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ABSTRACT Ultra-small object detection in UAV imagery presents significant challenges due to scale vari-
ation, environmental complexity, and computational constraints. This study introduces a quantum-inspired
multi-scale object detection model designed to address these issues effectively. By integrating quantum-
inspired sub-pixel convolution, adversarial training, and self-supervised learning, the model enhances
detection accuracy, robustness, and computational efficiency. These advancements are particularly critical
for UAV applications such as surveillance, precision agriculture, disaster response, and environmental
monitoring. The proposed model was evaluated on the VisDrone2019 dataset and benchmarked against
state-of-the-art methods, including YOLOv4, YOLO11, RT-DETR, and EfficientDet. It achieved 65.3%
precision, 52.4% recall, and a mean Average Precision (mAP) of 34.5%, outperforming conventional models
in detecting ultra-small objects. Efficiency optimizations, including structured pruning and quantization,
reduced computational load to 30 GFLOPS with an inference time of 8.1 milliseconds, ensuring suitability
for real-time UAV applications on resource-constrained platforms. This research offers a practical and
robust solution for UAV-based object detection tasks, combining state-of-the-art accuracy with operational
efficiency. It also establishes a foundation for future advancements, including scalability to diverse datasets,
integration with edge computing platforms, and the exploration of quantum computing techniques. These
contributions pave the way for enhanced capabilities in computer vision and autonomous aerial systems.

INDEX TERMS Ultra-small object detection, UAV imagery, quantum-inspired feature pyramids, adversarial
training, self-supervised learning, real-time applications.

I. INTRODUCTION
The detection of ultra-small objects in unmanned aerial
vehicle (UAV) imagery is a critical task with significant
implications across multiple domains, including precision
agriculture, military surveillance, environmental monitoring,
and disaster response. Equipped with high-resolution cam-
eras, UAVs can capture extensive areas from various altitudes
and angles, generating imagery with a wide range of object
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sizes [1], [2]. However, identifying objects smaller than
32 × 32 pixels—referred to as ultra-small objects—remains
challenging due to their minimal pixel representation, which
limits the performance of traditional object detection algo-
rithms [3], [4]. The importance of detecting ultra-small
objects in UAV imagery cannot be overstated. In military
surveillance, undetected critical small targets, such as drones
or personnel, could lead to severe security breaches [5],
[6]. Similarly, the early detection of pests or crop diseases
in agriculture can prevent significant economic losses and
ensure optimal yields [7], [8]. Furthermore, environmental
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monitoring and disaster response rely heavily on accurate
detection of small objects, such as wildlife or survivors in
disaster-hit areas, where missed detections may result in life-
threatening consequences [9].

A major challenge in UAV imagery is the extreme scale
variation of objects within a single frame. UAVs often cap-
ture large infrastructures, such as buildings and bridges,
alongside smaller entities, such as vehicles or equipment.
While traditional object detection models, such as Faster
R-CNN and SSD, have demonstrated strong performance in
standard detection tasks, they struggle to address the vari-
ability at the lower end of the scale spectrum [10], [11].
Ultra-small objects, which occupy only a few pixels, lack
sufficient feature representation, often blending into complex
backgrounds in high-resolution imagery, leading to missed
detections or false positives [12], [13]. Recent advancements
in object detection models, such as YOLO11 and RT-DETR,
have significantly improved ultra-small object detection.
YOLO11, the latest in the YOLO series, introduces a versatile
framework capable of multi-task scenarios, including object
detection, segmentation, and classification. Its adaptability
across edge devices and cloud platforms enhances its suit-
ability for UAV systems, with improved handling of spatial
and contextual information for detecting ultra-small objects
in real-world environments [15]. Similarly, RT-DETR (Real-
Time Detection Transformer) represents a transformative
approach by leveraging transformer-based architectures for
end-to-end detection. With an ability to process multi-scale
features efficiently, RT-DETR achieves superior precision
and real-time inference speeds, even on resource-constrained
hardware [16].
UAV imagery presents additional complexities, includ-

ing variations in altitude, lighting, and weather conditions.
Dynamic backgrounds with overlapping objects, moving
shadows, and atmospheric noise further complicate detec-
tion [17], [18]. Environmental factors, such as motion
blur caused by UAV movement and sensor imperfections,
exacerbate these challenges, often reducing the efficacy of
traditional models [19]. Despite progress with models like
YOLOv3, YOLOv4, and YOLOv5, limitations persist in
detecting ultra-small objects, particularly in high-complexity
backgrounds [20]. Convolutional neural networks (CNNs)
frequently rely on pooling and stride operations, which
reduce spatial resolution and compromise the retention of
critical information for small object detection [21]. Even
advanced architectures, such as feature pyramid networks
(FPNs), encounter resolution loss, especially for objects
smaller than 12 × 12 pixels [3]. To address these challenges,
this study proposes several innovative methodologies for
enhancing ultra-small object detection in UAV imagery. The
contributions of this research include:

A. ADVANCED DATA AUGMENTATION TECHNIQUES
Adversarial training and self-supervised learning are
employed to enhance robustness against environmental
variability [8].

B. ENHANCED MULTI-SCALE FEATURE PYRAMID
ARCHITECTURE
High-resolution feature maps and quantum-inspired sub-
pixel convolution layers enable the detection of objects as
small as 6×6 pixels, significantly improving detection accu-
racy in cluttered environments [13].

C. EFFICIENCY OPTIMIZATIONS FOR REAL-TIME
APPLICATIONS
Model pruning and quantization are applied to reduce compu-
tational complexity while maintaining performance, ensuring
deploy ability on resource-constrained UAV systems [14].
The proposed methodologies are evaluated on the Vis-

Drone2019 dataset, demonstrating substantial improvements
in precision, recall, and mean Average Precision (mAP) over
state-of-the-art models. These contributions establish a new
benchmark for ultra-small object detection in UAV imagery.

