

Numerical Methods in Superstring Field Theory*

I. Ya. Aref'eva[†], R. V. Gorbachev[‡]

Steklov Mathematical Institute of Russian Academy of Sciences,
Gubkin st., 8, 119991, Moscow, RUSSIA

P. B. Medvedev[§]

Institute of Theoretical and Experimental Physics,
B. Cheremushkinskaya st., 25, Moscow, 117218, RUSSIA

D. V. Rychkov[¶]

Physics Department, Moscow State University,
Leninski gory, Moscow, 119992, RUSSIA

ABSTRACT

A descent relation $\langle V_3 | V_1 \rangle = \tilde{Z}_3 \langle V_2 |$ in the fermionic NS string with the vertices in the standard oscillator basis is presented.

The main object in the String Field Theory (SFT) is the string functional $\Psi[X(\sigma)]$. One can relate with a string functional $\Psi[X(\sigma)]$ a state $|\Psi\rangle$ in the Fock space

$$\Psi[X(\sigma)] \equiv \langle X(\sigma) | \Psi \rangle \quad (1)$$

where $\langle X(\sigma) |$ is

$$\langle X(\sigma) | = \prod_{n=0}^{\infty} \langle x_n | = \langle 0 | \exp \left\{ - \sum_{n \geq 1} \left(\frac{1}{2} n x_n^2 - i \sqrt{2n} x_n \hat{\alpha}_n - \frac{1}{2n} \hat{\alpha}_n \hat{\alpha}_n \right) \right\}. \quad (2)$$

* Work supported in part by RFBR grant 05-01-00758 and Russian President's grant NSh-672.2006.1. The work of I. A. is supported in part by INTAS grant 03-51-6346. The work of D. R. is supported in part by grant of Dynasty Foundation.

[†] e-mail address: arefeva@mi.ras.ru

[‡] e-mail address: rgorbachev@mi.ras.ru

[§] e-mail address: pmedvedev@itep.ru

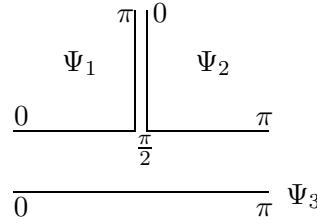
[¶] e-mail address: roggin@gmail.com

Here α_n are the usual modes of the string,

$$\langle x_n | \hat{x}_n = \langle x_n | x_n, \quad \hat{x}_n = i(\hat{\alpha}_n - \hat{\alpha}_{-n})/\sqrt{2n}$$

and $\langle 0 |$ is the Fock space vacuum annihilated by all α_{-n} .

One of the main ingredient of SFT is a multiplication of string functionals. In the Witten covariant SFT [1] the definition of string functionals multiplication $\Psi_1 \star \Psi_2 = \Psi_3$ is given by gluing a right half ($\sigma \in [0, \frac{\pi}{2}]$) of one string to a left half ($\sigma \in [\frac{\pi}{2}, \pi]$) of the other one. This multiplication can be drawn as



This picture has an analytic form in terms of the path integral

$$(\Psi_1 \star \Psi_2)[X(\sigma)] \equiv \int \prod_{0 \leq \sigma \leq \pi} dX^1(\sigma) dX^2(\pi - \sigma) \prod_{0 \leq \sigma \leq \frac{\pi}{2}} \delta(X^1(\pi - \sigma) - X^2(\pi)) \times \delta(X^1(\sigma) - X(\sigma)) \delta(X^2(\pi - \sigma) - X(\pi - \sigma)) \Psi_1[X^1(\sigma)] \Psi_2[X^2(\sigma)]. \quad (3)$$

In the Witten covariant SFT the action is defined via an integral $\int \Psi : \Psi \rightarrow \mathbb{C}$. The integral is given by folding the string and identifying the two sides:

$$\frac{\pi}{2} \overbrace{\hspace*{1cm}}^{\pi} 0$$

An analytic form of the integral reads

$$\int \Psi = \int \prod_{0 \leq \sigma \leq \pi} dX(\sigma) \prod_{0 \leq \sigma \leq \frac{\pi}{2}} \delta(X(\sigma) - X(\pi - \sigma)) \Psi[X(\sigma)]. \quad (4)$$

