minimum (as shown in Fig. 8a)39. Compared
with simulated annealing, quantum annealing always exhibits a stronger
ability to converge to the ground state (global minimum of the energy
landscape). In quantum annealing, the system is initialized in the lowest-
energy eigenstate of the initial Hamiltonian. The annealing process then
proceeds by evolving the quantum state adiabatically towards a target
problemHamiltonian for the system. If the annealing took place slowly, the

Fig. 8 | Schematic of quantum annealing. aMechanism of quantum annealing; b Chimera graph for problem embedding.

Table 3 |Computational timeandminimumconfigurational energyof different optimizers for solving theNbMoTaWoptimization
problem

problem QUBO size Gurobi simulated annealer HQA

size lattice sites Time (s) Min E (eV) Time (s) Min E (eV) Time (s) Min E (eV)

2 × 2 × 2 16 64 3.51 −195.22 24.65 −195.47 177.31 −195.28

4 × 4 × 4 128 512 2375.30 −1502.37 241.22 −1510.88 338.92 −1512.71

8 × 8 × 8 1024 4096 >3600.00 - >3600.00 - 3061.11 −12168.30
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adiabatic theorem88–90 ensures that in all the transformation phases, the
system will be kept at the ground state of the Hamiltonian91.

The D-Wave system is the pioneer in the development of com-
mercial quantumannealers. In order to be solved on theD-Wave system,
all the problems need to be formulated as an Isingmodel or, equivalently,
a QUBO model. These models can be further represented by a graph
comprising a collection of nodes and edges between them, while the
corresponding quantumprocessing unit is expressed as a lattice of qubits
interconnected in a design known as a Chimera graph92,93 (as shown in
Fig. 8b), which is typical for D-Wave quantum annealers and their
operations. The nodes and edges of the objective function graph are
mapped to the qubits and couplers of the Chimera graph by a minor-
embedding process94–97.

However, due to the limitation of the QPU size, large-scale QUBO
problems (such as the 8 × 8 × 8 optimization problem in this work) cannot
bedirectlyfit on amodest-sized chimera lattice. Thehybrid-QAalgorithm is
proposed as a bridge to larger applications66, in which the full QUBO pro-
blem is partitioned into sub-QUBOs that fit QPU lattice size98. Each itera-
tion of the hybrid-QA algorithm comprises multiple calls to the quantum
annealer to solve each sub-QUBO, and the solution of the original QUBO
problem is constructed from the sub-solutions. In this work, all the QA
optimizations are implementedby theLeap’s hybridbinaryquadraticmodel
solver on the D-Wave Quantum Annealer (Advantage system 4.1), which
incorporates the 5000-qubit Advantage (QPU) that can handle up to 20,000
fully connected variables.

Data availability
Requests for data andmaterials should be sent to the corresponding authors
or Z.X. (zxu8@nd.edu).

Code availability
The codes for this study are available at https://github.com/ZhihaoXu0313/
qalo-kit.git.
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