II. RELATED WORK
Detecting ultra-small objects in UAV imagery presents sig-
nificant challenges due to their limited resolution, scale vari-
ation, and complex backgrounds. Traditional object detection
models like Faster R-CNN and SSD have been instrumental
in advancing general object detection by leveraging convo-
lutional neural networks (CNNs) to extract features from
images. However, these models often rely on pooling layers
that reduce spatial resolution, leading to the loss of fine details
necessary for accurately detecting small objects [10], [11].
This limitation is particularly evident in UAV imagery, where
ultra-small objects occupy minimal pixel space and are often
obscured by cluttered environments [12].

A. SMALL OBJECT DETECTION TECHNIQUES AND
ADVANCEMENTS IN FEATURE PYRAMID
NETWORKS (FPNS)
The detection of ultra-small objects in UAV imagery remains
a major challenge due to their minimal pixel representation,
significant scale variation, and complex backgrounds. Tra-
ditional object detection models such as Faster R-CNN and
SSD [10], [11] rely on feature maps that undergo spatial res-
olution reduction through pooling layers, which often leads to
the loss of fine-grained details required for accurately detect-
ing small objects. While these models were instrumental in
advancing general object detection tasks, their inability to
preserve high-resolution features makes them less effective
in scenarios involving ultra-small objects, especially in UAV
images.

To address this limitation, researchers have proposed sev-
eral techniques. Kamoi et al. [3] introduced a copy-pasting
strategy to artificially increase the occurrence of small objects
in training datasets, thereby improving their representa-
tion. However, this method often introduces artifacts that
compromise the model’s generalizability in real-world appli-
cations. Similarly, Zhou et al. [13] proposed image tiling,
where images are divided into smaller patches to focus the
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model’s attention on localized regions. Recent advancements
in object detection architectures have demonstrated substan-
tial improvements in small object detection. Models such as
YOLOv8 integrate multi-scale feature fusion and attention
mechanisms to enhance the detection precision of small and
ultra-small objects in challenging conditions [15]. YOLOv8
utilizes improved feature pyramid networks (FPNs), which
combine low-level spatial informationwith high-level seman-
tic features, enabling better representation of objects across
scales. However, even with these advancements, the coarse
resolution of feature maps at smaller scales remains a bot-
tleneck when detecting ultra-small objects in cluttered UAV
scenes.

The introduction of Feature Pyramid Networks (FPNs) by
Lin et al. [12] was a significant breakthrough for multi-scale
object detection. By generating feature maps at multiple
scales, FPNs enhanced the detection of objects across vary-
ing sizes. Subsequent developments, such as PANet [19],
improved upon FPNs by incorporating bottom-up path aug-
mentation to refine information flow across network layers,
resulting in better localization of small objects. Similarly,
EfficientDet [14] combined an optimized FPNwith a scalable
design to achieve state-of-the-art performance while main-
taining computational efficiency. However, these methods
still encounter difficulties in detecting ultra-small objects due
to the loss of critical spatial details and fail to meet the
real-time processing requirements of UAV systems.

More recent models, including RT-DETR and YOLO11,
provide innovative solutions to some of these challenges.
RT-DETR leverages a transformer-based architecture to pro-
cess multi-scale features more effectively, balancing high
detection accuracy with real-time inference speed [16].
On the other hand, YOLO11 introduces enhanced feature
fusion and attention mechanisms, making it versatile for
detecting small and ultra-small objects in cluttered UAV
environments [15]. Despite these advances, achieving a bal-
ance between computational efficiency and precision for
ultra-small objects remains a significant challenge, particu-
larly for resource-constrained UAV platforms.

Recent works further align with our methodology.
Zhang et al. introduced CFANet, which uses a cross-layer
feature aggregation (CFA) module to combine multi-scale
features while minimizing semantic gaps, significantly
improving detection performance for small objects in UAV
imagery [22]. Similarly, Zhang and Yan proposed an
approach integrating cross-layer feature aggregation for cam-
ouflaged object detection, demonstrating the effectiveness
of multi-level feature fusion in identifying subtle and com-
plex targets [23]. These studies highlight the importance of
fine-grained feature extraction and multi-scale processing in
overcoming the limitations of traditional models.

Our proposed model builds upon these advancements
by integrating quantum-inspired sub-pixel convolution lay-
ers, which enhance spatial resolution, and an advanced
multi-scale feature pyramid that preserves critical spa-
tial details. Additionally, adversarial training improves

FIGURE 1. General analysis of small object detection models.

robustness against environmental variations, while self-
supervised learning enables effective feature extraction with-
out requiring extensive labeled data. These innovations
collectively ensure superior detection accuracy, robustness,
and computational efficiency, addressing the persistent chal-
lenges of ultra-small object detection in UAV imagery.

In summary, while traditional methods like Faster R-CNN
and SSD established the foundation for small object detec-
tion, their limitations in handling ultra-small objects in com-
plex UAV environments underscore the need for advanced
approaches. Recent innovations, such as transformer-based
architectures and enhanced feature pyramid networks, have
improved performance but continue to face challenges in
balancing accuracy and efficiency. The proposed quantum-
inspired multi-scale object detection model builds upon
these advancements, offering a robust solution that integrates
enhanced feature extraction techniques, adversarial training,
and self-supervised learning, while maintaining computa-
tional efficiency for real-time UAV applications.

B. ADVERSARIAL TRAINING, SELF-SUPERVISED
LEARNING, AND REAL-TIME OPTIMIZATIONS
Adversarial training, first introduced by Zhou et al. [13], has
become an essential method for improving model robustness
against perturbations. By incorporating adversarial exam-
ples during training, this technique enhances the model’s
resilience to environmental noise and variability, which are
common challenges in UAV imagery. However, adversarial
training alone does not fully address the complexities of
detecting ultra-small objects in cluttered scenes. Its strength
lies in providing robustness, but for UAV applications where
conditions vary widely, additional techniques are required to
address feature extraction limitations specific to ultra-small
object detection.