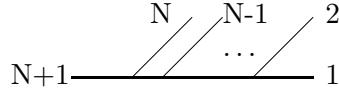
The string field multiplication (3) and the integral (4) can be presented in terms of vertices $\langle |\hat{V}_3| \rangle$ and $\langle \hat{V}_1 |$ acting in the Fock space. These vertices have been constructed explicitly by Gross and Jevicki [2].

$$|\Psi_1 \star \Psi_2\rangle = {}_{12}\langle |\hat{V}_3| \rangle_3 |\Psi\rangle_1 |\Psi\rangle_2, \quad \int \Psi = {}_1\langle \hat{V}_1 | \Psi \rangle_1. \quad (5)$$

See [1, 2] and reviews [3] for more details and references. It is useful to use the graphical representation of these vertices:

$$\langle \hat{V}_1 | = \circ \text{---} , \quad \langle | \hat{V}_3 | \rangle = \text{---} \backslash \backslash$$

One can build an infinite tower of vertices ${}_{1\dots N} \langle | \hat{V}_{N+1} | \rangle_{N+1}$ by gluing of $N - 1$ vertices V_3 . This tower graphically has the form of a tree graph with $N + 1$ legs. Inside this tree we can glue free legs of the vertices $\langle | \hat{V}_3 | \rangle$ arbitrary, all of these gluing are equivalent due to the associativity of the Witten multiplication.



One can also build an infinite tower of vertices ${}_{1\dots N} \langle | \hat{V}_N | \rangle$ associated with vertices ${}_{1\dots N} \langle | \hat{V}_{N+1} | \rangle_{N+1}$ by adding one more $\langle | \hat{V}_1 | \rangle$ as shown below:

$$\circ \text{---} \underset{N+1}{\text{---}} \underset{N+1}{\text{---}} \backslash \backslash \dots \backslash \backslash \underset{1}{\text{---}} = \circ \text{---} \underset{N}{\text{---}} \underset{N-1}{\text{---}} \dots \backslash \backslash \underset{1}{\text{---}}$$

One can define also a ket $|\hat{V}_1\rangle$ as a solution of the “descent relation” [2]

$$\langle \hat{V}_2 | \hat{V}_1 \rangle = \langle \hat{V}_1 |. \quad (6)$$

It is important to note that solution (6) is unique and $|\hat{V}_1\rangle$ satisfies the overlap condition. This defining equation for $|\hat{V}_1\rangle$ can be represented graphically. We display a vertex corresponding to $|\hat{V}_1\rangle$ by a line outgoing from $*$ to the left. According to Wick’s theorem the LHS of (6) can be presented as

$$\circ \text{---} \backslash \backslash = \circ \text{---} *$$

In this notations the equation (6) looks like

$$\circ \text{---} * = \circ \text{---}$$

With $|\hat{V}_1\rangle$ subject to (6) we are going to prove the descent relations

$$\langle \hat{V}_{N+1} | \hat{V}_1 \rangle = \langle \hat{V}_N |. \quad (7)$$

To prove (7) we have to use our construction for the tower of the vertices $\langle | \hat{V}_{N+1} | \rangle$. Taking a simplest graph representing $\langle | \hat{V}_{N+1} |$

$$\langle \hat{V}_{N+1} | = \circ \quad \begin{array}{c} N+1 \\ \diagup \quad \diagup \\ \dots \\ \diagup \quad \diagup \\ 1 \end{array} \quad 2$$

we have

$$\begin{aligned} \langle \hat{V}_{N+1} | \hat{V}_1 \rangle &= \circ \quad \begin{array}{c} \dots \\ \diagup \quad \diagup \\ * \\ \dots \\ \diagup \quad \diagup \\ 1 \end{array} = \\ &= \circ \quad \begin{array}{c} \dots \\ \diagup \quad \diagup \\ * \\ \dots \\ \diagup \quad \diagup \\ 1 \end{array} \end{aligned}$$

Taking into account (6) we get that

$$\circ \quad \begin{array}{c} N+1 \\ \diagup \quad \diagup \\ * \\ \dots \\ \diagup \quad \diagup \\ 1 \end{array} \quad 2 = \circ \quad \begin{array}{c} N \\ \diagup \quad \diagup \\ \dots \\ \diagup \quad \diagup \\ 1 \end{array} \quad 2 ,$$

that exactly gives $\langle \hat{V}_N |$.