Self-supervised learning, as demonstrated by Chen et al.
[20], offers an innovative solution by enabling models to
learn rich feature representations from unlabeled data. This
approach is particularly advantageous in UAV applications
where annotated datasets are often scarce. Although its
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application to small object detection in UAV imagery is
still in its early stages, self-supervised learning presents
significant potential for enhancing feature extraction and
improving model generalization across diverse scenarios [8],
[13]. By combining adversarial training with self-supervised
learning, the proposed model achieves improved adaptability
and robustness for ultra-small object detection.

Real-time detection is crucial for UAV applications,
where rapid decision-making under resource constraints
is paramount. Traditional models like YOLOv3 [9] and
YOLOv4 [10] have established themselves as benchmarks
for balancing speed and accuracy. YOLOv4 introduced inno-
vations such as Cross-Stage Partial connections (CSPNet)
and Mish activation to improve feature learning and detec-
tion performance. Despite these advancements, challenges
persist in detecting ultra-small objects due to limitations in
fine-grained feature extraction and spatial resolution [10],
[11]. Building upon these foundations, recent models like
YOLOv8 and YOLO11 have incorporated multi-scale fea-
ture fusion and attention mechanisms, which enhance
detection precision for small and ultra-small objects [15].
YOLO11, in particular, features a streamlined architecture
optimized for edge devices, achieving computational effi-
ciency without sacrificing detection performance. Similarly,
transformer-based models such as RT-DETR [16] represent
a significant advancement, balancing high accuracy with
real-time inference capabilities, even in resource-constrained
environments [14].
These advancements highlight the progress in real-time

small object detection but also underline persistent chal-
lenges in handling ultra-small objects within cluttered and
dynamic UAV imagery. The proposed model addresses these
limitations through innovative feature extraction techniques,
such as quantum-inspired sub-pixel convolution layers and
enhanced multi-scale feature pyramids. These components
improve the detection of ultra-small objects by preserv-
ing critical spatial details while maintaining computational
efficiency. Efficiency optimizations, including pruning and
quantization, further ensure that the model remains deploy-
able on resource-limited UAV platforms while achieving
real-time performance.

By integrating adversarial training, self-supervised learn-
ing, and efficiency-focused optimizations, the proposed
model not only surpasses existing approaches in detection
performance but also achieves a balance between accu-
racy and computational efficiency. These innovations make
it highly suitable for UAV applications requiring robust,
real-time detection of ultra-small objects in complex envi-
ronments. The model’s architecture, illustrated in Figure 2,
demonstrates how these components interact to achieve state-
of-the-art performance, laying the groundwork for future
advancements in UAV-based object detection..

III. METHOGOLOGY
The methodology section outlines the technical advance-
ments and innovations introduced in our proposed model,

focusing on the detection of ultra-small objects in UAV
imagery. We break down our approach into three pri-
mary components: advanced data augmentation techniques,
an enhanced multi-scale feature pyramid, and efficiency opti-
mizations for real-time UAV applications. Each component
is designed to address specific limitations identified in the
existing literature and is mathematically formulated to ensure
robust performance.

A. ADVANCED DATA AUGMENTATION
To enhance the robustness of the model against environmen-
tal variations and improve generalization, we integrate two
advanced data augmentation techniques: Adversarial Train-
ing and Self-Supervised Learning.

1) ADVERSARIAL TRAINING
Adversarial training is incorporated to make the model
resilient against potential adversarial attacks and noise com-
monly found in UAV imagery. We generate adversarial
examples using the Fast Gradient Sign Method (FGSM),
defined mathematically as:

x ′
= x + ϵ · sign (∇xJ (θ, x, y)) (1)

In Eq 1:

• x ′ is the adversarial example
• x is the original input
• ϵis a small perturbation factor
• ∇xJ (θ, x, y) is the gradient of the loss function with
respect to the input image

This approach forces the model to learn more robust fea-
tures that are less sensitive to minor perturbations, thereby
enhancing its ability to detect ultra-small objects under vary-
ing conditions.

2) SELF-SUPERVISED LEARNING
To leverage large-scale, unlabeled UAV datasets, we employ
a contrastive learning framework. The model is trained to
maximize the similarity between different augmented views
of the same image while minimizing the similarity between
views of different images. The contrastive loss is given by:

Lcontrastive = −

∑N

i=1
log

exp
(
sim

(
zi, z′

i

)
/τ

)
∑N

j=1 exp
(
sim

(
zi, z′

j

)
/τ

) (2)

In Eq 2:

• zi, z′
i are feature representations of augmented views of

the same image,
• τ is a temperature parameter controlling the distribution
concentration

• This self-supervised learning approach helps the model
learn robust, transferable feature representations that are
particularly beneficial for detecting small objects with
minimal labeled data.
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B. ENHANCED MULTI-SCALE FEATURE PYRAMID
The detection of ultra-small objects requires a model capable
of capturing fine details at multiple scales. We propose an
Enhanced Multi-Scale Feature Pyramid that extends tradi-
tional FPNs by introducing additional scales optimized for
ultra-small object detection.

1) FEATURE PYRAMID ARCHITECTURE
Our approach involves adding a specialized detection head
that operates on high-resolution feature maps, allowing for
the detection of objects as small as 6 × 6 pixels. The mathe-
matical formulation for this enhancement is:.

F (l)(x, y) = Conv
(
F (l−1)(x, y)

2

)
+ QuantumSubPixel

×

(
F (l+1)(x, y)

)
(3)

As per Eq 3:

• F (l−1) (x, y)represents the feature map at level lll,
• QuantumSubPixel

(
F (l+1)(x, y)

)
is a quantum-inspired

sub-pixel convolution operation that increases the res-
olution of the feature map.

This architecture effectively captures fine-grained details
across multiple scales, crucial for detecting ultra-small
objects in complex UAV imagery.

FIGURE 2. Compact training process of proposed model.

2) SUB-PIXEL CONVOLUTION LAYERS
To further enhance resolution, we integrate sub-pixel convo-
lution layers, mathematically defined as:

QuantumSubPixel (F (x, y)) = Reshape (Conv2D (F (x, y)))

(4)

This operation rearranges low-resolution feature maps into
higher resolution ones, enabling the model to detect small
objects more effectively without adding significant compu-
tational overhead.

C. EFFICIENCY OPTIMIZATIONS FOR REAL-TIME
APPLICATIONS
Given the computational constraints in UAV systems, our
model incorporates several efficiency optimizations, includ-
ing Model Pruning and Quantization.

We employ structured pruning to reduce the model’s size
and complexity by removing entire filters or neurons that
contribute minimally to the output. The pruning process is
represented as:

Prune(W ) = W ⊙M (5)

As per Eq 3:
• W represents the model weights,
• M is a binary mask matrix that zeros out the pruned
weights

After pruning, the model is fine-tuned to recover any lost
accuracy, ensuring that the model remains lightweight while
maintaining its performance on ultra-small objects.

Another technique post-training quantization is applied to
reduce the precision of model weights and activations from
32-bit floating-point to 8-bit integers:

Q(W ) = round
(
W − min(W )

scale

)
(6)

where:

scale =
max(W ) − min(W )

28

This reduces the model’s memory footprint and computa-
tional requirements, making it suitable for deployment on
resource-constrained UAV platforms while maintaining high
accuracy.

D. MATHEMATICAL FORMULATION OF THE LOSS
FUNCTION
To address the unique challenges of ultra-small object detec-
tion, we introduce a specialized loss function that combines
traditional object detection objectives with terms specifically
designed to improve small object detection:

L = αLcls + βLloc + γLadv + δLreg + ϵLsmall_obj (7)

In Eq 7:
• Lcls is the classification loss, typically using binary
cross-entropy
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• Lloc is the localization loss, enhanced with a weighted
IoU term to prioritize small objects

• Ladv is the adversarial loss for robustness against adver-
sarial examples.

• Lreg is the regularization loss to prevent overfitting
• Lsmall_obj is a new term specifically designed to enhance
the detection of ultra-small objects by applying a higher
weight to errors associated with small object predictions

E. COMPARATIVE EFFICIENCY AND PERFORMANCE
To validate the efficiency and performance of the proposed
model, a comprehensive series of experiments were con-
ducted, benchmarking it against state-of-the-art methods. The
results, summarized in Table 2 and illustrated in Figure 3,
demonstrate that the proposed model achieves significant
advancements across several keymetrics. Enhanced precision
and recall values indicate superior performance, particularly
for ultra-small object detection, which is attributed to the
integration of an advanced feature pyramid architecture and
quantum-inspired techniques. Moreover, the model exhibits
optimized efficiency, maintaining competitive computational
requirements despite the sophistication of the employed
methodologies. This balance ensures its practicality for
real-time UAV applications, where rapid decision-making is
critical. Furthermore, the model’s compact size and reduced
inference time highlight its deploy ability on resource-limited
UAV platforms, offering a powerful yet efficient solution
without compromising detection accuracy or speed. These
results underscore the proposed model’s capability to address
the challenges of ultra-small object detection in complex
UAV environments. The proposed model achieves higher
precision and recall compared to existingmodels, particularly
for ultra-small objects, due to the enhanced feature pyramid
and quantum-inspired techniques. Despite the advanced tech-
niques, the model maintains competitive efficiency, making
it suitable for real-time UAV applications. The model size
and inference time are optimized for deployment on resource-
limited platforms, ensuring that the proposed approach is both
powerful and practical for real-world UAV scenarios.

IV. RESULTS AND DISCUSSION
In this section, we present a comprehensive evaluation of
our proposed quantum-inspired multi-scale object detection
model. The evaluation focuses on its performance in detect-
ing ultra-small objects in UAV imagery, assessed using the
VisDrone2019 dataset. We detail the dataset characteristics,
experimental setup, evaluation metrics, quantitative results,
ablation studies, and visual analyses to thoroughly assess the
effectiveness and efficiency of our approach. The training
process of the proposed model is outlined in Figure 3, which
summarizes the key steps involved in the model’s devel-
opment. This flowchart provides a visual summary of the
training process for the proposed model, including data aug-
mentation, training, loss calculation, and optimization steps.
It offers a clear overview of the methodology used to develop
the model.

A. DATASET AND EVALUATION METRICS
The VisDrone2019 dataset was selected as the benchmark
for evaluating the proposed model due to its comprehensive
representation of UAV imagery, encompassing over 10,000
high-resolution aerial images captured under diverse condi-
tions, including varying altitudes, angles, and environmental
complexities. The dataset includes a wide range of object
categories, such as vehicles, pedestrians, and cyclists, with
significant scale variations from large objects to ultra-small
objects as small as 6 × 6 pixels. This diversity makes it an
ideal platform for assessing object detection performance,
particularly for challenging ultra-small object detection tasks.
For evaluation purposes, the training set containing 6,471
images and the validation set comprising 548 images were
utilized, while the test set of 1,580 images with withheld
labels was reserved for future benchmarking. To maintain
consistency, all images were resized to a uniform resolution
of 1,024×1.024 pixels while preserving their original aspect
ratios. During training, various data augmentation techniques
were applied to enhance the model’s robustness and gen-
eralization capabilities. These techniques included random
horizontal and vertical flips, random cropping and scaling,
adjustments to brightness and contrast (color jittering), and
Gaussian noise injection, which simulate real-world UAV
conditions and improve the model’s adaptability to diverse
scenarios.

The model’s performance was assessed using standard
metrics, including the ratio of correctly predicted positives
to total predicted positives (precision), the ratio of correctly
predicted positives to all actual positives (recall), andAverage
Precision at IoU 0.5, which evaluates detection accuracy at
a fixed Intersection over Union threshold. Mean Average
Precision (mAP) was calculated across IoU thresholds from
0.5 to 0.95 with a step size of 0.05, providing a comprehen-
sive assessment of localization and classification accuracy
for objects of varying sizes. Additionally, computational

FIGURE 3. Performance and efficiency comparison.
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TABLE 1. Comparative analysis of small object detection models.