However, the bra vertices $\langle V_i |$ are usually found as the solutions of the overlap equations [2] and not by gluing \hat{V}_3 -s. For instance, the overlap equation for the matter fields X^μ reads:

$$\langle V_N | (X^r(\sigma) - X^{r-1}(\pi - \sigma)) = 0, \quad r = 1, \dots, N \quad \sigma \in [0, \frac{\pi}{2}]. \quad (8)$$

The vertices $\langle V_N |$ from these equations are defined up to numerical factors, i.e. the vertex $\langle \hat{V}_N |$ and the vertex $\langle V_N |$ can be different but are related by a factor

$$\langle \hat{V}_N | = Z_N \langle V_N | \text{ and } \langle \hat{V}_1 | = Z_{-1} \langle V_1 |.$$

Hence, the descent relations for $\langle V_N |$ look like

$$\langle V_{N+1} | V_1 \rangle = Z_N Z_{-1}^{-1} Z_{N+1}^{-1} \langle V_N | \equiv \tilde{Z}_{N+1} \langle V_N |. \quad (9)$$

We can use the similar scheme to build Witten's tower of ghost vertices $\langle \hat{V}_N^{gh} |$ in terms of the vertex $\langle |\hat{V}_3^{gh}| \rangle$. Similar to the matter sector the ghost sector descent relation has the form

$$\langle \hat{V}_{N+1}^{gh} | \hat{V}_1^{gh} \rangle = \langle \hat{V}_N^{gh} |. \quad (10)$$

There are several papers [4, 5] devoted to a checking of descent relations in the bosonic SFT. The main difficulty in these calculations comes from an infinite dimensionality of Neumann matrices defining vertices $\langle V_{N+1} |$. There are two methods to perform these calculations.

The first method is known as a level truncation method [6]¹. One truncates infinite Neumann matrices up to some level M and performs the calculations. At each level M one compares the resulting (numerically calculated) matrices with Neumann matrices in $\langle V_{N+1} |$ and calculates $\tilde{Z}_{N+1}(M)$.

The actual calculations were done for $N = 2$ [4, 5, 8] and it was found that the Neumann matrices of $\langle V_2 |$ are reproduced with an accuracy growing as $M \rightarrow \infty$. It happened that the situation with $\tilde{Z}_3(M) = Z_3^X(M)Z_3^{gh}(M)$ brought a surprise. The coefficient Z_3^X calculated in the matter sector is gone to zero as $M \rightarrow \infty$, but the coefficient Z_3^{gh} calculated in the ghost sector goes to infinity as $M \rightarrow \infty$. If one multiplies these two coefficients $\tilde{Z}_3 = Z_3^X Z_3^{gh}$ and puts $M \rightarrow \infty$ the coefficient \tilde{Z}_3 tends to a constant. We used two different schemes of calculation \tilde{Z}_3 and got two different answers for \tilde{Z}_3 which, in its turn, different from results of [4, 5]. In fact, it is not surprising since we deal with divergent quantities and two schemes of calculations deal with two different regularizations.

The second method uses the κ -basis [9]. In the κ -basis the Neumann matrices are diagonal. This basis is related with K_n symmetries of the vertices

$$\langle V_3 | (K_n^{(1)} + K_n^{(2)} + K_n^{(3)}) = 0, \quad (11)$$

where $K_n = L_n - (-)^n L_{-n}$ and L_n are the Virasoro generators. It is important that for $n = \text{odd}$ the vertices are invariant in the matter and ghost sectors [2, 9] separately, but for $n = \text{even}$ only the full vertex (11) is K_n -invariant. The K_n invariance of a vertex means that the Neumann matrices and the matrix corresponding to the operator K_n commute (choose $n = 1$):

$$[K_{1,nm}, V_{nm}] = 0. \quad (12)$$

Therefore, if one finds the eigenvectors of the matrix $K_{1,nm}$ and chooses them as basis vectors then the Neumann matrices are reduced to the diagonal form. The calculation are greatly simplified in this basis [9, 10]. One can perform a check of the descent relation analytically and the proper structure of the descent relation is deduced at [11, 12, 13]. It is important to stress that divergences also arise in the κ -basis calculation via normalization constants Z_3^X and Z_3^{gh} . The theory can be consistently regularized to give finite results. Note that in [11, 12, 13, 8] there are used slightly different regularizations. Thus we conclude that a regularization is a essential element of the descent relation calculation. This fact also clarifies the problem of different \tilde{Z} -s in the level truncation calculation, the numerical value of \tilde{Z}_3 is regularization dependent. In this lecture the use the level truncation method.