TABLE 2. Performance and efficiency comparison of discussed models.

TABLE 3. Ablation study results of discussed models.

efficiency metrics such as Floating-Point Operations
(FLOPS) and inference time were recorded to evaluate the
model’s suitability for real-time UAV applications.

To analyze the contribution of individual components,
an ablation study was conducted, with results summarized
in Table 3. The removal of quantum-inspired sub-pixel
convolution layers resulted in a 3.5 percentage point reduc-
tion in mAP@[0.5:0.95], highlighting their critical role in
fine-grained feature extraction. Similarly, adversarial training
significantly enhanced robustness to environmental varia-

tions, improving both precision and recall. The absence
of self-supervised learning led to a noticeable decline in
these metrics, emphasizing its importance for generalization,
particularly in scenarios with limited annotated data. Prun-
ing and quantization, while not directly affecting accuracy,
proved vital for computational efficiency, as their removal
increased FLOPS and inference time, underscoring their
necessity for real-time UAV applications. The experimen-
tal results demonstrated the superiority of the proposed
model over state-of-the-art methods. Achieving precision of
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TABLE 4. Precision-recall and efficiency details of discussed models.

65.3% and recall of 52.4%, along with AP50 of 36.7% and
mAP@[0.5:0.95] of 34.5%, the model effectively detected
and classified ultra-small objects in complex UAV scenarios.
Furthermore, the model’s computational efficiency, with 30G
FLOPS and an inference time of 8.7 ms, ensures its practi-
cality for real-time deployment on UAV platforms, balancing
advanced detection capabilities with resource constraints.
These results affirm the proposed model’s robustness and
efficiency, positioning it as a significant advancement in
UAV-based object detection.

B. EXPERIMENTAL ENVIRONMENT
The experiments were conducted under conditions designed
to simulate realistic UAV operational constraints. The
hardware configuration included an NVIDIA A100 GPU
with 40 GB of memory, renowned for its efficiency in deep
learning tasks, paired with Intel Xeon Gold 6258R processors
and 512 GB of RAM. This setup provided the necessary
computational resources while maintaining a balance rep-
resentative of potential UAV processing capabilities. The
software environment comprised PyTorch version 1.8.1 as
the primary deep learning framework, leveraging GPU accel-
eration through CUDA 11.2 and cuDNN 8.1. The operating
system used was Ubuntu 20.04 LTS, and additional libraries
such as NumPy, SciPy, and OpenCV facilitated data process-
ing and visualization tasks.

Training was performed using the Adam optimizer with
an initial learning rate of η =1 × 10−4\eta = 1 \times
10^{-4}η =1 × 10−4. A learning rate schedule decayed
the rate by a factor of 0.1 every ten epochs upon plateau-
ing of the validation loss. The batch size was set to 16,
balancing memory usage and training speed. The model
was trained for 50 epochs, with weight initialization using
Xavier initialization. The custom loss function integrated
classification loss, localization loss, adversarial loss, reg-
ularization loss, and an ultra-small object emphasis term,
as detailed in the methodology. Hyper parameters were tuned
using a grid search on the validation set, aiming to optimize
the trade-off between detection accuracy and computational
efficiency.

FIGURE 4. Ablation study results-performance and efficiency comparison.

C. QUANTITATIVE EVALUATION
The performance of the proposed model was rigorously
evaluated against state-of-the-art object detection models,
including YOLOv3, YOLOv4, YOLO11, RT-DETR, and
EfficientDet. The comparative results are summarized in
Table 3 and Figure 3. The proposed model achieved a
precision of 65.3% and a recall of 52.4%, surpassing Effi-
cientDet by 6.1% in precision and 3.8% in recall. It also
outperformed YOLO11 and RT-DETR by 2.6% and 0.8%
in precision, respectively, demonstrating its superior ability
to detect and classify ultra-small objects in UAV imagery.
The model achieved the highest scores in AP50 at 36.7%
and mAP@[0.5:0.95] at 34.5%, reflecting improved local-
ization and classification accuracy across varying object
scales. These advancements are attributed to the integration
of quantum-inspired multi-scale feature pyramids, adversar-
ial training, and self-supervised learning, which enhance
feature representation and robustness against environmental
variations.

In terms of computational efficiency, the proposed model
required only 30 GFLOPS and achieved an inference time
of 8.7 milliseconds per image, representing a reduction in
computational complexity and processing time compared to
EfficientDet and other models. This efficiency is critical for
real-time UAV applications, where resources such as process-
ing power and storage are constrained. The model size was
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FIGURE 5. Experimental Visuals for Discussed Models: RT-DETR, YOLOv11, EfficientDet, YOLOv4, and YOLOv3 Results on the VisDrone 2019 Validation
Dataset.

also reduced to 40 MB through pruning and quantization,
ensuring deploy ability on platforms with limited storage
and computational capacity. To ensure statistical validity,
paired t-tests were performed to compare the precision and
recall values of the proposedmodel against baseline methods.
The results confirmed that the improvements in precision
and recall were statistically significant, with p-values less
than 0.01, validating that these enhancements are a direct
outcome of the methodological innovations introduced.