We have tested the descent relation for the fermionic NS string where in addition to the matter fields X^μ and the ghosts b, c there are the fermionic matters ψ^μ and fermionic ghosts β, γ .

¹ This method is different from the field level truncation proposed by V. A. Kostelecky and S. Samuel [7].

We can also build the Witten fermionic tower of the vertices $\langle \hat{V}_N \rangle$ from the vertices $\langle |\hat{V}_3| \rangle$ and $\langle |\hat{V}_1| \rangle$. The descent relation also takes place for these vertices. Just as in the bosonic case the actual vertices $\langle V_N \rangle$ are obtained as the solutions of the overlap equations that states the issue of checking of the descent relation for NS string.

The fermionic vertices $\langle V_N \rangle$ are the solutions of the following overlap equations

$$\begin{aligned} \langle V_N^\psi | (\psi^r(\sigma) - i\psi^{r-1}(\pi - \sigma)) &= 0, \\ \langle V_N^{\beta\gamma} | (\beta^r(\sigma) + i\beta^{r-1}(\pi - \sigma)) &= 0, \quad r = 1, \dots, N, \quad \sigma \in [0, \frac{\pi}{2}], \\ \langle V_N^{\beta\gamma} | (\gamma^r(\sigma) + i\gamma^{r-1}(\pi - \sigma)) &= 0. \end{aligned} \quad (13)$$

For example, the vertices $\langle V_3 \rangle$ for fermionic matter and its ghosts are [2]

$$\begin{aligned} \langle V_3^\psi | &= {}_{321} \langle 0 | \exp \left\{ -\frac{1}{2} \sum_{a,b=1}^3 \sum_{r,s \geq 1/2}^{\infty} \psi_r^a K_{rs}^{ab} \psi_s^b \right\}, \\ \langle V_3^{\beta\gamma} | &= {}_{123} \langle -1 | \exp \left\{ - \sum_{a,b=1}^3 \sum_{\substack{r \geq 1/2 \\ s \geq 1/2}} \beta_r^a \bar{K}_{rs}^{ab} \gamma_s^b \right\} e^{-\phi(\frac{\pi}{2})} Y^2 \left(\frac{\pi}{2} \right) Y^3 \left(-\frac{\pi}{2} \right). \end{aligned} \quad (14)$$

The vacuum $\langle 0 |$ in the matter sector is defined as $\langle 0 | \psi_r = 0, r \leq \frac{1}{2}$. In the ghost sector the situation is more complicated. Here Y is the picture changing operator [14]. This is an essentially new object which appears in the superstring field theory [15, 16, 17]. In the superghost sector all vacua are non-equivalent and the picture changing operator converts them from one to another. The vacuum with picture q is defined as

$$\langle q | \beta_r = 0, \quad r \leq -\frac{3}{2} - q, \quad \langle q | \gamma_s = 0, \quad s \leq \frac{1}{2} + q.$$

The picture changing operators do not enter explicitly in our calculations of $\langle V_3 | V_1 \rangle$. We can do the calculations by closing the brackets of the string number “1” while Y -s are sitting on the string number “2” and “3”. However, in the simplest descent relation $\langle V_2 | V_1 \rangle = \langle V_1 |$ in the superghost sector one needs to use them. We cannot check this descent relation unlike in the bosonic string.

The Neumann matrices K_{rs}^{ab} and \bar{K}_{rs}^{ab} are infinite dimensional ones and they have very complicated form [2]. However, there is simple representation for the Neumann matrices [18, 19]. Using this representation the structure of the vertex $\langle V_2 |$ is easily reproduced. As in the case of the bosonic SFT we got coefficient \tilde{Z}_3 which is not equal to one. The coefficient Z_3^ψ which was got in fermionic matter sector vanishes as $M \rightarrow \infty$, but in the superghost sector the coefficient $Z_3^{\beta\gamma}$ diverges as $M \rightarrow \infty$. It is very non-trivial that

the result coefficient $\tilde{Z}_3 = Z_3^\psi Z_3^{\beta\gamma}$ is constant as in the bosonic case. Note that this factor depends on the regularization.