D. ABLATION STUDY: COMPONENT CONTRIBUTION
ANALYSIS
To systematically investigate the role and impact of each
component within the proposed quantum-inspired multi-
scale object detection model, a comprehensive ablation
study was conducted. This approach involved systemati-
cally removing or modifying key features to evaluate their
individual contributions to themodel’s performance and com-
putational efficiency. The configurations assessed included
the full model baseline, which incorporated all proposed

enhancements as a benchmark, and variations excluding
specific components such as quantum-inspired sub-pixel con-
volution layers, adversarial training, self-supervised learning,
and efficiency-based optimizations like pruning and quan-
tization. The results, detailed in Table 3 and illustrated in
Figure 7 and configuration situation of ablation experiment
represented in Figure 4 that can be analyzed for related infor-
mation. All these provides valuable insights into the criticality
of these enhancements in achieving superior performance
metrics. The quantum-inspired sub-pixel convolution lay-
ers demonstrated their pivotal role in enabling fine-grained
feature extraction. Their removal resulted in a significant
reduction of 3.5% in both precision and recall, underscoring
their importance in preserving spatial resolution and enhanc-
ing the detection of ultra-small objects. These layers are
particularly critical for objects with minimal pixel represen-
tation, which are inherently challenging to detect in complex
UAV imagery. Adversarial training emerged as another essen-
tial component, with its exclusion causing a 2.1% drop in
precision and a corresponding decline in recall.
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This reduction highlights the role of adversarial training in
improving the model’s resilience against environmental noise
and adversarial disruptions, which are common in UAV-based
detection scenarios. By integrating adversarial examples dur-
ing training, the model gains robustness, enabling it to
perform reliably under challenging real-world conditions.
Self-supervised learning proved instrumental in enhancing
the model’s adaptability to diverse UAV scenarios. The
absence of this module resulted in a 2.8% decrease in recall,
emphasizing its importance in generalization. By leveraging
unlabeled data, self-supervised learning strengthens feature
extraction and reduces dependency on extensive annotated
datasets, making it a valuable asset for scenarios where
labeled data is limited or unavailable. Efficiency-based opti-
mizations, including pruning and quantization, played a vital
role in reducing computational overhead without compromis-
ing detection accuracy. Their removal led to a 5 GFLOPS
increase in computational complexity and extended infer-
ence time by 2.5 milliseconds. These findings highlight the
importance of these optimizations in maintaining real-time
performance on resource-constrained UAV platforms, which
demand low latency and minimal processing requirements.
The analysis collectively underscores that each component
meaningfully contributes to the proposed model’s overall
performance and operational efficiency. Among these, the
quantum-inspired sub-pixel convolution layers and adver-
sarial training emerged as the most impactful, with their
exclusion leading to the most significant performance degra-
dations. These results validate the importance of these
components in addressing the unique challenges of UAV
imagery, particularly in detecting ultra-small objects under
complex environmental conditions.

Furthermore, while efficiency-based optimizations do not
directly influence accuracy, they play a critical role in ensur-
ing themodel’s deploy ability for real-timeUAV applications.
The findings from the ablation study demonstrate that the pro-
posed quantum-inspired multi-scale object detection model
achieves a robust balance between accuracy and efficiency,
making it a practical and scalable solution for ultra-small
object detection in UAV imagery. This study not only high-
lights the effectiveness of the proposed methodology but also
lays the groundwork for future advancements in UAV-based
detection systems.

E. QUANTUM-INSPIRED MODEL ENHANCEMENTS AND
COMPARATIVE PERFORMANCE
The proposed quantum-inspired multi-scale object detection
model represents a significant advancement in ultra-small
object detection, delivering superior accuracy and compu-
tational efficiency compared to state-of-the-art models such
as YOLOv4, YOLO11, RT-DETR, and EfficientDet. The
integration of quantum-inspired sub-pixel convolution layers
allows the model to preserve high-resolution feature maps,
capturing intricate details crucial for detecting ultra-small
objects in UAV imagery. This innovation addresses the criti-
cal challenges of scale variation and resolution loss, which

are inherent in UAV-based object detection tasks. Adver-
sarial training further enhances the model’s robustness by
mitigating the effects of environmental noise and adversarial
disruptions, ensuring consistent performance in real-world
UAV scenarios. Self-supervised learning complements these
enhancements by utilizing unlabeled data to strengthen fea-
ture representation, a critical capability for deployments in
environments with limited access to annotated datasets.

Pruning and quantization optimizations significantly
reduce computational load and model size without com-
promising performance, ensuring the model’s suitability for
real-time deployment on resource-constrained UAV plat-
forms. These efficiency-focused enhancements enable the
model to achieve an inference time of 8.1 milliseconds and
a computational load of just 30 GFLOPS. As outlined in
Table 4, the proposed model achieves precision of 65.3%
and recall of 52.4%, outperforming EfficientDet by 6.1%
in precision and RT-DETR by 1.6%. These results highlight
the model’s superior adaptability and robustness in detecting
ultra-small objects under challenging conditions.

FIGURE 6. Precision-Recall curve of model comparison.

The integration of quantum-inspired sub-pixel convolution
layers presents a foundation for further exploration. Inspired
by quantum mechanical principles such as superposition and
entanglement, these layers emulate the ability to process
multiple states simultaneously, resulting in richer feature
extraction. Future directions for quantum-inspired techniques
could include dynamically adaptable receptive fields that
adjust to varying object scales, further improving small object
detection in cluttered UAV imagery. Additionally, leveraging
quantum-inspired optimization techniques during training
could minimize the loss function more efficiently, reducing
convergence time and enhancing overall accuracy. Innovative
methods like quantum random walks could refine the feature
selection process, isolating relevant features while suppress-
ing irrelevant noise, thus improving detection precision.

While current implementations of these quantum-inspired
techniques rely on classical computing paradigms, the
rapid evolution of quantum computing hardware opens new
avenues for research. Practical applications of quantum com-
puting could revolutionize both accuracy and efficiency,
offering transformative advancements in real-time object
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detection on resource-constrained platforms. The proposed
model sets the stage for leveraging these emerging technolo-
gies, combining state-of-the-art detection performance with
scalability and efficiency for UAV-based applications.

F. PRECISION-RECALL CURVE ANALYSIS
The Precision-Recall Curve (PRC) analysis, as shown in
Figure 6, further illustrates the proposed model’s ability to
maintain high precision across varying recall thresholds. This
is particularly critical for UAV applications, where false neg-
atives (low recall) could severely impact mission success.
The proposed model consistently outperforms alternative
approaches, including YOLO11 and RT-DETR, by demon-
strating better trade-offs between true positives and false
positives.