However, the full coefficient Z_3 contains as the bosonic as the fermionic contributions. In the bosonic sector of the NS string the coefficient $\tilde{Z}_3^B = Z_3^X Z_3^{gh}$ differs from the coefficient \tilde{Z}_3 in the pure bosonic string origin to change of the d . That gives the linear grow of \tilde{Z}_3^B in M . Unfortunately \tilde{Z}_3^F in the fermionic sector goes to zero not so quickly to cancel M and the overall $Z_3 = \tilde{Z}_3^B \tilde{Z}_3^F$ appears to be divergent. This issue demands further investigations.

Acknowledgments

We would like to thank D. Belov for fruitful discussions. I. A. and R. G. thank the organizing committee of the Summer School in Belgrade for the warmest hospitality.

References

- [1] E. Witten, *Nucl.Phys.* **B 268** (1986) 253.
- [2] D. Gross and A. Jevicki, *Nucl.Phys.* **B 283** (1987) 1; *Nucl.Phys.* **B 287** (1987) 225; *Nucl.Phys.* **B 293** (1987) 29.
- [3] C.B. Thorn, *Phys.Rept.* **175** (1989) 1; *Nucl.Phys.* **B 287** (1987) 61.; K. Ohmori, arXiv:hep-th/0102085; I. Y. Arefeva, D. M. Belov, A. A. Gir'yavets, A. S. Koshelev and P. B. Medvedev, arXiv:hep-th/0111208; W. Taylor and B. Zwiebach, arXiv:hep-th/0311017.
- [4] E. Fuchs and M. Kroyter, *JHEP* **0512**, (2005) 031 [arXiv:hep-th/0508010].
- [5] I.Ya. Aref'eva, R.V. Gorbachev, P.B. Medvedev and D.V. Rychkov, *Theor. Math. Phys.* **150** (2007) 2-20 [arXiv:hep-th/0606070].
- [6] W. Taylor, arXiv:hep-th/0207132.
- [7] V. A. Kostelecky and S. Samuel, *IUHET-180 Presented at 15th Mtg. of Div. of Particles and Fields of the APS*, Houston, TX, Jan 3-6, 1990.
- [8] E. Fuchs and M. Kroyter, *JHEP* **0702**, (2007) 038 [arXiv:hep-th/0610298].
- [9] L. Rastelli, A. Sen and B. Zwiebach, *Adv. Theor. Math. Phys.* **5**, (2002) 393 [arXiv:hep-th/0102112].
- [10] D. M. Belov and C. Lovelace, *Phys. Rev.* **D 68**, (2003) 066003 [arXiv:hep-th/0304158].
- [11] D. M. Belov, *Phys. Rev.* **D 69**, (2004) 126001 [arXiv:hep-th/0308147].
- [12] E. Fuchs, M. Kroyter and A. Marcus, *JHEP* **0211**, (2002) 046 [arXiv:hep-th/0210155].
- [13] E. Fuchs, M. Kroyter and A. Marcus, *JHEP* **0311**, (2003) 039 [arXiv:hep-th/0307148].
- [14] D. Friedan, E. Martinec, and S. Shenker, *Nucl.Phys.* **B 271** (1986) 93.
- [15] E. Witten, *Nucl.Phys.* **B 276** (1986) 291.

- [16] I.Ya Arefeva, P.B. Medvedev and A.P. Zubarev, *Nucl.Phys.* **B 341** (1990) 464.
- [17] C. Preitschopf, C. Thorn and S. Yost, *Nucl. Phys.* **B 337**, (1990) 363.
- [18] I.Ya. Aref'eva, A.A. Giryavets and P.B. Medvedev, *Phys.Lett.* **B 532** (2002) 291-296.
- [19] I.Ya. Aref'eva, A.A. Giryavets and A.S. Koshelev, *Phys.Lett.* **B 536** (2002) 138-146.