By maintaining a balance between precision and recall
across diverse thresholds, the proposed model underscores its
robustness and adaptability for detecting ultra-small objects
in dynamic and complex UAV scenarios. This analysis,
in conjunction with the quantitative metrics, establishes the
proposed model as a reliable and efficient solution for real-
time UAV-based object detection tasks.

V. DISCUSSION ON MODEL PERFORMANCE AND
EFFICIENCY
The ablation study, performance comparison, and precision-
recall analysis collectively validate the effectiveness of
our quantum-inspired multi-scale object detection model in
overcoming the challenges of detecting ultra-small objects
in UAV imagery. The integration of key components—
quantum-inspired sub-pixel convolution, adversarial train-
ing, self-supervised learning, and efficiency optimizations
through pruning and quantization—significantly contributed
to improved detection accuracy, robust generalization across
varying conditions, and enhanced computational efficiency.
Figure 5 visually demonstrates the comparative results of our
model against existing state-of-the-art methods. The left por-
tion of each image displays the outputs of the five discussed
models, while the right portion highlights the superior per-
formance of our proposed model under different scenarios.
The detections are color-coded to represent various object
classes and their corresponding confidence scores. These
visual comparisons clearly illustrate the ability of our model
to accurately detect ultra-small objects with higher precision,
particularly in complex and cluttered environments where
competingmodels tend to underperform. This comprehensive
evaluation underscores the efficiency, robustness, and practi-
cal applicability of our approach for real-world UAV-based
object detection tasks.

A. QUANTUM-INSPIRED SUB-PIXEL CONVOLUTION
This The quantum-inspired sub-pixel convolution emerged
as a pivotal component in the model, with its removal lead-
ing to a significant decline in both precision (3.5%) and
recall (3.5%). This demonstrates its ability to enhance spa-
tial resolution, enabling the model to capture fine-grained

features essential for detecting ultra-small objects. In UAV
applications, where target sizes often range from 6 × 6 to
12× 12 pixels, this component ensures that subtle details are
not lost during feature extraction. Compared to conventional
convolution methods, the quantum-inspired approach pre-
serves high-resolution feature maps, making it indispensable
for tasks requiring detailed object localization.

B. ADVERSARIAL TRAINING
Adversarial training significantly contributed to the model’s
robustness, as evidenced by a 2.1% reduction in precision
and a decline in recall upon its removal. UAVs frequently
operate in environments with adversarial conditions, such
as weather fluctuations, shadows, and occlusions, which
can degrade detection performance. By integrating adversar-
ial examples into the training process, the model develops
resilience to such disruptions, ensuring consistent perfor-
mance in real-time UAV applications, particularly in critical
domains such as surveillance and disaster response.

C. SELF-SUPERVISED LEARNING:
The inclusion of self-supervised learning enhanced the
model’s ability to generalize across diverse environments,
with its removal leading to a 2.8% drop in recall. This
component leverages unlabeled data to extract robust feature
representations, reducing the dependence on large annotated
datasets. Given the variability in UAV imagery—spanning
different lighting conditions, altitudes, and environmen-
tal textures—self-supervised learning proved invaluable in
adapting to unseen scenarios, improving detection perfor-
mance in novel settings such as rural landscapes or urban
areas.

D. EFFICIENCY OPTIMIZATIONS (PRUNING AND
QUANTIZATION)
While pruning and quantization had minimal impact on
detection accuracy, their role in reducing computational over-
head was critical. Their removal increased FLOPS by 5G
and extended inference time by 2.5 ms, underlining their
importance in ensuring the model’s real-time deploy ability
on resource-constrained UAV platforms. These optimizations
make the model efficient without sacrificing its precision and
recall, which is vital for UAV applications that require rapid
processing and minimal latency.

E. COMPARATIVE ANALYSIS
When compared to state-of-the-art models such as YOLOv4,
EfficientDet, YOLO11, and RT-DETR, the proposed model
consistently achieved higher performance across all key
metrics. It demonstrated superior precision (65.3%), recall
(52.4%), and mAP@[0.5:0.95] (34.5%), while maintaining
lower computational demands with a model size of 40 MB
and inference time of 8.1 ms. As shown in Table 4 and
Figure 7, these advancements validate the integration of
quantum-inspired methods and efficiency optimizations. Sta-
tistical significance tests confirmed that the improvements are
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not random, with p-values < 0.01, further reinforcing the
model’s reliability and robustness.

F. PRECISION-RECALL CURVE (PRC) INSIGHTS
The Precision-Recall Curve (PRC) highlights the model’s
ability to maintain high precision at varying recall thresholds,
indicating a low false-positive rate. This is crucial for UAV
operations, where misclassifications or missed detections can
result in mission-critical failures. For example, in surveil-
lance tasks, high precision ensures accurate identification of
small targets such as drones or vehicles, even in cluttered
environments. The PRC performance, shown in Figure 6,
underscores the model’s balance in handling the trade-off
between true positive rates and reducing false positives,
ensuring reliable performance in diverse UAV-based detec-
tion scenarios.

G. IMPLICATIONS AND FUTURE WORK
The findings of this study underscore the critical role
of each enhancement in achieving the proposed model’s
dual objectives of high detection accuracy and operational
efficiency. The integration of quantum-inspired sub-pixel
convolution layers significantly improved localization pre-
cision, allowing the model to capture fine details essential
for detecting ultra-small objects in complex UAV imagery.
Adversarial training further bolstered the model’s robustness,
ensuring reliable performance under challenging real-world
conditions, such as environmental noise and adversarial dis-
ruptions. Efficiency optimizations, including pruning and
quantization, played a pivotal role in reducing computational
complexity and inference time, making the model deployable
on resource-constrained UAV platforms while maintaining
high detection performance.

FIGURE 7. Overview of model performance as discussed in section V.

Future research could expand on this foundation in several
key areas. Integrating edge computing capabilities offers the
potential to reduce latency and improve processing speeds,
thereby enhancing the model’s applicability in real-time
UAV operations. By adapting the model to edge devices,

such as FPGAs or GPUs, it could achieve seamless deploy-
ment across various UAV systems, particularly in scenarios
requiring rapid decision-making. Another avenue involves
evaluating the model on larger and more diverse datasets.
Testing on datasets like DOTA, UAVDT, or custom datasets
representing varied geographical regions and environmental
conditions would provide deeper insights into its generaliza-
tion capabilities. Such evaluations could further refine the
model’s adaptability and robustness across diverse opera-
tional environments.

The quantum-inspired approach also presents promising
opportunities for further exploration. Future work could
investigate dynamic receptive fields inspired by quantum
principles, enabling the model to adapt to varying object
scales more effectively. Additionally, quantum-inspired opti-
mization techniques could accelerate training convergence
and improve feature selection, further enhancing both accu-
racy and efficiency. With the advent of practical quantum
computing hardware, these techniques hold the potential
to revolutionize resource-constrained applications like UAV-
based object detection. This research sets a robust foundation
for advancing UAV object detection systems. By addressing
the challenges of ultra-small object detection and operational
efficiency, the proposed model not only establishes a new
benchmark but also opens pathways for leveraging emerging
technologies to further enhance performance and scalability
in real-world applications.

VI. CONCLUSION AND FUTURE WORK
A. CONCLUSION
This study introduces a novel quantum-inspired multi-
scale object detection model, addressing critical chal-
lenges in detecting ultra-small objects within UAV imagery.
By effectively integrating quantum-inspired sub-pixel con-
volution, adversarial training, and self-supervised learning,
the model achieves substantial improvements in detection
accuracy, computational efficiency, and robustness. These
advancements are particularly significant for UAV applica-
tions, where scale variation, environmental complexity, and
resource constraints pose persistent challenges. The pro-
posed model demonstrated superior performance compared
to state-of-the-art methods such as YOLOv4, YOLO11, RT-
DETR, and EfficientDet,achieving a precision of 65.3%,
recall of 52.4%, and mean Average Precision (mAP) of
34.5% across IoU thresholds. These results mark a significant
improvement in detecting ultra-small objects, which are often
overlooked by conventional models due to their limited pixel
representation. Additionally, the efficiency optimizations—
including structured pruning and quantization—enabled the
model to operate at 30 GFLOPS with an inference time of
8.1 milliseconds, ensuring its suitability for real-time UAV
applications.

The integration of advanced methodologies makes this
model not only accurate but also computationally effi-
cient, addressing the dual requirements of UAV-based object
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detection systems. Applications such as surveillance, pre-
cision agriculture, environmental monitoring, and disaster
response stand to benefit significantly from this robust and
practical solution.

B. FUTURE RESEARCH DIRECRTION
This study presents a significant advancement in the domain
of ultra-small object detection within UAV imagery by
addressing. Despite the significant advancements presented
in this work, several avenues exist for further exploration to
enhance the model’s capabilities and applicability:

• Expanding the evaluation to include larger and
more diverse datasets such as UAVDT, DOTA, and
region-specific custom datasets can validate the model’s
generalization capabilities. Additionally, incorporating
domain adaptation techniques would improve perfor-
mance across varying environmental conditions and
imaging systems, ensuring reliable detection in diverse
UAV operational contexts.

• To enhance real-time processing and reduce latency,
the model can be integrated with specialized hardware
accelerators like FPGAs or ASICs. This optimization
would make the model more efficient for UAV platforms
with limited resources. Distributed processing architec-
tures can also be explored to enable scalability and fault
tolerance for collaborative UAV networks, especially in
large-scale operations.

• Future work could delve into quantum algorithms
such as Quantum Neural Networks (QNNs) or
hybrid quantum-classical models to enhance both
efficiency and accuracy. Additionally, leveraging
quantum-inspired optimization techniques could accel-
erate training convergence and improve feature selec-
tion, unlocking further performance potential.

• Building upon adversarial training, advanced adversarial
defense mechanisms can be implemented to protect the
model against sophisticated attacks. Moreover, incor-
porating continual learning frameworks would allow
the model to adapt dynamically to new data, reduc-
ing retraining requirements while maintaining long-term
performance across evolving scenarios.

• Customizing the model for specific use cases can max-
imize its impact. In precision agriculture, the model
could focus on detecting crop diseases or pests to
assist in targeted interventions. For disaster response,
enhancements to identify survivors, structural damage,
or resources would significantly improve UAV opera-
tions during emergencies, aiding in timely and effective
decision-making.

To facilitate broader adoption, creating APIs and visualiza-
tion tools would streamline integration with existing UAV
systems. User-friendly interfaces for real-time visualization
of detection outputs would enhance operator decision-making
and improve the overall utility of the model in practical
applications.

C. FINAL REMARKS
According to overall observations, this study presents a
robust, scalable, and efficient solution to the challenge of
ultra-small object detection in UAV imagery. By integrating
quantum-inspired techniques, advanced augmentation meth-
ods, and computational optimizations, the proposed model
achieves a balance of precision, recall, and efficiency that sur-
passes existing approaches. These advancements open new
opportunities for UAV systems across a range of critical appli-
cations, from surveillance and agriculture to disaster response
and environmental monitoring. The results of this research
establish a strong foundation for future exploration, with
several promising directions identified to further enhance
the model’s performance and adaptability. As advance-
ments in quantum-inspired computing and edge processing
technologies continue, the potential for even greater improve-
ments becomes increasingly tangible. Ultimately, this study
bridges the gap between cutting-edge research and real-world
deployment, advancing the capabilities of UAV-based object
detection systems. By contributing to both academic research
and practical implementation, this work aims to drive innova-
tion across industries, delivering benefits to society in areas
where accurate and efficient object detection is essential.
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